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A bstract

In this thesis we study some critical problems in the area of Data Envelopment Analysis (DEA) 

within the unifying framework of polyhedral characteristics of the production possibility sets and 

efficiency frontiers of important DEA models. Recent developments in DEA have made it possible 

to identify the efficient frontier explicitly. This thesis builds on these developments to make the 

following contributions.

We establish theoretical results on the efficiency classifications of surfaces of the boundaries 

of the production possibility sets. These systematise existing research in the field and fill in 

many gaps. Our main results provide necessary and sufficient conditions for characterising fully- 

dimensional efficient surfaces. In addition, the new theoretical framework leads us to discover and 

address inconsistencies in the related literature.

Next we study the sensitivity of efficiency classifications of Decision Making Units (DMUs) 

to data perturbations. In contrast to existing approaches, we study the effects of arbitrary data 

perturbations on the efficiency classifications of all DMUs. Theoretical constructs based on the 

polyhedral nature of production possibility sets lead to identifying a Conditional Stability Region 

for each DMU within which its data can be perturbed without affecting the efficiency classification 

of any other DMU.

Finally, we develop a new methodology for cross-evaluation in DEA which replaces the tradi­

tional approach of peer evaluation by evaluating DMUs across all possible weights obtained from 

our explicit identification of the DEA production possibility set. The new approach eliminates 

some major flaws and weaknesses of the traditional approach and produces more meaningful re­

sults. Moreover, a set of extensions to the new approach lead to tools that allow identification of 

DMUs with unrealistic efficiency scores as well as the identification of under-achieving DMUs, a
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concept that is introduced here.
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Introduction

In this thesis we use a unified framework relating to polyhedral attributes of the production possibil­

ity sets constructed by DEA models, to study some important problems in DEA. The contributions 

that we make are twofold. First, we establish a thorough set of theoretical results that covers many 

‘gaps’ in the field and provides new insights to these problems. Second, by utilising this theoretical 

framework we extend the traditional scope of the areas under study as well as introduce new tools 

and methodologies for these.

Before I describe the contents of this thesis in more detail, I would like to mention how this 

PhD topic came into existence. During my Master’s dissertation, at the same department where I 

pursued my doctoral studies, I was undertaking a student project at the Department for Education 

and Skills (DfES). This examined the use of DEA for evaluating the efficiency of secondary Schools 

in England. It was during this time that I got properly acquainted with DEA and became very 

interested in the subject. At that time, my two PhD supervisors were introducing a new framework 

for the solution of DEA models that was based on the explicit identification of DEA production 

possibility sets. Following the successful completion of my project, an opportunity for a DfES 

funded PhD came up, under the supervision of Professor Gautam Appa. It was agreed that this 

would look at how the aforementioned framework can be used to extend existing methodologies in 

DEA as well as develop new ones, and the project was given the title ‘Developing New Techniques 

for DEA’. This thesis describes the theory and methodology of the techniques that were developed 

during this project.

The first chapter of the thesis serves as an introduction to general economic efficiency concepts 

as well as DEA. In addition, we use this chapter to introduce the basic notation used in this thesis, 

as well as all the models and theory required for the understanding of the following chapters.
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The DEA production possibility sets are polyhedra, and the efficient frontiers used in DEA 

axe, broadly speaking, the boundaries of these polyhedra. Studying the polyhedral characteristics 

of DEA production possibility sets is a relatively recent trend in the DEA field. This is precisely 

what we undertake in chapters two and three, in great detail.

In chapter two we start by introducing the necessary theory for studying polyhedral aspects of 

production possibility sets. This includes some basic concepts from linear algebra and polyhedral 

theory. We then introduce two alternative representations of production possibility sets, viz. facets 

of the polyhedron and all extreme points and rays of the polyhedron. This is carried out for 

both Constant and Variable Returns-to-Scale models. Finally, we examine the problem of explicit 

identification of production possibility sets and review the existing approaches for this.

In chapter three we provide a thorough theoretical framework relating to the efficiency classi­

fications and the dimensions of surfaces of production possibility sets. This systematises existing 

research in the field and fills in many gaps. Our main results provide necessary and sufficient 

conditions for characterising fully-dimensional efficient surfaces of the boundaries of production 

possibility sets. Using our new results we discover some inconsistencies in the existing literature 

on this topic. We provide a general description of these problems in the context of our new results, 

and counter-examples by way of rigorous proof.

Sensitivity analysis in DEA has always been a popular research topic. In chapter four we review 

the existing approaches for sensitivity analysis, examine their strengths and weaknesses, and point 

out that all of these focus on very restrictive cases of this problem, where it is assumed that only 

very specific types of data perturbations can occur.

This limited view of sensitivity analysis is addressed in chapter five. The problem that we study 

concerns the sensitivity analysis of efficiency classifications of DMUs by DEA, to data perturba­

tions. We introduce a new approach, termed Conditional Stability Analysis (CSA), which is more 

powerful than existing approaches. It enables a study of the effect of arbitrary perturbations on 

the stability of efficiency classifications. In addition, CSA is not merely confined to considering the 

classification of only perturbed DMUs. It leads instead to the identification of geometrical regions, 

called conditional stability regions, within which a DMU’s data can be perturbed without affecting 

the original efficiency classifications of all DMUs. We develop a set of theoretical constructs for 

this which axe based on the polyhedral attributes of DEA production possibility sets. These results
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are utilised to provide exhaustive characterisations of conditional stability regions. We also put 

forward a procedure for the computation of conditional stability regions. This is designed to reduce 

the problem of explicit identification of production possibility sets by focusing on local parts of 

these and has the potential to considerably reduce the overall computational effort.

In the final two chapters of this thesis we study the concept of cross-evaluation in DEA. In 

chapter six we conduct a critical investigation of its current theoretical framework and the compu­

tational tools used by traditional cross-evaluation approaches, which rely on restrictive formulations 

of this problem. Our analysis reveals some important flaws and weaknesses which we demonstrate 

by providing examples.

In chapter seven we point out that the general philosophy for existing cross-evaluation ap­

proaches is flawed. We address this by introducing a new methodology for cross-evaluation in 

DEA. The new approach departs from the traditional rationale of peer appraisal and focuses on 

the evaluation of DMUs across all different possible weights. As before, we have based our ap­

proach on the explicit identification of the DEA production possibility set, from which we obtain 

a complete set of valid weights on which cross-evaluation can be performed. The new approach 

overcomes existing problems and hence produces more meaningful results. In addition, its rationale 

can offer an alternative view when imposing restrictions on the self-selection of weights by DMUs 

in DEA. Finally, we develop a set of extensions and tools to accompany our approach. These allow 

the identification of so-called maverick DMUs, i.e. DMUs that obtain unrealistic efficiency scores, 

as well as the identification of under-achieving DMUs, a concept that we introduce here.
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Chapter 1

M easuring efficiency: basic 

concepts and m odels

1.1 Introduction

This chapter contains all preliminary material on efficiency measurement/analysis relevant to this 

thesis. In section 1.2 we consider the problem from an economic viewpoint and introduce some fun­

damental efficiency concepts. We start by providing the Pareto-Koopmans definition of technical- 

efficiency and introduce the concept of the production possibility set. We then discuss how Debreu- 

Farrel efficiency measures utilise production possibility sets to measure technical-efficiency and 

how these differ from Pareto-Koopmans measures. We close this section by discussing the concept 

of Retums-to-Scale. In section 1.3 we introduce Data Envelopment Analysis (DEA). We provide 

a detailed description of how DEA measures efficiency, define the concepts of relative efficiency 

and radial-efficiency and present the basic DEA models for constant and variable returns-to-scale 

cases. Finally, we discuss super-efficiency DEA models and their uses.

1



CHAPTER 1. MEASURING EFFICIENCY: BASIC CONCEPTS AND MODELS

1.2 Basic Concepts

2

1.2.1 Technical Efficiency

The term production can be intuitively defined as the utilisation of resources, or more generally 

inputs, in a process that transforms them into outputs. Usually, this process is taking place under 

a given technology, assumed to be the same for some production units. Where the production 

technology is known, e.g. in the form of a production function, it can be used in an attempt to 

measure the efficiency of production units by comparing their actual input-output bundles with 

‘optimal’ ones implied by the production technology, e.g. the ratio of actual to optimal output 

obtained by a given input. Comparisons such as this measure efficiency in terms of production 

possibilities and give rise to the term technical efficiency (Lovell 1993).

The most widely accepted definition of technical efficiency is provided by Koopmans (1951) 

and is commonly referred to as Pareto-Koopmans efficiency or just Pareto-efficiency: a producer 

is technically efficient if an increase in any output requires a reduction in at least one other output 

or an increase in at least one input, and if a reduction in any input requires an increase in at least 

one other input or a reduction in at least one output.

Before illustrating the concept of technical efficiency we present the notation that will be used. 

Let J  =  {1,2, ...n} be a set of production units indexed by j .  The j ’th unit consumes the s- 

dimensional input vector Xj to produce the m-dimensional output vector y j.  We also define the 

s x n dimensional matrix X =  [x f,...x ^ ] and the m x n dimensional matrix Y  =  [y f, ...y„], 

and denote input-output bundles in general as (x ,y ) £ R++m. Finally, we define the production 

technology in terms of a production possibility set T  which includes all possible input-output 

bundles, i.e.:

T  =  { (x ,y) € R+"m|a; £ R+ can produce y £ R™}

We will assume that this set satisfies the following structural properties (see e.g. Fare et al. 1985):

1 ‘No free-lunch’ assumption: If (0,0) £ T  and (0, y) £ T then y — 0. In words, this states 

that production of output is not possible without consumption of some input.

2 T is monotonic: V(x, y) £ T =$■ (x +  a , y — f3) £ T  V a  £ R+, /3 £ R+. This property is also 

referred to as free disposability of inputs and outputs.
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3 T  is convex. Let Xj and y j denote the j ’th columns of the matrices X  and Y . Then a 

production set T is convex if: V X, Y  : (xj , y j) G T Vj G J  4  (XA,YA) G T : A G 

R™, eA =  1 and e =  (1...1).

4 T is a closed set.

Perhaps the best known measure of technical efficiency was introduced by Debreu (1951) and 

Farrell (1957). This measure is defined in terms of the maximal equi-proportionate or radial

reduction in inputs while outputs remain the same. We refer to this measure as the Debreu-Farrell

input oriented measure of technical efficiency and denote it as follows:

DFj(x, y)  =  min{0 : (Ox,y) G T}  (1.1)

The Debreu-Farrell measure is closely related to the input distance function introduced by 

Shephard (1953, 1970), defined as follows:

£>/(x, y) =  max{0 : (x /9 , y) G T }  (1.2)

We note that DFj(x, y)  <  1, D j ( x , y ) >  1 and obviously DFj (x , y)  =  1 / Di (x , y ) .  The value of 

DF j ( x , y ) is taken to be the input-oriented efficiency of a given production unit. In an analogous 

fashion we can define the output oriented versions of the above measures as follows:

DF0 (x, y) =  max{5 : (a:, Sy) G T} (1.3)

Do{x,  y) =  min{<5 : (x, y /S) :G T} (1.4)

We note that DFo { x , y ) >  1, Do{ x , y )  <  1 and in this case we take 1 / D F o ( x :y) — Do( x , y )  to 

be the efficiency score so that again all efficiency scores are bounded by unity.

The above measures are in the form of distance functions that measure the distance of the actual

input-output bundle of a production unit from a reference point on the graph of the production

function. In that sense, the graph of the production function, taken to be the set of all possible 

efficient input-output bundles, with efficiency scores equal to one, serves as an efficient frontier.
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Figure 1.1: Debreu-farrell efficiency

Depending on the orientation, the efficient subset of units consists of those that cannot further 

decrease (increase) the levels of their inputs (outputs) without affecting the levels of some outputs 

(inputs). These units achieve an efficiency score equal to one in the corresponding orientation. 

An illustration is given in figure 1.1. Suppose that the production possibility set is the collection 

of input-output bundles bounded from the left by the ray from the origin through data points 

{xBiVb) and (x c , y c )• For units B and C no possible increase in output production is possible 

without an increase in the levels of input and no possible reduction in input levels is possible 

without a reduction in output levels. Therefore, units B and C are efficient with efficiency equal to 

one. Unit A however is not technically efficient since, depending on the orientation, it could have 

either used less input (6 * x a ) to produce the same output, or produced more output ( S ' i j a )  with 

the same input. The corresponding efficiency scores for unit A are 0*and 1/S* 1.

We need to note here that a unit need not be simultaneously declared efficient by both orienta­

tions of the Debreu-Farrell measure, which is a necessary condition2 for a unit to be Pareto-efficient. 

More generally, Pareto-efficiency implies Debreu-Farrell efficiency but the converse does not nec­

essarily hold. Fare and Lovell (1978) and Charnes et al. (1978) note that the Debreu-Farrell

1 In fact, because we assume that the technology only exhibits constant-returns to scale, 9* = 1 /  S*.
2 This follows directly from the definition of Pareto-Koopmans efficiency. Note here that this is not a sufficient 

condition.
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xc

Xi

Figure 1.2: Pareto-efficiency vs Debreu-Farrell efficiency

measure of efficiency does not always account for all inefficiency in the Pareto-Koopmans sense. 

We illustrate such a case in figure 1.2. Consider the plotted input set L(y) C taken to be the 

collection of input bundles x € M+ that produce at least output vector y  € R+ (let us suppose 

here, for simplicity, that all plotted vectors produce exactly the same amount of output)3. Both 

input vectors xc  and x q  can be contracted radially by amount 9c  and Op respectively and still 

be able to produce the same output. Note however, that although no further radial contraction is 

possible for input vector OdXd,  which renders it Debreu-Farrell efficient, this vector is not Pareto- 

Koopmans efficient since compared to vector xa  it uses more of input x<i in order to produce the 

same output. This slack in input X2 results from the inefficient mix of inputs that unit D exhibits 

and is referred to as the mixcomponent of inefficiency.

Having observed the relationship between Debreu-Farrell and Pareto-efficiency, we close this 

section with the identification of the subsets of efficient production bundles associated with these. 

The efficient subset of T denoted E f f ( T ) includes all Pareto-Koopmans efficient units:

E f f { T ) =  { (z ,2/) e  T  | x' < x, y' > y ,  {x\ y ' )  ^  (x , y ) => (x' , y') £ T}  (1.5)

3 Note that in an analogous fashion we can define the output set P(x) C
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The weak-efficient subset of T includes all Debreu-Farrell efficient units (see e.g. Faxe et al. 1985; 

Russell 1988):

W. E f f ( T )  =  {(*, y) e  T  | x' <  x, y' >  y  =* (x', y') £ T }  (1.6)

It follows from the above that

E f f { T )  C W. E f f ( T )  (1.7)

This ‘disagreement’ between the two efficiency definitions has always been a weak point of Debreu- 

Farrell efficiency. Remedies for this have been suggested in the literature (see e.g. Lovell 1993 for 

a short discussion) and in section 1.3 we will be discussing one such approach.

1.2.2 R eturns to  Scale

In this section we discuss the important concept of Retums-to-Scale. Consider the example in figure

1.3 where the production technology involves one input x  and one output y, such that y  =  f(x) .  

We assume that all pairs (z, y) in this functional relationship are technically efficient, i.e. the 

output y  is maximal for every x. The graph of this function is given by the s-shaped curve and the 

area to the right of the curve is the production possibility set. The concept of Returns-to-Scale 

relates to comparing proportional increases in output that result from proportional increases in 

input, assuming technical efficiency is maintained. Hence, we only concentrate on points that lie

on the graph of the production function. Consider the production bundle (x i,t/i). Its average

productivity is defined by the ratio y \ / x \  which gives the slope of the ray from the origin through 

point (Xi , y \ ). If we were to move away from (x\ , y i )  by increasing input, but still remain on the 

graph, then the slopes of the corresponding rays would increase until point (x0, y0), where the ray 

from the origin to (xa, yQ) is tangent to the graph, after which they would start decreasing. Hence, 

average productivity increases along with increases in inputs up to level xQ and decreases after 

that point. This implies that output is increasing proportionately more than input to the left of 

x0 and the reverse is observed to the right of xQ.

Formalising this, we say that the production technology exhibits Increasing Retums-to-Scale 

for x <  x0, Constant Retums-to-Scale at point (x0, yQ) and Decreasing Retums-to-Scale for x >  xQ. 

To generalise our observations, consider a production function F(x, y)  =  04 representing all

4 This is the standard neoclassical produnction function for multiple inputs and outputs which represents Pareto-
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Xi

Figure 1.3: Returns-to-Scale and the production function.

Pareto-efficient combinations of inputs and outputs (x,y)  G R++m. We measure the returns-to- 

scale at a particular production bundle on the graph of the production function, by considering 

the proportional increases in all output levels relative to a marginal proportional increases in all 

inputs. More specifically, suppose that inputs are increased proportionally by a factor a  >  1 and 

consider the proportional expansion in outputs 0 >  1 required to match this if efficiency is to 

be maintained, determined by solving F(ax,  0y)  =  0. We now define the elasticity of scale as a 

function of inputs and outputs as follows:

* ( * . » ) - § ; !  d-8)

An alternative formula is obtained by differentiating F  with respect to a  and evaluating at a — 

0 — 1 without loss of generality (see e.g. Forsund and Hjalmarsson (2004)):

, s 90
e{X,V) 9a  (L9)

efficient input-output bundles and is assumed to be continuously differentiable. Further, it is assumed that dFQy'^ > 

0 Vr G (1,..., m) and dFg*'y  ̂ <  0 Vi G (1,..., s).
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In other words, the elasticity of scale evaluated at point (x , y) measures the ratio of a marginal 

proportional expansion in output levels resulting from a marginal proportional expansion in input 

levels, when Pareto-efficiency is maintained. If e(x,y) >  1, then a proportional increase in inputs 

by a  results in a greater proportional increase in output levels by 0 , i.e. a  <  0, and we say 

that the production technology exhibits Increasing Returns-to-Scale at point (x, y). Conversely, if 

s(x, y) <  1, then a  >  0  and we say that the production technology exhibits Decreasing Returns- 

to-Scale at point (x,y). Finally, if e(x,y) — 1, then a  =  0  in which case we have Constant 

Returns-to-Scale at point (x, y).

1.3 D ata Envelopm ent Analysis

In the previous section we have assumed that the production technology is known. However, in 

practical problems this is rather uncommon. The task of measuring efficiency when we hold no 

information on the production technology is considerably more complicated as we now have to 

estimate it. The first to work on this was Farrell (1957). In his seminal work he pioneered not 

only the idea of measuring efficiency with the use of distance functions that contract or expand 

inefficient units to the efficient frontier, as we have seen in the previous section, but also the idea 

of constructing an estimated frontier by taking combinations of observed input-output bundles 

as reference points. Farrel was concerned with the estimation of unit isoquants, for which he 

also put forward a computational framework. However, Farrell’s work on efficiency analysis was 

"confined to single output cases and his sketch of extensions to multiple outputs did not supply 

what was required for applications to large data-sets" (Cooper et al. 2004). Charnes, Cooper, and 

Rhodes (1978) (CCR) extended Farrell’s work within a mathematical programming framework by 

developing the technique which they baptised Data Envelopment Analysis. CCR also introduced 

the term Decision Making Units (DMUs) to refer to a set of peer entities that convert multiple 

inputs to multiple outputs. In this section we present the basic models of DEA.

1.3.1 C onstant R eturns-to-Scale m odels

As a starting point, CCR chose a different side of the problem: the use of input-output data for 

every DMU in a ratio formula that evaluates efficiency. To achieve this DEA assigns weights to
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the inputs and outputs and the ratio takes the form: weighted sum of outputs/weighted sum of 

inputs. Let v G R+ and u G R+ be the vectors of weights assigned to the inputs and outputs 

respectively. The following non-linear programme5 evaluates the efficiency of DMUo G J :

uyo in \m a x   (1.10)
vx.0

s.t. <  1 Vj G J
VXj

u, v >  0

The efficiency of DMUo given by the optimal value of the objective function in (1.10) is also referred 

to as simple-efficiency because it is the self-evaluation of a DMU by choosing weights that place it 

in the best possible light. In contrast, cross-efficiency is the efficiency score obtained by evaluating 

a DMU with weights that have been selected by another DMU in its self-evaluation (we look at 

cross-efficiency in great detail in chapter 6). In this context, DMUo is trying to find nonnegative 

weights that maximise its simple-efficiency, while keeping this and all cross-efficiencies bounded by 

unity. Efficient DMUs are those that are able to achieve the maximum efficiency score of unity. 

CCR converted the above non-linear programme into a linear one by applying the Chames-Cooper 

transformation (Chames and Cooper 1962). This involves setting the denominator in the objective 

function equal to one and maximising the numerator6. The constraints can easily be rearranged 

algebraically in a linear form. The CCR Linear Programme (LP) is given below. This is also 

referred to as the multiplier form  of the CCR model:

max u y0 (L ll)

s.t. vx.0 =  1

uY t  -  v X T <  0 

v, u >  0

5 Note here that to maintain simplicity in presentation we will be denoting u, v instead of uT , vT . We will be 
using this rule in all mathematical notation throughout this text.

6 Note that by setting ux0 =  1 we assume implicitly that Xj ^  0 Vj G J.
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As before, the optimal value of the objective function gives the efficiency of DMUo- We note 

here that a fully rigorous analysis would replace the nonnegativity constraints by the constraints 

v , u >  e >  0, where e is a non-Archimedean infinitesimal7 We shall use the term infinitesimal form 

to refer to versions of DEA models constructed to accommodate the infinitesimal e. We discuss 

this in greater detail later. For now, we turn to the dual to the above LP, known in the literature 

as the envelopment form of a CCR model:

min 9 (1-12)

s.t. 9x0 — XA > 0 

Y A > y 0 

A > 0

We denote the optimal solution to (1.12) by (9*, A*) and take 9* to be the input oriented efficiency 

score for DMUo- We also refer to this as radial-efficiency, as it assumes that all inputs will be 

contracted by equal proportions. Hence, model (1.12) is an operational form of the Debreu-Farrell 

input oriented efficiency measure given in (1.1). The point (9*x0, y Q) can be seen as a target point 

for DMU o, and can also be expressed as a nonnegative linear combination of peer DMUs8 by 

using A*. The efficient frontier is the collection of all radially-efficient combinations of DMUs, all 

of which can serve as target points. It is easy to see that (9 =  1, A0 =  1) is a feasible solution 

to (1.12) and hence it follows that for all DMUs e* <  i ,  implying that no observed input-bundle 

can be expressed as a radial contraction of a target point. In other words, this model seeks to 

determine whether there exists a nonnegative combination of DMUs that uses less of every input 

than DMU o, but produces the same levels of all outputs. If such a combination cannot be found 

then DMU o is declared radially-efficient. In that sense, the frontier envelopes the observed data 

and this gives rise to the name DEA. Radially-efficient DMUs are the ones already on the frontier, 

for which no possible reduction in input levels is possible and 9* =  1, like DMUs B  and C  in figure 

1.1. This leads to the following definition.

7 A non-Archimedean infinitesimal is a number that does not satisfy the Archimedean property, i.e. given a real 
number /3, then ae <  /3 for any natural number a.  This means that e is smaller than any positive real number.

8 Here we can clearly see the link with Farrell’s work on efficiency analysis.
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D efin ition  1 (W eak D E A -E fficiency, R adial-E fficiency) DMU o is radially-efficient, if and 

only if at an optimal solution to (1.12) for DMU o, 6* =  1.

We have used the term weak DEA-efficiency (or simply weak-efficiency) because radial-efficiency 

does not necessarily imply Pareto-efficiency9. Recall that model (1.12) is an LP implementation 

of the Debreu-Farrell efficiency measure and hence inherits its weakness related to distinguishing 

between weak efficiency and true efficiency (in the Pareto-Koopmans sense). In a DEA context, 

we use the term DEA-efficient subset (or simply efficient-subset) to refer to all Pareto-efficient 

units and the term weak-efficient subset to refer to the set of all radially-efficient units, i.e. those 

with efficiency scores equal to one. As the subsequent discussion will show, not all radially-efficient 

units are DEA-efficient, as for some radially-efficient units slacks in inputs or outputs might be 

present. These belong to the weak-efficient subset but not the DEA-efficient subset. We use the 

term weakly efficient units to refer to units that only belong to the weak-efficient subset. Before 

discussing these issues further, we need to stress that the notion of efficiency in DEA has a relative 

meaning, as it is based on estimated production technologies. This is formally expressed in the 

following definition (see Charnes and Cooper 1985; Cooper et al. 2004).

D efin ition  2 (R elative Efficiency, D E A -E fficiency) A DMU is DEA-efficient on the basis of 

available evidence if and only if the performances of other DMUs do not show that some of its 

inputs or outputs can be improved without worsening some other inputs or outputs.

To properly decide on membership to the DEA-efficient subset for DMU o, we need to modify 

the objective function in (1.12) to 6 — e(es_ +  es+ ), where s - and s+ contain the input and 

output slacks respectively. However, solving (1.12) with the modified objective function has its 

own problems, deriving from the computation of the value of e. Instead of solving such a model 

directly, a two-phase approach is used. In the first phase we solve (1.12). We then use the optimal

9 One might argue against the use of the term Pareto-efficiency in the context of estimated production technologies. 
However, we choose to use this term for the sake of simplicity and to keep in line with the majority of DEA related 
literature. Equivalent terms to Pareto-efficiency that appear in the literature and that we will use are: true 
efficiciency, full efficiency, strong-efficiency, or simply DEA-efficiency.
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9* in a second phase where we solve the following additional model:

12

max es +  es+ (1-13)

s.t. 0*xo — XA — s “ =  0 (1-14)

Y A - s + = y 0 (1.15)

A, s _ , s+ > 0

Let (A *,s~*,s+*) be an optimal solution10 to (1.13). We refer to ( 9*, A*,s_ * ,s+*) as a max-slack 

solution for DMU o11. Having maximised the slacks we are now able to determine whether a DMU 

is DEA-efficient. This is done according to the following definition (see e.g. Cooper et al. 2004).

D efin ition  3 (D E A -E fficiency) Let ( 9*, A*,s_ * ,s+*) be a max-slack solution for DMU o € J. 

Then, DMU o is fully efficient if and only if both (i) 9* =  1, and (ii) es~* +  es+* =  0 12.

We can also use the max-slack solution to set appropriate targets for inefficient and weakly 

efficient DMUs. Let (x0,y 0) be the input-oriented target point for DMU o. Then:

x G =  XA* =  0*xo -  s~* (1.16)

y„ =  YA*= y G +  s+*

Peer DMUs used in the construction of the target point are referred to as comparator DMUs, 

and the collection of a DMU’s comparators is called the reference set. Formally, let REF0 be the 

reference set for DMU o. Then:

REF0 =  { j  e  J\ A* >  0} (1.17)

Where A* is the j ’th entry of vector A*.We illustrate these points with the use of two examples. 

We start with figure 1.4, where seven DMUs are plotted in input-output space. All DMUs use one 

input (x) to produce one output (y). In single input-output environments, it is easy to see that 

all DMUs which maximise the ratio: output produced/input used, will be radially-efficient. In our

10 Note that there might exist multiple optimal solutions for DEA problems.
11Let us note here that a max-slack solution can also be obtained by solving the infinitesimal form of (1.12).
12 This definition is not only restricted to CCR efficiency but extends, as we shall see later, to other DEA models. 

Note that condition ii implies that s-* =  s+* =  0.
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Ob

Figure 1.4: CRS example, input-output space

example this ratio is maximised at DMU A only and therefore A is the only efficient DMU. The 

efficient frontier is given by the ray OO which includes all input-output bundles that obtain an 

equal value to DMU A in the above ratio. Of course, all these can be expressed as nonnegative 

multiples of A. The remaining DMUs are inefficient. We obtain their efficiency scores by projecting 

their input-output bundles horizontally to the frontier, so that their input levels decrease but their 

output-levels remain the same. For instance, in the context of (1.12) DMU B's efficiency score 

would be 0B : (0Bx B,y B) =  A*(xA,yA) =  (xB>,yB>). Note that 0*BxB =  xB> &  9*B =  or 

else 0*B =  11°q^B\ and hence we can also express efficiency scores with the use of the ratio: optimal 

input levels /  observed input levels.

The example discussed above gives a graphical illustration of DEA in the full input-output 

space, but does not allow for illustrating many important aspects of DEA. For this purpose we will 

use an additional example in input-space only. In figure 1.513, we assume that all plotted DMUs use 

different levels of two inputs to produce exactly one unit of one output. We start with applying the 

first phase of the DEA optimisation procedure, i.e. solving (1.12) for all DMUs. At this stage we 

are concerned with determining the maximum radial contraction in the input levels of a DMU such 

that the resulting input bundle can be expressed as a combination of other observed bundles. In

13For simplicity, Xj refers to (xi j ,X2j )
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x\

Figure 1.5: CRS example, input space

other words, phase-1 identifies the radial-efficiency scores for all DMUs. DMUs A — E  are radially- 

efficient as there can be no radial contraction of their input levels. DMUs F  and G however, can 

be contracted radially to points OpXF and Oqxg and hence are inefficient with efficiency scores Op 

and 6q respectively. As before, we can alternatively express the efficiency scores with use of ratios,

After obtaining the radial-efficiencies we need to identify the correct slacks and targets for 

DMUs where appropriate. This cannot be done by using the results of phase-1. Note the existence 

of alternative optimal solutions for DMUs A and C. Without affecting its radial-efficiency score, 

DMU C  can either choose itself as comparator or it can choose to be expressed as a combination of 

B  and D. Similarly, DMU A can either chose itself or it can be compared with DMU B. However, 

for DMU A, such a choice has important implications. As we can observe, choosing DMU B  as 

comparator results in a slack in input X2 (equal to x^a — x^b), which is not the case if it chooses to 

be compared with itself. Note also, the slack in input x\ for DMU G (O g X \g ~ x \e )• By maximising 

the slacks, phase-2 guarantees that we arrive at appropriate results so that we can distinguish with 

certainty between fully efficient DMUs (B — E ) and weakly efficient DMUs (A). In addition we 

can set appropriate targets for weakly efficient DMUs and inefficient DMUs.
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We close this section with a brief discussion on the output oriented versions of the CCR models 

(1.11) and (1-12). Note that we concentrate on the radial-efficiency versions of the models, i.e. the 

models solved in phase-1. The dual pair of models are as follows:

max ip (1-18)

s.t. XA < x 0

ipyQ -  Y A  <  0 

A > 0

min ux0 (1-19)

s.t. u ya =  1

vX t - uY t  > 0 

v, u > 0

We denote by (<p*, A*) the optimal solution to (1.18). It is easy to see that (</? =  1, A0 =  1) is a 

feasible solution, and so </?* >  1. The output-oriented radial-efficiency score for DMU o is defined 

as ^r. All efficient units have <p* =  1. Finally, let (v*,u*,/3*) be an optimal solution to (1.19). 

Then, from duality, u*xQ =  <p* so that^^- provides the output-oriented radial-efficiency score for 

DMU o.

1.3.2 Variable R eturns-to-Scale m odels

So far we have discussed models that are used in Constant Returns-to-Scale (CRS) environments. 

Banker, Charnes, and Cooper (1984)(BCC) introduced the following DEA model that can account
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for Variable Returns-to-Scale (VRS):

16

min 6 — e(es + e s + ) (1.20)

s.t. 0xo — XA — s+ =  0 

Y A - s - = y 0 

eA =  1 

A, s+ , s -  > 0

Let ( 0*, A*, s - *, s+*) denote an optimal solution to the above LR The input-oriented radial- 

efficiency score for DMU o is 9*. It is easily noticeable that this LP is the same as the envelopment 

form of the CCR model with the exception of an additional constraint. Constraint eA =  1, also 

referred to as the convexity constraint, implies that reference points (and the efficient frontier) are 

constructed as convex combinations of observed data points. As in the CRS case, instead of solving 

(1.20) directly we can employ a two-phase procedure. Given a max-slack solution for (1.20), the 

same definitions for radial-efficiency and DEA-efficiency, given before, apply. In addition target 

points can be identified as in (1.16).

The multiplier form of this Variable Returns to Scale (VRS) model is given below. Note that 

the difference with the CRS model in multiplier form (1.11) is the additional variable ft which is 

unrestricted in sign.

max u y0 — (3 (1-21)

s.t. vx.0 -- 1

uY t  -  v X T ~ (3 e <  0

14, V  >  £

Let (v*, u*, /?*) be an optimal solution to (1.21). The optimal value of the objective function

( u*yQ — /?*) is equal to the optimal value of the objective function in (1.20) and hence also gives

the radial-efficiency score for DMU o.

Below we present the output oriented versions of BCC models (1.20) and (1.21). For the sake



CHAPTER 1. MEASURING EFFICIENCY: BASIC CONCEPTS AND MODELS 17

of simplicity we concentrate on models that only evaluate radial-efficiency scores, i.e. disregard 

any possible slacks. The dual pair of models is given below.

max (p (1.22)

s.t. XA <  x 0

<pyQ -  Y A < 0 

eA =  1 

A > 0

min v x 0 — (3 (1.23)

s.t. u yQ =  1

vX t - uY t  —  /3e >  0 

v ,u  >  0

Let (<p*, A*) be an optimal solution to (1.22). Clearly then, <p* >  1. As for the CRS case, 

the output-oriented radial-efficiency score for DMU o is defined as and all efficient units have 

(p* =  1. Let (u*,u*,/3*) be an optimal solution to (1.23). Then u*x0 — (3* — ip* so that the 

output-oriented radial-efficiency score for DMU o is also given by v*x 1_p. •

In figure 1.6 we provide an illustration of the DEA models where we contrast VRS and CRS 

results. The horizontal projections refer to input-oriented models (superscript / ) ,  the vertical 

projections to output oriented models (superscript O) and we have used the subscripts C  and V,

to refer to CRS and VRS projections respectively. For example, Fy  is the input-oriented VRS

reference point for DMU F. The VRS efficient frontier is given by the piecewise linear segment 

ABC D .  Although radial DEA projections on the line segment AA' and the ray from E  towards 

(+oo, x/e ) (through H) are indeed possible, these sections are not part of the VRS efficient frontier, 

as such projections always have non-zero slacks. We will refer to these sections as the weakly 

efficient parts of the DEA frontier. The CRS efficient-frontier is the ray OO'. The two frontiers 

intersect at the line segment B C , hence DMUs B  and C  are both CRS and VRS efficient, whereas
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DMUs A , D  and E  are VRS efficient only. In addition all VRS efficiency scores are clearly greater
I q I  j p l  I

than, or equal to the corresponding CRS efficiency scores. DMU F  for instance has >
\q I j p l  | \ 0 ®  F \
-joTp^i and equal output oriented CRS and VRS efficiency scores ( \o^f °\ )• Another important 

difference of the VRS model is that input and output oriented efficiency scores are not necessarily 

equal as was the case for CRS models. Moreover, it is possible that a DMU is radially-efficient with 

respect to a certain VRS orientation and inefficient with respect to the ‘opposite’ orientation, as 

for example DMU H  which is radially-efficient with respect to an output orientation but inefficient 

with respect to an input orientation. Taking this further, we can say that it is not necessarily the 

case that both input and output-oriented radial targets are DEA-efficient.

It follows from Definition (2) that radial-efficiency equal to one with respect to both orientations 

of a CRS (or a VRS) model is a necessary condition for DEA-efficiency. On the other hand, this 

condition is not sufficient because equi-proportionate contractions or expansions in input or output 

levels cannot account for slacks in inputs and/or outputs. In general, if E f f ( J )  denotes the subset 

of DMUs that axe Pareto-efficient and W .E ff i (J )  (respectively W .E ffo (J ) )  denotes the subset of 

DMUs that are declared radially efficient with respect to an input (output) orientation, then the 

following relation holds (see also Krivonozhko et al. 2005):

E f f ( j )  C W .E f M J )  n  W .E ffo (J )

1.3.3 Super-Efficiency m odels

We close this chapter with a discussion on another important family of DEA models referred 

to as super-efficiency models, that have been used to rank DMUs and identify outliers. These 

models first appeared in Banker and Gifford (1988), Banker et al. (1989) and also in Andersen 

and Petersen (1993) where the term super-efficiency was introduced. Consider the input-oriented
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Figure 1.6: CRS vs VRS DEA efficiencies

VRS super-efficiency model given below:

min 0 (1-24)

s.t. 0xo — X _ 0A > 0 

Y _ 0A > y G 

eA =  1

A £ HUJT1

where the matrices X _0 and Y _0 contain all columns x^, y j  except for x 0,y 0. In other words, A0 

is effectively set to zero and DMU o is excluded from its own reference set. The implications of 

this are discussed below.

Let the optimal solution to (1.24) be denoted (O', A'). Now suppose that DMU o is inefficient 

under the standard BCC model and let the optimal solution to this model instance be denoted 

(0*, A*). In such a case DMU o cannot choose itself as comparator in the BCC model, i.e. A* =  0. 

Hence, any optimal solution to (1.24) is an optimal solution to the BCC model and vice-versa 

(note that the optimal solutions are not necessarily identical as there might exist multiple optima



CHAPTER 1. MEASURING EFFICIENCY: BASIC CONCEPTS AND MODELS 20

in both models).

Now suppose that DMU o is a BCC-efficient DMU. We can now further distinguish between 

the following two cases: a) the only solution to (1.20) (disregarding slacks in the objective) involves

A0 =  1 and A j  =  0 Vj  ̂  o, and b) in addition to the solution in a) there exists at least one other

optimal solution to (1.20) in which A0 =  0. In the second case, any solution to (1.20) in which A0 =  0 

is also an optimal solution to model (1.24) and vice-versa. However, in the first case, the optimal 

solution to (1.20) is no longer feasible for model (1.24). This implies that 0' >  0* =  1 => 0' >  1.

To get an alternative interpretation to this consider the dual LP to (1.24), given below:

max u y0 — P (1.25)

s.t. vx.0 - 1

u Y l 0 -  vY?_0 -  fie < 0  

u, v > 0

It is evident by comparing this formulation to the multiplier form of the BCC model that the 

constraint —vx.0 +  u yQ — ft <  0 has now been lifted. In addition, if — v x Q +  u yQ — (3 >  0 then, since 

ux0 =  1, we obtain that u yQ — ft >  1, i.e. the efficiency score for DMU o is greater than one.

Let us note here that there exist problems regarding the computation of super-efficiency models, 

stemming from the fact that the feasibility of these models is not guaranteed. An obvious example 

of an infeasible instance for (1.24) is the instance corresponding to a DMU k such that y i t  > 

yij  Vj k, i.e. a DMU k that produces the greatest level of output y\. Clearly, in such a case y\k 

cannot be expressed as a convex combination of any y ij  values leading to infeasibility in model 

(1.24). Computational issues arising from the infeasibility of super-efficiency models are discussed 

in Seiford and Zhu (1999) and Dula and Hickman (1997). Despite these computational challenges, 

many solutions have appeared in the related literature (see e.g. Lovell and Rouse 2003; Banker 

and Chang 2006) and the use of super-efficiency models as modelling tools has spread widely.

More specifically, because super-efficiency models do not restrict efficiency scores to be bounded 

by unity, it has been suggested that they can be used for the following two purposes:

a) Ranking DMUs (Andersen and Petersen 1993): Standard DEA efficiency scores do not allow
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for a complete ranking of DMUs. The reason is that all efficient DMUs have equal efficiency 

scores. By considering the super-efficiency scores this problem is alleviated and a ranking of 

all DMUs can be constructed.

b) Detecting outliers (Banker and Gifford 1988; Banker et al. 1989): Given that DEA is 

attempting to fit a frontier/envelope to a set of data points, it is to be expected that it 

would be sensitive to the presence of DMUs with unrealistically high/low output/input lev­

els (on the other hand it is not sensitive at all to the presence of DMUs with unrealistically 

high/low input/output levels). In that sense outlier DMUs could be identified as those that 

are considerably further away from the majority of their peers, in directions indicated by de­

creases/increases in input/output levels. This ‘distance’ can be measured by considering the 

difference between super-efficiency scores and standard DEA efficiency scores (given that all 

outlier DMUs would have to be radially-efficient, we can identify outliers by just considering 

their super-efficiency scores). In view of this, the procedure suggested by Banker and Gifford 

(1988) is based on choosing a threshold value (say 1.1) and identifying as outliers all DMUs 

with super-efficiency scores that exceed this threshold.

Recently, Banker and Chang (2006) conducted simulation experiments to assess the perfor­

mance of super-efficiency models for the aforementioned purposes. They report that the outlier 

identification process discussed above performs satisfactorily but that the use of super-efficiency 

models in ranking DMUs is not appropriate.

Finally, let us note that the super-efficiency models have been widely used in the sensitivity 

and stability analysis of DEA efficiency results. In chapter 4 we shall report on this use in more 

detail.



Chapter 2

On D E A  production possibility  

sets

2.1 Introduction

In the previous chapter we have seen that DEA models construct estimated production technologies 

by identifying efficient combinations of observed input-output bundles. Our discussion was based 

at the DMU-level; we presented the theory behind the efficiency classifications of DMUs but we did 

not examine in detail the specific characteristics of the estimated production technologies. In this 

chapter we take a macroscopic view of these production technologies. More specifically, we provide 

a detailed examination of the theoretical framework regarding the various production possibility 

sets associated with different DEA models.

The outline of this chapter is as follows. In section 2.2 we discuss a selection of topics from 

linear algebra and polyhedral theory. We have selected the contents of this section so that they 

form a concise background behind the theory of polyhedral production possibility sets which are 

the focus of the rest of this chapter as well as subsequent chapters. Section 2.3 introduces two 

alternative representations of DEA production possibility sets. We provide the theory relating 

to primal and dual representations, as well as some illustrative examples. Finally, because a 

significant amount of the ideas in subsequent chapters is based on the explicit identification of

22



CHAPTER 2. ON DEA PRODUCTION POSSIBILITY SETS 23

DEA production possibility sets, in section 2.4 we review what has already been reported in the 

literature on this.

2.2 Basic concepts

This section presents some basic concepts from linear algebra, convex analysis and polyhedral 

theory. Our purpose here is not to provide a comprehensive introduction to these fields but to 

collect and present the underlying theory for the discussion contained in subsequent sections. For 

this reason we shall keep this section brief.

2.2.1 Linear algebra

Consider a set of points S  C Rn and a subset X  C S  that contains a finite collection of t points 

from S, i.e. X  =  {x \ ,  ...,x t}. Using this we provide the following fundamental definition:

D efin ition  4 Consider the point x* G Rn x* — [x\, . . . ,x t]A. Then x* is:

a) a linear combination of points in X  if: A GR*.

b) a conic (or non-negative linear) combination of points in X  if: A GR+.

c) an affine combination of points in X  if: A gR* and eA =1.

d) a convex combination of points in X  if: A GR+ and eA =1.

Now consider the set S  again. The convex hull of S  is defined as the set of all convex com­

binations of points in S. Alternatively we can define this as the smallest convex set that contains 

S, or even as the intersection of all convex sets that contain S. We denote the convex hull of S  

by Conv(S). In parallel we can define the linear hull, denoted Lin(S), the affine hull, denoted 

A ff ( S ) ,  and the conical hull, denoted Cone(S). In view of the definition above, it is easy to 

observe that the following relations hold:

Ccmv(S) C A f f ( S )  C Lin{S) (2.1)

Conv(S) C Cone(S) C Lin(S)

In relation to the above we can define the concepts of linear/affine independence as follows:



CHAPTER 2. ON DEA PRODUCTION POSSIBILITY SETS 24

D efin ition  5 A set o f t  vectors x \ , . . . ,x t  are

a) linearly independent if the unique solution to [xi, ...,x t]A =  0 is A =  0.

b) affinely independent if the unique solution to [xi, ...,x t]A =  0, eA =0 is A =  0.

An alternative view of the above definition would be to declare the set of vectors X  =  { x \ , xt } 

as linearly (respectively affinely) independent if ^x0 G X  : xQ G L i n ( X \ x 0) (respectively A f f ( X \  

xQ)). It is easy to see that linear independence implies affine independence but the converse is not 

necessarily true.

The maximum number of linearly independent vectors in Rn is n, whereas the maximum number 

of affinely independent vectors in Rn is n+1 (e.g. n  linearly independent points and the zero vector).

We now turn to the issue of dimension. To address this it is necessary to define linear subspaces 

and affine sets.

D efin ition  6 Let V be a subset o /R n. Then V is a subspace if and only if:

a) X i, X2 G V  =>■ x i +  X2 G V.

b) x G V  =» Ax G V  VA G R.

Note that property b in (6) implies that V  is not empty as it always contains the zero vector. 

If V  /  Rn we call V  a proper subspace of Rn. Now suppose that V ^  {0} and consider a finite 

collection of linearly independent vectors X  =  {x i, . .. ,xt } C V  such that L in(X ) =  V. Then X  is 

called a basis of V. Bases are not unique, however they all contain the same number of vectors. 

This number is called the dimension of the subspace V  and denoted dim(V). Clearly then Rn has 

dimension n, and dim(V) <  n for every proper subspace V  of Rn. If the maximum number of 

linearly independent points in subspace V  is k then the maximum number of affinely independent 

points in V  is k +  1. In general, if ti is the maximum number of linearly independent points in V 

and t a is the maximum number of affinely independent points in V, then:

dim(V) =  ti =  t a — 1. (2.2)

We now discuss another way of determining the dimension of subspaces related to the alternative 

definition of a subspace below 1:

^ om e of the theoretical properties that we present in this section as definitions, are in fact fundamental provable 
results in linear algebra and convex analysis. Presenting them as such however is beyond the scope of this short
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D efin ition  7 Let V be a subset o /R n. Then V is a subspace if an only if 3 an m  x n matrix A  

such that V  =  {x  £ Rn|A x =  0}.

In other words the subspace V  is the solution set of a finite number of linear equalities of the form 

ax  =  0, given by the rows of A. The maximum number of linearly independent rows of A  is called 

the rank of A  and denoted rank(A).  Clearly, rank(A) < n. Given V  =  {x  £ Rn|A x =  0 }, and a 

matrix A  containing fh =  rank{A) linearly independent rows of A , then V  =  {x  £ Rn| A x =  0} 

and the latter is a minimal description of V. The dimension of V  is closely associated with the 

number of equalities required for its minimal description in other words the rank of matrix A. In 

particular, the subspace V  loses one dimension for every one of the linearly independent equalities 

required for its minimal description, i.e.:

dim (V ) — n — rank(A).  (2.3)

Now consider affine sets in Rn for which we use the following definition:

D efin ition  8 A set S  C Rn is affine if and only if Axi +  (1 — X)x2 e  S  for any X\,X2 € S. In 

addition, if S  C W 1 is an affine set then it is the translation of a unique subspace V  C Rn, i.e. 

S' =  V +  a = { x  +  a : x £  V}, a £Rn.

Clearly, the affine hull of a set of points is an affine set. Conversely, every affine set 5  C Rn 

is the affine hull of a set of points in Rn. In addition, for every affine set S  C Rn there exists an 

m x n matrix A  and a vector b £ Rn such that S =  {x  £ Rn|Ax =  b}. In other words, the affine 

set S  is the set of solutions to a finite set of equalities of the form ax  =  b, defined by the rows of 

A  and b. Any subspace is an affine set and in fact subspaces are those affine sets that contain the 

origin.

If S  C Rn is an affine set and V  its corresponding subspace then the dimension of 5  is:

dim(S) — dim{V) =  n — rank(A).  (2-4)

introduction. For a detailed exposition to these topics the reader can refer to Rockafellar (1970), Nemhauser and 
Wolsey (1988) and Schrijver (2000).
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Recall that the dimension of V  is equal to one minus the maximum number of affinely indepen­

dent points in V. Now consider a maximum collection of t affinely independent points x i , ..., Xt G V. 

Since 5  is a translation of V  by some a GRn, then the points Xi +  a, i =  1, ...£, axe contained in S  

and can be seen to be affinely independent. If follows that if t a is the maximum number of affinely 

independent points in S, then:

dim(S) — t s — 1. (2.5)

Although both linear and affine independence can be used to determine the dimension of sub­

spaces, the same is not true for affine sets and this is why we determine the dimension of these 

by considering the dimension of their corresponding subspace. For example, consider the subspace 

Vi C R2 defined by the line x — y — 0. The maximum number of linearly independent points in 

Vi is clearly one. Now consider the affine set S\ =  V\ +  (1,0) =  {(x ,y )  G R2| x — y — 1}. The 

maximum number of linearly independent points in S\ is two (e.g. the points (1,0) and (0, — 1)). 

The dimension of S\ however is dim(Si) =  dim(V i) =  1. By using affine independence we obtain 

that V\ contains at most two affinely independent points (e.g. point (1,1) and the origin) and 

hence dim (V ) — 2 — 1 — dim(S).  Note that in general if an affine set S  does not contain the origin 

(i.e. if it is not a subspace), then the maximum number of linearly independent points in S  equals 

the maximum number of affinely independent points in S  (e.g. the set Si and the points (1,0) and 

(0, - 1) discussed before).

The maximal affine sets not equal to the whole space Rn are of particular importance. These 

are called hyperplanes. To be precise, a hyperplane in Rn is an affine set with dimension n — 1. 

From definition (2.3) we know that exactly one linear equality is required to describe a hyperplane 

in Rn, i.e.:

D efin ition  9 A hyperplane H  C Rn is defined as: H  =  {x  G Rn| ax  =  6, a GRn, 6gR}. This 

representation is unique up to scalar multiplication.

Since every affine set S  C Rn is the solution set of a finite number of linear equalities, it follows 

that S  C Rn is the intersection of a finite number of hyperplanes.
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2.2.2 Polyhedral theory

We now discuss systems of linear inequalities and polyhedra. Earlier we defined a hyperplane H  as 

the solution set of one linear equality. Now we define a halfspace H -  as the solution set of a linear 

inequality2, i.e. H -  — {x € R n\ ax <  b, a GRn, 6gR}. Clearly H  C  H - .  Taking this further, in 

parallel to affine sets defined as the solution sets for a system of linear equalities we can define a 

polyhedron as the solution set for a number of linear inequalities, i.e.:

D efin ition  10 A polyhedron (or a polyhedral set) P  C Rn is the set of solutions to a system of 

linear inequalities. More specifically, If P  is a polyhedron, then there exist a n m x n  matrix A  and 

a vector b G RTO such that P  =  {x  G Rn |Ax < b}.

A special case of polyhedra are polyhedral cones3, for which the vector b is equal to the zero 

vector 0, i.e. if C  C Rn is a polyhedral cone, then C =  { i G  Rn|Aa; <  0} Another special case is 

bounded polyhedra which are also called polytopes. More specifically, if II C Rn is a polytope then 

n  C {x  G Rn| — 8 < x  < 8 ,  <5 G R” }.

Note that two inequalities aQx <  bQ and aQx > b0 together are equivalent to the equality 

blqx =  bQ, so that implied equalities might be present in the definition of polyhedron P. In general, 

let A =x =  b= denote a set of mi linear equalities, A - x  < b -  a set of m2 linear inequalities and 

let m =  m i +  m2. Then any polyhedron P C R n can be described a s  P  =  {x  G Rn|A =a: =  b = , 

A -  x <  b - } .  The dimension of a polyhedron P  is closely related to the number of linear equalities 

required for its description. In parallel to our earlier discussion we define the dimension of P  C  Rn 

as follows:

dim(P)  =  n — ran k{A ~ , b = ) (2.6)

Consider a point i „ G P  such that A x  <  b. Such a point is called an interior point. Clearly then 

a polyhedron P  C Rn is of full dimension (dim(P) — n) if and only if it has an interior point. In

addition, we can determine the dimension of a polyhedron by considering the maximum number

of affinely independent points that it contains. Let that number be t. Then:

dim(P) =  t — 1 (2-7)

2Without loss of generality we assume that all inequalities are of ‘less than or equal to’ form.
3 C  C Rn is a cone if: x E C  => Xx 6 C, A G R +.
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In subsequent sections and chapters we will only encounter fully-dimensional polyhedra so we 

shall restrict the remaining parts of this section to this special case. We now come to the issue of 

the minimal representation of P. Consider an inequality a0x <  bQ satisfied by every x G P. Such 

an inequality is called a valid inequality and we say that (aG, bQ) defines the inequality. Clearly 

the valid inequalities for P  axe infinite, however, not all valid inequalities are required for the 

description of P. Furthermore, even the finite system A x  <  b might contain inequalities that are 

not required for representing P . To obtain the minimal representation of P  we need to consider 

the faces and facets of P , defined as follows:

D efin ition  11 Let (aD, bQ) define a valid inequality for a polyhedron P  C Rn, and f  =  {x  G 

P |a 0x =  bQ}. Then, f  is called a face of P  and we say that (a0,b0) represents f .  If f  ^  0  then 

we also say that (a0,b0) supports P  and call the hyperplane H  =  {x  6 Rn|a0x =  bQ} a supporting 

hyperplane of P  (and f ) .  Moreover, we call f  a proper face if f  ^  0  and f  ^  P . .

Note that the number of distinct faces of P  is finite. In addition we define facets as follows: 

D efin ition  12 Let f  be a face of P. If d im (f)  =  dim(P)  — 1 then we call f  a facet of P

Clearly, in the case of fully-dimensional polyhedra dim (f)  =  n — 1 if /  is a facet of P. If /  is not 

a facet then there does not exist a unique representation for it. For example, consider a face f Q of 

a three-dimensional polyhedron P, defined as the line segment between two points in R3. Clearly, 

we need two inequalities to represent f 0 since the line containing f Q is the intersection of two 

hyperplanes. Hence, the dimension of f Q =  n — 2 =  1. In addition, there exists an infinite number 

of hyperplanes that intersect on the line containing f Q and any pair of these can represent f Q. Now 

consider a face f \  of a three-dimensional polyhedron P  that contains three affinely independent 

points. Clearly then, there exists a unique hyperplane containing / i ,  i.e. f i  has a unique support 

and there exists a unique inequality representing it.

A minimal representation of a polyhedron can be obtained by considering only the finite set of 

inequalities representing its facets, i.e.:

D efin ition  13 Let f i , . . . , f t  be the facets of the polyhedron P  =  {x  £ Rn|Ax <  b}, and let
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(ai, 61) , (a*, bt) define their supporting inequalities (halfspaces). Then:

P  =  {x  G Rn|a;x <  hi,i =  1, . . . ,t}  (2.8)

In other words, every polyhedron P C I "  can be represented (minimally) as the intersection 

of a finite number of halfspaces. We call this the representation of P  in interesection-form.*.

We now discuss an alternative way to represent polyhedra, which is dual to the representation 

we just gave. This representation is in terms of the extreme points and extreme rays of polyhedra, 

defined below:

D efin ition  14 Consider the polyhedron P  =  {1 E Rn|Ax <  b} and its recession cone RC  C Rre 

defined as R C  =  {rE  Rn|Ar <  0 }.Then:

a) xQ G P  is an extreme point of P  if and only if ^ x \ , £2 G P  : x0 =  Axxi +  \ 2 X21 Ax +  A2 =  1.

b) rQ G R C  is an extreme ray of R C  and P  if and only if 1, r2 G R C  with rx /  o t 2, a  >  0 : 

rQ =  A in  +  A2r2, Ax -f A2 =  1 Ai, A2 > 0.5

These notions are closely related to the notion of faces of polyhedral sets. More specifically, 

an extreme point of P  is also a O-dimensional face of P , i.e. the unique point of contact of a 

supporting hyperplane with P. Similarly, an extreme ray is a 1-dimensional face of RC. Now 

consider a polytope, i.e. a bounded polyhedron, II C Rn and a polyhedral cone C C R "  and let 

X  =  {x x, ...,x^i}, R  =  I n ,  ••■ 2̂} contain the ti  extreme points and the t 2 extreme rays of II and 

C  respectively. Then:

n  =  Conv(X)  (2.9)

C  =  Cone(R) (2.10)

That is, a polytope can be expressed as the convex hull of its extreme points and a polyhedral 

cone as the conical hull of its extreme rays. Hence we shall say that any polytope and any 

polyhedral cone are finitely generated. We now generalise this representation to polyhedra. For

4 Note that this concerns both fully-dimensional and non fully-dimensional polyhedra. In the latter case, there 
does necessarily exist a unique minimal representation. We do not discuss this case here.

5Note that the rays of C  are unique up to scalar multiplication, i.e. the ray rQ is the same as a r0 where a  >  0.
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any polyhedron P  C Rn, there exists a poly tope II C l n and a polyhedral cone C  C Rn, such 

that:

p = n + c  (2.11)

Note that +  denotes set addition. In words, every polyhedron is the sum of a polytope and a 

cone. More specifically, for any xQ € P , 3x' e  II and r' G C : xQ =  x ’ +  r ’. This representation 

is sometimes referred to as the Minkowski-sum of P . Taking this further we can define a more 

precise representation for P , i.e. determine the polytope and the cone required for its description. 

As mentioned earlier this will be in terms of the extreme points and extreme rays of P:

D efin ition  15 Consider the polyhedron P  =  {x  £ Rn|Ax <  b}. Let X p  =  { x i , ..., xt i }  and 

R p  =  {ri, ...rt2} contain its extreme points and extreme rays respectively. Then:

P  =  C onv(X p ) +  Cone{Rp ) (2.12)

It follows that every polyhedron is a finitely generated set. In the above C onv(X p ) is a polytope 

and Cone(Rp ) =  RC.  Finally, we close this section by briefly discussing the issue of polarity.

D efin ition  16 Let P  C Rn be a polyhedral set. The polar cone o fP , is P* =  { (y ,yo)  £ P n+1| yx <  

yo Vz £ P }.

Note that in general the dimension of P* is one more than the dimension of P. The polyhedral 

cone P* contains any valid inequality for P. Let (aG, b0) define a facet supporting inequality for 

P. Then (a0,b0) is an extreme ray of P*. In addition, if x a and rQ are an extreme point and an 

extreme ray of P  respectively, then (x0, — 1) and (ro,0) define facets of P*, i.e. the hyperplanes 

defined by the equalities yxQ — yo =  0 and yra =  0 support facets of P*. In general, there is a 

correspondence between the facets of P  and the extreme rays of P* and vice-versa.

Finally, note that for a polyhedral cone C  C Rn any facet supporting inequality will be of 

the form aQx <  0. For this reason frequently in the literature its polar cone C* is defined as 

C* — {y  G Rn | yx <  yo Vx G C}.  Using this definition C* does not include all valid inequalities 

for C  but just the supporting ones. In such a case (C*)* =  C. For simplicity of presentation, we 

shall use this alternative definition when discussing the CRS DEA production possibility set in the 

following section.
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2.3 A lternative representations o f production possibility sets

2.3.1 The constant R eturns-to-Scale case

Let us consider the production possibility set associated with the envelopment form of the CCR 

model given in (1.12) which we denote by T c - It is easy to see that Tc  is the collection of all 

feasible input-output bundles in s +  m —dimensional space that satisfy the following properties:

1 Convexity.

2 Monotonicity.

3 Constant Returns to Scale (CRS), that is : i ( x , y )  G Tc => (/ex, ny) G Tc  V k G R+

4 Overall inclusion: i j  G J  =>• (xj, y.,) G Tc

5 Minimum Extrapolation: Tc  is the closed intersection of all possible sets that satisfy the 

above properties.

We now explore two alternative ways to represent Tc- The two representations in fact form a 

dual pair. The first, also referred to as primal representation, is in terms of non-negative linear 

combinations of observed bundles (i.e. DMUs):

Tc  =  {(x ,y )  G R;+m| x >  XA, y < Y A ,  A >  0} (2.13)

It is easy to see that for any (x, y) G Tc  there exists a feasible solution for model (1.12). 

We now examine how to obtain a minimal primal representation of Tc- Let E c  C J  be the

set of extreme-efficient DMUs for the CCR model6, and Z c  be the set of their data points, i.e.

Z c  =  { (x j, y j ) G R++ m | i j  G E c}-  We also define the set of free disposability rays R  — [r^ G 

RS+m| ^   ̂s _|_ ^  s Tk _  > s rk _  _ &k j.7 Beiow we obtain the minimal

primal representation of Tc'-

6 A CCR Pareto-efficient DMU is extreme-efficient if it cannot be expressed as a non-neggative linear combination 
of other DMUs (see also Charnes et al. (1991)).

7ejt is a vector with 1 in the k’th position and all other entries equal to zero.
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L em m a 1 Let T c be defined as in (2.13). Then, Tc can be represented minimally as follows:

Tc  =  Cone(Zc  U R) D R;+m (2.14)

P roof. To establish that Cone(Zc  U R) f l  R++m  C  Tc, consider a point (x , y ) G Cone(Zc  U 

R) fl If (x0,y 0) G Cone(Zc)  n M++m (which is contained in Cone(Zc  U R) fl M++m), then

(x0, y0) G Tc- Otherwise if (xa, yQ) is a nonnegative combination of some DMUs in E c  and some 

rays in R , then clearly there exists (x ,y') G Cone(Zc)  n R++m such that x <  x Q and y > y0. 

But (x ,y') G Tc, hence (xa, y0) G Tc- An analogous argument can be made to establish that 

Tc  C Cone(Zc  U R ) n  M̂ +m. ■

To obtain the dual representation we utilise P c , the polyhedral cone of input-output weights 

(weighting schemes) corresponding to Tc- This is the polar cone of Tc and it contains all feasible 

solutions to (1.11) without the normalisation constraint vx0 =  1, i.e.:

? c  =  { ( v , u ) G E J + m | -  V'x.j +  u y j  <  0,V j  G J }8 (2.15)

The following theorem (see Olesen and Petersen 1996) shows that we can obtain an alternative

representation of Tc in terms of Pc-

T heorem  1 Let the primal representation o fT c  be defined as in (2.13). Then, the dual represen­

tation o fT c  is:

T c  =  {(x,y)  G R++m|V(u,u) G P c  : — vx +  uy < 0}  (2.16)

Noting that P c  is a polyhedral cone and hence finitely generated, we obtain the following: 

C orollary 1 Let P c  be the set of extreme rays of Pc, and Ic  its corresponding index set. Then,

Tc  =  { (x , y)  € (  p ) -ViB +  Uiy < 0 J nR++m| (vi,Ui) G P c }  (2.17)
\ i e i c  /

8Strictly speaking, if inputs are represented positively, this should be P c =  {(— u,it) G K s+m| — vx.j +  u y j <  
ON j  E J}.  We use this slightly different notation throughout this text for the sake of simplicity. Note also that as 
we mentioned earlier, we have defined P c to contain only the supporting inequalities for T q , not all valid ones. For 
this reason both T c , P c  Q R s+rn.
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As discussed in the previous section, any polyhedral set can be represented either in sum-

form with use of its extreme points and/or extreme rays (polyhedral cones have only one extreme

point: the origin), or in intersection-form by using its facets. In the case of T c , the sum-form 

representation is given by the conical hull of the extreme rays as in (2.14). The facet representation 

is given by the intersection of a collection of halfspaces as in (2.17). Since Tc  is a finitely generated 

set, only a finite collection of halfspaces is needed to describe it as given in (2.17). In fact, as can 

be seen from the above, there is a correspondence between the facets of Tc  and the extreme rays 

of P c - More specifically, each extreme weighting scheme (ray) of P c  defines a hyperplane in the 

form — vx  +  uy  =  0 (see also Ali and Seiford 1993) which contains a facet of Tc-

2.3.2 The variable R eturns-to-Scale case

Now consider the BCC model in envelopment form, given in (1.20), and denote its production 

possibility set by Ty. In parallel to the CRS case, the primal representation of Ty  is as follows:

Tv  =  {(x , y ) 6 R;+m| r > X A ,  y  <  YA, A > 0, eA =  1} (2.18)

Let Ey  C J  be the set of extreme-efficient DMUs for the BCC model9 and Zy  contain their 

data points. Similar to Tc,  we obtain the minimal primal representation of Ty as the Minkowski- 

sum of the convex hull of its extreme points and the conical hull generated by the free disposability 

rays, i.e.:

Lem m a 2 Let Ty be defined as in (2.18). Then, Ty can be represented minimally as follows:

Ty  =  (Conv(Zy)  +  Cone(R)) D Rs+m (2.19)

P roof. Directly analogous to the proof for lemma 1 ■

The polar cone to Ty, denoted Py  is as follows:

P v  - { (« ,« ,£ ) € R ;+m+1| vx .j + u y j < 0 , V j  e  J } (2.20)

9A BCC Pareto-efficient DMU is extreme efficient if it cannot be expressed as convex combination of any other 
DMU.
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where fl corresponds to the additional variable in multiplier VRS models. As before, we obtain a 

dual representation of Ty  in terms of Py.

T heorem  2 Let the primal representation o f Ty  be defined as in (2.18). Then, the dual represen­

tation o f T y  is:

Ty  =  {(x , y ) e  R++m|V(v,u,fl) e  P y  : - v x  +  uy < fl} (2.21)

C orollary 2 Let P y  be the set of extreme rays of P y ,  and I y  its corresponding index set. Then,

Tv  =  { ( x , y ) e  ( p |  -ViX +  Uiy <  fl{ ) nR++m| (v^u^flfl e  P y }  (2.22)
\ ie iv  J

In the VRS case the supporting hyperplanes are defined by extreme rays of P y  as — vx  +  uy =  

fl10. Finally, note that since a ( —vx  +  uy) <  afl for any positive a, all positive multiples of a 

particular weighting scheme define the same halfspace/hyperplane.

Going back to the DEA models discussed in the previous chapter, suppose DMU k lies on 

a particular facet-defining hyperplane associated with weighting scheme (v*,u*,fl*) G P y  and 

assume further that v*Xk ^  0. Then u*yk — v*Xk =  fl* =>■ u*yk/v*Xk — fl*/v*Xk =  1 and also 

u*yj/v*Xk — v*Xj/v*Xk <  fl*/v*Xk Vj € J. Hence we obtain that (v*/v*Xk, u*/v*Xk, fl*/v*Xk) is 

an optimal solution to (1.21) with corresponding optimal objective function value equal to one, i.e. 

DMU k is radially-efficient with {v*fv*Xk, u*/v*Xk, fl*/v*Xk) as an optimal weighting scheme.

2.3.3 Exam ples

Figure 2.1 illustrates the halfspace representations of the CRS and VRS production possibility sets 

for the example used earlier in figure 1.6. Six halfspaces are shown, each associated with one of the 

six hyperplanes hi to he, defined by a unique weighting scheme. The CRS production possibility 

set is the intersection of the halfspace associated with hyperplane h% with the non-negative orthant. 

The ray from O through B  and C  (contained in h%) serves as the CRS efficient frontier (shown 

in red). The VRS production set is the intersection of all six halfspaces with the non-negative 

orthant, and the VRS efficient frontier is given by ABCDE11 (shown in blue).

10In the CRS case /3 is always equal to zero. 0  is also referred to as the intercept or the offset.
11 This is the Pareto-efficient part of the frontier
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Figure 2.1:

To illustrate better the relative shape of the CRS and VRS production sets, as well as their dual 

representations, we use the three-dimensional examples in figures 2.2, 2.3 and 2.4, with three DMUs 

using two inputs X I  and X2  to produce one output Y. Figure 2.2a shows the primal representation 

of the generated CRS production possibility set, which is a polyhedral cone from the origin with 

extreme rays passing through points A-C. Figure 2.2b shows the primal representation of the 

generated VRS production possibility set, which is a polyhedral region of which the surface ABC 

is a facet. Note that the VRS polyhedral set is entirely contained within the CRS polyhedral cone 

as illustrated in figure 2.3. There are four facets in the CRS case and seven in the VRS case. We 

plot the halfspace representation of the CRS production set only, in figure 2.4b. The hyperplanes 

needed to describe the necessary halfspaces are equal in number to the number of facets for Tc-, 

so that each of these hyperplanes supports one facet. All facets of Tc  contain the origin so that 

all of the associated hyperplanes penetrate the origin and hence can all be described in general 

as — vx +  uy =  0. In the VRS case the associated hyperplanes are not guaranteed to contain the 

origin, so the additional term /3 is needed for their description. Finally, note that in both cases all 

DMUs lie on more than one facet/hyperplane which implies that they possess more than one set 

of optimal weights (we discuss this issue further in subsequent chapters).

►x

Halfspace representations of production possibility sets in two dimensions
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Figure 2.3: Ty  contained in Tc

Figure 2.4: Dual representation of Tc in three dimensions
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2.4 Identification of production possibility sets

38

This section reviews the existing approaches reported in the DEA literature for explicitly identifying 

the DEA production possibility sets. By this we mean the explicit identification, or computation, 

of either the complete set of supporting hyperplanes, or, equivalently, all subsets of extreme- 

efficient DMUs, along with the relevant extreme rays, that span all of its facets. We categorise 

these approaches in two types, namely optimisation approaches which involve the use of mixed 

integer and linear programming models, and convex hull approaches which utilise algorithms for 

the identification of the convex hull of a set of points. In the subsequent discussion we shall assume 

that the explicit identification of the production set is the second part of a two-stage process, where 

in the first stage the set of all extreme-efficient DMUs has been identified (E  C J). Non-extreme 

DMUs are not necessary in generating any faces of the DEA production set and hence including 

them in the second stage would only increase the difficulty of what is already a very hard problem.

2.4.1 O ptim isation approaches

Approaches using Mixed Integer Programmes (MIPs) for identifying all facets of a DEA production 

set were the first to be suggested in the literature. A predecessor to these approaches is the model 

in Olesen and Petersen (1996) used for establishing the existence of fully-dimensional faces of a 

production possibility set which contain Pareto-efficient production bundles only. In the spirit of 

this model, all subsequent MIP based approaches focused on the identification of fully-dimensional 

efficient faces only. We shall give a general description of these approaches.

Following Raty (2002), we can define the set of all feasible weighting schemes that define fully-
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dimensional efficient faces in a VRS technology as follows:

39

PF =  { uY  -  vX -e /3  +  s =  0 (2.23)

s <(1 — b )M  

eb > s +  m

Vi — 1 for some i € { 1,..., s} 

bj e  {0, 1} Vj € E v  

(v,u) E I^ +m, (3 G R, s €

A4 is a very large positive constant}

where the matrices X  and Y  only contain the input-output data for the set E c of extreme-efficient 

DMUs. Note that the two constraints s <(1 — b )M. and eb =  s +  m, together force at least s +  m 

components of s to be zero and hence a feasible solution to (2.23) will identify a face that contains 

at least s + m  extreme-efficient DMUs. In other words the set of feasible solutions to (2.23) contains 

all hyperplanes that support at least s +  m  extreme-efficient DMUs.

However, as we will demonstrate in the next chapter, such hyperplanes do not necessarily 

support facets that contain Pareto-efficient production bundles only. As a result, approaches 

based on the above set of constraints will end up identifying additional facets that contain weakly- 

efficient production bundles. Nevertheless, the results in the next chapter will also show that we 

can always identify and exclude such facets posterior to the analysis by inspecting their defining 

weighting schemes.

An iterative optimisation procedure can be constructed by including the set of constraints in 

(2.23) (in some form) along with some other constraints to guarantee that a new efficient face is 

identified in every iteration. The procedure can be either applied to all extreme-efficient DMUs 

separately, or it can involve a global MIP solved as many times as necessary for the identification 

of all relevant facets. An approach of the latter type is given by Raty (2002), who reports the use 

of a ‘bogus’ (constant) objective function in a code that can identify all facets for a ‘moderate’ 

number of extreme-efficient units. Olesen and Petersen (1996) develop an MIP that is applied to 

each DMU separately along the same lines. Their model is based on the consecutive introduction



CHAPTER 2. ON DEA PRODUCTION POSSIBILITY SETS 40

of cutting-planes to avoid the identification of faces already found. For every DMU, the solution 

process is repeated until infeasibility is encountered, i.e. no additional facets spanned by that 

DMU can be identified, at which point the loop proceeds to the next DMU. Very similar models 

are also reported by Jahanshahloo et al. (2005) and Amirteimoori and Kordrostami (2005).

Another set of optimisation approaches in the DEA literature is based on the solution of LPs to 

identify all facets of DEA production sets. From solving any multiplier DEA model for a particular 

DMU, we obtain a set of weights which define a hyperplane supporting a facet of the production 

set. Hence, to identify all facets this way we would essentially need to identify all possible basic 

solutions to the multiplier DEA LPs for all DMU instances, which is what these approaches work 

towards. Huang et al. (1993, 1997) generate new facets by solving an additional multiplier DEA LP 

for each efficient DMU and identify which of its peers satisfy their constraints as equalities, i.e. the 

subset of DMUs that lie on the same efficient facet as that DMU. Their claim is that by applying 

these to all DMUs various subsets are identified " and there will be duplication, overlapping and 

‘nesting’ of these various subsets from which ... [facets] can be identified by reduction". However, 

the presence of degeneracy/multiple-optimality in many instances of DEA models does not allow 

for the exhaustive identification of facets by this approach. This is also noted by Pitakong et al. 

(1998) who developed modified pivoting criteria for the simplex method as alternative strategies 

for identifying more efficient facets. Although this approach claims to identify more facets, it offers 

no guarantee that all efficient facets can be identified (as noted by the authors).

An exhaustive LP approach is introduced by Yu et al. (1996b). This is based on the Generalised 

DEA model, also introduced by the same authors (Yu et al. 1996a), and the use of predilection 

cones to identify all facets. Predilection with regards to a pre-specified subset of DMUs refers to a 

set of additional constraints introduced in a DEA model in order to identify DMUs that are on the 

same facet as those in the pre-specified subset. This gives rise to an iterative procedure equivalent 

to an enumerative tree search, similar to the procedure for identifying all cliques of an undirected 

graph by Bron and Kerbosch (1973), during which at some stage a subset of DMUs already found 

to be on the same facet "is augmented by the addition of another suitably chosen DMU [also found 

to be on the same facet] ... until no further augmentation is possible and the subset becomes 

a maximal subset". Unfortunately, no computational experience for this interesting approach is 

reported in the DEA literature.
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2.4.2 Convex Hull approaches

The second set of approaches implement convex hull algorithms for explicitly identifying the DEA 

production set in terms of facets. Clearly, the convex hull of a set of given points is a polytope 

and hence can be represented either in sum-form by its extreme points (in terms of convex combi­

nations) or in intersection-form as the intersection of a finite collection of closed halfspaces. These 

two problems are respectively referred to as the vertex and facet enumeration problems. Moving 

from one representation to the other, which is precisely what we need to do in the DEA case, is a 

notoriously hard problem and so far all proposed algorithms axe of exponential complexity. Nev­

ertheless, the advantages of providing a complete representation of the production sets make the 

additional computational effort worthwhile in datasets for which this can be achieved in reasonable 

time.

To be more precise, the above description of the convex hull problem relates to a polytope, i.e. 

a bounded polyhedron whereas the DEA production sets are unbounded polyhedra for which the 

sum-form representation additionally requires the identification of their extreme rays. Especially 

for the CRS case, the production possibility set is a polyhedral cone and hence only has one extreme 

point (the origin) and a subset of DMUs as extreme rays (plus some additional extreme rays). The 

theory in the previous section tells us that we can identify all facets of a DEA production set by 

feeding into the implementation algorithms the corresponding sets of extreme efficient DMUs and 

extreme rays. In the CRS case the origin is specified as the unique extreme point and Z c  U R  is 

used as the set of extreme rays, whereas in the VRS case Z y  and R  contain the extreme points 

and rays respectively.

Many codes exist that can identify unbounded polyhedra explicitly in terms of facets (given the 

extreme points and rays). The use of two such codes is reported in the approaches by Appa and 

Williams (2006) and Briec and Leleu (2003). These respectively use PORTA12 and cdd13. The 

implemented algorithms are closely related. PORTA is based on the Fourier-Motzkin Elimination 

(FMEL) method for solving a system of linear inequalities (see Williams 1986; Dantzig and Eaves 

1973), and cdd is based on the Double Description Method of Motzkin et al. (1953), a variant of

12Polyhedron Representation Transformation Algorithm, a code by Thomas Christof, Heidelberg University, and 
Andreas Loebel, Konrad-Zuse-Zentrum fur Infromatik, Berlin (ZIB)

13 Code by Komei Fukuda, Swiss Federal Institute of Technology
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FMEL.

Appa and Williams (2006) introduce the application of FMEL to the dual side of the problem 

in order to identify directly the extreme rays of P c  and P y.  More specifically, they apply FMEL 

to the set of constraints in (1.11) or (1.21) which are common to all DEA model instances (all 

DMUs’ models) and identify all possible optimal weighing schemes, which they call the complete 

set of weights. This directly provides all necessary supporting hyperplanes. Their approach is also 

utilised in Appa, Argyris, and Williams (2006) who report the computability of problems with 

\Ec\ <  50 and s +  m  <  10 in reasonable time.

Olesen and Petersen (2003) additionally report the use of Qhull14 for the identification of all 

efficient facets of the production set (as well as the previous codes). Qhull uses floating point 

arithmetic and hence can be much faster than cdd and PORTA albeit less precise. Qhull does not 

directly support the envelopment of both extreme points and rays and hence some manipulation 

of the dataset is needed. Olesen and Petersen’s approach utilises points at infinity (by employing 

big Ms), although this introduces some extra theoretical concerns. Unlike in Appa and Williams’s 

approach, many of the identified facets do not necessarily correspond to the DEA production set 

and further inspection is needed to select those that do. In addition, for the CRS case Olesen 

and Petersen’s Qhull approach cannot directly identify the conical-hull of data points. Instead it 

computes the convex hull of all data points plus the origin and then discards the ones with non-zero 

offset term /3. This results in considerable additional computational effort15. Nevertheless, the use 

of Qhull allows much bigger problems to be solved much faster. Olesen and Petersen report the 

explicit identification of Tc  for a problem with \Ec\ =  136 and s +  m  — 13 in reasonable time. 

With respect to the computability of larger datasets, Olesen and Petersen estimate upper bounds 

for the number of extreme-efficient DMUs and the number of inputs and outputs, at \Ey \ <  1000 

and s +  m <  25 respectively.

14 Code by Brad Barber, David Dobkin and Hannu Hundanpaa, Universitu of Minesota
15 Compared to the computations that would have been required had Qhull been able to support envelopment of 

both extreme points and rays. Compared to other codes, Qhull should be faster in any case because of the use of 
floating point arithmetic.
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2.4.3 Exam ples

To illustrate how convex hull approaches identify all facets of a DEA production set we include a 

small two-dimensional example of five DMUs given in table 2.1. We consider the CRS case only. 

Because this is a very small example there is no need to identify all extreme-efficient DMUs in 

the first phase. Let the set of data points be Z — { (3 ,3)T , (6, 5)T , (9 ,6)T , (13,7)r  , (8, 4)T} 16 and 

the set of free-disposability rays be R  =  {ri =  (1,0)T, =  (0, —1)T}. An illustration is given

in figure 2.5. Figure 2.5a presents the data points and the free disposability rays. To obtain the 

dual description of Tc  we feed the set of rays Z  Li R  into PORTA or cdd. The output obtained 

is a minimal set of inequalities needed to represent Cone(Z  U R). This includes two inequalities, 

namely — x +  y <  0 and —x <  0 given in figure 2.5b. Since Tc  =  Cone(Z  U R) fl R++m the later 

inequality is dropped, as only the first one is needed17 to represent T c • Figure 2.5c illustrates 

Appa and Williams’ approach. We work directly in the dual space by providing inequalities and 

obtaining the extreme rays of Pc- In particular, the set of inequalities (—v ,u )Z  <  0, v >  0, v >  0 

is fed into PORTA, these are the five inequalities denoted a — e along with inequalities x and y 

which represent the nonnegativities (u,v >  0). Two extreme rays for Cone(Z  U R) are identified, 

namely (1, 1) and (1, 0) which clearly correspond to the inequalities described by the previous 

approach. In the same fashion, the second ray is dropped so that the unique extreme ray (1,1) 

of P c  is identified as relevant for the explicit characterisation of T c ■ Finally, in figure 2.5d we 

illustrate Olesen and Petersen’s approach. The set of data points Z  along with the origin and two 

points at infinity are fed to Qhull. Their convex hull is then identified in terms of six inequalities. 

From these we only keep those that are defined by hyperplanes that include the origin. There is 

only one such hyperplane ( / 2) and, as before, this is the only one required for a dual representation 

ofT c .

16 Note that we can also represent the inputs negatively in oder to directly obtain positive weights for all inputs. 
For simplicity of presentation we overlook this aspect and assume that all weights obtained are positive.

17To be precise, and as was also noted earlier, the inequality y >  0 is also needed. Note that the inequalities x >  0, 
y  >  0 are common for every CRS production set. Furthermore, it does not define a set of valid DEA weights. Hence, 
it is disregarded. In general we are only interested in inequalities with neggative input (if inputs are represented 
positively) and positive output multipliers that are of <  direction.
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DMU Input (x ) Output (y )
A 3 3
B 6 5
C 9 6
D 13 7
E 8 4

Table 2.1: Example dataset

(a) (b)

r2

(c)

D

(1,0)

D h

Figure 2.5: Identiying the production possibility set explicitly



Chapter 3

On facets, dim ension and efficiency

3.1 Introduction

In this chapter we explore further the attributes of efficient production in terms of DEA production 

possibility sets. We contribute to the existing research in the field by developing a set of theoretical 

constructs that associates the concepts of efficiency and weak-efficiency with specific segments of 

the boundary of the DEA production possibility sets as well as their polar cones.

The relevant discussion in the DEA-related literature has explored this issue mostly on a ‘micro- 

level’, by examining and imposing conditions on the optimal solutions of the various DEA models. 

In particular, the two main issues this discussion revolves around are: a) the use of zero weights by 

DMUs and b) the presence of slacks at their optimal targets (see e.g. Charnes et al. 1991; Thrall 

1996; Portela and Thanassoulis 2006).

More recently, the discussion about efficiency related to specific characteristics of production 

possibility sets has appeared in the literature (Olesen and Petersen 1996, 2003), and has introduced 

additional concerns regarding dimensional aspects of segments of the efficient frontier and the issue 

of well-defined rates of substitution.

However, the existing theoretical framework for this is incomplete. Our new developments 

address this issue; they systematise existing research, address inconsistencies that we discovered 

and, most importantly, fill many ‘gaps’ by introducing new theoretical constructs.

45
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In particular, we develop necessary and sufficient conditions for the existence of fully-dimensional 

segments of the efficient frontier and well-defined rates of substitution. These results allow for 

complete characterisation of faces of the production possibility sets in terms of their efficiency 

classifications. More specifically, our results show how to characterise efficient and weakly-efficient 

surfaces of the efficient frontier, i.e. surfaces that only contain Pareto-efficient input-output bun­

dles and surfaces that also contain weakly-efficient bundles. In addition, the new framework allows 

us to critically examine the existing research in the field. This leads us to discover important 

inconsistencies which we also demonstrate by providing counter-examples.

The outline of this chapter is as follows. We start by providing formal definitions relating to 

the efficiency classification and dimension of faces of the production possibility set in section 3.2. 

Building on these definitions we develop theoretical constructs for these concepts in section 3.3, by 

considering them separately at first and subsequently combining the two separate sets of results. 

Using our new results we are able to detect inconsistencies in the related literature. We do this in 

section 3.4, where we address two specific problems. These concern the number of extreme-efficient 

DMUs contained in faces of the production possibility set and the weighting schemes that define 

such fanes. For both cases we discuss the problems by relating them to our new results and provide 

counter-examples for the existing results in the literature.

3.2 Efficiency and dim ension o f faces: Definitions

In this section we provide proper definitions for characterising the efficiency classification of facets as 

well as their dimension. Our discussion focuses on efficient production, hence we shall concentrate 

on input-output bundles that lie on the boundary of the production possibility sets. The results 

extend, of course, to inefficient (interior) bundles which are radially projected on the frontier by 

DEA models. Note that by production bundles we do not necessarily mean DMUs, but input- 

output vectors included in the production possibility set in general.

To aid with the theoretical discussion we will be using an example of nine DMUs given in table 

3.1. The VRS production possibility set generated by these units is given in figure 3.1. Firstly, 

note that all units are extreme-efficient. The boundary of the production set is comprised of 

eighteen facets. We use A', B' etc. to indicate points at infinity, so that C'CAA', for example,
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DMU Input 1 (X I) Input 2 (X2) Output (Y )
A 60 25 50
B 25 60 50
C 45 45 80
D 75 75 120
E 125 95 135
F 95 125 135
G 205 125 150
H 125 205 150
I 180 180 165

Table 3.1: Example dataset

is an ‘unbounded’ facet. We refer to such facets as weakly-efficient facets because they clearly 

contain weakly-efficient input-output bundles and hence are included in the Pareto-efficient part 

of the DEA frontier. We use the term efficient facets to refer to facets that only contain Pareto- 

efficient bundles. Table 3.2 gives the weighting schemes that define the supporting hyperplanes of 

the production set1. Recall that the offset (3 corresponds to additional variable associated with 

VRS multiplier models. For convenience, in figure 3.2 we provide a graph of the facial structure 

of Ty- The nodes (or vertices) A-I of the graph correspond to extreme points of polyhedron Ty 

(extreme-efficient DMUs) and the nodes rr, r 2 and r% correspond to the free disposability rays 

relating to the two inputs and the output respectively (extreme rays). Two nodes are linked by an 

edge (or link), only if together they are necessary for the description of a face of Ty. For example 

nodes CD are linked because they define a face of Ty and nodes C and r\ because they describe 

the face CC' of Ty. Any maximal subset of nodes in the graph such that any pair of nodes in this 

subset is connected by an edge2, defines a facet of T y . We call such subsets of nodes cliques of the 

graph.

Olesen and Petersen (1996, 2003) introduced the term efficient facets to refer to efficient faces of 

the production set that are maximal under inclusion, i.e. not contained in other efficient faces. For 

example in figure 3.1, ABC and CD are both efficient facets. Clearly then, this definition implies 

that an efficient facet is not necessarily a fully-dimensional face of the polyhedral production

Strictly, speaking this production set has an additional facet, namely the one contained in hyperplane y  =  0, 
implied by the nonnegativity of output. In general, for every production possibility set, all nonnegativities (Xi >  0
i =  ( l , . . . ,s ) ,  yr >  0 r — ( l ,...,m ))  can possibly define facets. Note that these facets may contain inefficient 
bundles. To maintain simplicity, and also because such facets would be common to all DEA production sets, we 
shall completely disregard them from our analysis.

2 A subset S  of pairwise-connected nodes is maximal if there does not exist another node in the graph which is 
connected to every node in S.
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Figure 3.1: The VRS production possibility set generated the DMUs in table 3.1

Supporting Hyperplane Associated Weighting Scheme
(vi, v2, u, 0 )

Spanning DMUs

Hr (6, 6, 1, -460) (A, B, C)
h 2 (1, 1, 0, -85 ) (A, B)
h 3 (1, 0, 0, -25 ) (B)
h a (0, 1, 0, -25 ) (A)
h 5 (3, 0, 2, 25) (B, C)
He (0, 3, 2, 25) (A, C)
h 7 (4, 0, 3, 60) (C, D)
H8 (0, 4, 3, 60) (C, D)
h 9 (3, 0, 4, 255) (D, F)
H io (0, 3, 4, 255) (D, E)
Hn (3/950, 1/1130, 103/9975) (F, H, I)
H \2 (1/1130, 3/950, 103/9975) (E, G, I)
H13 (3, 0, 11, 1275) (H, I)
Hu (0, 3, 11, 1275) (G, I)
H\5 (1, 0, 2, 175) (F, H)
H 16 (0, 1, 2, 175) (E, G)
H n (3, 3, 14, 1230) (D, E, F, I)
H 18 (0, 0, 1, 165) (I)

Table 3.2: Hyperplanes and weighting schemes for the DMUs in table 3.1
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Figure 3.2: Graph of the facial structure of Ty

possibility set, and hence departs from the standard definition of facets in convex analysis and 

polyhedral theory (definition 12). To avoid confusion, we introduce a slightly different terminology 

and refer to maximal efficient faces as efficient surfaces. In contrast we use the term weakly-efficient 

surfaces to refer to maximal weakly-efficient faces.

In what follows we will examine in detail the twin concepts of face dimension and face efficiency 

classification. The following two definitions related to these concepts will provide the basis for our 

discussion.

D efinition 17 Let H n be a supporting hyperplane for Tc and H b a supporting hyperplane for Ty  

and consider the faces f a and fb ofTc and Ty respectively, defined as f a =  H nT c and f a =  HDTy.  

Then, f a (or f b) is:

(a) An efficient face, if and only if all production bundles contained in it are Pareto-efficient.

(b) A weakly-efficient face, if and only if it contains at least one weakly-efficient production 

bundle.

Looking back in figure 3.1, faces CD and ABC are efficient faces and faces AA' and B'BCC" are 

weakly-efficient faces. Note that CD is not a fully-dimensional efficient face of Ty. With regards 

to face dimensionality, we use the following definition:

D efinition 18 A face f  o fT c (o rT y ) is fully-dimensional (i.e. a facet) if and only if it contains
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s +  m  affinely independent production bundles.

Here we have departed from definitions appearing in the related literature. Considering the 

discussion in the previous chapter, the rationale behind our definition is that a face is fully- 

dimensional if and only if it contains a sufficient number of vectors such that their affine hull equates 

to the supporting hyperplane to the particular face. Of course, some faces may be contained in 

many hyperplanes, but as we shall see below this is not the case for fully-dimensional faces (facets). 

For example, in figure 2.2a, face ABC is a fully-dimensional face of Ty as it clearly contains 

s +  m =  3 affinely independent production bundles, whereas face AB contains no more than two 

and hence is not fully-dimensional. With respect to the CRS case, it is important to note that 

the origin can be included in these s +  m  vectors. For example, in the same figure the face of 

Tc  spanned by the origin and DMUs A and B is fully-dimensional, because these three vectors 

are affinely independent, whereas face OA is not. We formalise these observations in the following 

remark. It is important to note that this only provides sufficient conditions.

R em ark 1  Let f a and fb be faces of Tc and Ty respectively. Then:

(a) If fa contains at least s +  m — 1 extreme-efficient units, then it is a fully-dimensional face 

ofT c .

(b) If fb contains at least s +  m  extreme-efficient units, then it is a fully-dimensional face of

Ty.

Definitions appearing in the related literature use the concept of linear instead of affine in­

dependence. For example, Portela and Thanassoulis 2006 define fully-dimensional faces as those 

containing s +  m — 1 linearly independent Pareto-efficient DMUs in the CRS case and s +  m in the 

VRS case.

We would like to point out that the use of linear independence however is problematic in the VRS 

case. Consider the production set Ty in figure 2.1. According to their definition face BC contained 

in hyperplane fo, which is clearly a facet, is not fully-dimensional since C can be expressed as 

a multiple of B (and vice versa). In general, this problem concerns faces that are supported by 

hyperplanes which penetrate the origin. Such hyperplanes are subspaces of Rn and cannot contain 

more than s +  m — 1 linearly independent points, irrespective of whether they support faces of a 

CRS or a VRS production set. Hence, imposing different requirements in assessing the dimension
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of faces based on the Returns-to-Scale specification creates this problem. Our definition can clearly 

work around this. The problem does not arise in the CRS case because all supporting hyperplanes 

of Tc  penetrate the origin so the requirement of the existence of s +  m  — 1 linearly independent 

Pareto-efficient DMUs is justified. In such a case, the same set of DMUs plus the origin define a 

set of s +  m  affinely independent vectors so that we would be able to identify the corresponding 

face as fully-dimensional using our definition as well.

3.3 Theoretical developm ents

Having provided proper definitions, we now examine the concepts of face-efficiency and face- 

dimension in more detail. We start by considering these separately and establishing a set of 

theoretical results for each. Subsequently, we combine our results to establish a classification 

scheme for all faces with respect to both of these concepts.

3.3.1 Face-efficiency

Going back to our example, we can see in figures 3.1 and 3.2 that some facets can be expressed by 

a convex combinations of extreme points while some others, the unbounded ones, are expressed by 

taking combinations of some extreme points and rays3. This connection is formalised below.

L em m a 3 Let f a be a face f  of Tc and fb a face of T y . Then f a (or fb) is:

(a) An efficient face, if and only if only extreme-efficient DMUs (with data points in Z c  or 

Z y ) are needed for its primal description.

(b) A weakly-efficient face, if and only if both extreme-efficient DMUs (in Z c  or Z y )  and 

free-disposability rays (in R) are required for its primal description.

P roof. One only needs to prove one of the above cases so let us consider case (a). Consider a 

face /  of Tc  (or Ty). For sufficiency, suppose that only extreme-efficient DMUs in Z c  (or Zy)  

are needed to describe /  but that it is not an efficient facet. Then, if (x 0 , y 0) G /  =>• (x0 , y 0) € 

/ , where xQ > xQ and yQ < yQ (i.e. (x0 , y 0) is a weakly-efficient bundle). In this case we have 

(x0 , y 0 ) =  (x0 ,y 0) +  (J>R, p  >  0 which is a contradiction. To establish necessity, suppose that both

3 We will say that a set of extreme points and rays expresses/describes a facet when any production bundle on 
that facet can be described as a combination of these points and rays.
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extreme-efficient DMUs and free-disposability rays are needed to describe / .  Clearly in such a case 

/  is a weakly-efficient facet. ■

Below we shall see that characterisations of the efficiency classification of faces as well as their 

dimensionality can be looked at from a dual point of view, i.e. by considering the weighting schemes 

associated with their supporting hyperplanes. In terms of efficiency classifications, and in parallel 

to the extensive discussion in the DEA literature on the efficiency classification of DMUs, we can 

claim the following:

L em m a 4 Let f a be a face f  of Tc and fb a face of T y . Then

(a )  f a is an efficient face if and only if 3 Ha =  {{x ,y )  G Rs+m| — vax +  uQy  =  0, (v0 ,u0) G 

P c , v0, Uo >  0}, such that f  =  Ha fl Tc  (T y ).

(b) fb is an efficient face if and only i f3 H b  =  {(x ,y )  G Rs+m| - v 0 x-\-uQy  =  0 O, (v0 ,u 0 ,f30) G 

P y, v0, U o  >  0}, such that f  =  HbH Ty.

P roof. Consider the VRS case (the CRS case can be shown to be equivalent by setting /3 =  0). 

To establish necessity let us suppose that there exists an efficient face /  which is only supported 

hyperplanes with at least one multiplier equal to zero. Without loss of generality we shall assume 

that /  =  H° fl Ty where H° is defined by a weighting scheme (v,u,/3) such that u >  0 and 

v — (0 ,V2 , . . . ,v s), i.e. only the weight for input 1 is equal to zero. Let (x 0 , y 0) G / ,  and define 

xQ =  {x\0 Jt-k,X2o, •••,x so), k >  0. Clearly then — vx 0 +  uyQ =  f3 => (x 0 , y 0) € H°. In addition, from 

(2.13) and (2.18) we infer that (x'0 , y 0) G Ty. It follows then that (x0 , y 0) G H°C\Ty =>• (x0 , y 0) G /  

which is a contradiction because (x 0 ,y 0) is a clearly a weakly-efficient bundle.

For sufficiency suppose that 3 H' — { (x , y ) G Rs+m| — v x  +  uy  =  (3, (v ,u ,(3 ) G Py, v ,u  >  0} 

such that /  =  H' D Ty, but that /  is not an efficient facet, i.e. if (x 0,y 0) G /  =» 3{x*0,y 0) G Ty 

where x*Q < x Q. Clearly then, — v x Q +  uyQ > (3 which is a contradiction since H' is a supporting 

hyperplane of Ty. ■

C orollary 3 A face f  of Tc or Ty is a weakly-efficient face if and only if any hyperplane sup­

porting it is defined by a weighting scheme which contains at least one zero multiplier.

Note that all weakly-efficient facets of Tc {Ty) contain some Pareto-efficient production bun­

dles. Formally:
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v2

Figure 3.3: The intersection of P c d  with cuts u  —  3, (3 =  60

Rem ark 2  Let f a be a facet o fT c  and fb a facet o fTy ,  and let E f f ( T c ) ,  E f f ( T y )  denote the 

Pareto-efficient parts o fT c andTy respectively. Then, f an ( E f f ( T c )  7  ̂0  and fbC\(Eff(Ty)  7  ̂ 0 .

Proof. This is trivial since every facet will contain at least one extreme-efficient DMU. ■

Corollary 4 Any weakly-efficient facet f  ofT c (Ty) contains an efficient face of lower-dimension.

For example, in figure 3.1 facets ABC and EGI are efficient but facet A ACC is not as it is 

supported by hyperplane Hq which has a zero multiplier for input X I.  In addition, CD is clearly an 

efficient face contained in two weakly-efficient facets of Ty, although this is not immediately obvious 

in terms of the weighting schemes associated with its supporting hyperplanes (H7 and Hg), which 

contain zero multipliers. To see that there is a supporting hyperplane for CD with all multipliers 

non-zero, consider the cone of optimal weighting schemes for face CD, P cd  — {{v,u,j3) GE Py  | — 

vxc  +  uyc  =  ffi—vxo  +  uyo  =  (3}- The extreme rays of P c d > are C 1 =  (4,0,3,60) and C 2 =  

(0,4,3,60) and because in both these u =  3, f3 =  60, we can visualise this cone in two dimensions in 

figure 3.3. Now consider a weighting scheme C* = C 1 +  C 2 = (4,4,6,120). This is contained within 

P c d a and hence also within P. It follows then that there exists a hyperplane with all multipliers 

non-zero (H * =  { (x ,7 /) G t 3| -  4X1 -  4X2 — 6Y  =  120}) which supports face CD.

4 Any non-negative combination of rays of a particular cone also lies within that cone. It follows then that in this 
case P c d  is the entire orthant.
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3.3.2 Face-dim ension
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The preceding discussion leads naturally to the issue of the existence of well-defined rates of 

substitution raised by Olesen and Petersen5. Comparing the efficient face CD with the efficient 

facet ABC in figure 3.1, one can immediately observe that unlike for ABC there are two weighting 

schemes associated with face CD, namely H 7 and Hg. Each of these weighting schemes can be 

used to calculate marginal rates of substitution/transformation (MRS/MRT), along the boundary 

of the production set. The MRS corresponding to H 7 relate to rates of substitution along facet 

A ACC and those corresponding to Hg relate to movement within facet C CDD . However, zero 

multipliers are used to define both Hj  and Hg and as a result their associated rates of substitution 

are not well-defined. Clearly face CD is contained in both these facets and hence the MRS within 

CD axe not well-defined6. Let us note here that other than these two sets, there exist an infinite 

number of sets of MRS associated with the infinite number of hyperplanes supporting face CD, 

which can be expressed as nonnegative combinations of C 1 and C 2, like H* above. However, one 

could argue against considering these, because such rates can relate to infeasible substitutions, i.e. 

substitutions which lead DMUs outside of the production possibility set. To guarantee feasible 

substitutions one needs to consider only the MRS calculated from weighting-scheme corresponding 

to facets of the polyhedral sets Tc  and TV, which are in fact extreme rays of their polar cones and 

correspond to basic solutions to the multiplier DEA LPs.

This is an important issue that has been overlooked by a lot of the DEA literature, mostly 

within the weight-restrictions related research, that assigns great importance to the selection of 

strictly positive weights for all inputs and outputs by all DMUs. Very recently, Cooper et al. 

(2006) addressed this problem by suggesting the selection of weighting schemes that have strictly 

positive multipliers but also maximum support from the dataset, and put forward an approach for 

this. We address this later.

Going back to the example in figure 3.1 there exists a unique strictly positive weighting scheme 

defining each efficient-facet (CD is not a facet as it is not fully-dimensional), and hence substitution

5 Consider a facet /  defined by weighting scheme (v,u,/3) and define F (x ,y )  =  —vx  +  uy  — j3 =  0. The MRS 
between two inputs, say x \  and 1 2 , is — =  — Similarly the MRS between 2/1 and 2/2 , is — Qp^Qy\ =  — ̂

and the MRT between x \  and 2/2 , is —
6 A set of rates of substitution/transformation along a segment of the frontier is well-defined if all rates of the set 

have non-zero and finite values. From the definition earlier it is obvious that not all MRS/MRT are well defined on 
weakly-efficient facets, since their defining weighting schemes contain zero multipliers.
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within these is well-defined. On the other hand there exists an infinite number of hyperplanes with 

strictly positive multipliers containing face CD but on which infeasible substitutions exist and two 

supporting hyperplanes containing face CD on which substitutions are feasible but not well-defined.

Clearly then, there exists a link between the existence of well-defined rates of substitution and 

the dimension of the efficient faces of the production sets. We formalise tour observations below. 

First we consider the dimension of DEA production sets in general.

L em m a 5 Let Tc, Ty be defined as in (2.13) and (2.18). Then, dim(T’c') =  dim(!ZV) — s +  m.

P roof. It follows directly from (2.13) and (2.18), or alternatively form the free-disposability 

postulate, that both Tc,  and Ty  contain interior points. The result follows. ■

Lem m a 6 Let Pc, P y  be the sets of extreme rays of Pc, P y  and let Ic ,  I y  be their corresponding 

index sets. Then:

(a) A face f  o fT c  a fully-dimensional face if and only if there exists a unique (v0 ,u0) E Pc  

such that —v0x +  uQy =  0 V(x, y) E /

(b) A face f  ofTy is a fully-dimensional face if and only if there exists a unique (vQ, uQ, f30) € Py  

such that —v0x +  uQy =  V(x, y) € /

P roof. Consider the VRS case (the CRS case is directly analogous). Clearly, any element of Py  

defines a facet of Ty.  Let H0 =  {(x , y ) E Rs+m| — vQx +  uQy — fi0}. If /  is uniquely supported 

by H0 then d im (/) =  dim (if0 fl Ty) =  s +  m  — 1, i.e. /  is a facet of Ty. On the other hand if /  

is supported by more than one hyperplanes defined by the extreme rays of Py,  say H\,H<i, ...Hk 

then d im (/) =  d im (iii fl H2 H ... fl Hk fl Ty) < s +  m — 1. ■

3.3.3 Com bined results

We are now ready to combine previous results and obtain a classification scheme for fully-dimensional 

efficient faces. More specifically, by combining lemmata 4 and 6, we obtain the following:

T heorem  3 A face f  of Tc or Ty is a fully-dimensional efficient face, if and only if there exists:

(a) a unique (v0 ,u 0) E P c , v0 ,u 0 >  0 such that —v0x +  uQy =  0 \/(x,y)  E / ,  in the CRS case.

(b) a unique {v0 ,u 0 ,(30) E P y , v0 ,u 0 >  0 such that —v0x +  uQy =  V(x,y) E / ,  in the VRS 

case.
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An immediate result is that we can identify fully-dimensional efficient faces by considering their 

defining weighting scheme and the number of extreme-efficient DMUs that they contain, i.e.:

C orollary 5 A face f  o fT c  (Ty) is a fully-dimensional efficient face if and only if there exists a 

hyperplane H 0 containing f , such that:

(a) H 0 is defined by a weighting scheme with all input-output multipliers positive.

(b) Ha contains at least s +  m  — 1 (s +  m) extreme efficient DMUs.

In addition we can identify non fully-dimensional efficient faces as follows:

C orollary 6  Let f a be a non-fully-dimensional efficient face Tc and fo a non-fully-dimensional 

efficient face T y . Then:

(a) f a contains less than s +  m  — 1 extreme-efficient DMUs.

(b) fb contains less than s +  m  extreme-efficient DMUs.

Turning back to efficient surfaces of the production possibility set, we can identify those that 

are not fully-dimensional as follows.

C orollary 7 Let f  be a non-fully-dimensional efficient surface o fT c  (Tv)- Then:

(a) f  is only contained in weakly-efficient faces o fT c  (Ty).

(b) f  contains fewer than s +  m  — 1 (s +  m) extreme-efficient DMUs.

The above results establish, as was also claimed by Olesen and Petersen (1996), that the 

existence of well-defined rates of substitution along the strongly-efficient part of the DEA frontier, 

requires the existence of fully-dimensional efficient surfaces. In other words, well-defined rates of 

substitution exist when there is a correspondence between efficient surfaces and efficient facets of 

the DEA production possibility sets. Going back to our example, all efficient surfaces apart from 

CD  have well defined MRS and are also facets of Ty. The efficient surface CD is a two-dimensional 

face of Ty for which no well-defined MRS exist which only correspond to feasible substitutions 

within Ty.
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3.4 Counter-examples for two erroneous assertions

Having provided a theoretical framework for the classification of efficient faces and surfaces we are 

able to critically examine the existing literature on this problem. This leads to the discovery of 

two important inconsistencies which we address separately in this section.

3.4.1 Extrem e-efficient D M U s

The first point we would like to address relates to the number of extreme-efficient DMUs contained 

in faces of the production possibility set. Frequently in the related literature, fully-dimensional 

efficient faces are identified as those containing s +  m — l  extreme-efficient DMUs in the CRS case 

and s+ m  in the VRS case. As we saw in the previous chapter, Olesen and Petersen (1996, 2003) and 

Raty (2002) develop optimisation procedures for the identification of all fully-dimensional efficient 

faces of the production possibility set in which the identified faces are constrained to support 

an appropriate minimum number of extreme-efficient DMUs. However, assessing the efficiency 

classification as well as the dimension of faces based on the number of extreme efficient DMUs that 

they contain can be misleading, as illustrated by the following counter-example.

Consider use the 2-input 1-output example dataset given in table 3.3. This generates the 

production possibility set plotted in figure 3.4, the facial description of which is given in table 3.4. 

Let us note first that all DMUs are extreme-efficient. Turning to the faces of the production set, we 

can observe easily that all fully-dimensional efficient faces, such as facets ABF and ACEF contain 

at least s+ m  extreme-efficient DMUs. However, no such general statement can be made for weakly- 

efficient faces. Face A'ACC for example contains two extreme efficient DMUs. Face BB JKDD 

on the other hand, described by H$, contains four extreme efficient DMUs and any subset of s +  m 

of them can be seen to be affinely independent. The same is true for face H HEFGII .

In general, we know from the earlier results that any fully-dimensional efficient face of Tc  (T y ) 

will contain at least s +  m —l (s +  m) extreme-efficient units. However, we cannot claim that 

any face that contains that many extreme-efficient units is a fully-dimensional efficient face, as is 

done in much of the aforementioned literature. In other words, the existence of at least s +  m —l  

(s+ m ) extreme efficient units contained in a face of Tc (Ty) is a necessary but not also a sufficient 

condition for identifying that particular face as being fully-dimensional and efficient.
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DMU Input 1 (XI) Input 2 (X2) Output (Y )
A 2 4 3
B 4 2 3
C 2 8 5
D 8 2 5
E 4 6 7
F 4.5 4.5 7
G 6 4 7
H 3.5 9 7
I 9 3.5 7
J 5 2 4
K 6 2 4.5

Table 3.3: Example dataset

Supporting Hyperplane Associated Weighting Scheme
(vi, v2, u, fi)

Spanning DMUs

# i (5 ,7 ,5 ,-1 9 ) (B, F, J)
# 2 (4 ,4 ,3 -1 5 ) (A, B, F)
# 3 (5 ,13 ,10 ,-11) (F, K, J)
# 4 (1 ,1 ,0 ,-6 ) (A, B)
h 5 (5 ,15 ,12 ,-6 ) (F, G, K)
# 6 (3 ,1 ,2 ,-4 ) (A, C, E, F)
h 7 (1 ,0 ,0 ,-2 ) (A, C)
H8 (0,1,0, -2 ) (B, D, K, J)
Hq (1,5,4,2) (C, D, K)
# io (6,1,5,5) (C, E, H)
H u (1,6,5,5) (D, G, I)
# 1 2 (0,0,1,7) (E, F, G, H, I)
# 1 3 (4,0,3,7) (C, H)

(0,4,6,7) (D, I)

Table 3.4: Hyperplanes and weighting schemes for the DMUs in table 3.3
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Y

X2
XI

Figure 3.4: VRS production possibility set generated by the DMUs in table 3.3 

3.4.2 Support of weighting-schemes

Finally, we address another point relating to the support of weighting schemes from the dataset, 

a concept used by Cooper et al. (2006). Applying the results from the previous section we shall 

show that their application of this concept is flawed.

The ‘contact’ between a weighting scheme’s defining hyperplane and the production possibility 

set can be measured by considering the number of extreme-efficient DMUs contained in the sup­

porting hyperplane defined by the weighting scheme (vt ,Ut,/3t) € P y , i.e. the number of DMUs 

j  G E y  that satisfy the equality — + u ty j  =  (3t . Formally, we consider the VRS case and define 

E y (vt ,u t ,/3t) and Supp(vt ,u t ,/3t )as follows:

E v ( v , , u t , 0 t ) = { j  6 E v \ = /3,}

Supp(vt ,u c, 8 t ) =  Ev (vt,u t , 3 t )\

(3.1)

(3.2)

We refer to Supp(vt ,ut , j3t ) as the support of weighting scheme (vt ,u t ,(3t) from the dataset. 

Consider the set of optimal weighting for a particular DMU o E J. Following Cooper et al. (2006), 

we say that a weighting scheme in this set has maximum possible support from the dataset, if the
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number of extreme-efficient DMUs contained in its defining hyperplane is greater than or equal 

to the numbers contained in the defining hyperplanes of all other weighting schemes in this set. 

Formally, we define MaxSuppj as follows:

MaxSuppj  =  MaXi{Ev {vi,Ui,Pj)\ -  +  uiyj  =  f t , (t;*, wi}f t )  G P v }  (3.3)

so that weighting scheme (vt ,u t ,/3t ) G P y  has maximum possible support from the dataset if 

E y (v t , ut , f t )  =  MaxSuppj.  Finally we define for every Pareto-efficient DMU j  the subset M axP y  

of its optimal weighting schemes, containing those that have maximum possible support form the 

dataset, i.e.:

M axP y =  { (u i ,W i,f t )  G Py\ -  v ^ j  F u iy j  =  f t , -E V ( f t ,  ut ,(3t) =  M axSuppj}

Cooper et al. (2006) claim that: Vj G E f f y ( J ) ,  3(vt ,u t ,(3t ) G M axP ^ : (vt ,u t ) >  0. In other 

words, among those optimal weighting schemes for Pareto-efficient DMU j  that have maximum 

possible support from the dataset, there exists at least one weighting scheme that contains only 

positive multipliers. In addition, they introduce an optimisation procedure for the selection of such 

weighting schemes by all Pareto-efficient DMUs.

This claim is incorrect. We provide a counter-example for this in figure (3.4). For the Pareto- 

efficient DMU K the weighting scheme with maximum support corresponds to hyperplane Hg that 

contains four extreme-efficient DMUs (B, D, K, J). Clearly this defines a weakly-efficient facet of 

Ty  and its corresponding weighting scheme contains two zero multipliers7. The same observation 

holds for any extreme-efficient DMU contained in the weakly-efficient facets defined by hyperplanes 

Hg and H u.

7Note that we only need to consider facet-supporting hyperplanes of T y .  By definition hyperplanes that do not 
support facets will not have maximum possible support from the dataset.



Chapter 4

Sensitivity and Stability Analysis: 

existing approaches

4.1 Introduction

Within the DEA literature, the term sensitivity analysis refers to the family of approaches that 

study the sensitivity of the results obtained by DEA models to changes in model instances, such 

as alteration of the model specification, addition/exclusion of DMUs and data variations (or per­

turbations). A review of the relevant DEA literature reveals a keen interest in sensitivity analysis 

by many researchers in the field.

Of particular interest within this strand of DEA research is the sensitivity analysis related to 

perturbations in the data. In a practical context this kind of sensitivity analysis can be used to 

assess the efficiency of DMUs when their data change posterior to the initial DEA analysis, or, 

perhaps more importantly, to obtain an understanding of the impact of uncertainty with respect 

to data values. The focus of existing approaches is on the effect of data perturbations in the 

stability of DEA classifications, i.e. the classification of DMUs into efficient and inefficient. The 

more specific term stability analysis, is used to refer to this.

In this chapter we review existing DEA sensitivity analysis methods with respect to data pertur­

bations, explain the cases that they study and address their strengths and weaknesses. Following

61
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Cooper et al. (2001, 2004), we can distinguish between two types of approaches to sensitivity 

analysis. Approaches of the first type assume that perturbations occur only in the data for a 

specific DMU and study how these affect its own classification, while approaches of the second 

type study the sensitivity of a DMU’s efficiency classification when the data for all DMUs change 

simultaneously. We shall use the terms local and global perturbation approaches to distinguish 

between the two aforementioned types. These two types of approaches have different philosophies 

for sensitivity analysis. Based on the models and general philosophy of these approaches we distin­

guish between: algorithmic approaches, metric approaches, envelopment approaches and multiplier 

approaches. We discuss all four types of approaches separately in the following four sections.

4.2 Algorithm ic approaches

In the first paper on sensitivity analysis in DEA, Charnes et al. (1985) note that the traditional 

linear programming sensitivity analysis methods are not suited for performing sensitivity analysis 

in DEA. To overcome this they turn to the development of algorithmic approaches for sensitivity 

analysis, which built on earlier research on sensitivity analysis in linear programming by Charnes 

and Cooper (1968), a line of work that was continued in a series of papers by Charnes and Neralic 

(see Neralic 1997 for a discussion) and recently by Neralic and Wendell (2004). Essentially, these 

are based on selecting an optimal basis to a DEA LP and establishing the range of input-output 

variations that do not affect the optimality of this basis. However, an optimal basis is not necessarily 

unique and so the choice of basis can affect the sensitivity analysis results. A review of the 

algorithmic approaches is beyond the scope of this chapter. Instead we focus on other approaches 

to sensitivity analysis that have appeared in the literature.

4.3 M etric approaches

Charnes et al. (1992, 1996) avoid the use of algorithmic approaches by employing metric concepts. 

More specifically, these approaches utilise the concept of vector norms in order to identify regions 

within which data variations do not alter a DMU’s classification. The identified regions are depen­

dent on the choice of norm. To illustrate this avenue to sensitivity analysis we discuss two models
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that axe based on the Chebychev norm (or Joo-norm):

max <5 (4.1)

s.t. XA +  es_ +  e5 =  x D

YA — es+ — eS =  y Q 

eA =  1 

S >  0, A ,s~ ,s+ >  0

min S (4.2)

s.t. X _ 0A +  es~ — e5 =  x 0

Y _ 0A -  es+ +  eS =  y Q 

eA =  1

S >  0, A ,s" ,s+ > 0

Note that both models relate to a VRS technology. Model (4.1) is intended for DMUs classified 

as inefficient by DEA. Let (5*, A*,s- * ,s+*) denote the optimal solution to this model. When the 

input levels of the inefficient DMU o decrease to x D — eS* and simultaneously the output levels 

increase to y Q +  eS*, then DMU o switches its classification to efficient. Generalising this, as long 

as 6  € [0, <5*), no reclassification will occur from a simultaneous change in input and output levels 

to x 0 — e5 and y 0 +  eS respectively. In that sense the optimal value 6 * defines a symmetric region 

within which data variations will not affect the classification of DMU o and is referred to as the 

radius of stability for DMU o. Note that this model does not account for Pareto-efficiency unless 

the objective function is replaced by S +  e(es~ +  es+ ) in which case the model can be solved by 

the usual DEA two-phase procedure.

The rationale for model (4.1) is reversed in (4.2) which is intended for DMUs classified as 

radially-efficient by DEA. Recall that the matrices X _ 0 and Y _ 0 contain all columns Xj apart 

from x 0 and hence this model can be related to the super-efficiency models by Andersen and 

Petersen (1993). The model seeks to determine the minimum value of S such that the production
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bundle (xG +  eS, y Q — eS) is efficient with respect to the production technology generated by DMU 

o’s peers. Consider an extreme-efficient DMU o and let (6 ', A', s _ /, s+/) denote the optimal solution 

to (4.2). As long as 5 G [0,5/) then DMU o is guaranteed to remain Pareto-efficient following the 

perturbation1. If DMU o is either a) Pareto-efficient but not extreme, or b) weakly-efficient, then 

it can be shown that at the solution to (4.2) 5' =  0, i.e. even an infinitesimal perturbation in input 

and/or output levels would alter the efficiency classification of DMU o.

Let us note here that in the discussion above we have assumed that inputs and outputs change 

by equal amounts. Charnes et al. (1992) also study the case where different inputs and outputs 

change by different amounts by assigning weights to variable 5 in the above models. If d _ G R +  

and d -  G R +  contain the weights for the inputs and outputs respectively, then overall the changes 

in the input output bundle for DMU o can be depicted as (xG — d - £, y 0 +  d +£) for model (4.1) 

and (xG +  d~£, y D — d +5) for model (4.2).

To illustrate how these models work consider the examples plotted in figures 4.1 and 4.2. 

Figure 4.1 illustrates the case of inefficient DMUs. The squares surrounding units E, D and F 

are generated by the Chebychev norms with radius 5*. For example, the horizontal and vertical 

arrows from D portray the vectors X£> — eS* and y o  +  e$* which are of length <5*. This length is 

determined by the points at which the square centered at D intersects the efficient frontier. As 

a result, point (x£> — eS*, y o  +  e$*) signifies a point at which DMU D changes its classification 

from inefficient to efficient. We mentioned earlier that model (4.2) cannot account for Pareto- 

efficiency. This can be illustrated by DMU F. The value of S* obtained from the optimal solution 

to F’s model (4.2) instance can be used to determine point F' where the square centered at F 

intersects the weakly-efficient frontier. In other words F signifies a point at which DMU F changes 

its classification from inefficient to weakly-efficient. Overall then, the finite positive value S* can be 

used to determine regions within which DMUs D, E and F can move without affecting their original 

efficiency classifications. In figure 4.1 these axe the shaded regions contained entirely within the 

three squares2.

In figure 4.2 we illustrate the case of radially-efficient DMUs. The squares surrounding units B 

and C are generated by the Chebychev norms with radius Sf. The horizontal and vertical arrows

1 If <5 =  S', then A Pareto-efficient DMU o is not guaranteed to remain Pareto-efficient and might switch to 
weakly-efficient.

2 Note that in general these regions are not closed.



CHAPTER 4. SENSITIVITY AND STABILITY ANALYSIS: EXISTING APPROACHES 65

Figure 4.1: Metric stability regions for inefficient DMUs

from B portray the vectors x#  +  eS' and y s  — eS' which are of length S' and can be used to 

determine the point B' at which the square centered at B intersects the efficient frontier of the 

production possibility set generated by B ’s peers. At this point DMU B changes its classification 

from efficient to inefficient. In general, given an optimal solution to (4.2), a stability region for 

an efficient DMU o can be determined by considering all possible production bundles (x^ +  e<5, 

Yb — eS) and allow S to vary within the interval [0, S'). Like before, these are the shaded regions 

contained entirely within the three squares. For example, further changes in the input-output levels 

of DMU B, beyond those determined by point (xg +  eS', y#  — eS') will result in DMU B changing 

its classification from efficient to inefficient. There is an important reason why the interval for S 

is open: if S =  S' and DMU o is a Pareto-efficient DMU, then the resulting production bundle 

(xG +  eS , y G — eS ) is not necessarily Pareto-efficient. This is illustrated by DMU C for which 

the projection point C' =  (xc  +  eS , y c  — eS ) is clearly weakly-efficient. Finally notice that the 

radii of stability for DMUs D and E are zero. DMU D is a non extreme Pareto-efficient DMU 

while DMU E is a weakly-efficient DMU. This implies that these DMUs can be removed without

affecting the shape of the production possibility set. Hence, be solving the instances of (4.2) for
/

D and E one obtains that <5=0,  i.e. even a minute change in the input-output levels of D and E 

can alter their efficiency classifications.
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Figure 4.2: Metric stability regions for efficient DMUs

4.4  E nvelopm ent approaches

Envelopment approaches are so named because they utilise DEA models in envelopment form to 

formulate the problem of sensitivity analysis of DEA efficiency classifications. Within this strand, 

both methods that deal with global and local perturbations have appeared. The local perturbation 

approaches work towards the identification of stability regions for individual DMUs. All of these 

utilise super-efficiency type models. Seiford and Zhu (1998b) consider separately the cases of 

increases in inputs and decreases in outputs, in a CCR model, and identify input and output 

stability regions respectively. However, the method described in Seiford and Zhu can cycle in 

certain cases, thus not allowing for the identification of stability regions. This is noted in Boljuncic 

(2006) who considers the case of simultaneous increases in inputs and decreases in outputs and 

identifies stability regions for DMUs within the BCC framework. We will discuss the theory behind 

these approaches and give an illustration of how they work with the aid of figures 4.3 and 4.4.

Consider the approach by Seiford an Zhu for identifying the input stability region of DMU 

o G J. The method starts by solving an LP for every input. These LPs, developed by Zhu (1996),
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axe as follows:

min 0 k Wk =  ( l,.. .,a )  (4.3)

S . t .  ^ 2  XjXkj< P kX0

^   ̂ XjXij^Xio Vz ^  k 

^ 2 j  Xj y r j > yro Vr =  1, . . . ,m  

Xj, > 0

The optimal solutions to these s LPs can be used identify s separate projection points for DMU o 

on the efficient frontier of the production set generated by the rest of the DMUs. It is then checked 

whether the hyperplane generated by these s projection points (in input space only) defines a valid 

inequality for the reduced production possibility set i.e. if H  is the supporting hyperplane, we 

check whether there exists a DMU k € ( J  \ o )  : k € H - . If so, then a stopping rule comes into 

effect and the input stability region scan be identified as the intersection of the halfspace H -  with 

the cone from DMU o defined by the s free disposability rays indicating increases in inputs. If not, 

the following additional LP is solved:

min Yli pi (4-4)

S . t ,  _ XjXfaj ^  PiXio V? — 1, ..., S

^   ̂ Xjlfrj^Xjro Vr =  1, ...,77l 

Xj, Pi ^ 0

This model projects DMU o on the reduced production set, by considering all inputs at the same 

time. Following this, by considering each component p{ separately, the projection point (which can 

be an existing DMU) is decomposed in s separate points indicating artificial DMUs generated by 

separate improvements in the levels of the s inputs of DMU o. The convex region defined by DMU 

o, its projection point and the s artificial DMUs is identified as a sub-region of the complete input 

stability region and we move to the next iteration where the entire aforementioned procedure is 

applied separately to each of the s artificial DMUs until the stopping criterion is met.
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Hence, the complete input stability region is sequentially built by separate sub-regions identified 

in different iterations. At every iteration at least s LPs are solved (or m  for output stability regions), 

each of which will at the worst case give rise to a further s LPs in the next iteration and this carries 

on, so it is easy to see that the number of LPs can quickly build up.

To illustrate this approach consider figure 4.3 where DMUs A-E utilise two inputs to produce 

one unit of a single output. We examine the input stability region for DMU B. At first two 

instances of LP model (4.3) are solved, one for each input, and two separate projection points are 

identified, i.e. Bi and B2. The line going through these points is not a supporting hyperplane 

to the reduced production possibility set so we now need to identify a new projection point for 

DMU B by considering all inputs at once and solving model (4.4). The projection point is DMU 

E and this is decomposed further into two artificial DMUs, i.e. b\ and b2. For both of these 

the aforementioned procedure is repeated, but before this we can also identify the square Bb\Eb2 

as a sub-region of the complete stability region. For b\ two instances of LP (4.3) are solved to 

identify the projection points Bi and E, the line through which envelopes3 all DMUs in J \ B  and 

hence the input stability region for b\, the triangle b\EB\,  can be identified as a sub-region of 

the complete input stability region for B. For point b2 the two projection points E and B2 do not 

define a valid inequality for the reduced production set so b2 is projected on the frontier again (by 

solving model (4.4)) at point D and this gives rise to two new artificial DMUs, namely 63 and 64, 

and the sub-region b2 b^Db^. For both 63 and 64 their projection points define valid inequalities for 

the reduced production set so the two regions b$B2D  and b±DE are identified and the procedure 

stops since there are no more artificial DMUs to consider. Finally, the complete input stability 

region for DMU B can be identified as the union of the five sub-regions identified in the course of 

the above procedure.

The approach by Boljuncic (2006) is different, in that it identifies a single stability region 

for both inputs and outputs. To start with, the method identifies a unique projection point for 

DMU o G  J o n  the efficient frontier of the reduced production possibility set by solving one LP. 

Boljuncic suggests that model (4.3) from Seiford and Zhu’s approach can be used. From this we 

also obtain a set of weights that define the supporting hyperplane to the facet on which the point

3Given a hyperplane (in this case a line) H  — {(x , y ) 6 R s+Tn| — v x  +  u y  =  /?}, we will say that H  envelopes all 
DMUs in a set A,  if — vx.j  +  u y  j  <  /3 Vj £  A.
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Figure 4.3: Input stability region for DMU B

is projected. Following this the method works towards identifying all relevant facets of the reduced 

production set required for the description of the stability region. The identification of new facets 

is done by applying parametric programming where the parameters correspond to input/output 

changes. Overall the approach calculates the acceptable changes in the inputs and outputs of the 

projection point such that the optimal basis of the original LP remains optimal. When changes 

exceed the acceptable range a pivot is performed and the new basis can be used to identify a new 

facet of the reduced production set. This is repeated until no further increases/decreases in inputs 

and/or outputs are possible at which point all relevant facets have been identified and the complete 

stability region can be identified.

To illustrate this approach consider figure 4.4. Suppose we wish to determine the stability 

region for DMU B. First, DMU B is projected on the efficient frontier of the reduced production 

possibility set, say at point Bi (this could also be B2), and this immediately identifies a facet of 

the reduced production possibility set, i.e. facet EC with supporting hyperplane H3 . We then need 

to determine the maximal input-output changes such that the projection point can be expressed 

as a combination of DMUs E and C, i.e. the initial basis remains optimal. We find that no further 

movement along facet EC is possible after point E. Thus we move to an adjacent facet of the 

reduced production possibility set by identifying an appropriate pivot, i.e. DMU C is replaced
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Figure 4.4: Input-Output stability region for DMU B

by DMU D and the new facet ED is identified. Repeating this we identify facet AD but we also 

find that no further increases in inputs and decreases in outputs are possible after point B2 which 

lies on this facet. Hence there are no other feasible pivots and the procedure stops. The stability 

region can now be identified as the region BB1EDB2. Alternatively this can be described as the 

intersection of: a) the cone from B defined by the s +  m  free disposability rays and b) the union 

of the three halfspaces H f , H^ and iT f.

Another set of envelopment approaches by Seiford and Zhu (1998a) and Zhu (2001), deal 

with the problem of global data perturbations where the data for all DMUs are allowed to vary 

simultaneously. To illustrate these we discuss the approach in Seiford and Zhu (1998a) who seek to 

determine the ranges in data variations when an efficient DMU o’s inputs increase and the inputs 

for all other DMUs decrease, and simultaneously the converse is observed regarding the outputs. 

In general, data perturbations are modelled as follows:

x G =  x 0 +  (S -  l)x 0, S >  1 (4.5)

y G =  yo -  (1 -  r)y D, 0 <  r  <  1

xj =  xj -  ( ~ y ~ ) xJ Vj 71 o
1 — T

yj = xj + (—— )yj v? ^ o
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where (xj, y j )  Vj G J, represent the resulting production bundles following the perturbations. More 

specifically, (S — 1) and (1 — r) represent the proportional increases/decreases in the input/output 

levels for DMU o, whereas (^ p )  and represent the proportional decreases/increases in the

input/output levels for all other DMUs. The following model4 is used to determine the ranges for 

parameters 5 and r under a CRS production technology:

min 7 (4-6)

s . t . X _ 0A < ( 1 + 7 )x0

Y _ 0A > (1 -  7)yo 

A > 0

Let (7 *, A*) denote the optimal solution to (4.6). Seiford and Zhu prove that no changes occur 

in the efficiency classification of the originally efficient DMU o when the parameters <5 and r in 

(4.5) are allowed to vary in the ranges given in the following.

T heorem  4 Consider an efficient DMU o G J  and let the data perturbation for all DMUs be 

modelled by (4-5) using parameters 8  and r. If 1 < 5 <  a/1 +  7 * and yT — 7 * < r < 1, where is 

the optimal value of the objective function in (4-6), then DMU o is guaranteed to remain efficient 

following the perturbations.

Note that in the above all inputs and outputs are assumed to change by equal proportions. This 

is generalised by Zhu (2001) to the case where different factors are allowed to vary by different 

amounts. In addition, Seiford and Zhu (1998a) show that when (4.6) is infeasible, then DMU o 

remains efficient following any increase in its inputs and/or decrease in its output levels, modelled 

by (4.5).

4.5 M ultiplier approaches

Another set of approaches by Thomson et al. (1994) and Thompson et al. (1996) also study 

proportional changes in the input-output levels of all DMUs and employ multiplier DEA models

4Let us also note that this is a simplified version of the model in Seiford and Zhu (1998a).
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for determining the range in which these variations do not alter the efficiency classification of the 

particular DMU o being analysed. The focus in these methods is on extreme-efficient DMUs only. 

For any extreme-efficient DMU o there will always exist a valid set of input-output weights such 

that the hyperplane that they define contains DMU o only and envelopes all other DMUs. In 

other words, there exists a hyperplane which supports the production set at the vector associated 

with DMU o only. It follows that at this particular set of weights DMU o will achieve the highest 

efficiency score, in other words it will be top-ranked. Thomson et al. (1994) claim that in general, 

given a set of valid DEA weights, DMU o will remain top-ranked over some range of data variations 

and their approach (as well as the approach in Thompson et al. (1996)) works towards determining 

this range.

The procedure starts with the selection of a valid set of weights for an extreme-efficient DMU 

o and then the data for all DMUs are allowed to vary until DMU o is no longer top-ranked. For 

example to start with a 5% increase in the output levels of all other DMUs is considered and if 

DMU o is still top-ranked this is increased further until the situation is reversed at which point 

a maximum range is established. Thompson et al. (1996) report on experiments in which several 

different types of data variations are considered for all DMUs in the dataset.

Clearly, the type of data variations assumed can have an important impact on the established 

maximum range at which a DMU remains top-ranked with respect to a given set of weights. 

However, given a type of data variations, the selection of the weights on the basis of which DMUs are 

ranked can also affect the robustness of the established range for data variations. More specifically, 

given that extreme-efficient DMUs are top-ranked with respect to multiple sets of weights, selecting 

different weights will give rise to different (perhaps significantly) ranges of data variations within 

which extreme-efficient DMUs remain top-ranked. For this reason, Thompson et al. (1996) and 

Gonzalez-Lima et al. (1996) introduce the use of a special interior-point algorithm that selects 

weights close to what they call the analytic center of weights for DMU o and report that this 

increased the robustness of this approach when it was applied to particular datasets. Nevertheless, 

there is no guarantee that the selection of weights in this fashion establishes a range of variations 

close to the maximum possible range.

To illustrate this approach and its weaknesses consider figures 4.5a and 4.5b. The input-output 

data for the three DMUs, are: A = (4,4), B =  (8,16) and C= (20,16). We examine the changes in
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the efficiency classification of DMU in more detail. For this purpose, we consider a 5% increase in 

out put/increase in input for DMUs A and C, and the reverse for DMU B. These changes correspond 

to points A' =  (8.4,15.2), B' =  (3.8,4.2) and C' =  (19,16.8). Following the procedure described 

earlier, we first need to establish a weighting scheme that defines a hyperplane that supports the 

production possibility set at point B only. Suppose that /3*) is such a weighting scheme and

that it defines hyperplane H* in figure 4.5a. We can see clearly that following the 5% perturbations 

described earlier DMU B remains top ranked with respect to weighting scheme (v*, u*,/3*). Hence, 

we can now further increase the proportion at which perturbations occur, until DMU B is no 

longer top-ranked. At that point we have established the maximum range for the proportional 

perturbations. In figure 4.5b we illustrate how this approach is heavily dependent on the selected 

weighting scheme. Suppose that we had started by identifying weighting scheme (v',u',/3'), which 

defines hyperplane H'. Following the 5% perturbation we observe that DMU B is no longer 

top-ranked, instead DMU C is now the top-ranked DMU. Hence, if we were to use weighting 

scheme (v',u',(3'), we would establish a much smaller range for proportional data variations. The 

interior-point algorithm of Gonzalez-Lima et al. (1996) seeks to determine weighting schemes like 

(v*,u*,(3*), which give rise to greater ranges for data variations, but it offers no guarantee of 

establishing the maximum possible range.

(a) (b)

Figure 4.5: Multiplier approaches
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4.6 An erroneous stability analysis approach

Finally, we report an approach by Jahanshahloo et al. (2005a) (a very similar approach also 

appears in Jahanshahloo et al. 2005b) who propose a characterisation of regions within which 

data perturbations do not affect any of the original efficiency classifications. We shall refer to these 

as Conditional Stability Regions (CSRs). Below we demonstrate that their theoretical results are 

erroneous.

To give a short description of their approach consider an efficient DMU o € J. Essentially, the 

approach seeks to determine a region representing the geometrical ‘difference’ between the original 

production possibility set and a smaller set resulting from the exclusion of DMU o from J.

The process starts by identifying all facet-supporting hyperplanes passing through DMU o with 

respect to the original production possibility set. Let t  be the number of identified hyperplanes. 

The i ’th hyperplane supports a halfspace H~ — {(x ,y)  e  Rs+m| — ViX+Uiy <  /?*}, where (Vi,Ui,/3) 

is the defining weighting scheme. Following this we drop DMU o from the dataset. This results 

in a smaller production possibility set in which all originally efficient DMUs remain efficient but 

some originally inefficient DMUs could achieve efficient status. At this point we need to identify 

all originally inefficient DMUs that have now become efficient. This is done by repeating a DEA 

run for all originally inefficient DMUs. For each of these, exactly like for DMU o before, we identify 

all of their supporting hyperplanes with respect to the reduced production possibility set. Let r  be 

the number of identified supporting hyperplanes. Now for each of these we define a set of halfspaces 

Ht  =  {{x >y) € Ms+m| -  ViX +  Uiy > fii}.

At the end of this process we have identified two sets of halfspaces and we can now define
t r

two regions to respectively correspond to these sets, namely Si =  f) H p  and 52 =  (J H * .
i= 1 i=  1

Jahanshahloo et al. claim that the conditional stability region for DMU o can be defined as 

Si fl 52.

This claim is erroneous. Surprisingly, the error can be recognised easily even in the illustrations 

provided by Jahanshahloo et al.! We illustrate this with the example dataset in table 4.1 and 

figure 4.6. Suppose we are interested in determining the conditional stability region for DMU B. 

As described above, we first identify the hyperplanes supporting facets AB and BC. Following this 

we drop B from the dataset and identify the originally inefficient DMUs D and E that have now
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DMU A B C D E
Input 1 3 12 3 7
Output 1 8 9 5 8

Table 4.1: Counter-example data

ya

Figure 4.6: The erroneous region identified by Jahanshahloo et al.

switched to efficient. We then identify their supporting hyperplanes which respectively support 

facets AD, DE and EC of the new production set. Following the definition of the two separate 

regions above we can finally define B’ CSR as the non-convex region ABCED.

This is obviously wrong. To establish this we perturb B to point B’ with coordinates (5 ,7). 

Clearly this perturbation does not alter the classification of DMU B which remains efficient. How­

ever this is not the case for DMUs D and E which have been originally classified inefficient but 

have switched to efficient after the perturbation, since the frontier is now given by the segment 

ADB’EC.

In effect, Jahanshahloo et al. identify the region in which an efficient DMU can be perturbed 

without switching to inefficient. This region is obviously not ‘conditional’ as it does not guarantee 

the preservation of the efficiency classifications for other DMUs. Furthermore, their analysis is 

based on the implicit assumption that data perturbations will occur within the originally estimated 

production set and hence cannot account for arbitrary data perturbations.
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Let us finally note that Jahanshahloo et al.’s approach is based on the explicit identification 

of the production possibility set which they propose to obtain by utilising the approach in Huang 

et al. (1997). As discussed in chapter 2 this approach cannot guarantee the identification of all 

supporting hyperplanes. Instead we would need to use one of the approaches that can perform this 

task described in that chapter .



Chapter 5

A  new approach to  stability  

analysis

5.1 Introduction

In this chapter we introduce a new approach to sensitivity/stability analysis in DEA. We are 

concerned with the characterisation of geometrical regions within which the data for one DMU 

can vary without affecting any original DMU classifications. The developments contained in this 

chapter utilise information obtained by the explicit identification of DEA production possibility 

sets, as described in chapter 2.

As we saw in the previous chapter, the use of such stability regions has already been reported 

in the literature. However, all related existing approaches only study particular types of data 

variations, e.g. increases in input levels and decreases in output levels. In addition to this, most 

existing methods focus on a single DMU at a time and study how variations in its data affect the 

stability of its own classification only.

In this chapter we take stability analysis two steps further; First, we do not constrain ourselves 

to certain types of data perturbations but study arbitrary perturbations. Second, because pertur­

bations in a DMU’s data do not necessarily affect only its own classification but possibly also those 

of its peers, we are concerned with identifying regions of stability within which all original DMU

77



CHAPTER 5. A NEW  APPROACH TO STABILITY ANALYSIS 78

efficiency classifications remain unaffected. We term this approach Conditional Stability Analysis 

(CSA).

The outline of the chapter is as follows. In section 5.2 we provide a preliminary discussion on ar­

bitrary perturbations, illustrate the complexity of these with an example and point out that none of 

the existing approaches are powerful enough to study the effects of this type of data perturbations. 

Section 5.3 contains a set of new theoretical developments which we utilise in section 5.4 in order 

to provide exhaustive characerisations of Conditional Stability Regions for efficient and inefficient 

DMUs. We discuss how our new results on sensitivity analysis have opened interesting avenues for 

future research in the field in section 5.5, and in section 5.6 we address the computational difficulty 

of identifying Conditional Stability Regions by providing a computational framework that has the 

potential to reduce the overall effort considerably. We provide an illustrative example in section 

5.7 and conclude in section 5.8.

5.2 Arbitrary D ata Perturbations

We mentioned earlier that all existing approaches on sensitivity analysis study simplified versions 

of this problem. More specifically, they study different cases of data perturbations separately, 

mainly focusing on the case of increases in a DMU’s input levels with simultaneous decreases in 

its outputs levels. Hence, there is a need to study other cases of data perturbations as well. What 

is also needed though, is the unification of all currently distinct cases under a general theoretical 

framework for sensitivity analysis. This of course is a much more complicated task; we shall 

see below that not all similar cases of data perturbations result in similar effects on efficiency 

classifications and that the results of current approaches are insufficient to model the complexity 

of arbitrary perturbations.

A general description of the problem is as follows: Consider a DMU o € J  with data bundle 

(x0,y0) £ Rs+m and suppose that this bundle is now perturbed. Let <3 represent the perturbed 

DMU so that:

(xo.ys) = (x0,y 0) + (rr,S), 7  > - * 0, $ > -ya (5.1)

Following this, what needs to be determined is whether this perturbation has altered the original
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DMU Input (x ) output (y )
A 2 2
B 4 6
C 8 9
D 12 10
E 6 7

Table 5.1: Example Dataset

classification of DMU o and, under CSA, any other DMU’s classification. In general, we are 

interested in studying the conditions under which no alterations in efficiency classifications occur 

as a result of the perturbation in DMU o’s data bundle.

To illustrate the many different types of effects that arbitrary perturbations have on the ef­

ficiency classifications of DMUs we use an example dataset given in table 5.1. We use the four 

panels of figure 5.1 to separately describe these effects. As can be observed from any of the four 

illustrations, of the five DMUs A — D  are efficient and E  is inefficient. The efficient frontier is 

given by the piecewise linear segment ABCD .

We will consider data perturbations in DMU B's input-output data. For this simple two- 

dimensional case, we can consider four cases of perturbations, namely the four combinations of 

simultaneous increases or decreases in input and output levels. Consider the four orthants with B  

as the origin. Each of the four cases will lead to B  moving within one of these orthants.

We start with the widely studied simplest case of perturbations, i.e. simultaneous increases in 

inputs and decreases in outputs. As illustrated in figure 5.1a this corresponds to moving B  within 

the lower right orthant. Clearly, under this type of perturbations B  will always remain within 

the original production possibility set. Hence, the perturbation is guaranteed not to increase B ’s 

efficiency score and not to reduce the efficiency score of any other DMU. For example if B  moves to 

B\  then it still remains efficient but now DMU E  also becomes efficient and A E C D  becomes the 

new efficient frontier. Further movement along the ray B B \  will render DMU B  inefficient, e.g. if 

it moves to B 2 , A E C D  becomes the efficient frontier. As we saw earlier Boljuncic (2006) studies 

an efficient DMUs ‘region of efficiency’ for this type of data perturbations within which it can move 

without becoming inefficient. In our example, f?’s region of efficiency is the region bounded by the 

lower right orthant and facet A E , the latter being part of the production possibility set resulting 

from the exclusion of B. We can modify this region to allow for conditional sensitivity analysis.
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This will become obvious following the results in subsequent sections.

The other relatively simple case of perturbations regards simultaneous decreases in inputs and 

increases in outputs (upper left orthant of in 5.1b). Obviously, in this case a perturbed DMU which 

was originally efficient is guaranteed to remain efficient. On the other hand, if the perturbed DMU 

was originally inefficient, it might switch to efficient following the perturbation. Additionally, such 

perturbations may also reduce the efficiency scores of unperturbed DMUs and, as a result, force 

originally efficient DMUs to switch to inefficient. For example, moving the originally efficient B  

to point B3, does not affect its own classification but results in DMU C  becoming inefficient and 

the efficient frontier becoming AB 3 D. Moving the originally inefficient DMU E  to E\ results in 

E  switching to efficient. For inefficient DMUs facing this type of perturbations, we could use an 

approach in parallel to the approach by Boljuncic, and identify their region of inefficiency, both 

for the case of standard and conditional sensitivity analysis.

The remaining two cases concern simultaneous increases or decreases in both inputs and out­

puts, i.e. perturbing B  within the upper right or lower left orthant. Under these types of per­

turbations the perturbed DMU is not guaranteed to always reside inside or outside the original 

production possibility set, making these cases less ‘predictable’ than the two previous ones. We 

illustrate the first of these two cases in figures 5.1c and 5.Id. In 5.1c, consider a simultaneous 

increase in both input and output levels for DMU B , so that it moves to point in the upper 

right orthant. This does not affect its own classification, however DMU C  now becomes inefficient 

as the new frontier becomes AB^D. Now contrast this with another possible movement of B  within 

the same orthant, say to point B 5 in figure 5.Id. In this case DMU B  becomes inefficient and the 

new frontier is given by ACD.  Furthermore, we cannot conclude that moving B  along ray B B 5 

will always result in B  becoming inefficient, as illustrated by point Bq. Moving B  to Bq does not 

alter its classification, as it remains efficient, but now DMU D  switches to inefficient as the efficient 

frontier becomes A E C B q .  Similar observations can be made for inefficient DMUs.

The above observations confirm that, even for a two-dimensional example, allowing for arbi­

trary data perturbations increases the complexity of possible effects on the classification of DMUs 

compared to the simplified cases that have already been explored. We must stress here that this 

complexity should increase further in higher dimensional cases, where some inputs and outputs 

might simultaneously increase and some others decrease, something that was not illustrated here.
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Adding to this, studying the effects of data perturbations becomes even more complicated when 

the additional condition of preserving all DMUs’ classifications is imposed. We undertake the task 

of studying such situations in the following sections.

5.3 Theoretical developm ents

In this section we develop the necessary theory for the characterisation of conditional stability 

regions. To that end, we consider a slightly different problem. More specifically, we work by 

looking at how the introduction of an additional DMU affects the original classifications of units. 

We shall see below how this allows us to arrive at more general results which we can utilise 

subsequently in characterising conditional stability regions. In what follows we consider the VRS 

case only1, though it will be easy to see how all results can be adapted for the CRS case.

Let J' be the set of units obtained by the inclusion of an additional DMU k in set J, i.e. 

J' =  J  U {k}.  We shall use dashed notation to define T ', P ' , and E' that correspond to J ' , in 

exactly the same manner as was done for J  in 2. We also define Fj (similarly F'-) as follows:

Fj =  {(v, u, P ) e P \  -  VXJ +  uyj  =  p )}  (5.2)

We refer to Fj as the efficiency cone for DMU j  as it clearly contains all feasible weighting schemes 

that render it efficient. Note that Fj might be empty in which case j  is an inefficient DMU. Of 

course, Fj, as defined above, relates to weak-efficiency and not Pareto-efficiency. We deliberately 

center our discussion around weak-efficiency to keep presentation as simple as possible. All results 

can be adapted to accommodate for Pareto-efficiency as well.

Recall that P' and Fj (similarly P  and Fj) are polyhedral cones and hence can be characterised 

by their extreme rays, as can be seen in the following general property (see e.g. Schrijver 2000):

P rop erty  1 Let C  be a polyhedral cone and A the finite set of its extreme rays {yi,Ui,P^), i G B

1 Since we only concern ourselves with the VRS cas we can simplify the notation by removing subscripts C  and 
V ,  that were used to differentiate between the CRS and VRS cases. For example we now use T  instead of T y .
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(a) (b)

• E

Figure 5.1: Perturbations and their possible effects
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where B  is an index set. Then:

83

V{v0 ,u 0 ,P 0) G C  : (v0 ,u 0 ,(30) =  ^  > 0 , ^ / i i  7̂  0
i€S *

For each of the cones P, P', Pj, Pj , we denote their finite sets of extreme rays by P , P', Pj, Pj 

respectively. We also use the index sets J, I', 7j, 7j to correspond to the sets of extreme rays 

respectively.

The z’th extreme ray is associated with a hyperplane Hi =  {(x ,y )  G Rs+m| — ViX +  Uiy =  /?} 

which supports a facet of T  (T'). The supporting hyperplane is in turn associated with a number 

of halfspaces. These are defined as follows:

D efin ition  19 Consider the extreme rays (vi,Ui,(3i), i G I  of P  (or any other of the above cones). 

We define Vz G 7 :

H ?  =  {(x > v) e  ^ s+m| -  ViX +  uiy  ~  /?}, where ~  -  {< , < , > , > }.

When the additional DMU k is introduced, this possibly affects the classification of some of 

the original DMUs in J. Below, we shall provide the necessary results for a characterisation of the 

resulting efficiency classifications of all original DMUs. In addition, we also examine the conditions 

that characterise k's classification.

First, consider the original DMUs in J. As established below, the introduction of the additional 

DMU k can only ‘reduce’ their efficiency cones.

Lem m a 7 Mj G J  : F) C Fj

P roof. (v0 ,u 0 ,P 0) G F) —v QXj  +  u0y j  <  /30 Vj G J' and since J  C J' it follows that 

- v QXj +  u0y j  <  Vj G J  => (v0 ,u 0 ,P0) G Fj. ■

A consequence of this is that all originally inefficient DMUs will remain inefficient, though some 

originally efficient DMUs might become inefficient. In addition, a necessary condition for a DMU 

p  G J  to be efficient with respect to the new production set, is that p  was an originally efficient 

DMU. This is established in the following lemma:

Lem m a 8  Consider a DMU p  G J. The following hold:

a) p E  =$■ p £  E'
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b) p e  E' =>p e  E  

P roof. 

a) p g  E  => Fp =  0  =$■ Fp =  0  =>p<£ E'

b ) p £  E' =$■ Fp =£ 0  =$> Fp 7̂  0  =£• p  G E

■

Having established that only efficient DMUs may alter their classifications, what remains now 

is to characterise the conditions under which efficient DMUs remain efficient or switch to inef­

ficient. The extreme rays of DMUs’ efficiency cones are of crucial importance in obtaining this

characterisation. In particular we shall utilise the following result.

L em m a 9 Consider two DMUs p  G E  and k J . Then, —vx.k +  u yk ~  P V(v,u,f3) G Fp if and

only if -ViXk +  Uiyk ~  &V(ui, uu f t )  G Fp.

P roof. Necessity is obvious since Fp C Fp. Sufficiency follows directly from property (1). ■

The following lemma provides the necessary and sufficient conditions under which an originally 

efficient DMU in J  preserves its efficiency classification after the introduction of the additional 

DMU k.

L em m a 10 Consider two DMUs p ,k  : p G E and k J. The following hold: 

a) p  E' if and only if -UjXfc +  Uiyk >  /^V(ui, Ui, G Fp.

b) p e  E' if and only if 3(v0, uQ, P0) G Fp : - v 0x fc +  uQy k <  /30.

P roof.

a) p E' => F  ̂ =  0  =>■ —vx.k +  u yk >  fLi(v, u , /?) G Fp. From lemma 3, this holds if an only if 

-UiXfc +  m y k >  G Fp

b) Follows directly from part a.
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Figure 5.2: Effects of introducing an additional DMU

To illustrate the above, consider the example plotted in figure 5.2 where the original dataset 

consists of the five DMUs A — E. Now suppose that an additional DMU k is introduced to the 

dataset. According to the above, any weighting scheme contained in the new efficiency cones for 

any of the original DMUs must also be contained in their original efficiency cones. Clearly then, 

DMU E  which is an originally inefficient DMU must remain inefficient as its original efficiency cone 

was empty to begin with. Now consider the remaining, originally efficient, DMUs. We can observe 

that the original production set is supported by five hyperplanes denoted Hi, i =  1, ...5. Following 

the introduction of DMU fc, hyperplanes Hi and H$ envelope DMU A:, i.e. (Xk, Vk) £ H f , H^ . This 

implies that for DMUs A and D  there exist weighting schemes in Fa and Fd able to envelope the 

additional DMU k and hence these DMUs will remain efficient with respect to the new production 

set T'. On the other hand, none of H2 , H3 and H4 envelope k as clearly (xk, Vk) € , H  ̂ .

Because these are extreme rays of Fq and Fc, it follows from the above that there are no weighting 

schemes contained in these cones able to envelope k and hence these DMUs will become inefficient 

after the introduction of k.

We now turn our attention to the additional DMU k. Below we establish the conditions under 

which k will be classified as efficient/inefficient.
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L em m a 11 Consider a DMU k such that k G J7, k ^ J. Then: 

a) k e  E' if and only if (xk,y k) € (J H f .
i€/

b) k (£ E' if and only if (xk,y k) G f |  
iei

P roof. We need only prove part a. For necessity, suppose (xk,yk) ^ U Hf-. Then 3 (v0 ,u 0 ,(30) G
i€l

P  : - u 0Xfc +  u0 y k < 0 O => (xk,yk) E  =» k <£ E' (from lemma 8).

For sufficiency: (xk,yk) € |J =>■ 3(v0,u 0,/30) G P  : - v 0x.k+ u 0yk > P0 and - v 0X j+ u 0y j  <
iei

P0Vj G J. Now let (3*0 > f30 : - v 0 x k +  uQy k =  (3*0 => - u 0Xj- +  u0yj <  G J ’ =» (v0 ,u 0 ,P 0) G 

F ^ k e E ' .  ■

For example, in figure 5.3 introducing a new DMU A; at any point in the original production 

possibility set excluding the efficient frontier, will result in k being classified inefficient. In the case 

of weak-efficiency the boundary of the polyhedral production set serves as the efficient frontier, 

hence this region of inefficiency for k equates to the relative interior2 of T  (darkly shaded region). 

On the other hand introducing k at any point outside the original production set (£3) as well as on 

its boundary (fo) would render DMU k efficient (lightly shaded region). DMU k will be efficient 

if it is not enveloped by any of the original supporting hyperplanes. More specifically, k will be 

efficient if introduced in such a way that it is contained in any of the H f  halfspaces corresponding 

to supporting hyperplane i, i.e. the union of all these halfspaces.

5.4 Characterisation o f Conditional Stability Regions

5.4.1 G eneral characterisation

The previous section established some general results on efficiency classification changes relating 

to the addition of a new DMU in the dataset. In this section we model data perturbations in the 

input-output levels of a particular DMU in such a way that the previous results can be brought 

into play.

Suppose we seek to identify the conditional stability region for DMU k. Recall that this is the 

region within which DMU k can be perturbed without affecting any of the original efficiency clas-

2The relative interior of T  denoted r. int(T)  is defined as follws: r. int(T) — {(x , y ) G Rs+rre| — vx  +  uy <  0 
V(y,u,P) e  P} .
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r.int(T)

Figure 5.3: Classification of the additional DMU according to its position

sifications, including its own. In the spirit of many existing approaches we start by omitting DMU 

k from the dataset. Following this, a new set of efficiency classifications can be established. At this 

point, the identification of k ''s conditional stability region equates to the identification of the region 

within which the reintroduction of k will result in: a) k being classified identically to its original 

efficiency classification, and b) all other DMUs reverting to their own original classifications. In 

order to avoid the introduction of additional notation we assume henceforth that J' is the original 

set of DMUs and T' the original production possibility set.

First, consider the set E  containing all DMUs declared efficient with respect to the production 

set generated by all DMUs except k. For every j  € E, we define a region K j  as follows:

U » r .
Kj = { i£,‘

n  Hh
ieij

(5.3)

K j  represents the region within which the reintroduction of DMU k will result in DMU j  reverting 

to its original classification. For example, consider a DMU j * G J' such that j* € E \  E r, 

i.e. j* was originally inefficient but switched to efficient after the removal of DMU k from the
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dataset. Since we want to ‘force’ j* to revert to inefficient we need to reintroduce k in such a 

way that: —vQXk +  uQyk > {v0 ,u 0 ,fi0) G Fj*. According to lemma 10 this happens when

-ViXk +  Uiyk >  PiV (vitUiiPi) G Fj*, in other words only when (Xk,yk) € p i h t —Kj* ■
ieij*

Turning to DMU fc G J' \  J, we can define, in parallel to K j,  the region Kk as follows:

K k =  <
|J Hr, keE'
i€l (5.4)
f |  H <, k ? E '
iei

This definition guarantees that as long as the reintroduction of DMU k happens within the region

Kk , k will maintain its original efficiency classification. For example, if k £ E', then we want

to guarantee that it remains inefficient when reintroduced. To do so, we need to place k so that

- v 0x k +  u0 yk <  /30V (v0, u0, PQ) G P. It follows that (x k, Vk) € p |  Hf- =  K k. In contrast if k G E ',
iei

we need to make sure j  remains efficient when reintroduced. For this to happen k would have 

to be placed on the boundary of, or exterior to the polyhedral production possibility set T, i.e.

Cxk,Vk) £ P) H f  =  K k.
iei

We now combine the results on regions Kj  and Kk and obtain the following theorem, which 

characterises conditional stability regions for all DMUs.

T heorem  5 Consider a DMU k G J'. Its conditional stability region, denoted CSRk, is given by:

CSRk =  p| Kj  D K k n Rs+m (5.5)
jeE

P roof. First, note that CSRk is not empty as it clearly contains at least one vector, namely 

the original production bundle (Xk,yk)• From lemmata 10 and 11 we know that DMU k as well 

as any other DMU in E will revert to their original classifications following a perturbation of k 

within CSRk• The remaining set of DMUs J \  E  contains inefficient DMUs with respect to both 

production sets. It follows from lemma 8 that these are guaranteed to remain inefficient following 

any perturbation of DMU k. ■
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5.4.2 Simplified cases

Having established a general characterisation of conditional stability regions, we now look at some 

particular cases where simpler characterisations can be obtained. These will be utilised in the 

following section where we consider the computation of conditional stability regions. First, consider 

the case where k € E' and also E \ E '  ^  0 . Then we have:

n Ai= n n ^ u h > - = k *  w
j€E\E’ j€E\E' i€lj iei

i.e. K j is a subset of K k-  This gives rise to a simpler characterisation of CSRk as follows:
jeE\E'

C orollary 8 If k € E' and E \  E' ^ 0 , then CSRk = P | Kj n E’+m
jeE

In the following two cases we show that certain efficient DMUs and all inefficient DMUs respec­

tively have identical stability regions for which simpler characterisations can be obtained. With 

respect to efficient DMUs, consider the following remark.

R em ark 3 Let E' C E' be the set of DMUs that serve as extreme points of the polyhedral produc­

tion set T' and suppose DMU k £  E f. Then, T' — T.

From this it follows that the conditional stability regions are identical for all efficient non­

extreme DMUs. Formally:

C orollary 9 For any pair of DMUs (k , I) : k ,l  € E' \  E ', the following holds:

CSRk = CSRi  (5.7)

Now consider the case of inefficient DMUs. If k £  E' then clearly E  \  E' =  0  , P | Kj  =  0
j€E\E'

and hence n*j= n K j . We can utilise this to obtain the following:
jeE jeEnE’

* * = o < c n ^ c n * >  (5.8)
iei iei jeE
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Since Kk is identical for all originally inefficient DMUs, it follows that all these have identical 

conditional stability regions, for which a simpler characterisation is given below:

C orollary 10 For any pair of DMUs (fc, I) : k,l 0  E ' , the following holds:

C S R k =  CSRi =  p |  H f  n Rs+m =  r.int (T) (5.9)
iei

5.5 Future directions

The results presented so far have exhaustively characterised the problem of CSA. However, the 

research on this subject has opened some promising avenues for future research in the field of 

sensitivity analysis in DEA. We would like to devote this brief section to pointing out some possible 

directions for future research.

Firstly, we would like to note that whenever a DMU k is removed from set J', we have a chance 

to observe how this affects the classifications of other DMUs, i.e. set J. In the case that no 

additional DMUs become efficient, i.e. if E — E ', we can claim that the production set is stabile 

with respect to the removal of DMU k. In view of the earlier results, this will always be the case 

for inefficient as well as non extreme-efficient DMUs. However, this can also be the case for some 

extreme-efficient DMUs. Identifying the conditions under which this may happen could provide a 

link to sensitivity analysis with respect to addition/exclusion of DMUs. This is a fertile field for 

future reseaxch.

Another interesting problem that can be studied is the effect of perturbations on the magnitude 

of efficiency scores. At this stage, this is only possible for perturbed DMUs only. More specifically, 

it is possible to use the information on all available weighting schemes (of a full or a reduced 

production possibility set) to determine the efficiency score of the perturbed bundles. An open 

question for future research would be to generalise this to unperturbed DMUs, i.e. examine the 

effect of arbitrary perturbations for any type of DMU, on the efficiency scores of all DMUs in 

the dataset. The developments contained in this chapter have set the foundations for this kind of 

analysis.



CHAPTER 5. A NEW  APPROACH TO STABILITY ANALYSIS

5.6 Com putational considerations
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In this section we address some issues relating to the computation of conditional stability regions. 

In view of the earlier results we can base this on a procedure that involves the consecutive explicit 

identifications of production possibility sets. More specifically, this would start by identifying all 

supporting hyperplanes for the original production set T and following that the same would have 

to be done for every production set T' resulting from the removal of DMU k G E' from the dataset. 

Unfortunately, as we have seen in chapter 2 the explicit identification of one production set alone 

can be a computationally intensive process, hence the above would be no easy task. As a result, 

this procedure might only be applicable to relatively small datasets.

We would like to examine the computational burden of this approach in a relative context. The 

only comparable approaches to CSA axe those by Seiford and Zhu (1998b) and Boljuncic (2006). 

Both these approaches compute stability regions and they do this by identifying relevant facets of 

the reduced production set (T in our case). In other words, they too work towards the explicit 

identification of production sets, only that they are interested in local parts of these. In addition, 

these approaches make no effort to connect the problem of identifying stability regions for different 

DMUs so that the same facets might have to be identified many times for different DMUs. Overall, 

this means that their computational burden should also be considerable although initially it might 

not seem so because of the use of LPs by these approaches.

For example consider the approach of Boljuncic (2006), as described earlier in figure 4.4. We 

can clearly see that for characterising the region of efficiency for DMU B, this approach would 

identify three facets of the reduced production possibility set, compared to a total of five facets 

that explicitly characterise the reduced production possibility set. Our approach would identify all 

of these five facets since it requires the explicit identification of the reduced production possibility 

set. Although in this example the difference in computational effort might seem minor, this is not 

generally the case. The additional effort required by our approach can be dramatically scaled up 

in larger examples.
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5.6.1 R educing com putations

Fortunately, this situation can be improved by adapting the computational framework for CSA. 

More specifically, following the exclusion of one DMU from the dataset, the problem of explicitly 

characterising the resulting production possibility set T  can be reduced to a smaller problem 

involving a subset of DMUs only. In effect, this is equivalent to focusing on local parts of the 

reduced production possibility set as is done by the approaches of Seiford and Zhu (1998b) and 

Boljuncic (2006). It is our belief that this modification has the potential to considerably reduce 

the overall computational effort.

In the absence of computational testing we cannot offer any guarantee that our approach is 

computationally comparable to the existing approaches. Nevertheless, we believe that any possible 

extra effort is worthwhile, given that CSA is more powerful than the aforementioned approaches, 

allowing, as it does, for arbitrary data perturbations and changes in the efficiency classifications of 

all DMUs.

Identify ing  th e  reduced production  possib ility  set

We now describe the modified computational framework in more detail. A first thing to note is 

that the computational effort for explicitly characterising the original production possibility set T' 

can be reduced by only considering extreme-efficient DMUs (set £"), as only these are necessary 

for generating T '. Of course this would require that we are able to distinguish between extreme 

and non-extreme-efficient DMUs. This can be done by the solution of one LP for each DMU. 

We could also use more efficient procedures described in Dula (1997) and Appa, Argyris, and 

Parthasarathy (2006), in which the LPs solved start small and grow larger with the identification 

of extreme-efficient units. Given the complexity of all existing algorithms for the generation of 

polyhedral sets, being able to reduce the number of data points (DMUs) can have a significant 

impact on the required computations. Following this, all DMUs can be scored with use of the 

obtained information on the supporting hyperplanes of T' (see also Briec and Leleu 2003; Appa 

and Williams 2006).

At this point we should be able to distinguish among extreme-efficient, efficient and inefficient 

DMUs. It is important to note that for the last two types no additional problem needs to be
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solved. As established earlier, in both these cases respectively, all DMUs have identical conditional 

stability regions which can be readily obtained following the explicit characterisation of T'.

Now we address the identification of conditional stability regions for extreme-efficient DMUs. 

Again, let J' be the original set of DMUs for which we can define T', P', Fj, etc. In addition, let 

E'k be the set of units in J', that lie on at least one common facet with DMU k, i.e.3:

E'k =  { j  G J'\3 (v0,u0,j30) G Fk : - v 0Xj +  uQyj =  0 O)  (5.10)

To reduce the computational burden we first identify facets of the initial production set T' that 

remain facets of T. For this we shall utilise the following result, which establishes that the efficiency 

cones for all DMUs not in E k, are not affected by the removal of DMU k from the dataset.

L e m m a  12 For any DMU j  G E' \ E k, Fj =  Fj.

P roof. From lemma 7 we know that Fj C Fj so we need only prove that Fj C Fj. The polyhedral 

cone Fjo C Rs+m+1 can be described as the intersection of a finite collection of halfspaces —v'x.j +  

uyj  < 0  which are defined by hyperplanes with normals (—Xj, yj, —1) where (—X j,yj) correspond 

to DMUs in P 'o, i.e. the set of DMUs that co-span facets of T' with DMU j a. Now by contradiction 

suppose that for a unit j a e £ '  \  E k, Fjo £  P-o, so that there would exist (vo,uo,0 o) G Fk but 

(vo,uo,0 o) £  Fk. However, (vo,uo,0 o) G Fk => —v0xj +  uQyj < 0 O Vj G J, but on the other hand 

if (v0, u0,0 O) £  Fk, i.e. (v0, uQ, 0 O) lies outside the cone Fk, then for at least one of Fk s supporting 

hyperplanes it will hold that —v0x.j +  uQyj  >  0O, i.e. at least one of the DMUs in P 'o is not 

enveloped, which is a contradiction. Hence, Fj c  F'j. m

From the above result we know that having explicitly identified T' , we also hold explicit facial 

information for T, with respect to DMUs in set E  =  E' \  E'k. It follows that any ‘new’ facet of T  

can only be spanned by DMUs in E \ E .  Now consider the production set generated by the set of 

DMUs E \ E ,  denoted T( E \  E).  We know that any ‘remaining’ facet of T  must also be a facet of 

T ( E \ E ). In other words T( E \  E)  is a subset of T  which ‘shares’ some of its facets with T. This 

means that in order to identify the remaining facets of T  we need only study the reduced problem 

of explicitly characterising T ( E \  E)  and identify the relevant facets by inspection. Especially in

3 Consider a face /  of the production possibility set T  (or T'). If k is an extreme-efficient DMU contained in / ,  
we will say that k spans / .
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• G

Figure 5.4: Identifying the facets of reduced problems

larger datasets where E \ E  can be vastly smaller than E ,  this has the potential of considerably 

reducing the required computational effort.

Consider the example in figure 5.4. We are concerned with the explicit characterisation of pro­

duction set T  (darkly shaded region). Clearly E '  —  { A ,  B , k ,  E ,  F }  and E  =  { A ,  B , C ,  D ,  E ,  F } .  

Suppose DMU k  is removed from the dataset. Since E ' k  =  { B , k , E }  and E  =  { A ,  F }  we have: 

E \ E  =  { B , C ,  D ,  E } .  According to the above, we need only study the reduced problem of char­

acterising the production set generated by E  \  E  , denoted T ( E  \  E )  (the lightly shaded region 

entirely contained in T). Of course, in such a small example the computational savings are trivial. 

Nevertheless, we can clearly see from the illustration that the explicit characterisation of T  requires 

seven facets of which four we can readily obtain from the information we hold about the original 

production set T '  (facets A B  and E F  along with the weakly-efficient facets from A  and F ) .  The 

remaining three facets can be seen to also be facets o i T ( E \ E )  and can be obtained by explicitly 

characterising the latter. More specifically, following the explicit characterisation of T ( E  \  E )  the 

three relevant facets can easily be identified by inspection, i.e. simply by testing which of the facets 

of T ( E  \  E )  are able to envelope the remaining DMUs in E ,  i.e. those in set E  =  {A, F } .
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Identify ing  th e  new  efficient D M U s

In the discussion above, the identification of set E  necessarily precedes the explicit characterisation 

of T. Now we address this necessary first step of the ‘reduced’ procedure. Set E  includes all 

originally efficient DMU bar k, i.e. the readily identifiable set E' \  k, along with the set E \  E ', 

i.e. the units that have switched to efficient following the removal of DMU k from the dataset. 

Clearly, E \ E '  can be identified by solving a DEA LP for all DMUs in J \ E ' . However, this can 

be done more efficiently, by only considering a subset of J  \  E \  as described below.

L em m a 13 Consider a DMU p  G J \  E '. Then, p  £ E  only if p is only dominated by facets ofT '  

that are spanned by DMU k.

P roof. Clearly any facet of T' spanned by DMUs in E' \  E'k will remain a facet of T  and hence 

p  will remain dominated. Hence, for p  to switch to efficient it will have to be dominated only by 

facets spanning only by DMUs in E'k. It follows directly that p  must be dominated only by facets 

spanned by k. ■

C orollary 11 Let Op and Op respectively be the input and output oriented efficiency scores of 

D M U p with respect to T'.Then p  G E  only if both (0px p, y p) and (xp,0p y p) only lie on facets of 

T' spanned by DMU k.

Note that the above only provide necessary but not sufficient conditions. To illustrate this 

consider DMU G in figure 5.4. Both of G’s input and output oriented radial projections will lie 

on facets spanned by DMU k. However, DMU G clearly remains inefficient following the removal 

of DMU k from the dataset. Nevertheless, it follows from corollary 11 that in identifying which 

originally inefficient DMUs switch to efficient after the removal of DMU k, we need only examine 

DMUs for which DMU k can serve as a comparator DMU, i.e. spans the facet on which their 

targets lie. To that extent, we first evaluate efficiency scores for all DMUs with respect to all 

supporting hyperplanes4 and for every DMU identify the maximum of these for both input and 

output orientations. We then need only solve a DEA LP for DMUs in a set S^, defined to containi 

all DMUs for which both maxima are attained on facets spanned by DMU k. Again, this has the 

potential of significantly reducing the extra LPs that need to be solved.

4 These are the cross-efficiencies as we will describe in the next chapter.
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Finally, note that instead of identifying set E  prior to the explicit characterisation of T  we 

could also work towards the identification of E, i.e. the extreme-efficient units of T, as was 

done for T' earlier. Given that these are the only necessary units for the generation of T, i.e. 

T ( E \ E )  =  T ( E \ E ) ,  this would be preferable. We know that any DMU in E' \  k will remain 

extreme-efficient so we need to identify DMUs originally in J  \  E' that become extreme-efficient 

following the removal of DMU k from the dataset. These new extreme-efficient DMUs are a subset 

of the new efficient DMUs which are all contained in set Sk as described earlier. Hence we know 

that all extreme-efficient DMUs in E  are contained in Sk U {E' \  k) and we can identify them by 

applying the algorithms described in Dula (1997) or Appa, Argyris, and Parthasarathy (2006). In 

addition, we already know some of the extreme-efficient DMUs, namely those contained n E' \  k, 

so we can initialise these procedures with this set. As was the case for T' earlier, this should allow 

for savings in computations for explicitly characterising T.

5.6.2 A n algorithm  for CSA

Here we give a detailed description of the suggested computational procedure for CSA. First, we 

would like to note the following:

(1) The procedure is based on the identification of extreme-efficient units prior to the explicit 

characterisation of various production sets

(2) P{E')  denotes the extreme rays of the polar cone P(E')  corresponding to production set 

T(E'). Since E' is the subset of extreme-efficient units of J, then clearly T(E') =  T  and so

P(E') =  P. Similarly P(E' \  E) corresponds to T (E  \  E), and Ip is the index set for the

elements (u^u*,/^) € P(E' \  E ).

(3) Sk contains the set of DMUs in J  \  E' which are dominated only by facets of T ' spanned 

by DMU k. This is calculated according to corollary 11. The DMUs in Sk that are also 

extreme-efficient with respect to T(E)  (or simply T), i.e. Sk H E , can be identified by the 

solution of one LP per DMU, or by the procedures described in Dula (1997) or Appa, Argyris, 

and Parthasarathy (2006) as discussed earlier.

A lgorithm  1 Identify CSRs ^J', E ', CS'-RflJ|]^
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Iden tify  P  ( e '^

Id en tify  E'
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CSR[k} =  f ] K j n K k n R s+m
j€E

5.7 Illustrative exam ple

To illustrate the ideas of the previous sections we use a small example where dataset J' consists of 

the fifteen units given in table 5.2. Production possibility sets T' and T  are plotted in figure 5.5.

We start by identifying all extreme-efficient units, i.e. DMUs B  — E, by using approaches 

described earlier. We then need to explicitly characterise T' which can be done by following any 

of the procedures described in section 2.4.2. In particular, we have used the approach of Appa 

and Williams (2006). With the obtained information on all supporting hyperplanes it is easy to 

establish subsequently that E' =  {A, B, C, D, E, F } ,  as well as calculate the efficiency scores for 

inefficient units. Following this, we can immediately characterise CSRs for the inefficient DMUs 

G — O and the non extreme-efficient DMUs A and F

To illustrate the computation of CSRs for extreme-efficient DMUs, let us consider the identifica­

tion of the CSR for DMU C  € J'.We first drop C  from the dataset (which leads to E'c  — { B , C, D }) 

and proceed explicitly characterise the production set T generated by the remaining units. Follow­

ing the procedure described in the previous section, we know that any facet of T' spanned only by 

units in E =  E' \  E'c  =  {A, E , F } will also be a facet of T and that the remaining facets of T can 

be identified by solving the reduced problem of explicitly characterising T  (F  \  F ) . Before this is 

done it is necessary to identify set E. Clearly, any DMU in E' \  k =  { A , B, D, F , F }  will belong to 

E  so it remains to identify the ‘new’ efficient DMUs, i.e. set E  \  E '. According to earlier results, 

this can be done by solving an LP only for DMUs with input and output-oriented efficiency scores 

on facets spanned by DMU k, i.e. DMUs in set Sk =  { G , H, I }  (instead of all DMUs in J  \  F ')5. 

This leads to E \ E '  — { G, H}  and hence E  =  {A, B, G, H,  D, E ,  F} .  With all this information 

at hand we can proceed to explicitly characterise T  (F  \  E)  and identify the relevant ‘remaining’ 

facets for the characterisation of T. Let us note again that instead of identifying all efficient units in 

T it would be preferable to only consider the extreme-efficient units, as was done at the beginning 

of the procedure for identifying T .

At the end of this process we find that six hyperplanes are needed to characterise the new

5 So we only solve three as opposed to nine LPs.
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6
production possibility set T, more specifically T  =  Q H f .  The hyperplanes along with their

i
corresponding weighting schemes (Wi) are given in table 5.3. Fj and K j , for all DMUs, are given 

in table 5.4. We now identify C ’s conditional stability region by considering its reintroduction to 

the dataset.

Notice that E \  E' ^  0 ,  hence we know, from Corollary 1, that we can identify C's conditional 

stability region as follows:

C S R c  = n ^ n RS+m = Ka n Kb n k d D k e  D k f  n k g  n k h  n R2
jeE  

=  H f  n ( H f  u H f )  n (H f  u ^ ) n (H f  u H f )  n H f  n (H> n H > )  n (H> n H>)

As this is a simple example we can establish visually that K c  D K d  =  H f  fl H f , and finally 

that:

C S R c  =  H f  n H>  n H>  n H f

On the graph, the conditional stability region for DMU C  is the dark-shaded region C1C2C3C4. 

Note however that this does not include the line segments C1C2 and C1C4.

By repeating this process for all extreme-efficient DMUs we can calculate their CSRs. At the 

end of this procedure we have calculated all CSRs for all DMUs in the dataset. These are given in 

table 5.5.

5.8 Concluding remarks

In this chapter we presented an important extension to the study of sensitivity/stability analysis in 

DEA by introducing the concept of conditional stability. Contrary to prior approaches, CSA does 

not only study the stability of one DMU’s efficiency classification to data perturbations, but the 

stability of the classifications of all DMUs. This gives CSA a strong practical appeal. We provided a 

thorough treatise of the theoretical framework for this problem and, by using results relating to the 

polyhedral nature of DEA production sets, we arrived at a complete characterisation of conditional 

stability regions, i.e. regions within which DMUs can be perturbed without affecting the efficiency 

classifications of their peers. Our results not only apply to standard CRS and VRS models, but
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DMU Input (x) Output (y )
A 2 1
B 2 3
C 3 9
D 9 11
E 14 12
F 18 12
G 3 7
H 5 9
I 5 5
J 10 5
K 13 7
L 12 8
M 14 8
N 14 10
0 15 6

Table 5.2: Example dataset

i Hi Wi =  (Vi ,U i ,Pi )
1 —x  — 2 (1,0,2)
2 —4x +  y  =  — 5 (4,1,5)
3 —x 4- y =  4 (1,1,4)
4 —x  +  2y =  13 (1,2,13)
5 —x + 5y =  46 (1,5,46)
6 y  =  12 (0,1,12)

Table 5.3: Hyperplanes and weighting schemes for the DMUs in table 5.2

DMU Fr 3 K j

A W\ (z,y) e R 2 x  >  2
B Wi,W2 (®,y) G R2 (x >  2) U (—4x + y < —5)
G w 2, w 3 (x,y) G R2 (—4x + y  >  —5) fl ( —x  +  y  >  4)
H W3,W4 (x,y) G R2 (—x  +  y >  4) n ( —x +  2y  > 13)
D W4, W5 (x,y) G R2 (—x +  2y < 13) U ( —x +  5y  < 46)
E W5,W q {x,y) G R2 (—x +  5y  <  46) U (y <  12)
F Wq (x,y) G R2 y  < 1 2

Table 5.4: Results
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C3

Figure 5.5: Conditional stability region

DMUs CSR ____________________________________________________________________
A , F  {((a:,?/) e  K+| (x < 2) U ( - 6 x  + y > - 9 )  U ( - x  +  3y > 24) U ( - x  +  5y > 46) U (y > 12))

fl (x > 2) fl ((x >  2) U (—6x 4- y < —9)) fl ((—6a: 4- y < —9) U (—x  +  3y < 24)) 
n  ((—x  +  3y <  24) U ( - x  +  5y <  46)) D ( ( - x  +  5y <  46) U (y < 12)) fl (y < 12)}

B  {(x ,  y) € M̂ _| (x <  2) U (—8x + y > 15) U (—x  +  3y > 24) U (—x  4- 5y >  46) U (y > 12)
n  (x >  2) n  ( (x  >  2) U (—8x + y <  15)) n  ((—8x +  y < 15) U ( - x  +  3y < 24)) 
n  ( ( - x  +  3y <  24) U ( y <  12)) n  (y <  12)}

C  { (x ,y )€ M ^ . |  (x >  2) fl ((x >  2) U (—■4x -1- y < 5)) fl (—4x +  y > 5) fl (—x +  y > 4)
D(—x +  2y > 13) fl ( (—x +  2y < 13) U (—x +  by < 46)) fl ( (—x +  5y < 46) U (y < 12))
n(y < 12)}

D  {(x,y) e R j - l  (x <  2) U (—6x + y > —9) U (—3x +  l l y  >  90) U (y >  12))
H (x >  2) fl ((x >  2) U (—6x +  y < —9)) fl ((—6x +  y < —9) U (—3x +  11 y < 90)) 
n ( ( - 3 x  +  11 y < 90) U \y < 12)) n  (y < 12)}

E  {(a?, a/) €  M+| (x <  2) U (—6x 4- y > - 9 )  U (—x 4- 3y >  24) U (—x +  9y > 90) U (y > 12)
n  (x >  2) n  ((x >  2) U (—6x +  y < - 9 ) )  fl ( ( - 6 x  +  y < - 9 )  U ( - x  +  3y <  24)) 
n  ( ( - x  4-3y <  24) U ( - x  +  9y <  90)) fl ( ( - x  4-9y <  90) U (y < 12)) fl (y < 12)}

G -  O {(x, y) € R+| (x >  2) fl (y < 12) n  ( - 6 x  +  y < 9) fl ( - x  +  3y < 24) fl ( - x  4-5y < 46)}

Table 5.5: Conditional Stability Regions for all DMUs
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also to all models which postulate polyhedral production possibility sets, e.g. Additive DEA models 

(Charnes et al. 1985), Assurance-Region models (Thompson et al. 1986) and polyhedral Cone-Ratio 

models (Charnes et al. 1990).

The identification of CSRs is a computationally intensive problem. Motivated by this we de­

scribed a procedure that has the potential for considerably reducing the significant computational 

burden. Prom existing research in the field, we know that explicitly identifying production pos­

sibility sets is possible for datasets with no more than 100-150 extreme-efficient units (see e.g. 

Olesen and Petersen 2003). In practice, the set of extreme-efficient units is often a small subset of 

the complete set of DMUs and this allows for explicitly characterising production possibility sets 

generated by fairly large datasets. However, computing CSRs requires additional computations, as 

it is based on the consecutive identification of production possibility sets. Our improved computa­

tional framework aims to reduce this additional computational load. Nevertheless, the applicability 

of CSA to larger datasets remains an open practical question. What is required to address this 

problem are computational experiments with datasets of various sizes. At the moment, we believe 

that for problems where CSA can be applied, the obvious advantages of such an application should 

make the additional computational effort very worthwhile. Finally, it is hoped that this research 

will encourage subsequent study into the subject, which will extend the theoretical framework 

presented here and, along with advances in computing capabilities, enhance the applicability of 

CSA to increasingly larger datasets.



Chapter 6

Cross-Evaluation: existing  

approaches

6.1 Introduction

The standard DEA approach for evaluating the efficiency of a set of units, allows each one to 

choose its own weighting scheme, such that its efficiency score is maximised (subject to some 

constraints). The efficiency scores calculated by this process of self-appraisal are also referred to 

as simple-efficiencies. Sexton et al. (1986), proposed to use the weighting scheme selected by 

a particular DMU to evaluate all of its peers. Efficiency scores resulting from this peer-appraisal 

process are given the name cross-efficiencies. The term cross-evaluation has also been introduced 

in the related literature (Doyle and Green 1995) to refer to the process of calculating cross-efficiency 

scores and the methodology behind this in general.

The most appealing property of cross-evaluation is that it improves the decision maker’s discrim­

inatory ability in evaluating different decisions/alternatives (in general) with respect to different 

criteria. To date, the use of cross-evaluation has spread to a number of different areas. In the 

Multiple Criteria Decision Making (MCDM) literature, a number of articles have suggested and 

explored the use of cross-evaluation as a tool for improving the discrimination among discrete al­

ternatives (see e.g. Doyle 1995; Green and Doyle 1995; Bouyssou 1999; Sarkis 2000; Mavrotas and

103
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Trifillis 2006). The use of cross-evaluation has also been suggested for the ranking of candidates 

in preferential elections (Green et al. 1996), and also in project and technology selection problems 

(Oral et al. 1991; Green et al. 1996; Shang and Shueyoshi 1995). Recently, Gregoriou et al. (2005, 

2005b) reported the use of cross-evaluation, as part of a DEA-based methodology, to appraise 

the performance of hedge-fund and Commodity Trading Advisors (CTAs). Other applications of 

cross-evaluation, in the energy and manufacturing sector are reported/explored in Chen (2002), 

Sarkis and Talluri (2004) and Ertay and Ruan (2005).

Cross-evaluation could also be potentially appealing to central organisations in charge of funding 

DMUs. In the UK, the government’s Department for Children, Schools and Families (earstwhile 

Department for Education and Skills) is considering the use of cross-evaluation as part of their 

methodology for the performance measurement of schools. It is planned that results of such a 

benchmarking exercise will be placed on a website, with the hope to assist the dissemination of 

best practice between schools (DfES 2005).

Despite the appeal of cross-evaluation for use in applications, its theoretical framework is a 

relatively understudied area, limited, to the best of our knowledge, to a small number of initial 

theoretical contributions (see e.g. Sexton et al. 1986; Doyle and Green 1995) and recent develop­

ments (Anderson et al. 2002). In this chapter we carry out a critical investigation of the theoretical 

framework for cross-evaluation and the computational tools used by traditional cross-evaluation 

approaches.

The outline of the chapter is as follows. In section 6.2 we introduce cross-evaluation and discuss 

its uses. In section 6.3 we explore the relationship of cross-evaluation to DEA production possibility 

set and discuss some interesting problems in providing a theoretical framework that integrates the 

two concepts. Finally, we review existing approaches for cross-evaluation in section 6.4, where we 

discuss in detail many flaws that we have discovered in their models.
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6.2 Cross-Efficiency

105

6.2.1 D efinition

Consider the non-linear form of the CCR model in (1.10), where DMU o is allowed to select weights 

to maximise its efficiency such that these weights do not yield efficiency scores greater than unity 

when applied to any DMU (including DMU o). In other words, all cross-efficiency scores are 

constrained to be less than or equal to one. A formal definition of cross-efficiency is as follows.

D efin ition  20 Let (w£,u£) denote a set of optimal weights for DMU k G J, obtained by solving 

a particular DEA model. The cross-efficiency of DMU j  £ J  relative to DMU k, denoted hjk, is 

given by:

k 3 U*:

where Ojk (Ijk) is the value of DMU j ’s outputs (inputs) evaluated by applying weights u£ (uj£).

After calculating the cross-efficiencies for all possible combinations of DMUs, the obtained 

information is summarised in an n x n Cross-Efficiency Matrix like the one given in table 6.1. 

Clearly, the entries of the leading diagonal are the simple efficiency scores. For simplicity we will 

also denote the simple-efficiencies by hj instead of hjj.  Averaging across the rows1 of the cross- 

efficiency matrix we obtain the average appraisal that DMU k assigns to its peers (denoted Ak), 

in other words the average cross-efficiency at the weights selected by DMU k. If the averaging is 

done across columns instead, we obtain the average appraisal of DMU k by its peers (denoted 

hj).  Traditional cross-evaluation approaches have mostly focused on the second measure, taken 

to be the arithmetic mean of cross-efficiency scores, which is also referred to as average cross­

efficiency. Doyle and Green (1994) also consider the median and the variance of cross-efficiency 

scores. Depending on whether we want to include the self-appraisal in the averaging, this might 

be done with or without the entries of the leading diagonal. We choose to include it and define hj 

as follows

hi =  l ' L hi* (®-2)
keJ

xOr columns, depending on how the matrix is structured.
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Rated DMUs Rating DMUs hj
1 2 3 n

1 hn h\2 h 13 h\n hi
2 /&21 h*22 /i23 h'2n h>2
3 3̂1 h$2 3̂3 ^3 n hs

n fin 1 hn 2 hn 3 hnn hn
Ak A\ a 2 A3 An

Table 6.1: A Cross-Efficiency Matrix

To illustrate cross evaluation, we will use a small example of three DMUs that use two inputs 

and produce one output. The dataset is given in table 6.2. The production possibility set for one 

unit of output is given in figure 6.1. It is easy to notice that all three DMUs are extreme-efficient 

and hence possess multiple optimal weighting schemes. We discuss the implications of this in latter 

sections. For now, let us assume that DMU A has selected w\ =  (1,0,3) as an optimal weighting 

scheme and DMUs B and C have selected w 2 =  (3,4,40). In figure 6.1, w\ defines the hyperplane 

which supports the unbounded facet from A, and W2 defines the hyperplane that supports facet 

BC.

The cross-efficiency of a particular DMU with respect to w\ equates to the required radial 

reduction in its input levels, for that DMU to reach the hyperplane defined by w\. For example, 

the cross efficiency of DMU B at the weights selected by DMU A (h^s) is given by the radial 

reduction in B ’s inputs so that B is projected on w\ at reference point D\. Equivalently we 

can calculate Lab by taking the ratio . In a similar fashion we can use the other two 

reference points, A 2 and C\,  and calculate the remaining cross-efficiencies as follows: Iiac — \̂oc\ > 

hBA = h c A = -°(DA\ ’ ^BC -  h cB  =  1 •
Finally, we summarise the information on all calculated cross-efficiencies in the cross-efficiency 

matrix given in table 6.3. For example, the column corresponding to DMU A provides the cross- 

efficiencies assigned by DMU A ’s selected weights to all DMUs in the dataset, the corresponding 

reference points for these are A , B\ and C\ respectively. By averaging the entries in this column we 

obtain that the average appraisal by DMU A is Aa — 0.7083. In contrast, the row corresponding 

to DMU A provides the cross-efficiencies assigned to DMU A by DMU’s B and C (and itself). 

Averaging the row entries we obtain that DMU A ’s average cross-efficiency is Tia =  0.8755. Note 

that the columns for DMUs B and C are identical, as these DMUs have selected the same weighting
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Figure 6.1: An illustration of cross-evaluation

scheme.

DMU Output (y ) Input 1 (ari) Input 2 (£2) 
A 1 3 10
B 1 4  7
C 1 8  4

Table 6.2: Example Dataset

6.2.2 Uses of cross-evaluation

A first advantage of the average cross-efficiency measure over simple-efficiency is that the former 

can be used to rank all DMUs. In applications of DEA it might be desirable for the decision­

maker/evaluator to construct a ranking of the units under evaluation based on their efficiency 

results. Using the simple-efficiency scores all inefficient units can be ranked, but not efficient ones, 

as they all obtain equal efficiency scores. Thus, no complete ranking of DMUs can be achieved by 

considering their simple-efficiency scores. By using the average cross-efficiency scores for all DMUs 

this problem is alleviated. In fact, although in theory an average cross-efficiency score of one (or 

100%) is possible, in practice this would be a very unusual case requiring a ‘strange’ dataset. In 

general the possibility of ties among average cross-efficiency scores is very low and thus a unique
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Rated DMUs Rating DMUs hj
A B C

A 1 0.8163 0.8163 0.8775
B 0.7500 1 1 0.9167
C 0.3750 1 1 0.7917
Ak 0.7083 0.9388 0.9388

Table 6.3: A Cross-Efficiency Matrix

ranking of all DMUs can be determined.

The super-efficiency model by Andersen and Petersen (1993) in which efficiency scores are not 

bounded by unity can also be used to rank all DMUs. This model has been very popular for 

determining such rankings (for a review of ranking methods in DEA, refer to Adler et al. 2002 and 

Angulo-Meza and Lins 2002). As mentioned in section 1.3.3, Banker and Chang (2006) conducted 

simulations to evaluate the performance of the super-efficiency model and report that this performs 

very poorly in ranking all DMUs.

Another important use of cross-evaluation is to reduce the effect of unrealistic, or maverick, 

weighting schemes used by some DMUs. In DEA, DMUs are allowed complete weight flexibility, 

i.e. they are free to choose the weights with which their efficiency will be evaluated. This is an 

important advantage of DEA to methods that employ ‘externally’ set weighting schemes which rely 

on the expertise of the evaluator, although it gives rise to the problem of some DMUs selecting 

weighting schemes that are ‘unrealistic’ under some managerial criteria. The case of zero weights 

is perhaps the most striking special case of this behaviour, which appears when DMUs only assign 

non-zero weights to the inputs and outputs that they make efficient use of, and leads to DMUs 

obtaining highly unrealistic efficiency scores. As discussed thoroughly in chapter 3, the selection 

of zero weights is of special theoretical importance to DEA, given its link with weak-efficiency. 

We would like to stress however that weighting schemes with all multipliers positive could also be 

unrealistic.

The most widely used methods for preventing DMUs from selecting unrealistic weighting 

schemes involve the introduction of additional constraints on the input and output weights in 

DEA models. The variety of methods for doing so are collectively referred to as weight-restriction 

methods and the additional constraints as value-judgements (see e.g. Thompson et al. 1986; 

Dyson and Thanassoulis 1988; Charnes et al. 1990). However, making value-judgements often
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requires a priori information and relies on the expert knowledge of the modeller. In addition, 

value-judgements "also have something of the arbitrariness (authoritarianism) that exponents of 

DEA may have wished to escape" (Doyle and Green 1994). An alternative to weight-restricitons 

is cross-evaluation which reduces the effect of unrealistic weighting schemes since cross-efficiency 

values are a result of all available weighting schemes. In effect, "rather than have external weight 

restrictions applied by an expert, the dataset serves as the arbiter of good judgement by, in essence, 

creating its own weight restrictions" (Anderson et al. 2002).

Doyle and Green (1994) introduced the maverick index to identify DMUs that obtain unrealistic 

efficiency scores, which are also referred to as maverick DMUs. This index is based on average 

cross-efficiency, more specifically it measures the relative increment when shifting from average 

cross-efficiency to simple efficiency and is defined as follows:

Mi =  (6.3)
hj

Note that Mj >  0 because simple-efficiency is always greater than, or equal to average cross­

efficiency. The rationale behind this is that a relatively high value of Mj suggests that, compared 

to weighting schemes selected by other DMUs, the weighting scheme selected by DMU j  assigns 

a significantly higher efficiency score to itself on average, and therefore it should be viewed as an 

unrealistic weighting scheme. In addition, we can use the maverick index to identify all-round 

performers. These will be DMUs with relatively low maverick Mj values (see also Chen 2002 and 

Ertay and Ruan 2005 for applications of the maverick index).

6.3 A critical appraisal o f the current theoretical framework

To date, the relationship between the theoretical framework for cross-evaluation and the attributes 

of DEA production possibility sets has not been explored in detail. In this section we undertake 

this task for both constant and variable returns-to-scale models and throw light on some serious 

problems in providing a consistent theoretical framework that integrates cross-evaluation with DEA 

production possibility sets.

Consider the illustration of cross-evaluation in the two-input one-output CRS case shown in
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figure 6.2. The efficient frontier is shown in bold. The DEA production possibility set for the

production of one unit of output can be defined as the intersection of five halfspaces corresponding

to the hyperplanes denoted fi (for i =  1 to 5). In turn, every hyperplane is associated with a unique

weighting scheme given by the normal to the hyperplane. As we described earlier, the different

cross-efficiency scores of a DMU with respect to these weighting schemes correspond to the different

radial projections of DMUs on each of these hyperplanes. For example, the cross-efficiency of DMU

E at weighting schemes 1 and 2 is given by the relative amount of radial reduction in the input

levels of DMU E needed for E to reach points E\ and E 2 on hyperplanes /1 and f i  respectively,
OE\ OE 2

which can be calculated by the ratios -■ ■■ and ———.
J OE OE

We can easily observe that DMUs A, B, C and D are DEA efficient, each with respect to two 

sets of weights. DMU F is not efficient but also achieves its optimal efficiency score at two sets 

of weights. The existence of more than one optimal weighting scheme for DMUs creates problems 

for cross-evaluation, which we explore in the next section. Another important problem we wish to 

highlight here is fact that reference points E\, E 2 , £4 and £ 5, used to define the cross-efficiencies 

of DMU E, lie outside the production possibility set.

In general, since hj >  hjk,  cross-evaluation implies the scoring of DMUs relevant to points that 

lie outside the DEA production possibility set. In the DEA literature a similar situation appears in 

methodologies such as the constrained facet analysis (Bessent et al. 1988; Lang et al. 1995) and the 

extended facet approach (Olesen and Petersen 1996) that seek to control the selection of weighting 

schemes that contain zero multipliers by controlling the projection of DMUs on the frontier. More 

specifically these work by replacing ‘unacceptable’ projections (for instance a projection on a 

weakly-efficient facet) of inefficient DMUs on particular facets with the closest ‘acceptable’ ones on 

alternative facets and use the latter to specify new targets and calculate efficiency scores for DMUs. 

These new targets are not a part of the original production possibility set but of an enlarged one 

that was created by extrapolating existing facets.

In our case, a similar argument is deemed unreasonable; including all reference points for cross­

evaluations in the production possibility set would lead to a highly unrealistic enlargement. For 

example, in figure 6.2 even when we only try to include reference points relevant for DMU E, this 

results in a new production possibility set bounded from the left by hyperplane /s  alone. Taking 

this further, if we wanted to include all reference points then it would not be possible to describe
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the new production possibility set with the existing hyperplanes.

The above imply that cross-evaluation is based on a significant departure from fundamental 

assumptions of DEA. At this point we shall attempt to restore its credentials by reflecting further 

on what is really at stake. Cross-evaluation is not intended for setting targets for DMUs, but 

rather with measuring efficiency with the use of scoring ‘recipes’ used by peers. Therefore, the 

many reference points used in the calculation of cross-efficiencies should not be interpreted as 

targets and hence need not be included in the production possibility set. We have seen in chapter 

2 that the efficient frontier can be identified by a collection of hyperplanes that are defined by 

different sets of weights. Taking each hyperplane alone, defines an alternative frontier that can be 

used to evaluate efficiencies. Consequently, instead of using a unique frontier to measure efficiency, 

cross-evaluation uses different frontiers and reports more than one efficiency scores which are 

subsequently combined into a unique score for each DMU.

The information included in the final score depends on the available information on individual 

weighting schemes. Hence, a fundamental weakness of existing approaches is that these can only 

identify and include a single weighting scheme for each DMU and thus are excluding a significant 

amount of information from the analysis, leading to inconsistent and misleading interpretations. 

We illustrate these anomalies in the following section and present an alternative approach in the 

chapter 7.

Next we look at the VRS case which is unfortunately more problematic. Consider the one- 

input one-output example in Figure 6.3. The efficient frontier is given by the piecewise linear 

segment ABCD, adjoined by the rays AA' and DD' in the case of weak-efficiency. Input oriented 

cross-efficiencies for DMU E are calculated with respect to points Ei and E2 whereas E3 and E4 

correspond to output oriented cross-evaluations (not all cross-evaluations are plotted). As before, 

E2 and E4 lie outside of the VRS production possibility set and clearly violate the convexity 

constraint of the BCC model. One additional problem is that input oriented cross-evaluations on 

some hyperplanes2 result in negative cross-efficiency scores, as for example, the cross-efficiency of 

E with respect to point E2 which lies in the negative orthant. Another problem is that some cross­

evaluations for a particular DMU might correspond to weights that are not always compatible with

2 To be more specific this only occurs decreasing returns-to-scale hyperplanes, i.e. the ones with a negative offset 
(£)■
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Figure 6.2: Cross-Evaluation and the CRS production possibility set

the returns-to-scale type exhibited by that DMU, as for example the input or output-oriented cross 

evaluation of DMU A, in figure 6.3, at the weighting scheme defined by the hyperplane supporting 

the facet BC. This contradicts the rationale behind the VRS model in which DMUs that exhibit 

increasing returns-to-scale are never compared to DMUs that exhibit decreasing returns-to-scale 

and vice-versa (see e.g. Tone 1996). As a result, the usefulness of cross-evaluation in VRS cases 

is reduced. To remedy this one could consider: a) using different (non-radial and non-oriented) 

efficiency measures for cross-evaluation and b) calculating the cross-efficiencies of a DMU only 

with respect to DMUs that exhibit compatible types of returns-to-scale. For the purposes of this 

study, we shall leave these issues open for further research and confine ourselves to the CRS case 

only.

6.4 A  critical appraisal o f  trad itional approaches

6.4.1 Implications of m ultiple optim ality

In this section we examine problems that are specific to the traditional approaches for cross­

evaluation. As we shall see these stem from the existence of multiple solutions for multiplier DEA
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Figure 6.3: Cross-Evaluation and the VRS production possibility set

models, i.e. the existence of multiple sets of weighting schemes that yield the best efficiency score 

for a DMU. The implications for cross-evaluation are serious since cross-efficiency scores are entirely 

dependent on which of the multiple weighting schemes is chosen. In addition, the algorithms used 

to solve DEA models can only provide us with one of the multiple sets of weights.

To illustrate the implications of multiple optimality for cross-evaluation let us consider again 

the example given in figure 6.1. Each of the three DMUs A, B and C is efficient with respect to 

two sets of weights, but they can only select one of these. This implies many possible versions of 

the cross-efficiency matrix, of which we can only construct one. For this small example it is easy to 

work out the cross-efficiency matrices based on all possible scenarios. The results are summarised 

in table 6.4, where Wi refers to the weighting scheme associated with facet /*, for i — 1 ,...,4. It 

is easy to observe that the average cross-efficiencies vary substantially across the eight scenarios. 

Overall, the maximum possible differences in average cross-efficiencies across all eight scenarions 

are: 20% for ha , 22.62% for Jiq and 20.84% for he-

Overall, selecting different weighting schemes can produce substantially different cross-efficiency 

scores and this renders the results unreliable. Traditionally, this problem has been tackled by the 

introduction of a secondary criterion, in the form of an objective function, in order to identify a 

unique set of weights for every DMU. More specifically, existing approaches select their weights by
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Scenario Weights Ha h,B he
A B c

1 W\ w3 w3 0.8776 0.9167 0.7917
2 w2 w2 w3 0.9388 1.0000 0.7857
3 w2 w3 W3 0.8776 1.0000 0.8929
4 w2 w2 W4 0.8000 0.8571 0.7857
5 W\ w2 w3 0.9388 0.9167 0.6845
6 Wi w2 W4 0.8000 0.7738 0.6845
7 W\ w3 W4 0.7388 0.7738 0.7917
8 w2 w3 W4 0.7388 0.8571 0.8929

Table 6.4: Scenarios for the example in figure 6.1

identifying weighting schemes that either minimise or maximise the average cross-efficiency of a 

DMU’s peers. Accordingly, they distinguish between aggressive and benevolent formulations. We 

shall highlight some inadequacies of these traditional approaches by identifying problems that are 

specific to particular models.

6.4.2 E xisting m odels

We examine the aggressive formulations of four cross-evaluation approaches, taken from Doyle 

and Green (1995). All four approaches are implemented by two-stage models. The first stage 

maximises simple efficiency and the second stage introduces the secondary goal of minimising the 

cross-efficiencies of all other DMUs in some way, while of course keeping self-appraisal equal to 

that obtained in the first stage. This is summarised in (6.4).

Primary goal max hk (6-4)

Secondary goal min —-— V  Qlb.

The secondary goal in the above model involves the minimisation of the average appraisal that 

DMU k assigns to its peers. Clearly, this goal is non-linear, but even if this is ignored, there are 

problems concerning the choice among multiple optimal weights. This two stage approach has been 

suggested as a remedy for multiple optima in the first stage. It is not recognised however, that 

there may exist multiple optimal solutions even at the second stage, in which case the problem
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of having to choose one among many remains. As mentioned earlier, such a choice has important 

implications because each weighting scheme will produce different cross-efficiency scores and hence 

different average cross-efficiency scores as well. As a result, choosing among weights has a knock- 

on effect on the ranking of DMUs. Nevertheless, it is reasonable to expect that the existence of 

multiple optimal weighting schemes would not be as common for average peer appraisals as it is 

for self- appraisals. Hence, the main problem with this approach stems from the non-linearity of 

the secondary goal which makes the model computationally intractable.

To tackle this computational difficulty, Sexton et al. (1986) and Doyle and Green (1995) 

respectively introduced models (6.5) and (6.6) as surrogates for model (6.4).

max hk (6.5)

min

max hk (6-6)

. Ylj k̂ Ojk 
mm v  T~L^j^k Ijk

Doyle and Green report that (6.6) is a better surrogate and show that its secondary goal is equiv­

alent to selecting DMU k ’s optimal weighting scheme that minimises the efficiency of a composite

DMU which includes the ‘economy’ of all DMUs except DMU k. The composite DMU is denoted 

by C k and its input-output bundle is denoted by (xk, y k) and calculated as follows:

(x fe,y fc) =  (J2 Xj, J2 Yj)  (6-7)
j^ k  j^ k

The secondary goal in (6.6) is then replaced as shown below.

O j k  Uk'y
(6.8)

To illustrate how the surrogate model in (6.6) can select the wrong weighting schemes, we 

discuss two problematic cases. Similar examples can be constructed for (6.5). Table 6.5 provides
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the data for the first case and table 6.6 for the second case. For both cases we shall examine the 

selection among optimal weights for DMU 1, i.e. k =  1. Finally, we denote the composite DMUs 

for the data in tables 6.5 and 6.6 respectively by C* =  (9, 36, 29) and C2 =  (7, 28, 28).

DMU Output (0 ) Input 1 (Ii) Input 2 (I2)
1 1 2 2
2 1 1 4
3 1 4 1
4 1 3 2
5 1 4 6
6 1 5 2
7 1 7 10
8 1 4 3
9 1 4 9
10 1 4 2

Table 6.5: Data for case 1

DMU Output (O) Input 1 (Ii) Input 2 (I2)
1 1 2 2
2 1 1 4
3 1 4 1
4 1 3 2
5 1 4 6
6 1 5 2
7 1 7 10
8 1 4 3

Table 6.6: Data for case 2

To be able to evaluate the appropriateness of weight selection by the surrogate model we need to 

hold information on all of its optimal weighting schemes. These can be identified by using FMEL, 

for instance, as proposed in Appa and Williams (2006) and discussed in chapter 2. From this we 

can deduce that in both cases DMU 1 is efficient when using either of the two sets of weights given 

in Table 6.7. Note that the column A] denotes the average cross-efficiency of all DMUs except 

DMU 1 at weighting scheme t  (for t  =  1, 2).

Weight Set (t ) for DMU 1 Weights Efficiencies
O Ii I2 Al (Case 1) Al (Case 2)

1 6 1 2 0.47368 0.60116 0.45714 0.52708
2 6 2 1 0.48648 0.56596 0.45714 0.45485

Table 6.7: Weighting schemes and their appraisals
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DMU 1, being an ‘aggressive’ DMU, wants to minimise the average appraisal of its peers 

{A \), so in the first case the correct choice would be weighting scheme two, since this minimises 

A \. However, by implementing surrogate model (6.6), DMU 1 will choose weighting scheme one 

because this minimises the cross-efficiency of composite DMU Cj, thus clearly making a wrong 

choice.

We examine case two for the purpose of illustrating the possibility of multiple optimal weights 

in the second stage of the optimisation procedure. By implementing (6.6), the choice between 

the two weighting schemes would be arbitrary since they both assign the same efficiency score to 

composite DMU C .̂ However, the true average appraisal of peers is clearly minimised at weight 

set two. Earlier, we mentioned that the choice among multiple optimal weights in (6.4) can affect 

the ranking of DMUs, and this example shows that this can be the case for surrogate models as 

well. In addition, the problem in this case is worse because the wrong choice can be made when 

selecting arbitrarily among multiple optimal weights for a DMU, as for example if we were to 

choose weighting scheme one for DMU A.

The final model that we discuss, by Doyle and Green (1995), is given below:

max hkk (6.9)

min Qh. v  k ^  j  
Ijk

This model does not necessarily restrict DMUs to appraise all of their peers using the same 

weighting scheme. Instead, it allows DMUs to choose different weighting schemes for different 

cross-evaluations, such that all cross-efficiencies are separately minimised. One can argue against 

allowing the use of different weights in different cross-evaluations, on the basis of consistency in 

appraisal of peers. This rationale seems to contradict a statement by the same authors in an earlier 

article of theirs, where they stress that in an aggressive world "it is not enough to talk yourself 

up; you must talk the others down too, but without being inconsistent" (Doyle and Green 1994). 

Nevertheless, this approach does not face any problems like those described earlier for the previous 

approaches, and this would suggest that provided that the weights are consistently applied when 

calculating cross-efficiencies, the inclusion of a greater number of weighting schemes is a desirable
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property for a cross-evaluation analysis.



C hapter 7

A  new m ethodology for 

Cross-Evaluation

7.1 Introduction

In this chapter we introduce a novel approach for cross-evaluation (see also Appa, Argyris, and 

Williams 2006). This is based on the information obtained by an explicit identification of the 

DEA production possibility set. Our approach departs from the traditional rationale of peer ap­

praisal within cross-evaluation and focuses on the evaluation of DMUs with respect to all available 

weighting-schemes that define facets of the production possibility set. We shall see later that 

this produces more meaningful cross-evaluation results. In addition, we introduce the concept of 

under-achieving DMUs and discuss methods for their identification, as well as the identification of 

unrealistic, or maverick weighting-schemes.

The outline of the chapter is as follows. In section 7.2 we discuss how the general philosophy 

of the existing approaches for cross-evaluation is problematic. We reveal that in certain cases 

this philosophy leads to results that contradict one of the main motivations for cross-evaluation, 

which is to reduce the effect of unrealistic weighting schemes. We address this issue, as well as the 

problems discussed in the previous chapter, by introducing a new approach for cross-evaluation in 

section 7.3. We provide a detailed discussion on how this approach provides more meaningful cross­

119
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efficiency scores and describe how these can be used towards the better identification of maverick 

and under-achieving DMUs. In section 7.4 we provide an illustrative example for our new approach 

and close the chapter with some final remarks in section 7.6.

7.2 General problems

Here we highlight some problems regarding the general philosophy of traditional cross-evaluation 

approaches. The first point we would like to address is that aggressive formulations often result 

in the selection of maverick weighting schemes by DMUs. Since maverick weights are especially 

used by DMUs that specialise in a subset of inputs and outputs, it is very likely that such weights 

will provide the most conservative appraisal of peer DMUs. In the example in figure 6.2, DMU 

D is efficient at the weights associated with hyperplanes fa and fa. It will choose the weighting 

scheme that minimises the appraisal of its peers i.e. the weighting scheme associated with fa. 

However, fa supports a weakly-efficient facet and corresponds to a maverick weighting scheme 

which assigns a zero weight to input 1. An analogous observation holds for DMU A which will 

choose between fa rather than fa. This type of behaviour contradicts one of the prime motivations 

for cross-evaluation, namely to reduce the effect of unrealistic weighting schemes. Note that this 

does not apply to benevolent surrogate models.

One way to resolve this issue is by introducing weight restrictions in the process of calculating 

average cross-efficiencies, i.e. not include cross-evaluations of DMUs at maverick weights in the 

averaging. Unfortunately, this comes with further complications, as shown below.

In general, imposing such weight restrictions is not guaranteed to be effective and might even 

result in assigning highly unrealistic efficiency scores for many DMUs. For example, it could be the 

case that some DMUs that are in reality efficient appear to be inefficient in all cross evaluations. 

Consider again the example in figure 6.2. The standard DEA procedure might end up having 

identified hyperplanes / i ,  fa and fa. If cross-evaluations on fa and fa are excluded from the 

cross-efficiency matrix, DMUs A and D are only scored against fa and are therefore found to 

be inefficient even though there exist possibly realistic weighting schemes for which we have no 

information (fa and fa) that declare these DMUs efficient.
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7.3 A N ew  Approach for Cross-Evaluation
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7.3.1 General description and advantages

Traditional approaches for cross-evaluation assume the unavailability of all weighting schemes and 

instead introduce secondary aggressive/benevolent criteria in order to choose one weighting scheme 

for each DMU. These approaches are inherently handicapped; although it might seem that these 

formulations are selected to provide an appropriate orientation to the analysis, this disguises the 

fact that a choice between these formulations is necessary if an analysis is to be carried out at 

all. In the real world it could be the case that neither aggressive nor benevolent formulations are 

suitable options for particular problems, or even that the choice between these might not be easy. 

For example, Green et al. (1996) report that in the case of ranking R&D projects, arguments can 

be made for the use of both options.

In our earlier discussion, we used all available weighting schemes for a particular DMU in order 

to check the validity of the results arrived at by the traditional approaches and, more importantly, 

identify correct solutions for all cases. In general, information on all sets of weights, obtained 

by the explicit identification of the production possibility set, can provide a solution for model 

(6.4) and thus eliminate the need for surrogate models. Motivated by the usefulness of this we 

propose a new approach for cross-evaluation based on the availability of explicit information on 

the production set (see also Appa, Argyris, and Williams (2006)).

More specifically, we utilise all of the weighting schemes in set P c ■ Any of the approaches 

described in chapter 2 can be used to explicitly identify this set. In particular we have used the 

FMEL method, building on the approach by Appa and Williams (2006) who evaluate a DMU’s 

efficiency across all available weighting schemes as part of their new framework for the solution 

of DEA models, and we extend cross-evaluation to include all possible scoring combinations. By 

doing so, we need to depart from the standard definition of cross-efficiency (the efficiency of DMU 

j  when using the weights selected by DMU k) which is now deemed insufficient. This is simply 

because many DMUs are efficient at more than one set of weights, and conversely because some 

weights might be optimal for more than one DMU, which would result in many repeated entries 

in the standard cross-efficiency matrix.

Formally, this gives rise to the following definition:
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DMUs (j) Weighting Scheme (i) Cj

1 2 3 t
1 C l l C12 C13 . . . Clt Cl
2 C21 C22 C23 C21 Cl
3 C31 C32 C33 C3t C3

n Cnl Cn2 Cn3 Cnt Cn

fi f l /2 / 3 ft

Table 7.1: The complete Cross-Efficiency Matrix

D efin ition  21 The cross-efficiency of DMU j  £ J  relative to weighting scheme (Ui,vi) £ P c, 

i £ Ic  =  {1, •••,£}, denoted cji is given by:

Cji =  ^  (7.1)
Vi*j

The restructured, n x t  - dimensional, cross-efficiency matrix containing all possible scoring 

combinations is given in table 7.1. Standard cross-evaluation procedures can only construct an 

incomplete cross-efficiency matrix, in the sense that it only contains information on a small subset 

of weighting schemes1. The following define the average cross efficiency and the maverick index 

for DMU j  with respect to the complete cross-efficiency matrix:

Cj — — 'y ' Cji (7-2)
i

mj  =  (7.3)
Cj

Although this new approach seems structurally very similar to previous approaches, its phi­

losophy is fundamentally different. Instead of averaging the efficiency appraisals by all peers we

focus on the average efficiency over all possible weights that peers could have used. We have

demonstrated that analyses that disregard some weighting schemes are intrinsically incomplete 

and unreliable. Including all weighting schemes in a cross evaluation analysis has the following 

advantages over traditional cross-evaluation approaches:

(1) Cross-evaluation almost always achieves a unique ranking of DMUs through average cross-

1With an increase in the dimensions of the problem, the subset of weighting schemes obtained by standard 
cross-evaluation becomes increasingly smaller compared to the complete set of weighting schemes.
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efficiency scores. For this reason, the amount of information on weights included in these 

scores is of utmost importance. Our approach is not restricted to establishing a unique 

weighting scheme for every DMU. By eliminating the need for aggressive or benevolent for­

mulations we overcome all the problematic cases discussed earlier and therefore produce more 

meaningful average cross-efficiency scores, ranking of DMUs and maverick indices.

(2) Weight restrictions can now be introduced in cross-evaluation without further complications. 

More specifically, we can a priori identify unrealistic weighting schemes and exclude them 

from the analysis. Most importantly, since all weighting schemes are available, we need not 

worry about unrealistically evaluating some DMUs because of limited information. Hence, 

we can practically eliminate the effect of unrealistic weighting schemes on the average cross­

efficiency scores.

(3) Unlike existing approaches, we are no longer restricted to input and output oriented efficiency 

measures. With all supporting hyperplanes available, it is easy to perform cross-evaluations 

with a variety of different efficiency measures for all DMUs. Briec and Leleu (2003) consider 

the problem of an arbitrary norm projection on the efficient frontier. They introduce the 

concept of the Holder distance function but also employ the directional distance function 

(Chambers et al. 1996; 1998), and provide the framework for calculating these when all 

frontier hyperplanes have been identified. Such efficiency measures could be of particular 

value in overcoming the serious technical drawbacks outlined earlier, for cross-evaluation 

under the VRS model.

7.3.2 Further extensions and tools

The new approach comes with a set of extensions and managerial tools which we describe here. 

We start by discussing how we can now identify maverick DMUs more effectively. The original 

maverick index in (6.3) compares a DMU’s simple efficiency with its average cross-efficiency. The 

rationale is that if DMUs are using unrealistic weighting schemes the difference between these two 

efficiency measures will be high. However, this does not take the behaviour of other DMUs into 

account. We maintain that it would be unreasonable to establish a DMU’s behaviour as unrealistic 

without also considering how its peers behave. To explain this further, consider the 2-input, 1-
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C.

Figure 7.1: Identifying maverick and under-achieving DMUs

output CRS example in figure 7.1. By using r r i j  in (7.3) we obtain a relatively high maverick index 

for DMUs A and D, but in doing so we have failed to recognise that there is a large number of 

DMUs (those in the cone spanned by OC and OD) that behave in a similar way to DMU D, in the 

sense that they would all choose one of D’s optimal weighing schemes in their self-appraisals. With 

this in mind, it would be dubious to designate D as a maverick DMU or the specific weighting 

scheme as unrealistic.

We propose a new indicator that takes the behaviour of peer DMUs into account. Let the set 

of optimal weighting schemes for DMU j  be:

Wj =  {(ui,i>i) € Pel =  max{cji}} (7.4)

Now consider the average efficiency of all DMUs on weighting scheme i:

j

For every DMU j  we define:

K j  =  m a x {  f i \ ( u i ,  V i )  € W j } (7.6)
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Finally, by utilising Kj we define the new indicator as follows:
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Pi =  ^  ^  (7.7)
K j

We have based the new indicator on Kj. The rationale for this is that if a relatively high number 

of DMUs choose the same weighting scheme as DMU j ,  then we would not want to characterise 

DMU j  as a maverick DMU. In such a case, Kj would have a value relatively close to h j , leading 

to a value for pj relatively close to zero. In contrast, a low Kj value relative to hj will lead to a 

high value for p j , pointing to maverick DMUs. For example in figure 7.1 there is a high number 

of DMUs that achieve their maximum efficiency at weighting scheme and hence we could not 

identify DMUs C and D, which choose / 2, as mavericks. On the other hand, DMU A chooses 

weighting schemes that provide particularly low appraisals. Therefore the value of pj would be 

lower for DMUs C and D than for DMU A. We would like to note here that there are alternative 

ways to define Kj. Instead of taking the maximum appraisal by DMU f  s optimal weighting schemes 

one could take the minimum or even the average appraisal and define pj appropriately.

The new indicator identifies unrealistic behaviour in a fundamentally different way from the 

conventional maverick index. Essentially, rrij  examines the efficiency scores of a specific DMU on 

all weighting schemes and pj examines the efficiency scores of all DMUs on a specific weighting 

scheme. One could use these indices in parallel in order to better identify maverick DMUs.

At this point we introduce the concept of under-achieving DMUs. It is important to differentiate 

between low-achieving and an under-achieving DMUs. The former is simply a DMU that achieves 

a low simple efficiency score whereas the latter is a DMU that is evaluated considerably lower 

than that of many other DMUs by its optimal weighting schemes. Hence, not only very inefficient 

DMUs can be under-achievers just as not only efficient DMUs can be mavericks. In figure 7.1 both 

DMUs F and G are low achievers but unlike F, G is also an under-achiever. We propose to identify 

under-achieving DMUs with use of their pj indicator values. Notice that this can also take negative 

values (when hj < Kj) which is the case if the weighting scheme associated with /Cj, chosen by 

DMU j , provides higher appraisals to other DMUs than DMU j  on average. A significantly low pj 

value translates to many DMUs achieving considerably higher efficiency scores than DMU j  at a 

weighting scheme of its choice, so that DMU j  can be identified as an under-achiever.
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Finally, we suggest that the motivation behind our approach is particularly relevant when 

trying to identify unrealistic weighting schemes and impose weight restrictions. The DEA literature 

contains a considerable amount of methods for imposing these (see Thanassoulis et al. 2004 for 

a review of methods for imposing weight restrictions in DEA). Most of these focus on the values 

of the input and output multipliers in each weighting scheme. The decision-maker usually has a 

view of how the production process taking place in DMUs should be represented in the values of 

the weights selected by DMUs. If a weighting scheme contains multipliers that are not in line with 

the decision maker’s views, then that weighting scheme is termed unrealistic. Clearly, obtaining 

weighting schemes with realistic values for input and output weights is extremely important but 

in addition, as we illustrated in figure 7.1, it is often important to complement weight restriction 

analysis with information about how DMUs behave with respect to different weighting schemes. 

This issue has been relatively unexplored. We suggest that in addition to the current framework, 

assessing weighting schemes on the basis of their average efficiency appraisals can prove very useful 

in identifying unrealistic weighting schemes. For example, in cases where merely considering the 

weight values cannot establish whether a weighting scheme is unrealistic, we can obtain a better 

insight by considering how favourable this scheme is to DMUs. Additionally, identifying weighting 

schemes that provide relatively high appraisals can give us an insight on the ‘acceptable’ range 

of values for the input and output weights. For a central organisation attempting to improve 

performance of branches the acceptability of weights used in making comparisons is of critical 

importance. The measure has the potential as a tool for selecting a restricted set of weights in 

an objective and acceptable manner.

7.4 Illustrative exam ple

To illustrate the new approach we provide a simple 2-input, 1-output example using the hypothet­

ical data for fifteen DMUs given in table 7.2. The production possibility set for this small example 

is given in figure 7.2. The efficient frontier is comprised of six facets of which the corresponding 

weighting schemes are given in table 7.3. We can easily observe that most DMUs make more 

efficient use of input 1 than input 2.

At this point we can consider whether some of the identified weighting schemes are unrealis­
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tic. Two obvious candidates are weighting schemes 1 and 6 which include zero multipliers and 

correspond to weakly-efficient facets. Other possible candidates include weighting schemes 2 and 

5 in which the weights for input 2 and input 1 respectively are very small. We suggested earlier 

that we should additionally consider the average efficiency appraisals by these weighting schemes 

(given in column fa in table 7.3). Weighting scheme 2 has one of the highest average appraisals 

and weighting scheme 5 one of the lowest. This comes as no surprise, given the behaviour of DMUs 

in our dataset, namely the fact that most of them make more efficient use of input 1. With this 

in mind, it would be dubious to identify weighting scheme 2 as unrealistic. On the other hand we 

now have more evidence suggesting that weighting scheme 5 is unrealistic.

Having established which weighting schemes will be excluded we can proceed with the calcu­

lation of the cross-efficiency matrix. This is given in table 7.4. We shall examine three particular 

cases; in case one we have included all weighting schemes, in case two we have excluded weighting 

schemes 1 and 6 and in case three we have additionally excluded weighting scheme 5. Tables 7.5, 

7.6 and 7.7 contain the results on simple and average cross-efficiencies, rankings, and the rrij and p j  

values for all DMUs in these three cases respectively.

We start with comparing the results for rrij and pj. In case one DMUs 1 and 7 achieve the two 

highest rrij values with m i slightly higher than m j  which is no surprise given that they achieve their 

simple efficiency scores by using weighting schemes that contain zero multipliers. These values fail 

to grasp that there are many other DMUs behaving similarly to DMU 1, in the sense that they 

achieve their simple efficiency by assigning greater importance to input 1, but very few DMUs 

behave similarly to DMU 7. This is reflected in the values of pj for DMUs 1 and 7 (calculated 

with use of weighting schemes 1 and 6 respectively) which still achieve the highest pj values but 

with the difference that p j  is much higher than p \ , i.e. DMU 7 is more of a maverick than DMU 

1. The same observation holds for DMUs 2 and 6 which achieve very similar rrij values but very 

different pj values with p& being much higher than P2 (p2 is calculated with weighting scheme 2 

and pe with weighting scheme 5).

Moving to case two, DMUs 1 and 7 are still the most maverick DMUs in the context of index 

rrij but not for indicator p j . The reason for this lies in the different ways in which the exclusion of 

weighting schemes affects the two indices in general. The values of rrij change for all DMUs since 

this index is affected by all available weighting schemes. On the other hand, for any DMU, pj is
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DMU Input 1 (U) Input 2 (U) Output (0 )
1 3 17 1
2 3 15 1
3 4 11 1
4 6 6 1
5 10 4 1
6 14 3 1
7 16 3 1
8 4 16 1
9 5 15 1
10 7 15 1
11 5 17 1
12 6 17 1
13 6 19 1
14 14 20 1
15 8 11 1

Table 7.2: Example dataset

only affected by one weighting scheme. Hence, following the exclusion of weighting schemes 1 and 

6 only p i  and p-j decrease (calculated with weighting schemes 2 and 5 respectively) and all other 

Pj are unaffected. In the context of pj these two DMUs are now using more realistic weighting 

schemes for their self appraisal so they now possess less maverick characteristics. What is more, 

DMU 1 achieves a lower pj value than DMU 7 and DMU 6. This is because DMU 1 has a big 

family of peers with similar behaviour, whereas DMUs 7 and 6 are two of the relatively few DMUs 

which make more efficient use of input 2. For the same reason, DMU 5 achieves a relatively low 

value in index rrij but not in p j .

In case three we additionally exclude weighting scheme 2. This forces DMUs 6 and 7 to achieve 

their simple efficiency with use of weighting scheme 4. As a result, their behaviour is moving closer 

to the large family of DMUs that assign greater weights to input 1, so that their pj values decrease 

with pq once again lower than p \ .

Finally, consider DMU 14 which is clearly a low-achiever. Weighting scheme 3, selected by 

DMU 14 in its self appraisal, assigns considerably higher efficiencies to other DMUs than DMU 14. 

Hence, DMU 14 is also an under-achiever. This is clearly reflected in the relatively low value for 

Pi4 which remains the same throughout all above cases. No other pj values merit the identification 

of other DMUs as under-achievers, in any of the three cases.
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Figure 7.2: Example production possibility set

Weighting Scheme (i ) Weights Efficient DMUs f i

Ii h 0
f i 0.3333 0 1 1,2 0.53869
h 0.1481 0.0370 1 2,3 0.71478
h 0.1190 0.0476 1 3,4 0.73164
h 0.0556 0.1111 1 4,5 0.61701
h 0.0385 0.1538 1 5,6 0.54137
/e 0 0.3333 1 6,7 0.36188

Table 7.3: The complete set of weighting schemes
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DMUs Weighting Schemes
f i h h h h h

1 1 0.9310 0.8571 0.4865 0.3662 0.1765
2 1 1 0.9333 0.5455 0.4127 0.2000
3 0.7500 1 1 0.6923 0.5417 0.2727
4 0.5000 0.9000 1 1 0.8667 0.5000
5 0.3000 0.6136 0.7241 1 1 0.7500
6 0.2143 0.4576 0.5526 0.9000 1 1
7 0.1875 0.4030 0.4884 0.8182 0.9286 1
8 07500 0.8438 0.8077 0.5000 0.3824 0.1875
9 0.6000 0.7714 0.7636 0.5143 0.4000 0.2000
10 0.4286 0.6269 0.6462 0.4865 0.3881 0.2000
11 0.6000 0.7297 0.7119 0.4615 0.3562 0.1765
12 0.5000 0.6585 0.6562 0.4500 0.3514 0.1765
13 0.5000 0.6279 0.6176 0.4091 0.3171 0.1579
14 0.2143 0.3553 0.3818 0.3333 0.2766 0.1500
15 0.3750 0.6279 0.6774 0.6000 0.5000 0.2727

Table 7.4: Example Cross-Efficiency Matrix

Case 1
DMU hj C3 rank mj Pj
1 1 0.6362 7 0.5718 0.8563
2 1 0.6819 5 0.4665 0.3990
3 1 0.7095 3 0.4095 0.3668
4 1 0.7945 1 0.2587 0.3668
5 1 0.7313 2 0.3675 0.6207
6 1 0.6874 4 0.4547 0.8472
7 1 0.6376 6 0.5683 1.7633
8 0.8438 0.5786 8 0.4584 0.1805
9 0.7714 0.5416 9 0.4224 0.0792
10 0.6462 0.4629 13 0.3690 -0.1168
11 0.7297 0.5060 11 0.4422 0.0209
12 0.6585 0.4654 12 0.4148 -0.0787
13 0.6279 0.4383 14 0.4327 -0.1215
14 0.3818 0.2852 15 0.3386 -0.4782
15 0.6774 0.5088 10 0.3313 -0.0741

Table 7.5: Results, Case 1
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Case 2
DMU hj Cj rank rrij Pj
1 0.931 0.6602 6 0.4102 0.7283
2 1 0.7229 5 0.3834 0.3990
3 1 0.8085 3 0.2369 0.3668
4 1 0.9417 1 0.0619 0.3668
5 1 0.8344 2 0.1984 0.6207
6 1 0.7276 4 0.3745 0.8472
7 0.9286 0.6596 7 0.4079 1.5660
8 0.8438 0.6335 8 0.3320 0.1805
9 0.7714 0.6123 9 0.2598 0.0792
10 0.6462 0.5372 12 0.2030 -0.1168
11 0.7297 0.5648 11 0.2919 0.0209
12 0.6585 0.5290 13 0.2447 -0.0787
13 0.6279 0.4929 14 0.2738 -0.1215
14 0.3818 0.3368 15 0.1338 -0.4782
15 0.6774 0.6013 10 0.1265 -0.0741

Table 7.6: Results, Case 2

Case 3
DMU hj Cj rank rrij Pj
1 0.9310 0.7582 5 0.2279 0.7283
2 1 0.8263 3 0.2103 0.3990
3 1 0.7984 2 0.1143 0.3668
4 1 0.9667 1 0.0345 0.3668
5 1 0.7792 4 0.2833 0.6207
6 0.9000 0.6367 8 0.4135 0.6624
7 0.8182 0.5699 13 0.4358 1.2610
8 0.8438 0.7172 6 0.1766 0.1805
9 0.7714 0.6831 7 0.1293 0.0792
10 0.6462 0.5869 12 0.1011 -0.1168
11 0.7297 0.6344 10 0.1503 0.0209
12 0.6585 0.5882 11 0.1195 -0.0787
13 0.6279 0.5515 14 0.1385 -0.1215
14 0.3818 0.3568 15 0.1071 -0.4782
15 0.6774 0.6351 9 0.0666 -0.0741

Table 7.7: Results, Case 3
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In this section we reflect on two practical implications of cross-evaluation that relate to the aggre­

gation of average cross-efficiency scores and the structure of the cross-efficiency matrix.

The central tool in cross-evaluation is the average cross-efficiency score for every DMU which 

is obtained by taking the arithmetic mean of its cross-efficiency scores. The question then is why 

would one choose the arithmetic mean instead of the median, geometric mean or even a weighted 

average. In some cases the results obtained by choosing different aggregating options may vary 

substantially. Hence, one might argue that the use of the arithmetic mean (or even another option) 

is an arbitrary choice, albeit with potentially serious practical implications.

Although it is difficult to argue against the arbitrariness inherent in such aggregations, we feel 

that it is important to examine its practical implications in a relative context. Having obtained the 

information on the complete set of optimal weighting schemes and calculated the complete cross- 

efficiency matrix, the aggregation of these scores can proceed in a way that fits the scope of the 

analysis best. To start with, unrealistic weighting schemes can be omitted. Such weighting schemes 

can be identified immediately by inspecting the weights for zero values, whereas a more in-depth 

analysis can be performed by considering the average appraisals on different weighting schemes as 

suggested earlier. Overall this allows for completely removing the effect of unrealistic weighting 

schemes from the aggregate cross-efficiency scores. Following this, the information on all remaining 

weighting schemes can be useful in selecting a more realistic choice of aggregating cross-efficiency 

scores. More specifically, one can again consider the appraisals of DMUs on different weighting 

schemes, the choices of optimal weighting schemes by DMUs and the input-output multipliers 

across weighting schemes in combination with any prior expert knowledge for the problem, in 

order to choose a more meaningful way of aggregating the cross-efficiency scores, e.g. a particular 

weighted average. Overall then, although the choice of aggregation can always have serious practical 

implications, our argument is that at least by using the wealth of information included in the 

complete set of weights in combination with any expert knowledge one can make a more informed 

choice about how to aggregate cross-efficiency scores.

The second issue we would like to explore relates to the cross-efficiency matrix. The n x n 

structure of the traditional cross-efficiency matrix is something that might be appeal to practition­
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ers who are interested in the idea of evaluating one DMU against another. However, with the use 

of all weighting schemes this structure is lost. Hence, there is scope in trying to combine the two 

distinct approaches in order to combine the advantages of the new approach with the appeal of 

the traditional cross-efficiency matrix.

One obvious way to do so would be to select one optimal weighting scheme per DMU according

to pre-specffied criteria as in the aggressive/benevolent formulations. As we explored in the pre­

vious chapter, such a choice comes with serious implications. Nevertheless, having recourse to the 

complete set of optimal weights allows for overcoming the computational issues of existing models 

and arriving at accurate results.

A more appealing approach would be to keep the structure of the traditional matrix but allow 

all weighting schemes (except perhaps the unrealistic ones) to influence the calculation of cross­

efficiency scores. We illustrate this option in more detail below.

Let Wj  be defined as in (7.4) and Ij be the index set for all weighting schemes in Wj.  Further, 

define tj =  \Ij\. An alternative way of calculating average cross-efficiency scores would be as 

follows:

As can be easily observed, this approach is based on aggregating the optimal weighting schemes 

for every DMU and applying these aggregate weights in calculating cross-efficiency scores. Note

average. Note also that this approach can be modified to include only weighting schemes that have 

not been identified as unrealistic.

This last option is a ‘compromise’ solution between traditional approaches for cross-evaluation 

and the new approach described earlier, in that it retains the n x n structure of the traditional 

cross-efficiency matrix which might be favoured by practitioners but at the same time calculates 

cross-efficiency scores in a way that allows information on all weighting schemes to take part in 

these calculations. There is no general answer as to which of the options for structuring the matrix 

is preferable. Instead, care should be taken to choose the one that suits the analysis most, so that

(7.8)

that, in the spirit of our earlier point, this aggregation could be made with use of a weighted
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one can arrive at meaningful results.

7.6 Concluding remarks

Cross-evaluation is a cross-breed between standard DEA and efficiency evaluation by externally 

imposed criteria. By combining the two it inherits desirable attributes from both. On the one hand, 

by not allowing for total flexibility in self-appraisals, it tackles the problem of high simple-efficiency 

scores based on unrealistic weighting schemes. However, the weights are not arbitrarily invented 

and imposed by some external agency but have been established through a detailed analysis of 

the dataset, and as in the standard DEA, have been generated by the dataset. In this chapter 

we identified some flaws in the general philosophy of existing approaches for cross-evaluation. 

Together with the specific computational problems discussed in the previous chapter, these render 

all existing methods highly problematic.

We addressed these problems by introducing, at least for the CRS case, a new approach for cross­

evaluation which is based on computing and using the complete set of weights that define facets of 

the production possibility set. This overcomes all computational problems related to the surrogate 

models described in the previous chapter. Hence, it produces more meaningful results and allows 

for a better identification of maverick DMUs. We also introduced the concept of under-achieving 

DMUs and discussed how our framework can help in their identification. Most importantly, our 

approach overcomes the general problems of existing approaches discussed in this chapter. We 

are now able to safely introduce restrictions within cross-evaluation. This means that we can 

practically eliminate the impact of unrealistic weighting schemes on all cross-evaluation results. 

Finally, we offered a new way of assessing whether a weighting scheme is realistic, by suggesting 

that the average appraisal that this assigns to DMUs is considered. Our framework provides this 

information and can be used to construct empirical estimates of the acceptable ranges of input- 

output weights which, in the spirit of DEA, are generated only by information provided by the 

dataset itself. This can prove very useful in cases where there is no clear way of deciding on whether 

a particular weighting scheme is unrealistic by using existing weight-restriction approaches.
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