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Abstract

This thesis analyses inventories empirically and theoretically. Inventories are im-
portant in understanding business cycles, not only because inventory investment
accounts for a large shﬁre of GDP growth rate. This thesis also emphasises the
cyclicality of inventories.

Often, business cycles are regarded as exponential decays, i.e., successive devi-
ations from the steady state and their returning processes. In contrast, this thesis
offers a battery of evidence that economic variables, such as sales and invento-
ries, follow damping oscillations, i.e., stable sine waves. This means that a boom
is the seed of the recession that follows, and vice versa. This thesis also reveals
inventories’ role in such endogenous cycles.

The first chapter presents empirical evidence of periodicity. VAR estimations
find evidence of sine waves — namely, complex roots. Indeed, the detected complex
roots seem to capture the actual business cycles; the estimated lengths of one
business cycle are close to those of the post-war average in both Japan and the
United States. This chapter also shows that peaks and bottoms of inventories lag
behind those of production; such a time lag is called a phase shift. In addition,
this chapter finds that the U.S. Federal Reserve anticipates inventory cycles, while
the Bank of Japan does not.

The second chapter constructs a theoretical model with a stockout constraint
and a production chain in the rational dynamic general equilibrium framework,
which quantitatively satisfies stylised inventory facts. Importantly, the model suc-

cessfully mimics observed inventory cycles. Moreover, working hours are more



volatile and the correlation between labour productivity and output is lower than
in the standard real business cycle model.

Finally, the third chapter offers a solution algorithm for linear rational ex-
pectation models under imperfect information. Inventories are closely related to
imperfect information, and inventories are often regarded as buffers against unob-

served demand shocks.
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Introduction

Inventories are important in understanding business cycles. An obvious reason for
this is that inventory investment is very volatile. As a result, despite its small share
of GDP, inventory investment accounts for a large share of the GDP growth rate
(see Fitzgerald (1997) and Blinder and Maccini (1991a), among others). However,
this thesis also emphasises the cyclicality of inventories.

The main conclusion of this thesis is that business cycles are damping oscilla-
tions, not exponential decays. Most modern macroeconomic researchers perhaps
recognise the concept of "business cycles" as successive deviations from the steady
state and their returning processes (see Prescott (1986)); in this view, business
cycles are triggered by exogenous shocks, and the endogenous mechanism in an
economy generates only a monotonic convergence toward the steady state.

In contrast, this paper offers a battery of evidence that economic variables,
such as sales and inventories, follow sine waves, meaning that booms and recessions
tend to occur alternately. More precisely, a boom is the seed of the recession that
follows, and vice versa. Moreover, this thesis reveals the role of inventories in such
endogenous cycles.

The most important motivation for this thesis is to understand the so-called
inventory cycles (see Figures 1.1 and 1.2 in the first chapter), which plot the year-
on-year changes in production (or shipment) and inventories on the y- and z-axes,
respectively. These phase diagrams exhibit clear clockwise movements, and they
are observed in most periods.

Business practitioners informally explain these swirls as follows. Interestingly,

14



it seems that they implicitly assume that (i) the target level of inventories is an
increasing function of sales and (ii) the production chain is a key factor. The
former means that, during a boom, demand is strong and firms want to accumulate
inventories by increasing production; however, such inventories become excessive
once that boom has dissipated, and they thus serve as the seed of the recession that
follows. At this point, firms try to reduce their inventories by cutting production.
It is important to note that production cuts imply a decrease in the demand for
intermediate goods. Hence, due to the law of motion of inventories (1.2), excessive
inventories continue to increase, even when production starts declining. Moreover,
even when inventories return to a normal level, firms tend to cut their production
further because the weak demand caused by the production reduction further pulls
down the target level of inventories. Again, however, such low inventories fall short
of the target level once firms bring their production back to a normal level, and
they thus serve as the seed of the boom that follows. Hence, firms start recovering
their reduced inventories, and this process repeats itself.

In this respect, the first chapter presents empirical evidence of periodicity. VAR
estimations find evidence of sine waves — namely, complex roots. Indeed, the
detected complex roots seem to capture the actual business cycles; the estimated
lengths of one business cycle are close to those of the post-war average in both
Japan and the United States. In addition, this chapter shows that peaks and
bottoms of inventories lag behind those of production; such a time lag is called a
phase shift. Note that this time lag implies that excessive inventories continue to
increase, even when production starts declining, and vice versa. In addition, such
a time lag is algebraically important in generating a near-circular trajectory in the
phase diagrams, as illustrated in Figures 1.1 and 1.2, and it is practically useful
in short-term economic forecasts. Finally, in relation to monetary policy, the first
chapter shows that the U.S. Federal Reserve anticipates inventory cycles, while the
Bank of Japan does not.

On the other hand, the second chapter constructs a theoretical model with a
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stockout constraint and a production chain in the rational dynamic general equilib-
rium framework. This model quantitatively satisfies two stylised inventory facts:
(i) production is more volatile than sales and (ii) inventory investment is pro-
cyclical. More importantly, the model is also, to a certain extent, successful in
mimicking observed inventory cycles. In addition, as a by-product, the production
chain generates a slow adjustment of inventories, which is regarded as another in-
ventory puzzle. Note that this slow adjustment insinuates, at least potentially, that
excessive inventories continue to increase even when production starts declining,
and vice versa. As a result, working hours are more volatile, and the correlation
between labour productivity and output is lower than in the standard real busi-
ness cycle (RBC) model. Intuitively, because the inventories of intermediate goods
adjust quite slowly, firms cannot increase the input of intermediate goods during
booms; instead, firms are forced to substitute intermediate goods with labour,
and working hours hence become more volatile. Because working hours increase
sharply when output is strong, labour productivity (output/working hours) does
not increase very much; labour productivity, therefore, is not strongly correlated
with output. In sum, our general equilibrium model with inventories not only
satisfies inventory facts, but also improves the standard RBC model in terms of
labour behaviour.

Finally, the third chapter discusses the effect of imperfect information in general
equilibrium models. Inventories are closely related to imperfect information; for
example, it is often argued that inventories are used as buffers against unobserved
demand shocks. This chapter proposes the general principles of a solution algo-
rithm for imperfect information models: (i) no endogenous variables can respond
to unobserved shocks and (ii) observed shocks cannot be a source of expectation
errors. It then shows that in general (a) the stability property of models, such as
saddle-path stable, sun-spot and explosive equilibria, is invariant against changes
in the information structure and (b) the direct effect of imperfect information lasts

only for S periods, if the smallest information set in the expectation operator of
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a system of equations includes all the information up to time ¢t — S — 1. In a
sense, the third chapter shows that a change in information structure does not
alter qualitative properties of models. This chapter does demonstrate, however,

that the quantitative effect of imperfect information can be significant.
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Chapter 1

Periodicity of Inventories

VAR estimations with inventory level data in this chapter detect complex roots,
implying that variables, such as production and inventories, follow damping oscil-
lations. This suggests that a boom is the seed of the following recession, and vice
versa.

The main findings include: (1) the estimated cycle lengths are close to the post-
war average of actual business cycle lengths; (2) inventories lag behind production
by nearly one year; consequently, their contemporaneous covariance is almost zero;
(3) monetary policies react sharply to demand shocks, but not to supply shocks;
and (4) monetary policy is forward-looking in the U.S., but not in Japan.

1.1 Introduction

Understanding inventories enables the understanding of business cycles. At present,
inventory data are invaluable in this endeavour, while the idea of inventory cycles
dates back to Kitchin (1923). This chapter is motivated especially by so-called
business cycles (see Figures 1.1 and 1.2), which are phase diagrams of year-on-year
percentage changes in production/shipment (on the y-axis) and inventories (on the
x-axis). These clockwise movements are stable in past and present data, and they

are especially useful for short-run forecasts of economic conditions.
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Figure 1.2: Inventory cycle in the United States.
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The most important thing to note is that the cycle concept described in this
chapter is a damping oscillation (stable sine curve), rather than an exponential
decay. This implies that the business cycle is endogenously generated, in contrast
with the view that business cycles are successive deviations from the steady state
and their returning processes (see Prescott (1986)). The main thrust of this chapter
is that a boom is the seed of the following recession, and a recession is the seed of
the following boom.

This chapter shows the results based on two types of estimations: three- and
six-variable VAR using Japanese and U.S. data.! Each estimation uses three types
of data sets: level data, HP-filtered seasonally adjusted data (HP-s.a.), and year-
on-year change (YoY) data. The purpose of the three-variable VAR is to test
the existence of inventory cycles. It uses three endogenous variables: production
(output), shipment (sales), and inventories data, in addition to exogenous variables
(such as a constant). The six-variable VAR, which additionally includes overnight
call rates and price indicators, is estimated in order to investigate the implications
for monetary policy.

For each data set, the three-variable VAR finds one conjugate pair of complex
roots that corresponds to the business cycle, and it seems that its existence is
statistically significant because all of the trials in the bootstrapping experiments
for each data set detect a stable conjugate pair of complex roots. Moreover, the
implied cycle lengths are close to the actual average of post-war business cycles.
For example, the implied cycle length for Japanese level data is 56 months, while
the length of the average post-war business cycle is 50 months.

By construction, production, shipment and inventories exhibit the same cycle
length. However, the peaks and bottoms of inventories lag behind those of pro-
duction/shipment? by 12 to 14 months. Each detected lag is quite close to 1/4 of

the estimated business cycle length. In the parlance of difference equations, the

IThe results for the U.S. data, qualitatively not very different from those for Japanese data,
are detailed in the Appendix.

?Production and shipment move together very closely, and hence they are interchangeable in
most discussions.
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phase shift (time lag) between production/shipment and inventories is around 7 /2
(orthogonal), because conventionally the length of one cycle is normalised to 2.

The orthogonal phase shift reveals several important facts. First, it implies
that the locus of the phase diagram in the (inventories, production/shipment)
plane must have a clockwise movement with a nearly circular trajectory,® which
is consistent with the so-called inventory cycles (Figure 1.1). Second, the con-
temporaneous covariance between production/shipment and inventories is almost
zero (namely, orthogonal), although they are dynamically related. When com-
plex roots are important, researchers will fail to capture the dynamic relationships
among variables if they focus only on contemporaneous variances and covariances.
Third, the finding that the peaks of inventories lag behind those of production by
7/2 implies that the bottoms of inventories precede the peaks of production by
7/2.4 In other words, if inventories are currently bottoming out, then production
is likely to reach its peak and start declining 14 to 16 months later in Japan (15
to 20 months later in the United States). This is perhaps one of the reasons why
practitioners consider inventories so important; inventories are very informative for
short-run economic forecasts.

Monetary policy is a main interest in the six-variable estimations. The most
important observation is that monetary policy reacts sharply to a demand shock
(a shock in the shipment equation), but not to a supply shock (a shock in the
production equation). This is perhaps because the boom after a positive demand
shock lasts longer than that after a supply shock.® This is consistent with the
target inventory model, in which the target level of inventories is an increasing
function of demand. According to the model, a positive demand shock reduces
inventories and, as a result, production continues to rise to replenish inventories.

On the other hand, a supply shock increases inventories, and hence firms cut their

31t is roughly 7 /3 for the U.S. data, implying that the trajectory of the inventory cycle is an
ellipse with the major axis running from the northeast to the southwest (Figure 1.2).

4More precisely, if the phase shift and the cycle length are s and L months, respectively, the
bottoms of inventories precede the peaks of production by L/2 — s months.

SHowever, this is observed only in the Japanese data, but not in the U.S. data (see the
Appendix).
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production to adjust their inventories.

Interestingly, the phase shift between the overnight call rate and production is
around 2 months in the Japanese data. Given the fact that statistics are released 1
to 3 months after the period from which they are culled, the Bank of Japan (BoJ)
reacts to real variables with no time lag. In contrast, the lag for the U.S. Federal
Reserve (Fed) is around —4 months! The negative lag, of course, insinuates that
the Fed’s monetary policy is pre-emptive/forward-looking.

Because of the use of level data, the main challenge of this chapter is the treat-
ment of non-stationarity. Indeed, Monte Carlo experiments for the three-variable
VAR suggests that the hypothesis that the system of equations has one real unit
root cannot be rejected under some maintained hypotheses. However, the norm of
the business cycle complex roots is significantly less than one. Moreover, the same
Monte Carlo experiments show that the real unit root affects the estimated period
length and phase shifts only negligibly. In addition, to check for robustness, VARs
are estimated by using two additional data series (HP-s.a. and YoY data, as men-
tioned above). In these two stationary data sets, we obtain results quantitatively

quite similar to those of level data.

The plan of this chapter is as follows. The next section reviews theories on how
to compute the cycle length and phase shifts from VAR estimates. The results
of the three- and six-variable VARs with Japanese data are discussed in Sections
1.3 and 1.4, respectively. The estimation results with the U.S. data are discussed
in the Appendix, because the quality of the U.S. data set (and, as a result, its
estimation performance) is not as good as the Japanese one. Though the three-
variable VAR is something of a subset of the six-variable VAR, the former has its
own worth; it allows for Monte Carlo experiments, and the estimation results are
more precise and reliable. Section 1.5 briefly reviews old and modern thoughts
on business cycles, and proposes the concept of pseudo-propagation. Section 1.6

concludes.
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1.2 Preparations before Estimations

This section briefly reviews the evidence of periodicity. The key checkpoints are a
conjugate pair of complex roots and phase shifts. The existence of complex roots
implies that the system of equations can be represented by a sine curve (as well as

some other terms).

1.2.1 Conjugate Pair of Complex Roots

This subsection briefly introduces key notations. We estimate the coefficient ma-

trices of the following VAR.
Ye=2A+y1Br+ 2By + -+ Y-mBu + §C (1.1)

where A, B and C are real coefficient matrices, and 2z, y; and £, are the row vectors
of exogenous variables (time trend, seasonal dummies, etc.), endogenous variables
and iid shocks, respectively.

It is known that any complex roots, if they exist, must appear in pairs — any
complex root z = a + b has its conjugate 2 = a — bi, where i = /—1. It is
also known that if there are complex roots, the solution of an endogenous variable

includes a term such as
akjpij sin ( ijt + :Bkj )

where ¢ is time and oxj, Bg;, pr; and Ok; are parameters that are functions of
elements in VAR coefficient matrices B,, and the variance-covariance matrix of
the error term. The subscript kj implies that the term is in the solution of the
k-th variable and is related to the j-th eigenvalue (and its conjugate).

The economic meanings of these parameters are as follows. ax; is a kind of
size parameter. p,; = p; = {/a? + b? is the absolute value of the complex roots.5

fr; = 6; = arctan (b;/a;) is the frequency of the sine function, and hence the length

$For example, if there is a p; whose absolute value is unity, then the term represents a unit
root while all p; must be less than 1 in absolute terms to have a stable system.
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of one period is 27/6;. fBy; is the phase, which shows the "initial state" of the k-th
variable right after an shock.” (8,; — By;) /0&; is the phase shift (in time) between
the k-th and [-th variables. If it is £ months, then it means that the peaks and
bottoms of the k-th variables precede those of the [-th variable by z months. It
can be shown that the phase shift (in angle), sxi; = Bi;— By, is a function only
of the elements in matrices B, although f,; alone depends on past and present

shocks as well.

1.2.2 Phase Shifts

Phase shifts have important implications in dynamic relationships among vari-
ables, because, intuitively, they indicate time lags among variables. This subsec-
tion briefly reviews (a) the limitation of contemporaneous covariances and (b) the

empirical implication for inventories.

Limitation of Contemporaneous Covariances

A phase plane exhibits a stable spiral only if there is at least one pair of conjugate
complex roots, and stable spirals can be classified into eight leading cases by phase
shifts (see Figure 1.3). It is clear that, even when two variables have a close
dynamic relationship with each other, the contemporaneous covariance between
them is close to zero if their phase shift is near £ /2.

Of course, the entire story is not so simple. If the true data generating process
(DGP) is very noisy, the effect of endogenous dynamic relationships, governed by
matrices B,,, may be swamped by the initial effects of shocks. In such cases, con-
temporaneous covariances are determined mainly by matrix C in (1.1). Nonethe-
less, the limitation of contemporaneous second moments can be very serious. In-
deed, the dynamic relationship between inventories and production is one example.
They have a close dynamic relationship, but their contemporaneous covariance is

close to zero, as shown in the subsequent sections.

7See footnotes 16 and 17 to understand the intuition of the "initial state."
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Implication for Inventory Cycles

To have phase diagrams such as inventory cycles (Figure 1.1), the value of the phase
shift between production/shipment and inventories must be around tt/2. This
value is predicted through the following two observations. First, the phase shift
must be positive, because the direction of inventory cycles is clockwise. Second, the
phase shift should be around either +n/2 or —my2, because the contemporaneous

correlation between inventories and production/sales is close to zero in the data.

tKs<w/2 s-n/2 71/2<S<71 S=71
0 0 0
m+mdp - H r
*<§<3/2w s=3/2s 3/2iKs<2* s=2x(=0)
0 0 0

Figure 1.3: Impulse response functions and phase diagrams, s shows a phase shift.
The solid and dotted lines in the IRFs correspond to the y- and x-axes in the phase
diagrams, respectively.

1.2.3 Non-Stationarity

One ofthe challenges of this chapter is the use oflevel data, which almost inevitably
causes the non-stationarity problem. This chapter tackles this problem in two ways:

with Monte Carlo simulations and filtered data sets.8

8In addition, as preliminary tests, Johansen’s (1991) trace tests indicate that there exists at
least one cointegration vector at the 1% level. For these trace tests, two preliminary estimations
are conducted: one includes constant and seasonal dummies, and the other additionally includes
the linear time trend. These tests are conducted by using PcGive, an econometric software;
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As mentioned above, Monte Carlo experiments reveal that there is one real unit
root under the assumption that the true DGP has no time trend. However, they
strongly reject the hypothesis that the absolute value (norm) of business cycle
complex roots is 4+1 under most maintained hypotheses.? Moreover, the same
Monte Carlo experiments show that the effects of the unit root on the estimated
cycle length and phase shifts are quantitatively negligible.

Furthermore, to check the robustness of the estimated results, this chapter also
implements two additional VARs: estimations based on (i) HP-s.a. and (ii) YoY
data. Though, presumably, the estimation results based on the filtered data are
also biased, most of the findings in the level data estimation are supported by the
two additional estimations. This implies that the estimation bias in each data set

1S not serious.

Sketch of Monte Carlo Experiments

This subsection sketches the Monte Carlo Experiments conducted in this chapter.
Assume that the true data generating process follows a VAR(1) process to keep
exposition simple.

Yy =B+ £C

where £, is assumed to be iid. Matrix B is first estimated by OLS. If there are
no multiple roots, B can be decomposed by eigenvalue matrix A and eigenvector

matrix V.

A1 0

A

B=VAV, A=

0 Ak

L -

where K is the number of roots (number of endogenous variables times VAR order,
in general).

The idea of our Monte Carlo experiments in this chapter is as follows. For

however, the trace test with a fifth-order polynomial time trend is not conducted.
9In this chapter, an assumption on the true DGP is called a maintained hypothesis.
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example, if the first eigenvalue is suspected to be a unit root, then the true DGP

is assumed to be generated by B such that

Keeping V unchanged, the B is constructed based on A. Then, by generating
artificial innovations {£ }H.0,'° B and C matrices yield artificial data sets {7/},
where N is the number of trials in Monte Carlo experiments. Estimates such as
period length are computed for each 37{, and their distributions are obtained by
stacking such estimates for j = 1,--- , N. Though true V and A are unknown,
presumably V and A do not vary far from them, because the Monte Carlo exper-
iments themselves show evidence of very tight estimations. Loosely speaking, the

Monte Carlo experiments are implemented in the neighbourhood of the true value.

1.2.4 Related Literature

In this subsection, we briefly review existing VAR analyses for inventories with
aggregate data (see Chapter 2.2 for a more general literature review). Though our
objectives is to reveal the reaction of the central banks in business cycles, most
existing research investigates the reaction of inventories to monetary policy and
focuses on the importance of inventory behaviour as a channel of the monetary
transmission mechanism.

For the U.S., Gertler and Gilchrist (1994) show that, after a tight monetary
policy shock, small firms decumulate their inventories, while large firms accumulate

them. They conclude this difference derives from the difference in creditworthiness.

10A row vector éi is generated by resampling Et = (yt - yt_lé) Ch o1y Where B is estimated
by the simple OLS and C,_, is the inverse of the upper triangular matrix Cpo such that

% > &fﬁt = CF ,Choi- Generating EZ by the standard normal distribution does not change

the results quantitatively; as long as its variance is unchanged, the distribution of ét has only
negligible effects.
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During tight monetary policy periods, large firms can finance their inventories,
while small firms cannot (see also Barnanke and Gertler (1995)). Kashyap et al.
(1994) also report the essentially identical results by using firm level data.

For Japan, several studies such as Yoshikawa et al. (1993) emphasise the im-
portance of the inventory channel. A tight monetary policy first negatively affects
inventory investments, and such weak inventory investments then affect real eco-
nomic activity because inventories are working capital (see also Teruyama’s survey
(2001) for analyses in this line). Indeed, inventories are working capital in theoret-
ical models such as the stockout avoidance model; inventories are necessary capital
for successful sales activity.

These authors reveal the importance of inventories in the sense that the effects

of the credit channel manifest themselves in the behaviour of inventories.

1.3 Three-Variable VAR

This section describes the results of the three-variable VAR, in which production
(output), shipment (sales) and inventories as well as the exogenous seasonal dummy
variables and time trend are regressed. The three-variable VARs allow us to es-
tablish valid Monte Carlo simulations. Contrarily, in the six-variable VARs, there
exist several pairs of complex roots similar to each other. Such roots are mixed
each other in some Monte Carlo experiments, which prevents us from tracking the

behaviour of one specific pair of complex roots throughout the simulations.

1.3.1 Description of Details
Original Data

This chapter uses the data of industrial production in Japan.!! The data estimated
in three-variable VAR are (1) production (output), (2) shipment (sales) and (3)

1The data are available on the website of the Ministry of Economy Trade and Industry of
Japan.
http://www.meti.go.jp/english/statistics/index.html
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inventories. All of them are of "mining and manufacturing" (i.e. all sectors)
from January 1978 to December 2006. All variables are the average of physical
units of goods weighted by value-added in the baseline year. The data quality is
thought to be extremely high, given the ministry’s strong authority over Japanese

manufacturers.

Recursiveness Assumption

To identify the coefficient matrix on shocks C in equation (1.1), this chapter adopts
a recursiveness assumption. Specifically, for the three-variable VAR, shocks in
the inventory equation do not affect current production or sales, and those in the
production equations do not affect current sales. For the former, inventories should
be affected by shocks in output and sales, because the law of motion of inventories
is presumably an identity.

U=Ui1+Y;,— S (1-2)

where U; represents the goods that are not sold in markets at time ¢ (i.e., inven-
tories), which are carried to the next period (hence, U; — U;_; is the inventory
investment), Y; is production, and S; is sales at time ¢{. The latter means that
production can respond to shocks contemporaneously. Importantly, the recursive-
ness assumption affects only IRFs but not other results such as phase shifts and

spectrums.

Bootstrapping

The bootstrapping method is used to compute the standard deviations of estimates
and confidence intervals. In addition, the standard deviations of period length
and phase shifts are computed, as long as a cycle exists for all the trials in the

bootstrapping.
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Order Selection Criterion

For the level data (not seasonally adjusted), some information criteria suggest very
long VAR orders (maximum time lag of endogenous variables), perhaps because
the fixed seasonal dummy cannot perfectly eliminate the seasonality. Judging from
the AIC and SIC of HP-s.a. and YoY estimations, it seems that the best VAR
order is somewhere between 2 to 4. Hence, the VAR order in this chapter is always
3 to facilitate comparisons. Fortunately, the quantitative effect of changing the
VAR order is not substantial for any of the following results (see below). Most

estimates are quantitatively robust against changes in the VAR order.

Data Format

There are three estimations, each of which uses a different data set (different
data format), though the functional form is (1.1) for all three. The first is the
benchmark estimation, using the level data (before seasonal adjustment) with a
polynomial time trend. The second and third ones use the HP-filtered seasonally
adjusted (HP-s.a.) data and year-on-year (YoY) change data. Presumably, the
level data set is subject to the non-stationarity problem, while filtered data are
subject to the artificial endogeneity problem. Rather than directly tackling these
problems separately, this chapter compares these three specifications to evaluate
how seriously the estimates are biased. As shown below, these three estimates
show results very similar to each other, supporting the view that the estimated

business cycles are not strongly biased.

(I) Benchmark Estimation (with Level Data) The benchmark estimation
uses non-seasonally adjusted level data. It also includes seasonal dummies and a
5th-order polynomial time trend. The former and latter are included to eliminate

seasonality and trend, respectively.
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Polynomial Time Trend: The benchmark estimation includes the 5th-order
polynomial of time. This time trend well mimics the HP-filter with smoothing pa-
rameter Ay = 130,000.!2 Given the HP-filter’s popularity, the HP-filtered series
(the original series minus the HP-trend) is preferable in detecting cycles recognised
by practitioners. However, the HP-filter artificially causes the endogeneity prob-
lem. On the other hand, the exogenous 5th-order polynomial does not bias OLS
estimates, and it eliminates almost the same trend as the HP-filter does.

However, it is important to note that the estimated cycle length is very sensitive

to the specification of the time trend (see below for a detailed discussion).

Seasonal Dummy: In addition, the VAR estimation also includes the sea-
sonal dummies. However, the fixed seasonal dummies cannot completely eliminate
seasonality. Visually examining the plots of the fitted and actual data, it seems

that seasonal fluctuation is growing over time.

(II) Estimation with HP-Filtered Seasonally Adjusted Data This esti-
mation uses HP-s.a. data, which, by construction, are stationary. However, both
the HP-filter and seasonal adjustment are essentially moving averages of past and

future values, which implies that the residuals can be correlated to the regressors.

(III) Estimation with YoY Data This estimation uses YoY change data. If
original data are I (1), then YoY data are stationary. The main problem with YoY
data is that they could magnify the effect of noise.

1.3.2 Roots of Coefficient Matrix

If at least one conjugate pair of imaginary roots exists, then at least potentially

there is a mechanism that generates a cycle. There are 9 roots (=number of

12Numerical experiments, shown in the Appendix, demonstrate that the smoothing parameter
for monthly data, which is equivalent to A\g = 1600 for quarterly data, is slightly less than
Ay = 130,000. The rule of thumb Aps = 14,400 generates a too well-fitted HP-trend series (i.e.,
not smooth enough). This finding endorses the result of Ravn and Uhlig (2002).
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Table 1.1: Estimated business cycle roots (three-variable VARs with Japanese data).

Panel I: Lewel
Roots 0.950.11i 0.6887 -0.35+0.45i -0.2810.28i 0.0710.45i
Nom 0.9541 0.6887 0.5723 0.4014 0.4555
Angle +0.0357m 0 10.70811r +0.7503m  +0.45021m
Cyclelength  56.05 +inf 2.82 2.67 4.44
Panel ll: HP-s.a.
Roots 0.9640.11i 0.64807 -0.3440.29i -0.1010.38i -0.1429 0.047281
Nom 0.9704 0.64807 0.4493 0.3944 0.1429 0.047281
Angle +0.03591r 0 +0.77831 10.58161 0 0
Cycle lengthf 55.64 +inf 2.57 3.44 +inf +inf
Panel lll: YoY
Roots 0.9610.11i 0.82106 -0.3140.44i -0.2310.23i 0.2686 -0.24244
Nom 0.9651 0.8211 0.5423 0.3228 0.2686 0.2424
Angle +0.0347m 0 10.69491 +0.75261m 0 0
Cycle length 57.63 +inf 2.88 2.66 +inf +inf

variables x number of order).

Implied Cycles

The conjugate pair 0.95 + 0.11¢ is evidence that the endogenous variables follow
a sine curve. These complex roots imply a cycle 56.1 months long (s.d. = 2.6
months), which is near the post-war average in Japan (50.3 months).!3 It is possible
to compute the standard deviation of the cycle length because no trials in the
bootstrapping experiments lack these complex roots.

The other three cycles are 2.7 to 4.4 months in length. One possibility is that
they are evidence that the inventories work as buffers in very high frequencies
(see Section 1.3.3). However, they may simply capture high-frequency noise and
seasonality that cannot be perfectly eliminated by dummy variables.!* In any
event, it is difficult to establish their statistical significance, because they are often
mixed with each other in the bootstrapping, and are therefore almost impossible
to distinguish.

The estimated period length does not change considerably in the other two

131n Japan, a governmental committee determines the business cycle dates.

http://www.esri.cao.go.jp/en/stat/di/041112rdates.html

1411 this sense, just having complex roots itself is not very interesting at all. It is important
to have complex roots that correspond to the business cycle.
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Table 1.2: Phase shifts (three-variable VARs with Japanese data).

(Cycle length)| Sales Inventories
Lewel (56.1) -0.3146 mths 12.416 mths
HP-s.a. (55.6) 0.2110 mths 13.527 mths
YoY (57.6) 0.4733 mths 14.209 mths

Note: Time-lags from production.

data sets: 55.6 months (s.d. = 5.4 months) in the HP-s.a. data, and 57.6 months
(s.d. = 6.7 months) in the YoY data.

Phase Shifts

With respect to the business cycle roots detected in the level data, the peaks and
troughs of inventories lag behind those of production and shipment by 12.4 and 12.1
months, respectively. As expected, the phase shift between production/shipment
and inventories is close to 1/4 of the period length. There is almost no time lag

between production and shipment.

Table 1.3: Implied cycle lengths (three-variable VARs with Japanese data).

Time Poly. Order: 1 2 3 4 5 6 8 10
VAR(2) 206.6 109.4 9835 75.78 59.88 60.14 58.32 53.35
VAR(3) 168.5 1025 9044 69.67 56.05 56.79 5501 50.28
VAR(4) 153.4 1003 9471 7278 5711 5759 5525 51.00

Note: Estimation based on the lewel data.

Effect of Time Trend

In most specifications of the time trend, the VAR estimation detects one significant
pair of business cycle complex roots. However, the estimated cycle length crucially
depends on the choice of time trend, while the effect of the VAR order is not
very strong. For example, the VAR(3) with a linear time trend shows that the
length of one business cycle is 168.5 months (see Table 1.3). This means that the
estimated cycle length with the level data is not robust against the specification
changes of time trend, while the phase shift between production/shipment and
inventories is almost always close to 1/4 of the business cycle’s length. In addition,
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the specification of the time trend affects the norm of the largest real root (see the

next subsection).
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Figure 1.4: Distributions generated by 1,000 trials. HM: There is one real unit
root. Ticks on the x-axis show the true value in Hm.

Effect of Unit Root

Surprisingly, in the level data estimation, we cannot rule out the possibility that
the real root (0.6887) in the level data is a unit root. Certainly, 0.6887 appears to
be far from -hi, but the norm of this root is strongly affected by the time trend;
as the order of the time trend polynomial decreases, the norm moves towards -hi.
At limit, the hypothesis that there is one real unit root is not rejected under the
maintained hypothesis that there is no time trend in the true DGP.

However, these Monte Carlo experiments show that the existence of the real
unit root only slightly affects the cycle length and phase shifts. Figures 1.4 and
1.5 show the selected distributions under the maintained hypotheses that there is
one real unit root and that there is one pair of unit complex roots, respectively.

Both experiments assume that the true DGP has the Sth-order polynomial time
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Figure 1.5: Distributions generated by 1,000 trials. HM® There is one pair of
complex unit roots. Ticks on the x-axis show the true value in Hm.

trend. These results show that the estimates axe very precise and the distributions
are skewed only slightly. For example, the upper-right panel of Figure 1.4 shows
that the distribution of the cycle length centres on 55 months, which is very close
to the true value in the DGP (56.1 months, as denoted by "|" on the x-axis).
Also, the top-left panel in Figure 1.5 suggests that the absolute value (norm) of
the estimated business cycle complex roots (0.9541) is far enough from -1-1. Even
though the true DGP is assumed to have no time trend, the same exercise still

suggests that the business cycle complex roots are not unit roots.

1.3.3 Impulse Response Functions

Clearly, all of the impulse response functions show the shape of sine curve fluctua-
tions. Visually reviewing the distance between two peaks in each IRF, we can see
that the length of one cycle is roughly 56 months, almost same length implied by

the business cycle complex roots.
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Figure 1.6: IRFs due to a positive shock in the production equation (three-variable
VARs with Japanese data). Narrow lines show the 95% confidence intervals of level
data estimations based on the bootstrapping method.
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Figure 1.7: IRFs due to a positive shock in the shipment equation (threesvariable
VARs with Japanese data). Narrow lines show the 95% confidence intervals of
level data estimations based on the bootstrapping method.

Technology Shock: Figure 1.6 shows impulse responses to a production shock,
which can be regarded as a technology or supply shock. After a positive shock,
both production and shipment increase. Inventories increase due to the law of
motion of inventories (1.2). Sales do not increase as much as production does;
hence, for production shocks, output is more volatile than sales. This corresponds
with the theory of cost shock models.15

However, more importantly, production returns to zero roughly 9 months after

the shock. The effects of a positive production shock disappear quickly. This is

15Cost shock models in the inventory literature emphasise the effect of production cost. The
idea is that because the source of shock lies on the production side, production is more volatile
than sales. In addition, inventory investment increases when production increases due to a low
cost shock (procyclical inventory investment).
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because a positive production shock induces an increase in inventories'® — but,
because having excess inventories is costly for firms, they want to reduce such

excess inventories by cutting production.

Demand Shock: On the other hand, Figure 1.7 shows that after a positive sales
shock, which can be regarded as a demand shock, production stays above zero for
more than 20 months. Right after a positive demand shock, inventories decrease
due to the law of motion of inventories (1.2).!” However, such a level of inventories
is too low, and firms want to increase their production in order to recover their
inventories. Also, note that the initial impacts of a demand shock are much larger
than those of a supply shock (compare the units of the y-axes).

Indeed, we can draw more implications. In the theoretical literature, the target
inventory models — including the stockout avoidance model — suggest that the
target level of inventories is an increasing function of sales. Thus, after a positive
demand shock, firms want not only to replenish their reduced inventories, but
also to raise the level of inventories so that it meets the new, higher level of
sales. Actually, the subsequent increase in production is slightly larger than that of
sales (otherwise, inventories would decrease). As a result, even though the source
of the shock is on the demand side, output is more volatile than sales. In the
sense that demand shocks are magnified by inventories, inventories are regarded
as destabilising factors in business cycle frequencies.

In contrast, while inventories drop sharply right after a positive demand shock,
more than half of the initial effect of the shock on production and shipment dis-
appears within one period. This shows that inventories work as buffers in a very
short time period. In this sense, production smoothing theory is still very much

alive at very high frequencies.!?

16Tn phase diagrams such as Figures 1.1 and 1.2, starting from the origin, a positive supply
shock is plotted as a jump to the northeast of the origin.

17Tn phase diagrams such as Figures 1.1 and 1.2, starting from the origin, a positive demand
shock is plotted as a jump to the northwest of the origin.

18Originally, inventory literature started with the production smoothing theory, which says that
firms have an incentive to smooth the time-path of production due to a convex cost function;
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These findings can be summarised as follows. Inventories are destabilising fac-
tors at business cycle frequencies but are stabilising factors at very high frequencies.

This view is in line with Wen (2002).
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Figure 1.8: IRFs due to a positive shock in the inventory equation (three-variable
VARs with Japanese data). Narrow lines show the 95% confidence intervals of
level data estimations based on the bootstrapping method.

Inventory Shock: After a positive shock to the inventory equation, both sales
and production decline (Figure 1.8). In a sense, a shortage of inventories is akin to
an increase in demand, and vice versa, because firms have an incentive to replenish

(or cut) them to their normal level.

1.3.4 Cross Correlations and Spectral Densities

The cross correlations and spectra are computed form the estimated coefficients in
equation (1.1).19 Note that with non-stationary processes, neither is well defined;
thus, we should focus on the cross correlations and spectra in the HP-s.a. and YoY
data sets. Nonetheless, the results in the benchmark data quite markedly resemble
those based on the two stationary data sets. Both cross correlations and spectral
densities show that (a) there is a cycle with business cycle frequency, and (b)
they hold inventories to protect themselves from unexpected demand shocks. However, though
this theory is at first glance very clear-cut, it cannot explain the two famous inventory stylised
facts (see Sections 2.2 and 1.5.4). This failure has been the biggest motivator for subsequent
inventory research.

19See Chapter 10 of Hamilton (1994) for the computation of cross correlation and spectra.

However, note that the phase shifts are computed in this chapter based on a different method
from that shown in Hamilton (1994) (see the Appendix).
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Figure 1.9: Cross correlations (three-variable VARs with Japanese data).

the contemporaneous correlation fails to capture the dynamic relationship among

variables.

Cross Correlations

The cross correlations (Figure 1.9) show several observations worth mentioning.
First, the cross correlation between production/shipment and inventories reaches
its peak and bottom when the time lag is around =F 12 months, which is consistent
with the estimated phase shift. Second, the contemporaneous correlation between
production/shipment and inventories is close to zero; thus, the contemporaneous
correlation alone cannot capture their dynamic relationship. Third, the autocorre-
lations reach their bottom around £25 months, implying that the dominant cycle is
around 50 months in length (= 25 x 2), which is not very different from the finding
in Section 1.3.2 (see also Section 1.A.4). Fourth, the spikes in autocorrelations of
production and shipment at 0 month imply a very high frequency component that
affects both production and shipment. This is indirect evidence of buffer inventory

models (see Figure 1.7).
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Spectral Densities

The spectral densities® (Figure 1.10) show several observations worth mention-
ing. First, all the cospectra and quadrature spectra reach their peaks or bottoms
at around 56 months, which again implies that the cyclical component with a
period length of around 56 months is most influential. Second, the cospectrum
between production/shipment and inventories is almost zero for all period lengths,
which implies that the contemporaneous covariance cannot capture their dynamic
relationship in any frequency. However, the existence of a dynamic relationship
between production/shipment and inventories is evident in the quadrature spectra
between production/shipment and inventories. Finally, the quadrature spectrum
between production and shipment is almost zero for all period lengths, which means
that there is almost no time lag between them.

1.3.5 Summary of Three-Variable VAR

Among others, the following findings are important.

e A lot of evidence supports the existence of the inventory cycle, and its esti-

mated cycle length is close to the post-war average of business cycles.

e The estimated phase shift between production/shipment and inventories is

201t may be worth reviewing the two spectral densities for multiple variables.

First, a cospectrum has the same meaning as a spectrum with one variable. For the compo-
nents of cross covariances reflected in contemporaneous covariance, a cospectrum attributes such
components to each frequency. For example, if the absolute value of a cospectrum density reaches
its peak at frequency f, it implies that the cycle with frequency f makes the largest contribution
to the contemporaneous covariance. The integral of cospectral densities over the whole frequency
domain 0 < f < 27 is equal to the contemporaneous covariance.

Second, a quadrature spectrum essentially represents anything other than the corresponding
cospectrum. For the components of cross covariances not reflected in contemporaneous covari-
ance, a quadrature spectrum attributes such components to each frequency. For example, if the
absolute value of a quadrature spectrum density reaches its peak at frequency f, it implies that
the cycle with frequency f makes the largest contribution to the cross covariance with a time lag
of 7/2f periods (1/4 of the period length 27/f). Remember that if two variables follow a sine
curve, and the phase shift between them is 1/4 of the period length, then the contemporaneous
correlation of these two variables is zero, even though both follow essentially the same process.
In other words, a quadrature spectrum represents the relationship that is not reflected in con-
temporaneous covariance due to phase shift. The integral of quadrature spectral densities over
0 < f < 2m is equal to zero.
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Figure 1.10: Co- and quadrature spectra (three-variable VARs with Japanese
data). Bold lines show cospectra and narrow lines show quadrature spectra.

12 months (close to 1/4 of one period length). For example, if inventories are

bottoming out now, then the production will peak and start declining about

Due to inventories, a boom lasts longer with a demand shock than a supply

For a demand shock, inventories work as destabilising factors in business

cycle frequencies, but work as buffers within very short periods.

Although the bias due to the unit root seems very minimal, the estimated

cycle length is sensitive to the time trend specification.

There is a supplementary remark in terms of the theoretical research on in-

ventories. The findings in our VAR estimations support all of the following three

12.4 (one half of the cycle length minus the phase shift between



leading theories: production-smoothing, target inventory and cost shock models.
While the cost shock model is consistent with the IRFs to a supply shock, the
target inventory and production smoothing models are each in line with the IRFs
to a demand shock. However, because (i) the initial impacts of demand shocks
on production and shipment are much larger than those of supply shocks, and
(ii) the effects of demand shocks last longer than those of supply shocks, it seems
that demand shocks are a more important source of economic fluctuation. Hence,
if business cycles are of interest, the target inventory model is perhaps the most

relevant.

1.4 Six-Variable VAR

This section describes the results of the six-variable VAR estimation, used to in-

vestigate the interaction between monetary policy and inventories.

1.4.1 Description of Details

Original Data Though the BoJ’s direct policy instrument is the uncollateralised
O/N call rate (and excess reserves under the zero-interest rate policy), its data
length is short. Hence, the collateralised O/N call rate, which exhibits movements
quite similar to those of the uncollateralised O/N call rate, is adopted in this analy-
sis.2 For the Consumer Price Index (CPI), the general (overall) index excluding
fresh foods and imputed rents is used,?® while the material price index in the Cor-
porate Goods Price Index (CGPI) is included as a leading inflation indicator.?*
To avoid zero-interest rate periods, the estimation period is from January 1978 to
December 1998.

In the HP-s.a. data set, following convention, the O/N call rate and CGPI are

22Gee "How to Download Long-Term Time-Series Data Files” on
http://www.boj.or.jp/en/theme/research/stat /market /short _mk/tanki_rate/index.htm
23See http://www.stat.go.jp/english/data/cpi/index.htm

24See "Index by Stage of Demand and Use" on
http://www.boj.or.jp/en/theme/research/stat/pi/cgpi/index.htm#04
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not seasonally adjusted. In the YoY data set, the YoY change in the O/N rate is

used, although it is presumably stationary.

Recursiveness Assumption The six-variable VAR, following Christiano, Eichen-
baum and Evans (1999),2° assumes that the O/N call rate can respond to any of the
current shocks. It also assumes that neither CPI nor material prices can respond
to the current shocks to the three real variables. Because material price index is
regarded as a leading indicator of CPI, it can respond to contemporaneous CPI
shocks.

1.4.2 Roots of Coefficient Matrix

Each estimation finds two or three pairs of complex roots that correspond to the
business cycle. Selected point estimates of the roots are shown in Table 1.4. Roots
omitted from the table are complex roots with very high frequencies (i.e., shorter
than 6 months).

Table 1.4: Estimated business cycle roots (six-variable VARs with Japanese data).

Panel I: Lewel
Roots 0.96+£0.10i 0.82+0.12i 0.9139 0.6127 0.5026 -0.3693
Nom 0.9640 0.8287 0.9139 0.6127 0.5026 0.3693
Angle 10.0316m 10.0461r 0 0 0 0
Cycle length 63.2 43.4 +inf +inf +inf +inf
Panel ll: HP-s.a.
Roots 0.97¢0.11i 0.850.09i 0.80+0.01i  0.40+0.25i
Nom 0.9755 0.8545 0.8010 0.4735
Angle +0.0352mr +0.03391mr +0.00361T +0.1746m
Cycle length 56.8 59.0 552.8 11.5
Panel Ill: Year-on-Year
Roots 0.96+0.11i  0.92+0.10i 0.9741 0.7934 0.50964 -0.3746
Nom 0.9655 0.9270 0.9741 0.7934 0.50964 0.3746
Angle +0.03761T +0.03611r 0 0 0 0
Cycle length 53.2 55.4 +inf +inf +inf +inf

The roots in the second column, at first glance, may seem to indicate one

identical cycle, but the point estimates of the phase shifts differ considerably among

25See Sims (1986), Leeper et al. (1996), Leeper et al. (2003) and Kim (1999), among others,
for the opposing view.
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Table 1.5: Estimated phase shifts (six-variable VARs with Japanese data).

unit: months (Cycle length)|| Shipment Inventories O/N call CPI Com. Price
Lewel data (63.2) 0.2828 11.655 3.2501 -13.619 -6.8463
(43.4) 2.4008 6.4567 4.7944 9.3550 -3.3411
HP-s.a. (56.8) -0.0434 12.660 4.4041 -13.348 -2.4408
) _(59.0) 7.1328 8.5986 7.2003 11.619 6.9404
Yoy T (532) | -0.0005 12824 T 1.9726 12267 41758
(55.4) 0.0013 11.386 -8.7080 0.5821 11.306

Note: Time-lags from production.

the three data sets. On the other hand, the phase shifts of the largest norm roots
are consistent among the three data sets (except for CPI in the YoY estimation),
and are compatible with those in the three-variable estimations. In addition, none
of the other roots is robust against a change in the VAR order. Overall, it is
concluded that there exists one business cycle pair of complex roots (perhaps the
same cycle as in the three-variable estimations) in the six-variable estimations.
This conclusion is also supported by the cross correlation and spectrum analysis
below.

Compared to the three-variable estimations, the cycle length (63.2 months)
now becomes longer in the level data estimation, while it becomes shorter in the

YoY data estimation.

Phase Shifts

The O/N call rate lags behind production by 3.3 months in the level data, sug-
gesting that the BoJ reacts to real variables fairly quickly.?6 However, it is not
forward-looking; perhaps good monetary policy would anticipate the cyclical pat-
terns of economic variables, given the long time lag before the effects of monetary
policy are realised (shown below). Indeed, it seems that the Fed’s monetary policy

anticipates such cyclical patterns (see the Appendix).

261t is important to note that phase shifts do not indicate the speed of responses to shocks. In-
stead, for example, we can interpret the phase shift between the O/N call rate and an endogenous
variable as a speed of the BoJ’s response to the cyclical component of that endogenous variable.



1.4.3 Impulse Response Functions

One caveat of the six-variable analysis is the price puzzle.?” In other respects,

however, the estimation results are consistent with theoretical predictions.

Supply vs. Demahd Shocks: Monetary policy is tightened after a positive
shipment (demand) shock (Figure 1.12), while its response to a positive production
(supply) shock is ambiguous (Figure 1.11). Indeed, following a positive supply
shock, although the response is not estimated tightly, the point estimates of the
all three IRF's show that the BoJ loosens its monetary policy. Considering the
behaviours of other IRFs, this is because (i) a boom lasts longer after a positive
demand shock than after a positive supply shock, and (ii) the leading inflation
indicator and CPI increase after a positive demand shock but not after a positive
supply shock. Hence, it is important to discriminate between demand and supply

shocks, in order to analyse monetary policy.

Inventory Shock: A positive deviation of inventories from the steady state is
akin to a negative demand shock (Figure 1.13). As a result, the O/N call rate

declines after a positive inventory shock.

Price Shocks: The O/N call rate increases after a positive material price shock,
but decreases after a positive CPI shock. These patterns seem to reflect the features
of the BoJ’s monetary policy.

On one hand, after a positive CPI shock, both the O/N call rate and production
decline possibly because the major CPI shocks tend to arise from increases in public
prices and energy prices in Japan.?® In other words, large CPI shocks are often
regarded as exogenous negative shocks; indeed, production and shipment decline

after a positive CPI shock.

27See Sugihara et al. (2000), Teruyama (2001) and Yoshikawa et al. (1993). Almost all versions
in these studies show temporal price increases after a tight monetary policy shock in Japanese
data.

28The effects of the changes in VAT rate on CPI are adjusted in our data.
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Figure 1.11: IRFs due to a positive shock in the production equation (six-variable
VARs with Japanese data). Narrow lines show the 95% confidence intervals of
level data estimations based on the bootstrapping method.
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Figure 1.12: IRFs due to a positive shock in the shipment equation. Narrow

lines show the 95% confidence intervals of level data estimations based on the
bootstrapping method.
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Figure 1.13: IRFs due to a positive shock in the inventory equation (six-variable
VARs with Japanese data). Narrow lines show the 95% confidence intervals of
level data estimations based on the bootstrapping method.
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Figure 1.14: IRFs due to a positive shock in the CPI equation (six-variable VARs
with Japanese data). Narrow lines show the 95% confidence intervals of level data
estimations based on the bootstrapping method.
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On the other hand, the BoJ tends to focus on leading inflation indicators, while
CPl is often considered as a lagging indicator. Moreover, the BoJ traditionally has
been concerned with the exchange rate. Because exports are the growth engine
of the Japanese economy (though this situation is changing), a strong yen, which
reduces the exporters’ profit margins and competitiveness, has been considered
something that the central bank has to defeat. Hence, the BoJ’s reaction to the
leading inflation indicator may represent its reaction to the exchange rate; a strong
yen implies low import prices (especially on raw materials), and is followed by an

expansionary monetary policy.

Call Rate Shock: The effects of O/N call rate shocks (monetary policy shocks)
on production, shipment, and inventories are unclear and mixed. In the level data
estimation, production and shipment decline several periods after a positive call
rate shock, although they decline right after the shock in the HP-s.a. and YoY
data. Existing studies find a long time lag before the effects of monetary policy
materialise.?’

Bils and Kahn (2000) find that the inventory investment is positively correlated
to the interest rate; this is considered a puzzle because a high interest rate gives rise
to a high inventory carry cost. There is one natural way to address this puzzle;
if demand decreases sharply while production cannot adjust quickly, firms are
"forced" to accumulate inventories due to the law of motion of inventories (1.2).
However, VAR estimations show no substantial differences between the IRFs of

production and shipment.

1.4.4 Spectral Analysis and Cross Correlations

Cross correlations and spectra confirm the findings discussed above. First, the
cross correlation between the O/N rate and production/shipment (and material

price) reaches the peak with a 2 to 4 months lag. This is consistent with the es-

29Gee Bernanke and Gertler (1995) and Christiano et al. (1999) among others.
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Figure 1.15: IRFs due to a positive shock in the leading inflation indicator equation.
Narrow lines show the 95% confidence intervals of level data estimations based on
the bootstrapping method.
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Figure 1.16: IRFs due to a positive shock in the O/N call rate equation (six-variable
VARs with Japanese data). Narrow lines show the 95% confidence intervals of level
data estimations based on the bootstrapping method.
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timated phase shifts between them. Second, as quadrature spectra suggest, there
are dynamic relationships between the O/N rate and other variables that are not
reflected in the contemporaneous correlations. Finally, most of the co- and quadra-
ture spectra reach their peaks or bottoms at around 53 to 63 months, implying that
the cycle with a period length of 53 to 63 months is the most important cyclical

factor.

1.4.5 Summary of Six-Variable VAR

The most important discoveries in the six-variable estimations are that (i) the BoJ
reacts to demand shocks, but its reaction to supply shocks is vague, and (ii) it
reacts to shocks within a quarter, which is reasonably quick, but its monetary

policy does not seem to be forward-looking.

1.5 Discussion

This section discusses some miscellaneous albeit important issues.

1.5.1 Modern vs. Old Thoughts

The VAR estimations in this chapter shed light on some old thoughts regarding
business cycles. By the early 20th century, Kitchin (1923), Juglar (1860), Kuznets
(1930), and Kondrachieff (1935) found cycles of roughly of 3.4, 10, 20, and 50

years, respectively.3® Later, Schumpeter (1939) excavated and sorted out their

30 A summary of the major old thoughts is as follows.

Name Period (yrs) Main Driving Force
Kitchin Cycle 34 Inventories

Juglar Cycle 10 Investment

Kuznets Cycle 20 Construction
Kondratieff Cycle 50 Technological Revolution

Consider the implications of these numbers. First, in terms of the cycles lengths, most of them
are integer multiples of the shorter ones. This implies that observed cycles are not completely
distinguishable from one another. For example, three Kitchin cycles could be misidentified as
one Juglar cycle.

Second, the main driving forces in the table are provided by later analyses. For example,
the data used by Kitchin are bank clearings, commodity prices, and interest rates, whereas
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findings (excluding Kuznets (1930)), and Burns and Mitchell (1946) conducted a
comprehensive study of business cycles. Of particular importance, it seems that
most of these old studies presupposed a damping oscillation, or perhaps a limit
cycle, though not explicitly.

On the other hand, the old views contrast with some modern views. For ex-
ample, Prescott (1986) points out that the term business cycle is inaccurate. He
suggests instead the concept of business cycle phenomena, because "some systems
of low-order linear stochastic difference equations with a nonoscillatory determin-
istic part, and therefore no cycle, display key business cycle features."3!

Essentially, Prescott’s business cycle phenomena are successive exponential de-
cays: successive deviations of variables from their steady states and their returning
processes. In contrast, this chapter shows substantial evidence of periodicity, which
means that variables follow sine curves.3?

In contrast to exponential decays, damping oscillations (stable sine curves)
imply that a boom is the seed of the following recession, which, in turn, is the seed
of the next boom. In this sense, the cycles in this chapter have a meaning closer
to those of the old studies. Specifically, the cycles reported in this chapter seem
to correspond to those found by Kitchen. Indeed, the length of the Kitchen cycle
is close to our estimations, and researchers consider inventories to be the driving

force behind the Kitchen cycle (see Knetsch (2004), for example).

Kondratieff uses wholesale prices, interest rates and wages, foreign trade and the production of
some metals. Hence, Kitchin himself supposedly did not recognise his finding as an inventory
cycle.

Third, all of these cycles are empirical findings with little theoretical background, and their
empirical techniques may not be defensible by modern standards. Indeed, Harvey (1993, pp.195-
196) demonstrates that the moving average that Kuznets uses generates spurious cycles. Hence,
it should be understood that the existence of these cycles has not yet been confirmed economet-
rically.

31Prescott (1986), p.10.

32See Hassler et al. (1992) for a related discussion.
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1.5.2 Level of Inventories vs. Inventory Investment

This subsection shows the risk of considering inventory investment as a proxy for

the level of inventories, especially when complex roots have a dominant influence.

An Implication for Contemporaneous Correlations

Suppose that both production Y; and the level of inventories U; follow sine curves.
Ignoring the effect of other terms, if the phase shift s between them is roughly 7 /2,

then their correlation is almost zero.

Y, = Ayr'sin(6t) + other terms

U, = Ayr'sin(6t — s) + other terms ~ —Ayr* cos(0t) + other terms

where Ay and Ay are coefficients and r is the norm of the relevant complex roots.
Because inventory investment is a time difference of the level of inventories, by

approximating such difference by time derivative,

U — Upq ~ %% = Ayr’sin(0t) — (logr) Ayr® cos(0t) + other terms

Note that log r ~ r—1 is a small negative number, because most economic variables
are persistent in the data (i.e., the norm of roots is less than but close to 1), and
hence the effect of the second term is very small. Thus, in terms of frequency 6,
both production and inventory investment are governed by the same term r* sin(6t).
In sum, a zero correlation between production and the level of inventories implies
a positive correlation between production and inventory investment.

This is one of the salient features of complex roots. Suppose that both output
and the level of inventories follow exponential decays. In this case, if the corre-
lation between production and the level of inventories is close to zero, then that
between production and inventory investment is also close to zero. Indeed, we

observe both a near-zero correlation between output and inventories and a posi-
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tive correlation between production and inventory investment, which is (indirect)

evidence of periodicity in inventories.

1.5.3 Pseudo Propagation

This chapter has shown many hump-shaped IRFs. If individual IRFs are exam-
ined separately, then hump-shaped IRFs may appear to suggest the existence of
some mechanism that magnifies initial shocks. However, if variables are exam-
ined jointly, the locus monotonically converges to the steady state under a proper
metric. For example, in the phase diagrams (Figures 1.1 and 1.2), which jointly ex-
amine production/shipment and inventories, the distance from the origin (steady
state) is monotonically shrinking. In this regard, it is difficult to interpret the
hump-shaped IRFs in this chapter as evidence of a propagation mechanism, if the
word "propagation" means that the initial small shock is gradually magnified by

an endogenous mechanism.

Intuition

Consider the target inventory model as an example.3® It implies that the desired
level of inventories is an increasing function of sales (or production). Thus, if
the level of inventories becomes too low, firms have an incentive to increase their
production to replenish inventories. In this class of models, either an increase in
sales (demand) or a decrease in inventories can stimulate production. In this sense,
it may be reasonable to consider sales and inventory shortages jointly as, say, an
"effective demand." It is quite possible that a positive deviation of sales from the
steady state individually appears to grow after a positive demand shock (hump-
shaped IRF), but the effective demand is monotonically shrinking (stable spiral in

the phase plane) if inventories are concurrently increasing.3*

33The target inventory model is a class of models that includes the stockout avoidance model
in the theoretical literature and the linear quadratic specification in empirical research.

34Mathematically, in linear models, it is possible for a small initial shock to grow omly in
explosive systems.
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1.5.4 Inventory Stylised Facts

One of the important findings in the VAR analyses is that production and shipment
(sales) move very closely with each other. This itself may not sound interesting,
but it has a strong implication; the following two inventory stylised facts actually
describe a single fact from two different perspectives.
Fact 1: Inventory investment is procyclical.
Fact 2: Output is more volatile than sales.
To see this, consider the law of motion of inventories (1.2). Then, it is quite

straightforward to show

Var (S;) = Var (Y;) + Var (U, — Us—1) — 2Cov (Y, Upy1 — U)

which means that Cov (Y, Up41 — U) > 0 is a necessary condition of Var (S;) <
Var (Y;). With a similar manipulation, we can easily show that Cov (S;, Uy — Uy—1) >

0 is a sufficient condition of Var (S;) < Var (Yz). In sum,

e If the word procyclical in Fact 1 means Cov (Y;, U; — U;—1) > 0, then Fact 1

is a necessary condition for the Fact 2.

e If procyclical in Fact 1 means Cov (S;, U; — U;—;) > 0, Fact 1 is a sufficient

condition for Fact 2.

e In data, sales and production move very closely with one another. Thus,
Cov (Y, Uy — Ui—y) > 0 and Cov (S;, Uy — U;—1) > 0 are nearly interchange-
able.

Therefore, roughly speaking, stylised Fact 1 is a necessary and sufficient con-
dition of stylised Fact 2.3°

35Note that output Y; here is defined as gross output, not value-added.
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1.6 Conclusion

To study inventory cycles (see Figures 1.1 and 1.2), VAR estimations (equation

(1.1)) are conducted in this chapter. The main findings are as follows.

1. The length of the detected cycle is relatively close to the average length of the
post-war business cycles, and the existence of business cycle complex roots

is statistically significant.

2. Inventories seem to work as buffers at very high frequencies, while they seem

to destabilise an economy at business cycle frequencies.

3. The estimated phase shift between inventories and production/shipment is
12 months. Hence, for example, if inventories have bottomed out, then pro-
duction will peak around 16 months later. Inventories are very informative

for predicting near-future economic conditions.

4. Contemporaneous correlations are not enough to capture the dynamic rela-
tionship among variables. This is especially true for inventories and, to a

lesser extent, the policy interest rate.

5. Due to the behaviour of inventories, a boom lasts longer after a positive

demand shock than after a positive supply shock.36

6. As a result, the BoJ tightens its monetary policy after positive demand

shocks, while it does not clearly react to supply shocks.

7. The BoJ’s monetary policy is timely but not forward-looking.

Perhaps the most critical weakness of this research is that the detected cycle
length is sensitive to the time trend in the level data estimation. However, the fact
that the HP-s.a. and YoY data sets find the similar results suggests the robustness

of the estimations.

36 Among these seven findings, this and the following two observations do not hold for the U.S.
data. See the Appendix.
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For the sake of argument, let us consider the worst-case scenario. Certainly,
the chosen time trend, the 5th-order polynomial, mimics the HP-filter, which, in
turn, has similar effects to the YoY change. Hence, it is possible that the detected
cycle is just an artefact generated by the HP-filter ~ YoY ~ 5th-order polynomial
time trend. Nevertheless, even in this worst-case scenario, we can still claim that,
given the popular use of the HP-filter and YoY change, the detected cycle may be
something that practitioners consider to be a business cycle (even if it may not be
a "true" business cycle).

In terms of estimation technique, each of the three data sets is subject to its
own problem. However, the estimated results among these three data sets are
similar to each other, and, in addition, most of the estimates are very precise.
Perhaps, then, it is safe to claim that the estimates are not considerably distorted.

The key reason for the successful estimations is the quality of inventory level
data. Most theories suggest that the level of inventories plays a major role, but
almost all existing empirical studies are based on inventory investment. In general,
the quality of inventory level data is poor, but Japan is one of the few exceptions
to this. Considering that practitioners pay close attention to inventory behaviour,
it is advisable for other governments to construct reliable inventory level data,

thereby providing useful information about near-future economic conditions.
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Appendices for Chapter 1

'1.A Six-Variable VAR with U.S. Data

This section describes the estimation results of the six-variable VAR with the
U.S. data. The main problems with the U.S. data are (a) the pool of surveyed
firms and survey methods are perhaps different between production and ship-
ment/inventories because they are provided by different institutions, (b) the qual-
ity of real inventory data is not very good, and (c) data of real inventory before
seasonal adjustment is not available.

Compared to Japanese data, the estimations with the U.S. data are less precise.
In addition, a couple of IRFs are not consistent among the (i) level, (ii) HP-s.a.
and (iii) YoY data sets. Hence, it seems that the results based on the U.S. data
are less reliable than those based on the Japanese data.

Nonetheless, we find that (1) one pair of complex roots exists, and the implied
cycle length is fairly close to the post-WWII average, (2) inventories lag behind
production/shipment by 1/5 to 1/6 of the business cycle length, and (3) the Fed
reacts to supply shocks less sharply than to demand shocks. However, unlike the
estimations for Japan, the last finding is not very clear. In addition, the lifespans
of booms due to a positive demand and supply shocks are almost the same in the
U.S. estimation, and the behaviours of inventories are not very different in response

to those two types of shocks.

1.A.1 Description of Details

Most of the details are the same as those for the Japanese data sets. Hence,
this subsection mainly explains the differences from the estimations made with

Japanese data.
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Original Data All data are monthly data from January 1978 to December 1998.
Although more data are available for the United States, the same period used in the
Japanese estimations is used here for the sake of comparison (expanding the data
period makes the estimation more precise, but only slightly). Although production
data are compiled by the Board of Governors of the Federal Reserve System,?” real
shipment and inventory data are estimated by the U.S. Bureau of Economic Analy-
sis.3® The latter are, as building blocks, compiled to estimate U.S. national income
(GDP), and "their quality is signiﬁcantly less than that of the higher level aggre-
gates," according to the Bureau. Shipment and inventories are of "manufacturing"
(not including trading sectors) for comparison. As a monetary policy indicator,
the effective monthly Fed funds rate (FF rate) is used.3 Inflation is measured by
the Consumer Price Index for All Urban Consumers (CPI-U) excluding food and

energy, while PPI (raw materials) is used as a leading inflation indicator.%

Data Formats Again, there are three data sets: (i) level, (ii) HP-s.a. and (iii)
YoY data. All estimations are based on equation (1.1) with order 3. The estimation
with the level data uses the 5th-order time trend without seasonal dummies because
only seasonally adjusted real shipment and inventories are available. For simplicity,
seasonally adjusted CPI-U is used for all three data sets, while not seasonally
adjusted FF rate and PPI (raw materials) are used because they are not considered

to have seasonality.

Unit Root For the three-variable VAR with the level data, Monte Carlo exper-
iments again suggest that there exists one real (not complex) unit root in the U.S.

data set (the results are omitted). The results based on the stationary data sets

37U.S. production data are available at http://www.federalreserve.gov/releases/G17/

38Shipment and inventory data in nominal terms are available from the U.S. Census Bureau:

http://www.census.gov/indicator/www/m3/hist /naicshist.htm

For the estimations of real shipment and inventories, see Herman et al. (1976). For data, see
the website of the Bureau of Economic Analysis:

http://www.bea.gov/national /nipaweb/nipa_underlying/Select Table.asp

39Gee the Fed’s website: http://www.federalreserve.gov/Releases/H15/data.htm

40Both are available at http://www.bls.gov/home.htm
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Table 1.6: Estimated business cycle roots (six-variable VARs with U.S. data).

Panel I Lewel
Roots 0.9310.09i 0.88+0.06i 0.73+0.08i 0.43+0.37i 0.8051 -0.5162
Norm 0.9374 0.8870 0.7307 0.5622 0.8051 0.5162
Angle +0.0291w +0.0219m 10.0365m 0.2261m 0 0
Cycle length 68.52 91.15 54.83 8.85 +inf +inf
Panel ll: HP-s.a.
Roots 0.95+0.11i 0.77+0.03i 0.7410.11i 0.43+0.30i 0.9511 -0.4983
Nom 0.9443 0.7667 0.7454 0.5221 0.9511  0.4983
Angle +0.03631mr +0.0109m 10.0455m #0.19701m 0 0
Cycle lengthf  55.12 182.80 43.93 10.15 +inf +inf
Panel lll: YoY
Roots 0.93+0.13i 0.9084 0.8128 0.7677 0.7323 0.52+0.39i 0.9855 -0.5763
Nom 0.9376  0.9084 0.8128 0.7677 0.7323  0.6445 0.9855 0.5763
Angle 10.0428m 0 0 0 0 +0.2047m 0 0
Cycle lengthl  46.73 +inf +inf +inf  +inf 9.77 +inf +inf

(HP-s.a. and YoY data) are relatively similar to those based on the level data,

though such similarities are not as strong as in the Japanese estimations.

1.A.2 Roots of Coefficient Matrix

Selected point estimates of the roots are shown in Table 1.6. Roots omitted from
the table are complex roots with very high frequencies (shorter than 8 months)
and some short real roots.

There are many conjugate pairs of complex roots that correspond to long cycles,
but only the first pair in each panel seems to be robust against a change in the
VAR order. For this cycle, phase shifts are consistent among all three data sets.
In addition, cross correlations and spectra also show that the dominant cycle is 47

to 69 months in length, which is close to the post-war average (67 months).4!

Phase Shifts

The phase shift between production and inventories is 1/5 to 1/6 of the cycle
length, implying that the trajectory of the inventory cycle is a (shrinking) ellipse

with a major (longer) axis running from the northeast to the southwest around

41Gee NBER’s "U.S. Business Cycle Expansions and Contractions" at
http://nber.nber.org/cycles/cyclesmain.html
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Table 1.7: Estimated phase shifts (six-variable VARs with U.S. data).

unit: months (Cycle length)ff Shipment Inventories FF rate CPIKU Com. Price
Lewel data (68.5) 1.9612 12.748 -8.0767 -0.6753 1.7430
(91.2) 2.9152 19.939 16.323 -16.551 22.389
(54.8) -4.5560 1.5431 0.6742 -0.3231 -3.0252
HP-s.a. (55.1) 2.1547 10.436 -4.0955 1.3363 2.7509
(182.8) 0.5981 5.2254 39.217 5.5583 18.872
(43.9) -3.3573 2.9764 -0.2556 -1.0580 -4.0754
YoY (46.7) 1.9730 7.4541 -3.6056 -2.9659 0.7352

Note: Time-lags from production.

the origin (see Figure 1.2).
The FF rate precedes production by 4 to 8 months. It seems that the Fed’s
monetary policy is forward-looking/pre-emptive; it anticipates the cyclical patterns

of economic variables.

1.A.3 Impulse Response Functions

As with the estimation for Japan, there exists a somewhat perverse price puzzle.
In addition, the estimated IRFs have a wide confidence interval (especially for the

FF rate and prices).

Supply vs. Demand Shocks: Monetary policy is tightened after both positive
demand and supply shocks (Figures 1.20 and 1.19). However, the Fed raises the
FF rate much more sharply in response to a demand shock than a supply shock,
because the leading inflation indicator increases after a demand shock but decreases
after a supply shock. In addition, the initial effect of a demand shock is stronger
than that of a supply shock.

Unlike Japanese estimations, the lifespans of booms do not differ between de-
mand and supply shocks. The author’s conjecture is that this is because of differ-
ences between the surveyed firms in production and shipment /inventories statistics.
For example, if a firm’s figures are included in production statistics but not in ship-
ment statistics, then the demand shock that hits that firm increases production

but not shipment. In any event, the U.S. estimations are less precise, and thus it
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might be safer not to draw too many conclusions from them.
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Figure 1.19: IRFs due to a positive shock in the production equation (six-variable
VARs with U.S. data). Narrow lines show the 95% confidence intervals of level
data estimations based on the bootstrapping method.

Price Shocks: The IRFs to shocks to CPI and PPI raw materials are similar to
each other, but the latter, a leading inflation indicator, has stronger effects than
the former. It seems that the central banks react to leading inflation indicators

but not to CPI both in Japan and in the United States.

Fed Funds Rate Shock: Again, the price puzzle arises; after a positive FF
rate shock, CPI rises (Figure 1.23). Though the confidence interval is very wide,
inventories also increase after a positive FF rate shock. This could be because
firms cannot cut their production quickly enough to counterbalance the decline
in demand, but this is difficult to verify because data Eire collected from different

pools of sampled firms.
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Figure 1.20: IRFs due to a positive shock in the shipment equation.
lines show the 95% confidence intervals of level data estimations based on the

bootstrapping method.
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Figure 1.21: IRFs due to a positive shock in the inventory equation (six-variable
VARs with U.S. data). Narrow fines show the 95% confidence intervals of level

data estimations based on the bootstrapping method.
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Figure 1.22: IRFs due to a positive shock in the CPI equation. Narrow lines show

the 95% confidence intervals of level data estimations based on the bootstrapping
method.
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Figure 1.23: IRFs due to a positive shock in the leading inflation indicator equation.

Narrow lines show the 95% confidence intervals of level data estimations based on
the bootstrapping method.
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Figure 1.24: IRFs due to a positive shock in the FF rate equation (six-variable
VARs with U.S. data). Narrow lines show the 95% confidence intervals of level
data estimations based on the bootstrapping method.
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Figure 1.25: Cross correlations (six-variable VARs with U.S. data).
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Figure 1.26: Co- and quadrature spectra (six-variable VARs with U.S. data). Bold
lines show cospectra and narrow lines show quadrature spectra.

1.A.4 Spectral Analysis and Cross Correlations

Like Japanese data, U.S. data also show the S-shape cross correlations between
inventories and other variables, which shows the existence of time lags between
them. The correlations between production/shipment and the FF rate peak around
0to —2 months, showing that the Fed reacts to these variables with a short time lag,
which may seem to be inconsistent with the finding in the phase shift between them
(see Section 1.A.2). However, this is because of very high frequency components;
by definition, the Fed cannot react to iid shocks in advance. Remember that the
phase shift between production and the FF rate shows the Fed’s reaction to the
cyclical component of, but not to shocks to, production, but the cross correlation
between them reflects the Fed’s reaction to both the cyclical component and shocks.
On the other hand, the correlations between production/shipment and the FF rate
reach their bottom at around 15 to 20 months, which shows that it takes more

than one year for the effect of monetary policy to fully materialise.
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The spectra show that the quadrature spectrum plays a major role mainly with
inventories (Figure 1.26). Most of the spectra of CPI and PPI raw materials with
other variables have a sharp spike at 0 month (making it difficult to distinguish
them from the y-axis), which means that their behaviour is dominated by shocks,
with weak cyclical linkages with other variables. Also note that most of the spectra
have their peak or bottom at around 60 months, which means that the cyclical
component with a 60 months long is a key driving factor in the business cycle. The
quadrature spectra of the FF rate with other variables have their peak or bottom
at business cycle frequencies, showing that contemporaneous covariances are not

sufficient to evaluate the Fed’s monetary policy.

1.B Computation of Phase Shifts

The mathematical techniques used in this chapter are found in any elementary
textbook (hence, most of the derivations are omitted). However, this section briefly
describes how to compute phase shifts in a given system of difference equations.*?
It may be useful to some readers since the author personally experienced some

difficulty in finding references for the computation of phase shifts.

1.B.1 Computational Summary

Suppose that we have obtained a VAR(M) estimation without exogenous variables

(see equation (1.1)). Then, it can be rewritten in the form of VAR(1) by redefining

42Note that the phase shifts in this chapter are computed by a different algorithm discussed
in Chapter 10 of Hamilton (1994).

67



the vector of endogenous variables.

Yt = Yt-lB““gtC (1'3)
By By-1 Bu C= [C’ 0
I 0 0
B =
Y, = [
0 I 0 R

where y; and £, are row vectors of endogenous and exogenous variables, respectively.

&, is assumed to be iid over time and equations.

Let A and V' be the matrices of eigenvalues and eigenvectors of B in (1.3),

respectively.

Vo

(14)

where n is the number of roots (M x number of endogenous variables) and Vj is

the eigenvector that corresponds to the j-th eigenvalue. Then,

e Frequencies (8;): © = diag [ 6, 0, ] = arctan (ImA./ Re A)

e Cycle lengths (27/6;): 2r./© = diag [ 27 /6, 27 /60y, ]

e Phase (8;;): ® = arctan (ImV./ ReV) + nuisance term

e Phase shifts between k and [: & — &; = [ Or1 — P Oy — B ]

There are a few comments. In terms of notations, "./©" signifies the element-
by-element multiplication of ©~! from right, ®. is the k-th row of ® and ReV
and Im V' mean the real and imaginary parts of V, respectively. ®,; is the phase
of the I-th endogenous variable with respect to the cycle corresponding to the j-th
eigenvalue.

If the r-th eigenvalue is real, then frequency 6, is positive infinity and phase

shifts between any variables are zero.
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The unit of ®, — ®; is radian. To convert the unit from radian to time, it
should be divided by a proper frequency, as in the main text.

In actual computation, it is necessary to take care the fact that any B,j =
Bi; (mod 27) are equivalent to §;;. Also, with some computer software, it is difficult
to distinguish §,; and —f,;.

1.B.2 Derivation

If ); and ); are conjugate each other (denote conjugate by upper bar: \; = };),
then V; and V; are also conjugate each other (V; = V;). This is evident because \;
and V; must satisfy the definition of the eigenvalue-eigenvector if \; and V; satisfy
it.

B-XDV;=0&B-N)V;=0& (B-XI)V;=0

Note that B = B and I = I since the identity matrix and B are both real.

Denote such A; and V; as follows.

Aj = a;j+bji=p;(cosf;+isinb;)
Aj = a;—bji=p,(cos; —isinb;)
V; = R+ Mji
Vi = R;j— Mji

- Ry; - [ My; W
R; = P, M=

L an - L MnJ .

where p; = 1 /a2 + b2 and 8; = arctanb;/a;. It is obvious that both X;V; and XV;

are elementary solutions of the difference equations 1.3. Note that by De Moivre’s
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formula,

X, = (p; (cost;+isingy)) = ot (costyt + isin ;1)

o= (Pj (cos; — isin gj))t = p’ (cos6;t — isin6;t)

However, we prefer the elementary solutions that do not have imaginary root i.
Note that any linear combination of these solutions can be also elementary solu-

tions. Thus, define

e = -;- (,\EV,; + X:V,) = pt (R; cos 0t — M;sin 6;t)
1

i 5 ()\2‘/; _ ,—\:‘71) = pt (M; cos6;t + R;sin 0;t)

By the formula of linear combination of trigonometric functions (synthesis for-

mula),

Rjcosfjt — M;sinft = 1, -sin (ojt + BJ)
(0jt + ﬂj) = 9; - cos (0jt + 3:')

Rj COos gjt + M]‘ sin Gjt = ’!/)j - sin

where - signifies element-by-element multiplication, and

Bu ' ¢1j \/ R%:i + Mlzj

Bj = : = arctan (%) , Y= : = :
J
_/an_ _¢nj | I \/R?aj"'Mr%j |

Interestingly, there is a kind of duality between eigenvalues and eigenvectors.

Therefore, the two real elementary solutions are written as

77?" = ;- Pk sin (Gjt + BJ)

n}m = qu . pz cos (Ojt + BJ)
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The solution of linear differential equations is a linear combination of the ele-

mentary solutions.
Yo = - - +w;t; - pisin (Gjt + ﬁj) + wjnp; - pfcos (Bjt + ,33) +---

Weights {w, }"_, are typically determined by the initial condition (past and present
innovations in our case) of a given problem. By using the same formula again, it
is shown that the phase of the I-th variable with respect to the j-th eigenvalue 3,;

must satisfy

a;jpf sin (a]t + ﬂl])
= wjth;;p};sin (ajt + Bz]') + wjy;pf cos (ajt + sz)

= (d’lﬂ [w? +w? ) plsin (ﬂjt + Blj + ,B,j)

where B;; = B; = arctan (w;/wj) is common to all [.

Hence,

— f1,2 2
o = Qpl] wJ +wJ,

By = sz + B;

It is clear that the phase shift between the k-th and I-th variables is independent
from the initial value (past and present innovations in our case) because B]- is

cancelled out.
Bkj - .sz = :Bkj - /3zj

Remember that Bj is dependent on w, but B,J- is not.
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1.C Smoothing Parameter for Monthly HP-Filter

According to the rule of thumb, the smoothing parameter of the Hodrick-Prescott
filter (HP-filter) should be 100, 1600 and 14400 for annual, quarterly and monthly
data, respectively. However, these values are not consistent with one another.
This note, instead, numerically demonstrates that the smoothing parameter that
is consistent with 1600 for quarterly data is 7-8 for annual data and slightly less
than 130,000 for monthly data. In general, if the favourite smoothing parameter

for quarterly data is Ag, then mnemonically
40y ~ Mg = Ay /3

where Ay and A, are smoothing parameters for annual and monthly data, re-
spectively. These linear relationships among Ay, Ag and Ay are stable for most
economic variables.

This conclusion provides a numerical support for the analytical finding in Ravn
and Uhlig (2002). It is important to note that this note does not propose any
single best smoothing parameter. Instead, it simply states the consistency among
smoothing parameters for different data frequencies.

The idea behind the two exercises in this note is quite simple. Suppose that
the frequency of time series data is quarterly. Then, we can construct annual data
from the original quarterly data by a proper method (e.g., by simply taking the
average of four quarters in one year). Let Y and @ be the column vectors of annual
and quarterly data, respectively.

Next, the HP-filter is applied to Y and @ to obtain smooth series. Define
HP(Q, ) as a matrix such that Q#F = HP (Q, o) Q and Y#P = HP (Y, \y)Y,
where Q¥ and YHF are the vectors of HP-filtered series.

The first exercise uses the cubic spline to convert annual HP-filtered data Y#?
to quarterly data Y#P22. Note that the cubic spline should perform very well

YHP

because is a very smooth series by construction. Given the original annual
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data Y, Y#P2? ig a function of only \y. Similarly, given Q, Q¥F is a function of
only Ag. The first exercise obtains the optimal Ay as a function of \g; i.e., Ay

that minimises the following quadratic error function for each Aq.
2
n/\lli,n ( YHP2 ()\y) — QHP (Ag) ) for each Ag (1.5)

The second exercise converts quarterly HP-filtered data QF to annual data
Q"F?Y by a proper method (e.g., taking the average). Again, note that Y77 and
Q"F?Y are functions of only Ay and Ag, respectively. The second exercise obtains
the optimal Ag as a function of \y; i.e., Ag that minimises the following quadratic

error function for each M\y.

2
n/\liqn ( QEPY (\g) — YHP ()y) ) for each Ay (1.6)

By similar exercises, it is possible to obtain the optimal Aj; and Ag as functions
of each Ag and Ay, respectively. Then, the same exercises are done for several data.
The results are almost identical in both types of exercises, and hence the results
of only the first type of exercises (1.5) are shown. Figure 1.27 shows the optimal
Aum as a function of A (all lines are too close to distinguish), and Figure 1.28 shows
the optimal Ag as a function of Ay. There are clear linear relationships regardless

of data.
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Chapter 2

Inventory Cycles

This chapter investigates a rational dynamic stochastic general equilibrium model
with a stockout constraint and a production chain.

Our model shows that the stockout avoidance and cost shock models satisfy
stylised inventory facts — production is more volatile than sales and inventory
investment is procyclical — for demand and supply shocks, respectively, while pro-
duction smoothing works at very high frequencies. Note that the cost shock and
production smoothing models are naturally embedded in our micro-founded general
equilibrium framework. Moreover, as a by-product, the production chain causes
the slow adjustment of inventories in aggregate. Consequently, our model generates
(a) high labour volatility and (b) low correlation between labour productivity and
output; the standard RBC cannot produce these two empirical findings. Finally,

our model yields inventory cycles.

2.1 Introduction

Inventories are important in understanding business cycles. Inventory investment
accounts for a large share of GDP fluctuations, especially during recessions.! De-

spite this importance, most existing theoretical studies of inventories focus only

1For example, Fitzgerald (1997) reports that "changes in inventory investment are, on average,
more than one-third the size of quarterly changes in real GDP over the postwar period." See also
Blinder and Maccini (1991).
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on firm/industry level analyses; only a few general equilibrium analyses exist. The
motivation of this chapter is to investigate a micro-founded rational dynamic sto-
chastic general equilibrium (DSGE) model that satisfies two stylised inventory
facts: (1) production is more volatile than sales and (2) inventory investment is
procyclical. Specifically, we constructs a DSGE model with a stockout constraint
and a production chain; the stockout constraint means that no seller can sell more
products than the inventories she holds, and the production chain means that one
firm’s output is used as a production factor by other firms, and this repeats.

In a sense, this chapter is a general equilibrium extension of Kahn (1987, 1992),
who first analysed the stockout constraint. The key trade-off under the stockout
constraint is that having too much inventory is costly because unsold goods impose
a carrying cost (Jorgenson’s user cost), while having too little inventory is also
costly because the risk of losing sales opportunity due to stockout is too high.
Balancing carrying cost against stockout probability, firms choose the optimal level
of inventories. As a result, the optimal level of inventories is an increasing function
of demand; given the level of inventories, strong demand reduces the expected
amount of unsold goods and raises the stockout probability.

Our research, however, is most closely related to Khan and Thomas’ (2004b)
fully rational DSGE for inventories. In comparing the (S,s) and stockout avoidance
models, they conclude that the former is superior to the latter, partly because firms
have almost no inventories in the stockout avoidance model.

However, we conjecture that the competitive goods market in their model is not
compatible with the existence of unsold goods (inventories carried over to the next
period). Consider firms’ decisions at different points in one period. Certainly, when
firms decide their production, there is an incentive to hold inventories as buffers,
because some factor inputs are decided before the realisation of aggregate shocks
in their model. However, when firms decide their sales, there is little incentive
to hold inventories, because all aggregate shocks are already revealed. In their

competitive goods market, the price of goods should rise if demand is strong and
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vice versa, until the market clears (i.e., no inventories exist). At the end of the
day, no inventories are carried to the next period.

In contrast, in our non-Walrasian goods markets, price does not equate de-
mand and supply; instead, we assume price posting. Indeed, we claim that neither
instances of stockouts nor unsold goods take place under flexible price. In sum,
the most important difference between Khan and Thomas’ model and ours is that
they assume a competitive goods market, while we assume non-Walrasian goods
markets.

Simulating our model, we find several observations. First, our model quantita-
tively satisfies the two stylised inventory facts. The intuition is as follows. When
a positive demand shock hits firms, their inventories are initially reduced, and
thus firms want to replenish inventories. Moreover, the target level of inventories
becomes higher than the normal level, because the demand is stronger than usual.
Hence, in subsequent periods, firms have to produce more than they sell in order
to accumulate inventories. Thus, inventory investment is positive when sales and
production are high, while production is more volatile than sales. Although this
mechanism was predicted by Kahn (1987) in his firm level analysis, one of our
contributions is to quantitatively endorse his prediction in the dynamic stochastic
general equilibrium framework.

However, it is important to note that not only the stockout constraint is em-
bedded in our model. Indeed, our model includes the mechanisms predicted by the
cost shock and production smoothing models. Importantly, even though we do not
intend to explicitly build these mechanisms in our model, they must, naturally and
inevitably, appear in our fully rational, micro-founded environment. On one hand,
with a positive productivity shock (i.e., a negative cost shock), production increases
but sales do not increase very much; as a result, inventories increase when pro-
duction increase, while production is more volatile than sales. On the other hand,
inventories certainly decrease right after a positive demand shock, and production

does not react quickly because of the convex cost function. More specifically, if
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a band-pass filter is applied to the simulated data series, our model finds that
production is less volatile than sales and inventory investment is countercyclical at
very high frequencies. In sum, in our model, the following three leading inventory
models are all working: cost shock, production smoothing and stockout avoidance
models. Or, equivalently, our model finds that these three mechanisms predicted
by firm/industry level analyses are all alive even in the DSGE framework.

Another important finding in our model simulation is the slow adjustment
of inventories, which is found in several empirical studies.? The key mechanism
behind this is the production chain®. When an intermediate goods producer (M-
firm) wants to replenish its inventories of intermediate goods (M-goods),* it has to
increase its own production and its use of M-goods provided by other M-firms. This
is demands for other M-firms’ goods and reduces their inventories. This process
repeats. In other words, increasing inventories in one firm decreases inventories
in other firms. Thus, the adjustment of inventories (or intermediate goods) in
aggregate s indeed slow.

This slow adjustment of inventories also generates two by-products: higher
volatility of working hours, and lower correlation between labour productivity and
output, than the standard real business cycle (RBC) model. For the former, dif-
ferent from the standard RBC model, there is one extra production factor in our
model — M-goods. However, because the adjustment of M-goods is slow, firms
are forced to use more labour input to compensate for the sluggish adjustment of
M-goods during booms. Indeed, our model predicts that M-goods’ price increases
sharply after a positive demand shock, which encourages firms to substitute M-
goods with labour. As a result, labour productivity (= output/hours) does not

increase when output increases, because the increases in working hours are large

2See Blinder and Maccini (1991), among others. Also, Ramey and West (1997) interpret the
persistent inventory to sales ratio as one expression of the slow adjustment of inventories.

3However, the primary purpose of explicitly modelling the production chain is to generate
a realistic sales volume, which is much larger than the volume of production due to the use of
intermediate goods. Note that under representative firm models, production is (almost) equal to
sales.

4Note that our model analyses the stockout constraint in M-goods markets. Thus, inventories
in our model mean inventories of M-goods, unless otherwise mentioned.
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enough to offset those in output; thus the correlation between labour productiv-
ity and output is low in our model. In sum, by adding stockout constraint and
production chain, our model improves the standard RBC model in terms of labour.

Finally, our model can replicate so-called inventory cycles (see the Introduc-
tion of Chapter 1). However, although VAR-based analyses find sine curve impulse
response functions (IRFs), our theoretical model generates only over-damped os-
cillations, which means that there is a mechanism that generates oscillation, but
its effect is not strong enough to exhibit sine curve IRFs. Nonetheless, the model

exhibits cycles in the phase diagrams.

The plan of this chapter is as follows. Section 2.2 reviews both theoretical
and empirical literature, and summarises the stylised inventory facts. Our model
satisfies not only the two famous stylised facts, but also additional detailed facts.
Section 2.3 establishes the model environment. The key features of our model
include: (i) in addition to the representative household, there are two types of firms:
final goods producers (F-firms) and intermediate goods producers (M-firms), both
of which use capital, labour and M-goods as inputs, while the former produce final
goods (F-goods) which are used as consumption or investment goods, while the
latter supply M-goods; (ii) individual M-goods are differentiated from each other,
and hence an M-firm must use M-goods produced by other M-firms (production
chain); and (iii) the sales of M-firms are subject to the stockout constraint. Section
2.4 presents numerical results. Section 2.5 section concludes. The technical details
are relegated to the Appendix.

In terms of terminology, note that this chapter uses "she" for a seller and
"he" for a buyer. Also, the concept of inventories includes "goods on shelf" GoS;
and "unsold goods" U;;;. Though this may sound ambiguous, we often need a
word that represents both, because they are closely related to one another; indeed,
GoS; = U; under a simplified parameter setting. Inventory investment always

means U — U;.
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2.2 Literature Review and Stylised Facts

This section reviews existing researches. Despite inventory’s importance in busi-
ness cycle research, most existing theoretical inventory models focus only on firm/industry
level analyses. There have been only a limited number of analyses of inventories in
the setting of the DSGE model. In addition, key empirical research is also reviewed

to reconsider stylised inventory facts.

2.2.1 Theories in Firm/Industry Level Analyses

Although we adopt more detailed facts to evaluate the model performance, the
following two traditional stylised inventory facts have motivated the theoretical

inventory research:

(i) Production is more volatile than sales.

(ii) Inventory investment is procyclical.

Production Smoothing

The first attempt to understand inventories was the simple production smooth-
ing (or buffer inventories) model, in which, analogous to consumption smooth-
ing, firms want to avoid wild fluctuations in production because of a convex cost
function (which should be present even with the CRS production function in gen-
eral equilibrium), and inventories are used as buffers against demand shocks. How-
ever, it is obvious that smooth production cannot explain volatile production, and
it predicts that inventory investment is negative when there is a positive demand

shock. Thus, its predictions contradict both of the above stylised facts.

Subsequent Models

Hence, subsequent researchers have made efforts to reconcile the production smooth-

ing motive and the two stylised facts. In firm/industry level analyses, there are
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several strands of literature:®

e Serially correlated demand shocks may explain to some extent why
production is not very smooth, but it alone cannot explain why production

is more volatile than sales.b

¢ The non-convex cost function (or bunching production) has much em-
pirical evidence from plant level studies, but it is uncertain as to whether the

same mechanism works in aggregate.’

e The cost shock model successfully explains stylised fact (i), while its em-
pirical evidence is mixed. However, without any additional assumptions, it

predicts that sales and inventories should be uncorrelated.

¢ (S,s) ordering policies successfully explains (i) under the assumption that
production takes place no sooner than the order is placed; a fixed ordering
cost induces bunching orders, and hence orders (production by suppliers)
are more volatile than sales (of retailers). However, it does not predict (ii).
Moreover, it has difficulty in aggregation, and it alone cannot explain why

the stylised facts also hold at individual firms.®

e Inventories as production factors can explain (ii) but not (i). In aggre-
gate level analyses, where some simplification is inevitable, it may be difficult

to discriminate inventory investment from capital investment in this model.?

It seems that the above lines of research have not yet reached successful results.

Target Inventory Models

However, the following two models appear to be more promising than those above.

50f course, some researchers have contrived tricks to amend the problems pointed out here.
The comments in the following list simply offer a glimpse of the models’ basic features.

6See Blinder (1986).

"See Ramey (1991) and Ramey and Vine (2004) for this line of research.

8See Caplin (1985) and Caballero and Engel Caballero and Engel (1991), among others.

9See Ramey (1989).
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e The inventories as sales facilities model is suggested from the standpoint
of empirical studies.!® The idea is that inventories, e.g., in showcases, are
necessary to sell goods as samples or specimens. When sales are strong and
serially correlated, a firm has to make up for the drop in inventories and, in
addition, has to accumulate additional inventories to keep up with the new
sales level, which is higher than before. Hence, in principle the model can

explain both (i) and (ii).

e The stockout avoidance motive is probably the most natural setting, at
least as a casual conjecture. Similar reasoning to that of the inventories as

sales facility model shows that this can also explain (i) and (ii)."

Note that the inventories as sales facilities and stockout avoidance models are
indeed special cases of a more general class of models. The generalised target

inventory model has the following sales function:

1

Se= ( Dy(P.)¥ + ¢GoSY )J (2.1)

where Dy(.) is demand as a function of price P;, GoS; is goods on shelf (inventories),
and 9 and ¢ are parameters. The model reduces to the inventories as sales facilities
model in Bils and Kahn (2000) if 1) = 0, while it reduces to the stockout avoidance
model when ¥ = —oo. It is important to note that both models imply that the
(target) level of inventories, rather than inventory investment, is an increasing

function of demand.

2.2.2 General Equilibrium Analyses

As mentioned above, only a few general equilibrium analyses have been done to

date. We list some of the theoretical works below.

10Gee Bils and Kahn (2000) and Pindyck (1994).
11See Kahn (1987, 1992). Abel (1985) provides early work on the stockout constraint. Wen
(2002) also gives some support for this idea.
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(S,s) Models

Fisher and Hornstein (2000) and Kahn and Thomas (2004a, 2004b) focus on the
(S,s) model in the settings of DSGE.

Although the (S,s) model seems unsuccessful in firm/industry level analyses,
Fisher and Hornstein (2000) construct a DSGE model that satisfies the two styl-
ised facts. In their model, general equilibrium feedback seems to be the key to
understanding inventories.’? By incorporating a matching scheme in the goods
market,!® they embed a mechanism by which a high level of inventories induces
retailers to lower their sales prices so that consumers increase their search efforts
(thus, sales are positively correlated with inventories).!4

On the other hand Khan and Thomas (2004a, 2004b) also find that the (S,s)
model can explain two stylised inventory facts. In Khan and Thomas (2004b), they
compare (S,s) and stockout models and conclude that the former is better than

the latter in terms of the two traditional stylised facts (see the next subsection).

Target Inventory Models

Kahn et al. (2002) constructed an inventory in the utility model as a proxy
for the stockout avoidance motive with imperfect information. Their intuition is
essentially the same as ours; when a positive shock hits a firm, its inventories
decline, but the firm then has to replenish inventories and build up inventories
to achieve the new, higher target level (because the sales shock is assumed to
be persistent). They emphasise informational imperfection; firms cannot sell all
of today’s products in today’s market due to a informational problem. However,
inventory in the utility is not based on a micro-foundation, though it could be a

useful short-cut.

12For the aggregation problem, they restrict the state space; the possible level of inventory
holdings are limited to a few natural numbers.

13Note that in this sense their model also can be regarded as a non-Walrasian model. Their
pricing mechanism is marginal (reservation) utility pricing, which is a special case of the Nash
Bargain (sellers have all the bargaining power), and similar to ours.

14See Blinder (1982) and Bental and Eden (1993) for similar insights.
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Khan and Thomas (2004b) analyse the stockout constraint in a non-linear
DSGE framework. In comparing the (S,s) and stockout avoidance models, they
conclude that the former is superior to the latter, partly because firms have almost
no inventories in the stockout avoidance model.

However, we conjecture that the competitive goods market in their model is not
compatible with the existence of unsold goods (inventories carried over to the next
period). Consider firms’ decisions at different points in one period. Certainly,
when firms decide their production, there is an incentive to hold inventories as
buffers against imperfect information during one period.!> This is because some
factor inputs are decided before the realisation of aggregate shocks in their model.
However, when firms decide their sales, there is little incentive to hold inventories,®
because all aggregate shocks are already revealed. Having inventories just leads to
a carry cost, but it no longer protects firms unless the marginal cost of the next
period is very high. In their competitive goods market, the price of goods should
rise if demand is strong and vice versa, until the market clears (i.e., no inventories
exist), although Khan and Thomas (2004b) do not report the change in the goods
prices. At the end of the day, no inventories are carried to the next period. In
a sense, their goods market is a Walrasian market with a vertical supply curve;
unless the demand curve is unorthodox, the market finds a price to equate demand
and supply.

In contrast, in our non-Walrasian goods markets, price does not adjust demand
and supply; instead, we assume price posting. Indeed, we claim that neither in-
stances of stockouts nor unsold goods take place under flexible price. In sum, our
research is most closely related to Khan and Thomas’ (2004b), but the most im-
portant difference between their and our models is that they assume a competitive

goods market, while we assume non-Walrasian goods markets.!” Note that, be-

15Note that inventories in this sentence are goods on shelf in our terminology. However, because
there is no unsold goods carried from the previous period in their model, goods on shelf are equal
to today’s production.

16Note that inventories in this sentence are unsold goods in our terminology. Note also that
inventory investment means the time difference of unsold goods in general.

17In addition, while our model is solved by linearisation, they employ a non-linear solution
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cause goods prices respond to all the aggregate shocks, though not to idiosyncratic

shocks, our model falls into the class of flexible price models.

Inventories with Sticky Price

Hornstein and Sarte (2001) and Boileau and Letendre (2004) incorporate invento-
ries into a dynamic sticky price model.

The motivation to hold inventories used by Hornstein and Sarte is production
smoothing. In their model, after a positive monetary shock, (i) for agents who have
an opportunity to change prices, sales plummet down because their new prices
become higher than other agents’, but production does not move very much due
to convex cost function, while (ii) for agents who do not change their price, sales
and production increase. According to them, initial changes in sales are offset in
aggregate, while changes in production are not. Thus, production is more volatile
than sales.

Boileau and Letendre studied three types of models in the dynamic sticky
price model. The most successful one is the model they call the shopping-cost
model,'® and it creates more pgrsistence in output and inflation than the standard
sticky price model. At first glance, their shopping-cost model seems to be similar
to the micro-founded target inventory model such as ours, in the sense that both
models share the feature that inventories help sales. However, it appears that their
model should be regarded as an inventories as production factors model, at least
in aggregate. This is because, while inventories reduce the retailers’ shopping cost,
the authors impose the zero profit condition on the retailers at the same time. This
means that, if retailers and producers can be regarded as one big sector, inventories
work as a production factor in this big sector. Indeed, their final algebraic results
look like those of the inventories as production factors model. In this sense, it is

slightly questionable whether or not their model should be classified as the same

method.
18The other two model investigated by Boileau and Letendre (2002) are a linear-quadratic
model and inventories as factors of production.
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class of the models as ours.

Other Important Research

Another important general equilibrium inventory paper is Diamond and Fuden-
berg (1989).!° Although their model yields interesting results, including cyclical
movements and multiple equilibria, their economy is highly stylised. They assume
that each agent cannot have a (stochastic) production opportunity until she sells
her products, and hence their "inventories" represent the number of people who
had a production opportunity but have not yet sold their products. Thus, we
think their model is qualitatively interesting from a purely theoretical viewpoint,

but may not be able to allow numerical experiments.

2.2.3 Empirical Studies and Stylised Facts

This subsection briefly reviews empirical research and draws implications.

Stylised Inventory Facts

Although, as mentioned in the previous subsection, two stylised inventory facts are
well known, we use more detailed facts in order to evaluate the model performance.

Most importantly, Wen (2002) reveals that the two traditional findings hold
only at the business cycle frequencies (8 to 40 quarters); production is less volatile
than sales and inventory investment is countercyclical at very high frequencies (2
to 3 quarters).?’ In addition, Ramey and West (1997) suggest that the I/S ratio
is persistent, which is perhaps essentially equivalent to the slow adjustment of
inventories estimated by Blinder and Maccini (1991).2! Finally, Bils and Kahn
(2000) show that the I/S ratio is countercyclical.

In sum,

19Gee also Diamond (1982).

20In this connection, Hornstein (1998) states that inventory investments are important for
short-term output fluctuations (6 quarters or less), rather than business cycle fluctuations.

21 Their model is often called an (empirical) target inventory model (though they are typically
not micro-founded). See also Blanchard (1983) and West (1986).
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1.a Inventory investment is strongly countercyclical at very high frequencies (2

to 3 quarters).

1.b Inventory investment is procyclical at business cycle frequencies (8 to 40

quarters).
2.a Production is less volatile than sales at high frequencies.
2.b Production is more volatile than sales at business cycle frequencies.

3.a The inventory/sales ratio is persistent and the adjustment of inventories is

very slow.
3.b The inventory/sales ratio is countercyclical.

There are a couple of supplementary comments. First, facts 1b and 2b (and
hence traditional facts (i) and (ii)) are essentially equivalent to one another (see
Section 1.5.4). Second, while facts 1.a and 2.a support the production smoothing
motive model, 1.b and 2.b are consistent with the target inventory models (see

Wen (2002)).

Inventory Cycles

Inventory cycles are cyclical movements in the phase plan, wherein typical year-
on-year change (YoY) in inventories is on the z-axis, and YoY changes in pro-
duction/shipment are on the y-axis. This phenomenon is stable over time. The
conjugate pair of complex roots in VAR coefficients is detected in Chapter 1, which
is necessary for generating inventory cycles. Hence, in addition to the stylised facts
listed above, the objective of this theoretical research is to construct a DSGE model

that exhibits inventory cycles, as mentioned in the Introduction.

Other Empirical Issues

Negative Correlation Between I/S Ratio and Interest Rate: Bils and

Kahn (2000) report that the correlation between the real interest rate and I/S
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is negative (see Table 2 in Bils and Kahn (2000)). They compute the correlation
between expectations of real interest rate and I/S conditional on proper information
sets. Then they argue that there must be some mechanism such as countercyclical
markup to reconcile the FOC w.r.t. inventories to the data. Their finding is
puzzling because the target inventory models suggest that the optimal inventories
are decreasing in the interest rate (carrying cost). One possible way to understand
this finding is that they essentially estimate the monetary policy rule, rather than
the optimisation condition of inventories.?? Nonetheless, we .want to point out that

a serious puzzle exists in the inventory literature.

Inventories as Collateral: Related to the financial side of the economy, Kashyap
et al. (1994) and Gertler and Gilchrist (1994) empirically show that small firms,
whose access to financial markets is presumably limited, reduce their inventory
holdings more than large firms during recessions. Thus, they both conclude that,
for small firms, there is some form of interactions between inventories and finan-

cial/liquidity constraints.

Diminishing GDP Volatility and New Inventory Management: Since
mid 1980s, many industrialised countries have experienced a decline in the volatility
of their GDP and prices (though some authors, such as Comin and Philippon
(2005), find that the variability of output is increasing over time at the firm level).
In this regard, Kahn et al. (2002) argue that improved inventory management
(due to, say, new information technology) allows firms to protect themselves from
shocks. They show that the decline in output volatility is salient more in the
durable goéds sector than in others. Their claim is also numerically evaluated by

using our model.

22Though controlling the information set looks like using the two-stage regression, their infor-
mation set is presumably not independent of disturbances (i.e., the variables in the information
sets do not work as IVs). Suppose, for example, that the monetary authority has a rule that
it raises its policy interest rate when sales are strong and the inventory level is low. With no
remedy, if the estimation of the FOC is less stable than that of the monetary policy rule, such
computation essentially detects the monetary policy rule, rather than the FOC w.r.t. inventories.
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Flow of Goods

Flow of Goods
/\ C}%_ Q
HH <;:| F-firms M-ifms

Stockout Constraint

Note: F- and M-firms mean final and intermediate goods
producers, respectively. HH is household.

Figure 2.1: An illustration of the structure of the model economy.

2.3 Model Environment and Some Intuitions

This section illustrates the key features of the model, but the full derivation of the
most general model is relegated to the Appendix. First, the general setup of the
model economy is described, and then the optimisation problem of each agent is
defined.

Among other assumptions, the stockout constraint and the production chain
are essential — the model aims to analyse them in general equilibrium —, while
idiosyncratic demand shock, price posting rule, etc. are rather technical assump-
tions. The latter are necessary devices for modelling the non-Walrasian goods

markets; stockout implies that the goods markets do not clear.

2.3.1 Production Chain

There are three types of agents in the model: a representative household (HH),
intermediate goods producers (M-firms) and final goods producers (F-firms), all
of which optimise. HH works, consumes and invests. Production factors for both
types of firms are labour, capital and intermediate goods (M-goods). Final goods
(F-goods) are converted into consumption and investment goods (it is possible to
interpret F-firms as retailers). A continuum of M-firms produce mutually differenti-

ated M-goods (& la Dixit-Stiglitz monopolistic competition). A bundle of M-goods
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are necessary to produce not only F-goods, but also M-goods — production chain.

Looking at the Leontief’s input-output table, any two industries demand and
supply M-goods from and to one another. Because the input of M-goods is sub-
tracted from sales to compute value-added, sales are much larger than value-added
in reality. On the other hand, the stockout constraint implies that the target level
of inventories (or goods on shelf) is an increasing function of sales, not value-added.
Hence, without modelling the production chain, we underestimate the volume of
sales — and hence the volume of the target level of inventories.?

Note that if the M-goods markets are frictionless, then the model reduces to
a single production sector model; the stockout constraint — a friction in M-goods

markets — makes the production chain worth analysing.

Implications of Production Chain

Different from the standard RBC model, however, there is one additional pro-
duction factor — M-goods. When a shock hits the model economy, capital cannot
adjust quickly, as in the standard RBC model, because its evolution is governed by
the capital accumulation equation. The adjustment of the additional production
factor — M-goods — is also sluggish. This is because of the production chain; when
one M-firm wants to increase its supply, it must use other firms’ M-goods, which,
in turn, implies that other firms want to increase their production by using other
firms’ M-goods.?* In aggregate, to produce M-goods, M-firms must consume M-
goods! In sum, due to the production chain, the adjustment of inventories is very

sluggish in aggregate. In addition, this slow adjustment of M-goods inventories

23In this connection, consider the Leontief production function where the elasticity of substi-
tution between labour/capital and M-goods is zero 7,, = 0 (see the Appendix for notations).
Then the use of M-goods is proportional to the gross output: Y M = ZM"MM, /(1 - ¢y)(=
ZMnyM /4..), where ZM™ is the technology and ¢,, is the share parameter of value-added
component V;¥. The Leontief’s inverse matrix — the most important concept in the input-
output table analysis — shows the increase in the output of one sector due to a unit increase in
final demand. Noting that M-goods produced are used as inputs of F-firms and M-firms: Y;™
= MF + MM, YMJOME = (1— (1 —¢5,)) " = ¢71 > 1 in the symmetric steady state (in
our model, the matrix is actually 1 x 1). Hence, gross output fluctuates more when the share
of intermediate goods is larger. In principle, it is possible to simulate Leontief’s inverse matrix
analysis dynamically.

24To gain further intuition, see also the previous footnote.
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has several important implications for labour (see below for details).

2.3.2 Stockout Constraint

Our model explicitly analyses the effect of the stockout constraint, which was first
examined by Kahn (1987), and our study is a general equilibrium extension of his
market equilibrium analysis.

Our model considers the stockout constraint on the M-good markets, and de-
fines goods on shelf GoS; as the sum of unsold goods U; and (a portion of) today’s
production Y;¥. In terms of terminology, GoS; and U; are both (the level of)
"inventories," but the former is measured before the opening of M-goods markets,
while the latter is after the markets close.

The stockout constraint, the main friction in our model, means that no seller

can sell more products than the stocks on shelf GoS;. Hence,
St = min {GoS;, M7} (2.2)

where S; is the sales and M} is the potential demand for M-goods. The potential
demand is "potential" simply because it may not be realised due to stockout.?
There is a fundamental trade-off; stockout is costly because it means the loss of a
profitable sales opportunity, but unsold goods are also costly because they impose
a carrying cost (or Jorgenson’s user cost) of unsold goods. Note that the nature
of the carrying cost is the cost of financing inventories (plus capital and income
gain/loss of inventories) while the (marginal) opportunity cost of missing profitable
sales opportunity is measured in terms of the forgone profit margin in our model.

Hence, the target level of inventories is an increasing function of the potential
demand (which moves closely with sales), but is a decreasing function of the in-
terest rate (financing cost). When the potential demand is strong, for example, if

GoS; were kept unchanged, the stockout probability would be too high while the

251t may be possible to express the stockout constraint in the form of a non-negativity constraint
on GoS;, but adding the non-negativity constraint complicates the algebra.
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level of expected unsold goods would be too low; hence, firms have an incentive
to accumulate inventories, and vice versa. Note that choosing optimal GoS; is

equivalent to choosing optimal stockout probability.

Implications of Stockout Constraint

The stockout constraint can (at least potentially) explain the two inventory stylised
facts (see also Kahn (1987)). One of the goals of this chapter is to quantitatively
evaluate the effects of the stockout constraint in the DSGE framework.

The intuition is as follows. As mentioned above, under the stockout constraint,
the target level of inventory is an increasing function of the potential demand,
which shows movements quite similar to sales. Hence, inventory investment is
naturally procyclical (fact 1b). Furthermore, production must increase more than
sales because, otherwise, inventories decrease (fact 2b).

In addition, the I/S ratio is countercyclical because, during a recession, the
interest rate is low and thus the carrying cost is low as well, which stimulates

inventory holdings relative to sales.

Inventories as Buffers

It is important to note that the mechanism explained in the previous subsection
is expected to materialise at business cycle frequencies.

At very high frequencies, on the other hand, production smoothing can be
explained by the very basic convex cost function. Inventories work as buffers
against demand shocks. Even if production technology ensures constant returns
to scale (CRS), as long as the labour supply is convex (due to the concave utility
function), this mechanism works. Because firms do not want to adjust their pro-
duction quickly, inventories will decrease right after a positive demand shock, and
vice versa.

Note that both mechanisms — buffer stocks and stockout constraint — do not

contradict to one another, and they indeed coexist in our model. Moreover, of
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course, our model also incorporates the cost shock model. Our objective is not
to pick up one single "true" mechanism out of the three models, but to compare

them to evaluate their relative importance.

2.3.3 Structure of M-goods Markets

This subsection provides rather technical basis of the model. We recommend that

interested readers consult the Appendix. Here, only the key assumptions are listed:

e Due to idiosyncratic shocks, individual sellers face different levels of de-
mand. Both stockout and unsold goods exist, implying that the M-market

is non-Walrasian.

e Hence, we cannot use market clearing conditions as a pricing mechanism.
Instead, we assume the price posting by sellers, wherein buyers decide on

the trading quantities. Buyers’ FOCs are regarded as demand curves.

e Due to the price posting and CRS production function, our model falls in
the class of representative agent models in aggregate, despite the het-

erogeneity caused by stockout.

e M-goods are differentiated from each other (Dixit-Stiglitz’ monopolistic com-
petition). Two-stage budgeting is modified by the cost effect of losing

variety.

Note that it is possible to linearise the stockout constraint (2.2), because the
numbers of sellers and buyers with binding (2.2) are smooth functions in aggregate,
even though (2.2) is not a smooth function from the individual sellers’ viewpoint.
Also, note that F-firms play only the role of buyers, but M-firms behave as both

sellers and buyers.
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2.3.4 Household

The infinitely-lived representative household (HH) maximises its expected lifetime
utility.
max_ Ey [Z AU [Ci,1 - H{’]]

t=0

{CaaHsH}:lo
s.t.
C; + Bits1 = Re-1:Be—14 + WoHF + D¥*

The period utility U[., .] is time additive, is discounted by the subjective discount
factor 4°, and takes consumption C; and leisure 1 — H as arguments, where the
total time endowment is normalized to one and H[ is the labour supply.

The period budget constraint has cash outflow in the LHS and inflow in the
RHS. The LHS means that HH expense their resources to consumption or one-
period bonds B;;;1, while the RHS implies that cash inflows are the sum of bond
redemption R;_;:B;_1+, wage income W, H;? and dividends Dj".2¢

HH takes the real interest rate R;_;;, wage rate W; and D}® as givens. All the

first order conditions (FOCs) are quite standard.

Functional Form

Throughout this chapter, we assume the following functional form for the period

1—y l1-vp
() ()
+

1—v 11—,

utility.

U[Ct,l—H{’]=(1-¢)

where 1 is the weight for leisure, and v and =y, are the elasticities of intertemporal
substitutions of consumption and leisure, respectively. When 7, = 0, our utility

function reduces to Hansen’s indivisible labour model.

26 Alternatively, we can assume that there are infinitely many HHs which own both F- and
M-firms. In that case, dividends are assumed to be state contingent, and thus all household
enjoy the same level of cash inflow; as a result, whole HHs reduce to one sector in aggregate.
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2.3.5 Firms

We assume that quadratic adjustment costs apply to changing labour demand and

input of M-goods, as well as investment.

M-Firms’ Optimization Problem

As shown in the Appendix, we can exploit the slightly modified two-stage budgeting
(Jo QIPIMidj = QT PMM}M).

- " \ -

P;S, — W.HM? — IM — QF* BM MM
N M M Y My
max E, Zﬂt—t —Xuu | HY? — HM? | [H]

AT
t=0 0 2
—XMM ( MM — MM, ) /MM,

-

L \ 7 J

s.t.

Ut+1 = Ut - St + )/tM
S = min{Ut+thM,Mtp}
YA =y (R, M b 2]

KM, = Q-0u) KM +IM — xpx (I — S KM/ KM

The objective function says that M-firms maximise the present value (PV) of their
net cash inflows, which are discounted by the stochastic discount factor SDF; =
BIXE /AT = B (8U,/8C;) | (9Uy/8C,). The cash inflow is only the sales revenue
P;S;, where P is the sales price of producer i. While sales price is a choice vari-
able, the purchase price PM is given for all agents, though P} = PM for Vi in
equilibrium. On the other hand, cash outflow is composed of the wage payment
W,H? | which is wage rate W, times labour hours H?, the expenditure on invest-
ment goods IM (the price of F-goods is normalized to 1) and the expenditure on
M-goods Qtﬂ—TllPtM MM, where Q; is the number of available varieties, and P and

MM are the price and quantity indices of M-goods, respectively. In addition, the
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adjustment costs of labour and M-goods inputs X,z (HtM” - H,f‘f’l’)z JHM? and
Xarm (MM — Mt"fl)2 /MM, also constitute M-firms’ cash outflow. X,z and X
are both given parameters. These costs are evaluated in terms of F-goods. In sum,
the net cash inflow is the sales revenue minus expenditure on labour, investment
goods and M-goods, as well as the adjustment costs.

The first constraint is the evolution of unsold goods. The second represents
the stockout constraint. Sales S; is the minimum of GoS; or potential demand
M?. Note that M? is the sum of the baseline demand and idiosyncratic shock in
our notation. The third constraint shows the production function, in which ZM
is exogenous shocks. The production function takes capital KM, labour HM? and
M-goods MM, as production factors. The fourth constraint is the evolution of
capital, in which we assume a quadratic adjustment cost, where dps and x5 are

given parameters.

F-firms’ Optimization Problem

The optimization problem of F-firms is as follows.

— ¢ N

YF[KE, P, ME ;Y 25| - WoH[
~QF F1PMMF — IF

max E, ,Bt $ 2 >
§ X —XFH<HfP—H£p1) /H{®,

2
—XFM ( MF - ME, ) /M,

s.t.
K= (1—0p) K +I] — xpxc(If — 6rK])?/Kf

The objective function again says that firms maximize the PV of their net cash
inflows. The modified version of two-stage budgeting holds, as in the case of
M-firms. W;H/? and IF refer to labour costs and expense on investment, re-
spectively. The production of final goods Y;¥ takes capital K}, labour HtF P and

M-goods M[F , as production factors, where the superscript F' implies F-firms.
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XFH (HtF” - Hﬁ’})? JH® and xpp (MF — Mt’il)z/M,,I‘:1 denote the adjustment
costs of labour and M-goods, respectively, in which xzgy and x g, are given para-
meters.

The constraint represents the evolution of capital with the quadratic adjust-
ment cost. Note that, in this formulation, the level of capital in the steady state is
not affected by the parameter xzg, which governs the adjustment cost of invest-

ment.

Functional Form

We assume a CES production function with a Hicks-neutral technology shock Zf =

ZXn_ For K = F, M,

YtK = YK [KtKthKp’MtIf-DZ{{]

VKN e ME N\ e et
o (T e ()
ax l-ag
VK = gk = HEP

where ¢ is the share parameter of the value-added component and 7y is the elas-
ticity of substitution between the value-added component and M-goods as inputs.
The value-added component VX is assumed to be a Cobb-Douglas function, in

which the share of capital is ax.Parameters ¢y, nx and ax are exogenous.

2.4 Numerical Experiments

This section shows the calibration results. We implement the linearisation around
the non-stochastic steady state, and simulate the model to obtain the second mo-

ments and impulse response functions (IRFs).
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Table 2.1: Benchmarkparameters for modelsimulations

Symbol  Meaning Benchmarkvalue
B Subjective discountfactor (4% annualinterestrate) 1.04714
y Reciprocal of elasticity of intertemporalsubstitutionof consumption 1.00
YL Reciprocal of elasticity of intertemporalsubstitutionof labour 0.00
v Weight on leisurein period utility (Working hours= 1/3) 0.68
0 Elasticity of substitutionamong M-goods 10.0
v Range parameter of idiosyncratic shock (U/Ss = 2 monthg 0.40
v Share of today's outputthat can be sold in today's market 0.50
Ay, AF Capital sharein value added 0.35
s NF Elasticity of substitutionbtw M-goods and value-added compo. 0.30
3% Weight on value-added compo. of M-firms 0.50
oF Weight on value-added compo. of F-firms 0.05
Sum»> OF Depreciation rate of capital (Capital/GDP = 10) 0.015
xux, xrx Coefficient on quadratic adjustmentcost of investment 0.10
xma, xrn  Coefficient on quadratic adjustmentcost of labour 1.50
xmm, Xru  Coefficient on quadratic adjustmentcost of M-goods use 1.00
Phin AR (1) coefficient of Hicks-neutraltechnologyshock to M-firms 0.75
PFn AR(1) coefficient of Hicks-neutraltechnologyshock to F-firms 0.85
Table 2.2: Endogenousvariables in the steady state.
Symbol  Meaning Steady state value
SDF,; Stochastic discountfactor (= real interestrate) 0.04
W, Wage rate 1.76
pM M-goods price 0.9996
0O Pr{cannotbuy] (= numberof available varieties) 0.999
Pr, Pr[stockouf} 0.074
AM Marginal cost of M-goods production (shadowprice of M-goods)  0.89
C, Consumption 0.83
HY Laboursupply(= 1 - leisure= HY + HY) 0.28
Sy Sales of M-goods 1.79
MM, MF  Useof M-goods as productionfactors 0.86, 0.93
W Gross outputof M-goods (= MY, + M) 1.79
ol Gross outputof F-goods (= C,+ M+ I ) 0.98
1% (Notional) value-added in M-firms (= KM ° gM (-%)) 0.93
v (Notiona) value-added in F-firms (= k¥ 7 gf (™) 0.053
Hi"’, Hf 7 Labourinputfor production 0.27, 0.015
M IF Investment 0.14, 0.008
KM, Kf  Capital at the beginningof period ¢ 9.37,0.53
U, UnsoldM-goods at the beginningof period ¢ 1.25
zH Preference shock 1.00
ZMn 7" Hicks-neutraltechnologyshockin production function 1.00, 1.00

98



2.4.1 Parameter Selection

To select parameters, we do not employ any optimal selection criteria. Rather, for
the sake of comparability, we follow the convention in the RBC literature. For the
parameters that are specific to our model, we select values to match some steady
state values to the data. The difficulty, however, is that we have more than one
parameter that governs one steady state value: v vs. v for the steady state I/S
ratio. In addition, there are six coefficients for the adjustment costs, which are not
pinned down by the first moments. Hence, perhaps one possible criticism is that

our model has too many degrees of freedom in choosing parameters.

RBC Parameters

For exact values of the RBC parameters, please see Table 2.1. For the elasticity of
substitution among varieties, we borrow the number that is commonly used in the
sticky price model (6 = 10). We select values for AR(1) coefficients for technology
shocks to match the autocorrelation function of GDP (i.e., Corr {GDP,,GDP,_s}
~ (). Though these values are smaller than in the standard RBC model, per-
haps this is merely due to the existence of adjustment costs and does not signify

endogenous persistence.

Parameters Specific to the Model

Share Parameter of Value-Added: For the share parameter of the (notional)
value-added in production functions, we set ¢,, = 0.5 so that the share of M-goods
MM/YM in the M-firms is roughly 45%; the value-added is roughly 55% of sales.
This number is taken from the Japanese and U.S. Leontief’s input-output tables.
Also, we set ¢ = 0.05 so that F-firms act as if they were the retailers who simply
convert M-goods into F-goods.

Note that the notional value-added V,¥ and V,F, which appear in the defini-
tions of our production functions, are not consistent with the statistical concept of

GDP. For example, GDPM = YM — PMMM, for M-firms. Hence, note that the
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terminology "GDP" in this chapter means gross output minus the use of M-goods.
Also, note that we assume the Laspeyres price index so that goods are evaluated

by the price of the steady state (base year).

Elasticity of Substitution Between Value-Added and Input M-goods:
For the elasticity of substitution between the notional value-added component and
intermediate goods nx (K = F, M), we do not have much guidance. Rotemberg
and Woodford (1996) used a value of 0.7, while Bruno (1984) suggested 0.3 to

0.4.%" Because, presumably, the substitution should be low, we use 0.3.

Magnitude of Idiosyncratic Shock and Proportion of Output that Can
be Sold in Today’s Markets: There are two parameters that affect the steady
state I/S ratio: the upper and lower supports of the uniform idiosyncratic shock
v/2, and the portion of today’s products that can be sold in today’s market v. In
the data, the I/S ratio is roughly 2 months (0.67 quarter).?

On one hand, if we set v = 1, as in most firm/industry level analyses, inventories
have no significant effect. This is because we assume that production is decided
after observing all of the aggregate shock. Hence, if M-goods firms can sell all of
their products in the current period market, they, as a collective agent, can respond
to aggregate shocks almost fully. Certainly, inventories still vary over time as the
interest rate changes over time, and so does the carrying cost. However, in a sense,
inventories merely follow other key variables in this case; hence, the model behaves
very similarly to the standard RBC model. On the other hand, if we set v = 0
(i.e., GoS; = U}), it must be the case that U, > S,,, which clearly contradicts
the data. If we could know how well firms responded to contemporary aggregate
shocks in the real world, we could pin down the value of v.

Our strategy is as follows. We first naively set v = 1/2, as simply the midpoint

between the two extremes, and then choose v = 0.4 so that the I/S in the model

2"Basu (1996) regards Bruno’s survey as an upper bound.
28See Ramey and West (1997), for example.
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economy is 2 months.

Convenience Yield on Inventories: Stockout probability, which is roughly
5% to 9% in the data according to Bils (2004), is mainly affected by the subjective
discount factor B elasticity of substitution among varieties # and convenience yield
c;. Essentially, any parameters that determine the opportunity cost of holding
inventories affect the steady state stockout probability. If the opportunity cost of
lost sales is high, the optimal stockout probability is lower. Given 8 = 10, we select

c1 = 0.00 (we assume no convenience yield), so that Pr,, = 7.4%.

Adjustment Costs: We assume quadratic adjustment costs, which are rather
standard in DSGE research. Specifically, we set xprx = Xrx = 0.1, XM = Xre =

1-5 a.nd XMM =XrM = 1.0.

2.4.2 Numerical Results

A shock to F-firms’ production function (F-shock) can be regarded as a pure de-
mand shock for M-firms, while a shock to M-firms’ production function (M-shock)
works as a demand shock and a supply shock from the viewpoint of individual
M-firms.

In this subsection, all the simulated data are HP-filtered, unless otherwise men-
tioned. Also, "relative volatilities" are standard deviations relative to that of total
GDP or M-firms’ GDP. Similarly, "correlations" are correlations with total GDP
or M-firms’ GDP.

Second Moments

Table 2.3 on page 102 summarises the second moments generated by the model.
The results show that, compared to the RBC model, our model considerably de-
creases the correlation between labour productivity and hours worked, and it sat-

isfies the two stylised inventory facts.
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Table 2.3: Simulation results (comparison to the standard RBC model).

Cited from Cooley and Prescott (1995)
Consum Investm d(invent Output/  Com{Producti

Output Sales Hours

ption ent ories) Hours vity, Hours}
Standard RBC Model
relatie s.d. 171.35 - 0.57 0.24 4.41 - 0.45 almost 1
corr 1.00 - 0.99 0.84 0.99 - 0.98
Data
relative s.d. 1.72 0.717 0.92 0.50 479 0.271* 0.52 -0.26*
comr 1.00 0.94* 0.86 0.83 0.91 0.658" 0.41

Notes: "relative s.d." means s.d. relative to s.d. of output. ltalics are s.d., not relative s.d.
"com” means cormelation with GDP.
A indicates that numbers are taken from Khan & Thomas (2004)
* indicates that numbers are taken from Gali (1999).

Stockout Model (elasticity btw Value-add & M-goods = 0.3)
Consum Investm d(invent Output/  Corr{Producti

Output Sales Hours

ption ent ories) Hours vity, Hours}
Technology shock to M-firms: rho = 0.75, sigma = 0.7%
relative s.d. 2.83 0.77 0.99 0.18 4.64 0.29 0.36 -0.13
corr 1.00 0.81 0.93 0.44 0.53 0.62 0.23
of which M-firns
relative s.d. 1.04 0.77 0.96 4.25 0.28 0.36 -0.06
corr 1.00 0.90 0.93 0.51 0.65 0.30
Technology shock to F-firms: rho = 0.85, sigma = 0.7%
relative s.d. 1.57 0.55 0.87 0.20 4.52 0.15 0.26 0.42
corr 1.00 0.96 0.97 0.73 0.99 0.01 0.63
of which M-firms
relative s.d. 0.53 0.77 1.63 8.46 0.28 0.67 -0.95
corr 0.94 0.99 0.98 0.96 0.31 -0.88

Notes: For "of which M-frims," "relative s.d." and "cor™ show s.d. relative to that of
M-firms' output and correlation with M-firns' output, respectively.
Relative s.d. of M-firms' output shows s.d. of M-firms’ output relative to that of
total output. See also notes abowe.
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Correlation of Inventory Investment with GDP: Inventory investment is
positively correlated with M-firms’ GDP for both shocks. With M-shocks, it is not
surprising to observe this positive correlation (0.65); this is exactly what the cost
shock model expects. However, it is more important to find a positive correlation
(0.31) even with a pure demand shock (see the next subsection for intuition); the
stockout model also can generate procyclical inventory investment, though the
correlation is lower than data (0.66)

The near-zero correlation between inventory investment and total GDP (M-
firms’ GDP plus F-firms’ GDP) with F-shocks is the artefact of the model as-
sumptions because the F-shock directly increases the F-firms’ value-added, but it
decreases M-firms’ inventories. Indeed, if we use preference shocks instead of the
F-shocks, the correlation is even higher. However, preference shocks deteriorate

other dimensions of the model performance, so we do not choose this option.

Relative Volatility of Sales: Sales are less volatile than output for both types
of shocks. Moreover, the model performs quantitatively very well in this respect;
the standard deviation of sales relative to that of M-firms’ GDP is 0.77 for both F-
and M- shocks in our model, while this value is 0.71 in the data. With M-shocks,
this is not surprising, because the source of the shock lies on the production side,
as the cost shock models predict. However, it is important to note that, even when
the source of the shock lies on the demand side, production is more volatile than

sales.

Intuition: For F-shocks, the target inventory models explain the mechanism
behind two observations: (i) procyclical inventory investment and (ii) output more
volatile than sales, as follows. When a positive demand shock hits M-firms, of
course, their inventories initially decline, simply because buyers take away M-
goods from the shelf of M-firms. However, keeping such a low level of inventories
is costly, because it leads to a too high stockout probability (in the stockout model)

and because of an inefficient sales activity without enough samples in showcases
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(in the inventories as sales facility model). The common prediction among the
target inventory models is that the target level of inventories is an increasing
function of demand/sales. Hence, with a positive demand shock, the target level
of inventories is higher than usual and, as a result, M-firms have an incentive not
only to replenish their declined inventories but also to accumulate more inventories
to meet the higher demand. However, as the law of motion of inventories (2.7})
shows,

U1 —U, = YM - 5,

the output of M-goods Y; must increase more than the sales of M-goods S; to
build up inventories Uy, suggesting that (i) Y; increase more volatile than S; and
(i) Uz — U, is positive when Y™ and S; increase. Indeed, this chapter confirms

this mechanism quantitatively in the DSGE setting.

Relative Volatilities of Consumption and Investment: For both shocks,
our model inherits the basic nature of the standard RBC model. That is, the
relative volatility of consumption is too low, while that of investment roughly
matches the data. This is not surprising since our model is an extension of the
standard RBC model. The correlation of investment and value-added is too low
for the M-shock (0.53), though. The reason for this is that an increase in M-shock,
opposed to F-shock, raises the price of investment goods (F-goods), relative to

M-goods price.

Persistence of I/S Ratio: According to Ramey and West (1997), the first
and second autocorrelations of the inventory-sales relationship (akin to I/S ratio)
range from 0.88 to 0.97 and 0.80 to 0.91, respectively. This persistency is regarded
as another expression of the slow adjustment of inventories. In our model, the
first and second autocorrelations of the I/S ratio are 0.88 and 0.61 for F-shocks

and 0.71 and 0.25 for M-shocks, respectively.?? The I/S ratios in our model are

29These values are defined as U;/S;, where S, is the M-firms’ sales. The results are almost the
same if we define the I/S ratio as unsold goods divided by total sales.
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Figure 2.2: Autocorrelation functions. "GDPtot" and "Unsl/Sal" mean gross
output minus the use of M-goods, and unsold goods divided by sales (I/S ratio),
respectively.

considerably persistent (see Figure 2.2), though they are somewhat lower than
the data. Moreover, in our model the I/S ratio is countercyclical because of the
procyclical interest rate.

The key mechanism behind this is the production chain. Suppose a positive
demand shock hits an M-firm. This firm faces a decrease in its inventories and
expects strong future sales, so it wants to replenish its inventories; much more,
it raises its inventory level to catch up with the new higher level of sales. As a
consequence, it has to increase its production and, hence, the use of production
factors, including M-goods. However, this, in turn, implies that the demands (and
hence the sales) of other M-firms increase, and that their inventories are reduced.
In other words, the production chain implies that one firm’s replenishment of in-
ventories reduces other firms’ inventories. Therefore, the adjustment of inventories
is slow in aggregate. It is important to note that M-goods price increase sharply
after a positive F-shock, while M-goods price does not decrease very much after
a positive M-shock. Note that unit labour cost (wage/labour productivity) de-
creases after a positive M-shock (= a negative cost shock), implying that M-goods
becomes expensive in relative term.

In this regard, our model can suggest a very simple reason that reduced form
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target inventory models estimate an implausibly slow adjustment speed; it is indeed
slow! Certainly, Blinder and Maccini (1991) persuasively argue that "One major
difficulty with stock-adjustment models is that adjustment speeds generally turn
out to be extremely low; the estimated ) is often less than 10 percent per month.
This is implausible when even the widest swings in inventory stocks amount to no
more than a few days of production."3® Reiterating our finding, the inventories’
adjustment is slow in aggregate due to production chain, although it seems to be
implausible from the viewpoint of individual firms. Partial equilibrium analyses
may miss the general equilibrium feedback through volatile M-prices; during a
boom, high M-prices discourage M-firms from replenishing their inventories quickly

by producing more.

Working Hours: In our model, working hours are more volatile than in the
standard RBC model. As a result, the correlation between hours and labour pro-
ductivity is lower than the standard RBC model. If we focus on M-firms, this
correlation is —0.06 and —0.95 with M- and F-shocks, respectively.

One of the major drawbacks of the standard RBC model is that it counter-
factually exhibits an almost perfect correlation between labour productivity and
working hours. Although one way to overcome this caveat is to add demand shocks
(see Christiano and Eichenbaum (1992) for government expenditure, and Ben-
civenga (1992) for preference shocks), such demand shock models are criticized by
Gali (1999), in which a structural VAR shows that the correlation between labour
productivity and hours is negative for technology shocks, but positive for other
shocks. Gali (1999) suggested that a dynamic sticky price model with a labour
effort model can, at least potentially, generate a negative correlation. However, our
model improves the model performance in this respect even without price rigidity.

The mechanism that generates volatile working hours in our model is the slow

adjustment of inventories; due to the production chain, one firm’s replenishment

30Gee Blinder and Maccini (1991, p.81).
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Table 2.4: Model behaviour at different frequency domains.

High Frequencies (2-3quaters) Business Cycle Frequencies (8-40quaters)
Data
Var(sales)/Var(output) Cor(d(inventory), Var(sales)NVar(output) Cor(d(inventory), sales)
1.10 -0.43 0.72 0.58
Model
Var(sales)/Var(output) Cor(d(inventory), Var(sales)NVar(output) Cor(d(inventory), sales)

tech shock to M-firms: rho = 0.75, sigma = 0.7%
0.18 (0.32) 0.21 (0.36) 0.83 (0.82) 0.60 (0.29)

tech shock to F-firms: rho = 0.85, sigma = 0.7%
0.36 (1.02) 0.97 (-0.92) 0.56 (0.76) 0.62 (0.63)

Note: Data is OECD awverage (cited from Wen (2003)). Parentheses indicate for M-firms.

of inventories reduces other firms’ inventories in aggregate. The right panels of
Figures 2.3 and 2.4 show the IRFs of production factors. It is clear that, for
both types of shocks, the increase in M-goods use is less volatile than M-goods
production and labour input compensates such sluggish adjustment of M-goods.
Note that, because an increase in technology directly contributes to the increase
in output, the increase in labour is roughly 50 to 60% of that in output (see Table
2.3 on page 102) in the standard RBC model.

The overly low volatility of working hours predicted by the standard RBC
model is closely related to the overly high correlation between labour productivity
and output. For example, in the standard RBC model, the increase in working
hours during a boom is not large relative to the increase in output, and hence
output/hours increases during a boom. However, in our model, hours increase
enough to decrease output/hours, and hence corr{output/labour, output} becomes

negative.

Frequency Analysis

This subsection exploits the band-pass filter developed by Baxter and King (1999)
to the simulated data. For the summary, see Table 2.4. At business cycle frequen-
cies (8-40 quarters), both shocks perform quantitatively well.

At high frequencies (2-3 quarters) the results with M-shocks fail to mimic the
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Figure 2.3: Selected impulse response functions to a positive demand shock (a
shock to F-firms’ production).
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Figure 2.4: Selected impulse response functions to a positive supply shock (a shock
to M-firms’ production).

data. On the other hand, F-shocks generate results qualitatively similar to the
data, especially for M-firms; inventory investment is negatively correlated to sales
and sales is more volatile than output.

Intuitively, as the production smoothing model predicts, inventories work as
buffers at high frequencies. Due to the convex cost function, it is costly to change
the production level very frequently; hence firms use inventories as buffers to pre-

vent their production from wildly varying over time.
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Figure 2.5: A sample path in phase diagrams generated by shocks to F-firms’
production. Simulated data are converted to the year-on-year (YoY) growth rate
in the right panel.
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Figure 2.6: A sample path in phase diagrams generated by shocks to M-firms
production. Simulated data are converted to the year-on-year (YoY) growth rate
in the right panel.

Impulse Response Functions and Inventory Cycles

Our model has two (or one, depending on parameters) pairs of conjugate complex
roots whose absolute values are less than one. Because no impulse response func-
tions exhibit clear oscillations (see Figures 2.3 and 2.4), we can say that our model
shows over-damped oscillations. Roughly speaking, in our model, there exist a
potential mechanism to yield cycles, but it is not strong enough to generate sine
waves IRFs.

However, in sample paths, our model yields cycles that are quite similar to the
observed inventory cycles (see Figures 2.5 and 2.6), although the shape of cycle
is not clear with F-shocks. The typical length of cycles (if they exist) seems to

be around 15 to 19 quarters, which is somewhat longer than Kitchin cycles (13
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Figure 2.7: Sample paths of selected variables. Left panel shows the actual data
(Japanese industrial production); middle and right panels show samples paths
generated by F- and M-shocks, respectively.

quarters), is close to the Japanese post-war average (16.8 quarters), and is shorter
than the U.S. post-war average (21 quarters).31 Importantly, the sample paths
with M-shocks show a time lag between peaks and bottoms of production/sales and
unsold goods (inventories). Such a time lag, perhaps caused by the slow adjustment
of inventories, is called a phase shift. The phase shift between production (or sales)

and inventories is important to generate inventory cycles.

Changing Magnitude of Friction

Kahn et al. (2002) and McConnell and Perez-Quiros (2000) argue that the decline
in GDP volatility is due to an improvement in inventory management technology.
To test this idea, we simulate the model for various values of v and v. We interpret
an improvement in inventory management as a lower value of v (smaller magnitude
of idiosyncratic shock) or a higher value of v (a larger portion of today’s output
that can be sold in today’s market). The results are summarised in Figures 2.8
and 2.9.

Changing the magnitude of idiosyncratic shock v does not significantly change
the volatility of GDP in either case (see the lower-right panels). Interestingly, an
increase in the portion of today’s products that can be sold in today’s market

v increases, rather than decreases, GDP volatility for F-shocks, as opposed to

31For Japanese business cycles, the number is the average of all business cycles See Economic
and Social Research Insutitute, Cabinet Office, Government of Japan (2004) and NBER (n.d.).
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Figure 2.8: Effects of changing variation in idiosyncratic shocks (with demand
shocks); lower v (x-axis) implies lower goods market frictions. The source of ag-
gregate shock is shocks to F-firms.
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Figure 2.9: Effects of changing variation in idiosyncratic shock (with supply
shocks); lower v (x-axis) implies lower goods market frictions. The source of ag-
gregate shock is shocks to M-firms.
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their conjecture. This is perhaps because inventories are a stabilising factor at
very high frequencies, as shown above. The more quickly M-firms can react to
today’s demand shocks, the more quickly those shocks are transmitted to M-firms’
production.

The I/S ratio decreases when either v goes down or v goes up in our experi-
ments. This supports Kahn et al. (2002), in the sense that they regard a declining
I/S ratio as evidence for their hypothesis. However, judging from the results of
other experiments, it seems that the observed decline in the durable goods sector’s
I/S ratio is not the cause, rather than the result, of the decline in GDP volatility;
the less volatile an economy is, the weaker is firms’ incentive to hold inventories
to hedge their loss of sales opportunities.

Overall, our model shows a negative implication for the hypothesis that an
improvement in inventory management is the main reason for the decline in GDP
volatility. The key intuition is that inventories are destabilising factors at busi-
ness cycle frequencies but stabilising factors at very high frequencies; hence, it is

uncertain whether holding lower inventories implies a more stable economy.

2.5 Conclusion

This chapter investigates a fully rational dynamic stochastic general equilibrium
model with a stockout constraint and a production chain. Here, the stockout
constraint simply means that no seller can sell more goods than goods than she
holds on the shelf (i.e., inventories), even if she faces a strong demand. The key
trade-off in this market friction is that a stockout is costly because it means the
loss of a profitable sales opportunity, while having excess inventories is also costly
because it imposes a too high carrying cost (financing cost). The production chain
means that a firm’s product is used as an input by other firms. Our model has
two types of firms: final goods producers and intermediate goods producers, both
of which take a basket of intermediate goods as production factors. The model
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constructed in this chapter is in the class of representative agent models without
any price rigidity; however, the intermediate goods market is non-Walrasian.

The model quantitatively satisfies stylised inventory facts. On one hand, if the
source of the shock lies on the supply side, as the cost shock model suggests, a pos-
itive technology shock pushes up production, and such an increase in production
is absorbed by an increase in inventories; sales do not increase very much. One
the other hand, if the source of the shock lies on the demand side, as the target
inventory models predict, a positive demand shock increases sales, and inventories
wnitially decrease. Hence, if we limit our focus only to very high frequency behav-
iours, inventories work as buffers; the production smoothing model is alive at very
high frequencies. However, due to stronger demand, the target level of inventories
also increases. In subsequent periods, production must increase more than sales,
because firms must not only replenish decreased inventories but also accumulate
inventories to meet the stronger demand. Because inventories increase as demand
increases, inventory investment is procyclical at business cycle frequencies. In this
sense, our model supports three leading inventory models at firm/industry level
analyses: cost shock, production smoothing and target inventory models.

In addition, due to the production chain, adjustment of inventories is quite
slow. When one firm want to replenish its inventories, it must increase its produc-
tion. However, such an increase in production must use other firms’ inventories as
production factors. Hence, the adjustment of inventories is slow in aggregate; if the
change in intermediate goods price is ignored (i.e., the general equilibrium feed-
back through price is ignored), it may seem easy to adjust inventory level quickly;
but the price of intermediate goods increases wildly, which discourages firms from
using them.

The most important finding in this chapter is that the stockout constraint and
production chain generate a low correlation between labour productivity and out-
put. The key intuition behind this is the slow adjustment of inventories. When

a positive shock hits the model economy, firms cannot increase their use of in-
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termediate goods because inventories of intermediate goods cannot adjust swiftly
in aggregate; as a result, intermediate goods price increases. Thus, firms are
encouraged to substitute their intermediate goods input with more labour input
(capital cannot adjust as in the standard RBC model). Although the standard
RBC model predicts the low volatility of working hours, our model yields working
hours volatile enough to match the data. When output increases, because working
hours increase considerably, labour productivity (i.e., output/hours) does not in-
crease very much. Compared to the standard RBC model, the stockout constraint
and production chain improve the behaviour of labour without deteriorating other

properties of the model.
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Appendices for Chapter 2

The full derivation is shown in the following. The equation numbers indicated in
the MATLAB codes correspond exactly to the equation numbers in the Appendix.

We use the word "number" instead of "measure™ unless there is a risk of confusion.

2.A Structure of M-goods Markets

This subsection provides the details of technical assumptions.

2.A.1 Agents Distribute over [0,1] x [0,1] (C R?)

Unlike the standard monopolistic competition models, we assume that agents dis-
tribute over a rectangle rather than over a line segment. Specifically, there is a
continuum of markets over [0,1], and there is a continuum of sellers distributed
over [0, 1] in each market. In different markets, different varieties (types) of goods
are traded; in each market, all sellers sell the same variety of goods (there are
one-to-one correspondences between markets and varieties of goods).

In a discrete example, there are, say, 1,000 markets and 1,000 sellers in each
market, yielding a total of 1,000,000 sellers. If all sellers behave as buyers at the
same time (production chain), then there are 1,000,000 buyers as well. If each
buyer visits all markets, then 1,000,000 buyers appear in every market.32 Thus,
each seller in a market meets (on average) 1,000 buyers.*® Note that, though the
discrete example is often used in the sequel, the formal derivation is based on the

continuum of agents.

32Note that this exposition ignores F-firms. If F-firms are taken into account as buyers, then
there is a total of 2,000,000 buyers in each market. In the continuous model, the measure of
sellers (M-firms) is 1 (in R2), and the measure of buyers (M-firms plus F-firms) is 2 (in R?).

33Note that in a continuous setting, this means that each seller meets a positive measure of
buyers.
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Figure 2.10: An illustration of the market structure. Buyers do not distribute
evenly over sellers.

2.A.2 Idiosyncratic Shock

Next, we assume that buyers do not distribute evenly in each market. That is,
some sellers meet many buyers while others meet only a few in every market. The
uncertainty in the number of buyers is called an idiosyncratic shock. A simple
example is illustrated in Figure 2.10. It should be clear that the idiosyncratic
shock causes the mismatch between buyers and sellers in every market.

From the sellers’ viewpoint, if a seller meets more buyers than GoS;/M;, where
M? be the baseline demand (demand per buyer), she faces a stockout; she sells
all of goods on her shelf but she loses some of her customers due to the stockout.
Otherwise, she has unsold goods U;;; which she carries to the next period. There
is a key trade-off between stockout and unsold goods. Having too low GoS; leads
to too high a stockout probability (loss of sales opportunity), but having too high
GoS; leads to too high a carrying cost of U;.

In each market, one specific type (variety) of goods are traded. Thus, from
the buyers’ viewpoint, some buyers, who visit a busy seller in a market, cannot
buy that specific type of goods; because we assume imperfect substitution among

varieties, these buyers experience a utility cost.>* Buyers determine M} taking

34We assume that, once buyers visit a shop, they cannot visit other shops in the same market.
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into account such losses in variety.

Uniform Distribution

We assume that the idiosyncratic demand shock follows a uniform distribution.3®
More specifically, we assume that the potential demand for a seller M} is the sum
of the baseline demand M? (= demand per buyer) and the idiosyncratic shock 7,3
where M stands for M-goods.
Mp=M+e, ~U[-22]
2’2
where v is the parameter that governs the support, and the variance (v2/12) of

the distribution of ef.

Derivation of Key Equations

The easiest way to understand the following results is by examining Figure 2.11.
The two panels in the upper half show how to derive the lower right panel; the
downward sloping lines in the three panels are all identical, and represent potential
demand MY?. If the number of buyers is normalised to one, the area under this line
(ie., (A) and (B)) is equal to baseline demand M}.

In the lower left panel, the downward sloping line M! shows how buyers dis-
tribute over sellers. Each point on the z-axis represents a seller, and the height
of the downward sloping line at each point on the z-axis shows the number of
buyers who meet that seller. Note that our assumptions about CRS and price
posting (see below) guarantee that all sellers hold the same level of GoS;, which

is, thus, represented by the horizontal line in the lower left panel. Hence, area

This assumption is necessary to make the idiosyncratic shock meaningful; otherwise, all buyers
will buy each variety of goods in the end, reducing our M-goods markets to Walrasian markets.

35This assumption is only for computational simplicity. A simple urn-ball analysis concludes
the degenerate distribution; if buyers visit sellers randomly, all sellers meet an equal number
(measure) of buyers.

361t could be more natural to assume that e} is the shock on the number of buyers, so that
MP = M}(Ns + €}) where N, is the average number of buyers. However, it turns out that the
following computation becomes extremely messy with this specification.
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Interpretation of the lower left panel:

Inventories *In each market all sellers sit somewhere on the

(© *axis. Each seller does not know where she sits in

advance. Her sales are given by downward sloping
line. The Horizontal line represents goods on shelf.
Potential Demand * Pr[stockout] is length btwarrows.

(slope = -v) *Aggregate sales is the area of (B).
*Unsold goods is the area of (C).

*PrfCan Buy] is (B)/(A+B).

Figure 2.11: Derivation of the stockout probability and unsold goods.

(A) implies that potential demand M{f exceeds GoSt, and thus the area shows
unsatisfied (potential) demand. From areas (4) and (B), we can compute the
probability that, in the market for a type of goods, a buyer can buy that type of
good: Pr [a buyer can buy a good] = Qt = (B)/((A) + (B)).

From the viewpoint of each seller, she does not know in advance where her
position is on the x-axis in the lower left panel before the realisation of the idio-
syncratic shock. Hence, the probability that a seller faces a stockout is represented
by the line segment between the two arrows in the lower left panel.

Area (C) implies that GoSt exceeds Mf; such excess goods are carried to
the next period as unsold goods Ur. However, a portion of today’s production
(I —v) ¥tM is not shown in today’s market. Hence, Ur equals the area of (C)
plus (1 —v) YtM. Also, the area of (B) shows the aggregate sales S, which equals

E [sales of each seller].
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Key Equations

Therefore, primary school arithmetic yields the following results:

Mg - GOSt 1

Pr [a seller faces stockout] = Pr, = — ) *t3 (2.3a)
i _ 2
aggregate sales of market = S; = GoS; — % {Mt—y—qgé,f — %}
= F[sales of a seller] (2.3b)
i _ 2
2 v 2
= Ut+1 (2.30)
1 v (M} —GoS, 1)
Pr [a buyer can buy a good] = s {GoSt —3 {# - 5} }
= @ (2.3d)

Several comments are in order. First, neither M? nor e} appears in these ex-
pressions, which implies that the idiosyncratic shocks in all markets average out.
Second, because there is a continuum of markets with a unit measure, Pr[a buyer
can buy a good| is equal to Q;, the measure (number) of the available varieties for
each buyer. If goods are considered collectively, a low Q; deteriorates the quality
of goods due to imperfect substitution among varieties (see below for an intuitive
example). Third, because there is a continuum of sellers in each market with a
unit measure, and because the measure of market is unity, F [sales of a seller] is
equal to the aggregate sales S;. Fourth, regardless of the distribution assumption,

the following relationship must hold:

Ut+1 = GOSt + (1 — U) Y;M - St, GOSt = Ut + ’UYTM

Qt = St/Mti

where v is the portion of today’s output that can be sold in today’s market. Note
that we assume that only a portion of today’s output can be sold in today’s market.

Finally, in this connection, the first term of (2.3c) represents the unsold goods that
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cannot be sold due to the idiosyncratic shock (i.e., the area of (C)), even though
they are on the shelf, and the second term represents goods that are not on sale

in today’s market.

2.A.3 Miscellaneous Comments for Assumptions

The idiosyncratic shock is necessary to deal with a kinked constraint; the stockout
constraint S; = min {GoS;, M7’} is not smooth and non-differentiable. However,
E [S;] becomes smooth by adding idiosyncratic shock from the viewpoint of each
agent. This technique to smooth non-smooth constraints by adding shocks is not
new; it is commonly used in analyses of voting behaviour, and was first used for
inventory analysis by Kahn (1987). However, this chapter shows a nice interpre-
tation: inventories as options to sell (see the next subsection for details).

The large number of agents is necessary for aggregation. In terms of sellers,
due to the law of large numbers (LLN), aggregate sales equal the expected sales
(S; = E[S:]), which is a smooth function. Hence, we can linearise aggregate S;.
In terms of buyers, @; (the number of available varieties = probability of facing
stockout) is also a smooth function, because there are infinitely many varieties
(LLN).

It is also important to note that we need to confine our focus to the constant
returns to scale (CRS) for aggregation. Individual M-firms (sellers) have different
levels of U, carried from the previous period, while the target level of goods on
shelf GoS;(= U; +vYM) is the same for all M-firms, meaning that Y; varies among
M-firms. Hence, if production technology is not CRS, it is not possible to aggregate

individual productions.

Timing Assumption

There is another assumption; firms cannot use M-goods they purchase today for
today’s production. This assumption is logically necessary, especially for M-firms,

because M-firms must produce before M-markets open, while they can use M-goods
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only after M-markets close.3”

2.A.4 DMonopolistic Competition and Cost of Losing Vari-
eties
Imperfect Competition

In addition, we assume monopolistic competition & la Dixit and Stiglitz (1977).
There are two reasons not to assume perfect substitution among varieties. First,
if goods were perfect substitutes for each other, buyers would not need to visit all
markets. Second, because perfect substitution implies zero profit, no seller wants
to hold inventories; sellers earn zero profit from their sales if they can sell their
inventories, while they suffer from a carrying cost of unsold goods if they cannot.

In our environment, two-stage budgeting with quantity and price indices still
holds. However, as mentioned above, because the number of available varieties
fluctuates over time, we need to consider the cost effect of losing varieties.3®

The intuition of the utility cost is as follows. Let us consider a familiar example,
say, ice cream. Suppose a consumer prefers vanilla and chocolate ice creams equally,
but vanilla and chocolate ice creams are not perfect substitutes for one another.
Also suppose that their costs are the same. Then, one vanilla and one chocolate give
higher utility than two vanillas, because they are differentiated from one another.
However, the costs of vanilla + vanilla a.nd vanilla + chocolate are the same. Thus,
given the level of expenditures, having fewer varieties provides lower utility, and
vice versa. Or, equivalently, with fewer varieties available, the pecuniary cost of

achieving a certain level of utility is higher.

37Certainly, it is possible to assume that F-firms (but not M-firms) produce, say, in the second
half of each period, while M-firms produce in the first half. However, it is a bit cumbersome if
the timing assumptions differ between F- and M-firms.

38Interestingly, one of the main motivations of Dixit and Stiglitz Dixit and Stiglitz (1977) is to
analyse firms’ entry and exit, explicitly addressing the effect of a changing number of firms (or
varieties, in our language).
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Number of Available Varieties

The cost effect of losing varieties is not, in itself, of interest, and quantitatively
its effect seems very weak under the plausible parameter range. However, it is a
logical consequence of the combination of Dixit-Stiglitz monopolistic competition
and stockout. Thus, we show only the key results without derivations. Note that
they are defined and discussed from the viewpoint of a buyer.

First, @/ is defined as an indicator function which is 1 if a buyer can buy the

j-th good, and 0 otherwise. Then, the measure of the available varieties Q) is:

1
@ - [ qld
0
. 1 if j-th variety is available
Q =
0 otherwise
Due to LLN, Q; has two meanings: the number (measure) of available varieties and
the probability that a buyer can buy a variety without encountering a stockout.
Note that @ is a distinct concept from 1 — Pr;, the probability that a seller does

not face a stockout.

Price Index

Next, we define the price index of intermediate goods as:

e[ o] [ o [ irere] <[]

where 6 is the elasticity of intratemporal substitution among varieties. Several
comments are in order. First, (a) multiplying by Q7 means that unavailable goods
are not taken into account,?® and (b) dividing by @Q; means that the index is the

"average" of individual prices. Second, the integral is factorised as shown by the

39In general, the price index could be different among buyers, because they have different
baskets of goods. However, in our model, the price index is common to all buyers because of
LLN.
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second equality because Q{ and Ptj are, in a sense, not correlated; PtJ is assumed
to be fixed before the realisation of the idiosyncratic shock (see below), while Q7
is not the choice of an agent (determined exogenously by the idiosyncratic shock).
Third, at optimum all sellers set the same price (i.e. Pf = P/ for Vi,j € [0,1])
due to the price posting and CRS production technology. As a result, Pt’ = PM
for Vj € [0,1]. Indeed, many combinations of definitions of price and quantity
indices are logically consistent. We have chosen our definitions so that P/ = PM

at optimum.

Quality-Adjusted Quantity Index

In this regard, the definition of the quantity index of M-goods that is consistent

with our price index is:

0
8-1

M{‘E[/OIQ{(M{ ’—?)dj]

where K = F,M; i.e., MF is the index of M-goods purchased by F-firms, and
MM is that of M-firms. Again, there are several comments parallel to the price
index. First, multiplying by @7 means that unavailable goods are not taken into
account, and (b) not dividing by @); means that the index is the "sum" of individual
quantities. Second, at optimum M} = M/ for Vi, j € [0, 1], because all prices are
equal due to symmetricity. Third, it is shown that the baseline demand Mt’ in
equations (2.3) is not an index, but instead is measured in terms of a physical
unit. Thus,

, =0 =6
M} = QM + Q7 MM (2.4)

since both F- and M-firms use M-goods for their production. Since @; < 1 and
9 >1, M > MF + MM. In other words, physical demand is larger than the index.
This difference becomes larger as Q; becomes smaller. In this connection, MX
can be interpreted as a quality adjusted quantity index — with fewer varieties, the
quality of the M-goods index becomes lower. Finally, Q; and hence MX have the
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same value for any buyer due to LLN.

Two Stage Budgeting

From these two indices, the expenditure for M-goods of a buyer in sector K can

be written as
r =1
| @irMia = QP PMME tr K=FM (2.5)
0

where the LHS is the direct definition of expenditures on M-goods, and the RHS
means that we can restate this definition with price and quantity indices. The
first multiplicative term Qt;}1 (= Qth:‘%) in (2.5) represents the cost of losing
varieties. This is because, under non-perfect substitution, to achieve a certain
level of quantity index, an increase in quantity in each variety must compensate

for a loss of varieties (see (2.4)).

2.A.5 Price Posting

An important consequence of non-Walrasian intermediate goods markets is that
we cannot use the market clearing conditions as a pricing mechanism. Hence, we
assume the following price posting rule as an alternative. The rule follows a simple
extensive game, in which first sellers set their price, then buyers are distributed
among sellers unevenly (idiosyncratic shock), and finally buyers choose optimal
quantity if they are not subject to a stockout. This extensive game is played in each
M-market in every period. We assume that (i) in each market, only one identical
variety of goods are traded (varieties and markets are one-to-one correspondences
to each other), (ii) in each period, each buyer visits only one seller for each variety
(i.e., only one visit in each market), and (iii) even if he fails to buy a variety due

to a stockout, he cannot visit other shops in that market.

40 Although the exact components of available varieties may differ among buyers (say, some
can buy vanilla+strawberry, while others mint+chocolate), the number (measure) of available
varieties is the same (2 varieties in this ice cream example).
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0. All the aggregate shocks are revealed.

1. Anticipating the buyers’ action, sellers set their sales price before the reali-
sation of the idiosyncratic shock. Once a seller decides her price, she cannot

change it until the next period (price posting).

2. Idiosyncratic shock is revealed; buyers are distributed among sellers unevenly.

As a result, some sellers meet many buyers while others meet only a few.

3. At each shop, all buyers stand in a queue, and then buyers, in order, choose
an optimum amount to buy until goods on shelf run out. The order in the
queue is stochastic for buyers; a buyer cannot buy the good if goods on shelf

run out before his turn. In this case, he simply loses one variety.

A few remarks are in order here. First, due to the assumption that sellers
set their sales price before observing the idiosyncratic shock, and the assumption
of constant returns to scale, all sellers choose the same sales price. Second, the
measure of available goods varies over time but, in each period, the LLN guarantees
that all buyers enjoy the same measure of available varieties, although the varieties’
components differ among agents.

Third, analytically this price posting rule implies that sellers take buyers’ de-
mand function as a given, while the buyers take the M-price as a given. Alge-
braically, we first obtain the FOC w.r.t the use of M-goods for each M-price, and
then we obtain the FOC w.r.t. M-price subject to the demand function. Note
that (i), individual sellers cannot deprive other sellers’ customers in our market
structure (ii) sellers exploit the slope of the demand curve as monopolists, and (iii)
the quantity traded is not socially optimal.*!

Finally, the resulting pricing is a slightly generalised version of the markup
formula in the standard Dixit-Stiglitz monopolistic competition model. Namely,

there exists § such that PM = 4/ (é — 1) MM where AM is the marginal cost of

417This is not only because of the price posting, but also because of externalities (see below).
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producing M-goods and 8 2 0 is the elasticity of substitution that is adjusted by
Q@: and Pry.

2.B Analytical Results

This section summarises the analytical results.

2.B.1 Optimisations of Individual Agents

See the main text.

2.B.2 Equilibrium

There are 26 endogenous variables and 26 equations (excluding the law of motions
of exogenous shocks), of which four variables and four equations (HM?, H[?, MM,
and M ) are merely lagged variables and their definitions due to the adjustment
costs. With proper initial and terminal conditions, these equations define the
equilibrium.

Omitting lagged variables and their definition equations, this subsection sum-
marises the 22 equations. See Table 2.2 on page 98 for the list of variables used.

Two equations are derived from the FOCs of the representative household’s

optimisation.4?

o,
tg@f = BIAE = \ESDF, (2.62)
oU, /L,
W, 50,730, (2.6Db)

Nine equations come from the FOCs and constraints of M-firms’ optimisation.

42We omit the equation for the real interest rate Ry 14

OU;+1/0C¢ 41

PE: [ au,/aC;

Rt,t+l] =1

because SDF; and R;_1; move in exactly the same way in the linearised model.
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) 2.7b
E, [ﬂL{IF {(M%l')z 1}] ‘ )‘H ayM ( )
t M] - a
Xnras At o \ L B, [ t+1’\t+1a t+1] _ in‘HPtM
—2{i -y
g (2.7¢)
S = 0Pr; (1 ~ %—) (Qf =T MF 4+ QM 3_——91Mt"’-’) (2.7d)
t
. \H 1—v)Pr} Pt
(Prf + Pry) M = vPBPrf +E, |3 ( ) PreaFin (2.7€)
A +Pri M+
P"' 1-— PT't
+ = __ -t =
where Pr; = T—opr, and Pr; 1= oPr, (2.71)
VM —M—l ZMmMM '”,;lh;l "_XJA{_I
v = 2 o (S T - (A5 (27¢)
bur P
VM = ZMv M ™ HMP e 2.7h
t t t t
KN, = (1=ém) K + B — xpc (B — 0 KM/ K (2.7)
(]t+1 = Ut - St + ),tM (2.7‘])

Six equations come from the FOCs and the constraints of F-firms.
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t )‘Tt_ W E. )‘t+1 a)/t+1 _ Fe—_—ll PM 2.8
XFM F + £y BFW = @ . (2.8¢)
-2 {5, 1}
— grmagF \ 2] 7
nF m ng
o=z [ e(5) " ra-en (B00) } (284)
F F
a l—a

VE = zP gF gFo (2.8¢)
Kf, = (1=06p) K] +1If — xpx(If — 6rK])’/Kf (2.8f)

Two equations are the market clearing conditions for labour and F-goods. Be-
cause all adjustment costs other than investments are measured in terms of F-

goods, they are deducted from the market clearing condition for the final goods.

HE = HM 4+ H? (2.92)
YtF = C,+ ItM + ItF — AdjC; (2.9b)
2
' (H? - H™?)? (M} — MM,)
FH Ht[ipl MM Mtﬂ—dl
HMP _ Hﬁfp 2 MM _ MA_'{ 2
+XMH( t HtA_llt 1) +XFM( t MtAflt 1) +clUt
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Three equations are derived from the specification of the idiosyncratic shock
(2.3).

Sy = min{U, + oYM, M}}

= = 2
_ oS, — v { FeoiMF + QM1 MM — GoS,; _ 1} (2.10a)
2 v 2
Pr. = Pr[a seller faces stockout]
=6 =6
_ Fe1i MF + QM= MM — GoS; n 1 (2.10b)
v 2
FEEMF 4 QUETMM — GoS, 1)
U1 = g{Qt : +Qty L Ot—§ + (1 —v) ;¥ (2.10c)

In a sense, (2.10) is the alternative to the market clearing condition of (the index
of) intermediate goods. In the limit v — 0 (i.e., no idiosyncratic shock), if v = 1
(all products today can be sold in today’s market), (2.10a) and (2.10c) show that
Ui+1 = 0 (no unsold goods) and M} = GoS; (M-markets clear), where M} =
FEEME + QUMY
The last two equations show thg law of motions of exogenous shocks. In the
basic version, we use only AR(1) Hicks-neutral technology shocks in intermediate

and final goods productions.

InZM* = InzZM7 4 eV

Inz™ = Wz +¢"
where ¢M™ and ¢/™ are 4id innovations that follow proper normal distributions.

2.B.3 Inventories as Options to Sell

This subsection discusses the key trade-off in the stockout model: the FOC with

respect to unsold goods (2.7e). Assume, for simplicity, that v = ¢; = 0. Then,
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Sales (Realized Demand) Payoff,

Option Value
45 degree line
Call Option
Expected Sales
;e Price Stock Price
Goods on Shelf Potential Demand 45 degree*line

Figure 2.12: Comparison between a financial option and inventories.

(2.7¢) reduces to

Evt SDFt { fpi- ag)Pr [GoStK] - » SDFiXtl  (2.11)

where AM is the marginal cost of producing M-goods (Lagrange multiplier for

the law of motion of unsold goods), SDF= /3*A™A is the stochas
factor, Pi  —X” is the marginal profit margin is the sales price of seller  and

Pr [GoSt < Mf] = dE [SH/dUt~i is the stockout probability from the viewpoint

of individual sellers. This equation states that the carrying cost of one additional

unit of inventory (RHS) is equal to the expected value of the marginal cost of the

lost sales opportunity (LHS).

Equivalently, we can treat inventories as financial assets in the asset pricing

equation,
PiPr [GoSt< Mf] + Af Pr [GoSt > MT]
Et-: SDFt M =1 (2.12)
At-1

Note that the inside of the curly bracket shows the gross return on having one
more unit of unsold goods.
It is important to note that the expression Pr[Go5* < Mf] is essentially equiv-

alent to an "option delta" in finance;3 having one more unit of inventory means

43Remember that the delta of a call option is
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having an option to sell one more unit (see Figure 2.12). In this sense, invento-
ries have a feature similar to options on financial assets. While an option delta is
defined as the sensitivity of the option price to a change in the underlying stock
price in finance, (P} — A\}) Pr[GoS, < DF] is the sensitivity of profit to a change
of GoS;.4*

A= [(s+rr—k) + aﬁ]
oT 2
where s is the log of the underlying stock price today, k is the strike price of the option, r is
the (constant) risk-free rate, 7 is the time to maturity, o is the volatility and ® is a (standard
normal) distribution function. (One way to understand the term o,/7/2 is Jensen’s inequality.
The Black-Scholes model assumes a log-normal, rather than normal, distribution for stock price.)

We can see the following correspondences: value of holding inventories (value of option), deriv-
ative of the expected profit w.r.t. inventories (option delta), and demand change (price change
of underlying stock) relative to the inventory holdings (strike price). The correspondence of
(PM - Af’f ) is always 1 in the case of a call option, because a 1-pound increase in stock price
trivially leads to a 1-pound increase in payoff, if the stock price at the exercise date is higher
than the strike price. Remember that, if the potential demand is less than goods on shelf, 1 unit
of increase in the potential demand leads to an increase in profit by (PM — AM).

Related to the importance of the CRS assumption, note that, ignoring the effect of Jensen’s
inequality, s + r7 represents the expected stock price at the exercise date under the equivalent
martingale measure (in the risk neutral world, the stock price must grow at the same rate as the
risk free rate); hence, the option delta can be regarded as the probability that the stock price
exceeds the strike price under the risk neutral measure. The real world probability measure should
be changed to the equivalent martingale measure because investors are risk averse. However,
such a change of measure is not necessary in our model, because, roughly speaking, our CRS
assumption (with some other technical assumptions) implies that sellers are risk neutral. So we
can use risk neutral pricing without changing the measure.

44Certainly, it is potential demand rather than inventories that is stochastic, but we can show
the following result:

é%E [min {GoS,, MF} |fzt] =1- 5}\%1«3 [min (GoS:, MF} |fzt] (2.13)
Since, as mentioned above,
%E [min (GoS,, M} 0] = PrlGoS, < M)
¢
a]if{,E [min (GoS., MP} (1] = Pr(GoS. > M)
it is clear that (2.13) is equivalent to
Pr[GoS; < Mf] =1 - Pr[GoS; > M?] (2.14)

Thus, the first derivative of the expected sales w.r.t. unsold goods means one minus a decrease
in the expected sales due to an increase in the underlying demand. Here, in the equation (2.14)
"one" means that, without the stockout constraint, one unit of increase in demand would trivially
lead to one unit of increase in sales, but, due to the second term (8E[min {GoS;, M} |2:]/OM;}
= effect of the probability of stockout), the incremental expected sales must be smaller than they
would be without the constraint. Therefore, we can restate our claim more precisely; the first
derivative of sales with respect to inventories means a reduction in the loss of sales opportunity
by holding one more unit of inventories.
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2.B.4 Search Externalities

There are search externalities in M-markets.

On the buyers’ side, each buyer ignores the negative effect of congestion. In-
tuitively, if buyers buy more, then available varieties (Q; = Pr [can buy]) become
fewer because stockouts arise more often, but infinitesimal buyers ignore such an

effect. In our model, FOC w.r.t M-goods input is

o) =1
. |[pp 0| - oFee 215

However, if there were, say, a strong union of purchasing managers, which coordi-

nated buyers’ decisions, the FOC w.r.t MM would be

0 = —1  0Q:/Q:
t+1 t+1 ]| _ 1pM t
b [‘9 A BMM] =@ R (” 6—10M} MM ) (2.16)

which implies that the social cost (RHS of (2.16)) is larger than the private cost
(RHS of (2.15)). The additional term shows the effect of congestion, which infini-
tesimal buyers ignore.

On the sellers’ side, if there were a powerful union of sellers which coordinated

sellers, the FOC w.r.t. unsold goods of intermediate goods producers would be

M (Pip1 — A1) Pren

2\ MM, (OMMLMM, 6 5% 8Qe41/Qesa (1 _
‘ +Ut+1 0Qt+1/Qe1 0—1Q9 o Iy e (1 — Preya)

H
= MM _E, [ﬂ /\:“,\t"il]

but infinitesimal sellers ignore two effects. The first is the cost of losing vari-

eties ( U::: Zg:::;g:: ‘;3::1;3::11 > 0). When inventories are higher, the mea-
sure of varieties that a buyer can enjoy is larger; hence the effective cost is
lower, which, in turn, stimulates the demand for M-goods. However, such a

mechanism is ignored. The second is the squeezing effect due to fewer varieties
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(=M 0 77 9%u/9n < () As mentioned in the previous subsection, when
Uiy 6-1 Uiy1/Upr — 77 p ’
fewer varieties are available, the (physical unit of) potential demand of one buyer
becomes larger to achieve a certain level of the quantity index. These two effects
offset one another; the net effect may be positive or negative.

Nonetheless, some numerical experiments suggest that the overall effect of the

search externality seems to be very small.
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Chapter 3

A Solution Method for Linear
Rational Expectation Models

under Imperfect Information

This chapter has developed a solution algorithm for linear rational expectation
models under imperfect information — which, in this chapter, means that some
decisions are made based on smaller information sets than others.

Perhaps surprisingly, in state space representation, imperfect information does
not change the coefficients on the past crawling variables. Hence, an imperfect
model is saddle-path stable (sunspot, explosive), if the corresponding perfect in-
formation model is saddle path stable (sunspot, explosive, respectively). Moreover,
if the minimum information set contains all the information up to time ¢t — S — 1,
then the direct effects on the impulse response functions last for only the first S
periods.

Although imperfect information does not drastically change the qualitative na-
ture of a model, it can significantly alter its quantitative properties. This chapter
demonstrates, as an example, that adding imperfect information to the RBC model

remarkably improves the correlation between labour productivity and output.
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3.1 Introduction

This chapter presents a solution algorithm for linear rational expectation models
under imperfect information. "Imperfect information" in this chapter signifies that
some decisions may be made before observing some shocks, while others may be
made after observing them. For example, we can consider a variant of the RBC
model, in which labour supply is decided before observing today’s productivity
shock. In this variant, apart from the information structure (i.e., the FOC with
respect to labour supply has an expectation operator), the equations that define
the equilibrium are the same as in the standard RBC model.

Imperfect information is an important consideration for several reasons. First,
imperfect information plays an important role in many important classes of mod-
els, such as the sticky information model of Mankiw and Reis (2001). Second,
researchers often do not know a priori what information is available when each
decision is made; hence, they may want to estimate the information structure by
parameterising it, or they may want to experiment on a model under several pat-
terns of information structure. It is easy to implement such robustness checks with
the algorithm; once structural equations are obtained, then the additional input
to the algorithm is only the information structure in a model. Third, the obtained
numerical result may not be robust for a small change in information structure.
Indeed, imperfect information may significantly alter the second moments and the
shapes of impulse response functions.

This chapter offers an easy-to-use MATLAB code to solve a general class of

linear models under imperfect information.! The algorithm provides the solution

I The set of MATLAB codes is available upon request: k.shibayama@kent.ac.uk
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of a model in the form of

kepr = Heg+ JE

¢ = Fr+Ge
T

where k; and ¢, are the vectors of crawling and jump variables, respectively, and
&;_, is the vector of innovations at time ¢ — s, for s = 0,--- , S, where S is such
that the minimum information set in the model includes all information up to time
t —S — 1. The superscript T indicates transposition, and hence £+ is the vertical
concatenation of {57_8}10. H, J, F and G are the solution matrices provided by
the algorithm. The algorithm is an extension of the QZ method by Sims (2002).

The most important breakthrough made by this chapter is its choice of state
variables. The state variables in this solution are &, and ¢*°. Imperfect information
requires the expansion of the state space, but this can be done either by expanding
the innovation vector or by expanding the set of crawling variables (Note that
the representation of state space is not necessarily unique). Our choice of state
variables works intuitively because, if past innovations are recorded, we can recover
the past crawling variables and hence recover the information available in past
periods.?

By keeping the number of crawling variables unchanged, it can be shown that
the dynamic parts of the solution (i.e., H and F' matrices) are the same as in the
corresponding perfect information model. Thus, it is clear that if the corresponding
perfect model is saddle-path stable (sunspot, explosive), then an imperfect infor-
mation model is also saddle-path stable (sunspot, explosive, respectively). That is
to say, the information structure does not alter the dynamic stability property.

Moreover, invariant H and F matrices imply that the direct effects of imper-

fect information on impulse response functions last for only S after an impulse, if

2Hence, even though some decisions are made without observing k:, for example, economic
models can be formulated as in (3.2).
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the minimum information set at time ¢ in a model has all the information up to
time ¢ — S — 1. In subsequent periods, the impulse response functions follow es-
sentially the same process as those in the perfect information counterpart — more
specifically, if, S period after an impulse, the values of the crawling variables are
ks, then the following impulse response functions are exactly the same as those
of the perfect information counterpart that starts with kg and zero innovations.
One such example can be found in Dupor and Tsuruga (2005), who argue that
the hump-shaped impulse response functions found in Mankiw and Reis (2001)
critically hinge on the assumption of the Calvo style information updating; some
agents, though their population decreases over time, cannot renew their infor-
mation forever. By instead constructing the Taylor style staggered information
renewal, Dupor and Tsuruga (2005) show that impulse response functions jump to
zero right after the last cohort renews its information set.

There are, at least allegedly, two existing treatments of imperfect information.3
The first remedy for imperfect information is to define the dummy variables. For
example, consider a variant of the standard RBC model, in which labour supply
L, is determined without observing today’s innovations. Then, the optimal labour

supply is determined by

0= Et—l [7]Lt + U'Ct - Wt] (3.1)

3There are three types of methods for perfect information models.

1. King and Watson’s method (1998 and 2002) (see also Woodford (undated)) implements a
two-stage substitution. First, non-dynamic jump variables are substituted out, and then
dynamic jump variables are substituted out from the system of equations.

2. In the QZ method by Sims (2002) (see also Klein (2000)), the QZ decomposition is ap-
plied to matrices on endogenous variables. Recognising that (1) roots that correspond to
non-dynamic jump variables are infinite, and (2) roots that correspond to dynamic jump
variables are larger than one in absolute terms, the transversality conditions (TVCs) elim-
inate both types of jump variables at once.

3. The method of undetermined coefficients by Uhlig (1999) (see also Christiano (1998))
substitutes a guess solution into the given system of equations; the resulting matrix poly-
nomial is solved directly. In principle, this method does not require that given equations
are first-order difference equations. Higher order matrix polynomials can be numerically
solved (see Appendix).
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where C; and W, are consumption and wage at time £, n and o are parameters
provided by the theory, and E;_, [ ] is the expectation operator with all information

up to time ¢ — 1. Define dummy variable L; such that

0 = E;[nL,+0C1 — Wi

Lt+1 = L:

In this method, having additional crawling variable L;, the set of crawling variables
is expanded. The problem with this method is that it cannot solve the model
if some endogenous variables are determined before observing some (not all) of
today’s innovations but after observing the others.

The other possibility is a modification of the method of undetermined coef-
ficients. According to Christiano (1998), his version of method of undetermined
coefficients, like ours, can deal with models in which some endogenous variables
are determined before observing some (not all) of today’s innovations are observed
but after observing the others. The most salient difference between his method
and ours is in the specification of information structure; Christiano (1998) requires
a user to provide only one matrix R that specifies which innovations are to be
included in the information set of each expectation operator. Roughly speaking,
matrix R relates equations to observable innovations. In contrast, in the algorithm
developed in this chapter, a researcher must specify two matrices: one relates in-
novations to equations (like Christiano (1998)), and the other relates innovations
to variables. The difference is crucial. To understand this, consider the above
example (3.1). It is clear that a researcher must specify the information set of
the expectation operator in (3.1). However, in a given information set, there are
generically three possibilities, namely that (a) the representative household fixes
labour supply before observing some of today’s innovations, (b) it determines wage
before innovations (sticky wage), or (c) it decides consumption before innovations.

Hence, one more matrix is necessary in our algorithm to specify which of C;, W; or

138



H, is chosen while not having full information. In general, the quantitative behav-
iour of a model is completely different, depending on which variables are assumed
to be decided before observing some information. Indeed, in the following section,

it is shown that the difference between (a) and (b) is very crucial.

The plan of this chapter is as follows. In Section 3.2, we define the problem
and derive the solution, and show two key observations. First, if the k-th time ¢
variable yy; is determined without observing the i-th time ¢ — s innovations §;,_,,
then g, cannot respond to &, ,, given k;_g. Second, if the expectation operator
in the j-th equation has an information set that includes ¢;, ,, £;, , cannot be the
source of the expectation error in the j-th equation. It turns out that these two
restrictions are enough to determine the unique solution coefficients. In Section
3.3, we discuss the assumptions that are necessary for guaranteeing the existence of
a solution. Each of them has some economic meaning, and the existence condition
is slightly tighter under imperfect information than under perfect information. In
Section 3.4, the main features of the solution of imperfect information models are
briefly discussed. Most of them are direct consequences of the invariant H and
F matrices. In Section 3.5, we demonstrate the effects of imperfect information
on the otherwise standard RBC model as an example. Section 3.6 concludes the

discussion.

3.2 Derivation of the Solution

Essentially, our algorithm is an extension of the QZ method used in Sims (2002).
Our problem is to obtain the state space representation of a solution that satisfies

two key zero restrictions. For the details of matrix notation, see the Appendix.

3.2.1 Definition of the Problem

The inputs and outputs of the algorithm are defined.
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Given Models

Following Sims (2002), we formulate the linear rational models with expectation

errors as follows.

0= Ayey1 + By + C§, + D,y + E€S (3.2)
where
E = |E, E, --- E, --- Eg
Eoi1 -+ Eoiwn E,;n -+ Egin Eg 111 -+ Esin
I Eom -+ Egmn Eivn -+ Esun Es_1m -+ Esmn
&
K
Y = ,gt,S=
&,
s

¢ is the vector of all endogenous variables, in which «; is the vector of crawling
variables and ¢, is that of jump variables. Stock variables are all recorded at the
beginning of each period. M is the number of equations, which is equal to the
number of endogenous variables, N is the number of innovations, and S is such
that the minimum information set includes &, _g_;.

&:_, is a column vector of iid innovations at time ¢ — s. Limiting &, to #id is
not restrictive since we can add the law of motions of serially correlated shocks to
the system of equations and treat the shocks themselves as crawling variables..

A, B and C are proper coefficient matrices, and they are provided by an eco-
nomic model. D and E represent the expectation errors. D is non-zero even for
perfect information models, because of dynamic jump variables (e.g., expectation

error in the consumption Euler equation due to consumption at time ¢ + 1). An

4See Woodford (undated): this technique simplifies the algebra and computation significantly.
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economic theory must specify the positions of zero elements in D and E,° while
the values of non-zero elements are computed by the algorithm. &,_, can be the
source of expectation errors because some endogenous variables are decided with-

out observing it.

Goal of the Algorithm

Our objective is to obtain the state space representation of (3.2).

Key1 = Hr+ JEVS (3.3a)
¢, = Fry+Ge® (3-3b)
where
0
J = Jo Sy oo Ty oo Jg
Joun -0 Joan Js1 o0 Jeaw Jsu - Jsan
Joma - JoM.N JoMma o JeMN Jsma 0 Jsm.N
G = |Gy G -~~~ G, --- Gs]
Goun -+ Goawn Gs11 -+ Gan Gsuu -+ Gsin
| Gompa - Gomyw Gomyr -+ Gapyn Gsmg -+ Gsmyn |

3.2.2 Two Key Observations

This subsection shows two key zero restrictions. The algorithm seeks the solution

that satisfies them.

SExactly speaking, a researcher does not need to specify the zero elements in D. Instead,
the number of crawling variables must be specified. Given construction of y; = [T #7]7, the
algorithm determines the positions of zero elements in D (Only dynamic jump variables can be
the sources of expectation errors D).
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Repeated Substitutions

To obtain the representation of x;4; and ¢, as functions of k;_s and &, _, for
T = 0,---,28 — 1, repeat the substitution of the vertically concatenated guess
solution (3.3) into itself. Defining H = [HT FT|T,

Kt . ~ . ~
Y| = BmtTet=d ( Hkys + gy HFHJERS ) + ¢
o}
= HH%k s+ (Tobso+T1& 1+ + st )
H° (Jogt—l +Né ot + JSft—l—S)
+H | +H (Jo€ug+ IiEeg+ -+ Jsby g g) + o
+HS (Jobys + 1&g+ + Jsbi_s_s)
= .[V{.Hsﬁ:t_.s + Hoft + ngt—l + b + Hsé.t_s + e + Hsgt_s
+ terms with §,_, for7 > S +1 (3.4)
) T
whereI‘E[Po e L, - [‘S]withl‘,E[JZ‘ GZ':I , and
J
Ho = F() = °
Go
H J1+ HJy
Hl = Pl + J(] =
F G+ FJy
H Jo+ H(J.+ HJ
H2 = P2+ (J1+Hv]0)= 2 (1 0) s * T
F Gz + F (1 + HJp)
H 1k Jo+ HY it H 17k g,
II, = Fs + (Ek:OH Jk) = -
F G, + FZ;ZO H* 1k g,
H ~ Js+HY L HS-1-k
HS = FS + ( i=é HS-]'—ka) = k 01
F Gs+FY o HS-1-k ],
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In the recursive representation,

Jo
Go
M, = I',+HI,_;fors=1,---,8

O, = [p=

where
- H 0
H

F 0

(3.6)

Intuitively, the j, k-th element of II, is the effect of £, , (the k-th innovation at
time ¢t — s) on y;; (the j-th endogenous variable at time t). Thus, given k;_g, I, j,
which is defined as the j, k-th element of II,, is zero if y;; is determined without
observing & .

In the matrix representation

I'= Mrpll (3.7)
where
- T
r=rf ... 17 ... I‘Z'S‘] (3.8a)
- T
n=|nof..ua .. Hg] (3.8b)
I 0
—-H I
Mm = (3.8¢c)
0 -H I

Morq is clearly invertible, and plays a key role in the following.

Zero Restrictions

Throughout this chapter, we exploit the following two observations.

143



1. If the k-th set of variables y;, does not observe the i-th set of time ¢t — s
innovations §;; ,, given x;_g and §_, for 7 = s+ 1,---, Oyp/08,_, =

II, ; = 0. Simply put, no decision can respond to unobserved innovations.

2. If the information set of the expectation operator in the j-th equation in-
cludes the i-th time ¢ — s innovation §;, ,, then the realization of the j-th
equation must hold for any realisation of the i-th innovation. The expecta-
tion error in each expectation operator occurs only due to innovations that

are not included in its information sets. Thus, E, j; = 0.

For example, suppose that labour supply L, (k-th variable, yx:) is decided
on before observing today’s technology shock (i-th shock, &;,), but after today’s
preference shock (I-th shock, §;,), both of which are #id. If the FOC with respect

to L, is the j-th equation,

Hox = 0 (& o does not affect ys,)

Eojt = 0 (&, does not cause expectation error in j-th eqn)

Roughly speaking, Ey;; = 0 means that if the expectation operator of the j-th
equation is eliminated from the j-th equation, it still holds in terms of &,,. It is

the duty of a user to specify the positions of these zero elements in II and E.

3.2.3 Sketch of Derivation and Key Equations for Compu-

tation

The fully detailed derivation is provided in the Appendix. This subsection briefly
describes the skeleton of the derivation and lists the minimum results necessary

for computation.
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QZ Decomposition

In order to introduce notations, this subsection briefly reviews the QZ decomposi-
tion (or generalised Schur decomposition). For matrices A and B (€ C**™), there

exist unitary matrices ) and Z such that

QHAZ = Q,

QEBZ

Qp

where 24 and §2p are both upper triangular matrices, and superscript H indicates
a conjugate transpose. Any unitary matrix U satisfies UZU = UUH = I. Let ax
and by be the k-th diagonal elements in €24 and Qp, respectively. Assuming that
arr and bgx are not zero at the same time, then \; = by /ag; for k=1,--- ,n are
the generalised eigenvalues of the matrix pencil B — )\ A.

The basic idea is that by applying the QZ decomposition to (3.2) as in Sims
(2002), the algorithm separates unstable roots from stable roots.

0 = Ay + By +CE+ D€y + Eft’s

= QaZ%y 1+ 027y, + QUCE, + QU DE, ., + QUEEHS

Qﬁ‘, Qﬁu St+1 Qfg Qi St
= +
0 04 Ug 1 0 QF U
Q Q QY
+ C¢ + D&y + E‘St's
QY QL QY
where
o =z i
U ¢t

By using TVCs, the expected values of all unstable roots u;,; are set to be equal

6See Appendix for a brief review of the relationship between the system of first-order difference
equations and generalised eigenvalues.
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to zero (Remember that all innovations are assumed to be iid).”

Notations for the Outputs of QZ Decomposition

For later use, we define submatrices as follows

ZH ZH zH Zes Zy H

ZE = = o T L= ,QF = " K3.9a)
| 2 Zy Zg Zgs Zipu v
QO 9 Q5 9

04 = * , 08 = (3.9b)
I 0 Q4 0 QB

where subscripts « and s imply unstable and stable roots, respectively. Note that
04 and QF, are both invertible by construction.

Additionally, we define the four matrices as

A = QAZE LA ZE (3.10a)
ALY = QULZE+ 9070 (3.10b)
AB = QBZE L B ZE (3.10c)
AL, = QBzZE + bz, (3.10d)

Note that all the matrices defined here are obtained from the outputs of the

QZ decomposition.

Matrix Subscripts

We introduce the following notation rule for subscripts on matrices. For a matrix

A,

e A is columns z of a matrix A,

e A, is rows z of a matrix A,

"If the expectations of u;,; must be zero under perfect information, they must be also zero
under imperfect information. This can be shown by simply applying the iterated linear projection.
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e A_, is the columns remaining after the elimination of columns z, and

e A_, is the rows remaining after the elimination of rows z,

where z is the name of a set of columns or rows. This notation makes certain

matrix operations extremely simple. See the Appendix for further details.

Zero Restrictions

As a result of manipulating the matrix equations, it is shown that

Mng = (MyrMro)\Q (3.12)
where
(T, By
r = : , E= : (3.13a)
K Fs_ Es_,
( ¢ 0
Co
C = , Q= (3.13b)
\ 0
0 Q
o A4 0
My = ' (3.13c)
d AOA
0 d
[ A B AA
Q%) Zes AL 0 £
> = oo/ ¢ |, A= ¢ (3.13d)
0 QBZE 0 Q.75

and X\Y = X~'Y. Bear in mind that, while M,r is computable solely from the
outputs of the QZ decomposition, Mrg and Mpg are obtained only after finding
H and F.
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Given Mrq, E and II are computed column by column (i.e., innovation by
innovation). It is important to remember that some elements in II and E are zero
due to the two zero restrictions. Thus, for the i-th column (or equivalently for the

i-th innovation),

Cme Y ({0 (e
: : 0
0=} M;(=0) | + Mus E; |+ : (3.14)

\ Mrcsens J \\o /) Lo/

where M in subscripts is the number of equations and hence M (S +1) is the
number of rows in II.

From the k-th set of equations in (3.14)

0= [ Mg ] it [ Mng ]k,CﬁJr [ Mng ] Coi (3.15)
J

kj k—j

which gives the values of the non-zero elements of E. From the remaining equations

in (3.14),

0 = H—-ki + l: MHE ] Cj.,; -+ [ MIIE ] Cﬂji (316)
. kg

- [ Mng ]ﬁkj ([ Myg Lj\ [ Mng Lﬁj Cji +Cji)

which gives the non-zero elements of II.
It is assumed that [Mng],; is invertible. In general, however, it is not necessarily
true, and the economic meaning of its invertibility is discussed later.

Solution

The solution algorithm computes key matrices sequentially. The basic structure is

as follows:
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1. Obtain submatrices form the outputs of the QZ decomposition (3.9 and 3.10).
2. Obtain H and F from (3.17).

3. Obtain Mrq, Myr and Myg from (3.8c, 3.13c and 3.12).

4. Obtain FE and II from (3.18 and 3.19).

5. Obtain G and J from (3.20).

H and F: As in (Sims (2002)), it turns out that the H and F matrices are
derived independently from the G and J matrices, based on the coefficient on «;_g
in (3.4) (see the Appendix for details). Therefore, they are exactly the same as in

perfect information models.

F = —ZI\ZI = Z/Z,, (3.17a)
H = —Z, (U\2) /2., (3.17b)

E and II: From (3.15) and (3.16), the non-zero elements of E and II are

E; = —[MHE] \[MIIE] Cji — Cji (3.18)
kj k—j

M = - [ Mﬁ;] \Cu (3.19)
_|j—'k

where Mg can be obtained from (3.8c) and (3.13) with the solution of H and
F. Note that H and F can be computed without referring E, II or Myg. Since
[Mng),; is assumed to be invertible, [M;;z] _j 18 also invertible (see the Appendix

for the proof).
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J and G: From the definition of I" (3.8a),

Jo
Go

=
Il

— Myl (3.20)
Js
Gs

L -t

Note that, with H and F matrices, My are recovered from (3.8c).

D: From a given economic model (3.2) it is obvious that

3.3 Assumptions

In this section, we discuss three assumptions. Assumptions 1 and 2 in the follow-
ing are the same as in the solution method for perfect information models, while
assumption 3 is specific to imperfect information models. This subsection omits
discussion about the Blanchard-Kahn condition, which is automatically satisfied

by assumption 1.

3.3.1 Assumption 1: Z[} is Invertible

Klein (2000) shows that this assumption is a generalisation of the condition de-
rived in Blanchard and Kahn (1980). Boyd and Dotsey (1990) makes it clear
that the Blanchard-Kahn condition, which counts and compares the numbers of
unstable roots and jump variables, is a necessary but not sufficient condition for
the existence of a unique solution; they provide a counter-example that satisfies
the Blanchard-Kahn counting condition but does not have a stable solution. Intu-

itively, an invertible Zﬁ, means that we can always find the values of jump variables
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such that the expectation of ;4 is a zero vector in any states (TVCs). Remember
that Z[, maps jump variables to unstable roots, and its inverse maps unstable
roots to jump variables. See King and Watson (1995) for an intuitive exposition.
The existence of the right inverse of Z;J; entails the existence of jump variables,
but the non-existence of its left inverse implies non-uniqueness of jump variables.

See Uhlig (2000) for a treatment of non-uniqueness.

3.3.2 Assumption 2: a;; and b are Not Zero at the Same
Time

If ax, and by, are zero at the same time, it implies that there exist row vectors X
such that 0 = X¢ (One such example is the k-th row of Q). The existence of such
row vectors generically implies either of the following:

(a) If X¢ is indeed zero, then some equations are not linearly independent of
the others. Essentially, there are fewer equations than endogenous variables. At
least one equation can be expressed as a linear combination of others, and such a
linear combination is X.

(b) If X¢ is non-zero, clearly there is an internal contradiction. One such ex-
ample is a two-equation, two-variable non-dynamic model with no state variables:

$rp = adyy+&,

9

1y = a¢2,t +&+m,

»

Obviously, both do not hold at the same time for non-zero 7,. Since the QZ de-
composition is merely a linear transformation, this implies that there is an internal

inconsistency in the original system of equations (3.2).
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3.3.3 Assumption 3: [Mpg|; is Invertible

This condition is specific to imperfect information models, though it is analogous
to the equation (40) in Sims (2002).2 Intuitively, if it is not invertible, then the
information structure is not consistent. Note that the inverse of [Myg], 0 if it exists,
maps the j-th set of expectation errors to the k-th set of innovations to which some
endogenous variables cannot respond. Hence, if the inverse of [Mng],; exists, then
expectation errors can equate both sides of the equations for any realisation of
innovations.

A non-invertible [Mng],; appears in the following example. Suppose that all
production factors and all demand components are decided before observing to-
day’s technology shock. In this case, output varies depending on the realisation of
technology, while demand cannot respond to it. Thus, the goods market does not
clear at any price. One important lesson from this is that a researcher must con-
struct consistent models; an arbitrarily specified information structure may have

internal inconsistencies.

3.4 Properties of the Solution

The solutions computed by the algorithm have the following properties. Properties
1 and 2 are simply the bases of the algorithm and properties 3 and 4 are the direct

consequences of invariant H and F.

1. If a variable y; is decided without observing an innovation §;, ,, then§;, ,

does not affect y., (i.e., 0z,/9¢;, , = 0) given crawling variables x;_s.

2. If §;, is included in the information set of expectation operators in the j-th
equation, then &;, cannot be the source of the expected error in the j-th

equation.

8Note, however, that Sims’ condition is related to time t + 1 expectation errors, while our
discussion in the following is related to time 7 expectation errors (7 < t).
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3. The dynamic parts of the solution (H and F') are the same as in the per-
fect information models. Thus, imperfect information does not change the
numbers of stable and unstable roots. As a consequence, if a model under
imperfect information exhibits saddle-path stability, for example, then the
corresponding model under perfect information must also exhibit saddle-path
stability.

4. Invariant dynamic parts also imply that the direct effects of imperfect infor-
mation last only S period after an impulse. The direct effects are caused by
G and J matrices. In subsequent periods, they essentially follow the same
dynamics as under perfect information. More specifically, let &;; s be the val-
ues of crawling variables S period after an impulse. Then subsequent impulse
response functions are exactly the same as those under perfect information

starting with K;;s with setting all innovations equal to zero.

Properties 3 and 4 show that qualitatively an imperfect information model
inherits key properties from the corresponding perfect information model. As
shown in the next section, however, imperfect information can have quantitatively
significant effects.

There are several comments on information sets.

e In our representation of solutions, from the viewpoint of researchers, the set of
state variables at time ¢ is {x¢, &;, &_1, -+, &i_g} (today’s crawling variables
and current and past innovations). Roughly speaking, crawling variables
correspond to state variables under perfect information. Past innovations
are necessary for describing a model economy, because they recover past

information sets.

e Similarly, from the viewpoint of economic agents in a model, any information
set must be a subset of the state variables (it does not include jump variables).
The maximum possible information set at time ¢ is the same as the state

variables.
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Related to the latter, rationality imposes the following two restrictions.

e First, any information set must be internally consistent; i.e., agents in a
model always infer some state variables from other state variables, if possible.
Essentially, rationality requires that any information structure is consistent

with the solution (3.3a).

For example, information set {sk:—1, Kt—2, -**, &, €11, - - - } (without ;) is
not allowed because rational economic agents must infer x; from x;_; and £,
Similarly, {&t, Kt—1,"**» &, &t &s—3, -+ - } (Without &, ;) is not acceptable,
because economic agents must know &,_;. On the other hand, the algorithm
can deal with information set {x¢—2, Kt—3, -+, &_1, &3, - - - }, though it is
difficult to interpret economically; agents exploit the information about &,_,

temporarily, but they systematically forget it.

In terms of our computer codes, if an information set only includes {¢,_,,

&_s—1> &—s_25 - -+ }, the algorithm deems that that information set includes

Kt-s+1 but not {Ky, - -+, Ke_sy2}.

e Second, the algorithm does not allow for inference from jump variables; oth-
erwise, imperfect information models reduce to the corresponding perfect
information models in most cases, because rational economic agents infer
most hidden information from the solution (3.3b). For example, if house-
holds observe all production factors and output, they can correctly infer

today’s productivity shock from production function.

Though these restrictions may seem to be exceedingly restrictive, our algorithm
is still applicable to the models, in which agents make future decisions in the current
period. Such a class of models includes sticky price and sticky information models,
for example.

The following points are also important.

e The algorithm cannot deal with parameter uncertainty.
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e The algorithm can easily deal with noisy information models. Suppose an

AR(1) shock process A; follows

lnAt+1 = plIlAt + v 1-—- n §b+ \/7—75:;0 (321)

where £ and £ are the observable and unobservable components of inno-
vation, respectively, and (1 —n)/n is the signal to noise ratio. This technique

allows us to parameterise the extent of imperfect information.

3.5 An Example

3.5.1 Standard RBC Model

To demonstrate the quantitative effects of imperfect information, we consider the
standard RBC model under imperfect information, focussing on impulse response
functions and second moments.

The main economic motivation is to address an overly high Corr (Y; — H:, Y;)
in the standard RBC model. Under the plausible parameter range, the standard
RBC model predicts an almost perfect correlation between labour productivity
Y; — H; and output Y;, but in the data the correlation is only slightly positive.

Hence, we modify the standard RBC model by adding imperfect information

related to the labour market. The relevant equations are

0 = Y,—H-W, (3.22b)

where Y;, H:, W;, A, are output, working hours, wage and the marginal utility
of consumption, respectively. All endogenous variables are measured as deviations
from their steady state values in percentage terms. b is a constant, which represents

(a multiple of) the elasticity of marginal disutility of labour. The first equation is
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of the representative household (HH) — the FOC with respect to labour supply —,
while the second is of firms — it equates the marginal product of labour (Y; — Hy) to
wage.? The set of state variables under perfect information is {K;, A;, €,}, where
K; and A; are capital and technology at the beginning of time ¢, respectively,
and &, represents the innovation on technology. Note that A, is regarded as an
endogenous crawling variable, and there is only one #id exogenous variable §,. That
is to say, A; is treated as a stock variable.

Assuming that today’s innovation affects today’s output,

Y, = AnK7H/ ™

InA;y; = plnA+¢&

where p is a parameter that governs the persistence of technology shock.

Case I: HH Decides Labour Supply before Observing Innovations

In this case (3.22a) does not hold. Instead, the labour supply decision is governed

by
0=F |: th — w/t — At | {Kt—j,At—j; gt—j};iS—{-l
Since H; cannot react to past innovations, for s =0,1,---, S5,
O0H, .
ast_ts = 0 given K;_s, Ar_s

Figure 3.1 shows the impulse response functions where S = 5, which means
that the household decides its labour supply five quarters in advance.

There are several points worth noting here:

9Note that since all endogenous variables are represented as log-deviations from their steady
state, Y; — H, is the deviation of "output divided by labour hour" (i.e., labour productivity). The
Cobb-Douglas production function implies that the marginal product of labour is (1 — &) times
labour productivity, which means that the percent change of labour productivity is exactly the
same as that of the marginal product of labour. In other words, in the Cobb-Douglas production
function, Y; — H; represents both the percent deviations of labour productivity and marginal
product of labour.
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Figure 3.1: Impulse response functions to a positive technology innovation of the
standard RBC model, in which labour supply is determined five periods in advance.

* Woking hours do not move for the first § periods. That is, dHt/d£t s = 0

for s = 0,1, ¢¢°,S.

» Labour productivity (¥t —Ht) and investment show unusual movements for
the first § periods. However, after 5+ 1 periods, all endogenous variables
follow (linear combinations of) AR(1) processes. This is one example of the
proposition that the direct effect of imperfect information lasts only S periods

after an impulse.

e Corr (Yt —Hu Yt) is lower than under perfect information, but only slightly

(exact numbers are omitted).

Case II: Firms Decide Labour Demand before Observing Innovations

In this case, (3.22b) does not hold. Instead, the labour demand decision is governed
by

0=E y-Ht-wtl A,-j, St-j}™, 5
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Since H; cannot react to the innovations, for s =0,1,--- , S,

OH,
a£t—s

=0 given K;_s, As—s

The results are not very interesting in terms of economics.

e The impulse response functions are almost the same as in the Case I, except

for wage (hence, the figure is omitted).
o Corr (Y, — H;,Y;) is lower than under perfect information, but only slightly.

However, the important message in this experiment lies in the computation.
To find a solution, it is not enough to specify which endogenous variables are
determined with imperfect information; a researcher must also specify which in-
formation sets are imperfect. This is evident that the results of Cases I and II are

not the same.

Case III: HH Decides Wage before Observing Innovations but Accom-

modates Labour Demand

This case can be regarded as a version of the sticky wage model. The represen-
tative household fixes wage before observing innovations, and it commits itself to
supplying labour to accommodate labour demand.

In this case, (3.22a) does not hold. Instead, the labour supply decision is

governed by
0=F [ bH, — W, — )\ | {Kt—j’At—J” gt—.‘i};o:SH
Since W, cannot react to the innovations, for s =0,1,---, S,
oW, .
6§t_ts =0 given Kt—Sa At—S

The results are very interesting:
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Table 3.1: Comparison between perfect and imperfect information RBC models.

Output Hours Consumption Investment Com(Output,Outpu/Hours)

Data

s.d. 1.72 1.59 0.86 8.24 0.41

relative 1.00 0.92 0.50 4.79
Standard RBC

s.d. 1.35 0.47 0.33 5.95 0.98

relative 1.00 0.35 0.24 4.41
Imperfect information (RBC with Prefixed Wage)

s.d. 2.15 2.10 0.53 7.92 0.25

relative 1.00 0.98 0.25 3.69

Note: Figures of "Data" and "Standard RBC" are cited from Cooley and Prescott (1995).

e The volatility of labour is much higher.
e Corr(Y; — H,Y;) is much lower than under perfect information.

e Given the standard deviation of the innovation, both output and labour are

more volatile.

e The behaviours of most variables other than labour and labour productivity

do not change significantly.

The intuition behind these results is quite simple. Without imperfect infor-
mation, when there is a positive productivity innovation, wage increases, which
discourages firms from hiring more labour. As a result, labour does not increase
by very much. Indeed, another failure of the standard RBC model is that it pre-
dicts too low labour volatility relative to output volatility. During a boom both
Y; and H, increase, while Y; — H, increases because the increase in H; is not large
enough. Consequently, both Y; and Y; — H; increase in a boom, which is the (one
possible) mechanism behind a high Corr (Y; — H;,Y;) in the standard RBC model.

However, if wage is determined without seeing a positive innovation, it does
not change quickly; hence, firms are not discouraged from using more labour.
Consequently, in a boom both Y; and H; increase, while Y; — H; does not increase

very much because the increase in H; is large enough. Hence, the model predicts
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a low Carr (Yt —H1t,Yt). Indeed, in the otherwise standard RBC model with one-
period wage stickiness, the predicted relative volatility of labour almost matches
the data. Under the standard parameter set, Carr(Yt —Hd Yt) is negative for
s> 2

Table 3.1 is the summary table of the selected second moments for one-period
wage stickiness (S = 1). One-period wage stickiness improves the labour volatility
and correlation between labour productivity and output, while it slightly deterio-

rates the model performance in terms of the relative volatility of investment.

2.0 20T —  Sticky Wage: Labor
Sticky Wage Capital
— Pefect Info: Labor
Pefect Info Capital 18-1 Perfect Into: Y/H
Pefect Info Output 14 U X —*—Sticky Wage: Y/H

Sticky Wage Output

0.8

0.6 o 0.6
04 -7 04
0.2 0.2
0.0 0.0
0.2 0.2
0 5 10 15 20 2% 30 0 5 10 15 20 25 30

Figure 3.2: Comparison of selected impulse response functions to a positive tech-
nology innovation between standard RBC and RBC with wage stickiness.

Figure 3.2 shows the comparison of selected impulse response functions between
perfect and imperfect information models. The salient differences appear only in
the first period. In the sticky wage model, both labour and output jump in the first
period, and the size of the jumps are the same, hence, the labour productivity does
not change in the first period. Note that the Cobb-Douglas production function
implies that the labour productivity is always equal to wage.

Figure 3.3 shows the relative volatilities and correlations for different degrees of
imperfect information (i.e., for different values of S). As S increases, Carr (Yt —Ht, Ht)
decreases.

Case III also reveals one computational requirement; simply specifying the

information set in each equation is not enough to find a solution. A researcher must
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HHs prefix wages in S period advance. HHs prefix wages in S period advance.

1.8 — - ReWage "= 1 ; i
L6 rLabor 1.0
14 0.8 1
0.6 — I-ReVWage --------
1.2 04 I-Labior
10 . . o . h-Y/H
32 0.0
’ . . 0.2
0.4 WC . H i i 04
0.2 -0.6
0.0 0.8 R
8S 0 1 2 3 4 5 7 8

Figure 3.3: Effect of different degrees of imperfect information on selected second
moments.

also specify which variables are determined without observing perfect information.

This is evident in that the results of Case I and III are not the same.

Conclusion for RBC under Imperfect Information

Adding one-period wage stickiness is quantitatively enough to overcome the two
drawbacks of the standard RBC model —where (a) labour volatility is too small
and (b) the correlation between labour productivity and output is too high —
without significantly deteriorating other dimensions of the model performance.
This example shows the possibility that the information structure of a model has

significant quantitative effects.

3.6 Conclusion

This chapter has developed an algorithm for linear rational models under imper-
fect information. Imperfect information is important because it includes many
interesting classes of models such as sticky information and noisy signal models.
The algorithm exploits two observations: (1) if an endogenous variable ykt is
decided without observing an innovation then ykit is not affected by &
(i.e., dyk,t/dfiij-s — 0)j (2) if the information set in the j-th equation includes
then cannot be the source of expectation error in the j-th equation

(Esji = 0). The solution is defined by these two zero restrictions, and it turns out
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that they are enough to determine unique solutions.

The state space representation chosen in this algorithm is the set of crawling
variables at the beginning of the current period and current and past innovations.
This representation reveals that the dynamic parts of the solution (i.e., the H and
F matrices) are the same as under the corresponding perfect information models.
Invariant H and F' matrices imply that (a) the dynamic property, such as sunspot
or saddle-path stability is not altered by information structure, and (b) impulse
response functions are not (directly) affected by the information structure after the
first S periods, where S is such that the minimum information set in a model has
all the information up to time S. These findings show that qualitatively imperfect
information models inherit the properties of their perfect information counterparts.

However, as the RBC example demonstrates, quantitatively imperfect informa-
tion may be important. Hence, it is desirable to check for robustness in terms of the
information structure, and our MATLAB algorithm offers an easy way to conduct
such experiments. Once structural equations are obtained, then the additional

inputs to the algorithm are only two zero restrictions.
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Appendices for Chapter 3

3.A Extension of Uhlig’s Theorem 3

Proposition 1 (Eztension of Uhlig’s Theorem 8) To find a m x m matriz X that

solves the matriz polynomial
0, X" -6, 1 X" —...—0,; X —-6;=0 (3.23)

Given m x m coefficient matrices {O,:},_,, define the nm x nm matrices Z and

A by

en—-l 91 e0
1 I 0 O
E = (3.24a)
i 0 I 0 |
6, 0 0
0 I 0
A = (3.24b)
0 0 I

and obtain the generalized eigenvalues A and the generalized eigenvector s such that

AAs = Zs. Then, s can be written as
( An—-lx \

Az

\ = )
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for some z € R™, and

X =QAQ?
where Q = [, - ,Tn] and A = diag(\1,- -+ , Am)-

Proof. Almost identical to Uhlig (1999). =

3.B Matrix Operations
To pick up and drop out columns and rows from a matrix, we define

e [A], as columns z of a matrix A,
e [A], asrows z of a matrix A,
e [A] _, as the columns remaining after the elimination of columns z, and

e [A]_, as the rows remaining after the elimination of rows z,

where z is the name of a set of columns or rows. The brackets are used simply
because they often clarify notations, and often can be omitted (i.e., [B] _, = B.—).
The dot . implies all rows or columns (e.g., B.. = B). It is quite easy to show the

following formulae:

4B] = (Al 1B]. +[AL[B],
48],

Il

4} [B]

Y

[AB],. = [Al. [B]
[AB] .-, = [4]

Ty

. 1Bl
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An example for the first formula is

a11 Qa2 bii bi2 ai1 a12
= b11 b12 + b21 b22

az QG2 bar ba2 a2y az2

anbi @bz a12b21  @12b22
+
anbnn anbiz a2ba  azbz

a1 + a12bar  @a11b12 + ai2b2

anbi + az2bn  a2bi2 + axnbxn

where z = 2.
Note that this notation is consistent with other matrix subscripts; for example,
the rows of Z,,. are related to stable roots s and its columns are related to crawling

variables k.

3.C Invertible Zf; Implies Invertible Zsl,i

Proposition 2 For an invertible matriz Z, which is partitioned as

Zu Za2
Zn Za

Z =

if Zy1 is invertible, then (Z7'],, is also invertible.

Proof. Define

I 0
ZL =
—ZnZ3 1
I -Z3'Z
ZR = 1 oz
0 I
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Note that Z;ZZp has full rank because all of Z;, Z and Zx have full rank, and

note that
I 0 Zu Zlg I _Z1_11Z12 Z11 0
—Z21ZI_11 I Z21 Z22 0 I 0 Z22 — ZleﬁlZlg

Hence, G = Zy; — Zy Z{;' Z1, must have full rank.

For a full rank matrix with an invertible upper left submatrix, the well-known

formula tells us
-1
Zn Zy Z3 4+ 231 215G 202 — 27 212G
Zn Za —G—1Z21ZI_11 G1

Note that the RHS exists since we know that both Z;; and G are invertible. Thus,
[Z71],, is invertible. m

Since Z is unitary, 27 = Z#, which implies G~ = [Z271],, = ZE. Since Z£
has full rank, its conjugate transpose Zz; (= [ZH] H) also has full rank.

3.D Invertibility of Block Triangular Matrices

Due to the following introductory result, we know that Q4 QB ' & M,r and Mrq
are all invertible.
Consider a block triangular A which has invertible block diagonal submatrices

Ay

A11

App

L -

A is either an upper or lower block diagonal. Then, A is invertible.
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To show this, focus on the upper left part first

Ay Ag
det = det Ay det (A — Az (A11\A12))

AZI AZZ
= ( detAu ) ( detA22 ) #0

Note that Az (A;1\A;2) = 0 since either Ay or A, is zero. We can repeat this

process until it shows det A # 0.

3.E Rank Deficient H Matrix and Expansion of
Innovation Vector

The representation of a solution under imperfect information is not necessarily
unique. This section shows the equivalence of two representations.
Consider the RBC model, in which labour supply is decided without observing

today’s innovation. The vector of crawling variables is

K,
Hp

,lgt=

where K; and HY are capital and labour supply at time ¢, respectively. Then, the
solution has an H matrix that is rank deficient.

We can decompose such an H matrix by using eigenvalue-eigenvector decom-
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position

Vi = AV +VJE

y = A0
0 0

Vo= Vii Vip
Vo Voo

From the first row
VaKin + Vol =M ( VK, + Vi HY ) + ( Viidi + Vio Ja ) &
where J is 2x1. From the second row

VaKip + Hpy = ( Va1J1 + Vo Jo ) &

HYy = ( Va2\Var 1 + J2 ) & — Vao\Vaa Kin

Under our assumption 3 (invertible [Mmg] kj), Vi1 and Vo are non-zero. Hence,

_ Vio(Va\Var ) J1 4 Vg J:
N R =

Thus, it is shown that with a rank deficient H matrix we can reduce the set of

crawling variables by increasing the number of innovations.

3.F Full Derivation

This section provides the full derivation. For the notation, see the main text.
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3.F.1 QZ Decomposition

Applying the QZ decomposition to (3.2)

0 = QuZ%y + Q2% + QYCE, + QY DE,,, + Q¥ EEHS

_ Q;z Q;‘u St+1 " st; Qi St
0 Qéu U1 0 qu Uz
Qi QY QY
*lgn |65 | o [Pt | o EeS (3.25)

where s, and u; are stable and unstable roots, respectively, such that

S ziE zZ% Ky

Uy Zg; qus ¢t

il

Unstable Roots and Transversality Conditions (T'VCs)

Imperfect information requires a slightly careful treatment of TVCs. Focussing on

the lower half of (3.25)
0= Qfus + Qo + QU CE + Qi DE,yy + QI EEY (3.26)

Iterating it forward

l
- Q‘f’u\gﬁu ) Ut 41

lim 8
l—o00 _ ~t+8
52 (~omos, ) ((amaer ) ( Gt Dty + BE )

S l
= —m— ( QB\Q )C& - Z( AL ) ( 0B\QH )Eé“”s (3.27)

=0

169



where

[t ) (0 \ (&)

S AMEY
& ¢ 0

K£t+l—3) \ §eri-s ) \ 0 )

where A\B = A™'B, and A/B = AB™'.

There are many information sets, under each of which TVCs must be satisfied.
— that is, TVCs are (seemingly) tighter under imperfect information. However,
if the perfect information counterpart satisfies TVCs, corresponding imperfect in-
formation models also satisfy them automatically due to the law of iterated linear
projection.!® Thus, the same logic as in the perfect information case holds; because
(—qu\Q;‘}u)l — 0 as | — oo by construction, the expected value of u;4; explodes
for any non-zero value of the RHS of (3.27), which contradicts the TVCs. Note
that the inside the limit operator in the LHS shows the expected value of u;4; (the
realisation of u;4; plus expectation errors) times (—qu\ﬂﬁu)l. Hence, the RHS of

(3.27) must be zero.

Therefore,
_quut = _quzfnm—ﬂfuzﬁqst
> : st+,S
- Qg +on > (-azea ) (ozier ) EE
1=0
5 ! t+l,S
= Qﬁ’.C§t+Z( —QA /QB, ) QIEE ™ (3.28)
=0

10There are two comments. First, (3.27) must hold for any realisation of k;—; and ¢,_, for
8=0,1,---. Hence, it is not possible that TVCs hold under imperfect information but not under
perfect information. Second, if an information set does not include, for example, £; ,_, then the
relevant expected value of u;y, is the RHS with setting ¢;, , = 0. Hence, if TVCs hold for the
full information set, they hold for non-full information sets as well.
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Substituting our "guess solution" (3.3) into (3.28),

0 = ( Q8,71 1 QB ZHF ) e + OB, ZIGESS 1 QUCE,

S l
At+l,S
+3((-aas0z, ) QimE"
=0

(3.29)
Stable Roots
Similarly, from the upper half,
0 = Qﬁs (Zsf:lo"tﬂ + Zfﬁ¢t+1) + qu (ch"tﬂ + Z5¢¢t+1)
+Q8 (Z0ke + Z5¢,) + Q8, (Zhke + 221 9,)
+Q5/C8, + Q7 DEyyy + Qi EES (3.30)
Again, by substituting (3.3) into (3.30), after some manipulation,
0 = ( ALFH + AL H + ABF + AD )K't
+Af¢G§t+1’s + QEDEH-I + chft
+ ( AALFJ +ALJT + ABG+ QFE ) ¢S (3.31)

Though the definitions of A%, AZ;, AZ and AZ, are (3.10) in the main text, the

following result may be more useful.

As Al QL U | | 2k Z4
a2 as | | o2 oem || zn 2n 832
sK s¢ 38 su uK u¢
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3.F.2 Expansion of ¢+ and ¢°

Expanding ¢+° and ¢ in (3.31) and (3.29),

0 = (AA¢FH+AAH+A F+AB)
+(AA¢G0+QI{D )&H
+ ( A2yGr+ (4/Z,s) Jo + ABGo. + QY Eo + QHEC )5
+(A 5Ga + (Q4/Zes) J1 + ABG1 + QUE,, )ﬁt_1+---
+(A¢Gs+(ﬂss/Zm) Js1+AZGs_1 + QY Es_y. )ft-(S—l)
(

+| (Q4/Zx) Js+ AEGs + QY Es )ft_s

0 = ( Q8 Z1 + Q0 ZLF ) Kt

S k
+z ( QB ZHG + ( k—O ( uu/QEu ) Q{;I.Ek+s> )gt—s
s=1
k
( QEC + 0B ZHG, + (Ef=o ( —QA /OB ) Q,{{Ek) ) &,

Since these matrix equations must hold for any realisation of «;, &,_, for 7 =

_170)17"' ,S)
0 = ALFH+ALH+ALF+AL (3.33a)
0 = 0zl +0lzLF (3.33b)
0 = ALGo+QYD (3.34a)
0 =0 (3.34b)
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0 = ALGi+ (Q4/Zs) Jo+AEGo+QYEs +QFC (3.35a)

S 8
0 = Q0.Z4Go+ (Z ( —04 /9B, ) Qf E) +Q%Cc  (3.35b)
s=0
0 = ALGen+ (/Zes) Jo + ASG, + QIE, (3.36a)

fors=1,---,85-1

S—s k
0 = Q5Z5G,+ (Z ( —QA /0B, ) QY Em) (3.36b)

k=0
fors=1,.---,8-1

0 = (90/2)Js+A5Gs+ QFEs (3.37a)

0 = Q9220Gs+QYEs (3.37b)

3.F.3 Dynamic Parts (H and F)

Since (3.33a) and (3.33b) do not include G, J, D, E or II, these two matrix
equations can be solved for H and F independently. Thus, assuming Zfd, has a

(right) inverse,!!

F = —ZIN\ZJ = Z4s/ 2y,
H = —Z (U\2) /2.

Note that the H and F' matrices are the same as in the corresponding perfect

"' Remember that an invertible Z implies an invertible ZJL.
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information model.'?

3.F.4 Zero Restrictions on F and 11

Vertically concatenating matrix equations (3.35a)-(3.37b) in pairs,

0 A4 O0A/Z., AB
0 = o Pl + / ¢ FO
0 0 o QBzh
k
S 1o 0
+) Q"E. + Q"C (3.382)
k=0 0 _Q:}u/ qu
. 0 A4 0A/Z.  AE
- s+1 8
0 0 0 0BzH
k
=0 0
+y QUE,fors=1,---,5—1 (3.38b)

k=0 0 —Qﬁu/ qu

QA/Z., AB
0 = 2 * | Ts+Q¥YE;s (3.38¢)

0 0BZE

12For the F matrix, note

ZHZ:{Z,{}Q zg,Hzm Zm]=[ZﬁZm+Z%,Z¢, Zgzm+zfz¢u]=[z 0]

zH ZE Zss Zgu ZH Zs + 25424 ZoZnu+ ZiyZgu 0 I

Looking at the lower left element
ZxZ+ 2027, = 0
—Z8 72 = ZihZ4s
"'qus\zgc = Z¢9/Z~s

Also, remember that
- H H (zH\ H
Znsl = an - Zsz/z (Zuq&\zun)

and that Q2 is invertible by the reordering of QZ decomposition.
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Note that

(o as 0A/Z. AP, )
- I
s+2 s+1
0 0 0 0 03 zL
0 = k
0 _Qéu/gfu S—(s+1)
- + k0 Q¥Erion
0 _Q:}u/ Q‘Eu
0 0 =210 0
= Tori+ ) Q" Eiys (3.39)
0 —QAzH = | 0 —04 /0B
Subtracting (3.39) from each of (3.38),'3
0 A4 0/ Zes  AZ u
0 = - I+ 5 i To+ Q7 (Ex+ C)(340a)
I 0 Q.25 ] 0 05z
0 A4 0A/Z., AB
0 = ? | Dypr + / * |T,+Q"E,, (3.40b)
0 Q478 0 QBzE
fE)rs:l,--- ,9—1
Q4/Z.  AB
0 = / * |rs+QYEs (3.40c)
0 QEHZQI";

13Though this process is not necessary, it reduces the computational burden.
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and again vertically concatenating these equations,

0 = MyT+Q(E+C)

( Iy Ey Q 0
Co
I' = : , B = : , C= , Q=
0
\ I'g Es I 0 Q |
] i) AOA i
04/ Zes  AZ
& A 0 o= )
0 0.z
MyI‘ = ’
A
0 ® A% poaz | 0 M
o 0 Qﬁqu;

Note that since & is invertible, M, is also clearly invertible. Hence,

0 = T+ Mr\Q(E+C)

= Mpnll + Myr\Q (E + C)

where (3.7) is used to derive the second line. Hence,

Mng = (MyrMro)\Q (3.41b)

In the following, we compute E and II column by column.

I;=Mnug(E;+C))
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Remember that some elements in I1; are zero due to imperfect information, while

some elements in E; are non-zero. For example,

(- m ) ([ 0) (c:))
: : 0
0= I;(=0) | + Mue E; |+

KHM(.SH),.:/ k\‘)} KOU

E Matrix

From the k-th set of equations in (3.42)

. kj

kj

0= | e |
kj

Hence, assuming [ Mug ] is invertible,
kj

\ [ Mng ] Cji — Cii

k—j

Eji=— [ Mg ]
ki

II matrix

(3.42)

From the other equations in (3.42), we eliminate the expectation errors Ej;.

[ Mg ] ([ Mg ] \ [ Mg ] Ci + Cji)
M, = —kj ki -
- [ Mg Cji— | Mug ] C.ji

—kj —k—j

= —[ ﬁ};] \C-is
—~j-k

(] ([ o)) L] )

The vector IIx; and IIy; = 0 can be vertically merged to recover II;, and the

vectors II; are horizontally concatenated to recover full IT matrix. Note that an

177



invertible [ Mg ] implies an invertible [ ME}J ] . Not surprisingly, Cj;
kj —~j—k

does not affect the coefficient matrix II;, because the j-th set of equations does
not hold for the i-th innovation in any case; it only affects the expectation error
Ej;.

3.F.5 Other Matrices (J, G and D)
J and G Matrices

To obtain the J and G matrices, from (3.7),

- 5 -
Go
= = Mrnll
Js
- GS -
D Matrix
From the A matrix in a given model (3.2),
0
D=-A4A
Go

which always satisfies (3.34a). It can be shown that the j-th rows in D are zeros
if the j-th equation does not include ¢ + 1 dynamic jump variable (see the next

section).

3.G A Comment on the D Matrix

The derivation of the D matrix is a bit tricky, and requires careful attention con-
cerning non-square matrices A;“d, and Q. We do not show the straightforward

derivation of D — which is perhaps not intuitive — but instead we simply show
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that our solution always satisfies (3.34a), which, in turn, reveals an important
intuition.

First, we define dyjpa.mic and non-dynamic jump variables: ¢,,, =
[ (¢f +1)T (¢;‘+1)T } . Note that the coefficients of the non-dynamic jump vari-

ables ¢;,; in A matrix must be zero by the definition of "non-dynamic".

- -

Amc Ampd 0 K41
Ayppr = A¢d x Agage 0 ¢g +1
A¢ﬂn A¢n¢d O i ¢:L+l

where ¢, is the vector of dynamic variables, such as consumption in the Euler

equation. The submatrices in Gy and Q¥ are defined as

0
- 0
0
Go,4»
H H H H
QF = Q. Qi =| o2 oH H QY = ute Qurgr Qurgn
y Wy = oK d ™ | 7 Yu.
Q4 * he Qlig Qi
¢. utK u,¢d ug¢n

where u/ and «* imply finite and infinite unstable roots, respectively.

Focussing on the second term of (3.34a)

AKK AK¢d O 0
QSD = QsHAéO = [ ge ﬁ;d 'g,;n :I A¢dli A¢d¢d O GO,¢d.
| A¢",¢ A¢n¢d O GO,¢"‘.

= ( Qg;Amd + QidA¢d¢d + QﬁnA¢n¢d ) G0’¢d. (3-43)
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For the first term of (3.34a) note that AZ, is the s¢-th elements in Q4Z¥ i.e.,

Ay = QAZH] = [QQHQAZH] = [QA]
L 3¢ R w
2oQl, QL || Aw Ay 0
= wtn Quigt Quign | | Aptn Agigr 0
| f*'n fwd g:pﬂ i _A¢"n Agnga O_ d e

* ( QgcAnqu + Qﬁ;dA(ﬁd(»d -+ Qfd,nAd,nqsd ) 0

= * * 0
* * 0
- o
= i ( QiAwd + QSH¢4A¢d¢d + QginAgbnqsd ) 0 :I
where * elements are irrelevant for our current interest. Hence,
MG, = H H H o || Goo
8¢ 0 - QBK:AK.(ﬁd + Qs¢dA¢d¢d + Q8¢nA¢n¢d G
0,6™.

(g + QLo+ Qo ynye ) Gos. (3.44
(3.43) and (3.44) show that (3.34a) holds. The key to the solution is a sort of
zero restriction; A matrix has zero columns by the definition of "non-dynamic"
variables.

A further question is the consistency of D (i.e. whether the computed D always
has zeros at the proper positions?). Specifically, if the j-th equation does not have
o +1, it should not have an expectation error due to &, ,,, and hence the row vector
D; must be zero; this zero restriction on D is analogous to that on E. This is
surely satisfied because the rows corresponding to non-dynamic equations in D
(= AG)) is always zero by the construction of A; i.e., the j-th row in A is zero
if the j-th equation does not include dynamic jump variables ¢f+1. For example,

in the standard RBC model, all but the Euler equation have zero rows in A and
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hence in D.

What this section discusses is the correspondence between expectation errors
and the source of such errors. If, for example, expectation errors with respect to
full information up to time ¢; appears in the equations without dynamic jump vari-
ables, then it is a logical contradiction (expectation errors without their causes),
and hence (3.34a) is not satisfied. Conceptually, the consistency of the D matrix
is parallel to the invertibility of [MnE],;- As mentioned in the main text, the
non-invertibility of [Mng],; implies an incorrect specification of the information
structure with respect to §,,, (7 = 0,1,---,S). Similarly, an inconsistent D (or
the non-existence of a consistent D) implies an incorrect specification of informa-
tion structure with respect to &;,,. Such inconsistency/non-existence happens, for
example, if a researcher puts an expectation operator on the evolution of capital,
rather than on the consumption Euler equation.

Finally, note that a consistent D matrix exists <> Equation (40) in Sims (2002)
holds. Thus, it is now clear that equation (40) in Sims (2002) must always be
satisfied if expectation errors appear only in the equations with dynamic jump
variables, regardless of the dynamic property such as saddle-path stable, sunspot,

or explosive.
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Concluding Remarks

This thesis analyses inventories empirically and theoretically. It shows a battery of
evidence for periodicity; economic variables, such as production, follow sine waves.
This is in stark contrast with the modern view, where business cycles are successive
deviations from the steady state and their returning process. Instead, this thesis
find that booms and recessions occur alternately; more precisely, a boom is the seed
of the recession that follows, and vice versa. This thesis also finds that inventories

play a key role in generating endogenous cycles — namely, inventory cycles.

182



Bibliography

Abel, Andrew B., “Inventories, Stock-Outs and Production Smoothing,” Review
of Economic Studies, April 1985, 52 (2), 283-93.

Basu, Susanto, “Procyclical Productivity: Increasing Returns or CyclicalUtiliza-
tion?,” Quarterly Journal of Economics, August 1996, 111 (3), 719-752.

Baxter, Marianne and Robert G. King, “Measuring Business Cycles: Ap-
proximate Band-Pass Filters for Economic Time Series,” Review of Economics

and Statistics, November 1999, 81 (4), 575-93.

Bencivenga, Valerie, “An Econometric Study of Hours and Output Variation
with Preference Shocks,” International Economic Review, May 1992, 33 (2),
449-71.

Bental, Benjamin and Benjamin Eden, “Inventories in a Competitive Envi-

ronment,” Journal of Political Economy, October 1993, 101 (5), 863-86.

Bernanke, Ben S. and Mark L. Gertler, “Inside the Black Box: The Credit
Channel of Monetary Policy Transmission,” Journal of Economic Perspectives,

fall 1995, 9 (4), 27-48.

Bils, Mark, “Material for "Studying Price Markups from Stockout Behavior"

(Very Preliminary and Very Incomplete),” Working paper, December 2004.

— and James A. Kahn, “What Inventory Behavior Tells Us about Business
Cycles,” American Economic Review, June 2000, 90 (3), 458-81.

183



Blanchard, Olivier J., “The Production and Inventory Behavior of the American

Automobile Industry,” Journal of Political Economy, June 1983, 91 (3), 365-400.

Blanchard, Olivier Jean and Charles M. Kahn, “The Solution of Linear
Difference Models under Rational Expectations,” ECM, July 1980, 48 (5).

Blinder, Alan S., “Inventories and Sticky Prices: More on the Microfoundations

of Macroeconomics,” American Economic Review, June 1982, 72 (3), 334-48.

— , “Can the Production Smoothing Model of Inventory Behavior Be Saved?,”
Quarterly Journal of Economics, August 1986, 101 (3), 431-53.

— and Louis J. Maccini, “Taking Stock: A Critical Assessment of Recent
Research on Inventories,” Journal of Economic Perspectives, 1991, 5 (1), 73-96.

Boileau, Martin and Marc-Andre Letendre, “inventories, Sticky Prices and
the Propagation of Nominal Shocks,” Working paper, 2004.

Boyd, John H. and Michael Dotsey, “Interest Rate Rues and Nominal Deter-
minacy,” Federal Reserve Bank of Richmond, Working Paper, 1990.

Bruno, Michael, “Raw Materials, Profits, and the Productivity Slowdown,”
Quarterly Journal of Economics, February 1984, 99 (1), 1-30.

Burns, Arthur F. and Wesley C. Mitchell, Measuring Business Cycles, New
York: NBER, 1946.

Caballero, Ricardo J. and Eduardo M. R. A. Engel, “Dynamic (S, s)
Economies,” Econometrica, November 1991, 59 (6), 1659-1686.

Caplin, Andrew S., “Current Real-Business-Cycle Theories and Aggregate
Labor-Market Fluctuations,” Econometrica, November 1985, 53 (6), 1395-1410.

Christiano, Lawrence J., “Solving Dynamic Equilibrium Models by a Method
of Undetermined Coefficients,” Working paper, 1998.

184



— and Martin Eichenbaum, “Current Real-Business-Cycle Theories and Ag-
gregate Labor-Market Fluctuations,” American Economic Review, June 1992,

82 (3), 430-450.

— 3y —y and Charles L. Evans, “Monetary Policy Shocks: What Have We
Learned and to What End?,” NBER working paper, 1999, (6400).

Diamond, Peter, “Aggregate Demand Management in Search Equilibrium,”
Journal of Political Economy, October 1982, 90 (5), 881-94.

— and Drew Fudenberg, “Rational Expectations Business Cycles in Search
Equilibrium,” Journal of Political Economy, June 1989, 97 (3), 606-19.

Dixit, Avinash K. and Joseph E. Stiglitz, “Monopolistic Competition and
Optimum Product Diversity,” American Economic Review, June 1977, 67 (3),
297-308.

Dupor, Bill and Takayuki Tsuruga, “Sticky Information: The Impact of Differ-
ent Information Updating Assumptions,” Journal of Money, Credit and Banking,
dec 2005.

Economic and Social Research Insutitute, Cabinet Office, Government
of Japan, “The determination of Business Cycle Peak and Trough,” November
2004. http://www.esri.cao.go.jp/en/stat/di/041112rdates.html.

Fisher, Jonas D. M. and Andreas Hornstein, “(S, s) Inventory Policies in
General Equilibrium,” Review of Economic Studies, January 2000, 67 (1), 117—
45.

Fitzgerald, Terry J., “Inventories and the Business Cycle: An Overview,” Fed-
eral Reserve Bank of Cleveland Economic Review, 1997, 33 (3).

Gali, Jordi, “Technology, Employment, and the Business Cycle: Do Technology
Shocks Explain Aggregate Fluctuations?,” American Economic Review, March
1999, 89 (1).

185


http://www.esri.cao.go.jp/en/stat/di/041112rdates.html

Gertler, Mark and Simon Gilchrist, “Monetary Policy, Business Cycles, and
the Behavior of Small Manufacturing Firms,” Quarterly Journal of Economics,
May 1994, 109 (2).

Golub, Gene H. and Charles F. Van Loan, Matriz Computations, 3rd ed.,
Baltimore: Johns Hopkins University Press, 1996.

Hamilton, James D., Time Series Analysis, Princeton, New Jersey: Princeton

University Press, 1994.

Harvey, Andrew C., Time Series Models, Hertfordshire: Harvester Wheatsheaf,
1993.

Hassler, John, Petter Lundvik, Torsten Persson, and Paul Soderlind,
“The Swedish Business Cycle: Stylized Facts over 130 Years,” monograph no.22,
IIES, Stockholm University, 1992.

Herman, Shelby W., Gerald F. Donahoe, and John C. Hinrichs, “Man-
ufacturing and Trade Inventories and Sales in Constant Dollars, 1595 to First
Quarter 1976, Survey of Current Business, May 1976. (Note: See also the

subsequent issues of "Survey of Current Business" for updated estimations.).

Hornstein, Andreas, “Inventory Investment and the Business Cycle,” Federal

Reserve Bank of Richmond Economic Quarterly, Spring 1998, 84 (2), 49-71.

— and Pierre-Daniel G. Sarte, “Sticky prices and inventories : production
smoothing reconsidered,” Federal Reserve Bank of Richmond Working Paper,
2001, (01-6).

Johansen, Soren, “Estimation and Hypothesis Testing of Cointegration Vectors
in Gaussian Vectord Autoregressive Models,” Econometrica, November 1991, 59
(6), 1551-1580.

Johnston, Jack and Jhon DiNardo, Econometric Methods, McGraw-Hill, 1997.

186



Juglar, Clement, Des Crises Commerciales et leur Retour Periodique en France,
en Angleterre, et Aux Etats-Unis 1860. (About Trade Crises and their repetition
in France, England and the U.S.).

Kahn, James J., “Inventories and the Volatility of Production,” American Eco-

nomic Review, September 1987, 77 (4), 667-79.

—, “Why Is Production More Volatile Than Sales? Theory and Evidence on
the Stockout-Avoidance Motive for Inventory-Holding,” Quarterly Journal of
Economics, May 1992, 107 (2), 481-510.

Kahn, Janes A., Margaret M. McConnell, and Gabriel Perez-Quiros,
“On the Causes of the Increased Stability of the U.S. Economy,” FRBNY Eco-
nomic Policy Review, May 2002, pp. 183-206.

Kashyap, Anil K., Owen A. Lamont, and Jeremy C. Stein, “Credit Condi-
tions and the Cyclical Behavior of Inventories,” Quarterly Journal of Economics,

August 1994, 109 (3).

Khan, Aubhik and Julia K. Thomas, “Inventories and the business cycle:
an equilibrium analysis of (S,s) policies,” Federal Reserve Bank of Philadelphia
Working Papers, 2004a, (11).

— and _ , “Modeling inventories over the business cycle,” Federal Reserve Bank
of Philadelphia, Working Papers, 2004b, (04-13).

Kim, Soyoung, “Do Monetary Policy Shocks Matter in the G-7 Countries? Using
Common Identifying Assumptions about Monetary Policy across Countries,”
Journal of International Economics, August 1999, 48 (2), 387412.

King, Robert G. and Mark W. Watson, “The Solution of Singular Linear Dif-
ference Systems under Rational Expectations,” International Economic Review,

November 1998, 39 (4).

187



— and _ , “System Reduction and Solution Algorithms for Singular Linear Differ-
ence Systems under Rational Expectations,” Computational Economics, October

2002, 20 (1).

Kitchin, Joseph, “Cycles and Trends in Economic Factors,” Review of Economic

Studies, January 1923, 5 (1).

Klein, Paul, “Using the generalized Schur form to solve a multivariate linear
rational expectations model,” Journal of Economic Dynamics and Control, Sep-

tember 2000, 24 (10).

Knetsch, Thomas A., “The Inventory Cycle of the German Economy,” Discus-
sion Paper, Deutsche Bundesbank, 2004, (09).

Kondratieff, N. D., “The Long Waves in Economic Life,” Review of Economic
Statistics, November 1935, 17 (6). (Translated into English by W. F. Stolper).

Kuznets, Simon. S., Secular Movements in Production and Prices, Mifflin, 1930.

Leeper, Eric M., Christopher A. Sims, and Tao Zha, “What Does Monetary
Policy Do?,” Brookings Papers on Economic Activity, 1996, (2), 1-63.

_ 4 _yand _, “Modest Policy Interventions,” Journal of Monetary Economics,

November 2003, 50 (8), 1673-1700.

Lutkepohl, Helmut, Introduction to Multiple Time Series Analysis, Berlin:

Springer-Verlag, 1993.

Mankiw, Gregory N. and Ricardo Reis, “Sticky Information Versus Sticky
Prices: A Proposal to Replace the New Keynesian Phillips Curve,” NBER work-

ing paper, 2001.

McConnell, Margaret M. and Gabriel Perez-Quiros, “Output Fluctuations
in the United States: What Has Changed Since the Early 1980’s?,” American
Economic Review, December 2000, 90 (5), 1464-1476.

188



NBER, “US Business Cycle  Expansions  and Contractions.”
http://www.nber.org/cycles.html.

Pindyck, Robert S., “Inventories and the Short-Run Dynamics of Commodity
Prices,” RAND Journal of Economics, Spring 1994, 25 (1), 141-59.

Prescott, Edward C., “Theory ahead of business cycle measurement,” Federal
Reserve Bank of Minneapolis, Staff Report, 1986, (102).

Ramey, Valerie A., “Inventories as Factors of Production and Economic Fluc-
tuations,” American Economic Review, June 1989, 79 (3), 338-54.

—, “Nonconvex Costs and the Behavior of Inventories,” Journal of Political Econ-

omy, April 1991, 99 (2), 306-334.

— and Daniel J. Vine, “Tracking the Source of the Decline in GDP Volatility:
An Analysis of the Automobile Industry,” NBER, 2004, (10384).

_ and Kenneth D. West, “Inventories,” NBER, 1997, (6315).

Ravn, Morten O. and Harald Uhlig, “On Adjusting the Hodorick-Prescott
Filter for the Frequency of Observations,” Review of Economics and Statistics,

May 2002, 8/ (2), 371-380.

Rotemberg, Julio J. and Michael Woodford, “Imperfect Competition and
the Effects of Energy Price Increases on Economic Activity,” NBER working
paper, June 1996, (5634).

Schumpeter, Joseph A., Business Cycles: A Theoretical, Historical and Statis-
tical Analysis of the Capitalist Process, New York: McGraw-Hill, 1939.

Sims, Christopher A., “Are Forecasting Models Usable for Policy Analysis?,”
Federal Reserve Bank of Minneapolis Quarterly Review, Winter 1986, 10 (2),
2-16.

189


http://www.nber.org/cycles.html

—, “Solving Linear Rational Expectations Models,” Computational Economics,

October 2002, 20 (1-2).

Strang, Gilbert, Linear Algebra and Its Applications, 3rd ed., Orlando, Florida:
Harcourt Brace Jovanovich, Inc., 1988.

Sugihara, Shigeru, Tsuyoshi Mihara, Tomoyuki Takahashi, and Mit-
susige Takeda, “Monetary Policy in Japan — Instruments, Transmission Mech-
anisms, and Effects,” Keizai Bunseki, Economic and Social Research Institute,
Cabinet Office, November 2000, 162. in Japanse. Abstract in English available
at http://www.esri.go.jp/en/archive/bun/abstract/bun162-e.html.

Teruyama, Hiroshi, “VAR niyoru Kinnyuu Seisaku no Bunseki: Tenbou (Per-
spectives of VAR Analysis on Monetary Policy),” Financial Review, Policy Re-
search Institute, Ministry of Finance, September 2001, 59, 74-140. in Japanese.

Uhlig, Harald, “A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models
Easily,” Ch3. in "Computational Methods for the Study of Dynamic Economics",
1999.

Wen, Yi, “Understanding the Inventory Cycle,” CAE Working Paper, 2002,
(No.02-04).

West, Kenneth D., “A Variance Bounds Test of the Linear Quadratic Inventory
Model,” Journal of Political Economy, April 1986, 94 (2).

Woodford, Michael, “REDS-SOLDS USER’S GUIDE,” undated.

Yoshikawa, Hiroshi, Masahiro Hori, Yoshiaki Hori, Hiroyuki Imura,
Toshio Watanabe, and Yousuke Takeda, “Kinnyuu Seisaku to Nippon

Keizai (Monetary Policy and Japanese Economy),” Keizai Bunseki, Economic
and Social Research Institute, Cabinet Office, March 1993, 128. in Japanese.

190


http://www.esri.go.jp/en/archive/bun/abstract/bunl62-e.html

