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A bstract

This thesis provides a novel empirical treatment of the dynamics of 
financial market risk and liquidity, two very important areas both for 
financial research as well as to practitioners in the financial markets: 
We devise empirical non-linear time series models of the two concepts 
that specifically take into account ‘explosive’, self-reinforcing dynamic 
patterns. While ‘conventional’ empirical models are often ‘linear’ and 
tend to neglect these effects, real-life evidence such as e.g. the 1987 
crash, the large stock market drops on February 27th, 2007 or the huge 
losses posted by investment banks and hedge funds during July and 
August 2007, suggest that such an approach is warranted:

In the first part of the thesis we extend a time series model of 
Value-at-Risk (VaR) with non-linear multiplicative features and en­
dogenous regime thresholds. When estimated with a Markov Chain 
Monte Carlo (MCMC) method against real data, the resulting ‘Self- 
Exciting Threshold CAViaR’ (Conditional Autoregressive Value-at- 
Risk) model is able to detect trigger thresholds for explosive market 
risk as well as the scale of such a possible expansion in risk.

The second part of the thesis is dedicated to the ‘Conditional Au­
toregressive Liquidity’ (CARL) model, a multiplicative time series ap­
proach to the empirical modelling of market liquidity. The newly con­
ceptualised model is capable of picking up self-reinforcing dynamics,
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Abstract 5

i.e. autoregressive patterns in liquidity, which is in accordance with 
theoretical research on the topic. Moreover, by incorporating a multi­
dimensional liquidity proxy, the model CARL is explicitly designed to 
take into account the fact that liquidity is a concept with many facets, 
unlike other empirical treatments that often view liquidity only along 
a single dimension (e.g. the bid-ask spread, volume, trade duration). 
In this thesis, we demonstrate the empirical versatility of the model 
using both fixed interval data (daily and weekly) as well as tick-by-tick 
intraday data, for which we propose a filtering technique in order to be 
able to use the model in such a data environment. We note that the 
model is able to pick up autocorrelation structures in liquidity rather 
well and find the forecast performance very encouraging for practical 
use.
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Chapter 1

Introduction

This thesis provides a novel empirical treatment of the dynamics of 
financial market risk and liquidity, two very important areas both for 
financial research as well as to practitioners in the financial markets: 
We devise empirical non-linear time series models of the two concepts 
that specifically take into account ‘explosive’, self-reinforcing dynamic 
patterns. While ‘conventional’ empirical models are often ‘linear’ and 
tend to neglect these effects, adverse events in the history of the fi­
nancial markets suggest that such an approach is warranted:

On February 27^, 2007 for example, the Dow Jones Stoxx 600 
Index dropped by 3% in a manner that, according to the The Wall 
Street Journal Europe, edn. February 28th, 2007, was “almost like 
(...) a cascade” . Regarding these events, The Economist, issue March 
3rd, 2007, pointed out that investment banks often sell assets when 
volatility is rising in a move to cut capital allocated to trading, thereby 
creating self-reinforcing patterns in market risk: ” ...a sudden jump 
in volatility tends to generate further volatility” , resulting in a large 
build-up of risk and potentially large losses. Another example for 
these mechanisms at work are the events in July and August 2007, 
when many investment banks and hedge funds posted major losses on

16
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their trading books: Goldman Sachs’ main equity fund for example 
lost more than 30% of its value in a week caused by problems in its 
computer-driven trading strategies. The Financial Times on August 
14th 2007, analyses:

“The issue of computer ‘herding’ appears to be a key factor 
behind this month’s [August 2007] problems at the Goldman 
Sachs funds and others (...) computer models do not always 
take account of the way that their own behaviour is affecting 
markets (...) In practical terms, this means that when mod­
els evaluate markets, they often fail to recognise how their 
own behaviour is distorting prices (...) Computers have a 
nasty habit of all using similar strategies -  partly because 
they are created by humans who have studied at the same 
institutions. Thus they can all dash for the exits at the same 
time.”

Regarding the losses that materialised as a result of these issues, 
Goldman Sachs’ chief financial officer, Mr. Davir Vaniar comments in 
the same paper:

“We are seeing things that were 25-standard deviation events, 
several days in a row.”

With a more explicit focus on liquidity, The Economist, edn. April 
28th, 2007 states:

“Liquidity is a self-reinforcing process (...) if liquidity sud­
denly dries up, some investors might end up owning assets 
they neither want nor can get rid of. This might make a 
virtuous circle turn vicious.”
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Carlson (2007) further suggests that such liquidity problems were 
also hat the heart of the 1987 market crash. He argues that so-called 
margin calls on trading positions that suffered from losses, led to re­
duced market liquidity in the (futures) market through further selling, 
which in turn led to an even steeper decline.

The above evidence from the financial markets thus suggests that 
market risk and (il)liquidity are subject to feedback ‘loops’ as well as 
‘cross-over’ effects, whereby market risk and (il)liquidity may feed on 
themselves and each other to create explosive patterns that can ad­
verse affect trading conditions. This mechanism has been documented 
by Danfelsson and Shin (2003) and themed ‘endogenous risk’. Morris 
and Shin (1998), Morris and Shin (2004) as well as Brunnermeier and 
Pedersen (2008) have provided theoretical models of these feedback 
mechanisms that can lead to liquidity ‘black holes’, excessive market 
risk and potentially large price drops in asset markets.

In this thesis we seek to develop new empirical time series models of 
market risk and liquidity that capture these ‘unorthodox’ dynamics: 
In the first part of the thesis we extend a time series model of Value-at- 
Risk (VaR) with non-linear multiplicative features and regime thresh­
olds, to yield a non-linear time series model that is capable of estimat­
ing explosive patterns in market risk.

The second part of the thesis is dedicated to the ‘Conditional Au­
toregressive Liquidity’ (CARL) model, a multiplicative time series ap­
proach to the empirical modelling of market liquidity. The newly 
conceptualised model is capable of picking up self-reinforcing dynam­
ics, i.e. autoregressive patterns in liquidity, in daily, weekly as well as 
intraday data. Moreover, in the setup of our model we explicitly take 
into account that liquidity is a difficult concept with multiple facets
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that are of varying importance both to different market participants 
and over time: Thus, as a liquidity proxy in the CARL model, we use 
the Hiu-Heubel liquidity ratio, a multi-dimensional measure of liquid­
ity that proxies for the tightness as well as depth and breadth of a 
market.

Chapter 2 -  Self-Exciting CAViaR Models with Endogenous Thresholds

This chapter introduces the empirical model class of ‘Self-exciting 
Threshold’ CAViaR (SET-CAViaR), in which threshold variables are 
determined endogenously. The proposed model is designed to incor­
porate reinforcing, explosive dynamics of market risk that are referred 
to as ‘endogenous risk’ and have recently received increased attention 
in the theoretical literature as well as among practitioners. As such, 
the SET-CAViaR constitutes a new empirical approach to risk mod­
elling, which due to its semi-parametric and non-linear features calls 
for a Markov Chain Monte Carlo (MCMC) estimation routine. We il­
lustrate the model in a Monte Carlo study and estimate it with CRSP 
IBM holding returns from 1982-2005. The estimation results generally 
indicate a good fit and are well in accordance with theoretical predic­
tions: There is evidence for the SET-CAViaR model detecting sudden, 
explosive patterns in market risk, which ‘conventional’ models are not 
conceived to pick up.

Chapter 3 -  CARL: An Empirical Conditional Autoregressive Model of 
Market Liquidity

In this chapter we present the Conditional Autoregressive Liquidity 
(CARL) model, an empirical time series model of market liquidity. We 
develop the model from two main building blocks: As an economet-
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ric framework, we use the multiplicative setup of Engle and Russell’s 
(1998) ACD model; as a proxy for liquidity, we rely on the Hui-Heubel 
ratio, a multi-dimensional measure of (il)liquidity that captures many 
facets of market liquidity. For the resulting CARL model, we estab­
lish the econometric properties and demonstrate its empirical validity 
in the light of recent theoretical research in financial liquidity: Such 
theory predicts (il)liquidity to be self-reinforcing, thus strongly auto­
correlated through time. In an empirical application using both daily 
as well as weekly CRSP Amazon data from 1997-2006 we find that the 
CARL model picks up such autocorrelation rather well and produces 
accurate forecasts.

Chapter 4 -  Intraday Liquidity: A High-Frequency Application of the 
CARL Model

This chapter constitutes an application of the CARL model to an in­
traday context. In order to use the model in a high-frequency data 
environment characterised by irregular time intervals between subse­
quent tick-by-tick observations, we propose a volume technique: We 
sort data into volume durations during which a particular volume is 
both bought and sold and derive the maximum percentage range liq­
uidity measure, a metric similar to the Hui-Heubel ratio, over the 
resulting intervals. The filtered series is then taken as an input into 
the CARL framework. We demonstrate the filtering technique as well 
as the versatility of the resulting intraday CARL model in an empirical 
application using TAQ intraday data on Amazon: Similar to previous 
empirical work in a daily and weekly data context and in line with 
theoretical research, we find that the model is able to pick up signif­
icant autocorrelation in the (il)liquidity proxy. Moreover, the model
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shows good forecasting performance.
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Chapter 2

Self-Exciting CAViaR M odels w ith  
Endogenous Thresholds

2.1 Introduction

Most commonly used empirical models of market risk focus on the 
quantification of such risk in terms of ‘Value-at-Risk’ (VaR), i.e. the 
quantile of the returns distribution, through non-parametric empirical 
estimation or using time series models in linear single-regime setups. 
An example of an approach of the former kind is the popular method 
of ‘Historical Simulation’ (HS), whereas the latter includes quantile 
models based on conditional volatility or the ‘Conditional Autore­
gressive Value-at-Risk’ (CAViaR) model class. Recently developed by 
Engle and Manganelli (2004), CAViaR constitutes a semi-parametric 
autoregressive quantile regression approach, whereby the conditional 
quantile of the returns distribution at time t is typically directly mod­
elled as a function of lagged values of the return and its lagged own 
conditional quantiles.

However, despite the wide-spread use, appeal and individual merits 
(in the case of CAViaR, cf. Engle and Manganelli, 2004), the above

23



2.1. Introduction 24

models are ill-equipped to incorporate self-exciting, reinforcing pat­
terns in market risk, which recent theoretical research has dubbed 
‘endogenous risk’: Damelsson and Shin (2003) for example suggest 
that traders’ selling decisions can lead to self-exciting downward spi­
rals in asset prices, thus creating endogenous risk from within the 
financial system. More formally, Morris and Shin (1999) and Morris 
and Shin (2004) show how coordination effects and higher order be­
liefs along the lines of Morris and Shin (1998) can create endogenous 
risk and ‘liquidity blackholes’: Once certain thresholds are crossed the 
reinforcing actions of market participants can trigger to self-exciting 
patterns and endogenous downward spirals in asset returns.

Building on the CAViaR model class, in this chapter we provide 
a new framework in which to analyse endogenous risk empirically: 
We propose the ‘Self-exciting Threshold’ CAViaR (henceforth SET- 
CAViaR) model, an empirical time series model that explicitly allows 
for explosive, self-exciting risk dynamics over a part of the returns do­
main. When estimated with real data, the new model is able to detect 
‘trigger’ thresholds for self-exciting endogenous risk and is therefore 
capable of identifying and predicting potential endogenously created 
crises. Further, the model also quantifies the scale of endogenous risk 
during such states of the world.

While the theoretical findings underlying the proposed SET-CAViaR 
model have been known for some time, an empirical attempt at provid­
ing a framework for the analysis of endogenous risk as in this chapter 
has to our knowledge so far not been attempted. Yet, the practical 
experience in financial markets also suggests that such an approach is 
warranted: Regarding the sizeable stock market fall on February 27th, 
2007, The Economist, issue March 3rd, 2007, for example states on p.
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82 that on this day “[the Dow Jones Industrial Average] plummeted 
[at] a rate of decline that traders said was unprecedented” , suggesting 
mutually reinforcing sell decisions by traders leading to a cascading 
sell-off. The paper further concludes that “if conventional [VaR] mod­
els are correct, such an event should not have happened in the history 
of the known universe” , indicating the need for better VaR modelling 
methodologies in the face of such events.

We would argue that the introduction of the SET-CAViaR model 
represents a first step into this direction: The proposed methodology 
builds on the CAViaR model as a univariate quantile ‘baseline’ process, 
which we combine with a multiplicative scaling factor that is allowed 
to differ across regimes. Regime shifts are triggered by lagged returns 
crossing endogenously estimated thresholds. In this setup, risk - as 
measured by the return quantile - can therefore increase exponentially 
once an explosive regime is entered.

By relying on the recently developed CAViaR model, we benefit 
from its semi-parametric properties: Specifying the law of motion of 
the return distribution quantiles directly, CAViaR models the evolve- 
ment of all moments of return distribution at different quantile levels 
-  without the (ad hoc) assumption of a particular error term distribu­
tion. In this respect, CAViaR contrasts with more ‘traditional’ empir­
ical risk modelling methods based on models for conditional volatil­
ity: Particular examples of the latter include models in the ARMA- 
GARCH class1, which explicitly lay out the law of motion of the first 
and second moments of the returns distribution, but do not address 
higher moment dynamics or quantile-specific behaviour. As a con­
sequence, models based on conditional volatility have been shown to

1cf. e.g. Engle (1982) and Bollerslev (1986).
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produce poor VaR forecasts in situations in which returns exhibit ex­
cess kurtosis and strong skewness (cf. e.g. McNeil et al., 2005, p. 49), 
thus creating a case for the more general CAViaR approach:

Indeed, as also shown in this chapter, the CAViaR model class con­
stitutes a superset that includes a variety of ARMA-GARCH models. 
The qualitative logic of our self-exciting threshold methodology there­
fore also carries over to an ARMA-GARCH model setting.

Yet, while the semi-parametric nature of our SET-CAViaR model is 
advantageous in many ways, it comes at a specific cost that is particu­
larly relevant in practice: Contrary to e.g. ARMA-GARCH-type mod­
els, CAViaR makes no explicit parametric assumptions about an er­
ror term distribution2, rendering conventional estimation according to 
‘(Quasi) Maximum Likelihood’ ((Q)ML) infeasible. Rather, CAViaR 
models are estimated by means of minimising Bassett and Koenker’s 
(1978) quantile regression objective function, which is not everywhere 
differentiable and, for common (non-linear) CAViaR specifications, of­
ten exhibits multiple local extrema. Commonly used gradient-based 
optimisation routines such as for example the ‘Quasi-Newton’ method 
are thus not applicable in this environment. While methods such as 
linear programming or interior point algorithms have been proposed 
for specific (mostly linear) CAViaR processes, they have been docu­
mented to be problem-laiden (cf. Koenker and Park, 1996, p. 277) 
and are not feasible in the case of more complex, non-linear CAViaR 
representations including this chapter’s endogenous structural breaks 
setting (cf. Komunjer, 2005, p. 151). Estimation in this paper is there­
fore carried out by means of an algorithm based on Chernozhukov and 
Hong’s (2003) ‘Markov Chain Monte Carlo’ (MCMC) ‘LaPlace-type

2In the case of ARMA-GARCH models usually taken to be a Gaussian or Student t distribution.
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Estimation’ (LTE) routine, a simulation-based ‘global’ optimisation 
method that does not rely on gradients and sufficiently explores the 
parameter space, avoiding the problem of getting trapped in local ex­
trema.

We also benefit from the circumstance that while the need for more 
elaborate estimation routines already in the case of ‘simple’ CAViaR 
models is evidently costly in terms of computing effort and estima­
tion time, once implemented it also affords the opportunity to esti­
mate the richer, more complex quantile regression specifications such 
as the SET-CAViaR version in this chapter. Moreover, the proposed 
MCMC LTE routine also facilitates the novel approach of estimating 
the regime thresholds endogenously as variables of the model. Draw­
ing on the above, the identification of such thresholds is further aided 
by the semi-parametric properties of the CAViaR model in the sense 
that shifts in the law of motion of the CAViaR process affecting the 
moments of the returns distribution subject to regimes should be eas­
ier to detect by taking into account all moments (as in the case of 
CAViaR) as opposed to e.g. just the mean and variance in the case of 
ARMA-GARCH.

When put to use in the computationally challenging setting of the 
proposed model, the estimation routine is capable of producing mean­
ingful results:

An estimation of two concrete examples of SET-CAViaR models 
against a time series of 1982-2005 CRSP IBM holding returns indicates 
indeed that beyond loss thresholds of c. 3.5% and 10.5% for lagged 
returns, market risk as measured by VaR can suddenly increase by a 
factor of c. 2.0 and 3.5 on VaR levels of 95% and 99% respectively. 
Further, the results suggest that beyond yet an even larger loss thresh­
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old for lagged returns, these explosive VaR dynamics are dampened 
by a factor below unity allowing for a eventual return to more normal 
market risk levels.

While feasible from an econometric point of view, these results are 
in line with the before-mentioned theories on endogenous risk and co­
ordination effects as well as empirically observed patterns in financial 
markets: As documented by Morris and Shin (2004) and Danfelsson 
and Penaranda (2007) there cannot only be sharp increases in risk 
and associated large negative returns, but prices also are expected 
to eventually ‘bounce back’ following sudden, large negative returns, 
producing ‘v-shaped’ price patterns, which can be seen as a reaction 
to market risk returning to more normal levels.

The rest of the chapter proceeds as follows: Section 2.2 provides 
an overview of quantile regression as well as CAViaR models. In Sec­
tion 2.3, the links between the popular ARMA-GARCH class and 
CAViaR models are established. Section 2.4 argues the case for self­
exciting non-linear dynamics in risk modelling and introduces the 
SET-CAViaR model class. Section 2.5 is dedicated to the variant 
of MCMC LTE methodology used in this chapter. In Section 2.6 the 
SET-CAViaR model is subjected to a Monte Carlo sensitivity study. 
Section 2.7 presents an application of the methodology to the financial 
markets: SET-CAViaR models are estimated with CRSP IBM holding 
returns from 1980-2005. The results, computational issues surround­
ing the MCMC LTE routine as well as possible areas of application 
are discussed here before section 2.8 concludes.
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2.2 CAViaR and Quantile (Auto-)Regression

CAViaR models describe autoregressive conditional quantiles of finan­
cial returns over time: QT{yt\0), the conditional r  quantile of the return 
y at time t is modelled as a function of a parameter vector 0, of vari­
ables included in the information set T t~i available at time t , typically 
lagged values of the return, and its lagged conditional r  quantiles, such 
that P (yt < Q riy tl^ l^ t- i)  — As such, CAViaR is rooted in the lit­
erature on the estimation of quantiles, of which a short account is 
given in the following section.

2.2.1 Quantile Estimation

Following initial work on the analysis of quantiles by Fox and Ru­
bin (1964), Koenker and Bassett (1978) provided the first rigorous 
and comprehensive analysis of quantile regression: Most notably, they 
established the quantile regression objective function, which we also 
employ in the estimation of the SET-CAViaR model:

Quantiles are estimated by means of a standard decision theoretic 
approach (cf. e.g. Ferguson, 1967), whereby one is to minimise the 
expectation E \pT ( ^  (</>))] of the following piecewise linear loss function

pT (Ui(<p)) =  Ui{4>) ■ [T -  I (Ui{4>) <  0)], (2.1)

i.e., in a sample setting,

N

m in E [p r ( ^ (</>))] m in £ [^ (< /> );r ;N ]  =  m inTV- 1 ^ p T[ui{(j))\ (2 .2 )
06© 06© 06© L 'i=1

in which !(•) denotes the indicator function, r  G (0,1) the cumulative 
probability of quantile to be analysed, N  the sample size and Ui(4>) a
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criterion function with the p-dimensional parameter vector 0 E 0  C 
W .  The compact set 0  denotes the parameter space.

2.2.2 The General CAViaR Model

In the time series context of CAViaR models one usually specifies the 
time t quantile of y to depend on past information, i.e. lagged values 
of y and its quantiles, e.g.

T

m inT ~1Y ] p T[yt -  Q T{y t \F t-u  0)\- (2.3)
t=l

In general, the autoregressive CAViaR structures, QriVtl^t-u 6) are 
typically modelled in a ‘semi-linear’ way, such as

p
Qriut)  =  $0 +  QiQriyt- i) +  K ^t- l  j Qp+h •••? @p+q)i (2*4)

i=l

in which Ft-i  is the information set up to and including time t — 1 

and /(•) is a possibly non-linear function (cf. Engle and Manganelli, 
2004).

2.2.3 Popular CAViaR Models

Building on the general model above, Engle and Manganelli (2004) 
propose a range of possible specifications for CAViaR models: A 
simple CAViaR model setup is ‘Symmetric-Absolute-Value’ CAViaR 
(SAV-CAViaR), which may generally be written as

P Q

Q r i l / t )  =  @0 4“ ^  ^ { Q r i y t —i) T ^  ^ p + j  12/i—j
i=1 j =1

(2.5)
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Allowing for asymmetry in the effect of lagged variables on the 
quantile evolvement depending on their signs, the SAV-CAViaR model 
extends to the ‘Asymmetric-Slope’ CAViaR (AS-CAViaR) model:

p
Q r i lJ t )  — ^ i Q r { y t - i )  ~t~̂ ^ Q p + j i y t — ^  —Z) • (2*6)

i=1 j =1 1=1

This specification may be rewritten as

p

Qr(yt)  — $0 +  Y f i ' Q r t o - * )  ^  > y^P+3 ^p+q+j^[yt—j  ^  \Vt~j\ J
i= l  i= l

(2.7)

where =  —(6p+q+j +  ^p+j) and which is the form used in this
chapter. Setting 0'p+q+j = 0, the AS-CAViaR collapses to the SAV- 
CAViaR model.

Another model adopted in this chapter is the so-called ‘Indirect- 
GARCH’ CAViaR (IGARCH-CAViaR) model, specified as

Qr{yt) =  (1 — 2 • I[t < 0.5]) •

\ +  S^A(Q r{yt-j))2 +  Y M j f a ) • (^.8)
i=1 j =1

Including an asymmetric component similar to the AS-CAViaR model 
above is obviously also possible (although not mentioned in Engle and 
Manganelli, 2004) and might be done in the following way (for reasons 
explained in the next section, this model is dubbed GJR-IGARCH-
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CAViaR):

Qr(yt) =  (1 — 2 • I[r < 0.5]) •

p Q
Oo +  Q r i l / t - i ))2 +  y  H" Qp+q+j^-[yt-j  <  0])2/t-j

i= l  j = l

0  ̂ > 0 for Vfc. (2.9)

All these CAViaR processes above exhibit similarities to GARCH-type 
models and indeed the resemblance is not a coincidental: The next 
section examines the link between the ARMA-GARCH and CAViaR 
model classes.

2.3 CAViaR in Relation to ARM A-GARCH

CAViaR models describe the evolution of quantiles of the distribu­
tion of financial returns over time: As such they implicitly model 
the evolvement of all moments of this distribution, contrary e.g. to 
ARMA-GARCH-type models, which only describe the first two. Fur­
thermore, contrary to ARMA-GARCH, CAViaR models in their gen­
eral form are semi-parametric in the sense that they do not assume 
a particular error distribution or other properties of this distribution 
such as ‘z.z.d.-ness’3.

Therefore, CAViaR models nest many other popular model choices 
in financial econometrics and risk modelling, including notably quan­
tile models based on the ARMA-GARCH class. This also means that 
there is a direct link between ARMA-GARCH and CAViaR:

3li.i.d.-ness’ here denotes the property of independently and identically distributed errors.
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Proposition 1 Let yt follow an ARMA-GARCH-type process of the 

sortyt =  /4*(0 )+ o t(u ;)£ t , withet ~  i.d.d.,Vt G { 0 , and jjLt(<t>), <rt(w) 
are T t - \  — adapted with parameter vectors </>, uj respectively. The cor­
responding CAViaR models is then given by QT{yt\Ft-\\Q) — +
at {u})Q{e).

Proof. Proposition 1 can be derived as follows. Given the assump­
tions, one has

Q r { y t \ F t - i \ 0 ) =  Qt[/m(4>) +  0}

= Q AfitW lFt-i;  0] +  <5 r[o't(w)e(|^'t_i; 6]

=  n M )  +  M w ) ■ Q ( £t )

=  +  a t (uj) ■ Q ( e ) .

The second last equality follows from that crt{u) are both J-'t-i-

adapted. The last equality is a consequence of et ~  i.d.d. \/t G 
{0,..., T}. •

Mirroring that CAViaR models do not rely on a specific (paramet­
ric) assumptions for an error term, the existence of a ARMA-GARCH- 
type model as in proposition 1 is a sufficient condition for the deriva­
tion of a corresponding CAViaR model, however it not necessary one: 
Thus, a ARMA-GARCH (under the assumptions of proposition 1) 
has a unique corresponding CAViaR model, yet the converse does not 
hold.

Based on this result it is now possible to establish a one-to-one 
correspondence of popular ARMA-GARCH models with the specific 
CAViaR models above. Since AS-CAViaR nests SAV-CAViaR, the 
following result is presented only for AS-CAViaR:
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Corollary 2 If yt follows Zakoan’s (1994) TGARCH process of the 
sort

yt = fit + at£t (2.10a)

withet ~  i-i-d. W € { 0 , T}  (2.10b)
p q

and at =  oj +  y ^ a t<Jt-i +  ^ ( /? j  +  ljl[y t-j <  0]) \yt- j ] , (2.10c)
i=1 j =1

f o r p , q e  ( l , . . . , t } ;w  > 0; t j > 0;j  =  1 =  1

with ai,/3j,Vi,j adhering to the conditions for the positivity of at as in 
Nelson and Cao (1992) and a constant mean component fit =  //; V{£}, 
the conditional r quantile of yt is correctly specified by an AS-CAViaR 
process

v q
Qriyt)  — 9q-\-^  ]0jQT(yt - i )+(@p+j@p+g+j^- [y t - j  <  o]) 12/̂ —̂I (2 .11)

i= 1 j =1

with

00 — P  T  i

01 =  e  {1

= P jQ r{^)^ j  £ {1? •••»*?} 5 

p̂+g+j =  7 £  {lj •••> <?} •

For SAV-CAViaR, the result is the same, except that the asym­
metric terms 0p+q+j = j j  =  0, therefore linking SAV-CAViaR with 
Taylor’s (1986) and Schwert’s (1998) ‘Absolute-Value GARCH’ (AV-
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GARCH) model, in which

P Q

at = oj + 'Y^aidt-i +  Y f t i  • (2-12)
i=l j =1

An analogous result can obviously be established for the IGARCH- 
CAViaR model above, linking it in the same way as above directly to 
Bollerslev’s (1986) well-established GARCH model. When an asym­
metric term is introduced as in (2.9), again, a correspondence can be 
established in the same way as above to the ‘GJR-GARCH’ model 
by Glosten et al. (1993), thus prompting the name GJR-IGARCH- 
CAViaR4.

Incidentally, for the benefit of this chapter, having established the 
relationship between the model classes these theoretical parametric 
links allow for straight-forward Monte Carlo simulation studies: Data 
may be simulated via a parametric ARMA-GARCH-type model with 
e.g. a Gaussian error term, the corresponding CAViaR model can then 
be ‘estimated back’ and the estimated parameters checked against the 
assumed correct ones. We carry out such a study in section 2.6.

2.4 The Self-exciting Threshold CAViaR M odel

In basic applications, time series models are usually applied to data 
in affine, stationary, single-regime setups usually in order to facilitate 
estimation and meaningful statistical analysis. Empirical and theoret­
ical research, however, suggests that in certain settings this (often im­
plicit) modelling assumption might not be ideal to capture the highly

4As there are many other GARCH-type models (often including asymmetric ‘leverage terms’; 
popular choices axe inter alia Ding et al., 1993; Engle and Ng, 1993; Hentshel, 1995; Nelson, 1991), 
more corresponding CAViaR processes axe conceivable.
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varying dynamics observed in financial time series data. Especially 
in the case of (market) risk, recent theoretical findings suggest that 
endogenous self-exciting behavioural patterns play a significant role 
and should be incorporated in empirical models.

2.4.1 Endogenous Self-Reinforcing Risk

Stylised behavioural facts as well as theoretical research show that 
there are explosive, i.e. non-stationary patterns to be observed in fi­
nancial returns data and associated (market) risk: From a theoretical 
perspective, one avenue through which such endogenous risk that has 
been documented by Morris and Shin (1999), Danfelsson and Shin 
(2003) and Morris and Shin (2004), can arise within the financial sys­
tem are higher order coordination effects in the sense of Morris and 
Shin (1998). Loosely speaking, the mechanism at work at the creation 
of endogenous risk consists of a big enough initial ‘white noise’ shock 
creating amplification effects that “gather momentum from the en­
dogenous responses of the market participants themselves” (cf. Morris 
and Shin, 2004, p. 2): When asset prices fall below a certain “trig­
ger point” , market participants’ selling orders create selling pressure 
among other market participants, sparking further selling rounds and 
so on - leading to a downward spiral in asset prices without the need of 
any fundamental shocks driving the price development. However, as 
in Morris and Shin (2004), the ‘fallacy’ is eventually corrected, asset 
prices rebound and revert to fundamentals, resulting in v-shaped price 
paths. From a risk perspective, these patterns constitute a sudden, 
explosive build-up of risk and returns volatility feeding on themselves, 
followed by a collapse back to a ‘normal’ state of the world once critical 
benchmarks are passed.
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2.4.2 The Case for Self-exciting Non-linear Dynamics

The above suggests that affine, stationary single regime setups in em­
pirical risk modelling cannot be expected to capture the entirety of 
risk and return dynamics in financial markets. While this issue has 
been known for some time and is documented in theoretical research, 
the translation into an empirical model is far from trivial: As sug­
gested by the variety of modelling approaches in empirical research 
in different fields of finance and economics, there is no unique ‘cor­
rect’ empirical methodology to address issues of non-linearity. In the 
following, we provide an (non-exhaustive) overview of such empirical 
modelling approaches and highlight this chapter’s modelling choice for 
the issue of endogenous risk:

Generally speaking, while a stationary, single regime model setup 
might be sufficient in small samples over which the ‘state of the world’ 
can be assumed to be stable, there appears to be considerable evidence 
to suspect that (financial) time series data, especially when analysed 
over longer horizons, exhibit different regimes or structural breaks and 
therefore cannot be described by a single, stable process: This point 
is mirrored in early work by Chow (1960), Quandt (1960) and sub­
sequently Brown et al. (1975) who devise tests for structural breaks 
in simple linear regression models. Since then numerous studies have 
been undertaken on the estimation as well as on the testing for struc­
tural breaks in all kinds of econometric models and data, including 
time series, cross-sectional and multivariate models. While early work 
has focused on the testing of exogenously determined break points (of­
ten only in simple linear regressions), more recent research has picked 
up on the issue of the determination and testing of unknown change
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points in the model setup. A non-exhaustive list of papers in this area 
includes Hansen (1992), Andrews (1993), Bai (1994), Andrews et al.
(1996), Ghysels et al. (1997), Bai and Perron (1998), Bai et al. (1998), 
Bai (1999) as well as Bai and Perron (2003).

However, despite the added model and estimation complexity through 
the ‘endogenisation’ of break points, econometric modelling with struc­
tural breaks has an important shortcoming, in particular in the con­
text of time series: By definition, the ex-post estimation and analysis 
of structural break dates in a given data set is backward-looking and 
holds little informative value for forecasting and prediction. For exam­
ple, detecting two structural break dates in the autoregressive process 
governing the UK post-war consumer price index (CPI) inflation rate 
from 1947-1987 as in Bai and Perron (2003) does not help in forecast­
ing future structural breaks in the process5. Since a desired feature of 
the proposed SET-CAViaR model is forecastability based on past in­
formation, structural breaks do not appear to be an appropriate setup 
for this chapter.

A more suitable non-linear modelling choice in the light of forecasta­
bility might be to opt for an Markov-switching approach as pioneered 
by Goldfeld and Quandt (1973) and further developed by Hamilton 
(1989), who introduced an AR(1) unit root model in levels with a 
Markov-s witching trend, motivated by the idea of “formalising the 
statistical identification of turning points of a time series” . In the 
context of volatility modelling, Hamilton and Susmel (1994) consider 
a three-regime Markov-switching ARCH (dubbed SWARCH) model, 
again motivated by the fact that GARCH-type models imply very

5 Strictly speaking, this only holds if one rules out that structural breaks occur on a cyclical 
basis.



2.4. The Self-exciting Threshold CAViaR Model 39

high persistence in volatility over time, which they find is empirically 
contradicted by their poor forecasting performance for weekly NYSE 
return volatility from 1962-1987. They further argue that an ARCH 
model with a four-regime Markov-s witching scale is better suited to 
explain the empirically documented low persistence and provides a 
better fit to the data as well as better volatility forecasts. Given the 
documented close ties of CAViaR with GARCH models in the previous 
section one might therefore be led to believe that a Markov-switching 
approach might be the natural choice for a non-linear CAViaR model. 
Here, however, we opt against this approach for two specific reasons:

(i) As documented by Hamilton and Susmel (1994, cf. p. 317), 
autoregressive components cannot be modelled easily in a Markov- 
switching context, thus ruling out a wide range of interesting CAViaR 
models, including the ones presented above6.

(ii) In order to render estimation and statistical inference tractable, 
Markov-switching models are usually assumed to exhibit stationary 
behaviour both across and within regimes. While this is a standard as­
sumption, however, it may not be suitable for all situations, especially 
in the context of risk modelling. According to the above-mentioned 
theoretical research, at least over some domain, the behaviour of re­
turns and the corresponding risk cannot be expected to be stationary 
as it becomes endogenised and therefore explosive.

Furthermore, theoretical findings suggest that the evolvement of 
risk (volatility) and returns is governed by different regimes which are 
entered into once past returns or risk proxies pass certain thresholds:

From an econometric modelling point of view, this calls for a type
incorporating regime switching into an autoregressive structure results in a non-Markovian 

switching process for which estimation becomes intractable.
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of model similar to the ‘Self-exciting Threshold Autoregressive’ (SE- 
TAR) model class by Tong (1983, 1990). The SETAR model allows 
for explosive, non-stationary behaviour over a part the domain of 
the autoregressive variable while still maintaining desirable statisti­
cal tractability, including overall geometric ergodicity, as long as the 
so-called deterministic ‘skeleton’ of the model is ‘stable’ (cf. Tong, 
1990, and s. the following section). The following outlines our take on 
the SETAR model and presents the Self-exciting CAViaR model and 
its properties.

2.4.3 SET-C A V iaR

The SET-CAViaR model used in this chapter has the following general 
form:

D efinition 3 Qr(yt), the t -quantile at time t of a variable yt, follows 
an SET-CAViaR model if

Q r i v t ) =  J 2 i y t. de R j - K 0) +  +  I { ? t - 1;$ i, O )  ,
j'=l \  i=l /

l  */ yt-d  e  Rj. ; d e { l , . . . , t - l } ; R j = [r-Urj ) , j
0 otherwise

where Vdefl, =  "

1, 2,..., J  (J G N+ indicating the number of regimes) and —oo = rQ< 
r\ < ... < r j  = oo.

In analogy to the literature on SETAR models, d is called the delay 
parameter and the thresholds are denoted by rj. The above model is 
specified for J  regimes and thus requires the estimation of J  • (1 +  
p +  q) model parameters. If the thresholds and the delay parameter 
are to be estimated as well, this adds further J  parameters to be
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determined. The AS-CAViaR model in (2.7) in the simple specification 
with p = q = 1 for example would therefore require the estimation 
of ten parameters in a basic two-regime (J  = 2) setup. Clearly, with 
more regimes and more complex base model specifications, the number 
of parameters to be estimated can increase very quickly, which in the 
case of CAViaR models poses a problem since the estimation and 
identification of parameters is not as straight-forward as in the case of 
parametric (Q)ML estimation.

As the above suggests that a setup with two thresholds and three 
regimes, i.e. a setting with a normal, an explosive and a ‘calming’ 
regime, is apposite to model the dynamics of endogenous risk, there 
is clearly a need for a more parsimonious model specification.

Scaled SET-CAViaR with Endogenous Thresholds

In this chapter, the dynamics of endogenous risk are modelled by 
means of a three-regime scaled SET-CAViaR model: This amounts 
to employing either AS-CAViaR or IGARCH-CAViaR as a constant 
‘base’ quantile model, which is then ‘scaled’ according to the reigning 
regime. This way, one avoids having to estimate all base model pa­
rameters differently for all regimes. On the basis of AS-CAViaR the 
specification, dubbed SET-AS-CAViaR, looks as follows:

Qr(yi) =  • K(j) • Q fASE{yt), with
j=i

(  p \
Oo +  y^fl»Qr(2/t-i) +

i—1
Q BTASE{yt) =

y  ,(^p+j "I” @p+q+A[yt-j <  0]) \yt.-: 
V j=i /

(2.13)
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and

■r I i ^ d  [°’r i ) fo ri  =  1, j. it \Vt- i \  G R j
V-ile-R. =  { „ . > Rj = {  [n ,r2) for j  = 2 ,otherwise

[r2,oo) for j  = 3 

ri r 2 € R+; € K+;j  = 1, 2 ,3.

One notes that the regimes and thresholds are positioned symmet­
rically around 0, further facilitating parsimonious estimation. The 
asymmetry in the reaction of quantiles to past returns will be ‘picked 
up’ by the asymmetry terms with parameters 6p+q+j,j = 1, q in the 
base model. Furthermore, the delay parameter is set to 1 to reflect 
the influence of the immediate returns history on risk as suggested by 
the literature on endogenous risk.

In order to facilitate the identification of the parameters kW  is 
normalised to 1. Obviously, in the light of endogenous risk, one would 
expect and < 1. This way, the quantile, sc. risk,
evolvement would be ‘explosive’ for absolute lagged returns between 
r\ and r2 and enter into a ‘calming’ regime for absolute lagged returns 
passing the larger (in absolute terms) threshold r 2.

At the estimation stage, one may choose to estimate the scales 
freely in an unrestricted model and then check the results against the 
theoretically desirable restrictions. Alternatively, the restrictions may 
be enforced during the MCMC estimation routine outlined in the next 
section. Evidently, an unrestricted estimation producing ‘sensible’ 
results is to be preferred to a restricted routine.

In this chapter, as mentioned above, we also estimate the thresholds 
7T and 7*2, instead of determining them exogenously as is for example 
commonplace in a lot of the literature on regime breaks. The MCMC
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LTE routine used in this chapter allows for the endogenous determi­
nation of the thresholds ‘in one go’ and can be set up, as with other 
restrictions, to ensure their staggered order. Contrary to the ‘desir-

a restriction on the thresholds, i.e. r\ < r<i, at the estimation stage to

the model7.
Due to the semi-parametric nature of CAViaR models, the analysis 

of statistical properties such as stationarity is not very meaningful for 
the above non-linear threshold model. It is however instructive (also 
given the analysis in section 2.3) to study a ‘Self-exciting Threshold’ 
GARCH specification (SET-GARCH) from which (however not exclu­
sively) the above SET-AS-CAViaR model obtains:

able’ restrictions on and k^  above, it is necessary to enforce

avoid ‘cycling’ of the estimation algorithm and to be able to identify

yt = crt£ti with e* ~  z.z.d., Vt G {0,..., T}  and
3

°t =  • K<J) • af ASE) whereby (2.14)

°? ASE = )(0j +  l A v t - j  < 0]) Iyt-j

and

1 i i \ y t- i \ € R j  
0 otherwise

7For details on the estimation of the thresholds please consult appendix 2.5.1 below. Further 
information on the dynamic enforcement of parameter restrictions can be found in section 2.7.2.
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The parameters of the base volatility model crEASE map into the
base model parameters of the SET-CAViaR model above according 
to Corollary 2. Following Lee and Shin (2005, p. 28), the base volatil­
ity model is strictly stationary if

The scale parameters and are the same in both the GARCH
and CAViaR representation. Thus, as long as the above theoretical

the base volatility model is stationary in the sense of Lee and Shin 
(2005), the above SET-GARCH specification has got a ‘stable’ deter­
ministic skeleton and is geometrically ergodic. The proof of this claim 
is almost identical to Zhang et al. (2001, p. 203) and is therefore 
omitted here. Intuitively, however, it can be seen that the volatility 
process in (2.14) can only become wholly explosive through the sym­
metrical ‘top’ regime R3. However, with a stationary base volatility 
model aEASE and < 1, this is prevented from happening.

Obviously, an SET-CAViaR model with endogenous thresholds can 
also be defined on the basis of GJR-IGARCH-CAViaR, which would

< 1. (2.15)

restrictions on the scales, i.e. =  1,/c^  > < 1, hold and



2.4. The Self-exciting Threshold CAViaR Model 45

look as follows:

3

QAyt)  =  X X - i s - r ,  • • Q?ASE(yt),w i th
i=i

Q r ASE{yt) =  (1 -  2 • I[t <  0.5]) •

\
00 +  J20i(Q T(yt- iW  +  'S^.(0p+j +  0p+q+j^[yt-j < o])vt-j

i=l j =1

(2.16)

and

2 ^ p. I l°>r i ) f°r J =  1
3 i R ]=  { [ n ,r2) for j  =  2 ,

1 if € #
0 otherwise

]r2,oo) for j  =  3 

r i /2  € £ K+>:? =  l,2,3;0fc for Vfc,

Again, this SET-CAViaR model, which from hereon will be dubbed 
SET-GJR-IGARCH-CAViaR can be linked in the simple, straight­
forward way presented in section 2.3 to the following SET-GARCH 
representation:

yt = (Jt£t-> with St ~  i.i.d. Vt G {0,..., T}  and

at = ^ 2  \U eR j ■ k(j) ■ v? ASE, whereby (2.17)
3= 1

{af ASEf  =  ( u j  +  J 2 a ia t - i  +  J 2 ( P j  +  l A V t - j  <  0])2/t2- d  ,
V i=i j =i /
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and

1 if Vt-x € R j
[0, n )  for j  = 1

, R j = <  [ri,r2) for j  =  2
[r2,oo) for j  = 3

[  [ o , n )

\  In , To
0 otherwise

ri,r2 e  R+;k (j) € R +, j  =  1,2,3-,u>,ak,(3i,^m for Vfc,Z,m

The same properties as above apply, except that the volatility base 

model for a ^ASE in this case is stationary if

The SET-GARCH model is geometrically ergodic by the same virtues

As mentioned above, autoregressive quantile models like CAViaR are 
difficult to estimate. This stems from the fact that the objective 
function r; N] in the minimisation problem (2.2) can be (i)
not linear, is (ii) not everywhere convex, thus involving several lo­
cal minima and maxima and (iii) is not everywhere differentiable. 
Therefore, standard gradient-based optimisation routines do not ap­
ply in a straight-forward way; a way to recover the applicability of 
gradient-based methods has been proposed by Komunjer (2005), who 
rewrites equation (2.2) as a QML estimation characterisation with a 
density from the ‘tick-exponential’ family and transforms it into the

< 1. (2.18)

as above if the same parameter restrictions on and apply
and the base volatility model is stationary.

2.5 MCMC LTE
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well-known ‘minimax’ problem. While recovering the differentiability 
property, her approach still does not mitigate the non-convexity prob­
lem, thus running the risk of becoming ‘trapped’ in local extrema8. 
Furthermore, despite employing the linear CAViaR processes as base 
models, incorporating endogenous thresholds as parameters in SET- 
CAViaR ‘injects’ non-linearity and further non-differentiability into 
the objective function. A reconciliation of our approach with the char­
acterisation proposed by Komunjer (2005) therefore does not appear 
feasible.

Even non-gradient-based methods such as simplex routines need 
to be considered problematic, because, also in their case, the algo­
rithm might get stuck in a local extremum and has been shown to 
exhibit slow convergence, especially in the case of higher argument 
dimensions9. The same reservations, as well as documented problems 
surrounding stopping criteria and the rank deficiency of the non-linear 
quantile regression Jacobians also cloud the feasibility of the interior 
point algorithm proposed by Koenker and Park (1996) for practical 
use.

The most promising class of methods for complicated optimisation 
problems such as the one at hand are simulation-based routines such 
as simulated annealing, MCMC methods or the ‘Differential Evolu­
tionary Genetic Algorithm’ (DEGA) by Price and Storn (1997) - a 
method based on the biological principles of reproduction and mu­
tation. These routines have the advantage that they stochastically 
explore the parameter space, thereby avoiding the ‘local extremum

8This might of course be alleviated by starting the routine off with several starting values, 
thereby however increasing processing time considerably.

9A good treatment of the relative merits of various optimization methods can be found e.g. in 
(Judd, 1998).
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trap ’ and are not reliant on gradients, which allows for the accom­
modation of non-linear and not everywhere differentiable objective 
functions. This feature also makes it feasible to introduce thresholds 
as parameters of the model as in this chapter.

Generally speaking, the DEGA and simulated annealing work by 
simulating sequences of parameter vector estimates (‘parameter candi­
date vectors’) that ultimately converge to a parameter estimate 0 = 0*, 
which minimises the objective function. MCMC methods on the other 
hand take an ‘indirect route’ by forming a Markov chain of parameter 
vector estimates §(°\ ..., 0^  such that the sequence of these parameter 
vector candidates converges to the posterior distribution of the true 
0, i.e. to /(0 |y ), where y  denotes the data. One then proceeds by 
then taking the mean, median or mode of this empirical distribution, 
depending on the loss function used10.

A fairly recent development, the DEGA seems to be a promising 
algorithm in many practical applications as documented by Price and 
Storn (1997), but has not (yet) reached much prominence in econo­
metrics. This might be due to the fact that statistical convergence 
and asymptotic properties have not yet been established (cf. Price 
and Storn, 1997, p. 11).

In this chapter, we therefore implement an estimation procedure 
that closely follows the MCMC LTE method developed by Chernozhukov 
and Hong (2003) and combines it with features taken from simulated 
annealing. Extending Chernozhukov and Hong (2003), the proposed 
algorithm implements features for the ‘cooling’ (lowering) of a ‘tem­
perature’ parameter and therefore allows for the tuning of the Markov 
Chain to achieve faster convergence in finite time The reason for tak-

10 An extensive overview of MCMC methodology can be found e.g. in Robert and Casella (2004).
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ing this route is that this implementation of the MCMC LTE has close 
theoretical ties with Bayesian econometrics, representing a more intu­
itive approach for econometricians and allows for convergence of the 
chain of parameter candidate vectors to the global optimum.

2.5.1 MCMC LTE Details

The following MCMC LTE scheme used in this chapter is based on 
Chernozhukov and Hong (2003): Given a broadly specified objective 
function Cn{6\ y) with 0 E 0  C that is to be minimised, the ‘quasi ’ 
posterior density is defined as

P»(% ) =  (  6 ~ ~ ~ |  00 e " [ ^ ] 7 r ( 0 ) ,  (2-19)
( J e e L t Jtt(0 )d0 j

where tt(9) > 0 is the continuous prior density function of 0 and n is 
the sample size. T  E M+is called the ‘temperature’ parameter, which 
Chernozhukov and Hong (2003) and most MCMC applications set to 
unity. This parameter simply scales the objective function without 
harming the results.

Obviously, the quasi posterior density is a true probability distri­
bution density in the probability theoretical sense; however, it is in 
general not a proper Bayesian posterior as it may not incorporate 
conditional data densities (likelihood functions).

Given a loss function An[u], we can now construct an estimator 6 
by deriving

0 =  argmin[Qn(£|y)], (2 .20)
£<e ©
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where

e - m {e) \ de• (2-21)
f 0 e Tr̂ Ô dO J

Depending on the choice of the loss function An[u], the programme in 
(2 .20) will e.g. yield the quasi posterior mean, median or marginal 
quantiles if An[u] is the squared loss, absolute deviation or check loss 
function respectively. Clearly, the posterior mode is also an interesting 
metric.

In the case of the posterior mean for example, with An[u] =  {y/n\i)2, 
problem (2.20) yields

§ =  f  0pn{e\y)de. (2.22)
©

0 can now readily be obtained via MCMC methods, i.e. by sampling a
sequence ..., 9 ^  from pn($|y) and then taking the sample average

c
9 = C~l Analogous procedures also hold for the posterior me-

i —1
dian and marginal quant iles, always involving drawing a sample from 
the quasi posterior density. In practice, the sampling is accomplished 
be means of the Metropolis-Hastings (MH) algorithm, first devised 
by Metropolis et al. (1953) and generalised by Hastings (1970). The 
algorithm works by creating a Markov chain of candidate vectors 0 ^  
-i- f{6 ), by sampling from instrumental density q{61£), from which 
it is easier to sample from than from the true f(9).  Is is especially 
useful in those cases, in which sampling from f (0)  would in practice
be infeasible. The requirement for this procedure to work is that the
ratio needs to be known up to a constant M  independent of £.

fine ly ) -  j
0
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In the given case, the density to simulate from is the quasi posterior
_ [ C r ^ y l \

in (2.19) which is known up to a constant J@ e tt(Q)dQ. We thus
_ [ £ n ( p y l \

set f (6)  oc e 7r(6). The Metropolis-Hastings algorithm in the
given case now looks as follows:

I. Choose a starting value §(°\
II. Generate £ from q{£ |0 ^ ), where j  = 0 , C.

, in I £ with probability P(£) =  p(6^ \  £)
III. Update 6̂ +1) = { \  \

9 ^  with probability P(0 f̂l) =  1 — p{0^\£)  

where the ‘acceptance probability’ p(x, y) is

P K y ) - i n f ( ê l ^ y k W y ) . l } .  P-23)
[ e  J7r(x)9(y|x) J

Typically, as in the simpler original random walk version of the Metropo­
lis algorithm, the instrumental distribution used is symmetric, i.e. 
q(x |y) =  q(y |x) =  ^ ( |x  — y|), with 'ip taken to be a symmetric density 
around 0, typically Gaussian or Cauchy. In this case, one has

* '  T O T  w  1
Furthermore, assuming a non-dogmatic ‘flat’ prior of the sort 7r(y) =  
7r(x) =  c, where c is a positive constant, one obtains

C r£n(x)-£n(y)j >
P ( x , y ) = i n f | e  , l j ,  (2.24)

which is also the setup used in this chapter.
The theoretical convergence properties of the MH algorithm and the
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MCMC LT estimator are well established, even for non-convex and not 
everywhere differentiable objective functions (cf. Chernozhukov and 
Hong, 2003; Robert and Casella, 2004). However, in practice, with 
strongly non-linear models and objective functions as in this chap­
ter, convergence of the above algorithm in finite time is problematic. 
Luckily, in such a situation, ‘cooling’ the temperature parameter is 
a promising measure to achieve faster convergence. The next section 
lays out the details of this procedure.

2.5.2 C ooling th e  ‘T em p era tu re ’

In their paper, Metropolis et al. (1953) also provide a way to use the 
temperature parameter introduced above. The method builds on the 
following general result:

P ro p o sitio n  4 I f  g{9) is a real-valued function with 6 G 0  C Rp and 
3 a unique 6* such that

0*=argmax[g(0)], it follows for T  £ R+

r /) sffl 7/j r  sM

lim —  =  lim 16> 6 J  dO = 6*,
™  f e e ^ d e  r - ° J e  f e e ^ d 0

if g{9) is continuous at 6*.

P roof. Proposition 4 is based on the ‘Laplace’ approximation of g(0). 
See Robert and Casella (2004), pp. 188-189 for a sketch of the proof. 
More rigorous treatments include Pincus (1968), Tierney and Kadane 
(1986) and Tierney et al. (1989). ■

The above Proposition mirrors a result by Hwang (1980), whereby 
the ‘Gibbs measure’ e~^ exhibits T-convergence to a uniform dis­
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tribution on the set of global maxima of g(0). One now notes the 
resemblance of the ‘pseudo measure’

9 ( 0 )

M *) =  ~T~M-ra (2-25)
J e e T dO

to the quasi posterior in (2.19), prompting the following procedure: 
Firstly, without loss of generality, one may set g(6) — —Cn{9\ y )11. 

Then, ‘cooling the temperature’12 T  throughout the run of the MCMC 
chain above, i.e. gradually lowering T^i) for moves i E {1,...6} such 
that 7^1) > 7^2) > ... > T^fr), lim —> ooT^b) —► 0 , and usingm

_ j~£n(g;y) j

P n,r«(% ) =  < *  > (2.26)r£n(g;y)l
/ 0 e I- ^(i) id6

as the now T^z)-varying quasi posterior13 in the algorithm, yields a 
sequence of parameter candidate vectors that converge to

Obviously, the ‘appropriate’ cooling of the temperature plays an 
important role for the convergence of the algorithm: If T®  is lowered 
too slowly, convergence will be slow. If it is lowered to quickly, one 
runs the risk of becoming trapped in a local maximum or worse, ending 
up with no extremum point at all.

n A maximisation problem max {C(4>)} is equivalent to a mininisation problem m in{— C{4>)}.
</>GR <j>&SL

12This procedure resembles simulated annealing, which has its roots in the engineering sciences: 
In metallurgy, a metal is hardened by slowly decreasing (annealing) the temperature in which it is 
forged. The negative of the function &(£) to be maximized, i.e. w(£) =  — &(£), which is then to be 
minimised, is called energy.

13A result in analogy to proposition 4 can also be derived for the ‘full’ log likelihood case,
f 0eq ll -̂e^n(0)ddwhereby lim f  ,nL n =  f°r a continuous log likelihood 1(9|y) with data y, a positive7" >o Jq e (

prior density 7r(6) and 9* being the unique maximun likelihood estimator (cf. Tierney et al., 1989). 
This paper opts for the simpler implemenation of a flat, unformative prior in order to express on 
agnostic view about prior distributions.
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There have been numerous attempts to determine the optimal speed 
of decrease, notably one by Hjek (1988) who establishes that the op­
timal = S /logz, for i G {l,...fr} and ^  > £, with £ being a 
purely theoretical quantity that depends on the sets of global and lo­
cal maxima and cannot be determined in practice. This result is thus 
infeasible to be implemented, prompting the use of more ‘ad hoc’ rules 
such as a logarithmic decrease with T®  = 7 / log i with 7  > 0 , or an 
exponential decrease in a, i.e. T®  = ct%0To, where 0 < do < 1 and 
% > 0 are usually calibrated to ensure convergence.

We implement the latter cooling rule for the initial b moves, the 
‘tuning phase’, during which the temperature is lowered according to 
a cooling schedule after every TOB moves until the chain has stabilised. 
After the tuning phase the chain then runs freely with the cooled tem­
perature value for another m  moves, from which parameter estimates 
are obtained using the posterior mean and mode; details regarding the 
choice of ao, To, the cooling schedule 9103 during the tuning phase as 
well as the construction of parameter estimates are laid out in section 
2.7.2.

Obviously, it is quite crucial to determine when to end the tun­
ing phase of the chain in order to avoid cooling the temperature too 
much and thus producing a degenerate chain. The next section con­
tains an heuristic rule to determine 6, i.e. when to stop cooling the 
temperature.

2.5.3 M onito ring  C hain  P erfo rm ance

The MH algorithm is known to be a powerful instrument for global 
optimisation. However, there exist a number of drawbacks that one 
needs to be aware of when using it (the following statements pertain
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to the random walk form):

- If the target distribution (in this case the quasi posterior) and the in­
strumental distribution (which is typically Gaussian) are strongly 
misaligned, many new draws £ will be rejected, thus resulting in 
a lot of ‘waste’.

- If the instrumental distribution is too ‘large’ (in terms of support
or, say, variance), draws will often fall in the tail and be rejected, 
wasting many draws £ without improving the probability of vis­
iting all the modes (if there are several) of the objective function. 
In this case the acceptance rate is low.

- If the instrumental distribution is too ‘tight’, draws will be too close
too each other and convergence is bound to be slow, albeit the 
acceptance rate is high. In the situation of a multimodal ob­
jective function in which modes that are separated by areas of 
very low probability, the identification of global extrema might 
be problematic in this case, as ‘jumps’ from one mode to another 
are very unlikely, thus leaving the risk of becoming trapped in 
local extrema.

The acceptance rate is thus a paramount metric in assessing the 
performance of the algorithm. Based on the above, it needs to be 
noted that for the random walk MH algorithm a high acceptance rate 
is, counter-intuitively, not desirable. As a heuristic rule Roberts et al.
(1997) recommend to use instrumental distributions with an accep­
tance rate of 0.5 for models with a parameter dimension of up to 2 and
0.25 for models of higher dimension. They also show that a volatility 
of 2.4 is the optimal choice for a Gaussian instrumental distribution
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in case of a Gaussian Af(0, cr) target distribution, corresponding to a 
acceptance rate of 0.44.

In the given case the target is not Gaussian, yet monitoring the 
acceptance rate is still important: This chapter takes the route of al­
gorithmic calibration, introduced by Muller (1991), albeit in a simpli­
fied fashion: The acceptance rate is monitored throughout the tuning 
phase of the chain (b moves) so to adjust the volatility of the Gaus­
sian instrumental distribution whenever the acceptance rate falls out 
of bounds around 0.25 in accordance with the argument above. There­
after, once the chain has stabilised, it is allowed to run freely for m  
moves in order to produce the parameter estimates.

There are appears to be no definitive hard decision criterion in 
the literature by which to determine when to stop tuning the chain, 
i.e. cooling the temperature and calibrating the instrumental distri­
bution. However, the implementation of the MCMC LTE algorithm in 
this chapter will produce highly autocorrelated parameter candidate 
vectors as —> 0 and in the limit always the same one as no draws
will ever be accepted. Given this property, we propose to use the 
following heuristic rule: Following an argument analogous to Gallant 
and Tauchen (2008, in particular pp. 31-45), a good point at which 
to stop tuning the chain appears to be one at which the autocorrela­
tion functions of the parameter candidate draws start to flatten and 
rise significantly. It might be argued that at this point the chain has 
gained traction and needs no further cooling and tuning.

The concrete implementation of this rule in this chapter looks as 
follows: At various points during the tuning phase of the chain, non­
tuned posterior sequences with the latest temperature and instrumen­
tal distribution parameterisation are ‘branched out’ and an average au­
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tocorrelation function across all the model parameters is constructed. 
When this average autocorrelation function starts to list itself up and 
flatten out, the tuning phase is ended. Obviously, this heuristic crite­
rion requires individual judgement and a ‘feel’ for the model at hand 
and is therefore far from perfect. However, in the context of this chap­
ter and given the lack of a hard decision rule, it appears to perform 
quite well.

2.5.4 S ta tis tica l Inference

As with the estimation of CAViaR models, statistical inference on 
the estimated parameters is difficult. Due to the analytical non­
differentiability of the objective function, the construction of ‘robust’ 
standard errors based on the ‘tick-exponential’ density QML estima­
tion interpretation of quantile (auto-)regression as suggested by Ko- 
munjer (2005) is not straight-forward in practice.

Moreover, the inclusion of thresholds in the proposed SET-CAViaR 
model ‘injects’ further non-linearity and thus complicates analysis 
even more: The experience gathered in statistical inference on CAViaR 
models for our purposes shows that in particular the estimation of 
the inverse Hessian matrix needed for the construction of the ‘sand­
wich’ robust covariance matrix produces ambiguous, unstable results 
already in a simple CAViaR setup without thresholds. This is due to 
the need for numerical procedures in order to approximate the Hes­
sian, which, in combination with the ‘kinked’ nature of the objective 
function, results in high-varying estimates of the second derivatives 
depending on the choice of numerical differentiation routine14 and its

14A comprehensive overview of methods that can be used for numerical differentiation can be 
found in Press et al. (1992).
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parameterisation.
Furthermore, treating thresholds as model parameters and estimat­

ing them endogenously does not permit standard statistical inference: 
As pointed out by Hansen (1997, 2000) for the case of threshold esti­
mation in a linear regression context (including threshold autoregres­
sive (TAR) models), the asymptotic distribution of the threshold es­
timates is non-standard; for more complicated threshold model struc­
tures the statistical theory of threshold estimation has not even been 
fully developed yet. In the case of the SET-CAViaR model and its 
semi-parametric quantile estimation setting, it is thus to be expected 
that statistical inference on the threshold estimates is equally if not 
actually more difficult. Obviously, this circumstance also aggravates 
standard joint statistical inference on the other model parameters, as 
for example in the case of the estimation of a covariance matrix.

This chapter therefore adopts the route of statistical inference via 
the construction of ‘Laplace-type’ (LT) confidence intervals as pro­
posed by Chernozhukov and Hong (2003): After tuning the chain for 
b moves and achieving convergence for the parameter vector, the |  
and (1 — f ) empirical quantiles of the last m  parameter vector can­
didates §(b+1\  ..., from the MCMC sequence are used to form
the (1 — a) confidence interval for the parameter estimate vector 6. 
Naturally, statistical inference via confidence intervals does not allow 
for the testing of hypotheses or parameter restrictions. In the given 
circumstances however, they do provide a good empirical measure by 
which to judge the meaningfulness of the parameter estimates.

Judging the goodness of model fit across specifications is aided 
by the AIC and BIC information criteria, which in this chapter are 
constructed from the objective function evaluated at the final par am-
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eter vector estimate. This procedure, again, builds on Komunjer’s 
(2005) finding that quantile (auto)regression via the minimisation of 
Koenker and Bassett’s (1978) objective function in (2.1) is equivalent 
to the QML estimation of a non-standard ‘tick-exponential’ likelihood 
function. Therefore, the objective function evaluated at the final pa­
rameter vector can be seen as the likelihood estimate, from which the 
above information criteria may be calculated.

2.6 A M onte Carlo Study

As indicated above, this section provides a Monte Carlo study to es­
tablish the properties of the SET-CAViaR model and the MCMC LTE 
routine when put to use. The aim of this section is in particular to 
establish the precision and usefulness of the estimation method for dif­
ferent data series containing various degrees of endogenous risk-type, 
explosive data elements: Loosely speaking and ceteris paribus, one 
should for example expect that more ‘extreme’ explosive behaviour -
i.e. larger scales k - should be easier and more clearly identifiable than 
only mild non-linear patterns. Equally, thresholds rq and rq that lie 
‘further out’ should be harder to estimate simply due to the fact that 
there are less data points in the extreme ends of the returns spectrum 
available in order to ‘tie down’ the threshold estimates precisely.

The route taken in this section is as follows: First, financial return 
series are simulated via the following self-exciting threshold GARCH 
specification, which builds on Zakoan’s (1994) TGARCH model in its 
(1,1) form as the volatility base model aEASE and uses a standard
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Gaussian error term:

yt =  <Jt£t, with et ~  i.i.d. A/^O, 1), G { 0 , T} and
(2.27a)

at = • o?ASE +  • « • ^Sj4SB. whereby
(2.27b)

aBASE _  +  a<T( +  (/J +  Jl[yt_x < 0]) 12/t-ii), (2.27c)

and

f [0 ,r i)  for j  = 1
R j  =  I [ri, r 2) for j  =  2 , r i5r2 G R+; k; G R+.

y [r2joo) for 7 =  3

To add realism, the parameters of the volatility base model in (2.27c)
are calibrated to values obtained from an estimation of the TGARCH (1,1) 
version

at = J  +  OL<rt +  0 {\yt-i\ ~  l 'y t- i)  (2.28)

against the 1980-1992 CRSP tape IBM holding returns. The results 
of this estimation can be found in table 2.1, which for comparison also 
includes the estimation results for the 1980-2005 CRSP IBM holding 
returns.

As shown in section 1, the estimates for u \  a \  0  and 0  for the 1980- 
1992 period correspond to the parameters in (2.27c) in the following
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Table 2.1: TGARCH(1,1) parameter estimates

This table reports parameter estimates of a TG ARCH (1,1) model of the form a EASE =  u  +a'crt +  
(3'(\yt - i  \ — 7  %/t-i) against daily CRSP IBM holding returns from 1980-1992 and 1980-2005. The 
estimation is carried out using respectively 3287 and 6563 observations in total. P-values are based 
on robust standard error estimates.

Parameter Period (Beginning-End)
1980-1992 1980-2005

Estimate P-value Estimate P-value
/

UJ 0.038 0.007 0.015 0.003/
a 0.923 0.017 0.939 0.000
$ 0.067 0.001 0.071 0.000/
7 0.462 0.000 0.456 0.000

way:

uj — uj = 0.038 

a = a  =  0.923 

(3 = 0' — /?V =  0.036 

7 =  f3‘V  =  0.062.

Given (2.15), a single-regime TGARCH(1,1) of the sort in (2.27c) with 
the above parameter values is strictly stationary, which would not 
hold for a model parameterised with the estimates for the 1980-2005 
period15.

The calibrated (stationary) volatility base model is then used to 
simulate return series for various combinations of R 2 and k, with

R2 = [r i,r2) e  {[1.0,2.0), [2.0,3.0),..., [6.0, 7.0)} , and 

k, G {1.5,2.0,2.5,..., 6.0}.

15Since a stationary base volatility process is needed to allow for ‘controlled explosive’ behaviour 
through the scaling with k between thresholds r \  and 7*2 while still preserving overall ‘skeleton’ 
stability, the parameters estimates obtained with the 1980-2005 period are not deemed feasible in 
this context.
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Figure 2.1: S im ulated  returns using an S E T -G A R C H  m odel

This figure shows various simulated return series of length 5000 using an SET-GARCH model on 
with a TGARCH(1,1) base volatility process. The figure shows 6 different parameter combinations 
for threshold ranges and scale.

The set from which to choose R 2 contains threshold intervals reflecting 
ranges in percentage points within which lagged absolute returns need 
to lie in order to trigger the explosive regime. In this state of the world, 
the volatility process is self-exciting, which is modelled by an upscaled 
base process, with scales ranging from 1.5 to 6.0.

For each combination of R 2 and ac, 20 return series of length T  = 
5000 are simulated. Figure 2.1 shows typical simulated series for 
various combinations of the scale parameters ac and explosive regime 
threshold intervals R 2 .

The simulated series are then taken as data input to estimate the
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Table 2.2: Parameter linkages SET-CAViaR

This table shows the correspondence of parameters of a Gaussian SET-GARCH with those of an 
SET-CAViaR model for the 95% VaR (i.e. for 5% quantile with r =  0.05). QckosC5) denotes the 
5% quantile of a standard Normal distribution.

SET-GARCH
Coefficient

SET-CAViaR
Coefficient Corresponding Value

u #0 Qo.osi6) ' w = —1-645 • uj
a 01 Qo.Qbi£) ’ a = —l-645 • a
(3 02 (3
7 03 Qo.os(£) '7 = -1.645-w
n ri ri
T2 T2 T2
K K K

following SET-CAViaR model on the basis an AS-CAViaR(l,l) base 
model for the 5% quantile, i.e. for r  =  0.05, thus corresponding to 
the dynamics of the 95% VaR, a metric widely used in the financial 
industry:

Qo.osivt) =^\vt-i \e(RiURa)  * Q om E(yt) +

I|yt_i|ei?2 • K • Qo.o£E(yt), with (2.29)

Qo.0 5 E(yt) = ($0 +  01<9 o.O5(j/t-l) +  (02 +  03l[?/t—1 < 0]) IJ/i—11) (2.30) 

and

[0 ,rr) for j  = \
Rj — < [ri i r2) f°r j  = 2 , n  r2 G M+; ft G R+. 

[r2,oo) for j  =  3

In the light of the analysis of section 2.3, the parameters of the SET- 
CAViaR model and the Gaussian SET-GARCH model above are linked 
as displayed in table 2.2.

The aim of the Monte Carlo study is to exploit the theoretical
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relationship between the model parameters and check the obtained 
values against the theoretically correct ones. To ease calculation time 
required for the estimation of the model for 20 • 10 • 6 =  1200 data 
series16 of length 5000 each in the Monte Carlo study only the asym­
metry parameter 7 , the scale parameter k and the thresholds 77 and 
7*2 are estimated, whereas a;, a  and (3 are fixed to their theoretically 
correct values during the estimation. This route is motivated by our 
auxiliary empirical finding (not documented here) that the estima­
tion of SET-CAViaR models produces fairly accurate estimates of the 
latter model parameters whereas the ‘non-linearity’ parameters 7 , k, 
and the thresholds tend to be estimated less precisely and are thus of 
greater interest.

Once the parameter estimates have been obtained for all data series 
and across all threshold-scale combinations17, the average of the 20 

estimates for every parameter in each category is calculated. This 
average estimate is then compared to the theoretically correct value 
according to table 2 and, based on the deviation from the correct 
value, each threshold-scale category receives an aggregate error score 
calculated in the following way:

E r r S c o r e =
100

\ la v ~ l\  \  
I ̂ av ^ |
h,av -  n  

\  \h,av -  r2\ )

T
|7-M \  

-1K

\
1
-1

(2.31)

J

where 7av, kav, r\,av and r2,av are the mean parameter estimates for 
each R 2, K-category. The proposed error score metric thus constitutes

16This number stems from 20 return series for all combinations of 10 threshold intervals and 5 
scale parameters values.

17For details on the concrete implementation of the estimation algorithm refer to section 2.7.2.
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Table 2.3: E r r S c o r e ^ 2 for different scale/threshold combinations

The table shows the E rrS core^ 2 metric generated from estimating an SET-CAViaR model on 
the basis of a simple AS-CAViaR process against several simulated dataseries generated with an 
associated SET-GARCH model. The E rrS core^ 2 is computed from 20 dataseries estimation runs 
with r =  0.05 in each scale/threshold range («/i?2) combination for k G {1.5,2.0,2.5,..., 6.0} and 
R 2 e  {[1.0,2.0), [2.0,3.0),...,[6.0,7.0)}

Scale
K

Threshold range
[1.0-2.0) [2.0-3.0) [3.0-4.0) [4.0-5.0) [5.0-6.0) [6.0-7.0)

1.5 14.243 3.360 3.409 6.245 12.214 19.718
2.0 0.840 15.248 9.345 3.042 3.575 37.448
2.5 0.713 3.762 4.321 7.409 3.719 10.002
3.0 3.767 7.231 4.056 15.591 2.849 7.811
3.5 3.175 1.850 3.397 12.897 1.885 9.581
4.0 0.814 3.222 3.453 17.922 15.065 2.301
4.5 3.119 3.669 9.787 7.788 3.061 14.914
5.0 3.697 2.608 3.622 21.095 6.084 13.984
5.5 1.230 0.729 10.244 14.425 4.151 11.197
6.0 1.085 2.652 4.328 2.902 8.636 6.762

the average absolute percentage deviation of the estimates from the 
correct values.

The results of the Monte Carlo study are shown in table 2.3 and 
graphically in figure 2.2:

For each R 2 , ^-category the ErrScore^ 2 is plotted against R 2 and 
k. It can be seen that, in general, the average percentage deviation 
is small for low interval thresholds with high scale values and vice 
versa, as expected. Moreover, the E r r S c o r e generally increases with 
magnitude of the thresholds and is also quite high for low scale values. 
The latter can be interpreted as a consequence of the fact the low scale 
values k do not result in very ‘marked’ return patterns, i.e. not many 
spikes and poignant explosive patterns, and are thus harder to pin 
down exactly.

For the increase in the average percentage deviation along with
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Threshold range

Figure 2.2: E r r S c o r e ^ 2 surface plot

This plot displays the ErrScore^2 statistic computed from 20 estimates of the SET-CAViaR 
model in (2.30) for each scale/threshold range (k / R 2) combination. The scale k starts at 1.5 
and is increased in steps of 0.5 to 6.0, i.e. k € {1.5,2.0,2.5,..., 6.0}, and threshold ranges are 
R2 € {[1.0,2.0), [2.0,3.0),..., [6.0,7.0)}.

higher threshold magnitudes a different argument is apposite: Since 
higher thresholds in this setting mean that observations in the ex­
plosive regime are relatively scarce compared to data generated with 
low threshold levels, the precise estimation of scales and thresholds is 
comparatively harder. In the extreme, as evident from ErrScore^ 2 

being the highest for the combination of the highest threshold interval 
R2 = [6.0, 7.0) with the lowest scale n = 1.5, the thresholds can be ‘too 
high’, which in combination with a low scale results in the explosive 
regime being visited only very scarcely and possibly not at all.

Indeed, although not reported here, the high E r r S c o r e in this
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combination category is mainly due to a gross misestimation of the 
threshold levels. Along the same lines as above, as a consequence, an 
increase in the scale on high thresholds levels eases the identification 
of the threshold and scale parameters, thereby reducing E rr Score^2, 
as can be seen in figure 2 .2.

2.7 Empirical Application

In this section, SET-CAViaR models are estimated with 1980-2005 
CRSP IBM holding returns. We carry out the estimation for realistic 
and sensible Value-at-Risk significance levels of 95% and 99%, corre­
sponding to CAViaR models with r  =  0.01 and r  =  0.05 respectively. 
First, we provide an account of that data used in the estimation.

2.7.1 D ata Description

Given the insights from the Monte Carlo section above, to facilitate 
‘clean’ estimation one ideally needs a dataset that besides ‘normal’ 
trading activity returns also includes sequences of extreme (negative) 
returns in order to cleanly identify the model parameters for realistic 
and sensible Value-at-Risk significance levels.

The financial returns data used in this chapter are the CRSP tape 
IBM holding returns from the beginning of January 1980 to the end 
of December 2005, with a total of 6563 observations.

The IBM share constitutes a very liquid and actively traded security 
for which a long history of holding returns data is available without 
undesirable data characteristics such share class changes or frequent 
merger effects. Further, given the high level of trading activity and 
liquidity in the stock, endogenous risk or herding effects should be
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identifiable more easily and cleanly than in securities with less trad­
ing activity, which usually exhibit more volatility and risk and thus 
less marked build-ups of extreme returns to start with. It is also to 
be expected that the proportion of ‘informed’ traders that move mar­
kets solely based on fundamentals and therefore limit the potential for 
endogenous risk or herding effects as proposed in the theoretical liter­
ature on market microstructure18 is much less significant in a widely 
traded security such as IBM19.

Compared to a liquid index such as the e.g. the S&P500 using re­
turns of a single stock such as IBM also has the benefit that in addition 
to factors influencing the overall market sentiment, company-specific 
information also plays a role, therefore further facilitating collective 
effects such herding or endogenous risk. Moreover, the CRSP database 
allows for the extraction of holding returns only in the case of individ­
ual securities. Returns on indices would thus be clouded by frequent 
price drops due to dividend payments.

The returns data is displayed in figure 2.3, which also details the 
subperiod from January 1980 to December 1992, used for obtaining the 
parameters estimates for the TGARCH(1,1) simulation base model in 
the Monte Carlo section above.

Comparing the two periods, it becomes apparent that the shorter 
subperiod contains relatively less extreme observations and generally 
exhibits ‘well-behaved’ trading conditions - with the notable exception 
of the 1987 crash clearly standing out. This relative ‘calmness’ of the 
market during the 1980-1992 subperiod is also the likely reason for

18A comprehensive overview can be found e.g. in (O’Hara, 1995).
19 Many mutual funds for example are required to hold the stock simply for the very reason of a 

requirement to track market indices such as the S&P500, in which a large stock such as IBM is a 
major constituent.
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Figure 2.3: C R SP  IB M  hold ing returns

This figure displays the CRSP IBM holding returns for two horizons: From the beginning of 1980 
to the end of 2005 and to the end of 1992 respectively.

obtaining stationary parameter estimates for a simple single-regime 
TG ARCH (1,1) model when applied to the data. Estimating the model 
with the whole returns dataseries, however, results in non-stationary 
parameter estimates, leading to the conclusion that a simple, one- 
regime setup may not be the appropriate modelling choice (cf. table 
2.1).

Moreover, the data is strongly non-Gaussian and very leptokurtic 
with a mean close to zero, albeit these characteristics are more pro­
nounced for 1980-1992 than for the whole time period, as confirmed 
by table 2.4 and the histograms in figure 2.4.
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Table 2.4: CRSP IBM holding return data statistics

This table shows basic statistics of the CRSP IBM holding returns for two horizons. The data is 
strongly non-Gaussian.

Period (Beginning-End) 1980-1992 1980-2005
Observations 3287 6563
Mean 0.021 0.052
Median 0.000 0.000
Maximum 10.580 13.160
Minimum -22 .960 -22 .960
Standard deviation 1.490 1.808
Skewness -1.111 -0 .012
Kurtosis 23.556 13.502
Jarque-Bera (p-vaiue) 58545.93 (o.ooo) 301656.80 (o.ooo)

The whole data series therefore constitutes a mix of a strongly non- 
Gaussian initial subperiod with few very extreme returns and a more 
volatile second period from 1993-2005 which exhibits more frequent 
large returns, thus constituting a good basis for the identification of a 
CAViaR base model as well as for threshold and scale parameters as 
indicated by the Monte Carlo study.

2.7.2 Im plem entation and Com puting

As the estimation of quantile models is rather elaborate and relies 
on numerical techniques that are more time consuming than stan­
dard gradient-based methods, computation speed is of key importance 
when implementing estimation routines: For this reason, the code for 
the simulation and estimation routines in this chapter is written in 
C/C++  using standard and widely available free libraries such as the 
GNU Scientific Library (GSL). Code compilation was carried out us­
ing the gcc compiler vS.S under Linux20.

20The code is available from the author upon request.
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Figure 2.4: C R S P  IBM hold ing returns h istogram

This figure shows histograms of CRSP IBM holding returns for the 1980-2005 and 1980-1992 time 
periods respectively. Also displayed as dash-dotted lines are fitted normal distributions with the 
same mean and variance as the respecitve data series.

The implementation of the MCMC LTE routine consists of C  — 

(b +  m)  estimation ‘moves’ for the param eter candidate vector: The 

first b moves are used for the tuning of the chain (s. also appendices

2.5.2 and 2.5.3) and are divided into estimation ‘batch rounds’: Each 

batch round is made up of TI0 ‘outer cycles’, of which each in turn  

contains TIT param eter candidate vector moves, forming the ‘inner 

cycle’. The outer and inner cycle length have both been calibrated to 

TI0 =  TIT =  50. A batch rounds thus comprises TIQ3 =  TI0 • TIT =  

2500 individual moves, whereby the inner cycle length TIT is used to 

control the frequency at which acceptance rate is monitored and the

1980-1992

1980-2005
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Gaussian instrumental distribution adjusted accordingly:
After each inner cycle (thus every 91X moves), the acceptance ra­

tio is calculated using the previous 91X moves and, if need be, the 
volatilities cr^, j  G {1, ...,p},i G {1, ...,6} of the Gaussian instrumen­
tal distribution 0 i(|x — y|) = =7> X  ^  V(y,Ei) y ~  V(x,Ei),
with x, y € © C E* =  diag{a\i, Cp;)21 are adjusted to keep the 
acceptance ratio for each parameter in a band of 0.1 around 0.25. This 
procedure is carried out up to the last m  moves, for which the pre­
viously ‘calibrated’ volatilities are kept for each parameter to ensure 
convergence.

The outer cycle length 010 us used in combination with 91X to steer 
the cooling schedule for the temperature: The initial temperature of 
the Markov chain is calibrated to = 1.3, which is lowered after 
each every batch round, i.e. after every 0103 moves, by a calibrated 
factor of 0.985. Again, for the last m  moves, after the chain has 
stabilised, the temperature is kept steady to ensure convergence.

It is worth noting that once the chain has stabilised, the ‘posterior 
move length’ m  is not of crucial importance but should not be too 
small in order to obtain meaningful estimates from the chain; m  is 
taken to be either 250,000 for estimation purposes or 10,000 in order 
to construct the autocorrelation functions also described in section 
2.5.3.

Parameter estimates are obtained by choosing the parameter can­
didate vector of the last m  moves from the chain that yields the mode 
of the objective function or by taking the sample mean of the last m

21 In the context of the Markov chain, in this implementation corresponds to the stepsize with 
which parameter candidate values are ‘proposed’ randomly from the instrumental distribution. The 
routine uses individual stepsizes for each parameter depending on the relative magnitude of the 
parameters and for some parameters does not need to be adjusted throughout the tuning phase.



2.7. Empirical Application 73

candidate vectors. The latter corresponds to estimating the mean of 
the quasi posterior in equation (2.26) as an estimator for 0*.

2.7.3 M odel Setup

The SET-CAViaR models estimated in this section are sub-cases of 
the models presented in section 2.4.3. In particular, the (1,1) versions 
(i.e. p = q = 1 ) of the SET-CAViaR specifications in (2.13) and 
(2.16) are chosen, resulting in the following respective base quantile 
processes:

q B A S E ^ ^  _  _|_ 0 1Qr (yt_i) +  (#2 +  03,l[yt_i < 0]) \yt-i\ (2.32)

for SET-AS-CAViaR, and

QrASE(Vt) =  (1 -  2 • I[r < 0.5]) •

\ J (00 + OliQriyt-i))2 +  (^2 +  03%(- l  < 0])2/i—l) (2.33)

for SET-GJR-IGARCH-CAViaR.
The models are parameterised in their (1,1) form to have a par­

simonious enough base quantile process as this simple SET-CAViaR 
model setup already requires the estimation of 8 parameters against 
more than 6000 data points in the sample22. Moreover, in a GARCH 
context, the GARCH(1,1) setup has proved itself to be a very resilient 
and appropriate model in many applications as for example estab­
lished by Hansen and Lunde (2005): Given that their findings are

22 As a rough guide, with 100 batch rounds (of 2500 moves each) used for burning in and tuning 
of the chain and a further 250,000 moves to establish the estimates (cf. section 2.7.2), the com­
putational effort involved in the estimation of the models takes in excess of 5 hours on a standard 
Intel Pentium® IV processor with 3.0 GHz.
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more poignant and in favour of the simple GARCH (1,1) setup in the 
case FX data in comparison to equity returns, where the leverage effect 
seems to play a significant role, we take the route of using the (1,1) 
setup and augmenting it with an asymmetry parameter 0%. This way, 
the asymmetry in the reaction of quantiles to past returns, which is 
analogous to the leverage effect in GARCH models and also expected 
in the case of CAViaR models when applied to equity data, is ‘picked 
up’, while still allowing for a parsimonious model setup (cf. section 
2.4.3).

The estimation of the models in this section is carried out for the 
95% and 99% levels of VaR, two widely used metrics in the financial 
industry, which have also been suggested as appropriate measures of 
market risk by the Basel Committee on Banking Supervision (1996). 
In the econometric context of CAViaR, 95% and 99% VaR correspond 
to the r  =  0.05 and r  =  0.01 quantiles of the returns distribution 
respectively. Below, the results of the estimation with r  =  0.05 are 
shown first.

2.7.4 Estim ation R esults for 95% VaR (r =  0.05)

Applying the above models to the 1980-2005 CRSP IBM holding re­
turns23 on a 95% VaR level, results in parameter estimates displayed 
in table 2.5. The table shows the results both for the SET-AS-CAViaR 
and the SET-GJR-IGARCH-CAViaR models.

Immediately catching the eye is the fact that the magnitude as well 
as the signs of the parameter estimates ‘make sense’ in the light of the 
literature laid out in section 2.4.1. This outcome is quite significant 
and can by no means be taken for granted given the parameterisation,

23The returns are on a percentage scale.
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Table 2.5: SET-CAViaR parameter estimates (r = 0.05)

This table shows parameter estimates as well as 95% confidence intervals for an MCMC LTE of 
an SET-AS-CAViaR and an SET-GJR-IGARCH-CAViaR model with r =  0.05 and base quantile 
processes given by (2.32) and (2.33) respectively against 1980-2005 CRSP IBM holding returns. 
Parameter estimates are displayed as the posterior mean and mode constructed from the Markov 
chain. Also shown are the loglikelihood as well as the AIC and BIC at the estimated parameter 
values.

= (00 + 6lQr(Vt-i) + (02 + 03%(--l <0])|2fc_i|)
Metric Estimates 95% Conf interval
(r = 0.05) Posterior mean Posterior mode
00 -0.027 -0.021 (-0.040, -0.015)
01 -0.053 -0.047 (-0.069, -0.037)
02 0.941 0.948 (0.926,0.954)
03 -0.088 -0.079 (-0.112, -0.067)
r\ 10.512 10.671 (9.944,10.730)
h 10.990 10.753 (10.757,11.248)

2.570 1.790 (1.632,4.804)
k<3> 0.525 0.495 (0.384,0.719)
Loglikelihood -1189.646 -1188.764
AIC 2395.292 2393.529
BIC 2449.604 2447.841
Q?ASE(yt) = (1 -  2 • I[r < 0.5]) ^{00 + Bi{Qr(vt-i)Y + + frlfe-i < OM2-,)
Metric Estimates 95% Conf interval
(r = 0.05) Posterior mean Posterior mode
0o 0.059 0.053 (0.039,0.091)
0i 0.026 0.024 (0.016,0.037)
02 0.954 0.956 (0.936,0.964)
03 0.116 0.111 (0.089,0.162)
h 113.712 112.609 (104.508,115.314)

125.352 118.839 (115.739,133.322)
«<2> 2.114 1.557 (1.415,3.471)
k<3> 0.511 0.510 (0.378,0.643)
Loglikelihood -1200.415 -1199.825
AIC 2416.833 2415.650
BIC 2471.146 2469.962
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non-linear structure and semi-parametric nature of the SET-CAViaR 
models used:

The parameters estimates pertaining to the self-exciting features 
of the models, i.e. ri, r2, k ^  and k ^ \  suggest that market risk (as 
measured by 95% VaR, i.e. the 5% return quantile) becomes explosive 
by a scale factor of roughly 2 (indicated by k once yesterday’s ab­
solute returns or squared returns pass a threshold of c. 10.5% or 113% 
(given by h )  for SET-AS-CAViaR and SET-GJR-IGARCH-CAViaR 
respectively. However, once r2, the second threshold of c. 11% (in the 
case of SET-AS-CAViaR) or c. 120% (SET-GJR-IGARCH-CAViaR), 
is crossed by yesterday’s absolute and squared returns respectively, the 
explosive behaviour changes into a ‘calming’ regime, in which market 
risk ‘cools down’ and shrinks by a factor of roughly 0.5 (indicated by 
k (3)). Moreover, the estimates for the asymmetry parameter #3 also 
indicate in the case of both SET-CAViaR models that a negative re­
turn yesterday prompts a higher increase in market risk (i.e. results 
in a more negative 5% return quantile) then a positive return, which 
is in line with similar asymmetry and leverage effect arguments in the 
GARCH model literature, whereby negative returns are followed by 
higher increases in volatility than positive returns (cf. e.g. Nelson, 
1991).

It is also noteworthy that the scale parameter estimates k ^  and 
k have been obtained without restrictions to their domain such as 
k ^  > 1, < 1, which would enforce the explosive and calming
model behaviour. Rather, they have been estimated freely on the 
positive domain.

The table further indicates that even though parameter estimates 
show close correspondence between the two SET-CAViaR models (in
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particular the scale estimates are very similar; the threshold estimates 
are also very close to each other once the square root is applied to those 
for SET-GJR-IGARCH-CAViaR), the AIC and BIC indicate a better 
model fit for SET-AS-CAViaR. This is despite the 95% confidence 
interval being slightly narrower for the scales in the case of SET-GJR- 
IGARCH-CAViaR.

The Relation of the Base Model to GARCH and Stationarity Issues

For both SET-CAViaR specifications, the base model parameters es­
timates 6 i,i  =  {0 ,1,2,3} are in the region of magnitude of that one 
would expect if the underlying return generator was a SET-GARCH- 
type model with a constant mean component and an i.i.d. error term. 
According to proposition 1 and the findings in section 2.3, a model such 
as the one in (2.14) with p =  q = 1 and a standard Gaussian i.i.d. 
error term for example would map into an SET-AS-CAViaR model 
in which the base model parameter 62 is the same as /3\, and 0 \ for 
instance would be given by Qq^{s) • cq = —1.645 • a\, where Q^o^is) 
is the 5% quantile of the standard Gaussian error term. Equally, 60 

would equal ' 10 — “ 1-645 • uj and #3 correspond to 71 via

Qq.05(£) -71 =  -1.645 - 71.
Similarly, in the case of SET-GJR-IGARCH-CAViaR, the model 

parameters can be correctly associated with a Gaussian SET-GJR-
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GARCH model as in (2.17) with p = q — 1, in which

_  6 q _  Oq

M M 2 ~  - L 6 4 5 2

Oi 9i

ai [ Q tto M 2 [ - 1-6452]2
_  #3 _  #3

71 “ [QS5*(e)]2 " [-1-645*]2’
whereas the GARCH model parameter /3\ would map identically into

Again, parameter estimates for the quantile base model in both 
SET-CAViaR setups have been obtained without the need to impose 
binding constraints on their domain, such as e.g. positiveness in the 
case of SET-GJR-IGARCH-CAViaR. In fact, the only enforced restric­
tion in the entire estimation procedure for both models with r  =  0.05 
is the need to have r\ < r<i, without which the models would not be 
identified.

On the basis of the above relationships it is also easily verifiable 
that, with the exception of the posterior mode estimates for SET-AS- 
CAViaR, all other sets of parameters estimates may be traced back 
to corresponding geometrically ergodic SET-GARCH-type specifica­
tions: Using (2.15) and (2.18), the quantile base model parameter 
estimates may be interpreted as corresponding to Gaussian stationary 
GARCH base volatility processes. In conjunction with the parameter 
estimates for the scales and thresholds, which would map identically 
from an SET-CAViaR to a corresponding SET-GARCH model, it is 
apparent in accordance with the argument in section 2.4.3 that such 
an SET-GARCH model would possess a stable deterministic skeleton



2.7. Empirical Application 79

and would thus be geometrically ergodic.

The Performance of the MCMC LTE Routine for 95% Value-at-Risk 
(r =  0.05)

The variation of the chain for the different parameter values and thus 
the width of the confidence intervals decrease with the temperature 
and depend on the length of tuning phase of the chain24. Therefore, 
finding a good stopping point for temperature cooling and adjustment 
of the instrumental density variance (cf. section 2.5.3) is important 
both from a computation time point of view as well as to facilitate 
meaningful statistical analysis.

Figure 2.5 illustrates the use of the heuristic decision criterion as 
to when to stop the tuning phase in the MCMC LTE of the two SET- 
CAViaR models. The figure displays average autocorrelation functions 
(ACFs), which are constructed as follows: At different points during 
the tuning phase, which is measured in batch rounds (cf. section 2.7.2 
for details), the chain is branched out and allowed to run without 
interference for 10,000 runs. From these posterior runs the ACFs are 
computed for the first 1000 lags. Using the ACFs, the chain is tuned 
until a point is reached where the ACF starts to flatten out and rise 
(cf. section 2.5.3). In the given estimation, this point is reached 
after 110 and 140 batch rounds for SET-AS-CAViaR and SET-GJR- 
IGARCH-CAViaR respectively. It can be seen from the plot that the 
ACFs after 110 and 140 batch rounds are very similar to the ACF 
after the relatively low number of 40 batch rounds. Yet, in the case 
of SET-AS-CAViaR, after 110 batch rounds, the ACF starts to rise as 
is the case for SET-GJR-IGARCH-CAViaR after 140 batch rounds.

24In the limit, with —> 0, the width of any confidence interval is 0.
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Figure 2.5: A verage au tocorrela tion  functions (r =  0 .05)

This figure displays the average autocorrelation functions (ACFs) for parameter candidate value in 
an MCMC LT estimation of the SET-AS-CAViaR and SET-GJR-IGARCH-CAViaR models with 
t =  0.05 and base quantile specifications given by (2.32) and (2.33) respectively against 1980-2005 
CRSP IBM holding returns. Following tuning phases of different lengths, the average ACFs are 
computed for the first 1000 lags.

In the extreme case, after a long tuning phase of 600 batch rounds, 

corresponding to a tem perature T^600) ~  0, the ACFs are very flat and 

indicate highly autocorrelated param eter candidate draws and thus a 

degenerate chain.

Figures 2.6 and 2.7 show the evolution of the param eter candi­

date draws during the tuning phase of the estimation for the SET- 

AS-CAViaR and the SET-GJR-IGARCH-CAViaR model respectively. 

For all param eters it can be observed th a t the variation over the re-
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Figure 2.6: SE T -A S-C A V iaR  para’s (r =  0 .05)

This figure shows the evolution of the parameter candidate values in the MCMC LTE of the SET- 
AS-CAViaR model with r  =  0.05 and a base quantile process given by (2.32) against 1980-2005 
CRSP IBM holding returns. The parameter candidate value draws are plotted after each batch 
estimation round during the tuning phase of the Markov chain.

spective param eter domains decreases the longer the tuning phase and 

therefore the more the tem perature is cooled as a lower tem perature 

in general makes it more difficult for new draws to  be accepted (cf. 

section 2.5.2). From the figures it is also apparent th a t the evolution of 

the base quantile model param eter candidate values is fairly standard, 

i.e. a fairly steady but not too smooth progression towards the final 

param eter estimates without extreme changes in variation, which is 

line with other practical applications of MCMC LTE, e.g. in Gallant 

and Tauchen (2008). The evolution of the param eters candidate values
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Figure 2.7: S E T -G JR -IG A R C H -C A V iaR  para’s (r  =  0.05)

This figure shows the evolution of the parameter candidate values in the MCMC LTE of the SET- 
GJR-IGARCH-CAViaR model with r  =  0.05 and a base quantile process given by (2.33) against 
1980-2005 CRSP IBM holding returns. The parameter candidate value draws are plotted after 
each batch estimation round during the tuning phase of the Markov chain.

pertaining to the self-exciting, non-linear features of the models, i.e. 

r i, r 2, and however, is less standard for both SET-CAViaR 

models: Initially the variation is very large, especially in the case of fi 

and r 2 for SET-GJR-IGARCH-CAViaR, where the thresholds relate 

to lagged squared percentage returns. Yet, at some point during the 

tuning phase the large variation is more damped (after c. 80 and 110 

batch rounds for SET-AS-CAViaR and SET-GJR-IGARCH-CAViaR 

respectively) and gives way to a more subdued param eter evolution. 

A possible explanation for this circumstance is th a t after sufficient
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Figure 2.8: S E T -A S-C A V iaR  posteriors (r =  0.05)

This figure displays the posterior distribution histograms for parameter candidate values of the 
MCMC LTE of an SET-AS-CAViaR model with r  =  0.05 and a base quantile process given 
by (2.32) against 1980-2005 CRSP IBM holding returns. Also displayed as dash-dotted lines are 
fitted normal distributions with the same mean and variance as the respective parameter posterior. 
Additionally, the 95% confidence intervals bounds are shown as vertical lines.

random exploration of the param eter space at these points during the 

tuning phase, the chain has progressed enough towards the area of the 

global maximum of the likelihood. In conjunction with a fairly low 

tem perature at these points, the chain now does not ‘wander’ out of 

this area again, but produces narrower param eter draws.

Given the strong non-linearity of both SET-CAViaR models in the 

objective function as well as in the model specification itself, such 

non-standard behaviour is to be expected25. This holds for the non-

25The loglikelihood function in such a case is very ‘kinked’ with a pronounced global maximum,
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Figure 2.9: SET-GJR-IGARCH-CAViaR posteriors (r  =  0.05)

This figure displays the posterior distribution histograms for parameter candidate values of the 
MCMC LTE of an SET-GJR-IGARCH-CAViaR model with r  = 0.05 and a base quantile process 
given by (2.33) against 1980-2005 CRSP IBM holding returns. Also displayed as dash-dotted 
lines are fitted normal distributions with the same mean and variance as the respective parameter 
posterior. Additionally, the 95% confidence intervals bounds are shown as vertical lines.

linearity param eters n ,  r 2 , fcf® and k ^  in particular as their asymp­

totic distribution cannot be expected to be standard (cf. e.g. Hansen, 

1997, 2000).

This feature of the estimated SET-CAViaR models is further high­

lighted in figures 2.8 and 2.9: Both show the empirical posterior dis­

tributions of the param eter candidate draws after the tuning phase of 

chain. The histograms have been constructed from 250,000 param eter 

moves after the end of tuning phase and fitted Gaussian distributions

which is difficult to detect.



2.7. Empirical Application 85

as well as the bounds of the 95% confidence intervals have been su­
perimposed. From the figure it is evident that for both models the 
posteriors of ri, f2, k ^  and k ^  are non-standard. In particular the 
histograms for r\ and r2 do not have a familiar bell-shape form, and 
resemble a rugged uniform distribution. Indeed, estimation results 
obtained with longer chain tuning phases (not shown here) seem to 
confirm the progression towards a such a distribution. In contrast,

A

the posteriors of the base quantile model parameters 0*, z =  {0,1, 2,3} 
appear to be standard Gaussian, with the SET-AS-CAViaR model 
providing a closer match.

The figures further reveal that no constraints other than r<i > f \  
need to be enforced during the estimation of both SET-CAViaR with 
r  =  0.05 as the posteriors of all other parameters show no signs of 
being truncated.

2.7.5 Estim ation R esults for 99% VaR (r =  0.01)

The results of the estimation of the SET-AS-CAViaR and the SET- 
GJR-IGARCH-CAViaR models with the base quantile processes pre­
sented in section 2.7.3 for r  =  0.01 are displayed in table 2.6:

As in the previous section, the parameter estimates for both SET- 
CAViaR models are in an order of magnitude, which intuitively ‘makes 
sense’: Once lagged absolute and squared returns cross a threshold of 
c. 3.5% and 12.6% (given by fi) in the case of SET-AS-CAViaR and 
SET-GJR-IGARCH-CAViaR respectively, both model enter into an 
explosive regime in which market risk (in this case given by 99% VaR) 
increases by a scale factor of c. 3.6 (as indicated by k ^ ) .  However, 
as soon as absolute and squared lagged returns increase beyond the 
second threshold (7*2) of c. 3.7% and 13.4% for SET-AS-CAViaR and
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Table 2.6: SET-CAViaR parameter estimates (r = 0.01)

This table shows parameter estimates as well as 95% confidence intervals for an MCMC LTE of 
an SET-AS-CAViaR and an SET-GJR-IGARCH-CAViaR model with r =  0.01 and base quantile 
processes given by (2.32) and (2.33) respectively against 1980-2005 CRSP IBM holding returns. 
Parameter estimates are displayed as the posterior mean and mode constructed from the Markov 
chain. Also shown are the loglikelihood as well as the AIC and BIC at the estimated parameter 
values.

Q ? AS^ (y t) = (Op + 9iQT(yt-j) + (02 + ^ [ y t - i  <  0]) \yt-i\)
Metric Estimates 95% Conf interval
(r = 0.01) Posterior mean Posterior mode
0o -0.058 -0.055 (-0.093, -0.028)
0i -0.060 -0.050 (-0.112,-0.016)
02 0.930 0.936 (0.910,0.949)
03 -0.240 -0.229 (-0.316, -0.169)
f\ 3.546 3.555 (3.518,3.559)
V2 3.674 3.666 (3.660,3.709)
kW 3.630 3.479 (3.112,4.312)
«<3> 0.906 0.892 (0.807,1.019)
Loglikelihood -365.667 -364.634
AIC 747.334 745.269
BIC 801.647 799.581
Q?ASB(yt) = (1 -  2 • I[r < 0.5]) y (00 + 0i(Q r(m -i))2 +  (02 +  0 3 % t-i  < 0])y(2_i)
Metric Estimates 95% Conf interval
(r = 0.01) Posterior mean Posterior mode
00 0.305 0.115 (0.136,0.529)
01 0.052 0.007 (0.004,0.138)
02 0.914 0.956 (0.877,0.946)
03 0.834 0.474 (0.500,1.255)
h 12.578 12.610 (12.396,12.668)
h 13.481 13.417 (13.401,13.687)
«<2> 3.619 3.956 (3.078,4.269)
*<3> 0.808 0.857 (0.722,0.906)
Loglikelihood -369.226 -367.421
AIC 754.452 750.842
BIC 808.764 805.154
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SET-GJR-IGARCH-CAViaR respectively, a calming state is reached 
and market risk is damped by a factor of c. 0.8 (as given by k ^ ) .  
The explosive behaviour of market risk is therefore more pronounced 
for r  =  0 .01, i.e. for the more extreme return quantile, in comparison 
to 95% VaR (r =  0.05). Moreover, the explosive regime sets in faster, 
with the thresholds for entry into the regime being considerable lower 
than in the case of 95% VaR in the previous section.

In comparison to the results for 95% VaR, the estimates for the
A

asymmetry parameter 93 in the case of r  =  0.01 also suggest a more 
pronounced asymmetric response to lagged returns than in the case 
of 95% VaR in the previous section: For r  — 0.01, i.e. for more 
extreme return quantiles, negative lagged returns increase market risk 
measured by VaR much more than for the milder 95% VaR level as 
indicated by a larger §3 (in absolute terms) in both SET-CAViaR 
models.

Whereas there is close resemblance in the parameters estimates be­
tween the two models as in the case of 95% VaR (again, as suggested 
by theory, f \  and r<i correspond strikingly closely across the two models 
via the square root), the AIC and BIC once more favour the SET-AS- 
CAViaR model. Moreover, in the case of SET-GJR-IGARCH-CAViaR 
with r  =  0.01 in this section, there is a now a need to enforce a pos-

A A

itivity parameter restriction on #i, i.e. 9\ > 0, as without restriction 
this parameter estimate turns out to be negative, which is not feasi­
ble given the square root in the GJR-IGARCH-CAViaR base quantile 
process. Consequently, as can be seen in table 2.6, 9\ is very close to 
0 in the case of SET-GJR-IGARCH-CAViaR.



2.7. Empirical Application 88

The Relation of the Base Model to GARCH and Stationarity Issues 

As in the case of 95% VaR, the order of magnitude of the quantile
A

base model parameter estimates 0j, i = {0,1,2,3} is in the range that 
is to be expected if the underlying return generating model were a 
Gaussian SET-GARCH model such as the ones in (2.14) and (2.17). 
The reasoning here is the same as in the case of 95% VaR, with the 

difference that Q o!o i(£:) =  —2.326, the 1% quantile of the standard 
Gaussian would have to be used here instead of = —1.645 in
order to deduct the corresponding SET-GARCH model parameters. 
Close inspection reveals that in the case of 99% VaR the correspond­
ing Gaussian GARCH base volatility processes would not be stationary 
given the posterior mean and mode quantile base model parameter es­
timates both for SET-AS-CAViaR as well as for SET-GJR-IGARCH- 
CAViaR. However, in conjunction with the multiplicative scale pa­
rameter estimate for the calming regime ( k ^ )  being well below unity, 
the corresponding entire SET-GARCH setup would, however, still be 
geometrically ergodic in all cases (cf. section 2.4.3).

The Performance of the MCMC LTE Routine for 99% Value-at-Risk 
(r =  0.01)

The analysis of the average ACFs of the parameter candidate draws 
during the tuning phase in figure 2.10 mirrors the difficulty in the 
estimation of the SET-GJR-IGARCH-CAViaR model for the 99% VaR 
level:

In the case of SET-AS-CAViaR the stopping point in the MCMC 
LT estimation of the SET-AS-CAViaR model can be determined rea­
sonably well as the ACFs start to flatten out and rise after c. 80 batch 
rounds and are indeed very flat on a high level for very a long tun-



2.7. Empirical Application 89

SET-AS-CAviAR
■ After 40 batch rounds

 After 80 batch rounds
— — After 120 batch rounds
■ — • After 600 batch rounds

0.8

0.6

0.4

0.2

t5 -0.2ro
<D

0 100 200 300 400 500 600 700 800 900 1000
COn

SET-GJR-IGARCH-CAViaR<
■ After 40 batch rounds

 After 90 batch rounds
— — After 160 batch rounds 
■ — • After 900 batch rounds

0.8

0.6

0.4

0.2

- 0.20 100 200 300 400 500 600 700 800 900 1000
Lags

Figure 2.10: A verage au tocorrela tion  functions (r =  0.01)

This figure displays the average autocorrelation functions (ACFs) for parameter candidate value in 
an MCMC LTE of the SET-AS-CAViaR and SET-GJR-IGARCH-CAViaR models with r  =  0.01 
and base quantile specifications given by (2.32) and (2.33) respectively against 1980-2005 CRSP 
IBM holding returns. Following tuning phases of different lengths, the average ACFs are computed 
for the first 1000 lags.

ing phase after 600 batch rounds. In the case of SET-GJR-IGARCH- 

CAViaR, the picture is not so clear-cut, rendering the choice of a good 

stopping point more difficult: After c. 90 batch rounds, the average 

ACF is by and large similar to the one after 40 batch rounds, albeit 

it seems more elevated and steeper for the first 100 lags. After 160 

batch rounds of tem perature cooling the ACFs is flatter and has risen 

slightly. Thereafter, albeit not shown, the average ACF does not move 

much and it is only after a very long tuning phase of 900 batch rounds
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Figure 2.11: SE T -C A V iaR  likelihood  evo lu tion  (r  =  0.01)

This figure displays the evolution of loglikelihood during the MCMC LTE of the SET-AS-CAViaR 
and SET-GJR-IGARCH-CAViaR models with r  =  0.01 and base quantile specifications given by
(2.32) and (2.33) respectively against 1980-2005 CRSP IBM holding returns. The loglikelihood 
is displayed after the completion of each batch estimation round during the tuning phase of the 
chain.

and a corresponding extremely low tem perature th a t a stronger auto­

correlation structure emerges. Still, after such a long phase of tem per­

ature cooling and chain tuning, the ACFs is not as flat and elevated 

as for SET-AS-CAViaR after 600 batch runs. Based on the above rea­

soning, 80 and 90 batch rounds are picked as stopping points for the 

tuning phase for SET-AS-CAViaR and SET-GJR-IGARCH-CAViaR 

respectively. In comparison to the results for r  =  0.05, the analysis 

of the average ACFs in this section suggests th a t on the higher 99%
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Figure 2.12: SET-CAViaR likelihood evolution (r = 0.05)

This figure displays the evolution of loglikelihood during the MCMC LTE of the SET-AS-CAViaR 
and SET-GJR-IGARCH-CAViaR models with r  =  0.05 and base quantile specifications given by
(2.32) and (2.33) respectively against 1980-2005 CRSP IBM holding returns. The loglikelihood 
is displayed after the completion of each batch estimation round during the tuning phase of the 
chain.

VaR level, the MCMC estimation of the SET-CAViaR models can be 
accomplished faster as the ACFs warrant stopping the tuning phase 
earlier for both models in the case of r  =  0.01. A likely reason for 
this circumstance is the way quantile models are estimated with the 
objective function in (2.2), which involves finding a suitable quantile 
cutoff point in the empirical distribution of the data according to the 
piecewise loss function in (2.1): For more extreme quantiles (r close 
to 0 or unity), i.e. the more one moves towards the ends of the data
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Figure 2.13: SE T -A S-C A V iaR  para’s (r =  0 .01)

This figure shows the evolution of the parameter candidate values in the MCMC LTE of the SET- 
AS-CAViaR model with r  — 0.01 and a base quantile process given by (2.32) against 1980-2005 
CRSP IBM holding returns. The parameter candidate value draws are plotted after each batch 
estimation round during the tuning phase of the Markov chain.

spectrum, there are less points to choose from which comply with the 

criterion, thus prompting a faster, albeit not more accurate, estima­

tion procedure.

This reasoning also manifests itself in the evolution of the loglikeli­

hood, shown for both SET-CAViaR models on both 95% and 99% VaR 

levels in figures 2.12 and 2.11: Due to datapoints becoming more and 

more scarce as well as more spread out towards the tails of the em­

pirical data  distribution, the estimation of the SET-CAViaR model 

with the more extreme quantile r  =  0.01 compared to the milder
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Figure 2.14: S E T -G JR -IG A R C H -C A V iaR  para’s (r  =  0.01)

This figure shows the evolution of the parameter candidate values in the MCMC LTE of the SET- 
GJR-IGARCH-CAViaR model with r  =  0.01 and a base quantile process given by (2.33) against 
1980-2005 CRSP IBM holding returns. The parameter candidate value draws are plotted after 
each batch estimation round during the tuning phase of the Markov chain.

r  =  0.05 should result in a more ‘bum py’ and rugged evolution of 

the likelihood as the algorithm has comparatively less data  points to 

‘work w ith’ in order to determine the quantile cutoff. Figure 2.11 

supports this reasoning as one notes th a t the evolution of the loglike­

lihood of both SET-CAViaR models exhibits larger ‘swings’ as well as 

a marked incline towards the end of the tuning phase compared to the 

corresponding estimation with r  = 0.05 in figure 2.12.

Again, as also suggested by the AIC and BIC, the MCMC LTE rou­

tine for the SET-AS-CAViaR model progresses towards to a slightly
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Figure 2.15: SE T -A S-C A V iaR  p osteriors (r =  0.01)

This figure displays the posterior distribution histograms for parameter candidate values of the 
MCMC LTE of an SET-AS-CAViaR model with r  =  0.01 and a base quantile process given 
by (2.32) against 1980-2005 CRSP IBM holding returns. Also displayed as dash-dotted lines are 
fitted normal distributions with the same mean and variance as the respective parameter posterior. 
Additionally, the 95% confidence intervals bounds are shown as vertical lines.

higher loglikelihood level, indicating a better fit compared to SET- 

GJR-IGARCH-CAViaR. However, a comparison of loglikelihood levels 

with the results for r  — 0.05, i.e. across r ,  is not a t apposite since dif­

ferent quantile levels r  translate into different tick-exponential density 

functions of different order altogether and therefore result in different 

likelihood functions tha t are not comparable to each other (cf. Ko- 

munjer, 2005).

The evolution of the param eter estim ate draws for both SET-CAViaR 

models during the tuning phase displayed in figures 2.13 and 2.14 does
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Figure 2.16: S E T -G JR -IG A R C H -C A V iaR  p osteriors (r =  0.01)

This figure displays the posterior distribution histograms for parameter candidate values of the 
MCMC LTE of an SET-GJR-IGARCH-CAViaR model with r  = 0.01 and a base quantile process 
given by (2.33) against 1980-2005 CRSP IBM holding returns. Also displayed as dash-dotted 
lines are fitted normal distributions with the same mean and variance as the respective parameter 
posterior. Additionally, the 95% confidence intervals bounds are shown as vertical lines.

not exhibit much controversy as the shape of the chain for the base
A

quantile model parameters 0*, i = {0,1, 2,3} is again, as in the previ­

ous section, in line with other MCMC LTE applications. The evolution 

of the non-linearity parameters estimates rq, f 2 , ftf® and k ^  is similar 

to the 95% VaR case for both SET-CAViaR models, with large initial 

variation in the param eter draws, particularly in the case of f \  and r2 

in SET-GJR-IGARCH-CAViaR. There is, however, not a long phase 

of subdued variation following the large initial swings as for r  =  0.05. 

This is due to ending the tuning phase earlier in accordance with the
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ACF criterion laid out above. Yet, if the tuning phase is prolonged 
(not shown here), the evolution of the parameters estimates rq, r2, k ^  
and k ^  is similar in that there is subdued variation after c. 80 and 90 
batch runs during the tuning phase of the chain for SET-AS-CAViaR 
and SET-GJR-IGARCH-CAViaR respectively.

This also manifests itself in figures 2.15 and 2.16 displaying the 
empirical posterior distributions for the model parameter estimates 
after the end of the tuning phase: Again, as in the case of r  =  0.05, 
the posteriors for r i, r^, k ^  and k ^  are not standard, however, their 
variance is evidently not as large as one might gather from figures 
2.13 and 2.14. Further, as for 95% VaR, the quantile base model 
parameter estimate posteriors for both SET-CAViaR models closely 
resemble Gaussian distributions, with one notable exception: In the 
case of SET-GJR-IGARCH-CAViaR, the posterior of 6\ is truncated 
at 0, owing to the binding positivity constraint. The need to en­
force this parameter restriction thus indicates a suboptimal fit of the 
SET-GJR-IGARCH-CAViaR model for r  =  0.01 favouring the SET- 
AS-CAViaR model for the given dataset, albeit the other parameters 
estimates, in particular the threshold and scale parameters are in close 
correspondence across the two SET-CAViaR models.

2.7.6 Discussion of R esults

Even though the reinforcing mechanisms in Damelsson and Shin’s
(2003) concept of endogenous risk have received considerable theoret­
ical attention (e.g. Morris and Shin, 2004), explosive dynamics have 
so far been largely ignored in conventional empirical risk modelling 
and in practical applications. Recent experience from the financial 
markets, however, suggests that this traditional way of risk modelling
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might fall short of reality and can be improved upon:
The Dow Jones Stoxx 600 Index for example saw a drop of 3% 

during stock market fall on February 27th, 2007, the “steepest (...) 
percentage decline since May 29^, 2003” amidst trading conditions in 
which selling of securities was “almost like (...) a cascade” according 
to The Wall Street Journal Europe, edn. February 28th, 2007, p.
1. Regarding the risk management techniques in the face of such a 
dramatic and unforeseen decline, The Economist, issue March 3rd, 
2007 comments on p. 83:

“Investment banks use ‘value-at-risk’ models which mean 
that, when volatility rises, they cut the capital they allocate 
to trading. This usually means selling assets. So a sud­
den jump in volatility tends to generate further volatility 
(...) According to Goldman Sachs, the latest jump in Vix 
(a measure of stockmarket volatility) took it eight standard 
deviations from its average. If conventional models are cor­
rect, such an event should not have happened in the history 
of the known universe (...) Perhaps modellers do not know 
the universe as well as they think.”

The empirical results obtained in this chapter represent an attempt 
at estimating a new empirical model of market risk that is able capture 
such explosive endogenous risk dynamics against real data - and, it 
might be argued, a successful one:

We obtain a good model fit and sensible parameter estimates that 
allow for a quantitative description of endogenous market risk. And 
while an obvious point of criticism of the results obtained with the 
our approach is overfitting, we would argue against such allegations.



2.7. Empirical Application 98

For one, the SET-CAViaR models used, despite their ‘unorthodox’ 
structure and non-linear features, are fairly parsimoniously parame- 
terised. Also, given its semi-parametric nature, SET-CAViaR excludes 
the possibility of data-fitting via an assumed parametrised error dis­
tribution. Rather, as an empirical approach, it ‘lets the data speak 
for itself’. Moreover, when obtaining the parameter estimates, we 
attach great attention to not allowing the Markov chain to degener­
ate and thus over-fitting the parameters. Also, in (2.23) we assume a 
non-dogmatic, flat prior, which further limits the scope for overfitting. 
Lastly, a strong argument against overfitting comes from the parame­
ter estimates themselves. Rather than just being outcomes of a fitting 
procedure without any direct meaning in terms of magnitude, as is 
for example the case in ‘Principal Components Analysis’ (PCA)-type 
factor models or ‘Neural Networks’, the estimated parameters for the 
SET-CAViaR models above actually ‘make sense’. Not only do the 
estimated of the base line CAViaR process correspond to typical pa­
rameters levels in related well-known ARMA-GARCH-type models, 
the estimates of the whole model, including scales and thresholds are 
also in line with what the theory literature outlined in section 2.4.2 
would predict26:

Once a certain trigger point (fi) is passed, risk dynamics become 
self-exciting, thus capturing the explosive reinforcing mechanics intro­
duced by Morris and Shin (2004). More concretely, the results suggest 
that on the 95% and 99% VaR levels, market risk approximately dou­
bles and quadruples respectively, albeit after different trigger points 
as indicated by the estimates of the explosive scale Granted that

26It is also notable, that with the exception of SET-GJR-IGARCH-CAViaR for 99% VaR (r =  
0.01), the estimates are obtained without having to enforce any parameter restrictions other than 
the ordering of the thresholds.
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these are one-off estimation results obtained with a new model, and 
therefore have to be interpreted with caution, it can nonetheless be 
argued that a practitioner might want to watch the behaviour of re­
turns beyond the estimated threshold more closely and should expect 
a scale increase in the level of risk similar to the estimates.

Further, given the estimated parameter setup for the two SET- 
CAViaR models on both levels of VaR, market risk (as measured by the 
returns quantile) is prevented from exploding all the way to (negative) 
infinity, despite the explosive dynamics beyond threshold f i m. Once 
the second threshold is passed, the SET-CAViaR models enter into 
into a calming regime in which market risk is suppressed by a the 
scale factor k ^  less than unity. This result is, again, in support of 
the theory laid out in section 2.4.2: Loosely speaking, the explosive 
build-up of endogenous risk as for example described in Danfelsson 
and Shin (2003) needs to be expected to stop once the market has 
experienced enough ‘exuberance’ and market risk ought to decline to 
more ‘normal’ levels according to the argument presented in Morris 
and Shin (2004, p. 14).

Also notable about the estimation results is that the estimated 
explosive scale k ^  increases for the more extreme quantile r  =  0.01 
(i.e. the higher 99% VaR level as opposed to 95% VaR), whereas 
the corresponding threshold for entry into the explosive regime (rq) 
decreases. The interpretation of this result has to be that on more 
extreme market risk levels endogenous risk builds up more fiercely 
and faster and also calms itself more quickly as indicated by the lower 
second threshold. Intuitively, this makes sense as, loosely speaking, 
one might argue that during catastrophic times things tend to get even 
more severely ‘out of hand’ and more quickly so than during a less
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poignant crisis. Qualitatively, the result is also in line with the ‘self­
exciting peaks-over-thresholds’ (self-exciting POT) model presented 
in McNeil et al. (2005, p. 307): This approach to modelling very 
extreme levels of risk is able to capture dynamics, where, “in a period 
of excitement, both the temporal intensity of occurrence [of losses] and 
the magnitude (...) increase.”

The relative difficulty of the estimation for r  =  0.01 with the lack of 
stationarity for a corresponding Gaussian GARCH-type base volatility 
process and the need to enforce a positivity constraint on 0\ in the case 
of SET-GJR-IGARCH-CAViaR also suggests that despite the intuitive 
appeal and the encouraging results above, SET-CAViaR models might 
not be the modelling choice for the analysis of extreme market risks 
(e.g. VaR levels of 99.9%). As also mentioned in the previous section, 
the quantile estimation objective function in (2.2) will produce less 
accurate results for more extreme quantiles, warranting the use of 
special modelling approaches such as EVT or the self-exciting POT 
model mentioned above for such levels of market risk27.

However, even though the SET-CAViaR model class might not be 
the optimal choice for all levels of VaR, the above empirical findings 
suggest a wide range of applications: The methodology might be of 
relevance for risk management in financial institutions, particularly 
investment banks and funds with large trading operations, where it 
could be used to forecast daily trading VaR more accurately, or in 
stress-testing situations, in which a sophisticated benchmark model is 
needed. SET-CAViaR models can also be of help to trading practi­
tioners when forecasting and judging the impact of trades to be carried

27A comprehensive overview modelling techniques for extreme levels of risk can be found in 
McNeil et al. (2005).



2.7. Empirical Application 101

out with respect to the amount of risk incurred as well as for tailor­
ing and calibrating trading models with regards to VaR limit setting. 
Particular interest should be directed towards the estimated scale and 
threshold parameters in order to be able to monitor market and risk 
dynamics at critical magnitudes of market risk.

In academic applications, SET-CAViaR models can be used to test 
theoretical hypotheses, e.g. about endogenous risk as well as for back­
testing comparison studies involving alternative (time series) risk mod­
els, e.g. quantile models on the basis of ARMA-GARCH or Historical 
Simulation. Another obvious area of application is the identification 
and dating of (past) financial crises, for which there appears to be 
an imminent need as has been pointed out by a range of researchers 
in the empirical literature on the modelling and testing of financial 
contagion: Dungey et al. (2005, p. 67) for example state that

“The choice of both crisis and non-crisis periods [for mod­
elling and testing of financial contagion] is almost always ad 
hoc, although often the sample selection is based on ex-post 
rationalisations, making it difficult to compare studies, even 
those apparently conducted on the same crisis (...) Produc­
tive future work would be to find a more objective procedure 
for dating crises (...) based on data characteristics.”

Lastly, it needs to be mentioned that the empirical results above 
were obtained with very specific, fairly parsimonious parameterisation 
of the SET-CAViaR model in order to facilitate estimation. Possible 
extensions or alternatives to the work above are the estimation of SET- 
CAViaR models with different quantile base processes, some of which 
are presented in Engle and Manganelli (2004). Moreover, the non­
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linear self-exciting setup can be modified into a richer model, albeit 
harder to estimate, by admitting more regimes or allowing regimes 
to be asymmetrical, e.g. by not centering the thresholds around 0 or 
having an uneven number of regimes. In a very extreme application, 
one might even think of having no scale parameters at all, but rather 
allowing all base quantile model parameters to differ across regimes, 
similarly to the work of Zhang et al. (2001) in the case of the ‘Autore­
gressive Conditional Duration’ (ACD) model.

2.8 Conclusion

The goal of this chapter is to establish an new empirical model of 
market risk that is capable of capturing explosive risk dynamics in 
financial markets, which Danfelsson and Shin (2003) have described as 
endogenous risk. The proposed setup is SET-CAViaR, a self-exciting 
process with endogenous thresholds and an autoregressive quantile 
base model, which due to its semiparametric and non-linear structure 
is estimated with a special variant of Chernozhukov and Hong’s (2003) 
MCMC LTE method.

The empirical findings obtained from an estimation of SET-CAViaR 
models against a set of CRSP IBM holding returns show that the pro­
posed model class is well capable of producing results that are very 
much in line with the concept of endogenous risk and the wider theo­
retical literature in this field, notably Morris and Shin (2004), in the 
sense that beyond a certain return threshold market risk (as measured 
by VaR) becomes explosive, but eventually calms itself again.

While the results in this chapter are a successful first attempt at em­
pirically capturing endogenous risk in a tractable model, a few caveats
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are, however, apposite: The strength and flexibility of the semipara- 
metric setup of the SET-CAViaR model comes at the price of a robust, 
but difficult to implement and lengthy MCMC LTE procedure. Future 
research, especially when directed towards the applicability of SET- 
CAViaR in practical situations, might therefore focus on the ease of 
estimation in general as well as estimation speed in particular. In 
a radical step, one might even sacrifice the semiparametric CAViaR 
process and the associated not continuously differentiable quantile re­
gression objective function in (2.2) favour of a simpler GARCH model 
at the heart of the self-exciting setup, thereby facilitating more con­
ventional estimation while still keeping the self-exciting, non-linear 
features.

Further, the results in this chapter were obtained with a very spe­
cific parametrisation of the SET-CAViaR model. Promising future re­
search might therefore concentrate on estimating SET-CAViaR mod­
els comparatively with different quantile base processes or different 
parameterisations. Lastly, it is still unclear how the proposed SET- 
CAViaR model would fare in comparison to alternative, more estab­
lished and commonly used models of market risk. Such studies appear 
worthwhile both from an academic as well as from a practitioner’s 
point of view and are left for future research.
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Chapter 3

CARL: An Empirical Conditional 
A utoregressive M odel of M arket 
Liquidity

3.1 Introduction

Few market participants would deny the importance of liquidity for 
the financial system and trading activities. Yet, liquidity seems quite 
an elusive concept that is difficult to define, let alone quantify. In its 
biannual Financial Stability Report as of April 26th, 2007, the Bank of 
England proposes a categorisation into funding and market liquidity: 
The former can be understood as the ease with which a firm can ” meet 
its cashflow needs” , for the latter the Bank provides the equally broad, 
common-sense definition as the ease of buying and selling financial 
assets in the market place.

This mirrors a definition by Brunnermeier and Pedersen (2008) who 
provide a theoretical model of the linkages between the two kinds of 
liquidity and their dynamics over time. Yet, while theoretical research 
activity into the modelling of funding as well as market liquidity has
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seen more activity over the recent years, empirical research seems to 
have taken a different route: Quite a number of papers (e.g. Amihud, 
2002; Chordia et al., 2000a,6, 2001) have aimed at empirically explor­
ing and explaining the properties of liquidity and its linkages across 
securities. Only comparatively little activity however appears to have 
been devoted to the explicit empirical modelling of the dynamics of 
market liquidity since the approaches by Engle and Russell (1998) or 
Engle and Lange (2001).

In this chapter, we aim to continue this line of research and focus on 
the empirical modelling of market liquidity over time while explicitly 
taking account of the fact that market liquidity is a concept charac­
terised by multiple facets and notions that cannot be captured entirely 
by simple attributes such as execution time or spreads. We thus base 
our approach on a more complex measure of liquidity, the Hiu-Heubel 
(HH) liquidity ratio: This composite liquidity proxy (cf. Sarr and Ly- 
bek, 2002) consists of the percentage difference between the maximum 
and minimum price divided by the price-weighted turnover over a cer­
tain measurement period. Contrary to more ‘traditional’ measures 
of market liquidity such as durations, bid-ask spreads or transaction 
volumes that highlight liquidity along a single dimension (time, price, 
volume), the HH ratio - being a ratio of such measures - can be viewed 
as a multi-dimensional proxy for market liquidity: It is for example use­
ful for market participants that attach great importance to the being 
able to sell and buy at almost the same prices, thus being interested in 
the tightness notion of liquidity (captured through the numerator) as 
well as equally to others that may favour a broad, deep and resilient 
market with an abundance of orders on either side, in which large 
scale transactions can be made with only a minimal impact on prices
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and shocks to prices away from fundamentals get corrected quickly (as 
measured by the ratio as a whole)1.

Yet, despite its versatility as a liquidity measure the HH ratio has 
so far been conceived for use in a static context, e.g. say the monthly 
period measurement of liquidity in market. In this chapter, we seek to 
progress down a new route by exploiting the properties of the HH ratio 
as a multi-dimensional measure of market liquidity and including it in 
a dynamic, autoregressive setting. We do so by embedding the liquidity 
measure into the established time series concept of the ‘Autoregressive 
Conditional Duration’ (ACD) model by Engle and Russell (1998): The 
resulting model, which we dub ‘Conditional Autoregressive Liquidity’ 
(CARL) model uses the HH ratio instead of the duration as a liquidity 
variable in a multiplicative autoregressive setup.

By construction it is designed to pick up autoregressive, self-reinforcing 
patterns in market (il) liquidity as they are predicted by theoretical 
research e.g. by Morris and Shin (2004) (liquidity ‘black holes’) and 
Brunnermeier and Pedersen (2008) (‘margin’ and ‘error spirals’ of illiq­
uidity). Yet, our approach not only builds on theoretical findings, 
but also seems well warranted from an empirical practitioner’s point 
of view as self-reinforcing patterns in liquidity have recently received 
strong attention in this arena. The Economist, edn. April 28th, 2007 
for example finds that:

“Liquidity is a self-reinforcing process; investors are more 
willing to buy an asset they know they can sell easily. But 
if liquidity suddenly dries up, some investors might end up 
owning assets they neither want nor can get rid of. This

1In its 2007 Financial Stability Report (edn A pril 2007) the Bank of England also advocates 
the use of a return to volume-type ratio in order to capture market depth and resiliency.
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might make a virtuous circle turn vicious.”

As we show in this chapter, the CARL model can be viewed as a 
simple empirical reduced form modelling technique for such patterns 
and might therefore be of interest to a range of practical applications 
in the dynamic analysis of market liquidity. Moreover, it is straight­
forward to use and comprehend as, by construction, it shares most 
econometric properties with the ACD model and might thus look fa­
miliar to many users.

In this chapter we exemplify the versatility of the CARL model in 
an empirical study using data on Amazon stock from 1997 to 2006. We 
estimate the model via ‘Quasi Maximum Likelihood’ (QML) against 
data sampled on both daily and weekly frequencies and show how to 
obtain the best model fit. We also examine the in-sample forecasting 
properties of the chosen models via a Mincer-Zarnowitz-type test.

In general, our results are very encouraging and show that a good 
model fit can be obtained, even when resorting to QML estimation: 
The CARL model is able to pick up the autocorrelation structure in 
the data on both daily as well as weekly frequencies very well. We 
also detect evidence for threshold effects using only lagged negative 
returns, that are in accordance with theoretical research on market 
liquidity. Moreover, on both frequencies, the model appears to be 
able to forecast well, which ought to be a desirable property many 
practitioners.

The rest of the chapter now proceeds as follows: The following 
section provides a comprehensive overview of the recent theoretical as 
well as empirical research in financial liquidity. The section is intended 
as a stand-alone part and can also be read on its own to obtain a 
grounding in the general background on liquidity and its academic
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treatment. Section 3.3 introduces the two building blocks of the CARL 
model mentioned above - the HH ratio and its properties as well as 
the important dynamic framework of the ACD model. We present the 
‘assembled’ CARL model and its features in section 3.4. The empirical 
application including a description of the data as well as discussion of 
the results is contained in section 3.5. Section 3.6 concludes.

3.2 Liquidity in Financial Markets

Generally speaking, liquidity and the associated liquidity risk are very 
complex concepts that are neither clearly defined nor accurately mea­
surable. In its Financial Stability Report 2006 for example the Bank 
of England states that (cf. Bank of England, 2006, p. 52)

“...understanding, modelling and hence pricing liquidity 
risk is more difficult - and as a result less advanced - than 
for, say, market and credit risk because of the complexity 
and unpredictability of the interactions which may arise.”

Yet, despite the ambiguity surrounding the concept, most market 
participants would acknowledge the important role liquidity plays in 
the in the financial markets: For example, there seems to be general 
consensus that market nowadays are much more ‘liquid’ than in the 
past. Similarly, liquidity risk, despite not yet precisely defined or for­
mally quantified, is often cited as a major threat to financial markets 
(cf. e.g. Bank of England, 2007, p. 7).

In an effort to conceptualise liquidity (risk) for practitioners, reg­
ulators and academics, the classification of liquidity into market and 
funding liquidity has recently become more prominent: Brunnermeier
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and Pedersen (2008) for example describe the latter as the “ease with 
which a trader can obtain funding” for her operations, the former as 
the ease of trading an asset. In its Financial Stability Report 2007, 
the Bank of England recognises two types of risk associated with the 
above classifications (cf. Bank of England, 2007, p. 18): Funding liq­
uidity risk describes the risk of market participants not being able to 
meet their cash-flow needs, market liquidity risk occurs if a position in 
an financial market asset cannot easily be offset or eliminated without 
significantly affecting the price.

Funding liquidity has recently received increased attention from a 
regulatory point of view: Both the Bank for International Settlements 
(BIS) as well as the Financial Services Authority (FSA) in the UK 
have proposed (preliminary) frameworks for the ‘management of liq­
uidity risk’, seemingly addressing funding liquidity risk (s. e.g. Basel 
Committee on Banking Supervision, 2008; Financial Services Author­
ity, 2003). In the light of the events in summer 2007 and throughout 
2007/2008, when problems in the sub-prime credit markets lead to a 
subsequent fall-out in the intra-bank lending market, in which liquid­
ity (in the funding sense) almost completely ‘dried up’, leading (inter 
alia) to the bank run on the UK mortgage provider Northern Rock, the 
demise of the investment bank Bear Stearns and funding problems at 
the US mortgage banks Freddie Mac and Fannie Mae, such a regula­
tory effort appears apposite. Arguably, funding liquidity problems can 
lead to the collapse of financial institutions and therefore contribute 
to systemic risk. The above-mentioned regulatory frameworks and 
the recent experience in the financial markets suggest however that 
the impact of funding liquidity risk is very much dependent on firms’
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capital provision, business models2 and as well as network effects in 
the financial system. This also means that funding liquidity and the 
associated risk affect individual market participants differently and 
renders a more objective empirical treatment difficult.

This chapter therefore focuses on the modelling and analysis of 
market liquidity - also because this form of liquidity has a more ready 
interpretation and meaning to wider audiences. As mentioned above, 
market liquidity can generally be described as the ease with which an 
asset can be bought and sold. More concretely, market liquidity is 
commonly associated with the bid-ask spread, i.e. the cost of having 
to buy at the higher ask price compared to the lower bid price when 
selling. Research, however, suggests that this notion does not capture 
all dimensions of market liquidity.

Kyle (1985) for example identifies tightness, depth and resiliency 
as three important characteristics of liquid markets. Sarr and Lybek 
(2002) adopt and further refine this categorisation to the following:

1. Tightness - A tight market is characterised by low transaction 
costs when buying and selling assets. A narrow bid-ask spread 
indicates a tight and thus liquid market along this dimension.

2. Immediacy - This notion captures the speed at which transac­
tions can be executed in markets and represents the efficiency of 
trading, transaction clearing and settlement.

3. Depth - A deep market is characterised by an abundance of buy 
and/or sell orders at prices narrowly below and above the current 
price at which the security trades.

2Northern Rock’s business model of obtaining funding for its mortgage business through the 
capital markets as opposed to the traditional way of customer deposits has for example been 
described as particulary aggressive and vulnerable to funding liquidity problems
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4. Breadth - This notion is closely linked to depth, but not the same. 
Breadth refers to orders being large in volume with minimal im­
pact on prices.

5. Resiliency - Resilient markets are characterised by fast corrections 
of market imbalances, which divert transaction prices from those 
warranted by fundamentals.

Considerable research has been devoted to the different dimensions 
of market liquidity (cf. also Kyle, 1985, p. 1130) suggesting that 
neither of the above notions captures the concept of liquidity single- 
handedly (cf. e.g. Baker, 1996, p. 1). Moreover, the distinction be­
tween these dimensions is not clear-cut. Rather, they are overlapping 
to some extent: Depth and breath for example can compensate for 
each other. A deep market, with an abundance of small orders can 
mimic a broad market with few, but large orders close to the current 
trading price.

In addition, the importance of the different attributes of market liq­
uidity tends to shift over time: In periods of turmoil more importance 
might be put on resilient markets in which divergence from fundamen­
tals is corrected quickly and orders are carried out fast and efficiently 
in the immediacy sense. Market liquidity during such times might 
therefore be primarily judged along these dimensions. Equally, during 
calm times, it is conceivable that markets place more importance on 
low transaction costs, thereby viewing liquidity mainly in the sense of 
tightness.

The multi-dimensionality of market liquidity means that there is 
no single precise, (theoretically) correct way to define and describe 
it. While this is obviously a complicating circumstance for precise
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analysis, it has helped foster a variety of research approaches into the 
subject. We now present a brief overview of some of the theoretical 
and empirical treatments of market liquidity in the financial economics 
literature as they are relevant for this chapter.

3.2.1 The Theory Context

Many theoretical advances into explaining and modelling liquidity 
have been proposed over the years3. Early approaches are to found in 
the banking literature and comprise (inter alia) the well-known bank 
run model by Diamond and Dybvig (1983), in which the demand for 
liquidity of individually rational but ‘impatient’ bank depositors can 
lead to the collective ‘irrational’ equilibrium of a run and thus to a 
funding liquidity crisis for the bank having to pay out deposits.

While their paper may be more relevant for explaining funding liq­
uidity risk, the mechanism at work has received considerable attention 
from various angles in the financial economics literature and, notably, 
has been employed as the basis for an approach aimed at explaining 
so-called ‘liquidity black holes’ by Morris and Shin (2004). Building 
on their findings in the area of higher order beliefs and ‘coordination 
effects’ in ‘global games’ (cf. Morris and Shin, 1998), they propose a 
model in which the market interaction of traders with privately known 
loss limits leads to said coordination effects, resulting in an equilib­
rium of sharp price drops once certain return (loss) ‘trigger’ thresholds 
are passed. Importantly, in their model, such a liquidity black hole, 
in which the sale of securities is very difficult, comes into existence

3The overview of theoretical literature on liquidity in this section provides is by no means 
exhaustive. We have for example left out the entire area of the effect of liquidity on asset pricing, 
which has seen which has been a growing field over the recent years. A good overview on this 
subject has been provided by Amihud et al. (2006).
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without a fundamental shock to the value of asset. Consequently, fol­
lowing the liquidity black hole, the price eventually rebounds, aligning 
it with the fundamental value, and market liquidity in the asset re­
turns to normal levels.

By using a third generation approach to risk/financial crises mod­
elling, i.e. introducing a private knowledge information structure com­
pared to common knowledge as for example in the second genera­
tion currency crises models (cf. e.g. Obstfeld, 1986), Morris and Shin
(2004) are thus able to describe market (il)liquidity solely as the out­
come of the strategic interplay between otherwise identically informed 
traders in the market.

In this respect, their model contrasts with earlier market microstruc­
ture models that explain the sources of illiquidity using an asymmetric 
information argument: Copeland and Galai (1983) as well as Glosten 
and Milgrom (1985) for example assume the existence a market maker 
facing both informed trade counterparties as well as noise/liquidity 
traders without being able to assess their type. The former trade 
based on private information about the fundamental value of the as­
set whereas the latter are less well informed and do not trade strategi­
cally. As already pointed out by Bagehot (1971), the outcome of the 
trading game under such an asymmetric information structure, is then 
that the market maker (usually assumed to be competitive and risk 
neutral) loses money on trades with informed traders and gains when 
trading with liquidity traders. In both Copeland and Galai (1983) as 
well as in Glosten and Milgrom (1985), albeit through different mech­
anisms, this gives rise to illiquidity in the form of a bid-ask spread as 
a compensation for the market maker’s losses when trading with an 
informed counterparty. In Copeland and Galai (1983), the spread and
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thus illiquidity rises the higher the volatility of the asset, concurring 
with empirical evidence, whereas in Glosten and Milgrom (1985) a 
higher proportion of informed traders increases the spread.

Kyle (1985) assumes a similar asymmetric information structure, 
however, in his setting, illiquidity is more related to the depth and 
breadth notions: In his model, the transaction price depends on the 
order flow submitted by both informed and noise traders. The impact 
of the combined order flow on prices is lower the lower asset volatility 
and the higher the variance of the noise traders’ orders. The market 
is thus broader and deeper the less uncertainty there is about the 
fundamental value of the asset and the more noise trading activity 
occurs.

Another important source of illiquidity has been documented to be 
the need for market makers to bear inventory in order to match buy­
ing and selling activity: As not all buying and selling counterparties 
tend to be present in markets at all times, market makers provide im­
mediacy by being continuously facilitating trades from any direction 
and acting as an intermediate party. The market maker for example 
buys from a seller and later, when a suitable buying counterparty is 
present, sells the asset on. In the meantime, the asset is taken on as 
inventory, during which time the market maker faces the risk of ad­
verse fundamental price changes. As pointed out by Stoll (1978), the 
market maker must be compensated for such risk, which Amihud and 
Mendelson (1980) and Ho and Stoll (1981, 1983) model as the mar­
ket maker quoting bid-ask prices that depend on the inventory of the 
traded asset taken on. A wider bid-ask spread would thus correspond 
to more acute inventory risk and a more illiquid market.

Grossman and Miller (1988) also consider a market in which market
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makers face inventory risk. However, they point out that the bid-ask 
spread is likely to be an imperfect measure of the cost of trading in 
a dynamic environment in which traders should be more concerned 
with the change of quotes over time rather than the instantaneous 
spread. In their model, liquidity thus corresponds more to the imme­
diacy notion mentioned above: They propose a dynamic trade setting 
with competitive market makers, in which traders’ demand pressure 
for immediate trade execution and expectations about future transac­
tion prices determine the inventory taken on by the market makers. 
In equilibrium, the amount of immediacy, sc. liquidity, provided in 
their model is an increasing function of the number of (competitive) 
market makers.

The notion of illiquidity stemming from inventory risk arising through 
the mismatch of buying and selling activity borders on another source 
of illiquidity risk, which is mostly prevalent in ‘over-the-counter’ (OTC) 
markets: In such markets, in which trade counterparties are some­
times scarce and bilateral trading is possible (i.e. traders can act as 
market makers and gain market power), illiquidity may also arise as 
a consequence of bargaining and search problems. Finding a suitable 
counterparty to trade with and negotiating prices in this setting causes 
frictions and leads to more illiquid trading activity, as documented in­
ter alia by Duffie et al. (2005, 2006), Weill (2008) and Vayanos and 
Wang (2007).

Yet, while considerable effort in the theoretical literature has been 
directed at identifying causes of illiquidity in markets, less theoretical 
work has been devoted to modelling the dynamic properties of liquid­
ity, which is however relevant for the purpose of this chapter: Notable 
results in this area can be found in the aforementioned paper by Mor­
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ris and Shin (2004), who despite their focus being on the mechanisms 
triggering liquidity black holes, also shed light on the evolvement of 
liquidity through time. Their model indicates that situations of low 
liquidity tend to aggravate before returning to normal, which can be 
interpreted as ‘illiquidity clustering’, similar to the well-known stylised 
fact about volatility in markets.

The link between liquidity and volatility is also examined by Vayanos 
(2004) who considers a general dynamic equilibrium model with stochas­
tic volatility and transaction costs. In his model, asset managers have 
a time-varying preference for liquid assets, which is correlated with 
volatility, resulting in a so-called ‘flight to liquidity’ during turbulent 
times.

This result is mirrored in Brunnermeier and Pedersen (2008), who 
add explicit structure to the dynamics of illiquidity and its link to 
volatility. They propose a setting in which market illiquidity is ex­
plicitly modelled as the price deviation from fundamental value and 
where ‘liquidity spirals’ can occur along the following lines: Low mar­
ket liquidity increases the price impact of orders, leading to increased 
volatility in markets. Higher volatility then prompts higher margins 
for trades, leading to a worsened funding situation for traders, i.e. 
less funding liquidity. This ‘margin spiral’ in turn forces trades to be 
become more cautious so that they are more reluctant to take on posi­
tions, thereby further withdrawing market liquidity. Another feedback 
mechanism at work in their model is the so-called ‘loss spiral’, where 
low market liquidity and the associated price swings lead to losses on 
traders’ existing positions and therefore to funding problems. This in 
turn, again, feeds into less trading and deteriorating market liquidity. 
Through these mechanisms, Brunnermeier and Pedersen (2008)pro-
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vide a link of liquidity to volatility and are able to explain why mar­
ket liquidity can suddenly dry up (similar to the situation of liquidity 
black holes above). For the purpose of devising an empirical time se­
ries model as in this chapter, their approach is especially interesting 
in that it highlights that illiquidity is self-reinforcing and therefore 
autocorrelated through time.

3.2.2 The Empirical Context

Empirical research into liquidity has gained in popularity over the last 
decade and is now a very active field. As a comprehensive overview 
is outside the scope of this chapter, in this section we again aim to 
document an excerpt of the literature as we think it is relevant for 
our purposes: For example, we narrow our focus down to empirical 
research on liquidity in equity markets and seek to only briefly touch 
on the arguably very important area of ‘liquidity asset pricing’4:

An early empirical study of liquidity in markets has been provided 
by Amihud and Mendelson (1986), who analyse stock returns and bid- 
ask spreads of NYSE and AMEX stocks from 1960 to 1980 and find 
that the expected asset return is an increasing function of average 
‘categorised’ illiquidity costs, i.e. the average bid-ask spread of one of 
seven portfolios sorted by their spread size. They also find evidence for 
a clientele effect, whereby in equilibrium less liquid assets are allocated 
to longer horizon investors, thus creating an increasing, but concave 
relationship between expected returns and bid-ask spreads.

A similar result is obtained by Brennan et al. (1998), who exam­
ine ‘Center for Research in Security Prices’ (CRSP) stock data from 
1966 to 1995 and document that a stock’s dollar trading volume as a

4For an extensive overview of this topic we again refer the reader to Amihud et al. (2006).
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measure of liquidity acts as a determinant of expected returns. This 
conclusion is based on their finding that the trading volume is a sta­
tistically significant liquidity factor in an ‘Arbitrage Pricing Theory’ 
(APT) model along the lines of Ross (1976), even after the inclusion of 
other controlling characteristics such as for example size or the Connor 
and Korajczyk (1988) principal components.

In contrast to these two papers which address one dimension of 
liquidity explicitly, Amihud (2002) devises a composite liquidity mea­
sure, incorporating simultaneously the notions of tightness, depth and 
breath: He proposes the ILLIQ metric, the average daily ratio of ab­
solute returns to dollar trading volume over some period (in his case 
a year) and finds that the lagged market illiquidity (i.e. the average 
ILLIQ measure across stocks) is a positive determinant of excess re­
turns in a size-sorted sample of CRSP stock data from 1964 to 1996. 
While pointing out that ILLIQ is a robust measure of liquidity that can 
be easily derived for most securities from commonly used databases, 
Amihud (2002) also acknowledges that finer measures of liquidity are 
obtainable from intraday market microstructure data.

However, as Hasbrouck (2006) points out, such data is often not 
readily available5, prompting the need for alternative methods: Has­
brouck (2006) proposes a Gibbs-filtered estimate of liquidity as a 
means to determine reliable and robust liquidity measures from low- 
frequency (daily, weekly or monthly) data. Using CRSP data from 
1993-2005, he finds that his measure of liquidity is highly correlated 
with effective spreads (the difference between the transaction price and 
the mid-point of the bid-ask spread) calculated from intraday ‘Trades 
and Quotes’ TAQ data covering the same period. While he does not

5For example, high-frequency data is usually not obtainable prior to 1983.
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find any evidence for a significant market-wide liquidity risk factor, the 
Gibbs-filtered measure per stock is documented to be a positive sig­
nificant determinant in a Fama and French (1992)-style factor model 
against the full cross-section sample of CRSP equity returns from 1926 
to 2006. This result is, however, not robust once the sample is split in 
January and non-January periods.

While the above papers relate levels of liquidity to stock returns, 
Pastor and Stambaugh (2003) as well as Acharya and Pedersen (2005) 
attempt to incorporate liquidity risk into a formal asset pricing ap­
proach: Using an asset pricing model based on Fama and French 
(1993), the former for example find that expected stock returns in 
a CRSP dataset covering 1966 to 1999 are related to the sensitivities 
of stock returns to innovations in aggregate illiquidity. However, their 
liquidity measure is the outcome of an econometric procedure that 
measures liquidity as the strength of volume-related return reversals 
and is as such not readily calculated from any given dataset.

Acharya and Pedersen (2005) follow a more familiar path of as­
set pricing, whereby they enhance the ‘Capital Asset Pricing Model’ 
(CAPM) with betas reflecting the pair-wise covariances between mar­
ket liquidity, individual stock liquidity, market expected return and 
individual stock expected return. Using a liquidity measure based on 
Amihud’s (2002) ILLIQ metric mentioned above, they find that in the 
cross-section of NYSE and AMEX stock returns from 1963 to 1999, 
their liquidity-adjusted CAPM fares better than the standard CAPM 
in terms of fit and in specification testing, even though both models 
equally use one degree of freedom.

The approaches of Pastor and Stambaugh (2003) as well as Acharya 
and Pedersen (2005) can thus both be viewed as the introduction of



3.2. Liquidity in Financial Markets 127

a systematic liquidity risk component into traditional asset pricing, 
whereby expected returns reflect exposure to this type of risk. As 
such, these models have been helped greatly by another recent impor­
tant strain of empirical research into the so-called ‘commonality’ of 
liquidity:

Hasbrouck and Seppi (2001) for example study intraday order flows, 
returns and liquidity (as measured by bid-ask spreads, quote sizes and 
a combination of the two) in the cross-section of 30 ‘Dow Jones Indus­
trial Average’ (DJIA) stocks in 1994. While they find that common 
factors in order flow help explain returns, the evidence for common 
liquidity factors in their sample is weak. Rather, firm-specific effects 
seem to dominate common factors in explaining returns.

Using CSRP and intraday TAQ data for all NYSE stocks in 1996, 
Huberman and Halka (2001) on the other hand are able to identify a 
systematic time varying component in liquidity as measured by (per­
centage) bid-ask spreads and (dollar) quote depths. They also find 
that liquidity is negatively correlated with volatility, which is in sup­
port of the theoretical predictions above. While their results are ro­
bust to the inclusion of firm-specific as well as economy-wide control 
variables, such as e.g. trading volume or treasury yields, Huberman 
and Halka (2001) find it difficult to explain the common component in 
liquidity fully and acknowledge that there is “no established theory of 
time-series behaviour of liquidity proxies” (cf. p. 170). They attribute 
the commonality in liquidity behaviour over time to a systematic liq­
uidity component that is the result of ’’the presence and effect of noise 
traders” .

This result is also mirrored by Chordia et al. (2000a, b) who find 
co-movement in liquidity for NYSE stocks with market and industry­
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wide liquidity using intraday transaction data for 1992 and different 
measures of liquidity such as the (proportional) quoted spread, mar­
ket depth, as well as the (proportional) effective spread. In robust­
ness checks, the common effects remain significant after controlling 
for other stock-specific liquidity proxies such as volatility and volume. 
Nonetheless, they also struggle to pin down the source of commonal­
ity in their data. Contrary toHuberman and Halka (2001), who at­
tribute the commonality in liquidity to noise trading activities across 
securities, Chordia et al. (2000a, b) suggest market-wide asymmetric 
information effects as well as inventory risks as common determinants 
of illiquidity.

Perhaps due to the aforementioned lack of clear-cut theories re­
garding its time series properties, the empirical time series modelling 
of liquidity has seen only modest activity over the years:

Chordia et al. (2001) for example focus on the time series properties 
of aggregate market liquidity, defined alternatively as either the aver­
age (percentage) quoted, or effective spreads, aggregate market depth 
or a composite ratio of quoted spreads across a sample of NYSE stocks 
from 1988 to 1998. They find that daily changes in aggregate liquid­
ity as well as market activity - defined as aggregate (dollar) volume or 
number of trades per day - are highly volatile (more so than returns) 
and negatively serially correlated. Moreover, liquidity plummets sig­
nificantly in down markets.

In a recent approach, Chordia et al. (2006) examine vector autore­
gressions (VARs) of the above liquidity proxies, returns and volatility 
for ten size-sorted portfolios of NYSE stocks as well as the value- 
weighted NASDAQ portfolio from 1988 to 2002. They find evidence for 
persistent liquidity, return and volatility ‘spillovers’ across size port­
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folios, with significant lead-lag effects. Large cap stocks for example 
appear to lead NASDAQ as well as small cap stocks in the transmis­
sion of liquidity shocks. Moreover, they find that stock returns and 
volatility in one sector can predict liquidity in the same sector as well 
as in others.

On the individual security level, the modelling approaches clos­
est in spirit to the one employed in this chapter are given by Engle 
and Russell (1998) and Engle and Lange (2001): The latter devise 
the VNET measure of liquidity, which denotes the number of shares 
purchased minus the number of shares sold during a time interval in 
which prices move a pre-specified increment. VNET thus constitutes 
an intraday price duration-filtered measure of realised (net) depth as­
sociated with a certain price change. Using intraday data on NYSE 
stocks from November 1990 to January 1991 as well as for August to 
December 1997, they show that VNET is highly variable and in time 
series models can explained by past volume, number of transactions 
during previous price durations as well as past spreads. Importantly, 
VNET also exhibits high autocorrelation, a finding which is robust to 
the selection of the price increment.

While Engle and Lange’s VNET model addresses the liquidity no­
tions of depth and tightness, Engle and Russell (1998) focus on the 
immediacy notion of liquidity: They propose the so-called ‘Autoregres­
sive Conditional Duration’ (ACD) model, whereby the time (duration) 
between consecutive trades is a point process and as such modelled as 
(multiplicative) autoregressive function of past durations and shocks. 
Their model builds on the empirical findings that intraday durations 
tend to cluster, similar to volatility, and lends itself to many em­
pirical intraday applications such as the modelling of ‘thinned point
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processes’ like the arrival times of certain transaction volumes or price 
changes.

Prom the point of view of this chapter, the econometric modelling 
approach in the case of CARL is in many ways analogous to the ACD 
model, which will become more apparent below.

3.3 Two Building Blocks

Here, we present the two ‘ingredients’ for the CARL model. As men­
tioned before, our modelling relies on the ratio of the percentage dif­
ference in the minimum and maximum price to the price-weighted 
turnover, a measure that captures liquidity along several dimensions. 
We outline the properties of this ratio in more depth below. We then 
briefly present the well-established econometric time series concept of 
the ACD model, which will provide the dynamic framework for the 
CARL model.

3.3.1 A M ulti-Dim ensional Liquidity M easure

We use the so-called Hui-Heubel (HH) ratio as a measure of liquidity 
(cf. Sarr and Lybek, 2002). The HH ratio of liquidity (lt) for period t 
is defined as

r , m a x _ ~ m i nEl El__
, m mPt 
_Vt 
Pt'St

k = , (3.1)



3.3. Two Building Blocks 131

where

^max =  maximum transaction price over the period 

p™111 =  the minimum transaction price over the period 
Vt = the traded currency volume over the period 
pt = the average price over the period
St = the average outstanding number of shares over the period.

There are a number of reasons why the HH ratio lends itself to use as 
a measure of liquidity for the purposes of this chapter:

• As it combines more than one dimension of liquidity in a sin­
gle metric, the HH ratio can be considered a composite liquidity 
measure (cf. Kluger and Stephan, 1997). Liquidity is higher the 
lower lt, i.e. the lower the numerator and the higher the denom­
inator. Therefore, ceteris paribus, liquidity conditions are better 
the smaller the difference between pf18* and p™m as a percent­
age of p™111, which can readily be interpreted as a tighter market 
- irrespective of tick-sizes and price level. Equally, liquidity is 
higher, all other things equal, the higher price-weighted volume as 
a percentage of the outstanding price-weighted number of shares, 
i.e. the price-weighted turnover (share turnover has been promi­
nently suggested and used as a separate, albeit one-dimensional 
measure of liquidity by Datar et al., 1998). Again, this makes in­
tuitive sense as a higher price-weighted turnover rate (given the 
same tightness conditions) indicates a deeper market and thus 
more liquidity, albeit along a different dimension compared to 
the notion of tightness before. Compared to one-dimensional liq­
uidity metrics such as for example the bid-ask spread, composite 
measures like the HH ratio have been shown to exhibit superior
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explanatory power for future expected returns as e.g. in Kluger 
and Stephan (1997).

• While also pointing out that bi-dimensional ratio-type measures 
of liquidity (given the different notions of liquidity applying to the 
numerator and denominator, the HH ratio can regarded as such) 
dominate one dimensional metrics in explaining commonalities in 
liquidity, Escribano et al. (2004) stress that changes in liquidity 
as measured by such a bi-dimensional metric can be ambiguous 
whenever liquidity dimensions do not reinforce each other. A par­
ticular occurrence of such an ambiguity is for example a situation 
in which the market tightens but less depth is provided, leaving 
the overall development of liquidity unclear (the interplay of the 
tightness and depth dimensions of liquidity is illustrated in figure 
3.1).

In the case of tightness (taken as the bid-ask spread) and depth 
Escribano et al. (2004) argue the case for incorporating a rate 
of substitution between the two contemporaneous facets of liq­
uidity into bi-dimensional measures. While this renders the bi- 
dimensional analysis of liquidity in their setting more meaning­
ful, incorporating it also compounds the empirical effort needed 
to derive such a metric. In the case of the HH ratio, it might 
be argued that fortunately this effort can be saved as the ratio, 
despite incorporating a notion of tightness, does not make use 
of the (change in the) instantaneous bid-ask spread as proxy for 
tightness nor of the (change in the) contemporaneous order book 
depth. Rather, by incorporating the price-weighted transaction 
volume and the associated difference between the maximum and
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Figure 3.1: M arket liqu id ity  - T igh tn ess and d ep th

This figure schematically displays the tightness as well as the depth dimension of market liquidity. 
The former is manifested by the bid-ask spread, the latter by the transaction volumes that can be 
bought and sold at different quoted prices.

minimum transaction price over some period, the HH ratio is to 

be considered a measure tha t relates volumes to their impact on 

prices and thus to resiliency, yet another dimension of liquidity. 

Moreover, it can be argued th a t the ratio also captures market 

breadth as a larger transacted percentage price-weighted volume 

per percentage maximum/minimum price difference, thus a lower 

It, indicates a broader market.

• Following the previous argument, the HH ratio is therefore closely 

aligned with Kyle’s (1985) concept of liquidity, whereby prices 

respond to order flow and do so less in a broader, more liquid 

market. It has however been argued tha t this link and thus the 

meaningfulness of the HH ratio as an indicator of market liquid­

ity can break down whenever price move instantaneously (and in
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large jumps) solely due to the announcement of news (cf. Sarr 
and Lybek, 2002, p. 13), say, with very little associated volume. 
Engle and Lange (2001, pp. 17), however, suggest that large price 
swings purely on the basis of new information are rare due to the 
presence of stale limit orders in the market and market makers 
charged with maintaining a steady price path. While conjectur­
ing that news do (indirectly) move prices, they also stress that in 
‘normal’ circumstances large movements in transaction prices do 
not stem from public announcements in an instantaneous fash­
ion, but rather evolve over a longer time frame, with associated 
volumes driving the price evolvement. Thus, with the presence of 
new purely information-based trading in the market being fairly 
infrequent, the HH ratio as a measure of market liquidity is still 
meaningful.

• The incorporation of the percentage difference between the max­
imum and minimum price over the measurement period in the 
case of the HH ratio as opposed to e.g. the period return as in 
the ILLIQ measure used by Amihud (2002), also has the added 
benefit of linking the liquidity measure to the asset’s volatility, 
as has been suggested by both the theoretical and empirical lit­
erature mentioned above: A period marked by a flat return, but 
large intra-period price swings would heuristically be classified as 
more illiquid than one with flat returns throughout, yet, ceteris 
paribus, a return-based measure would indicate an equal level of 
liquidity for both. Using the high and low prices of the period, 
however, the HH ratio on the other hand takes the higher level of 
volatility into account, flagging a lower level of liquidity for the
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former situation.

• By construction, also being a measure of the level of liquidity 
as opposed to the change in it, the HH ratio is always positive, 
which is particularly relevant for the econometric modelling as 
a positive, multiplicative autoregressive process. This point is 
highlighted in greater detail in section 3.4.

• Being the ratio of yet another two relative liquidity metrics, the 
HH ratio is independent of scales and units. This might be par­
ticularly relevant for researchers and practitioners seeking to em­
ploy the ratio to past data and markets that are characterised by 
non-decimal minimum tick sizes as for example on the NASDAQ 
before April 2001.

• Due to its simplicity, the HH ratio can be readily calculated from 
the most commonly used datasets. Contrary to other liquidity 
measures such as e.g. the duration as used in the ACD model, 
the HH ratio can be computed and thus used in a model at various 
frequencies, ranging from intradaily to annually and longer. This 
has the benefit of being able to compare higher frequency metrics 
to smoother, longer-run averages, a practice that is commonly 
used when analysing returns, but has to the author’s knowledge 
not been prominent in the case of liquidity

Despite the above benefits of the HH ratio as a measure of mar­
ket liquidity, it needs to be stressed that as such it is far from being 
perfect and is not appropriate for all applications. As suggested by 
various researchers (cf. e.g. Amihud, 2002, p. 35), given the multidi­
mensionality of liquidity, it is doubtful that a single measure is able
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to capture all aspects of liquidity perfectly and in an exhaustive way. 
Nonetheless, for the purposes of this chapter, the HH ratio can be 
readily employed in a time series econometric context, which we lay 
out in the next section.

3.3.2 The Econometrics

As mentioned above Engle and Russell (1998) have conceptualised 
the ‘Autoregressive Conditional Duration’ (ACD) model, which con­
stitutes a multiplicative, autoregressive process for the time series be­
haviour of trade durations, i.e. the intervals between successive trans­
actions.

Being a so-called ‘marked point process’ like the well known Poisson 
process, the ACD model may be represented via the hazard function, a 
time series process that indicates the event rate at time a point in time, 
such as e.g. in the ‘proportional hazard’ (PH) modelling approach (i.e. 
the hazard function is taken to be a ‘baseline hazard’ multiplied by 
a function that depends on lagged durations and/or other exogenous 
variables), as well as by modifying the time scale directly, as in the 
‘accelerated time’ (AT) time series approach used by Engle and Russell 
(1998):

They model durations as a baseline duration with a unity expec­
tation times a function depending on lagged durations and/or other 
exogenous variables. From an econometric point of view, their ap­
proach is closely related to Bollerslev’s (1986) GARCH model, how­
ever, in contrast to the returns in the latter, the ACD is modelled on 
a positive domain, with an error distribution taken from a family that 
fulfills this criterion, such as e.g. the exponential, Weibull or Gamma 
distribution.
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It is mainly because of its positive domain multiplicative structure, 
that the AT ACD modelling technique provides a very useful econo­
metric setup for the CARL model, in which we seek to model yet 
another positive variable, the HH ratio as a multiplicative autoregres­
sive process through time. The next section provides more detail on 
the mechanics of the CARL model.

3.4 The CARL M odel

Having laid out the building blocks for the CARL model above, we 
now turn to assembling the model: We present the full dynamic frame­
work of the model as well as its statistical properties. We also touch 
on the issue of ’Maximum Likelihood Estimation’ (MLE) as well the 
forecasting properties. Finally, we discuss a possible way of introduc­
ing exogenous past variables into the regressor equation to create a 
richer model that is also in accordance with theoretical research.

3.4.1 M odel Setup

We model the univariate time series of the market liquidity of a secu­
rity, proxied by the HH ratio, as a multiplicative autoregressive process 
akin to the ACD model for intraday trade durations. The resulting 
model is the ‘Conditional Autoregressive Liquidity’ (CARL) model, 
with the following more formal definition:

Definition 5 lt, the Hui-Heubel ratio at time t follows a CARL(p,q) 
process if

lt =  At£t , with et ~  i.i.d., E[eJ =  1, Var(et) =  Ce < °°> G {0,..., T} ,
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and

p
Xt — lu +  j (3.2)

j=1

where lj > 0 and ai,/3j,Vi,j obey the inequality conditions for the 
positivity of Xt laid out in Nelson and Cao (1992).

The conditions on the i.i.d. innovations et6 ensure the that the 
expectation of the positive liquidity measure It conditional on the in­
formation set up to and including time t — 1 (denoted Tt-f)  is

which can be obtained by taking expectations on both sides of equation 
(3.2). Strictly speaking, the unconditional expectation only exists 
if under the above conditions, all roots of the associated difference 
equation polynomial

1 — (ai +  Pi)z -  ... -  (am +  Pm)zm, with m  =  max(p, q) (3.5)

lie outside of the unit circle. In the simple case of p = q = 1, with the 
above conditions on the roots of (3.5) holding, we also have

E[k\Ft-i] =  Xt. (3.3)

The unconditional expectation of lt is

E[y = in (3.4)

VarMFt-i)  =  X2t
6i.i.d. is taken short for ‘independently and indentically distributed’.

(3.6)
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and

Var(lt) = of = f i g
1 — a 2 — 2 a/3 

1 -  a 2 -  2a(5 -  (1 +  Q)(32_
(3.7)

for the conditional and unconditional variance respectively. The au- 
tocovariance function (also cf. Bauwens and Giot, 2000) of the first 
order is given by

7 i =  v /jli +  aa +  b/3 -  $ (3.8)

with

a = E[A2] = V a r ( \ t) +
2 f 1 — (a +  /?)2

=  w

= M?C

1 -  a 2 -  2a/? -  (1 +  Cf)/?2 
/?2

+

and

1 -  a 2 -  2a(3 -  (1 +  C|)/?2_

b =  E [lf\ = a t  +  H i  

The autocovariance function 7* for higher orders z >  2 is

i—1
7i =  ljui +  ^ 2  Q itk +  aa’ +  b/?a’_1 -  ,

k= 1

with

(3.9)

(3.10)

(3.11)

(3.12)

For higher order cases of p and q, the expressions for the uncondi­
tional variance and the autocovariance function increase in complexity
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very rapidly and are thus omitted here.
Setting vt = It — A*, which is a martingale difference sequence, 

the CARL model can be re-written in the form of an ARMA(ra,p) 
representation with non-Gaussian innovations and m  = max(p, q):

m p
It — LO +  +  fa)U-i +  Vt-j +  Vt- (3.13)

i=1 j=1

Prom the representation, it can be seen that the condition for the ex­
istence of the unconditional expectation also ensures covariance sta- 
tionarity of lt: The latter is obtained iff all roots of the polynomial 
in (3.5) lie outside of unit circle. Given the above representation, 
forecasts for the CARL model are easy to compute using standard 
ARMA time series techniques. Moreover, the ARMA representation 
highlights the fact that in the CARL model the dependent liquidity 
variable lt is modelled as an autoregressive function of its own lagged 
values. In this function the parameters a* and fa (z — 1, ...m) govern 
the behaviour of the model: The closer the sum of the parameters is to 
unity, the less mean-reverting the process will be and the higher the 
autocorrelation in lt. We now turn to the estimation and asymptotic 
properties of the process.

3.4.2 Asym ptotic Properties and Estim ation

The CARL model is analogous to the ACD model and as such has 
many similarities with the GARCH model class (cf. Engle, 1982; Boller- 
slev, 1986). Indeed, as in the case of ACD, many properties of GARCH 
carry over to the CARL model: We pick the CARL model in the (1,1) 
parameterisation as a ‘natural’ point of departure for our analysis in 
this section.
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The most obvious (and arguably simple) candidate for an error dis­
tribution for the CARL model is, as in the case of the ACD model, 
the exponential distribution, with et > 0 and E [et\ = Var(et) =  1. 
For ‘exponential CARL’, the ties to the GARCH model class are es­
pecially close: Importantly, the exponential CARL(1,1) model can be 
estimated via QML, similar to the GARCH(1,1) model. This impor­
tant property is stated more clearly in the following proposition:

Proposition 6 (Analogous to Engle and Russell, 1998) I f  a CARL(1,1) 
model exhibits the following properties

I. E[Zt|^i_i] =  Ao,t =  +  &o^t-i +  Pok-u
I I .  et = is strictly (a) stationary, (b) ergodic,

(c) non-degenerate, (d) E[ef|^i_i] < oo,
(e) suptE[ln(P0et +  ao)|^i-i] < Oa.s.;

I I I .  0o =  (u;o, ao,Po)Tis in the interior of the parameter space 0 ;

IV. C{6) =  - y E  9t(0), Where gt{6) = log(At) +  ^

with <

t=l L
At =  u  +  aXt- i  +  P k-i for i >  I

then:
k =  jjZ3j for * =  1

1. 9* = argmax[£(0)] — 0o;
2. 0* is asymptotically normal and

has the asymptotic covariance matrix

V 0 =  B ^A oB q1, with B 0 =  -E [V 2g((6»0)] and

A 0 =  E[Vgt(0o)V9t(0o)T}-

Building on Lee and Hansen (1994), the proof of the above propo­
sition is exactly analogous to Engle and Russell (1998, p. 1135) and 
is therefore omitted here.
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The above results always hold for the stationary case with a+f3 < 1 
and for some integrated and explosive cases that meet condition II.(e). 
More importantly, the proposition also covers situations in which e* =

is not i.i.d., but only the weaker condition of strict stationarity as 
in 11, (a) holds. The above also means that, as in the case of the ACD 
model, the CARL model can be conveniently estimated as a GARCH 
process by setting \ f l t as the input variable.

It should be stressed that the above only concerns the (1,1) case, 
while yet other parametrisation setups are conceivable. The extension 
of the analysis for these cases is far from trivial, as noted by both 
Engle and Russell (1998) and Lee and Hansen (1994). It is, however, 
to be expected that similar results hold.

Additionally, while the proposition shows the QML estimator to 
be consistent, it is not necessarily efficient if the true error density 
is different from the exponential distribution. In these cases, ‘Maxi­
mum Likelihood’ (ML) estimation with the ‘correct’ density is to be 
preferred. For the ACD model, Engle and Russell (1998) for example 
propose the Weibull and the Gamma family of distributions as possi­
ble candidates for the error density. While such an extension is also 
feasible in the case of the CARL model, the focus of this chapter is 
more on the presentation of the new model and versatility in various 
data environments rather than on efficient estimation. Indeed, it is 
to be expected that the exponential model, with its lack of degrees of 
freedom in the parameterisation of the density, will not yield the most 
efficient estimates and is most likely to be dominated in this respect 
by setups with other error distributions. Yet, as per proposition 6 , es­
timation results obtained with the exponential CARL model are still 
consistent, which is arguably sufficient for most practical applications.
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It is also important to note that while QML estimation with the 
exponential model is consistent in the case of a ‘wrong’ density as­
sumption, this does not hold in the case of a erroneous assumption 
about the entire data generating process (DGP). Thus, as also stressed 
by Lee and Hansen (1994) for GARCH, the above analysis rests on the 
assumption that the assumed CARL model setup is ‘correct’, which 
might however not strictly hold7. Unfortunately, an extension of the 
above results for the case of a ‘wrong’ CARL process assumption is 
outside the scope of this chapter and has to our knowledge not been 
established for the GARCH and ACD model class either.

3.4.3 Theoretical Underpinnings and Extensions

One of the most important features of the CARL model is its ability 
to pick up autoregressive patterns in the HH ratio, and thus arguably, 
in market illiquidity of a security over time. As can be seen by recur­
sively substituting into the autocovariance function of the CARL (1,1) 
model given in equations (3.8) and (3.11), the process has decaying 
autocorrelations, whereby the rate of decay is governed by the mag­
nitude of a. The higher closer the sum of a  and /?, the slower the 
autocorrelations die out. For the purpose of modelling market liquid­
ity, this property provides an important link between the empirical 
CARL approach and theoretical research laid out in section 3.2.1: As 
high (low) market liquidity begets high (low) market liquidity during 
liquidity spirals according to the research reviewed (cf. Brunnermeier 
and Pedersen, 2008), the CARL model should be poised to pick up 
such patterns when estimated with real data.

7In the case of GARCH for example most research seems to (implicitly) agree that the model 
does only approximate the true DGR
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Prom the ARMA representation of CARL(1,1) in equation (3.13) 
it is further evident that in a stationary CARL process with a  +  (3 < 1 
is mean-reverting, i.e. any (large, ‘unusual’) shocks to the process 
will eventually die out. Prom a theoretical point of view this feature is 
very much in line with e.g. Morris and Shin (2004) who postulate that 
liquidity black holes are eventually corrected and liquidity provision 
in markets will revert to normal.

Given the ARMA representation it is also easy to see that CARL 
model can be used for forecasting, i.e. predicting lt+s, s > 0 using 
variables in the information set Tt available at time t. In the case of 
CARL(1,1), this yields:

l(s) = E[lt+s\Tt] = Xt+s = 1] + (q + /? )s- 1Z(1), (3.14)
1 — a  — p

with

1(1) =  E[/t+i|^i] =  A*+i =  u  +  a \ t +  (3lt.

Therefore, as s —> oo, one has lim \l(s)] = fii = i.e. long-ranges—>oo L a p
forecasts essentially constitute the unconditional mean.

As established above, the CARL model can estimated as a fully 
specified probability model via QML. While this is a feasible result 
from a theoretical point of view, one usually performs conditional 

QML estimation in practice, i.e. maximising the average of the sum 
of the log of conditional densities:

^Ogf{lt\Jrt-l',0) + \ogf(li-,T])j , 

where /(•) denotes the error density used. Whereas in the defini­

m axT 1 ( V
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tion of the basic CARL model in section 3.4, T t-1 simply includes 
lagged values of lt, it may also comprise other exogenous variables 
that are non-random from a time t perspective - without changing the 
econometric properties of the model needed for estimation via condi­
tional QML. One such example would be the following, ‘augmented’ 
CARL(p,q,r) model, in which the conditional mean Xt is modelled as a 
function of lagged values of Xt and lt as well as ^ -i-ad ap ted  indicator 
variables that return 1 whenever the past return yt-k of period t — k 
was negative and 0 otherwise:

p  q r

Xt = LU + OLiXt-i +  ^2(3jit-j +  k^[yt-k < 0]? (3.15)
i=1 j—1 k=1

with 7k > 0, VA;.

Choosing this parameter setup introduces a threshold effect that is in 
accordance with the theoretical research laid out above: According to 
Brunnermeier and Pedersen (2008) negative returns (on equities) cre­
ate losses on traders’ positions, leading to funding problems, which in 
turn - through a so-called ‘loss spiral’ - translate into less trading and 
deteriorating market liquidity. Worsened market liquidity then feeds 
into yet more volatility and a more strained trading environment, pos­
sibly leading to even more losses. Thus, from an empirical point of 
view, negative (past) returns should inject over-proportionately more 
illiquidity, thereby aggravating the autocorrelation of market illiquid­
ity, which the threshold variable in the augmented CARL(p,q,r) model 
above is designed to detect.
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3.5 Empirical Application

In this section, we present a brief empirical application of the CARL 
model using the example of Amazon equity data. We estimate various 
versions of the model against daily as well as weekly data, highlighting 
the model’s ability to cope with different frequency settings in the 
empirical analysis of liquidity.

3.5.1 D ata

As mentioned above, the empirical application in this chapter is car­
ried out using CRSP data of the NASDAQ-listed online retailer Ama­
zon. We selected this particular stock due to its characteristics as 
a ‘new economy blue chip’: Amazon went public in 1997, but even 
though it arguably is a new economy stock, it dodged the burst of the 
‘dot-com bubble’ in 2000 and emerged as one of the heavyweights in 
the NASDAQ index. It has since grown into one of the largest online 
retailers today. Prom the perspective of the analysis in this chapter, 
the stock thus has the desirable characteristics of having exposure to 
the volatile and ‘nervous’ technology segment of the market, which 
also reflects on liquidity being more volatile, while being sufficiently 
large and therefore defensive enough. Moreover, for Amazon the re­
quired data for the empirical analysis with the CARL model is readily 
available on both daily and monthly frequencies via CRSP (as well as 
on an intraday basis via the TAQ database).

In this chapter we estimate CARL models against daily as well as 
weekly data. The daily data covers the entire listing period of Amazon 
on the NASDAQ until the end of 2006, i.e. 15/05/1997-29/12/2006. 
We also extract the ‘decimalised’ period, i.e. the time span starting
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with the first date of decimalised trading8 in Amazon stock, which 
in this case is 09/04/2001-29/12/2006. This is done to facilitate a 
comparison between ‘tick regimes’.

The data comprises the daily holding return as per the CRSP 
database as well as the HH ratio. The latter is derived using the 
daily maximum and minimum transaction price given by CRSP as 
well as the shares traded and shares outstanding. As traded volume 
is not given on a transaction price weighted basis in the daily CRSP 
database and cannot be derived other than from intraday data, the 
denominator of the HH ratio is constructed by simply dividing trades 
shares multiplied by the daily average price (the average of the last 
and current day’s closing price as per CRSP) by outstanding shares, 
again multiplied by the daily average price. As the latter drops out, 
this effectively amounts to using share turnover as the denominator. 
Even though this procedure does not strictly abide by the way the de­
nominator of the HH ratio is defined, deriving the denominator from 
intraday data by weighing each intraday transaction size by its cor­
responding price involves high computational effort, which does not 
appear to significantly improve the accuracy of the ratio given the 
narrow spans of daily transaction prices.

The weekly data also comprises both the holding return and the HH 
ratio times and covers the period 19/05/1997-28/12/2006. The series 
are derived from daily CRSP data on a ‘Wednesday-to-Wednesday’ 
basis to avoid ‘beginning-of-the-week’ and ‘end-of-the-week’ effects: 
The maximum and minimum transaction prices for the week are used 
to construct the numerator of the HH ratio. For the denominator,

8Traditionally, the tick size on the NASDAQ was 1/8. That was changed to 1/16 on 02/06/1997 
and later o gave way to fully decimalised trading in all stocks.
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Table 3.1: Amazon HH ratio, return and turnover data statistics

This table shows statistics for the Amazon HH ratio, holding return and price-weighed share 
turnover calculated using CRSP data. The Ljung-Box autocorrelation test statistic for the first 
50 lags is denoted as LB50, the Jarque-Bera test statistic as JB. The statistics are presented for 
daily and weekly frequencies, with the former covering both the entire NASDAQ listing period 
from 15/05/1997-29/12/2006 (shown as 1997-2006) as well as the period starting with NASDAQ 
‘decimalisation’ on 09/04/2001 (shown as 2001-2006). The weekly series have been derived from 
the 19/05/1997-28/12/2006 daily series on a ‘Wednesday-to-Wednesday’ basis.

Period 1997-2006 (daily) 2001-2006  (daily) 1997-2006  (weekly)
HH ratio summary statistics

Observations 2,423 1,440 502
Mean 2.747 2.298 1.304
Median 2.074 1.939 0.973
Maximum 23.587 13.623 6.978
Minimum 0.200 0.200 0.254
Std dev 2.715 1.382 0.896
Skewness 2.972 2.306 2.022
Kurtosis 18.053 11.773 8.903
LB5 0  (P-value) 34,836 (o.oo) 16,203 (o.oo) 3,600 (o.oo)

Holding return summary statistics
Mean 0.246 0.178 1.168
Median -0 .020 0.000 0.054
Maximum 34.470 34.470 46.053
Minimum -24 .770 -24 .770 -30 .200
Std dev 4.996 3.793 9.781
Skewness 0.790 1.202 0.901
Kurtosis 8.414 19.332 5.815
JB (P-value) 3,211 (o.oo) 16,352 (o.oo) 233 (o.oo)

Price weighed share turnover summary statistics
Mean 2.947 2.072 14.759
Median 1.972 1.744 10.334
Maximum 32.794 18.378 91.494
Minimum 0.171 0.343 2.003
Std dev 2.992 1.449 12.613
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Figure 3.2: A m azon H H  ratio, return  and turnover

This figure displays Amazon HH ratio, holding return and price-weighed share turnover data for 
the 1997-2006 period. Both daily data from 15/05/1997-29/12/2006 as well as ‘Wednesday-to- 
Wednesday’ weekly data for the period 19/05/1997-28/12/2006 are shown.

we weigh both the trading volume as well as the shares outstanding 
on each trading day by the average transaction price of the day (the 
average of the current and previous day’s closing prices) and then 
divide the so-weighted sum of the daily volume over the course of a 
week by the sum of the daily weighted shares outstanding over the 
week. The so-calculated price-weighted daily average turnover is then 
multiplied by 5, the number of trading days per week to construct a 
weekly average price-weighted turnover to be used as the denominator 
of the weekly HH ratio.

Summary statistics of the daily as well as weekly Amazon HH ratio,
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holding returns as well as the price weighted turnover can be found in 
table 3.1, while the time series of these metrics are displayed in figure 
3.2. Prom the figure it is evident that, in general, the time series 
of the daily as well as weekly HH ratio exhibit a ‘clustered’ pattern 
(similar to volatility), indicating strong autocorrelation, with marked 
periods of low as well high liquidity: During 1997 up until 1998 for 
example, Amazon experienced a period of relatively low liquidity (as 
measured by a high HH ratio) - both on a daily as well as on a weekly 
measurement basis. Thereafter, liquidity in the stock in conjunction 
with turnover picked up strongly and deteriorated again during 2000- 
2002, possibly as a consequence of the faltering dot-com boom. Prom 
2002 onwards, the HH ratio as well as turnover rates can be seen 
to be fairly stable on both frequencies, with daily turnover picking 
up slightly towards the end of the sample, a likely reflection of the 
growing importance of Amazon as a leading online retailing stock.

Comparing the daily to weekly data, one notices that market liq­
uidity in general is higher for the weekly frequency, as indicated by a 
comparatively lower HH ratio. Given the definition of the ratio, this 
is does not come as a surprise as a market should be able to ‘digest’ 
more volume with the same price impact during a trading week than 
during a trading day - simply also because a week offers more time to 
trade than a day.

The table confirms this observation, as for example indicated by 
a lower mean HH ratio for the weekly series as opposed to the daily 
frequency. Prom the table, in particular the large ‘Ljung-Box’ (LB) 
statistics (calculated conservatively for 50 lags), it is also evident that 
HH ratio time series on both daily and weekly frequencies is indeed 
highly autocorrelated, confirming the impression given by figure 3.2.
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The table further indicates that holding returns of the stock on both 
frequencies are strongly non-Gaussian (as shown by large ‘Jarque- 
Bera’ (JB) statistics), with strong kurtosis and skewness especially 
during the 2001-2006 period.

3.5.2 Estim ation and Results

As indicated in section 3.4.2, estimation of the CARL model via QML 
can be carried out using conventional time series computer packages 
that include GARCH functionality by estimating the CARL model as 
a Gaussian GARCH process with y/Tt as the dependent variable. We 
resort to this technique below to obtain the results below.

Daily Frequency

First, we estimate the CARL model against the two daily Amazon 
datasets described above, comprising the HH ratio as well as the hold­
ing return for the Tull’ 1997-2006 as well as the decimalised 2001-2006 
period. The histogram and the autocorrelation function (ACF) of the 
HH ratio time series for the former and the latter period are shown in 
figures 3.3 and 3.4 respectively.

For both periods the histograms exhibit a skewed shape on the pos­
itive domain, reminiscent of e.g. a Gamma distribution. While this is 
surely a feasible choice, we use the exponential distribution here to fa­
cilitate QML estimation. The autocorrelation functions (ACFs) show 
quite persistent autocorrelation that dies out only after some time, 
c. after 250 and 300 lags for the 1997-2006 and 2001-2006 period re­
spectively. We will return to the strong persistence in more detail in 
the discussion section below. One also notes that over the first, say, 
50 lags the ACF for the 2001-2006 period is less high in magnitude
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Figure 3.3: H istogram  and A C F - 1997-2006 daily  A m azon  H H  ratio

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bottom 
panel) for the daily Amazon HH ratio series from 15/05/1997-29/12/2006. In addition to the 
ACF, 2-standard-deviation interval bounds are shown, corresponding roughly to a 95% confidence 
interval.

and also declines faster. A likely reason for this is th a t Amazon ex­

perienced a fairly consistent period of relatively low liquidity before 

1998, followed by notably stronger liquidity, again fairly consistently, 

up until 2000 (cf. figure 3.2). Thereafter, especially after 2002, the 

end of the dot-com boom, the evolvement of the HH ratio appears less 

clustered, possibly contributing to a slightly lower and faster declining 

ACF for the decimalised period.

For the estimation of the CARL model against these datasets, we 

employ the following method: We estimate CARL(p,q) models for all
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Table 3.2: Estimation - 1997-2006 daily Amazon data

This table shows results from the estimation of different selected CARL models against the 
daily Amazon data series from 15/05/1997-29/12/2006. The table displays parameter estimates, 
Bollerslev-Woolridge t statistics, goodness-of-fit measures as well as statistics for standardised 
residuals. * and ** denote significance at 1% and 5% levels respectively. The Ljung-Box autocor­
relation test statistic for the first 50 lags is denoted as LB5q.

Model CARL(1,1) CARL(1 ,2 ) CARL(1,2,1)
Metric Estimate t stat Estimate t stat Estimate t stat
U) 0.044* 3.926 0.028* 3.455 -0.017** -2.152
Oil 0.702* 42.745 0.795* 40.879 0.890* 71.678
h 0.282* 18.716 0.344* 15.409 0.345* 15.217
A -0.150* -4.992 -0.241* -9.017
7 0.063* 4.268
Log-LH -4,479 -4,478 -4,473
AIC 3.700 3.699 3.699
BIC 3.707 3.709 3.711

Standardised residuals statistics
Mean 1 . 0 0 0 1.002 1.002
Std Dev 0.370 0.368 0.367
LB50 (P-value) 96 (o.oo) 59 (0.18) 58 (0.20)
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Table 3.3: Estimation - 2001-2006 daily Amazon data

This table shows results from the estimation of different selected CARL models against the daily 
Amazon data series in the ’decimalised period’ from 09/04/2001-29/12/2006. The table displays 
parameter estimates, Bollerslev-Wollridge t statistics, goodness-of-fit measures as well as statistics
ar standardized residuals. * and ** denote significance at 1% and 5% levels respectively. T] 
jjung-Box autocorrelation test statistic for the first 50 lags is denoted as LB50.

Model CARL(1,1) CARL(1,2) CARL(1,2,1)
Metric Estimate t stat Estimate t stat Estimate t stat
LJ 0.058* 3.522 0.048* 3.229 0.008 0.467
a  1 0.746* 34.587 0.781* 29.270 0.816* 35.637

th 0.229* 12.269 0.292* 9.823 0.280* 9.401

01 -0.095** -2 .491 -0.114* -3 .109
7 0.066* 2.982
Log-LH -2586.365 -2585.936 -2583.674
AIC 3.596 3.597 3.598
BIC 3.607 3.612 3.616

Standardised residuals statistics
Mean 1.000 1 .0 0 1 1 .0 0 1

Std Dev 0.353 0.352 0.352
L B 5O (P-value) 6 8  (0.04) 57 (0.24) 56 (0.27)
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Figure 3.4: H istogram  and A C F - 2001-2006 daily  A m azon  H H  ratio

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bot­
tom panel) for the daily Amazon HH ratio series in the ’decimalised period’ from 09/04/2001- 
29/12/2006. In addition to the ACF, 2-standard-deviation interval bounds are shown, correspond­
ing roughly to a 95% confidence interval.

possible p  G (0 ,1 ,2 ,3) and q G (1,2,3) param etrisation combinations 

and compare the results in terms of goodness of fit using the AIC and 

BIC as well as the remaining (ideally low or not existent) autocorre­

lation of the standardised residuals. The CARL model offering the 

best fit in terms of these categories is then selected as optim al and 

‘augm ented’ with a single, lagged threshold variable according to the 

specification in (3.15). The augmented model is again estim ated and 

contrasted with the non-augmented version as well as with a ‘base­

line’ CARL(1,1) model. The reason for doing the la tter is th a t for
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GARCH models the simple p = q =  1 parametrisation has been found 
to dominate more complex versions of the GARCH model in certain 
applications (cf. Hansen and Lunde, 2005).

We report the estimation results for both daily datasets in tables 
3.2 and 3.3 for the 1997-2006 and the decimalised period respectively. 
In both cases, the optimal model chosen is the CARL(1,2) model, 
for which the reduction in the autocorrelation of the standardised 
residuals in conjunction with the AIC and BIC is comparatively most 
favourable. Table 3.2 for example shows a LB statistic of 59 for the 
first 50 lags with a P-value of 0.18, indicating that the null of no 
autocorrelation over the first 50 lags cannot be rejected at a reasonable 
level of significance. For the decimalised period, the picture is even 
clearer, possibly reflecting less autocorrelation in the HH ratio time 
series in the first place (s. above), with an LB50 statistic of 57 and 
a corresponding P-value of 0.23. For both datasets, this compares 
with a highly significant LB statistic in the case of the CARL(1,1) 
baseline model, for which the null of no remaining autocorrelation in 
the standardised residuals over the first 50 lags has to be rejected, 
indicating inferior model fit. Moreover, also in terms of the AIC, the 
CARL (1,1) parametrisation compares unfavourably with the optimal 
CARL(1,2).

For both time horizons, augmenting the optimal CARL(1,2) with a 
past return threshold indicator variable according to (3.15) produces 
even better model fit in terms of the reduction of the autocorrela­
tion of the standardised residuals: a reduction in the LB50 statistic 
for the 1997-2006 and 2001-2006 periods to 58 and 56 respectively. 
However, adding a further variable reflects unfavourably, albeit only 
very modestly, on the BIC (in the case of the 2001-2006 period also on
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the AIC). On the whole, however, it might be argued that including 
the return threshold indicator variable into the model specification 
slightly improves results, which is further confirmed by the fact that 
the coefficient of the variable is highly statistically significant for both 
horizons and has the ‘correct’ sign, i.e. 7  > 0. This result thus pro­
vides evidence for the existence of a return threshold effect along the 
lines of the theoretical research discussed in section 3.2.1. This point 
is debated further in the discussion section below.

Assessing the magnitude and the statistical significance of the pa­
rameters estimates further shows that in the case of the augmented 
model for both horizons the significance of the estimate of the constant 
term uj vanishes; this is to be expected as there is a linear relationship 
with the threshold variable. The magnitude of the threshold effect as 
measured by 7  appears to be the same for both horizons.

For the 1997-2006 period, the model detects a slightly higher (ini­
tial) autocorrelation in (il) liquidity, indicated by a higher a\ and 
obtained for this period compared to 2001-2006, the effect of which

A

however eventually gets damped by a more negative /?2, resulting in 
a more persistent autocorrelation pattern for 2001-2006 period, as is 
also evident from figures 3.3 and 3.4. In both cases, the estimated 
CARL(1,2) model is stationary (because c b + A +/32 < 1) and, despite 
a negative /%, also adheres to the positivity criterion as the parameter 
estimates fulfill the (sufficient) conditions required by Nelson and Cao 
(1992), i.e. 0 < a\ < 1, /3\ > 0, (otifii +  /%) > 0.

We also test for the forecasting properties of the CARL by perform­
ing a forecast test according to Mincer and Zarnowitz (1969): For both 
horizons, we use the data and the parameter estimates of the estimated 
augmented CARL(1,2,1) model to produce an in-sample forecast series
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Figure 3.5: A ctu al vs Forecast - 1997-2006 daily  A m azon  H H  ratio

This figure shows the actual daily Amazon HH ratio (top panel), the CARL model forecast (middle 
panel) as well as a histogram of the relative forecast error (bottom panel) for the 19/05/1997- 
29/12/2006 period. The forecast is derived using the fitted CARL(1,2,1) model.

/ v  / v

lt . We then run a simple OLS regression of the sort lt = #o + 0\k +  tt- 
The quality of the forecast can then be tested for by performing a 
Wald test on the joint parameter restriction Oq = 0 fl 0\ = 1. Under 
the null hypothesis of forecast optimality, this restriction holds .

A

The original series lt , the forecast lt from the CARL (1,2,1) model
and the empirical relative forecast error (lf )  distribution for the 1997-h
2006 and the ‘decimalised’ 2001-2006 is displayed in figures 3.5 and 3.6 
respectively. The forecast series follows the actual one quite closely, 
albeit in a less extreme way, i.e. the amplitudes of extreme values of lt 
are visibly forecasted to be lower. This is not surprising as essentially
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Figure 3.6: A ctual vs Forecast - 2001-2006 daily  A m azon  H H  ratio

This figure shows the actual daily Amazon HH ratio (top panel), the CARL model forecast (middle 
panel) as well as a histogram of the relative forecast error (bottom panel) for the ‘decimalised 
period’ from 10/04/2001-29/12/2006. The forecast is derived using the fitted CARL(1,2,1) model.

the CARL model, by construction, ‘smoothens over’ the data when 
constructing a forecast. The relative error distributions confirm this 
observation: While the forecast seems to be precise on average as 
indicated by the distributions being centered with their modes roughly 
at unity, the right hand tail of the distribution corresponds to instances 
where the forecast undershoots the actual observations. Equally, the 
distribution also shows that there are occurrences of the opposite, 
with the forecast being too high, as indicated by the left tail of the 
distribution; graphically, these instances are however more difficult to 
make out when comparing the figures displaying the actual and the
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Table 3.4: MZ - 1997-2006 daily Amazon data

This table shows a Mincer-Zarnowitz regression of the form lt =  6q +  Oih +  H for the daily Amazon 
data series from 15/05/1997-29/12/2006. The forecast series lt is obtained using the CARL(1,2,1) 
model, for which the in-sample fit is found optimal.

MZ regression 
Metric Estimate t stat
T0 - 0 . 0 1 2  -0.118
01_____________________ 1.010* 23.713

Restriction test (Hq : 0o = 0 fl 0i = 1)
Wald test stat (p-vaiue) 0.367 (o.83)

Table 3.5: MZ - 2001-2006 daily Amazon data

This table shows a Mincer-Zarnowitz regression of the form lt =  0o +  9 ilt +  et for the daily Amazon 
data series in the ‘decimalisation period’ from 09/04/2001-29/12/2006. The forecast series lt is 
obtained using the CARL(1,2,1) model, for which the in-sample fit is found optimal.

MZ regression 
Metric Estimate t stat
T0 -0.030 -0.350
01 1.015* 25.065

Restriction test (Ho : 0O = 0 fl 0i = 1)
Wald test stat (p-vaiue) 0.128 (0 .9 4)

forecast series.
Tables 3.4 and 3.5 provide the results of the Mincer-Zarnowitz (MZ) 

tests for the 1997-2006 and 2001-2006 horizons respectively: Inspection 
reveals that the null of forecast optimality cannot be rejected in both 
cases, albeit the test for the decimalised time period seems to provide 
the stronger result. However, caution is at hand to assess test results 
across both horizons as the MZ does not allow for relative comparisons.
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Figure 3.7: H istogram  and A C F - 1997-2006 w eekly  A m azon  H H  ratio

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bottom 
panel) for the weekly Amazon HH ratio series from 19/05/1997-28/12/2006. In addition to the 
ACF, 2-standard-deviation interval bounds are shown, corresponding roughly to a 95% confidence 
interval.

W eekly Frequency

The analysis here mirrors the one carried out for the daily data  series 

above: Figure 3.7 shows the histogram and ACF for the weekly HH 

ratio series from 19/05/1997 to 28/12/2006. Similar to the daily se­

ries, the histogram exhibits a skewed shape on the positive domain. 

Inspection of the ACF reveals th a t in comparison to daily sampled 

data, the autocorrelation in the weekly HH ratio series dies out more 

quickly, i.e. while starting at a similar, of not slightly higher autocor­

relation for the first lag (c. 0.75), the ACF then declines much more
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Table 3.6: Estimation - 1997-2006 weekly Amazon data

This table shows results from the estimation of different selected CARL models against the 
weekly Amazon data series from 19/05/1997-28/12/2006. The table displays parameter estimates, 
Bollerslev-Woolridge t statistics, goodness-of-fit measures as well as statistics for standardised 
residuals. * and ** denote significance at 1% and 5% levels respectively. The Ljung-Box autocor­
relation test statistic for the first 50 lags is denoted as LB50.

Model CARL(0,1) CARL(1,1) CARL(1,1,1)
Metric Estimate t stat Estimate t stat Estimate t stat
UJ 0.318 9.441 0.036** 2.367 -0.005 -0.285
d l 0.675* 17.697 0.671* 16.973
h 0.747 2 0 . 2 0 0 0.294* 8.433 0.292* 7.965
7 0.096* 4.138
Log-LH -752 -748 -746
AIC 3.003 2.993 2.994
BIC 3.019 3.018 3.027

Standardised residuals statistics
Mean 1.000 1 . 0 0 1 1.000
Std Dev 0.400 0.360 0.355
LB5 0  (P -value) 152 (o.oo) 42 (0.80) 40 (0.84)

steeply and is barely significant at the 50th lag. A likely explana­
tion for this is obviously the lower weekly sampling frequency, which 
tends to 4smoothen over’ and average out strong and persistent daily 
autocorrelations.

Table 3.6 presents the results of the estimation of various CARL 
models against the data. The procedure follows the one in the previous 
section: Here, however, the optimal model chosen is the CARL(1,1) 
parametrisation, for which the combination of goodness-of-fit in terms 
of AIC and BIC as well as the reduction in the autocorrelation of the 
standardised residuals was most favourable. Thus, for comparison, 
we have included the even simpler CARL(0 ,1) model, the equivalent 
of the ARCH(l) model. Although in terms of BIC, the CARL(1,1) 
models still fares equally well in comparison to CARL(0,1), it is far 
superior in terms of AIC and the reduction in autocorrelation. While
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Figure 3.8: A ctual vs Forecast - 1997-2006 w eekly A m azon  H H  ratio

This figure shows the actual weekly Amazon HH ratio (top panel), the CARL model forecast (mid­
dle panel) as well as a histogram of the relative forecast error (bottom panel) for the 21/05/1997- 
28/12/2006 period. The forecast is derived using the fitted CARL(1,1,1) model.

the CARL(0,1) model still leaves very significant autocorrelation in 
the standardised residuals, the null hypothesis of no autocorrelation 
over the first 50 lags cannot be rejected for the CARL(1,1) model with 
a JB50 statistic of 42 and an associated P-value of 0.80.

When augmenting the CARL(1,1) model with a lagged return thresh­
old variable in the same way as before, both AIC and BIC indicate a 
minor slip in model fit for the CARL(1,1,1) model, introduced by the 
punishment for the inclusion of the extra variable. There is however, 
yet another slight reduction in the autocorrelation of the standardised 
residuals with a JB50 statistic of 50 and a P-value of 0.84. Moreover,
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as in the case of daily data, the coefficient of the threshold variable 
7  is highly significant and, again, has the ‘right’ sign, i.e. 7 > 0. 
Equally, as to be expected, the estimate of u  loses its significance in 
the augmented model.

Judging the order of magnitude of the parameter estimates, one 
notices that in comparison to the estimates obtained with daily data, 
the sum of oti and f3j is lower in magnitude, indicating a lower the per­
sistence in (il) liquidity. This is well in line with more steeply declining 
ACF in figure 3.8.

The parameter estimates for the simple model further indicate sta-
A A

tionarity (as a\ +  (3\ < 1) and, with a\ > 0 , (3\ > 0 , also adhere to the 
positivity requirement.

A

The in-sample forecast lt obtained with the parameter estimates of 
the augmented CARL (1,1,1) model, the original weekly HH ratio time 
series lt as well as the empirical relative lf  forecast error distributionn
are displayed in figure 3.8: As in the case of the daily data, the forecast 
is a smoother version of the original series with less extreme ampli­
tudes, but seems to be well precise on average with the relative error 
distribution exhibiting a clear and pronounced hump at unity. The 
Mincer-Zarnowitz regression, documented in table 3.7, shows that the 
null hypothesis of the optimality of the forecast cannot be rejected. 
In fact, given the P-value of 0.87 of the Wald test statistic, the MZ 
regression provides strong evidence in favour of forecast optimality.

3.5.3 D iscussion

Reviewing the above results as a whole, the CARL model fares well 
in picking up the quite strong autocorrelation patterns present in the 
HH ratio liquidity time series on both daily as well as weekly frequen-
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Table 3.7: MZ - 1997-2006 weekly Amazon data

This table shows a Mincer-Zarnowitz regression of the form lt =  9 o + 9 ilt + e t for the weekly Amazon 
data series from 19/05/1997-28/12/2006. The forecast series lt is obtained using the CARL(1,1,1) 
model, for which the in-sample fit is found optimal.

MZ regression 
Metric Estimate t stat
To -0.035 -0.600
§i 1.034* 16.504

Restriction test (Ho : 9o =  0 fl 9\ =  1)
Wald test stat (p-vaiue) 0.289 (o.87)

cies. The presence of such autocorrelation in the data is in accordance 
with the theoretical research laid out in section 3.2.1, according to 
which high market liquidity begets high liquidity and vice versa. The 
goodness-of-fit of the CARL model in the presence of such data thus 
strengthens our belief that the model is a valid empirical implemen­
tation of the above theory on market liquidity: The reduction in the 
autocorrelation in the standardised residuals after fitting the optimal 
model is significant, e.g. from a LB50 statistic of 34,826 in the original 
1997-2006 daily time series to 59 in the standardised residuals after 
fitting a CARL(1,2) model to the same data. The in-sample forecast­
ing capabilities are equally impressive, with the optimality of forecasts 
obtained with the best-fitting augmented CARL processes not being 
rejected when running a MZ regression.

Moreover, we find a significant threshold effect according to which 
a lagged negative return increases illiquidity even further compared to 
a positive past return. This finding is very much in line with theoret­
ical research and might be counted towards evidence for the existence 
of loss-spirals in market liquidity as advocated by Brunnermeier and 
Pedersen (2008).
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Heuristically, comparing the estimation results for the two daily 
data series above, we find no fundamental difference in the parame­
ter estimates of the optimal CARL(1,2) and augmented CARL(1,2 ,1) 
model that would point towards a significant structural break due 
to the introduction of decimalised trading in the Amazon stock on 
09/04/2001. Indeed, a separate analysis (not shown here) of the ‘non- 
decimalised’ period, i.e. 15/05/1997-08/04/2001, finds similar results 
compared to the decimalised period: The same optimal CARL(1,2) 
model is picked for the non-decimalised period, and parameter esti­
mates are highly significant (with the exception of u) and in the same 
order of magnitude, with slightly higher 6l\ and (3\ and a more nega-

A

tive # 2, while still preserving stationarity and positivity. To us, these 
results indicate that there is no fundamental difference in the daily law 
of motion of liquidity9 in the Amazon stock as a result of decimalised 
trading.

Liquidity Persistence

Comparing the results across sampling frequencies, we note that the 
estimation of the CARL model in the context of the weekly series re­
sults in the CARL(1,1) parametrisation being picked, while the richer 
CARL(1,2) is the optimal choice for daily data. Judging from the pa­
rameter estimates and also from the ACFs of the HH ratio time series 
at the two different frequencies it appears therefore, as already indi­
cated above, that the autocorrelation for the lower weekly frequency 
is less persistent.

While this is a relative qualification across frequencies, the general
9The HH ratio as a measure of market liquidity in this context is not affected by tick-sizes and 

scales in the first place - thus excluding any technical/measurement effects that a new tick size 
might introduce.
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level of persistence in the empirical HH ratio autocorrelations given 
the data in this chapter is rather high: As evident from figures 3.3, 
3.4 and 3.7, autocorrelations lose significance only after about 250-300 
and 50 lags for daily and weekly data respectively.

This artefact is very much reminiscent of the persistence in the 
autocorrelation in volatilities as documented e.g. by Bollerslev and 
Mikkelsen (1996). Moreover, with regards to liquidity, Engle and Rus­
sell (1998) also find that the persistence in trade durations is very 
high when devising their ACD model, with the sum of d* and (3j as in 
(3.2) being close to one, thus indicating a process bordering on non- 
stationarity. This finding has led to the conclusion of the existence 
of ‘long memory’ in these time series and prompted the development 
of fractionally integrated time series models, e.g. the FIGARCH for 
volatility by Baillie et al. (1996) and the FI ACD for durations by 
Jasiak (1998).

While it appears that a similar conclusion might be at hand for the 
CARL model in this chapter, we would argue that the case is not as 
clear-cut: First, even though the ACFs of the series indicate strong 
persistence, such effect is arguably different across frequencies. It is 
not imminently clear how such a difference can be incorporated into 
a unified CARL framework: After all, the existing model appears to 
pick up the existing autocorrelations quite well across frequencies as 
witnessed by the lack of any apparent remaining autocorrelation in 
the standardised residuals after estimation for both data frequencies.

A

Moreover, the sum of the estimated ch and (3j coefficients in the op­
timal models is 0.989 and 0.978 for the daily 1997-2006 and 2001-2006 
periods respectively as well 0.969 for the weekly estimation. While this 
is arguably close to unity, the conclusion of non-stationarity does not
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look immediately imperative as the ‘gap’ appears to be too big10. Fur­
ther studies in this direction look warranted to establish the empirical 
stationarity properties of CARL across securities and markets.

Lastly, in comparison to the persistent autocorrelation in durations, 
the ACFs of the HH ratio in this chapter exhibit an important differ­
ence: Whereas the ACF of durations e.g. in the case of IBM data as 
documented e.g. by Jasiak (1998) starts off at rather low levels of c. 
0.08 and then very slowly declines while still being significant at even 
a 1,000 lags, the structure of the autocorrelations of the HH ratio for 
Amazon data is rather different. Here, initial levels of autocorrelation 
are very high, starting at c. 0 .8 , a level ten times higher, and then 
fade more rapidly, losing significance after c. 250 and 50 lags for daily 
and weekly data respectively. It might therefore be argued that even 
though the decline may be slow, it can still be considered exponential 
as implied by the CARL model - albeit at a very low rate11.

Distributional Assumptions

As pointed out above, our choice of using the exponential distribution 
to model the error term is governed by the fact that such an assump­
tion facilitates the use of QML for estimation, producing consistent 
estimates while being able to estimate the CARL with GARCH func­
tionality. However, if the true error distribution is not exponential, 
such a procedure, while still being consistent, will be non-efficient. 
We would argue that such concerns are of secondary nature for the 
objective of this chapter; nonetheless, for future work in this area,

10Estimating their exponential ACD model Engle and Russell (1998) for example obtain coeffi­
cients summing to 0.996, which arguably represents stronger evidence of non-stationarity.

11For example, an exponential factor of 0.989x results in a level of 0.2 and 0.07 for x  =  150 and 
250 respectively, which roughly corresponds to the structure of the ACF for the daily 1997-2006 
period if one views x  as the lag input.
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challenging the distributional assumption appears to be a promising 
route to further refine the CARL model: In figures 3.5, 3.6 and 3.8, the 
shape histograms of the empirical relative forecast errors, which inci­
dentally also constitutes the standardised residuals of the estimation, 
indicates that, rather than the exponential, the hump-shaped Gamma 
or Weibull distributions might be appropriate choices for modelling 
the error term. However, while such a choice would affect the effi­
ciency of the estimation, the qualitative nature of the results cannot 
be expected to change. Refinements of this kind are therefore left for 
future work.

3.6 Conclusion

In this chapter, we present the CARL model, an empirical univari­
ate time series model of market liquidity that can be applied to both 
individual securities as well as to markets as a whole. As a measure 
of liquidity we use the HH ratio, a metric that combines several di­
mensions of liquidity in a single ratio and is easy to compute from 
most commonly available datasets on various frequencies. The CARL 
model combines this simple, yet meaningful metric with a multiplica­
tive autoregressive process, similar to Engle and Russell’s (1998) ACD 
model.

In an empirical application of the CARL model to Amazon equity 
data, we find that the model is straight-forward to estimate via QML, 
provides good fit to the data and is able to forecast market liquidity 
as measured by the HH ratio well. Importantly, these results hold 
for both daily and weekly data, demonstrating the versatility of the 
CARL model in applications involving different data frequencies; to
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our knowledge, other existent empirical models of liquidity are not 
equipped for such tasks.

Our empirical analysis also finds evidence for a return threshold 
effect as proclaimed by theoretical research on liquidity: In our re­
sults, negative returns trigger an even stronger increase in illiquidity, 
whereas the reaction to positive returns is neutral, thus pointing to­
wards the existence of ‘loss spirals’ (as in Brunnermeier and Pedersen, 
2008) in the dynamics of market liquidity.

On the whole, the results obtained with the CARL model in this 
chapter are encouraging and point towards several areas of application: 
On its own, the CARL model provides a good tool for the tracking 
and monitoring of liquidity in markets as a whole and on an indi­
vidual security basis and might thus be of interest to central banks 
and traders as well as risk managers in banks, where it could be in­
tegrated into the wider risk management. Additionally, one may also 
think of integrating CARL into a vector autoregression (VAR), e.g. 
by taking logs, as such a resulting model seems well-poised for the 
analysis of the interaction of liquidity and returns. Other extensions, 
such as a multivariate setup, similar to multivariate GARCH are also 
conceivable and look promising, especially for the analysis of liquidity 
commonality (cf. section 3.2.2).

Further, we would like to stress that the focus of this chapter is on 
the presentation of the model and its properties. Thus, our empirical 
application provides a demonstration of its capabilities rather than 
a comprehensive empirical study. We deem this to be outside of the 
scope of the chapter and leave more detailed empirical applications for 
later work: An obvious area of more extensive work is for example the 
analysis of liquidity with the help of the CARL model on yet even more
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different data frequencies. Other conceivable research might comprise 
a detailed analysis of the out-of-sample forecast performance of the 
model, which we have not undertaken.

Lastly, the ML estimation of the model with different, more com­
plex error distributions, such as the Weibull or the Gamma distribu­
tion mentioned above also looks worthwhile empirical exercise.
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Chapter 4

Intraday Liquidity: A  
High-Frequency A pplication of the  
CARL M odel

4.1 Introduction

Liquidity matters! Most participants in the financial markets would 
agree with this statement and at the same time not be able to write 
down a formula to calculate liquidity as we can for example to calcu­
late volatility, another important financial market characteristic. Yet, 
most seem to have a fairly concrete opinion on the role of liquidity in 
the financial markets. Such views often tend to be fairly high-level: 
For example, most market participants would probably claim that the 
foreign exchange markets are more liquid than, say, the real estate 
market or emerging market shares with small capitalisations. It also 
seems an equally accepted view that liquidity problems in the inter­
bank loan market were behind the crisis surrounding the British Bank 
Northern Rock in September 2007.

Statements like these again highlight the important role that liq-
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uidity plays for financial markets but show also how static and little 
differentiated the view on this abstract concept often is: It can be ar­
gued that the liquidity that fostered the crisis in the interloan bank 
market during the wake of the subprime debacle is of a very different 
nature than the liquidity underlying e.g. the afore-mentioned foreign 
exchange market. The former may be regarded as ‘funding liquidity’, 
whereas the latter can be described as ‘market liquidity’1. Moreover, 
as for example Brunnermeier and Pedersen (2008) have shown, the 
interplay of the two concepts leads to dynamics in liquidity, whereby 
the liquidity of a market is not simply high or low, but rather varies 
through time and is subject to self-reinforcing mechanisms.

This chapter takes account of this finding and concentrates on 
the empirical modelling of the dynamics of financial market liquid­
ity. Moreover, we embed our analysis in an intraday context, the 
most ‘fluid’ data environment possible. The reasons for doing so are 
two-fold: For a pragmatic point of view, intraday data is available in 
large volumes, making a meaningful empirical analysis easier from a 
statistical point of view. More importantly though, the experience 
in financial markets has shown that intraday market liquidity - con­
trary to the static view on the liquidity conditions in markets - is very 
fast-changing and, if lacking, can distort the trading process consid­
erably. It is arguable for example that the market crash in 1987 was 
very much a function of fading intradaily liquidity in the market place, 
with the problem becoming more and more aggravated throughout the 
day: Carlson (2007) for example points out that

1This categorisation has been proposed by the Bank of England in its Financial Stability Report 
on April 26th, 2007: Funding liquidity is defined as the ease which a firm can ’’meet its cashflow 
needs”, market liquidity broadly as the ease with which securities.can be bought and sold in the 
market place.
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’’margin calls, as they were implemented during this pe­
riod, were one factor that reduced market liquidity, espe­
cially in the futures markets, and likely contributed to the 
severity of the decline.”

This mechanism, dubbed the ‘margin spiral’, has also been high­
lighted by Brunnermeier and Pedersen (2008) as a major factor behind 
the self-reinforcing dynamics in market liquidity. Thus, conceptualis­
ing an empirical intraday (time series) approach to market liquidity 
seems well warranted both from a trading as well as risk manage­
ment/monitoring point of view:

In this chapter, we device such a model on the basis of the ‘Con­
ditional Autoregressive Liquidity’ (CARL) model by Reusch (2008). 
While we keep the multiplicative econometric setup, we modify the 
liquidity measure used in the model for use in an intraday context: As 
a derivation of the Hui-Heubel (HH) ratio used in the original CARL 
is problematic in the context of tick-by-tick intraday data, we propose 
a filtering technique based on buy and sell volumes to partition the 
data into volume durations. We then derive the maximum percent­
age range measure, the difference of the highest buy less the lowest 
sell price as a percentage of the latter over these durations as our 
liquidity proxy for use in the CARL model: The result is an autocor­
related, positive series that shows ‘liquidity clustering’, similar to the 
behaviour of financial market volatility and in line with theoretical 
research on liquidity.

Using the derived metric as the liquidity proxy in the CARL setup, 
the resulting intraday model approaches the modelling of liquidity 
with a multi-dimensional perspective: Whereas other prominent in­
traday models of liquidity such as the ‘Autoregressive Conditional
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Duration’ (ACD) model by Engle and Russell (1998) view liquidity 
along a single dimension such e.g. the immediacy of financial trans­
actions as measured by the time span between successive trades, the 
intraday CARL approach, with its more complex liquidity measuring 
procedure, captures multiple facets of liquidity such as market tight­
ness (the difference between selling and buying prices), market depth 
and breath (how much volume can be transacted at certain prices) 
as well as resiliency (how well is market able to digest transaction 
volumes without distortions).

In this chapter we formally define the intraday CARL model and 
lay out in detail the filtering procedure for the maximum percent­
age range liquidity measure. We then put the model to use in an 
empirical application using intraday data on the Amazon stock: We 
derive the best fitting model for data obtained with various filter sizes 
and demonstrate that the intraday CARL model is able to pick up 
the correlation structure in the data very well, rendering it a valid 
reduced-form empirical implementation of more complex theoretical 
liquidity models (such as for example Brunnermeier and Pedersen, 
2008). We also find that the model forecasts well in-sample, which 
constitutes a rather encouraging result for practical applications in 
financial markets.

The rest of the chapter is organised as follows: We present the 
background on theoretical and empirical research in intraday market 
liquidity as well as on the econometric modelling in the next section. In 
section 4.3 we introduce and motivate the maximum percentage range 
intraday liquidity measure as well as the data filtering technique to 
obtain this metric. We then embed the measure in the context of the 
CARL model to yield our intraday version of the CARL. Section 4.4
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presents the Amazon intraday data used for the empirical application 
and demonstrates the filtering procedure. The results of the empirical 
application with the filtered data series are shown in section 4.5. We 
conclude the chapter in section 4.6.

4.2 Intraday Market Liquidity

The analysis of (market) liquidity has seen rich research activity over 
the recent years, both on the theoretical as well as on the empirical 
side2. While most studies focus on the sources of liquidity as well as its 
linkages across markets (often dubbed ‘commonality’, cf. e.g. Chordia 
et al., 2000a,b, 2001; Huberman and Halka, 2001), little research has 
been carried on the time series properties of liquidity as well as on the 
associated empirical modelling of such properties for practical use.

Yet, recent theoretical research, e.g. by Morris and Shin (2004) and 
Brunnermeier and Pedersen (2008) suggests that liquidity in markets 
ought to exhibit autoregressive behaviour, with spells of illiquidity fol­
lowed by further illiquidity and vice versa. Specifically, Brunnermeier 
and Pedersen (2008) show that illiquidity is subject to self-reinforcing 
processes, dubbed ‘loss spirals’ and ‘margin spirals’: According to the 
latter, during time of relative market illiquidity, the price impact of 
orders is higher, leading to heightened volatility in markets, which in 
turn increases margins on existing positions. These higher margins 
then potentially create funding problems that trigger the unwinding 
of positions or reluctance to take new positions in the market, further 
dampening liquidity. Similarly, in the case of the loss spiral, losses on 
existing positions lead yet to more funding problems, which in turn

2An fairly comprehensive overview can be found in Reusch (2008).
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forces traders to liquidate positions and withdraw further liquidity 
from the market place. Thus, in Brunnermeier and Pedersen’s (2008) 
setting, illiquidity begets more illiquidity and leads to even worse trad­
ing conditions. Furthermore, their model provides an explicit link of 
illiquidity to volatility, which are mutually reinforcing. Yet another 
takeaway from their framework for empirical liquidity modelling is 
that, mainly in the case of equities, illiquidity problems, the selling of 
positions and falling prices go hand-in-hand.

This point is further highlighted by Morris and Shin (2004) who 
propagate the concept of ‘liquidity black holes’ that come into exis­
tence once the price has fallen below a certain trigger threshold, which 
in their model can happen even without any apparent fundamental 
reason but merely as a result of a shock: Once there, driven by a con­
cept analogous to Morris and Shin’s (1998) global games approach, 
in their model the selling of positions by market participants then 
sparks further sell-offs by others, creating a (rapidly) falling market 
in which liquidity is being eroded and transactions cannot be con­
cluded at ‘reasonable’ prices warranted by fundamentals. As in their 
model the liquidity black hole occurs without any fundamental rea­
son, after falling for a ‘sufficient’ amount, the price eventually aligns 
again with the fundamental value and market liquidity is restored to 
‘normal’ levels, creating ‘v-shaped’ price patterns. From an empirical 
modelling point of view, Morris and Shin (2004) thus provide yet an­
other rationale for the existence of autoregressive patters in liquidity 
as well as a close association of illiquidity with falling prices. While 
they do stipulate the existence of feedback loops along the lines of 
Brunnermeier and Pedersen (2008), they also supply a reasoning for 
the reversion of liquidity to normal (average) levels following spells of
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strong illiquidity.
Being theoretical models of liquidity dynamics, neither Morris and 

Shin’s (2004) nor Brunnermeier and Pedersen’s (2008) approach ex­
plicitly specifies on which data frequency their results ought to hold 
- which is however important for the purpose of empirical modelling. 
Yet, their findings and model setup suggest that autoregressive liquid­
ity patterns are characteristic both of intraday ‘tick-by-tick’ trading 
as the immediate outcome of the strategic interaction of market par­
ticipants as well as of longer run market activity, e.g. when viewed on 
a daily, weekly or even monthly basis.

While the time series modelling of market liquidity using daily and 
weekly sampling has been addressed by Reusch (2008), this chapter is 
concerned with the empirical analysis of intraday liquidity.

For this purpose, we build on and modify Reusch’s (2008) ‘Con­
ditional Autoregressive Liquidity’ (CARL) model for the use in an 
intraday context. While we present our approach as well as a review 
of the CARL model and its properties further below, we now turn 
to briefly laying out some of the existing intraday liquidity modelling 
methodologies.

4.2.1 Econometric M odel Background

One of the most well-known econometric time series models of intraday 
market liquidity is the ‘Autoregressive Conditional Duration’ (ACD) 
model by Engle and Russell (1998): They postulate a multiplicative, 
autoregressive process on a positive domain to describe the time series 
behaviour of trade durations, i.e. the time intervals that pass between 
successive trades in the marketplace. As such the ACD model rep­
resents a so-called ‘marked point process’ with ‘conditionally orderly
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after-effects’, i.e. a counting process characterised by a sequence of 
(stochastic) event arrival times3, in which the arrival of new events 
depends on the history of event arrivals before and, loosely speaking, 
events occur successively, one at a time - with arbitrarily small time 
intervals in-between.

Naturally, such a process can also by represented by a ‘conditional 
intensity’ process or ‘hazard function’, i.e. a time series process that 
indicates the event rate at any point in time, conditional upon the 
history up to that point. In the case of the ACD model, such an 
event would be the end of a duration, i.e. a new trade. Durations 
can therefore be modelled both via the hazard function, with a popu­
lar approach there being the ‘proportional hazard’ (PH) model where 
the hazard function is taken to be a ‘baseline hazard’ multiplied by 
a function that depends on lagged durations and/or other exogenous 
variables, as well as by modifying the time scale directly, as in the ‘ac­
celerated time’ (AT) time series approach used by Engle and Russell 
(1998). In the latter, the duration is modelled as a baseline duration 
distributed on a positive domain with a unity expectation times a 
function depending on lagged durations and/or other exogenous vari­
ables.

Over the recent years many extensions and refinements have been 
proposed to duration models, using both the PH and AT modelling 
approaches4: Work carried out in the latter category includes inter alia 
Ghysels and Jasiak (1998), Bauwens and Giot (2000), Bauwens and 
Giot (2002), Veredas et al. (2002), Bauwens et al. (2003), Bauwens 
et al. (2004), Bauwens and Veredas (2004) and Grammig and Fernan­

3In their case an event is a new transaction.
4A comprehensive overview can be found e.g. in(Bauwens and Giot, 2001).
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des (2005, 2006). PH-type modelling techniques for intraday dura­
tions have been used by Gerhard and Hautsch (2000), Grammig and 
Maurer (2000), Gerhard and Hautsch (2002), Hautsch (2002), Heinen
(2003), Bauwens and Hautsch (2006) as well as Gerhard and Hautsch 
(2006). Even more complex approaches, such as combining an ACD- 
type model with a Markov-switching setup by Hujer et al. (2005) or 
the inclusion of unobserved an stochastic components along the lines of 
stochastic volatility into a duration model by Gouriroux et al. (2004) 
have been proposed.

While these models have increased the understanding of the intra­
day trading process and facilitated testing of various hypotheses of 
market microstructure (as proposed e.g. in Engle and Russell, 1998), 
they are naturally limited to addressing liquidity along the single di­
mension of immediacy5, i.e. the timeliness with a transaction can be 
executed

Yet, as documented by various authors (cf. e.g. Amihud, 2002, p. 
35) liquidity in financial markets is hardly captured by one notion 
only, but is rather a more complex, multidimensional concept. Other 
dimensions of liquidity include for example the ‘depth’ (an abundance 
of orders close to the current price), ‘breadth’ (large volumes can be 
executed without much impact on prices) or ‘resiliency’ (fast correc­
tions of price distortions from fundamentals) of a market, which the 
ACD-type models of trade durations do not capture.

While Bauwens and Giot (2001, pp. 45-48) for example propose to 
use ACD models on filtered ‘price’ or ‘volume durations, defined re­
spectively as the time that elapses between price moves of a certain size

5For an overview of the different dimensions of liquidity cf. e.g. Sarr and Lybek (2002) or 
Reusch (2008).
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or until a certain order volume has been executed, this approach still 
relies on the premise of modelling liquidity as the waiting time between 
events: Thus, even though this ACD methodology incorporates other 
liquidity-relevant information, it primarily provides a one-dimensional 
liquidity measure in terms of immediacy.

Yet, despite the obvious limitation of modelling liquidity only with 
(filtered) durations, the price duration methodology has proved to be 
a helpful building block for Engle and Lange’s (2001) ‘VNET’ model, 
which is related to the approach taken in this chapter: They propose 
the VNET intraday measure of liquidity which they define as the net 
buying volume in a security over a time interval during which the 
mid-quote price moves by a specified amount. They thus filter mid­
quote prices into price durations, over which in turn the VNET net 
buying volume measure is defined. Linking price impact and volumes 
with VNET, they provide a multi-dimensional liquidity measure that 
addresses market depth. A comparatively low VNET for example 
is indicative of a shallow and thin market, whereby comparatively 
little volume is executed per (fixed) price change. Or, viewed from 
a different perspective, only comparatively low net buying volume is 
needed to move prices.

Using VNET on intraday cross-sectional data extracted from the 
‘Trades, Orders, Reports and Quotes’ (TQRQ) database covering 144 
NYSE stocks over the three months period from 01/11/1 990-31/0 1/1991, 
Engle and Lange (2001) find that the VNET measure varies consider­
ably over time, yet is highly autocorrelated and can be forecast and 
explained by volumes, transaction numbers, bid-ask spreads as well as 
expected price durations. Re-estimating the model with data taken 
from ‘Trades and Quotes’ (TAQ) database over the five months pe-
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riod between August and December 1997, they also show that the 
functional relationship between the VNET measure and its explana­
tory variables is relatively stable over time with the change in the 
estimated parameters being relatively modest from the early to the 
later period despite changes in the trading environment, minimum 
tick sizes as well as an increase in general trading activity.

They also use VNET to estimate market reaction curves, i.e. the 
VNET as a function of different price change threshold filters, showing 
that higher VNET metrics are associated with larger price changes. By 
construction, the fixed, exogenous variable of choice in this procedure 
is the price change threshold, which is then associated with VNET to 
give a measure of market depth.

While similar in spirit to VNET, this chapter takes the opposite 
route, i.e. associating a certain fixed transaction volume with a vari­
able price change. We outline this procedure, its benefits and the 
tie-in with the CARL model in the next section.

4.3 Intraday Liquidity a la CARL

As mentioned above, the analysis in this chapter builds on the ‘Condi­
tional Autoregressive Liquidity’ (CARL) model by Reusch (2008) and 
adopts it for an intraday context. As such, the approach taken is much 
related to both the ACD model described above - as CARL shares the 
same econometric foundations - as well as to Engle and Lange’s (2001) 
VNET model: For the intraday context we adopt an approach of de­
riving a liquidity measure based on the ‘Hui-Heubel’ (HH) ratio used 
in the CARL model, whereby we filter the intraday data into volume 
durations first and then derive a metric on the filtered data set, a
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method that is similar to VNET, where data is filtered into price du­
rations first over which the net volume is calculated. The procedure 
is outlined in more detail below.

4.3.1 The HH R atio R evisited

The CARL model makes use of the Hui-Heubel ratio (described in 
Sarr and Lybek, 2002) as a measure of liquidity. Contrary to e.g. 
durations, that describe liquidity along the single time dimension, the 
HH ratio is a composite liquidity measure: It is defined as

„ m a x  „ m i n
El Pi__

^m in

h =  (4.1)
P f S t

where

pmax — maximum transaction price over the period 

p™m = the minimum transaction price over the period 
vt = the traded currency volume over the period 
pt = the average price over the period
St = the average outstanding number of shares over the period

Conceptually, the HH ratio thus consists of the percentage range 
divided by the price-weighted turnover in the security over some pe­
riod. As such, it addresses market liquidity along multiple dimensions: 
The numerator renders a feel for the tightness of the market, while the 
denominator might be considered a measure of market depth as well 
as breadth. In combination, the ratio gives a feel for the resilience of 
a market, i.e. how much a market might ‘gap’ when a certain (price- 
weighted) volume is executed6.

6For a more complete discussion of the merits and properties of the HH ratio as a multi-
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Yet, while the HH metric conveys a lot of information, it is by 
construction quite simple and therefore should be readily computable 
from commonly available datasets for various asset classes. Moreover, 
especially in comparison to other liquidity measures, such as e.g. dura­
tions, the HH metric can be used on various data frequencies: Reusch 
(2008) demonstrates the use of the HH ratio in CARL model using 
daily as well as weekly data; it can be considered a natural step to 
extend this kind of analysis to the growing field of intraday, high- 
frequency data analysis as well. Closer inspection, however, reveals 
that such an extension is not quite as straight-forward and needs a 
few modifications as shown in the next section.

4.3.2 The M aximum Percentage Range M easure

As shown above, the HH ratio is defined over a specific period, which 
in the case of equally-spaced data (e.g. daily or weekly) does not 
pose any difficulty for time series analysis. Intraday data, however, is 
usually not arranged in fixed time intervals, but is generated on a ‘tick- 
by-tick’ basis, with varying durations between ticks stemming from 
the trading behaviour of market participants. In order to construct 
an intraday HH ratio series and perform an analysis with the CARL 
model, however, one needs data that is partitioned into intervals over 
which the HH ratio can be derived.

While an obvious method in this context is equidistant sampling 
of intervals of a fixed, exogenously chosen length s, as used for exam­
ple by Andersen and Bollerslev (1997), we have decided against this 
route as such a methodology often raises ‘aggregation’ issue about the 
appropriate choice of s, which we seek to avoid in this context.
dimensional liquidity measure the reader is referred to Reusch (2008).
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Instead, we propose to partition the intraday data into intervals 
during which a volume of size m  is both bought as well as sold. Over 
these intervals we then calculate the maximum percentage range, i.e. 
the maximum buying price less the minimum selling price as a per­
centage of the latter, yielding the series

m  = volume bought and sold over the interval 
Pbuyj = maximum buying price recorded over the interval 

Psell t =  maximum selling price recorded over the interval.

Constructing the metric rm?t, which we employ as the intraday measure 
of liquidity in the CARL model, in this way has several advantages:

• Like the HH ratio, rmj* is positive and, as a percentage measure, 
independent of tick sizes.

• Paired with the information about the buying and selling volume 
m, the metric captures multiple dimensions of intraday market 
liquidity, notably depth, breadth, tightness as well as resilience. 
For example, a high rm,* associated with a low m  is indicative of 
a shallow, narrow, not very tight and resilient market.

• In spirit, the procedure for deriving is similar to the VNET 
approach, albeit our methodology takes the opposite route: In­
stead of filtering the data with a fixed price difference threshold 
and then calculating the net volume over the durations, we use a 
fixed volume filter first and then derive a percentage price range

P LL,t
r j n in
PSELL,t

(4.2)

where



4.3. Intraday Liquidity a la CARL 193

over the so-obtained intervals. We believe that conceptually, this 
way of doing things is closer to the perspective that market par­
ticipants, especially traders, take: A trade is usually initiated 
with a known transaction volume in mind and the transaction 
price for the volume is determined subsequently during the ac­
tual trading process - (partly) as a function of the volume size, 
i.e. the causality is seen as running from volume to price change.

• By construction, rmj  uses real transaction prices instead of the 
artificial mid-quote point proxy. Similar to above, we believe that 
this provides close association with the actual trading process 
and thus makes the metric a more realistic measure of liquidity. 
Obviously, the use of returns from transaction prices at ultra 
high frequencies has been shown to be problem-laiden, due to 
market-microstructure effects such as the ‘bid-ask bounce’ (cf. 
Roll, 1984). While we turn to these issues in more depth in 
section 4.4 below it suffices to say here that our metric is not much 
affected by such complications as they mainly affect successive 
returns, whereas - loosely speaking - we are concerned with the 
maximum ‘gap’ of transaction prices that opens up over a filtered 
interval. Moreover, in our case, we also classify trades into buy 
and sell transactions, which further alleviates the problem (cf. 
Goodhart and O’Hara, 1997, p. 95).

• As part of the filtering process, we also derive the net sell size or 
‘order imbalance’ series (OIBm̂ ) as it also often called (cf. e.g. 
Chordia et al., 2002) over the intervals during which the volume 
m  is sold and bought. This metric is constructed as the sell mi­
nus the associated buy volume over the filtered intervals and can
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be viewed as a useful ‘by-product’ of our methodology as it is 
indicative of market moves: A large positive OIBm,* for example 
indicates a strong downward pressure on price. By itself, this by­
product measure allows for a variety of interesting analyses and 
tests. Chordia et al. (2002) for example find that the absolute 
value of order imbalance is negatively associated with liquidity, 
i.e. OIBm?t should be positively correlated with rm,<t. In accor­
dance with the theoretical findings discussed above, one would 
also expect the metric |loiBm,t>o • OIBm t , i.e. the unsigned net 
selling volume that is taken to be zero when there is net buying, 
to be correlated with the liquidity measure as excessive sell­
ing can viewed as a component of Brunnermeier and Pedersen’s 
(2008) ‘loss spiral’, leading to further illiquidity. Also, a liquidity 
black hole is characterised by rapid selling and fast-falling prices, 
which should also translate into such a correlation pattern.

• Contrary to VNET, where net volume is associated with a price 
change threshold without specifying the overall volume, our method­
ology thus provides three pieces of intraday liquidity information: 
The metric r m>*, the associated buy and sell volume m , as well 
as the OIBmt. This has the benefit of being able to make finer 
distinctions between liquidity situations. For example, while a 
VNET of some value a > 0 can ambiguously be the result of a 
both a sell size (n +  a) or (k +  a) and a buy size of magnitude n 
or /c, with n ^ k  and n, k > 0 over some filtered interval respec­
tively, rm?* is supplemented both by the information of the level 
of m  as well as OIBm^, allowing for a more informed analysis.

• Similar to the HH ratio, the meaningfulness of as liquidity
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measure is doubtful if price moves (in large jumps) occur purely 
as a consequence of news announcements. As discussed in more 
depth in Reusch (2008) however, Engle and Lange (2001, pp. 
17) indicate that pure information-based trading is quite rare, 
and surely does not occur at all times during the day, which 
encourages us in our view of the usefulness of in an intraday 
context.

• Loosely speaking, the metric rm>t may also be interpreted as a 
liquidity risk measure along the lines of ‘Value-at-Risk’ (VaRa): 
Whereas the latter constitutes the minimum loss that one could 
incur with a probability a  on a bad day, rmj  can be viewed as 
the maximum percentage loss that one could have realised over 
an interval while trading (buying and selling) a volume m 7.

The interpretation laid out in the last point above is obviously 
helped by the fact that contrary to the HH ratio in Reusch (2008), we 
do not divide by price-weighted turnover over the filtered intervals.
The reason is that we feel that dividing by ‘unsigned’ price-weighted 
turnover, i.e. ignoring the distinction between buy and sell volume, 
would water down the information content of the metric and not add 
more informational value, especially given that the such a distinction 
is vital for the derivation of rm?t in the first place. Similarly, dividing 
by (price-weighted) net selling turnover seems quite meaningless and 
in practice would ever so often entail a division by a number close to 
zero, thus distorting the meaningfulness of the metric.

Therefore, despite the difference in construction, r m̂  being a pos­
itive metric, independent of tick-size, is very much akin to the HH

7Strictly speaking, this maximum loss over the interval at time t  would materialize if one bought 
the entire volume m  at P sffy  t and sold at p ’s  e l l  t -
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ratio both in statistical terms and in practical applications as the in­
put to the intraday CARL model as shown below. We now turn to 
introducing the latter.

4.3.3 The CARL M odel R evisited

As mentioned above, the maximum percentage range, like its HH ratio 
‘cousin’, is a positive liquidity measure that is independent of tick-size. 
As such it is then possible to use it in place of the latter in Reusch’s 
(2008) CARL model for intraday applications. The resulting intraday 
CARL(p,q) model looks as follows:

rm,t = with et ~  i.i.d., E[et] =  1; Vt e  {0,..., T }  and
p Q

^m,t — ^  4“ ^  i ^  j , with UJ > 0, OL{, (3j > 0, Vi, j.
2=1 7 =  1

(4.3)

Statistically, the following properties hold:

=  Am,t

Var(rm,t \ T t-\)  =  A 2mf
r i ^

E [rmjt] = ----------=------------ -Q ------- ,

(1 ~ + XyA)
2=1 j =1

where ^i_i is the information set prevailing at time t — 1. Moreover, in 
the simple CARL (1,1) case one obtains for the unconditional variance

Tr / \ 1 -  a  -  2a/3
V " ^  -  (1 — q — 2a/? — 2/j2)
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Reusch (2008) contains a more detailed discussion of the properties, 
features and estimation of the CARL model. Qualitatively, we would 
like to point out here that because of its multiplicative, autoregressive 
structure, the above intraday CARL model is well capable of the em­
pirical modelling of the before mentioned self-reinforcing behaviour 
of market liquidity. We now turn to exploiting this property in an 
empirical application.

4.4 Data

The empirical application in this chapter focuses on intraday ‘Trades 
and Quotes’ (TAQ) data of Amazon, the online retailer on 24/07/2001: 
The stock, which can be considered a ‘new economy blue chip’ has 
been listed on the NASDAQ since 15/05/1997 and enjoys active and 
liquid trading. On 09/04/2001 decimalised trading in the stock was 
introduced.

Contrary to most intraday studies that usually cover multiple days 
of data, we concentrate the analysis on a single day. While we recog­
nise that adding more days would allow for a richer application, we 
would like to stress that the aim of this chapter is a different one: 
First and foremost, we seek to establish the new methodology of the 
intraday CARL model and exemplify its merits as well as potential 
drawbacks in a show-case empirical application. A detailed empiri­
cal study, potentially covering a cross-section of securities over several 
days is outside of the scope of this work and is left for later work. 
Moreover, the focus on one day further allows to curtail the analysis 
to a manageable dataset - without having to worry about issues such 
as how intraday data stemming from different days is to be joined
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together or the re-occurrence of intraday seasonal effects.
In selecting the 24/07/2001 as our exemplary dataset, we have paid 

particular attention to a few desirable characteristics that the data on 
this day exhibits: We have picked the day on the basis of the oc­
currence of a large negative return, indicative of potential turmoil 
and sufficient trading activity in the stock. Moreover, liquidity black- 
holes along the lines of Morris and Shin (2004) are explicitly linked 
to (large) negative returns, which is why the day, bearing the largest 
price drop over the 2001-2007 period, is of special interest. Also rel­
evant in the light of the above is the fact that most of the negative 
return occurred in the pre-market trading session before the official 
market 9:30 am opening, indicating that information was already in 
the market before the start of official trading, thus limiting the ef­
fect of pure, information-based trading during the day. Finally, the 
24/07/2001 is characterised by a fairly large trading volume and a 
very large number of transactions on the day:

Figure 4.1 highlights the characteristics of the day relative to the 
2001-2007 period. Summary statistics of the data on the day can be 
found in table 4.1.

The left hand column displays information relating to the ‘raw’ 
data on the day as obtained from the TAQ database. The right hand 
column shows the characteristics of the data after a cleaning procedure 
along the lines of Brownlees and Gallo (2006): Following their guide­
lines, for both transaction prices as well as quotes, we eliminate all 
negative prices as well as outliers, defined as data whose discrepancy 
from the 30-day forward and backward looking moving average lies 
outside the corresponding 3-standard deviation bound. We also purge 
quotes that seem to be generated by non-normal market activity, as
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Figure 4.1: Amazon daily price, percentage range, return and volume

This figure displays the daily Amazon CRSP tape closing price (panel 1), maximum percentage 
range (panel 2), holding return (panel 3) and transaction volume (panel 4) from 02/01/2001- 
29/12/2007. The 24/07/2001 is highlighted.
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Table 4.1: Intraday Amazon data statistics (24/07/2001)

This table shows statistics of TAQ intraday Amazon data covering 24/07/2001. Listed are both 
statistics for unadjusted raw as well as data data adjusted for outliers and ’erroneous’ trades/quotes. 
The daily percentage return is the holding return calculated with closing prices of the actual and 
previous day.

Day 24/07/2001
Unadjusted Adjusted

First transaction time 08:00:04 09:30:01
Last transaction time 18:25:59 16:10:28
First transaction price 14.84 13.61
Last transaction price 12.28 12.06
Maximum transaction price 15.06 13.65
Minimum transaction price 11.90 11.91
#  of transactions 36,770 34,753
#  of quotes 17,255 9,906
Shares traded 33,381,400 25,719,100
Percentage turnover 9.20 7.09
Closing price 12.06
Previous day closing price 16.03
Daily percentage return (using dosing prices) -24.77

indicated by TAQ MODE values ‘1’,‘2’, ‘3’, ‘6’ and ‘18’ (cf. TAQ 
documentation). Contrary to the suggestions by Brownlees and Gallo 
(2006) we do however not eliminate quotes on exchanges other than 
the NYSE. This mainly due to the fact that we are dealing almost 
exclusively with NASDAQ quotes, for which their procedure does not 
apply and also because we aim to refrain from decimating the quote 
‘pool’ too much. Trades are included if they are reported regular and 
non-corrected according to TAQ code ‘O’; we eliminate trades if they 
occur outside of ‘normal’ NASDAQ trading hours, i.e. before 09:30 
and after 16:00 and if they are reported late according to TAQ COND 
code ‘Z’. We do however admit 6 trades that occurred after 16:00, but 
which are transactions that actually relate to an ’’obligation to trade 
at an earlier point in the trading day or that refer to a prior refer-
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Figure 4.2: Amazon adj transaction price, volume and bid-ask spread

This figure shows the Amazon adjusted transaction price (panel 1), transaction volume (panel 2) 
and bid-ask spread (panel 3) on 24/07/2001 during NASDAQ market hours. The series have been 
derived from TAQ intraday data with adjustments made for outliers and ’erroneous’ observations,.

enced price” - in this case the official closing price - according to TAQ 
COND code T \

Applying these cleaning procedures we eliminate around 2,000 trans­
actions and a bit less than half of the c. 17,000 quotes. Most of the 
purged data is recorded before the official opening of the market, also 
revealing that most of the negative return on the day occurred around 
this time, as mentioned above. Figure 4.2 gives a graphic representa­
tion of the cleaned data.
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4.4.1 Filtering

As mentioned above we apply a volume filtering technique to construct 
the maximum percentage range metric rm>t from the cleaned TAQ ‘raw’ 
data.

To this end, we first classify trades into sell and buy transactions. 
We do so using a modified variant of Lee and Ready’s (1991) classifi­
cation algorithm, according to which we classify a trade as a buy (sell) 
if the transaction price is higher (lower) than the mid-point of the pre­
vailing bid and ask quotes. If a trade happens at a price exactly equal 
to the quote mid-point, we apply the ‘tick rule’: If the latest trans­
action price represents an ‘uptick’, i.e. the latest transaction price is 
higher than the previous one, we conclude that the transaction was 
a buy. Similarly, a downward-ticking price represents a sell transac­
tion. In the case that the tick rule applies and the past transaction 
price is equal to the current one, we apply the tick rule backwards un­
til we find a differing transaction price in order to classify the trade. 
As suggested by Lee and Ready (1991) we also implement their ‘five 
second rule’ whereby we match trades with quotes that are at least 
five seconds old in order to make sure that quotes, which tend to get 
revised more quickly than trades are posted, most accurately match 
the corresponding trades.

Figure 4.3 shows the results of the classification procedure: We note 
downward trending transaction prices for both buy and sell transac­
tions and the relatively higher magnitude of sell orders in comparison 
the buys. This is not very surprising, given the overall downward di­
rection of the market on the day. However, as mentioned above, the 
bulk of the day’s selling order volume is recorded before the official
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market opening and is not displayed here.
In a second step, following the trade classification, we filter the 

data into intervals over which a minimum volume m  is cumulatively 
both bought as well as sold. Over the so-obtained durations we then 
calculate our liquidity measure, the maximum percentage range rm^, 
as the difference between the highest buy price and the lowest selling 
price as a percentage of the latter.

Obviously, given the local direction of the market, the lengths of 
the filtered intervals can be quite different: For example, in a strong 
downward move, a cumulative sell volume m  is ‘reached’ quite easily 
given the relative abundance of sell orders in a down-trend, while buy 
orders are harder to ‘come by’. Consequently, while we set up the 
filtering procedure such that a minimum  volume m  is transacted on 
both sides, it may well be that there is an ‘overhang’ of volume on 
one side over the course of the filtered interval, as is for example to 
be expected in a situation such as the one described above. Equally, 
in a well-balanced, flat market situation filtered durations of this sort 
tend to be shorter as buy and sell orders are more evenly matched, 
resulting in less volume overhang on a particular side after filtering. 
We theme such a volume overhang over the duration at time t the 
order imbalance OIB^, calculated as the difference between the actual 
volume sold and bought over the derived intervals. This series is a 
by-product of our analysis and can be viewed as a directional indica­
tor: a strongly positive (negative) OIBf for example indicates selling 
(buying) pressure on the security. Table 4.2 shows the results of the 
filtering procedure with a volume filter m = 500.

The filtering ‘distills’ roughly 35,000 transactions to c. 5,700 r̂ oo,t 
data points, each of which is obtained over volume filtered intervals
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Figure 4.3: A m azon  intraday b u y /se ll  price and volum e

This figure displays the filtered intraday Amazon buy price (panel 1), buy volume (panel 2), 
sell price (panel 3) and sell volume series (panel 4) on 24/07/2001 during NASDAQ market hours. 
The series have been obtained from adjusted TAQ data using Lee and Ready’s (1991) classification 
algorithm.
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Table 4.2: Statistics - Filtered intraday Amazon rm)t series (m = 500)

This table shows statistics of the filtered intraday Amazon rm)t series on 24/07/2001 during NAS­
DAQ market hours. The series has been obtained using a volume filter size m  =  500. The 
Ljung-Box autocorrelation test statistic for the first 50 lags is denoted as LB50. The average fil­
tered duration is the average length of the time interval during which the quantity m  is sold and 
bought and the maximum percentage range realized. The series OIBm* constitutes the difference 
between the filtered sell and buy volumes over the filtered intervals.

Filtered r s e r i e s  (24/07/2001) 
Transaction size filter m=500
#  of observations 5,692
Mean 0.164
Median 0.083
Maximum 1.264
Minimum 0.000
Std dev 0.139
Skewness 2.555
Kurtosis 12.092
Corr(rm>f, OIBm,t |) 0.312
Corr(rm>t, 0.118
Corr(rm )t, IoiBm>t>o • OIBm>t|) 0.186
Corr (rm,t, IoiBm,t-i>o' OIBmjt_ i |) 0.064
LB5 0 (P-value) 8,966 (o.oo)
Avg filtered duration (in sec) 4.114
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that have an average duration of 4.1s. By construction, the obtained 
series has a positive domain and is, as expected, non-Gaussian with 
strong skewness and kurtosis. Moreover, and more relevant for our 
analysis, rsoo,* exhibits very strong autocorrelation, as indicated by 
a highly significant Ljung-Box (LB) statistic. This confirms us in 
our view that r m>* is a meaningful intraday liquidity proxy, as one 
would expect liquidity to be autocorrelated based on the findings in the 
theoretical research on liquidity laid out above. Figure 4.4 displays the 
autocorrelation function (ACF) of r5oo,t for the first 50 lags in the lower 
panel: Well outside the 2-standard deviation bound, the ACF slowly 
declines from a level bigger than 0.6 and only loses significance after 
the 2bth lag. The top panel of the figure also shows a histogram of the 
derived maximum percentage range documenting the non-Gaussian 
features of the empirical distribution.

In terms of magnitude the mean maximum percentage range is
0.16%, which can be interpreted as the expected maximum loss that 
one could have incurred by simultaneously buying and selling a volume 
m = 500.

We note strong positive correlation between r̂ oo,t and the contem­
poraneous OIB* series, confirming the results of Chordia et al. (2002) 
who find evidence for a negative association between liquidity and the 
absolute value of the order imbalance8. While we also detect positive 
correlation using the lagged OIBt_i series, we note that such an asso­
ciation is weaker; indeed, when we included the variable as a regressor 
in the CARL model in a test estimation against the above data (not 
documented here) it loses significance and holds no predictive power.

8 This follows because the negative correlation involving liquidity translates in a positive corre­
lation for rmj ,  which is in fact a measure of */liquidity.
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Figure 4.4: H istogram  & A C F  - A m azon  rm t (m  =  500)

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bottom 
panel) for the filtered intraday Amazon rmjt series on 24/07/2001 during NASDAQ market hours. 
The series has been obtained using a volume filter size m  =  500. In addition to the ACF, 2- 
standard-deviation interval bounds are shown as blue lines, corresponding roughly to a 95% con­
fidence interval.
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Figure 4.5: A m azon  rm t and O IB m t (m  =  500)

This figure shows the filtered intraday Amazon (top panel) and the order imbalance series 
OIBm,t (bottom panel) on 24/07/2001 during NASDAQ market hours. The series have been 
obtained from adjusted TAQ data using a volume filter size m=500.
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We also find positive correlation between rsoo,* and |loiBmjt>o * OIBm£ , 
i.e. the order imbalance series with the absolute value only recorded 
for a net sell volume overhang and zero otherwise. In the light of the 
theoretical research mentioned above, we count this as mild evidence 
towards liquidity loss spirals and the liquidity black hole mechanism,
i.e. liquidity shrinking during selling environments.

Figure 4.5 displays the derived r ^ t  as well as the OIBm  ̂ series in 
the top and lower panel respectively. A rough glance at the filtered se­
ries shows (il)liquidity clustering, i.e. low liquidity (a high rmj)  being 
followed by yet more low liquidity and vice versa - similar to the well- 
documented artefact of volatility clustering in financial return series. 
Obviously, the clustering property is very much linked to the above 
mentioned autocorrelation structure of the series. The OIBm̂  series 
depicted in the lower panel shows strong one-sided activity around 
the opening and during mid-day, whereas other periods of the day are 
more even in terms of buys and sells.

4.4.2 Market M icrostructure Issues

When analysing and handling intraday data the issue of market mi­
crostructure effects often arises. Such effects usually comprise (i) 
intraday-seasonal (‘diurnal’) patterns in the data, such as e.g. shorter 
durations between trades or higher return volatility shortly after open­
ing and before trading close compared to mid-day (cf. e.g. Andersen 
and Bollerslev, 1997), (ii) the well-documented ‘bid-ask bounce’ Roll 
(cf. 1984), whereby consecutive sells and buys ‘bouncing’ between bid 
and ask prices create the impression of negative serial correlation in as­
set returns (calculated from transaction prices), or (iii) asynchronous 
trading issues across securities leading to would-be lead-lag patterns.
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With the increased use of intraday both for research as well as for 
practical purposes, such issues have drawn considerable attention and 
have been researched extensively. Comprehensive literature surveys on 
the topic can for example be found in Goodhart and O’Hara (1997) 
and Biais et al. (2005). The issue of diurnal patterns and market 
microstructure ‘noise’ has also been of importance to the recently very 
prominent field of realised/integrated volatility and its estimation from 
intraday data. Work in this area has been quite extensive and includes 
- inter alia - Ait-Sahalia et al. (2005), Andersen et al. (2003), Bai et al.
(2004), Bandi and Russell (20066), Bandi and Russell (2006a), Bandi 
et al. (2007), Barndorff-Nielsen et al. (2006) as well as Hansen and 
Lunde (2006).

While the importance and the complications for empirical analysis 
arising from market microstructure effects/noise cannot be denied, we 
would argue that our analysis in this chapter is not particularly prone 
to such influences. This is mainly due to the fact that we do not di­
rectly analyse return series or durations for which most of the above 
applies. Rather, we concentrate on the filtered maximum percent­
age range defined above as a proxy for liquidity, which despite being 
related to returns and volatility exhibits crucial differences: rmj  is de­
fined as the maximum percentage difference in buy and sell transaction 
prices over a filtered interval and, as pointed out above, is therefore 
more of a limit risk measure than a return metric, which in turn means 
that for example the problem of the bid-ask bounce is not acute in the 
context of this chapter. Similarly, asynchronous trading effects should 
be negligible in the context of our analysis as such issues arise mainly 
in the context of multivariate analysis - this chapter however takes the 
route of a univariate approach. Moreover, we follow Lee and Ready’s
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(1991) advice of trades with quotes that are at least five seconds old 
in order to ensure that the quote-setting process is properly matched 
with trading decisions.

Furthermore, our filtering procedure limits possible diurnal issues in 
the data. Loosely speaking, applying the transaction volume filter ef­
fectively amounts to pre-filtering the data according to the breadth/depth 
dimension of liquidity; the maximum percentage range liquidity mea­
sure is then derived over the pre-filtered data, in which any existing di- 
urnality is already ‘accounted for’. The following example might serve 
as an illustration: Assume that a common diurnality pattern exists 
both for durations and volatilities, i.e. there are certain times of the 
day such as the opening of trading and shortly before the close during 
which trading durations, and for that matter also volume durations, 
are shorter and volatilities higher. During these times, compared to 
other times of the day, applying a volume filter of size m  would result 
in shorter filtered durations over which the measure rmj  would then be 
derived. Ceteris paribus, one would expect the maximum percentage 
range rm̂  sampled over a shorter intervals also to be smaller than over 
longer durations - simply because of the very fact that price variation 
is also a function of time.

This situation contrasts with one in which data is partitioned into 
equal time intervals over which rmj  can also be derived: In such a set­
ting, the diurnal pattern of volatility will be very apparent as the price 
variation is given relatively more weight during the more volatile times 
at the opening and close of the day compared to mid-day, whereas in 
the case of volume duration pre-filtering the sampling intervals during 
high volatility ‘regimes’ would be shortened, limiting the impact of 
volatility on the liquidity measure. The volume filtering can there-
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fore be viewed as a pre-sampling device that limits the impact of such 
seasonal patterns.

Figure 4.5 confirms this view. While the maximum percentage 
range measure exhibits clustering (e.g. around market opening), one 
would be hard-pressed to detect obvious diurnal patters as for example 
in the case of durations in Engle and Russell (1998): In their analy­
sis, durations around mid-day are roughly 2 to 13 times higher than 
around the opening and close of the day respectively and exhibit a 
clear hump-shaped pattern. The opposite, poignant parabolic shape 
holds for volatilities as shown for example in Andersen and Bollerslev 
(1997). Yet, our analysis is not marked by such clear-cut patterns.

Moreover, varying the size of the volume filter constitutes yet an­
other degree of freedom with which the analysis can be fine-tuned in 
the presence of market microstructure noise: A very small volume fil­
ter will in the limit permit tick-by-tick durations, during which the 
bid-ask bounce issue is likely to become more relevant. A very large 
volume filter for example can be used to allow entire trading days as 
durations in which case one is back to a similar situation as the one 
of a daily sampled data set as in Reusch (2008).

We provide a sensitivity analysis with different sized volume filters 
in the empirical application section below.

4.5 Empirical Application

In this section we estimate the CARL(p,q) model described above 
against Amazon intraday data on 24/07/2001. As described in more 
detail in Reusch (2008), the CARL model with an exponential error 
distribution can be estimated consistently via ‘Quasi Maximum Like­
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lihood’ (QML): This in turn also means that one can use conventional 
software for the estimation of the more established GARCH-model 
class and estimate the CARL model as a Gaussian GARCH model 
with yjrm,t as the dependent variable. In what follows, we first use 
the filtered dataset obtained with a volume filter m = 500. In the 
second part, we vary the filter size from m  — 100 to ra =  10,000. A 
discussion of the findings is provided at the end of the section.

4.5.1 Interm ediate Volume (m =  500)

We carry out the estimation of the CARL model in the following 
manner, analogous to the analysis in Reusch (2008): We estimate the 
CARL(p,q) model with various lag parameterisation combinations of 
p and q. Specifically we take p E {0,1,2,3} and q E {1,2,3}. We 
then compare the results in terms of goodness of fit as measured by 
the AIC and BIC, as well as by the reduction in the autocorrelation 
of the standardised residuals after estimation. We then present the 
model with the best fit alongside a the most simplistic conceivable 
p = 0, q = 1 parameterisation as well as the CARL(1,1) version. We 
do the latter because in the case of the related GARCH model class, 
the very simple GARCH(1,1) setup has been found to be superior 
to more complex parameterisations in a number of applications (cf. 
Hansen and Lunde, 2005).

Table 4.3 displays the estimation results for vn =  500.
We note that even though the p — q =  1 setup is a favourite for 

many GARCH applications, it might be argued that it can be im­
proved upon in this context. In our estimation, we would claim that 
the best overall model fit is provided by the CARL(1,2) model, for 
which the AIC and BIC are comparable with the (1,1) setup, but the
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Table 4.3: Estimation - Filtered intraday Amazon rm t series (m = 500)

This table shows results from the estimation of different selected CARL models against the filtered 
intraday Amazon rm>t series on 24/07/2001 during NASDAQ market hours. The volume filter size 
m  =  500. The table displays parameter estimates, Bollerslev-Woolridge t statistics, goodness-of-fit 
measures as well as statistics for standardized residuals. * and ** denote significance at 1% and 
5% levels respectively. The Ljung-Box autocorrelation test statistic for the first 50 lags is denoted 
as LB50.

Model________CARL(O)l) CARL(1,1) CARL(1,2)
Metric Estimate t stat Estimate t stat Estimate t stat
£ 0.063* 26.889 0.025* 11.751 0.015* 6.261
ai 0.616* 36.941 0.381* 15.641 0.600* 13.634
/3i 0.470* 25.100 0.498* 25.073
fa -0.185* -4.722
Log-LH -2,669 -2,644 -2,642
AIC 0.939 0.930 0.930
BIC___________________ 0.941_______________0.934_______________0.935

Standardised residuals statistics 
Mean 1.000 1.000 1.000
Std Dev 0.658 0.623 0.619
LB5 0  (P-value) 316 (0.00) 70 (0.03) 51 (0.43)
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reduction in the autocorrelation of the residuals as measured by the 
Ljung-Box statistic over the first 50 lags (denoted LB50 in the table) is 
much larger. In fact, in the case of the CARL(1,1) model, despite hav­
ing the similar AIC and BIC measures, one would have to reject the 
null hypothesis of no autocorrelation over any of the first 50 lags at a 
5% significance level as indicated by a p-value of 0.03. For CARL(1,2), 
however, the autocorrelation is reduced significantly, with a p-value of 
0.43 translating into not being able to reject the null at any reasonable 
level of significance.

When assessing the individual parameter estimates, one finds that 
for all models, the parameters are of commensurate magnitude and 
individually highly significant as measured by the robust t statistics 
reported in the table. Moreover, the estimates translate into covari­
ance stationarity for all models, with d; +  /% < 1, Vz, j . Moreover, the 
models also adhere to the positivity condition, i.e. the requirement to

/N A A

have \ mj  > 0 , because 0 < di < l,/?i > 0  and (di/?i +  fa) > 0 hold 
(the latter is relevant for CARL(1,2); cf. Nelson and Cao, 1992).

We also put the ‘optimal’ CARL(1,2) model to the test in a fore­
casting application according to Mincer and Zarnowitz (1969) (MZ). 
Following their procedure we assess the optimality of the in-sample 
forecast obtained with the chosen model by deriving the forecast series 
hoo,t with the fitted model and running the following OLS regression:

^500, t =  $0 +  #1^500,* +  Vt-

The MZ test then allows for the assessment of the quality of the fore­
cast by performing a joint parameter restriction Wald test of the sort 
#o — 0 fl =  1. The null in this case is the optimality of the forecast, 
in the sense that the forecast is sufficient to predict the dependent
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Table 4.4: MZ - Filtered Amazon rm t series (m = 500)

This table shows a Mincer-Zarnowitz regression of the form rm>t =  Qq 4- 9 \rm,t 4- e* for the filtered 
intraday Amazon rm,t series on 24/07/2001 during NASDAQ market hours. The forecast series 
rmj  is obtained using the CARL(1,2) model, for which the in-sample fit is found optimal.

MZ regression
Metric Estimate t stat
T0 0.003 0.778
§i 0.991* 31.925
Restriction test (Ho : 0q = 0 fi 0\ = 0)

Wald test stat (p-vaiue) 0.818 (o.66)

variable. It should be noted, however, that the test does not produce 
a ranking of forecasts nor does it quantify the quality of the forecast. 
It may therefore not be used to judge one forecasting model against 
another one.

The results of the MZ test for the CARL(1,2) in the context of the 
data series obtained with a volume filter m  =  500 are reported in table 
4.4: The null hypothesis of forecast optimality cannot be rejected as 
the Wald test statistic is highly significant. This results confirms our 
conjecture that the intraday CARL model is an adequate statistical 
representation of the DGP underlying our maximum percentage range 
liquidity measure.

4.5.2 Varying the Transaction Filter Size

We now vary the size of the volume filter used to obtain r m̂ . More 
specifically, we twice increase the volume filter m  by a factor 10, start­
ing with a small volume m = 100, such that m  E {100, 1,000, 10,000). 
The effect of these different transaction volume filter sizes on the fil­
tered results can be seen in table 4.6:

An obvious consequence of varying the transaction volume filter
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Table 4.5: Comparative statistics - Filtered Amazon rm>t series

This table shows statistics of three filtered intraday Amazon rmjt series on 24/07/2001 during 
NASDAQ market hours. The series have been obtained using a volume filter sizes m  =  100, 1,000 
and 10,000 respectively. The Ljung-Box autocorrelation test statistic for the first 50 lags is denoted 
as LB50. The average filtered duration is the average length of the time interval during which the 
quantity m  is sold and bought and the percentage range realized. The series OIBm f constitutes 
the difference between the filtered sell and buy volumes over the filtered intervals.

Filtered rm>* series (24/07/2001)
Transaction filter size m= 1 0 0 m = 1 , 0 0 0 m = 1 0 , 0 0 0

#  of observations 19,640 3,452 605
Mean 0.134 0.191 0.409
Median 0.079 0.153 0.333
Maximum 1.262 1.264 1.544
Minimum 0.000 0.000 0.073
Std dev 0.118 0.155 0.263
Skewness 3.300 2.184 1.293
Kurtosis 17.953 9.618 4.888
Corr(rm,t, OIBm,*|) 0.260 0.347 0.399
Corr (rro>t, 0.186 0.202 0.043
Corr(rm HoiBm,t>o • OIBm>t|) 0.175 0.133 0.190
Corr(rm tt, IoiBm,t_i>o • OIBmjt_i|) 0.117 0.072 0.028
LB5 0  (P-value) 1.7 * 106(O.OO) 3,066 (o.oo) 83 (o.oo)
Avg filtered duration (m sec) 1.192 6.782 39.433
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Figure 4.6: Histogram & ACF - Amazon r mit (m = 100)

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bottom 
panel) for the filtered intraday Amazon rm,t series on 24/07/2001 during NASDAQ market hours. 
The series has been obtained using a volume filter size m =  100. In addition to the ACF, 2- 
standard-deviation interval bounds are shown, corresponding roughly to a 95% confidence interval.
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Figure 4.7: Amazon rm t and OIBm̂  (m =  100)

This figure shows the filtered intraday Amazon rm;t (top panel) and the order imbalance series 
OIBm * (bottom panel) on 24/07/2001 during NASDAQ market hours. The series have been 
obtained from adjusted TAQ data using a volume filter size m=100.
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Figure 4.8: Histogram &: ACF - Amazon rm t (m = 1,000)

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bottom 
panel) for the filtered intraday Amazon r m^ series on 24/07/2001 during NASDAQ market hours. 
The series has been obtained using a volume filter size m — 1,000. In addition to the ACF, 2- 
standard-deviation interval bounds are shown, corresponding roughly to a 95% confidence interval.
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Figure 4.9: A m azon rm t and O IB m f (m  =  1 ,0 0 0 )

This figure shows the filtered intraday Amazon rm,t (top panel) and the order imbalance series 
OIBm f (bottom panel) on 24/07/2001 during NASDAQ market hours. The series have been 
obtained from adjusted TAQ data using a volume filter size m= 1,000.
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Figure 4.10: H istogram  & A C F  - A m azon  rm)t (m  =  1 0 ,000 )

This figure displays the histogram (top panel) and the autocorrelation function (ACF; bottom 
panel) for the filtered intraday Amazon rmjt series on 24/07/2001 during NASDAQ market hours. 
The series has been obtained using a volume filter size m  =  10,000. In addition to the ACF, 2- 
standard-deviation interval bounds are shown, corresponding roughly to a 95% confidence interval.
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Figure 4.11: A m azon rm t and O IB m  ̂ (m  =  1 0 ,000 )

This figure shows the filtered intraday Amazon r m,t (top panel) and the order imbalance series 
OIBm < (bottom panel) on 24/07/2001 during NASDAQ market hours. The series have been 
obtained from adjusted TAQ data using a volume filter size m —10,000.
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size is the difference in the average length of the filtered durations. 
The smaller the volume, the shorter the average duration, ranging 
e.g. in the case of m = 100 from little more than Is to close to 40s 
for the large m  = 10,000 filter size. This also results in many more 
filtered observations - close to 20,000 - for the smaller transaction size 
filter, which falls substantially to around 600 for m  =  10,000.

As is to be expected, larger transaction size filters also translate 
into bigger mean maximum percentage ranges and a seemingly less 
skewed empirical distributions with less kurtosis. It also appears that 
the contemporaneous correlation with the OIBm>i series as well as with 
(IoiBm)t>o*OIBm>i) becomes stronger (still with the same, positive ‘cor­
rect’ sign) the bigger the filter size. The OIBm>iis thus more of a 
meaningful directional indicator when larger volumes are transacted 
on either side. The picture is however less clear-cut across volumes 
when OIBm?* is interacted with the downside indicator variable, albeit 
the correlation is still sizeable, which suggests to us that ‘overhang’ 
volume on the downside has a roughly equal effect when the volume 
filter is varied. Looking at the correlation with lagged (interacted) 
OIBm?*_i we find that it actually declines the larger the transaction 
volume filter, which is indicative of buying/selling activity being more 
of a definitive factor for smaller volumes and more short-term focused 
trading activity than for longer horizons. The filtered rmj  series for 
m  E {100,1,000,10,000} as well as the corresponding OIB* are dis­
played in figures 4.7, 4.9 and 4.11 respectively. As in the case of 
m  =  500 previously, while we detect more one sided activity around 
the opening and mid-day, we do not find any obvious diurnality pat­
terns across the different filter size series.

In terms of the autocorrelation structure of the data, we note that
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even though the LB50 statistics are not strictly comparable across the 
different filtered series due to their varied samples sizes, the rm>t series 
obtained with m  =  100 appears to exhibit much stronger autocorre­
lation than the ones obtained with a larger m. This is also confirmed 
by the ACFs displayed in the lower panels of figures 4.6, 4.8 and 4.10. 
In the case of m  = 10,000 for example, the ACF loses significance al­
ready after the first lag, whereas it is strongly significant for up to 125 
lags in case of the rioo,* series. Moreover, the initial level of the ACF 
for the latter series is much higher than for the former, with r i?ooo,* 
ranging in the middle.

Based on the above results, we would regard the large filter size 
of m = 10,000 as the upper limit for our analysis given the data 
on this particular day. An even larger filter size would result in yet 
fewer filtered observations, making statistical inference more difficult. 
Moreover, it is to be expected that the autocorrelation structure might 
become less meaningful for yet larger volume filter sizes. Equally, given 
the very short filtered durations achieved with m  = 100, we would 
argue against lowering the filter size much more as one might then 
enter into very high-frequency ‘tick-by-tick territory’, where market 
microstructure effects are much more pronounced. Moreover, it is 
very rare that such low volumes are actually bought and sold in the 
market place; most orders are of much larger size: as per table 4.1, the 
average transaction size calculated from the cleaned data for example 
is 740.

Estimating the intraday CARL model against the three rmj  series, 
we employ the same model selection procedure as above. This time, 
for ease of presentation, we do however only report the optimal model 
for each filter in table 4.6:
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Table 4.6: Estimation - Different filtered intraday Amazon rmit series

This table shows results from the estimation of selected CARL models against three filtered in­
traday Amazon rmj  series on 24/07/2001 during NASDAQ market hours. The series have been 
obtained using volume filter sizes m  =  100, 1,000 and 10,000 respectively. The table displays par 
rameter estimates, Bollerslev-Woolridge t statistics as well as statistics for standardized residuals. 
The CARL models shown in the table exhibit the best in-sample fit for the respective rm>t series. 
* and ** denote significance at 1% and 5% levels respectively. The Ljung-Box autocorrelation test 
statistic for the first 50 lags is denoted as LB50.

Filter size m =  100 m =  1,000 m =  10,000
Model CARL(1,3) CARL(1,2) CARL(1,2)
Metric Estimate t stat Estimate t stat Estimate t stat
UJ 0.000 1.043 0.028* 5.230 0.023 1.880
a i 0.827* 13.662 0.527* 7.276 0.898* 16.764
Pi 0.556* 28.082 0.471* 20.638 0.300* 7.080
P2 -0.233* -5.981 -0.142* -2.605 -0.254* -5.255

-0.150* -4.780
Standardised residuals statistics

Mean 1.000 1.001 1.000
Std Dev 0.569 0.658 0.621
LB5O (P-value) 66 (0.06) 50 (0.48) 36 (0.93)
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First, we note that across all three filter sizes the simple p =  q = 1 
parameterisation is not selected as the optimal model. Rather, as al­
ready in the case of m  = 500, there seems to be a case for including 
more lags of the ‘ARCH’ component of the CARL model: The chosen 
‘optimal’ model for the smallest transaction filter size is CARL(1,3), 
for the other two it is CARL(1,2). Again, these models were picked 
due to their comparatively superior model fit in terms of AIC and BIC9 

and based on their ability to pick of the autocorrelation structure of 
the data: For the largest filter size the reduction in the autocorrelation 
of the standardised residuals is substantial, as indicated by a very low 
LB50 statistic and a corresponding high p-value. To us, this is not very 
surprising as the only the ACF for this series is only significant for the 
first lag (cf. figure 4.10), which the model seems to pick up quite well. 
While in the case of m = 1,000, the CARL(1,2) model also takes ac­
count of the autocorrelation structure rather well (LB50 =  50, p-value 
=  0.48), the picture is less clear-cut for the smallest transaction size 
filter: Here, autocorrelation is much more persistent, and the optimal 
CARL(1,3) is only able to pick it up in a limited way. The ‘remaining’ 
autocorrelation in the standardised residuals is still sizeable and one 
would only not be able to reject the null hypothesis of no autocor­
relation over any of the first 50 lags at a ‘mild’ significance level, as 
indicated by a LB50 statistic of 66 and a corresponding p-value of 0.06. 
This result suggests that an estimation with another error distribu­
tion providing more degrees of freedom while still having a positive 
domain and a unity expectation such as e.g. the Weibull or Gamma 
distribution, might yield better a better model fit as suggested by re­
sults obtained for the ACD model class in Engle and Russell (1998).

9Not reported this time as a comparison for different data series is meaningless
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Since we feel however that such an analysis is beyond the scope of the 
present analysis, we leave it for later work.

We also note that with the exception of the intercept in the case 
of m — 100 and m = 10, 000, all other parameter estimates are highly 
significant and, again, of ‘reasonable’ magnitude. However, for m = 
100 the estimated setup is not stationary as a\ +  (3\ +  /% +  fa  > 1, 
which again mirrors the difficulty of estimating the model with such a 
small transaction size filter and a resulting persistent autocorrelation 
structure. The estimated parameters in all cases do nonetheless adhere 
to the positivity criterion by Nelson and Cao (1992) since 0 < cq < 

1, A  > 0 and (di/?i +  /?2) > 0 or ai(ai(3i +  /%) +/% > 0 for CARL(1,2) 
and CARL (1,3) respectively.

4.5.3 D iscussion

The main result of our empirical application is that the proposed intra­
day CARL(p,q) approach is able to model the time series behaviour of 
the filtered maximum percentage range liquidity measure rather well. 
We base this claim on the good model fit and the ability of the model 
to pick up on the significant autocorrelation structure found in the 
data: The remaining autocorrelation in the standardised residuals is 
negligible for all filter sizes according to the LB50 statistic. Given that 
an autocorrelated data structure is to be expected based on the the­
oretical models of liquidity presented in section 4.2, the ability of the 
intraday CARL approach to incorporate such patters into a statistical 
model confirms us in our view that CARL is a valid and useful model 
for intraday empirical liquidity applications.

Moreover, the MZ test results document a very encouraging in- 
sample forecast performance; while we do not show the MZ test results
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when we vary the transaction size filter from m = 100 to ra =  10,000 
in the previous section for ease of presentation, we can report that the 
results are comparable to the case of m = 500, i.e. the null hypothesis 
of an optimal forecast cannot be rejected for all volume filter sizes.

Further, a high-level casual comparison of the results obtained with 
different filter sizes seems to suggest a pattern that is reminiscent of 
the findings in Reusch (2008): The smaller the filter size, i.e. the 
shorter the sampled time intervals which in turn translates into higher 
frequency data, the more persistent the autocorrelation structure in 
the liquidity measure10 appears to be and the more there is a role for 
introducing more ‘ARCH’ terms into the model: At m  = 100 and 
c. 20,000 filtered durations with a mean of c. Is for example the 
optimal chosen model is CARL(1,3), which becomes CARL(1,2) for 
m  =  10,000 and c. 600 filtered observations with a mean duration of 
c. 39s. The latter model setup is also the preferred one for daily fre­
quencies and becomes CARL (1,1) for yet lower frequency weekly data 
in Reusch (2008). It therefore appears that higher frequencies warrant 
a richer model parametrisation in order to pick up the autocorrelation 
structure in the data

4.6 Conclusion

This chapter introduces a version of the empirical CARL by Reusch 
(2008) for use in an intraday high-frequency context. The proposed 
model uses the same econometric setup as the ‘conventional’ CARL 
model for daily and lower frequency data and such as is very much 
akin to Engle and Russell’s (1998) intraday ACD, which models liq­

10Reusch (2008) uses the ‘full’ HH ratio, i.e. the maximum percentage range divided by the 
price-weighted turnover.
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uidity as the duration between trades. Whereas the latter model is 
only equipped for exclusive use in an intraday context, this chapter 
demonstrates that the CARL model, which has been shown to work 
with daily and weekly data also has a role in the intraday analysis of 
market liquidity when modified slightly: Our modification from the 
original CARL approach concerns the liquidity measure that is used 
as the dependent variable in the model. We propose a buy and sell 
volume filtering technique that allows us to partition the data into 
intervals over which we then derive the maximum percentage range 
liquidity measure, which is closely related to the HH ratio used in the 
original CARL model. The autocorrelated filtered series is strongly 
autocorrelated, which is very much in accordance with various theo­
retical models of market liquidity, and is then used as an input into 
the CARL ‘machinery’. Again, similar to the original CARL model, 
the resulting intraday approach is able to capture multiple dimensions 
of liquidity and is therefore more versatile than e.g. the ACD model 
which explicitly only addresses the immediacy notion of liquidity.

In an empirical application, using intraday data on the Amazon 
stock, we exemplify the capabilities and properties of the intraday 
CARL model, which is able to pick up the autocorrelation structure 
of the data rather well and shows promising in-sample forecast ability 
as measured by a Mincer-Zarnowitz test. Moreover, a sensitivity anal­
ysis with different transaction volume filters reveals that the model 
performs best within certain volume filter bounds as especially low 
filter sizes produces data series whose autocorrelation structure the 
model is not able to pick up fully.

Yet, the results obtained with the model across various filter sizes 
are consistent with theoretical research into market liquidity and as
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such look very promising. One could for example envisage the use 
of the intraday CARL model in regulatory environments or intraday 
trading/risk management applications at financial institutions.

Based on the results in this paper, future research into the area also 
appears warranted. Such work might for example include the inclusion 
of different error distributions to achieve better model fit, especially for 
low filter sizes (as mentioned above), a detailed analysis of the model’s 
out-of-sample forecast performance or an empirical application with 
a more extensive intraday dataset, possibly covering multiple days 
of intraday data. A multivariate extension of the model also looks 
conceivable and would allow for the modelling of common liquidity 
effects across assets.
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