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ABSTRACT

This thesis is the final outcome of a project carried out for the UK’s 

Department for Education and Skills (DfES). They were interested in finding a 

fast algorithm for solving a Data Envelopment Analysis (DEA) model to 

compare the relative efficiency of 13216 primary schools in England based on 9 

input-output factors. The standard approach for solving a DEA model comparing 

n units (such as primary schools) based on m factors, requires solving 2n linear 

programming (LP) problems, each with m constraints and at least n variables. 

At m = 9 and n = 13216, it was proving to be difficult.

The research reported in this thesis describes both theoretical and 

practical contributions to achieving faster computational performance. First we 

establish that in analysing any unit t only against some critically important units 

-  we call them generators -  we can either (a) complete its efficiency analysis, or 

(b) find a new generator. This is an important contribution to the theory of 

solution procedures of DEA. It leads to our new Generator Based Algorithm 

(GBA) which solves only n LPs of maximum size (im x k ), where k  is the 

number of generators. As k  is a small percentage of n , GBA significantly 

improves computational performance in large datasets. Further, GBA is capable 

of solving all the commonly used DEA models including important extensions of 

the basic models such as weight restricted models.

In broad outline, the thesis describes four themes. First, it provides a 

comprehensive critical review of the extant literature on the computational 

aspects of DEA.

Second, the thesis introduces the new computationally efficient algorithm 

GBA. It solves the practical problem in 105 seconds. The commercial software 

used by the DfES, at best, took more than an hour and often took 3 to 5 hours 

making it impractical for model development work.

Third, the thesis presents results of comprehensive computational tests 

involving GBA, Jose Dula’s BuildHull -  the best available DEA algorithm in the 

literature -  and the standard approach. Dula’s published result showing that 

BuildHull consistently outperforms the standard approach is confirmed by our
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experiments. It is also shown that GBA is consistently better than BuildHull and 

is a viable tool for solving large scale DEA problems.

An interesting by-product of this work is a new closed-form solution to 

the important practical problem of finding strictly positive factor weights without 

explicit weight restrictions for what are known in the DEA literature as 

“extreme-efficient units”. To date, the only other methods for achieving this 

require solving additional LPs or a pair of Mixed Integer Linear Programs.
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PREFACE

I Motivation and Genesis

The issue addressed in the work recorded in this thesis is the 

computational efficiency in applying Data Envelopment Analysis (DEA) and 

how this may be improved.

In 2005, the Value for Money (VfM) unit of the Department for 

Education and Skills (DfES)1 commissioned my supervisor, Professor Gautam 

Appa, to develop procedures for speeding up computation of DEA models for 

large scale datasets. The DfES had decided to use DEA to identify the well-run 

primary schools in England and to provide benchmarks based on these for the 

poorly-run ones. DEA divides the units (primary schools in this case) under 

investigation into efficient and not efficient and finds peers amongst the efficient 

ones which are relevant for setting targets for the inefficient ones. So in some 

sense DEA was suitable for their purpose. However, in carrying out DEA 

computations they encountered one big difficulty. The performance analysis 

software they were using for processing DEA datasets, PIM DEASoft-v2 

(http://www.deasoftware.co.ukA. took too long to solve datasets with more than 

5000 units and sometimes required multiple attempts to run them to completion. 

Professor Appa was given a grant to appoint a PhD student to review current 

computational methods and come up with improved ones. In September 2005, he 

drafted me as his PhD student and it was agreed that under grant 

EOR/SBU/2003/208 from the DfES, my research would review the extant 

literature on the different solution procedures to process DEA datasets and 

develop new techniques to realize improved computational efficiency.

It is worth noting that although the issues discussed in this thesis arose in 

connection with comparing the performance of primary schools, they could 

equally have arisen in many other contexts which involve large datasets (for 

example, in comparing the performance of branches of a bank, in financial

1 It went through several changes of name; at the time of writing it is known as Department for 
Education (DfE).
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applications such as portfolio analysis etc.). The methods developed herein 

therefore can be expected to have wide applications.

It is also important to note that there are certain applications in DEA that 

necessitate solving multiple DEA LPs for each unit and are computationally 

intensive even for medium scale datasets. These include the bootstrapping 

technique developed in Simar and Wilson (1998) and Simar and Wilson (2000), 

outlier identification technique developed in Wilson (1993), Kuosmanen and 

Post (1999), Simar (2003) and Banker and Chang (2006), various methods to 

estimate the returns to scale of units in DEA developed in Banker and Thrall

(1992), Fare and Grosskopf (1994) and Banker et al (2004), and methods to 

estimate the productivity growth using the malmquist productivity analysis 

technique developed in Fare et al (1994), Ray and Desli (1997), Simar and 

Wilson (1999) and Banker et al (2010). The algorithm developed in this thesis is 

also expected to come useful in reducing the computational work in such 

intensive applications.

II Foundation and Development

Upon reviewing the literature on the computational aspects of DEA, only 

three strands of relevant research were identified. These (discussed in detail in 

Chapter 3) comprised of:

1. the DEA based pre-processing ideas of Ali (in Ali (1993) and Chen and 

Ali (2002)),

2. the hierarchical decomposition algorithm of Barr and Durchholz (1997), 

and

3. the BuildHull algorithm of Dula (1998).

Among these, only the works of Professor Jose Dula seemed significant 

as he had shown by extensive computational evidence that his BuildHull 

algorithm was much faster than all the others. In September 2006, the BuildHull 

algorithm proposed in Dula (1998) was presented to the VfM unit of the DfES 

along with suggestions to improve it. In pursuing some of these ideas further we
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came up with one that kept the main feature of BuildHull but cut down the 

number of LPs to be solved by half.

To evaluate any unit in DEA, it is sufficient to have data on its relevant 

peers from the dataset. Hence, comparing an unit with all the units in the dataset 

is unnecessary. This is especially important when a vast majority of units are 

inefficient and hence well known to have no relevance in the evaluation of any 

other unit. Most real life datasets have this feature. For example, the number of 

relevant efficient units in the primary school data was only 188 out of 13,216. 

We will call the relevant efficient units generators for now and define the term 

precisely later. The main strength of BuildHull comes from the fact that it 

identifies all the generators in a first pass where each unit is tested against 

already identified generators to see if  it is inefficient in comparison. If it is, it can 

be discarded; if not, BuildHull has a way to find some hitherto undiscovered 

generator. So it requires n LPs to find all the generators (e.g., 188 schools) in a 

dataset and no LP will have more than k + l units in it if there are k  generators 

(here, 188 schools). For the primary schools problem, BuildHull will solve 13216 

LPs with no more than 189 variables in each LP in the first phase. In phase 2, 

BuildHull will solve one LP for each unit which is not a generator, with only the 

k  generators and the unit itself in each LP; so 13028 LPs with 189 variables in 

each.

The improvement we make is to find a way to work only with known 

generators but in such a way that at each step we either finish the analysis of unit 

t under investigation or find a new generator, thus needing to solve only n LPs 

with no more than k  variables at any step. The main tool for achieving this is the 

use of super-efficiency model of DEA (introduced in Andersen and Petersen

(1993)) and a ratio test to find a new generator.

In preparing the fine details of this Generator Based Algorithm (GBA) we 

had to deal with some technicalities. Thus, the super-efficiency model may lead 

to infeasible LPs and the ratio test could produce indeterminate ratios. Also, 

when choosing a new generator ties were encountered which had to be dealt 

with.
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In the first instance we were able to deal with these finer points by 

assuming them away. So we assumed that the data entries were all positive, 

which took care of both the infeasibility and the indeterminate ratio problems. 

And ties were waved aside by assuming that there was a way to solve them. But 

eventually we had to solve these problems head on. It was found that 

indeterminate ratios were only problematic when there were ties and so can be 

handled by our tie breaking procedure. Fortunately we were able to find a closed 

form solution to the problem of breaking ties. It turns out that the same closed- 

form solution can also be used to find strictly positive optimal weights for all the 

factors for each generator.

Ill Organization of the thesis

Chapter 1 starts with an introduction to the DEA technique familiarising 

the reader with some of the important concepts by means of a graphical 

illustration, followed by a systematic investigation. We then give a brief history 

of the evolution of DEA.

Chapter 2 presents the standard DEA LP models, viz., constant and 

variable returns to scale models under input and output orientation and additive 

models, used in DEA applications. The chapter also provides a brief critical 

review of an important variant of these, namely, the super-efficiency models, 

which we employ in the construction of our new algorithm developed in chapter

4.

To reduce the computational strain in processing DEA datasets, various 

heuristics and alternative efficient algorithms have been developed in the 

literature over the years. Chapter 3 presents a comprehensive critical review of 

these, identifying the three main strands mentioned earlier.

Chapter 4 presents our main research contribution, the Generator Based 

Algorithm (GBA), for solving the input oriented CRS model under the 

assumption that the dataset is strictly positive. Every step is illustrated 

graphically for a small 2-input, one output case with 8 Decision Making Units 

(DMUs). Appendix 2 graphically illustrates the workings of the same example
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for Dula’s BuildHull algorithm. In contrast to BuildHull, our algorithm avoids 

solving a second LP for the 8 DMUs.

Chapter 5 addresses the technical challenges in using GBA for general 

(not necessarily positive) datasets for all the standard DEA models described in 

chapter 2. For each specific DEA model, we present conditions under which the 

two main technical challenges of infeasibility and indeterminate ratios can or 

cannot occur when applying GBA.

The purpose of chapter 6 is to present ways to handle the technical 

challenge of infeasibility. We examine two different approaches to handle it, viz., 

clustering and penalty. Within the penalty method, we examine two different 

techniques, viz., employing a big penalty and a small penalty. The clustering 

technique works under restrictive conditions while the penalty methods can 

tackle infeasibility under all circumstances.

In chapter 7, we examine ways to deal with the remaining technical 

difficulties of GBA. We first show that within GBA the problem of 

indeterminate ratios is only relevant when there is a tie in the rule for finding a 

new generator. Then we provide novel closed-form solutions to resolve ties. 

Finally we extend these closed-form solutions to construct a strictly positive set 

of multiplier values for the generators.

Chapter 8 presents the computational results of processing datasets using 

various DEA models. While doing so, we compare the computational 

performance of GBA against BuildHull and the conventional solution procedure. 

For VRS models we compare the computational performance of GBA against the 

other two using the problem suite that Dula (1998, 2008, 2010) employed in his 

studies. As Dula does not provide any comparisons for CRS models we use a 

problem suite developed for this purpose. As the main contender for GBA is 

BuildHull, we give separate diagrams comparing just these two.

Finally, chapter 9 present directions for future research.
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GLOSSARY OF THE TERMS AND SYMBOLS

DMU - Decision Making Unit.

(DMUs denote the plural form of DMU and not the s* DMU)

Units - Refers to DMUs.

PPS - Production Possibility Set.

RTS -  Returns to Scale.

CRS - Constant Returns to Scale.

VRS - Variable Returns to Scale. 

n - Number of observed decision making units. 

ml - Number of input factors in the dataset. 

m2 - Number of output factors in the dataset.

(X , Y ), (x , Y ), [x, Y ) - Activity of an unit with support over R +n)2.

X  - Input component (vector) of the activity (X,Y)  with support overR”1.

Y - Output component (vector) of the activity (X , Y ) with support overR™2. 

[xj  ,Yj)~ Activity of an observed unit j.

(Xt ,Yt ) - Activity of an observed unit (DMUt) that is currently being evaluated. 

X -  Matrix of inputs of all the observed units of size m ^ n .

Y -  Matrix of outputs of all the observed units of size m2x n .

A,j or jLLj - Intensity variable of an observed unit j.

s' - Input slack vector with support overR”1. 

s ° - Output slack vector with support over R™2. 

v - Input weight vector with support overR™1. 

u - Output weight vector with support overR™2.

6 - Variable that depicts the input efficiency of DMUt.

(f) - Variable that depicts the output inefficiency of DMUt.

0 - Zero vector with dimension decided by the context. 

e - Vector of Is with dimension decided by the context.

Cardinality -  Number of observed DMUs in a DEA exercise.

Dimension -  Number of inputs and outputs in a DEA exercise.
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Density -Percentage of extreme-efficient units in a DEA exercise. 

P-K efficient -  Pareto-Koopmans efficient.

GBA -  Generator Based Algorithm.

LP -  Linear Programming.

MILP -  Mixed Integer Linear Programming.

DGP -  Data Generating Process.

EIE -  Early Identification of Efficient units.

RBE -  Restricted Basis Entry.
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1 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS

1.1 Background

Data Envelopment Analysis (DEA) is a linear programming (LP) based 

technique that is used to determine the relative efficiency of homogeneous 

operating units responsible for converting inputs to outputs. The operating units, 

labelled in the DEA literature as Decision Making Units or DMUs, are similar in 

that they employ the same type of inputs to produce the same type of outputs. 

Conventionally, the purpose of a DEA exercise is to find the relative efficiency 

by which a DMU transforms its inputs to outputs when compared to other similar 

units. Relative efficiency, being a dimensionless scalar, does not require the 

various inputs and outputs to be measured in the same unit of measurement.

DEA is a non-parametric method in the sense that a functional form 

relating the inputs and outputs need not be specified apriori. It is also a frontier 

based method in that all the units are compared to the best practice units which 

also consume the same set of inputs to produce the same set of outputs.

Before we get into the theoretical framework of DEA, we will familiarise 

ourselves with some of the important concepts in DEA using a simple example. 

For ease of discussion, we will examine these concepts rather loosely and 

consign a rigorous treatise of them to section 1.2. Consider the following two 

inputs (XI and X2), one output (77), 9 DMU example portrayed in figure 1-1. 

The data for the example is provided in table 1-1.

DMU X I X2 Y1
A 2 9 1
B 4 6 1
C 6 3.5 1
D 10 2.5 1
E 12 2.5 1
F 2.5 13 1
G 9 5 1
H 5 6.5 1
I 8 3 1

Table 1-1 : 9 DMU, 3 factor data
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X2
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XI

Figure 1-1 : 2-d representation of the data
To provide a context, one can think of the DMUs as different comparable

universities operating in a city. Input 1 (XI) could represent the number of 

administrative staff and Input 2 (X2) could represent the number of research and 

teaching staff employed in an university. Output 1 (17) could be the number of 

registered students studying in the university.

We will assume that all the universities are operating in a constant returns 

to scale environment which means that a doubling (halving) of all the inputs (XI 

and X2) leads to a doubling (halving) of all the outputs (Yl). Hence, the number 

of registered students is scaled to 1 student and table 1-1 shows the number of 

administrative, and research and teaching staff required in different universities 

to manage a single student.

As the universities can be expected to have more control over their inputs 

than their outputs, we will assume that we are interested in knowing the input
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efficiency of these universities. This means that we are interested in knowing the 

minimum proportion of an university’s current input usage that is sufficient, in 

comparison with other universities, to output a single student if it were to carry 

out its operation efficiently. If this minimum proportion is equal to 1 for an 

university then it is operating efficiently relative to the other universities.

The inputs-output values of the 9 universities represent coordinates of 

points in 3 dimensional (2 inputs + 1 output) space. As the output value is scaled 

to 1, one can represent all the 9 points in the Y1 = 1 plane using the X I  and X2 

axes alone. In figure 1.1, the points (universities) A through I are plotted in red 

and the thick black line passing through the universities A, B, C, I, and D 

represents the efficient frontier. The extended frontier includes the vertical line 

north of A and the horizontal line east of D. Unit E lies on the extended frontier.

Universities A, B, C, I, D and E are lying on the extended frontier and are 

called boundary units. Given our empirical evidence, these universities cannot 

reduce their input usage any further proportionately and still be able to output 1 

student. Hence, their input efficiency is 1. Universities F, G, and H are not lying 

on the extended frontier. These universities can reduce their input usage 

proportionately and still be able to output 1 student. Hence, their input efficiency 

is less than 1.

Among the boundary units, universities A, B, C, I and D are of special 

interest. For these universities, maintaining 17 = 1, the usage of either of its input 

factors cannot be improved (decreased) any further without worsening 

(increasing) the usage of the other. Hence, universities A, B, C, I and D are said 

to satisfy the Pareto-Koopmans efficiency criterion. These units are the best 

practice units and other universities must hold them as benchmarks to improve 

their performance. University E, although a boundary unit with an input 

efficiency of 1, does not satisfy the Pareto-Koopmans efficiency criterion. This is 

because its input 1 usage can be reduced (improved) when compared to unit D 

without worsening its usage of input 2 while maintaining Y1 = 1. The peer unit or 

the benchmark for university E in order to improve its performance is university 

D.

The units that are lying on the extended frontier can be classified into 

three types of units, viz., extreme-efficient, efficient but not extreme, and weakly 

efficient. Universities A, B, C, and D lie on the efficient frontier and are called
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extreme-efficient units defined by the criterion that if one were to remove any 

one of these four units, the contour of the frontier will change. It is obvious that 

these extreme-efficient units (universities) satisfy the Pareto-Koopmans 

efficiency criterion. University I, which also satisfies the Pareto-Koopmans 

efficiency criterion is different. It can be expressed as a convex combination of 

units C and D, so its removal does not change the contour of the efficient 

frontier. Hence, university I is called an efficient but not extreme unit. Unit E, 

which has an input efficiency of 1, does not satisfy the notion of Pareto- 

Koopmans efficiency and is called a weakly efficient unit.

Lets us now consider the non-boundary units, F, G, and H. The input

OF ' 10.59efficiency of university F is given by, 0F = = = 80%. This is the

minimum proportion of inputs of university F that is sufficient to output a single 

student if  it were to operate efficiently. The input 1 and input 2 usages at the 

boundary point F are given by the input 1 and input 2 usages of university F 

scaled by 80%. In addition, the radial projection of unit F on the boundary, 

symbolized by F , is weakly efficient. This is because the point F uses more of 

input 2 when compared to the extreme-efficient unit A. The slack (non

proportional or coordinate-wise inefficiency) present in unit F is given by the 

difference in the input 2 usage between points F and A. The peer unit that 

university F must hold as benchmark in order to improve its performance is 

university A.

Let us consider unit G. The input efficiency of university G is given by 

OG' 7 1Or  ----- = — :— = 68.96%. The input 1 and input 2 usages at point G are
a OG 10.29

given by the input 1 and input 2 usages of university G scaled by 68.96%. The 

peer unit that university G must hold as benchmark in order to improve its 

performance is the virtual university G . This virtual university G can be 

obtained by a convex combination of the observed universities C and D. In 

particular, a combination of 94.8% of university C and 5.2% of university D 

synthesises this virtual university. The virtual university G can also be obtained 

by a convex combination of the observed universities C and I. In particular, a 

combination of 89.6% of university C and 10.4% of university I can synthesise 

this virtual university. Hence, the peer units that university G must hold as
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benchmark to in order to improve its performance are the best practise 

universities C, D and I.

The input efficiency of university H is given by 

OH / 7 070H = ------ = ——  = 86.27%. The input 1 and input 2 usages at point H are
OH 8.2

given by the input 1 and input 2 usages of university H scaled by 86.27%. The 

peer unit that university H must hold as benchmark in order to improve its 

performance is the virtual university H . This virtual university H can be 

obtained by a convex combination of the observed universities B and C. In 

particular, a combination of 84.3% of university B and 15.7% of university C 

synthesises this virtual university. Hence, the peer units that university H must 

hold as benchmark in order to improve its performance are the best practise 

universities B and C.

Universities G and H are technically inefficient but their radial projection 

on the frontier does not contain any non-proportional inefficiencies. This is 

because their projection falls on the efficient frontier. This is in contrast to 

university F that does contain non-proportional inefficiencies. In the DEA jargon, 

universities G and H are technically inefficient but mix efficient units. University 

F, on the other hand, is both a technically inefficient and mix inefficient unit. 

University F is mix inefficient as its radial projection on the extended frontier 

contains non-proportional inefficiency.

In figure 1-1, the vertical line above A, lines A-B, B-C, C-D, and the 

horizontal line to the east of D are called facets. Facets provide the relative 

values (or weights) for the input and output factors for the units that are 

evaluated using that facet. For example, the line B-C provides the relative values 

for the input and output factors for the three universities, B, C and H, that are 

evaluated using that facet.

The input efficiency of an university can either be obtained geometrically 

as a ratio of radial distances or by computing the ratio of weighted outputs to 

weighted inputs. The equation of the line (facet) B-C is given by 

0.114X1 + 0.091X2 = 1. Thus the relative value or weight for the input 1 factor is

0.114 and weight for input 2 factor is 0.091. The weight for the single output 71 

is fixed at 1 as we have plotted the points in the plane of 71 = 1. The input
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efficiencies of universities B, C and H that are evaluated at this facet can now be 

computed by,

weighted sum o f outputs (ix l) 1 mno/
O b  —  =  7------------------------------------------------------- r  =  -  =  1 U U %  ,

weighted sum o f inputs (0.114x4 + 0.091x6) 1

where, the input 1 and input 2 values for university B are 4 and 6 respectively.

Similarly, 6C - ------------------ ---------- r = -  = 100%, and
c (0.114x6 + 0.091x3.5) 1

e„ =   -------------------------------    =  — =  86.27%.
(0.114x5 + 0.091x6.5) 1.159

1.2 Theoretical Framework

The DEA measures of technical efficiency as introduced in Chames et al 

(1978) and Banker et al (1984) are operational extensions of the Debreu-Farrell 

measures referred as such after the works of Debreu (1951) and Farrell (1957). 

Debreu (1951) and Farrell (1957) introduced a measure of technical efficiency 

based on Koopmans’ (1951) definition of technical efficiency. Given its likeness 

to the notion of Pareto optimality introduced by Pareto (1906), Koopmans’ 

(1951) efficiency criterion is also referred to as Pareto-Koopmans efficiency 

criterion. We will examine the connection between the Debreu-Farrell measures 

and Koopmans’ definition of technical efficiency and while doing so, discuss 

Shephard’s (1953, 1970) important contributions to the topic. In order to do this, 

we will formally introduce concepts such as production technology, production 

possibility set, and input and output sets.

Throughout this section we are considering n observed decision making 

units with each unit utilising m] inputs to produce m2 outputs. The inputs and 

outputs are non-negative with at least one positive component in any unit’s input 

and output vector, i.e., for y'=l,...,« ,X j9Yj > 0;X j9 Y},*■ 0 ;2 whereX j

represents the input vector of DMUj of dimension ml and Yj represents the

2 Inequality or equality symbol between vectors implies that the relationship holds for each 
component of the vectors.
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output vector of DMUj of dimension m2 . Also,(X j ,Y .) denotes the observed

activity of the j*  DMU.

For any DEA exercise, the description of the Production Technology or 

Production Possibility Set, PPS, is paramount. Formally, the PPS is defined as 

the set of technologically feasible input and output activities (X, Y)e R™i+mi 

represented as T ={(X,7)| Y > 0 can be produced from X  > 0, X  & o}. The 

components of an activity can be regarded as the coordinates of a point in the 

non-negative orthant of the (mx + m2) dimensional space. The PPS is assumed to 

satisfy some basic postulates that we discuss next.

1.2.1 Production Possibility Set under Constant Returns to Scale

All the n observed units are assumed to operate under a constant returns 

to scale environment. Formally, the CRS assumption implies that for every 

{X,Y)e  7 \(a 7 ,tf7 )e  T , V a >  0.

The postulates satisfied by the production possibility set under the 

constant returns to scale assumption are as follows.

1. Observed unit postulate -  All the observed units ( x y. ,Yj), 

j  = 1,...,«, belong to T .

2. Free disposability or Inefficiency postulate — For any (X j , 7y. )e T , all 

(x ',7 y.)e T where X ] > X j  and all {Xj ,Y' )e  T where Y'< Yj .

3. Ray unboundedness postulate -  For all non-negative scalars Xj > 0,

± A jX j , t X j T j  e 2 \v=1

3 Depending on the context, X . can be a column vector of dimension mx with X rj denoting the r* 

input component of DMUj. Similarly, 7y. can be a column vector of dimension 

m2 with Ysj denoting the s* output component of DMUj.
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The smallest polyhedral set that satisfies the above three postulates is the 

production possibility set under constant returns to scale assumption and can be

represented as, Tc =•! (x ,y )
7 = 1  7= 1

1.2.2 Production Possibility Set under Variable Returns to Scale

DEA literature also looks at PPS under die assumption of variable returns 

to scale which allows for a production technology exhibiting increasing, 

decreasing and constant returns to scale. The postulates satisfied by the 

production possibility set under the variable returns to scale assumption are as 

follows.

1. Observed unit postulate -  All the observed units ( x j , Y}) , 

j  = 1,...,«, belong to T .

2. Free disposability or Inefficiency postulate — For any (X j , Y} )e T , all 

(.X'j J j )e T  where X ) > X j  andall {Xj ,Y' )e  T where Y]< Yj .

3. Convexity postulate - For all non-negative scalars Aj > 0 such that

£ x j = i , ( ± xjx j , £ xj yj \ t .
7 = 1 V 7 = 1 7 = 1  J

By replacing the ray unboundedness postulate with the convexity 

postulate, the above production possibility set allows for different (increasing, 

decreasing and constant) returns to scale (RTS) to exist within the feasible set of 

input and output vectors. The smallest polyhedral set satisfying the above three 

postulates is the production possibility set under variable returns to scale 

assumption which can be represented as,

X > 2 ^ , ,y = U ,  > o .
7= 1  7 = 1  7= 1

For a detailed description of the production possibility set under the 

assumptions of constant and variable returns to scale, see, Banker et al (1984), 

Banker (1984), and Chames et al (1985).
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1.2.3 Definitions and Measures of Technical Efficiency

Now that we have formally described the production technology or PPS, 

we can look into the connection between Koopmans’ (1951) definition of 

technical efficiency and Debreu-Farrell measures of technical efficiency. We will 

also see how Shephard’s (1953, 1970) works on the functional representation of 

the production technology under constant returns to scale provide an alternative 

approach to the Debreu-Farrell measures of technical efficiency.

Koopmans’ (1951) definition of technical efficiency can be stated 

formally as ( X j ,Yj)e T is technically efficient iff (X k,Yk)<£ T  for

{- X k,Yk)> (- X j , Yj)4; i.e., a technologically feasible unit satisfies the

Koopmans’ efficiency criterion iff it is not (weakly or strongly) dominated by 

another technologically feasible unit. In figure 1.1, universities A, B, C, I and D 

satisfy Koopmans’ efficiency criterion. In contrast, the boundary unit E does not 

satisfy the notion as unit D’s input-output activity weakly dominates unit E’s 

activity, i.e., ( ~ X D,YD)= (-1 0 -2 .5 ,1 ) > ( - X E,YE) = ( -12 , -2 .5 , l ) s.

The production technology

r = { ( x , y ) | r s o  can be produced from X  > 0, X  *  o} can also be represented 

by the input sets L(Y) . L(Y) can be defined as L(Y) = { X : (X, Y ) e T}.  Further 

for every 7 , there are input isoquants I(y ) = {X  : X  e L(y ),AX g L(y ),A<  l} 

and input efficient subsets given by E(Y) = { X : X e  L{y \X *  & L(y \ X '  < X }  

and the three sets satisfy is (7) c= /(7 ) cz L(y ) . In our example provided in table

1.1, the production possibility set is given by the region north-east of the piece- 

wise line segments joining observed units A-B-C-I-D and the line north of A and 

east of D. The input isoquant is the extended frontier given by the piece-wise line 

segments A-B-C-I-D and the line north of A and east of D. The input efficient 

subset is the efficient frontier shown by the piece-wise line segments A-B-C-I-D.

Shephard (1953) introduced the input distance function to provide a 

functional representation of the production technology under CRS. The input

4 We assume that no two DMU’s activity are identical.
5 To avoid clutter, we allow for some abuse of notations representing column vectors as row 
vectors (or vice-versa) without representing it with a transpose symbol.
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distance function is given by D7(X,Y)  = max H xA k m  So for

l e  L(Y), D ,(X ,Y)>  1 and for X<e l(Y), D ,(X ,Y )= 1. Given standard

assumptions on Tc presented earlier, the input distance function D,(X,Y)  is 

non-increasing in la n d  is non-decreasing, homogeneous of degree +1, and 

concave in X . In our example provided in table 1.1, units on the boundary of the 

PPS, viz., A, B, C, I, D and E, have an input distance function value of 1. The 

input distance function value of F is 1.25; i.e., the university’s current input 

usage (XI andX2) has to be scaled down by 1.25 to become technically efficient. 

Similarly, the input distance function value of G is 1.45 and H is 1.16.

The Debreu-Farrell input-oriented measure of technical efficiency TE7 is 

simply the value of the function TE{ = min{#: 6X e  Z,(F)} and it follows that

TE, (X,Y)=  1 For X e  L(y ), TE ,(X ,Y)<  1 and for
D A X  ,Y)

X  e l(Y ), TEj (X, Y) = 1. Once again, in our example provided in table 1.1, units 

on the boundary of the PPS, viz., A, B, C, I, D and E, have a Debreu-Farrell 

input-oriented technical efficiency measure of 1. The Debreu-Farrell input- 

oriented technical efficiency of F is 0.8; i.e., the university’s current input usage 

(XI and X2) has to be reduced by 20% to become technically efficient. In other 

words, given the empirical evidence, 80% of university F’s current input usage is 

sufficient to output a single student. Similarly, the input-oriented Debreu-Farrell 

technical efficiency measure of G is 68.96% and H is 86.27%.

The above exposition can be replicated in the output augmentation 

direction details of which are presented in Appendix 1.

The LP based DEA measures of technical efficiency under input and 

output orientations presented in the seminal Chames et al (1978) and Banker et al 

(1984) articles are operational extensions of the Debreu-Farrell measures and are 

built on the description of the PPS presented earlier. Detailed descriptions of 

these LP models are presented in the next chapter. In the next section, we will 

examine the different concepts of efficiency that are of interest in the DEA 

methodology and relate them to the definitions and measures introduced in this 

section.
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1.3 Concepts of Efficiency

In this section, we will discuss four different concepts of efficiency, 

namely, Pareto-Koopmans efficiency, technical efficiency, Debreu-Farrell 

efficiency and Mix efficiency.

Efficiency Concept 1 Pareto-Koopmans Efficiency: A unit is Pareto-Koopmans 

efficient iff it is not possible to improve an input or output factor of the unit 

without worsening some other factor.

In the simple 2-d example discussed at the beginning of this chapter, 

universities A, B, C, and D are Pareto-Koopmans efficient which are also 

extreme-efficient units. Any convex combination of two adjacent extreme- 

efficient units (that lie on a facet of the production possibility set) will also be 

Pareto-Koopmans efficient. For example, in figure 1-1, unit I can be obtained 

using a convex combination of the adjacent extreme-efficient units B and C. 

These Pareto-Koopmans efficient units that can be synthesised by a convex 

linear combination of some adjacent extreme-efficient units are designated as 

efficient but not extreme units. They are only of academic interest and almost 

absent in real data (see, Thrall, 1996b; Cooper et al, 2007).

Note that the Pareto-Koopmans efficiency criterion is more stringent than 

the Debreu-Farrell measures as the former requires absence of mix inefficiencies 

while the latter allows does not.

Among any set of observed units, a subset of units will always satisfy the 

Pareto-Koopmans efficiency criterion - for instance units A, B, C, I and D in our 

example. An additional subset of the units could just satisfy the Debreu-Farrell 

efficiency criterion -  for instance, unit E in our example. Both these subsets of 

units are technically efficient which we define next.

Efficiency Concept 2 Technical Efficiency: The technical efficiency of a unit, 

when the orientation is input minimisation, is the minimum proportion of the 

unit’s current input usage that is sufficient to produce its outputs.

Geometrically, this can be obtained from the ratio of the radial distance 

between the origin and the radial projection of the data point on the extended 

frontier to the radial distance between the origin and the data point of the unit.
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For example, in figure 1.1, the technical efficiency of unit H is given 

OHf\sydH -  . For this reason, technical efficiency is sometimes referred to as

radial efficiency. It is evident that as the dimensions of a DEA problem exceeds 

3, the geometrical approach will become intractable. Consequently, the LP 

models developed in Chames et al (1978) and Banker et al (1984) are used to 

obtain the technical efficiency of the units.

The notion of technical efficiency identifies only proportional reduction 

of inputs or expansion of outputs that are possible by the units’ current operation. 

Non-proportional reduction or expansion, of inputs or outputs, to improve 

performance are identified by an input excess or output shortfall respectively, 

compared to the relevant Pareto-Koopmans efficient units defined in concept 1.

Efficiency Concept 3 Weak or Debreu-Farrell efficiency: Units that do not 

satisfy the Pareto-Koopmans efficiency criterion but are technically efficient are 

termed weakly-efficient or Debreu-Farrell efficient units. For example, in figure

1.1, units E and F (which symbolizes the radial projection of unit F on the

efficient frontier) are weakly efficient.

Efficiency Concept 4 Mix efficiency: Units whose radial projection do not

satisfy the Pareto-Koopmans efficiency criterion are mix inefficient. In the

context of input minimisation, a unit being mix efficient would imply that the 

proportion of its different input usages are efficient.

Regardless of whether a DMU is technically efficient or not, it can satisfy 

the notion of mix efficiency. For instance, a unit can be technically inefficient 

but be mix efficient. In figure 1-1, universities G and H are technically inefficient 

but mix efficient units. Units that satisfy the Debreu-Farrell notion of efficiency 

will be mix inefficient. In figure 1-1, university E satisfies the Debreu-Farrell 

efficiency criterion and is mix inefficient. In figure 1-1, university F is both 

technically inefficient as well as mix inefficient. Finally, it must be evident that 

units that satisfy the Pareto-Koopmans efficiency criterion are also mix efficient. 

In figure 1.1, units A, B, C, D, and I are both technically efficient and mix 

efficient.
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1.4 A brief history of the evolution of DEA

A data enveloping frontier based method of measuring productive 

efficiency was introduced in the pioneering article by Farrell (1957), which was 

influenced by two seminal articles, viz., “analysis of production as an efficient 

combination of activities” by Koopmans (1951) and “coefficient of resource 

utilisation” by Debreu (1951). Shephard (1953), surprisingly not referred to in 

FarreH’s (1957, 1962) articles, provided functional representations of the 

production technology under CRS and introduced distance functions as a way of 

measuring the technical efficiency of the units. Twenty years later, Farrell’s 

(1957) method was given operational form by the seminal article of Chames et al 

(1978). It is interesting to note that Forsund and Sarafoglou (2002) remark that 

the constant returns to scale model of Chames et al (1978) was identical to the 

model introduced by Boles (1971) for measuring agricultural efficiency under the 

assumption of constant returns to scale. They also note that the variable returns to 

scale model of Banker et al (1984) was clearly stated in Afriat (1972) (for the 

single output case) and the general version stated and applied in Fare et al 

(1983).

The Chames et al (1978) article concentrated on developing a linear 

programming based method to determine the efficiency of various DMUs all 

operating under a constant returns to scale environment. Efficiency was 

classified as technical or radial efficiency, and mix efficiency. Technical 

efficiency was the same as introduced in Farrell’s article but was extended to a 

more general multiple inputs multiple outputs setup. Following Farrell’s article, 

the orientation (input or output) for measuring efficiency and proportional 

reduction (expansion) of inputs (outputs) to meet the data enveloping frontier 

were incorporated in Chames et al (1978). Farrell’s tricky ‘points at infinity’ 

concept was covered by the free disposability assumption (also referred to as the 

monotonocity assumption in the inputs and outputs) of inputs and outputs and the 

introduction of mix efficiency.

Building on the work of Chames et al (1978), Banker et al (1984) 

developed LP models to determine the efficiency of units operating under 

variable returns to scale (thus allowing for increasing, decreasing and constant 

RTS) and introduced the notion and measure of scale efficiency.
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The Chames et al (1978) article and its variable returns to scale 

counterpart, Banker et al (1984), paved the way to measure relative efficiency of 

units using a method that is,

1. easily operational;

2. non-parametric;

3. units invariant;

4. unlike index number based approaches in that it does not require the 

unit’s various input and output factors’ prices to be available readily 

to measure their efficiency;

5. able to provide peer units for inefficient units and identify technical 

and mix inefficiency present in all the inputs and outputs of such 

units; and,

6. unlike a statistical regression line method using least squares 

principle, in that it compares all units to the best practice ones that 

operate in the same environment.

1.5 Conclusion

In this chapter, we attempted a gentle introduction to the DEA 

methodology. We connected Koopmans’ (1951) definition of technical efficiency 

to Shephard’s (1953, 1970) functional representation of the production 

technology and the Debreu-Farrell measures of technical efficiency, which 

ultimately lead to the seminal DEA articles in Chames et al (1978) and Banker et 

al (1984). Once information on the scale properties of the production technology 

and orientation are determined, one can carry out a DEA exercise on the set of 

observed units using the relevant LP model introduced in Chames et al (1978) 

and Banker et al (1984). In the next chapter, we will introduce the traditional LP 

models used in DEA.
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2 LINEAR PROGRAMMING MODELS USED IN DEA

A DEA problem is typically characterised by the cardinality (number of 

DMUs), dimensions (number of inputs and outputs), and density (percentage of 

extreme-efficient units) present in the data. Before carrying out a DEA exercise 

on a set of observed units, one has to posit the returns to scale environment under 

which the units are operating. Equally important, one has to ascertain whether the 

DMUs have control over their inputs or over their outputs. For example, if our 

DMU is a bank, then it can easily control its inputs, say, the number of 

administrative and technical staff, while it cannot expect to have much control 

over its outputs, say, the number of customers. In another instance, if our DMU 

is a school, then it has little control over its inputs, say, the number of students 

with English as an additional language or whose parents are graduates, while it 

can expect to have more control over its outputs, say, the achievement of 

students upon exit from the school. The decision on whether a DMU can control 

its inputs or outputs decides the orientation (input minimisation or output 

maximisation) of the DEA exercise. In the former example, an input-oriented 

model seems more suitable while in the latter an output-oriented model seems 

more suitable. In some instances, it is possible that the DMUs have control over 

their inputs as well as outputs.

Once the returns to scale and orientation are determined, the DEA 

exercise is carried out on the observed set of units using the linear programs 

developed in the seminal articles, Chames et al (1978) and Banker et al (1984), 

which are built from the appropriate production possibility sets described in 

sections 1.2.1 and 1.2.2 respectively. These LP based models determine the 

relative efficiency of the units in such a way that there is complete flexibility for 

each unit to choose non-negative weights for its various input and output factors 

to show itself in the best light when compared to other observed units.

In the previous chapter, we presented formal and informal discussion on 

production technology and the production possibility set (PPS), and definitions 

and measures of technical efficiency. In this chapter, we will present the standard 

linear programming models that are used in carrying out the efficiency analysis 

of the observed units in DEA. We will present the models for the constant returns
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to scale assumption followed by models when the returns to scale is variable. 

Subsequently, we will present the LP models for solving the constant returns to 

scale and variable returns to scale additive models. Additive models are non

oriented and non-radial in their operation and form an important class of DEA 

models. Finally, we will present an important variant of the standard models, 

viz., the super-efficiency models under both returns to scale assumptions. The 

Generators Based Algorithm (GBA) presented in chapter 4 for solving DEA 

models employs the super-efficiency models in its procedure.

2.1 LP models under Constant Returns to Scale assumption

The models presented here were introduced in Chames et al (1978) and 

elaborated further in Chames et al (1979), Chames et al (1981) and Chames and 

Cooper (1984) and are commonly referred to as the CCR models. Suppose we 

are evaluating DMUt with data (X t , Yt ) relative to all the DMUs (including

itself) and their possible non-negative linear combinations. Here, X t represents 

the input vector of DMUt of dimension ml and Yt represents the output vector of 

DMUt of dimension m2. We are interested in finding the proportion by which 

the inputs of DMUt can be reduced while producing at least the same amount Yt 

of its outputs. All the DMUs are assumed to operate in a constant returns to scale 

environment and the data is assumed to be non-negative. The linear 

programming model to determine the relative efficiency of DMUt, built on the 

description of the CRS production possibility set presented in section 1.2.1, is as 

below:

Minimise 6t 
subject to,

O . X . - ' Z l j X j Z  0 (LP-1)
;=i

0 + f J^ Y J >Y,
j =1

6t free ; Ai > 0 ,y =!,...,«
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where, 6t represents the efficiency score of DMUt and A. the intensity variable 

of DMUj, y=l,..., n. LP-1 is called the envelopment form of the input-oriented 

(minimisation) constant returns to scale model.

It is easy to see that LP-1 is bounded at an upper limit of 1 as DMUt can 

always compare with itself. Moreover, given that X } ,Y j & 0, the solution to LP-

1 can never be trivial, i.e.,#,** 0 , to satisfy both the set of constraints 

simultaneously, so ensuring 0 < 9* < 1.

The dual to the above model is called the multiplier form of the input-

oriented constant returns to scale model and is presented below:

Maximise uYt 
subject to,
vXt + 0 = 1 (LP-2)
uYj - vX j <0; j  = 

u, v> 0

where, v are the weights or dual values corresponding to the mx input factors and 

u are the dual values corresponding to the m2 output factors. It follows that the

u Y
efficiency score of DMUt is given by 9* = ----  , where the input value of

v X,

DMUt is normalised to 1, i.e., v 'X,  = l 6.

Corresponding to the input-oriented version of the constant returns to 

scale model, there is an output-oriented (maximisation) version built using the 

same description of the CRS production possibility set as in section 1.2.1. In this 

version, we are interested in finding the maximum proportion of DMUt’s outputs 

that can be produced by a non-negative linear combination of all the DMUs 

using no more than X t amounts of inputs. The envelopment form of the output- 

oriented constant returns to scale model is presented below:

6 * denotes value at the optimal solution.
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Maximise <j)t 
subject to,

0 + 2 \ftix i i x , (LP-3)
7 = 1

w .  -  2 > / , s  0
7=1

<f)t jree; //y > 0,y = 1,...,«

where, the reciprocal of (f)t gives the efficiency score of DMUt and//y. the 

intensity variable of DMUj,y = l,...,«. The dual to the above model is the 

multiplier form of the output-oriented constant returns to scale model which we 

provide below:

Minimise vXt 
subject to,
uYt + 0  =1 (LP-4)
-uY j  +vXj  > 0;j= 

u, v > 0

where, v are the weights or dual values corresponding to the mx input factors and 

u are the dual values corresponding to the m2 output factors.

For more on the relationship between the input and output oriented CCR 

models, see Cooper et al (2000).

The LPs presented above can only identify radial or proportional 

inefficiencies that may be present in the DMUs. To identify mix or non

proportional inefficiencies in the DMUs, a second LP needs to be solved for each

DMU. In the second phase LP, for each DMU, we maximise the slacks that may 

be present in its inputs and outputs compared to other DMUs subjected to the 

condition that the optimal 6* ((f)*) realised in the first phase LP is maintained. The

(non-oriented, non-radial) LP solved in the second phase for DMUt is presented 

below:
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Maximise e 's1 +e°s° 
subject to,

+ « '= < ?;* , (l p -5)
7=1

~ s ° ~Yt
7=1

0 ;ly. >O J = l,...,w

where, 5 ', 5° are the input and output slack vectors of dimension mx and m2 

respectively; e1 and e° are vectors of l ’s, also of dimension mx and m2 

respectively. Model LP-5 is sometimes referred to as the max-slack model and 

the optimal solution to it as the max-slack solution. In the second phase LP, we 

need not compare DMUt with all the DMUs as in the first phase. Rather, one can 

compare it with only that subset of DMUs that had an efficiency score of 1 in 

phase 1 (i.e., only the set of technically efficient units). If the max-slack solution 

for DMUt is 0, then the unit is mix efficient. If the max-slack solution is greater 

than 0, the unit is mix inefficient. The correct peers for DMUt are the units that 

are in the optimal basis of LP-5 (or its equivalent based on LP-3) rather than LP- 

1 or LP-3 as only units in the optimal basis of LP-5 are guaranteed to satisfy the 

Pareto-Koopmans efficiency criterion (Cooper et al, 2000). The standard two- 

phase approach to solving a DEA exercise under the CRS assumption involves 

solving LP-1 or LP-3 along with LP-5 (or its equivalent based on LP-3) for each 

DMU in phase 1 and 2 respectively.

2.2 LP models under Variable Returns to Scale assumption

The models presented here were introduced in Banker et al (1984) and are 

commonly referred to as the BCC models. These models are built on the PPS 

described in section 1.2.2. If to LP-1, LP-3, and LP-5, one adds the convexity
n n

constraint on the intensity variables, i . e . , ^ ] =1 or = 1 to the set of
7=1 7=1

constraints, we get the envelopment form of the corresponding variable returns to 

scale model. Adding this constraint to the primal model changes the objective 

function and introduces an additional variable to one set of constraints in the
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corresponding dual model. For example, the envelopment form of the input- 

oriented version of the variable returns to scale model is presented below: 

Minimise 0t 
subject to,

where, 6t represents the efficiency score of DMUt and X} the intensity variable of

The dual to the above LP is called the multiplier form of the input-

oriented variable returns to scale model and is presented below:

Maximise uYt +u0 
subject to,

uYj - v X j  +w0 <0; j - 1,...,« 

uQfree', u, v> 0

where, v are the weights or dual values corresponding to the ml input factors,

u are the dual values corresponding to the m2 output factors, and u0 is the dual

value associated with the convexity constraint.

The envelopment and multiplier form VRS models for the output- 

oriented case are presented below in LP-8 and LP-9 respectively.

Maximise rjt 
subject to,

n

n (LP-6)

n

6t free', Xj >0 , j  =!,...,«

0 +vXt +0  =1 (LP-7)

n

0

n (LP-8)

n

0 1
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Minimise vXt 4- v0 
subject to,
uYt + 0  =1 (LP-9)
- uYj + vXj  + v0 > 0; j=  1,...,« 

u,v>  0;v0 free

In LP-8, the reciprocal of r]t gives the efficiency score of DMUt and pj  the 

intensity variable of DMU/, j  = l,...,n. And in LP-9, v0 is the dual value

associated with the convexity constraint in LP-8.

For more on the relationship between the different constant returns to 

scale and variable returns to scale models, see Banker et al (1984) and Cooper et 

al (2000).

2.3 Additive models under CRS and VRS assumptions

Additive models were first introduced in the DEA literature by Chames et 

al (1985). Additive models closely resemble the max-slack model (LP-5 or its 

VRS equivalent) and are non-oriented and non-radial in the sense that the 

corresponding LP problem aims to maximise the total sum of the input and 

output slacks of DMUt and not necessarily radially.

The standard additive CRS model solved to evaluate DMUt is shown

below.

Maximise e's' +e°s° 
subject to,

' Z ^ X j + s 1 = X,  (LP-10)
7=1

ZV, ~ s° = Y,
7= 1

s ‘,s° > 0;Aj > 0, 7 = l,...,w

where,s', s° are the input and output slack vectors respectively; e' and e° are 

conformable vectors of 1 ’s.

The dual to the above model is shown below.
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Minimise vXt + uYt 
subject to,
vXj +uYj > 0; y = 1,...,« (LP-11)
v > + l
u < — 1

The VRS counterpart of LP-10 has an additional convexity constraint to
f t

the constraint set, v iz . ,^ / ly = 1.
7= 1

As we maximise the input and output slacks simultaneously, the units in 

the optimal basis of LP-10 (and its VRS counterpart) will always be Pareto- 

Koopmans efficient unlike in the case of the oriented models (Chames et al, 

1985). An additional advantage of the additive model under the VRS assumption 

over its oriented counterparts is that it is translation invariant w.r.t both inputs 

and outputs and hence can also handle negative values for the inputs and outputs 

factors (Ali & Seiford, 1990). In spite of the apparent advantage of additive 

models in providing Pareto-Koopmans efficient targets by solving a single LP 

problem and thus circumventing the need to solve a second LP unlike oriented 

models, they have some well established shortcomings. Coelli (1998) and 

Aparicio et al (2007) have pointed out that the target points provided by the 

optimal solution of the additive models may not be representative of DMUt as 

we maximise its inputs and outputs slacks. Hence, their argument is that the 

additive models should not be used for benchmarking purposes. In other words, 

as we maximise simultaneously the inputs and outputs slacks present in DMUt, 

the target points or peers for DMUt might be further away from it and thus less 

similar functionally. Also, unlike oriented models, the standard additive models 

introduced in Chames et al (1985) are not units of measurement invariant. Lastly, 

unlike in the oriented models, the ratio of output value to input value does not 

have a natural interpretation and hence no meaningful discussion of additive 

models based technical efficiency scores for the units is possible. For the above 

reasons, additive models are commonly used for classification purposes (i.e., to 

classify whether a unit is Pareto-Koopmans efficient or otherwise) rather than for 

efficiency evaluation and benchmarking.
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2.4 Introduction to Super-Efficiency model

The first published work on super-efficiency models is by Andersen and 

Petersen (1993) in the context of ranking DMUs that are extreme-efficient under 

constant returns to scale assumption. Inefficient DMUs have an objective 

function value of 0 < 0* < 1 and hence, have a natural ranking based on their

efficiency scores. In contrast, all the efficient DMUs are on the boundary of the 

production possibility set and possess a score of 1. Hence, this tie needs to be 

broken in some way if we are to rank them. Andersen and Petersen (1993) 

suggest that by using the super-efficiency models, one can rank the extreme- 

efficient DMUs as their objective function value (in the super-efficiency model) 

is no longer bounded at the upper value of 1. We will presently see the LPs 

employed in the super-efficiency models followed by an illustration and 

conclude this section with a brief review of the extant literature on super

efficiency models.

2.4.1 Linear Programs employed in super-efficiency models

The standard envelopment forms of the super-efficiency models resemble 

the LPs as set forth in LP-1, LP-3, LP-5, LP-6, LP-8 and LP-10 with the only 

difference that the DMU under evaluation, DMUt, is not included in the 

coefficient matrix. In other words, when evaluating DMUt, it is compared with 

all other DMUs and their non-negative or convex combinations except itself. The 

standard envelopment form of the super-efficiency CRS model when the 

orientation is input minimisation can be seen below.

Minimise 9t 
subject to,

n

(SE LP-1)
y=i
j * t

n

0
y=i
j * t

dt free', Xj > 0 , j  = j  *  t
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Similarly, the standard envelopment forms of the super-efficiency LP for the 

output-oriented CRS case, the second phase max-slack model under CRS 

assumption and additive CRS model can be seen in SE LP-2, SE LP-3 and SE 

LP-4 below.

Maximise (j)t 
subject to,

0 + -  x t (SE Lp-2)
7= 1
j * t

<p,y, -  o
7= 1
j * t

<f>t free', fij > 0 , j  = j  ± t

Maximise es' +es° 
subject to,

Y  AjX j + s ‘ = 0't X t (SE LP-3)
7 = 1
j * t

7=1
j* t

s \ s 0 > 0;Aj > 0, 7 = 1 7  * t

Maximise e 's ' +e°s° 
subject to,

Y  XjX j + s ‘ = X t (SE LP-4)
7= 1
j* t

t t jYj-s-r,
7=1
j* t

s ^ s 0 > 0,Xj > 0, 7 = 7  *  t

The VRS counterparts of SE LP-1, SE LP-2, SE LP-3 and SE LP-4 have the
n

additional convexity constraint added to their constraint sets, i.e., Y ^ j  = 1 to
7=1
j * t

n

the constraint set of SE LP-1, SE LP-3, and SE LP-4 and Y ^ j  to
7=1
j* t

constraint set of SE LP-2.
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In the input-oriented case, the optimal objective function value of SE LP- 

1, 0*, gives the input saving that a particular extreme-efficient DMU exhibits

when compared to other DMUs. The more the 0* value is than 1 for an extreme- 

efficient unit, the greater is the input saving present in the unit. In other words, an 

extreme-efficient unit can proportionately increase its current input usage by 

(0* - l)x l0 0 %  and still remain technically efficient. Only extreme-efficient

DMUs can have 0* greater than 1 when using SE LP-1 (or its VRS counterpart)

and hence, one can rank them based on their super-efficiency score. Other 

boundary DMUs still have an efficiency (and super-efficiency) score of 1 and 

ties exist among them when ranking. The efficiency scores of the non-extreme 

efficient units (units that are not extreme-efficient, i.e., inefficient, weakly 

efficient, and efficient but not extreme units) is the same regardless of whether 

we solve LP-1 or SE LP-1, as removal of a non-extreme efficient unit from the 

coefficient matrix does not affect the contour of the PPS (see, Chames et al, 

1991).

2.4.2 An illustration of the super-efficiency model

We will illustrate the above statements using the example provided in 

table 1-1 and referring to the diagram provided in figure 2-1 below.
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Figure 2-1 : Super-efficiency evaluation of DMU C

The boundary units are A, B, C, I, D, and E and they all posses a 

technical efficiency of 1. The non-boundary units can be ranked based on their 

technical efficiency score. Suppose we desire to rank the boundary units based 

on their super-efficiency scores. Consider extreme-efficient unit C. The 

production possibility set when unit C is evaluated using the super-efficiency 

model, SE LP-1, is shown by the dash-dot line connecting units A, B, I, D and 

the vertical line north of A and the horizontal line east of D using piece-wise line 

segments. Unit C, being extreme-efficient, lies outside the (partial) PPS spanned 

by the units A, B, I, and D, and hence its super-efficiency score 0*c >\ ', the score

OC ' 7.8145
can be geometrically given b y  = — = 1.125 = 112.5%. This means that

OC 6.9462
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unit C can proportionately increase its input usage 1.125 times and still remain 

technically efficient. Carrying on in the above fashion, the super-efficiency score 

of A is 1.3455, B is 1.0217, and D is 1.0667. The super-efficiency scores of the 

boundary units that are not extreme-efficient, i.e., units I and E, are 1. Hence, 

based on the super-efficiency scores, unit A performs better than C, which 

performs better than D, and B performs the least best among the extreme- 

efficient units.

2.4.3 A brief literature review on super-efficiency models

One can see from Thrall (1996b) as well as Banker and Chang (2006) that 

the idea of super-efficiency was introduced much earlier in the article by Banker 

and Gifford (1989), an article that was then submitted to Management Science 

and remains unpublished. Much work has been done on super-efficiency models 

since the first published article in 1993. For example, Chames et al (1996), Zhu 

(1996) and Seiford and Zhu (1998a) use them for studying the stability of 

efficiency classifications; Rousseau and Semple (1995) use them for carrying out 

two-person ratio efficiency games; Wilson (1995) uses them for detecting 

influential observations in the data set; Thrall (1996b) uses them to identify 

extreme-efficient units. Recently, based on their simulation results, Banker and 

Chang (2006) argue that the super-efficiency model can be used to identify 

outliers in the data set but should not be used for ranking extreme-efficient units.

Andersen and Petersen (1993) fail to recognize that as DMUt is compared 

with everyone else except itself, the resultant LP problem, SE-LP-1, can become 

infeasible. It is understood from Thrall (1996b) and Banker and Chang (2006) 

that this was already thought out in Banker and Gifford (1989). Thrall (1996b) is 

the first article to connect infeasibility of super-efficiency LPs to extreme- 

efficient DMUs in the input-oriented CRS case. In particular, he noted that if 

DMUt’s super-efficiency LP (SE LP-1) results in infeasibility, then it must be an 

extreme-efficient unit. However, apart from pointing out the limitations of 

Thrall’s (1996b) work in terms of orientation and RTS assumption, Dula and 

Hickman (1997) and Seiford and Zhu (1999) are the only two articles to carry out 

extensive studies on oriented super-efficiency models, providing necessary and
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sufficient conditions for their infeasibility. In the additive model case, Seiford 

and Zhu (1998b) point out that if DMUt is extreme-efficient then solving SE LP- 

4 or its VRS counterpart will result in infeasibility. Importantly, Thrall (1996b), 

Zhu (1996) and Dula and Hickman (1997) proved that infeasibility occurs in the 

input-oriented CRS super-efficiency model due to a certain pattern of zeroes in 

the data, while under VRS assumption, LP infeasibility can arise regardless of 

whether the data has zeroes or otherwise.

Among the two articles that provided an extensive examination of the 

infeasibility issue in the oriented super-efficiency models, Seiford and Zhu’s 

(1999) discussion was based on the assumption that the data is strictly positive. 

The assumption of strictly positive data is strong and “unnatural” in real data as 

shown in Thompson et al (1993)7. The basis of Seiford and Zhu’s (1999) 

assumption of strictly positive data is that extreme-efficient DMUs are 

translation invariant with respect to inputs and outputs; this is also the basis of 

the results developed in Ali and Seiford (1990). Although this is a valid 

argument, one has to note that in general, the input (output)-oriented VRS model 

is translation invariant with respect to outputs (inputs) and not inputs (outputs) as 

shown in Pastor (1996). Pastor (1996) has also shown that the input (output)- 

oriented VRS model is only ‘classification invariant’ if the inputs (outputs) are 

affinely scaled and hence translating the data to become strictly positive will be 

tantamount to solving a different DEA problem. Hence, the super-efficiency 

score of the translated model for extreme-efficient units will be different from the 

original model and cannot be used for ranking, identifying outliers etc. 

Importantly, Thrall (1996a) showed that the dual solutions under translation are 

not invariant in the oriented and non-oriented (CRS and) VRS models. In 

particular he showed that translating the inputs while solving the output-oriented 

VRS model can change the returns to scale status of a DMU from DRS to IRS. 

The upshot is that as yet there is no satisfactory way of translating the data that 

preserves the attributes of the units before translation. Notably, Seiford and Zhu 

(1999) do not cite Thrall (1996a). Hence, the connection between returns to scale 

status of an extreme-efficient unit and infeasibility of its corresponding VRS

7 Thompson et al (1993) also rightly question assigning arbitrary small positive values to zero 
valued data or of deleting DMUs or factors that have zero value.

53



super-efficiency LP developed by them must be validated for a dataset that needs 

translation.

While Dula and Hickman (1997) along with Seiford and Zhu (1998b, 

1999) provide conditions for identification of infeasible LPs under different 

circumstances, they do not offer ways to overcome them. Attempts at tackling 

this problem of ranking extreme-efficient units using super-efficiency models 

were made in Xue and Harker (2002), Lovell and Rouse (2003), and Chen 

(2005). However in a recent review, Cook et al (2008) shows that all these papers 

have some unresolved problems. Cook et al (2008) also develops a new super- 

efficiency based LP model similar to Lovell and Rouse (2003) to overcome 

infeasibility under VRS assumption. Perhaps heeding to the caution of Banker 

and Chang (2006), no new work on this subject has been published since Cook et 

al (2008).

2.5 Conclusion

In this chapter we presented the standard LPs, oriented and non-oriented, 

used in a DEA exercise and also provided a brief discussion on an important 

variant of the standard LPs, namely, the super-efficiency models which we will 

make use of in our presentation of GBA in chapter 4. The conventional 

computational scheme to process a DEA dataset is achieved by means of a two 

phase approach. To carry out a DEA exercise using the standard input-oriented 

envelopment form model for a n DMU, m( =mx+m2) factor problem under the 

assumption of constant returns to scale, we need to run 2 x n  LPs, with n LPs 

solved in each phase. The maximum size of an LP solved in the first phase is 

mx(n  +1), and in the second phase mx(n + m).  Under the assumption of 

variable returns to scale, the number of LPs solved is also 2 x n .  The maximum 

size of an LP solved in die first phase is (m + l)x(« + l) while in the second 

phase it is (m + \)x(n + m).  To reduce the computational strain in solving DEA 

models, some heuristics and alternative effective algorithms have been developed 

in the DEA literature over the years. A critical examination of these approaches 

is presented in the next chapter.
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3 COMPUTATIONAL ISSUES IN SOLVING DEA MODELS 

-  A CRITICAL LITERATURE REVIEW

It is overwhelming to realise the surge of articles addressing various 

issues and developments in DEA since the seminal articles of Chames et al 

(1978) and Banker et al (1984). For example, Gattoufi et al (2004) list no less 

than 1800 works in DEA circa 2004 in their bibliography of works in DEA. 

Recently, Emrouznejad et al (2008) list more than 4000 articles since the seminal 

article of Chames et al (1978). Given this swell of articles on DEA, it is 

surprising that there are only 3 major strands of the literature devoted to 

computational issues in DEA.

While solving an LP problem is not computationally taxing, DEA 

requires the solution of at least n LPs. If n is very large, improving the 

computational performance of processing a DEA dataset becomes relevant. 

While established computational constructs for efficient computation of any LP 

such as data pre-processing, advanced starting basis, anti-cycling mles, and 

candidate list are applicable in the standard DEA solution procedure, the 

properties and structure of the DEA LP models can be further exploited.

The initial works of Ali (Ali, 1993; Chen & Ali, 2002) develop some 

basic ideas which are useful in pre-processing the data. No new algorithm for 

processing a DEA dataset is presented in the papers; rather, various pre

processing and LP accelerating techniques in the DEA context are developed and 

tested. Further, the papers examine the obvious but useful categorising of DMUs 

into frontier and non-frontier sets that can lead to a saving in the amount of 

computational work done for the LPs solved. Frontier DMUs are those that 

satisfy the Pareto-Koopmans (P-K) efficiency criteria. We note in passing that 

some of the ideas presented in Ali (1993) were originally developed in Sueyoshi 

and Chang (1989) and Sueyoshi (1990) but were not cited by Ali (1993).

The second major contribution is the parallel and hierarchical 

decomposition procedure developed by Barr and Durchholz (1997). In the first 

phase of their method, the data is decomposed into several smaller sub-problems, 

consisting of subsets of DMUs and can be seen as separate, smaller DEA
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problems. The non-frontier DMUs are eliminated in each sub-problem. The 

remaining DMUs are collated in the next stage and decomposed into several new 

sub-problems. This procedure is iterated in the first phase until all the non

frontier DMUs are eliminated. In each of the sub-problems at any stage, standard 

DEA LPs are employed to eliminate non-frontier units. At the end of the first 

phase, all the frontier DMUs are identified. In the second phase, the non-frontier 

DMUs are scored using only the data of the frontier DMUs.

The third group of articles are authored by Dula on his own or with co

authors (Dula & Helgason, 1996; Dula, 1998; Dula et al, 1998; Dula & Thrall, 

2001) and provide a totally different approach. Instead of trying to eliminate non

frontier DMUs, Dula’s BuildHull algorithm, as presented in Dula (1998), 

identifies DMUs that are extreme-efficient in the first phase using n LPs in such 

a way that the number of intensity variables in any LP solved is never more than 

the number of extreme-efficient DMUs. In the second phase, using only the data 

of the extreme-efficient units, all other DMUs are scored using standard DEA 

LPs. By carrying out extensive computational testing, Dula (1998) has shown 

that his BuildHull algorithm is superior to the hierarchical decomposition 

procedure of Barr and Durchholz (1997) and the standard two-phase approach, 

especially in the case of large scale problems.

Two other recent papers, viz., Chen and Cho (2009) and Korhonen and 

Siitari (2009), have also examined computational issues in solving DEA models 

and presented faster procedures under certain special conditions. Chen and Cho’s 

(2009) algorithm targets large scale DEA problems. Their algorithm involves 

clustering DMUs based on their input and output values and evaluating DMUs 

within a cluster using the standard DEA LP models. If the optimal dual values 

for DMUt obtained within its cluster also satisfies the duality condition for all the 

n units in the dataset, then the efficiency analysis for DMUt is complete and the 

unit is discarded from further analysis. Else, the cluster size is increased by some 

user-defined factor until the duality condition is satisfied for all die DMUs in the 

dataset. The authors claim that their procedure is suitable for solving large scale 

DEA datasets when the density is high and the number of inputs and outputs is 

small. Neither of these conditions applies in real datasets used during this 

research or shown in past research by Barr and Durchholz (1997). Also, the 

algorithm involves random elements in establishing clusters within a dataset and
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in expanding the cluster when the optimal dual solution to a DMU within its 

cluster does not satisfy the duality condition for all the DMUs.

Korhonen and Siitari (2009) provide a similar approach to Barr and 

Durchholz (1997) by decomposing the dataset using the dimensions instead of 

the cardinality as in the hierarchical decomposition procedure and show that their 

approach is useful in datasets when the dimension is low. As both recent papers 

(Chen & Cho, 2009; Korhonen & Siitari, 2009) apply under restrictive 

assumptions and are not supported by extensive computational results, we regard 

these as interesting evolving ideas and confine our attention to the three major 

strands.

In subsequent sections, we will examine each of the three major strands, 

viz., Ali’s work on Pre-processing and LP acceleration techniques, Barr and 

Durchholz’s work on Hierarchical decomposition procedure, and Dula’s work on 

BuildHull algorithm, in detail.

3.1 Ali’s contributions: pre-processing and LP acceleration techniques

Ali’s contributions in Ali (1993) and Chen and Ali (2002) can be listed 

under four themes, viz., restricted basis entry, candidate list, pre-processing 

techniques, and advanced starting basis.

Restricted basis entry and Candidate list are based on the well established 

theorem that for any DEA LP model, only the frontier DMUs can appear in an 

optimal basis in which all the optimal dual values (weights) are strictly positive 

(see, Chames et al, 1985). The LPs employed in Ali (1993) use non- 

Archimedean infinitesimal £>0,  wherein, the weights for the input and output 

factors are constrained to be strictly positive. This then ensures that only P-K 

efficient DMUs can appear as comparator units in an optimal basis of any LP 

solved. This implies that, if X  (or fip ) is in the optimal basis of any DMU’s LP,

as per the definition of P-K efficient units, DMUp’s efficiency score is 1 and its 

max-slack solution is 0. Thus, the solution to an LP for any DMU helps in 

identifying and updating the frontier and non-frontier DMU sets. In particular, all 

the DMUs in an optimal basis of an LP are frontier DMUs. A DMU belongs to 

the non-frontier set if its efficiency score is less than 1. The frontier DMUs 

identified thus far form the candidate list of DMUs. In its turn, this helps to
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reduce the amount of work required in subsequent LPs in checking the optimality 

conditions. As the DMUs belonging to the non-frontier set can never be in the 

optimal basis for any DMU, they can be ignored from optimality and basis entry 

checks. Thus Ali (1993) helps to identify cases where restricted basis entry 

(RBE) is permitted. DMUs in the non-frontier set are restricted, and starting with 

DMUs known so far in the frontier set as the candidate list, the optimal basis is 

obtained. This is shown to help a great deal in practice as it impacts on the work 

done for every new LP solved.

Ali (1993) also discusses some simple data pre-processing techniques 

like dominance criteria which were first introduced in Sueyoshi and Chang 

(1989) and Sueyoshi (1990) to identify DMUs belonging to the non-frontier set. 

An observed DMUj is dominated by another observed DMUk if X k < X } and

Yk > Y j. Any dominated DMU belongs to the non-frontier set. More rules are

discussed in Ali (1993) for early identification of frontier units which can be 

achieved by some simple data analysis. For example, early identification of 

efficient units is possible in the variable returns to scale models due to the
n n

presence of the convexity constraint ^ X j  =1 or 1 which warrants that
j= 1 7= 1

any DMU that uses the unique minimum of a particular input and/or produces the 

unique maximum of a particular output is bound to belong to the frontier set.

In addition, Ali (1993) proves that any DMU that has the unique 

maximum value of the ratio of simple aggregation of outputs to inputs must 

belong to the frontier set (of constant and variable returns to scale models). Chen 

and Ali (2002) take this further to show that any DMU having the maximum 

value of the ratio of weighted sum of outputs to weighted sum of inputs using 

some selection of non-negative weights is on the constant and variable returns to

uYj
scale extended frontiers. Algebraically, if R . = — —, w,v> 0 ;j  = 1,...,« and

vX j

ArgMax {f?;. }=DMUg, then DMUg is technically efficient and on the CRS and
y=i

VRS extended frontier. Also, DMUs having the minimum weighted sum of (a 

subset or whole of) inputs ArgMin \yXy.} or the maximum weighted sum of (a
7=1
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subset or whole of) outputs ArgMax\uYj} is on the variable returns to scale
7= 1

extended frontier, where u,v > 0. Note that any DMU that is efficient under the 

assumption of constant returns to scale is also efficient under variable returns to 

scale though the converse is not necessarily true. Under VRS, Chen and Ali

uYj + Uq
(2002) employs the ratio R = — --------, w,v > 0; u0 fre e \j  = l,...,w for the

vXi

uY,
input-oriented case and R f = ------ -— , w,v > 0; v0 free; j  = for the

v X j +v 0

output-oriented case to identify units on the frontier. In all the above cases, the 

subset of inputs and outputs and combination of non-negative weights is 

arbitrarily chosen to find frontier DMUs. It is not hard to foresee that one could 

end up identifying the same frontier DMUs for different subsets and weights.

In addition, Sueyoshi (1990) and Ali (1993) suggest using the ordered list 

of DMUs based on the ratio values of simple aggregation of outputs to inputs, 
m2

i.e., Rj = “ ----- , y' = l , i n  descending order to identify frontier DMUs

*=1

earlier. In their experience, instead of randomly evaluating DMUs, one can 

evaluate units based on the descending order of the value of Rj to identify

frontier DMUs earlier. These DMUs can then be added to the candidate list.

An important LP acceleration technique that was discussed in Ali (1993) 

is the advanced starting basis. The advanced starting basis technique uses the 

optimal basis of DMUj as a starting basis for the next unsolved DMU considered 

for evaluation. Ali (1993) shows that employing this technique reduces the 

number of iterations to achieve optimality.

Ali (1993) reports that computational testing with a 533 DMU, 7 factor 

real-world dataset gave the most significant reduction of 84% in computational 

time with restricted basis entry and early identification of efficient units making 

major contributions to the reduction as they create a “ratchet-like” effect for the 

LPs solved subsequently.
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3.1.1 Limitations of Ali (1993), and Chen and Ali (2002)

The serious drawbacks of Ali (1993), and of Chen and Ali (2002), are 

that they fail to identify or acknowledge the following five issues that can be 

encountered in using their computational constructs, namely, the issues of 

incorrect identification, tied ratio, indeterminate ratio, randomness, and binary 

weights.

The first issue of incorrect identification occurs when applying random 

weights to identify frontier units under the assumption of variable returns to 

scale. Because the ratio employed in the case of output-oriented variable returns 

to scale model involves the dual value of the convexity constraint, v0 (see, LP-8

and LP-9 in chapter 2), which is unconstrained in sign, the resulting ratio values 

for all the DMUs could become negative for some selection of random weights. 

This could lead to incorrect identification of frontier units as explained using a 

small example shown below.

Consider the example as in table 3-1 and illustrated in figure 3-1 with 2 

DMUs A and B each consuming a single input X I  to produce a single output Yl.

DMU X I Yl

A 1 2

B 1.5 0.5

Table 3-1 : Data to show incorrect identification

A

Yl

O

Output (technical) efficiency of B = = 0.25 = 25%

B

IB

XI
Figure 3-1 : Figure to show incorrect identification

60



Under the assumption of variable returns to scale, if the orientation is 

output maximisation, the ratio used by Chen and Ali (2002) to evaluate DMUs to

identify frontier units is R, = ------- -— ; where, ux and v{ are the (random)
v, Xj+v„

output and input weights respectively which are constrained to be non-negative, 

and v0 is the dual value of the convexity constraint and is a free variable. For a

set of random weights where uY= 1 , ^ = 1 ,  and v0 =-2, the ratios for the DMUs

(1x2) „ „ „ (1x0.5) , Aare, a .  = 7 —1r—-j-—r = —2 and Rr -- ,— 1—r—j — r = - l .  Accordmg to All 
A ( lx l)+ ( -2 )  ‘  ( lx l .5 )+ (-2 )  6

(1993), and Chen and Ali (2002), the DMU that produces the unique maximum

of the ratios for some selection of random weights is a frontier unit. Hence, it

will identify DMU B to be a frontier unit. However, this is incorrect as DMU B

is an inefficient unit with efficiency score of 25%. This can be seen from figure

3-1. Unit A is the only frontier DMU, the horizontal and vertical thick lines

through unit A shows the production frontier, and the region to the south-east of

unit A shows the production possibility set of the data. DMU B is strictly inside

the production possibility set and is inefficient with an output efficiency of 25%.

It is obvious to see that such an anomaly occurs because of the

application of unconstrained random weights which can cause the ratios to be

negative. It is surprising that even a recent work on this topic by Dula and Lopez

(2009) failed to recognise this possibility8 for misidentification. One way to

ensure that this does not happen is to use the minimum of the ratios to identify

frontier units instead of the maximum of the ratios when all the ratios are

negative. An alternative simpler way is to let v0= 0  when applying random

weights to identify frontier units.

The second issue of tied ratio occurs when upon applying a random set of 

weights to the input and output factors, the ratio is not uniquely maximised. 

Either we discard the iteration and apply a new set of weights which is a waste of 

computational time or we use the information in some fashion. For example, all 

the DMUs that are tied for the maximum ratio value, if finite, must be on the 

boundary of the production possibility set.

8 On 11 August 2008, Professor Dula in a private communication acknowledged the error in Chen 
and Ali (2002) - “...I think you have a point. After going to their paper I see how your example 
may contradict their claim...This could be a nifty paper for your.
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The third issue of indeterminate ratio occurs when the data has some zero 

valued inputs for some DMUs and we apply non-negative weights, with possibly 

some zero input weights; on evaluating the ratios, it is possible for a ratio or 

ratios whose denominator is 0 and hence indeterminate. Again, one can ignore 

the iteration and apply a new set of weights adding to the computational burden 

or use the information in some fashion. We will see later, in chapter 7, how 

indeterminate ratios are connected to tied ratios and present ways to resolve 

them.

The fourth and fifth issues are marginal. It is clear that some pre

processing techniques have a random component in their application, and 

depending on the data set and the random numbers generated for the weights, one 

could waste time identifying the same set of units as frontier DMUs or having 

tied or indeterminate ratios. As a result, applying the standard two-phase 

algorithm for each DMU could, computationally, be equally or even more 

efficient for some datasets.

The fifth issue of binary weights (weights that are either 0 or 1) arises 

when one applies 0 weights to some factors, as in Chen and Ali (2002), thus 

effectively ignoring the performance of DMUs in those dimensions and resulting 

in partial productivity indices as opposed to full productivity indices. By 

applying 0 weights to some factors, one fails to differentiate between weakly 

efficient and P-K efficient units. This may lead to incorrectly computing the mix 

inefficiencies that may be present in some DMUs. One way to counter this issue 

is to consider only strictly positive weights for the input and output factors.

An additional issue with Ali (1993), and Chen and Ali (2002) is that the 

computational testing carried out was not extensive. Although large for 

computing power available at the time, the largest dataset considered for 

evaluating the impact of the computational constructs developed in their papers 

is a 533 DMU, 7 factor problem. It is hard to envisage the impact of their 

computational constructs in solving large datasets running to thousands of DMUs 

with varying densities and dimensions. Such extensive testing is carried out in 

Barr and Durchholz (1997) and Dula (1998), and also in chapter 8 here.

62



3.2 Barr and Durchholz (1997) contribution: Hierarchical Decomposition

procedure

The second significant contribution in the DEA literature addressing 

computational issues is by Barr and Durchholz (1997). The paper, targeting large 

scale DEA problems, starts with a survey of runtime speeding-up techniques 

listing all those discussed by Ali (1993). The paper then considers degeneracy 

and cycling issues in DEA and claims that in their experience with large scale 

DEA problems, stalling and cycling can be avoided by simple scaling of the 

problem data and in case of lack of progress invoking a lexicographic ordering 

procedure. The issue of cycling in DEA LPs was also discussed in Ali (1994) 

albeit briefly.

Computational tests using pre-processing and LP acceleration techniques 

on a 8700 DMU data set indicate significant computational savings similar to the 

ones observed by Ali (1993) with reduced basis entry and early identification of 

efficient DMUs making considerable impact. However, they found that some of 

Ali’s (1993) ideas (re-optimization or advanced starting bases) are of uneven 

value.

The paper then extends these speeding-up techniques to a parallel 

machine architecture, in particular, to a multiple-instruction multiple-data 

(MIMD) environment. Such computing systems contain multiple, independently 

executable, processors that can operate simultaneously on different data sets. 

They conclude that mapping of the large scale DEA solving process (involving 

solving many separate LP sub-problems) to a tightly coupled MIMD architecture 

would greatly exploit a parallel processing design and enable significant run-time 

savings. A parallel computing environment will definitely alleviate the 

computational burden of a DEA run but at the cost of additional processors and 

the set-ups required. Simply, one can think of having n processors, one for each 

DMU, and solve any problem in a few seconds. However, in this thesis we will 

skirt the idea of employing parallel processors and focus on alternative efficient 

solution procedures on single processors.

The paper then discusses the simple yet effective technique of 

hierarchical decomposition wherein a large problem is decomposed into a series 

of smaller ones of approximately equal cardinality that are mutually exclusive
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and collectively exhaustive. The practical insight that an inefficient (non-frontier) 

DMU in a sub-problem will be inefficient in the entire problem helps in reducing 

the size of the LP solved in subsequent stages. However, an efficient (frontier) 

DMU in a sub-problem may or may not be efficient in the entire problem and 

needs to be considered again in later stages. The speeding-up procedures 

described earlier (viz., dominance criteria, early identification of efficient units 

etc.) are applied first to the original problem and then to the sub-problems. 

DMUs are classified into frontier and non-frontier sets and solved with much 

reduced LPs.

The Hierarchical Decomposition procedure is based on three user-defined 

parameters, viz., b, p, and y; b is the cardinality of each sub-problem which after 

the initial stage will change; p is the factor by which b changes in the next 

iteration; and y is the cut-off point at which the number of sub-problems 

collapses to one. At the first iteration, n LPs are solved, one for each DMU 

within its sub-problem. This decomposition procedure which is similar to the 

well-known divide and conquer algorithm is shown to work efficiently for data 

sets where the density is low which is typically the case for large scale DEA 

problems. However, the choice of the user-defined parameters is decided by prior 

simulation which determine the trade-off between the cardinality and the number 

of sub-problems solved.

Significant computational savings were observed both in a single as well 

as in a parallel processing environment when the hierarchical decomposition 

procedure was employed. Although one can expect this procedure to improve the 

computational behaviour in solving large scale DEA problems, the need to 

consider some DMUs (namely, efficient ones in a sub-problem) again and again 

in the later stages is clearly uneconomical. Dula (1998) has shown in his 

extensive computational testing that the hierarchical decomposition procedure 

performs worse in a single-processor environment than the standard two-phase 

procedure when the cardinality of the problem is small or even medium sized 

which is not altogether surprising. Also, the cardinality and number of sub

problems need to be optimally determined using prior simulation as this affects 

the number of stages in which one carries out a DEA run which in essence can 

affect the effectiveness of the hierarchical decomposition procedure.

64



3.3 Dula’s BuildHull algorithm

The next significant published paper addressing computational issues in 

DEA is by Dula and Thrall (2001). To evaluate it we need to consider Dula’s 

earlier unpublished manuscript in 1998 which is based on two of his even earlier 

works (Dula & Helgason, 1996; Dula et al, 1998). Notably, Dula et al (1998) 

improves on LP based algorithms for finding the extreme rays of the conical hull 

of a finite set of vectors whose generated cone is pointed. Building on this 

groundwork, Dula (1998) gives the BuildHull algorithm for solving large scale 

DEA problems as a direct application of the Dula et al (1998) work.

Dula (1998) discusses a new solution procedure, akin in some ways to the 

two-phase hierarchical decomposition procedure of Barr and Durchholz (1997) 

but totally different in its philosophy in that it attempts to find in the first phase 

all the extreme-efficient DMUs. These are then shown to be the same as the 

minimum cardinality set that forms the ‘frame’(meaning, the DMUs needed to 

generate the DEA frontier) of the production possibility set. Irrespective of the 

DEA model used, i.e., oriented or non-oriented and under any returns to scale 

assumption, the extreme-efficient units are identified by their geometrical 

properties using one small LP for each DMU and some additional computations. 

Then in the second phase all other DMUs are scored through standard DEA LPs 

but with only the data of the extreme-efficient units. The main advantage of the 

BuildHull algorithm is that the size of the LP remains relatively small in both 

phases and does not exceed mx (k  + 1) at any iteration under the assumption of 

constant returns to scale, where, m is the number of factors in the data and k  is 

the number of extreme-efficient units present in the data. Similar results exists 

for the VRS and additive models.

It is important to note that typically, k « n ; i.e., the percentage of 

extreme-efficient units in any ‘real’ data set is relatively small. In an application 

to the state of Texas’ southwest district banks containing 8748 banks and 9 

factors (6 inputs + 3 outputs), Barr and Durchholz (1997) report that no more 

than 1% were extreme-efficient. The U.K.’s Department for Education (DfE) 

provided data set of secondary schools with 9 factors (8 inputs + 1 output) had 

only 111 extreme-efficient units out of 1258 schools (8.8%), while in another 

data set with 10 factors, out of 1200 non-sixth form (NSF) and 1653 sixth form
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(SF) schools, only 188 NSF (15.67%) and 232 SF (14.03%) schools were 

extreme-efficient. In a dataset for primary schools in England provided by the 

DfE, only 188 out of 13216 DMUs (1.42%) were extreme-efficient.

Dula’s (1998) BuildHull algorithm uses two different LPs, one in each 

phase. In the first phase, under the assumption of constant returns to scale, the LP 

solved for DMUt is provided below:

Minimise cot 
subject to,

6>,X„ -  Y JXjX j > -X , (BH LP-1)
j e J ,

q Y . + ' Z W j Z r ,
j e J i

0)t >0 ,A j >0,y =1,...,«

where, (Xt ,Yt ) is the input-output vector of DMUt, the DMU under evaluation; 

{Xj J j ) is the input-output vector of DMUj; J t is the set of currently identified 

extreme-efficient units; (Xm,Ym) is the input-output vector of the average DMU 

used in each LP run in phase 1 of the BuildHull algorithm defined by

X ” =~ ] h T , ( - X j ~ e)’ Y>»=- T T \ l l ( Yj - e)- Here> e is a vector of r s  of

appropriate dimension and represents the cardinality of the se t/, .

The dual to the above LP is provided below:

Maximise -  vXt + uYt 
subject to,
uYm+vXm<l  (BH LP-2)
uYj - v X J < 0 y j G J l

u,v>  0

where, u, v denote the set of dual values corresponding to the first and second set 

constraints of BH LP-1 respectively.

Note that all the data points ( - . , 7 . )  in J , are constrained to a single

orthant while the average vector, by negating the sign of inputs and outputs, is 

positioned in a different orthant. It is relatively straightforward to see that if  the 

data point of DMUt, ( ~ X t ,Yt ), is outside the space spanned by (a non-negative

linear combination of) the extreme-efficient units in set J , , it is not possible to

66



describe it using a non-negative linear combination of them. In that case, the 

objective function value of BH LP-1 will be strictly greater than 0 as we need 

some positive multiple of the average vector which is not in the orthant of the 

data points in set J t to describe it. Else, co* = 0 , and DMUt is not extreme- 

efficient; we can discard DMUt Mid consider the next DMU whose status is 

unresolved. When (0* > 0 , the BuildHull algorithm employs a slightly 

complicated ratio test to identify a new extreme-efficient unit (which could be 

DMUt) among the units that are outside the space spanned by the units in set .

Set Jj is then updated and a new DMU from the status unresolved set is

considered in the next iteration. The algorithm proceeds until the status of all the 

DMUs is determined. In the second phase, standard DEA LPs as in LP-1 or LP-3 

are employed to correctly score the other units using only the data of the 

extreme-efficient units in the final set J,  .

The algorithm is best initiated with some extreme-efficient units in se t/,

which can be easily done using heuristics discussed in section 3.1. See, Dula 

(1998) for more details on the working of the BuildHull algorithm. An illustrated 

summary of Dula’s work (presented in Appa and Parthasarathy (2006a)) can be 

found in Appendix 2. See, also, Dula (2007, 2010) for a recent and more elegant 

version of the BuildHull algorithm presented with some illustrations.

3.4 Algorithmic characteristics of competing solution procedures

Under the assumption of constant returns to scale, using the standard 

envelopment form LPs, LP-1 or LP-3, the size of any LP solved is mx(n  +1) in 

the first phase. Restricted basis entry can reduce the size of the LP solved as we 

come closer ton.  For example, for the last unit analysed, the LP will have only 

the frontier units and the unit under consideration, the inefficient units having 

been eliminated. So the largest LP solved is/wx(« + l) and the smallest size is 

m x (k  + 1), where k is the number of extreme-efficient units present in the data. 

Assuming that we do not perform any data pre-processing to identify efficient 

units, the number of LPs solved in the first phase is n .
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If we are interested in computing the correct mix inefficiencies present in 

all the DMUs and in indentifying Pareto-Koopmans efficient peers for the 

inefficient units, we need to solve a second LP, LP-5, for each DMU, making a 

total of 2n LPs. However, if  in the first phase, an inefficient DMU’s projection 

is on an extreme-efficient DMU or the weights for the input and output factors 

for DMUt obtained in phase-1 are strictly positive, its correct technical and mix 

inefficiencies are already computed and a second LP is not required for that 

DMU. Hence, the minimum and maximum number of LPs to be solved in the 

second phase are 0 and n respectively. For a DMUt that requires a second LP, 

we need to compare it with only those DMUs that were technically efficient at 

DMUt’s optimal weights in its first phase LP. Hence, the minimum and 

maximum number of comparator units in the second phase LP for DMUt are 1 

and n respectively.

Using the BuildHull algorithm, the number of LPs to be solved reduces 

from the standard 2n LPs to 2n - k  LPs. In the first phase, where n LPs are 

solved, the size of the LP solved gradually increases fromm x 2  to mx( k  + 1)

k + 1rru  ^
with average size m x

\ \
+ 1 In the second phase, n - k  LPs are solved

with fixed size mx (k  + 1) .

The number of LPs solved using the hierarchical decomposition 

procedure can easily exceed 2n as it depends on the number of stages one goes 

through in the first phase, which in turn is affected by the number and size of the 

sub-problems. The typical size of the LP solved using the hierarchical 

decomposition procedure in the first phase is less than mx(n  +1) but can be 

greater than mx( k  + 1) depending on the density of the dataset and the size of the 

sub-problems. The size and the number of LPs solved in the first phase are 

variable and user-defined, while in the second phase, they are the same as in 

using the BuildHull algorithm.

BuildHull algorithm is shown to be computationally superior to other 

existing algorithms for solving large scale DEA models. This was underscored 

by extensive computational testing carried out in Dula (1998) by comparing it 

with the hierarchical decomposition procedure and the standard two-phase 

algorithm for different data sets with varying dimensions, densities, and
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cardinalities. BuildHull consistently outperformed both the hierarchical 

decomposition procedure and the standard two-phase algorithm. See also Dula 

and Thrall (2001) and Dula (2007) for additional results.

However, the major weakness of the BuildHull algorithm is that, for all 

the non extreme-efficient units, two LPs need to be solved, one in each phase 

resulting in a total of 2n - k  LPs. This is because of the limitation of the LP 

used in the first phase which can only identify whether a particular unit is 

extreme-efficient or not, and if not, provides no supplementary information 

resulting in an additional LP of size /wx(& + l) for each non extreme-efficient 

unit in the second phase. This major weakness of the BuildHull algorithm is 

overcome in the Generator Based Algorithm (GBA) described in chapter 4. The 

GBA is similar in spirit to BuildHull where the size of any LP solved remains at 

most wx(&+l) but the second phase is not required, thereby reducing the 

number of LPs solved by almost half to n .

3.5 Conclusion

In this chapter, we critically reviewed the three main strands of the DEA 

literature that examined computational aspects of DEA. Chapter 4 presents 

details of the GBA for solving the input-oriented CRS model. Extensions to other 

returns to scale and orientations, and ways to handle the technical challenges in 

applying GBA to process a dataset using various DEA models are discussed in 

chapters 5, 6 and 7.
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4 GENERATOR BASED ALGORITHM FOR SOLVING THE 

INPUT-ORIENTED CRS MODEL

In this chapter, we present a new algorithm called the Generator Based 

Algorithm (GBA) for solving the input-oriented constant returns to scale (CRS) 

model. GBA is related to Dula’s (1998) BuildHull algorithm which was designed 

for solving large scale DEA models. The largest LP solved in Dula is m x( k  + l), 

where k  is the number of extreme-efficient units in the datasets, but the 

drawback is that two LPs have to be solved for each of the n - k  non extreme- 

efficient DMUs. We overcome this weakness by using the super-efficiency 

model of Andersen and Petersen (1993) and a computationally economical 

procedure for evaluating DMUs.

The chapter is organised as follows. First, we restate the standard input- 

oriented CRS DEA model and define three characteristics of extreme-efficient 

units which we label as generators. Then we present a modified version of the 

input-oriented CRS super-efficiency model that will be employed in GBA. This 

is followed by the algorithmic procedure of GBA with an illustrative example. 

Finally, we list the advantages of GBA over the existing algorithms.

4.1 Background and definitions

Consider a DEA problem with m(=ml +m2) factors and n DMUs. We 

will make two assumptions on the (mxn)  dataset. First, that no two DMUs’ 

activity are proportional to each other; i.e., there are no two DMUs j, k in the 

dataset such that (X j ,Yj) = a{Xk,Yk\ a >  0 9. Secondly, that the dataset is strictly

positive.

Suppose the orientation of the DEA exercise is input minimisation. The 

standard approach to compute the technical efficiency of DMUt under CRS is to 

solve the following mx(n + 1) LP problem presented as LP-1 in chapter 2.

9 This is an assumption that is commonly made in the literature (see, Chames et al, 1991; Barr & 
Durchholz, 1997; Dula, 1998; Dula, 2008).
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Minimise 6t 
subject to,

5 0  (LP-1)
7= 1

7 = 1

0, Ay. > 0,7 in 1,...,«

The dual to LP-1, described as LP-2 in chapter 2 is presented below.

Maximise uYt 
subject to,
vX, + 0 = 1  (LP-2)
uYj - vX j < 0; 7 =!..•«
W, V >  0

Before presenting the modified super-efficiency model that will be 

employed in the GBA and the algorithmic description of GBA, we will follow 

Chames and Cooper (1984), Chames et al (1985) and Chames et al (1991) in 

presenting three characteristics of extreme-efficient DMUs that are relevant for 

our discussion on GBA.

Characteristic 1: DMUt is extreme-efficient iff its omission will change the 

efficient frontier of the DEA problem.

Characteristic 2: DMUt is an extreme-efficient unit iff at every optimal solution 

to LP-1, 6* = Z* =1; Z* =0, f or j  = l , . . . ,n,j*t.

Characteristic 3: DMUt is extreme-efficient iff it can be shown to achieve an 

unique maximum value for the ratio of weighted outputs to weighted inputs for 

some strictly positive weights.

If DMUt satisfies any one of the above three characteristics, then Chames and 

Cooper (1984), Chames et al (1985) and Chames et al (1991) have shown that it 

can be proven to:

1. satisfy the other two characteristics;

2 . be an extreme-efficient unit.

We call extreme-efficient DMUs generators to designate the fact that 

only they are required to generate the efficient frontier. It follows that weakly 

efficient DMUs (for example, unit E in figure 1-1) and efficient but not extreme
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DMUs (for example, unit I in figure 1-1) are not generators. In other words, the 

set of generators is the minimal subset of the dataset to describe the Production 

Possibility Set. Dula (1998, 2007, 2010) refers to this minimal subset as the 

frame of the dataset.

4.2 Modified input-oriented CRS super-efficiency model

The LP we solve at each stage for DMUt in GBA is the one 

corresponding to the super-efficiency model but formulated with only the 

generators identified so far. Suppose set N  = {l,2,...,w} represents the n units in 

the dataset, set GEN represents the generators identified up to now, set U 

represents the set of status unresolved units, and DMUt is being investigated. 

Then the LP solved in GBA is presented below:

Minimise 6[ 
subject to,

e 'X ,~  ' Z r j X J i O  (GBALP-1)
y e  GEN

0 + 'L r j Y ^ Y ,
y e  GEN

0' free; Yj >0 , j e  GEN

The dual to the above LP is provided below:

Max u%  
subject to,
v fX t = l  (GBA LP-2)
u 'Y j-v 'X j <0,V/e  GEN 

u ,  v'>0

The notation used here follows closely the notation used in defining LP-1 

and LP-2 in chapter 2 with 6[ and Yj replacing 6t and Xj of LP-1 and (v', u )

replacing (v, u) of LP-2.

GBA LP-1 defines the super-efficiency model for DMUt in which we 

score it against the DMUs in set GEN without allowing it to compare with itself. 

The production possibility set (PPS) generated by the data of units in set GEN is 

called the partial PPS. Since the data is strictly positive and the returns to scale is
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constant, GBA LP-1 will be feasible for any DMUt (Thrall, 1996b; Zhu, 1996; 

Dula & Hickman, 1997).

Let the optimal solution to GBA LP-1 be represented by y* and &* and

the corresponding dual solution by n\* =(v'*, w'*) where, V* are the optimal dual

values or weights for the inputs and u* for the outputs. Let the objective 

function value at the optimal solution be z * . Here, z*  -  O'* as the y} of the 

generators have a coefficient of 0 in the objective function. At the optimal 

solution to GBA LP-1, z* -  O'* > 0 , v* X t =1, and the strong duality theorem

dictates that u'*Yt - z '* . There are two possible outcomes of interest for the 

optimal objective function value z * , viz., 0 < z*  < 1, which implies DMUt is 

situated inside the partial PPS, and z*  > 1, which occurs when DMUt is outside 

the partial PPS.

4.3 Generator Based Algorithm

We now proceed to describe our algorithm. In 4.3.1 and 4.3.2 we provide 

basic tools needed in the full description of GBA given in 4.3.3.

4.3.1 Ratio Rj

Using the optimal dual values, Jt'* =(y'*,u'*), compute for all j e  U , 

including DMUt, ratios of weighted sum of outputs to weighted sum of inputs
/ *  TTu Yj

defined as Rj=— —- ,  V/ e U . We will presently show how these Rj values are 
v*Xj

used either to find a new generator or to settle the efficiency analysis of DMUt.

We note that at any optimal solution to GBA LP-1, v'*Xt =1 and 

Max {ft. \= 1 becauseR ;<\, j e  GEN is implied by the constraints
j e G E N 1 J J  J J  r  J
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u'Yj -  v'Xj < 0,V/e G EN10. We will investigate two possible scenarios, namely, 

Max {ft. }< 1 and Max{R ,}> \ as case 1 and 2 respectively.
j e U  J j e U

Case 1: M ax{ft.}<l.
j e U  J

This case can happen only if z*  < 1 which implies that either z*  < 1 or 

z*  = 1. In such a situation, we claim that DMUt is a non-generator and also that

all the peers to score it correctly are in set GEN. Before proving this claim, we 

illustrate what happens geometrically.

When Max {/?.}< 1, the dual values n*  =(v'*, w'*) define a supporting
j e U

hyperplane of both the partial PPS and the full PPS. To see this, consider the 

hyperplane h given by u*Yj - v *  X  j  = 0. The input-output vector (Xs, Ys) for

generators s e GEN with y* > 0 or Rs = 1 lie on h. It follows that these

Vu Y
generators s g  GEN have ft̂  = =1 and act as peers for DMUt. Finally,

as Max
j e U

u'*Yj —v* X  j  < 0,Y /e N . In fact h here is not only a supporting hyperplane but

its intersection with the partial PPS defines a facet of the full and partial PPS. As 

per our claim, in this case, DMUt’s efficiency analysis is resolved. Figure 4-4 

illustrates this case when DMU F is evaluated with its only peer DMU A already 

identified as a generator in set GEN. Note that in all the figures in this chapter, 

the partial frontier corresponding to the relevant set GEN is shown in dotted lines 

while the non-overlapping part of the actual frontier is shown in bold.

We now introduce the following two lemmas to prove our claim by 

showing that the solution obtained for GBA LP-1 is also an optimal solution for 

LP-1.

{ft.}< 1, both the full and the partial PPS lie in the half space

1 Note that the condition Max i f t , f=  1 dictates that Max |f t  ,• f =  1.
j e  GEN J J  j e  N / U
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Lemma 4.1: If z* < 1 and Max (f t. }< 1, DMUt is inefficient with score 9 '*,
i d  T 1

input-output weights given by n*  and peers given by j  \ y* > 0 .

Proof: Consider LP-1 for DMUt. We adapt the optimal solution of GBA LP-1 to 

define an optimal solution for LP-1 as follows.

The variables of LP-1 are Xj and 9t and the dual variables are n t =(v,w). 

Assign for these variables values in the following fashion: 6t = 9[*, Jtt = k\* , 

Xj = y*j for j  e GEN and Xj = 0 for j  &GEN. Then the adapted solution can be 

seen to be feasible and optimal for LP-1 and LP-2 for DMUt. Q.E.D.

Lemma 4.2: If z*  =1 and Maxvft. j = l , DMUt is on the overall frontier with
j e U  J

9'* = 1 but not a generator.

Proof: z* -  (ff = 1 means that DMUt is on the frontier of the partial PPS 

described by model GBA LP-1 with y* > 0 for at least one je  GEN.

Suppose y* > 0. Note that s *  t . Once again consider LP-1 for DMUt. The same 

construction as in the proof to lemma 4.1 shows that the optimal values obtained 

in GBA LP-1 lead to an optimal solution to LP-1. As 9t (= 9't*) = 1 in LP-1, 

DMUt is on the overall frontier. DMUt is not an extreme-efficient unit as it does 

not satisfy Characteristic 2 ( Xs —y*s > 0 for s *  t ). Q.E.D.

This case can happen under two circumstances. First, when z'* < 1 but

In the first situation, we can classify DMUt as a non-generator but do not 

have all the peers in set GEN to score it correctly. As Max {/? .}> 1, there are
j e U  J

some DMUs in U that are outside die current partial PPS, at least one among 

which is a peer for DMUt.

Note that if z f  = 1 then Max {ft.} cannot be less than 1.
j e U  1

Max {ft. }> 1 and second when z't* > 1.
j e U  1
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In the second situation, DMUt is outside the partial PPS generated by the 

DMUs in GEN as Rt > 1 and its status is still unknown. Although DMUt is

outside the partial PPS, it may or may not be a generator itself.

In both situations, we apply procedure FindNewGen described below to 

find a new generator among the units in U . Before doing so, we illustrate 

geometrically what happens in this case.

When Max {/?,}> 1 and z'*< 1, the hyperplane h given by
j e U  J

u*Yj -  V ' X j  = 0 supports the partial PPS but not the full one. The input-output

vector (Xs, Ys) for generators s e GEN with y*s >0 or Rs = 1 lie on h. In h we 

have a separating hyperplane that has DMUt and the entire partial PPS on one 

side of it (satisfying u*Yj -  v*Xj  < 0) and all the DMUs with Rj > 1 (including

some of its peers) on the other side of it. Figure 4-3 illustrates this case when 

evaluating DMU G.

When z*>  1, the hyperplane h given by u*Yj - V * X  j = 0 separates the 

partial PPS for which u*Yj — v* X  j < 0  or Rj  < 1 from those DMUs, including 

DMUt, for which R;. >1 or u*Yj — v * Xj  > 0 . Figures 4-2 and 4-5 illustrate this 

case when evaluating DMUs D and B respectively.

4.3.2 Procedure FindNewGen

Upon evaluating the ratio values, Rjt  compute ArgMax }. We present
y e t /

three different scenarios that can arise upon computing ArgMax } and ways
yet/

to proceed with them.

1. Suppose, ArgMax {i?.} = DMUf and it is unique. We prove in lemma 4.3
yet/

below that in this case DMUf is a generator. In particular, if f  = t, then 

DMUt is a generator. Append it to set GEN and evaluate the next DMU 

in set U in the subsequent iteration.
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2. Suppose, ArgMax } = DMUf, is unique and f  ̂  t. In this case, append
M U

DMUf to set GEN. The status of DMUt is still unresolved; one can now 

evaluate DMUt again in the next iteration against the augmented set of 

generators in GEN. Or, one can append it at the end of set U and choose 

the next DMU in U in the subsequent iteration. The latter practice, 

though computationally inefficient, will be followed in section 4.4 of this 

chapter for purely illustrative purposes.

3. If there is a tie for ArgMax {i?y}, there are different ways of breaking it
M U

and they are discussed in chapter 7. The final outcome is a new generator 

among the tied units which is appended to set GEN. If the status of DMUt 

is still unresolved, it is added to the end of the queue in set U and the 

next DMU in U is evaluated in the next iteration.

Lemma 4.3: If the weights n *  obtained by solving GBA LP-1 lead 

to Max {ft, }>1 and ArgMax {ft, }= DMUf is unique, then DMUf is a generator.
J e U  M U

/* y
Proof: Let Max\R^\=—t— —=d n . Let v = civ'* and u = u* so that R f = 1 at

J * U  1 J i  V ' * X f  f

(v, u). Now scale the input weights by the input value a  -  vXf  so that the input

value of DMUf is 1. To maintain the ratio of output value to input value for 

DMUf as 1, one has to scale the output weights by a  as well; i.e.,

v = —, u = —. At (v, w), R f = 1, R/ < 1, for all j ^ f, and (v, u) provide a 
a  a

feasible solution to the dual of LP-1, i.e., LP-2, for DMUf. This implies that 

-  v X f  + uYf  = 0 and -  vX j + uYj < 0 for all j  *  f . The corresponding primal

solution for LP-1, Ay. = 0  for all j  & f  and Xf  =1, is feasible with the same

objective function value of 1 as the dual LP. The primal solution is unique as

11 As we have assumed that the data is strictly positive, V *  X j  & 0 and indeterminate ratios
cannot occur guaranteeing ‘d’ to be a finite value. The technical challenge of dealing with 
indeterminate ratios are discussed in chapter 5 and chapter 7.
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-  vX j + uYj ^  0 for all j ^  f . Hence, the primal and dual feasible solutions are 

also optimal and DMUf is a generator as it satisfies Characteristic 2. Q.E.D.

4.3.3 Description of GBA

We present our new algorithm to solve the input-oriented CRS model 

under the assumption of strictly positive data below.

P r o c e d u r e  GBA

Step 0: Initialisation

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R j , j e U  at n *;

0.1 Identify, using heuristics, a generator from set U and move it to GEN.

End Initialisation.

Step 1: Iteration. While U =£ {^}, do:

1.1 Select the first DMU from U , DMUt, and solve GBA LP-1 for it; let die

set GEN = {«>}, U  = {!...«}, TU = {<#};

optimal weights be 7t '  =(v/ , ,a '”);

1.2 Evaluate Rj at n* for j e U ;

1.3.1 Record the optimal weights, peers and slacks for DMUt;

1.3.2 Remove DMUt from U and go to Step 1.1;

j e U  J

1.4.1 Compute ArgMax\Rj } and T U ;

1.4.1.1 If \TU\>1, go to Step 1.4.2;
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1.4.1.2 If \TU\ = 1 and ArgM ax\Rj}= DM Uf , record the optimal
j e U

weights for DMUf; Move DMUf to set GEN; Go to Step 1.1;

1.4.2 Resolve the tie in ArgMax in some fashion. Identify one generator, 

DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set GEN; Go to Step 1.1;

End Procedure.

Numeric issues are important to acknowledge here. They can arise even 

while processing datasets using the standard algorithm, BuildHull or an enhanced 

version of the algorithms. For GBA they are critical while computing reduced 

cost and ratio values as all the values are computed to a fixed precision of 7 

decimal points. While acknowledging that there can be pathological cases where 

computing values to a fixed precision could lead to inaccurate identification of 

generators, slacks and peers, the thesis does not elaborate on them. For a detailed 

discussion on the numeric issues in DEA, see Ali (1994) and Ali et al (1995).

4.4 An illustration of GBA

We illustrate our algorithm graphically using a small example. The 

example used below was also used in our report to the DfE on Dula’s work. 

Appendix 2 contains this report giving a diagrammatic view of Dula’s algorithm
19BuildHull applied to the same problem .Consider the following example with 8 

DMU, 2 inputs, and 1 output.

12 Some of the notations used in Appendix 2 are slightly different but fully explained. It is hoped 
that this does not cause a problem.



DMU X I X2 Y1

A 2 4 1

B 2.5 2.5 1

C 4 1.5 1

D 8 1 1

E 10 1 1

F 3 7 1

G 7 4 1

H 4 3 1

Table 4-1 : DEA data for GBA illustration

Plane o f Output Y1 =  \

GEN = { C

X1 axis

Figure 4-1 : Step 1 of GBA

Figure 4-1 illustrates GBA for the m x n  = 3x8 DEA problem of example

4-1 starting with GEN = {C}. The full (extended) frontier is shown in bold (the 

vertical line north of A, A-B-C-D-E and the horizontal line east of E). The partial 

frontier with GEN = {C} is shown in dotted lines (the vertical line north of H, H- 

C and the horizontal line east of C). The only overlap between the two is at point 

C, the only generator in set GEN.

We have started our procedure by identifying C as a generator using 

heuristics (for e.g., by using random weights 1, 2, and 7, for input 1, input 2, and 

output 1 respectively) leading to Mox{Rj \= 1 and ArgMax )= {c}.
Je N  je N
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To illustrate different cases we set U = {D, G, F, B, A, H, E} and 

examine DMUs in the order in which they are listed in set U .

Zj > X'MaxyRj > 11 3& v 3'
GEN = {C}

Figure 4-2 : Step 2 of GBA

"I

Hyptrplam <1/7,0; 4i7H

Figure 4-3 : Step 3 of GBA

GEN -  ; C, D, A

H|rperplan*<10w0;23>

z:>XMax\R,\> 1 r >«v K }'

GEN -  ( C, D, A

Figure 4-4 : Step 4 of GBA

'flew

Hypetpldne <1145, 9j45: 524 5>

Figure 4-5 : Step 5 of GBA

In step 2 (see figure 4-2), DMUt = D is evaluated using GBA LP-1 

defining a 3x2 LP problem. D is outside the partial PPS, and we have the 

following results, z*  = 3/2, k * = (0, 1, 3/2), Max\Rj }= 1.5 > 1.
je U

As shown in figure 4-2, n *  defines the hyperplane 

(y2 x Y< )-(° x X { + l x 2 f 2) = 0 passing through generator C for which Rj = 1 

separating D from the partial PPS. The ratio Rj is maximised for both D and E 

so that ArgMax \={D,E} at this n *. Assume for now that using some tie-
je U

breaking rule, we have identified DMU D as the new generator.
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Now, GEN = {C, D} and U = {G, F, B, A, H, E}.

We proceed to the next iteration where DMUt = G is evaluated using a 

3x3 LP. See figure 4-3. G is inside the partial PPS and we have the following 

results, z'* =4/7, n*=  (1/7, 0, 4/7), Max {/?.•}=2 >1.
je U  J

Though the h y p e r p l a n e x Y{) -  x X x + 0 x X 2)= 0 supports the

partial PPS at C, it doesn’t support the full PPS as A and B are DMUs in set U 

that are outside the partial PPS with R: >1 at this n t*. As ArgMax \Rj \={a) ,  it
je U

implies that DMU A is a generator. So DMU A is removed from U and 

appended to GEN while G is put at the back of the queue in U .

Now GEN = {C, D, A}, and set U = {F, B, H, E, G}.

In the next iteration (see figure 4-4) DMUt = F is evaluated using a 3x4 

LP. We have the following results, z'* = 2/3, 7r'*= (1/3, 0, 2/3), Max{Rj }= 1.

As seen in figure 4-4, the h y p e r p l a n e x Yx) - x X r + 0 x X 2)=0

supports the partial PPS and the full PPS at A, one of the generators in the set 

GEN. By lemma 4.1, we have computed the correct efficiency score of F and 

also its proper set of peers, input-output weights and slacks. F can now be 

discarded from further analysis.

So now GEN = (C, D, A} and U = {B, H, E, G}.

In the next iteration (see figure 4-5) DMUt = B is evaluated using a 3x4 

LP. B is outside the partial PPS and we have the following results, z'* = 52/45,

<•=(10/45,8/45, 52/45), Mzx{fl,}=1.1556 >1, ArgMax { R ^ B } .
Je U  je U

As shown in figure 4-5, 7t'* defines the hyperplane

( ^ 4 5 x f J - ( f x X { + x l 2) =0  passing through generators A and C for

which Rj =1 separating B from the partial PPS. As B achieves the unique 

maximum value of Rj for j e U  at K *, it is another generator.

So at this stage, GEN = (C, D, A, B} and U = (E, G, H}. Now that we 

have identified all the generators in the dataset, every iteration henceforth will 

involve solving a 3x5 LP. Its solution will give the correct efficiency score, 

input-output weights, and proper set of peers and slacks for DMUt. For example,
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the efficiency of E upon solving GBA LP-1 with GEN = {C, D, A, B} is 100% 

and its only peer is unit D. Its input-output weights are (0, 1, 1) and it has 2 units 

of slack in X L  The efficiency of G upon solving GBA LP-1 with GEN = {C, D, 

A, B} is 48.08% and its peers are units B and C. Its input-output weights are 

(1/13, 3/26, 25/52). Lastly, the efficiency of H upon solving GBA LP-1 with 

GEN = {C, D, A, B} is 73.53% and its peers are units B and C. Its input-output 

weights are (1/13, 3/26, 25/52). Units G and H are technically inefficient but mix 

efficient while unit E is technically efficient but mix inefficient.

To summarise, after finding one generator, we had to solve 7 LPs of 

maximum size 3x5 with additional algebra for the evaluation of ratio values and

ArgMaxX {/?.} to solve a DEA exercise for a 8 DMU 3 factor problem.
mu

4.5 Ratios and Reduced cost values

Based on the proof of lemma 4.3, in procedure FindNewGen we
/*tr

U \employed R. = —— —,y e U , to identify a new generator. It is important to 
v ' x i

realise why the reduced cost values , i.e., RC, = u 'Y , — v ' X ,  , j e U , could not

be used for the same purpose. As we are dealing with the CRS case, any data 

vector can be scaled by a positive scalar without changing the PPS and therefore, 

the set of generators. While Rj remains unchanged under the scaling operation,

RCj changes for DMUj, thus making Max{RCj} arbitrary. The following

example illustrates this.

Consider a data set with two DMUs A and B each consuming two inputs 

(XI and X2) to produce a single output (17) in a CRS environment.

13 Note that in the input-oriented case, u*Yj  — V* X j gives the negative of the reduced cost as

used in the standard LP terminology. In the output-oriented case, u*Yj  — V *  X  ■ gives the 

reduced cost value according to the standard LP terminology. For the sake of simplicity, we will 
dub u*Yj — v* X  j , the reduced cost of DMUj.
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DMU XI X2 17

A 5/4 1 1

B 1/2 1/3 1/2

Table 4-2 : Reduced cost and ratio values

W.l.o.g., assume that we are provided with the following set of dual 

values n'* =(v'*, w'*) = (l, ^ , 4 ). Now, the reduced cost values of the DMUs in

U  are, RCA = u'*Yj - V 'X } =4 -  2.75 = 1.25 and RCB = = 2 - 1

= 1; so Max { rC . )=  1.25 and ArgMax \RC .\= A . Suppose we scale unit B’s
J e U  j e U

data vector by a factor of 2, Max {/?C. }= 2 and ArgMax {ftC. }= B . Therefore
J e U  j e U

RCj cannot be used to decide whether DMUj is a generator. As we are dealing 

with the CRS case, only the ratios at the specified /r'* can identify generators.

The ratios for the DMUs are RA — —= ------ = 1.45 and
A v * X A 2.75

U* Y 2
Rb = — ——= — = 2. Hence, only DMU B can be classified as a generator at this 

v X B 1

n*  as it produces the unique maximum of the ratio values. Note that the

significance of reduced costs is different under VRS assumption and we will 

discuss it in chapter 5.

4.6 Advantages of GBA

Chapter 8 gives a detailed account of the excellent relative computational 

performance of GBA in comparison with BuildHull and the conventional two- 

phase solution procedure. The overarching reason is that GBA solves only n 

small LPs. Phase 2 is not required and the size of the LPs solved progresses from 

m x l  to mx( k  +1). The downside is the work needed to compute the R j s and

ArgMaxX {/?y.} at each iteration after solving an LP. However, as shown in
y e t /

chapter 8, this is more than compensated for by not having to solve n extra LPs 

and keeping the size of the LPs small.
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4.6 Conclusion

This chapter presented a new algorithm, the GBA, for solving the input- 

oriented envelopment form DEA model under the assumption of constant returns 

to scale and positive data. Before every iteration we have a list of as yet 

unresolved DMUs. An iteration consists of an LP with columns of data of all the 

generators found so far and a new DMU from the list. At each iteration either 

another generator is discovered or the status of the DMU under evaluation is 

resolved, i.e., its efficiency score, input-output weights, peers, and slacks are 

obtained. The GBA algorithm identifies all the extreme-efficient units in the 

dataset and the correct efficiency scores, peers and slacks for all the non-extreme 

efficient units.

Theoretically we showed that for solving a DEA exercise involving m 

factors and n DMUs, GBA requires the solution of utmost n LP problems. In 

addition, the maximum size of any LP solved is mx( k  +1) where k  is the 

number of extreme-efficient DMUs which we call generators. Technical 

complications that can arise when using the GBA under CRS, extensions to the 

VRS and other standard models under different orientations will be examined in 

chapters 5, 6 and 7. Computational experience is presented in chapter 8.
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5 TECHNICAL CHALLENGES AND EXTENSION OF GBA 

TO OTHER DEA MODELS

GBA was presented in Chapter 4 for the input-oriented CRS model only, 

and under the restrictive assumption of positive data. Moreover some technical 

problems were not fully addressed. In this chapter we extend GBA to oriented 

and non-oriented CRS and VRS models without the assumption of strictly 

positive data and present the technical problems in each of them.

The technical problems occur at step 1.1, 1.2 and 1.4.2 of the algorithm 

described in section 4.3.3 and are relevant to any extension of GBA to other 

models. Here is a list of the technical problems.

i. At step 1.1 we solve the relevant LP for DMUt and then use the optimal

solution in what follows. What if the LP is infeasible?

ii. At step 1.2 we evaluate the ratio R .,V /e U . Can Rj be indeterminate

because its denominator is zero?

iii. At step 1.4.2 we talk about resolving ties in ArgMax{Rj} in some

fashion. Are ties always an issue and how do we resolve them?

It is clear that upon encountering any of the above three challenges in 

GBA, they have to be resolved without proceeding to the next iteration. The first 

step to resolving these issues is to understand the conditions under which they 

can or cannot occur in the various DEA models when applying GBA. In the rest 

of this chapter, we describe when infeasibility and indeterminate ratios can and 

cannot occur for different DEA models. Ways to resolve LP infeasibility is 

presented in chapter 6 and indeterminate ratios are resolved in chapter 7. The last 

of these is taken up in chapter 7 where a new closed-form method is developed to 

resolve ties.

For the sake of completeness we mention one final technical problem, 

viz., finding a generator to initialise the algorithm. In chapter 3, heuristics 

developed by Ali (1993) and Chen and Ali (2002) to identify some generators in 

a dataset were described in detail. Given the various limitations within these 

heuristics, we will only use them to identify one generator to initialise GBA.
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More on heuristics is discussed in chapter 8 which deals with computational 

comparisons of GBA with extant algorithms.

5.1 GBA for the general input-oriented CRS model

In this section, we discuss the two technical challenges, viz., LP 

infeasibility and indeterminate ratios, that can arise when applying GBA for this 

model without the assumption of positive data.

5.1.1 LP infeasibility

Zeroes naturally occur in many multi input-output datasets (see, 

Thompson et al, 1993). For example, with the DfE’s DEA model for primary 

schools in England, the percentage of students with English as an Additional 

Language (EAL), is an input factor which does have zero value for some schools. 

Let us consider the following examples to illustrate LP infeasibility in the 

presence of zeroes in the data.

DMU X I X2 Y1

A 10 2 24

B 15 0 24

Table 5-1 : Infeasibility due to 0 inputs

Using random weights (2, 2, 1) for input 1, input 2, and output 1 

respectively, we can see that DMU A is a generator. Suppose, we now evaluate 

DMU B with DMU A in set GEN; the resultant LP would be,

Minimise 0B 
subject to,
0'B\ 5 - y A 10>0 
0'BO -  yA2 > 0  

0 + 7 ^ 2 4  >24
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Clearly, the second constraint can only be satisfied for yA = 0; but then, 

the third constraint cannot be satisfied leading to infeasibility. Now, consider the 

example below.

DMU X I Y1 Y2

A 10 2 24

B 10 0 30

Table 5-2 : Infeasibility due to 0 outputs

Using random weights (3, 1, 1) for input 1, output 1, and output 2 

respectively, we can see that DMU B is a generator. Suppose, we now evaluate 

DMU A with DMU B in set GEN; the resultant LP would be,

Minimise dA 
subject to,
0'Aio -rBio>o
0 + yB 0 > 2
0 + ^ 3 0  >24 

9'a , 7b > 0

It is clear that the second constraint cannot be satisfied, leading to infeasibility.

Presence of zero data entries is a necessary condition for infeasibility to 

occur in this model (see, Thrall, 1996b; Zhu, 1996; Dula & Hickman, 1997). In 

the example in table 5-1, DMU B has a unique zero for a particular input factor, 

while in example in table 5-2, due to a unique zero in a particular output factor 

for DMU B, the resultant LP for DMU A becomes infeasible. It follows that 

infeasibility can occur when there are zeroes in inputs and/or outputs. As 

discussed in chapter 2, in the standard super-efficiency model, an infeasible 

solution for DMUt corresponds to it being a generator. But as GBA works with 

partial PPS, the resultant LP can become infeasible even when evaluating a non

generator. For example, if to the data in table 5-1, one adds DMU C with data 

(13, 0, 24) for input 1, input 2, and output 1 respectively, it is easy to see that 

DMU B cannot be a generator (in fact, it becomes inefficient). However, the LP 

solved does not change if B is evaluated against A. It is still infeasible. Similarly, 

if in table 5-2, one adds DMU C with data (10, 3, 25) for input 1, output 1, and
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output 2 respectively, it is easy to see that DMU A cannot be a generator (and is 

again inefficient) even though it results in an infeasible LP when evaluated 

against B.

5.1.2 Indeterminate ratios

In step 1.2 of the algorithm, once the LP is solved, we evaluate

u  * iR, = ----- — for all the DMUs in U . If the dataset contains some zeroes, then
7 v ' X j

indeterminate ratio can occur. This is illustrated using the example below.

DMU X I X2 X3 Y1

A 10 2 8 24

B 12 0 7 38

C 0 8 5 28

Table 5-3 : Indeterminate ratio

Using random weights (2, 3, 2, 1) for input 1, input 2, input 3, and output 

1 respectively, we can see that DMU B is a generator. Suppose, we evaluate 

DMU A with DMU B in set GEN; then the resultant LP would be,

Minimise 0fA 
subject to,
^ 1 0 - ^ 1 2 S 0  
0'a2 -  rB0 > 0  
0 '8  -  Yb7 SO 

0 + Yb 38 >24 

^ Y b *  0

The (unique) optimal solution to this LP is 

dA =0.757895, v'*= (0.1,0, 0), u*= (0.031579). The ratio Rc at this /r"  is

indeterminate. Incidentally, if we had chosen to evaluate DMU C (instead of 

DMU A) against DMU B, it is easy to see that the resultant LP will be infeasible.
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Before we proceed to the next section, we show why indeterminate ratios 

cannot occur when the data is strictly positive. In other words, similar to the 

technical challenge of infeasibility, presence of zero data entries is a necessary 

condition for this challenge to occur. This can be seen from GBA LP-2 which is 

copied below.

Maximise uY t 
subject to,
v X t = 1 (GBA LP-2)
uYj —v'Xj < 0,V /e GEN 

u ,  v'>0

The first constraint will be satisfied as an equality at any optimal solution, i.e., 

v'*Xt = 1. Since, the data is strictly positive, X j , Ty > 0 and as v * X t = 1,

/« v-
/* u v *  0. Hence, the ratios R , =—— - ,  V/ e U cannot become indeterminate.

'  v'*Xj

5.2 GBA for the output-oriented CRS model

The LP to be used in GBA to solve the output-oriented CRS model to 

evaluate DMUt is shown below.

Maximise Tj' 
subject to,

0 + 1LPjX j - X < (GBALP-3)
jeG E N

n X -  Y jP X i - 0
jeG E N

tj'free; Pj > 0, j e  GEN

The optimal objective function value ijf* is >0  as in the corresponding 

super-efficiency model. The dual to the above LP is shown below:

Minimise v'Xt 
subject to,
uY t - 1 (GBALP-4)
-u 'Y j +v'Xj  >0,Vf e  GEN 

u ,  vr>0

90



where, u ,  v are the weights of the output and input factors respectively.

As in the standard CRS models presented in chapter 2, there is a useful 

relationship between the solutions of input and output-oriented super-efficiency 

CRS models and their modified versions in GBA LP-1 and GBA LP-3. This 

relationship makes it possible to derive the solutions to one model from the other.

The procedure for solving the output-oriented CRS model using GBA is 

similar to the procedure described for its input-oriented counterpart. Hence with 

no modification to the GBA procedure presented in section 4.3.3, one can carry 

out a DEA exercise using the output-oriented CRS model.

5.2.1 LP infeasibility

Regardless of whether the data is strictly positive or not, the output- 

oriented CRS super-efficiency model (and so also GBA LP-3) is never infeasible 

because rf* = 0 , = 0 is a feasible solution for any DMUt (see, Zhu, 1996;
jeG E N

Dula & Hickman, 1997).

5.2.2 Indeterminate ratios

When the dataset contains some zeroes, indeterminate ratios can arise as 

shown in the following example.

DMU X I Y1 Y2

A 10 2 24

B 12 0 36

C 16 8 28

Table 5-4 : All zero solution

Using random weights (3, 1, 1) for input 1, input 2, and output 1 

respectively, we can see that DMU B is a generator. Suppose, we now evaluate
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DMU A against DMU B in set GEN; the resulting LP and its dual are shown 

below.

Primal LP:

Maximise tj’a 
subject to,

0 + p B12<lO 

2t1'a ~ PbO<0 
24tj'a -  p B36<0 

rj'A free\ p B > 0

Dual LP:

Minimise 10v' 
subject to,
2 u[ + 24u2 = 1 
12v[-0 u [ - 36u '2 >0 
v[,u[,u2 > 0

Clearly, the second constraint (in the primal LP) dictates that the trivial 

“all zero” solution rj'j = p B = 0 is the only feasible solution and hence optimal, 

with dual values v'* = (0) and u* -  (0.5,0).

In the case when all the generator(s) in set GEN have zero value for an 

output factor s and Yst > 0 , if X t > 0, it follows that v'* = 0 because of the 

strong duality theorem. (For our example in 5-4, DMU B has Y1 = 0; also, Y1 

for A is 2 and XI is positive for A. Hence, v '*=0).  Therefore, Rj is 

indeterminate for all j  e U . In addition, for j  e GEN the dual constraints dictate

that both v* X j  = 0 and u'*Yj = 0 leading to Rj . Unit B in our example 

illustrates this.

It can be shown that, when the output-oriented CRS model has an “all 

zero” optimal solution for DMUt, the corresponding input-oriented model is 

infeasible. We show in lemma 5.1 that an “all-zero” solution cannot be an 

optimal solution to GBA LP-3 when the data is strictly positive. This proviso can
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be seen as analogous to the input-oriented CRS model where LP infeasibility 

cannot occur when the data is strictly positive.

Lemma 5.1: When the data is strictly positive, an “all-zero” solution cannot be an 

optimal solution to GBA LP-3.

Proof: This can be seen from the primal-dual relationship between the LPs (GBA 

LP-3 and GBA LP-4). Suppose that J]'* is 0. By the strong duality theorem,

v'*Xt = 0 and since X j , Yj > 0,V j , this can only happen if v'*= 0. The output

weights cannot be trivial as u*Yt = 1 and hence u'*Yj > 0 for any j in GEN. This

means that the second constraint —uYj  + v'Xj > 0,V/e GEN cannot be satisfied.

Hence, by contradiction, an “all-zero” solution cannot be an optimal solution to 

GBA LP-3. Q.E.D.

Corollary to lemma 5.1: When the data is strictly positive, indeterminate ratios 

cannot occur.

Proof: We know from lemma 5.1 that when the data is strictly positive v 'V  0. 

Given that X } > 0 , it follows that V * X ^  0. Hence the ratios evaluated as

/* Vu Yf
R . = —— —, j e U , cannot be indeterminate. Q.E.D.

V A j

5.3 GBA for the input-oriented VRS model

The standard LP for computing the efficiency of DMUt using the input- 

oriented VRS model is shown below.
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Minimise Ot 
subject to,

e , x , - ' Z z Jx / i o
j =1

(LP-6)o +'£zJrJzrl
y=i

o + 2 > , = i
y=i

Ot free’, Xj > 0,y m l,...,w

The dual to LP-6 , described as LP-7 in chapter 2 is presented below.

Maximise uYt + w0 

subject to,
vXt + 0 = 1 (LP-7)
w7y. -  vA'y + m0 < 0; j  = 1... w 

m, v> 0 , m0

The LP to be used with GBA for solving the input-oriented VRS model is 

shown below.

Minimise (ft 
subject to,

er,x,- Y,r,xj>°
j e  GEN

0 + £  y / j  > Yt (GBALP-5)
jeG E N

o + £ > , =  i
jeG E N

tfjree; Yj > 0 , j e  GEN

The corresponding dual LP to GBA LP-5 is shown below:

Maximise uY t +w0 

subject to,
v X t =\  (GBA LP-6)
uYj  - v X j  +u0 < 0,Vye GEN 

u , v '>0; u0 free

where, u and v' are the weights for the outputs and inputs factors respectively 

and Uq is the dual value associated with the convexity constraint.
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Let the optimal solution to GBA LP-5 be represented by y* and O'* and 

the dual solution by 7t'* = (/* , u * , u*0). Let the objective function value at the 

optimal solution be z * . Here, z*  = O'*. At the optimal solution, z '* = O'* > 0 , 

v'*Xt =1, and the strong duality theorem dictates that u'*Yt + u*0=z '* . There are 

two possible outcomes of interest for z '* , viz., 0 < z*  < 1 or z*  > 1 .

GBA has to be slightly modified to take into account the dual value of the 

convexity constraint w0 when defining R} . For this purpose, we define

/* tr . *u Y, + u0
R ,=  p  ,V/e U , and apply procedure GBA of section 4.3.3 without

v ' x j

further changes.

5.3.1 Using the reduced costs RCj instead of the Rj values in GBA

In section 4.5, we showed why it is not possible to use the reduced cost 

values RCj  to identify generators in the CRS case. The VRS case is 

fundamentally different because arbitrary scaling of a data vector is not allowed. 

So here it is possible to use Mox\r Cj \  value in FindNewGen to identify a

generator. For this purpose, define RCj at k '* =(v'*, u'* ,Uq) as 

RCj={u'*Yj + u l ) - v ' * X j , V jg U . We will presently see how the GBA 

procedure needs to be modified when the reduced costs, RCj , of the units in U 

are used instead of their Rj values.

Note that there are only two possibilities for RCj  upon solving GBA LP- 

5 for DMUt, viz., Max\RC  .}< 0 and M ax\RC  .}> 0 . It follows from our proof
j e U  J j e U  J

to the CRS case that in the former situation, the efficiency analysis for DMUt is 

complete. In the latter case, we need to identify a new generator among the units 

in U . In lemma 5.2 we show that the unit that achieves the maximum of the 

reduced cost v a l u e s 7 y +u*0) - v ' * X j , V j e  U , if unique, is another 

generator.
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Lemma 5.2: If the weights n 'f = (v'*, w'*,wj) obtained by solving GBA LP-5 lead 

to M 3x{KC .}>0 and ArgMax \r C \=  DMUf is unique, then DMUf is a
Je U  je U

generator.

We show that using K* , it is possible to construct weights n ” for which 

LP-6 has a unique optimal solution at DMUf.

Proof. l&\Max\RCj\=(u'*Yj +wj)-v'*X; =d> 0 for j —f.  We know that 

Max\RC,\=Q.
jeG E N  L 1 1

Let uQ = (wj ~ d ). Then, Mox{r Cj }= (u'*Yj,+ u0) -v '*Xj  =0 for j —f  and 

M zx{rC.}< 0. This implies that Rf = 1 and Rj < 1 for all j  i f .  By suitable
j e N / f  1

scaling, a feasible solution to LP-7 for DMUf can be derived. Scale the input 

weights by the input value, a  -  v'*Xf  14, such that the input value of DMUf is 1.

To maintain R/= 1, one has to scale the output weights along with u0 by a  as 

/ *  / *  *

well; i.e., let v” = - —, u” = ——, u” -  — . At n ” -  (v*,w*, u l ), R/=1, Rj< 1, for j  
a  a  a

i  f .  Also, 7t” provide a feasible solution to the dual of LP-6, i.e., LP-7, for 

DMUf. This implies, +u*)-v*Xf  = 0  and (w'y/ +u*) -v 'Xj  < 0 for

j  & f . The corresponding primal solution for LP-6, Xj = 0  for j & f  and

Xf  = 1, is feasible with the same objective function value of 1 as the dual LP.

The primal solution is unique as (ii*Yj +u”̂) - v ”X } ^  0 for j  *  f . Hence, the

primal and dual feasible solutions are also optimal and DMUf is a generator by 

Characteristic 2. Q.E.D.

14 We assume here that V * X j  & 0 . If v '* X j  — 0 ,  then using the closed-form solution 

introduced in chapter 7, we can arrive at a positive set o f weights for DMUf such that at this new 
set of weights, ArgM ax  {i?Cy }=DMUf is unique. We can then apply the proof presented here

je U

to prove that DMUf is a generator.
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From lemma 5.2 it follows that if ArgMax {i?Cj j  = /  is unique and /  =
je U

t, then DMUt is a generator. In this case, we append DMUt to set GEN and 

proceed to the next iteration. If t, the status of DMUt is still unresolved; one 

can now evaluate DMUt again against the augmented set of generators in the 

next iteration. If there is a tie for ArgMax {RCj}, there are different ways of
MU

breaking it and they are discussed in chapter 7. The final outcome is a new 

generator.

5.3.2 LP infeasibility

As the VRS model is enclosed in the CRS model, the technical challenges 

that need to be taken care of in the CRS case also apply for its VRS counterpart. 

Furthermore, the VRS model has additional complications. First, GBA LP-5 for 

DMUt can be infeasible even when the data is strictly positive. This can be seen 

from the example in table 5-5 below.

DMU X I Yl Y2

A 5 6 2

B 5 1 1

C 5 5 5

Table 5-5 : LP infeasibility with positive data

All the 3 DMUs consume 5 units of input 1 to produce two outputs. We 

know that DMUs that use minimum of any inputs or produce maximum of any 

outputs if unique are generators. Since all the DMUs consume the same amount 

of input 1, we have DMU A (unique max for Yl) and DMU B (unique max for 

Y2) as our starting subset of generators. Suppose we evaluate DMU C, the 

resultant GBA LP is shown below.
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Minimise Q'c 
subject to,
*c5 -  yAS - y BSZO  
0 + yA6 + 7b1^ 5 
0 + ^ 2 +  yBl >  5

0 + y ^ i + r » i = i
6£> ee; yA, y B> 0

This is infeasible. If we combine constraints 2 and 3 we get, 

0 + yA 8 + ^ 8  > 10 which is impossible for yA + yB = 1 .

When the input-oriented CRS model is infeasible, the corresponding VRS 

model is also infeasible as both have the same LP formulation with the VRS 

model having an additional convexity constraint. And we now know that the 

input-oriented VRS model can become infeasible even with strictly positive data. 

Clearly, infeasibility is a more common issue when applying GBA to solve the 

input-oriented VRS model.

5.3.3 Indeterminate ratios

If we chose to use RCj in procedure FindNewGen, the question of 

indeterminate ratios does not arise because reduces costs are not ratios. If we do 

opt for Rj as defined at the start of this section, indeterminate ratios can arise as

shown in the example below.

DMU X I X2 X3 Y l

A 10 2 8 24

B 12 0 7 38

C 0 8 5 28

Table 5-6 : Indeterminate ratios
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Using random weights (2, 3, 2, 1) for input 1, input 2, input 3, and output 

1 respectively, and w0 = 0, we can identify DMU B as a generator. Suppose, we 

evaluate DMU A against DMU B in set GEN; the resultant LP is shown below.

Minimise 0'A 

subject to,

0A1O - y B\2>0  
0'a2 -  yB0 > 0  

0'As - y Bi > o  
0 + yB 38 >24 
0 + yB= 1 

&A f ree> T b ^ °

The solution to the above LP is 0A = 1.2, v'* =(0.1,0,0), u * =(o), wj = 1.2. The 

ratio Rc at this 7t\* is indeterminate. Incidentally, if we had chosen to evaluate 

DMU C against DMU B, the resultant LP is infeasible.

As in the CRS case, indeterminate ratios cannot occur when the data is 

strictly positive. This can be seen from GBA LP-6 . The first constraint needs to 

be satisfied as an equality at any optimal solution, i.e., v'*Xt =1. Hence, v'* ^0 .

/ *  \ r  . *
U Yi + Ur.

With X,>Q,  v X,.>0  so that the ratios R,= ------  ,V/g U cannot result
j  > j  j

in an indeterminate form.

5.4 GBA for the output-oriented VRS model

The LP to be used in conjunction with GBA for solving the output- 

oriented VRS model is shown below.

Maximise 7j' 
subject to,

0 + S  p ,x , s x .
jeGEN

TJX -  £  PjYj <0 (GBALP-7)
jeGEN

0 + S ^ =  1
jeGEN

Tj'free-, Pj > 0 J e  GEN
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The output-oriented model aims to find the maximum multiple of outputs 

possible with the inputs currently consumed by DMUt. Hence, the optimal 

objective function value is rf* > 1 when evaluating a DMUt that is inside the

partial PPS. When evaluating a DMUt that is outside the partial PPS, if GBA LP- 

7 is feasible, the objective function value is bounded between 0 and 1, i.e., 

0 < rj't* < 1. This implies that in certain cases a “zero” solution,

7]'* = 0, =1, is a feasible solution for DMUt. We will revisit the “zero
j e  GEN

solution” to GBA LP-7 towards the end of this section.

The corresponding dual to GBA LP-7 is shown below.

Minimise v X t + v0 

subject to,
uY t = 1 (GBALP-8)
-  uY j + v'X j + v0 > 0, Vy g GEN 

u , v '> 0; v0 free

If we chose to use Rj for this model, we will have to redefine it to take

account of v*0 . Specifically, the ratios to be evaluated are

/* Vu Yj
Rj = -------- -— ,Vf e  U . GBA as described in 4.3.3 can be applied without

v *Xj +v0*

further modifications.

In addition, as in the input-oriented case, we can (in place of the ratio 

values) use the reduced cost values at ^■'*=(v/*,M/*,vj) to decide whether 

DMUt’s efficiency analysis is complete or that we need to identify a new 

generator. So instead of computing ratio values, we can compute the reduced cost 

values RCj = u*Yj  -  (v'*Xj +vj),Y/G U to identify a new generator. The rest 

of the procedure is the same as in applying GBA to solve the input-oriented VRS 

model using R C j .
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5.4.1 Infeasibility

As in the input-oriented case, the output-oriented VRS model can become 

infeasible even when the data is strictly positive. This can be seen from the 

example below.

DMU X I X2 Y1

A 6 2 5

B 1 1 5

D 3 4 5

Table 5-7 : LP infeasibility with positive data

All DMUs produce 5 units of output 1 by consuming varying amounts of 

inputs 1 and 2. Since all DMUs produce the same quantity of output 1, if we look 

at the input factors, we have DMU A (unique min for input 2) and DMU B 

(unique min for input 1) as our starting subset of generators. Suppose, we now 

evaluate DMU D, the corresponding LP is shown below:

Maximise 7]'D 

subject to ,
0 + p A6 + p Bl <3 
0 + p A2 + p Bl  <4 

5Vd ~  P a $ ~ P b $ - 0  

P a + P b =1 
n'D free; p A, p B > 0

This is infeasible. If we combine constraints 1 and 2, we 

have p A 8 + p B 8 < 7. This is impossible for p A + p B - 1.

5.4.2 Indeterminate ratios

As in the input-oriented case, if we chose to use RCj  in procedure

FindNewGen, the question of indeterminate ratios does not arise. If we do opt for 

Rj as defined at the start of this section, indeterminate ratios can arise. As
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observed earlier, any technical challenge with the output-oriented CRS model 

will also be reflected here and we saw in section 5.2.2 that indeterminate ratios 

was one such challenge when the dataset contains zeroes.

Interestingly, unlike other models, indeterminate ratios can occur in this 

model even when the data is strictly positive. This is illustrated using the 

example below.

DMU X I X2 Y1

A 2 0.5 3

B 4.5 4.5 7

C 0.125 2 4

D 3.25 2.5 5

Table 5-8 : Indeterminate ratios with positive data

The above data is strictly positive and units A, B and C are generators. Suppose, 

at a particular iteration we had identified DMUs A and B to be generators. If we 

evaluate DMU D against A and B in GEN, the optimal solution to GBA LP-7 is 

1 =1, v'*=(8,0), u'* =(5), Vq = - 1 .  The ratio Rc at this n *  is indeterminate.

Incidentally, if we had chosen to evaluate DMU C against the generators A and 

B, it is easy to see that the resultant LP will be infeasible.

As indicated at the beginning of this section, we will now examine the 

condition under which a “zero solution” to GBA LP-7 can occur. Specifically, 

we will show using lemma 5.3 that when the data is strictly positive, a “zero” 

solution cannot occur while solving the output-oriented VRS model using GBA.

Lemma 5.3: A “zero” optimal solution does not exist for GBA LP-7 when the 

dataset is strictly positive.

Proof: When GBA LP-7 is feasible, the optimal objective function value is 

bounded below at 0, i.e., Tj't* > 0 . To prove that r ff *  0 when the data is strictly 

positive, we restate GBA LP-7 below.
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Max Tj't + Z p j O
jeG E N

subject to,

jeG E N
(GBA LP-7)

jeG E N

0 + 1 ^ = 1
jeG E N

rt't free-, p } > 0  , j e  GEN

Without loss of generality, choose a DMUg (observed or obtained 

through a convex combination of some generators) in set GEN as a comparator 

unit for DMUt. Let the input and output vector of DMUg be represented

for this is X g < X t as indicated from the input constraints. Using simple algebra, 

we can see from the output constraints that a lower-limit on 77, is given by

Lemma 5.3 along with the section on infeasibility discussed in section

5.4.1 shows that when the dataset is strictly positive, either GBA LP-7 for DMUt 

is infeasible or else jj* > 0.

5.5 GBA for the CRS additive model

The super-efficiency form of the additive CRS model employed in GBA 

to evaluate DMUt with respect to the set of generators in GEN is shown below.

Maximise e ’ s' + e° s°  + 0 Xj
subject to ,

by (Xg ,Yg). Assume that GBA LP-7 for DMUt is feasible; a necessary condition

m2
7jt > w , where w = Min- dataset is strictly positive, w > 0 and

since the sense of the objective function is maximisation, rj* > 0 . Q.E.D.

(AGBALP-1)
ye GEN

y e GEN

s i , s ° , A j > 0 , j €  GEN
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where, s ' , s° are the input and output slack vectors of dimension ml and m2 

respectively; e' and e° are conformable vectors of l ’s of dimension ml and m2 

respectively. The dual to the LP problem AGBA LP-1 is shown below.

Minimise vX  , + uY t 
subject to ,
vX j + uY j > 0,V j e  GEN (AGBALP-2)

v > +1 
u < -1

As we are solving a CRS model, it is not appropriate to use RCj here. So

GBA for this model parallels to the oriented CRS cases although the ratio Rj

requires a minor modification as u < -1 .

We note that if DMUt is outside the partial PPS, it will be identified by

- u Y
v*Xt +u*Yt < 0. In other words, 1 < — — L = Rt which essentially is our original

v X ,

ratio test for the oriented CRS models as u < 0 and hence, -  u > 0 and Rt > 1. 

For the units je  GEN that are in the optimal basis of AGBA LP-1, 

v*Xj +u*Yj = 0  or Rj = 1. Hence, except for the LP problem solved, the 

procedure for solving the CRS additive model using GBA essentially remains the

- u Y ,
same as in 4.3.3 with R , =

5.5.1 Infeasibility

It is interesting to note that even when the dataset is strictly positive, 

when using GBA for this model, the resultant LP can become infeasible. As we 

aim to maximise both the inputs and outputs slacks of DMUt and as the slacks 

are constrained to be non-negative (i.e.,5',5° >0),  if DMUt lies outside the 

partial PPS, the corresponding LP problem will be infeasible; obviously, this can 

happen regardless of whether the dataset is strictly positive or otherwise. In other 

words, DMUt’s activity must be dominated by some of the units in set GEN for
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AGBA LP-1 to be feasible. To illustrate this point, let us consider the following 

example.

DMU X I Y1 Y2

A 1 2 3

B 1 6 2

Table 5-9 : LP infeasibility with positive data

Both A and B are extreme-efficient and our data is strictly positive. 

Suppose our set GEN consists of unit A and we evaluate B15. For the oriented 

case, the corresponding oriented GBA models are feasible as the data is strictly 

positive. However, AGBA LP-1 for DMU B is infeasible as DMU B is not 

dominated by A.

5.5.2 Indeterminate ratios

The issue of indeterminate ratios does not arise when employing GBA to 

solve the additive CRS model as the input weights are constrained to be strictly 

positive, i.e., v > -hi.

5.6 GBA for solving the VRS additive model

The standard additive VRS model is shown below.

Maximise e's'  + e°s° + 0 Zj  
subject to ,

i '  + 0 + f i xJx J = x,
(VALP-1)

0 -  + T , A ]r J = Y,
7 = 1

0 +  0 +  2  X j  =  1
7 = 1

s ' , s ° , A j > 0 ,y  in 1,..., n

15 Note that this is equivalent to solving the standard additive CRS super-efficiency model (LP-10 
in chapter 2) for unit B as there are only two units in our dataset. Hence, the result presented here 
also applies for the standard additive CRS super-efficiency model.
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where, s ' , 5° are the input and output slack vectors respectively of dimension ml 

and m2 respectively; el and e° are conformable vectors of l ’s of dimension mx 

and m2 respectively.

The dual to the above model is shown below.

(VALP-2)

Minimise vX , + uY t + ft 
subject to ,
vX j + uY j + P  > 0,Vy 
v > +1 
u < -1  
P free

where, P  is the dual value of the convexity constraint and is unconstrained in 

sign.

The super-efficiency form of the additive VRS model employed in GBA 

to evaluate DMUt with respect to the set o f generators in GEN is shown below.

e' s ' + e° s° + 0 X j

(AGBA LP-3)

Maximise 
subject to ,
s ' + 0 + £  Z j X j = X,

j e  GEN

0 -  s c + Y * , Y, = r <
j e  GEN

0 +  0 +  2  X j  =  1
j e  GEN

s \ s °  ,Aj  > 0, j e  GEN

The dual to AGBA LP-3 is shown below.

Minimise vX t + uYt + P  
subject to ,
vX j + u Y j + P  > 0,Vye GEN 

v > +1 
u < —1 
P free

As in the oriented VRS models, we can use the reduced cost values at 

ft'* = (v*,u'*,Vq) to decide whether DMUt’s efficiency analysis is complete or 

that we need to identify a new generator. If an unit, DMUt is outside the partial

(AGBA LP-4)
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PPS, it will be identified by v*Xt +u*Yt + J3* < 0 or -  v*Xt —u*Yt -  ft* > 0 . As 

w<0, - u > Q  and hence its reduced cost RCt =- v* Xf  - u Y f  — 0* > 0 . It 

follows that when Max\RCj\> 0 , j e  U , one can compute ArgMax{RCj}, j e  U 

to identify a new generator. Also, when Max{R C .} < 0, y e U , the efficiency 

analysis for DMUt is resolved.

If we chose to use Rj for this model, we will have to take account of 0 *. 

First we note that for the units j in set GEN that are in the optimal basis of

- u ' Y - B *  - u Y .
AGBA LP-3, v ' X ,  + w*7,. + /T  = 0  or  J— ^— = ----------J—  = 1. For a

7 7 H v 'X j  v ' X j + f i '

DMUt that lies outside the partial PPS, RCt > 0; in other words,

1 -w*L -/?* „ , -u*Yl < ------- — {—  = R, or l < —------ - —= R , . This implies that the ratio values
v X t ' v X t + 0 '  1

-14%-p* -uYj
given by R,  = -----------    or R, -= ------- -—  can be used in GBA for the
5 y 7 v X j  7 v X j + 0 *

VRS additive model.

5.6.1 Infeasibility

The GBA additive VRS model will be infeasible when the corresponding 

CRS model is infeasible. As indicated in section 5.5.1, the additive CRS GBA 

model can become infeasible even when the data is strictly positive. Hence, the 

GBA additive VRS model can also become infeasible regardless of whether the 

data is strictly positive or otherwise.

5.6.2 Indeterminate ratios

If we chose to use RCj  in procedure FindNewGen, the question of 

indeterminate ratios does not arise. Even if we do opt for the ratio value 

-u'Y.-P*
R = ------    in FindNewGen, indeterminate ratios cannot occur as v > +1.

7 v 'X j
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5.7 Conclusion

In this chapter we extended the application of GBA to solve the oriented 

and non-oriented CRS and VRS models without the assumption of strictly 

positive data. We also set forth the technical challenges of LP infeasibility and 

indeterminate ratio that one can encounter when applying GBA to solve these 

models. Importantly, we have shown in this chapter that GBA can handle DEA 

models with weight restrictions by way of considering CRS and VRS additive 

models in which the weights are constrained to be non-zero. The upshot is that 

GBA can handle DEA models with additional constraints in terms of additional 

weight restrictions as long as the resulting model is linear.

Ways to resolve the technicalities are presented in chapters 6 and 7.
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6 WAYS TO RESOLVE THE LP INFEASIBILITY ISSUE IN 

GBA16

The purpose of this chapter is to present ways to handle the principal 

technical challenge of GBA, viz., LP infeasibility, for solving all the DEA 

models discussed in chapter 5 except for the output-oriented CRS model which is 

never infeasible as shown in section 5.2.1. The main tools developed are two 

penalty methods and a model specific clustering technique for the DfE dataset. 

The clustering technique presented in section 6.1.1 works when zeroes exist only 

in the input factors of a CRS dataset while the penalty methods can tackle 

infeasibility under all circumstances. Within the penalty methods, only the big 

penalty method can guarantee that whenever possible, DMUt is evaluated only 

against the units in set GEN adhering to the GBA procedure introduced in 

chapter 4. The small penalty method can only guarantee that DMUt will not 

evaluate with itself if it lies inside the partial PPS. Both the penalties invoke 

FindNewGen appropriately and are valid for use within GBA. For ease of 

computation, the small penalty method is to be preferred to avoid LP infeasibility 

in GBA.

6.1 Infeasibility in the input-oriented CRS model

The input-oriented CRS model can become infeasible only when there are 

zeroes in the data. In this section, we will examine two different approaches to 

handle infeasibility when using GBA for this model, viz., clustering and penalty.

6.1.1 Natural Clustering for the input oriented CRS case
The DfE model of primary schools in England contained zeros only in 

one input factor. While working with this dataset, we developed the following 

clustering approach.

16 Dr. Argyris had developed alternative LP models to handle the infeasibility issue in GBA. 
These models are not discussed in the thesis and are presented in Appa et al (2006b).
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When zeroes exist only in the input factors of a dataset, a simple method 

to avoid infeasibility is to cluster DMUs based on the input factors having a zero 

value for some DMUs and treat each cluster as a separate DEA problem. The 

number of clusters depends on the number of combinations of input factors 

having a zero value; in other words, the number of clusters depends on the 

different pattern of zeroes in the input factors that exist in a dataset. If r is the 

number of input factors that have a zero value for some DMUs( r<mx), the

number of theoretically possible input combinations/clusters is given by (2r - l ) .  

For a given problem, some of these clusters could be empty. We will describe the 

clustering technique using the following example.

DMU X I X2 X3 X4 Y1 Y2

A 4 0 0 0 3 6

B 6 0 0 0 14 8

C 7 1 0 0 8 9

D 3 9 0 0 7 11

E 4 0 6 0 15 2

F 6 0 0 8 13 5

G 8 0 1 2 10 10

H 4 4 9 9 4 6

I 8 2 0 5 14 12

J 5 6 7 3 12 12

Table 6-1 : Clustering DMUs based on zero valued input factors

The steps to be followed in employing the clustering technique are as follows:

i. Define the clusters:
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Identify the r input factors that have a zero value for some DMUs and 

the corresponding DMUs that have them. Cluster the DMUs in terms of the right 

combination of zero containing input factors that they uniquely share. This can 

be achieved as follows.

Let C be the set of inputs belonging to cluster c. Then DMUje c 

iff X rj = 0 when r e  C and X rj > 0 otherwise. This ensures that each DMU with

zeros for some inputs belongs to a unique cluster c . For our example in 6-1, we 

can see that only DMUs H and J have strictly positive (input) data and so all 

other DMUs have to be clustered based on the pattern of zero valued input 

factors. Three inputs, viz., inputs 2, 3, and 4 have zero value for some DMUs 

while input 1 is strictly positive for all DMUs. Hence, r = 3 and the possible 

number of clusters are(2r - l ) =  (23 - l ) =  7. However, there is no DMU with 

zeros for input 4 only. So there are six clusters in all and details of them can be 

seen in table 6-2 below.

Input

Cluster

c

{X2,X3,XA} {X3 ,XA) [X2 ,XA) {X2,X3} {*2} {*3} {X4)

DMUs

with

iff

r t C

A,B C,D E F G I None

Table 6-2 : Clusters in example 6-1

ii. Define the order in which clusters will be analysed:

The idea behind clustering is that in analysing the DMUs within a cluster, 

the zero valued inputs can be ignored because all of them share the zero value.
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This leaves the clustered DEA problems with strictly positive data so that the 

resultant GBA LP cannot be infeasible17.

To apply GBA with a clustering technique that achieves this we need to 

establish a hierarchy among clusters. This is done with the notion of a parent 

cluster. Cluster cf is a parent of cluster Cj if  Cy c  C, where, Cj and Cy are the

sets of inputs belonging to cluster c, and cy respectively. In example 6-1, cluster 

{X2 ,X3 ,X4}  is the parent cluster for all the other 5 clusters, while {X3,X4}  is 

a parent cluster for {Af3} but not for {X l} .  Note that a cluster can have more 

than one parent and also that a cluster with a parent can also be a parent of some 

other cluster. Figure 6.1 below illustrates this hierarchy. In it, each cluster is 

represented as a node and a directed arc ct —> Cj represents the fact that cluster

cf is a parent of cluster cy. Also, the number of layers in a clustered problem 

depends on the cardinality o f the clusters. For our example in 6.1, 

cluster {X2, ̂ 3 ,^ 4 }  is of cardinality 3 and is placed in layer 3. Clusters 

{X3 ,X4} ,{X 2 ,X 4}  and {X2,X3}  are of cardinality 2 and are placed in layer 2. 

Finally, clusters {X2}, {X3} and {*4} are of cardinality 1 and are placed in 

layer 1.

LAYER 3

LAYER 2

LAYER 1

Figure 6-1 : Underlying hierarchical structure of example 6-1

17 Clustering in this fashion cannot lead to infeasibility even if  the zero valued input factors 
within clusters are retained. The reason being that the units within a cluster share the s a m e  

p a t t e r n  o f  z e r o s  in them.
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iii. Apply GBA to DMUs within a cluster ignoring the cluster defining

inputs:

We apply GBA on the clustered DMUs first, taking one cluster at a time 

in a hierarchical order that ensures that a cluster is analysed only after all its 

parent clusters have been analysed. In other words, if R is the set of clusters 

remaining to be analysed, choose the next cluster c from R in such a way that 

there is no cluster c 'e  R that is a parent of c .

Applying this rule to example 6-1 implies that cluster {X 2 ,X 3 ,X 4}  in 

layer 3 of figure 6.1 containing DMUs A and B is the first cluster to be solved 

after which we can solve any one of the three clusters in layer 2. Suppose the 

second cluster to be solved is {X3, X4}  and the third one is {X2,X4}. Then the 

fourth can be [X2,X3]  or {X4} because neither has a parent in R at this stage.

As all the DMUs within a cluster have zero value for the same set of 

inputs, GBA can be applied to them after blocking the cluster defining inputs. So, 

for example 6-1, the first cluster with three inputs will give rise to a 1 input 2 

outputs DEA problem (by blocking inputs 2, 3, and 4). Similarly, while 

evaluating cluster {X2,X4}  after the parent node cluster is evaluated, we can 

block inputs 2 and 4.

iv. Define set GEN before applying GBA to each cluster:

Start applying GBA to a cluster without any parents - {X2,X3, X4}  in 

our example. For any such cluster, set GEN is empty at the initial stage of 

applying GBA. We can apply the usual heuristics to identify a generator among 

them. On the other hand, for any cluster with one or more parents, the union of 

GENs found in all the parent clusters defines the initial set GEN. This ensures 

that all the DMUs in the initial set GEN for cluster c also have zeros in the input 

factors contained in set C defining cluster c .

An alternative simpler way to define GEN for a cluster c is to append all 

the generators from the previous layers to set GEN. However, if we do this it is 

no longer valid to disregard input factors of set C in applying GBA to cluster c 

as some of the units in GEN will not share the same set of zeroes compared to set 

C . For example, while evaluating cluster {X2}, the only generators that need to
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be appended are from its parent nodes, viz., {X 2 ,X 3 ,X 4}, {X2,X3} and 

{X 2 ,X 4 \. We can then block input 2 while evaluating DMU G in cluster {X2}. 

However, if we also append the generators (if any) from cluster {X3, X4}  while 

evaluating cluster {X2}, we cannot block input 2 as cluster {X3,X4} does not 

contain DMUs that have a zero value for input 2. So this simpler method for 

creating GEN will end up with larger LPs.

v. GBA for the non-clustered DMUs:

After completing the efficiency analysis for all the clustered DMUs in the 

hierarchy described above, the generators identified from all the clusters will 

now form the starting set of generators when applying GBA to the DMUs that 

have strictly positive data - in our example for DMUs H and J. Apply GBA to 

this set of non-clustered DMUs to complete the analysis.

vi. Finer details of the clustering technique:

A simple way to program the technique is to divide the clusters into r 

layers based on the cardinality of the set of input factors in cluster ck. Let set K  

defining the layers have numbers {l,...,r}. Then f o r K , cluster ck is placed 

in layer^ if \Ck\ = %, where Ck is the set of inputs belonging to cluster ck and 

|Ct | denotes the cardinality of the set Ck. Now we apply GBA first to clusters in

layer r (provided there are any), followed by layer r - 1 and so on. The 

advantage is that there cannot be a parent for any cluster from its own or lower 

levels. Figure 6.1 illustrates the levels and hierarchy for example 6-1. Within 

each level there is still some choice in choosing the cluster to be evaluated which 

can be resolved arbitrarily. Efficiency analysis of clusters in the same layer can 

be carried out independently with only their parent generators forming the 

starting set of generators.

For the clusters at the highest level the following characteristics hold:

•  Given that zero is the best possible input value a DMU can have, 

if the cluster(s) in the highest layer have a single DMU, then it 

must be a generator.
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• If cluster(s) in the highest layer has more than one unit, as in 

example 6-1, we apply GBA within them to identify some 

generators as there must be at least one among them.

• We can complete the efficiency analysis of all the DMUs within 

these cluster(s) without reference to generators from outside the 

cluster as for the non-generators in them, only the generators in 

them can act as peers.

vii. Illustration of the clustering technique for example 6-1:

The first cluster to be looked at is the cluster {X 2 ,X 3 ,X 4}  in layer 3 

containing DMUs A and B. Upon evaluating cluster {X2iX 3 iX4}  using GBA, 

we find that both A and B are generators. The maximum size of the GBA LP 

solved at this stage is (3x2).

Now, we move to the clusters in layer 2 and there are three clusters to 

choose from. Suppose, we choose arbitrarily cluster {X3, X 4 \  containing units C 

and D. GEN={A,B} at this stage. While evaluating this cluster by blocking 

inputs 3 and 4, we find that unit D is a generator and unit C is inefficient with 

peers A, B and D. The maximum size of the GBA LP solved at this stage 

is (4x4). Suppose, we next choose cluster {X2,X3}  containing unit F. 

GEN={A,B} and the size of the GBA LP solved is (4x3). While evaluating F 

by blocking inputs 2 and 3, we find that the unit is inefficient and its only peer is 

DMU B. We then move to the only remaining cluster {X2,X 4}  in level 2 

containing DMU E. Given that GEN={A,B}, the size of the GBA LP solved is 

again (4x3). While evaluating E by blocking inputs 2 and 4, we find that unit E 

is a generator. As we have evaluated all the clusters in layer 2, we can move to 

clusters in layer 1.

Suppose we arbitrarily choose cluster {X2}. The starting set of 

generators is GEN={A,B,E} given by the union of generators found in 

analysing all its parents, viz., {X2,X 3,X 4}, {X2,X3}  and {X2,X4}. 

Evaluating unit G by blocking input 2, we find that the unit is inefficient and its 

peers are units A and B. The size of the GBA LP solved at this stage is (5x4).
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Now analyse cluster {X3}. Set GEN={A,B,D} and upon evaluating 

DMU I by blocking input 3, we find that the unit is inefficient and its peers are 

units A, B and D. The size of the GBA LP solved is again (5x4).

Now that the efficiency analysis of all the clustered DMUs is completed, 

we can move to the set of units with strictly positive data. The generators 

identified from all the clusters will now form the starting set of generators when 

applying GBA to the DMUs H and J. So, GEN={A,B,D,E}, and we find that 

unit J is a generator and unit H is inefficient and its peers are units A and J. The 

maximum size of GBA LP solved at this stage is (6 x 6).

6.1.1.1 Pros and Cons of the Clustering technique

Natural clustering is a simple technique to overcome the GBA LP 

infeasibility issue when the DEA dataset has few input factors that take 0 values. 

In the case of the DfE’s data on primary schools, only one of the school’s input 

factors, namely, % of students taking English as an Additional Language (EAL) 

has zero values. This means that we are dealing with just one cluster, viz., the 

cluster of DMUs having zero value for the input factor EAL. After completing 

the efficiency analysis of all the units in this cluster (by appropriately blocking 

the EAL factor), we can move to the cluster of DMUs having strictly positive 

data with a list of generators. This is similar to the hierarchical decomposition 

principle introduced by Barr and Durchholz (1997) in that we decompose the 

original problem into smaller sub-problems; however, the sub-problems are 

trimmer as we block the (common) input factors having zero values within each 

cluster and the efficiency analysis does not require a second phase. Hence, the 

clustering method can be seen as a hybrid of the decomposition techniques 

described in Barr and Durchholz (1997) and Korhonen and Siitari (2009).

The drawbacks of the natural clustering technique are obvious. First, the 

number of clusters can quickly explode as there is a combinatorial escalation. 

Secondly, the hierarchical order to evaluate clusters as presented for the example 

above, requires the parent generators to be stored and recalled properly in 

different layers. This could be tedious and taxing on the run time although
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parallel processing as discussed in Barr and Durchholz (1997) could possibly 

alleviate it. However, the issue of recalling generators appropriately is not a 

necessity of the clustering technique, i.e., one can instead have all the generators 

identified so far (and not just from its parents) from all the previous layers in set 

GEN when evaluating any cluster.

In addition, we showed in section 5.1.1, that GBA LP infeasibility can 

occur in the input-oriented CRS model when there are zero values in the output 

factors. Clustering as explained above will not work in the case of zeroes in the 

output factors. This is because, in case of inputs factors, zero is the best possible 

value a DMU can have while it is the worst value for any output factor (assuming 

that the data is non-negative). Whether a DMU with a zero value for certain 

output factors is a generator or not depends on the input-output correspondence 

of its other factors relative to all other DMUs. An example elucidating this was 

shown in table 5-2.

In the next section, we present the penalty method by which the GBA LP 

infeasibility issue can be resolved regardless of which factors contain zeroes. 

This is achieved by introducing DMUt into the coefficient matrix along side the 

generators but penalising its use.

6.1.2 Penalty methods for the input oriented CRS case

6.1.2.1 Big Penalty or Big-M method

The Big-M method avoids GBA LP infeasibility by introducing DMUt 

into the coefficient matrix of generators. Its usage carries a very large penalty M 

thereby ensuring that DMUt compares with itself iff there is no feasible solution 

using only the set of generators in GEN. In other words, the modified GBA 

applied to DMUt behaves like the original GBA super-efficiency model (GBA 

LP-1) when there is a feasible solution to it and compares with itself when there 

isn’t. This technique was first employed by Banker and Chang (2006) in the 

output-oriented VRS super-efficiency model for the purpose of identifying 

outliers. Here, we attempt to quantify M in the case of the input-oriented CRS 

model.
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Recall that GBA LP-1 is defined as follows.

Minimise Q't 
subject to,
3 ' ^ -  (GBALP-i)

jeG E N

0 + X > / y >K,
jeG E N

0't free; Yj ^ 0 , j e  GEN

The modified GBA LP, MGBA LP-1, to avoid infeasibility in the input- 

oriented CRS super-efficiency model is shown below.

Minimise 0{+ ^  AjQ+^M
jeGEN

subject to,

6ftX t -  £  XjX j -  XtX t > 0 (MGBA LP-1)
jeGEN

0 + £  Z ft+ W Z Y ,
jeGEN

o', free; Xjt Xt > 0; j  e GEN

The only difference between MGBA LP-1 and GBA LP-1 is that, along 

with the list of generators, DMUt is included in the coefficient matrix in MGBA 

LP-1 with penalty M in the objective function. This results in an additional 

column in MGBA LP-1 compared to GBA LP-1.

The dual to MGBA LP-1 is presented below.

Maximise uYt 
subject to, 
v X = l

, , ^ (MGBALP-2)
u Yj -  v'Xj < 0, Vy e GEN v }
u'Yt -  v'Xt < M  
u , v'>0

*

Obviously, MGBA LP-2 has an extra row compared to GBA LP-2.

The following two lemmas are important in proving theorem 6.1 which 

quantifies M.
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Lemma 6.1: Applied to DMUt, GBA LP-1 results in infeasibility only if  DMUt 

lies strictly outside the partial PPS spanned by the generators in set GEN.

Before proving lemma 6.1, we illustrate in figure 6-2 what an infeasible 

solution to GBA LP-1 looks like. In section 5.1.1, we had presented a two DMU 

DEA problem in table 5-1, wherein the GBA LP for DMU B is infeasible when 

evaluated against the generator DMU A. The corresponding illustration is shown 

in figure 6-2 below.

The partial PPS while evaluating DMU B is the region to the north-east 

of the generator DMU A and the boundary of the partial PPS is shown using 

dashed lines to the east and north of A. The radial projection direction for DMU 

B is along the XI axis as its value for X2 is 0. The corresponding GBA LP is 

infeasible as it is not possible to reach the boundary of the partial PPS by means 

of this projection direction.

PLANE OF Y1 = 24

X1 * XI AXIS SCALE
1 cm = 2cm

Figure 6-2 : Graphical illustration of infeasibility

Proof: For there to be a feasible solution to DMUt, its radial projection must lie 

on the boundary of the partial PPS. Suppose DMUt is not outside the partial PPS.
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In this case, a linear combination of some of the generators dominates DMUt 

leading to 0 < O'* < 1. So unless a DMUt lies outside the partial PPS, it cannot 

effect an infeasible solution to GBA LP-1. Q.E.D.

Note that if DMUt is outside the partial PPS, GBA LP-1 can be feasible 

with O'* > 1, or it may be infeasible as illustrated in figure 6-2.

We now proceed to establish a value for M . Let be the largest input 

value, the smallest positive input value, the largest output value and 

the smallest positive output value among all the inputs and outputs of all the 

DMUs in the dataset.

Formally,

= M a { l .} ,  for r = l,...,ml; j  = l9...9n;

X+n =M in{Xn)>  0 ,fo r r = 1,...9ml\ j  = 1,...,«;

Fmax =M*x{?;y.},for 5 = l9...9m2; j  = 1,

7 ^  = Min{rjy.}> 0, for s = l9...9m2; j  = l9...9n;

Lemma 6.2: The maximum finite value that O'* can take as a solution to GBA 

LP-1 is given .
•̂ min m̂in

Proof: DMUt can be positioned inside or outside the partial PPS. Lemma 6.1 

demonstrates that for any DMUt that is inside the partial PPS, GBA LP-1 is 

feasible with a maximum finite value of O'* = 1. Should O'* take a finite value 

when DMUt lies outside the partial PPS, GBA LP-1 has to be feasible, i.e., all 

the constraints must be satisfied simultaneously. If y* and O'f satisfy the most 

restrictive of the input and output constraints in GBA LP-1, they must satisfy all
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the m constraints. Hence by focusing on what could, hypothetically, be the most 

restrictive situation, we can work out the maximum value of O'*.

The “extreme” situation with the ml input constraints occurs when

•Af̂ in = X /t a n d = X /g, g e  GEN for some input factor r' \ i.e., DMUt has

the smallest positive input value in the dataset for a certain input factor r ' and 

the overall maximum input value happens to occur for a DMUg in the set GEN, 

also for the same factor r ' . The “extreme” situation with the m2 output

constraints occurs when = Ys>g, g  e  GEN and Y ^  = Y/t for some output

factor s ' ; i.e., DMUt has the maximum output value for a certain output factor 

s ' and the overall smallest positive output value occurs for DMUg in set GEN
1 ftfor the same output factor.

Algebraically, this reduces to the following.

Y .
y. Y . > Y ’ => y.
• J s g  — s t  • J — y  ’

*'g

e ’. x , ,  > r jX ,g^ 6 ; > ^ x r j :
^  r't

where, X r. , = X ^ ,  Y,, = ,X , g = . Y,g = .

Since the sense of the objective function is minimisation, the largest possible 0'

value is given by M ax{e’’} = ^ - x ^ - .  Q.E.D.
X  ■„ Y-„■ nun m m

Now we show that whenever there is a feasible solution to GBA LP-1 

there is always a cheaper solution to MGBA LP-1 than the one with Xt = 1. We 

show in Appendix 3 that it not possible to have an optimal solution to MGBA 

LP-1 with 0 < Xt < 1, i.e., either Xt = 0 or Xt = 1. This is valid for the penalty 

methods used throughout this chapter.

18 Note that both the “extreme” conditions can occur simultaneously such that DMUt does not 
dominate (any of) the generator(s) in set GEN.
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X  Y
Theorem 6.1: In MGBA LP-1 the penalty value of M  = —™ x - ^ -  ensures that

■^min ^min

DMUt evaluates with itself only if the corresponding GBA LP-1 is infeasible.

Proof: The proof can be constructed by comparison with the following two 

cases where GBA LP-1 is feasible for DMUt.

Case 1: DMUt is inside the partial PPS.

There is always a feasible solution with Xt = 0 and 6 * < 1 which is cheaper than 

the solution with Xt =1  for which the overall objective function value is

m + o; .

Case 2: DMUt is outside the partial PPS but GBA LP-1 is feasible.

By lemma 6.2 we know that the maximum value O'* can take for any DMUt is 

X  Y— âx_x _^L. Since the X j’s of the generators in the coefficient matrix have a 0
^ m in  ^min

value in the objective function, if Xt = 0 , the maximum possible objective

X  Y
function value in this case is —^ Lx - sf L= M . In contrast, suppose DMUt tries

■Xmjn ^rnin

to evaluate with itself in MGBA LP-1 even though GBA LP-1 for DMUt is 

feasible. It is easy to see that O'* = Xt = I in this case. However, Xt = 1 has a 

penalty of M in the objective function so that the overall objective function value 

becomes M + 1. So the solution with Xt = 0 is cheaper. Q.E.D.

It is a simple task to arrive at the value of M from the data and after 

computing it, we can use MGBA LP-1 to carry out the efficiency analysis for all 

the DMUs using GBA as described in 4.3.319. Whenever DMUt evaluates with

19 Note that die value of M  — — X needs to be computed only once from the data at
X  ^niin

the beginning of the analysis.
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itself because there is no other feasible solution, the objective function value will 

be greater than 1 indicating that the unit lies outside the current partial PPS. In 

such a case, as with the usual GBA procedure, we would invoke the 

FindNewGen procedure to identify a new generator among the units in U . 

Hence, the GBA procedure is unaffected except for the LP being solved for 

DMUt.

Note that one can obtain a tighter bound M ' on M  if instead of 

identifying the smallest and largest input and output values across the whole 

dataset, one looks at the smallest and largest values within each input and output 

factor20. However, it is obvious that M  > M ' and calculating M is easier than M' 

as it circumvents searching for the maximum ‘ratio’ value in each input and 

output factor. Hence, we retain the penalty for including DMUt in the coefficient 

X  Ymatrix as M  = — even though it may not be the tight most bound.
•̂ min m̂in

6.1.2.2 Small-m method

A valid data independent penalty for Xt can be any positive value, say,

0.1. However, at this penalty, we cannot guarantee that DMUt will evaluate with 

itself iff the corresponding GBA LP-1 is infeasible. We can only guarantee that, 

even at this small penalty, DMUt will not evaluate with itself if it lies inside the 

partial PPS. For the purpose of GBA this is enough because all that is needed at 

steps 1.3 and 1.4 is a way to decide when to invoke procedure FindNewGen 

which is required whenever DMUt is outside the partial PPS.

The reason that this penalty is valid for our use is that when DMUt 

evaluates with itself at a small penalty of say 0 .1, its overall objective function 

value is 1.1 > 1 indicating that the unit lies outside the current partial PPS. In 

such a case, as with the usual GBA procedure, we would apply the FindNewGen 

procedure to identify a new generator among the units in set U . Hence, the GBA 

procedure is unaffected except for the LP solved for DMUt.

A tighter penalty to be computed is given by,

M '=M ax^jd- } > 0; j  = 1,...,n;k = 1,...,n; j  * ,Ysd>0;c = 1,...,n;d = 1,...,n;c *
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6.2 Infeasibility in the input-oriented VRS model

6.2.1 Big-M method

As seen in the previous chapter in section 5.3, regardless of whether the 

data is strictly positive or not, the input-oriented VRS model (GBA LP-5) can 

become infeasible. We can handle the infeasibility issue by employing the Big-M 

method developed in the previous section. Theorem 6.2 helps us to quantify the 

value of M for the input-oriented VRS model which turns out be the same as M 

that was quantified for the CRS counterpart. Before showing these results, we 

present below the modified version of GBA LP-5, the Big-M incorporated GBA 

super-efficiency model, to be used to solve the input-oriented VRS model.

Minimise 0 ' + y^/1,0 + XtM
jeG E N

subject to,
e ; x , ~  ^ A jX j - A , x ,  z  o

(MGBALP-3)
o + ^ A JrJ + A , r , > Y,

jeG E N

0 + + A, =1
jeG E N

6't free\ , Xt > 0\ j  e GEN

The only difference between MGBA LP-3 and MGBA LP-1 for the CRS 

counterpart is the additional convexity constraint present in the VRS model. 

Compared to GBA LP-5, MGBA LP-3 has one additional column.

X  Y
Theorem 6.2: In MGBA LP-3, the penalty value of M - —™ x - ^ 5- ensures

m̂in

that DMUt evaluates with itself only if the corresponding GBA LP-5 is 

infeasible.

Proof: Without loss of generality, choose a DMUg (actual or obtained through a 

convex combination of some generators) in set GEN as a comparator unit for 

DMUt. Let the input and output vector of DMUt and DMUg be represented by
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{X t , Yt ) and (Xg, Yg) respectively. Assume that GBA LP-5 for DMUt is 

feasible; a necessary condition for this is Yg > Yt as indicated by the output 

constraints. Now using simple algebra, we can see from the set of input

«. \X rg\
constraints that an upper-limit on 6, is given by 6t < w , where, w = j

21. Given that the sense of the objective criterion is minimisation, it is easy to see 

that the maximum O'* value that was quantified for the input-oriented CRS

model, viz., Max\p'*} = ~ ~ r ~x , will also hold for its VRS counterpart as
rmn *  min

X  Ymax w  max
VV ̂  ■

m in min

It is now straight-forward to see that the proof for theorem 6.1 can be 

easily adapted to prove theorem 6.2. That is, at the penalty value of 

X  YM  = —es«_x—5H2- f DMUt will evaluate with itself only if the corresponding
mm m̂in

GBA LP-5 is infeasible. Q.E.D.

So to avoid infeasibility in applying GBA in the input-oriented VRS case,

X  Ycalculate the penalty M from the data by finding —*p_x _2£*_ and use MGBA
-̂ min -̂ min

LP-3 to solve the model using GBA. The GBA procedure described in chapter 5 

for solving VRS models essentially remains the same except for the LP being 

solved for DMUt.

6.2.2 Small-m method

Here also, the penalty can take any positive value, say, 0.1 and everything 

works out exactly as it did for the CRS case. Thus, at this penalty, we cannot 

guarantee that DMUt will evaluate with itself iff the corresponding GBA LP-5 is

21 As we assume that GBA LP-5 is feasible, if X rt =  0 ,  then X rg — 0 .  Hence, while 

0
computing w , we ignore — . The upshot is that w is determinate.
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infeasible. We can only guarantee that, DMUt will not evaluate with itself if it 

lies inside the partial PPS. Unlike the Big-M method, DMUt may compare with 

itself if it lies outside the partial PPS even if the corresponding GBA LP-5 is 

feasible. The conclusion is that even at this data independent penalty value for 2,, 

the GBA procedure is unaffected except for the LP solved for DMUt.

6.3 Infeasibility in the output-oriented VRS model

As seen in section 5.4.1, regardless of whether the data is strictly positive 

or otherwise, the output-oriented VRS super-efficiency model, GBA LP-7, can 

become infeasible. To handle infeasibility in this case we can employ the Big-M 

technique but a penalty value has to be calculated in this context. Banker and 

Chang (2006) article introduced a modified super-efficiency model with penalty 

for DMUt calculated in the context of identifying outliers in the data. They used 

an output-oriented VRS model for this purpose with a penalty of ‘- 2 ’ for DMUt. 

Although this penalty is also valid for our purposes, in this section we will try to 

develop an improved penalty meaning a better lower bound and if possible the 

infimum, for DMUt in the context of GBA which ensures that DMUt compares 

with itself iff the corresponding GBA LP-7 is infeasible. For arriving at this 

value, we present below the modified version of GBA LP-7.

Maximise Tj'+ ^  pjO + p tM
jeGEN

subject to,
0 +  £  p ,X t +p,X , <x,

(MGBA LP-4)
n X -

jeGEN

0 + pj +pt =1
jeGEN

rft free\ p j , p t > 0 ; j e  GEN

We start with the simplest case wherein the data is strictly positive. The 

following theorem uses lemma 5.3.

Theorem 6.3: When the data is strictly positive, the penalty at which any DMUt 

can be brought into the coefficient matrix of the set of generators such that it 

evaluates with itself iff the corresponding GBA LP-7 is infeasible is M = -1.
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Proof: From lemma 5.3, we know that when GBA LP-7 for DMUt is 

feasible, r ff > 0 . So there is a solution to MGBA LP-4 with p t = 0. Since the 

coefficients of p } in the objective function are 0 , the overall objective function 

value in MGBA LP-4 in this case is tj'* > 0 . In contrast, when DMUt compares 

with itself upon solving MGBA LP-4, we can see that 7 '* =1 and p * = \  and 

assuming a penalty of M = - l  for p t , the overall objective function value 

becomes 0. Since the sense of the objective function is maximisation, it is clear 

that the former option is better. So p*=  0 unless GBA LP-7 is infeasible for 

DMUt. Q.E.D.

In fact, M = -1 is the best lower bound possible when the data is strictly 

positive to ensure that DMUt evaluates with itself iff the corresponding GBA LP- 

7 is infeasible. Any value of the penalty in the range 0 < M  < -1 , although valid 

in the context o f evaluating units using GBA, is problematic. This is because 

when DMUt lies outside the partial PPS, if a feasible solution exists, 77'* < 1.

The next task is to compute a value for M when the data has some zero 

values in them. Fortunately, M = -1 will also hold in this case but with a rider. 

The only awkward case is when the objective function value is 0 and there are 

multiple optimal solutions to GBA LP-7 for DMUt. This case is illustrated using 

the example in table 6-3 below.

DMU X I Y1 Y2

A 10 2 24

B 10 0 36

C 16 8 28

Table 6-3 : Penalty in case of the output-oriented VRS model

Using random weights (3.6, 1, 1) for input XI, outputs Y1 and Y2 

respectively and v0 = 0, we can see that DMU B is a generator. Suppose, we

now evaluate DMU A against DMU B in set GEN. The resulting MGBA LP-4 

for DMU A is shown below:
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Maximise rfA + pB0 -  pAl 
subject to,

0 + +pA\0<\§
n'A2 -  Pb® - f t 2 SO

^ 2 4  -  p B36 -/0,24£O

A. + =1
Pb’Pa * 0

Clearly, an optimal solution to the above LP “Ha ~ Pb ~ P a ~  ̂

with overall objective function value 0. The optimal weights are v* = 0 and 

u* -  (0.5,0) with v* = 0 . Another possible optimal solution to the LP is

ti'a= 0, p*B = 1, p \  = 0 with the same optimal weights. The objective function 

value in this case is also 0. At either solution, because of the strong duality 

theorem, v'*XA + vj = 0 and RA is indeterminate. For both solutions, the 

reduced cost value of A, RCA = 1 > 0 indicating that the unit lies outside the 

partial PPS.

This is a special case as there are multiple optimal primal solutions which 

allow a DMUt that is outside the current partial PPS to evaluate with itself at the 

penalty of -1 even when there is an alternative reference set among the 

generators in GEN to compare with. However, procedure FindNewGen is 

invoked appropriately as RCA > 0.

It is pertinent to note that if we had introduced a penalty of any value less 

than -1 for DMUt, then in the above example, the only optimal solution to the LP 

would be 7j'A = 0, p B = 1, p \  -  0. Hence, it must be clear from the example that 

at the penalty of say ‘-2’, a DMUt would evaluate with itself iff the 

corresponding GBA LP-7 is infeasible.

6.4 Infeasibility in the CRS and VRS additive models

As the sense of the objective function in AGBA LP-1 (presented in 

chapter 5) is maximisation and we are maximising the total slacks present in 

DMUt, the penalty (coefficient of Xt in the objective function) can be any 

negative value. We assign a small negative penalty of say -1 toX( so that when
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DMUt evaluates with itself, its reduced cost value is +1 indicating that it lies 

outside the partial PPS and FindNewGen is invoked.

The aforesaid discussion on penalty for the GBA additive CRS model 

holds for the VRS model as well; i.e., the penalty for DMUt can be any negative 

value and we assign a value of -1 for a clear indication of the location of DMUt 

w.r.t the partial PPS.

6.5 Conclusion

In this chapter we presented ways to handle the principal technical 

challenge of LP infeasibility in all the DEA models except the output-oriented 

CRS model which is never infeasible. In chapter 7, we will discuss the remaining 

two technical challenges, namely, tied ratios and indeterminate ratios. We will 

also present a novel closed-form solution approach to obtain a positive set of 

multiplier values for the generators in the dataset.
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7 CLOSED-FORM SOLUTIONS TO RESOLVE TIES AND 

CONSTRUCT NON-ZERO MULTIPLIER VALUES

In the previous chapter we saw how to deal with the principal technical 

challenge of infeasible LPs when applying GBA. In this chapter, we will 

examine the issues of ties and indeterminate ratios.

We saw in chapter 4 and 5 that ties and indeterminate ratios are 

problematic as in both cases one cannot identify a new generator immediately 

upon applying the FindNewGen procedure. In this chapter we present novel 

closed-form solutions to resolve both ties and indeterminate ratios in the case of 

oriented CRS and VRS models22. Closely connected to these, we also present 

closed-form solutions to obtain positive multiplier values for the generators 

under CRS and VRS assumptions.

7.1 Indeterminate ratios

7.1.1 Dula’s ratio

One way to avoid indeterminate ratios in the CRS case is to use the ratio 

test discussed in Dula (1998). To identify generators at the optimal weights

v*.Ar
(v*,w*), Dula (1998) introduced the r a t i o , =---------   - ,V /e  U +; where

eXj

j g U + if RCf =u* Yj - v * X > 0 . SinceMax\RCi }=0, it follows that if
J  J J  J j e N / U

j  g U + then j e U . So, the set U+ c l /  contains those status unresolved units 

that lie strictly outside the current partial PPS. The vector e is a vector of 1 ’s of 

dimension ml and eXj denotes the sum of inputs of DMUj. As eX} > 0 ,Vy,

evaluating R? cannot lead to indeterminate ratio for any DMUj. Dula (1998) has

shown that using R f  guarantees the identification of a new generator. In

22 Ties or indeterminate ratios do not pose a problem in the case of CRS and VRS additive 
models as the weights in the additive models are constrained to be non-zero.
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particular, Dula (1998) proved that \£ ArgMaxfa.1? }=DMUf and is unique, then
JeU+

DMUf is a new generator23.

Dula’s ratio R? can be naturally extended to the case of the input and 

output oriented VRS models. Assuming that the optimal weights at a particular 

iteration are (v*,i/*,i/j) and (v*,w*,vj) for the input and output oriented VRS 

models respectively, the original and Dula’s ratios in each case are presented in 

table 7.1 below.

Models Original Ratio Dula’s Ratio

Input-Oriented VRS
u 'Y j+ u;

Rj= i  \ V j e V
1 v 'X j

n u*Y,.+u;-v*X..
Rf= J ' .V j e U '

•X ,

Output-Oriented VRS
u 'Y j

'  . y j e Uv X j  +v0
„ u 'Y j- iv 'X j  + Va)

R? = 1 ' 1 ,V JeU '
1 eXj

Table 7-1 : Original and Dula’s ratio for the oriented VRS models

As in the CRS case, there are two ratios, viz., Rj and R ? , that can be

evaluated at an optimal solution to the corresponding VRS GBA LP, and one can 

potentially24 identify two different generators with one LP solution although only 

one is guaranteed.

In GBA, we do not employ Dula’s ratio R^ for the following reason. 

While overcoming the problem of indeterminate ratios, R f  does not resolve the 

issue of tied ratios for which Dula proposes solving a second LP. We will show

_ u Y j - v X j u Y i
23 As shown in Dula (1998), the ratio R , = --------------------  can be reduced to R , = —------;

1 eXj  1 v'Xj

where, v =  v* +  R ^  and R ^  = Max{R° }, j  E U +. Hence, the optimal weights for the 

generator DMUf employing his ratio is (v', u*) and not (v*, u*).
24 If ArgMax{Rj }= /  and ArgMax\Rj} =  / 'w h e r e /  ^  / '  , then both /  and / '  are

j e U *  j e U

generators assuming that the ArgMax is unique in both cases.

131



in the next section that an indeterminate ratio value of Rj does not pose a 

problem in itself.

7.1.2 Indeterminate ratios and their association with tied ratios

In section 4.5 we showed why ArgMax{RCj} cannot be used to identify a 

generator for the CRS models. However, RCj values can always be used to

decide when to invoke FindNewGen. This is because one of the dual LP 

constraints is the reduced cost constraint given by 

RCj = uYj -  vXj + P  < 0, Y/ g G EN , where, P  (dual value of the convexity 

constraint) is unconstrained in sign under VRS and p  = 0 under CRS25. We 

showed in chapter 4 and 5 that the efficiency analysis of DMUt is complete if the 

dual LP constraints are satisfied for all the n units in the dataset, i.e., if  the 

condition RCy. = w*Fy. + / T  < 0,V/ at (v*,w*,/T) is satisfied. If the

above condition is not satisfied, then the status of DMUt remains unresolved and 

we apply procedure FindNewGen to identify a new generator.

Suppose, Afax{RC,}>0 and RCa > 0 for some unit a e U .  Then
je U  J

a e U +, i.e., unit a lies outside the partial PPS. So, the reduced cost values RCj 

also help us to determine the position of the units in U w.r.t. the partial PPS.

Based on this we connect the problematic case of indeterminate ratios to 

ties in the value of ArgMax{Rj}. Note that if for a DMUa, its ratio value is
j e U

indeterminate, then Ra = ; this is the best possible value fori^..

Let us first consider the CRS case26. We use the RCj values of the units 

in U to ascertain if the efficiency analysis of DMUt is complete. If it is not, i.e.,

u Y .
if RCa > 0 for some a e U , the ratios,  ̂ , j e U , are evaluated. If

v X ,

25 To avoid clutter, we simply let P  to represent the dual value of the convexity constraint in the 
VRS models irrespective of the orientation.
26 We know that in the CRS case the ratio R j  remains die same regardless of the orientation.
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ArgMax{Rj}= DMUf is unique, regardless of whether Max{Rj}= Rf  is finite
j e U

or otherwise, DMUf is a generator. Else, when ArgMax{Rj} is not unique,
je U

regardless of whether McocIr ^  is finite or otherwise, we are required to break
MU 1

this tie in ArgMax\Rj} to identify a generator.
MU

As to the VRS models, we saw in section 5.3.1 that RCj can be used to 

decide when to invoke FindNewGen and ArgMax{RCj} can be used to identify a
MU

new generator. So the only issue here is how to break ties in ArgMax\RCj}.
M U

In conclusion, indeterminate ratios in themselves do not pose a problem 

and can be dealt with in the same fashion as dealing with tied ratios. However, 

even when we use RCj and do not have the problem of indeterminate ratios, ties

have to be resolved to identify a new generator. We will see in the next section 

how to resolve tied ratio or tied reduced cost values using a novel closed-form 

solution approach.

7.2 Ways to resolve ties

From the previous section, we know that the issue of tied ratio or tied 

reduced cost values can only occur among DMUs that are strictly outside the 

current partial PPS. The task is to identify one generator among the tied units. 

Tie breaking plays a crucial role in solving DEA models using faster algorithms 

like GBA and BuildHull. Although, Dula (1998) in his extensive experimental 

study on solving DEA models remarked that ties do not occur commonly while 

using BuildHull, it was found in our experiments using GBA and BuildHull that 

ties did occur both in real and simulated datasets .

27 In chapter 8, where we present the computational results, we will see that ties involving several 
hundred units occurred while solving a ‘real’ dataset using BuildHull and GBA.
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7.2.1 Dula’s approach to resolve ties

Dula (1998) proposed a simple approach to identify one generator among 

the tied units. This approach is to consider the tied units as a separate smaller 

DEA problem and apply BuildHull or any other algorithm for solving the smaller 

DEA problem to resolve the status of the tied units. The generators among the 

tied units are then appended to set GEN while DMUt (if not resolved) is 

evaluated again in the next iteration. Although the approach is entirely valid in 

identifying a new generator among the tied units, it has two drawbacks. First, we 

would need to solve at least one additional LP to identify a generator among the 

tied units. Secondly, the weights obtained by solving the additional LP to identify 

a generator among the tied units may not be globally valid to prove its status as a 

generator. This is because the new weights that prove that one among the tied 

units is a generator cannot guarantee the same when all the units in the dataset 

are considered. In other words, the new weights have a local validity but may not 

possess a global validity. The second drawback is illustrated in figure 7-1, the 

data for which are provided in table 7-2 below.

DMU X I Y1 Y2

A 1 10 8

B 1 7.5 11.5

C 1 7 11.5

D 1 6 11.5

E 1 5.5 11.5

F 1 5 11.5

G 1 3 11.5
Table 7-2 : Data for Dula’s tie-breaking approach



_ D _ . _

PLANE OF XI = 1

B#

u Y1  ►
Figure 7-1 : Graphical illustration of Dula’s tie-breaking approach

Consider the above DEA problem with 2 outputs (Y1 and Y2) and a 

single standardised input (XI). There are seven efficient units in total and two 

generators overall, namely, A and B. Suppose at a particular iteration, DMUt = B 

and GEN = {A}. The current partial PPS is the region to the south-west of A and 

the boundary of the PPS is described by dashed lines to the west and south of A. 

Upon evaluating B against A, the radial projection of B falls on the boundary line 

at B’ to the west of A defined by the set of optimal weights 

n \  = (v2, u*i) = (0.695, 0, 0.0869). Dula’s ratio R f  would modify the set of

optimal weights to n'2 =(v'2, u*2)={\., 0, 0.0869) and at n '2, Max{/^D}= 1 and

ArgMax[R]D}={B,CyD ,E , F iG}. Let the set of tied units be denoted by
je N

TU = {B,C,D,E,F,G}.  Following Dula’s approach, we will consider the units 

in TU as a separate DEA problem. If we apply GBA to this DEA problem to
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identify a generator, we need to choose one unit to be GEN and another to be 

DMUt. Suppose we arbitrarily choose DMUt to be B and GEN to be C28. The 

partial PPS is the region to the south-west of C and the boundary of the PPS is 

described by dashed-dot lines to the west and south of C. Upon evaluating B 

against C, the radial projection of B falls on the boundary line to the south of C at 

B” defined by the set of optimal weights n \  = (vj, u\)=  (0.933, 0.133, 0).

Dula’s ratio R® would once again modify these set of weights to 

* j = ( v3> «3*)=(1. 0133» 0)- At *s'. M k {r'°} =  1 and ArgMax{R'jD}={B}.
je T U

Hence, applied locally to the units in TU, is a valid set of weights to prove 

that unit B is a generator29. But when we apply the weights 7t[ to all the n units 

in the dataset, Mox{k'z?}= 1.33 and ArgMax^R'^ } = {A}. Hence, does not
j e N

have a global validity to prove that unit B is a generator. In other words, weights 

, although valid for the 6 DMU problem, are not valid dual values for the 

original 7 DMU problem.

7.2.2 Closed-form solutions to resolve ties

Before we present the closed-form solutions, it is important to recognize 

its main limitation. By using the closed-form solutions, we cannot guarantee to 

only identify generators from the tied units; rather, the approach can only 

guarantee to identify Pareto-Koopmans (P-K) efficient units among the tied 

units. We know that both extreme-efficient and efficient but not extreme units 

are P-K efficient. In other words, the closed-form solution may not guarantee that 

the set of the generators is the minimal subset as it could include Pareto- 

Koopmans efficient units that are not generators. Although the GBA originally 

introduced in chapter 4 evaluates units only against the set of extreme-efficient 

units (generators), it is understood that as long as the units are evaluated only 

against P-K efficient units, we will obtain the correct efficiency scores, slacks 

and set of peers for all the units. P-K efficient units other than generators are

28 Note that some other arbitrary choice of DMUt and GEN could lead to another tie upon 
evaluating the LP. For example, choice of DMUt={C} and GEN={B} leads to another tie.
29 This also dictates that DMU B must be a generator for the original 7 DMU problem.
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superfluous but their inclusion in GEN, though unnecessary, is un-harmful. 

Moreover, it is well-known (see, Thrall, 1996b; Cooper et al, 2007) that efficient 

but not extreme units rarely occur in real datasets. This was also the case in our 

experience with solving several hundred real and simulated datasets and in 

earlier works in Barr and Durchholz (1997) and Dula (1998). Because of the 

(almost) total absence of efficient but not extreme units in a dataset, using the 

closed-form solutions, we will expect to identify a generator among the tied 

units. This was indeed the case in our extensive experiments.

In this section we propose closed-form solutions that not only identify P- 

K efficient units among the tied units, thereby circumventing the need to solve 

additional LPs, but also such that the new set of weights are strictly positive and 

globally valid. First, we will consider resolving ties for the VRS case and 

subsequently the CRS case. The reason for this order is that the closed-form 

solution for the CRS case builds upon the solution for the VRS case. Orientation 

does not affect the logic of the procedure and the closed-form solutions are valid 

for the additive models as well. However, tied ratio or tied reduced cost values 

do not pose a problem when applying GBA (or BuildHull) to solve CRS or VRS 

additive models as all the units tied at the maximum value are guaranteed to be 

P-K efficient. This is a consequence of the fact that the weights from the additive 

model are constrained to be non-zero.

We note in passing that a naive option upon encountering a tie is to move 

DMUt to U and choose another DMU to be evaluated. However, this is 

obviously a waste of computational time, and importantly does not guarantee that 

one would not encounter a tie again while solving for any other DMU in U 

including unit t when it is selected again. By employing our closed-form 

solutions, we are able to guarantee that among the tied units we will identify one 

P-K efficient unit (in practice, generators) and that the new set of weights are 

strictly positive and globally valid. Because of its conclusive nature, we employ 

the closed-form solutions to resolve ties in GBA.
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7.2.2.1 Closed-form solution to resolve ties under VRS

Suppose we had arrived at the optimal set of weights n * = (v*,w*,/r)

where, p* is the dual value of the convexity constraint. Let 7t*f  represent the

weights of the input and output factors alone. So K*f  = (v*, «*) and

Jt* -  (n*f ,p * \  If n*f  > 0 , we know that every tied unit is P-K efficient; we can

move all the tied units to set GEN and proceed to evaluate DMUt again (if not 

resolved) against the augmented set GEN. The problem of ties arises only when 

Kf  is not strictly positive.

The closed-form solution computes a set of weights tv  with Jvf  > 0 from

n* that finds a P-K efficient unit among the tied units. The weights n  are 

constructed by adding a carefully scaled version n s of n* to unary weights (all 

input and output weights are equal to 1 with the dual value of the convexity 

constraint p x fixed at 0) n x. So n f  = 7Vsf  + 7Vxf  which is obviously positive. More

importantly the scaling used in constructing 7VS is such that using n  to find a 

generator breaks the tie. To elaborate, let TU = \tx,t2,...,tk] be the set of k  tied

units at the original optimal weights k *, i.e., ArgMax\RC.) . = {/j,^ ,...,^}30.
j e N  *

Then weights n  with Wf  > 0 ensure that a unit p satisfies 

ArgMax{RCj}_ = DMUp only if  p  e T U . The details are as follows.
j e N

Let the total number of units be n and let set N  = {l,...,«}. As always, 

GEN is the set of currently known generators and U the set of status 

unidentified units. Upon solving the relevant GBA LP (GBA LP-5 or GBA LP- 

7), suppose we had arrived at the optimal set of weights n* = (v*,w*,y9*). 

Assume that the efficiency analysis of DMUt is not complete as U + ^  {^}. In this 

case, we apply the FindNewGen procedure using the reduced costs of the units 

given by RCj = u*Y j- v*Xj + p * to identify a new generator.

30 A rgM ax \R C ,}  . denotes that the ArgMax of the R C , , j e N  values is computed at 71*.
j e N  K
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Let Max{ftc } . - a x. Since, MzxIftC,} . = 0 ,  Max{RC, \ . - a x. Also
j e N  J n  j e N / U  1 n  j e U  1 n

let ArgMax{RCj} . = \tx,t2,...,tk\ ,  i.e., k>  2 units are tied for the maximum
j e N  ”

reduced cost value a x. Let the set of tied units be denoted by TU = {fp /2

The optimal weights are such that n*f  > 0 but n*f  >0; i.e., some of the factors’

weights are 0 and we need to identify one P-K efficient unit among the k  tied 

units.

Let, Max v?C, r . = a , . In other words, a , is the second highest reduced
j e N  I T U  J J *  i

cost value at n *. By definition, 0 < a 2 < a x. Also, let a 3 = (al - a 2)> 0.

Now, consider the unary set of weights 7tx = (l, 1,0). /r1 is composed of 

input and output weight vectors of Is of appropriate dimensions with the dual 

value of the convexity constraint p x fixed at 0. Let Mox{r Cj

Min\RCj} , = ct)2 and co3 = -co2). Assume for now that o\ *  (02 and hence
j e N J "

(Or,
0)3 > 0. Let, Y\ -  and note that by definition yx > 0 . Finally let 

(X3

y2 = yl + £ ,£ > 0 31.

Consider the scaled set of weights given 1oyns = (y2 X f r * ) .  Since we are 

simply multiplying the original LP weights n* by y2,Max\RCj \ , ={y2xcxi)
j e N  J n

and ArgMax{RC.} s = ]$\,t2,...,tk}. We scale the original LP weights n* by y2
j e N  *

to counterbalance the reduced cost values at the unary weights /r1 upon their 

amalgamation. Consider now the synthesised set of weights 7t - K s +7tx. Note 

that 7tf  > 0 because x sf  > 0 and n xf  > 0 . Also, as n f  > 0 , the units achieving 

the global maximum of the reduced cost value at n f  must be P-K efficient.

We prove in lemma 7.1 below that the global maximum of the reduced 

cost values at n  will be achieved only by one or more of the units in set T U .

31 We assume a value of 1 for £  in our illustrations and computational experiments.
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Lemma 7.1: Assuming 0)x ^ co2 , at k  , ArgMax\RCj}_ = ylrgMax{/?C;.}_.
j e N  j e T U

In words, lemma 7.1 states that the global maximum of the reduced cost value at 

It will only be achieved by one or more units in set T U , provided ct)x *co2.

Proof: First consider the effect of choosing the scaling factor yx on k  instead 

of y2, i.e., define n 's = (yl X7U*) and Jr' = n ’s + n x. Now, given that 

?  = * , s + x \{ R C J}r  = [RC] + {RCj I .

It follows that for j  e T U , \rC j }^s = (yx x a x) and we know that 

Min\RCj = 0)2. Therefore, over the tied units, M in { R C j> (y l x a l )+ eo2.

On the other hand, among the remaining units, Max }̂ ,s = (y1 x a 2) 

and we know that MaxlRC,} . = ax . Therefore, Max t e c ,  L, < (r, x a 7) + 0),.
j e N  L ' V  1 j e N  I TU J '  1 1 1  1

So> I f  “  L  -  [(ft x <*1) + ]  -  [(ft x <*2) + <*>1 ] • Rearranging

the terms, > \yx x (a x - a 2) \ - (<y,-co2).

Recall that yx = So, yl x (a l - a 2)-(eol -co2) = 0.
a 3 [ax- a 2)

Hence, at a scaling factor of r , , MinlRC . >  Max i / ? C , . It follows that if
°  1 yert/ 1 j J *  j e N  I T U 1 J

n s - y 2xn* -  (y, + e)xn*  and n  = (r, x n ' )+ n 1, M n b c , }_ > Max {/?C,}_.• 2 '  V' 2 > ye 7 U «- J * k  j e N / T U 1 J J x

This dictates that, provided co{ & (02, the global maximum of the reduced cost

values at n  will only be achieved by the units in set T U , i.e.,

ArgMax{RCj}_ = ArgMax{RCj}_. Q.E.D.
j e N  j e T U

Now consider the highly restrictive possibility of 0)x = co2, i.e., all the n 

units achieve the same reduced value at Kx = (l, 1,0). So a\ -  0)2 = 0 and hence

j f " } { R C j  L -  M a x f t C j  )w = (g x (a, -  a 2)) -  (o, -  m1 ) = g x ( a ,  -  a 2 ) > 0; 

where, g > 0 is the scaling factor to be applied on the original optimal weights
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7t*. It is easy to see that any positive value of g is enough to ensure that 

ArgMax{RCj}_ = ArgMax{RC.}_. The simplest way to implement this would be
j e N  K j e T U  *

to let g - 1  leading to n  = tz* + n x.

7.2.2.1.1 Illustration of the closed-form solution to break ties under VRS

Let us consider the following 10 DMU, 2 inputs and 2 outputs DEA 

problem presented in table 7-3 below to illustrate the above closed-form solution.

DMU X I X2 Y1 Y2 RCj
A 1 0 3 4 12
B 1 9 40 7 12
C 6 0 60 2 6
D 6 9 10 5 6
E 0 40 22 1 -37
F 0 15 8 1 -12
G 1 18 5 5 -3
H 4 0 8 4 12
I 4 30 150 10 0
J 5 16 7 2 -10

*'f 0 1 0 3
Table 7-3: Illustration of closed-form solution to break ties 1

Assume that GEN = {I}, DMUt = {A} and upon solving the relevant 

GBA LP, we arrived at the optimal weights defined by n*f  = (0, 1, 0, 3) with

J3* =032; at 71*, Max{RCj )]i. = 12 > 0 andA rgM ax{R C ^  = {A,B,H}. Unit I is
j e N

in the optimal basis and consequently has RCf = 0 ; units E, F, G and J are 

strictly inside the current partial PPS indicated by their non-positive reduced 

costs. Using the notations introduced earlier, a x = 12, or2 = 6 and

a 3 ~  (a i ~  a 2 ) =  12 -  6 =  6 .

32 Clearly the closed-form solution is unaffected if  J3* ^  0 as it is a constant and its value 

(positive or negative) affects the RC ■ value of all the units uniformly. Here, for illustrative

purposes we have let f3* — 0  .
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Now consider table 7-4 below where for the same dataset, the RCj values o f  the

units are listed at the unary weights 7tlf  = (l, 1, 1, l) with p x = 0 .

DMU X I X2 Y1 Y2 RCj
A 1 0 3 4 6
B 1 9 40 7 37
C 6 0 60 2 56
D 6 9 10 5 0
£ 0 40 22 1 -17
F 0 15 8 1 -6
G 1 18 5 5 -9
H 4 0 8 4 8
I 4 30 150 10 126
J 5 16 7 2 -12

4 1 1 J 1
Table 7-4: Illustration of closed-form solution to break ties 2

Using the notions introduced earlier, a\ = 126 ,co2 = -17 ,

0), =((W1 — <2>2) = 126-(—17) = 143; also, = — = 23.83 and
a 3 6

ft = * + 1  = 24.83.

Now, the synthesised set of weights are given by 7U = 7ZS +7tx where 

n s = y2xn* . Hence, ;f = (l, 24.83, 1, 74.5) with fl* = 0 . At Jr, the reduced 

costs are listed in table 7-5 below.

DMU X I X2 Y1 Y2 RCj
A 1 0 3 4 300
B 1 9 40 7 337
C 6 0 60 2 203
D 6 9 10 5 153
E 0 40 22 1 -896.83
F 0 15 8 1 -290
G 1 18 5 5 -70.49
H 4 0 8 4 302
I 4 30 150 10 146.00
J 5 16 7 2 -246.33

7tf 1 24.83 1 74.5
Table 7-5: Illustration of closed-form solution to break ties 3
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We know that the RCj values at n  are the sum total of the reduced cost

values at n s and n x. The RCj values at n* are magnified by the factor

y2 = 24.83 such that it counterbalances the effect of the reduced cost values at

the unary weights 7tx. The only purpose of the unary weights n x is to ensure that 

the final set of weights is strictly positive. By magnifying the reduced cost values 

at n* by the factor y2 we ensure that at the synthesised set of weights n , the 

global maximum of the reduced cost value is achieved only by units in set 

TU = {A, B, H}. Here, unit B in set TU achieves the unique maximum reduced 

cost value at 7 t .

1.2.2.2 Closed-form solution to resolve ties under CRS

Once again ties in the CRS case are an issue only if the optimal LP 

weights 7i* is not strictly positive. In contrast to the VRS case, the closed-form 

solution approach in the CRS case amalgamates a ‘twice-scaled version’ of the 

original LP weights n ss to a ‘scaled version’ of the unary weights n xs. The 

additive operation ensures that the synthesised final weights n  are strictly 

positive.

The closed-form approach under CRS can be broken down into 4 steps. 

In the first step, the original LP weights k* are scaled to 7 t s  such that only the 

tied units are strictly outside the partial PPS. In the second step, the unary 

weights 7 t x are also scaled to K xs s o  that the reduced cost values of all the n  

units are non-positive. In the third step, the modified LP weights n s are scaled 

again to n ss so as to ensure that upon adding them to the scaled unary weights 

7 t x s , only the originally tied units have a strictly positive reduced cost value. In 

the final step, the weights 7 t ss and k xs are amalgamated. Following the above 

four steps will ensure that at the final positive weights n , only the tied units 

have ratio values > 1 and hence the global maximum of the ratio value can only 

be achieved by the originally tied units. In this section we will derive the analytic 

form of the closed-form solution. In the subsequent section, we will illustrate its
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employment using two examples, viz., when the maximum ratio value is finite 

and secondly, when it is infinite (indeterminate).

Assume that upon solving the relevant GBA LP (GBA LP-1 or GBA LP- 

3), we had arrived at the optimal set of weights ft* -  (v*,w*). Let the efficiency 

analysis of DMUt be incomplete, i.e., U + *  {^}. In this case, we apply the

u Y .
FindNewGen procedure using the ratio values, R . = -----—, to identify a new

v ’ x j

generator among the nnits in U . Let Max\Rj = rx >1. Note that 

Max\R , f . could be an indeterminate ratio value, i.e., r, = °o, and the following
j e N  L 3 J x

closed-form solution approach will work in such a case as well.

Sine e , M axJ tR ])'. =1, M a x ^ ^ .  =r,. Let^rgAfax{fl = {r,,r2,...,rt };

i.e., k > 2  units are tied for the maximum ratio value rx. Once again, let the set 

of tied units be denoted by TU = {r19/2,...,rt }. The weights are such that ft* >0 

but ft* >  0 .

Step 1: Scaling ft* to f ts such that only the tied units are strictly outside the 

partial PPS.

Let, Max {ft, r . = r7: i.e., r7 gives the second highest R, value among
j e N  I T U  J  n  J

the units in AT. By definition, 1 <r2 <rx. Consider the modified set of weights 

f ts = (r2 xv*, w*). As we have simply scaled (multiplied) the input weights by 

r2, the ratio values also get scaled down by the same r2 value; i.e., at fts ,

Max{R, L =1, {k,L  = ~  = r3 > l , j e  T U . Also,
j e N  ITU J X J

ArgMaxlR. } s = {t,, t7 a } , Max \r C- } , = 0 and MinlRC. K  > 0 , where,
j e N  1 x   ̂ KJ j e N  ITU 3 j e T U   ̂ 3

R C j , the reduced costs of the units at ft*, are given by u*Yj -v * X j.  Let, 

Step 2: Scaling unary weights f t1 to f t ls so that R C j  < 0, V j .
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Now, consider the unary set o f  weights 7tx = ( l,l) . Let Max{Rj = r4 .

Consider the modified set of unary weights 7txs = (r4 x l, l ) . As we have simply 

scaled (multiplied) the input weights of 7tx by r4, the ratio values also get scaled 

by the same rA factor; i.e., at 7txs, Max\R . f 1S = 1 and M a x \ R C , =0.  Let,
j e N  J *  j e N  L J J r

MimRC , r 1S = a 2 and assume for now that a 2 ^ 0 ; hence, a 2 < 0 . Let,
j e N

an =
or,

and note that by definition yx > 0 . Finally, let y2 = y1+ £ ,£ > 0 .

Steps 3 &  4: Scaling n s by y2 to obtain 7 t ss and amalgamating 7 t ss with n xs to 

synthesise J t  .

Consider the twice-scaled set of weights given by n ss -  (y2 X 7 t s  ). As we 

are scaling both the input and output weights at 7 t s  by y2 the Rj values remain 

the same at 7 t s s , i.e., M ax\R j}^ = M a x ^ j} ^  =r3 and so

ArgMax\Rj} = {/15̂ 2,...,^}. However, the RC, values get scaled by y2 and so
j e N  n

^ { RCJ = ( r 2x a t)> 0 and M a x ^ R C j = y2 x 0 = 0 .

Consider now the synthesised set of weights 7 t  obtained using the 

additive operation n  = 7 t ss + n xs. Note that I t  > 0 as 7 t ss > 0 and 7 t xs >  0 .

We prove in lemma 7.2 below that, assuming a 2 * 0 ,  at n  the global 

maximum of the ratio values will only be achieved by the units in set T U .

Lemma 7.2: Assuming or, ^  0 , at J t, Max (ft, r_ < M in\R. L .
0 2  j e N  I T U  J J *  j e T U 1 1

In other words, lemma 7.2 states that the maximum of the ratio values at J t  will 

only be achieved by the units in set T U , provided that a 2 *  0 .

Proof: First consider the effect of choosing the scaling factor of yx on 7 t s 

instead of y2, i.e., define 7 t ' ss = (yl x /r5) and 7 t '  = n ,ss + 7 t x s . Now, given that

r = .  {sc,  I = { r c i } + { s c , .
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It follows that among the tied units, Min{RCj }̂ /iSS = (y1 x o rj and we 

know that Min{RCj}̂ 1S = a 2. Therefore, M m { R C j> ( y 1x a l)+ a 2.

On the other hand, among the remaining units, 

Max \r C i !,« = 7, x 0 = 0 and we know that MclA r C, } 1S = 0. Therefore,
i e N I T U  J J *  j e N  L 1

M a x { R C \,<  0.
i e W / 7 7 / L J  J 1Cj e N  I T U

So, Mm{Rc X  > y x a x+ a 2 =
or,

x ATj + a 2 > 0 as a 2 < 0 .

Consequently, Min\Rj}__, >1. Hence, at a scaling factor of yl , > 0

and M^{/?y}_,>l. It follows that if ft® = y2 X fts = (yj + f ) x /r5 and 

#  = (v x ;r5 }_ > 0 and Min{R,}_ > 1. Given
v/  2 ’  jeT U  1 ' ; e3T7 L y J *

that Max \RC t }_ < 0 and similarly, Max \RC ■}_ < 0 and
j e N  I T U 1'  l l j c  j e N  I T U  1 i } c

consequently, Max y?, L < 1 , Min\R, r_ > Max { f tL . Hence, provided
j e N  I T U L j e T U 1 1 j e N  I T U  J  J *

or2 0 , the global maximum of the ratio values at ft will only be achieved by 

the units in set TU as all the tied units have a ratio value > 1 at f t . Q.E.D.

Now consider the highly restrictive possibility of a 2 = 0 , i.e., all the n 

units have the same ratio value at f tx. So Min{RCj}_ = (g x a x) > 0; where,

g  > 0 is the scaling factor on ft® . It is easy to see that any positive value of g is 

enough to ensure that Max }_ < Min{Rj}_. The simplest way to implement

this would be to let g  = 1 leading to ft = ft® + ft® .

7.2.2.2.1 Illustration of the closed-form solution to break ties under CRS

We will consider two examples to illustrate the above closed-form 

solution approach, viz., one in which the data is strictly positive and the 

maximum ratio is finite and another in which the data has some zeroes and the 

maximum ratio value is indeterminate.
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Consider first the following 10 DMUs, 2 inputs and 2 outputs positive 

data example shown in table 7-6 below.

DMU X I X2 Yl Y2 RCj Rj
A 1 1 3 3.5 6 1
B 5 3 40 10.5 18 1
C 6 2 60 2 2 2
D 6 9 10 5 1 1.11
E 2 40 22 1 -38 0.05
F 3 15 8 1 -13 0.13
G 1 3.5 5 12.25 21 7
H 4 3 8 4 5 2.67
I 4 20 150 10 0 1
J 5 16 7 2 -12 0.25

Tt* 0 1 0 2
e 7-6: Illustration of closed-form so ution to break

Assume that GEN = {/}, DMUt = A and upon solving the relevant GBA 

LP, we had arrived at the optimal weights n * = (0,1,0, 2). At n* , 

Mox{Rj } . = 7 > 1 and ArgMax{Rj} . = {A, B, G}. Using the notations
j e N

introduced earlier, r2 =2.67 and the modified optimal weights are 

7is = (0, 2.67, 0, 2 ) . The reduced cost and ratio values at n s can be seen in 

table 7-7 below.

DMU X I X2 Yl Y2 RCj R j

A 1 1 3 3.5 4.33 2.625
B 5 3 40 10.5 12.99 2.625
C 6 2 60 2 -1.33 0.75
D 6 9 10 5 -14 0.416
E 2 40 22 1 -104.66 0.018
F 3 15 8 1 -38.00 0.05
G 1 3.5 5 12.25 15.16 2.625
H 4 3 8 4 0 1
I 4 20 150 10 -33.34 0.375
J 5 16 7 2 -38.67 0.0937

- SK 0 2.67 0 2
Table 7-7: Illustration of closed-form solution to break ties 2

As discussed earlier, at 7ts , only the tied units in TU have reduced cost 

values > 0 and consequently, ratio values > 1; now, Min{RCj }^s = a x = 4.33 > 0.
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Consider the following table where for the same dataset, the ratio and

reduced cost values are shown at the unary weights 7tx = (l, 1,1, l ) .

DMU X I X2 Y l Y2 RCj R j

A 1 1 3 3.5 4.5 3.25
B 5 3 40 10.5 42.5 6.31
C 6 2 60 2 54 7.75
D 6 9 10 5 0 1
E 2 40 22 1 -19 0.54
F 3 15 8 1 -9 0.5
G 1 3.5 5 12.25 12.75 3.83
H 4 3 8 4 5 1.71
I 4 20 150 10 136 6.67
J 5 16 7 2 -12 0.428

7 t X 1 1 1 1

Table 7-8: Illustration of closed-form solution to break ties 3

By scaling the input weights by the maximum ratio value of 7.75, at the modified 

unary weights 7txs = (7.75,7.75,1, l ) , we get the following reduced cost and ratio 

values.

DMU X I X2 Y l Y2 RCj R j

A 1 1 3 3.5 -9 0.41
B 5 3 40 10.5 -11.5 0.81
C 6 2 60 2 0 1
D 6 9 10 5 -101.25 0.129
E 2 40 22 1 -302.5 0.07
F 3 15 8 1 -130.5 0.064
G 1 3.5 5 12.25 -17.625 0.49
H 4 3 8 4 -42.25 0.22
I 4 20 150 10 -26 0.86
J 5 16 7 2 -153.75 0.055

- I S
K 7.75 7.75 1 1

able 7-9: Ulustraltion of closed-jbrm solution to break ties

At k xs , - a 2 = -302.5 , y1 =
j e N  J n

a 2 -302.5
a [ 4.33

= 69.807 and

y2 = y  +1 = 70.807. Now the synthesised set of weights is given by 

7z = 7tss +7txs = y2 X7ts +7txs = (7.75,196.57, 1, 142.61). At k  , the reduced 

cost and ratio values are shown in table 7-10 below.
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DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 3.5 297.83 2.457
B 5 3 40 10.5 909.0 2.446
C 6 2 60 2 -94.41 0.785
D 6 9 10 5 -1092.56 0.398
E 2 40 22 1 -7713.71 0.020
F 3 15 8 1 -2821.19 0.050
G 1 3.5 5 12.25 1056.29 2.518
H 4 3 8 4 -42.25 0.931
I 4 20 150 10 -2386.26 0.397
J 5 16 7 2 -2891.65 0.0917

n 7.75 196.57 1 142.61
Table 7-11): Illusltration of closed-form so ution to break ties 5

The reduced costs of the n units at n  are the sum total of the reduced 

cost values at 7tss and n xs. The reduced cost values at the modified optimal 

weights 7TS at which some of the units in U , viz., {^,5,(7}, were tied for the 

maximum ratio value are magnified by the factor y2 such that it counterbalances 

the effect of the RCj and the corresponding Rj values at n xs. Hence, by 

magnifying the RCj values at n s by y2 we ensure that at H , the RCj values 

are strictly positive only for the units in TU = {A,B,G}. This would dictate that 

{i?y.}_ > 1 only if j  e T U . The maximum of the ratio values at n  is achieved by

units among the k  tied units and since the weights are strictly positive, they must 

be P-K efficient. In the above example, unit G, which was one of the originally 

tied units, achieves the unique maximum ratio value at n .

Consider now the following example with 10 DMUs, 2 inputs and 2 

outputs shown in table 7-11 below. The data has some zero values in them and at 

a particular iteration, the maximum ratio value is indeterminate (infinite) and tied 

for some units in U .
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DMU X I X2 Y1 Y2 RCf R i
A 1 0 3 3.5 7.00 00

B 5 0 40 10.5 21.00 00

C 6 2 60 2 2.00 2.00
D 6 9 10 5 1.00 1.11
E 2 40 22 1 -38.00 0.05
F 3 15 8 1 -13.00 0.13
G 1 0 5 12.25 24.50 oo
H 4 3 8 4 5.00 2.67
I 4 20 150 10 0.00 1.00
J 5 16 7 2 -12.00 0.25

n 0 1 0 2
Table 7-11: Illustration of closed-form solution to break ties 1

Assume that GEN = {/}, DMUt = A and upon solving the relevant GBA 

LP, we arrived at the optimal weights k * = (0,1,0,2) . A t  n* , 

Max\Rj \  . = oo > l and ArgMax{Rj} . = {A,B,G). Unit I is in the optimal basis
j e N

and has a ratio value of 1 and units E, F and J are strictly inside the partial PPS 

with ratio values < 1. Using the notations introduced earlier, r2 =2.67 and the

modified optimal weights are n s -  (0,2.67, 0, 2). The reduced cost and ratio

values at n s can be seen in table 7-12 below.

DMU X I X2 Y1 Y2 RCj Rj
A 1 0 3 3.5 1 00

B 5 0 40 10.5 21 00

C 6 2 60 2 -1.33 0.75
D 6 9 10 5 -14 0.416
E 2 40 22 1 -104.67 0.018
F 3 15 8 1 -38 0.05
G 1 0 5 12.25 24.5 00

H 4 3 8 4 0 1
I 4 20 150 10 -33.34 0.375
J 5 16 7 2 -38.67 0.093

n s 0 2.67 0 2
Table 7-12: Illustration of closed-form solution o break

At k s only the tied units in TU have strictly positive reduced cost 

values and hence ratio value = oo > 1; Min{RCj = a x = 7.
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Now consider the following table where for the same dataset, the ratio

and reduced cost values are listed at the unary weights n x = (l, 1,1, l ) .

DMU X I X2 Y1 Y2 RCj
R j

A 1 0 3 3.5 5.5 6.5
B 5 0 40 10.5 45.5 10.1
C 6 2 60 2 54 7.75
D 6 9 10 5 0 1
E 2 40 22 1 -19 0.54
F 3 15 8 1 -9 0.5
G 1 0 5 12.25 16.25 17.25
H 4 3 8 4 5 1.71
I 4 20 150 10 136 6.66
J 5 16 7 2 -12 0.42

7ZX 1 1 1 1
Table 7-13: Illustration of closed-form solution to break ties 3

By scaling the input weights by the maximum ratio value of 17.25, at the 

modified unary weights 7txs = (17.25,17.25,1,1), we get the following reduced 

cost and ratio values shown in table 7-14 below.

DMU X I X2 Y1 Y2 RCj Rj
A 1 0 3 3.5 -10.75 0.37
B 5 3 40 10.5 -35.75 0.585
C 6 2 60 2 -76 0.449
D 6 9 10 5 -243.75 0.0579
E 2 40 22 1 -701.5 0.0317
F 3 15 8 1 -301.5 0.0289
G 1 3.5 5 12.25 0 1
H 4 3 8 4 -108.75 0.099
I 4 20 150 10 -254 0.386
J 5 16 7 2 -353.25 0.0248

_1S
7 t 17.25 17.25 1 1

Table 7-14: Illustration of closed-form solution to break ties 4

A t/r15,M«{#C..} IS = a 2 = -701.5, yl =
j e N  J n

a 2 -701.5
a i 7

= 100.21 and

y2 = yx+\ = 101.21. Now the synthesised set of weights is given by 

n  = n ss +7txs = y2 x n s + x xs = (17.25, 287.14, 1, 203.42). At n , the reduced 

cost and ratio values are shown in the table below.
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DMU X I X2 Y1 Y2 RCj Rj
A 1 0 3 3.5 697.72 41.44
B 5 3 40 10.5 2089.66 25.22
C 6 2 60 2 -210.957 0.688
D 6 9 10 5 -1660.69 0.382
E 2 40 22 1 -11294.8 0.0195
F 3 15 8 1 -4147.49 0.048
G 1 3.5 5 12.25 2479.65 144.74
H 4 3 8 4 -108.75 0.883
I 4 20 150 10 -3627.68 0.375
J 5 16 7 2 -4266.72 0.088

n 17.25 287.14 1 203.42
Table 7-15: Illustration of closed-form solution to break ties 5

The reduced cost values at the modified optimal weights n s at which 

some of the units in U , {A, B, G}, are tied for the maximum indeterminate ratio 

value are magnified by the factor y2 such that it counterbalances the effect of the 

reduced cost values at k xs . Hence, by magnifying the reduced cost values at Ks 

by y2 we ensure that at n , the reduced cost values are strictly positive only for 

TU = {A,B, G} and hence }_ > 1 only for j  e T U . Also, by amalgamating the

‘twice-scaled’ LP weights 7iss with n xs, we ensure that n  is strictly positive 

and hence the global maximum ratio value at n  will be finite. In the above 

example, unit G, one of the originally tied units at an indeterminate ratio, 

achieves the unique maximum finite ratio value at n .

7.3 Strictly Positive multiplier values for generators

7.3.1 Literature review
An important topic in the DEA literature that is closely connected with 

the closed-form solutions developed in the previous section is obtaining strictly 

positive multiplier values for the generators without explicit weight restrictions. 

A recent article by Cooper et al (2007) proposed a Mixed Integer Linear Program 

(MILP) based approach under CRS assumption for obtaining strictly positive 

multiplier values for a generator that currently has some zero weights. The 

approach necessitates solving two MILPs for a generator to obtain positive 

multiplier values for it. In the first step, they solve a MILP for a generator
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wherein they try to identify a set of multiplier values that has the maximal 

support in the sense of the number of generators (including the generator under 

consideration) sitting on the corresponding hyperplane. In the second step, they 

solve another MILP, wherein they try to identify a set of multiplier values that 

are not only strictly positive, but has the maximal support achieved in the first 

step. See Cooper et al (2007) for a review of early works on this important topic, 

a detailed discussion of their approach, and application of their method to a real 

world example considered in Dyson and Thanassoulis (1988). See also Argyris 

(2008) for a discussion on why the approach presented in Cooper et al (2007) 

could fail in a special case to arrive at strictly positive multiplier values although 

Argyris’ discussion was presented for the VRS case while Cooper et al (2007) 

approach was only presented for the CRS case . To show that Argyris’ claim is 

also valid for the CRS case, we present an example in table 7-16 below in which 

the method developed in Cooper et al (2007) fails.

Consider the following 5 DMU, 2 inputs, 2 outputs dataset presented

below.

DMU X I X2 Y1 Y2
A 2 2 2 4
B 2 2.5 2 4.8
C 2 3.5 2 5.2
D 4 3 4 6
E 4 1 3 5

Table 7-16 : Example in which Cooper et. al.’s (2007) approach fails

All the 5 units are extreme-efficient and the extreme rays of the PPS

described by the five DMUs can be seen in table 7-17 below.

Extreme Rays vl v2 ul u2 Extreme-efficient units supported
wl 77 92 0 80 B, E
w2 19 4 0 10 B, C
w3 11 8 9 5 A, B, E
w4 13 0 0 5 C
w5 0 5 0 1 E
w6 0 3 1 0 E
w7 5 4 8 0 D, E
w8 3 2 3 1 A, D, E
w9 1 0 1 0 A, B, C, D
Table 7-17 : Extreme rays for the 5 DMU, 4 factor example

33 Incidentally, Argyris’ (2008) discussion on fully-dimensional facets and efficient facets needs a 
careful inspection as he seems to have missed the fact that under VRS assumption, there can be 
efficient facets supporting fewer than m generators.
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Now among the 9 extreme-rays, if we consider ray w9, units A, B, C and 

D are supported at the corresponding hyperplane. For these extreme-efficient 

units, ray w9 provides the facet with maximal support of 4 extreme-efficient 

units. However, this is a weak-efficient facet34 as it has v2 = 0 and u2 = 0 and 

there are no other extreme-rays that has a support of 4 extreme-efficient units but 

with strictly positive multiplier values. The only efficient facets for the 5 

extreme-efficient units are given by rays w3 and w8 with maximal support of 

3 (= m -1 ) units. In other words, only if  to their first MILP, they add a constraint 

restricting the maximal support to be < m - 1, the above issue could be 

avoided .

A current working paper by Bougnol et al (2010) also looks at obtaining 

positive set of multiplier values for extreme-efficient units using Interior Point 

Methods (IPM) under VRS assumption. Their method necessitates transforming 

the original dataset and solving an LP on the transformed data for each extreme- 

efficient unit using IPM. A desirable feature of their method is that, at least in 

theory, the multiplier values arrived at using the IPM to solve their LP are not 

only strictly positive but also the solution lies in the analytic centre of the optimal 

face. In other words, apart from being positive, their multiplier values satisfy a 

well-defined optimization criterion by lying in the analytic centre of optimal 

face. This optimization criterion, according to them, is desirable as it imparts 

balance and uniformity of weights and slack values (see, Gonzalez-Lima et al, 

1996). Although this work is still at a nascent stage, we can identify 2 limitations 

with it. The first limitation is that they need to transform the original dataset and 

solve an additional LP for each extreme-efficient unit using IPM to obtain 

positive multiplier values for it. The second limitation is that, as they indicate, 

different implementations of IPM to solve their LP arrived at different solutions; 

although the solutions from the different implementations are all strictly positive, 

they do not necessarily lie in the analytic centre of the optimal face as desired.

34 A facet is weak-efficient if  some of the multiplier values it defines are 0. Else, it is strong- 
efficient or efficient.
35 Professor Jose Dula in a private communication on 12/06/2010 acknowledged this -  "Srini, I  
have been thinking about the <=m-l constraint you propose for the MILP in (4)...it is an 
interesting way to resolve the obvious problems with the current formulation by Cooper Ruiz and 
Sirvent (and Olesen and Petersen) ...One needs to be tactful, however especially in deference to 
Cooper”.
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Given that their work is still a working paper, we will overlook it for comparison 

purposes.

In this section, unlike Cooper et al (2007), whose method was presented 

only for the CRS case, we describe closed-form solutions to achieve positive 

multiplier values under CRS and VRS assumptions thereby circumventing the 

need to solve two additional MILPs. Our closed-form solution approach differs 

from that of Cooper et al (2007) in that the final multiplier values for a generator 

obtained using our approach has the least support in the data. In other words, the 

corresponding generator sits alone on the new hyperplane described by strictly 

positive weights. This situation is also encountered in the approach presented in 

Chames et al (1991) which required solving multiple LPs for a generator36 to 

obtain positive multiplier values for it.

7.3.2 A closed-form solution for achieving positive weights under CRS

The closed-form solution approach to break ties under CRS assumption 

can be applied with some modification to obtain positive weights for the 

generators. The procedure is essentially the same as in breaking ties in that it 

involves amalgamating a ‘twice-scaled version’ of original LP weights 7tss to a 

‘scaled version’ of the unary weights 7tls. The only difference is that instead of 

more than one unit achieving the maximum R. value at the original optimal

weights n *, the maximum ratio value is uniquely achieved by a single unit 

which is confirmed to be a generator37; however, n* >  0 and we are interested 

in providing this generator with a set of strictly positive multiplier values. We 

will describe the closed-form solution approach below before presenting an 

example to illustrate its working.

Assume that upon solving the relevant GBA LP (GBA LP-1 or GBA LP- 

3), we had arrived at the optimal set of weights n* =(v*,w*). The efficiency 

analysis of DMUt is not resolved as U+ & {^}. We apply the FindNewGen

36 Their approach requires solving as many additional LPs for a generator as there are 0 valued 
input and output weights at the optimal solution.
37 Note that a necessary condition for our closed-form solution to guarantee a positive set of 
multiplier values for any generator is that it achieves the unique maximum ratio value at 7T*.
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procedure using the ratio values Rj = and realize that Mcvc{Rj = rx > 1 

and ArgMax\Rj \  , ={DMUg}. The maximum of the ratio values could be
j e N  n

achieved at an indeterminate ratio, i.e., ri = , and the following closed-form

solution will work in this case as well. Some of the weights in n* are 0 and 

although DMUg is confirmed to be a generator, we are interested in providing it 

with non-zero multiplier values.

Let, Max{Rj } . = r2. By definition, 1 <r2 < rx. Consider the modified set
j e N / g  J n

of weights# 5 = (r2xv*, w*). At # 5 , M ax^R .), — 1, {/? } , =  — = r3 > l ,
j e N  I g  J »  Tj

ArgMax^Rj)^ ={DMUg}; also, Mox\r Cj \ ^  = 0  and {/?Cg \^s = a x > 0 ,
j e N  j ^ N / g

where, RCj are the reduced costs of the units.

Now, consider the unary set of weights n x -  (l,l). Let = r4.

Consider the modified set of unary weights # 15 = (r4 x 1, l ) . At # 15, 

Max\R, [ . = 1 and MaxlRC, } = 0. Let, MimRC, f 1S = a 2 and assume for
j e N  1 j e N  J *  j e N  J n

a
a,

and y2 = yl + e , e  > 0 .now that a 2 *  0 and hence, a 2 < 0. Let, yx =

Consider, the scaled set of weights given by Kss = (y2 x /r5). At 7tss, as we have 

scaled both the input and output weights by y2, Mox{Rj = r3; also,

Mcdc\r Cj = y2 x 0 = 0 and {/?Cg = (y2 x  a x) > 0. Consider now the

synthesised set of weights n  -  7tss + n xs. Note that #  > 0 as Jtxs > 0 and 

n 88 > 0 .

We prove in lemma 7.3 that, provided a 2 *  0 , at the synthesised set of 

weights # ,  the global maximum of the ratio values will only be achieved by 

DMUg.
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Lemma 7.3: At K , A rg M a x ^^  = DM Ug , provided a 2 ^  0 .
j e N  *

In words, lemma 7.3 states that the global maximum of ratio values at n  will 

only be achieved by DMUg, assuming a 2 *  0 .

Proof: First consider the effect of choosing the scaling factor of yx on n s instead 

of Y i , i-e-> define n 'ss -  (yx xn:s ) and n '  = n ss + n xs. Now, given that

+ * “ , { rc X  ={Rcy} ^  +{«c;};ris.

It follows that for DMUg, {i?Cg} B = (yx x a x) and we know that 

Min\RCj}̂ 1S = a 2. Therefore, {/?Cg >(y1x a l )+ a 2.

On the other hand, among the remaining units, Max {RCj} s  = yx x 0 = 0
j e N  I g  J "

and we know that Max{RCj = 0 . Therefore, Max{RCj}_, < 0.
j e N  "  j e N  I g

a.
So, {RCg > ^ x a ,  + a 2 =

a,
x a {+ a 2 > 0 as a 2 < 0. Consequently,

Min\Rg} > 1. Hence, at a scaling factor of yx, Min{RCg > 0 and 

Min\Rg > 1. It follows that if  n ss -  y2 x n s -  (yx +£)x7ts and 

n  -  (y2 x?rs )+ n xs, {/?Cg }_ > 0 and {/?g }_ > 1. Given that Mox{r Cj < 0 and 

similarly, Max{ftC }_ < 0  and consequently,Max[Rj}_ < 1 ,
j e N  I g  J 71 j s N / g  K

Min{Rg}_ > Max{Rj}_. Hence, the global maximum of the ratio values at n  

will only be achieved unit g, i.e., ArgMax\Rj}_ = DM Ug , provided a 2 *  0 .
j e N

Q.E.D.

Now consider the highly restrictive possibility of a 2 = 0, i.e., all the n 

units have the same ratio value at n x. So Min{RCg}_ = (h x a l )> 0; where,

h > 0 is the scaling factor on ttss . It is easy to see that any positive value of h
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is enough to ensure that Max\Rj}_ < Min{Rg }_. The simplest way to implement 

this would be to let h  = 1 leading to 7 r  = 7 r ss +  k xs .

7.3.2.1 Illustration of the closed-form solution to ensure positive weights under 
CRS

We will consider the following example in which the data is positive and 

the maximum ratio is at a finite value to illustrate the above closed-form solution.

DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 4 1 8
B 5 3 40 10.5 18 7
C 6 2 60 2 2 2
D 6 9 10 5 1 1.11
£ 2 40 22 1 -38 0.05
F 3 15 8 1 -13 0.13
G 1 3.5 5 12.25 21 7
H 4 3 8 4 5 2.67
I 4 20 150 10 0 1
J 5 16 7 2 -12 0.25

7Z* 0 1 0 2
Table 7-18 : Closed-form solution to obtain positive multiplier values 1

Assume that GEN = {/}, DMUt = A and upon solving the relevant GBA 

LP, we arrived at the optimal weights n* -  (0,1,0,2). At /r*, Mzrlft ,} . > 1 and
y'eN J K

ArgMax{R.} . = {a } . Unit A is confirmed to be a generator but it has one 0
J e N  n

input weight and one 0 output weight. Suppose we are interested in providing it 

with strictly positive weights. Using the notations introduced earlier, r2 - l  and 

the modified optimal weights are 7ts = (0,7, 0, 2). The reduced cost and ratio 

values at n s can be seen in table 7-19 below.
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DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 4 1 1.143
B 5 3 40 10.5 0 1
C 6 2 60 2

o1 0.286
D 6 9 10 5 -53 0.159
E 2 40 22 1 -278 0.007
F 3 15 8 1 -103 0.019
G 1 3.5 5 12.25 0 1
H 4 3 8 4 -13 0.381
I 4 20 150 10 -120 0.143
J 5 16 7 2 -108 0.036

JlS 0 7 0 2
Table 7-19 : Closed-form solution to obtain positive multiplier values 2

As discussed earlier, at tts only unit A has a reduced cost value > 0 and 

ratio value > 1; RCA = a x = 1.

Now, consider the following table where for the same dataset, the ratio 

and reduced cost values are shown at the unary weights -  (l,l,l,l).

DMU X I X2 Y1 Y2 RCj
A 1 1 3 4 5 3.5
B 5 3 40 10.5 42.5 6.31
C 6 2 60 2 54 7.75
D 6 9 10 5 0 1
E 2 40 22 1 -19 0.54
F 3 15 8 1 -9 0.5
G 1 3.5 5 12.25 12.75 3.83
H 4 3 8 4 5 1.71
I 4 20 150 10 136 6.67
J 5 16 7 2 -12 0.428

n l 1 1 1 1
Table 7-20 : Closed-form solution to obtain positive multiplier values 3

By scaling the input weights by the maximum ratio value of 7.75, at the 

modified unary weights n xs = (7.75,7.75,1, l ) , we get the following reduced cost 

and ratio values.
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DMU X I X2 Y1 Y2 RCj R j

A 1 1 3 4 -8.5 0.451
B 5 3 40 10.5 -11.5 0.81
C 6 2 60 2 0 1
D 6 9 10 5 -101.25 0.129
E 2 40 22 1 -302.5 0.07
F 3 15 8 1 -130.5 0.064
G 1 3.5 5 12.25 -17.625 0.49
H 4 3 8 4 -42.25 0.22
I 4 20 150 10 -26 0.86
J 5 16 7 2 -153.75 0.055

- I Sf t 7.75 7.75 1 1

Table 7-21: Closed-form solution to obtain positive multiplier values 4

At f t iS, Min\RCj} ls = a 2 = -302.5, yx =
j e N  J n

(X2 -302.5
a x 1

= 302.5 and

y2 = yj +1 = 303.5. Now the synthesised set of weights is given by 

ft = 7TSS + ft ls = y2 x x s + ft ls = (7.75, 2132.25,1, 608). At f t , the reduced cost 

and ratio values are shown in table 7-22 below.

DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 4 295 1.137
B 5 3 40 10.5 -11.5 0.998
C 6 2 60 2 -3035 0.295
D 6 9 10 5 -16186.75 0.158
E 2 40 22 1 -84675.5 0.0073
F 3 15 8 1 -31391 0.0192
G 1 3.5 5 12.25 -17.625 0.997
H 4 3 8 4 -3987.75 0.379
I 4 20 150 10 -36446 0.146
J 5 16 7 2 -32931.75 0.0358

ft 7.75 2132.25 1 608
Table 7-22 : Closed-form solution to obtain positive multiplier values 5

The reduced costs of the n units at ft are the sum total of the reduced 

costs at f tss and f t ls. The reduced cost values at the modified optimal weights 

fts at which unit A achieved the unique maximum ratio value is magnified by 

the factor y2 such that it counterbalances the effect of the reduced cost values 

and the corresponding ratio values of the remaining units at f t ls. Hence, by 

magnifying the reduced cost values at f ts by y2 we ensure that at f t , the
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reduced cost value is strictly positive only for unit A and hence }_ > 1. From

table 7-22, we can see that the maximum of the ratio values at n  is once again 

achieved by unit A but now at a set of strictly positive weights.

7.3.3 Closed-form solution for achieving positive multiplier values under 
VRS

Once again, the closed-form solution approach to break ties under the 

VRS assumption can be applied with some modification to obtain positive 

weights for any generator. The procedure is essentially the same as in breaking 

ties in that it involves amalgamating a ‘scaled version’ of original LP weights 

n s to the unary weights n x. The only difference is that instead of more than one 

unit achieving the maximum reduced cost value at the original optimal weights 

k  , the maximum reduced value is uniquely achieved by a single unit which is 

confirmed to be a generator ; however, n f  >  0 and we are interested in 

providing this generator with a set of strictly positive multiplier values.

We will describe the closed-form solution approach below before 

presenting an example to illustrate its working.

Upon solving the relevant GBA LP (GBA LP-5 or GBA LP-7), we had 

arrived at the optimal set of weights n* = (v*, u*,j3*). The efficiency analysis of 

DMUt is not resolved as U + ^  {(j)}. Let Max\RC .} . = a x > 0. Since,
j e N  1 n

Max\RCt \ . = 0 , Mca\RCj \ , = a l . Let ArgMax\RC.} . = {DMUg}. Although
j e N / U  1 n  j e U  1 n  j e ff  J n

DMUg is confirmed to be a generator, 7i*f  >  0; where, n*f  represent the weights 

of the input and output factors alone.

Suppose we are interested in providing DMUg with strictly positive 

multiplier values for its input and output factors. Let, Mox{r Cj L  = a i- By
j e N / g  1 n

definition, 0 < a 2 < a l . Let a 3 = (a]- a 2)> 0 .

38 Note that a necessary condition for our closed-form solution to guarantee a positive set of 
multiplier values for any generator is that it achieves the unique maximum reduced cost value at
JC*.
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Now, consider the unary set of weights /r! = (l,l,0 ). Let 

MaxIftC.} , = o\ , MinlRC } , = co2 and 0)3 = {(0x-0 )2). Assume for now that
j e N  J n  j e N  1 *

G), * cd2 and hence Ct)3 > 0. Let, y, = —  and note that by definition /, > 0;
or3

finally, let y2 -  yx + e , e  > 0. Consider, the scaled set of weights given by 

n s = (y2 X 7 T * ) .  At 7US , Max{RCj}̂ s = RCg = (y2 x a x) and

ArgMax{RCj ) s ={DMUg).
j e N  n

Consider now the synthesised set of weights 7t -  n s + . Note that

n f > 0 as n xf  > 0 and 7tsf > 0 . We prove in lemma 7.4 that, assuming <ax * co2 ,

at the synthesised set of weights n , ArgMax{RCj }_ = DMUg; i.e., the global
j e N  n

maximum of the reduced cost values will only be achieved by DMUg.

Lemma 7.4: Assuming o \  * C02 , at 7 t , ArgMax{RCj}_ = DM Ug .
j e N  n

In words, lemma 7.4 states that the global maximum of the reduced cost value at 

K will only be achieved by DMUg, provided (Dx±(02.

Proof: First consider the effect of choosing the scaling factor yx on n  instead of 

Y2, i.e., define k s = (y  xn * )  and Ji’ -  n ,s + 7tx. Now, given that

r = ^ + ^ , ,{ « c J}r = { « c J l , s + {r c , I .

It follows that for DMUg, \RCg } s = (y  x ̂ ) and we know that 

= co2. Therefore, Min{RCg >(yl x a 1)+co2.

On the other hand, among the remaining units, Mox\r C. } ,5 = (y1 x a 2)
j e N  I g  K

and we know that MaxiRC .} , = cox. Therefore, Max{RC. <  {yx x a 2)+ cox.
j e N  1 "  j e N / g  1 n
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So, Min{RC } -  Max{RCj} > [fo x or,) + m2 ] -  [fo x a 2) + <0, ].
6 " j e N / g  J 71

Rearranging the terms, Min{RCg}r  -  M a x { R C j> [yx x -cc2) \-  (cox ~ cq2).

(O-l (a>i — CO-*)  /  \  /  \Recall that yx = —  = 7—1 So, ft x ( a , - a 2)-{ct)x-co2) = 0. 
a 3 (ax- a 2) 

Hence, at a scaling factor of f t , M njfiC L  > Max\RC  . It follows that if
8  n  j e N / g  J n

K S = Yix  n * ~ {ft + £)x a n c * n  ~ {Yi x n*)+ }_ > Mzr{RC; }_.

This dictates that, provided cox ^  co2, the global maximum of the reduced cost 

values at n  will only be achieved by DMUg, i.e., ArgM a^RCj}_ =DMUg.
j e N  X

Q.E.D.

Now consider the highly restrictive possibility of cox -  co2, i.e., all the n 

units achieve the same reduced value at n x = (l,l,0). So cox-co2 = 0 and hence 

Min\RC }_ -  MaxiRC;}_ = (hx (ax -  a 2)) -  (a\ -  co2) = h x (ax - a 2) > 0;
“ n  j e N / g  J n

where, h > 0 is the scaling factor to be applied on the original optimal weights 

71*. It is easy to see that any positive value of h is enough to ensure that 

ArgMax{RC ,}_ = DMUg. The simplest way to implement this would be to let
j e N  X

h - 1 leading to n  = n* + tux .

7.3.3.1 Illustration of the closed-form solution to ensure positive weights under 
VRS

We will illustrate the above closed-form solution using the following 10 

DMUs, 2 inputs, 2 outputs DEA problem presented in table 7-23 below.
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DMU X I X2 Y1 Y2 RCj
A 1 0 3 3 9
B 1 12 40 7 9
C 6 0 60 2 6
D 6 9 10 5 6
E 0 40 22 1 -37
F 0 15 8 1 -12
G 1 18 5 5 -3
H 4 0 8 4 12
I 4 30 150 10 0
J 5 16 7 2 -10

*'f 0 1 0 3
Table 7-23 : Closed-form solution to obtain positive multipliers 1

Assume that GEN = {/}, DMUt = A and upon solving the relevant LP we 

arrived at the optimal weights defined by Jt* = (0,1,0,3) with /T  = 0 ; at n*, 

Mox\r Cj } . > 0 and ArgMax\RCj \  . = {//}. Although unit H is guaranteed to
Je N  j e N

be a generator, it has one zero input weight and one zero output weight and we 

are interested in providing it with strictly positive set of weights. Using the 

notations introduced earlier, = 12, a 2 =9  and a 3 = (ax -  a 2) = 12 -  9 = 3.

Now, consider the following table where for the same dataset, the 

reduced cost values of the units are shown at the unary weights n x = (l, 1, 1, l) 

with J31 = 0 .

DMU X I X2 Y1 Y2 RCj
A 1 0 3 3 5
B 1 9 40 7 34
C 6 0 60 2 56
D 6 9 10 5 0
E 0 40 22 1 -17
F 0 15 8 1 -6
G 1 18 5 5 -9
H 4 0 8 4 8
I 4 30 150 10 126
J 5 16 7 2 -12

n ) I 1 1 1
Table 7-24 : Closed-form solution to obtain positive multipliers 2
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Now, cox = 126, co2 = -1 7 , co3 =(cul -co2) = 126—(—17) = 143; also,

yx = —  = = 47.67 and y2 = y: +\ = 48.67. The synthesised set of weights
a 3 3

are given by tz = n s + where 7ts - y 2y.n*. Hence, 7t -  (l,49.67,1,147.01) 

with p  = 0 . At the modified hybrid weights, the reduced costs are shown in 

table 7-25 below.

DMU X I X2 Y1 Y2 RCj
A 1 0 3 3 443.03
B 1 9 40 7 472.03
C 6 0 60 2 348.02
D 6 9 10 5 292.02
£ 0 40 22 1 -1817.79
F 0 15 8 1 -590.04
G 1 18 5 5 -155.01
H 4 0 8 4 592.04
I 4 30 150 10 126
J 5 16 7 2 -498.7

Wf 1 49.67 1 147.01
Table 7-25 : Closed-form solution to obtain positive multipliers 3

The reduced cost values at 7t are the sum total of the reduced cost values 

at the modified original optimal weights n s and the unary weights K l . The 

reduced cost values at n* at which unit H achieved the unique maximum 

reduced cost value are magnified by the factor y2 = 48.67 such that it 

counterbalances the effect of the reduced cost values at n x. Hence, by 

magnifying the reduced cost values at n* by the factor y2, we ensure that at the 

synthesised set of weights n , the maximum of the reduced cost values is once 

again uniquely achieved by unit H but now at a set of strictly positive multiplier 

values.

7.4 Conclusion

In this chapter, we presented closed-form solutions to deal with the 

technical challenges of ties and indeterminate ratios while employing GBA under 

different returns to scale assumptions. We also presented closed-form solutions 

to arrive at a strictly positive set of multiplier values for the generators under
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different returns to scale assumptions. Note that by employing GBA, it is easy to 

provide strictly positive multiplier values for every generator. To see this, recall 

that generators are identified in GBA in two different ways. Either ArgMax is 

unique, leading to a generator, possibly with some zero multipliers - but the 

closed-form solution can lead to strictly positive multipliers; else, a generator is 

found by breaking ties using a closed-form method which also guarantees 

positive multipliers.

In the subsequent chapter, we will discuss the computational experiments 

carried out in solving oriented and non-oriented CRS and VRS models using 

GBA to compare its computational performance against Dula’s BuildHull and 

the conventional two-phase algorithm.
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8 COMPUTATIONAL RESULTS FOR GBA

This chapter presents the computational results of solving oriented and 

non-oriented DEA models under different returns to scale assumption and data 

characteristics. In solving the various models, we compare the computational 

performance of GBA against Dula’s BuildHull algorithm and the conventional 

solution procedure. Using extensive computational experiments, Dula (1998, 

2008) has shown that his BuildHull algorithm is computationally superior to the 

hierarchical decomposition procedure of Barr and Durchholz (1997) and the 

conventional solution procedure in solving the additive VRS model. We compare 

the computational performance of GBA against BuildHull in solving oriented 

and non-oriented VRS models using the same datasets that Dula has employed in 

his studies. Additionally, we show how GBA and BuildHull compare with the 

conventional solution procedure in solving the VRS models. Lastly, we compare 

the computational performance of GBA against BuildHull and the conventional 

solution procedure in solving the input-oriented CRS model using a problem 

suite developed for this purpose.

This chapter is organized as follows. In section 8.1, we present the 

problem suite and algorithmic descriptions of the three algorithms, viz., GBA, 

BuildHull, and the standard two-phase procedure to solve the output-oriented 

VRS model. We discuss the LP solver employed, the programming language and 

the software environment in which the experiments were carried out. We then 

examine the limitations of our computational experiments. Subsequently, we 

present the computational results and study the individual impact of each of three 

characteristics of a DEA dataset, namely, cardinality, dimension and density, on 

computational time. The above structure is followed in section 8.2 in studying 

the computational performance of the three algorithms in solving the additive 

VRS model and in 8.3 in solving the input-oriented CRS model.

Results indicate that GBA is consistently faster than BuildHull in solving 

the oriented CRS and VRS models. While solving the additive VRS model, 

BuildHull outperforms GBA although inconsistently at higher dimensions. We 

provide two alternative ways of modifying GBA to solve the additive VRS
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model and show using preliminary experiments that both the alternative 

approaches have distinctive advantages over BuildHull with one of them 

consistently outperforming BuildHull at higher dimensions.

8.1 Competitive algorithms to solve the output-oriented VRS model

Dula (1998, 2008) has shown the computational advantage of employing 

the BuildHull algorithm over the standard solution procedure and the hierarchical 

decomposition procedure using the problem suite developed in Dula (1998). The 

datasets developed in Dula (1998) were generated for the specific case where the 

returns to scale is variable. Results, as in Dula (1998, 2010), show that under any 

characteristic of the dataset, BuildHull is consistently faster than the other two. In 

order to prove the computational superiority of GBA over BuildHull, we will use 

the same problem suite that Dula has developed and employed in all his papers 

(see, Dula, 1998; Dula & Thrall, 2001; Dula & Lopez, 2002; Dula & Lopez, 

2006; Dula, 2008; Dula & Lopez, 2009). We discuss this problem suite in section 

8.1.1. Using this problem suite, we study the computational performance of 

GBA, BuildHull and the conventional two-phase algorithm in solving the output- 

oriented VRS model. The primary reason for choosing the output-oriented VRS 

model39 is that the sponsor organisation of this research, the DfE, is interested in 

using this model to evaluate the primary schools in England. In addition, it is the 

most commonly used model in the parametric, semi-parametric and non- 

parametric literature on productivity theory (see, Fried et al, 2008). Towards the 

end of this section, we discuss the computational performance of GBA, 

BuildHull, and PIM DEA Soft v2, die efficiency analysis software currently 

employed by the DfE, in solving a real dataset provided by the them.

8.1.1 Description of the problem suite
The problem suite used in our experiments is obtained from Dula’s 

website (http://www.people.vcu.edu/~idula/LargeScaleDEAdata/). There are 64

39 Note that the characteristics of a dataset (density, cardinality and dimension) are unaffected by 
the orientation of the analysis. Also, there is no immediate reason to expect that the orientation of 
the DEA model will have a differential impact on the computational performance of the three 
algorithms.
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datasets with varying characteristics of dimension, density and cardinality. In this 

section, we present the configuration of the 64 datasets and refer to Dula (2008) 

for a detailed discussion of the Data Generating Process employed in generating 

these datasets and the advantages of generating datasets in such fashion.

In the 64 datasets, the cardinality varies between 2500 and 10000 DMUs, 

the dimension between 5 and 20 factors, and the density between 1% and 50%. 

Each of the three characteristics of the dataset can take 4 different values within 

their ranges. In particular, the cardinality can be 2500, 5000, 7500 or 10000, the 

dimension can be 5, 10, 15 or 20, and the density 1%, 13%, 25% or 50%, in total 

creating 4 x 4 x 4  = 64 datasets. In the first 16 datasets, the dimension of the 

problem is fixed at 5 which includes 2 inputs and 3 outputs. In the first 4 of these 

16 datasets, the cardinality is fixed at 2500 and the density is varied between 1% 

and 50%40. In the second 4 of the 16 datasets, the cardinality is fixed at 5000, in 

the third 4, cardinality is fixed at 7500 and in the final 4, it is fixed at 10000 with 

the density varied between 1% and 50% in each 4 of the 16 datasets. In the 

second 16 datasets, the dimension is fixed at 10 which includes 4 inputs and 6 

outputs; in the third 16 datasets, the dimension is fixed at 15 which includes 7 

inputs and 8 outputs, and in the last 16 datasets, the dimension is fixed at 20 

which includes 9 inputs and 11 outputs41. Within each 16 datasets, the cardinality 

and density values are distributed in the manner described above.

8.1.2 Technology and Implementations

The three algorithms were implemented in R 2.8.1 which is a software 

environment primarily for statistical computation and software development. Its 

source code is freely available under the GNU General Public License. R 2.8.1 is 

the programming language in which the algorithms were written. To solve the LP 

problems, R 2.8.1 is interfaced with the linear programming solver lp_solve

5.5.0.14. lp solve 5.5.0.14 is a non-commercial linear and integer programming

40 Note that in real datasets, the density is typically never more than 10% as was confirmed in our 
experience with the school’s data provided by the DfE and in earlier researches by Barr and 
Durchholz (1997) and Dula (1998).
41 In real datasets that we and others have come across (see, Barr & Durchholz, 1997; Dula, 
1998), the dimension and cardinality values do not typically go beyond 10 factors and 15000 
DMUs respectively.
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solver based on the revised simplex method and branch and bound procedure for 

solving linear and integer problems. The form of lp solve 5.5.0.14 used was the 

callable library; i.e., a collection of functions were called from inside a R 2.8.1 

program. Although, it has been well documented that non-commercial LP solvers 

(like lp solve) are inferior in computational performance when compared to the 

commercial solver CPLEX42, lp solve 5.5.0.14 was selected as the solver of 

choice for two reasons. The principal reason is that, similar to R 2.8.1, lp solve

5.5.0.14 is freely available under the GNU General Public License and hence 

there are no licensing issues involved. This enables our programs to be readily 

tested and used by others upon installing R 2.8.1 and lp solve 5.5.0.14, which 

are both open source. Second, the interfacing of lp_solve 5.5.0.14 with R 2.8.1 is 

uncomplicated and the interfacing package is freely available (see, http://cran.r- 

proiect.org/web/packages/lpSolve/index.html). Unfortunately, this is not the case 

with interfacing the CPLEX solver with R 2.8.1. Neither is CPLEX freely 

available to use within R 2.8.1 and nor is the interfacing straightforward under 

Windows XP operating system. Although, CPLEX could have been our solver of 

choice, as we are employing the same (software environment, programming 

language and) LP solver to compare the performance of the three algorithms, the 

differential impact of the solver on any one of the algorithm’s performance, if 

any, is expected to be marginal. The programs were executed on a dedicated 

DELL personal computer with INTEL Pentium E8200 CPU at 2.66 GHz and 

1.95 GB of RAM running a Windows XP operating system.

Now that we have determined the software environment, the LP solver 

and the programming language to write and execute the algorithms, we can 

decide on the structure of the three algorithms. Since, GBA and BuildHull are 

similar in their philosophy, they are written with similar structures. As the three 

algorithms are already described in enough detail in the earlier chapters, we will 

only present their procedures here. The programmed versions of GBA, BuildHull 

and the conventional two-phase procedure to solve the output-oriented VRS 

model can be seen in Appendix 5.

42 See, http://lpsolve.sourceforge.net/5.0/LinearProgrammingFAO.htm#Q2. 
http://lionhrtpub.com/orms/survevs/LP/LP-survev.html. http://plato.asu.edu/ftp/lpfree.html. 
http://plato.asu.edu/ftp/milpf.html and http://scip.zib.de/ for discussions on benchmark results o f  
LP and MILP solvers.
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Before describing the procedures, we would like to mention three 

important points. First, the LP acceleration technique of reoptimization or hot- 

start is not employed in any of the three algorithms. Second, DEA specific 

computational enhancements like early identification of efficient units or reduced 

basis entry are not employed in the experiments carried out. Only a naive 

implementation of the three algorithms is considered. Third, among the list of 

scaling algorithms provided as part of the solver options, the ‘numerical range 

based scaling’ algorithm was consistent and faster; hence, the particular scaling 

algorithm was invoked within the solver while solving the LPs. We elaborate on 

the first two points in section 8.1.3.

8.1.2.1 Description of the GBA procedure

As we are solving the output-oriented VRS model using GBA, we need to 

take care of the infeasibility problem. To ensure feasibility of any LP solved 

using GBA, we introduce DMUt into the coefficient matrix alongside the set of 

generators at a penalty of -2. The technical challenge of ties was resolved using 

the closed-form solution approach presented in chapter 7.

There are two parts to the implementation of GBA. The first part is the 

initialisation and the second part is the actual run of the algorithm. The 

initialisation part of GBA is accomplished by evaluating the reduced costs RCj

of all the units at unary weights (l, 1,0)43 and choosing the unit that achieved the

maximum RCj value as our starting generator44. All other units are placed in the

set of status unresolved units U . The second part of the algorithm is the actual 

run of the GBA. The DMUs are evaluated in the order present in the dataset.

GBA, described as above, requires solving (n - 1) LP problems and the 

size of the LP increases from (/w + l)x3 to (m + l)x  (k + 2), where k  is the 

number of generators in the dataset. The algorithmic procedure of GBA is 

presented below.

43 Since the weights for the input and output factors are strictly positive, the unit(s) achieving the 
maximum RCj value must be P-K efficient which were confirmed to be generators in our 

experiments.
44 No tie was observed for the maximum R C j  value at (l, 1 ,0 ).
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P r o c e d u r e  G B A  

Step 0: Initialisation

set GEN  = {</>}, U  = {l...n}, TU  = {(#}; 

where,

GEN is the set of generators;

U  is the set of status unresolved DMUs;

TU  is the set of tied units for ArgMax in R C j , j  e U  at n *;

0.1 Evaluate R C . — 1 Yj — lX y.,V y e  U  and let ArgMax\RCj }= D M U f ;
je U

0.2 Move DMUf to set GEN.

End Initialisation.

Step 1: Iteration. While U  & {^}, do:

1.1 Select the first DMU from U , DMUt, and solve MGBA LP-4 for it; let the 

optimal weights be 7T* = (v*,w*,v0*);

1.2 Evaluate RCj at /r* for j  e U ;

1.3 If M ax{R Cj )<0,&o\
j e U  1

1.3.1 Record the optimal weights, peers and slacks for DMUt;

1.3.2 Remove DMUt from U  and go to Step 1.1;

1.4 If Mtx{/?C;.}>0,do:
j e U  J

1.4.1 Compute ArgMax\RCj } and 777;
je U

1.4.1.1 If \TU\>1,  go to Step 1.4.2;

1.4.1.2 If \TU\ = 1 and ArgMax \RCj }= D M U f , record the optimal
j e U

weights for DMUf; Move DMUf to set GEN; Go to Step 1.1;
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1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify 

one P-K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set GEN; Go to Step 1.1;

End Procedure.

8.1.2.2 Description of BuildHull and the Standard two-phase algorithm

The procedure for solving the output-oriented VRS model using 

BuildHull is similar to what has been described in Dula (1998) except for the 

initialisation part and the subroutine to resolve ties. Similar to GBA, BuildHull 

was initialised by evaluating the reduced costs RCj of all the units at unary

weights (l, 1,0). It is important to note that although Dula (1998) described an LP 

based procedure to resolve ties, the procedure was never implemented to our 

knowledge45. Ties in our implementation of BuildHull were resolved using the 

closed-form solution described in chapter 7.

Both BuildHull and the standard DEA algorithm are two-phase 

procedures and BuildHull requires solving 2n - k  LPs while the standard DEA 

algorithm requires solving 2n LPs. The maximum number of columns in any LP 

solved in BuildHull is k + \,  where k  is the number of extreme-efficient units in 

the dataset. The number of columns in the standard procedure is fixed at n in 

phase-1 and (n + m) in phase-2. For the sake of completeness, we describe our 

implementation of the BuildHull algorithm and the standard two-phase algorithm 

below.

P r o c e d u r e  B u il d H u l l

Step 0: Initialisation

s e t£  = W , I /  = { l..J i} .rt/ = ^ } ;

where,

45 In a recent version of his BuildHull algorithm, Dula (2010) suggests resorting to a sorting 
algorithm to identify one extreme-efficient unit among the tied units for the VRS case. This 
proposal, although valid, was not implemented in his algorithm to our knowledge.
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E is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R C j, j  e U +at 7t*;

0.1 Evaluate RCj = 1 Yj — IX j,, V j  e U  and let ArgMax\RCj }= D M U f;
j e U

0.2 Move DMUf to set E.

End Initialisation.

Step 1: Phase-1 Iteration. While U ^  {^}, do:

1.1 Select the first DMU from set U , DMUt, and solve the phase-1 VRS LP of 

BuildHull for it;

1.2 Let the optimal weights be 7U* = (v*,w*,/T);

1.3 If the optimal objective function value is = 0, do:

1.3.1 Remove DMUt from U and move it to set I; Go to Step 1.1;

1.4 If the optimal objective function value is > 0, do:

1.4.1 Compute RCj at n* for y e  U +and T U ;

1.4.1.1 If \TU\>1, go to Step 1.4.2;

1.4.1.2 If |?T/| = 1 and ArgMax\RCj = DMUp , record the
;Gi/+

optimal weights for DMUp; Move DMUp to set E; Go to Step

l.i;

1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify 

one P-K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set E; Go to Step 1.1;

End Phase-1 Procedure.

Step 2: Phase-2 Iteration. While /  ^  do:

2.1 Select the first DMU from set U , DMUt, and solve LP-8 for it against units 

in E; Record the efficiency score, weights, slacks and peers for DMUt;

2.2 Remove DMUt from I; Go to Step 2.1;
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End Phase-2 Procedure.

End BuildHull Procedure.

P r o c e d u r e  S t a n d a r d  T w o -p h a s e  A l g o r it h m  (VRS)

Step 0: Initialisation

set R = M ;

where,

U is the set of status unresolved DMUs;

R is the set of status resolved DMUs;

Step 1: Phase-1 of the standard DEA procedure. While U & \<f)), do:

1.1 Select the first DMU in U , DMUt, and solve LP-8 for it. Record the 

efficiency score and weights for DMUt;

1.2 Remove DMUt from U and move it to set R ; Go to Step 1.1;

End Phase-1 procedure.

Step 2: Phase 2 of the standard DEA procedure. While R & {(f)), do:

2.1 Select the first DMU, DMUt, from set R and solve the max-slack VRS 
model for it. Record the input and output slacks and peers for DMUt;

2.2 Remove DMUt from R ; Go to Step 2.1;

End Phase-2 procedure.

End Standard two-phase algorithm.

8.1.3 Limitations of the computational experiments

Before we present the results of our computational experiments, it is 

important to discuss its limitations. The first two limitations were briefly 

discussed in section 8.1.2. The first limitation is that the LP solver lp solve

5.5.0.14 and the programming language R 2.8.1 employed in our study may not 

be the best of the options to carry out our computational experiments. A better 

choice could be to employ CPLEX solver’s callable library within a Fortran 

program as in Dula’s experiments. As mentioned earlier, the principal advantage
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of our solver and programming language is that both are open source. Also, as 

we have programmed the algorithms in the same language and employed the 

same solver to solve the LPs, the differential impact on any one of the 

algorithms, if any, is expected to be marginal.

The second limitation is that we have restricted ourselves to only a naive 

implementation of the three algorithms. Specifically, the LP acceleration 

technique of hot starts (reoptimization) and DEA specific enhancement 

techniques like earlier identification of efficient units (EIE) and restricted basis 

entry (RBE) were not employed in any of the algorithms. Contrasting Barr and 

Durchholz (1997), Dula in his studies (see, Dula, 2008; Dula, 2010) has observed 

that hot starts and RBE can effect substantial computational savings and could be 

readily applied to the conventional DEA algorithm, the hierarchical 

decomposition procedure, and BuildHull.

As mentioned in section 3.1, Ah (1993) reports a reduction of 84% for a 

particular dataset while in another experimental study by Barr and Durchholz 

(1997) and Dula (2008), it has been shown that RBE can reduce the 

computational time by 50%.

We did not apply such enhancements in our study for two reasons. First, 

by employing these enhancements, the computational performance of the three 

algorithms could be affected differentially and hence, our understanding of the 

algorithms’ performance could be distorted. Second, employing hot starts was 

not an option provided with the version of our LP solver that can be interfaced 

with R 2.8.1. Hence, implementing the technique in the algorithms was not 

straight forward.

The third limitation is that we evaluate the units in the order present in the 

dataset and did not explore other options. For example, when the evaluation of 

DMUt is complete, one can choose the unit in U that achieved the second 

highest RCj value as the next one because, it is likely to be a new generator (see,

Sueyoshi, 1990). Evaluating units in this manner could help us identify all the 

generators in the dataset earlier. This could have a positive impact on the 

computational performance of GBA.
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Another alternative, on proving that DMUt is a non-generator, would be 

to identify those units g in U for which the optimal basis for DMUt provides a 

feasible solution for the envelopment form model.

8.1.4 Computational results and comparison of algorithmic performances

The computational results in solving the 64 datasets using the three 

algorithms can be seen in Appendix 6 . No ties were encountered in solving the 

64 datasets using GBA and BuildHull.

The first obvious and encouraging result is that regardless of the 

cardinality or dimension or density characteristic of the dataset, GBA solves any 

dataset faster than BuildHull. GBA is also consistently faster and by a 

considerable margin than the standard two-phase algorithm. BuildHull is also 

consistently faster than the standard two-phase DEA algorithm. As expected, 

there is a gradual decrease in the computation advantage of GBA and BuildHull 

over the standard two-phase procedure as density increases from 1% to 50%. In 

addition, if one is only interested in solving the first phase of the standard 

algorithm to obtain the efficiency scores of the units, then BuildHull was slightly 

outperformed by the conventional algorithm in two instances. When the 

dimension of the dataset is 5 and density 50%, and when the cardinality of the 

problem is 2500 or 5000, the 1st phase of the standard procedure is slightly faster 

than BuildHull. Given that the 1st phase of the standard procedure requires 

solving n LPs of fixed size (w + l)x «  while BuildHull requires solving 2n - k  

LPs of maximum size (m + \ ) x k ,  the two instances wherein the former slightly 

out-performed the latter is not an altogether surprising result.

To get a better perspective of the individual impact of the characteristics 

of a dataset on the performance of the three algorithms, dimension, density and 

cardinality were fixed two at a time and for the four different values of the third 

factor, the computational times required by the three algorithms are plotted. In 

the first instance, the dimension and cardinality are fixed at the lower end of their 

ranges, i.e., at 5 and 2500 respectively, and the impact of density on the 

performance of GBA, BuildHull, and the standard algorithm (1st Phase and 1&2
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Phases) are graphically illustrated in chart 8-146 below. Note that for each case, 

apart from charting the performance of the three algorithms, we also provide a 

chart comparing GBA with BuildHull alone to discriminate their relative 

performances better.

Computational Time Vs Density

5-2500-01 5-2500-13 5-2500-25 5-2500-50
Data sets with arying density

—♦— 1st&2ndPhases 
—• — 1st Phase 

BuildHull 
—x — G B A

Chart 8-1 : Computational Time versus Density

Computational Time vs Density

BuildHull
GBA

5-2500-01 5-2500-13 5-2500-25
Data sets with varying density

Chart 8-2 : Computational Time versus Density (GBA vs. BuildHull)

46 On the x-axis, the datasets are varied keeping the dimension and cardinality fixed at 5 and 2500 
respectively, and changing the density from 1% to 50%; so 5-2500-01 denotes the dataset with 
dimension fixed at 5, cardinality at 2500 and density at 1%.
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As seen in charts 8-1 and 8-2, GBA solves the problem consistently faster 

regardless of the density of the dataset, and as density increases, the 

computational advantage of GBA and BuildHull over the standard procedure 

reduces gradually. BuildHull performs better than the standard algorithm and the 

1st phase of the standard algorithm except when the density is at 50%. The graph 

that shows the trend when the dimension is fixed at 20 and cardinality at 10000 

and the density is varied from 1% to 50% can be seen in charts 8-3 and 8-4 

below.

Computational Time vs Density

35000

30000

25000

1st&2ndPhases 
1st Phase 
BuildHull 
GBA

20000

Z  15000

10000

20-10000-01 20-10000-13 20-10000-25 20-10000-50
Data se ts with varying density

Chart 8-3 : Computational Time versus Density
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Chart 8-4 : Computational Time versus Density (GBA vs. BuildHull)

In the second scenario, the density and cardinality values are fixed at one 

end of their ranges, i.e., at 1% and 2500 respectively, and the impact of 

dimension at values 5, 10, 15 and 20 on the performance of GBA, BuildHull, and 

the standard algorithm are graphically illustrated in charts 8-5 and 8-6 below.

Computational Time vs Dimension

1st&2ndPhases 
1st Phase 
BuildHull 
GBA

5-2500-01 10-2500-01 15-2500-01 20-2500-01

Datasets with varying dimension

Chart 8-5 : Computational Time versus Dimension
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Computational Time vs Cardinality
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Datasets with varying cardinality

Chart 8-6 : Computational Time versus Dimension (GBA vs. BuildHull)

As seen in charts 8-5 and 8-6, GBA solves the problem consistently faster 

regardless of the dimension of the dataset and its computational advantage over 

BuildHull is almost unaffected by the dimension of the dataset. BuildHull also 

performs better than the standard algorithm in all cases. The graph that shows the 

trend at the other extreme when the density is fixed at 50% and cardinality at 

10000 and the dimension is varied from 5 to 20 can be seen below.

Computational Time vs Dimension

35000

30000

25000 -
1st&2ndPhases 
1s Phase 
BuildHull 
GBA

20000

15000

10000

5000 -

10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimension

5-10000-50

Chart 8-7 : Computational Time versus Dimension
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Computational Time vs Dimension

BuildHull

5-10000-50 10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimension

Chart 8-8 : Computational Time versus Dimension (GBA vs. BuildHull)

In the third scenario, the density and dimension values are fixed at one 

end of their ranges, i.e., at 1% and 5 respectively, and the impact of cardinality at 

values 2500, 5000, 7500 and 10000 on the performance of GBA, BuildHull, and 

the standard algorithm are graphically illustrated in the charts below.

Computational Time vs Cardinality

1st&2ndPhases 
1st Phase 
BuildHull 
GBA

5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-9 : Computational Time versus Cardinality
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Computational Time vs Cardinality

|  40
BuildHull
GBA

5-2500-01 5-5000-01 5-7500-01

Datasets with varying cardinality

5-10000-01

Chart 8-10 : Computational Time versus Cardinality (GBA vs. BuildHull)

As seen from charts 8-9 and 8-10, GBA solves the problem consistently 

faster regardless of the cardinality of the dataset. BuildHull also performs better 

than the standard algorithm in all cases. To discriminate better the time taken by 

the three algorithms, the following graph in chart 8-11 shows the computational 

performance for the same scenario in log seconds47.

1st&2nd Phases 
■ 1st Phase 

BuildHull
—x—GBA

Computational Time vs Cardinality

10000

1000

5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-11 : Computational Time (log seconds) versus Cardinality

47 Note that the shape of the log-curve depicts the proportional increase in the time taken by the 
algorithms to solve the datasets.
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The same trend is also observed at the other end of the extreme when the 

density is fixed at 50%, dimension at 20 and the cardinality is varied from 2500 

through 10000. The corresponding graph can be seen in charts 8-12 and 8-13 

below.
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Chart 8-12 : Computational Time versus Cardinality
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Chart 8-13 : Computational Time versus Cardinality (GBA vs. BuildHull)
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Once again, to discriminate the time taken by the three algorithms, the 

following graph shows the computational performance for the same scenario in 

log seconds.

Computational Time vs Cardinality
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Chart 8-14 : Computational Time (log seconds) versus Cardinality

We also recorded the time taken by GBA, BuildHull and PIM DEA 

SOFT v2 to solve a real dataset received from the DfE. The real dataset involved 

13216 DMUs (primary schools in England) with 6 inputs and 3 outputs. Zeroes 

existed in both inputs and outputs. We were asked to provide the efficiency score 

of the 13216 schools using the output-oriented VRS model.

BuildHull took 156.77 seconds to solve the dataset. Unlike in the 

simulated datasets, 8 ties were encountered with an average of about 111 units 

per tie. GBA took 105.27 seconds, a 33% reduction in time compared to 

BuildHull. Again, unlike in simulated datasets, 3 ties were encountered with an 

average of about 39 units per tie. The commercial DEA software, PIM DEA 

SOFT v2, took over 1 hour to solve the same dataset48.

48 Both BuildHull and GBA identified 188 extreme-efficient units among the 13216 units. Hence, 
the density o f the real dataset is 1.42%.
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8.2 Competitive algorithms to solve the additive VRS model

The same problem suite (of 64 datasets) has been employed to compare 

the performance of the three algorithms to solve the additive VRS model. The 

algorithmic procedures of GBA and BuildHull remain the same as in the oriented 

case, except for the LP model solved and the non-issue of ties49. To avoid 

duplication of material, their procedures are not repeated here. Unlike in the 

oriented models, the standard additive model has a single phase. Once again, its 

procedure is not presented here as it remains essentially the same as in the 

oriented case except for the LP solved and the absence of a second phase. The 

programmed version of GBA, BuildHull and the standard algorithm to solve the 

additive VRS model can be seen in Appendix 6 .

The three limitations of our computational experiments observed in our 

design to solve the output-oriented VRS model using the algorithms are also 

applicable here.

8.2.1 Comparison of algorithmic performances

The computational results from solving the 64 datasets using the three 

algorithms can be seen in Appendix 7. Once again, the ‘numerical range based 

scaling’ algorithm was invoked in the solver while solving the LPs.

The first obvious result is that GBA and BuildHull consistently 

outperformed the standard algorithm. While employing GBA to solve the 

additive model, each LP is of size (m + l ) x ( g  + m + 1) , where g  < k  is the 

number of generators identified at a particular iteration and we solve (n - 1) such 

LPs. This became a handicap at combinations of higher dimension and density 

values. In contrast, while employing BuildHull to solve the additive model, the 

first phase LPs are of size (/w + l)x(/* + l), where h < k  is the number of 

generators identified at a particular iteration, and (n - 1) such LPs were solved. 

In the second phase, (in - k ) LPs of fixed size (w + l)x(A: + /w) were solved, 

where k  is the number of generators in the dataset. In our experiments, we

49 Recall that ties are a non-issue here as all the tied units are guaranteed to be P-K efficient and 
can be moved to set GEN.
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observed that when the dimension of the dataset is 20 , regardless of the density 

and cardinality values, BuildHull was able to solve the dataset slightly faster than 

GBA although not consistently. Also, when the dimension is 15 and cardinality is 

7500 or 10000, regardless of the density of the dataset, BuildHull was able to 

solve the dataset slightly faster than GBA. At all other combinations, GBA 

solved the dataset consistently faster than BuildHull.

Based on preliminary experiments, we can provide two promising 

alternative approaches to GBA while solving datasets with extreme dimension 

characteristics using the additive model. First, it could be prudent to adopt a two- 

phase approach to GBA wherein one solves the corresponding oriented model in 

phase-1, score all the non-generators and identify the generators, and in phase-2 , 

solve the additive model to score the non-generators using only the set of 

generators identified in phase-1. In this modified two-phase version of GBA, 

( « - l )  LPs of maximum size (m + l)x(£  + 2) are solved in the first phase and 

n - k  LPs of fixed size (m + l)x (k 4- m) are solved in the second phase. This can 

be seen as analogous to the BuildHull procedure in identifying all the generators 

in phase-1 and scoring the remaining units in phase-2. However, at a possibly 

higher computational cost, if we use GBA to solve additive models in two phases 

as described above, we could provide the efficiency score, peers and slacks for 

all the non-generators in the phase- 1 using the (input or output) oriented model, 

and also the peers and slacks of the non-generators in the second phase using the 

additive model.

The second alternative approach is to solve the multiplier form (dual of 

the envelopment form) of the additive model using GBA. In this version of GBA, 

we will be solving (n - 1) LPs of maximum size (k + m + l)x (m + 1), where k  is 

the number of generators in the dataset. It is expected that at higher combinations 

of dimension and density values, the performance of GBA applied to the 

multiplier form of the additive VRS model can be competitive compared to 

BuildHull and GBA. To evaluate this procedure, we also programmed a modified 

version of BuildHull wherein in the second phase, the multiplier form of the 

additive model is solved for each non-generator using only the set of generators 

identified in phase-1; i.e., in the second phase of BuildHull, ( n - k )  LPs of fixed
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size (k + m)x (m + 1) are solved. Some preliminary results can be seen in table 8- 

1 below. The programmed version of the two alternative approaches to GBA 

along with the modified BuildHull procedure to solve the additive VRS model 

can be seen in Appendix 8.

Datasets BuildHull BuildHull m GBA org GBA 2ph GBA mult
20-2500-01 24.11 30.59 17.03 27.22 16.83
20-2500-13 73.49 67.56 131.05 74.77 42.19
20-5000-01 59.45 54.22 39.47 62.08 39
20-5000-13 241.28 263.76 1533.81 267.89 173.1
20-7500-01 120.09 122.81 97.73 133.33 96.86
20-7500-13 524.92 599.43 2337.53 574.64 385.25

20-10000-01 165.54 170.71 139.72 211.36 132.77
20-10000-13 921.61 1043.04 3022.21 1032.19 665.67
05-2500-01 17.11 47.66 8.83 29.84 15.8
05-2500-13 26.82 40.54 15.96 54.86 31.79
05-5000-01 33.96 59.27 19.6 65.93 34.38
05-5000-13 78.81 128.95 48.08 136.22 52.72

09-13216-01 161.97 178.72 104.32 749.41 129.74

Table 8-1: Alternative approaches to solve the additive model

In the above table, we consider 12 of Dula’s datasets wherein in the first 

8, the dimension is 20, cardinality is 2500, 5000, 7500 or 10000, and density is 

1% or 13%; in the next 4, the dimension is 5, cardinality is 2500 or 5000, and 

density is 1% or 13%. We also solved the real dataset (with 13216 DMUs, 9 

factors and 1.42% density) from the DfE using the 5 algorithms. The table shows 

the time taken in seconds to solve the 13 datasets using Dula’s BuildHull, the 

modified version of BuildHull (BuildHull m), original GBA (GBA_org), the 

two-phase approach to GBA (GBA_2ph) and the multiplier version of GBA 

(GBAmult).

From the above table, the only clear trends are that when the dimension is 

20 (extremely high dimension), GBA_2ph takes more time than BuildHull to 

solve the datasets. Also, among the 5 algorithms, GBA_mult solves any dataset 

consistently faster. GBA_2ph is expected to take more time than BuildHull but 

still this two-phase approach to GBA requires only a moderate amount of 

additional time over BuildHull while providing information from solving the 

oriented and additive models. And lastly, when the dimension is 5 or 9 (small to 

medium dimension), GBA_org is the fastest among the 5 options.
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It must be clear that given our limited experiments, the above results 

cannot be regarded as being conclusive. The two alternative GBA procedures are 

promising avenues for future research although additional work is required to 

make GBA consistently faster over BuildHull while solving datasets of any 

characteristics using additive models.

8.3 Competitive algorithms to solve the input-oriented CRS model

In this section, we study the computational performance of GBA, 

BuildHull, and the standard two-phase procedure in solving different datasets 

under CRS assumption. In addition, we evaluate the individual impact of 

dimension, density and cardinality characteristics on the performance of the three 

algorithms. So far, Dula (1998, 2008) has carried out computational studies only 

for the VRS models and the characteristics of the datasets he has generated under 

VRS assumption do not hold true under CRS. We will describe our data 

generation process (DGP) under CRS assumption before we present the 

limitations of our experimental design and the results.

8.3.1 Problem suite under CRS

For comparison purposes, it was decided that the characteristics of the 

datasets generated using the data generation process under CRS assumption must 

be similar to that used under VRS. Hence, the number of datasets was fixed at 64 

and the density was allowed to take values 1%, 13%, 25% or 50%, dimension 5, 

10, 15 or 20, and cardinality 2500, 5000, 7500 or 10000. However, unlike in the 

VRS datasets, die number of outputs in any m dimensional dataset was fixed at

1. This is because the datasets were generated using the traditional Cobb-Douglas 

functional form50 (Cobb & Douglas, 1928) given by y  -  x “x x x “2 x . . . x r j ; 

where y  is the single output and x. are the input values for i = 1 to ^ . As we 

assume that the production technology exhibits CRS, the exponents on the input

50 Many simulation studies in the DEA literature typically use some variant of the Cobb-Douglas 
form to generate the datasets (see, Banker et al, 1993; Banker et al, 2004; Banker & Natarajan, 
2008; Banker & Parthasarathy, 2009; Banker et al, 2010).
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values must sum to 1, i.e., ^  a, = 1. Since adapting the Cobb-Douglas
1=1

functional form for multiple outputs would mean loss of control of the final 

density of the dataset, the number of outputs was fixed at 1. To our knowledge, 

there is no other uncomplicated way of generating datasets under CRS wherein 

the density is decided beforehand. This implies that in all the 64 datasets that 

were generated, the number inputs is given by (m - 1) 51.

The datasets were generated in the following fashion . First, the 

cardinality and dimension of the dataset are fixed to a certain value within their 

ranges. The (m - 1) inputs are then generated randomly and independently from 

a uniform distribution in the range (chosen arbitrarily) between 1.5 and 25. The 

exponents ’s, for the ( m - 1) inputs are generated using another uniform

distribution in the range between 0 and 1 . The random exponents are then 

scaled such that they sum to 1. The density of the dataset is then decided to take 

any value among 1%, 13%, 25% and 50%. The density along with the cardinality 

of the dataset will determine the number of generators and non-generators. For 

the units that are generators, the output value is determined by the Cobb-Douglas

functional form y t = ensuring that they are on the frontier of the CRS
i=i

production technology. For the units that are non-generators, the output value as 

determined by the Cobb-Douglas functional form is scaled down by a factor of 

30 to make the corresponding units strictly interior (and hence, inefficient) w.r.t 

the CRS production frontier. By varying the cardinality, dimension and density 

of the DEA problem, 64 datasets were generated. Before evaluating the 

performance of the three algorithms, the 64 datasets were verified to ensure that 

each of the dataset has the number of generators defined by the density of the 

problem.

51 Cobb-Douglas functional form imposes equality between isoquants and efficient subsets 
thereby eliminating any slacks (see, Fried et al, 2008). Hence, all the efficient units are P-K 
efficient and for all practical purposes, generators.
52 Unlike previous studies involving simulation of DEA datasets, the parameter values to generate 
the datasets were chosen arbitrarily here. The parameter values are not expected to have a 
differential impact on the performance of the three algorithms.
53 The uniform distribution function in R 2.8.1 does not take the extreme values of the range 
provided.
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Having explained the data generating process, we now turn our attention 

to the structure of the three algorithms. Since, GBA and BuildHull are similar in 

their philosophy, they are written with similar structure. Also, as the algorithms 

were already described in enough detail in chapters 3 and 4, we will only present 

their procedures here. The programmed version of the data generating process 

along with the GBA, BuildHull and the standard two-phase procedure to solve 

the input-oriented CRS model can be seen in Appendix 9.

8.3.2 Description of GBA

As all the 64 datasets are strictly positive, any GBA LP we solve will be 

feasible. Hence, there is no need to introduce DMUt into the coefficient matrix at 

some penalty value. The only other issues to be taken care of are ties and 

indeterminate ratios. As we are dealing with strictly positive datasets, 

indeterminate ratios cannot occur. Ties can still happen and are resolved using 

the closed-form solution described in chapter 7.

Once again, there are two parts to the implementation of GBA. The first 

part is the initialisation and the second part is the actual run of the algorithm. The 

initialisation part of GBA is carried out by evaluating the R. values of all the

units at unary weights (l,l)54 and choosing the unit that achieved the maximum

of the Rj values as our starting generator55. At the end of the initialisation part of

the algorithm, we are guaranteed to find one generator to be included in set GEN. 

All other units are placed in the set of status unresolved units U .

The second part of the algorithm is the actual run of the GBA procedure. 

The DMUs are evaluated in the order present in the dataset. As in the VRS case, 

the LP acceleration technique of reoptimization is not employed in any of the 

three algorithms. Also, DEA specific enhancements like EIE or RBE are not 

employed in the experiments carried out. As in the earlier experiments, the

54 Since the weights are strictly positive, the unit(s) achieving the maximum R j  value must be P- 

K efficient (confirmed to be generators in our experiments).
55 There was no tie for the maximum R j  value at (l, l ) .
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‘numerical range based scaling’ algorithm was invoked within the solver while 

solving the LPs. The algorithmic procedure of GBA is presented below.

P r o c e d u r e  GBA 

Step 0: Initialisation

set GEN = {<!>}, U = TU = {<t>}\ 

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R j , j e U  at K*;

0.1 Evaluate Rj  = — —, j  e U , and let ArgMax\Rj\= D M U f;
I X  j  jeU

0.2 Move DMUf to set GEN.

End Initialisation.

Step 1: Iteration. While U & {^}, do:

1.1 Select the first DMU from U , DMUt, and solve MGBA LP-1 for it; let the 

optimal weights be 7t* — (/*,*/*);

1.2 Evaluate RCj at 71* for j e U ;

1.3 If Mox{r Cj }< 0, do:
jzU

1.3.1 Record the optimal weights, peers and slacks for DMUt;

1.3.2 Remove DMUt from U and go to Step 1.1;

1.4 If Mzx{flC;.}>0,do:
jeU  1

1.4.1 Compute Rj , j  e U and T U ;

1.4.1.1 If \TU\>1, go to Step 1.4.2;

1.4.1.2 If \TU\ = 1 and ArgMax\Rj }= DM Uf , record the optimal
jeU

weights for DMUf; Move DMUf to set GEN; Go to Step 1.1;
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1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify 

one P-K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set GEN; Go to Step 1.1;

End Procedure.

8.3.3 Description of BuildHull and standard algorithm

The procedure to solve the input-oriented CRS model using BuildHull is 

similar to the version in Dula (2010) except for the initialisation part and the 

subroutine to resolve ties. Note that Dula (1998, 2010) uses an alternative ratio 

R? to identify extreme-efficient units in phase-1. For the sake of completeness,

we describe our implementation of the BuildHull algorithm and the standard 

two-phase algorithm below.

P r o c e d u r e  B u il d H u l l

Step 0: Initialisation

set GEN = {(p), U = TU = {$}\ 

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in , j  e U + at n *;

0.1 Evaluate Rj = — —, j  e U , and let ArgMax\Rj} = D M U f;
I X  j  mu

0.2 Move DMUf to set GEN.

End Initialisation.

Step 1: Phase-1 Iteration. While U & {^}, do:

1.1 Select the first DMU from set U , DMUt, and solve the phase-1 CRS LP of

BuildHull for it;
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1.2 Let the optimal weights be 7t* = (v*, u *);

1.3 If the optimal objective function value is = 0, do:

1.3.1 Remove DMUt from U and move it to set I; Go to Step 1.1;

1.4 If the optimal objective function value is > 0, do:

u * Y v 'X
1.4.1 Compute R ? = ---- --------- -  at 7t* for j  € U +and T U ;

l X j

1.4.1.1 If \TU\ > 1, go to Step 1.4.2;

1.4.1.2 If \TU\ = 1 and ArgMax\R® = DMUp, record the
jeU+

optimal weights for DMUp; Move DMUp to set E;
Go to Step 1.1;

1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify 

one P- K efficient unit, DMUq e  TU and record the weights for it;

1.4.2.1 Move DMUq to set E; Go to Step 1.1;

End Phase-1 Procedure.

Step 2: Phase-2 Iteration. While I  & {^}, do:

2.1 Select the first DMU from set U , DMUt, and solve LP-1 for it against units

in E; Record the efficiency score, weights, slacks and peers;

2.2 Remove DMUt from I; Go to Step 2.1;

End Phase-2 Procedure.

End BuildHull Procedure.

P r o c e d u r e  S t a n d a r d  T w o - p h a s e  A l g o r it h m

Step 0: Initialisation

set U = {l, . R  = {^};

where,

U is the set of status unresolved DMUs;

R is the set of status resolved DMUs;
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Step 1: Phase-1 of the standard DEA procedure. While U ^  {$>}, do:

1.1 Select the first DMU in U , DMUt, and solve LP-1 for it. Record the 

efficiency score and weights for DMUt;

1.2 Remove DMUt from U and move it to set R ; Go to Step 1.1;

End Phase-1 procedure.

Step 2: Phase 2 of the standard DEA procedure. While R ^  {^}, do:

2.1 Select the first DMU, DMUt, from set R and solve the max-slack CRS 
model for it. Record the input and output slacks and peers for DMUt;

2.2 Remove DMUt from R ; Go to Step 2.1;

End Phase-2 procedure.

End Standard two-phase algorithm.

8.3.4 Limitations of the computational experiments

The three limitations that were discussed for the VRS cases, namely, our 

choice of the LP solver and programming language, non-implementation of 

enhancement techniques like EEE, RBE and reoptimization, and the order in 

which the units are evaluated, also hold true under CRS. In addition, our 

experimental design under CRS has two further limitations. First, the datasets 

generated are strictly positive, a feature also observed in Dula’s datasets. Second, 

in all our datasets, the number of outputs was fixed at 1. Considering the various 

limitations of our experimental design, although GBA solves fewer LP problems 

than BuildHull and is expected to be computationally superior, our 

computational results cannot be regarded as providing a categorical view of their 

relative performances.

8.3.5 Computational results and comparison of algorithmic performances

The computational results of solving the 64 datasets can be seen in 

Appendix 10. No ties were encountered in solving the 64 synthetic datasets using 

GBA or BuildHull.
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The first obvious and gratifying result is that regardless of the 

characteristic of the DEA dataset, GBA solves the CRS model faster than 

BuildHull. As expected, both GBA and BuildHull are consistently faster than the 

standard two-phase procedure. As in the VRS cases, there is a gradual decrease 

in the computation advantage of GBA and BuildHull over phase-1 of the 

standard algorithm as density increases.

In addition it was noted that the computational saving margin of GBA 

over BuildHull is less pronounced while solving CRS models when compared to 

the VRS models. An obvious reason for this could be that although GBA solves 

n -1 LPs as against BuildHull that requires solving 2 n - k  LPs, unlike BuildHull, 

GBA requires computation of RCj and Rj values for the units in set U upon 

solving an LP. Note that under CRS when the dataset is strictly positive, GBA 

requires solving (w -l) LPs, each of size m x (g  + 1) where, g  is the number of 

generators identified at a particular iteration. If the dataset is not strictly positive, 

the number of columns in the GBA LP increases by one to include the input- 

output vector of DMUt. Upon solving an LP, at worst, GBA requires computing 

(n — g) RCj values, and if the duality condition is not satisfied, (n — g ) Rj 

values. Assuming that the total number of generators in the dataset is k ,  the 

number of times the RCj values have to be computed is (n - 1) and the number

of times the Rj values have to be computed is k . The number of times ArgMax 

has to be computed is n + k - l .  Assuming that all the mathematical operations 

involve numbers with d  digits, the time complexity of computing RCj and Rj

values is O(nm2d 2) and O (nm2d 4) respectively, while the time complexity of 

the ArgMax operation is O (n) . Under VRS, since the ( n - g )  Rj  values and the 

associated ArgMax need not be computed k  times, the computational saving of 

GBA over BuildHull is more pronounced than CRS although GBA outperforms 

BuildHull consistently in both cases.

As in the VRS case, we fixed dimension, density and cardinality two at a 

time and varied the third factor to note its impact on the computational time 

taken by the three algorithms. Also, for each case, we provide a chart comparing 

GBA with BuildHull alone to discriminate their relative performances better.
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In the first scenario, the dimension and cardinality are fixed at one end of 

their ranges, i.e., at 5 and 2500 respectively. The impact of density on the 

performance of GBA, BuildHull, the standard algorithm are graphically 

illustrated in charts 8-15 and 8-16 below.
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Chart 8-15 : Computational Time versus Density
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Chart 8-16 : Computational Time versus Density (GBA vs. BuildHull)

As seen in charts 8-15 and 8-16, GBA solves the problem consistently 

faster regardless of the density of the dataset. BuildHull also performs better than 

the standard algorithm regardless of the density of the dataset. The same trend is
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also observed at the other extreme where the dimension is fixed at 20 and 

cardinality at 10000, and the density is varied from 1% to 50%. The 

corresponding charts can be seen below.
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Chart 8-18 : Computational Time versus density (GBA vs. BuildHull)

To discriminate the time taken by the three algorithms better, the 

following chart shows the computational performance in log seconds for the 

same scenario.
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Computational time vs Density
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Chart 8-19 : Computational Time (in log seconds) versus density

In the second scenario, the density and cardinality values are fixed at one 

end of their ranges, i.e., at 1% and 2500 respectively, and the impact of 

dimension at values 5, 10, 15 and 20 on the performance of GBA, BuildHull, and 

the standard algorithm are graphically illustrated in the below charts.
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Chart 8-20 : Computational Time versus dimension
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Chart 8-21 : Computational Time versus dimension (GBA vs. BuildHull)

As seen from charts 8-20 and 8-21, GBA solves the dataset consistently 

faster than the other two regardless of the dimension value. BuildHull also 

performs better than the standard algorithm in all cases. The same trend is also 

observed at the other extreme of the ranges wherein the density is fixed at 50% 

and cardinality at 10000 and the dimension is varied from 5 through 20. The 

corresponding graph can be seen in charts 8-22 and 8-23 below.
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Chart 8-22 : Computational Time versus dimension
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Computational time vs Dimension
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Chart 8-23 : Computational Time versus dimension (GBA vs. BuildHull)

To discriminate the time taken by the three algorithms better, the 

following chart shows the computational performance in log seconds for the 

same scenario.

Computational time vs Dimension
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Chart 8-24 : Computational Time (in log seconds) versus dimension

In the third scenario, the density and dimension values are fixed at one 

end of their ranges, i.e., at 1% and 5 respectively, and the impact of cardinality at

201



values 2500, 5000, 7500 and 10000 on the performance of GBA, BuildHull, the 

standard algorithm are graphically illustrated in the below charts.

Computational time vs Cardinality
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Chart 8-25 : Computational Time versus cardinality
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Chart 8-26 : Computational Time versus cardinality (GBA vs. BuildHull)

As seen from charts 8-25 and 8-26, GBA solves the dataset consistently 

faster than the other two regardless of the cardinality value. BuildHull also 

performs better than the standard algorithm in all cases. To discriminate the time

BuildHull
GBA
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1st Phase 
BuildHull 
GBA
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taken by the three algorithms better, the following chart shows the computational 

performance in log seconds for the above scenario.

Computational time vs Cardinality
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Chart 8-27 :Computational Time (in log seconds) versus cardinality

The same trend is also observed at the other extreme when the density is 

fixed at 50% and dimension at 20 and the cardinality is varied from 2500 through 

10000. Charts 8-28 and 8-29 illustrate this.
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Chart 8-28 : Computational Time versus cardinality
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Computational time vs Cardinality
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Chart 8-29 : Computational Time versus cardinality (GBA vs. BuildHull)

Once again to discriminate better the computational time taken by the 

three algorithms, the following graph shows the computational performance in 

log seconds for the above scenario.
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Chart 8-30 : Computational Time (in log seconds) versus cardinality
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8.4 Conclusion

In this chapter, we presented the computational results of solving the 

output-oriented VRS model, additive VRS model and input-oriented CRS model 

under different characteristics of a dataset to compare the performance of GBA 

against Dula’s BuildHull algorithm and the conventional solution procedure. We 

also examined the individual impact of each of the characteristic of a DEA 

dataset, namely, the cardinality, dimension and density, on the performance of 

the three algorithms under CRS and VRS assumptions. In conclusion, bearing in 

mind the limitations of our experimental design, we confirmed using our 

experiments with real and simulated datasets that GBA is consistently faster over 

BuildHull and the standard two-phase algorithm for solving oriented VRS and 

CRS models with the computational saving more pronounced in the VRS case.

In the case of additive models, the BuildHull algorithm is slightly faster, 

although not consistently, than GBA while processing datasets with dimension 

values of over 15, although such extreme values for dimension are not common 

in real datasets. While solving additive models, we provided two promising 

alternative ways of improving the performance of GBA. Using preliminary 

experiments we showed that both the alternative approaches have distinctive 

advantages over BuildHull with one of them consistently outperforming 

BuildHull at higher dimensions. However, both these alternative approaches to 

GBA are at a developing stage and additional research is required to enable GBA 

to solve datasets using the additive models consistently faster than BuildHull for 

any characteristic of the dataset.

In chapter 9, we discuss the avenues for future research.
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9 DIRECTIONS FOR FUTURE RESEARCH

Before we discuss directions for future research, we summarize the 

contributions of the thesis. The two major contributions are theoretical in nature 

and are:

1. The thesis develops an alternative algorithm for processing datasets using 

standard DEA models and important extensions of the basic models such 

as weight restricted models;

2. The thesis develops closed-form solutions to construct strictly positive 

weights for the extreme-efficient units without explicit weight 

restrictions;

Extensive computational testing verifies and validates the new algorithm and 

demonstrates that upon a naive implementation of the competitive algorithms, 

GBA consistently outperforms the others.

We now present directions for future research. These are listed under 

three themes:

1. enhancing the computational experiments,

2. extension of GBA to handle negative data and the Free Disposal Hull 

(FDH) models, and

3. extension of the closed-form solution approaches.

9.1 Enhancing the computational experiments

The most obvious question to ask here is what are the limitations of 

GBA? If we set some arbitrary time limit to computation time -  say one hour -  

what size problems can be solved in that time? Size could be taken as made up of 

three parameters, viz., density, dimension and cardinality and various 

combinations of the three can be tried. Obviously the answer would vary 

according to the dataset, the hardware and the optimizer used, but it would be 

interesting to see if one could solve problems with even low density and 

dimensionality, but 100,000 DMUs for example. The DfES wanted at one stage 

to solve a DEA model for each pupil. However impractical such a DEA model 

may be, would one be able to solve it in real time?
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Unlike Dula we carried out our experiments without programming DEA 

specific enhancements and re-optimization techniques. Also we did not use 

CPLEX which is the industry standard. For comparative purposes it does not 

seem crucial but it would be interesting to see what difference it makes to the 

GBA run times if these are used.

Two further lines of research were mentioned in section 8.1.3 in 

connection with choosing the next unit to be evaluated. In particular, we mention 

that when the evaluation of DMUt is complete, one can choose the unit in U that 

achieved the second highest RCj or Rj value as the one to be evaluated in the

subsequent iteration. Also, if DMUt is identified as a non-generator, one could 

use the optimal basis to check if the same basic variables give a feasible solution 

in the envelopment form model for any other unit in U. We have developed some 

preliminary theoretical results for this problem, building on dominance rules. It 

will be useful to expand on these results and also test the two approaches to 

select the next unit to be evaluated.

In the Data Generating Process used for our computational experiments 

under CRS, two further limitations in terms of data positivity and unary output 

were highlighted. These two limitations could be relaxed in future works.

Finally while solving the additive models, it was noted that BuildHull 

outperforms GBA for datasets with extreme dimension values. Two alternative 

approaches of modifying GBA to solve the additive VRS model were presented. 

Using preliminary results we showed that both of them have distinctive 

advantages over BuildHull with one of them consistently outperforming 

BuildHull at higher dimensions. However, it was also noted that at smaller 

dimensions, the original GBA approach is consistently faster than all the options. 

Hence, additional work is required to develop an unifying approach to GBA to 

solve the additive models that can consistently outperform BuildHull for any data 

characteristics.

9.2 Extension of GBA to handle negative data and the FDH models

First, given the swell of literature devoted to dealing with negative data 

(see, Emrouznejad et al, 2010 for a recent review), it will be useful to extend the
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application of GBA to handle negative data as well. This can be pursued in two 

ways and are listed below:

i. examining the translation invariance property of the various DEA 

models and identifying cases where GBA can or cannot be 

applied;

ii. examining whether GBA can handle the alternative DEA models 

developed for this purpose.

There are cases where negative data does not cause a problem as some 

DEA models are invariant to data translation, i.e., the solution is unaffected upon 

adding a large enough constant to the data thereby translating it to the positive 

orthant. This data translation technique is applied to all the models whose 

solution are invariant to this translation. In particular, we know that the additive 

VRS model is translation invariant w.r.t inputs and outputs (Ali & Seiford, 

1990), and the oriented VRS models are partially translation invariant if only 

inputs (outputs) have negative data while solving the output (input) oriented 

model. Hence it will be possible to apply GBA upon translation to these models.

While addressing the issue of negative data that arises in many 

applications (such as net profit/loss or negative returns if treated as outputs), 

various alternative DEA models have been developed in the literature. A partial 

list could include the modified slacks-based model of Sharp et al (2006), range 

directional model of Portela et al (2004), and semi-oriented radial measure model 

of Emrouznejad et al (2010). It will be useful to investigate whether GBA can 

handle such models.

Second, it will be useful to extend the application of GBA to solve the 

Free Disposal Hull (FDH) models introduced in Deprins et al (1984). FDH 

models are similar to the oriented VRS models but with the additional 

requirement that the efficiency evaluations are effected from only the actually 

observed units. These models are typically solved using sorting algorithms or 

MILPs (see, Cooper et al, 2000). GBA cannot be readily applied to solve the 

FDH models partly because of the ‘Principal Theorem’ of Thrall (1999) which 

shows that there are generators which do not satisfy Characteristic 3 in 4.1. 

However, Agrell and Tind (2001) have developed a linear programming 

equivalent of the corresponding MILP models. It will be useful to examine 

whether GBA can be applied to solve it efficiently.
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9.3 Extension of the closed-form solutions

Regarding the closed-form solutions to break ties and construct strictly 

positive multiplier values, there are four avenues for future work. First, it will be 

satisfying to extend the closed-form solutions such that only the zero valued 

multipliers are changed to some positive value. Preliminary analysis indicate that 

for the VRS case, such an amendment is straight-forward and the current version 

of the closed-form solution can be applied without any modification wherein (in 

place of the unary weights) only the zero valued multipliers are changed to some 

positive value. However, such an extension is complicated in the CRS case.

The second extension would be to restrict the range of the multiplier 

values obtained from the closed-form solutions. The closed-form solutions in the 

current form produce a set of strictly positive multiplier values without any 

regard to the range of the values it ends up with.

A closely connected point is to enable the closed-form solutions such that 

they satisfy some pre-specified restrictions on the set of multipliers. Preliminary 

analysis indicates that some commonly applied restrictions can be 

accommodated by the closed-form solutions under the VRS case. This is because 

n* will automatically satisfy the restrictions which would have been 

incorporated in the LP. All we need is some positive weight vector n r which 

also satisfies the restrictions and synthesise k * with n r instead of the unary 

weights. However, yet again, this extension is not straight-forward in the closed- 

form solutions employed in the CRS case.

Lastly, it was mentioned in chapter 7 that the necessary condition for the 

closed-form solutions to produce strictly positive multipliers is that the generator 

in question achieves the unique maximum Rj (for CRS) or RCj value (for VRS)

at n *. It will be useful to relax this condition to generalise the application of our 

closed-form solutions.
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Appendix 1 -  Shephard’s (1970) output distance function and related 

Debreu-Farrell measure

Similar to representing the production technology 

T = {{X J )\Y > 0  can be produced from X  > 0, X  ^  o} by the input sets, one can 

also represent it using the output sets P ( X ) . P(X)  can be represented 

asP(X) = {Y : (X,Y)e  T},  which for every X  have output isoquants 

l ( X ) = \Y : Y e P (X ), AY € P (X),A > \}  and output efficient subsets given by 

E(x) = {Y:YeP{x) ,Y'£P{x) ,Y'>Y}  and the three sets satisfy

e {x ) q i {x ) ^ p {x ).

Shephard’s (1970) output distance function provides another functional 

representation of the production technology under CRS. The output distance

function is Z)0 = min{^: ( ^ ) g  P(A")}. For Ye P(x),D0(X,Y)< 1 and for 

Ye l(x),D0(X,Y) = 1. Given standard assumptions on Tc described in chapter 

1, the output distance function D0(X,Y) is non-increasing mX and is non- 

decreasing, homogeneous of degree + 1, and convex in Y.

The Debreu-Farrell output-oriented measure of technical efficiency TE0 

is simply the value of the function TE0 = max{0: (f>Y e P (X )} and it again

follows that TE0{X,Y) = — ^ ---- r 56. For Y e  P{x), TE0(X ,Y )> \  and for
Do\X> Y)

Y e  l(x),  TE0(X ,Y) = \.  Similar to the properties of the Shephard’s (1953,

1970) distance functions, we can state three properties of the Debreu-Farrell 

measures following Russell (1988,1990), namely,

1. TEj(X,Y) is homogeneous of degree -1 in inputs and TE0 (X, Y) is 

homogeneous of degree -1 in outputs.

2. TEj(X,Y) is weakly monotonically decreasing in inputs and TE0(X,Y) 
is weakly monotonically decreasing in outputs.

56 Given that TE0 {X, F ) > 1 , TE0 (X, Y) is sometimes referred to as the radial measure of 

technical inefficiency of activity (X, Y). Hence, technical efficiency in the output-oriented case

is given b y   r and is equal to D0 (X, Y ).
YE0(X, Y)
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3. TE7(X,Y)and TE0(X ,Y ) measures are invariant to the unit of 

measurements of the input and output factors.
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Appendix 2 -  July 2006 report to the DfE on Dula’s work

Report 2 under contract 2 due on 1 July 2006

The best method for computing DEA efficiency scores for large data sets -

Dula’s work

Introduction:

The first report entitled ‘A Review of literature on methods to speed up 

the solution of large scale data sets in DEA (LSDEA)’ outlined three major 

approaches, viz.,

i) Pre-processing and LP accelerator methods developed since 1993 by Ali 

[1,3]

ii) Hierarchical Decomposition by Barr and Durchholz [2] published in 1997 

and

iii) Dula’s work ([4] to [8]) on finding all efficient DMUs first published as a 

Mississippi University report in 1998 and in various journals from 2001. 

Among all these, Dula’s work is by far the best. For really large data sets

it is the only viable approach developed so far. For that reason this report 

concentrates on Dula’s work. We give a non-technical overview; an introduction 

to the technical side of Dula’s work with diagrams and our view of the relevance 

of Dula’s work for the DfES in the light of our attempts at implementing Dula’s 

method.

Outline of the report:

a) An overview of Dula’s approach

b) Technical details of Dula’s algorithm BuildHull:

1. Main concepts and definitions

2. Starting with at least one extreme efficient DMU

3. A typical iteration -  Finding an extreme efficient DMU or 

discarding a DMU

4. Output from Dula’s work

c) Relevance of Dula’s work for the DfES

a) An overview of Dula’s approach

We begin with a bird’s eye view of what Dula’s method is and explain 

why we think it is the best. This section is deliberately kept non-technical.
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Dula’s method works in two stages. Irrespective of the DEA model used 

(oriented or additive model under variable, constant, increasing or decreasing 

returns to scale), he sets out to find all the extreme efficient DMUs in stage 1. 

Then in the second stage the inefficient ones are scored through normal LPs in 

which only the extreme efficient DMUs are included. The main advantage is that 

the size of the LP remains relatively small.

Adapting Dula’s terminology we shall call the extreme efficient DMUs in 

a DEA model the generators. See figure 1 where the generators are A, B, C and 

D. Note that not all the DMUs on the DEA frontier are generators, e.g., DMUs E, 

I, and J in figure 1. In a constant returns to scale DEA model in which input 

minimisation is the goal, E, I and J will have efficiency score of 1 but none of 

them is a generator. E and I have positive slacks while J is on the line segment 

joining C and D. Roughly speaking the generators consist of all those DMUs on 

the efficient frontier which can appear as peers in explaining the inefficiency of 

others and cannot be expressed by a convex linear combination of other DMUs. 

So, excluding a generator alters the efficient frontier and can lead to a change in 

the efficiency status of some DMU while excluding a DMU which is not a 

generator leaves the frontier and the efficiency status of all other DMUs 

unchanged.

The number of generators in any data set is relatively small. In an 

application to the state of Texas’ southwest district banks containing 8748 banks 

and nine factors (6 inputs + 3 outputs) Barr and Durchholz [2] report that no 

more than 1% were efficient. The DfES data set with 9 factors (8 inputs + 1 

output) had only 111 generators out of 1258 schools; while in the current data set 

with 10 factors, out of 1200 non-sixth form (NSF) and 1653 sixth form (SF) 

schools, only 188 NSF and 232 SF schools are extreme efficient -  or generators.

The main problem in solving LSDEA is that if  the number of schools is n, 

we need to solve n LPs of size mx(n+l) where m is the number of factors (inputs 

+ outputs). Restricted basis entry (which eliminates any school identified as 

inefficient from further computations) and early identification of efficient 

schools can reduce the size of the largest LP solved as we come closer and closer 

to n. For example, for the last school analysed, the LP will have only the 

generators and the last school, the columns of all the inefficient ones having been 

eliminated on the way. So the largest LP solved is mx(n+l) and the average size
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is greater than mx(.5n). The beauty of Dula’s method is that the largest LP it has 

to solve is mx(k+l) where k is the number of generators. As k seems not to 

exceed 15%, the saving in total time is significant and increases rapidly as n, the 

number of schools, goes up. Moreover, for really large data sets (over 10, 000 

schools and if pupil-level model is required even 50, 000 DMUs?) this seems to 

be the only viable alternative. We discuss this aspect in section c), taking in to 

account the extra work required by Dula’s method to score inefficient DMUs in 

the second stage.

b) Technical Details of Dula’s algorithm BuildHull

1. Main concepts and definitions

Dula’s algorithm is called BuildHull. We describe it here for an input 

minimisation DEA model under the constant returns to scale assumption. 

BuildHull is an algorithm for finding all the generators. It starts with one 

generator, easily found by known heuristics, and at each subsequent iteration 

either finds a new generator or decides that the DMU under consideration is not a 

generator and can be discarded. Suppose that at a typical iteration there are / 

generators indexed by 1 to / and collectively denoted by set J/. The space 

enveloped by the efficient frontier generated by these / DMUs is called the 

partial hull, denoted Pi. (See diagram 3 where C is the only DMU in set Jj.) What 

we are after is a set Ji that generates the fu ll hull, i.e., where all n DMUs are 

within Pi.

So the job is to decide for each DMU whether it is a generator or not. 

Given I generators we consider a DMU/ not belonging to Ji at the next LP 

iteration. If the input/output vector a of DMUt belongs to the partial hull P i , 

then t cannot be a generator. We can discard it and consider another DMUt from 

the ones not classified so far.

When ci<£ P i , the dual LP solution delivers a hyperplane h that separates 

ct from Pi. A theorem proves that among all those DMUs which are outside Pi 

and on the same side of h as DMUt, there is at least one generator. Modifying 

optimal LP dual values tt* the algorithm then creates a set of input/output 

weights (designated nbar) which finds a generator. The process is then repeated 

with the augmented set Ji and another DMUt from the ones not classified so far.

The most innovative part of the algorithm is the way it decides if DMUt 

is in the partial hull or not. To achieve this a new DMU is synthesised from set Ji.
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Its inputs and outputs relate to the average of inputs and outputs of the DMUs in 

set Ji. We shall call it the average DMU and designate its input/output vector as

av1.

Definitions:

Let the input/output vector for DMUj be written as:

a1 =
. Y>

where X is the vector of mi inputs and Y the vector of m2 outputs.

The average DMU used for each LP run in BuildHull is defined by the vector: 

av1 = - t —t  ~ e) where e is an (mxl) vector of 1 ’s.

Vector av helps to identify any vector d  outside P . Barring minor 

technical considerations one could say that the LP solved at each iteration tries to 

find the minimum multiple a  required to express the input/output vector d  (of 

DMUt) as a non-negative linear combination of the input/output vectors in Ji and 

av1. The Primal and Dual LP solved at each iteration are:

Primal LP (?) Dual LP fDI

Min CL

av1 a+ > a*
je J1

a  > 0 ,X j > 0

Max tl d

s.t. Kaj <0 , j e  J t 

n ( av1) < 1 
7t> 0

(Note that row and column vector multiplications such as ltd  are assumed to be 

for conformable vectors.)

Expressing the optimal primal and dual values by superscript *, we have 

the following important results.

Lemma 1: d  e P1 if and only if a* = 0. (In words, DMUt is in the partial 

hull and therefore not a generator if and only if  a* = 0 .)

Lemma 2 : If a* > 0 , the hyperplane h defined by it* d  = 0 separates P  

from d , ensuring that it* d  > 0.

It is instructive to note why Lemma 2 holds. The strong duality theorem 

of LP states that the objective function value of the primal and dual LP are equal, 

leading to a* = it*d. As a* > 0, so is ltd. But any point in P  has to satisfy the 

dual LP conditions n*d < 0. Hence it* delivers a separating hyperplane h.
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Before introducing Dula’s algorithm we need a few more definitions.

1. fi = a constant vector with value l ’s for the mi input factors and 0 ’s for

the m2 output factors. For example, in a 2-inputs, 1-output DEA problem,

*= [1, 1, 0]
2. Set J* consists of all j  such that n* d  > 0

3. T|* = Min n  , s.t. j e  J  +
71 a 1

_  b a r   *7Z — 71—

5. argmin = the index of the DMU that gives minimum rj*
To illustrate the algorithm we have created a 2-input, 1-output example

with 8 DMUs (denoted A to H). The model chosen is an input minimisation

model under constant returns to scale. See figure 2 for the data of the model and

the production frontier in the 2-input space with unit output level.

2. Starting with at least one efficient DMU
This is the first initialisation step of BuildHull. Dula’s algorithm can be 

started with any number of generators or even without any. However, it is easy to 

find some generators by well known heuristics, obviating the need to use an LP 

for initialisation. Essentially any set of non-negative weights n  such that the ratio 

of the weighted sum of outputs to weighted sum of inputs is one for only one 

DMU (the generator) and less than one for all the others, will do. In part d) we 

briefly describe our work on finding several generators by heuristics.

The data for our example is shown in figure 2 which also shows a plot of 

the production possibility set enveloped by the production frontier for this data 

set. In figure 3, C has been identified as a generator by using weights 1 and 2 

respectively for the two inputs and weight 7 for the output. This provides a 

starting point for applying BuildHull for the example in figure 2. The partial hull 

determined by C is illustrated in figure 3.

3. A typical iteration -  Finding a generator or discarding a non-generator 

DMU

We describe all the iterations needed for the small example in order to 

illustrate various possibilities. The reader can skip this section when s/he feels 

comfortable with how the method works.

Iteration 1: Step 2 of BuildHull

We start with Ji = {C}; DMUt = D.
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From the formula: av1 =-■r-r ^ { a J- e )  we g e t:

'5 - 8"
av1 = 2.5 ; d  = - 1

0 1

Figure 4 shows these two vectors. (Strictly speaking what is shown in all 

these diagrams is the -X i, -X2 space which conforms with the normal 

diagrammatic representations in which the input vector is not multiplied by -1.) 

Note that av1 is plotted as vector Z.

The LP solved is:

Min a

"5 - 4  ' - 8"
2.5 + 2C -1.5 > - 1

0 1 1

a > 0, Xc > 0

The optimal solution gives a* = .2 and n* = (0, .4, .6)

D is outside the partial hull. The separating hyperplane h given by n*d = 0 is the 

horizontal line shown in figure 4. For D and E, 7t*d > 0; for all other points (i.e., 

A, B, C, F, G and H) K*d < 0. The scaling factor is I/ti* = 1 / -.0222 = - 45 and 

**"' = [ 1,19,27].

As we can see in figure 5, the separating hyperplane is swivelled while
L

keeping it hinged at C. This creates a new hyperplane with coefficients n . The 

half space indicated by 7t*d > 0 is now swept with the new hyperplane to find 

the point furthest away. This is point D in figure 5. So the new DMU we were 

investigating is a generator. (Note that 7̂ ar also provides a set of optimal weights 

forD.)

Iteration 2

We repeat Step 2 with Ji = (C, D}; DMUt = G.
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'7
/ _ av — 2.25 ; a = - 4

0 1

The LP solved is: 

Min a

"7 " -4  " -  8
2.25 + x c -1 .5 + XD - 1 > - 4
0 1 1 1

a > 0, Xc, XD> 0

The optimal solution gives: a* = 0 which implies that DMU G is within 

the partial hull of units C and D and hence not a generator. Since G is contained 

within the partial hull, it will also be contained in the full hull and can be 

discarded from subsequent operations. (Note that this doesn’t mean C and D are 

the peers for G in the final analysis.)

Iteration 3
We repeat Step 2 with Jj = (C, D}; DMUt = F.

~1 " -3 “
i _ av — 2.25 ;* '= - 7

0 1

The LP solved is:

Min a

"7 " -4  " -  8 - 3
2.25 +2C -1.5 + XD - 1 > - 7
0 1 1 1

a > 0, Xc, XD > 0 

The optimal solution gives a* = 0.143 and k* = (0.143, 0, 0.571)

Figure 6 shows the new partial hull. DMU F is outside Pi , leading to the 

separating hyperplane h given by n*d = 0 which is the vertical line passing 

through C. For F, A, and B, iz*d > 0; for all other points n*d < 0.

The scaling factor l/r|* = 1/-0.0475 = - 21.05 and nbar = [4.01, 1, 12.02]. 

The swivel and sweep operation using nbar leading to point A is illustrated in 

figure 7. Instead of fixing the status of F, we have identified A as a generator. So
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F would be considered again in another iteration. In this case it will turn out to be 

a non-generator, but we cannot be sure of that unless we find a partial hull that 

contains it. However, the status of A is fixed at this iteration and no LP is wasted.

Iteration 4

We repeat Step 2 with Jj = {C, D, A}; DMUt = B.

"5.67" -2 .5 “
av1 = 3.17 ;* '= -2 .5

0 1

The LP solved is: 

Min a

s.t. a
5.67 - 4 - 8 - 2 -2 .5
3.17 +2C -1.5 + XD - 1 + XA - 4 > -2 .5
0 1 1 1 1

a  > 0, Xc, XD, XA >0  

The optimal solution gives a* =.0854 and it* = (0.122, 0.098,0.634) 

Figure 8 shows the new partial hull. DMU B is outside P i, leading to the 

separating hyperplane h given by it*d = 0 which is a line passing through C and 

A. For B, it*d > 0; for all other points it*d < 0.

The scaling factor l/r|* = - 59.52 and i^ar = [8.26, 6.83, 37.74]

Iterations 5, 6, and 7

Since we have all the generators of the production possibility set, running 

LPs with Ji = {C, D, A, B}; DMUt = F, H, and E (separately) will return an 

objective function value of 0 as in iteration 2 , implying that none of them are 

generators and can be discarded.

4. Output from Dula’s work

In this section we outline what the current version of Dula’s algorithm 

delivers and what we think can be obtained from it after further work.

What BuildHull delivers for generators

At the end of phase 1 BuildHull delivers a complete set of generators. 

The efficiency values of each one of these is 1 and the weights nbar used to find 

the generator gives a set of optimal weights at which the generator in question is
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efficient. These weights are not the extreme weights normally delivered by the 

usual LP solved for an input oriented CRS model. They are more like the weights 

produced by PIMSOFT which are also non-extreme, except that PIMSOFT 

generated weights are biased towards producing as many non-zero weights as 

possible. In fact it becomes obvious from the proof of the main result (Result 3 in 

[4]) that the weights 7tbar are such that the all the input weights are guaranteed to 

be non-zero.

Can BuildHull deliver non-zero weights for generators?

By combining i£ar with the weight vector produced for the same 

generator by PIMSOFT we can produce new weights for any generator which 

have more non-zeros in them. For example if PIMSOFT produced some zero 

weights for r inputs, a straight forward average of PIMSOFT’s and BuildHull’s 

weights will provide a valid weight which will have at least r more non-zeros. It 

seems straight forward to modify the definition of ft so that all the output weights 

in are positive. If this hunch proves to be correct, we can produce all non

zero weight vectors for each generator.

There is a strong possibility that with more research work a method 

can be developed from this to produce non-zero weights for all the 

generators!

What BuildHull delivers for non-generators:

At first sight it may seem that Phase 1 of BuildHull delivers nothing for 

non-generators except for their classification. But there is more. Suppose in a 

1000 schools exercise with 100 generators we have found all the generators after 

analysing 800 schools. We do not know this until the end, but the information 

obtained for each of the remaining 200 schools was gleaned with the help of an 

mxlOl LP which is very closely related to the mxlOl LP we would solve in 

phase 2. Consider a typical school t from these 200. The peers obtained for this 

school by solving the normal DEA model will be closely connected to the peers 

chosen in phase 1. Again there is a strong possibility that with more research 

a method can be developed to score the last 200 schools in this example 

without solving a separate LP in phase 2.

c) Relevance of Dula’s work for DfES

Currently DfES uses PIMSOFT to analyse DEA models for comparing 

schools. This seems to work satisfactorily when the number of schools in the
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model is in hundreds. When thousands of schools are to be analysed there seems 

to be a significant increase in computation time. To improve performance 

Hierarchical Decomposition methods are being looked in to. Using Dula’s work 

instead can lead to significant improvements.

To implement Dula’s method for scoring all schools and finding a set of 

optimal weights we need to solve nearly 2n LPs of maximum size mx(k+l). 

(Nearly 2n because in phase 2 we need to solve an LP for each one of the non- 

generator school, i.e., n-k LPs, of size mxk+1). Solving nearly twice the number 

of LPs compared to the normal methods is relevant only if 2n smaller LPs can be 

done faster than n larger LPs. In a sense this is a practical question needing 

empirical evidence. Dula [7, 8] reports on tests he has carried out. As presented 

by him, the evidence is overwhelmingly in favour of his method. While one can 

be forgiven for being a bit sceptical of this, common sense dictates that he must 

be right. After all if there are 100,000 schools of which only 1500 are generators, 

we are comparing the solving of 100,000 LPs with between 100,000 and 55,000 

variables as opposed to nearly 200,000 LPs with only 1501 variables at most. 

Each LP in the first case can take several minutes as opposed to several seconds 

in the latter case. So while the number of LPs doubles for Dula, the time per LP 

can be a small fraction of that required by standard approaches.

How can DfES use this? I think it is premature to ask PIMSOFT team to 

implement Dula in their software without further experimentation with 

BuildHull. What is needed is to run the largest available data set (say 3000+ 

schools in the current data set) by Dula’s method and also by PIMSOFT. It may 

be that one could find the generators outside of PIMSOFT and then use it to 

score all the schools. On the other hand a separate optimisation sub-routine 

within PIMSOFT may be able to handle the large data set and deliver all the 

generators to the normal DEA part of it.

Bear in mind though that the working of Dula’s algorithm can be 

significantly improved. In part b) we outlined how all positive weights for 

generators and actual efficiency scores for some of the non-generators (the ones 

analysed after all the generators were found) can be achieved. Even more can be 

done for finding generators without doing LPs. For example, Ali had developed 

elementary heuristic methods to find some generators. We have developed more 

sophisticated methods as well as some even simpler ones and are able to produce
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at lease twice as many generators as Ali’s methods do. In fact our simplest 

approach, requiring only a random number generator, is proving very promising 

indeed. In all the data sets tried so far (including the DfES data) we are able to 

find 10% of generators within seconds.

The best way to take this forward is perhaps to give us access to a state of 

the art solver such as CPLEX and let Nikos and Srini work with this to get the 

best out of Dula’s method.
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In this figure there are 10 DMUs with A, B, C, and 
D being the generators of the production possibility 
set (PPS)

A, B, C, D, E, I, and J are the boundary points but 
not all of them are generators of the PPS.

s/xe zx

Generators in DEA

Observed production frontier

X 1 ax is



DMU X1 X2 Y1

A 2 4 1
B 2.5 2.5 1
C 4 1.5 1

D 8 1 1
E 10 1 1
F 3 7 1

G 7 4 1

H 4 3 1

An 8 DMU. 3 factor DEA problem  to 
graphically illustrate Dula's algorithm

X2 
ax

is

Plane o f Output Y1 =  1

Observed production frontier

Production Possibility Set - PPS

X1 axis



Plane o f Output Y1 = 1

By simple pre-processing C is initially 
identified as a generator

Partial hull of C containing 
non-generators G and H

X1 axis



LP model solution {size: 3 x 2 )

J) = C is the subset of generators; 
Z = av1, DMUt = D:

Plane of Output Y1 = 1Objective Function value = 0.2

7i* = <0, 0.4, 0.6>

   _^epe_ratinjg_Hyperp Laaeĵ Q^OU lP.6>V
th ro u g h  C , w ith  D  a n d  E to  o n e  s i d e  
a n d  t h e  r e s t  o n  th e  o th e  ■ s i d e

X1 axis

Plane of Output Y1 = 0



Minimum if  = -0.022; ArgMin = D; <1, 1, 0> 

71^= ft— ^E_j = <1. 19. 27>

Stepl -  Hinge at C and swivel to n 91*

Step2 -  Sweep to an extreme point

Hyperplane <-1 X1 -  19 X2 -  27 Y = 0> at which Efficie i

z

Plane of Output Y1 = 0

X2
 

ax
is

Plane of Output Y1 = 1

X1 axis

^  - Hinging and snivelling the seperating hyperplane 

- Sweeping to an extreme point, here, D



LP model solution {size: 3 x 3 )

Ji = C and D is the subset of generators; Z = av? 
DMUt = F:

Objective Function value = 0.143 

7t* = <0.143,0, 0.571>

z

Plane of Output Y1 = 0

stxe 
zx

Partial Hull o f C and D containing non
generators G, H, and E

Plane of Output Y1 = 1

X1 axis

Separating Hyperplane <0.143,0; 0.571>
th r o u g h  C , w ith  A , B , a n d  F  to  o n e  s id e  
a n d  t h e  r e s t  o n  th e  o th e r  s i d e
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Minimum if = -0.0475; ArgMin = A; tF* -  <4.01, 1, 12.02>

Plane of Output Y1 = 0

X2
 

ax
is

Piane o f Output Y1 = 1

X1 axis

Htyperplane <wj.01 X1 - 1  X2 -12.02 Y = 0> at
which efficiency of A is 1

f \ - Hinging and swivelling the seperating hyperplane

- Sweeping to an extreme point, here, A



LP model solution {size: 3 x 4)

J i - C ,  D. and A are the subset of generators; 
Z = avl ; DMUt = B:

Objective Function value = 0.0854

7i* =<0.122. 0.098, 0.634>

z

Plane o f Output Y1 - 0

Partial Hull of A, C, and D containing non
generators E, F, G, and H

Plane of Output Y1 = 1

'X1 axis

Separating Hyperplane <0.122.0.098; 0.634> through A andC  
with B to one side and rest on the other side



Minimum rf = -0.0168; ArgMin = B; n b a r  -  <8.26, 6.83, 37.74>

Plane of Output Y1 = 1

C\l

X1 axis

Hyperplane <-8.26 X1 - 6.83 X2 - 37.74 Y = 0> at 
which efficiency of B is 1

Plane o f Output Y1 = 0
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Plane o f Output Y1 = 1

Partial Hull of A, B, C and D making up the full 
hull

Sumnwr/

Starting with generator C, Dula's algorithm takes 3 iterations (LPs) to 
identify the remaining generators and 1 each for the non-generators, 
i. e., 7 in total

X1 axis

Units E, F, G, and H are identified as non-generators as in the LPs 
corresponding to them the objective fn. value is 0. Graphically they are 
contained in the partial hull of some generators

Figure 10



Appendix 3 -  Proof that Xt is either 0 or 1 in the penalty enabled GBA

models

First, it is obvious that Xt is bounded between 0 and 1, i.e., 0 < Xt < 1. We 

show below that there are only two possibilities for Xt in the penalty enabled 

GBA models regardless of the penalty value, viz., either Xt = 0 or Xt = 1.

To show this, we take the particular case of solving DMUt using MGBA 

LP-1. The logic applied here can be extended with little modification to the other 

models for any valid penalty value.

Now, DMUt is either inside or on the partial PPS; else, it is strictly 

outside the partial PPS. We investigate the two cases below.

Case 1: DMUt is inside or on the partial PPS:

In this case a linear combination of some of the generators in GEN 

dominate DMUt leading to 0 < O'* < 1. Let the optimal dual values be

7t'* — {v'*, u '*). This means that the reduced cost of DMUt, 

RCt =u*Yt -v '* X t < 0 . If Xt > 0 , then the corresponding dual constraint will 

be binding, i.e., u'*Yt -v '* X t = M . Given that M >  0, RCt > 0 but this 

contradicts with the stipulation that 0 < O'* < 1 . Hence, Xt = 0.

Note that for any value of M  > 0, the above reasoning is valid.

Case 2: DMUt is strictly outside the partial PPS:

Consider any generator DMUg in GEN. For Xg > 0 along with Xt > 0 ,

the relevant hyperplane h defined by n*  ={v'*,u'*) must support both DMUt and 

DMUg. However, this requirement is incompatible. If Xt > 0 , then 

RCt =u'*Yt -v '* X t = M  > 0. In this case, the hyperplane h is defined by
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u*Yj -  v'*Xj = M  . If Xg > 0, then RCg = 0 and the hyperplane h in this case is 

given by RCj = u'*Yj - V * X } -  0 .

Given that Max\RC. r = 0 , and X  > 0 dictates RC, = M , the hyperplane
j&GEN  yJ

h cannot be supporting both units for a given n *. Either, h supports at DMUt in 

which case the units in GEN lie strictly inside the half-space 

u*Yj -  v'*Xj G EN. Else, h supports DMUg in GEN in which case

the hyperplane separates the units in GEN lying in the half-space 

u*Yj -  v* X  j < 0,V/ e GEN from DMUt lying in the half-space

u*Yt —v'*Xt > 0 .

Note again that for any value of M  > 0, the above reasoning is valid.

Hence, Xt x Xg = 0 in the penalty enabled GBA models. This dictates 

that either Xt - 0  or Xt = 1 to achieve a feasible solution to MGBA LP-1.
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Appendix 4 - R codes to solve the output-oriented VRS model using GBA, BuildHuli and the standard DEA algorithm

R code to solve the output-oriented VRS model using GBA

dudat<-read.xls("d.xls", ty p e-’double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml <-6
m2<-3
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
a<-matrix(nrow=n,ncol=m) 
a[l:n,l:m l]=dudat[l:n,l:ml] 
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m] 
x<- -dudat[l:n,l:ml] 
y<- dudatfl :n,m3:m]
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dm<-cbind(x,y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<-abs(rowSums(a[,m5:m7]))-rowSums(a[,2:m3])
maxs2<-max(s2)
ql<-which.max(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
al l<-a3
sq<-nrow(a3)
d4<-ncol(a4) /* End of initialisation */ 
g<-l
tim 1 <-proc.timeQ
while(sq>=l) /* Beginning of GBA procedure */
{
b2<-matrix(nrow=l ,ncol=m)
b2[,l:ml]=a3[l,2:m3]
b2[,m3:m]=0
b3<-rbind(t(b2), 1)
b2 1 <-matrix(nrow= 1 ,ncol=m)
b21[,l:ml]=a3[l,2:m3]
b21 [,m3 :m]=a3 [ 1 ,m5 :m7]
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c2<-matrix(nrow= 1 ,ncol=m) 
c2 [,l:m l]=0
c2[,m3 :m]=-a3 [ 1 ,m5 :m7] 
c3<-rbind(t(c2),0) 
asd<-cbind(t(b21 ),a4[-1,]) 
asd2<-rbind(asd, 1) 
abc2<-cbind(c3 ,asd2) 
lt2<-(c(l ,pen,rep(0,d4))) 
f.dir <-c(rep("<-’,1̂ , " = " )
vtr2<-lp(direction="max",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const.rhs=b3,compute.sens=l,scale=3)
s3<--(a3[,m5:m7]%*%vtr2$duals[m3:m])-vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
sasz<-max(s3)
if(sasz<=0)
{
sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1] ,vtr2$solution[ 1 ]) 
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+l) 
sq<-sq-l 
g<-g+i 
}
if(sasz>0)
{
ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the tied units */
{
notie<-notie+l
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tieunits<-tieunits+smx3 
s3tie<-sort(s3,decreasing=TRUE) 
par5<-s3tie[smx3+l ] 
par6<-ms3-par5 
par7<-parl/par6 
duals3<-vtr2$duals[l :m7]*par7 
duals3 [ 1 :m6]<-duals3 [ 1 :m6]+1
s3<--(a3 [,m5 :m7]%*%duals3 [m3 :m])-(a3 [,2:m3]%*%duals3 [ 1 :m 1 ])-duals3 [m7] 
>
sq<-nrow(a3)
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3 [,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1 )<-c( 1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of GBA procedure */
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s6<-s5[complete.cases(s5),]
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by GBA to solve the dataset */ 
notie /* Number of ties encountered */ 
tieunits /* Average number of tied units per tie */

R code to solve the output-oriented VRS model using BuildHull

dudat<-read.xls("d.xls",type-’double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml <-6
m2<-3
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
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a<-matrix(nrow=n,ncol=m)
a[ 1 :n, 1 :m 1 ]=dudat[ 1 :n, 1 :ml ]
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m]
x<- -dudat[ 1 :n, 1 :m 1 ]
y<- dudat[l:n,m3:m]
dm<-cbind(x,y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<-abs(rowSums(a[,m5:m7]))-rowSums(a[,2:m3])
maxs2<-max(s2)
ql<-which.max(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4) /* End of initialisation */ 
g<-l
timl<-proc.timeO
while(sq>=l) /* Beginning of Phase-1 of BuildHull procedure */ 
{
b2<-matrix(nrow=l ,ncol=m) 
b2 [l,l:m ]<-l
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c2<-matrix(nrow= 1 ,ncol=m) 
c2[l,]=-a3[l,-l] 
c3<-rbind(t(c2),l) 
abc2<-cbind(t(b2),-a4[-l,]) 
fp<-c(0,rep( 1 ,d4)) 
abc3<-rbind(abc2,fp) 
lt2<-(c(l ,rep(0,d4))) 
f.dir <-c(rep(">=",m),"=")
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc3,const.dir=f.dir,const.rhs=c3,compute.sens=l,scale=3) 
if(vtr2$solution[ 1 ] = 0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1) 
sq<-sq-l 
g<-g+i 
}
else
if(vtr2$solution[ 1 ]>0)
{
sq<-nrow(a3)
if(sq = l)
{
s3<--(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])+vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[ 1 :ml ])
}
else
if(sq>l)
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{
s3<--(a3[,m5:m7]%*%vtr2Sduals[m3:m])+vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
}
ms3<-max(s3) 
smx3 <-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the ties */
{
s3tie<-sort(s3,decreasing=TRUE) 
par5<-s3tie[smx3+l] 
par6<-ms3-par5 
par7<-parl/par6 
duals3<-vtr2$duals[l :m7]*par7 
duals3[l :m6]<-duals3[l :m6]+l
s3<--(a3[,m5:m7]%*%duals3[m3:m])-(a3[,2:m3]%*%duals3[l:ml])+duals3[m7]
}
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3[,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l ,m8)
skl<-sk[,-m8]
dim(sk 1 )<-c( 1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
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dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of BuildHull procedure */
s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
if(zx = l)
{s6<-t(s6)}
si l<-matrix(nrow=zx,ncol=2) 
a5<-matrix(nrow=sx,ncol=m) 
a5=a4[-l,]
for(i in l:zx) /* Beginning of Phase-2 of BuildHull procedure */ 
{
b<-matrix(nrow=l ,ncol=m) 
b[,l :ml]=s6[i,2:m3] 
b[,m3:m]=0 
b2<-rbind(t(b),l) 
c<-matrix(nrow= 1 ,ncol=m) 
c[,l:m l]=0
c[,m3 :m]=-s6[i,m5 :m7] 
cl<-t(c)
§)2<-c(0,rep( 1 ,sx))
abc<-cbind(c 1 ,a5)
abc3<-rbind(abc,fp2)
lt3<-c(l,rep(0,sx))
f.dir <-c(rep("<=",m),"=")
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vtr3<-lp(direction-,max,,,objective.in=lt3,const.mat=abc3,const.dir=fdir,const.rhs=b2,compute.sens=l,scale=3) 
s 11 [i,]<-cbind(s6[i, 1 ] ,vtr3 $solution[ 1 ])
} /* End of Phase-2 of BuildHull procedure */ 
tim /* Time taken by BuildHull to solve the dataset */ 
notie /* Number of ties encountered */ 
tieunits /* Average number of tied units per tie */

R code to solve the output-oriented VRS model using the conventional PEA algorithm

dudat<-read.xls("DEA.xls,,,type=’,double") /* Reads the dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol=l)
s2<-matrix(nrow=n,ncol= 1)
ml <-7
m2<-8
m3<-ml+l
m4<-m2+l
m<-ml+m2
nm<-n+l
mn<-m+ 1
a<-matrix(nrow=n,ncol=m)
a[ 1 :n, 1 :m 1 ]=dudat[ 1 :n, 1 :m 1 ]
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m]
xl<-t(dudat[l:n,l:ml])
dim(xl)<-c(ml,n)
y2<—dudat[ 1 :n,m3 :m]
timK-proc.timeQ
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for(i in l:n) /* Beginning of Phase-1 of the conventional algorithm */
{
b<-matrix(nrow= 1 ,ncol=m)
b[,l:ml]=xl[,i]
b[,m3 :m]=rep(0,m2)
bl<-rbind(t(b),l)
c<-matrix(nrow=l ,ncol=m)
c[, 1 :m 1 ]=rep(0 ,m 1)
c[,m3:m]=-y2[i,]
fp2<-c(0 ,rep(l ,n))
abc<-cbind(t(c),t(a))
abc3<-rbind(abc,fp2)
dim(abc3)<-c(mn,nm)
lt<-(c(l,rep(0 ,n)))
f.dir <-c(rep("<-,,m ),"=")
vtr<-lp(direction="max",objective.in=lt,const.mat=abc3,const. dir=f.dir,const.rhs=bl,compute.sens=l,scale=3) 
s 1 [i]<-1 /vtr$solution[ 1 ]
} /* End of Phase-1 of the conventional algorithm */
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by Phase-1 of the conventional algorithm */ 
for(j in l:n) /* Beginning of Phase-2 of the conventional algorithm */
{
b2<-matrix(nrow=l ,ncol=m) 
b2 [,l:m l]=t(xl[j]) 
b2[,m3:m]=-y2[j,]*l/sl[j] 
b3<-rbind(t(b2), 1) 
a2<-matrix(nrow=n,ncol=m)
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a2 [,l:ml]=t(xl)
a2[,m3:m]=-y2
si 1 <-matrix(nrow=m,ncol=m 1) 
sll[l:m l,l:m l]=diag(m l) 
sll [m3:m,]=rep(0,m2) 
sl2<-matrix(nrow=m,ncol=m2) 
sl2 [ 1 :m 1 ,]=rep(0 ,m 1) 
sl2[m3:m,l :m2]=-diag(m2) 
abcd<-cbind(sl 1 ,sl2 ,t(a2)) 
fp3<-c(rep(0,m),rep(l ,n)) 
abcd2<-rbind(abcd,fp3) 
f.dir2<-c(rep("==",m),"— ") 
lt2<-c(rep( 1 ,m),rep(0 ,n))
V t r 2 < - l p ( d i r e c t i o n = " m a x " , o b j e c t i v e . i n = l t 2 , c o n s t . m a t = a b c d 2 , c o n s t . d i r = f . d i r 2 , c o n s t . r h s = b 3 , c o m p u t e . s e n s = l , s c a l e = 3 )  

s 2 [ j ] < - s u m ( v t r 2 $ s o l u t i o n [ l  : m ] )

}/* End of Phase-2 of the conventional algorithm */
tim3<-proc.time0
tim<-tim3-timl
tim /* Total time taken by the conventional algorithm */
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Appendix 5 - Computational performance of the competitive algorithms in solving the output-oriented VRS model

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) Is tP hase (secs)

5-2500-01 16.5 9.47 98.19 47.47 10-2500-01 17.44 10.36 185.36 87.05
5-2500-13 26.86 16.19 102.14 49.44 10-2500-13 33.88 20.92 191.67 89.47
5-2500-25 38.61 24.5 101.67 48.27 10-2500-25 51.73 33.35 201.84 90.65
5-2500-50 63.58 48.42 106.51 52.37 10-2500-50 91.16 68.75 205.25 91.19

5-5000-01 33.78 19.64 366.02 176.64 10-5000-01 37.69 23.19 716.5 336.05
5-5000-13 76.43 44.5 370.24 180.65 10-5000-13 107.85 64.3 766.92 353.44
5-5000-25 121.78 79.24 376.36 178.88 10-5000-25 176 114.7 783.56 364.57
5-5000-50 232.92 178 392.16 188.81 10-5000-50 348.03 262.22 825.6 372.13

5-7500-01 54.19 32.19 792.95 383.43 10-7500-01 57.3 38.25 1631.55 764
5-7500-13 145.82 88.98 826.67 395.26 10-7500-13 212.04 130.81 1770.97 811.61
5-7500-25 254.02 166.95 837.72 403.7 10-7500-25 382.99 249.78 1738.06 790.84
5-7500-50 512.82 389.38 866.02 426.19 10-7500-50 786.64 595.25 1786.41 788.26

5-10000-01 71.84 44.7 1388.48 662.89 10-10000-01 87.41 60.08 2758.63 1290.45
5-10000-13 243.91 146.23 1511.32 714.36 10-10000-13 372.1 228 2952.36 1366.01
5-10000-25 437.79 283.38 1480.84 708.81 10-10000-25 686.69 441.5 3015.35 1370.14
5-10000-50 889.87 683.58 1518.36 741.34 10-10000-50 1415.07 1053.96 3184.28 1411.23
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Computational performance of the competitive algorithms in solving the output-oriented VRS model (Contd.)

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs)

15-2500-01 17.83 10.39 269.79 123.15 20-2500-01 21.53 13.45 371.58 168.69
15-2500-13 40.64 25.5 339.08 118.67 20-2500-13 48.61 31.97 361.67 165.36
15-2500-25 63.68 42.64 290.64 136.06 20-2500-25 82.97 58.04 381.71 184.6
15-2500-50 122.33 92.29 312.23 149.7 20-2500-50 155.94 118.73 479.85 276.52

15-5000-01 39.72 26.03 1057.53 486.2 20-5000-01 52.72 32.82 1808.2 708.67
15-5000-13 135.27 86.05 1109.06 518.94 20-5000-13 175.77 116.23 1480.17 712.69
15-5000-25 242.77 157.15 1138.03 531.41 20-5000-25 302.52 204.94 1820.28 1039.33
15-5000-50 478.11 357.44 1172.45 556 20-5000-50 611.22 460.53 2675.05 1839.89

15-7500-01 68.66 51.77 2447.45 1172.11 20-7500-01 77.48 57.85 3164.79 1430.81
15-7500-13 291.44 197.63 2444.99 1142.78 20-7500-13 364.46 243.13 3403.11 1632.72
15-7500-25 562.25 365.36 2509.72 1187.72 20-7500-25 673.91 448.67 4603.53 2803.26
15-7500-50 1143.89 867.57 2633.24 1301.57 20-7500-50 1233.39 947.53 6159.97 4306.56

15-10000-01 101.01 72.33 4145.72 1992.64 20-10000-01 112.46 86.18 5786.72 2722.22
15-10000-13 500.78 378.4 4363.72 2083.6 20-10000-13 617.73 411.04 6065.78 2895.7
15-10000-25 994.25 654.31 4468.03 2148.45 20-10000-25 1155.51 777.41 9736.8 6486.5
15-10000-50 2022.14 1520.06 4713.23 2319.67 20-10000-50 2401.78 1899.21 30788.23 27471.23
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Appendix 6 - R codes to solve the additive VRS model using GBA, BuildHull and the standard DEA algorithm

R code to solve the additive VRS model using GBA

dudat<-read.xls("DEA.xls",type="double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of the initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
m l < - 9

m 2 < - l  1

m 3 < - m l + l

m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m 8 < - m 7 + l

s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=dudat[l:n,l:m l]
a[ 1 :n,m3 :m]=dudat[ 1 :n,m3 :m]
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<~rowSums(a[,m5:m7])+rowSums(a[,2:m3])
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mins2<-min(s2) 
ql <-which.min(s2) 
a4<-t(a[ql,]) 
dim(a4)<-c(m+1,1) 
a3<-a[-ql,] 
al l<-a3 
sq<-nrow(a3) 
d4<-ncol(a4) 
g<-l
pen<—1 /* End of initialization */ 
timl<-proc.time()
while(sq>=l) /* Beginning of the GBA procedure 
{
c2<-matrix(nrow= 1 ,ncol=m)
c2 [ 1 ,]=abs(a3 [1,-1])
c3<-rbind(t(c2),l)
si 1 <-matrix(nrow=m,ncol=m 1)
s l l [ l : m l , l : m l ] = d i a g ( m l )

si 1 [m3 :m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [ 1 :ml ,]=rep(0 ,m 1)
sl2[m3 :m, 1 :m2]=-diag(m2)
abcd<-cbind(sl 1 ,sl2,a4[-1,])
fp3<-c(rep(0,m),rep(l ,d4))
abcd2<-rbind(abcd,Q)3)
abcd3<-cbind(abcd2,c3)
f.dir2<-c(rep(,,= ,,,m),, -= ”)
lt2<-c(rep(l ,m),rep(0,d4),pen)
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vtr2<-lp(direction="max",objective.in=lt2,const.mat=abcd3,const.dir=f.dir2,const.rhs=c3, compute.sens=l,scale=3)
s3<-(a3[,-l:-m3]%*%vtr2$duals[m3:m])+vtr2$duals[m7]+(a3[,2:m3]%*%vtr2$duals[l:ml])
sasz<-min(s3)
if(sasz>=0)
{
sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1] ,sum(vtr2$solution[ 1 :m])) 
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1) 
sq<-sq-l 
g<-g+l 
}
else
if(sasz<0)
{
sq<-nrow(a3)
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-min(sx3 [,m8])
q4<-which.min(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1 )<-c( 1 ,m7)
a4<-cbind(a4,t(sk 1))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
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a3<-a3[-q4,] 
dim(a3)<-c(sq-1 ,m+l) 
sq<-sq-l 
d4<-ncol(a4)
>

} /* End of GBA procedure */ 
s6<-s5[complete.cases(s5),] 
tim2<-proc.time() 
tim<-tim2-timl
tim /* Time taken by the GBA to solve the dataset */

R code to solve the additive VRS model using BuildHull

dudat<-read.xls("DEA.xls",type-’double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
ml<-9
m2< -ll
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s 1 <-matrix(nrow=n,ncol= 1) 
s5<-matrix(nrow=n,ncol=m+1) 
ni<-ml
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no<-m2
a<-matrix(nrow=n,ncol=m) 
a[ 1 :n, 1 :m 1 ]=dudat[ 1 :n, 1 :m 1 ] 
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m] 
e<-c(l:n) 
a<-c(e,a)
dim(a)<-c(n,m+l)
s2<-rowSums(a[,m5:m7])+rowSums(a[,2:m3])
mins2<-min(s2)
q 1 <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
a l l < - a 3

sq<-nrow(a3)
d4<-ncol(a4)
g<-l /* End of initialization */ 
tim 1 <-proc.time()
while(sq>=l) /* Beginning of Phase-1 of BuildHull */ 
{
b2<-matrix(nrow=l ,ncol=m) 
b2 [l,l:m ]<-l
c2<-matrix(nrow= 1 ,ncol=m)
c2[l,]=-a3[l,-l]
c3<-rbind(t(c2),l)
abc2<-cbind(t(b2),-a4[-l,])
fp<-c(0,rep(l,d4))
abc3<-rbind(abc2,fp)
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It2<-(c(l,rep(0,d4))) 
f.dir <-c(rep(">=",m),"=")
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc3,const.dir=f.dir,coiist.rhs=c3,compute.sens=l,scale=3) 
if(vtr2$solution[ 1 ] = 0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1) 
sq<-sq-l 
g<-g+l 
}
else
if(vtr2$solution[ 1 ]>0)
{
sq<-nrow(a3)
if(sq = l)
{
s3<--(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])+vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[ 1 :m 1 ])
}
else
if(sq>l)
{
s3<--(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])+vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[ 1 :m 1 ])
}
sx3<-cbind(a3,s3) 
dim(sx3)<-c(sq,m8) 
sd<-max(sx3 [,m8])
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q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1 )<-c( 1 ,m7)
a4<-cbind(a4,t(sk 1))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of BuildHull */
s6<-s5[complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
s2<-matrix(nrow=zx,ncol= 1) 
if(zx = l)
{s6<-t(s6)}
si 1 <-matrix(nrow=zx,ncol=2) 
a5<-matrix(nrow=sx ,ncol=m) 
a5=a4[-l,]
for(j in l:zx) /* Beginning of Phase-2 of BuildHull */ 
{
b2<-matrix(nrow= 1 ,ncol=m) 
b2 [,l :m]=abs(t(s6[j,-l]))



b3<-rbind(t(b2), 1) 
si 1 <-matrix(nrow=m,ncol=m 1) 
sll[l:m l,l:m l]=diag(m l) 
si 1 [m3 :m,]=rep(0,m2) 
sl2<-matrix(nrow=m,ncol=m2) 
sl2 [ 1 :m 1 ,]=rep(0 ,m 1) 
sl2[m3 :m, 1 :m2]=-diag(m2) 
abcd<-cbind(sll ,sl2,abs(a5)) 
fp3<-c(rep(0,m),rep( 1 ,sx)) 
abcd2<-rbind(abcd,Q)3) 
f.dir2<-c(rep("=",m),"=-') 
lt2<-c(rep( 1 ,m),rep(0,sx))
vtr2<-lp(direction-'max",objective.in=lt2,const.mat=abcd2,constdir=fdir2,constrhs=b3,compute.sens=l,scale=3) 
s2Lj]<-sum(vtr2$solution[l :m])
} /* End of Phase-2 of BuildHull */
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by BuildHull to solve the dataset */

R code to solve the output-oriented VRS model using the conventional PEA algorithm

dudat<-read.xls(’’DEA.xls’',type-’double") /* Reads the dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
m l < - 9

m 2 < - l  1
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m3<-ml+l
m4<-m2+l
m<-ml+m2
nm<-n+l
mn<-m+l
a<-matrix(nrow=n,ncol=m) 
a[ 1 :n, 1 :m 1 ]=dudat[ 1 :n, 1 :m 1 ] 
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m] 
x 1 <-t(dudat[ 1 :n, 1 :ml ]) 
dim(x 1 )<-c(m 1 ,n) 
y2<—dudat[ 1 :n,m3 :m] 
timK-proc.timeO
for(j in 1 :n) /* Beginning of conventional algorithm */ 
{
b2<-matrix(nrow=l ,ncol=m)
b2 [,l:m l]=t(xl[j])
b2[,m3:m]=-y2[j,]
b3<-rbind(t(b2), 1)
a2<-matrix(nrow=n,ncol=m)
a2 [,l:m l]=t(xl)
a2[,m3:m]=-y2
si 1 <-matrix(nrow=m,ncol=m 1) 
sll[l:m l,l:m l]=diag(m l) 
si 1 [m3 :m,]=rep(0,m2) 
sl2<-matrix(nrow=m,ncol=m2) 
sl2 [ 1 :m 1 ,]=rep(0 ,m 1) 
sl2[m3 :m, 1 :m2]=-diag(m2) 
abcd<-cbind(sll ,sl2 ,t(a2))
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fp3<-c(rep(0,m),rep(l ,n)) 
abcd2<-rbind(abcd,fj?3) 
f.dir2<-c(rep("=",m ),"=") 
lt2<-c(rep( 1 ,m),rep(0 ,n))
vtr2<-lp(direction-'max",objective.in=lt2,const.mat=abcd2,const.dir=f.dir2,const.rhs=b3,scale=3) 
s2[j]<-sum(vtr2$soluti°n[ 1:m])
} /* End of conventional algorithm */
tim2<-proc.time()
tim<-tim2 -timl
tim /* Time taken by the conventional algorithm to solve the dataset */
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Appendix 7 - Computational performance of the competitive algorithms in solving the additive VRS model

Dataset BuildHull (secs) GBA (secs) Std Additive model (secs) Dataset BuildHull (secs) GBA (secs) Std Additive model (secs)

5-2500-01 17.11 8.83 68.6 10-2500-01 18.85 10.05 130.99
5-2500-13 26.82 15.96 71.3 10-2500-13 36.79 22.64 133.54
5-2500-25 38.86 24.82 71.36 10-2500-25 59 37.9 138.45
5-2500-50 64.95 50.09 71.23 10-2500-50 98.89 83.98 132.98

5-5000-01 33.96 19.6 267.69 10-5000-01 38.57 24.06 525.39
5-5000-13 78.81 48.08 267.83 10-5000-13 120.48 76.06 526.75
5-5000-25 128.33 83.23 280.63 10-5000-25 198 135.19 547.53
5-5000-50 240.47 185.84 271.06 10-5000-50 375.42 299.95 538.61

5-7500-01 54.81 32.3 593.35 10-7500-01 64.53 40.57 1174
5-7500-13 154.82 94.13 600.66 10-7500-13 250.69 155.83 1219.92
5-7500-25 270.29 175.31 609.17 10-7500-25 431.53 297.49 1212.29
5-7500-50 523.89 410.67 602.96 10-7500-50 836.61 674.18 1179.36

5-10000-01 76.7 46.53 1037.85 10-10000-01 91.12 61.19 2071.57
5-10000-13 260.55 159.36 1046.44 10-10000-13 415.5 269.14 2190.15
5-10000-25 456.5 301.31 1059.72 10-10000-25 762.12 520.5 2097.48
5-10000-50 914.45 714.23 1071.3 10-10000-50 1501.83 1203.5 2169.21
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Computational performance of the competitive algorithms in solving the additive VRS model (contd.)

Dataset BuildHull (secs) GBA (secs) Std Additive model (secs) Dataset BuildHull (secs) GBA (secs) Std Additive model (secs)

15-2500-01 21.31 11.6 183.45 20-2500-01 24.11 17.03 269.05
15-2500-13 49.25 39.6 178.14 20-2500-13 73.49 131.05 272.8
15-2500-25 77.35 63.78 186.88 20-2500-25 128.52 1434.9 268.11
15-2500-50 143.45 128.51 197.28 20-2500-50 200.92 1944.67 312.53

15-5000-01 44.52 31.35 766.56 20-5000-01 59.45 39.47 1824.39
15-5000-13 166.09 126.09 783.68 20-5000-13 241.28 1533.81 1846.67
15-5000-25 362.16 298.42 799.2 20-5000-25 424.42 1653.58 2332.08
15-5000-50 654.19 620.21 802.2 20-5000-50 789 1778.97 2413.56

15-7500-01 89.29 59.12 1839.44 20-7500-01 120.09 97.73 3221.3
15-7500-13 394.6 392.91 1832.7 20-7500-13 524.92 2337.53 3301.68
15-7500-25 715.29 1258.17 1945.3 20-7500-25 905.67 3266.24 3611.11
15-7500-50 1402.67 1940.27 1962.56 20-7500-50 1832.5 4745.32 6264.22

15-10000-01 140.06 121.66 3447.93 20-10000-01 165.54 139.72 5570.45
15-10000-13 673.69 972.3 3380.14 20-10000-13 921.61 3022.21 5810.16
15-10000-25 1255.26 2911.31 3656.89 20-10000-25 1824.92 5500.06 6866.34
15-10000-50 2530.95 3418.15 3848.12 20-10000-50 3242.82 7257.86 11763.13
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Appendix 8 - R codes of the two alternative GBA approaches and an alternative BuildHull approach to solve the additive VRS model

R code of the two-phase version of GBA to solve the additive VRS model

dudat<-read.xls("d.xls",type="double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
ml <-6
m2<-3
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s 1 <-matrix(nrow=n,ncol= 1) 
s5<-matrix(nrow=n,ncol=m+1) 
ni<-ml 
no<-m2
a<-matrix(nrow=n,ncol=m)
a[ 1 :n, 1 :m 1 ]=dudat[ 1 :n, 1 :ml]
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m]
x=dudat[l:n,l:ml]
y=-dudat[ 1 :n,m3 :m]
e<-c(l:n)
a<-c(e,a)
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dim(a)<-c(n,m+1)
s2<-rowSums(a[,m5:m7])+rowSums(a[,2:m3])
mins2<-min(s2)
dm<-cbind(-x,-y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
q l <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l
pen<—2 /* End of initilisation */
timl<-proc.time() /* Beginning of phase-1 of GBA */
while(sq>=l)
{
b2<-matrix(nrow=l ,ncol=m) 
b2[,l:ml]=a3[l,2:m3] 
b2[,m3:m]=0 
b3<-rbind(t(b2), 1) 
b2 1 <-matrix(nrow= 1 ,ncol=m) 
b21[,l:ml]=a3[l,2:m3] 
b21 [,m3 :m]=a3 [ 1 ,m5 :m7] 
c2<-matrix(nrow=l ,ncol=m)
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c2 [,l:m l]=0
c2[,m3 :m]=-a3 [ 1 ,m5 :m7] 
c3<-rbind(t(c2),0) 
asd<-cbind(t(b21 ),a4[-1,]) 
asd2<-rbind(asd, 1) 
abc2<-cbind(c3,asd2) 
lt2<-(c(l ,pen,rep(0,d4))) 
f.dir <-c(rep("<-!,m),"==")
vtr2<-lp(direction="max",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const.rhs=b3,compute.sens=l,scale=3)
s3<-round(-(a3[,-l:-m3]%*%vtr2$duals[m3:m])-vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml]),digits=10)
sasz<-max(s3)
if(sasz<=0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1) 
sq<-sq-l 
g<-g+i 
}
else
if(sasz>0)

ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the tied units */
{
notie<-notie+l
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tieunits<-tieunits+smx3 
s3tie<-sort(s3,decreasing=TRUE) 
par5<-max(s3tie[smx3+l ] ,0) 
par6<-ms3-par5 
par7<-abs(parl/par6)+l 
duals3<-vtr2$duals[l :m7]*par7 
duals3[l :m]<-duals3[l :m]+l
s3<-(-(a3 [,m5 :m7]%*%duals3 [m3 :m]))-(a3 [,2 :m3]%*%duals3 [ 1 :m 1 ])-duals3 [m7]
}
sq<-nrow(a3)
sx3<-cbind(a3,s3)
dim(sx3 )<-c(sq,m8)
sd<-max(sx3 [,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1 )<-c( 1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of GBA */
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s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
s2<-matrix (nro w=zx ,ncol= 1) 
if(zx = l)
(s6<-t(s6)}
si 1 <-matrix(nrow=zx,ncol=2) 
a5<-matrix(nrow=sx,ncol=m) 
a5=a4[-l,]
for(j in l:zx) /* Beginning of Phase-2 of GBA */
{
b2<-matrix(nrow= 1 ,ncol=m) 
b2 [,l:m]=abs(t(s6[j,-l])) 
b3<-rbind(t(b2), 1) 
si 1 <-matrix(nrow=m,ncol=m 1) 
si 1 [ 1 :m 1,1 :m 1 ]=diag(m 1) 
si 1 [m3 :m,]=rep(0,m2) 
sl2<-matrix(nrow=m,ncol=m2) 
sl2 [ 1 :m 1 ,]=rep(0 ,m 1) 
sl2[m3 :m, 1 :m2]=-diag(m2) 
abcd<-cbind(sl 1 ,sl2,abs(a5))
Q)3<-c(rep(0,m),rep(l ,sx)) 
abcd2<-rbind(abcd,Q)3) 
f.dir2<-c(rep(,,==",m),"==',) 
lt2<-c(rep( 1 ,m),rep(0 ,sx))
Vtr2<-lp(direction="max",objective.in=lt2,const.mat=abcd2,const.dir=f.dir2,const.rhs=b33compute.sens=0,scale=3)
s2 [j]<-sum(vtr2$objval[l])
} /* End of Phase-2 of GBA */
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tim /* Time taken by GBA to solve the dataset */ 
notie /* Number of ties encountered */ 
tieunits /* Average number of tied units per tie */

R code of the multiplier GBA approach to solve the additive VRS model

dudat<-read.xls("DEA.xls",type="double",colNames=FALSE) /* Reads the dataset from the current directory */
n<-dudat[l,l] /* Beginning of initialisation */
n2<-n+l
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml<-dudat[l,2]
m2<-dudat[l,3]
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
pen<-0.1
x<- dudat[2 :n2 ,l:m l]

266



y<- -dudat[2:n2,m3:m]
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=x
a[l:n,m3:m]=y
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<--rowSums(a[,m5:m7])-rowSums(a[,2:m3])
maxs2<-max(s2)
q 1 <-which.max(s2)
a4<-a[ql,]
dim(a4)<-c( 1 ,m+1)
a3<-a[-ql,]
sq<-nrow(a3)
d4<-nrow(a4)
g<-l /* End of Initialisation */ 
tim 1 <-proc.time()
while(sq>=l) /* Beginning of the GBA procedure */ 
{
abcd<-cbind(a4,1,-1) 
abcdl<-abcd[,-l] 
abcd2<-c(a3 [1,-1],1,-1) 
adc<-diag(m+2) 
adc3<-rbind(abcdl ,abcd2,adc) 
c2<-c(rep(0,d4),-1 ,rep(l ,m),0,0) 
c3<-t(t(c2)) 
ml5<-d4+m+3 
f.dir2<-c(rep(">=,,,ml 5))
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a4<-unique(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-nrow(a4)
>

} /* End of GBA procedure */ 
s6<-s5[complete.cases(s5),] 
tim2<-proc.time0  
tim<-tim2-timl
tim /* Time taken by GBA to solve the dataset */

R code of the multiplier BuildHull approach to solve the additive VRS model

dudat<-read.xls("d57.xls",type="double") /* Reads a dataset from the Current directory */
n<-nrow(dudat) /* Beginning of initialisation */
ml<-9
m2<-l 1
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
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s 1 <-matrix(nrow=n,ncol= 1) 
s5<-matrix(nrow=n,ncol=m+1) 
ni<-ml 
no<-m2
a<-matrix(nrow=n,ncol=m) 
a[ 1 :n, 1 :m 1 ]=dudat[ 1 :n, 1 :m 1 ] 
a[ 1 :n,m3 :m]=-dudat[ 1 :n,m3 :m] 
e<-c(l:n) 
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<-rowSums(a[,m5:m7])+rowSums(a[,2:m3])
mins2<-min(s2)
ql <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l /* End of initialization */ 
tim 1 <-proc .time()
while(sq>=l) /* Beginning of Phase-1 of BuildHull */ 
{
b2<-matrix(nrow= 1 ,ncol=m) 
b2 [l,l:m ]<-l
c2<-matrix(nrow= 1 ,ncol=m)
c2[l,]=-a3[l,-l]
c3<-rbind(t(c2),l)
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abc2<-cbind(t(b2),-a4[-1,]) 
fp<-c(0,rep(l,d4)) 
abc3<-rbind(abc2,fp) 
lt2<-(c(l ,rep(0,d4))) 
f.dir <-c(rep(">=",m),"=")
vtr2<-lp(direction=,,min,,,objective.in=lt2,const.mat=abc3,const.dir=f.dir,const.rhs=c3,compute.sens=l,scale=3) 
if(vtr2$solution[ 1 ]==0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1) 
sq<-sq-l 
g<-g+i 
}
else
if(vtr2$solution[ 1 ]>0)
{
sq<-nrow(a3)
if(sq = l)
{
s3<--(a3[,m5:m7]%*%vtr2$duals[m3:m])+vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
}
else
if(sq>l)
{
s3<--(a3[,m5:m7]%*%vtr2$duals[m3:m])+vtr2Sduals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
}
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ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one extreme-efficient unit among the tied units */ 
{
s3tie<-sort(s3 ,decreasing=TRUE) 
par5<-s3tie[smx3+l] 
par6<-ms3-par5 
par7<-parl/par6 
duals3<-vtr2$duals[ 1 :m7] *par7 
duals3 [ 1 :m6]<-duals3 [ 1 :m6]+1
s3<--(a3[,m5:m7]%*%duals3[m3:m])-(a3[,2:m3]%*%duals3[l:ml])+duals3[m7]
}
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3[,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1 )<-c( 1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
d4<-ncol(a4)
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}
} /* End of Phase-1 of BuildHull */ 
s6<-s5 [complete.cases(s5),] 
sx<-ncol(a4) 
zx<-(n-sx)
s2<-matrix(nrow=zx,ncol= 1) 
if(zx = l)
(s6<-t(s6)}
si 1 <-matrix(nrow=zx,ncol=2) 
a4<-t(a4)
for(j in l:zx) /* Beginning of Phase-2 of BuildHull */
{
abcd<-cbind(a4,1,-1) 
abcdl<-(abcd[,-l]) 
adc<-diag(m+2) 
adc3<-rbind(abcdl ,adc) 
c2<-c(rep(0,d4),rep( 1 ,m),0,0) 
c3<-t(t(c2)) 
ml5<-d4+m+2 
f.dir2<-c(rep(">=",ml5))
It2<-c(s6[j,-l],l,-l) 
dim(lt2)<-c(l ,m8)
vtr2<-lp(direction=l,min,,,objective.in=lt2,const.mat=adc3,const.dir=f.dir2,const.rhs=c3, compute.sens=l,scale=3) 
sslc<-abs(-(s6[j,-1 :-m3]%*%vtr2$solution[m3 :m])-vtr2$solution[m7]+vtr2$solution[m8] -(s6[j ,2:m3]%*%vtr2$solution[ 1 :m 1 ]))
sll[j,]<-c(s6[j],ss\c)
} /* End of Phase-2 of BuildHull */
tim /* Total time taken by BuildHull to solve the dataset */
notie /* Number of ties encountered */
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tieunits /* Average number of tied units per tie



Appendix 9 -  R codes of the DGP, GBA, BuildHull and the standard DEA algorithm to solve the input-oriented CRS model

CRS Data Generating Process using the Cobb-Douglas production function

n<-5000 /* Assume the number of units in the dataset to be 5000 */
m l<-4 /* Assume the number of inputs to be 4 */
m2<-l /* The number of outputs in any dataset is 1 */
den<-l /* Assume the density of the dataset to be 1% */
nl<-den*n/100
n2<-nl+l
n3<-n-nl
n4<-n3+l
x<-matrix(nrow=n,ncol==m 1)
for(j in l:m l) /* Generating ml random inputs using the uniform distribution function */
{
x[j]<-runif(n,1.5,25)
}
y<-matrix(nrow=n,ncol=m2)
rl<-runif(ml) /* Generating m l random coefficients using the uniform distribution function */ 
r2<-sum(rl)
r3<-rl/r2 /* Scaling the exponents so that they sum to 1 */ 
for(i in 1 :n3) /* Generating inefficient points */
{
y[i]=prod((x[i,rr3))/30
}
for(j in n4:n) /* Generating efficient points */
{
y[j]=prod((x[j,]Ar3))
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}

R code to solve the input-oriented CRS model using GBA

s 1 <-matrix(nrow=n,ncol= 1) /* Beginning of initialisation */
s2<-matrix(nrow=n,ncol= 1)
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=x
a[l:n,m3:m]=-y
dm<-cbind(x,y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
e<-c(l:n)
a<-c(e,a)
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dim(a)<-c(n,m+1)
s2<~(a[,m5:m7])/rowSums(a[,2:m3])
maxs2<-max(s2)
q 1 <-which .max(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l /* End of initialisation */ 
tim 1 <-proc.time()
while(sq>=l) /* Beginning of the GBA procedure */
{
b2<-matrix(nrow=l ,ncol=m) 
b2 [,l:m l]=0
b2[,m3:m]=- a3[l,m5:m7] 
c2<-matrix(nrow=l ,ncol=m) 
c2[,l:ml]= a3[l,2:m3] 
c2[,m3:m]=0
abc2<-cbind(t(c2),-a4[-1,]) 
lt2<-(c(l ,rep(0,d4))) 
f.dir <-c(rep(">=M,m))
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const.rhs=t(b2),compute.sens=l,scale=3)
s3<--(a3[,m5:m7]*vtr2$duals[m3:m])/(a3[,2:m3]%*%vtr2$duals[l:ml])
sasz<-max(s3)
if(sasz<=l)
{
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sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1] ,vtr2$solution[ 1 ]) 
a3<-a3[-lj
dim(a3)<-c(sq-1 ,m+1) 
sq<-sq-l 
g<-g+ i 
>

if(sasz>l)
{
ms3<-max(s3)
smx3<-sum(s3==ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the tied units */ 
{
notie<-notie+l
tieunits<-tieunits+smx3
s4<--(a3 [,m5 :m7] *vtr2$duals[m3 :m])-(a3 [,2:m3]%*%vtr2$duals[ 1 :ml ])
s3tie<-sort(s4,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-(vtr2$duals [ 1 :m] *par7)+1
s3<--(a3[,m5:m7] *duals3[m3:m])/(a3[,2:m3]%*%duals3[ 1 :ml])
}
sq<-nrow(a3) 
sx3<-cbind(a3 ,s3) 
dim(sx3)<-c(sq,m8) 
sd<-max(sx3 [,m8]) 
q4<-which.max(sx3 [,m8])
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sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(skl)<-c(l ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of GBA procedure */
tim2<-proc.time()
tim<-tim2 -timl
tim /* Time taken by GBA to solve the dataset */ 
notie /* Number of ties encountered */ 
tieunits /* Average number of tied units per tie */

R code to solve the input-oriented CRS model using BuildHull

sl<-matrix(nrow=n,ncol=l) /* Beginning of Initialisation */
s2<-matrix(nrow=n,ncol= 1)
m3<-ml+l
m4<-m2+l
m5<-m3+l
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d4<-ncol(a4)
g<-l /* End of initialisation */ 
timl<-proc.time()
while(sq>=l) /* Beginning of Phase-1 of BuildHull */
{
b2<-matrix(nrow=l ,ncol=m) 
b2 [l,l:m ]<-l
c2<-matrix(nrow= 1 ,ncol=m) 
c2[ 1 ,]=-a3 [1,-1] 
c3<-rbind(t(c2)) 
abc2<-cbind(t(b2),-a4[-1,]) 
abc3<-rbind(abc2) 
lt2<-(c(l ,rep(0,d4))) 
f.dir <-c(rep(">=H,m))
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc3,const.dir=f.dir,const.rhs=c3,compute.sens=l,scale=3) 
s3<--(a3 [,m5 :m7] *vtr2$duals[m3 :m])/(a3 [,2 :m3]%*%vtr2$duals[ 1 :m 1 ]) 
if(vtr2$solution[ 1 ] = 0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+l) 
sq<-sq-l 
g<-g+l 
}
else
if(vtr2$solution[ 1 ]>0)
{
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sq<-nrow(a3)
if(sq = l)
{
s3<~(a3 [,m5 :m7] *vtr2$duals[m3 :m])/(a3 [,2:m3]%*%vtr2$duals[ 1 :m 1 ])
}
else
if(sq>l)
{
s3<—(a3 [,m5 :m7] *vtr2$duals[m3 :m])/(a3 [,2 :m3]%*%vtr2$duals[ 1 :m 1 ])
>
ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one extreme-efficient units among the tied units */ 
{
notie<-notie+l 
tieunits<- tieunits+smx3
s4<--(a3 [,m5 :m7] *vtr2$duals[m3 :m])-(a3 [,2 :m3]%*%vtr2$duals[ 1 :m 1 ])
s3tie<-sort(s4,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-vtr2$duals[l :m7]*par7
duals3 [ 1 :m]<-duals3 [ 1 :m]+1
s3<--(a3 [,m5 :m7] *duals3 [m3 :m])/(a3 [,2:m3]%*%duals3 [ 1 :m 1 ])
>

sx3<-cbind(a3,s3) 
dim(sx3)<-c(sq,m8) 
sd<-max(sx3 [,m8])
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q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(skl)<-c(l ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of BuildHull */
s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
if(zx = l)
(s6<-t(s6)}
si 1 <-matrix(nro w=zx,ncol=2) 
a5<-matrix(nrow=sx,ncol=m) 
a5=a4[-l,]
for(i in l:zx) /* Beginning of Phase-2 of BuildHull */ 
{
b<-matrix(nrow=l ,ncol=m) 
b[,l:m l]=0
b[,m3 :m]= -s6[i,m5:m7]
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b2<-rbind(t(b))
c<-matrix(nrow=l ,ncol=m)
c[,l:ml]=s6[i,2:m3]
c[,m3:m]=0
cl<-t(c)
abc<-cbind(c 1 ,-a5) 
abc3 <-rbind(abc) 
lt3<-c(l,rep(0,sx)) 
f.dir <-c(rep(">=",m))
vtr3<-lp(direction="min",objective.in=lt3,const.mat=abc3,const.dir=f.dir,const.rhs=b2,compute.sens=l,scale=3) 
si 1 [i,]<-cbind(s6[i,l],vtr3$solution[l])
} /* End of Phase-2 of BuildHull */
tim2<-proc.time()
tim<-tim2 -timl
tim /* Total time taken by BuildHull to solve the dataset */
notie /* Number of ties encountered */
tieunits /* Average number of tied units per tie */

R code to solve the input-oriented CRS model using the standard PEA algorithm

sl<-matrix(nrow=n,ncol=l) /* Beginning of initialisation */
s2<-matrix(nrow=n,ncol= 1)
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+1
m<-ml+m2
m7<-m+l
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m8<-m7+l
a<-matrix(nrow=n,ncol=m) 
a[l:n,l:m l]=-x 
a[l:n,m3:m]=y 
tim 1 <-proc.time()
for(i in l:n) /* Beginning of Phase-1 of the conventional algorithm */
{
b<-matrix(nrow=l ,ncol=m)
b[,l:ml]=t(x[i,])
b[,m3 :m]=rep(0,m2)
c<-matrix(nrow=l ,ncol=m)
c[,l:ml]=rep(0 ,ml)
c[,m3:m]=y[i,]
cl<-t(c)
abc<-cbind(t(b),t(a)) 
lt<-(c(l,rep(0,n))) 
f. dir <-c(rep(">=,,,m))
vtr<-lp(direction="min",objective.in=lt,const.mat=abc,const.dir=f.dir,const.rhs=c 1, scale=3) 
s 1 [i,]<-vtr$solution[ 1 ]
} /* End of Phase-1 of the conventional algorithm */
tim2<-proc .timeO
tim<-tim2-timl
tim /* Time taken by Phase-1 of the conventional algorithm */ 
for(j in 1 :n) /* Beginning of Phase-2 of the conventional algorithm */
{
b2<-matrix(nrow=l ,ncol=m) 
b2 [,l :ml]=t(x[j,])*sl [j] 
b2[,m3:m]=y[j]
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b3<-t(b2)
si 1 <-matrix(nrow=m,ncol=m 1) 
sll[l:m l,l:m l]=diag(m l) 
si 1 [m3 :m,]=rep(0,m2) 
sl2<-matrix(nrow=m,ncol=m2 ) 
sl2 [ 1 :m 1 ,]=rep(0 ,m 1) 
sl2[m3 :m, 1 :m2]=-diag(m2) 
abcd<-cbind(sl 1 ,sl2 ,abs(t(a))) 
f.dir2<-c(rep("=",m)) 
lt2<-c(rep( 1 ,m),rep(0 ,n))
vtr2<-lp(direction="max",objective.in=lt2,constmat=abcd,const.dir=f.dir2,const.rhs=b3, scale=3) 
s2 [j,]<-sum(vtr2$solution[ 1 :m])
} /* End of Phase-2 of the conventional algorithm */
tim3<-proc.time()
tim<-tim3-timl
tim /* Total time taken by the conventional algorithm to solve the dataset */
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Appendix 10 - Computational performance of the competitive algorithms in solving the input-oriented CRS model

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs)

5-2500-01 7.39 4.17 88.47 42.65 10-2500-01 7.92 5.11 169.12 79.51
5-2500-13 13.91 11.03 95.14 49.28 10-2500-13 20.44 17.74 179.75 88.04
5-2500-25 23.61 20.75 98.02 51.50 10-2500-25 37.24 34.49 186.94 93.58
5-2500-50 50.90 46.89 101.11 53.67 10-2500-50 81.78 78.95 196.55 100.08

5-5000-01 17.30 9.91 360.03 177.92 10-5000-01 21.05 13.77 703.29 335.75
5-5000-13 44.78 39.39 417.00 224.88 10-5000-13 73.38 68.57 760.19 378.89
5-5000-25 84.30 77.74 424.32 230.90 10-5000-25 142.10 133.70 787.36 400.57
5-5000-50 198.39 186.05 416.85 226.68 10-5000-50 334.96 316.42 809.40 409.60

5-7500-01 28.11 17.90 801.10 401.21 10-7500-01 36.89 26.14 1608.44 783.13
5-7500-13 99.48 89.30 887.40 473.79 10-7500-13 154.78 149.53 1705.75 861.55
5-7500-25 186.54 172.58 893.61 482.91 10-7500-25 316.92 310.07 1774.93 901.87
5-7500-50 445.16 421.05 926.98 507.05 10-7500-50 749.86 734.86 1826.36 924.44

5-10000-01 41.45 27.20 1469.97 741.75 10-10000-01 57.59 43.28 2843.33 1393.08
5-10000-13 164.47 151.49 1590.69 854.00 10-10000-13 273.25 263.96 3120.25 1614.14
5-10000-25 334.11 314.89 1693.55 957.99 10-10000-25 549.92 529.57 3181.53 1651.67
5-10000-50 797.75 766.20 1751.50 989.38 10-10000-50 1340.25 1296.34 3341.36 1760.05
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Computational performance of GBA, BuildHull and Standard two-phase procedure in solving the input-oriented CRS model (contd.)

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) Is tPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) Is tPhase (secs)

15-2500-01 9.54 5.92 255.34 112.98 20-2500-01 10.06 6.64 377.23 154.98
15-2500-13 27.86 25.33 303.04 137.95 20-2500-13 34.79 32.33 1254.18 178.41
15-2500-25 52.18 48.86 336.07 143.33 20-2500-25 69.00 65.39 3683.23 190.03
15-2500-50 116.28 111.16 429.17 151.19 20-2500-50 153.29 148.33 9658.47 193.37

15-5000-01 23.41 17.45 1064.31 476.75 20-5000-01 27.60 21.49 1572.37 653.98
15-5000-13 105.83 101.59 1312.29 603.76 20-5000-13 136.25 130.40 5431.12 780.84
15-5000-25 202.96 200.42 1491.36 614.42 20-5000-25 279.06 268.50 16344.87 814.61
15-5000-50 468.60 458.04 1879.12 615.37 20-5000-50 619.78 600.58 42289.59 787.05

15-7500-01 44.71 34.31 2466.61 1132.08 20-7500-01 53.89 43.92 3644.08 1552.93
15-7500-13 228.50 223.60 3011.96 1313.95 20-7500-13 301.69 295.06 12465.48 1699.32
15-7500-25 454.78 448.17 3474.16 1376.60 20-7500-25 663.53 630.34 38075.79 1825.13
15-7500-50 1085.03 1034.95 4906.78 1437.17 20-7500-50 1414.70 1409.30 110427.07 1838.12

15-10000-01 70.66 56.33 4432.20 2047.99 20-10000-01 88.21 74.92 6547.97 2809.32
15-10000-13 395.05 387.67 5451.03 2447.23 20-10000-13 565.17 540.42 22559.97 3164.99
15-10000-25 812.51 809.00 6427.69 2546.34 20-10000-25 1147.36 1110.31 70445.62 3375.99
15-10000-50 1946.52 1858.16 9120.21 2483.81 20-10000-50 2542.44 2500.10 205250.31 3176.76
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Appendix 11 - R code to solve the output-oriented VRS model with built-in subroutine to construct strictly positive multiplier values for
the generators

dudat<-read.xls('*H:/d5.xls",type-'double",colNames=FALSE) /*Reads a dataset from the current directory */
n<-dudat[l,l] /* Beginning of initialisation */
n2<-n+l
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml<-dudat[l,2]
m2<-dudat[l,3]
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+1
m<-ml+m2
m7<-m+l
m8<-m7+l
notie<-0
tieunits<-0
slack<-matrix(nrow=n,ncol=m) 
weight 1 <-matrix(nrow=n,ncol=m+1) 
gens<-matrix(nrow=n,ncol=m8) 
inprsav<-matrix(nrow=n,ncol=m 1) 
peerf<-matrix(nrow=n,ncol=m7) 
s5<-matrix(nrow=n,ncol=m+1) 
ni<-ml 
no<-m2
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sq<-nrow(a3)
d4<-ncol(a4)
gn<-l
gens[gn,]<-c(a4[gn, 1 ] ,rep( 1 ,m),0)
g<-l
gn<-2 /* End initialisation */ 
timl <-proc.timeO
while(sq>=l) /* Beginning of GBA procedure */
{
b2<-matrix(nrow=l ,ncol=m) 
b2[,l:ml]=a3[l,2:m3] 
b2[,m3:m]=0 
b3<-rbind(t(b2), 1) 
b2 1 <-matrix(nrow= 1 ,ncol=m) 
b21 [, 1 :m 1 ]=a3 [ 1,2 :m3] 
b21 [,m3 :m]=a3 [ 1 ,m5 :m7] 
c2<-matrix(nrow=l ,ncol=m) 
c2 [,l:m l]=0
c2[,m3 :m]=-a3 [ 1 ,m5 :m7] 
c3<-rbind(t(c2),0) 
asd<-cbind(t(b21 ),a4[-1,]) 
asd2<-rbind(asd, 1) 
abc2<-cbind(c3 ,asd2) 
lt2<-(c(l ,pen,rep(0,d4))) 
f.dir <-c(rep("<=",m),"==")
vtr2<-lp(direction="max",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const,rhs=b3,compute.sens=l, scale=3) 
s3<-round(-(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])-vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[ 1 :ml ]),digits=l 0) 
duals3<-vtr2$duals[l :m7]
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duals3m<-vtr2$duals[ 1 :m] 
dim(duals3)<-c(l ,m7) 
dim(duals3m)<-c( 1 ,m) 
sasz<-max(s3) 
if(sasz<=0)
{
sq<-nrow(a3)
s5 [g,]<-c(a3 [ 1,1 ], 1 /vtr2$solution[ 1 ]) 
peer<-matrix(nrow=l ,ncol=d4)
for(j in 1 :d4) {if(vtr2$solution[j+2]>0) {peer[j]<-a4[l,j]}} 
peer2<-t(peer)
peer3<-peer2[complete.cases(peer2),] 
dim(peer3)<-c( 1 ,length(peer3)) 
peer4<-matrix(nrow=l ,ncol=m) 
peer4<-c(peer3,rep(0,m-length(peer3))) 
peerf[g,]<-c(a3 [1,1] ,peer4) 
sol<-vtr2$solution[3: length(vtr2$solution)] 
sol<-replace(sol,sol=="0",NA) 
sol<-na. exclude(sol)
if(ncol(peer3 )= 1 )  (compu<-(a [p e e r3 1 ] * sol [ 1: length(peer3 )])}
if(ncol(peer3)> 1) {compu<-colSums(a[peer31 ] *sol[ 1: length(peer3)])}
projp<-matrix(nrow= 1 ,ncol=m)
projp[l:ml]<-(abs(a3[l,2:m3])*vtr2$solution[l])
projp[m3 :m]<-abs(a3 [ 1 ,m5 :m7])
inprsav[g,]<-abs(a3 [ 1,2:m3])-projp[ 1 :m 1 ]
slack[g,]<-abs(projp-abs(compu))
weight 1 [g,]<-vtr2$duals[ 1 :m7]
a3<-a3[-l,]
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dim(a3)<-c(sq-1 ,m+l) 
sq<-sq-l 
g<-g+i 
>
if(sasz>0)
{
ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among tied units */
{
notie<-notie+l 
tieunits<-tieunits+smx3 
s3tie<-sort(s3,decreasing=TRUE) 
par5<-max(s3tie[smx3+l],0) 
par6<-ms3-par5 
par7<-abs(par 1 /par6)+1 
duals3<-vtr2$duals[l :m7]*par7 
duals3 [ 1 :m]<-duals3 [ 1 :m]+l
s3<-(-(a3[,m5:m7]%*%duals3[m3:m]))-(a3[,2:m3]%*%duals3[l:ml])-duals3[m7] 
duals3m<-duals3 [ 1 :m] 
dim(duals3m)<-c( 1 ,m)
>
if(sm x3=l)
{
if(apply(duals3m,l,prod)=0) /* Subroutine to generator positive multiplier values for the generators */ 
{
s3tie<-sort(s3,decreasing=TRUE) 
if(length(s3tie> 1)) { par5<-max(s3tie[smx3+1 ],0)}
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} /* End of GBA procedure */ 
s6<-s5 [complete.cases(s5),] 
tim2<-proc.time() 
tim<-tim2-timl
tim /* Time taken by the GBA to solve the dataset */ 
notie /* Number of ties encountered by GBA */ 
tieunits /* Average number of tied units per tie */
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