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Abstract

This thesis analyses inventories empirically and theoretically. Inventories are im

portant in understanding business cycles, not only because inventory investment 

accounts for a large share of GDP growth rate. This thesis also emphasises the 

cyclicality of inventories.

Often, business cycles are regarded as exponential decays, i.e., successive devi

ations from the steady state and their returning processes. In contrast, this thesis 

offers a battery of evidence that economic variables, such as sales and invento

ries, follow damping oscillations, i.e., stable sine waves. This means that a boom 

is the seed of the recession that follows, and vice versa. This thesis also reveals 

inventories’ role in such endogenous cycles.

The first chapter presents empirical evidence of periodicity. VAR estimations 

find evidence of sine waves — namely, complex roots. Indeed, the detected complex 

roots seem to capture the actual business cycles; the estimated lengths of one 

business cycle are close to those of the post-war average in both Japan and the 

United States. This chapter also shows that peaks and bottoms of inventories lag 

behind those of production; such a time lag is called a phase shift. In addition, 

this chapter finds that the U.S. Federal Reserve anticipates inventory cycles, while 

the Bank of Japan does not.

The second chapter constructs a theoretical model with a stockout constraint 

and a production chain in the rational dynamic general equilibrium framework, 

which quantitatively satisfies stylised inventory facts. Importantly, the model suc

cessfully mimics observed inventory cycles. Moreover, working hours are more
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volatile and the correlation between labour productivity and output is lower than 

in the standard real business cycle model.

Finally, the third chapter offers a solution algorithm for linear rational ex

pectation models under imperfect information. Inventories are closely related to 

imperfect information, and inventories are often regarded as buffers against unob

served demand shocks.
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Introduction

Inventories are important in understanding business cycles. An obvious reason for 

this is that inventory investment is very volatile. As a result, despite its small share 

of GDP, inventory investment accounts for a large share of the GDP growth rate 

(see Fitzgerald (1997) and Blinder and Maccini (1991a), among others). However, 

this thesis also emphasises the cyclicality of inventories.

The main conclusion of this thesis is that business cycles are damping oscilla

tions, not exponential decays. Most modern macroeconomic researchers perhaps 

recognise the concept of "business cycles" as successive deviations from the steady 

state and their returning processes (see Prescott (1986)); in this view, business 

cycles are triggered by exogenous shocks, and the endogenous mechanism in an 

economy generates only a monotonic convergence toward the steady state.

In contrast, this paper offers a battery of evidence that economic variables, 

such as sales and inventories, follow sine waves, meaning that booms and recessions 

tend to occur alternately. More precisely, a boom is the seed of the recession that 

follows, and vice versa. Moreover, this thesis reveals the role of inventories in such 

endogenous cycles.

The most important motivation for this thesis is to understand the so-called 

inventory cycles (see Figures 1.1 and 1.2 in the first chapter), which plot the year- 

on-year changes in production (or shipment) and inventories on the y- and x-axes, 

respectively. These phase diagrams exhibit clear clockwise movements, and they 

are observed in most periods.

Business practitioners informally explain these swirls as follows. Interestingly,
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it seems that they implicitly assume that (i) the target level of inventories is an 

increasing function of sales and (ii) the production chain is a key factor. The 

former means that, during a boom, demand is strong and firms want to accumulate 

inventories by increasing production; however, such inventories become excessive 

once that boom has dissipated, and they thus serve as the seed of the recession that 

follows. At this point, firms try to reduce their inventories by cutting production. 

It is important to note that production cuts imply a decrease in the demand for 

intermediate goods. Hence, due to the law of motion of inventories (1.2), excessive 

inventories continue to increase, even when production starts declining. Moreover, 

even when inventories return to a normal level, firms tend to cut their production 

further because the weak demand caused by the production reduction further pulls 

down the target level of inventories. Again, however, such low inventories fall short 

of the target level once firms bring their production back to a normal level, and 

they thus serve as the seed of the boom that follows. Hence, firms start recovering 

their reduced inventories, and this process repeats itself.

In this respect, the first chapter presents empirical evidence of periodicity. VAR 

estimations find evidence of sine waves — namely, complex roots. Indeed, the 

detected complex roots seem to capture the actual business cycles; the estimated 

lengths of one business cycle are close to those of the post-war average in both 

Japan and the United States. In addition, this chapter shows that peaks and 

bottoms of inventories lag behind those of production; such a time lag is called a 

phase shift. Note that this time lag implies that excessive inventories continue to 

increase, even when production starts declining, and vice versa. In addition, such 

a time lag is algebraically important in generating a near-circular trajectory in the 

phase diagrams, as illustrated in Figures 1.1 and 1.2, and it is practically useful 

in short-term economic forecasts. Finally, in relation to monetary policy, the first 

chapter shows that the U.S. Federal Reserve anticipates inventory cycles, while the 

Bank of Japan does not.

On the other hand, the second chapter constructs a theoretical model with a
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stockout constraint and a production chain in the rational dynamic general equilib

rium framework. This model quantitatively satisfies two stylised inventory facts: 

(i) production is more volatile than sales and (ii) inventory investment is pro

cyclical. More importantly, the model is also, to a certain extent, successful in 

mimicking observed inventory cycles. In addition, as a by-product, the production 

chain generates a slow adjustment of inventories, which is regarded as another in

ventory puzzle. Note that this slow adjustment insinuates, at least potentially, that 

excessive inventories continue to increase even when production starts declining, 

and vice versa. As a result, working hours axe more volatile, and the correlation 

between labour productivity and output is lower than in the standard real busi

ness cycle (RBC) model. Intuitively, because the inventories of intermediate goods 

adjust quite slowly, firms cannot increase the input of intermediate goods during 

booms; instead, firms are forced to substitute intermediate goods with labour, 

and working hours hence become more volatile. Because working hours increase 

sharply when output is strong, labour productivity (output/working hours) does 

not increase very much; labour productivity, therefore, is not strongly correlated 

with output. In sum, our general equilibrium model with inventories not only 

satisfies inventory facts, but also improves the standard RBC model in terms of 

labour behaviour.

Finally, the third chapter discusses the effect of imperfect information in general 

equilibrium models. Inventories are closely related to imperfect information; for 

example, it is often argued that inventories are used as buffers against unobserved 

demand shocks. This chapter proposes the general principles of a solution algo

rithm for imperfect information models: (i) no endogenous variables can respond 

to unobserved shocks and (ii) observed shocks cannot be a source of expectation 

errors. It then shows that in general (a) the stability property of models, such as 

saddle-path stable, sun-spot and explosive equilibria, is invariant against changes 

in the information structure and (b) the direct effect of imperfect information lasts 

only for S periods, if the smallest information set in the expectation operator of
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a system of equations includes all the information up to time t — S — 1. In a 

sense, the third chapter shows that a change in information structure does not 

alter qualitative properties of models. This chapter does demonstrate, however, 

that the quantitative effect of imperfect information can be significant.
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Chapter 1 

Periodicity of Inventories

VAR estimations with inventory level data in this chapter detect complex roots, 

implying that variables, such as production and inventories, follow damping oscil

lations. This suggests that a boom is the seed of the following recession, and vice 

versa.

The main findings include: (1) the estimated cycle lengths are close to the post

war average of actual business cycle lengths; (2) inventories lag behind production 

by nearly one year; consequently, their contemporaneous covariance is almost zero; 

(3) monetary policies react sharply to demand shocks, but not to supply shocks; 

and (4) monetary policy is forward-looking in the U.S., but not in Japan.

1.1 Introduction

Understanding inventories enables the understanding of business cycles. At present, 

inventory data are invaluable in this endeavour, while the idea of inventory cycles 

dates back to Kitchin (1923). This chapter is motivated especially by so-called 

business cycles (see Figures 1.1 and 1.2), which are phase diagrams of year-on-year 

percentage changes in production/shipment (on the y-axis) and inventories (on the 

x-axis). These clockwise movements are stable in past and present data, and they 

are especially useful for short-run forecasts of economic conditions.

18



Pr
od

uc
tio

n,
 S

hi
pm

en
t 

(Y
oY

,%
) 

Pr
od

uc
tio

n,
 S

hi
pm

en
t 

(Y
oY

,%
)

10%

2006 4Q]
5%

0%

[2001 1Q

Production 
Shipment 

A start/end

-15% -10% -5% 0% 5% 10%
Source: MITI, Japan. Inventories (YoY,%)

Figure 1.1: Inventory cycle in Japan.

8%
[2006 4Q

6%

4%

2%

0%

- 2%

-4%

[2000 1Q- 6%
Production 
Shipment 

A start/end
- 8%

- 10%

2% 4%0%-6% -4% - 2%

Inventories (YoY,%)
Source: U.S. Bureau of Economic Analysis and Fed.

Figure 1.2: Inventory cycle in the United States.

19



The most important thing to note is that the cycle concept described in this 

chapter is a damping oscillation (stable sine curve), rather than an exponential 

decay. This implies that the business cycle is endogenously generated, in contrast 

with the view that business cycles are successive deviations from the steady state 

and their returning processes (see Prescott (1986)). The main thrust of this chapter 

is that a boom is the seed of the following recession, and a recession is the seed of 

the following boom.

This chapter shows the results based on two types of estimations: three- and 

six-variable VAR using Japanese and U.S. data.1 Each estimation uses three types 

of data sets: level data, HP-filtered seasonally adjusted data (HP-s.a.), and year- 

on-year change (YoY) data. The purpose of the three-variable VAR is to test 

the existence of inventory cycles. It uses three endogenous variables: production 

(output), shipment (sales), and inventories data, in addition to exogenous variables 

(such as a constant). The six-variable VAR, which additionally includes overnight 

call rates and price indicators, is estimated in order to investigate the implications 

for monetary policy.

For each data set, the three-variable VAR finds one conjugate pair of complex 

roots that corresponds to the business cycle, and it seems that its existence is 

statistically significant because all of the trials in the bootstrapping experiments 

for each data set detect a stable conjugate pair of complex roots. Moreover, the 

implied cycle lengths are close to the actual average of post-war business cycles. 

For example, the implied cycle length for Japanese level data is 56 months, while 

the length of the average post-war business cycle is 50 months.

By construction, production, shipment and inventories exhibit the same cycle 

length. However, the peaks and bottoms of inventories lag behind those of pro

duction/shipment2 by 12 to 14 months. Each detected lag is quite close to 1/4 of 

the estimated business cycle length. In the parlance of difference equations, the

^ h e  results for the U.S. data, qualitatively not very different from those for Japanese data, 
are detailed in the Appendix.

2 Production and shipment move together very closely, and hence they are interchangeable in 
most discussions.



phase shift (time lag) between production/shipment and inventories is around 7r/2 

(orthogonal), because conventionally the length of one cycle is normalised to 2ir.

The orthogonal phase shift reveals several important facts. First, it implies 

that the locus of the phase diagram in the (inventories, production/shipment) 

plane must have a clockwise movement with a nearly circular trajectory,3 which 

is consistent with the so-called inventory cycles (Figure 1.1). Second, the con

temporaneous covariance between production/shipment and inventories is almost 

zero (namely, orthogonal), although they are dynamically related. When com

plex roots are important, researchers will fail to capture the dynamic relationships 

among variables if they focus only on contemporaneous variances and covariances. 

Third, the finding that the peaks of inventories lag behind those of production by 

7r/2 implies that the bottoms of inventories precede the peaks of production by 

tt/2.4 In other words, if inventories are currently bottoming out, then production 

is likely to reach its peak and start declining 14 to 16 months later in Japan (15 

to 20 months later in the United States). This is perhaps one of the reasons why 

practitioners consider inventories so important; inventories are very informative for 

short-run economic forecasts.

Monetary policy is a main interest in the six-variable estimations. The most 

important observation is that monetary policy reacts sharply to a demand shock 

(a shock in the shipment equation), but not to a supply shock (a shock in the 

production equation). This is perhaps because the boom after a positive demand 

shock lasts longer than that after a supply shock.5 This is consistent with the 

target inventory model, in which the target level of inventories is an increasing 

function of demand. According to the model, a positive demand shock reduces 

inventories and, as a result, production continues to rise to replenish inventories. 

On the other hand, a supply shock increases inventories, and hence firms cut their

3It is roughly 7r/3 for the U.S. data, implying that the trajectory of the inventory cycle is an 
ellipse with the major axis running from the northeast to the southwest (Figure 1.2).

4More precisely, if the phase shift and the cycle length are s and L months, respectively, the 
bottoms of inventories precede the peaks of production by L /2  — s months.

5However, this is observed only in the Japanese data, but not in the U.S. data (see the 
Appendix).
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production to adjust their inventories.

Interestingly, the phase shift between the overnight call rate and production is 

around 2 months in the Japanese data. Given the fact that statistics are released 1 

to 3 months after the period from which they are culled, the Bank of Japan (BoJ) 

reacts to real variables with no time lag. In contrast, the lag for the U.S. Federal 

Reserve (Fed) is around —4 months! The negative lag, of course, insinuates that 

the Fed’s monetary policy is pre-emptive/forward-looking.

Because of the use of level data, the main challenge of this chapter is the treat

ment of non-stationarity. Indeed, Monte Carlo experiments for the three-variable 

VAR suggests that the hypothesis that the system of equations has one real unit 

root cannot be rejected under some maintained hypotheses. However, the norm of 

the business cycle complex roots is significantly less than one. Moreover, the same 

Monte Carlo experiments show that the real unit root affects the estimated period 

length and phase shifts only negligibly. In addition, to check for robustness, VARs 

are estimated by using two additional data series (HP-s.a. and YoY data, as men

tioned above). In these two stationary data sets, we obtain results quantitatively 

quite similar to those of level data.

The plan of this chapter is as follows. The next section reviews theories on how 

to compute the cycle length and phase shifts from VAR estimates. The results 

of the three- and six-variable VARs with Japanese data are discussed in Sections

1.3 and 1.4, respectively. The estimation results with the U.S. data are discussed 

in the Appendix, because the quality of the U.S. data set (and, as a result, its 

estimation performance) is not as good as the Japanese one. Though the three- 

variable VAR is something of a subset of the six-variable VAR, the former has its 

own worth; it allows for Monte Carlo experiments, and the estimation results are 

more precise and reliable. Section 1.5 briefly reviews old and modern thoughts 

on business cycles, and proposes the concept of pseudo-propagation. Section 1.6 

concludes.
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1.2 Preparations before Estim ations

This section briefly reviews the evidence of periodicity. The key checkpoints are a 

conjugate pair of complex roots and phase shifts. The existence of complex roots 

implies that the system of equations can be represented by a sine curve (as well as 

some other terms).

1.2.1 Conjugate Pair o f Com plex R oots

This subsection briefly introduces key notations. We estimate the coefficient ma

trices of the following VAR.

Vt =  ZtA +  yt-iBi  +  2 /4 -2 -6 2  H 1-  ( 1 - 1 )

where A , B and C  are real coefficient matrices, and zt , yt and are the row vectors 

of exogenous variables (time trend, seasonal dummies, etc.), endogenous variables 

and iid shocks, respectively.

It is known that any complex roots, if they exist, must appear in pairs — any 

complex root z =  a +  bi has its conjugate zH =  a — bi, where i =  \ / —1. It is 

also known that if there are complex roots, the solution of an endogenous variable 

includes a term such as

otkjpijsm (  6k]t +  Pk}

where t is time and a kj, f3kj, pkj and Qkj are parameters that are functions of 

elements in VAR coefficient matrices Bm and the variance-covariance matrix of 

the error term. The subscript kj implies that the term is in the solution of the 

k-th variable and is related to the j-th eigenvalue (and its conjugate).

The economic meanings of these parameters are as follows. a kj is a kind of 

size parameter. pkj =  pj =  yja* +  bj is the absolute value of the complex roots.6 

6kj =  Qj =  arctan (bj/dj) is the frequency of the sine function, and hence the length

6 For example, if there is a pj whose absolute value is unity, then the term represents a unit 
root while all pj must be less than 1 in absolute terms to have a stable system.
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of one period is 2Tr/Oj. /3kj is the phase, which shows the "initial state" of the k-th 

variable right after an shock.7 (/?fc • — /?Zj) /Okj is the phase shift (in time) between 

the k-th and I-th variables. If it is x months, then it means that the peaks and 

bottoms of the k-th variables precede those of the /-th variable by x months. It 

can be shown that the phase shift (in angle), ski,j =  Pkj~ fiij, ls a function only 

of the elements in matrices Bm, although /3fcj- alone depends on past and present 

shocks as well.

1.2.2 Phase Shifts

Phase shifts have important implications in dynamic relationships among vari

ables, because, intuitively, they indicate time lags among variables. This subsec

tion briefly reviews (a) the limitation of contemporaneous covariances and (b) the 

empirical implication for inventories.

Lim itation o f Contem poraneous Covariances

A phase plane exhibits a stable spiral only if there is at least one pair of conjugate 

complex roots, and stable spirals can be classified into eight leading cases by phase 

shifts (see Figure 1.3). It is clear that, even when two variables have a close 

dynamic relationship with each other, the contemporaneous covariance between 

them is close to zero if their phase shift is near ±7r/2.

Of course, the entire story is not so simple. If the true data generating process 

(DGP) is very noisy, the effect of endogenous dynamic relationships, governed by 

matrices Bm, may be swamped by the initial effects of shocks. In such cases, con

temporaneous covariances are determined mainly by matrix C  in (1.1). Nonethe

less, the limitation of contemporaneous second moments can be very serious. In

deed, the dynamic relationship between inventories and production is one example. 

They have a close dynamic relationship, but their contemporaneous covariance is 

close to zero, as shown in the subsequent sections.

7See footnotes 16 and 17 to understand the intuition of the "initial state."
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Implication for Inventory Cycles

To have phase diagrams such as inventory cycles (Figure 1.1), the value of the phase 

shift between production/shipment and inventories must be around tt/2. This 

value is predicted through the following two observations. First, the phase shift 

must be positive, because the direction of inventory cycles is clockwise. Second, the 

phase shift should be around either + n / 2  or —tt/ 2 ,  because the contemporaneous 

correlation between inventories and production/sales is close to zero in the data.

tKs<w/2 s-n /2 7l/2<S<7l S=7l

0 0 0

■ • ■ d p - Hr
*<s<3/2w s=3/2s 3/2iKs<2* s=2x(=0)

0 0 0

% ■ w ■H
Figure 1.3: Impulse response functions and phase diagrams, s shows a phase shift. 
The solid and dotted lines in the IRFs correspond to the y- and x-axes in the phase 
diagrams, respectively.

1.2.3 N on -S tation arity

One of the challenges of this chapter is the use of level data, which almost inevitably 

causes the non-stationarity problem. This chapter tackles this problem in two ways:

with Monte Carlo simulations and filtered data sets.8
8 In addition, as preliminary tests, Johansen’s (1991) trace tests indicate that there exists at 

least one cointegration vector at the 1% level. For these trace tests, two preliminary estimations 
are conducted: one includes constant and seasonal dummies, and the other additionally includes 
the linear time trend. These tests are conducted by using PcGive, an econometric software;
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As mentioned above, Monte Carlo experiments reveal that there is one real unit 

root under the assumption that the true DGP has no time trend. However, they 

strongly reject the hypothesis that the absolute value (norm) of business cycle 

complex roots is +1 under most maintained hypotheses.9 Moreover, the same 

Monte Carlo experiments show that the effects of the unit root on the estimated 

cycle length and phase shifts are quantitatively negligible.

Furthermore, to check the robustness of the estimated results, this chapter also 

implements two additional VARs: estimations based on (i) HP-s.a. and (ii) YoY 

data. Though, presumably, the estimation results based on the filtered data are 

also biased, most of the findings in the level data estimation are supported by the 

two additional estimations. This implies that the estimation bias in each data set 

is not serious.

Sketch o f M onte Carlo Experim ents

This subsection sketches the Monte Carlo Experiments conducted in this chapter. 

Assume that the true data generating process follows a VAR(l) process to keep 

exposition simple.

yt =  y t- iB  +

where is assumed to be iid. Matrix B is first estimated by OLS. If there are
ys A

no multiple roots, B  can be decomposed by eigenvalue matrix A and eigenvector 

matrix V.
Ai 0

B =  VAV~1, A =
0 A k

where K  is the number of roots (number of endogenous variables times VAR order, 

in general).

The idea of our Monte Carlo experiments in this chapter is as follows. For

however, the trace test with a fifth-order polynomial time trend is not conducted.
9 In this chapter, an assumption on the true DGP is called a maintained hypothesis.
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example, if the first eigenvalue is suspected to be a unit root, then the true DGP 

is assumed to be generated by B  such that

B =  VAV~\ A =

0 A k

A V V

Keeping V unchanged, the B is constructed based on A. Then, by generating 

artificial innovations {Ct}f=o^10 B and C  matrices yield artificial data sets {$ }§ Lu 

where N  is the number of trials in Monte Carlo experiments. Estimates such as 

period length are computed for each $ ,  and their distributions are obtained by 

stacking such estimates for j  =  1, • • • , N. Though true V  and A are unknown, 

presumably V and A do not vary far from them, because the Monte Carlo exper

iments themselves show evidence of very tight estimations. Loosely speaking, the 

Monte Carlo experiments are implemented in the neighbourhood of the true value.

1.2.4 R elated Literature

In this subsection, we briefly review existing VAR analyses for inventories with 

aggregate data (see Chapter 2.2 for a more general literature review). Though our 

objectives is to reveal the reaction of the central banks in business cycles, most 

existing research investigates the reaction of inventories to monetary policy and 

focuses on the importance of inventory behaviour as a channel of the monetary 

transmission mechanism.

For the U.S., Gertler and Gilchrist (1994) show that, after a tight monetary 

policy shock, small firms decumulate their inventories, while large firms accumulate 

them. They conclude this difference derives from the difference in creditworthiness.

10A row vector is generated by resampling =  (yt — V t-iB  )  Choii where B  is estimated 

by the simple OLS and C^ol is the inverse of the upper triangular matrix Choi such that 
=  ChoiChoi- Generating Ct by the standard normal distribution does not change 

the results quantitatively; as long as its variance is unchanged, the distribution of has only 
negligible effects.
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During tight monetary policy periods, large firms can finance their inventories, 

while small firms cannot (see also Barnanke and Gertler (1995)). Kashyap et al. 

(1994) also report the essentially identical results by using firm level data.

For Japan, several studies such as Yoshikawa et al. (1993) emphasise the im

portance of the inventory channel. A tight monetary policy first negatively affects 

inventory investments, and such weak inventory investments then affect real eco

nomic activity because inventories are working capital (see also Teruyama’s survey 

(2001) for analyses in this line). Indeed, inventories are working capital in theoret

ical models such as the stockout avoidance model; inventories are necessary capital 

for successful sales activity.

These authors reveal the importance of inventories in the sense that the effects 

of the credit channel manifest themselves in the behaviour of inventories.

1.3 Three-Variable VAR

This section describes the results of the three-variable VAR, in which production 

(output), shipment (sales) and inventories as well as the exogenous seasonal dummy 

variables and time trend are regressed. The three-variable VARs allow us to es

tablish valid Monte Carlo simulations. Contrarily, in the six-variable VARs, there 

exist several pairs of complex roots similar to each other. Such roots are mixed 

each other in some Monte Carlo experiments, which prevents us from tracking the 

behaviour of one specific pair of complex roots throughout the simulations.

1.3.1 Description o f D etails 

Original D ata

This chapter uses the data of industrial production in Japan.11 The data estimated 

in three-variable VAR are (1) production (output), (2) shipment (sales) and (3)

11 The data are available on the website of the Ministry of Economy Trade and Industry of 
Japan.

http: / / www.meti.go.jp/english/statistics/index.html
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inventories. All of them are of "mining and manufacturing" (i.e. all sectors) 

from January 1978 to December 2006. All variables are the average of physical 

units of goods weighted by value-added in the baseline year. The data quality is 

thought to be extremely high, given the ministry’s strong authority over Japanese 

manufacturers.

Recursiveness A ssum ption

To identify the coefficient matrix on shocks C  in equation (1.1), this chapter adopts 

a recursiveness assumption. Specifically, for the three-variable VAR, shocks in 

the inventory equation do not affect current production or sales, and those in the 

production equations do not affect current sales. For the former, inventories should 

be affected by shocks in output and sales, because the law of motion of inventories 

is presumably an identity.

Ut =  Ut- i + Y t - S t  (1.2)

where Ut represents the goods that are not sold in markets at time t (i.e., inven

tories), which axe carried to the next period (hence, Ut — Ut~i is the inventory 

investment), Yt is production, and St is sales at time t. The latter means that 

production can respond to shocks contemporaneously. Importantly, the recursive

ness assumption affects only IRFs but not other results such as phase shifts and 

spectrums.

B ootstrapping

The bootstrapping method is used to compute the standard deviations of estimates 

and confidence intervals. In addition, the standard deviations of period length 

and phase shifts are computed, as long as a cycle exists for all the trials in the 

bootstrapping.

29



Order Selection Criterion

For the level data (not seasonally adjusted), some information criteria suggest very 

long VAR orders (maximum time lag of endogenous variables), perhaps because 

the fixed seasonal dummy cannot perfectly eliminate the seasonality. Judging from 

the AIC and SIC of HP-s.a. and YoY estimations, it seems that the best VAR 

order is somewhere between 2 to 4. Hence, the VAR order in this chapter is always 

3 to facilitate comparisons. Fortunately, the quantitative effect of changing the 

VAR order is not substantial for any of the following results (see below). Most 

estimates are quantitatively robust against changes in the VAR order.

D ata Format

There are three estimations, each of which uses a different data set (different 

data format), though the functional form is (1.1) for all three. The first is the 

benchmark estimation, using the level data (before seasonal adjustment) with a 

polynomial time trend. The second and third ones use the HP-filtered seasonally 

adjusted (HP-s.a.) data and year-on-year (YoY) change data. Presumably, the 

level data set is subject to the non-stationarity problem, while filtered data are 

subject to the artificial endogeneity problem. Rather than directly tackling these 

problems separately, this chapter compares these three specifications to evaluate 

how seriously the estimates are biased. As shown below, these three estimates 

show results very similar to each other, supporting the view that the estimated 

business cycles are not strongly biased.

(I) Benchmark Estim ation (w ith Level D ata) The benchmark estimation 

uses non-seasonally adjusted level data. It also includes seasonal dummies and a 

5th-order polynomial time trend. The former and latter are included to eliminate 

seasonality and trend, respectively.

30



Polynom ial Tim e Trend: The benchmark estimation includes the 5th-order 

polynomial of time. This time trend well mimics the HP-filter with smoothing pa

rameter Am =  130,000.12 Given the HP-filter’s popularity, the HP-filtered series 

(the original series minus the HP-trend) is preferable in detecting cycles recognised 

by practitioners. However, the HP-filter artificially causes the endogeneity prob

lem. On the other hand, the exogenous 5th-order polynomial does not bias OLS 

estimates, and it eliminates almost the same trend as the HP-filter does.

However, it is important to note that the estimated cycle length is very sensitive 

to the specification of the time trend (see below for a detailed discussion).

Seasonal Dummy: In addition, the VAR estimation also includes the sea

sonal dummies. However, the fixed seasonal dummies cannot completely eliminate 

seasonality. Visually examining the plots of the fitted and actual data, it seems 

that seasonal fluctuation is growing over time.

(II) Estim ation w ith H P-Filtered Seasonally A djusted D ata This esti

mation uses HP-s.a. data, which, by construction, are stationary. However, both 

the HP-filter and seasonal adjustment are essentially moving averages of past and 

future values, which implies that the residuals can be correlated to the regressors.

(III) Estim ation w ith YoY D ata This estimation uses YoY change data. If 

original data are I  (1), then YoY data are stationary. The main problem with YoY 

data is that they could magnify the effect of noise.

1.3.2 R oots o f Coefficient M atrix

If at least one conjugate pair of imaginary roots exists, then at least potentially 

there is a mechanism that generates a cycle. There are 9 roots (=number of

12Numerical experiments, shown in the Appendix, demonstrate that the smoothing parameter 
for monthly data, which is equivalent to Aq =  1600 for quarterly data, is slightly less than 
Am =  130,000. The rule of thumb XM =  14,400 generates a too well-fitted HP-trend series (i.e., 
not smooth enough). This finding endorses the result of Ravn and Uhlig (2002).
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Table 1.1: Estimated business cycle roots (three-rariable VARs with Japanese data).
Panel I: Level

Roots 0.95±0.11i 0.6887 -0.35±0.45i -0.28±0.28i 0.07±0.45i
Norm 0.9541 0.6887 0.5723 0.4014 0.4555
Angle ±0.0357tt 0 ±0.7081tt ±0.7503tt ±0.4502tt
Cycle length 56.05 +inf 2.82 2.67 4.44

Panel II: HP-s.a.
Roots 0.96±0.11i 0.64807 -0.34±0.29i -0.10±0.38i -0.1429 0.047281
Norm 0.9704 0.64807 0.4493 0.3944 0.1429 0.047281
Angle ±0.0359tt 0 ±0.7783tt ±0.5816tt 0 0
Cycle length 55.64 +inf 2.57 3.44 +inf +inf

Panel III: YoY
Roots 0.96±0.11i 0.82106 -0.31±0.44i -0.23±0.23i 0.2686 -0.24244
Norm 0.9651 0.8211 0.5423 0.3228 0.2686 0.2424
Angle ±0. 0347tt 0 ±0.6949tt ±0.7526tt 0 0
Cycle length 57.63 +inf 2.88 2.66 +inf +inf

variables x number of order).

Im plied Cycles

The conjugate pair 0.95 ±  0.1 l i  is evidence that the endogenous variables follow 

a sine curve. These complex roots imply a cycle 56.1 months long (s.d. =  2.6 

months), which is near the post-war average in Japan (50.3 months).13 It is possible 

to compute the standard deviation of the cycle length because no trials in the 

bootstrapping experiments lack these complex roots.

The other three cycles are 2.7 to 4.4 months in length. One possibility is that 

they are evidence that the inventories work as buffers in very high frequencies 

(see Section 1.3.3). However, they may simply capture high-frequency noise and 

seasonality that cannot be perfectly eliminated by dummy variables.14 In any 

event, it is difficult to establish their statistical significance, because they are often 

mixed with each other in the bootstrapping, and are therefore almost impossible 

to distinguish.

The estimated period length does not change considerably in the other two

13In Japan, a governmental committee determines the business cycle dates.
http://www.esri.cao.go.jp/en/stat/di/041112rdates.html
14In this sense, just having complex roots itself is not very interesting at all. It is important 

to have complex roots that correspond to the business cycle.
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Table 1.2: Phase shifts (three-variable VARs with Japanese data).
(Cycle length) Sales Inventories

Level (56.1) -0.3146 mths 12.416 mths
HP-s.a. (55.6) 0.2110 mths 13.527 mths
YoY (57.6) -0.4733 mths 14.209 mths
Note: Time-lags from production.

data sets: 55.6 months (s.d. =  5.4 months) in the HP-s.a. data, and 57.6 months 

(s.d. =  6.7 months) in the YoY data.

Phase Shifts

With respect to the business cycle roots detected in the level data, the peaks and 

troughs of inventories lag behind those of production and shipment by 12.4 and 12.1 

months, respectively. As expected, the phase shift between production/shipment 

and inventories is close to 1/4 of the period length. There is almost no time lag 

between production and shipment.

Table 1.3: Implied cycle lengths (three-variable VARs with Japanese data).
Time Poly. Order 1 2 3 4 5 6 8  10

VAR(2) 206.6 109.4 98.35 75.78 59.88 60.14 58.32 53.35
VAR(3) 168.5 102.5 90.44 69.67 56.05 56.79 55.01 50.28
VAR(4) 153.4 100.3 94.71 72.78 57.11 57.59 55.25 51.00

Note: Estimation based on the level data.

Effect o f T im e Trend

In most specifications of the time trend, the VAR estimation detects one significant 

pair of business cycle complex roots. However, the estimated cycle length crucially 

depends on the choice of time trend, while the effect of the VAR order is not 

very strong. For example, the VAR(3) with a linear time trend shows that the 

length of one business cycle is 168.5 months (see Table 1.3). This means that the 

estimated cycle length with the level data is not robust against the specification 

changes of time trend, while the phase shift between production/shipment and 

inventories is almost always close to 1/4 of the business cycle’s length. In addition,
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the specification of the time trend affects the norm of the largest real root (see the 

next subsection).
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Figure 1.4: Distributions generated by 1,000 trials. H M: There is one real unit 
root. Ticks on the x-axis show the true value in H m .

Effect of Unit Root

Surprisingly, in the level data estimation, we cannot rule out the possibility that 

the real root (0.6887) in the level data is a unit root. Certainly, 0.6887 appears to 

be far from - h i ,  but the norm of this root is strongly affected by the time trend; 

as the order of the time trend polynomial decreases, the norm moves towards -h i .  

At limit, the hypothesis that there is one real unit root is not rejected under the 

maintained hypothesis that there is no time trend in the true DGP.

However, these Monte Carlo experiments show that the existence of the real 

unit root only slightly affects the cycle length and phase shifts. Figures 1.4 and 

1.5 show the selected distributions under the maintained hypotheses that there is 

one real unit root and that there is one pair of unit complex roots, respectively. 

Both experiments assume that the true DGP has the 5th-order polynomial time
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Figure 1.5: Distributions generated by 1,000 trials. H M'• There is one pair of 
complex unit roots. Ticks on the x-axis show the true value in Hm .

trend. These results show that the estimates axe very precise and the distributions 

are skewed only slightly. For example, the upper-right panel of Figure 1.4 shows 

that the distribution of the cycle length centres on 55 months, which is very close 

to the true value in the DGP (56.1 months, as denoted by "|" on the x-axis). 

Also, the top-left panel in Figure 1.5 suggests that the absolute value (norm) of 

the estimated business cycle complex roots (0.9541) is far enough from -1-1. Even 

though the true DGP is assumed to have no time trend, the same exercise still 

suggests that the business cycle complex roots are not unit roots.

1.3.3 Im pulse R esp on se F unctions

Clearly, all of the impulse response functions show the shape of sine curve fluctua

tions. Visually reviewing the distance between two peaks in each IRF, we can see 

that the length of one cycle is roughly 56 months, almost same length implied by 

the business cycle complex roots.
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Figure 1.6: IRFs due to a positive shock in the production equation (three-variable 
VARs with Japanese data). Narrow lines show the 95% confidence intervals of level 
data estimations based on the bootstrapping method.
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Figure 1.7: IRFs due to a positive shock in the shipment equation (threesvariable 
VARs with Japanese data). Narrow lines show the 95% confidence intervals of 
level data estimations based on the bootstrapping method.

Technology Shock: Figure 1.6 shows impulse responses to a production shock,

which can be regarded as a technology or supply shock. After a positive shock, 

both production and shipment increase. Inventories increase due to the law of 

motion of inventories (1.2). Sales do not increase as much as production does; 

hence, for production shocks, output is more volatile than sales. This corresponds 

with the theory of cost shock models.15

However, more importantly, production returns to zero roughly 9 months after

the shock. The effects of a positive production shock disappear quickly. This is

15Cost shock models in the inventory literature emphasise the effect of production cost. The 
idea is that because the source of shock lies on the production side, production is more volatile 
than sales. In addition, inventory investment increases when production increases due to a low 
cost shock (procyclical inventory investment).
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because a positive production shock induces an increase in inventories16 — but, 

because having excess inventories is costly for firms, they want to reduce such 

excess inventories by cutting production.

Demand Shock: On the other hand, Figure 1.7 shows that after a positive sales 

shock, which can be regarded as a demand shock, production stays above zero for 

more than 20 months. Right after a positive demand shock, inventories decrease 

due to the law of motion of inventories (1.2).17 However, such a level of inventories 

is too low, and firms want to increase their production in order to recover their 

inventories. Also, note that the initial impacts of a demand shock are much larger 

than those of a supply shock (compare the units of the y-axes).

Indeed, we can draw more implications. In the theoretical literature, the target 

inventory models — including the stockout avoidance model — suggest that the 

target level of inventories is an increasing function of sales. Thus, after a positive 

demand shock, firms want not only to replenish their reduced inventories, but 

also to raise the level of inventories so that it meets the new, higher level of 

sales. Actually, the subsequent increase in production is slightly larger than that of 

sales (otherwise, inventories would decrease). As a result, even though the source 

of the shock is on the demand side, output is more volatile than sales. In the 

sense that demand shocks are magnified by inventories, inventories are regarded 

as destabilising factors in business cycle frequencies.

In contrast, while inventories drop sharply right after a positive demand shock, 

more than half of the initial effect of the shock on production and shipment dis

appears within one period. This shows that inventories work as buffers in a very 

short time period. In this sense, production smoothing theory is still very much

alive at very high frequencies.18

16In phase diagrams such as Figures 1.1 and 1.2, starting from the origin, a positive supply 
shock is plotted as a jump to the northeast of the origin.

17In phase diagrams such as Figures 1.1 and 1.2, starting from the origin, a positive demand 
shock is plotted as a jump to the northwest of the origin.

18 Originally, inventory literature started with the production smoothing theory, which says that 
firms have an incentive to smooth the time-path of production due to a convex cost function;
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These findings can be summarised as follows. Inventories are destabilising fac

tors at business cycle frequencies but are stabilising factors at very high frequencies. 

This view is in line with Wen (2002).
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Figure 1.8: IRFs due to a positive shock in the inventory equation (three-variable 
VARs with Japanese data). Narrow lines show the 95% confidence intervals of 
level data estimations based on the bootstrapping method.

Inventory Shock: After a positive shock to the inventory equation, both sales

and production decline (Figure 1.8). In a sense, a shortage of inventories is akin to 

an increase in demand, and vice versa, because firms have an incentive to replenish 

(or cut) them to their normal level.

1.3.4 C ross C orrelations and S p ectra l D en sities

The cross correlations and spectra are computed form the estimated coefficients in 

equation (1.1).19 Note that with non-stationary processes, neither is well defined; 

thus, we should focus on the cross correlations and spectra in the HP-s.a. and YoY 

data sets. Nonetheless, the results in the benchmark data quite markedly resemble 

those based on the two stationary data sets. Both cross correlations and spectral 

densities show that (a) there is a cycle with business cycle frequency, and (b)

they hold inventories to protect themselves from unexpected demand shocks. However, though 
this theory is at first glance very clear-cut, it cannot explain the two famous inventory stylised 
facts (see Sections 2.2 and 1.5.4). This failure has been the biggest motivator for subsequent 
inventory research.

19See Chapter 10 of Hamilton (1994) for the computation of cross correlation and spectra. 
However, note that the phase shifts are computed in this chapter based on a different method 
from that shown in Hamilton (1994) (see the Appendix).
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Figure 1.9: Cross correlations (three-variable VARs with Japanese data).

the contemporaneous correlation fails to capture the dynamic relationship among 

variables.

Cross Correlations

The cross correlations (Figure 1.9) show several observations worth mentioning. 

First, the cross correlation between production/shipment and inventories reaches 

its peak and bottom when the time lag is around =f12 months, which is consistent 

with the estimated phase shift. Second, the contemporaneous correlation between 

production/shipment and inventories is close to zero; thus, the contemporaneous 

correlation alone cannot capture their dynamic relationship. Third, the autocorre

lations reach their bottom around ±25 months, implying that the dominant cycle is 

around 50 months in length (= 25 x 2), which is not very different from the finding 

in Section 1.3.2 (see also Section 1.A.4). Fourth, the spikes in autocorrelations of 

production and shipment at 0 month imply a very high frequency component that 

affects both production and shipment. This is indirect evidence of buffer inventory 

models (see Figure 1.7).
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Spectral D ensities

The spectral densities20 (Figure 1.10) show several observations worth mention

ing. First, all the cospectra and quadrature spectra reach their peaks or bottoms 

at around 56 months, which again implies that the cyclical component with a 

period length of around 56 months is most influential. Second, the cospectrum 

between product ion/shipment and inventories is almost zero for all period lengths, 

which implies that the contemporaneous covariance cannot capture their dynamic 

relationship in any frequency. However, the existence of a dynamic relationship 

between production/shipment and inventories is evident in the quadrature spectra 

between production/shipment and inventories. Finally, the quadrature spectrum 

between production and shipment is almost zero for all period lengths, which means 

that there is almost no time lag between them.

1.3.5 Summary o f Three-Variable VAR

Among others, the following findings are important.

•  A lot of evidence supports the existence of the inventory cycle, and its esti

mated cycle length is close to the post-war average of business cycles.

•  The estimated phase shift between production/shipment and inventories is

20 It may be worth reviewing the two spectral densities for multiple variables.
First, a cospectrum has the same meaning as a spectrum with one variable. For the compo

nents of cross covariances reflected in contemporaneous covariance, a cospectrum attributes such 
components to each frequency. For example, if the absolute value of a cospectrum density reaches 
its peak at frequency / ,  it implies that the cycle with frequency /  makes the largest contribution 
to the contemporaneous covariance. The integral of cospectral densities over the whole frequency 
domain 0 <  /  <  27T is equal to the contemporaneous covariance.

Second, a quadrature spectrum essentially represents anything other than the corresponding 
cospectrum. For the components of cross covariances not reflected in contemporaneous covari
ance, a quadrature spectrum attributes such components to each frequency. For example, if the 
absolute value of a quadrature spectrum density reaches its peak at frequency / ,  it implies that 
the cycle with frequency /  makes the largest contribution to the cross covariance with a time lag 
of 7r/2/ periods (1/4 of the period length 2 tt //) . Remember that if two variables follow a sine 
curve, and the phase shift between them is 1/4 of the period length, then the contemporaneous 
correlation of these two variables is zero, even though both follow essentially the same process. 
In other words, a quadrature spectrum represents the relationship that is not reflected in con
temporaneous covariance due to phase shift. The integral of quadrature spectral densities over 
0 <  /  <  27r is equal to zero.
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Figure 1.10: Co- and quadrature spectra (three-variable VARs with Japanese 
data). Bold lines show cospectra and narrow lines show quadrature spectra.

12 months (close to 1/4 of one period length). For example, if inventories are 

bottoming out now, then the production will peak and start declining about 

16 months later.21

• Due to inventories, a boom lasts longer with a demand shock than a supply 

shock.

• For a demand shock, inventories work as destabilising factors in business 

cycle frequencies, but work as buffers within very short periods.

• Although the bias due to the unit root seems very minimal, the estimated 

cycle length is sensitive to the time trend specification.

There is a supplementary remark in terms of the theoretical research on in

ventories. The findings in our VAR estimations support all of the following three

2116 months ~  56.1/2 -  12.4 (one half of the cycle length minus the phase shift between 
production and inventories).

41



leading theories: production-smoothing, target inventory and cost shock models. 

While the cost shock model is consistent with the IRFs to a supply shock, the 

target inventory and production smoothing models are each in line with the IRFs 

to a demand shock. However, because (i) the initial impacts of demand shocks 

on production and shipment are much larger than those of supply shocks, and 

(ii) the effects of demand shocks last longer than those of supply shocks, it seems 

that demand shocks are a more important source of economic fluctuation. Hence, 

if business cycles are of interest, the target inventory model is perhaps the most 

relevant.

1.4 Six-Variable VAR

This section describes the results of the six-variable VAR estimation, used to in

vestigate the interaction between monetary policy and inventories.

1.4.1 D escription o f D etails

Original D ata Though the BoJ’s direct policy instrument is the imcollateralised 

O/N call rate (and excess reserves under the zero-interest rate policy), its data 

length is short. Hence, the collateralised O/N call rate, which exhibits movements 

quite similar to those of the uncollateralised O/N call rate, is adopted in this analy

sis.22 For the Consumer Price Index (CPI), the general (overall) index excluding 

fresh foods and imputed rents is used,23 while the material price index in the Cor

porate Goods Price Index (CGPI) is included as a leading inflation indicator.24 

To avoid zero-interest rate periods, the estimation period is from January 1978 to 

December 1998.

In the HP-s.a. data set, following convention, the O/N call rate and CGPI are

22See "How to Download Long-Term Time-Series Data Files" on
http: /  /  www.boj.or.jp /en  /  theme/research/stat /market /short_m k/tanki_rate/index.htm
23See http://www.stat.go.jp/english/data/cpi/index.htm
24 See "Index by Stage of Demand and Use" on
htt p: /  /  www. boj .or.j p/en/theme /  research/stat /p i/cgpi /  index. ht m #04
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not seasonally adjusted. In the YoY data set, the YoY change in the O/N rate is 

used, although it is presumably stationary.

Recursiveness Assum ption The six-variable VAR, following Christiano, Eichen- 

baum and Evans (1999),25 assumes that the O/N call rate can respond to any of the 

current shocks. It also assumes that neither CPI nor material prices can respond 

to the current shocks to the three real variables. Because material price index is 

regarded as a leading indicator of CPI, it can respond to contemporaneous CPI 

shocks.

1.4.2 R oots o f Coefficient M atrix

Each estimation finds two or three pairs of complex roots that correspond to the 

business cycle. Selected point estimates of the roots are shown in Table 1.4. Roots 

omitted from the table are complex roots with very high frequencies (i.e., shorter 

than 6 months).

Table 1.4: Estimated business cycle roots (six-variable VARs with Japanese data).
Panel 1: Le\«l

Roots 0.96±0.10i 0.82±0.12i 0.9139 0.6127 0.5026 -0.3693
Norm 0.9640 0.8287 0.9139 0.6127 0.5026 0.3693
Angle ±0.0316tt ±0.0461tt 0 0 0 0
Cycle length 63.2 43.4 +inf +inf +inf +inf

Panel II: HP-s.a.
Roots 0.97±0.11i 0.85±0.09i 0.80±0.01i 0.40±0.25i
Norm 0.9755 0.8545 0.8010 0.4735
Angle ±0. 0352tt ±0.0339tt ±0.0036tt ±0.1746tt
Cycle length 56.8 59.0 552.8 11.5

Panel II: Year-on-Year
Roots 0.96±0.11 i 0.92±0.10i 0.9741 0.7934 0.50964 -0.3746
Norm 0.9655 0.9270 0.9741 0.7934 0.50964 0.3746
Angle ±0.0376tt ±0.0361tt 0 0 0 0
Cycle length 53.2 55.4 +inf +inf +inf +inf

The roots in the second column, at first glance, may seem to indicate one 

identical cycle, but the point estimates of the phase shifts differ considerably among

25See Sims (1986), Leeper et al. (1996), Leeper et al. (2003) and Kim (1999), among others, 
for the opposing view.
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Table 1.5: Estimated phase shifts (six-variable VARs with Japanese data).
unit: months (Cycle length) Shipment Inventories O/N call CPI Com. Price
Lerel data (63.2) 0.2828 11.655 3.2501 -13.619 -6.8463

(43.4) 2.4008 6.4567 4.7944 9.3550 -3.3411
HP-s.a. (56.8) -0.0434 12.660 4.4041 -13.348 -2.4408

(59.0) 7.1328 8.5986 7.2003 11.619 6.9404
YoY (53.2) -0.0095 12.824 1.9726 12.267 -4.1758

(55.4) 0.0013 11.386 -8.7080 0.5821 11.306
Note: Time-lags from production.

the three data sets. On the other hand, the phase shifts of the largest norm roots 

are consistent among the three data sets (except for CPI in the YoY estimation), 

and are compatible with those in the three-variable estimations. In addition, none 

of the other roots is robust against a change in the VAR order. Overall, it is 

concluded that there exists one business cycle pair of complex roots (perhaps the 

same cycle as in the three-variable estimations) in the six-variable estimations. 

This conclusion is also supported by the cross correlation and spectrum analysis 

below.

Compared to the three-variable estimations, the cycle length (63.2 months) 

now becomes longer in the level data estimation, while it becomes shorter in the 

YoY data estimation.

Phase Shifts

The O/N call rate lags behind production by 3.3 months in the level data, sug

gesting that the BoJ reacts to real variables fairly quickly.26 However, it is not 

forward-looking; perhaps good monetary policy would anticipate the cyclical pat

terns of economic variables, given the long time lag before the effects of monetary 

policy are realised (shown below). Indeed, it seems that the Fed’s monetary policy 

anticipates such cyclical patterns (see the Appendix).

26It is important to note that phase shifts do not indicate the speed of responses to shocks. In
stead, for example, we can interpret the phase shift between the O /N  call rate and an endogenous 
variable as a speed of the BoJ’s response to the cyclical component of that endogenous variable.
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1.4.3 Impulse R esponse Functions

One caveat of the six-variable analysis is the price puzzle.27 In other respects, 

however, the estimation results are consistent with theoretical predictions.

Supply vs. Dem and Shocks: Monetary policy is tightened after a positive

shipment (demand) shock (Figure 1.12), while its response to a positive production 

(supply) shock is ambiguous (Figure 1.11). Indeed, following a positive supply 

shock, although the response is not estimated tightly, the point estimates of the 

all three IRFs show that the BoJ loosens its monetary policy. Considering the 

behaviours of other IRFs, this is because (i) a boom lasts longer after a positive 

demand shock than after a positive supply shock, and (ii) the leading inflation 

indicator and CPI increase after a positive demand shock but not after a positive 

supply shock. Hence, it is important to discriminate between demand and supply 

shocks, in order to analyse monetary policy.

Inventory Shock: A positive deviation of inventories from the steady state is

akin to a negative demand shock (Figure 1.13). As a result, the O/N call rate 

declines after a positive inventory shock.

Price Shocks: The O/N call rate increases after a positive material price shock, 

but decreases after a positive CPI shock. These patterns seem to reflect the features 

of the BoJ’s monetary policy.

On one hand, after a positive CPI shock, both the O/N call rate and production 

decline possibly because the major CPI shocks tend to arise from increases in public 

prices and energy prices in Japan.28 In other words, large CPI shocks are often 

regarded as exogenous negative shocks; indeed, production and shipment decline 

after a positive CPI shock.

27See Sugihara et al. (2000), Teruyama (2001) and Yoshikawa et al. (1993). Almost all versions 
in these studies show temporal price increases after a tight monetary policy shock in Japanese 
data.

28The effects of the changes in VAT rate on CPI are adjusted in our data.
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Figure 1.11: IRFs due to a positive shock in the production equation (six-variable 
VARs with Japanese data). Narrow lines show the 95% confidence intervals of 
level data estimations based on the bootstrapping method.
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Figure 1.12: IRFs due to a positive shock in the shipment equation. Narrow
lines show the 95% confidence intervals of level data estimations based on the
bootstrapping method.
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On the other hand, the BoJ tends to focus on leading inflation indicators, while 

CPI is often considered as a lagging indicator. Moreover, the BoJ traditionally has 

been concerned with the exchange rate. Because exports are the growth engine 

of the Japanese economy (though this situation is changing), a strong yen, which 

reduces the exporters’ profit margins and competitiveness, has been considered 

something that the central bank has to defeat. Hence, the BoJ’s reaction to the 

leading inflation indicator may represent its reaction to the exchange rate; a strong 

yen implies low import prices (especially on raw materials), and is followed by an 

expansionary monetary policy.

Call Rate Shock: The effects of O/N call rate shocks (monetary policy shocks) 

on production, shipment, and inventories are unclear and mixed. In the level data 

estimation, production and shipment decline several periods after a positive call 

rate shock, although they decline right after the shock in the HP-s.a. and YoY 

data. Existing studies find a long time lag before the effects of monetary policy 

materialise.29

Bils and Kahn (2000) find that the inventory investment is positively correlated 

to the interest rate; this is considered a puzzle because a high interest rate gives rise 

to a high inventory carry cost. There is one natural way to address this puzzle; 

if demand decreases sharply while production cannot adjust quickly, firms are 

"forced" to accumulate inventories due to the law of motion of inventories (1.2). 

However, VAR estimations show no substantial differences between the IRFs of 

production and shipment.

1.4.4 Spectral Analysis and Cross Correlations

Cross correlations and spectra confirm the findings discussed above. First, the 

cross correlation between the O/N rate and production/shipment (and material 

price) reaches the peak with a 2 to 4 months lag. This is consistent with the es-

29 See Bemanke and Gertler (1995) and Christiano et al. (1999) among others.

48



10-3 Prod
10

5

0

■5
0 12 24 36 48 60 72

10

5

0

■5
0 12 24 36 48 60 72 0 12 24 36 48 60 72

10

5

0

■6

Call CPI Rawx 10 x 10'
0.6

0.4

0.2

-0.2

Level Data Y oY ch g HP&sa

Figure 1.15: IRFs due to a positive shock in the leading inflation indicator equation. 
Narrow lines show the 95% confidence intervals of level data estimations based on 
the bootstrapping method.

10
10'3 |nve

-5
0 12 24 36 48 60 72 0 12 24 36 48 60 72 0 12 24 36 48 60 72

Call CPI Rawx 10' x 10
0.6

0.4

0.2

- 0.2

 Level Data Y oY ch g HP&sa
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timated phase shifts between them. Second, as quadrature spectra suggest, there 

are dynamic relationships between the O/N rate and other variables that are not 

reflected in the contemporaneous correlations. Finally, most of the co- and quadra

ture spectra reach their peaks or bottoms at around 53 to 63 months, implying that 

the cycle with a period length of 53 to 63 months is the most important cyclical 

factor.

1.4.5 Summary o f Six-Variable VAR

The most important discoveries in the six-variable estimations are that (i) the BoJ 

reacts to demand shocks, but its reaction to supply shocks is vague, and (ii) it 

reacts to shocks within a quarter, which is reasonably quick, but its monetary 

policy does not seem to be forward-looking.

1.5 D iscussion

This section discusses some miscellaneous albeit important issues.

1.5.1 M odern vs. Old Thoughts

The VAR estimations in this chapter shed light on some old thoughts regarding 

business cycles. By the early 20th century, Kitchin (1923), Juglar (1860), Kuznets 

(1930), and Kondrachieff (1935) found cycles of roughly of 3.4, 10, 20, and 50 

years, respectively.30 Later, Schumpeter (1939) excavated and sorted out their

30 A summary of the major old thoughts is as follows.
Name Period (yrs) Main Driving Force
Kitchin Cycle 3.4 Inventories
Juglar Cycle 10 Investment
Kuznets Cycle 20 Construction
Kondratieff Cycle 50 Technological Revolution

Consider the implications of these numbers. First, in terms of the cycles lengths, most of them 
are integer multiples of the shorter ones. This implies that observed cycles are not completely 
distinguishable from one another. For example, three Kitchin cycles could be misidentified as 
one Juglar cycle.

Second, the main driving forces in the table are provided by later analyses. For example, 
the data used by Kitchin are bank clearings, commodity prices, and interest rates, whereas
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findings (excluding Kuznets (1930)), and Burns and Mitchell (1946) conducted a 

comprehensive study of business cycles. Of particular importance, it seems that 

most of these old studies presupposed a damping oscillation, or perhaps a limit 

cycle, though not explicitly.

On the other hand, the old views contrast with some modem views. For ex

ample, Prescott (1986) points out that the term business cycle is inaccurate. He 

suggests instead the concept of business cycle phenomena, because "some systems 

of low-order linear stochastic difference equations with a nonoscillatory determin

istic part, and therefore no cycle, display key business cycle features."31

Essentially, Prescott’s business cycle phenomena are successive exponential de

cays: successive deviations of variables from their steady states and their returning 

processes. In contrast, this chapter shows substantial evidence of periodicity, which 

means that variables follow sine curves.32

In contrast to exponential decays, damping oscillations (stable sine curves) 

imply that a boom is the seed of the following recession, which, in turn, is the seed 

of the next boom. In this sense, the cycles in this chapter have a meaning closer 

to those of the old studies. Specifically, the cycles reported in this chapter seem 

to correspond to those found by Kitchen. Indeed, the length of the Kitchen cycle 

is close to our estimations, and researchers consider inventories to be the driving 

force behind the Kitchen cycle (see Knetsch (2004), for example).

Kondratieff uses wholesale prices, interest rates and wages, foreign trade and the production of 
some metals. Hence, Kitchin himself supposedly did not recognise his finding as an inventory 
cycle.

Third, all of these cycles are empirical findings with little theoretical background, and their 
empirical techniques may not be defensible by modern standards. Indeed, Harvey (1993, pp.195- 
196) demonstrates that the moving average that Kuznets uses generates spurious cycles. Hence, 
it should be understood that the existence of these cycles has not yet been confirmed economet- 
rically.

31 Prescott (1986), p.10.
32 See Hassler et al. (1992) for a related discussion.
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1.5-2 Level o f Inventories vs. Inventory Investm ent

This subsection shows the risk of considering inventory investment as a proxy for 

the level of inventories, especially when complex roots have a dominant influence.

A n Im plication for C ontem poraneous Correlations

Suppose that both production Yt and the level of inventories Ut follow sine curves. 

Ignoring the effect of other terms, if the phase shift s between them is roughly 7r/2, 

then their correlation is almost zero.

Yt =  A yr* sin(0£) +  other terms

Ut =  Aur* sin(0t — s) +  other terms ~  —Ayr1 cos(9t) +  other terms

where Ay and Ay are coefficients and r is the norm of the relevant complex roots. 

Because inventory investment is a time difference of the level of inventories, by 

approximating such difference by time derivative,

Ut — Ut- i  ^  =  Aur* sin(0£) — (log r) Aur* cos(0t) +  other terms
ut

Note that log r ~  r —l  is a small negative number, because most economic variables 

are persistent in the data (i.e., the norm of roots is less than but close to 1), and 

hence the effect of the second term is very small. Thus, in terms of frequency 0, 

both production and inventory investment are governed by the same term r* sin(0t). 

In sum, a zero correlation between production and the level of inventories implies 

a positive correlation between production and inventory investment.

This is one of the salient features of complex roots. Suppose that both output 

and the level of inventories follow exponential decays. In this case, if the corre

lation between production and the level of inventories is close to zero, then that 

between production and inventory investment is also close to zero. Indeed, we 

observe both a neax-zero correlation between output and inventories and a posi
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tive correlation between production and inventory investment, which is (indirect) 

evidence of periodicity in inventories.

1.5.3 Pseudo Propagation

This chapter has shown many hump-shaped IRFs. If individual IRFs are exam

ined separately, then hump-shaped IRFs may appear to suggest the existence of 

some mechanism that magnifies initial shocks. However, if variables axe exam

ined jointly, the locus monotonically converges to the steady state under a proper 

metric. For example, in the phase diagrams (Figures 1.1 and 1.2), which jointly ex

amine production/shipment and inventories, the distance from the origin (steady 

state) is monotonically shrinking. In this regard, it is difficult to interpret the 

hump-shaped IRFs in this chapter as evidence of a propagation mechanism, if the 

word "propagation" means that the initial small shock is gradually magnified by 

an endogenous mechanism.

Intuition

Consider the target inventory model as an example.33 It implies that the desired 

level of inventories is an increasing function of sales (or production). Thus, if 

the level of inventories becomes too low, firms have an incentive to increase their 

production to replenish inventories. In this class of models, either an increase in 

sales (demand) or a decrease in inventories can stimulate production. In this sense, 

it may be reasonable to consider sales and inventory shortages jointly as, say, an 

"effective demand." It is quite possible that a positive deviation of sales from the 

steady state individually appears to grow after a positive demand shock (hump

shaped IRF), but the effective demand is monotonically shrinking (stable spiral in 

the phase plane) if inventories are concurrently increasing.34

33 The target inventory model is a class of models that includes the stockout avoidance model 
in the theoretical literature and the linear quadratic specification in empirical research.

34 Mathematically, in linear models, it is possible for a small initial shock to grow only in 
explosive systems.
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1.5.4 Inventory Stylised Facts

One of the important findings in the VAR analyses is that production and shipment 

(sales) move very closely with each other. This itself may not sound interesting, 

but it has a strong implication; the following two inventory stylised facts actually 

describe a single fact from two different perspectives.

Fact 1: Inventory investment is procyclical.

Fact 2: Output is more volatile than sales.

To see this, consider the law of motion of inventories (1.2). Then, it is quite 

straightforward to show

Var (St) =  Var (Yt) +  Var (Ut -  Ut-i)  -  2Cov (Yu Ut+1 -  Ut)

which means that Cov (Yt, Ut+i — Ut) >  0 is a necessary condition of Var (St) <  

Var (Yt). With a similar manipulation, we can easily show that Cov (St , Ut — Ut-\)  >  

0 is a sufficient condition of Var (St) < V a r  (Yt). In sum,

• If the word procyclical in Fact 1 means Cov (Yt,Ut — Ut~i) > 0, then Fact 1 

is a necessary condition for the Fact 2.

• If procyclical in Fact 1 means Cov (St, Ut — Ut~i) > 0, Fact 1 is a sufficient 

condition for Fact 2.

• In data, sales and production move very closely with one another. Thus,

Cov (Yu Ut - U t-i)  0 and Cov (St> Ut — Ut—i) ^ 0 are nearly interchange

able.

Therefore, roughly speaking, stylised Fact 1 is a necessary and sufficient con

dition of stylised Fact 2.35

35Note that output Yt here is defined as gross output, not value-added.
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1.6 Conclusion

To study inventory cycles (see Figures 1.1 and 1.2), VAR estimations (equation 

(1.1)) are conducted in this chapter. The main findings are as follows.

1. The length of the detected cycle is relatively close to the average length of the 

post-war business cycles, and the existence of business cycle complex roots 

is statistically significant.

2. Inventories seem to work as buffers at very high frequencies, while they seem 

to destabilise an economy at business cycle frequencies.

3. The estimated phase shift between inventories and production/shipment is 

12 months. Hence, for example, if inventories have bottomed out, then pro

duction will peak around 16 months later. Inventories are very informative 

for predicting near-future economic conditions.

4. Contemporaneous correlations are not enough to capture the dynamic rela

tionship among variables. This is especially true for inventories and, to a 

lesser extent, the policy interest rate.

5. Due to the behaviour of inventories, a boom lasts longer after a positive 

demand shock than after a positive supply shock.36

6. As a result, the BoJ tightens its monetary policy after positive demand 

shocks, while it does not clearly react to supply shocks.

7. The BoJ’s monetary policy is timely but not forward-looking.

Perhaps the most critical weakness of this research is that the detected cycle 

length is sensitive to the time trend in the level data estimation. However, the fact 

that the HP-s.a. and YoY data sets find the similar results suggests the robustness 

of the estimations.
36 Among these seven findings, this and the following two observations do not hold for the U.S. 

data. See the Appendix.
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For the sake of argument, let us consider the worst-case scenario. Certainly, 

the chosen time trend, the 5th-order polynomial, mimics the HP-filter, which, in 

turn, has similar effects to the YoY change. Hence, it is possible that the detected 

cycle is just an artefact generated by the HP-filter ~  YoY ~  5th-order polynomial 

time trend. Nevertheless, even in this worst-case scenario, we can still claim that, 

given the popular use of the HP-filter and YoY change, the detected cycle may be 

something that practitioners consider to be a business cycle (even if it may not be 

a "true" business cycle).

In terms of estimation technique, each of the three data sets is subject to its 

own problem. However, the estimated results among these three data sets are 

similar to each other, and, in addition, most of the estimates are very precise. 

Perhaps, then, it is safe to claim that the estimates are not considerably distorted.

The key reason for the successful estimations is the quality of inventory level 

data. Most theories suggest that the level of inventories plays a major role, but 

almost all existing empirical studies are based on inventory investment In general, 

the quality of inventory level data is poor, but Japan is one of the few exceptions 

to this. Considering that practitioners pay close attention to inventory behaviour, 

it is advisable for other governments to construct reliable inventory level data, 

thereby providing useful information about near-future economic conditions.
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Appendices for Chapter 1

l .A  Six-Variable VAR w ith U .S. D ata

This section describes the estimation results of the six-variable VAR with the 

U.S. data. The main problems with the U.S. data are (a) the pool of surveyed 

firms and survey methods are perhaps different between production and ship

ment/inventories because they are provided by different institutions, (b) the qual

ity of real inventory data is not very good, and (c) data of real inventory before 

seasonal adjustment is not available.

Compared to Japanese data, the estimations with the U.S. data are less precise. 

In addition, a couple of IRFs are not consistent among the (i) level, (ii) HP-s.a. 

and (iii) YoY data sets. Hence, it seems that the results based on the U.S. data 

are less reliable than those based on the Japanese data.

Nonetheless, we find that (1) one pair of complex roots exists, and the implied 

cycle length is fairly close to the post-WWII average, (2) inventories lag behind 

production/shipment by 1/5 to 1/6 of the business cycle length, and (3) the Fed 

reacts to supply shocks less sharply than to demand shocks. However, unlike the 

estimations for Japan, the last finding is not very clear. In addition, the lifespans 

of booms due to a positive demand and supply shocks are almost the same in the 

U.S. estimation, and the behaviours of inventories are not very different in response 

to those two types of shocks.

l .A . l  Description o f Details

Most of the details are the same as those for the Japanese data sets. Hence, 

this subsection mainly explains the differences from the estimations made with 

Japanese data.
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Original D ata All data axe monthly data from January 1978 to December 1998. 

Although more data are available for the United States, the same period used in the 

Japanese estimations is used here for the sake of comparison (expanding the data 

period makes the estimation more precise, but only slightly). Although production 

data are compiled by the Board of Governors of the Federal Reserve System,37 real 

shipment and inventory data are estimated by the U.S. Bureau of Economic Analy

sis.38 The latter are, as building blocks, compiled to estimate U.S. national income 

(GDP), and "their quality is significantly less than that of the higher level aggre

gates," according to the Bureau. Shipment and inventories are of "manufacturing" 

(not including trading sectors) for comparison. As a monetary policy indicator, 

the effective monthly Fed funds rate (FF rate) is used.39 Inflation is measured by 

the Consumer Price Index for All Urban Consumers (CPI-U) excluding food and 

energy, while PPI (raw materials) is used as a leading inflation indicator.40

D ata Formats Again, there are three data sets: (i) level, (ii) HP-s.a. and (iii) 

YoY data. All estimations are based on equation (1.1) with order 3. The estimation 

with the level data uses the 5th-order time trend without seasonal dummies because 

only seasonally adjusted real shipment and inventories are available. For simplicity, 

seasonally adjusted CPI-U is used for all three data sets, while not seasonally 

adjusted FF rate and PPI (raw materials) are used because they are not considered 

to have seasonality.

U nit R oot For the three-variable VAR with the level data, Monte Carlo exper

iments again suggest that there exists one real (not complex) unit root in the U.S. 

data set (the results are omitted). The results based on the stationary data sets

37U.S. production data are available at http://www.federalreserve.gov/releases/G17/
38Shipment and inventory data in nominal terms are available from the U.S. Census Bureau: 
http: / / www.census.gov/indicator/www/m3/hist /naicshist.htm
For the estimations of real shipment and inventories, see Herman et al. (1976). For data, see 

the website of the Bureau of Economic Analysis:
http: / /www. bea.gov/national/nipaweb/nipa_underlying/SelectTable.asp
39See the Fed’s website: http://www.federalreserve.gov/Releases/H15/data.htm
40Both are available at http://www.bls.gov/home.htm
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Table 1.6: Estimated business cycle roots (six-variable VARs with U.S. data).

Panel 1: Level
Roots 0.93±0.09i 0.88±0.06i 0.73±0.08i 0.43±0.37i 0.8051 -0.5162
Norm 0.9374 0.8870 0.7307 0.5622 0.8051 0.5162
Angle ±0.0291tt ±0.021 9tt ±0.0365tt 0.2261tt 0 0
Cycle length 68.52 91.15 54.83 8.85 +inf +inf

Panel II: HP-s.a.
Roots 0.95±0.11i 0.77±0.03i 0.74±0.11i 0.43±0.30i 0.9511 -0.4983
Norm 0.9443 0.7667 0.7454 0.5221 0.9511 0.4983
Angle ±0.0363tt ±0.0109tt ±0.0455tt ±0.1 970tt 0 0
Cycle length 55.12 182.80 43.93 10.15 +inf +inf

Panel III: YoY
Roots 0.93±0.13i 0.9084 0.8128 0.7677 0.7323 0.52±0.39i 0.9855 -0.5763
Norm 0.9376 0.9084 0.8128 0.7677 0.7323 0.6445 0.9855 0.5763
Angle ±0. 0428tt 0 0 0 0 ±0.2047tt 0 0
Cycle length 46.73 +inf +inf +inf +inf 9.77 +inf +inf

(HP-s.a. and YoY data) are relatively similar to those based on the level data, 

though such similarities are not as strong as in the Japanese estimations.

1.A.2 R oots o f Coefficient M atrix

Selected point estimates of the roots are shown in Table 1.6. Roots omitted from 

the table are complex roots with very high frequencies (shorter than 8 months) 

and some short real roots.

There are many conjugate pairs of complex roots that correspond to long cycles, 

but only the first pair in each panel seems to be robust against a change in the 

VAR order. For this cycle, phase shifts are consistent among all three data sets. 

In addition, cross correlations and spectra also show that the dominant cycle is 47 

to 69 months in length, which is close to the post-war average (67 months).41

Phase Shifts

The phase shift between production and inventories is 1/5 to 1/6 of the cycle 

length, implying that the trajectory of the inventory cycle is a (shrinking) ellipse 

with a major (longer) axis running from the northeast to the southwest around

41 See NBER’s "U.S. Business Cycle Expansions and Contractions" at 
http: /  /  nber.nber.org/cycles/cyclesmain.html
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Table 1.7: Estimated phase shifts (six-variable VARs with U.S. data).

unit: months (Cycle length) Shipment Inventories FF rate CPI-U Com. Price
Lerel data (68.5) 1.9612 12.748 -8.0767 -0.6753 1.7430

(91.2) 2.9152 19.939 16.323 -16.551 22.389
(54.8) -4.5560 1.5431 0.6742 -0.3231 -3.0252

HP-s.a. (55.1) 2.1547 10.436 -4.0955 1.3363 2.7509
(182.8) 0.5981 5.2254 39.217 5.5583 18.872
(43.9) -3.3573 2.9764 -0.2556 -1.0580 -4.0754

YoY (46.7) ] 1.9730 7.4541 -3.6056 -2.9659 0.7352
Note: Time-lags from production.

the origin (see Figure 1.2).

The FF rate precedes production by 4 to 8 months. It seems that the Fed’s 

monetary policy is forward-looking/pre-emptive; it anticipates the cyclical patterns 

of economic variables.

1.A.3 Im pulse R esponse Functions

As with the estimation for Japan, there exists a somewhat perverse price puzzle. 

In addition, the estimated IRFs have a wide confidence interval (especially for the 

FF rate and prices).

Supply vs. Dem and Shocks: Monetary policy is tightened after both positive

demand and supply shocks (Figures 1.20 and 1.19). However, the Fed raises the 

FF rate much more sharply in response to a demand shock than a supply shock, 

because the leading inflation indicator increases after a demand shock but decreases 

after a supply shock. In addition, the initial effect of a demand shock is stronger 

than that of a supply shock.

Unlike Japanese estimations, the lifespans of booms do not differ between de

mand and supply shocks. The author’s conjecture is that this is because of differ

ences between the surveyed firms in production and shipment/inventories statistics. 

For example, if a firm’s figures are included in production statistics but not in ship

ment statistics, then the demand shock that hits that firm increases production 

but not shipment. In any event, the U.S. estimations are less precise, and thus it
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might be safer not to draw too many conclusions from them.
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Figure 1.19: IRFs due to a positive shock in the production equation (six-variable 
VARs with U.S. data). Narrow lines show the 95% confidence intervals of level 
data estimations based on the bootstrapping method.

Price Shocks: The IRFs to shocks to CPI and PPI raw materials are similar to

each other, but the latter, a leading inflation indicator, has stronger effects than 

the former. It seems that the central banks react to leading inflation indicators 

but not to CPI both in Japan and in the United States.

Fed Funds Rate Shock: Again, the price puzzle arises; after a positive FF

rate shock, CPI rises (Figure 1.23). Though the confidence interval is very wide, 

inventories also increase after a positive FF rate shock. This could be because 

firms cannot cut their production quickly enough to counterbalance the decline 

in demand, but this is difficult to verify because data Eire collected from different 

pools of sampled firms.
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Figure 1.20: IRFs due to a positive shock in the shipment equation. Narrow 
lines show the 95% confidence intervals of level data estimations based on the 
bootstrapping method.
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Figure 1.21: IRFs due to a positive shock in the inventory equation (six-variable 
VARs with U.S. data). Narrow fines show the 95% confidence intervals of level 
data estimations based on the bootstrapping method.

63



1 0

5

0

-5
0 12 24 36 40 60 72

x 10'3 S h 'P10

5

0

-5
0 12 24 36 48 60 720 12 24 36 40 60 72 0 12 24 36 40 60 72

10

5

0

jR

FFra CPI PPIx 10

0.2

-0.2

-0.4 -10

 Level Data Y oY chg HP&sa

Figure 1.22: IRFs due to a positive shock in the CPI equation. Narrow lines show 
the 95% confidence intervals of level data estimations based on the bootstrapping 
method.
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Figure 1.23: IRFs due to a positive shock in the leading inflation indicator equation. 
Narrow lines show the 95% confidence intervals of level data estimations based on 
the bootstrapping method.
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Figure 1.24: IRFs due to a positive shock in the FF rate equation (six-variable 
VARs with U.S. data). Narrow lines show the 95% confidence intervals of level 
data estimations based on the bootstrapping method.
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Figure 1.25: Cross correlations (six-variable VARs with U.S. data).
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Figure 1.26: Co- and quadrature spectra (six-variable VARs with U.S. data). Bold 
lines show cospectra and narrow lines show quadrature spectra.

1.A .4 Spectral A nalysis and C ross C orrelations

Like Japanese data, U.S. data also show the S-shape cross correlations between 

inventories and other variables, which shows the existence of time lags between 

them. The correlations between production/shipment and the FF rate peak around 

0 to — 2 months, showing that the Fed reacts to these variables with a short time lag, 

which may seem to be inconsistent with the finding in the phase shift between them 

(see Section 1.A.2). However, this is because of very high frequency components; 

by definition, the Fed cannot react to iid shocks in advance. Remember that the 

phase shift between production and the FF rate shows the Fed’s reaction to the 

cyclical component of, but not to shocks to, production, but the cross correlation 

between them reflects the Fed’s reaction to both the cyclical component and shocks. 

On the other hand, the correlations between production/shipment and the FF rate 

reach their bottom at around 15 to 20 months, which shows that it takes more 

than one year for the effect of monetary policy to fully materialise.
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The spectra show that the quadrature spectrum plays a major role mainly with 

inventories (Figure 1.26). Most of the spectra of CPI and PPI raw materials with 

other variables have a sharp spike at 0 month (making it difficult, to distinguish 

them from the y-aods), which means that their behaviour is dominated by shocks, 

with weak cyclical linkages with other variables. Also note that most of the spectra 

have their peak or bottom at around 60 months, which means that the cyclical 

component with a 60 months long is a key driving factor in the business cycle. The 

quadrature spectra of the FF rate with other variables have their peak or bottom 

at business cycle frequencies, showing that contemporaneous covariances axe not 

sufficient to evaluate the Fed’s monetary policy.

l .B  Com putation o f Phase Shifts

The mathematical techniques used in this chapter are found in any elementary 

textbook (hence, most of the derivations are omitted). However, this section briefly 

describes how to compute phase shifts in a given system of difference equations.42 

It may be useful to some readers since the author personally experienced some 

difficulty in finding references for the computation of phase shifts.

l .B . l  Com putational Summary

Suppose that we have obtained a VAR(M) estimation without exogenous variables 

(see equation (1.1)). Then, it can be rewritten in the form of VAR(l) by redefining

42 Note that the phase shifts in this chapter are computed by a different algorithm discussed 
in Chapter 10 of Hamilton (1994).
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the vector of endogenous variables.

Vt =

B =

Yt^ B  +  ( tC

• • • Bm- i  Bm 

I  0 0

(1.3)

0 0

c =

Yt =

C 0 ••• 0

yt y t - M + i

where yt and are row vectors of endogenous and exogenous variables, respectively, 

is assumed to be iid over time and equations.

Let A and V be the matrices of eigenvalues and eigenvectors of B in (1.3), 

respectively.

Ai

, v  =

0 An

where n is the number of roots (Mx  number of endogenous variables) and Vj is 

the eigenvector that corresponds to the j-th eigenvalue. Then,

A = Vi Vn (1.4)

Frequencies (0j): 0  =  diag 0i = arctan (Im A./ Re A)

Cycle lengths (2tt/0j): 2n./Q =  diag 2n/0i 2n/0T

Phase (Pij): $  =  arctan (Im V./ Re V) +  nuisance term

• Phase shifts between k and I: $k. ~  —

There are a few comments. In terms of notations, ,f./0"  signifies the element- 

by-element multiplication of 0 _1 from right, is the fc-th row of $  and KeV  

and Im V mean the real and imaginary parts of V, respectively. $ij is the phase 

of the Z-th endogenous variable with respect to the cycle corresponding to the j-th  

eigenvalue.

If the r-th eigenvalue is real, then frequency 0r is positive infinity and phase 

shifts between any variables are zero.
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The unit of $k. — $/. is radian. To convert the unit from radian to time, it 

should be divided by a proper frequency, as in the main text.

In actual computation, it is necessary to take care the fact that any /?Zj =  

(mod 2n) are equivalent to /3Zj. Also, with some computer software, it is difficult 

to distinguish (3̂  and —

1.B.2 Derivation

If Aj and A* are conjugate each other (denote conjugate by upper bar: A* =  Aj), 

then Vj and Vi are also conjugate each other (Vi — Vj). This is evident because Aj  

and Vj must satisfy the definition of the eigenvalue-eigenvector if Aj  and Vj satisfy 

it.

(B -  X j l )  Vj =  0 < *  (B -  Aj l )  Vj =  0 (B -  X j l )  Vj =  0

Note that B =  B and 1 = 1  since the identity matrix and B are both real.

Denote such Aj  and Vj as follows.

A j  =  a,j +  bji =  Pj (cos Qj +  i sin 9j)

Xj =  a,j — bji =  pj (cos Qj — i  sin Qj)

Vj — R j  T  V I j i  

Vj =  R j  — M j i1i 1------

£i

II0? II£

a?
i

*
i

where Pj =  yja? +  bj and Qj =  arctanbj/ cij. It is obvious that both X*Vj and X^Vj 

are elementary solutions of the difference equations 1.3. Note that by De Moivre’s
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formula,

A* =  (pj (cos 6j +  i sin 0j))4 =  /?*• (cos Ojt +  i sin9jt)

A4 =  (pj (cos Qj — i sin Qj))1 =  p*j (cos Qjt — i sin Qjt)

However, we prefer the elementary solutions that do not have imaginary root i. 

Note that any linear combination of these solutions can be also elementary solu

tions. Thus, define

vf* = \  + a‘V<) = pi (Ricos ~ Mlsin e>t)

vlm = 7̂  (A‘Vi -  A-Vi) =  p\ (Mi cos Bit +  R i sin 9ft)

By the formula of linear combination of trigonometric functions (synthesis for

mula),

Rj cos Qjt — Mj sin Qjt =  ipj • sin (Qjt +

Rj cos Qjt -1- Mj sin Qjt =  rj)j • sin (Qjt -I- • cos (Qjt +  f}^

where • signifies element-by-element multiplication, and

P i  j J Rh +  K

= : =  arctan (% ■ )  , ^  = : =
V

Pnj . ^  . _ i jR l ,  +  _

Interestingly, there is a kind of duality between eigenvalues and eigenvectors. 

Therefore, the two real elementary solutions are written as

PP =  V,- • Pi ®in (S,t +

rfP =  V, -P* cos (Bjt +  Pj)
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The solution of linear differential equations is a linear combination of the ele

mentary solutions.

yt = • • * +  Ujipj ■ p\ sin ( 6 j t  +  (3^J +  • p \ cos { d j t  +  /^) H-----

Weights {uT}nT=l axe typically determined by the initial condition (past and present 

innovations in our case) of a given problem. By using the same formula again, it 

is shown that the phase of the Z-th variable with respect to the j-th eigenvalue /?y 

must satisfy

aijp\ sin (djt +  Ptj)

=  ujipypl sin (djt +  cos (djt +  0 tj)

= (i>t, \Jw) +  ŵ2,) p\ sin (djt +  fry +  (3^

where =  ]5j =  arctan (uj/uj>) is common to all I.

Hence,

atj =  i>ljyJw f+ w f,

Plj  =  Pl j  +  P j

It is clear that the phase shift between the k-th and Z-th variables is independent 

from the initial value (past and present innovations in our case) because /? ■ is 

cancelled out.

Pkj  Pl j  Pkj  P l j

Remember that Pj is dependent on ujt but Ptj is not.
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l .C  Sm oothing Param eter for M onthly H P-Filter

According to the rule of thumb, the smoothing parameter of the Hodrick-Prescott 

filter (HP-filter) should be 100, 1600 and 14400 for annual, quarterly and monthly 

data, respectively. However, these values are not consistent with one another. 

This note, instead, numerically demonstrates that the smoothing parameter that 

is consistent with 1600 for quarterly data is 7-8 for annual data and slightly less 

than 130,000 for monthly data. In general, if the favourite smoothing parameter 

for quarterly data is Aq, then mnemonically

44Ay ~  Aq ~  Am/3 4

where Ay and Am are smoothing parameters for annual and monthly data, re

spectively. These linear relationships among Ay, Aq and Am are stable for most 

economic variables.

This conclusion provides a numerical support for the analytical finding in Ravn 

and Uhlig (2002). It is important to note that this note does not propose any 

single best smoothing parameter. Instead, it simply states the consistency among 

smoothing parameters for different data frequencies.

The idea behind the two exercises in this note is quite simple. Suppose that 

the frequency of time series data is quarterly. Then, we can construct annual data 

from the original quarterly data by a proper method (e.g., by simply taking the 

average of four quarters in one year). Let Y and Q be the column vectors of annual 

and quarterly data, respectively.

Next, the HP-filter is applied to Y  and Q to obtain smooth series. Define 

HP  (Q , Aq) as a matrix such that QHP =  H P  (Q, XQ) Q  and Y HP =  H P  (Y, Ay) Y, 

where QHP and Y HP are the vectors of HP-filtered series.

The first exercise uses the cubic spline to convert annual HP-filtered data Y HP 

to quarterly data Y HP2Q. Note that the cubic spline should perform very well 

because Y HP is a very smooth series by construction. Given the original annual
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data Y, Y HP2<3 is a function of only A y. Similarly, given Q, QHP is a function of 

only Aq. The first exercise obtains the optimal A y as a function of Aq\ i.e., Ay  

that minimises the following quadratic error function for each Aq.

mm  ̂ y HP2Q (A y )  -  QHP (XQ)  ̂ for each \ Q (1.5)

The second exercise converts quarterly HP-filtered data QHP to annual data 

q h p 2Y  a  p r 0 p e r  method (e.g., taking the average). Again, note that Y HP and 

qh p 2y  gre functions of only A y and Aq, respectively. The second exercise obtains 

the optimal X q  as a function of Ay; i.e., Aq  that minimises the following quadratic 

error function for each Ay.

mm ^  Q H P 2Y  _  y h p  (A y )  ^  for each A y (1.6)

By similar exercises, it is possible to obtain the optimal Am and X q  as functions

of each X q  and Am, respectively. Then, the same exercises are done for several data.

The results are almost identical in both types of exercises, and hence the results 

of only the first type of exercises (1.5) are shown. Figure 1.27 shows the optimal 

Am as a function of X q  (all lines are too close to distinguish), and Figure 1.28 shows 

the optimal X q  as a function of A y. There are clear linear relationships regardless 

of data.
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Chapter 2 

Inventory Cycles

This chapter investigates a rational dynamic stochastic general equilibrium model 

with a stockout constraint and a production chain.

Our model shows that the stockout avoidance and cost shock models satisfy 

stylised inventory facts -  production is more volatile than sales and inventory 

investment is procyclical -  for demand and supply shocks, respectively, while pro

duction smoothing works at very high frequencies. Note that the cost shock and 

production smoothing models are naturally embedded in our micro-founded general 

equilibrium framework. Moreover, as a by-product, the production chain causes 

the slow adjustment of inventories in aggregate. Consequently, our model generates 

(a) high labour volatility and (b) low correlation between labour productivity and 

output; the standard RBC cannot produce these two empirical findings. Finally, 

our model yields inventory cycles.

2.1 Introduction

Inventories axe important in understanding business cycles. Inventory investment 

accounts for a large share of GDP fluctuations, especially during recessions.1 De

spite this importance, most existing theoretical studies of inventories focus only

1For example, Fitzgerald (1997) reports that "changes in inventory investment are, on average, 
more than one-third the size of quarterly changes in real GDP over the postwar period." See also 
Blinder and Maccini (1991).
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on firm/industry level analyses; only a few general equilibrium analyses exist. The 

motivation of this chapter is to investigate a micro-founded rational dynamic sto

chastic general equilibrium (DSGE) model that satisfies two stylised inventory 

facts: (1) production is more volatile than sales and (2) inventory investment is 

procyclical. Specifically, we constructs a DSGE model with a stockout constraint 

and a production chain; the stockout constraint means that no seller can sell more 

products than the inventories she holds, and the production chain means that one 

firm’s output is used as a production factor by other firms, and this repeats.

In a sense, this chapter is a general equilibrium extension of Kahn (1987, 1992), 

who first analysed the stockout constraint. The key trade-off under the stockout 

constraint is that having too much inventory is costly because unsold goods impose 

a carrying cost (Jorgenson’s user cost), while having too little inventory is also 

costly because the risk of losing sales opportunity due to stockout is too high. 

Balancing carrying cost against stockout probability, firms choose the optimal level 

of inventories. As a result, the optimal level of inventories is an increasing function 

of demand; given the level of inventories, strong demand reduces the expected 

amount of unsold goods and raises the stockout probability.

Our research, however, is most closely related to Khan and Thomas’ (2004b) 

fully rational DSGE for inventories. In comparing the (S,s) and stockout avoidance 

models, they conclude that the former is superior to the latter, partly because firms 

have almost no inventories in the stockout avoidance model.

However, we conjecture that the competitive goods market in their model is not 

compatible with the existence of unsold goods (inventories carried over to the next 

period). Consider firms’ decisions at different points in one period. Certainly, when 

firms decide their production, there is an incentive to hold inventories as buffers, 

because some factor inputs are decided before the realisation of aggregate shocks 

in their model. However, when firms decide their sales, there is little incentive 

to hold inventories, because all aggregate shocks are already revealed. In their 

competitive goods market, the price of goods should rise if demand is strong and
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vice versa, until the market clears (i.e., no inventories exist). At the end of the 

day, no inventories are carried to the next period.

In contrast, in our non-Walrasian goods markets, price does not equate de

mand and supply; instead, we assume price posting. Indeed, we claim that neither 

instances of stockouts nor unsold goods take place under flexible price. In sum, 

the most important difference between Khan and Thomas’ model and ours is that 

they assume a competitive goods market, while we assume non-Walrasian goods 

markets.

Simulating our model, we find several observations. First, our model quantita

tively satisfies the two stylised inventory facts. The intuition is as follows. When 

a positive demand shock hits firms, their inventories are initially reduced, and 

thus firms want to replenish inventories. Moreover, the target level of inventories 

becomes higher than the normal level, because the demand is stronger than usual. 

Hence, in subsequent periods, firms have to produce more than they sell in order 

to accumulate inventories. Thus, inventory investment is positive when sales and 

production are high, while production is more volatile than sales. Although this 

mechanism was predicted by Kahn (1987) in his firm level analysis, one of our 

contributions is to quantitatively endorse his prediction in the dynamic stochastic 

general equilibrium framework.

However, it is important to note that not only the stockout constraint is em

bedded in our model. Indeed, our model includes the mechanisms predicted by the 

cost shock and production smoothing models. Importantly, even though we do not 

intend to explicitly build these mechanisms in our model, they must, naturally and 

inevitably, appear in our fully rational, micro-founded environment. On one hand, 

with a positive productivity shock (i.e., a negative cost shock), production increases 

but sales do not increase very much; as a result, inventories increase when pro

duction increase, while production is more volatile than sales. On the other hand, 

inventories certainly decrease right after a positive demand shock, and production 

does not react quickly because of the convex cost function. More specifically, if
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a band-pass filter is applied to the simulated data series, our model finds that 

production is less volatile than sales and inventory investment is countercyclical at 

very high frequencies. In sum, in our model, the following three leading inventory 

models are all working: cost shock, production smoothing and stockout avoidance 

models. Or, equivalently, our model finds that these three mechanisms predicted 

by firm/industry level analyses are all alive even in the DSGE framework.

Another important finding in our model simulation is the slow adjustment 

of inventories, which is found in several empirical studies.2 The key mechanism 

behind this is the production chain3. When an intermediate goods producer (M- 

firm) wants to replenish its inventories of intermediate goods (M-goods),4 it has to 

increase its own production and its use of M-goods provided by other M-firms. This 

is demands for other M-firms’ goods and reduces their inventories. This process 

repeats. In other words, increasing inventories in one firm decreases inventories 

in other firms. Thus, the adjustment of inventories (or intermediate goods) in 

aggregate is indeed slow.

This slow adjustment of inventories also generates two by-products: higher 

volatility of working hours, and lower correlation between labour productivity and 

output, than the standard real business cycle (RBC) model. For the former, dif

ferent from the standard RBC model, there is one extra production factor in our 

model — M-goods. However, because the adjustment of M-goods is slow, firms 

are forced to use more labour input to compensate for the sluggish adjustment of 

M-goods during booms. Indeed, our model predicts that M-goods’ price increases 

sharply after a positive demand shock, which encourages firms to substitute M- 

goods with labour. As a result, labour productivity (= output/hours) does not 

increase when output increases, because the increases in working hours are large

2 See Blinder and Maccini (1991), among others. Also, Ramey and West (1997) interpret the 
persistent inventory to sales ratio as one expression of the slow adjustment of inventories.

3 However, the primary purpose of explicitly modelling the production chain is to generate 
a realistic sales volume, which is much larger than the volume of production due to the use of 
intermediate goods. Note that under representative firm models, production is (almost) equal to 
sales.

4 Note that our model analyses the stockout constraint in M-goods markets. Thus, inventories 
in our model mean inventories of M-goods, unless otherwise mentioned.
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enough to offset those in output; thus the correlation between labour productiv

ity and output is low in our model. In sum, by adding stockout constraint and 

production chain, our model improves the standard RBC model in terms of labour.

Finally, our model can replicate so-called inventory cycles (see the Introduc

tion of Chapter 1). However, although VAR-based analyses find sine curve impulse 

response functions (IRFs), our theoretical model generates only over-damped os

cillations, which means that there is a mechanism that generates oscillation, but 

its effect is not strong enough to exhibit sine curve IRFs. Nonetheless, the model 

exhibits cycles in the phase diagrams.

The plan of this chapter is as follows. Section 2.2 reviews both theoretical 

and empirical literature, and summarises the stylised inventory facts. Our model 

satisfies not only the two famous stylised facts, but also additional detailed facts. 

Section 2.3 establishes the model environment. The key features of our model 

include: (i) in addition to the representative household, there are two types of firms: 

final goods producers (F-firms) and intermediate goods producers (M-firms), both 

of which use capital, labour and M-goods as inputs, while the former produce final 

goods (F-goods) which are used as consumption or investment goods, while the 

latter supply M-goods; (ii) individual M-goods are differentiated from each other, 

and hence an M-firm must use M-goods produced by other M-firms (production 

chain); and (iii) the sales of M-firms are subject to the stockout constraint. Section 

2.4 presents numerical results. Section 2.5 section concludes. The technical details 

are relegated to the Appendix.

In terms of terminology, note that this chapter uses "she" for a seller and 

"he" for a buyer. Also, the concept of inventories includes "goods on shelf" GoSt 

and "unsold goods" Ut+i- Though this may sound ambiguous, we often need a 

word that represents both, because they are closely related to one another; indeed, 

GoSt =  Ut under a simplified parameter setting. Inventory investment always 

means Ut+i — Ut.
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2.2 Literature Review  and Stylised Facts

This section reviews existing researches. Despite inventory’s importance in busi

ness cycle research, most existing theoretical inventory models focus only on firm/industry 

level analyses. There have been only a limited number of analyses of inventories in 

the setting of the DSGE model. In addition, key empirical research is also reviewed 

to reconsider stylised inventory facts.

2.2.1 Theories in F irm /Industry Level Analyses

Although we adopt more detailed facts to evaluate the model performance, the 

following two traditional stylised inventory facts have motivated the theoretical 

inventory research:

(i) Production is more volatile than sales.

(ii) Inventory investment is procyclical.

Production Sm oothing

The first attempt to understand inventories was the simple production sm ooth

ing (or buffer inventories) model, in which, analogous to consumption smooth

ing, firms want to avoid wild fluctuations in production because of a convex cost 

function (which should be present even with the CRS production function in gen

eral equilibrium), and inventories are used as buffers against demand shocks. How

ever, it is obvious that smooth production cannot explain volatile production, and 

it predicts that inventory investment is negative when there is a positive demand 

shock. Thus, its predictions contradict both of the above stylised facts.

Subsequent M odels

Hence, subsequent researchers have made efforts to reconcile the production smooth

ing motive and the two stylised facts. In firm/industry level analyses, there are
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several strands of literature:5

• Serially correlated demand shocks may explain to some extent why 

production is not very smooth, but it alone cannot explain why production 

is more volatile than sales.6

• The non-convex cost function (or bunching production) has much em

pirical evidence from plant level studies, but it is uncertain as to whether the 

same mechanism works in aggregate.7

• The cost shock m odel successfully explains stylised fact (i), while its em

pirical evidence is mixed. However, without any additional assumptions, it 

predicts that sales and inventories should be uncorrelated.

• (S,s) ordering policies successfully explains (i) under the assumption that 

production takes place no sooner than the order is placed; a fixed ordering 

cost induces bunching orders, and hence orders (production by suppliers) 

are more volatile than sales (of retailers). However, it does not predict (ii). 

Moreover, it has difficulty in aggregation, and it alone cannot explain why 

the stylised facts also hold at individual firms.8

• Inventories as production factors can explain (ii) but not (i). In aggre

gate level analyses, where some simplification is inevitable, it may be difficult 

to discriminate inventory investment from capital investment in this model.9

It seems that the above fines of research have not yet reached successful results.

Target Inventory M odels

However, the following two models appear to be more promising than those above.

5 Of course, some researchers have contrived tricks to amend the problems pointed out here.
The comments in the following list simply offer a glimpse of the models’ basic features.

6See Blinder (1986).
7 See Ramey (1991) and Ramey and Vine (2004) for this line of research.
8See Caplin (1985) and Caballero and Engel Caballero and Engel (1991), among others.
9 See Ramey (1989).
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• The inventories as sales facilities model is suggested from the standpoint 

of empirical studies.10 The idea is that inventories, e.g., in showcases, are 

necessary to sell goods as samples or specimens. When sales are strong and 

serially correlated, a firm has to make up for the drop in inventories and, in 

addition, has to accumulate additional inventories to keep up with the new 

sales level, which is higher than before. Hence, in principle the model can 

explain both (i) and (ii).

• The stockout avoidance m otive is probably the most natural setting, at 

least as a casual conjecture. Similar reasoning to that of the inventories as 

sales facility model shows that this can also explain (i) and (ii).11

Note that the inventories as sales facilities and stockout avoidance models are 

indeed special cases of a more general class of models. The generalised target 

inventory model has the following sales function:

s t = (  Dt {Ptf  +  4>GoSf )  * (2.1)

where Dt(.) is demand as a function of price Pt, GoSt is goods on shelf (inventories), 

and ip and (p are parameters. The model reduces to the inventories as sales facilities 

model in Bils and Kahn (2000) if ip = 0, while it reduces to the stockout avoidance 

model when ip =  —oo. It is important to note that both models imply that the 

(target) level of inventories, rather than inventory investment, is an increasing 

function of demand.

2.2.2 General Equilibrium Analyses

As mentioned above, only a few general equilibrium analyses have been done to

date. We list some of the theoretical works below.
10See Bils and Kahn (2000) and Pindyck (1994).
11 See Kahn (1987, 1992). Abel (1985) provides early work on the stockout constraint. Wen 

(2002) also gives some support for this idea.
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(S,s) M odels

Fisher and Hornstein (2000) and Kahn and Thomas (2004a, 2004b) focus on the 

(S,s) model in the settings of DSGE.

Although the (S,s) model seems unsuccessful in firm/industry level analyses, 

Fisher and Hornstein (2000) construct a DSGE model that satisfies the two styl

ised facts. In their model, general equilibrium feedback seems to be the key to 

understanding inventories.12 By incorporating a matching scheme in the goods 

market,13 they embed a mechanism by which a high level of inventories induces 

retailers to lower their sales prices so that consumers increase their search efforts 

(thus, sales are positively correlated with inventories).14

On the other hand Khan and Thomas (2004a, 2004b) also find that the (S,s) 

model can explain two stylised inventory facts. In Khan and Thomas (2004b), they 

compare (S,s) and stockout models and conclude that the former is better than 

the latter in terms of the two traditional stylised facts (see the next subsection).

Target Inventory M odels

Kahn et al. (2002) constructed an inventory in the u tility  m odel as a proxy 

for the stockout avoidance motive with imperfect information. Their intuition is 

essentially the same as ours; when a positive shock hits a firm, its inventories 

decline, but the firm then has to replenish inventories and build up inventories 

to achieve the new, higher target level (because the sales shock is assumed to 

be persistent). They emphasise informational imperfection; firms cannot sell all 

of today’s products in today’s market due to a informational problem. However, 

inventory in the utility is not based on a micro-foundation, though it could be a 

useful short-cut.
12 For the aggregation problem, they restrict the state space; the possible level of inventory 

holdings axe limited to a few natural numbers.
13 Note that in this sense their model also can be regarded as a non-Walrasian model. Their 

pricing mechanism is marginal (reservation) utility pricing, which is a special case of the Nash 
Bargain (sellers have all the bargaining power), and similar to ours.

14See Blinder (1982) and Bental and Eden (1993) for similar insights.
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Khan and Thomas (2004b) analyse the stockout constraint in a non-linear 

DSGE framework. In comparing the (S,s) and stockout avoidance models, they 

conclude that the former is superior to the latter, partly because firms have almost 

no inventories in the stockout avoidance model.

However, we conjecture that the competitive goods market in their model is not 

compatible with the existence of unsold goods (inventories carried over to the next 

period). Consider firms’ decisions at different points in one period. Certainly, 

when firms decide their production, there is an incentive to hold inventories as 

buffers against imperfect information during one period.15 This is because some 

factor inputs are decided before the realisation of aggregate shocks in their model. 

However, when firms decide their sales, there is little incentive to hold inventories,16 

because all aggregate shocks are already revealed. Having inventories just leads to 

a carry cost, but it no longer protects firms unless the marginal cost of the next 

period is very high. In their competitive goods market, the price of goods should 

rise if demand is strong and vice versa, until the market clears (i.e., no inventories 

exist), although Khan and Thomas (2004b) do not report the change in the goods 

prices. At the end of the day, no inventories are carried to the next period. In 

a sense, their goods market is a Walrasian market with a vertical supply curve; 

unless the demand curve is unorthodox, the market finds a price to equate demand 

and supply.

In contrast, in our non-Walrasian goods markets, price does not adjust demand 

and supply; instead, we assume price posting. Indeed, we claim that neither in

stances of stockouts nor unsold goods take place under flexible price. In sum, our 

research is most closely related to Khan and Thomas’ (2004b), but the most im

portant difference between their and our models is that they assume a competitive 

goods market, while we assume non-Walrasian goods markets.17 Note that, be

15 Note that inventories in this sentence are goods on shelf in our terminology. However, because 
there is no unsold goods carried from the previous period in their model, goods on shelf are equal 
to today’s production.

16 Note that inventories in this sentence are unsold goods in our terminology. Note also that 
inventory investment means the time difference of unsold goods in general.

17In addition, while our model is solved by linearisation, they employ a non-linear solution
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cause goods prices respond to all the aggregate shocks, though not to idiosyncratic 

shocks, our model falls into the class of flexible price models.

Inventories w ith  Sticky Price

Hornstein and Sarte (2001) and Boileau and Letendre (2004) incorporate invento

ries into a dynamic sticky price model.

The motivation to hold inventories used by Hornstein and Sarte is production 

smoothing. In their model, after a positive monetary shock, (i) for agents who have 

an opportunity to change prices, sales plummet down because their new prices 

become higher than other agents’, but production does not move very much due 

to convex cost function, while (ii) for agents who do not change their price, sales 

and production increase. According to them, initial changes in sales are offset in 

aggregate, while changes in production are not. Thus, production is more volatile 

than sales.

Boileau and Letendre studied three types of models in the dynamic sticky 

price model. The most successful one is the model they call the shopping-cost 

model,18 and it creates more persistence in output and inflation than the standard 

sticky price model. At first glance, their shopping-cost model seems to be similar 

to the micro-founded target inventory model such as ours, in the sense that both 

models share the feature that inventories help sales. However, it appears that their 

model should be regarded as an inventories as production factors model, at least 

in aggregate. This is because, while inventories reduce the retailers’ shopping cost, 

the authors impose the zero profit condition on the retailers at the same time. This 

means that, if retailers and producers can be regarded as one big sector, inventories 

work as a production factor in this big sector. Indeed, their final algebraic results 

look like those of the inventories as production factors model. In this sense, it is 

slightly questionable whether or not their model should be classified as the same

method.
18 The other two model investigated by Boileau and Letendre (2002) are a linear-quadratic 

model and inventories as factors of production.
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class of the models as ours.

O ther Im portant Research

Another important general equilibrium inventory paper is Diamond and Fuden- 

berg (1989).19 Although their model yields interesting results, including cyclical 

movements and multiple equilibria, their economy is highly stylised. They assume 

that each agent cannot have a (stochastic) production opportunity until she sells 

her products, and hence their "inventories” represent the number of people who 

had a production opportunity but have not yet sold their products. Thus, we 

think their model is qualitatively interesting from a purely theoretical viewpoint, 

but may not be able to allow numerical experiments.

2.2.3 Empirical Studies and Stylised Facts

This subsection briefly reviews empirical research and draws implications.

Stylised Inventory Facts

Although, as mentioned in the previous subsection, two stylised inventory facts are 

well known, we use more detailed facts in order to evaluate the model performance.

Most importantly, Wen (2002) reveals that the two traditional findings hold 

only at the business cycle frequencies (8 to 40 quarters); production is less volatile 

than sales and inventory investment is countercyclical at very high frequencies (2 

to 3 quarters).20 In addition, Ramey and West (1997) suggest that the I/S ratio 

is persistent, which is perhaps essentially equivalent to the slow adjustment of 

inventories estimated by Blinder and Maccini (1991).21 Finally, Bils and Kahn 

(2000) show that the I/S ratio is countercyclical.

In sum,

19See also Diamond (1982).
20In this connection, Hornstein (1998) states that inventory investments are important for 

short-term output fluctuations (6 quarters or less), rather than business cycle fluctuations.
21 Their model is often called an (empirical) target inventory model (though they are typically 

not micro-founded). See also Blanchard (1983) and West (1986).
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l.a  Inventory investment is strongly countercyclical at very high frequencies (2 

to 3 quarters).

1.b Inventory investment is procyclical at business cycle frequencies (8 to 40 

quarters).

2.a Production is less volatile than sales at high frequencies.

2.b Production is more volatile than sales at business cycle frequencies.

3.a The inventory/sales ratio is persistent and the adjustment of inventories is 

very slow.

3.b The inventory/sales ratio is countercyclical.

There are a couple of supplementary comments. First, facts lb and 2b (and 

hence traditional facts (i) and (ii)) are essentially equivalent to one another (see 

Section 1.5.4). Second, while facts l.a  and 2 .a support the production smoothing 

motive model, l.b  and 2.b are consistent with the target inventory models (see 

Wen (2002)).

Inventory Cycles

Inventory cycles are cyclical movements in the phase plan, wherein typical year- 

on-year change (YoY) in inventories is on the x-axis, and YoY changes in pro

duction/shipment are on the y-axis. This phenomenon is stable over time. The 

conjugate pair of complex roots in VAR coefficients is detected in Chapter 1, which 

is necessary for generating inventory cycles. Hence, in addition to the stylised facts 

listed above, the objective of this theoretical research is to construct a DSGE model 

that exhibits inventory cycles, as mentioned in the Introduction.

Other Em pirical Issues

N egative Correlation Between I /S  R atio and Interest Rate: Bils and

Kahn (2000) report that the correlation between the real interest rate and I/S
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is negative (see Table 2 in Bils and Kahn (2000)). They compute the correlation 

between expectations of real interest rate and I/S conditional on proper information 

sets. Then they argue that there must be some mechanism such as countercyclical 

markup to reconcile the FOC w.r.t. inventories to the data. Their finding is 

puzzling because the target inventory models suggest that the optimal inventories 

are decreasing in the interest rate (carrying cost). One possible way to understand 

this finding is that they essentially estimate the monetary policy rule, rather than 

the optimisation condition of inventories.22 Nonetheless, we want to point out that 

a serious puzzle exists in the inventory literature.

Inventories as Collateral: Related to the financial side of the economy, Kashyap 

et al. (1994) and Gertler and Gilchrist (1994) empirically show that small firms, 

whose access to financial markets is presumably limited, reduce their inventory 

holdings more than large firms during recessions. Thus, they both conclude that, 

for small firms, there is some form of interactions between inventories and finan

cial/liquidity constraints.

Dim inishing G DP V olatility and N ew  Inventory M anagement: Since 

mid 1980s, many industrialised countries have experienced a decline in the volatility 

of their GDP and prices (though some authors, such as Comin and Philippon 

(2005), find that the variability of output is increasing over time at the firm level). 

In this regard, Kahn et al. (2002) argue that improved inventory management 

(due to, say, new information technology) allows firms to protect themselves from 

shocks. They show that the decline in output volatility is salient more in the 

durable goods sector than in others. Their claim is also numerically evaluated by 

using our model.

22 Though controlling the information set looks like using the two-stage regression, their infor
mation set is presumably not independent of disturbances (i.e., the variables in the information 
sets do not work as IVs). Suppose, for example, that the monetary authority has a rule that 
it raises its policy interest rate when sales are strong and the inventory level is low. With no 
remedy, if the estimation of the FOC is less stable than that of the monetary policy rule, such 
computation essentially detects the monetary policy rule, rather than the FOC w.r.t. inventories.
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Flow of Goods
Production Chain

Stockout Constraint

HH F-firms M-firms

Note: F- and M-firms mean final and intermediate goods 
producers, respectively. HH is household.

Figure 2.1: An illustration of the structure of the model economy.

2.3 M odel Environm ent and Some Intuitions

This section illustrates the key features of the model, but the full derivation of the 

most general model is relegated to the Appendix. First, the general setup of the 

model economy is described, and then the optimisation problem of each agent is 

defined.

Among other assumptions, the stockout constraint and the production chain 

are essential — the model aims to analyse them in general equilibrium —, while 

idiosyncratic demand shock, price posting rule, etc. are rather technical assump

tions. The latter are necessary devices for modelling the non-Walrasian goods 

markets; stockout implies that the goods markets do not clear.

2.3.1 Production Chain

There are three types of agents in the model: a representative household (HH), 

intermediate goods producers (M-firms) and final goods producers (F-firms), all 

of which optimise. HH works, consumes and invests. Production factors for both 

types of firms are labour, capital and intermediate goods (M-goods). Final goods 

(F-goods) are converted into consumption and investment goods (it is possible to 

interpret F-firms as retailers). A continuum of M-firms produce mutually differenti

ated M-goods (a la Dixit-Stiglitz monopolistic competition). A bundle of M-goods
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are necessary to produce not only F-goods, but also M-goods — production chain.

Looking at the Leontief’s input-output table, any two industries demand and 

supply M-goods from and to one another. Because the input of M-goods is sub

tracted from sales to compute value-added, sales are much larger than value-added 

in reality. On the other hand, the stockout constraint implies that the target level 

of inventories (or goods on shelf) is an increasing function of sales, not value-added. 

Hence, without modelling the production chain, we underestimate the volume of 

sales — and hence the volume of the target level of inventories.23

Note that if the M-goods markets are frictionless, then the model reduces to 

a single production sector model; the stockout constraint — a friction in M-goods 

markets — makes the production chain worth analysing.

Im plications o f Production Chain

Different from the standard RBC model, however, there is one additional pro

duction factor — M-goods. When a shock hits the model economy, capital cannot 

adjust quickly, as in the standard RBC model, because its evolution is governed by 

the capital accumulation equation. The adjustment of the additional production 

factor — M-goods — is also sluggish. This is because of the production chain; when 

one M-firm wants to increase its supply, it must use other firms’ M-goods, which, 

in turn, implies that other firms want to increase their production by using other 

firms’ M-goods.24 In aggregate, to produce M-goods, M-firms must consume M- 

goods! In sxnn, due to the production chain, the adjustment of inventories is very

sluggish in aggregate. In addition, this slow adjustment of M-goods inventories

23In this connection, consider the Leontief production function where the elasticity of substi
tution between labour/capital and M-goods is zero 77M =  0 (see the Appendix for notations). 
Then the use of M-goods is proportional to the gross output: YtM =  ZtMnM ^ 1/ ( l  — <Pm)(=  
Z ^ nVtM/(f)M), where ZtMn is the technology and <f>M is the share parameter of value-added 
component VtM. The L eon tief’s inverse m atrix  — the most important concept in the input- 
output table analysis — shows the increase in the output of one sector due to a unit increase in 
final demand. Noting that M-goods produced are used as inputs of F-firms and M-firms: YtM 
=  M f  +  MtM, dYjff /dMfs =  (1 — (1 — =  <£m >  1 in the symmetric steady state (in
our model, the matrix is actually l x l ) .  Hence, gross output fluctuates more when the share 
of intermediate goods is larger. In principle, it is possible to simulate Leontief’s inverse matrix 
analysis dynamically.

24 To gain further intuition, see also the previous footnote.
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has several important implications for labour (see below for details).

2.3.2 Stockout Constraint

Our model explicitly analyses the effect of the stockout constraint, which was first 

examined by Kahn (1987), and our study is a general equilibrium extension of his 

market equilibrium analysis.

Our model considers the stockout constraint on the M-good markets, and de

fines goods on shelf GoSt as the sum of unsold goods Ut and (a portion of) today’s 

production YtM. In terms of terminology, GoSt and Ut are both (the level of) 

"inventories," but the former is measured before the opening of M-goods markets, 

while the latter is after the markets close.

The stockout constraint, the main friction in our model, means that no seller 

can sell more products than the stocks on shelf GoSt. Hence,

St =  min {GoSu M f}  (2.2)

where St is the sales and Mf is the potential demand for M-goods. The potential 

demand is "potential" simply because it may not be realised due to stockout.25 

There is a fundamental trade-off; stockout is costly because it means the loss of a 

profitable sales opportunity, but unsold goods are also costly because they impose 

a carrying cost (or Jorgenson’s user cost) of unsold goods. Note that the nature 

of the carrying cost is the cost of financing inventories (plus capital and income 

gain/loss of inventories) while the (marginal) opportunity cost of missing profitable 

sales opportunity is measured in terms of the forgone profit margin in our model.

Hence, the target level of inventories is an increasing function of the potential 

demand (which moves closely with sales), but is a decreasing function of the in

terest rate (financing cost). When the potential demand is strong, for example, if 

GoSt were kept unchanged, the stockout probability would be too high while the

25 It may be possible to express the stockout constraint in the form of a non-negativity constraint 
on GoSt, but adding the non-negativity constraint complicates the algebra.
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level of expected unsold goods would be too low; hence, firms have an incentive 

to accumulate inventories, and vice versa. Note that choosing optimal GoSt is 

equivalent to choosing optimal stockout probability.

Im plications o f Stockout Constraint

The stockout constraint can (at least potentially) explain the two inventory stylised 

facts (see also Kahn (1987)). One of the goals of this chapter is to quantitatively 

evaluate the effects of the stockout constraint in the DSGE framework.

The intuition is as follows. As mentioned above, under the stockout constraint, 

the target level of inventory is an increasing function of the potential demand, 

which shows movements quite similar to sales. Hence, inventory investment is 

naturally procyclical (fact lb). Furthermore, production must increase more than 

sales because, otherwise, inventories decrease (fact 2b).

In addition, the I/S ratio is countercyclical because, during a recession, the 

interest rate is low and thus the carrying cost is low as well, which stimulates 

inventory holdings relative to sales.

Inventories as Buffers

It is important to note that the mechanism explained in the previous subsection 

is expected to materialise at business cycle frequencies.

At very high frequencies, on the other hand, production smoothing can be 

explained by the very basic convex cost function. Inventories work as buffers 

against demand shocks. Even if production technology ensures constant returns 

to scale (CRS), as long as the labour supply is convex (due to the concave utility 

function), this mechanism works. Because firms do not want to adjust their pro

duction quickly, inventories will decrease right after a positive demand shock, and 

vice versa.

Note that both mechanisms — buffer stocks and stockout constraint — do not 

contradict to one another, and they indeed coexist in our model. Moreover, of
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course, our model also incorporates the cost shock model. Our objective is not 

to pick up one single "true" mechanism out of the three models, but to compare 

them to evaluate their relative importance.

2.3.3 Structure o f M -goods M arkets

This subsection provides rather technical basis of the model. We recommend that 

interested readers consult the Appendix. Here, only the key assumptions are listed:

• Due to idiosyncratic shocks, individual sellers face different levels of de

mand. Both stockout and unsold goods exist, implying that the M-market 

is non-W alrasian.

• Hence, we cannot use market clearing conditions as a pricing mechanism. 

Instead, we assume the price posting by sellers, wherein buyers decide on 

the trading quantities. Buyers’ FOCs are regarded as demand curves.

• Due to the price posting and CRS production function, our model falls in 

the class of representative agent m odels in aggregate, despite the het

erogeneity caused by stockout.

• M-goods are differentiated from each other (Dixit- Stiglitz’ monopolistic com

petition). Two-stage budgeting is modified by the cost effect o f losing 

variety.

Note that it is possible to linearise the stockout constraint (2.2), because the 

numbers of sellers and buyers with binding (2.2) are smooth functions in aggregate, 

even though (2.2) is not a smooth function from the individual sellers’ viewpoint. 

Also, note that F-firms play only the role of buyers, but M-firms behave as both 

sellers and buyers.
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2.3.4 Household

The infinitely-lived representative household (HH) maximises its expected lifetime 

utility.

max Eq
{Cs ,H«}? =0

s.t.

Ct +  Bv+1 =  +  WtH « +  D?

The period utility £/[.,.] is time additive, is discounted by the subjective discount 

factor /?*, and takes consumption Ct and leisure 1 — as arguments, where the 

total time endowment is normalized to one and H'j* is the labour supply.

The period budget constraint has cash outflow in the LHS and inflow in the 

RHS. The LHS means that HH expense their resources to consumption or one- 

period bonds Btjt+i , while the RHS implies that cash inflows are the sum of bond 

redemption Rt-i,tBt-i,t, wage income WtHj* and dividends D™.26

HH takes the real interest rate wage rate Wt and D™ as givens. All the

first order conditions (FOCs) are quite standard.

Functional Form

Throughout this chapter, we assume the following functional form for the period 

utility.

where ij; is the weight for leisure, and 7  and are the elasticities of intertemporal 

substitutions of consumption and leisure, respectively. When j L =  0, our utility

function reduces to Hansen’s indivisible labour model.
26 Alternatively, we can assume that there axe infinitely many HHs which own both F- and 

M-firms. In that case, dividends are assumed to be state contingent, and thus all household 
enjoy the same level of cash inflow; as a result, whole HHs reduce to one sector in aggregate.

94



2.3.5 Firms

We assume that quadratic adjustment costs apply to changing labour demand and 

input of M-goods, as well as investment.

M -Firm s’ O ptim ization Problem

As shown in the Appendix, we can exploit the slightly modified two-stage budgeting 

(Jo O l d  Mid] =  Qf^1 PtM MtM).

maxEo E
t=o

H 

A0

p ;s t -  WtHtMp -  ItM -  Q t 1 PtMMtM 

- X mh (  H iip -  H * \  )  /H * l

- X u u  (  MtM -  )  /M &

s.t.

Ut+1 

St

Y,m =  Y

U , - S t +  YtM

=  min {Ut +  vYtM, Mp}

rs-M
1 =  (1 -  SM) K tM +  ItM -  Xm k (I™ -  5MK tMf / K ,tM M r M \ 2 'M

The objective function says that M-firms maximise the present value (PV) of their 

net cash inflows, which are discounted by the stochastic discount factor SDFt =  

j3tX^/Xq =  0L (dUt/dCt) /  (dUo/dCo). The cash inflow is only the sales revenue 

PISt, where PI is the sales price of producer i. While sales price is a choice vari

able, the purchase price PfM is given for all agents, though P\ =  PtM for Vi in 

equilibrium. On the other hand, cash outflow is composed of the wage payment 

WtH^p, which is wage rate Wt times labour hours P tMp, the expenditure on invest

ment goods / tM (the price of F-goods is normalized to 1) and the expenditure on 

M-goods Qt^ P tMMtM, where Qt is the number of available varieties, and and 

MtM are the price and quantity indices of M-goods, respectively. In addition, the
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adjustment costs of labour and M-goods inputs X m h  l ^ t t 1 and

X m m  ( M ™  — M ^ f ) 2 also constitute M-firms’ cash outflow. X m h  X m m

are both given parameters. These costs are evaluated in terms of F-goods. In sum, 

the net cash inflow is the sales revenue minus expenditure on labour, investment 

goods and M-goods, as well as the adjustment costs.

The first constraint is the evolution of unsold goods. The second represents 

the stockout constraint. Sales St is the minimum of GoSt or potential demand 

Mf. Note that Mf is the sum of the baseline demand and idiosyncratic shock in 

our notation. The third constraint shows the production function, in which Z f  

is exogenous shocks. The production function takes capital i^M, labour H ^p and 

M-goods as production factors. The fourth constraint is the evolution of

capital, in which we assume a quadratic adjustment cost, where 6 m  and X m k  a r e  

given parameters.

F-firm s’ O ptim ization Problem

The optimization problem of F-firms is as follows.

The objective function again says that firms maximize the PV of their net cash 

inflows. The modified version of two-stage budgeting holds, as in the case of

M-goods M f x as production factors, where the superscript F implies F-firms.

max

[K f, H f f  M £i; if* * , Z f J -  WtHf* 

- Q [ ^ P tMM f  -  I f
>

S.t.

Kf+1 =  (1 -  K f  +  I f  -  XFK( l f  -  SFK f f / K f

M-firms. WtH (p and i f  refer to labour costs and expense on investment, re

spectively. The production of final goods YtF takes capital K f , labour H fp and



X f h  ( h F P ~ Ht - i )  l H t - \  and X f m  (Mt ~ Mt- i)2 !Mt- 1 denote the adjustment 

costs of labour and M-goods, respectively, in which X f h  and X f m  are given para

meters.

The constraint represents the evolution of capital with the quadratic adjust

ment cost. Note that, in this formulation, the level of capital in the steady state is 

not affected by the parameter X f k -> which governs the adjustment cost of invest

ment.

Functional Form

We assume a CES production function with a Hicks-neutral technology shock Zf- =  

ZtKn. For K  = F,M ,

YtK =  Y K [KtK,H ^ ,M ‘i 1 ;Z f] 

= Z*"

VtK = K *  H?”

T ) f {  — 1 T ) k  — 1

m T ) ' "$K )  \  1 “  &K
< * K  1— O c k

VK-1

where (f)K is the share parameter of the value-added component and rjK is the elas

ticity of substitution between the value-added component and M-goods as inputs. 

The value-added component VtK is assumed to be a Cobb-Douglas function, in 

which the share of capital is a#. Parameters (f>K, t]k and olk are exogenous.

2.4 Numerical Experiments

This section shows the calibration results. We implement the linearisation around 

the non-stochastic steady state, and simulate the model to obtain the second mo

ments and impulse response functions (IRFs).
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Table 2.1: Benchmarkparametersfor model simulations

Symbol Meaning Benchmarkralue

P Subjective discountfactor (4% annualinterestrate) 1.04_I/4
r Reciprocal of elasticity of intertemporalsubstitutionof consumption 1.00
n Reciprocal of elasticity of intertemporalsubstitutionof labour 0.00
¥ Weight on leisurein period utility (Working hours= 1/3) 0.68
e Elasticity of substitutionamong M-goods 10.0
V Range parameter of idiosyncratic shock (C/ss/S'ss = 2month^ 0.40
V Share of today’s outputthatcan be sold in today’s market 0.50
O m , O f Capital share in value added 0.35
Vm , V f Elasticity of substitutionbtw M-goods and value-added compo. 0.30
<f>M Weight on value-added compo. of M-firms 0.50
$ F Weight on value-added compo. of F-firms 0.05
8 m , Sp Depreciation rate of capital (Capital/GDP = 10) 0.015
X m k , X f k Coefficient on quadratic adjustmenlcost of investment 0.10
X m h , X f h Coefficient on quadratic adjustmenteost of labour 1.50
X m m ,  X f m Coefficient on quadratic adjustmenlcost of M-goods use 1.00
PMn AR(1) coefficient of Hicks-neutraltechnologyshockto M-firms 0.75
PFn AR(1) coefficient of Hicks-neutraltechnologyshockto F-firms 

Table 2.2: Endogenousvariables in the steady state.

0.85

Symbol Meaning Steady state value
S D F t Stochastic discountfactor (= real interest rate) 0.04
W r Wage rate 1.76
pM M-goods price 0.9996
Qr Pr[cannotbuy] (= numberof available varieties) 0.999
Pr, Pr[stockou^ 0.074
X f Marginal cost of M-goods production (shadowprice of M-goods) 0.89
c t Consumption 0.83

Labour supply(= 1 -  leisure= I f f  + H ?) 0.28
st Sales of M-goods 1.79
h t f ,  M f Use of M-goods as production factors 0.86, 0.93
yM Gross outputof M-goods (= ) 1.79
Y f Gross outputof F-goods (= C , + f f  + / f  ) 0.98
yM (Notional) value-added in M-firms (= K*f aM I f f  ( ,_ a w )) 0.93

v? (NotionaO value-added in F-firms (= K f  ap H f  (1~°F)) 0.053

r f f P, l f t P Labour inputfor production 0.27, 0.015
jM tF -W , Investment 0.14, 0.008
K Y , K Ft Capital at the beginningof period t 9.37, 0.53
Ut UnsoldM-goods at the beginning of period t 1.25
z" Preference shock 1.00
yMn yFn Hicks-neutraltechnologyshock in production function 1.00, 1.00
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2.4.1 Param eter Selection

To select parameters, we do not employ any optimal selection criteria. Rather, for 

the sake of comparability, we follow the convention in the RBC literature. For the 

parameters that are specific to our model, we select values to match some steady 

state values to the data. The difficulty, however, is that we have more than one 

parameter that governs one steady state value: v vs. v  for the steady state I/S 

ratio. In addition, there are six coefficients for the adjustment costs, which are not 

pinned down by the first moments. Hence, perhaps one possible criticism is that 

our model has too many degrees of freedom in choosing parameters.

RBC Param eters

For exact values of the RBC parameters, please see Table 2.1. For the elasticity of 

substitution among varieties, we borrow the number that is commonly used in the 

sticky price model (0 =  10). We select values for AR(1) coefficients for technology 

shocks to match the autocorrelation function of GDP (i.e., Corr {GDPU GDPt- 5} 

~  0). Though these values are smaller than in the standard RBC model, per

haps this is merely due to the existence of adjustment costs and does not signify 

endogenous persistence.

Param eters Specific to  the M odel

Share Param eter o f Value-Added: For the share parameter of the (notional) 

value-added in production functions, we set (j>M =  0.5 so that the share of M-goods 

MtM/YtM in the M-firms is roughly 45%; the value-added is roughly 55% of sales. 

This number is taken from the Japanese and U.S. Leontief’s input-output tables. 

Also, we set 4>F =  0.05 so that F-firms act as if they were the retailers who simply 

convert M-goods into F-goods.

Note that the notional value-added VtM and VtF, which appear in the defini

tions of our production functions, are not consistent with the statistical concept of 

GDP. For example, GDP'tM =  YtM — Pjjf for M-firms. Hence, note that the
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terminology "GDP" in this chapter means gross output minus the use of M-goods. 

Also, note that we assume the Laspeyres price index so that goods are evaluated 

by the price of the steady state (base year).

E lasticity o f Substitution Between Value-Added and Input M -goods:

For the elasticity of substitution between the notional value-added component and 

intermediate goods rjK (K  =  F, M), we do not have much guidance. Rotemberg 

and Woodford (1996) used a value of 0.7, while Bruno (1984) suggested 0.3 to 

O.4.27 Because, presumably, the substitution should be low, we use 0.3.

M agnitude of Idiosyncratic Shock and Proportion o f O utput that Can 

be Sold in Today’s Markets: There axe two parameters that affect the steady 

state I/S ratio: the upper and lower supports of the uniform idiosyncratic shock 

i//2, and the portion of today’s products that can be sold in today’s market v. In 

the data, the I/S ratio is roughly 2 months (0.67 quarter).28

On one hand, if we set v =  1, as in most firm/industry level analyses, inventories 

have no significant effect. This is because we assume that production is decided 

after observing all of the aggregate shock. Hence, if M-goods firms can sell all of 

their products in the current period market, they, as a collective agent, can respond 

to aggregate shocks almost fully. Certainly, inventories still vary over time as the 

interest rate changes over time, and so does the carrying cost. However, in a sense, 

inventories merely follow other key variables in this case; hence, the model behaves 

very similarly to the standard RBC model. On the other hand, if we set v =  0 

(i.e., GoSt =  Ut), it must be the case that Uss > Sss, which clearly contradicts 

the data. If we could know how well firms responded to contemporary aggregate 

shocks in the real world, we could pin down the value of v.

Our strategy is as follows. We first naively set v  =  1/ 2, as simply the midpoint 

between the two extremes, and then choose v — 0.4 so that the I/S in the model

27Basu (1996) regards Bruno’s survey as an upper bound.
28 See Ramey and West (1997), for example.
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economy is 2 months.

Convenience Y ield on Inventories: Stockout probability, which is roughly

5% to 9% in the data according to Bils (2004), is mainly affected by the subjective 

discount factor (3 elasticity of substitution among varieties 9 and convenience yield 

Ci. Essentially, any parameters that determine the opportunity cost of holding 

inventories affect the steady state stockout probability. If the opportunity cost of 

lost sales is high, the optimal stockout probability is lower. Given 0 =  10, we select 

ci =  0.00 (we assume no convenience yield), so that P rss =  7.4%.

Adjustm ent Costs: We assume quadratic adjustment costs, which are rather

standard in DSGE research. Specifically, we set X m k  =  X f k  =  0 - 1 ,  X m h  =  X f h  =  

1.5 and X m m  =  X f m  =  1*0*

2.4.2 Num erical Results

A shock to F-firms’ production function (F-shock) can be regarded as a pure de

mand shock for M-firms, while a shock to M-firms’ production function (M-shock) 

works as a demand shock and a supply shock from the viewpoint of individual 

M-firms.

In this subsection, all the simulated data are HP-filtered, unless otherwise men

tioned. Also, "relative volatilities" are standard deviations relative to that of total 

GDP or M-firms’ GDP. Similarly, "correlations" are correlations with total GDP 

or M-firms’ GDP.

Second M om ents

Table 2.3 on page 102 summarises the second moments generated by the model. 

The results show that, compared to the RBC model, our model considerably de

creases the correlation between labour productivity and hours worked, and it sat

isfies the two stylised inventory facts.
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Table 2.3: Simulation results (comparison to the standard RBC model).

Cited from Cooley and Prescott (1995)
Consum Investm d(in\entOutput Sales Hours ption ent ories)

Output/
Hours

Standard RBC Model
relative s.d. 1.35
corr
Data
relative s.d. 
corr

1.00

1.72
1.00

0.71A
0.94A

0.57
0.99

0.92
0.86

0.24
0.84

0.50
0.83

4.41
0.99

4.79
0.91

0.271A 
0.658A

0.45
0.98

0.52
0.41

Corr{Producti 
vity, Hours}

almost 1

-0.26’'

Notes: "relative s.d." means s.d. relative to s.d. of output. Italics are s.d., not relative s.d. 
"corT" means correlation with GDP.
A indicates that numbers are taken from Khan & Thomas (2004)
* indicates that numbers are taken from Gali (1999).

Stockout Model (elasticity btw Value-add & M-goods = 0.3)
Q „ . H Consum Investm d(invent Output/ Corr{Producti

___________ u Pu a es ours ption ent ories) Hours vity, Hours}
Technology shock to M-firms: rho = 0.75, sigma = 0.7%
relative s.d. 2.83 0.77 0.99 0.18 4.64 0.29 0.36 -0.13
corr 1.00 0.81 0.93 0.44 0.53 0.62 0.23
of which M-firms
relative s.d. 1.04 0.77 0.96 4.25 0.28 0.36 -0.06
corr 1.00 0.90 0.93 0.51 0.65 0.30

Technology shock to F-firms: rho = 0.85, sigma = 0.7%
relative s.d. 1.57 0.55 0.87 0.20 4.52 0.15 0.26 0.42
corr 1.00 0.96 0.97 0.73 0.99 0.01 0.63
of which M-firms

relative s.d. 0.53 0.77 1.63 8.46 0.28 0.67 -0.95
corr 0.94 0.99 0.98 0.96 0.31 -0.88
Notes: For "of which M-frims," "relative s.d." and "corr" show s.d. relative to that of 

M-firms1 output and correlation with M-firms' output, respectively.
Relative s.d. of M-firms' output shows s.d. of M-firms' output relative to that of 

total output. See also notes above.
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Correlation o f Inventory Investm ent w ith GDP: Inventory investment is 

positively correlated with M-firms’ GDP for both shocks. With M-shocks, it is not 

surprising to observe this positive correlation (0.65); this is exactly what the cost 

shock model expects. However, it is more important to find a positive correlation 

(0.31) even with a pure demand shock (see the next subsection for intuition); the 

stockout model also can generate procyclical inventory investment, though the 

correlation is lower than data (0 .66)

The near-zero correlation between inventory investment and total GDP (M- 

firms’ GDP plus F-firms’ GDP) with F-shocks is the artefact of the model as

sumptions because the F-shock directly increases the F-firms’ value-added, but it 

decreases M-firms’ inventories. Indeed, if we use preference shocks instead of the 

F-shocks, the correlation is even higher. However, preference shocks deteriorate 

other dimensions of the model performance, so we do not choose this option.

R elative V olatility o f Sales: Sales are less volatile than output for both types

of shocks. Moreover, the model performs quantitatively very well in this respect; 

the standard deviation of sales relative to that of M-firms’ GDP is 0.77 for both F- 

and M- shocks in our model, while this value is 0.71 in the data. With M-shocks, 

this is not surprising, because the source of the shock lies on the production side, 

as the cost shock models predict. However, it is important to note that, even when 

the source of the shock lies on the demand side, production is more volatile than 

sales.

Intuition: For F-shocks, the target inventory models explain the mechanism

behind two observations: (i) procyclical inventory investment and (ii) output more 

volatile than sales, as follows. When a positive demand shock hits M-firms, of 

course, their inventories initially decline, simply because buyers take away M- 

goods from the shelf of M-firms. However, keeping such a low level of inventories 

is costly, because it leads to a too high stockout probability (in the stockout model) 

and because of an inefficient sales activity without enough samples in showcases
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(in the inventories as sales facility model). The common prediction among the 

target inventory models is that the target level of inventories is an increasing 

function of demand/sales. Hence, with a positive demand shock, the target level 

of inventories is higher than usual and, as a result, M-firms have an incentive not 

only to replenish their declined inventories but also to accumulate more inventories 

to meet the higher demand. However, as the law of motion of inventories (2.7j) 

shows,

Ut+1- U t =  YtM - S t

the output of M-goods YtM must increase more than the sales of M-goods St to 

build up inventories Ut+1, suggesting that (i) YtM increase more volatile than St and 

(ii) Ut+1 — Ut is positive when YtM and St increase. Indeed, this chapter confirms 

this mechanism quantitatively in the DSGE setting.

R elative V olatilities o f Consum ption and Investm ent: For both shocks,

our model inherits the basic nature of the standard RBC model. That is, the 

relative volatility of consumption is too low, while that of investment roughly 

matches the data. This is not surprising since our model is an extension of the 

standard RBC model. The correlation of investment and value-added is too low 

for the M-shock (0.53), though. The reason for this is that an increase in M-shock, 

opposed to F-shock, raises the price of investment goods (F-goods), relative to 

M-goods price.

Persistence of I /S  Ratio: According to Ramey and West (1997), the first 

and second autocorrelations of the inventory-sales relationship (akin to I/S ratio) 

range from 0.88 to 0.97 and 0.80 to 0.91, respectively. This persistency is regarded 

as another expression of the slow adjustment of inventories. In our model, the 

first and second autocorrelations of the I/S ratio are 0.88 and 0.61 for F-shocks 

and 0.71 and 0.25 for M-shocks, respectively.29 The I/S ratios in our model are

29These values axe defined as Ut/St, where St is the M-firms’ sales. The results are almost the 
same if we define the I/S  ratio as unsold goods divided by total sales.
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Figure 2.2: Autocorrelation functions. "GDPtot" and "Unsl/Sal" mean gross 
output minus the use of M-goods, and unsold goods divided by sales (I/S ratio), 
respectively.

considerably persistent (see Figure 2.2), though they are somewhat lower than 

the data. Moreover, in our model the I/S ratio is countercyclical because of the 

procyclical interest rate.

The key mechanism behind this is the production chain. Suppose a positive 

demand shock hits an M-firm. This firm faces a decrease in its inventories and 

expects strong future sales, so it wants to replenish its inventories; much more, 

it raises its inventory level to catch up with the new higher level of sales. As a 

consequence, it has to increase its production and, hence, the use of production 

factors, including M-goods. However, this, in turn, implies that the demands (and 

hence the sales) of other M-firms increase, and that their inventories are reduced. 

In other words, the production chain implies that one firm’s replenishment of in

ventories reduces other firms’ inventories. Therefore, the adjustment of inventories 

is slow in aggregate. It is important to note that M-goods price increase sharply 

after a positive F-shock, while M-goods price does not decrease very much after 

a positive M-shock. Note that unit labour cost (wage/labour productivity) de

creases after a positive M-shock (= a negative cost shock), implying that M-goods 

becomes expensive in relative term.

In this regard, our model can suggest a very simple reason that reduced form
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target inventory models estimate an implausibly slow adjustment speed; it is indeed 

slow! Certainly, Blinder and Maccini (1991) persuasively argue that "One major 

difficulty with stock-adjustment models is that adjustment speeds generally turn 

out to be extremely low; the estimated X is often less than 10 percent per month. 

This is implausible when even the widest swings in inventory stocks amount to no 

more than a few days of production."30 Reiterating our finding, the inventories’ 

adjustment is slow in aggregate due to production chain, although it seems to be 

implausible from the viewpoint of individual firms. Partial equilibrium analyses 

may miss the general equilibrium feedback through volatile M-prices; during a 

boom, high M-prices discourage M-firms from replenishing their inventories quickly 

by producing more.

W orking Hours: In our model, working hours are more volatile than in the 

standard RBC model. As a result, the correlation between hours and labour pro

ductivity is lower than the standard RBC model. If we focus on M-firms, this 

correlation is —0.06 and —0.95 with M- and F-shocks, respectively.

One of the major drawbacks of the standard RBC model is that it counter- 

factually exhibits an almost perfect correlation between labour productivity and 

working homs. Although one way to overcome this caveat is to add demand shocks 

(see Christiano and Eichenbaum (1992) for government expenditure, and Ben- 

civenga (1992) for preference shocks), such demand shock models are criticized by 

Gali (1999), in which a structural VAR shows that the correlation between labour 

productivity and hours is negative for technology shocks, but positive for other 

shocks. Gali (1999) suggested that a dynamic sticky price model with a labour 

effort model can, at least potentially, generate a negative correlation. However, our 

model improves the model performance in this respect even without price rigidity.

The mechanism that generates volatile working hours in our model is the slow 

adjustment of inventories; due to the production chain, one firm’s replenishment

30See Blinder and Maccini (1991, p.81).
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Table 2.4: Model behaviour at different frequency domains.
High Frequencies (2-3quaters) Business Cycle Frequencies (8-40quaters)

Data
Var(sales)/Var(output) Cor(d(inventory), Var(sales)A/ar(output) Cor(d(inventory), sa les)

iTfij ^043 072 058
Model
Var(sales)/Var(output) Cor(d(inventory), Var(sales)A/ar(output) Cor(d(inventory), sa les)

tech shock to M-firms: rho = 0.75, sigma = 0.7%
0.18 (0.32) 0.21 (0.36) 0.83 (0.82) 0.60 (0.29)

tech shock to F-firms: rho = 0.85, sigma = 0.7%
0.36 (1.02) -0.97 (-0.92) 0.56 (0.76) 0.62 (0.63)

Note: Data is OECD average (cited from Wen (2003)). Parentheses indicate for M-firms.

of inventories reduces other firms’ inventories in aggregate. The right panels of 

Figures 2.3 and 2.4 show the IRFs of production factors. It is clear that, for 

both types of shocks, the increase in M-goods use is less volatile than M-goods 

production and labour input compensates such sluggish adjustment of M-goods. 

Note that, because an increase in technology directly contributes to the increase 

in output, the increase in labour is roughly 50 to 60% of that in output (see Table 

2.3 on page 102) in the standard RBC model.

The overly low volatility of working hours predicted by the standard RBC 

model is closely related to the overly high correlation between labour productivity 

and output. For example, in the standard RBC model, the increase in working 

hours during a boom is not large relative to the increase in output, and hence 

output/hours increases during a boom. However, in our model, hours increase 

enough to decrease output/hours, and hence corr{output/labour, output} becomes 

negative.

Frequency A nalysis

This subsection exploits the band-pass filter developed by Baxter and King (1999) 

to the simulated data. For the summary, see Table 2.4. At business cycle frequen

cies (8-40 quarters), both shocks perform quantitatively well.

At high frequencies (2-3 quarters) the results with M-shocks fail to mimic the
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Figure 2.3: Selected impulse response functions to a positive demand shock (a 
shock to F-firms’ production).
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Figure 2.4: Selected impulse response functions to a positive supply shock (a shock 
to M-firms’ production).

data. On the other hand, F-shocks generate results qualitatively similar to the 

data, especially for M-firms; inventory investment is negatively correlated to sales 

and sales is more volatile than output.

Intuitively, as the production smoothing model predicts, inventories work as 

buffers at high frequencies. Due to the convex cost function, it is costly to change 

the production level very frequently; hence firms use inventories as buffers to pre

vent their production from wildly varying over time.
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Figure 2.5: A sample path in phase diagrams generated by shocks to F-firms’ 
production. Simulated data are converted to the year-on-year (YoY) growth rate 
in the right panel.
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Figure 2.6: A sample path in phase diagrams generated by shocks to M-firms’ 
production. Simulated data are converted to the year-on-year (YoY) growth rate 
in the right panel.

Impulse Response Functions and Inventory Cycles

Our model has two (or one, depending on parameters) pairs of conjugate complex 

roots whose absolute values are less than one. Because no impulse response func

tions exhibit clear oscillations (see Figures 2.3 and 2.4), we can say that our model 

shows over-damped oscillations. Roughly speaking, in our model, there exist a 

potential mechanism to yield cycles, but it is not strong enough to generate sine 

waves IRFs.

However, in sample paths, our model yields cycles that are quite similar to the 

observed inventory cycles (see Figures 2.5 and 2.6), although the shape of cycle 

is not clear with F-shocks. The typical length of cycles (if they exist) seems to 

be around 15 to 19 quarters, which is somewhat longer than Kit chin cycles (13
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Figure 2.7: Sample paths of selected variables. Left panel shows the actual data 
(Japanese industrial production); middle and right panels show samples paths 
generated by F- and M-shocks, respectively.

quarters), is close to the Japanese post-war average (16.8 quarters), and is shorter 

than the U.S. post-war average (21 quarters).31 Importantly, the sample paths 

with M-shocks show a time lag between peaks and bottoms of production/sales and 

unsold goods (inventories). Such a time lag, perhaps caused by the slow adjustment 

of inventories, is called a phase shift. The phase shift between production (or sales) 

and inventories is important to generate inventory cycles.

Changing Magnitude of Friction

Kahn et al. (2002) and McConnell and Perez-Quiros (2000) argue that the decline 

in GDP volatility is due to an improvement in inventory management technology. 

To test this idea, we simulate the model for various values of v  and v. We interpret 

an improvement in inventory management as a lower value of v  (smaller magnitude 

of idiosyncratic shock) or a higher value of v  (a larger portion of today’s output 

that can be sold in today’s market). The results are summarised in Figures 2.8 

and 2.9.

Changing the magnitude of idiosyncratic shock v  does not significantly change 

the volatility of GDP in either case (see the lower-right panels). Interestingly, an 

increase in the portion of today’s products that can be sold in today’s market 

v  increases, rather than decreases, GDP volatility for F-shocks, as opposed to

31 For Japanese business cycles, the number is the average of all business cycles See Economic 
and Social Research Insutitute, Cabinet Office, Government of Japan (2004) and NBER (n.d.).
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their conjecture. This is perhaps because inventories are a stabilising factor at 

very high frequencies, as shown above. The more quickly M-firms can react to 

today’s demand shocks, the more quickly those shocks are transmitted to M-firms’ 

production.

The I/S ratio decreases when either v goes down or v  goes up in our experi

ments. This supports Kahn et al. (2002), in the sense that they regard a declining 

I/S ratio as evidence for their hypothesis. However, judging from the results of 

other experiments, it seems that the observed decline in the durable goods sector’s 

I/S ratio is not the cause, rather than the result, of the decline in GDP volatility; 

the less volatile an economy is, the weaker is firms’ incentive to hold inventories 

to hedge their loss of sales opportunities.

Overall, our model shows a negative implication for the hypothesis that an 

improvement in inventory management is the main reason for the decline in GDP 

volatility. The key intuition is that inventories are destabilising factors at busi

ness cycle frequencies but stabilising factors at very high frequencies; hence, it is 

uncertain whether holding lower inventories implies a more stable economy.

2.5 Conclusion

This chapter investigates a fully rational dynamic stochastic general equilibrium 

model with a stockout constraint and a production chain. Here, the stockout 

constraint simply means that no seller can sell more goods than goods than she 

holds on the shelf (i.e., inventories), even if she faces a strong demand. The key 

trade-off in this market friction is that a stockout is costly because it means the 

loss of a profitable sales opportunity, while having excess inventories is also costly 

because it imposes a too high carrying cost (financing cost). The production chain 

means that a firm’s product is used as an input by other firms. Our model has 

two types of firms: final goods producers and intermediate goods producers, both 

of which take a basket of intermediate goods as production factors. The model
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constructed in this chapter is in the class of representative agent models without 

any price rigidity; however, the intermediate goods market is non-Walrasian.

The model quantitatively satisfies stylised inventory facts. On one hand, if the 

source of the shock lies on the supply side, as the cost shock model suggests, a pos

itive technology shock pushes up production, and such an increase in production 

is absorbed by an increase in inventories; sales do not increase very much. One 

the other hand, if the source of the shock lies on the demand side, as the target 

inventory models predict, a positive demand shock increases sales, and inventories 

initially decrease. Hence, if we limit our focus only to very high frequency behav

iours, inventories work as buffers; the production smoothing model is alive at very 

high frequencies. However, due to stronger demand, the target level of inventories 

also increases. In subsequent periods, production must increase more than sales, 

because firms must not only replenish decreased inventories but also accumulate 

inventories to meet the stronger demand. Because inventories increase as demand 

increases, inventory investment is procyclical at business cycle frequencies. In this 

sense, our model supports three leading inventory models at firm/industry level 

analyses: cost shock, production smoothing and target inventory models.

In addition, due to the production chain, adjustment of inventories is quite 

slow. When one firm want to replenish its inventories, it must increase its produc

tion. However, such an increase in production must use other firms7 inventories as 

production factors. Hence, the adjustment of inventories is slow in aggregate; if the 

change in intermediate goods price is ignored (i.e., the general equilibrium feed

back through price is ignored), it may seem easy to adjust inventory level quickly; 

but the price of intermediate goods increases wildly, which discourages firms from 

using them.

The most important finding in this chapter is that the stockout constraint and 

production chain generate a low correlation between labour productivity and out

put. The key intuition behind this is the slow adjustment of inventories. When 

a positive shock hits the model economy, firms cannot increase their use of in
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termediate goods because inventories of intermediate goods cannot adjust swiftly 

in aggregate; as a result, intermediate goods price increases. Thus, firms are 

encouraged to substitute their intermediate goods input with more labour input 

(capital cannot adjust as in the standard RBC model). Although the standard 

RBC model predicts the low volatility of working hours, our model yields working 

hours volatile enough to match the data. When output increases, because working 

hours increase considerably, labour productivity (i.e., output/hours) does not in

crease very much. Compared to the standard RBC model, the stockout constraint 

and production chain improve the behaviour of labour without deteriorating other 

properties of the model.
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Appendices for Chapter 2

The fall derivation is shown in the following. The equation numbers indicated in 

the MATLAB codes correspond exactly to the equation numbers in the Appendix. 

We use the word "number" instead of "measure" unless there is a risk of confusion.

2.A  Structure of M -goods Markets

This subsection provides the details of technical assumptions.

2.A .1 A gents D istribute over [0,1] x [0,1] (C  M2)

Unlike the standard monopolistic competition models, we assume that agents dis

tribute over a rectangle rather than over a line segment. Specifically, there is a 

continuum of markets over [0, 1], and there is a continuum of sellers distributed 

over [0,1] in each market. In different markets, different varieties (types) of goods 

are traded; in each market, all sellers sell the same variety of goods (there are 

one-to-one correspondences between markets and varieties of goods).

In a discrete example, there are, say, 1,000 markets and 1,000 sellers in each 

market, yielding a total of 1,000,000 sellers. If all sellers behave as buyers at the 

same time (production chain), then there are 1,000,000 buyers as well. If each 

buyer visits all markets, then 1,000,000 buyers appear in every market.32 Thus, 

each seller in a market meets (on average) 1,000 buyers.33 Note that, though the 

discrete example is often used in the sequel, the formal derivation is based on the

continuum of agents.

32Note that this exposition ignores F-firms. If F-firms are taken into account as buyers, then 
there is a total of 2,000,000 buyers in each market. In the continuous model, the measure of 
sellers (M-firms) is 1 (in R2), and the measure of buyers (M-firms plus F-firms) is 2 (in R2).

33Note that in a continuous setting, this means that each seller meets a positive measure of 
buyers.
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Figure 2.10: An illustration of the market structure. Buyers do not distribute 
evenly over sellers.

2.A .2 Idiosyncratic Shock

Next, we assume that buyers do not distribute evenly in each market. That is, 

some sellers meet many buyers while others meet only a few in every market. The 

uncertainty in the number of buyers is called an idiosyncratic shock. A simple 

example is illustrated in Figure 2.10. It should be clear that the idiosyncratic 

shock causes the mismatch between buyers and sellers in every market.

From the sellers’ viewpoint, if a seller meets more buyers than GoSt/M t6, where 

M \ be the baseline demand (demand per buyer), she faces a stockout; she sells 

all of goods on her shelf but she loses some of her customers due to the stockout. 

Otherwise, she has unsold goods Ut+1 which she carries to the next period. There 

is a key trade-off between stockout and unsold goods. Having too low GoSt leads 

to too high a stockout probability (loss of sales opportunity), but having too high 

GoSt leads to too high a carrying cost of Ut-

In each market, one specific type (variety) of goods are traded. Thus, from 

the buyers’ viewpoint, some buyers, who visit a busy seller in a market, cannot 

buy that specific type of goods; because we assume imperfect substitution among 

varieties, these buyers experience a utility cost.34 Buyers determine taking

34We assume that, once buyers visit a shop, they cannot visit other shops in the same market.
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into account such losses in variety.

U niform  D istribution

We assume that the idiosyncratic demand shock follows a uniform distribution.35 

More specifically, we assume that the potential demand for a seller Mf is the sum 

of the baseline demand Mf (=  demand per buyer) and the idiosyncratic shock e£,36 

where M stands for M-goods.

where v is the parameter that governs the support, and the variance (i/2/ 12) of 

the distribution of ef.

Derivation o f  K ey Equations

The easiest way to understand the following results is by examining Figure 2.11. 

The two panels in the upper half show how to derive the lower right panel; the 

downward sloping lines in the three panels are all identical, and represent potential 

demand M f. If the number of buyers is normalised to one, the area under this line 

(i.e., (A) and (B)) is equal to baseline demand Mf.

In the lower left panel, the downward sloping fine Mf shows how buyers dis

tribute over sellers. Each point on the r-axis represents a seller, and the height 

of the downward sloping fine at each point on the r-axis shows the number of 

buyers who meet that seller. Note that our assumptions about CRS and price 

posting (see below) guarantee that all sellers hold the same level of GoStf which 

is, thus, represented by the horizontal fine in the lower left panel. Hence, area

This assumption is necessary to make the idiosyncratic shock meaningful; otherwise, all buyers 
will buy each variety of goods in the end, reducing our M-goods markets to Walrasian markets.

35This assumption is only for computational simplicity. A simple urn-ball analysis concludes 
the degenerate distribution; if buyers visit sellers randomly, all sellers meet an equal number 
(measure) of buyers.

36It could be more natural to assume that e\ is the shock on the number of buyers, so that 
M f — M^(Nb +  e\) where Nb is the average number of buyers. However, it turns out that the 
following computation becomes extremely messy with this specification.
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Figure 2.11: Derivation of the stockout probability and unsold goods.

(A) implies that potential demand M f exceeds GoSt , and thus the area shows 

unsatisfied (potential) demand. From areas (A) and (B),  we can compute the 

probability that, in the market for a type of goods, a buyer can buy that type of 

good: Pr [a buyer can buy a good] =  Qt =  (B ) / ( ( A ) +  (B)).

From the viewpoint of each seller, she does not know in advance where her 

position is on the x-axis in the lower left panel before the realisation of the idio

syncratic shock. Hence, the probability that a seller faces a stockout is represented 

by the line segment between the two arrows in the lower left panel.

Area (C)  implies that GoSt exceeds Mf; such excess goods are carried to 

the next period as unsold goods Ut. However, a portion of today’s production 

(1 — v ) Y tM is not shown in today’s market. Hence, Ut equals the area of (C)  

plus (1 — v) YtM. Also, the area of (B)  shows the aggregate sales St , which equals 

E  [sales of each seller].
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K ey Equations

Therefore, primary school arithmetic yields the following results:

Pr [a seller faces stockout] =  Prt =  — — _}_ I  (2.3a)
is z

4. . f 1 4  0 ^ 0  v ( M ; - G o S t 1 1 2aggregate sales of market =  St =  GoSt -  —-------    >

=  E  [sales of a seller] (2.3b)
i , , v f Ml -  GoSt 11 2 M N , . Munsold goods =  — < — ----------------   > -f (1 — v) Yt

=  Ut+1 (2.3c)

r U u ,1 1 c v f Ml -  GoSt 1Pr [a buyer can buy a good] =  —  < GoSt -  -  < ------ ---------- --

=  Qt (2.3d)

Several comments are in order. First, neither Mf nor e% appears in these ex

pressions, which implies that the idiosyncratic shocks in all markets average out. 

Second, because there is a continuum of markets with a unit measure, Pr[a buyer 

can buy a good] is equal to Qt, the measure (number) of the available varieties for 

each buyer. If goods are considered collectively, a low Q t deteriorates the quality 

of goods due to imperfect substitution among varieties (see below for an intuitive 

example). Third, because there is a continuum of sellers in each market with a 

unit measure, and because the measure of market is unity, E  [sales of a seller] is 

equal to the aggregate sales St. Fourth, regardless of the distribution assumption, 

the following relationship must hold:

Ut+1 =  GoSt +  (1 -  V) YtM -  St, GoSt =  Ut +  vY™

Q t  =  S t / M l

where v  is the portion of today’s output that can be sold in today’s market. Note 

that we assume that only a portion of today’s output can be sold in today’s market. 

Finally, in this connection, the first term of (2.3c) represents the unsold goods that

119



cannot be sold due to the idiosyncratic shock (i.e., the area of (C)), even though 

they are on the shelf, and the second term represents goods that are not on sale 

in today’s market.

2.A .3 M iscellaneous Com m ents for Assum ptions

The idiosyncratic shock is necessary to deal with a kinked constraint; the stockout 

constraint St =  min {GoSt, M f} is not smooth and non-differentiable. However, 

E [S'*] becomes smooth by adding idiosyncratic shock from the viewpoint of each 

agent. This technique to smooth non-smooth constraints by adding shocks is not 

new; it is commonly used in analyses of voting behaviour, and was first used for 

inventory analysis by Kahn (1987). However, this chapter shows a nice interpre

tation: inventories as options to sell (see the next subsection for details).

The large number of agents is necessary for aggregation. In terms of sellers, 

due to the law of large numbers (LLN), aggregate sales equal the expected sales 

(St =  E  [5i]), which is a smooth function. Hence, we can linearise aggregate St. 

In terms of buyers, Qt (the number of available varieties =  probability of facing 

stockout) is also a smooth function, because there are infinitely many varieties 

(LLN).

It is also important to note that we need to confine our focus to the constant 

returns to scale (CRS) for aggregation. Individual M-firms (sellers) have different 

levels of Ut carried from the previous period, while the target level of goods on 

shelf GoSt (= Ut +  vY™) is the same for all M-firms, meaning that Yt varies among 

M-firms. Hence, if production technology is not CRS, it is not possible to aggregate 

individual productions.

Tim ing A ssum ption

There is another assumption; firms cannot use M-goods they purchase today for 

today’s production. This assumption is logically necessary, especially for M-firms, 

because M-firms must produce before M-markets open, while they can use M-goods
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only after M-maxkets close.37

2.A .4 M onopolistic C om petition and Cost o f Losing Vari

eties

Im perfect C om petition

In addition, we assume monopolistic competition & la Dixit and Stiglitz (1977). 

There are two reasons not to assume perfect substitution among varieties. First, 

if goods were perfect substitutes for each other, buyers would not need to visit all 

markets. Second, because perfect substitution implies zero profit, no seller wants 

to hold inventories; sellers earn zero profit from their sales if they can sell their 

inventories, while they suffer from a carrying cost of unsold goods if they cannot.

In our environment, two-stage budgeting with quantity and price indices still 

holds. However, as mentioned above, because the number of available varieties 

fluctuates over time, we need to consider the cost effect of losing varieties.38

The intuition of the utility cost is as follows. Let us consider a familiar example, 

say, ice cream. Suppose a consumer prefers vanilla and chocolate ice creams equally, 

but vanilla and chocolate ice creams are not perfect substitutes for one another. 

Also suppose that their costs are the same. Then, one vanilla and one chocolate give 

higher utility than two vanillas, because they are differentiated from one another. 

However, the costs of vanilla +  vanilla and vanilla +  chocolate are the same. Thus, 

given the level of expenditures, having fewer varieties provides lower utility, and 

vice versa. Or, equivalently, with fewer varieties available, the pecuniary cost of 

achieving a certain level of utility is higher.

37Certainly, it is possible to assume that F-firms (but not M-firms) produce, say, in the second 
half of each period, while M-firms produce in the first half. However, it is a bit cumbersome if 
the timing assumptions differ between F- and M-firms.

38 Interestingly, one of the main motivations of Dixit and Stiglitz Dbdt and Stiglitz (1977) is to 
analyse firms’ entry and exit, explicitly addressing the effect of a changing number of firms (or 
varieties, in our language).
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N um ber o f  Available Varieties

The cost effect of losing varieties is not, in itself, of interest, and quantitatively 

its effect seems very weak under the plausible parameter range. However, it is a 

logical consequence of the combination of Dixit-Stiglitz monopolistic competition 

and stockout. Thus, we show only the key results without derivations. Note that 

they are defined and discussed from the viewpoint of a buyer.

First, Q3t is defined as an indicator function which is 1 if a buyer can buy the 

j-th good, and 0 otherwise. Then, the measure of the available varieties Qt is:

Q t  =  [  Qtdj
Jo

oi = <
1 if j-th  variety is available 

0 otherwise

Due to LLN, Qt has two meanings: the number (measure) of available varieties and 

the probability that a buyer can buy a variety without encountering a stockout. 

Note that Qt is a distinct concept from 1 — Prty the probability that a seller does 

not face a stockout.

Price Index

Next, we define the price index of intermediate goods as:

where 6 is the elasticity of intratemporal substitution among varieties. Several 

comments are in order. First, (a) multiplying by Ql means that unavailable goods 

are not taken into account,39 and (b) dividing by Qt means that the index is the 

"average” of individual prices. Second, the integral is factorised as shown by the

39In general, the price index could be different among buyers, because they have different 
baskets of goods. However, in our model, the price index is common to all buyers because of 
LLN.
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second equality because QJ and P/ axe, in a sense, not correlated; Pf is assumed 

to be fixed before the realisation of the idiosyncratic shock (see below), while Qt 

is not the choice of an agent (determined exogenously by the idiosyncratic shock). 

Third, at optimum all sellers set the same price (i.e. jFJ* =  P/ for Mi,j € [0,1]) 

due to the price posting and CRS production technology. As a result, Pf =  P f  

for Vj G [0,1]. Indeed, many combinations of definitions of price and quantity 

indices are logically consistent. We have chosen our definitions so that P/ =  PtM 

at optimum.

Q uality-A djusted Q uantity Index

In this regard, the definition of the quantity index of M-goods that is consistent 

with our price index is:

M f = f  oi (Mi ¥ )  dj
9 - 1

where K  =  F, M; i.e., M f  is the index of M-goods purchased by F-firms, and 

M f1 is that of M-firms. Again, there are several comments parallel to the price 

index. First, multiplying by Ql means that unavailable goods are not taken into 

account, and (b) not dividing by Qt means that the index is the "sum" of individual 

quantities. Second, at optimum Ml =  MJt for Vi, j  G [0,1], because all prices are 

equal due to symmetricity. Third, it is shown that the baseline demand MJt in 

equations (2.3) is not an index, but instead is measured in terms of a physical 

unit. Thus,

M i =  Q P  MtF +  Q p  M f  (2.4)

since both F- and M-firms use M-goods for their production. Since Qt <  1 and 

0 > 1, Mf > MfF +  MtM. In other words, physical demand is larger than the index. 

This difference becomes larger as Qt becomes smaller. In this connection, M f  

can be interpreted as a quality adjusted quantity index — with fewer varieties, the 

quality of the M-goods index becomes lower. Finally, Qt and hence M f  have the
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same value for any buyer due to LLN.40

Two Stage Budgeting

From these two indices, the expenditure for M-goods of a buyer in sector K  can 

be written as

f  Q iP tM id j^ Q f tp f M *  for K  =  F,M  (2.5)
Jo

where the LHS is the direct definition of expenditures on M-goods, and the RHS 

means that we can restate this definition with price and quantity indices. The
- i  -0

first multiplicative term Q t ~ 1 ( =  Q t Q t =T) m (2-5) represents the cost of losing 

varieties. This is because, under non-perfect substitution, to achieve a certain 

level of quantity index, an increase in quantity in each variety must compensate 

for a loss of varieties (see (2.4)).

2.A .5 Price Posting

An important consequence of non-Walrasian intermediate goods markets is that 

we cannot use the market clearing conditions as a pricing mechanism. Hence, we 

assume the following price posting rule as an alternative. The rule follows a simple 

extensive game, in which first sellers set their price, then buyers are distributed 

among sellers unevenly (idiosyncratic shock), and finally buyers choose optimal 

quantity if they are not subject to a stockout. This extensive game is played in each 

M-market in every period. We assume that (i) in each market, only one identical 

variety of goods are traded (varieties and markets are one-to-one correspondences 

to each other), (ii) in each period, each buyer visits only one seller for each variety 

(i.e., only one visit in each market), and (iii) even if he fails to buy a variety due 

to a stockout, he cannot visit other shops in that market.

40 Although the exact components of available varieties may differ among buyers (say, some 
can buy vanilla+strawberry, while others mint+chocolate), the number (measure) of available 
varieties is the same (2 varieties in this ice cream example).
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0. All the aggregate shocks are revealed.

1. Anticipating the buyers’ action, sellers set their sales price before the reali

sation of the idiosyncratic shock. Once a seller decides her price, she cannot 

change it until the next period (price posting).

2. Idiosyncratic shock is revealed; buyers are distributed among sellers unevenly. 

As a result, some sellers meet many buyers while others meet only a few.

3. At each shop, all buyers stand in a queue, and then buyers, in order, choose 

an optimum amount to buy until goods on shelf rim out. The order in the 

queue is stochastic for buyers; a buyer cannot buy the good if goods on shelf 

run out before his turn. In this case, he simply loses one variety.

A few remarks are in order here. First, due to the assumption that sellers 

set their sales price before observing the idiosyncratic shock, and the assumption 

of constant returns to scale, all sellers choose the same sales price. Second, the 

measure of available goods varies over time but, in each period, the LLN guarantees 

that all buyers enjoy the same measure of available varieties, although the varieties’ 

components differ among agents.

Third, analytically this price posting rule implies that sellers take buyers’ de

mand function as a given, while the buyers take the M-price as a given. Alge

braically, we first obtain the FOC w.r.t the use of M-goods for each M-price, and 

then we obtain the FOC w.r.t. M-price subject to the demand function. Note 

that (i), individual sellers cannot deprive other sellers’ customers in our market 

structure (ii) sellers exploit the slope of the demand curve as monopolists, and (iii) 

the quantity traded is not socially optimal.41

Finally, the resulting pricing is a slightly generalised version of the markup 

formula in the standard DixitsStiglitz monopolistic competition model. Namely, 

there exists 0 such that PtM = 0/ (d — 1̂  Xf1, where X̂ 1 is the marginal cost of

41 This is not only because of the price posting, but also because of externalities (see below).
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producing M-goods and 9 ^ 6 is the elasticity of substitution that is adjusted by 

Qt and Prt .

2.B Analytical Results

This section summarises the analytical results.

2.B.1 Optim isations o f Individual Agents

See the main text.

2.B .2 Equilibrium

There are 26 endogenous variables and 26 equations (excluding the law of motions 

of exogenous shocks), of which four variables and four equations H t-\•>

and M[_x) are merely lagged variables and their definitions due to the adjustment 

costs. With proper initial and terminal conditions, these equations define the 

equilibrium.

Omitting lagged variables and their definition equations, this subsection sum

marises the 22 equations. See Table 2.2 on page 98 for the fist of variables used.

Two equations are derived from the FOCs of the representative household’s 

optimisation.42

* W t  =  ^  =  X" SDFt (2.6a)
t t t  _  dUt/ dLt .

1 “  dUt/dCt ‘

Nine equations come from the FOCs and constraints of M-firms’ optimisation.

42We omit the equation for the real interest rate Rt~i}t

d U t+ i /  d C t+ iPEt -Rt,t+1 = l
dUt/dCt

because SDFt and R t-i,t  move in exactly the same way in the linearised model.
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Et
\ H R^ ± 1
A?

Q Y M ^M ) XMK (  ( i f — <̂ M 1
^  + -  x 7\M ^ t +1

1 “  2XMK ^ i f  i / ~$M^J

1 “  2Xmk  ̂ i f / i f f  -  5m ^
(2.7a)

X m h  \  E t
\ H 

Af ^
< l V - 1h mp J

(  T j M p

2 I -  1 \ \  +  A f
artM
dH t,v

= w t

X m m  i

Et \ H
D-,¥

(2.7b)

+  Et pAt+l v M
P Af ^ +1d M f = Q f ̂ P f

St =  0Prt

(2.7c)

(2.7d)

(Pr+ +  P r-)  A f 

where Pr+

A*
r^ ± ivP%Pr+ +  Et

Prt a o -  1 _  Pr* ------ —— and Pr, =   ------ —-
1 — vP rt 1 — vPrt

(1 -  v) Pr±.lPit+ 1* f+1

+PrZ-i>‘l l i+ c i
(2.7e)

(2.7£)

Km =  Z Mn
. rA/f. 5Mzl
Vt \  VM

v.M =
QjVf 1-QM

/ » £ \
W m J

VM~ aZMmMM \  -^j-

M )
Z,M” A f  ff(Mp

jy-ME-t+l =  (1 -  JM) A f  +  J f  -  W * f  -  SMK tM)2/ K l

Ut+1 = t/t - st + yf

VMVM-1
(2-7g)

(2.7h)

(2.7i)

(2-7J)

Six equations come from the FOCs and the constraints of F-firms.
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Et
\ H  

R ^ ± l J
\ H 1

dY/+1 
dKtF+1

+
(1 -  <SF) + Xfk (  {ltF+1/K tF+1)2 -  4  )  ' 

1 - ZXf k ( Itl J K f +1 - 5f  ) J

1 -  2Xf*t (  J f /A f  -«SF )
(2.8a)

Xf#  < Et X
Af | I H*>

~  1
- 2{ § -

+ =  IF( (2.8b)

E,
Xfm +  Et r X +l

1 Af dM f =  Q t ^ P tM (2 .8c)

y,r =  z ;
Fn <$>F

m

V P -1

+  (1 — <j>F)

V F  Vp~ 1

=

aj?
Z f” A f  HtFp

1—Qp

K  i =  (1 -  « ,) A f  +  i f  -  xFK( l f  ~  6FKf Y/ Kj

(2 .8d)

(2.8e)

(2.8f)

Two equations are the market clearing conditions for labour and F-goods. Be

cause all adjustment costs other than investments are measured in terms of F- 

goods, they are deducted from the market clearing condition for the final goods.

H f =  HtMp +  H f” 

YtF = Ct +  ItM +  I f  -A d jC t

(2.9a)

(2.9b)

. (H fp - H f l 1)2 (M“  -  Af" , ) 2 , ^
AdjCt — Xfh Jp^, H Xmm (2.9c)

{H f*  -  HtMl)2 (M f  -
~t~Xm h  X f m  1 1
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Three equations are derived from the specification of the idiosyncratic shock 

(2.3).

St =  min {Ut +  vYtM,M ?}

,  aos,---r ' 1 , (210a,
Prt =  Pr [a seller faces stockout]

Q f  ̂  MtF +  Q ?  ̂  MtM -  GoSt , 1
+  -  (2.10b)

^  ,  | Q r ^ M r + o r * * ?  -  c o s t _  i  } 2 + (1 _  w) W M e )

In a sense, (2.10) is the alternative to the market clearing condition of (the index 

of) intermediate goods. In the limit i/ —» 0 (i.e., no idiosyncratic shock), if v =  1 

(all products today can be sold in today’s market), (2.10a) and (2.10c) show that 

Ut+i =  0 (no unsold goods) and Ml =  GoSt (M-markets clear), where Mt* =

Q f & M f  +  Q y & M * .

The last two equations show the law of motions of exogenous shocks. In the 

basic version, we use only AR(1) Hicks-neutral technology shocks in intermediate 

and final goods productions.

In Z ^ n =  In ZtM(* +

In Z f "  =  In Z f j \ + g n

where and are iid innovations that follow proper normal distributions.

2.B .3 Inventories as Options to  Sell

This subsection discusses the key trade-off in the stockout model: the FOC with 

respect to unsold goods (2.7e). Assume, for simplicity, that v =  c\ =  0. Then,
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Sales (Realized Demand) Payoff,

45 degree line

Expected Sales

Goods on Shelf Potential Demand

Option Value

Call Option

;e Price Stock Price

45 degree* line

Figure 2.12: Comparison between a financial option and inventories. 

(2.7e) reduces to

E t - 1 SDFt { {pi - a(m) Pr [GoSt K ] =  A SDFtXt1 (2 .11)

where A(M is the marginal cost of producing M-goods (Lagrange multiplier for 

the law of motion of unsold goods), SDFt =  /3‘A^/A is the stochastic discount 

factor, Pi — X^ is the marginal profit margin is the sales price of seller and 

Pr [G'oS't < Mf] = dE  [S'*) /dUt~ i is the stockout probability from the viewpoint 

of individual sellers. This equation states that the carrying cost of one additional 

unit of inventory (RHS) is equal to the expected value of the marginal cost of the 

lost sales opportunity (LHS).

Equivalently, we can treat inventories as financial assets in the asset pricing 

equation,

Et-:
Pi Pr [GoSt < Mf] + A f Pr [GoSt > Mf ]

SDFt \ M 
At-1

= 1 (2.12)

Note that the inside of the curly bracket shows the gross return on having one 

more unit of unsold goods.

It is important to note that the expression Pr[Go5* < Mf] is essentially equiv

alent to an "option delta" in finance;43 having one more unit of inventory means

43 Remember that the delta of a call option is
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having an option to sell one more unit (see Figure 2.12). In this sense, invento

ries have a feature similar to options on financial assets. While an option delta is 

defined as the sensitivity of the option price to a change in the underlying stock 

price in finance, (F£ — Xf1) Pr[GOi% < Z9f] is the sensitivity of profit to a change 

of GoSt .4i

(s +  r r  — k) Oyfr
(Ty/T

where 5 is the log of the underlying stock price today, k is the strike price of the option, r is 
the (constant) risk-free rate, r  is the time to maturity, a  is the volatility and $  is a (standard 
normal) distribution function. (One way to understand the term cr^/r/2 is Jensen’s inequality. 
The Black-Scholes model assumes a log-normal, rather than normal, distribution for stock price.)

We can see the following correspondences: value of holding inventories (value of option), deriv
ative of the expected profit w.r.t. inventories (option delta), and demand change (price change 
of underlying stock) relative to the inventory holdings (strike price). The correspondence of 
(pM _ -g ajwayS j in the case of a call option, because a 1-pound increase in stock price 
trivially leads to a 1-pound increase in payoff, if the stock price at the exercise date is higher 
than the strike price. Remember that, if the potential demand is less than goods on shelf, 1 unit 
of increase in the potential demand leads to an increase in profit by (PtM — Af*).

Related to the importance of the CRS assumption, note that, ignoring the effect of Jensen’s 
inequality, s +  rr represents the expected stock price at the exercise date under the equivalent 
martingale measure (in the risk neutral world, the stock price must grow at the same rate as the 
risk free rate); hence, the option delta can be regarded as the probability that the stock price 
exceeds the strike price under the risk neutral measure. The real world probability measure should 
be changed to the equivalent martingale measure because investors are risk averse. However, 
such a change of measure is not necessary in our model, because, roughly speaking, our CRS 
assumption (with some other technical assumptions) implies that sellers are risk neutral. So we 
can use risk neutral pricing without changing the measure.

44 Certainly, it is potential demand rather than inventories that is stochastic, but we can show 
the following result:

-ffjE  [min {GoSt, M f]  |S2t] =  1 -  [min {GoSt , M f]  |Q,] (2.13)

Since, as mentioned above,

d
h

-^ -E  [min {GoSt, =  Pr [GoSt <  Mf]

E  [min {GoSu M f } |0*] =  Pr [GoSt >  M f]dM f

it is clear that (2.13) is equivalent to

Pr [GoSt <  M f] =  1 — Pr [GoSt >  M f ] (2.14)

Thus, the first derivative of the expected sales w.r.t. unsold goods means one minus a decrease 
in the expected sales due to an increase in the underlying demand. Here, in the equation (2.14) 
"one” means that, without the stockout constraint, one unit of increase in demand would trivially 
lead to one unit of increase in sales, but, due to the second term (<915[min {GoSt, M f} |£lt\/dM } 
=  effect of the probability of stockout), the incremental expected sales must be smaller than they 
would be without the constraint. Therefore, we can restate our claim more precisely; the first 
derivative of sales with respect to inventories means a reduction in the loss of sales opportunity 
by holding one more unit of inventories.
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2.B .4 Search Externalities

There are search externalities in M-maxkets.

On the buyers’ side, each buyer ignores the negative effect of congestion. In

tuitively, if buyers buy more, then available varieties (Qt =  Pr [can buy]) become 

fewer because stockouts arise more often, but infinitesimal buyers ignore such an 

effect. In our model, FOC w.r.t M-goods input is

Et X + i a n y x
A? dMtM

6—1 T)M=  Qt Pi (2.15)

However, if there were, say, a strong union of purchasing managers, which coordi

nated buyers’ decisions, the FOC w.r.t MtM would be

Et P Af dMtM
-1  dQt/Q tr) (2.16)

which implies that the social cost (RHS of (2.16)) is larger than the private cost 

(RHS of (2.15)). The additional term shows the effect of congestion, which infini

tesimal buyers ignore.

On the sellers’ side, if there were a powerful union of sellers which coordinated 

sellers, the FOC w.r.t. unsold goods of intermediate goods producers would be

Et
XHR̂ ± 1
Af

{Pi+x -  Aj+i) PrM
Mt+1 ( dMt+i/Mt j i  9Qt+i/Qt+i (I _  p r  \
ut + 1 âc?t+i/ot+i e-i** ) dUt+i/Ut+i vA ^'t+U

A? - E t
\ H a At+ 1 

P yH At+ 1

but infinitesimal sellers ignore two effects. The first is the cost of losing vari

eties (7^77 aQt+1/^+1 g^t+iM+i — When inventories are higher, the mea

sure of varieties that a buyer can enjoy is larger; hence the effective cost is 

lower, which, in turn, stimulates the demand for M-goods. However, such a 

mechanism is ignored. The second is the squeezing effect due to fewer varieties
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(— Q mentioned in the previous subsection, when

fewer varieties axe available, the (physical unit of) potential demand of one buyer 

becomes larger to achieve a certain level of the quantity index. These two effects 

offset one another; the net effect may be positive or negative.

Nonetheless, some numerical experiments suggest that the overall effect of the 

search externality seems to be very small.
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Chapter 3 

A Solution M ethod for Linear 

Rational Expectation M odels 

under Im perfect Information

This chapter has developed a solution algorithm for linear rational expectation 

models under imperfect information — which, in this chapter, means that some 

decisions are made based on smaller information sets than others.

Perhaps surprisingly, in state space representation, imperfect information does 

not change the coefficients on the past crawling variables. Hence, an imperfect 

model is saddle-path stable (sunspot, explosive), if the corresponding perfect in

formation model is saddle path stable (sunspot, explosive, respectively). Moreover, 

if the minimum information set contains all the information up to time t  — S — 1, 

then the direct effects on the impulse response functions last for only the first S 

periods.

Although imperfect information does not drastically change the qualitative na

ture of a model, it can significantly alter its quantitative properties. This chapter 

demonstrates, as an example, that adding imperfect information to the RBC model 

remarkably improves the correlation between labour productivity and output.
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3.1 Introduction

This chapter presents a solution algorithm for linear rational expectation models 

under imperfect information. "Imperfect information" in this chapter signifies that 

some decisions may be made before observing some shocks, while others may be 

made after observing them. For example, we can consider a variant of the RBC 

model, in which labour supply is decided before observing today’s productivity 

shock. In this variant, apart from the information structure (i.e., the FOC with 

respect to labour supply has an expectation operator), the equations that define 

the equilibrium are the same as in the standard RBC model.

Imperfect information is an important consideration for several reasons. First, 

imperfect information plays an important role in many important classes of mod

els, such as the sticky information model of Mankiw and Reis (2001). Second, 

researchers often do not know a priori what information is available when each 

decision is made; hence, they may want to estimate the information structure by 

parameterising it, or they may want to experiment on a model under several pat

terns of information structure. It is easy to implement such robustness checks with 

the algorithm; once structural equations are obtained, then the additional input 

to the algorithm is only the information structure in a model. Third, the obtained 

numerical result may not be robust for a small change in information structure. 

Indeed, imperfect information may significantly alter the second moments and the 

shapes of impulse response functions.

This chapter offers an easy-to-use MATLAB code to solve a general class of 

linear models under imperfect information.1 The algorithm provides the solution

1The set of MATLAB codes is available upon request: k.shibayama@kent.ac.uk
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of a model in the form of

Atfc+l — H.Kt +

4>t =  FKt +  G?'s

^  =  ( C  • • £ - s  ) T

where and </>t are the vectors of crawling and jump variables, respectively, and 

is the vector of innovations at time t  — s, for 5 =  0, • • • , S, where S  is such 

that the minimum information set in the model includes all information up to time 

t  — S — 1. The superscript T  indicates transposition, and hence £T>5 is the vertical 

concatenation of {£r-s}f=0* J-> F  and G are the solution matrices provided by

the algorithm. The algorithm is an extension of the QZ method by Sims (2002).

The most important breakthrough made by this chapter is its choice of state 

variables. The state variables in this solution are and Imperfect information 

requires the expansion of the state space, but this can be done either by expanding 

the innovation vector or by expanding the set of crawling variables (Note that 

the representation of state space is not necessarily unique). Our choice of state 

variables works intuitively because, if past innovations are recorded, we can recover 

the past crawling variables and hence recover the information available in past 

periods.2

By keeping the number of crawling variables unchanged, it can be shown that 

the dynamic parts of the solution (i.e., H  and F  matrices) are the same as in the 

corresponding perfect information model. Thus, it is clear that if the corresponding 

perfect model is saddle-path stable (sunspot, explosive), then an imperfect infor

mation model is also saddle-path stable (sunspot, explosive, respectively). That is 

to say, the information structure does not alter the dynamic stability property.

Moreover, invariant H  and F  matrices imply that the direct effects of imper

fect information on impulse response functions last for only S  after an impulse, if

2 Hence, even though some decisions are made without observing for example, economic 
models can be formulated as in (3.2).
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the minimum information set at time t in a model has all the information up to 

time t — S — 1. In subsequent periods, the impulse response functions follow es

sentially the same process as those in the perfect information counterpart — more 

specifically, if, S  period after an impulse, the values of the crawling variables are 

k,s , then the following impulse response functions are exactly the same as those 

of the perfect information counterpart that starts with Ks and zero innovations. 

One such example can be found in Dupor and Tsuruga (2005), who argue that 

the hump-shaped impulse response functions found in Mankiw and Reis (2001) 

critically hinge on the assumption of the Calvo style information updating; some 

agents, though their population decreases over time, cannot renew their infor

mation forever. By instead constructing the Taylor style staggered information 

renewal, Dupor and Tsuruga (2005) show that impulse response functions jump to 

zero right after the last cohort renews its information set.

There are, at least allegedly, two existing treatments of imperfect information.3 

The first remedy for imperfect information is to define the dummy variables. For 

example, consider a variant of the standard RBC model, in which labour supply 

Lt is determined without observing today’s innovations. Then, the optimal labour 

supply is determined by

0 =  E t_-1 [7]L t +  aCt - W t} (3.1)

3 There axe three types of methods for perfect information models.

1. King and Watson’s method (1998 and 2002) (see also Woodford (undated)) implements a 
two-stage substitution. First, non-dynamic jump variables axe substituted out, and then 
dynamic jump variables axe substituted out from the system of equations.

2. In the QZ method by Sims (2002) (see also Klein (2000)), the QZ decomposition is ap
plied to matrices on endogenous variables. Recognising that (1) roots that correspond to 
non-dynamic jump variables Eire infinite, and (2) roots that correspond to dynamic jump 
variables are larger than one in absolute terms, the transversality conditions (TVCs) elim
inate both types of jump variables at once.

3. The method of undetermined coefficients by Uhlig (1999) (see also Christiano (1998)) 
substitutes a guess solution into the given system of equations; the resulting matrix poly
nomial is solved directly. In principle, this method does not require that given equations 
are first-order difference equations. Higher order matrix polynomials can be numerically 
solved (see Appendix).
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where Ct and Wt are consumption and wage at time t, rj and a are parameters 

provided by the theory, and Et_ i [ ] is the expectation operator with all information 

up to time t — 1. Define dummy variable L* such that

0 =  Et [t,L '1+1 + aCt+1 -  Wt+1]

Lt+i =  L\

In this method, having additional crawling variable Lu the set of crawling variables 

is expanded. The problem with this method is that it cannot solve the model 

if some endogenous variables are determined before observing some (not all) of 

today’s innovations but after observing the others.

The other possibility is a modification of the method of undetermined coef

ficients. According to Christiano (1998), his version of method of undetermined 

coefficients, like ours, can deal with models in which some endogenous variables 

are determined before observing some (not all) of today’s innovations are observed 

but after observing the others. The most salient difference between his method 

and ours is in the specification of information structure; Christiano (1998) requires 

a user to provide only one matrix R  that specifies which innovations are to be 

included in the information set of each expectation operator. Roughly speaking, 

matrix R  relates equations to observable innovations. In contrast, in the algorithm 

developed in this chapter, a researcher must specify two matrices: one relates in

novations to equations (like Christiano (1998)), and the other relates innovations 

to variables. The difference is crucial. To understand this, consider the above 

example (3.1). It is clear that a researcher must specify the information set of 

the expectation operator in (3.1). However, in a given information set, there are 

generically three possibilities, namely that (a) the representative household fixes 

labour supply before observing some of today’s innovations, (b) it determines wage 

before innovations (sticky wage), or (c) it decides consumption before innovations. 

Hence, one more matrix is necessary in our algorithm to specify which of Ct, Wt or
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Ht is chosen while not having full information. In general, the quantitative behav

iour of a model is completely different, depending on which variables are assumed 

to be decided before observing some information. Indeed, in the following section, 

it is shown that the difference between (a) and (b) is very crucial.

The plan of this chapter is as follows. In Section 3.2, we define the problem 

and derive the solution, and show two key observations. First, if the A;-th time t 

variable yk,t is determined without observing the i-th time t — s innovations 

then yk.t cannot respond to given Kt-s- Second, if the expectation operator 

in the j-th equation has an information set that includes £ijt_8 cannot be the 

source of the expectation error in the j-th equation. It turns out that these two 

restrictions are enough to determine the unique solution coefficients. In Section 

3.3, we discuss the assumptions that are necessary for guaranteeing the existence of 

a solution. Each of them has some economic meaning, and the existence condition 

is slightly tighter under imperfect information than under perfect information. In 

Section 3.4, the main features of the solution of imperfect information models are 

briefly discussed. Most of them are direct consequences of the invariant H  and 

F matrices. In Section 3.5, we demonstrate the effects of imperfect information 

on the otherwise standard RBC model as an example. Section 3.6 concludes the 

discussion.

3.2 Derivation of the Solution

Essentially, our algorithm is an extension of the QZ method used in Sims (2002). 

Our problem is to obtain the state space representation of a solution that satisfies 

two key zero restrictions. For the details of matrix notation, see the Appendix.

3.2.1 D efinition o f th e Problem

The inputs and outputs of the algorithm are defined.
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G iven M odels

Following Sims (2002), we formulate the linear rational models with expectation 

errors as follows.

0 — Ayt+1 +  Byt +  C£t +  D£t+1 +  E£t,s (3.2)

where

E = Eq Ei

Eo,M l

Es • • E s

E q,iN Es,n E s,in

E q,m N Es,M l  '  ' * E s,m n

(  t  \
(  \

yt =
Kt

, ? 's  =
:

\  ** > i t s )

U  . . .  &s,lNEs,i

Ea5 - 1 ,  M l E s ,m n

yt is the vector of all endogenous variables, in which nt is the vector of crawling 

variables and 4>t is that of jump variables. Stock variables are all recorded at the 

beginning of each period. M  is the number of equations, which is equal to the 

number of endogenous variables, N  is the number of innovations, and S  is such 

that the minimum information set includes £t_5_i.

£t_s is a column vector of iid innovations at time t — s. Limiting to iid is 

not restrictive since we can add the law of motions of serially correlated shocks to 

the system of equations and treat the shocks themselves as crawling variables.4.

A, B and C are proper coefficient matrices, and they are provided by an eco

nomic model. D  and E  represent the expectation errors. D  is non-zero even for 

perfect information models, because of dynamic jump variables (e.g., expectation 

error in the consumption Euler equation due to consumption at time t -hi) .  An

lSee Woodford (undated): this technique simplifies the algebra and computation significantly.

140



economic theory must specify the positions of zero elements in D and E,5 while

the values of non-zero elements are computed by the algorithm. £t_a can be the

source of expectation errors because some endogenous variables are decided with

out observing it.

Goal o f th e A lgorithm

Our objective is to obtain the state space representation of (3.2).

/tj-j-i =  Hfct +  (3.3a)

4>t =  Fnt +  GC's (3.3b)

where

J  ee Jo J] Ja Js

Jo.ll * * • Jo,IN J Js,11 • * * Js,IN

Jq,mki ■ •' Jq,mkn Js,mki • • • Js,mkn Js,mki * • * Js,m kn

G =

Go,ii • ■ • Go ,uv G8f ii • • • GSjin Gs, n Gs,in

Go,M01 * • * Gq̂m^N Gŝm# 1 • • • Gŝ MfiN Gs,M$1 ' ' * Gs,M̂ N

3.2.2 Two K ey Observations

This subsection shows two key zero restrictions. The algorithm seeks the solution 

that satisfies them.
5 Exactly speaking, a researcher does not need to specify the zero elements in D. Instead, 

the number of crawling variables must be specified. Given construction of yt =  [k[  <$]t , the 
algorithm determines the positions of zero elements in D  (Only dynamic jump variables can be 
the sources of expectation errors D ).
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R epeated  Substitutions

To obtain the representation of «*+1 and (j>t as functions of K ts  and £t_r for 

r  =  (),■■• , 2 5 — 1, repeat the substitution of the vertically concatenated guess 

solution (3.3) into itself. Defining H ~ [HT FT]T,

Kt+i

<f>t
=  Hut +  re -s =  h (  HsKt-S +  E L i Hk-'JZt~k’s )  +  f f

= HHsKt-s + (r0ft_0 + r h  1- r,sft_s)

+H + H 1 (Jo£t-2  +  *A£i-3 “I Js€t-2-s)  "I-----

 ̂ (Jo£t_s  +  J ltt-S -1 “*-------•" Js€ t-s-s)  j

=  H H SKt- s  +  Ifoft +  H H H h

4- terms with f 4_T for r > 5  4-1 (3.4)

where T = rn ••• r. rs with r. = j t  o r , and

n0 = To —

n x =  r i +

n2 = r2 4-

ifs =  r«4-

n 5 r* +

Jo

Go

H

F

H

F

H

F

H

F

Ji +  HJ0 

Gx+FJo

(J1F H J0) =

{ T i l l  Hs~'~kJk)  =

Jt +  H ^  +  HJo)

G2 + F {J l +  HJQ)

J. +  B Y S 2 > B - 1~kJ*
G, +  F Y ,H 'o H ^ -kJk

Js +  H T t l l H s- ' - kJk 

Gs +  F T k ll  Hs~l~kJk
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In the recursive representation,

Jon0 = r0 =
Go

ns = rs +  HJls-1  for s =  1, • • • , s

where
H  0

H = (3.6)
F  0

Intuitively, the j ,  k-th element of IIS is the effect of (the k-th innovation at 

time t — s) on yjit (the j-th. endogenous variable at time t). Thus, given & ts ,  

which is defined as the j, £;-th element of IIS, is zero if y t̂ is determined without 

observing

In the matrix representation

r  =  MrnII (3.7)

where

T

r (3.8a)

T

n (3.8b)

I 0

- H  I
Mm (3.8c)

0 - H  I

Mrn is clearly invertible, and plays a key role in the following.

Zero R estrictions

Throughout this chapter, we exploit the following two observations.
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1. If the k-th set of variables yk,t does not observe the z-th set of time t — s 

innovations given Kt-s and ft_T for r =  s +  1, • • •, dyk,t/d£t_a =

H s,ki =  0. Simply put, no decision can respond to unobserved innovations.

2. If the information set of the expectation operator in the j-th equation in

cludes the z-th time t — s innovation & t_a, then the realization of the j-th  

equation must hold for any realisation of the z-th innovation. The expecta

tion error in each expectation operator occurs only due to innovations that 

are not included in its information sets. Thus, Eaji =  0.

For example, suppose that labour supply Lt (fc-th variable, ykyt) is decided 

on before observing today’s technology shock (z-th shock, t), but after today’s 

preference shock (I-th shock, t), both of which are iid. If the FOC with respect 

to Lt is the j-th equation,

IIo,ki =  0 (£i t_0 does not affect yKt)

Eqji =  0 (fZjt_o does not cause expectation error in j-th eqn)

Roughly speaking, Eqji =  0 means that if the expectation operator of the j-th

equation is eliminated from the j-th equation, it still holds in terms of z. It is

the duty of a user to specify the positions of these zero elements in II and E.

3.2.3 Sketch o f Derivation and K ey Equations for Compu

tation

The fully detailed derivation is provided in the Appendix. This subsection briefly 

describes the skeleton of the derivation and lists the minimum results necessary 

for computation.
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QZ D ecom position

In order to introduce notations, this subsection briefly reviews the QZ decomposi

tion (or generalised Schur decomposition). For matrices A and B  (e (Cnxn), there 

exist unitary matrices Q and Z  such that

q ha z  =  a A 

q hb z  =  u B

where Ua and Qb are both upper triangular matrices, and superscript H indicates 

a conjugate transpose. Any unitary matrix U satisfies UHU — UUH =  I. Let â k 

and bkk be the k- th diagonal elements in ft a and fi#, respectively. Assuming that 

akk and bkk are not zero at the same time, then Ak =  bkk/^kk for k — 1, • • • , n are 

the generalised eigenvalues of the matrix pencil B  — A^A.6

The basic idea is that by applying the QZ decomposition to (3.2) as in Sims 

(2002), the algorithm separates unstable roots from stable roots.

0 = Ayt+1 +  Byt +  C£t +  D£t+1 +  E^t,s 

=  n Az BVM + a BZHyt +  QHC(,t +  QHD£t+1 +  q he ^ s

I \
St+ 1  I

+
Io fid.

+
o f O f

+ E(.t+i +
O f O f

Of
Of

E t t,S

where

=  ZH

By using TVCs, the expected values of all unstable roots Ut+i are set to be equal

6 See Appendix for a brief review of the relationship between the system of first-order difference 
equations and generalised eigenvalues.
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to zero (Remember that all innovations are assumed to be iid).7

N otations for th e O utputs o f QZ D ecom position

For later use, we define submatrices as follows

III

is

1

cs
a

PS
t|

i

_ zB

1

ij
t

tsj

,z  = Zns Zku
, Q H =

1-----------
Hi «
Q

*
•

z« Z * zS* Z(j>s t 1 i

«
o

 

1__
_

(3.9a)

(3.9b)

where subscripts u and s imply unstable and stable roots, respectively. Note that 

and QBU are both invertible by construction.

Additionally, we define the four matrices as

III

G SlA88 QA8U , nB =
Q B88 nB8U

0 nAuu 0 nBa“uu

AaSK =  QfaZB + (3.10a)
<

=  a t z “ + (3.10b)

a b3K =  o Z z g  +  aZ zZ , (3.10c)

\ B8<f) =  n g z B +  sifuz ^ (3.10d)

Note that all the matrices defined here are obtained from the outputs of the 

QZ decomposition.

M atrix Subscripts

We introduce the following notation rule for subscripts on matrices. For a matrix

A,

• A_x is columns £ of a matrix A,

• AXm is rows £ of a matrix A ,

7If the expectations of ut+i must be zero under perfect information, they must be also zero 
under imperfect information. This can be shown by simply applying the iterated linear projection.
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• v4-.x is the columns remaining after the elimination of columns x, and

•  A~,x_ is the rows remaining after the elimination of rows x ,

where x is the name of a set of columns or rows. This notation makes certain 

matrix operations extremely simple. See the Appendix for further details.

Zero R estrictions

As a result of manipulating the matrix equations, it is shown that

0 — II +  Mjie (E  +  C) 

Afti e  = (AfyrMrn) \Q

(3.11)

(3.12)

where

r =

C =

MyY =

£  =

V r*-1 )

,E  =

Eq

Es- i

$  A0A

, Q =
Q

o

0

$  A0-4 

$

Af,
O  B 7 11UU U(j>

Q

,A oa=
o Af,

o n£.z$

(3.13a)

(3.13b)

(3.13c)

(3.13d)

and X \F  =  X  1K. Bear in mind that, while M„r is computable solely from the 

outputs of the QZ decomposition, Mm and Mue are obtained only after finding 

H  and F.
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Given Mm, E  and II are computed column by column (i.e., innovation by 

innovation). It is important to remember that some elements in II and E  are zero 

due to the two zero restrictions. Thus, for the i-th column (or equivalently for the 

i-th innovation),

0 = (= o) +  MiTTE Eji

0

+

\ \  0 J 0 / /

(3.14)

where M in subscripts is the number of equations and hence M  (S + 1 ) is the 

number of rows in II.

From the k-th set of equations in (3.14)

0 = Mue E^ + Mue Cji + Mue
- kj - kj -

C -* (3.15)
k->j

which gives the values of the non-zero elements of E. From the remaining equations 

in (3.14),

M,

Mue

TIE

ikj

Cji + M,

MlTIE \ Mi

(3.16)
-‘k-'j

kj
TIE <ji • '-'ji

k-ij

which gives the non-zero elements of II.

It is assumed that [Mue]^ is invertible. In general, however, it is not necessarily 

true, and the economic meaning of its invertibility is discussed later.

Solution

The solution algorithm computes key matrices sequentially. The basic structure is 

as follows:
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1. Obtain submatrices form the outputs of the QZ decomposition (3.9 and 3.10).

2. Obtain H  and F  from (3.17).

3. Obtain Mm, Myr and Mue from (3.8c, 3.13c and 3.12).

4. Obtain E  and II from (3.18 and 3.19).

5. Obtain G and J  from (3.20).

H and F: As in (Sims (2002)), it turns out that the H and F matrices are

derived independently from the G and J  matrices, based on the coefficient on K,t- s  

in (3.4) (see the Appendix for details). Therefore, they are exactly the same as in 

perfect information models.

F  =

H  = - z „  (n£\nJL) /£«
(3.17a)

(3.17b)

E  and II: From (3.15) and (3.16), the non-zero elements of E  and II are

Eji =  -

ILm

M in e

Mu e

Mue

\C  ̂

k->j
(3.18)

(3.19)

where Mue can be obtained from (3.8c) and (3.13) with the solution of H  and 

F. Note that H and F  can be computed without referring E, II or Mue- Since 

[MuE\kj is assumed to be invertible, [Mn^] is also invertible (see the Appendix 

for the proof).
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J  and  G: From the definition of T (3.8a),

r =

Jo

Go

Js

Gs

=  MrnII (3.20)

Note that, with H  and F  matrices, Mm  are recovered from (3.8c).

D: From a given economic model (3.2) it is obvious that

D =  —A
0

Gq

3.3 Assum ptions

In this section, we discuss three assumptions. Assumptions 1 and 2 in the follow

ing are the same as in the solution method for perfect information models, while 

assumption 3 is specific to imperfect information models. This subsection omits 

discussion about the Blanchard-Kahn condition, which is automatically satisfied 

by assumption 1.

3.3.1 A ssum ption 1: is Invertible

Klein (2000) shows that this assumption is a generalisation of the condition de

rived in Blanchard and Kahn (1980). Boyd and Dotsey (1990) makes it clear 

that the Blanchard-Kahn condition, which counts and compares the numbers of 

unstable roots and jump variables, is a necessary but not sufficient condition for 

the existence of a unique solution; they provide a counter-example that satisfies 

the Blanchard-Kahn counting condition but does not have a stable solution. Intu

itively, an invertible means that we can always find the values of jump variables
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such that the expectation of Ut+i is a zero vector in any states (TVCs). Remember 

that maps jump variables to unstable roots, and its inverse maps unstable 

roots to jump variables. See King and Watson (1995) for an intuitive exposition.

The existence of the right inverse of entails the existence of jump variables,

but the non-existence of its left inverse implies non-uniqueness of jump variables. 

See Uhlig (2000) for a treatment of non-uniqueness.

3.3.2 Assum ption 2: akk and bkk are N ot Zero at th e  Sam e 

Tim e

If akk and bkk are zero at the same time, it implies that there exist row vectors X  

such that 0 =  X£  (One such example is the fc-th row of Q). The existence of such 

row vectors generically implies either of the following:

(a) If X£  is indeed zero, then some equations are not linearly independent of 

the others. Essentially, there are fewer equations than endogenous variables. At 

least one equation can be expressed as a linear combination of others, and such a 

linear combination is X .

(b) If X£  is non-zero, clearly there is an internal contradiction. One such ex

ample is a two-equation, two-variable non-dynamic model with no state variables:

4>\,t =  <*<fe,£ +  f t

$1 ,t =  <*02,£ +  +  "Ht

Obviously, both do not hold at the same time for non-zero rjt . Since the QZ de

composition is merely a linear transformation, this implies that there is an internal 

inconsistency in the original system of equations (3.2).
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3.3.3 Assum ption 3: [Mn#]^ is Invertible

This condition is specific to imperfect information models, though it is analogous 

to the equation (40) in Sims (2002).8 Intuitively, if it is not invertible, then the 

information structure is not consistent. Note that the inverse of [Mne]^, if it exists, 

maps the j-th set of expectation errors to the k-th set of innovations to which some 

endogenous variables cannot respond. Hence, if the inverse of [Mns]kj exists, then 

expectation errors can equate both sides of the equations for any realisation of 

innovations.

A non-invertible [Mn#]^ appears in the following example. Suppose that all 

production factors and all demand components are decided before observing to

day’s technology shock. In this case, output varies depending on the realisation of 

technology, while demand cannot respond to it. Thus, the goods market does not 

clear at any price. One important lesson from this is that a researcher must con

struct consistent models; an arbitrarily specified information structure may have 

internal inconsistencies.

3.4 Properties o f the Solution

The solutions computed by the algorithm have the following properties. Properties 

1 and 2 are simply the bases of the algorithm and properties 3 and 4 are the direct 

consequences of invariant H and F.

1. If a variable y^t is decided without observing an innovation then 

does not affect y^t (be., dxt/d£i t_ 8 =  0) given crawling variables fy-s-

2. If £; t is included in the information set of expectation operators in the j-th  

equation, then £i t cannot be the source of the expected error in the j-th  

equation.

8 Note, however, that Sims’ condition is related to time t  +  1 expectation errors, while our 
discussion in the following is related to time r  expectation errors (r <t ) .
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3. The dynamic parts of the solution (H  and F) are the same as in the per

fect information models. Thus, imperfect information does not change the 

numbers of stable and unstable roots. As a consequence, if a model under 

imperfect information exhibits saddle-path stability, for example, then the 

corresponding model under perfect information must also exhibit saddle-path 

stability.

4. Invariant dynamic parts also imply that the direct effects of imperfect infor

mation last only S  period after an impulse. The direct effects are caused by 

G and J  matrices. In subsequent periods, they essentially follow the same 

dynamics as under perfect information. More specifically, let kt+s be the val

ues of crawling variables S  period after an impulse. Then subsequent impulse 

response functions are exactly the same as those under perfect information 

starting with kt+s with setting all innovations equal to zero.

Properties 3 and 4 show that qualitatively an imperfect information model 

inherits key properties from the corresponding perfect information model. As 

shown in the next section, however, imperfect information can have quantitatively 

significant effects.

There are several comments on information sets.

• In our representation of solutions, from the viewpoint of researchers, the set of 

state variables at time t  is {/c*, £t, £t_ly • • •, f t_s} (today’s crawling variables 

and current and past innovations). Roughly speaking, crawling variables 

correspond to state variables under perfect information. Past innovations 

are necessary for describing a model economy, because they recover past 

information sets.

• Similarly, from the viewpoint of economic agents in a model, any information 

set must be a subset of the state variables (it does not include jump variables). 

The maximum possible information set at time t  is the same as the state 

variables.
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Related to the latter, rationality imposes the following two restrictions.

• First, any information set must be internally consistent; i.e., agents in a 

model always infer some state variables from other state variables, if possible. 

Essentially, rationality requires that any information structure is consistent 

with the solution (3.3a).

For example, information set «*-2> •••,£*, fi-i» * ■ ■} (without «*) is

not allowed because rational economic agents must infer k* from i and £t,s. 

Similarly, {**, «*_!,- • ■, f t, &_2, ( t- 3> (without f t_i) is not acceptable, 

because economic agents must know ( t_x. On the other hand, the algorithm 

can deal with information set 2, «*-3, • • •, (t-i> €t-3> * *'}» though it is 

difficult to interpret economically; agents exploit the information about 

temporarily, but they systematically forget it.

In terms of our computer codes, if an information set only includes {£t_8, 

€t-s-1> ( t-s -2> * ■ * }»the algorithm deems that that information set includes 

Kts+i but not {/ct, ■ • ■, Kf_*+2}.

• Second, the algorithm does not allow for inference from jump variables; oth

erwise, imperfect information models reduce to the corresponding perfect 

information models in most cases, because rational economic agents infer 

most hidden information from the solution (3.3b). For example, if house

holds observe all production factors and output, they can correctly infer 

today’s productivity shock from production function.

Though these restrictions may seem to be exceedingly restrictive, our algorithm 

is still applicable to the models, in which agents make future decisions in the current 

period. Such a class of models includes sticky price and sticky information models, 

for example.

The following points are also important.

•  The algorithm cannot deal with parameter uncertainty.
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• The algorithm can easily deal with noisy information models. Suppose an 

AR(1) shock process At follows

In At+1 =  p In At +  +  yffj£F (3.21)

where fj6 and Q° are the observable and unobservable components of inno

vation, respectively, and (1 — 77) /rj is the signal to noise ratio. This technique 

allows us to parameterise the extent of imperfect information.

3.5 An Example

3.5.1 Standard RBC  M odel

To demonstrate the quantitative effects of imperfect information, we consider the 

standard RBC model under imperfect information, focussing on impulse response 

functions and second moments.

The main economic motivation is to address an overly high Corr (Yt — Ht, Yt) 

in the standard RBC model. Under the plausible parameter range, the standard 

RBC model predicts an almost perfect correlation between labour productivity 

Yt — Ht and output Yti but in the data the correlation is only slightly positive.

Hence, we modify the standard RBC model by adding imperfect information 

related to the labour market. The relevant equations are

0 =  b H t- W t- X t  (3.22a)

0 =  Yt — Ht — Wt (3.22b)

where Yt, Ht , Wt, At are output, working hours, wage and the marginal utility 

of consumption, respectively. All endogenous variables are measured as deviations 

from their steady state values in percentage terms, b is a constant, which represents 

(a multiple of) the elasticity of marginal disutility of labour. The first equation is
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of the representative household (HH) — the FOC with respect to labour supply —, 

while the second is of firms — it equates the marginal product of labour {Yt — Ht) to 

wage.9 The set of state variables under perfect information is {K tyAt,£t}, where 

Kt and At are capital and technology at the beginning of time t> respectively, 

and represents the innovation on technology. Note that At is regarded as an 

endogenous crawling variable, and there is only one iid exogenous variable £t. That 

is to say, At is treated as a stock variable.

Assuming that today’s innovation affects today’s output,

Yt =  At+1K?H}~a 

lnAt+1 =  +

where p is a parameter that governs the persistence of technology shock.

Case I: H H  D ecides Labour Supply before O bserving Innovations

In this case (3.22a) does not hold. Instead, the labour supply decision is governed 

by

0 =  E b H t - W t -  At I {.Kt-j, A - i , £ t - i } “ s+1

Since Ht cannot react to past innovations, for s =  0,1, • • • ,5,

dHt
= 0 given K t-s , A - s

Figure 3.1 shows the impulse response functions where 5  =  5, which means 

that the household decides its labour supply five quarters in advance.

There are several points worth noting here:

9 Note that since all endogenous variables are represented as log-deviations from their steady 
state, Yt — Ht  is the deviation of "output divided by labour hour" (i.e., labour productivity). The 
Cobb-Douglas production function implies that the marginal product of labour is (1 — a)  times 
labour productivity, which means that the percent change of labour productivity is exactly the 
same as that of the marginal product of labour. In other words, in the Cobb-Douglas production 
function, Y t —Ht  represents both the percent deviations of labour productivity and marginal 
product of labour.
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Figure 3.1: Impulse response functions to a positive technology innovation of the 
standard RBC model, in which labour supply is determined five periods in advance.

• Woking hours do not move for the first S  periods. That is, dHt/d£t_s =  0 

for s =  0 ,1, • • • ,S .

•  Labour productivity (Yt — Ht) and investment show unusual movements for 

the first S  periods. However, after 5 + 1  periods, all endogenous variables 

follow (linear combinations of) AR(1) processes. This is one example of the 

proposition that the direct effect of imperfect information lasts only S  periods 

after an impulse.

•  C orr  (Yt — Hu Yt ) is lower than under perfect information, but only slightly 

(exact numbers are omitted).

Case II: Firms Decide Labour Demand before Observing Innovations

In this case, (3.22b) does not hold. Instead, the labour demand decision is governed 

by

0 =  E Yt - H t - W t I A ,- j ,  St-j}™, 
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Since Ht cannot react to the innovations, for s =  0,1, • • • ,5 ,

dH
-  =  0 given Kt_s , A - s  

O t̂-s

The results are not very interesting in terms of economics.

• The impulse response functions are almost the same as in the Case I, except 

for wage (hence, the figure is omitted).

• Carr (Yt — Hu Yt) is lower than under perfect information, but only slightly.

However, the important message in this experiment lies in the computation. 

To find a solution, it is not enough to specify which endogenous variables are 

determined with imperfect information; a researcher must also specify which in

formation sets are imperfect. This is evident that the results of Cases I and II are 

not the same.

Case III: H H  D ecides Wage before Observing Innovations but Accom 

m odates Labour D em and

This case can be regarded as a version of the sticky wage model. The represen

tative household fixes wage before observing innovations, and it commits itself to 

supplying labour to accommodate labour demand.

In this case, (3.22a) does not hold. Instead, the labour supply decision is 

governed by

0 =  E j = S + 1

Since Wt cannot react to the innovations, for s =  0,1, * • • ,5,

dWt
d(t-

The results are very interesting:

=  0 given K t_Sy A - s
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Table 3.1: Comparison between perfect and imperfect information RBC models. 
 Output Hours Consumption Inrestment Corr(Output,Outpu/Hours)

Data
s.d. 1.72 1.59 0.86 8.24 0.41

relative 1.00 0.92 0.50 4.79

Standard RBC
s.d. 1.35 0.47 0.33 5.95 0.98

relative 1.00 0.35 0.24 4.41
Imperfect information (RBC with Prefixed Wage)

s.d. 2.15 2.10 0.53 7.92 0.25
relative 1.00 0.98 0.25 3.69
Note: Figures of "Data" and "Standard RBC" are cited from Cooley and Prescott (1995).

• The volatility of labour is much higher.

• Carr (Yt — Ht,Yt) is much lower than under perfect information.

• Given the standard deviation of the innovation, both output and labour are 

more volatile.

• The behaviours of most variables other than labour and labour productivity 

do not change significantly.

The intuition behind these results is quite simple. Without imperfect infor

mation, when there is a positive productivity innovation, wage increases, which 

discourages firms from hiring more labour. As a result, labour does not increase 

by very much. Indeed, another failure of the standard RBC model is that it pre

dicts too low labour volatility relative to output volatility. During a boom both 

Yt and Ht increase, while Yt — Ht increases because the increase in Ht is not large 

enough. Consequently, both Yt and Yt — Ht increase in a boom, which is the (one 

possible) mechanism behind a high Carr (Yt — Hty Yt) in the standard RBC model.

However, if wage is determined without seeing a positive innovation, it does 

not change quickly; hence, firms are not discouraged from using more labour. 

Consequently, in a boom both Yt and Ht increase, while Yt — Ht does not increase 

very much because the increase in Ht is large enough. Hence, the model predicts
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a low Carr (Yt — Ht,Y t ). Indeed, in the otherwise standard RBC model with one- 

period wage stickiness, the predicted relative volatility of labour almost matches 

the data. Under the standard parameter set, C a rr (Y t — Htl Yt) is negative for 

S >  2.

Table 3.1 is the summary table of the selected second moments for one-period 

wage stickiness (S  =  1). One-period wage stickiness improves the labour volatility 

and correlation between labour productivity and output, while it slightly deterio

rates the model performance in terms of the relative volatility of investment.

2.0 T2.0 —  Sticky W age: Labor 

—  Pefect Info: Labor 

Perfect Into: Y/H 

—*♦— Sticky W age: Y/H

Sticky W age Capital

 Pefect Info Capital 18-1
1 4  U  * ‘X- *Pefect Info Output

Sticky W age Output

0.8

0.6 ,
0.4 - :/

0.6

0.4
0.20.2

0.0 0.0

-0.2 -0.2
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 3.2: Comparison of selected impulse response functions to a positive tech
nology innovation between standard RBC and RBC with wage stickiness.

Figure 3.2 shows the comparison of selected impulse response functions between 

perfect and imperfect information models. The salient differences appear only in 

the first period. In the sticky wage model, both labour and output jump in the first 

period, and the size of the jumps are the same, hence, the labour productivity does 

not change in the first period. Note that the Cobb-Douglas production function 

implies that the labour productivity is always equal to wage.

Figure 3.3 shows the relative volatilities and correlations for different degrees of 

imperfect information (i.e., for different values of S). As S  increases, C arr  (Yt — Ht , Ht ) 

decreases.

Case III also reveals one computational requirement; simply specifying the 

information set in each equation is not enough to find a solution. A researcher must
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Figure 3.3: Effect of different degrees of imperfect information on selected second 
moments.

also specify which variables are determined without observing perfect information. 

This is evident in that the results of Case I and III are not the same.

Conclusion for RBC under Imperfect Information

Adding one-period wage stickiness is quantitatively enough to overcome the two 

drawbacks of the standard RBC model — where (a) labour volatility is too small 

and (b) the correlation between labour productivity and output is too high — 

without significantly deteriorating other dimensions of the model performance. 

This example shows the possibility that the information structure of a model has 

significant quantitative effects.

3.6 Conclusion

This chapter has developed an algorithm for linear rational models under imper

fect information. Imperfect information is important because it includes many 

interesting classes of models such as sticky information and noisy signal models.

The algorithm exploits two observations: (1) if an endogenous variable yk,t is 

decided without observing an innovation then ykit is not affected by &

(i.e., dyk,t/dfiij-s — 0)j (2) if the information set in the j - th  equation includes 

then cannot be the source of expectation error in the j - th  equation 

(Esj i  =  0). The solution is defined by these two zero restrictions, and it turns out
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that they are enough to determine unique solutions.

The state space representation chosen in this algorithm is the set of crawling 

variables at the beginning of the current period and current and past innovations. 

This representation reveals that the dynamic parts of the solution (i.e., the H and 

F matrices) are the same as under the corresponding perfect information models. 

Invariant H and F matrices imply that (a) the dynamic property, such as sunspot 

or saddle-path stability is not altered by information structure, and (b) impulse 

response functions are not (directly) affected by the information structure after the 

first S  periods, where S is such that the minimum information set in a model has 

all the information up to time S. These findings show that qualitatively imperfect 

information models inherit the properties of their perfect information counterparts.

However, as the RBC example demonstrates, quantitatively imperfect informa

tion may be important. Hence, it is desirable to check for robustness in terms of the 

information structure, and our MATLAB algorithm offers an easy way to conduct 

such experiments. Once structural equations are obtained, then the additional 

inputs to the algorithm are only two zero restrictions.
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Appendices for Chapter 3

3. A Extension of Uhlig’s Theorem 3

Proposition 1 (Extension of Uhlig’s Theorem 3) To find a m x m  matrix X  that 

solves the matrix polynomial

enxn -  en̂ xn~l  -  e 0 = o (3.23)

Given m x  m coefficient matrices {0n ')v=o> define the nm x nm matrices E and 

A by

&n- i • •• 0 i 0 O

I  0 0

0

A =

I  0

0 n  0  • • • 0

0 1 0

0 0 I

(3.24a)

(3.24b)

and obtain the generalized eigenvalues A and the generalized eigenvector s such that 

A As =  Es. Then, s can be written as

t  Xn- lx ^

s =
\x  

x /
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for some x (E Rm, and

x  =  h a s t 1

where Q =  [xi, • • • , xm] and A =  diag(Ai, • • • , Am).

Proof. Almost identical to Uhlig (1999). ■

3.B  M atrix Operations

To pick up and drop out columns and rows from a matrix, we define

•  [A] x as columns x of a matrix A,

• [A]x as rows x of a matrix A ,

• m  ~,x 38 columns remaining after the elimination of columns x, and

• [A]^x as the rows remaining after the elimination of rows x,

where x is the name of a set of columns or rows. The brackets are used simply 

because they often clarify notations, and often can be omitted (i.e., [B\ =  B^y).

The dot . implies all rows or columns (e.g., B =  B). It is quite easy to show the

following formulae:

\AB\ =  [A U  [B U . + [A].. [B],. 

[ £ U  

[n * U . =  [AU.[B} 

[ A B = [ ,4 U [i? U
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An example for the first formula is

an a\2 

a 21 a 22

bn bn 

&21 &22

O il

021
'11 bi 2 +

012

O22
621 b22

Oll&ll Oh6i2
+

&12&21 012̂ 22

^21̂ 11 021̂ 12 ^22̂ 21 2̂2̂ 22

flll&ll + ^12̂ 21 ^11̂ 12 +  &12&22

a21̂ 11 +  a22̂ 21 a21̂ 12 4" ^22̂ 22 

where x = 2.

Note that this notation is consistent with other matrix subscripts; for example, 

the rows of ZSK are related to stable roots s and its columns are related to crawling 

variables k,.

3.C Invertible Implies Invertible Z f K

Proposition 2 For an invertible matrix Z, which is partitioned as

Z =
Zn Z\2

Z2\ ^22

if Zn is invertible, then [Z 1]22 is also invertible. 

Proof. Define

Zr. =

Zr =

I  0 

■Z2lZ ^  I

I - Z ^ Z n  

0 I
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Note that Z^ZZr has full rank because all of Z&, Z  and Zr have full rank, and 

note that

I  0 

21 1̂1■Zoizri1 i

Zn Z\2 

Z21 Z22

I —Z7}Z

0

11 12 

I

'11

Hence, G =  Z22 — Z2iZ ^ Z i2 must have full rank.

For a full rank matrix with an invertible upper left submatrix, the well-known 

formula tells us

Zrf 4- Z ^ Z 12G~1Z21Z ^  - Z ^ Z u G -1
- - - l

Zu Z12

NJ
1 Z22 -G ~ 1Z2\Z^ G-1

Note that the RHS exists since we know that both Zn and G are invertible. Thus, 

is invertible. ■

Since Z is unitary, Z~l — ZH, which implies G~l =  [Z~l}22 =  Z22. Since Z22 

has full rank, its conjugate transpose Z22 ( =  [^22}77)  also has full rank.

3.D Invertibility of Block Triangular M atrices

Due to the following introductory result, we know that <f>, Myr and Mm

are all invertible.

Consider a block triangular A which has invertible block diagonal submatrices 

A^

r An

A = 'dd

ADD

A is either an upper or lower block diagonal. Then, A is invertible.
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To show this, focus on the upper left part first

det
An A12 

A21 A22
—  ̂ det An ^ ^ det (A22 — A21 (A n \A i2)) ^ 

=  (  det An ^ ^ det A22 )  ^  ^

Note that A2i (A n \A i2) =  0 since either A2i or A12 is zero. We can repeat this 

process until it shows det A ^O .

3.E Rank Deficient H  M atrix and Expansion o f 

Innovation Vector

The representation of a solution under imperfect information is not necessarily 

unique. This section shows the equivalence of two representations.

Consider the RBC model, in which labour supply is decided without observing 

today’s innovation. The vector of crawling variables is

=

K t

H f

where K t and H f are capital and labour supply at time t, respectively. Then, the 

solution has an H matrix that is rank deficient.

We can decompose such an H matrix by using eigenvalue-eigenvector decom-
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position

V Kt+l 

A

V

XVKt +  VJZt 

Aj 0 

0 0

Vn V12

V21 V22

Prom the first row

Vn K t+1 +  V12Hf+, = Ai T Vn K t +  V-aHf j  +  (  K„J, +  Vu J2 )  it

where J  is 2x1. From the second row

V2\K t+i +  Hf+1 — (  v2iJi +  V22J2 ^ i t

H?+i =  (  V22\V21J1 +  J2 j i t -  VvW uKt+t

Under our assmnption 3 (invertible [Mnjs]fcj), V11 and V22 are non-zero. Hence,

Kt+i — Aî Ct +  J\C V\2(V22.\y2l)Jl+V\2J2 
Vl 1 — V12 (V̂2\V21)  ̂£t- 1

Thus, it is shown that with a rank deficient H matrix we can reduce the set of 

crawling variables by increasing the number of innovations.

3.F Full Derivation

This section provides the full derivation. For the notation, see the main text.
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3.F.1 QZ Decom position

Applying the QZ decomposition to (3.2)

0 - nA ZHyt+i +  n BZHyt +  QHC£t +  Qa DZt+1 +  QHE ? ’S 
(nA nA88 0“SU

0 f i l

St+1

u t + 1
+

QB Q?88 u bSU

o a®.

+ <3? Q l < 3?
+ ■Dft+i +

Q S. . Q“ . i
<
0

i

t,s (3.25)

where st and Ut are stable and unstable roots, respectively, such that

( \
St yH  yH8K

yH  yHUK U<f>

U nstable R oots and Transversality Conditions (TV C s)

Imperfect information requires a slightly careful treatment of TVCs. Focussing on 

the lower half of (3.25)

0 =  n tu t+1 + +  Q l d t +  Q lD i t+1 +  Q »Ee-S

Iterating it forward

(3.26)

lim <l—>oo

=  - U t

( -n2.\o£,)
k ( «  )  (  nZAef )  (  c t t+, + D(t+1+, + Et.‘+’,s )

- ( KAQS. ) ^ “E (  - a S M  )'( aS.\QS. ) E?+‘'S (3.27)
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where

i t+1 

it

 ̂ i t+ i - s }

~t+ l,S  ~ t+ l,S
i  + i

'  o \

0

it

it+i~ /

+ it+i

o

° /

where A \B  =  A~XB, and A /B  =  AB~X.

There axe many information sets, under each of which TVCs must be satisfied. 

— that is, TVCs are (seemingly) tighter under imperfect information. However, 

if the perfect information counterpart satisfies TVCs, corresponding imperfect in

formation models also satisfy them automatically due to the law of iterated linear 

projection.10 Thus, the same logic as in the perfect information case holds; because 

( -n S A fti)  -  o as i —* oo by construction, the expected value of ut+i explodes 

for any non-zero value of the RHS of (3.27), which contradicts the TVCs. Note 

that the inside the limit operator in the LHS shows the expected value of Ut+i (the 

realisation of Ut+i plus expectation errors) times (—̂ uu\^uu)1 • Hence, the RHS of 

(3.27) must be zero.

Therefore,

-n2.fi* = -n® -  nBuuz ^ t

= <£<% + «* £  ( -tiZWL ) ( n£AOS. ) ̂

= QZcct +  ' E ( - n L / n S *  ) ‘Q”M t+‘,s (3.28)
1=0 ' '

10There axe two comments. First, (3.27) must hold for any  realisation of Kt - 1 and for 
s =  0,1, • • •. Hence, it is not  possible that TVCs hold under imperfect information but not under 
perfect information. Second, if an information set does not include, for example, t_s then the 
relevant expected value of ut+a is the RHS with setting t_8 =  0. Hence, if TVCs hold for the 
full information set, they hold for non-full information sets as well.
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Substituting our "guess solution" (3.3) into (3.28),

0 =  ( +  n* z"  f  )  *  +  +  Q « c z t

+ i (  Q u M ^ 1-3 (3.29)
1—0 ' '

Stable R oots

Similarly, from the upper half,

0 =  (^£^+1  +  Z ^ t+ i)  +  O l (^uKfit+1 +  ^ 0t+i)

+n® (z®Kl + z % )  + n® «, + z* &)

+<3? c? t +  q® t >?(+1 +  <3?  ̂ ‘>s

Again, by substituting (3.3) into (3.30), after some manipulation,

0 = (  K%FH +  A* H  +  A%F +  A® )  «. 

+ k % G ^ 's +  Q f £>&+1 +  Q" Cit 

+  (  A%FJ + k jKJ  +  k%G +  Q » E j  e !

(3.30)

(3.31)

Though the definitions of kf^, A(L A® and kf* are (3.10) in the main text, the 

following result may be more useful.

(3.32)
AA**-SK > *>

1

QAas nAsu z* CS
]

■|
.to

__
__

_i

ABSK > 4 t
o

I

nB88 nBsu _z*

----
1

ta
f

N
j
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3.F.2 Expansion o f £Mj S  and ^t,S 

Expanding £t+1’s  and £tyS in (3.31) and (3.29),

o =  (  tt%FH + A tH  + A.%F +  A« )  k,

+ (  A-̂ Go +  Qa.D )  £t+l

+ (  A *G , + (0*/Z„) J0 + A® G0. + Q fE 0. + Q »C J & 

+  (  A^G2 +  (p.fa/ZKa) J\ + A^Gi. +  Qa Ei. )  i t - i "I 

+  (  A*,GS + (n i/Z ^ )  Js-! +  A?„Gs _a. +  Q"Es _i. )

+  (  (n*JZ„) Js +  A%GS. +  Q?ES. )  i t s

Since these matrix equations must hold for any realisation of Kt, i t_T for r =

- 1 ,0 ,1,--- ,S ,

0 =  A^FH +  AfKH +  Af+F +  AfK (3.33a)

0 =  ^ X l  +  tC Z ^ F  (3.33b)

0 =  A^Go. +  Qhs D

0 =  0

(3.34a)

(3.34b)
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0 =  + (n i/Z ^ )  Jo +  h%Ga +  Q’lE s. +  Q?C  (3.35a)

0 =  O^Z«,G0 +  ( E  (  - « ! /« ? «  J q I e ]  +  Q»C  (3.35b)

0 =  k%G,+l +  (S li/Z ^ ) Ja +  K%GB +  Q“ Ea (3.36a)

for s =  1, • • • , S — 1

0 =  Oub„Z"G»+ ( j 2  (  - f i l A C  )  (3.36b)

for s =  1, • • • , S — 1

0 =  (Q *JZ")JS +  K%GS +  Q*ES (3.37a)

0 =  n ^ Z ^ G s +  Q^Es (3.37b)

3.F.3 D ynam ic Parts (H  and F )

Since (3.33a) and (3.33b) do not include G , J, D, E  or II, these two matrix

equations can be solved for H and F  independently. Thus, assuming has a

(right) inverse,11

F =  - Z ”,\Z ^  =  Z ^ Z „

H =  -Z ^ W X S lD /Z ^ ,

Note that the H and F matrices are the same as in the corresponding perfect

11 Remember that an invertible implies an invertible Z^K.
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information model.12

3.F.4 Zero Restrictions on E  and II

Vertically concatenating matrix equations (3.35a)-(3.37b) in pairs,

0 = ---
---

-1
o > ■§
>

i

Ti +
n i / z KS Aft

0 0 0
r0

fc=0

0 0 

0 ~^uu/^uu
QHE k + Qh C

0 =

1
o -s
>

1

IY hi +
n i / Z KS >

 

__
__

__
1

0 0 0

S -s

+ £
k= 0

0 =

0 0 

o -ni/n2.

o o5*z$

Q " R k tJ o r  s =  1, • • • , 5 - 1

rs + Qh E s

12For the F  matrix, note 

Z HZ  =  3 ?  ^{jf J [z?k z"  i r z „  z,
ZUK ZU<t>

K S  " K U

Zthst Z,’<f>U
Z8KZKS + Z ^ s Ẑ kZku + Z«Z^
Z U K Z K 8  +  Z U (f>Z<t>8 Z U K  Z K U  +  Z ^ Z # u

Looking at the lower left element

Z * Z M + Z” ZSs = 0^ U K  '  V,<j> 4 >s

7 h  7

rH \ rrH
~ZUKZKS ~ Zu4,Z4>S
Z U < f> \Z U K  ~  Z 4 > s / Z K 8

Also, remember that
z - 1 = z ” -  z% (z"\z£)

and that Qfa is invertible by the reordering of QZ decomposition.

(3.38a)

(3.38b)

(3.38c)

I  O' 
0 I
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Note that

0 =
- n A /OPuu/ uu

o K
Ts+2 +

n £ /z „ K
0 0 0 nSuz ”,

s+l

Y^S-(s+i)
Zvfc=o

S -s
r s+i +  ^ 2

k= 1

0 0

k
0

0 - 0 A ^ “uu/ “uu

fc+s (3.39)

Subtracting (3.39) from each of (3.38),13

0 =

0 =

TiH-

r«+i +

o =

0 K  

o !& Z $

0 K  

o n?uz «
for s =  1, • • • , 5 —1

f t £ A -  Af*

0 n i z 5

n £ /s »  a ® 

o n s .^ 5  

n £ /z „  a $  

o n i ^

T0 + QH (Ek +  C)(3.40a)

r ,  +  QHEk+> (3.40b)

r s + q he s (3.40c)

13 Though this process is not necessary, it reduces the computational burden.

175



and again vertically concatenating these equations,

0 =  Myrr  +  Q (£  +  C)

r0

r  =

\ (  E0 N /  \ Q 0
C0

,E  = , c  =
0

 ̂ Es )
\  / 0 Q

My r =

?s

$  \0 A

$  A0A 0

$  A0A 

$

$ =
Af.

a °a=

o

o a£

o

Note that since 4> is invertible, Myr is also clearly invertible. Hence,

0 = r  +  M„r\Q ( £  +  C)

= Mrnn +  Myr\Q (^  + C)

where (3.7) is used to derive the second line. Hence,

0 =  n  +  Mjie (E  +  C) (3.41a)

Mue = (MyrMrn) \Q (3.41b)

In the following, we compute E  and n  column by column.

n.i =  M ue  (E.i +  C *)
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Remember that some elements in II < are zero due to imperfect information, while 

some elements in are non-zero. For example,

1 n1>t ^

0 = I nfc)i (= 0) I + Mue

\  njif(s+i),t j

E  M atrix

From the k-th set of equations in (3.42)

Eji +

v v  o /  \ o  j

(3.42)

0 = Mue Eji + Mue Cji + Mue
- kj - kj -

C -tji
k-ij

Hence, assuming Mue is invertible,
kj

Eji =  - Mue \ Mue
- kj -

C'-tji Cjj
k->j

n  m atrix

From the other equations in (3.42), we eliminate the expectation errors Eji.

Mue Mue \ Mue C
- -'kj \ - kj - k->j

G->ii +  C

M iTIE C j i -
ikj

M iUE
->k->j

Mue Mue \ Mue - Mue
- -'kj \ - kj - k—'j / - -<k—ij

Mue \C . ,3%

-'j-'k

The vector 11-,̂  and 11̂  =  0 can be vertically merged to recover n  and the 

vectors n  * are horizontally concatenated to recover full n  matrix. Note that an
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invertible Mue implies an invertible

1
h

K

1

- kj -

Not surprisingly, Cj*

does not affect the coefficient matrix II;, because the j -th set of equations does 

not hold for the i-th innovation in any case; it only affects the expectation error

3.F.5 Other M atrices (J, G  and D )

J  and G M atrices

To obtain the J  and G matrices, from (3.7),

Jo

Go

r = =  Mrnll

Js

_

D M atrix

Prom the A matrix in a given model (3.2),

D =  —A
0

Go

which always satisfies (3.34a). It can be shown that the j -th rows in D are zeros 

if the j-th  equation does not include t  +  1 dynamic jump variable (see the next 

section).

3.G A Comment on th e D  M atrix

The derivation of the D matrix is a bit tricky, and requires careful attention con

cerning non-square matrices and Q^. We do not show the straightforward 

derivation of D — which is perhaps not intuitive — but instead we simply show
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that our solution always satisfies (3.34a), which, in turn, reveals an important 

intuition.

First, we define dynamic and non-dynamic jump variables: (f)t+1 =

($+ 1) (« u ) . Note that the coefficients of the non-dynamic jump vari

ables 4>™+i in A matrix must be zero by the definition of "non-dynamic".

A y t + 1 =

Akk AK(pd 0 

A f y *  0

A ^ k Â n̂ d 0

\
Kt+1

$+ 1

 ̂ $+ 1 j

where (f)f+1 is the vector of dynamic variables, such as consumption in the Euler 

equation. The submatrices in G0 and QH are defined as

1

1—

0

<

0

0 h
i

G o

=
G o , 4>*.

-

—
1

c"o
'

1

III

O
* O S III

O
* Q i  Q * , , Q u . =

Q Hf

Q l
o rv  S (p

Q HiU  K Quiij)71

where u* and u% imply finite and infinite unstable roots, respectively. 

Focussing on the second term of (3.34a)

Q lD  = Q*AG0 = QZ QZ* Q Z

A kk A ^ d  0 

A ^ k A ^ d  0

A ^ k Â n̂ d 0

1

O

1

O
O

1

O O %
- 3

1__
__

 ̂ QZA^d +  Q^A^d^d +  Q^nA^n^d ^ G0(f)d (3.43)
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For the first term of (3.34a) note that is the s< -̂th elements in Q.AZH, i.e.,

Aa = nAz H
s<j>

QQHa AZH QA

Q t <0 3
l

A kk Aft(j)d 0
A$dK A ^ d 0

«5. Q 5 r  _
A<$rK Affr^d 0

)

 ̂ Q^Af^d + Q^dA^d  +  Q^nA^n^d ^ 0

where * elements are irrelevant for our current interest. Hence,

Q^A^d 4- Q^dAfdfd +  Qf^nA n̂ d̂ ^ 0
^ 0,^. 

Go ,<t>n.

Q^A^d +  Q^A^dfd +  Q^nA^n^d ^ < V . (3-44)

(3.43) and (3.44) show that (3.34a) holds. The key to the solution is a sort of 

zero restriction; A matrix has zero columns by the definition of "non-dynamic" 

variables.

A further question is the consistency of D  (i.e. whether the computed D  always 

has zeros at the proper positions?). Specifically, if the j -th equation does not have 

$*+1, it should not have an expectation error due to £t+i, and hence the row vector 

Dj_ must be zero; this zero restriction on D  is analogous to that on E.  This is 

surely satisfied because the rows corresponding to non-dynamic equations in D  

(= AGq) is always zero by the construction of A ; i.e., the j-th row in A is zero 

if the j-th  equation does not include dynamic jump variables 4>f+1. For example, 

in the standard RBC model, all but the Euler equation have zero rows in A  and
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hence in D.

What this section discusses is the correspondence between expectation errors 

and the source of such errors. If, for example, expectation errors with respect to 

full information up to time it appears in the equations without dynamic jump vari

ables, then it is a logical contradiction (expectation errors without their causes), 

and hence (3.34a) is not satisfied. Conceptually, the consistency of the D  matrix 

is parallel to the invertibility of [Mue]^- As mentioned in the main text, the 

non-invertibility of [Mn£?]fcj implies an incorrect specification of the information 

structure with respect to £t+T (r =  0,1, • ■ • ,S).  Similarly, an inconsistent D  (or 

the non-existence of a consistent D)  implies an incorrect specification of informa

tion structure with respect to f t+1. Such inconsistency/non-existence happens, for 

example, if a researcher puts an expectation operator on the evolution of capital, 

rather than on the consumption Euler equation.

Finally, note that a consistent D  matrix exists ^  Equation (40) in Sims (2002) 

holds. Thus, it is now clear that equation (40) in Sims (2002) must always be 

satisfied if expectation errors appear only in the equations with dynamic jump 

variables, regardless of the dynamic property such as saddle-path stable, sunspot, 

or explosive.
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Concluding Remarks

This thesis analyses inventories empirically and theoretically. It shows a battery of 

evidence for periodicity; economic variables, such as production, follow sine waves. 

This is in stark contrast with the modern view, where business cycles are successive 

deviations from the steady state and their returning process. Instead, this thesis 

find that booms and recessions occur alternately; more precisely, a boom is the seed 

of the recession that follows, and vice versa. This thesis also finds that inventories 

play a key role in generating endogenous cycles -  namely, inventory cycles.
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