
A COMPUTATIONALLY EFFICIENT PROCEDURE FOR

DATA ENVELOPMENT ANALYSIS

Srinivasan Parthasarathy

Operational Research Group, Department of Management

London School of Economics and Political Science

Thesis submitted to the London School of Economics and Political Science,

for the degree of Doctor of Philosophy

July 2010

1

UMI Number: U615720

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U615720
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

TW5S&?
F

° im

The author hereby declares that the work presented in this thesis is his own.

Srinivasan Parthasarathy

2

ABSTRACT

This thesis is the final outcome of a project carried out for the UK’s

Department for Education and Skills (DfES). They were interested in finding a

fast algorithm for solving a Data Envelopment Analysis (DEA) model to

compare the relative efficiency of 13216 primary schools in England based on 9

input-output factors. The standard approach for solving a DEA model comparing

n units (such as primary schools) based on m factors, requires solving 2n linear

programming (LP) problems, each with m constraints and at least n variables.

At m = 9 and n = 13216, it was proving to be difficult.

The research reported in this thesis describes both theoretical and

practical contributions to achieving faster computational performance. First we

establish that in analysing any unit t only against some critically important units

- we call them generators - we can either (a) complete its efficiency analysis, or

(b) find a new generator. This is an important contribution to the theory of

solution procedures of DEA. It leads to our new Generator Based Algorithm

(GBA) which solves only n LPs of maximum size (im x k), where k is the

number of generators. As k is a small percentage of n , GBA significantly

improves computational performance in large datasets. Further, GBA is capable

of solving all the commonly used DEA models including important extensions of

the basic models such as weight restricted models.

In broad outline, the thesis describes four themes. First, it provides a

comprehensive critical review of the extant literature on the computational

aspects of DEA.

Second, the thesis introduces the new computationally efficient algorithm

GBA. It solves the practical problem in 105 seconds. The commercial software

used by the DfES, at best, took more than an hour and often took 3 to 5 hours

making it impractical for model development work.

Third, the thesis presents results of comprehensive computational tests

involving GBA, Jose Dula’s BuildHull - the best available DEA algorithm in the

literature - and the standard approach. Dula’s published result showing that

BuildHull consistently outperforms the standard approach is confirmed by our

3

experiments. It is also shown that GBA is consistently better than BuildHull and

is a viable tool for solving large scale DEA problems.

An interesting by-product of this work is a new closed-form solution to

the important practical problem of finding strictly positive factor weights without

explicit weight restrictions for what are known in the DEA literature as

“extreme-efficient units”. To date, the only other methods for achieving this

require solving additional LPs or a pair of Mixed Integer Linear Programs.

4

ACKNOWLEDGEMENTS

I recall Professor Abraham Chames’ advice to aspiring PhD students to

choose the teacher and not the topic. Even though I got to hear about this

recently, I am glad that I followed it. I started my PhD with absolutely no

knowledge on the topic but had the trust that I chose my teacher well. I am

indebted to my supervisor, Professor Gautam Appa for giving me the opportunity

to study for a PhD under his supervision with financial support. I am also

indebted to him for his unfailing academic rigour and continuous encouragement.

I cannot fail to mention his patience and attentive attitude towards me all these

years for I tested him to his extreme emotions on numerous occasions. He was

and remains a pillar in my life.

I am deeply indebted to Dr. Susan Powell for helping me with my writing

style and for her attention to detail. I owe much to her patience and guidance in

shaping this thesis.

I am also indebted to Professors Rajiv Banker and Ram Natarajan for

inviting me to collaborate with them during my PhD study.

I am grateful to Professors Jose Dula and Emmanuel Thanassoulis for

their patience and assistance with many of my persistent queries on various

theoretical aspects of DEA.

I am grateful to Professor Ailsa Land for her feedback on the

computational aspects of my thesis and to Mr. George Mitchell on the preface.

I would like to thank the OR department manager Brenda Mowlam, and

the administrators Jenny Robinson, Richard Szadura and Lucy Underhill for their

patience and help with all sorts of administrative requests over the years.

For their continued patience, help and friendship, I thank my fellow PhD

students, Ionna Katrantzi, Kostas Papalamprou, Nikos Argyris, Nayat Horzoglou,

Anastasia Kouvela, Dimitrios Karamanis, Kai Becker, Shweta Agarwal, Ana

Barcus and Sumithra Sribashyam.

Thanks are due to my friends over many years - Cristiana, Anupama,

Ernie, Leong, Lena, Emily, Diana, Aijen, Ofer, Joelle, Lida, Maha and many

more - for making my life much more pleasant in many ways.

Lastly I thank my parents, athimber and athai, my sister and my brother

Murari for their continued love and support towards me.

5

Financial support from the Department for Education (DfE) via grant

EOR/SBU/2003/208 is gratefully acknowledged.

6

DEDICATION

The thesis is dedicated to my grandparents V. S. Ranganathan and R. Seetha.

7

PREFACE

I Motivation and Genesis

The issue addressed in the work recorded in this thesis is the

computational efficiency in applying Data Envelopment Analysis (DEA) and

how this may be improved.

In 2005, the Value for Money (VfM) unit of the Department for

Education and Skills (DfES)1 commissioned my supervisor, Professor Gautam

Appa, to develop procedures for speeding up computation of DEA models for

large scale datasets. The DfES had decided to use DEA to identify the well-run

primary schools in England and to provide benchmarks based on these for the

poorly-run ones. DEA divides the units (primary schools in this case) under

investigation into efficient and not efficient and finds peers amongst the efficient

ones which are relevant for setting targets for the inefficient ones. So in some

sense DEA was suitable for their purpose. However, in carrying out DEA

computations they encountered one big difficulty. The performance analysis

software they were using for processing DEA datasets, PIM DEASoft-v2

(http://www.deasoftware.co.ukA. took too long to solve datasets with more than

5000 units and sometimes required multiple attempts to run them to completion.

Professor Appa was given a grant to appoint a PhD student to review current

computational methods and come up with improved ones. In September 2005, he

drafted me as his PhD student and it was agreed that under grant

EOR/SBU/2003/208 from the DfES, my research would review the extant

literature on the different solution procedures to process DEA datasets and

develop new techniques to realize improved computational efficiency.

It is worth noting that although the issues discussed in this thesis arose in

connection with comparing the performance of primary schools, they could

equally have arisen in many other contexts which involve large datasets (for

example, in comparing the performance of branches of a bank, in financial

1 It went through several changes of name; at the time of writing it is known as Department for
Education (DfE).

8

http://www.deasoftware.co.ukA

applications such as portfolio analysis etc.). The methods developed herein

therefore can be expected to have wide applications.

It is also important to note that there are certain applications in DEA that

necessitate solving multiple DEA LPs for each unit and are computationally

intensive even for medium scale datasets. These include the bootstrapping

technique developed in Simar and Wilson (1998) and Simar and Wilson (2000),

outlier identification technique developed in Wilson (1993), Kuosmanen and

Post (1999), Simar (2003) and Banker and Chang (2006), various methods to

estimate the returns to scale of units in DEA developed in Banker and Thrall

(1992), Fare and Grosskopf (1994) and Banker et al (2004), and methods to

estimate the productivity growth using the malmquist productivity analysis

technique developed in Fare et al (1994), Ray and Desli (1997), Simar and

Wilson (1999) and Banker et al (2010). The algorithm developed in this thesis is

also expected to come useful in reducing the computational work in such

intensive applications.

II Foundation and Development

Upon reviewing the literature on the computational aspects of DEA, only

three strands of relevant research were identified. These (discussed in detail in

Chapter 3) comprised of:

1. the DEA based pre-processing ideas of Ali (in Ali (1993) and Chen and

Ali (2002)),

2. the hierarchical decomposition algorithm of Barr and Durchholz (1997),

and

3. the BuildHull algorithm of Dula (1998).

Among these, only the works of Professor Jose Dula seemed significant

as he had shown by extensive computational evidence that his BuildHull

algorithm was much faster than all the others. In September 2006, the BuildHull

algorithm proposed in Dula (1998) was presented to the VfM unit of the DfES

along with suggestions to improve it. In pursuing some of these ideas further we

9

came up with one that kept the main feature of BuildHull but cut down the

number of LPs to be solved by half.

To evaluate any unit in DEA, it is sufficient to have data on its relevant

peers from the dataset. Hence, comparing an unit with all the units in the dataset

is unnecessary. This is especially important when a vast majority of units are

inefficient and hence well known to have no relevance in the evaluation of any

other unit. Most real life datasets have this feature. For example, the number of

relevant efficient units in the primary school data was only 188 out of 13,216.

We will call the relevant efficient units generators for now and define the term

precisely later. The main strength of BuildHull comes from the fact that it

identifies all the generators in a first pass where each unit is tested against

already identified generators to see if it is inefficient in comparison. If it is, it can

be discarded; if not, BuildHull has a way to find some hitherto undiscovered

generator. So it requires n LPs to find all the generators (e.g., 188 schools) in a

dataset and no LP will have more than k + l units in it if there are k generators

(here, 188 schools). For the primary schools problem, BuildHull will solve 13216

LPs with no more than 189 variables in each LP in the first phase. In phase 2,

BuildHull will solve one LP for each unit which is not a generator, with only the

k generators and the unit itself in each LP; so 13028 LPs with 189 variables in

each.

The improvement we make is to find a way to work only with known

generators but in such a way that at each step we either finish the analysis of unit

t under investigation or find a new generator, thus needing to solve only n LPs

with no more than k variables at any step. The main tool for achieving this is the

use of super-efficiency model of DEA (introduced in Andersen and Petersen

(1993)) and a ratio test to find a new generator.

In preparing the fine details of this Generator Based Algorithm (GBA) we

had to deal with some technicalities. Thus, the super-efficiency model may lead

to infeasible LPs and the ratio test could produce indeterminate ratios. Also,

when choosing a new generator ties were encountered which had to be dealt

with.

10

In the first instance we were able to deal with these finer points by

assuming them away. So we assumed that the data entries were all positive,

which took care of both the infeasibility and the indeterminate ratio problems.

And ties were waved aside by assuming that there was a way to solve them. But

eventually we had to solve these problems head on. It was found that

indeterminate ratios were only problematic when there were ties and so can be

handled by our tie breaking procedure. Fortunately we were able to find a closed

form solution to the problem of breaking ties. It turns out that the same closed-

form solution can also be used to find strictly positive optimal weights for all the

factors for each generator.

Ill Organization of the thesis

Chapter 1 starts with an introduction to the DEA technique familiarising

the reader with some of the important concepts by means of a graphical

illustration, followed by a systematic investigation. We then give a brief history

of the evolution of DEA.

Chapter 2 presents the standard DEA LP models, viz., constant and

variable returns to scale models under input and output orientation and additive

models, used in DEA applications. The chapter also provides a brief critical

review of an important variant of these, namely, the super-efficiency models,

which we employ in the construction of our new algorithm developed in chapter

4.

To reduce the computational strain in processing DEA datasets, various

heuristics and alternative efficient algorithms have been developed in the

literature over the years. Chapter 3 presents a comprehensive critical review of

these, identifying the three main strands mentioned earlier.

Chapter 4 presents our main research contribution, the Generator Based

Algorithm (GBA), for solving the input oriented CRS model under the

assumption that the dataset is strictly positive. Every step is illustrated

graphically for a small 2-input, one output case with 8 Decision Making Units

(DMUs). Appendix 2 graphically illustrates the workings of the same example

11

for Dula’s BuildHull algorithm. In contrast to BuildHull, our algorithm avoids

solving a second LP for the 8 DMUs.

Chapter 5 addresses the technical challenges in using GBA for general

(not necessarily positive) datasets for all the standard DEA models described in

chapter 2. For each specific DEA model, we present conditions under which the

two main technical challenges of infeasibility and indeterminate ratios can or

cannot occur when applying GBA.

The purpose of chapter 6 is to present ways to handle the technical

challenge of infeasibility. We examine two different approaches to handle it, viz.,

clustering and penalty. Within the penalty method, we examine two different

techniques, viz., employing a big penalty and a small penalty. The clustering

technique works under restrictive conditions while the penalty methods can

tackle infeasibility under all circumstances.

In chapter 7, we examine ways to deal with the remaining technical

difficulties of GBA. We first show that within GBA the problem of

indeterminate ratios is only relevant when there is a tie in the rule for finding a

new generator. Then we provide novel closed-form solutions to resolve ties.

Finally we extend these closed-form solutions to construct a strictly positive set

of multiplier values for the generators.

Chapter 8 presents the computational results of processing datasets using

various DEA models. While doing so, we compare the computational

performance of GBA against BuildHull and the conventional solution procedure.

For VRS models we compare the computational performance of GBA against the

other two using the problem suite that Dula (1998, 2008, 2010) employed in his

studies. As Dula does not provide any comparisons for CRS models we use a

problem suite developed for this purpose. As the main contender for GBA is

BuildHull, we give separate diagrams comparing just these two.

Finally, chapter 9 present directions for future research.

12

GLOSSARY OF THE TERMS AND SYMBOLS

DMU - Decision Making Unit.

(DMUs denote the plural form of DMU and not the s* DMU)

Units - Refers to DMUs.

PPS - Production Possibility Set.

RTS - Returns to Scale.

CRS - Constant Returns to Scale.

VRS - Variable Returns to Scale.

n - Number of observed decision making units.

ml - Number of input factors in the dataset.

m2 - Number of output factors in the dataset.

(X , Y), (x , Y), [x, Y) - Activity of an unit with support over R +n)2.

X - Input component (vector) of the activity (X,Y) with support overR”1.

Y - Output component (vector) of the activity (X , Y) with support overR™2.

[xj ,Yj)~ Activity of an observed unit j.

(Xt ,Yt) - Activity of an observed unit (DMUt) that is currently being evaluated.

X - Matrix of inputs of all the observed units of size m ^ n .

Y - Matrix of outputs of all the observed units of size m2x n .

A,j or jLLj - Intensity variable of an observed unit j.

s' - Input slack vector with support overR”1.

s ° - Output slack vector with support over R™2.

v - Input weight vector with support overR™1.

u - Output weight vector with support overR™2.

6 - Variable that depicts the input efficiency of DMUt.

(f) - Variable that depicts the output inefficiency of DMUt.

0 - Zero vector with dimension decided by the context.

e - Vector of Is with dimension decided by the context.

Cardinality - Number of observed DMUs in a DEA exercise.

Dimension - Number of inputs and outputs in a DEA exercise.

13

Density -Percentage of extreme-efficient units in a DEA exercise.

P-K efficient - Pareto-Koopmans efficient.

GBA - Generator Based Algorithm.

LP - Linear Programming.

MILP - Mixed Integer Linear Programming.

DGP - Data Generating Process.

EIE - Early Identification of Efficient units.

RBE - Restricted Basis Entry.

14

CONTENTS

ABSTRACT...3

ACKNOWLEDGEMENTS...5

DEDICATION..7

PREFACE...8

I Motivation and Genesis..8

II Foundation and Development...9

III Organization of the thesis.. 11

GLOSSARY OF THE TERMS AND SYMBOLS... 13

CONTENTS..15

LIST OF TABLES..21

LIST OF FIGURES..23

LIST OF CHARTS...24

LIST OF APPENDICES...25

1 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS.....26

1.1 Background..26

1.2 Theoretical Framework... 31

1.2.1 Production Possibility Set under the Constant Returns to Scale........ 32

1.2.2 Production Possibility Set under the Variable Returns to Scale........ 33

1.2.3 Definitions and Measures of Technical Efficiency...................34

1.3... Concepts of Efficiency...36

1.4 A brief history of the evolution of DEA...........................38

1.5 Conclusion...39

15

2 LINEAR PROGRAMMING MODELS USED IN DEA.................... 40

2.1 LP models under Constant Returns to Scale assumption...........................41

2.2 LP models under Variable Returns to Scale assumption...........................44

2.3 Additive models under CRS and VRS assumptions..................................46

2.4 Introduction to Super-Efficiency model..48

2.4.1 Linear Programs employed in super-efficiency models.....................48

2.4.2 An illustration of the super-efficiency model.................................... 50

2.4.3 A brief literature review on super-efficiency models........................52

2.5 Conclusion... 54

3 COMPUTATIONAL ISSUES IN SOLVING DEA MODELS - A

CRITICAL LITERATURE REVIEW

..55

3.1 Ali’s contributions: pre-processing and LP acceleration techniques........ 57

3.1.1 Limitations of Ali (1993), and Chen and Ali (2002).........................60

3.2 Barr and Durchholz (1997) contribution: Hierarchical Decomposition

procedure...63

3.3 Dula’s BuildHull algorithm.. 65

3.4 Algorithmic characteristics of competing solution procedures................. 67

3.5 Conclusion... 69

4 GENERATOR BASED ALGORITHM FOR SOLVING THE

INPUT-ORIENTED CRS MODEL.. 70

4.1 Background and definitions.. 70

4.2 Modified input-oriented CRS super-efficiency model...............................72

4.3 Generator Based Algorithm.. 73

16

4.3.1 Ratio Rj.. 73

4.3.2 Procedure FindNewGen... 76

4.3.3 Description of GBA..78

4.4 An illustration of GBA..79

4.5 Ratios and Reduced cost values... 83

4.6 Advantages of GBA..84

4.6 Conclusion... 85

5 TECHNICAL CHALLENGES AND EXTENSION OF GBA TO

OTHER DEA MODELS..86

5.1 GBA for the general input-oriented CRS model..87

5.1.1 LP infeasibility.. 87

5.1.2 Indeterminate ratios...89

5.2 GBA for the output-oriented CRS model...90

5.2.1 LP infeasibility..91

5.2.2 Indeterminate ratios...91

5.3 GBA for the input-oriented VRS model..93

5.3.1 Using the reduced costs RCj instead of the Rj values in GBA 95

5.3.2 LP infeasibility..97

5.3.3 Indeterminate ratios...98

5.4 GBA for the output-oriented VRS model..99

5.4.1 Infeasibility... 101

5.4.2 Indeterminate ratios...101

5.5 GBA for the CRS additive model.. 103

17

5.5.1 Infeasibility...104

5.5.2 Indeterminate ratios.. 105

5.6 GBA for solving the VRS additive model..105

5.6.1 Infeasibility...107

5.6.2 Indeterminate ratios.. 107

5.7 Conclusion...108

6 WAYS TO RESOLVE THE LP INFEASIBILITY ISSUE IN

GBA..109

6.1 Infeasibility in the input-oriented CRS model.....................................109

6.1.1 Natural Clustering for the input oriented CRS case.................................109

6.1.1.1 Pros and Cons of the Clustering technique..............................116

6.1.2 Penalty methods for the input oriented CRS case.............................117

6.1.2.1 Big Penalty or Big-M method...117

6.1.2.2 Small-m method.. 123

6.2 Infeasibility in the input-oriented VRS model... 124

6.2.1 Big-M method...124

6.2.2 Small-m method..125

6.3 Infeasibility in the output-oriented VRS model.................................... 126

6.4 Infeasibility in the CRS and VRS additive models................................. 128

6.5 Conclusion...129

7 CLOSED-FORM SOLUTIONS TO RESOLVE TIES AND

CONSTRUCT NON-ZERO MULTIPLIER VALUES................... 130

7.1 Indeterminate ratios..130

18

7.1.1 Dula’s ratio...130

7.1.2 Indeterminate ratios and their association with tied ratios.............. 132

7.2 Ways to resolve ties ...133

7.2.1 Dula’s approach to resolve ties...134

7.2.2 Closed-form solutions to resolve ties..136

7.2.2.1 Closed-form solution to resolve ties under V R S.....................138

1 .2 2 2 Closed-form solution to resolve ties under CRS......................143

7.3 Strictly Positive multiplier values for generators..................................... 152

7.3.1 Literature review..152

7.3.2 A closed-form solution for achieving positive weights under

CRS... 155

7.3.2.1 Illustration of the closed-form solution to ensure positive

weights under CRS... 158

7.3.3 Closed-form solution for achieving positive multiplier values under

VRS...161

7.3.3.1 Illustration of the closed-form solution to ensure positive

weights under V RS.. 163

7.4 Conclusion... 165

8 COMPUTATIONAL RESULTS FOR GBA......................................167

8.1 Competitive algorithms to solve the output-oriented VRS model...........168

8.1.1 Description of the problem suite...168

8.1.2 Technology and Implementations...169

8.1.2.1 Description of the GBA procedure.. 171

19

8.1.2.2 Description of BuildHull and the Standard two-phase

algorithm.. 173

8.1.3 Limitations of the computational experiments.................................175

8.1.4 Computational results and comparison of algorithmic

performances...177

8.2 Competitive algorithms to solve the additive VRS model......................186

8.2.1 Comparison of algorithmic performances.. 186

8.3 Competitive algorithms to solve the input-oriented CRS model............. 189

8.3.1 Problem suite under CRS..189

8.3.2 Description of GBA.. 191

8.3.3 Description of BuildHull and standard algorithm............................193

8.3.4 Limitations of the computational experiments.................................195

8.3.5 Computational results and comparison of algorithmic

performances... 195

8.4 Conclusion...205

9 DIRECTIONS FOR FUTURE RESEARCH.................................... 206

9.1 Enhancing the computational experiments...206

9.2 Extension of GBA to handle negative data and the FDH models.............207

9.3 Extension of the closed-form solutions...209

BIBLIOGRAPHY...296

20

LIST OF TABLES

Table 1 -1 :9 DMU, 3 factor data...26

Table 3-1 : Data to show incorrect identification..60

Table 3-1 : DEA data for GBA illustration... 80

Table 3-2 : Reduced cost and ratio values.. 84

Table 5-1 : Infeasibility due to 0 inputs.. 87

Table 5-2 : Infeasibility due to 0 outputs.. 88

Table 5-3 : Indeterminate ratio... 89

Table 5-4 : All zero solution..91

Table 5-5 : LP infeasibility with positive data..97

Table 5-6 : Indeterminate ratios...98

Table 5-7 : LP infeasibility with positive data.. 101

Table 5-8 : Indeterminate ratios with positive data... 102

Table 5-9 : LP infeasibility with positive data.. 105

Table 6-1 : Clustering DMUs based on zero valued input factors....................110

Table 6-2 : Clusters in example 6-1...I l l

Table 6-3 : Penalty in case of the output-oriented VRS model.......................... 127

Table 7-1 : Original and Dula’s ratio for the oriented VRS models.................. 131

Table 7-2 : Data for Dula’s tie-breaking approach... 134

Table 7-3: Illustration of closed-form solution to break ties 1........................... 141

Table 7-4: Illustration of closed-form solution to break ties 2............................142

Table 7-5: Illustration of closed-form solution to break ties 3............................142

Table 7-6: Illustration of closed-form solution to break ties 1............................147

Table 7-7: Illustration of closed-form solution to break ties 2........................... 147

Table 7-8: Illustration of closed-form solution to break ties 3............................148

Table 7-9: Illustration of closed-form solution to break ties 4........................... 148

Table 7-10: Illustration of closed-form solution to break ties 5 149

Table 7-11: Illustration of closed-form solution to break ties 1150

Table 7-12: Illustration of closed-form solution to break ties 2 150

Table 7-13: Illustration of closed-form solution to break ties 3 151

Table 7-14: Illustration of closed-form solution to break ties 4 151

Table 7-15: Illustration of closed-form solution to break ties 5 152

21

Table 7-16 : Example in which Cooper et. al.’s (2007) approach fails.............153

Table 7-17 : Extreme rays for the 5 DMU, 4 factor example............................ 153

Table 7-18 : Closed-form solution to obtain positive multiplier values 1158

Table 7-19 : Closed-form solution to obtain positive multiplier values 2159

Table 7-20 : Closed-form solution to obtain positive multiplier values 31.59

Table 7-21 : Closed-form solution to obtain positive multiplier values 4160

Table 7-22 : Closed-form solution to obtain positive multiplier values 5160

Table 7-23 : Closed-form solution to obtain positive multipliers 1...................164

Table 7-24 : Closed-form solution to obtain positive multipliers 2164

Table 7-25 : Closed-form solution to obtain positive multipliers 3165

Table 8-1 : Alternative approaches to solve the additive model................. 188

22

LIST OF FIGURES

Figure 1-1 : 2-d representation of the data...27

Figure 2-1 : Super-efficiency evaluation of DMU C .. 51

Figure 3-1 : Figure to show incorrect identification... 60

Figure 4-1 : Step 1 of GBA...80

Figure 4-2 : Step 2 of GBA.. 81

Figure 4-3 : Step 3 of GBA...81

Figure 4-4 : Step 4 of GBA... 81

Figure 4-5 : Step 5 of GBA... 81

Figure 6-1 : Underlying hierarchical structure of example 6-1........................... 112

Figure 6-2 : Graphical illustration of infeasibility...119

Figure 7-1 : Graphical illustration of Dula’s tie-breaking approach...................135

23

LIST OF CHARTS

Chart 8-1 : Computational Time versus Density...178

Chart 8-2 : Computational Time versus Density (GBA vs. BuildHull) 178

Chart 8-3 : Computational Time versus Density...179

Chart 8-4 : Computational Time versus Density (GBA vs. BuildHull) 180

Chart 8-5 : Computational Time versus Dimension..180

Chart 8-6 : Computational Time versus Dimension (GBA vs. BuildHull) 181

Chart 8-7 : Computational Time versus Dimension..181

Chart 8-8 : Computational Time versus Dimension (GBA vs. BuildHull) 182

Chart 8-9 : Computational Time versus Cardinality..182

Chart 8-10 : Computational Time versus Cardinality (GBA vs. BuildHull).... 183

Chart 8-11: Computational Time (log seconds) versus Cardinality.................. 183

Chart 8-12 : Computational Time versus Cardinality... 184

Chart 8-13 : Computational Time versus Cardinality (GBA vs. BuildHull).... 184

Chart 8-14 : Computational Time (log seconds) versus Cardinality.................. 185

Chart 8-15 : Computational Time versus Density.. 197

Chart 8-16 : Computational Time versus Density (GBA vs. BuildHull)........... 197

Chart 8-17 : Computational Time versus Density.. 198

Chart 8-18 : Computational Time versus Density (GBA vs. BuildHull)........... 198

Chart 8-19 : Computational Time (in log seconds) versus density.................... 199

Chart 8-20 : Computational Time versus Dimension... 199

Chart 8-21 : Computational Time versus Dimension (GBA vs. BuildHull)..... 200

Chart 8-22 : Computational Time versus Dimension...200

Chart 8-23 : Computational Time versus Dimension (GBA vs. BuildHull)..... 201

Chart 8-24 : Computational Time (in log seconds) versus Dimension..............201

Chart 8-25 : Computational Time versus Cardinality...202

Chart 8-26 : Computational Time versus Cardinality (GBA vs. BuildHull).... 202

Chart 8-27 rComputational Time (in log seconds) versus Cardinality 203

Chart 8-28 : Computational Time versus Cardinality...203

Chart 8-29 : Computational Time versus Cardinality (GBA vs. BuildHull).... 204

Chart 8-30 : Computational Time (in log seconds) versus Cardinality.............204

24

LIST OF APPENDICES

Appendix 1 - Shephard’s (1970) output distance function and related Debreu-

Farrell measure.. 210

Appendix 2 - July 2006 report to the DfE on Dula’s work...............................212

Appendix 3 - Proof that Xt is either 0 or 1 in the penalty enabled GBA models

..233

Appendix 4 - R codes to solve the output-oriented VRS model using GBA,

BuildHull and the standard DEA algorithm...............................235

Appendix 5 - Computational performance of the competitive algorithms in

solving the output-oriented VRS model.....................................247

Appendix 6 - R codes to solve the additive VRS model using GBA, BuildHull

and the standard DEA algorithm.. 249

Appendix 7 - Computational performance of the competitive algorithms in

solving the additive VRS model... 259

Appendix 8 - R codes of the two alternative GBA approaches and an alternative

BuildHull approach to solve the additive VRS model.............. 261

Appendix 9 - R codes of the DGP, and GBA, BuildHull and the standard DEA

algorithm to solve the input-oriented CRS model..................... 275

Appendix 10 - Computational performance of the competitive algorithms in

solving the input-oriented CRS model.......................................287

Appendix 11 - R code to solve the output-oriented VRS model with built-in

subroutine to construct strictly positive multiplier values for the

generators... 289

25

1 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS

1.1 Background

Data Envelopment Analysis (DEA) is a linear programming (LP) based

technique that is used to determine the relative efficiency of homogeneous

operating units responsible for converting inputs to outputs. The operating units,

labelled in the DEA literature as Decision Making Units or DMUs, are similar in

that they employ the same type of inputs to produce the same type of outputs.

Conventionally, the purpose of a DEA exercise is to find the relative efficiency

by which a DMU transforms its inputs to outputs when compared to other similar

units. Relative efficiency, being a dimensionless scalar, does not require the

various inputs and outputs to be measured in the same unit of measurement.

DEA is a non-parametric method in the sense that a functional form

relating the inputs and outputs need not be specified apriori. It is also a frontier

based method in that all the units are compared to the best practice units which

also consume the same set of inputs to produce the same set of outputs.

Before we get into the theoretical framework of DEA, we will familiarise

ourselves with some of the important concepts in DEA using a simple example.

For ease of discussion, we will examine these concepts rather loosely and

consign a rigorous treatise of them to section 1.2. Consider the following two

inputs (XI and X2), one output (77), 9 DMU example portrayed in figure 1-1.

The data for the example is provided in table 1-1.

DMU X I X2 Y1
A 2 9 1
B 4 6 1
C 6 3.5 1
D 10 2.5 1
E 12 2.5 1
F 2.5 13 1
G 9 5 1
H 5 6.5 1
I 8 3 1

Table 1-1 : 9 DMU, 3 factor data

26

FLAJNTE OF Y1 = 1

X2

,'H’

XI

Figure 1-1 : 2-d representation of the data
To provide a context, one can think of the DMUs as different comparable

universities operating in a city. Input 1 (XI) could represent the number of

administrative staff and Input 2 (X2) could represent the number of research and

teaching staff employed in an university. Output 1 (17) could be the number of

registered students studying in the university.

We will assume that all the universities are operating in a constant returns

to scale environment which means that a doubling (halving) of all the inputs (XI

and X2) leads to a doubling (halving) of all the outputs (Yl). Hence, the number

of registered students is scaled to 1 student and table 1-1 shows the number of

administrative, and research and teaching staff required in different universities

to manage a single student.

As the universities can be expected to have more control over their inputs

than their outputs, we will assume that we are interested in knowing the input

27

efficiency of these universities. This means that we are interested in knowing the

minimum proportion of an university’s current input usage that is sufficient, in

comparison with other universities, to output a single student if it were to carry

out its operation efficiently. If this minimum proportion is equal to 1 for an

university then it is operating efficiently relative to the other universities.

The inputs-output values of the 9 universities represent coordinates of

points in 3 dimensional (2 inputs + 1 output) space. As the output value is scaled

to 1, one can represent all the 9 points in the Y1 = 1 plane using the X I and X2

axes alone. In figure 1.1, the points (universities) A through I are plotted in red

and the thick black line passing through the universities A, B, C, I, and D

represents the efficient frontier. The extended frontier includes the vertical line

north of A and the horizontal line east of D. Unit E lies on the extended frontier.

Universities A, B, C, I, D and E are lying on the extended frontier and are

called boundary units. Given our empirical evidence, these universities cannot

reduce their input usage any further proportionately and still be able to output 1

student. Hence, their input efficiency is 1. Universities F, G, and H are not lying

on the extended frontier. These universities can reduce their input usage

proportionately and still be able to output 1 student. Hence, their input efficiency

is less than 1.

Among the boundary units, universities A, B, C, I and D are of special

interest. For these universities, maintaining 17 = 1, the usage of either of its input

factors cannot be improved (decreased) any further without worsening

(increasing) the usage of the other. Hence, universities A, B, C, I and D are said

to satisfy the Pareto-Koopmans efficiency criterion. These units are the best

practice units and other universities must hold them as benchmarks to improve

their performance. University E, although a boundary unit with an input

efficiency of 1, does not satisfy the Pareto-Koopmans efficiency criterion. This is

because its input 1 usage can be reduced (improved) when compared to unit D

without worsening its usage of input 2 while maintaining Y1 = 1. The peer unit or

the benchmark for university E in order to improve its performance is university

D.

The units that are lying on the extended frontier can be classified into

three types of units, viz., extreme-efficient, efficient but not extreme, and weakly

efficient. Universities A, B, C, and D lie on the efficient frontier and are called

28

extreme-efficient units defined by the criterion that if one were to remove any

one of these four units, the contour of the frontier will change. It is obvious that

these extreme-efficient units (universities) satisfy the Pareto-Koopmans

efficiency criterion. University I, which also satisfies the Pareto-Koopmans

efficiency criterion is different. It can be expressed as a convex combination of

units C and D, so its removal does not change the contour of the efficient

frontier. Hence, university I is called an efficient but not extreme unit. Unit E,

which has an input efficiency of 1, does not satisfy the notion of Pareto-

Koopmans efficiency and is called a weakly efficient unit.

Lets us now consider the non-boundary units, F, G, and H. The input

OF ' 10.59efficiency of university F is given by, 0F = = = 80%. This is the

minimum proportion of inputs of university F that is sufficient to output a single

student if it were to operate efficiently. The input 1 and input 2 usages at the

boundary point F are given by the input 1 and input 2 usages of university F

scaled by 80%. In addition, the radial projection of unit F on the boundary,

symbolized by F , is weakly efficient. This is because the point F uses more of

input 2 when compared to the extreme-efficient unit A. The slack (non

proportional or coordinate-wise inefficiency) present in unit F is given by the

difference in the input 2 usage between points F and A. The peer unit that

university F must hold as benchmark in order to improve its performance is

university A.

Let us consider unit G. The input efficiency of university G is given by

OG' 7 1Or ----- = — :— = 68.96%. The input 1 and input 2 usages at point G are
a OG 10.29

given by the input 1 and input 2 usages of university G scaled by 68.96%. The

peer unit that university G must hold as benchmark in order to improve its

performance is the virtual university G . This virtual university G can be

obtained by a convex combination of the observed universities C and D. In

particular, a combination of 94.8% of university C and 5.2% of university D

synthesises this virtual university. The virtual university G can also be obtained

by a convex combination of the observed universities C and I. In particular, a

combination of 89.6% of university C and 10.4% of university I can synthesise

this virtual university. Hence, the peer units that university G must hold as

29

benchmark to in order to improve its performance are the best practise

universities C, D and I.

The input efficiency of university H is given by

OH / 7 070H = ------ = —— = 86.27%. The input 1 and input 2 usages at point H are
OH 8.2

given by the input 1 and input 2 usages of university H scaled by 86.27%. The

peer unit that university H must hold as benchmark in order to improve its

performance is the virtual university H . This virtual university H can be

obtained by a convex combination of the observed universities B and C. In

particular, a combination of 84.3% of university B and 15.7% of university C

synthesises this virtual university. Hence, the peer units that university H must

hold as benchmark in order to improve its performance are the best practise

universities B and C.

Universities G and H are technically inefficient but their radial projection

on the frontier does not contain any non-proportional inefficiencies. This is

because their projection falls on the efficient frontier. This is in contrast to

university F that does contain non-proportional inefficiencies. In the DEA jargon,

universities G and H are technically inefficient but mix efficient units. University

F, on the other hand, is both a technically inefficient and mix inefficient unit.

University F is mix inefficient as its radial projection on the extended frontier

contains non-proportional inefficiency.

In figure 1-1, the vertical line above A, lines A-B, B-C, C-D, and the

horizontal line to the east of D are called facets. Facets provide the relative

values (or weights) for the input and output factors for the units that are

evaluated using that facet. For example, the line B-C provides the relative values

for the input and output factors for the three universities, B, C and H, that are

evaluated using that facet.

The input efficiency of an university can either be obtained geometrically

as a ratio of radial distances or by computing the ratio of weighted outputs to

weighted inputs. The equation of the line (facet) B-C is given by

0.114X1 + 0.091X2 = 1. Thus the relative value or weight for the input 1 factor is

0.114 and weight for input 2 factor is 0.091. The weight for the single output 71

is fixed at 1 as we have plotted the points in the plane of 71 = 1. The input

30

efficiencies of universities B, C and H that are evaluated at this facet can now be

computed by,

weighted sum o f outputs (ix l) 1 mno/
O b — = 7--- r = - = 1 U U % ,

weighted sum o f inputs (0.114x4 + 0.091x6) 1

where, the input 1 and input 2 values for university B are 4 and 6 respectively.

Similarly, 6C - ------------------ ---------- r = - = 100%, and
c (0.114x6 + 0.091x3.5) 1

e„ = ------------------------------- = — = 86.27%.
(0.114x5 + 0.091x6.5) 1.159

1.2 Theoretical Framework

The DEA measures of technical efficiency as introduced in Chames et al

(1978) and Banker et al (1984) are operational extensions of the Debreu-Farrell

measures referred as such after the works of Debreu (1951) and Farrell (1957).

Debreu (1951) and Farrell (1957) introduced a measure of technical efficiency

based on Koopmans’ (1951) definition of technical efficiency. Given its likeness

to the notion of Pareto optimality introduced by Pareto (1906), Koopmans’

(1951) efficiency criterion is also referred to as Pareto-Koopmans efficiency

criterion. We will examine the connection between the Debreu-Farrell measures

and Koopmans’ definition of technical efficiency and while doing so, discuss

Shephard’s (1953, 1970) important contributions to the topic. In order to do this,

we will formally introduce concepts such as production technology, production

possibility set, and input and output sets.

Throughout this section we are considering n observed decision making

units with each unit utilising m] inputs to produce m2 outputs. The inputs and

outputs are non-negative with at least one positive component in any unit’s input

and output vector, i.e., for y'=l,...,« ,X j9Yj > 0;X j9 Y},*■ 0 ;2 whereX j

represents the input vector of DMUj of dimension ml and Yj represents the

2 Inequality or equality symbol between vectors implies that the relationship holds for each
component of the vectors.

31

output vector of DMUj of dimension m2 . Also,(X j ,Y .) denotes the observed

activity of the j* DMU.

For any DEA exercise, the description of the Production Technology or

Production Possibility Set, PPS, is paramount. Formally, the PPS is defined as

the set of technologically feasible input and output activities (X, Y)e R™i+mi

represented as T ={(X,7)| Y > 0 can be produced from X > 0, X & o}. The

components of an activity can be regarded as the coordinates of a point in the

non-negative orthant of the (mx + m2) dimensional space. The PPS is assumed to

satisfy some basic postulates that we discuss next.

1.2.1 Production Possibility Set under Constant Returns to Scale

All the n observed units are assumed to operate under a constant returns

to scale environment. Formally, the CRS assumption implies that for every

{X,Y)e 7 \(a 7 ,tf7)e T , V a > 0.

The postulates satisfied by the production possibility set under the

constant returns to scale assumption are as follows.

1. Observed unit postulate - All the observed units (x y. ,Yj),

j = 1,...,«, belong to T .

2. Free disposability or Inefficiency postulate — For any (X j , 7y.)e T , all

(x ',7 y.)e T where X] > X j and all {Xj ,Y')e T where Y'< Yj .

3. Ray unboundedness postulate - For all non-negative scalars Xj > 0,

± A jX j , t X j T j e 2 \v=1

3 Depending on the context, X . can be a column vector of dimension mx with X rj denoting the r*

input component of DMUj. Similarly, 7y. can be a column vector of dimension

m2 with Ysj denoting the s* output component of DMUj.

32

The smallest polyhedral set that satisfies the above three postulates is the

production possibility set under constant returns to scale assumption and can be

represented as, Tc =•! (x ,y)
7 = 1 7= 1

1.2.2 Production Possibility Set under Variable Returns to Scale

DEA literature also looks at PPS under die assumption of variable returns

to scale which allows for a production technology exhibiting increasing,

decreasing and constant returns to scale. The postulates satisfied by the

production possibility set under the variable returns to scale assumption are as

follows.

1. Observed unit postulate - All the observed units (x j , Y}) ,

j = 1,...,«, belong to T .

2. Free disposability or Inefficiency postulate — For any (X j , Y})e T , all

(.X'j J j)e T where X) > X j andall {Xj ,Y')e T where Y]< Yj .

3. Convexity postulate - For all non-negative scalars Aj > 0 such that

£ x j = i , (± xjx j , £ xj yj \ t .
7 = 1 V 7 = 1 7 = 1 J

By replacing the ray unboundedness postulate with the convexity

postulate, the above production possibility set allows for different (increasing,

decreasing and constant) returns to scale (RTS) to exist within the feasible set of

input and output vectors. The smallest polyhedral set satisfying the above three

postulates is the production possibility set under variable returns to scale

assumption which can be represented as,

X > 2 ^ , ,y = U , > o .
7= 1 7 = 1 7= 1

For a detailed description of the production possibility set under the

assumptions of constant and variable returns to scale, see, Banker et al (1984),

Banker (1984), and Chames et al (1985).

33

1.2.3 Definitions and Measures of Technical Efficiency

Now that we have formally described the production technology or PPS,

we can look into the connection between Koopmans’ (1951) definition of

technical efficiency and Debreu-Farrell measures of technical efficiency. We will

also see how Shephard’s (1953, 1970) works on the functional representation of

the production technology under constant returns to scale provide an alternative

approach to the Debreu-Farrell measures of technical efficiency.

Koopmans’ (1951) definition of technical efficiency can be stated

formally as (X j ,Yj)e T is technically efficient iff (X k,Yk)<£ T for

{- X k,Yk)> (- X j , Yj)4; i.e., a technologically feasible unit satisfies the

Koopmans’ efficiency criterion iff it is not (weakly or strongly) dominated by

another technologically feasible unit. In figure 1.1, universities A, B, C, I and D

satisfy Koopmans’ efficiency criterion. In contrast, the boundary unit E does not

satisfy the notion as unit D’s input-output activity weakly dominates unit E’s

activity, i.e., (~ X D,YD)= (-1 0 -2 .5 ,1) > (- X E,YE) = (-12 , -2 .5 , l) s.

The production technology

r = { (x , y) | r s o can be produced from X > 0, X * o} can also be represented

by the input sets L(Y) . L(Y) can be defined as L(Y) = { X : (X, Y) e T}. Further

for every 7 , there are input isoquants I(y) = {X : X e L(y),AX g L(y),A< l}

and input efficient subsets given by E(Y) = { X : X e L{y \X * & L(y \ X ' < X }

and the three sets satisfy is (7) c= /(7) cz L(y) . In our example provided in table

1.1, the production possibility set is given by the region north-east of the piece-

wise line segments joining observed units A-B-C-I-D and the line north of A and

east of D. The input isoquant is the extended frontier given by the piece-wise line

segments A-B-C-I-D and the line north of A and east of D. The input efficient

subset is the efficient frontier shown by the piece-wise line segments A-B-C-I-D.

Shephard (1953) introduced the input distance function to provide a

functional representation of the production technology under CRS. The input

4 We assume that no two DMU’s activity are identical.
5 To avoid clutter, we allow for some abuse of notations representing column vectors as row
vectors (or vice-versa) without representing it with a transpose symbol.

34

distance function is given by D7(X,Y) = max H xA k m So for

l e L(Y), D ,(X ,Y)> 1 and for X<e l(Y), D ,(X ,Y)= 1. Given standard

assumptions on Tc presented earlier, the input distance function D,(X,Y) is

non-increasing in la n d is non-decreasing, homogeneous of degree +1, and

concave in X . In our example provided in table 1.1, units on the boundary of the

PPS, viz., A, B, C, I, D and E, have an input distance function value of 1. The

input distance function value of F is 1.25; i.e., the university’s current input

usage (XI andX2) has to be scaled down by 1.25 to become technically efficient.

Similarly, the input distance function value of G is 1.45 and H is 1.16.

The Debreu-Farrell input-oriented measure of technical efficiency TE7 is

simply the value of the function TE{ = min{#: 6X e Z,(F)} and it follows that

TE, (X,Y)= 1 For X e L(y), TE ,(X ,Y)< 1 and for
D A X ,Y)

X e l(Y), TEj (X, Y) = 1. Once again, in our example provided in table 1.1, units

on the boundary of the PPS, viz., A, B, C, I, D and E, have a Debreu-Farrell

input-oriented technical efficiency measure of 1. The Debreu-Farrell input-

oriented technical efficiency of F is 0.8; i.e., the university’s current input usage

(XI and X2) has to be reduced by 20% to become technically efficient. In other

words, given the empirical evidence, 80% of university F’s current input usage is

sufficient to output a single student. Similarly, the input-oriented Debreu-Farrell

technical efficiency measure of G is 68.96% and H is 86.27%.

The above exposition can be replicated in the output augmentation

direction details of which are presented in Appendix 1.

The LP based DEA measures of technical efficiency under input and

output orientations presented in the seminal Chames et al (1978) and Banker et al

(1984) articles are operational extensions of the Debreu-Farrell measures and are

built on the description of the PPS presented earlier. Detailed descriptions of

these LP models are presented in the next chapter. In the next section, we will

examine the different concepts of efficiency that are of interest in the DEA

methodology and relate them to the definitions and measures introduced in this

section.

35

1.3 Concepts of Efficiency

In this section, we will discuss four different concepts of efficiency,

namely, Pareto-Koopmans efficiency, technical efficiency, Debreu-Farrell

efficiency and Mix efficiency.

Efficiency Concept 1 Pareto-Koopmans Efficiency: A unit is Pareto-Koopmans

efficient iff it is not possible to improve an input or output factor of the unit

without worsening some other factor.

In the simple 2-d example discussed at the beginning of this chapter,

universities A, B, C, and D are Pareto-Koopmans efficient which are also

extreme-efficient units. Any convex combination of two adjacent extreme-

efficient units (that lie on a facet of the production possibility set) will also be

Pareto-Koopmans efficient. For example, in figure 1-1, unit I can be obtained

using a convex combination of the adjacent extreme-efficient units B and C.

These Pareto-Koopmans efficient units that can be synthesised by a convex

linear combination of some adjacent extreme-efficient units are designated as

efficient but not extreme units. They are only of academic interest and almost

absent in real data (see, Thrall, 1996b; Cooper et al, 2007).

Note that the Pareto-Koopmans efficiency criterion is more stringent than

the Debreu-Farrell measures as the former requires absence of mix inefficiencies

while the latter allows does not.

Among any set of observed units, a subset of units will always satisfy the

Pareto-Koopmans efficiency criterion - for instance units A, B, C, I and D in our

example. An additional subset of the units could just satisfy the Debreu-Farrell

efficiency criterion - for instance, unit E in our example. Both these subsets of

units are technically efficient which we define next.

Efficiency Concept 2 Technical Efficiency: The technical efficiency of a unit,

when the orientation is input minimisation, is the minimum proportion of the

unit’s current input usage that is sufficient to produce its outputs.

Geometrically, this can be obtained from the ratio of the radial distance

between the origin and the radial projection of the data point on the extended

frontier to the radial distance between the origin and the data point of the unit.

36

For example, in figure 1.1, the technical efficiency of unit H is given

OHf\sydH - . For this reason, technical efficiency is sometimes referred to as

radial efficiency. It is evident that as the dimensions of a DEA problem exceeds

3, the geometrical approach will become intractable. Consequently, the LP

models developed in Chames et al (1978) and Banker et al (1984) are used to

obtain the technical efficiency of the units.

The notion of technical efficiency identifies only proportional reduction

of inputs or expansion of outputs that are possible by the units’ current operation.

Non-proportional reduction or expansion, of inputs or outputs, to improve

performance are identified by an input excess or output shortfall respectively,

compared to the relevant Pareto-Koopmans efficient units defined in concept 1.

Efficiency Concept 3 Weak or Debreu-Farrell efficiency: Units that do not

satisfy the Pareto-Koopmans efficiency criterion but are technically efficient are

termed weakly-efficient or Debreu-Farrell efficient units. For example, in figure

1.1, units E and F (which symbolizes the radial projection of unit F on the

efficient frontier) are weakly efficient.

Efficiency Concept 4 Mix efficiency: Units whose radial projection do not

satisfy the Pareto-Koopmans efficiency criterion are mix inefficient. In the

context of input minimisation, a unit being mix efficient would imply that the

proportion of its different input usages are efficient.

Regardless of whether a DMU is technically efficient or not, it can satisfy

the notion of mix efficiency. For instance, a unit can be technically inefficient

but be mix efficient. In figure 1-1, universities G and H are technically inefficient

but mix efficient units. Units that satisfy the Debreu-Farrell notion of efficiency

will be mix inefficient. In figure 1-1, university E satisfies the Debreu-Farrell

efficiency criterion and is mix inefficient. In figure 1-1, university F is both

technically inefficient as well as mix inefficient. Finally, it must be evident that

units that satisfy the Pareto-Koopmans efficiency criterion are also mix efficient.

In figure 1.1, units A, B, C, D, and I are both technically efficient and mix

efficient.

37

1.4 A brief history of the evolution of DEA

A data enveloping frontier based method of measuring productive

efficiency was introduced in the pioneering article by Farrell (1957), which was

influenced by two seminal articles, viz., “analysis of production as an efficient

combination of activities” by Koopmans (1951) and “coefficient of resource

utilisation” by Debreu (1951). Shephard (1953), surprisingly not referred to in

FarreH’s (1957, 1962) articles, provided functional representations of the

production technology under CRS and introduced distance functions as a way of

measuring the technical efficiency of the units. Twenty years later, Farrell’s

(1957) method was given operational form by the seminal article of Chames et al

(1978). It is interesting to note that Forsund and Sarafoglou (2002) remark that

the constant returns to scale model of Chames et al (1978) was identical to the

model introduced by Boles (1971) for measuring agricultural efficiency under the

assumption of constant returns to scale. They also note that the variable returns to

scale model of Banker et al (1984) was clearly stated in Afriat (1972) (for the

single output case) and the general version stated and applied in Fare et al

(1983).

The Chames et al (1978) article concentrated on developing a linear

programming based method to determine the efficiency of various DMUs all

operating under a constant returns to scale environment. Efficiency was

classified as technical or radial efficiency, and mix efficiency. Technical

efficiency was the same as introduced in Farrell’s article but was extended to a

more general multiple inputs multiple outputs setup. Following Farrell’s article,

the orientation (input or output) for measuring efficiency and proportional

reduction (expansion) of inputs (outputs) to meet the data enveloping frontier

were incorporated in Chames et al (1978). Farrell’s tricky ‘points at infinity’

concept was covered by the free disposability assumption (also referred to as the

monotonocity assumption in the inputs and outputs) of inputs and outputs and the

introduction of mix efficiency.

Building on the work of Chames et al (1978), Banker et al (1984)

developed LP models to determine the efficiency of units operating under

variable returns to scale (thus allowing for increasing, decreasing and constant

RTS) and introduced the notion and measure of scale efficiency.

38

The Chames et al (1978) article and its variable returns to scale

counterpart, Banker et al (1984), paved the way to measure relative efficiency of

units using a method that is,

1. easily operational;

2. non-parametric;

3. units invariant;

4. unlike index number based approaches in that it does not require the

unit’s various input and output factors’ prices to be available readily

to measure their efficiency;

5. able to provide peer units for inefficient units and identify technical

and mix inefficiency present in all the inputs and outputs of such

units; and,

6. unlike a statistical regression line method using least squares

principle, in that it compares all units to the best practice ones that

operate in the same environment.

1.5 Conclusion

In this chapter, we attempted a gentle introduction to the DEA

methodology. We connected Koopmans’ (1951) definition of technical efficiency

to Shephard’s (1953, 1970) functional representation of the production

technology and the Debreu-Farrell measures of technical efficiency, which

ultimately lead to the seminal DEA articles in Chames et al (1978) and Banker et

al (1984). Once information on the scale properties of the production technology

and orientation are determined, one can carry out a DEA exercise on the set of

observed units using the relevant LP model introduced in Chames et al (1978)

and Banker et al (1984). In the next chapter, we will introduce the traditional LP

models used in DEA.

39

2 LINEAR PROGRAMMING MODELS USED IN DEA

A DEA problem is typically characterised by the cardinality (number of

DMUs), dimensions (number of inputs and outputs), and density (percentage of

extreme-efficient units) present in the data. Before carrying out a DEA exercise

on a set of observed units, one has to posit the returns to scale environment under

which the units are operating. Equally important, one has to ascertain whether the

DMUs have control over their inputs or over their outputs. For example, if our

DMU is a bank, then it can easily control its inputs, say, the number of

administrative and technical staff, while it cannot expect to have much control

over its outputs, say, the number of customers. In another instance, if our DMU

is a school, then it has little control over its inputs, say, the number of students

with English as an additional language or whose parents are graduates, while it

can expect to have more control over its outputs, say, the achievement of

students upon exit from the school. The decision on whether a DMU can control

its inputs or outputs decides the orientation (input minimisation or output

maximisation) of the DEA exercise. In the former example, an input-oriented

model seems more suitable while in the latter an output-oriented model seems

more suitable. In some instances, it is possible that the DMUs have control over

their inputs as well as outputs.

Once the returns to scale and orientation are determined, the DEA

exercise is carried out on the observed set of units using the linear programs

developed in the seminal articles, Chames et al (1978) and Banker et al (1984),

which are built from the appropriate production possibility sets described in

sections 1.2.1 and 1.2.2 respectively. These LP based models determine the

relative efficiency of the units in such a way that there is complete flexibility for

each unit to choose non-negative weights for its various input and output factors

to show itself in the best light when compared to other observed units.

In the previous chapter, we presented formal and informal discussion on

production technology and the production possibility set (PPS), and definitions

and measures of technical efficiency. In this chapter, we will present the standard

linear programming models that are used in carrying out the efficiency analysis

of the observed units in DEA. We will present the models for the constant returns

40

to scale assumption followed by models when the returns to scale is variable.

Subsequently, we will present the LP models for solving the constant returns to

scale and variable returns to scale additive models. Additive models are non

oriented and non-radial in their operation and form an important class of DEA

models. Finally, we will present an important variant of the standard models,

viz., the super-efficiency models under both returns to scale assumptions. The

Generators Based Algorithm (GBA) presented in chapter 4 for solving DEA

models employs the super-efficiency models in its procedure.

2.1 LP models under Constant Returns to Scale assumption

The models presented here were introduced in Chames et al (1978) and

elaborated further in Chames et al (1979), Chames et al (1981) and Chames and

Cooper (1984) and are commonly referred to as the CCR models. Suppose we

are evaluating DMUt with data (X t , Yt) relative to all the DMUs (including

itself) and their possible non-negative linear combinations. Here, X t represents

the input vector of DMUt of dimension ml and Yt represents the output vector of

DMUt of dimension m2. We are interested in finding the proportion by which

the inputs of DMUt can be reduced while producing at least the same amount Yt

of its outputs. All the DMUs are assumed to operate in a constant returns to scale

environment and the data is assumed to be non-negative. The linear

programming model to determine the relative efficiency of DMUt, built on the

description of the CRS production possibility set presented in section 1.2.1, is as

below:

Minimise 6t
subject to,

O . X . - ' Z l j X j Z 0 (LP-1)
;=i

0 + f J^ Y J >Y,
j =1

6t free ; Ai > 0 ,y =!,...,«

41

where, 6t represents the efficiency score of DMUt and A. the intensity variable

of DMUj, y=l,..., n. LP-1 is called the envelopment form of the input-oriented

(minimisation) constant returns to scale model.

It is easy to see that LP-1 is bounded at an upper limit of 1 as DMUt can

always compare with itself. Moreover, given that X } ,Y j & 0, the solution to LP-

1 can never be trivial, i.e.,#,** 0 , to satisfy both the set of constraints

simultaneously, so ensuring 0 < 9* < 1.

The dual to the above model is called the multiplier form of the input-

oriented constant returns to scale model and is presented below:

Maximise uYt
subject to,
vXt + 0 = 1 (LP-2)
uYj - vX j <0; j =

u, v> 0

where, v are the weights or dual values corresponding to the mx input factors and

u are the dual values corresponding to the m2 output factors. It follows that the

u Y
efficiency score of DMUt is given by 9* = ---- , where the input value of

v X,

DMUt is normalised to 1, i.e., v 'X, = l 6.

Corresponding to the input-oriented version of the constant returns to

scale model, there is an output-oriented (maximisation) version built using the

same description of the CRS production possibility set as in section 1.2.1. In this

version, we are interested in finding the maximum proportion of DMUt’s outputs

that can be produced by a non-negative linear combination of all the DMUs

using no more than X t amounts of inputs. The envelopment form of the output-

oriented constant returns to scale model is presented below:

6 * denotes value at the optimal solution.

42

Maximise <j)t
subject to,

0 + 2 \ftix i i x , (LP-3)
7 = 1

w . - 2 > / , s 0
7=1

<f)t jree; //y > 0,y = 1,...,«

where, the reciprocal of (f)t gives the efficiency score of DMUt and//y. the

intensity variable of DMUj,y = l,...,«. The dual to the above model is the

multiplier form of the output-oriented constant returns to scale model which we

provide below:

Minimise vXt
subject to,
uYt + 0 =1 (LP-4)
-uY j +vXj > 0;j=

u, v > 0

where, v are the weights or dual values corresponding to the mx input factors and

u are the dual values corresponding to the m2 output factors.

For more on the relationship between the input and output oriented CCR

models, see Cooper et al (2000).

The LPs presented above can only identify radial or proportional

inefficiencies that may be present in the DMUs. To identify mix or non

proportional inefficiencies in the DMUs, a second LP needs to be solved for each

DMU. In the second phase LP, for each DMU, we maximise the slacks that may

be present in its inputs and outputs compared to other DMUs subjected to the

condition that the optimal 6* ((f)*) realised in the first phase LP is maintained. The

(non-oriented, non-radial) LP solved in the second phase for DMUt is presented

below:

43

Maximise e 's1 +e°s°
subject to,

+ « '= < ?;* , (l p -5)
7=1

~ s ° ~Yt
7=1

0 ;ly. >O J = l,...,w

where, 5 ', 5° are the input and output slack vectors of dimension mx and m2

respectively; e1 and e° are vectors of l ’s, also of dimension mx and m2

respectively. Model LP-5 is sometimes referred to as the max-slack model and

the optimal solution to it as the max-slack solution. In the second phase LP, we

need not compare DMUt with all the DMUs as in the first phase. Rather, one can

compare it with only that subset of DMUs that had an efficiency score of 1 in

phase 1 (i.e., only the set of technically efficient units). If the max-slack solution

for DMUt is 0, then the unit is mix efficient. If the max-slack solution is greater

than 0, the unit is mix inefficient. The correct peers for DMUt are the units that

are in the optimal basis of LP-5 (or its equivalent based on LP-3) rather than LP-

1 or LP-3 as only units in the optimal basis of LP-5 are guaranteed to satisfy the

Pareto-Koopmans efficiency criterion (Cooper et al, 2000). The standard two-

phase approach to solving a DEA exercise under the CRS assumption involves

solving LP-1 or LP-3 along with LP-5 (or its equivalent based on LP-3) for each

DMU in phase 1 and 2 respectively.

2.2 LP models under Variable Returns to Scale assumption

The models presented here were introduced in Banker et al (1984) and are

commonly referred to as the BCC models. These models are built on the PPS

described in section 1.2.2. If to LP-1, LP-3, and LP-5, one adds the convexity
n n

constraint on the intensity variables, i . e . , ^] =1 or = 1 to the set of
7=1 7=1

constraints, we get the envelopment form of the corresponding variable returns to

scale model. Adding this constraint to the primal model changes the objective

function and introduces an additional variable to one set of constraints in the

44

corresponding dual model. For example, the envelopment form of the input-

oriented version of the variable returns to scale model is presented below:

Minimise 0t
subject to,

where, 6t represents the efficiency score of DMUt and X} the intensity variable of

The dual to the above LP is called the multiplier form of the input-

oriented variable returns to scale model and is presented below:

Maximise uYt +u0
subject to,

uYj - v X j +w0 <0; j - 1,...,«

uQfree', u, v> 0

where, v are the weights or dual values corresponding to the ml input factors,

u are the dual values corresponding to the m2 output factors, and u0 is the dual

value associated with the convexity constraint.

The envelopment and multiplier form VRS models for the output-

oriented case are presented below in LP-8 and LP-9 respectively.

Maximise rjt
subject to,

n

n (LP-6)

n

6t free', Xj >0 , j =!,...,«

0 +vXt +0 =1 (LP-7)

n

0

n (LP-8)

n

0 1

45

Minimise vXt 4- v0
subject to,
uYt + 0 =1 (LP-9)
- uYj + vXj + v0 > 0; j= 1,...,«

u,v> 0;v0 free

In LP-8, the reciprocal of r]t gives the efficiency score of DMUt and pj the

intensity variable of DMU/, j = l,...,n. And in LP-9, v0 is the dual value

associated with the convexity constraint in LP-8.

For more on the relationship between the different constant returns to

scale and variable returns to scale models, see Banker et al (1984) and Cooper et

al (2000).

2.3 Additive models under CRS and VRS assumptions

Additive models were first introduced in the DEA literature by Chames et

al (1985). Additive models closely resemble the max-slack model (LP-5 or its

VRS equivalent) and are non-oriented and non-radial in the sense that the

corresponding LP problem aims to maximise the total sum of the input and

output slacks of DMUt and not necessarily radially.

The standard additive CRS model solved to evaluate DMUt is shown

below.

Maximise e's' +e°s°
subject to,

' Z ^ X j + s 1 = X, (LP-10)
7=1

ZV, ~ s° = Y,
7= 1

s ‘,s° > 0;Aj > 0, 7 = l,...,w

where,s', s° are the input and output slack vectors respectively; e' and e° are

conformable vectors of 1 ’s.

The dual to the above model is shown below.

46

Minimise vXt + uYt
subject to,
vXj +uYj > 0; y = 1,...,« (LP-11)
v > + l
u < — 1

The VRS counterpart of LP-10 has an additional convexity constraint to
f t

the constraint set, v iz . ,^ / ly = 1.
7= 1

As we maximise the input and output slacks simultaneously, the units in

the optimal basis of LP-10 (and its VRS counterpart) will always be Pareto-

Koopmans efficient unlike in the case of the oriented models (Chames et al,

1985). An additional advantage of the additive model under the VRS assumption

over its oriented counterparts is that it is translation invariant w.r.t both inputs

and outputs and hence can also handle negative values for the inputs and outputs

factors (Ali & Seiford, 1990). In spite of the apparent advantage of additive

models in providing Pareto-Koopmans efficient targets by solving a single LP

problem and thus circumventing the need to solve a second LP unlike oriented

models, they have some well established shortcomings. Coelli (1998) and

Aparicio et al (2007) have pointed out that the target points provided by the

optimal solution of the additive models may not be representative of DMUt as

we maximise its inputs and outputs slacks. Hence, their argument is that the

additive models should not be used for benchmarking purposes. In other words,

as we maximise simultaneously the inputs and outputs slacks present in DMUt,

the target points or peers for DMUt might be further away from it and thus less

similar functionally. Also, unlike oriented models, the standard additive models

introduced in Chames et al (1985) are not units of measurement invariant. Lastly,

unlike in the oriented models, the ratio of output value to input value does not

have a natural interpretation and hence no meaningful discussion of additive

models based technical efficiency scores for the units is possible. For the above

reasons, additive models are commonly used for classification purposes (i.e., to

classify whether a unit is Pareto-Koopmans efficient or otherwise) rather than for

efficiency evaluation and benchmarking.

47

2.4 Introduction to Super-Efficiency model

The first published work on super-efficiency models is by Andersen and

Petersen (1993) in the context of ranking DMUs that are extreme-efficient under

constant returns to scale assumption. Inefficient DMUs have an objective

function value of 0 < 0* < 1 and hence, have a natural ranking based on their

efficiency scores. In contrast, all the efficient DMUs are on the boundary of the

production possibility set and possess a score of 1. Hence, this tie needs to be

broken in some way if we are to rank them. Andersen and Petersen (1993)

suggest that by using the super-efficiency models, one can rank the extreme-

efficient DMUs as their objective function value (in the super-efficiency model)

is no longer bounded at the upper value of 1. We will presently see the LPs

employed in the super-efficiency models followed by an illustration and

conclude this section with a brief review of the extant literature on super

efficiency models.

2.4.1 Linear Programs employed in super-efficiency models

The standard envelopment forms of the super-efficiency models resemble

the LPs as set forth in LP-1, LP-3, LP-5, LP-6, LP-8 and LP-10 with the only

difference that the DMU under evaluation, DMUt, is not included in the

coefficient matrix. In other words, when evaluating DMUt, it is compared with

all other DMUs and their non-negative or convex combinations except itself. The

standard envelopment form of the super-efficiency CRS model when the

orientation is input minimisation can be seen below.

Minimise 9t
subject to,

n

(SE LP-1)
y=i
j * t

n

0
y=i
j * t

dt free', Xj > 0 , j = j * t

48

Similarly, the standard envelopment forms of the super-efficiency LP for the

output-oriented CRS case, the second phase max-slack model under CRS

assumption and additive CRS model can be seen in SE LP-2, SE LP-3 and SE

LP-4 below.

Maximise (j)t
subject to,

0 + - x t (SE Lp-2)
7= 1
j * t

<p,y, - o
7= 1
j * t

<f>t free', fij > 0 , j = j ± t

Maximise es' +es°
subject to,

Y AjX j + s ‘ = 0't X t (SE LP-3)
7 = 1
j * t

7=1
j* t

s \ s 0 > 0;Aj > 0, 7 = 1 7 * t

Maximise e 's ' +e°s°
subject to,

Y XjX j + s ‘ = X t (SE LP-4)
7= 1
j* t

t t jYj-s-r,
7=1
j* t

s ^ s 0 > 0,Xj > 0, 7 = 7 * t

The VRS counterparts of SE LP-1, SE LP-2, SE LP-3 and SE LP-4 have the
n

additional convexity constraint added to their constraint sets, i.e., Y ^ j = 1 to
7=1
j * t

n

the constraint set of SE LP-1, SE LP-3, and SE LP-4 and Y ^ j to
7=1
j* t

constraint set of SE LP-2.

49

In the input-oriented case, the optimal objective function value of SE LP-

1, 0*, gives the input saving that a particular extreme-efficient DMU exhibits

when compared to other DMUs. The more the 0* value is than 1 for an extreme-

efficient unit, the greater is the input saving present in the unit. In other words, an

extreme-efficient unit can proportionately increase its current input usage by

(0* - l)x l0 0 % and still remain technically efficient. Only extreme-efficient

DMUs can have 0* greater than 1 when using SE LP-1 (or its VRS counterpart)

and hence, one can rank them based on their super-efficiency score. Other

boundary DMUs still have an efficiency (and super-efficiency) score of 1 and

ties exist among them when ranking. The efficiency scores of the non-extreme

efficient units (units that are not extreme-efficient, i.e., inefficient, weakly

efficient, and efficient but not extreme units) is the same regardless of whether

we solve LP-1 or SE LP-1, as removal of a non-extreme efficient unit from the

coefficient matrix does not affect the contour of the PPS (see, Chames et al,

1991).

2.4.2 An illustration of the super-efficiency model

We will illustrate the above statements using the example provided in

table 1-1 and referring to the diagram provided in figure 2-1 below.

50

PLANE OF Y1 = 1
.F

X2

Input super-efficiency score o fC = = 1.125 = 112.5%
« OC 6.9462
\

•L.
B * V

.H

' X
X C

.G

D

XI

Figure 2-1 : Super-efficiency evaluation of DMU C

The boundary units are A, B, C, I, D, and E and they all posses a

technical efficiency of 1. The non-boundary units can be ranked based on their

technical efficiency score. Suppose we desire to rank the boundary units based

on their super-efficiency scores. Consider extreme-efficient unit C. The

production possibility set when unit C is evaluated using the super-efficiency

model, SE LP-1, is shown by the dash-dot line connecting units A, B, I, D and

the vertical line north of A and the horizontal line east of D using piece-wise line

segments. Unit C, being extreme-efficient, lies outside the (partial) PPS spanned

by the units A, B, I, and D, and hence its super-efficiency score 0*c >\ ', the score

OC ' 7.8145
can be geometrically given b y = — = 1.125 = 112.5%. This means that

OC 6.9462

51

unit C can proportionately increase its input usage 1.125 times and still remain

technically efficient. Carrying on in the above fashion, the super-efficiency score

of A is 1.3455, B is 1.0217, and D is 1.0667. The super-efficiency scores of the

boundary units that are not extreme-efficient, i.e., units I and E, are 1. Hence,

based on the super-efficiency scores, unit A performs better than C, which

performs better than D, and B performs the least best among the extreme-

efficient units.

2.4.3 A brief literature review on super-efficiency models

One can see from Thrall (1996b) as well as Banker and Chang (2006) that

the idea of super-efficiency was introduced much earlier in the article by Banker

and Gifford (1989), an article that was then submitted to Management Science

and remains unpublished. Much work has been done on super-efficiency models

since the first published article in 1993. For example, Chames et al (1996), Zhu

(1996) and Seiford and Zhu (1998a) use them for studying the stability of

efficiency classifications; Rousseau and Semple (1995) use them for carrying out

two-person ratio efficiency games; Wilson (1995) uses them for detecting

influential observations in the data set; Thrall (1996b) uses them to identify

extreme-efficient units. Recently, based on their simulation results, Banker and

Chang (2006) argue that the super-efficiency model can be used to identify

outliers in the data set but should not be used for ranking extreme-efficient units.

Andersen and Petersen (1993) fail to recognize that as DMUt is compared

with everyone else except itself, the resultant LP problem, SE-LP-1, can become

infeasible. It is understood from Thrall (1996b) and Banker and Chang (2006)

that this was already thought out in Banker and Gifford (1989). Thrall (1996b) is

the first article to connect infeasibility of super-efficiency LPs to extreme-

efficient DMUs in the input-oriented CRS case. In particular, he noted that if

DMUt’s super-efficiency LP (SE LP-1) results in infeasibility, then it must be an

extreme-efficient unit. However, apart from pointing out the limitations of

Thrall’s (1996b) work in terms of orientation and RTS assumption, Dula and

Hickman (1997) and Seiford and Zhu (1999) are the only two articles to carry out

extensive studies on oriented super-efficiency models, providing necessary and

52

sufficient conditions for their infeasibility. In the additive model case, Seiford

and Zhu (1998b) point out that if DMUt is extreme-efficient then solving SE LP-

4 or its VRS counterpart will result in infeasibility. Importantly, Thrall (1996b),

Zhu (1996) and Dula and Hickman (1997) proved that infeasibility occurs in the

input-oriented CRS super-efficiency model due to a certain pattern of zeroes in

the data, while under VRS assumption, LP infeasibility can arise regardless of

whether the data has zeroes or otherwise.

Among the two articles that provided an extensive examination of the

infeasibility issue in the oriented super-efficiency models, Seiford and Zhu’s

(1999) discussion was based on the assumption that the data is strictly positive.

The assumption of strictly positive data is strong and “unnatural” in real data as

shown in Thompson et al (1993)7. The basis of Seiford and Zhu’s (1999)

assumption of strictly positive data is that extreme-efficient DMUs are

translation invariant with respect to inputs and outputs; this is also the basis of

the results developed in Ali and Seiford (1990). Although this is a valid

argument, one has to note that in general, the input (output)-oriented VRS model

is translation invariant with respect to outputs (inputs) and not inputs (outputs) as

shown in Pastor (1996). Pastor (1996) has also shown that the input (output)-

oriented VRS model is only ‘classification invariant’ if the inputs (outputs) are

affinely scaled and hence translating the data to become strictly positive will be

tantamount to solving a different DEA problem. Hence, the super-efficiency

score of the translated model for extreme-efficient units will be different from the

original model and cannot be used for ranking, identifying outliers etc.

Importantly, Thrall (1996a) showed that the dual solutions under translation are

not invariant in the oriented and non-oriented (CRS and) VRS models. In

particular he showed that translating the inputs while solving the output-oriented

VRS model can change the returns to scale status of a DMU from DRS to IRS.

The upshot is that as yet there is no satisfactory way of translating the data that

preserves the attributes of the units before translation. Notably, Seiford and Zhu

(1999) do not cite Thrall (1996a). Hence, the connection between returns to scale

status of an extreme-efficient unit and infeasibility of its corresponding VRS

7 Thompson et al (1993) also rightly question assigning arbitrary small positive values to zero
valued data or of deleting DMUs or factors that have zero value.

53

super-efficiency LP developed by them must be validated for a dataset that needs

translation.

While Dula and Hickman (1997) along with Seiford and Zhu (1998b,

1999) provide conditions for identification of infeasible LPs under different

circumstances, they do not offer ways to overcome them. Attempts at tackling

this problem of ranking extreme-efficient units using super-efficiency models

were made in Xue and Harker (2002), Lovell and Rouse (2003), and Chen

(2005). However in a recent review, Cook et al (2008) shows that all these papers

have some unresolved problems. Cook et al (2008) also develops a new super-

efficiency based LP model similar to Lovell and Rouse (2003) to overcome

infeasibility under VRS assumption. Perhaps heeding to the caution of Banker

and Chang (2006), no new work on this subject has been published since Cook et

al (2008).

2.5 Conclusion

In this chapter we presented the standard LPs, oriented and non-oriented,

used in a DEA exercise and also provided a brief discussion on an important

variant of the standard LPs, namely, the super-efficiency models which we will

make use of in our presentation of GBA in chapter 4. The conventional

computational scheme to process a DEA dataset is achieved by means of a two

phase approach. To carry out a DEA exercise using the standard input-oriented

envelopment form model for a n DMU, m(=mx+m2) factor problem under the

assumption of constant returns to scale, we need to run 2 x n LPs, with n LPs

solved in each phase. The maximum size of an LP solved in the first phase is

mx(n +1), and in the second phase mx(n + m). Under the assumption of

variable returns to scale, the number of LPs solved is also 2 x n . The maximum

size of an LP solved in die first phase is (m + l)x(« + l) while in the second

phase it is (m + \)x(n + m). To reduce the computational strain in solving DEA

models, some heuristics and alternative effective algorithms have been developed

in the DEA literature over the years. A critical examination of these approaches

is presented in the next chapter.

54

3 COMPUTATIONAL ISSUES IN SOLVING DEA MODELS

- A CRITICAL LITERATURE REVIEW

It is overwhelming to realise the surge of articles addressing various

issues and developments in DEA since the seminal articles of Chames et al

(1978) and Banker et al (1984). For example, Gattoufi et al (2004) list no less

than 1800 works in DEA circa 2004 in their bibliography of works in DEA.

Recently, Emrouznejad et al (2008) list more than 4000 articles since the seminal

article of Chames et al (1978). Given this swell of articles on DEA, it is

surprising that there are only 3 major strands of the literature devoted to

computational issues in DEA.

While solving an LP problem is not computationally taxing, DEA

requires the solution of at least n LPs. If n is very large, improving the

computational performance of processing a DEA dataset becomes relevant.

While established computational constructs for efficient computation of any LP

such as data pre-processing, advanced starting basis, anti-cycling mles, and

candidate list are applicable in the standard DEA solution procedure, the

properties and structure of the DEA LP models can be further exploited.

The initial works of Ali (Ali, 1993; Chen & Ali, 2002) develop some

basic ideas which are useful in pre-processing the data. No new algorithm for

processing a DEA dataset is presented in the papers; rather, various pre

processing and LP accelerating techniques in the DEA context are developed and

tested. Further, the papers examine the obvious but useful categorising of DMUs

into frontier and non-frontier sets that can lead to a saving in the amount of

computational work done for the LPs solved. Frontier DMUs are those that

satisfy the Pareto-Koopmans (P-K) efficiency criteria. We note in passing that

some of the ideas presented in Ali (1993) were originally developed in Sueyoshi

and Chang (1989) and Sueyoshi (1990) but were not cited by Ali (1993).

The second major contribution is the parallel and hierarchical

decomposition procedure developed by Barr and Durchholz (1997). In the first

phase of their method, the data is decomposed into several smaller sub-problems,

consisting of subsets of DMUs and can be seen as separate, smaller DEA

55

problems. The non-frontier DMUs are eliminated in each sub-problem. The

remaining DMUs are collated in the next stage and decomposed into several new

sub-problems. This procedure is iterated in the first phase until all the non

frontier DMUs are eliminated. In each of the sub-problems at any stage, standard

DEA LPs are employed to eliminate non-frontier units. At the end of the first

phase, all the frontier DMUs are identified. In the second phase, the non-frontier

DMUs are scored using only the data of the frontier DMUs.

The third group of articles are authored by Dula on his own or with co

authors (Dula & Helgason, 1996; Dula, 1998; Dula et al, 1998; Dula & Thrall,

2001) and provide a totally different approach. Instead of trying to eliminate non

frontier DMUs, Dula’s BuildHull algorithm, as presented in Dula (1998),

identifies DMUs that are extreme-efficient in the first phase using n LPs in such

a way that the number of intensity variables in any LP solved is never more than

the number of extreme-efficient DMUs. In the second phase, using only the data

of the extreme-efficient units, all other DMUs are scored using standard DEA

LPs. By carrying out extensive computational testing, Dula (1998) has shown

that his BuildHull algorithm is superior to the hierarchical decomposition

procedure of Barr and Durchholz (1997) and the standard two-phase approach,

especially in the case of large scale problems.

Two other recent papers, viz., Chen and Cho (2009) and Korhonen and

Siitari (2009), have also examined computational issues in solving DEA models

and presented faster procedures under certain special conditions. Chen and Cho’s

(2009) algorithm targets large scale DEA problems. Their algorithm involves

clustering DMUs based on their input and output values and evaluating DMUs

within a cluster using the standard DEA LP models. If the optimal dual values

for DMUt obtained within its cluster also satisfies the duality condition for all the

n units in the dataset, then the efficiency analysis for DMUt is complete and the

unit is discarded from further analysis. Else, the cluster size is increased by some

user-defined factor until the duality condition is satisfied for all die DMUs in the

dataset. The authors claim that their procedure is suitable for solving large scale

DEA datasets when the density is high and the number of inputs and outputs is

small. Neither of these conditions applies in real datasets used during this

research or shown in past research by Barr and Durchholz (1997). Also, the

algorithm involves random elements in establishing clusters within a dataset and

56

in expanding the cluster when the optimal dual solution to a DMU within its

cluster does not satisfy the duality condition for all the DMUs.

Korhonen and Siitari (2009) provide a similar approach to Barr and

Durchholz (1997) by decomposing the dataset using the dimensions instead of

the cardinality as in the hierarchical decomposition procedure and show that their

approach is useful in datasets when the dimension is low. As both recent papers

(Chen & Cho, 2009; Korhonen & Siitari, 2009) apply under restrictive

assumptions and are not supported by extensive computational results, we regard

these as interesting evolving ideas and confine our attention to the three major

strands.

In subsequent sections, we will examine each of the three major strands,

viz., Ali’s work on Pre-processing and LP acceleration techniques, Barr and

Durchholz’s work on Hierarchical decomposition procedure, and Dula’s work on

BuildHull algorithm, in detail.

3.1 Ali’s contributions: pre-processing and LP acceleration techniques

Ali’s contributions in Ali (1993) and Chen and Ali (2002) can be listed

under four themes, viz., restricted basis entry, candidate list, pre-processing

techniques, and advanced starting basis.

Restricted basis entry and Candidate list are based on the well established

theorem that for any DEA LP model, only the frontier DMUs can appear in an

optimal basis in which all the optimal dual values (weights) are strictly positive

(see, Chames et al, 1985). The LPs employed in Ali (1993) use non-

Archimedean infinitesimal £>0, wherein, the weights for the input and output

factors are constrained to be strictly positive. This then ensures that only P-K

efficient DMUs can appear as comparator units in an optimal basis of any LP

solved. This implies that, if X (or fip) is in the optimal basis of any DMU’s LP,

as per the definition of P-K efficient units, DMUp’s efficiency score is 1 and its

max-slack solution is 0. Thus, the solution to an LP for any DMU helps in

identifying and updating the frontier and non-frontier DMU sets. In particular, all

the DMUs in an optimal basis of an LP are frontier DMUs. A DMU belongs to

the non-frontier set if its efficiency score is less than 1. The frontier DMUs

identified thus far form the candidate list of DMUs. In its turn, this helps to

57

reduce the amount of work required in subsequent LPs in checking the optimality

conditions. As the DMUs belonging to the non-frontier set can never be in the

optimal basis for any DMU, they can be ignored from optimality and basis entry

checks. Thus Ali (1993) helps to identify cases where restricted basis entry

(RBE) is permitted. DMUs in the non-frontier set are restricted, and starting with

DMUs known so far in the frontier set as the candidate list, the optimal basis is

obtained. This is shown to help a great deal in practice as it impacts on the work

done for every new LP solved.

Ali (1993) also discusses some simple data pre-processing techniques

like dominance criteria which were first introduced in Sueyoshi and Chang

(1989) and Sueyoshi (1990) to identify DMUs belonging to the non-frontier set.

An observed DMUj is dominated by another observed DMUk if X k < X } and

Yk > Y j. Any dominated DMU belongs to the non-frontier set. More rules are

discussed in Ali (1993) for early identification of frontier units which can be

achieved by some simple data analysis. For example, early identification of

efficient units is possible in the variable returns to scale models due to the
n n

presence of the convexity constraint ^ X j =1 or 1 which warrants that
j= 1 7= 1

any DMU that uses the unique minimum of a particular input and/or produces the

unique maximum of a particular output is bound to belong to the frontier set.

In addition, Ali (1993) proves that any DMU that has the unique

maximum value of the ratio of simple aggregation of outputs to inputs must

belong to the frontier set (of constant and variable returns to scale models). Chen

and Ali (2002) take this further to show that any DMU having the maximum

value of the ratio of weighted sum of outputs to weighted sum of inputs using

some selection of non-negative weights is on the constant and variable returns to

uYj
scale extended frontiers. Algebraically, if R . = — —, w,v> 0 ;j = 1,...,« and

vX j

ArgMax {f?;. }=DMUg, then DMUg is technically efficient and on the CRS and
y=i

VRS extended frontier. Also, DMUs having the minimum weighted sum of (a

subset or whole of) inputs ArgMin \yXy.} or the maximum weighted sum of (a
7=1

58

subset or whole of) outputs ArgMax\uYj} is on the variable returns to scale
7= 1

extended frontier, where u,v > 0. Note that any DMU that is efficient under the

assumption of constant returns to scale is also efficient under variable returns to

scale though the converse is not necessarily true. Under VRS, Chen and Ali

uYj + Uq
(2002) employs the ratio R = — --------, w,v > 0; u0 fre e \j = l,...,w for the

vXi

uY,
input-oriented case and R f = ------ -— , w,v > 0; v0 free; j = for the

v X j +v 0

output-oriented case to identify units on the frontier. In all the above cases, the

subset of inputs and outputs and combination of non-negative weights is

arbitrarily chosen to find frontier DMUs. It is not hard to foresee that one could

end up identifying the same frontier DMUs for different subsets and weights.

In addition, Sueyoshi (1990) and Ali (1993) suggest using the ordered list

of DMUs based on the ratio values of simple aggregation of outputs to inputs,
m2

i.e., Rj = “ ----- , y' = l , i n descending order to identify frontier DMUs

*=1

earlier. In their experience, instead of randomly evaluating DMUs, one can

evaluate units based on the descending order of the value of Rj to identify

frontier DMUs earlier. These DMUs can then be added to the candidate list.

An important LP acceleration technique that was discussed in Ali (1993)

is the advanced starting basis. The advanced starting basis technique uses the

optimal basis of DMUj as a starting basis for the next unsolved DMU considered

for evaluation. Ali (1993) shows that employing this technique reduces the

number of iterations to achieve optimality.

Ali (1993) reports that computational testing with a 533 DMU, 7 factor

real-world dataset gave the most significant reduction of 84% in computational

time with restricted basis entry and early identification of efficient units making

major contributions to the reduction as they create a “ratchet-like” effect for the

LPs solved subsequently.

59

3.1.1 Limitations of Ali (1993), and Chen and Ali (2002)

The serious drawbacks of Ali (1993), and of Chen and Ali (2002), are

that they fail to identify or acknowledge the following five issues that can be

encountered in using their computational constructs, namely, the issues of

incorrect identification, tied ratio, indeterminate ratio, randomness, and binary

weights.

The first issue of incorrect identification occurs when applying random

weights to identify frontier units under the assumption of variable returns to

scale. Because the ratio employed in the case of output-oriented variable returns

to scale model involves the dual value of the convexity constraint, v0 (see, LP-8

and LP-9 in chapter 2), which is unconstrained in sign, the resulting ratio values

for all the DMUs could become negative for some selection of random weights.

This could lead to incorrect identification of frontier units as explained using a

small example shown below.

Consider the example as in table 3-1 and illustrated in figure 3-1 with 2

DMUs A and B each consuming a single input X I to produce a single output Yl.

DMU X I Yl

A 1 2

B 1.5 0.5

Table 3-1 : Data to show incorrect identification

A

Yl

O

Output (technical) efficiency of B = = 0.25 = 25%

B

IB

XI
Figure 3-1 : Figure to show incorrect identification

60

Under the assumption of variable returns to scale, if the orientation is

output maximisation, the ratio used by Chen and Ali (2002) to evaluate DMUs to

identify frontier units is R, = ------- -— ; where, ux and v{ are the (random)
v, Xj+v„

output and input weights respectively which are constrained to be non-negative,

and v0 is the dual value of the convexity constraint and is a free variable. For a

set of random weights where uY= 1 , ^ = 1 , and v0 =-2, the ratios for the DMUs

(1x2) „ „ „ (1x0.5) , Aare, a . = 7 —1r—-j-—r = —2 and Rr -- ,— 1—r—j — r = - l . Accordmg to All
A (lx l)+ (-2) ‘ (lx l .5)+ (-2) 6

(1993), and Chen and Ali (2002), the DMU that produces the unique maximum

of the ratios for some selection of random weights is a frontier unit. Hence, it

will identify DMU B to be a frontier unit. However, this is incorrect as DMU B

is an inefficient unit with efficiency score of 25%. This can be seen from figure

3-1. Unit A is the only frontier DMU, the horizontal and vertical thick lines

through unit A shows the production frontier, and the region to the south-east of

unit A shows the production possibility set of the data. DMU B is strictly inside

the production possibility set and is inefficient with an output efficiency of 25%.

It is obvious to see that such an anomaly occurs because of the

application of unconstrained random weights which can cause the ratios to be

negative. It is surprising that even a recent work on this topic by Dula and Lopez

(2009) failed to recognise this possibility8 for misidentification. One way to

ensure that this does not happen is to use the minimum of the ratios to identify

frontier units instead of the maximum of the ratios when all the ratios are

negative. An alternative simpler way is to let v0= 0 when applying random

weights to identify frontier units.

The second issue of tied ratio occurs when upon applying a random set of

weights to the input and output factors, the ratio is not uniquely maximised.

Either we discard the iteration and apply a new set of weights which is a waste of

computational time or we use the information in some fashion. For example, all

the DMUs that are tied for the maximum ratio value, if finite, must be on the

boundary of the production possibility set.

8 On 11 August 2008, Professor Dula in a private communication acknowledged the error in Chen
and Ali (2002) - “...I think you have a point. After going to their paper I see how your example
may contradict their claim...This could be a nifty paper for your.

61

The third issue of indeterminate ratio occurs when the data has some zero

valued inputs for some DMUs and we apply non-negative weights, with possibly

some zero input weights; on evaluating the ratios, it is possible for a ratio or

ratios whose denominator is 0 and hence indeterminate. Again, one can ignore

the iteration and apply a new set of weights adding to the computational burden

or use the information in some fashion. We will see later, in chapter 7, how

indeterminate ratios are connected to tied ratios and present ways to resolve

them.

The fourth and fifth issues are marginal. It is clear that some pre

processing techniques have a random component in their application, and

depending on the data set and the random numbers generated for the weights, one

could waste time identifying the same set of units as frontier DMUs or having

tied or indeterminate ratios. As a result, applying the standard two-phase

algorithm for each DMU could, computationally, be equally or even more

efficient for some datasets.

The fifth issue of binary weights (weights that are either 0 or 1) arises

when one applies 0 weights to some factors, as in Chen and Ali (2002), thus

effectively ignoring the performance of DMUs in those dimensions and resulting

in partial productivity indices as opposed to full productivity indices. By

applying 0 weights to some factors, one fails to differentiate between weakly

efficient and P-K efficient units. This may lead to incorrectly computing the mix

inefficiencies that may be present in some DMUs. One way to counter this issue

is to consider only strictly positive weights for the input and output factors.

An additional issue with Ali (1993), and Chen and Ali (2002) is that the

computational testing carried out was not extensive. Although large for

computing power available at the time, the largest dataset considered for

evaluating the impact of the computational constructs developed in their papers

is a 533 DMU, 7 factor problem. It is hard to envisage the impact of their

computational constructs in solving large datasets running to thousands of DMUs

with varying densities and dimensions. Such extensive testing is carried out in

Barr and Durchholz (1997) and Dula (1998), and also in chapter 8 here.

62

3.2 Barr and Durchholz (1997) contribution: Hierarchical Decomposition

procedure

The second significant contribution in the DEA literature addressing

computational issues is by Barr and Durchholz (1997). The paper, targeting large

scale DEA problems, starts with a survey of runtime speeding-up techniques

listing all those discussed by Ali (1993). The paper then considers degeneracy

and cycling issues in DEA and claims that in their experience with large scale

DEA problems, stalling and cycling can be avoided by simple scaling of the

problem data and in case of lack of progress invoking a lexicographic ordering

procedure. The issue of cycling in DEA LPs was also discussed in Ali (1994)

albeit briefly.

Computational tests using pre-processing and LP acceleration techniques

on a 8700 DMU data set indicate significant computational savings similar to the

ones observed by Ali (1993) with reduced basis entry and early identification of

efficient DMUs making considerable impact. However, they found that some of

Ali’s (1993) ideas (re-optimization or advanced starting bases) are of uneven

value.

The paper then extends these speeding-up techniques to a parallel

machine architecture, in particular, to a multiple-instruction multiple-data

(MIMD) environment. Such computing systems contain multiple, independently

executable, processors that can operate simultaneously on different data sets.

They conclude that mapping of the large scale DEA solving process (involving

solving many separate LP sub-problems) to a tightly coupled MIMD architecture

would greatly exploit a parallel processing design and enable significant run-time

savings. A parallel computing environment will definitely alleviate the

computational burden of a DEA run but at the cost of additional processors and

the set-ups required. Simply, one can think of having n processors, one for each

DMU, and solve any problem in a few seconds. However, in this thesis we will

skirt the idea of employing parallel processors and focus on alternative efficient

solution procedures on single processors.

The paper then discusses the simple yet effective technique of

hierarchical decomposition wherein a large problem is decomposed into a series

of smaller ones of approximately equal cardinality that are mutually exclusive

63

and collectively exhaustive. The practical insight that an inefficient (non-frontier)

DMU in a sub-problem will be inefficient in the entire problem helps in reducing

the size of the LP solved in subsequent stages. However, an efficient (frontier)

DMU in a sub-problem may or may not be efficient in the entire problem and

needs to be considered again in later stages. The speeding-up procedures

described earlier (viz., dominance criteria, early identification of efficient units

etc.) are applied first to the original problem and then to the sub-problems.

DMUs are classified into frontier and non-frontier sets and solved with much

reduced LPs.

The Hierarchical Decomposition procedure is based on three user-defined

parameters, viz., b, p, and y; b is the cardinality of each sub-problem which after

the initial stage will change; p is the factor by which b changes in the next

iteration; and y is the cut-off point at which the number of sub-problems

collapses to one. At the first iteration, n LPs are solved, one for each DMU

within its sub-problem. This decomposition procedure which is similar to the

well-known divide and conquer algorithm is shown to work efficiently for data

sets where the density is low which is typically the case for large scale DEA

problems. However, the choice of the user-defined parameters is decided by prior

simulation which determine the trade-off between the cardinality and the number

of sub-problems solved.

Significant computational savings were observed both in a single as well

as in a parallel processing environment when the hierarchical decomposition

procedure was employed. Although one can expect this procedure to improve the

computational behaviour in solving large scale DEA problems, the need to

consider some DMUs (namely, efficient ones in a sub-problem) again and again

in the later stages is clearly uneconomical. Dula (1998) has shown in his

extensive computational testing that the hierarchical decomposition procedure

performs worse in a single-processor environment than the standard two-phase

procedure when the cardinality of the problem is small or even medium sized

which is not altogether surprising. Also, the cardinality and number of sub

problems need to be optimally determined using prior simulation as this affects

the number of stages in which one carries out a DEA run which in essence can

affect the effectiveness of the hierarchical decomposition procedure.

64

3.3 Dula’s BuildHull algorithm

The next significant published paper addressing computational issues in

DEA is by Dula and Thrall (2001). To evaluate it we need to consider Dula’s

earlier unpublished manuscript in 1998 which is based on two of his even earlier

works (Dula & Helgason, 1996; Dula et al, 1998). Notably, Dula et al (1998)

improves on LP based algorithms for finding the extreme rays of the conical hull

of a finite set of vectors whose generated cone is pointed. Building on this

groundwork, Dula (1998) gives the BuildHull algorithm for solving large scale

DEA problems as a direct application of the Dula et al (1998) work.

Dula (1998) discusses a new solution procedure, akin in some ways to the

two-phase hierarchical decomposition procedure of Barr and Durchholz (1997)

but totally different in its philosophy in that it attempts to find in the first phase

all the extreme-efficient DMUs. These are then shown to be the same as the

minimum cardinality set that forms the ‘frame’(meaning, the DMUs needed to

generate the DEA frontier) of the production possibility set. Irrespective of the

DEA model used, i.e., oriented or non-oriented and under any returns to scale

assumption, the extreme-efficient units are identified by their geometrical

properties using one small LP for each DMU and some additional computations.

Then in the second phase all other DMUs are scored through standard DEA LPs

but with only the data of the extreme-efficient units. The main advantage of the

BuildHull algorithm is that the size of the LP remains relatively small in both

phases and does not exceed mx (k + 1) at any iteration under the assumption of

constant returns to scale, where, m is the number of factors in the data and k is

the number of extreme-efficient units present in the data. Similar results exists

for the VRS and additive models.

It is important to note that typically, k « n ; i.e., the percentage of

extreme-efficient units in any ‘real’ data set is relatively small. In an application

to the state of Texas’ southwest district banks containing 8748 banks and 9

factors (6 inputs + 3 outputs), Barr and Durchholz (1997) report that no more

than 1% were extreme-efficient. The U.K.’s Department for Education (DfE)

provided data set of secondary schools with 9 factors (8 inputs + 1 output) had

only 111 extreme-efficient units out of 1258 schools (8.8%), while in another

data set with 10 factors, out of 1200 non-sixth form (NSF) and 1653 sixth form

65

(SF) schools, only 188 NSF (15.67%) and 232 SF (14.03%) schools were

extreme-efficient. In a dataset for primary schools in England provided by the

DfE, only 188 out of 13216 DMUs (1.42%) were extreme-efficient.

Dula’s (1998) BuildHull algorithm uses two different LPs, one in each

phase. In the first phase, under the assumption of constant returns to scale, the LP

solved for DMUt is provided below:

Minimise cot
subject to,

6>,X„ - Y JXjX j > -X , (BH LP-1)
j e J ,

q Y . + ' Z W j Z r ,
j e J i

0)t >0 ,A j >0,y =1,...,«

where, (Xt ,Yt) is the input-output vector of DMUt, the DMU under evaluation;

{Xj J j) is the input-output vector of DMUj; J t is the set of currently identified

extreme-efficient units; (Xm,Ym) is the input-output vector of the average DMU

used in each LP run in phase 1 of the BuildHull algorithm defined by

X ” =~] h T , (- X j ~ e)’ Y>»=- T T \ l l (Yj - e)- Here> e is a vector of r s of

appropriate dimension and represents the cardinality of the se t/, .

The dual to the above LP is provided below:

Maximise - vXt + uYt
subject to,
uYm+vXm<l (BH LP-2)
uYj - v X J < 0 y j G J l

u,v> 0

where, u, v denote the set of dual values corresponding to the first and second set

constraints of BH LP-1 respectively.

Note that all the data points (- . , 7 .) in J , are constrained to a single

orthant while the average vector, by negating the sign of inputs and outputs, is

positioned in a different orthant. It is relatively straightforward to see that if the

data point of DMUt, (~ X t ,Yt), is outside the space spanned by (a non-negative

linear combination of) the extreme-efficient units in set J , , it is not possible to

66

describe it using a non-negative linear combination of them. In that case, the

objective function value of BH LP-1 will be strictly greater than 0 as we need

some positive multiple of the average vector which is not in the orthant of the

data points in set J t to describe it. Else, co* = 0 , and DMUt is not extreme-

efficient; we can discard DMUt Mid consider the next DMU whose status is

unresolved. When (0* > 0 , the BuildHull algorithm employs a slightly

complicated ratio test to identify a new extreme-efficient unit (which could be

DMUt) among the units that are outside the space spanned by the units in set .

Set Jj is then updated and a new DMU from the status unresolved set is

considered in the next iteration. The algorithm proceeds until the status of all the

DMUs is determined. In the second phase, standard DEA LPs as in LP-1 or LP-3

are employed to correctly score the other units using only the data of the

extreme-efficient units in the final set J, .

The algorithm is best initiated with some extreme-efficient units in se t/,

which can be easily done using heuristics discussed in section 3.1. See, Dula

(1998) for more details on the working of the BuildHull algorithm. An illustrated

summary of Dula’s work (presented in Appa and Parthasarathy (2006a)) can be

found in Appendix 2. See, also, Dula (2007, 2010) for a recent and more elegant

version of the BuildHull algorithm presented with some illustrations.

3.4 Algorithmic characteristics of competing solution procedures

Under the assumption of constant returns to scale, using the standard

envelopment form LPs, LP-1 or LP-3, the size of any LP solved is mx(n +1) in

the first phase. Restricted basis entry can reduce the size of the LP solved as we

come closer ton. For example, for the last unit analysed, the LP will have only

the frontier units and the unit under consideration, the inefficient units having

been eliminated. So the largest LP solved is/wx(« + l) and the smallest size is

m x (k + 1), where k is the number of extreme-efficient units present in the data.

Assuming that we do not perform any data pre-processing to identify efficient

units, the number of LPs solved in the first phase is n .

67

If we are interested in computing the correct mix inefficiencies present in

all the DMUs and in indentifying Pareto-Koopmans efficient peers for the

inefficient units, we need to solve a second LP, LP-5, for each DMU, making a

total of 2n LPs. However, if in the first phase, an inefficient DMU’s projection

is on an extreme-efficient DMU or the weights for the input and output factors

for DMUt obtained in phase-1 are strictly positive, its correct technical and mix

inefficiencies are already computed and a second LP is not required for that

DMU. Hence, the minimum and maximum number of LPs to be solved in the

second phase are 0 and n respectively. For a DMUt that requires a second LP,

we need to compare it with only those DMUs that were technically efficient at

DMUt’s optimal weights in its first phase LP. Hence, the minimum and

maximum number of comparator units in the second phase LP for DMUt are 1

and n respectively.

Using the BuildHull algorithm, the number of LPs to be solved reduces

from the standard 2n LPs to 2n - k LPs. In the first phase, where n LPs are

solved, the size of the LP solved gradually increases fromm x 2 to mx(k + 1)

k + 1rru ^
with average size m x

\ \
+ 1 In the second phase, n - k LPs are solved

with fixed size mx (k + 1) .

The number of LPs solved using the hierarchical decomposition

procedure can easily exceed 2n as it depends on the number of stages one goes

through in the first phase, which in turn is affected by the number and size of the

sub-problems. The typical size of the LP solved using the hierarchical

decomposition procedure in the first phase is less than mx(n +1) but can be

greater than mx(k + 1) depending on the density of the dataset and the size of the

sub-problems. The size and the number of LPs solved in the first phase are

variable and user-defined, while in the second phase, they are the same as in

using the BuildHull algorithm.

BuildHull algorithm is shown to be computationally superior to other

existing algorithms for solving large scale DEA models. This was underscored

by extensive computational testing carried out in Dula (1998) by comparing it

with the hierarchical decomposition procedure and the standard two-phase

algorithm for different data sets with varying dimensions, densities, and

68

cardinalities. BuildHull consistently outperformed both the hierarchical

decomposition procedure and the standard two-phase algorithm. See also Dula

and Thrall (2001) and Dula (2007) for additional results.

However, the major weakness of the BuildHull algorithm is that, for all

the non extreme-efficient units, two LPs need to be solved, one in each phase

resulting in a total of 2n - k LPs. This is because of the limitation of the LP

used in the first phase which can only identify whether a particular unit is

extreme-efficient or not, and if not, provides no supplementary information

resulting in an additional LP of size /wx(& + l) for each non extreme-efficient

unit in the second phase. This major weakness of the BuildHull algorithm is

overcome in the Generator Based Algorithm (GBA) described in chapter 4. The

GBA is similar in spirit to BuildHull where the size of any LP solved remains at

most wx(&+l) but the second phase is not required, thereby reducing the

number of LPs solved by almost half to n .

3.5 Conclusion

In this chapter, we critically reviewed the three main strands of the DEA

literature that examined computational aspects of DEA. Chapter 4 presents

details of the GBA for solving the input-oriented CRS model. Extensions to other

returns to scale and orientations, and ways to handle the technical challenges in

applying GBA to process a dataset using various DEA models are discussed in

chapters 5, 6 and 7.

69

4 GENERATOR BASED ALGORITHM FOR SOLVING THE

INPUT-ORIENTED CRS MODEL

In this chapter, we present a new algorithm called the Generator Based

Algorithm (GBA) for solving the input-oriented constant returns to scale (CRS)

model. GBA is related to Dula’s (1998) BuildHull algorithm which was designed

for solving large scale DEA models. The largest LP solved in Dula is m x(k + l),

where k is the number of extreme-efficient units in the datasets, but the

drawback is that two LPs have to be solved for each of the n - k non extreme-

efficient DMUs. We overcome this weakness by using the super-efficiency

model of Andersen and Petersen (1993) and a computationally economical

procedure for evaluating DMUs.

The chapter is organised as follows. First, we restate the standard input-

oriented CRS DEA model and define three characteristics of extreme-efficient

units which we label as generators. Then we present a modified version of the

input-oriented CRS super-efficiency model that will be employed in GBA. This

is followed by the algorithmic procedure of GBA with an illustrative example.

Finally, we list the advantages of GBA over the existing algorithms.

4.1 Background and definitions

Consider a DEA problem with m(=ml +m2) factors and n DMUs. We

will make two assumptions on the (mxn) dataset. First, that no two DMUs’

activity are proportional to each other; i.e., there are no two DMUs j, k in the

dataset such that (X j ,Yj) = a{Xk,Yk\ a > 0 9. Secondly, that the dataset is strictly

positive.

Suppose the orientation of the DEA exercise is input minimisation. The

standard approach to compute the technical efficiency of DMUt under CRS is to

solve the following mx(n + 1) LP problem presented as LP-1 in chapter 2.

9 This is an assumption that is commonly made in the literature (see, Chames et al, 1991; Barr &
Durchholz, 1997; Dula, 1998; Dula, 2008).

70

Minimise 6t
subject to,

5 0 (LP-1)
7= 1

7 = 1

0, Ay. > 0,7 in 1,...,«

The dual to LP-1, described as LP-2 in chapter 2 is presented below.

Maximise uYt
subject to,
vX, + 0 = 1 (LP-2)
uYj - vX j < 0; 7 =!..•«
W, V > 0

Before presenting the modified super-efficiency model that will be

employed in the GBA and the algorithmic description of GBA, we will follow

Chames and Cooper (1984), Chames et al (1985) and Chames et al (1991) in

presenting three characteristics of extreme-efficient DMUs that are relevant for

our discussion on GBA.

Characteristic 1: DMUt is extreme-efficient iff its omission will change the

efficient frontier of the DEA problem.

Characteristic 2: DMUt is an extreme-efficient unit iff at every optimal solution

to LP-1, 6* = Z* =1; Z* =0, f or j = l , . . . ,n,j*t.

Characteristic 3: DMUt is extreme-efficient iff it can be shown to achieve an

unique maximum value for the ratio of weighted outputs to weighted inputs for

some strictly positive weights.

If DMUt satisfies any one of the above three characteristics, then Chames and

Cooper (1984), Chames et al (1985) and Chames et al (1991) have shown that it

can be proven to:

1. satisfy the other two characteristics;

2 . be an extreme-efficient unit.

We call extreme-efficient DMUs generators to designate the fact that

only they are required to generate the efficient frontier. It follows that weakly

efficient DMUs (for example, unit E in figure 1-1) and efficient but not extreme

71

DMUs (for example, unit I in figure 1-1) are not generators. In other words, the

set of generators is the minimal subset of the dataset to describe the Production

Possibility Set. Dula (1998, 2007, 2010) refers to this minimal subset as the

frame of the dataset.

4.2 Modified input-oriented CRS super-efficiency model

The LP we solve at each stage for DMUt in GBA is the one

corresponding to the super-efficiency model but formulated with only the

generators identified so far. Suppose set N = {l,2,...,w} represents the n units in

the dataset, set GEN represents the generators identified up to now, set U

represents the set of status unresolved units, and DMUt is being investigated.

Then the LP solved in GBA is presented below:

Minimise 6[
subject to,

e 'X ,~ ' Z r j X J i O (GBALP-1)
y e GEN

0 + 'L r j Y ^ Y ,
y e GEN

0' free; Yj >0 , j e GEN

The dual to the above LP is provided below:

Max u%
subject to,
v fX t = l (GBA LP-2)
u 'Y j-v 'X j <0,V/e GEN

u , v'>0

The notation used here follows closely the notation used in defining LP-1

and LP-2 in chapter 2 with 6[and Yj replacing 6t and Xj of LP-1 and (v', u)

replacing (v, u) of LP-2.

GBA LP-1 defines the super-efficiency model for DMUt in which we

score it against the DMUs in set GEN without allowing it to compare with itself.

The production possibility set (PPS) generated by the data of units in set GEN is

called the partial PPS. Since the data is strictly positive and the returns to scale is

72

constant, GBA LP-1 will be feasible for any DMUt (Thrall, 1996b; Zhu, 1996;

Dula & Hickman, 1997).

Let the optimal solution to GBA LP-1 be represented by y* and &* and

the corresponding dual solution by n* =(v'*, w'*) where, V* are the optimal dual

values or weights for the inputs and u* for the outputs. Let the objective

function value at the optimal solution be z * . Here, z* - O'* as the y} of the

generators have a coefficient of 0 in the objective function. At the optimal

solution to GBA LP-1, z* - O'* > 0 , v* X t =1, and the strong duality theorem

dictates that u'*Yt - z '* . There are two possible outcomes of interest for the

optimal objective function value z * , viz., 0 < z* < 1, which implies DMUt is

situated inside the partial PPS, and z* > 1, which occurs when DMUt is outside

the partial PPS.

4.3 Generator Based Algorithm

We now proceed to describe our algorithm. In 4.3.1 and 4.3.2 we provide

basic tools needed in the full description of GBA given in 4.3.3.

4.3.1 Ratio Rj

Using the optimal dual values, Jt'* =(y'*,u'*), compute for all j e U ,

including DMUt, ratios of weighted sum of outputs to weighted sum of inputs
/ * TTu Yj

defined as Rj=— —- , V/ e U . We will presently show how these Rj values are
v*Xj

used either to find a new generator or to settle the efficiency analysis of DMUt.

We note that at any optimal solution to GBA LP-1, v'*Xt =1 and

Max {ft. \= 1 becauseR ;<\, j e GEN is implied by the constraints
j e G E N 1 J J J J r J

73

u'Yj - v'Xj < 0,V/e G EN10. We will investigate two possible scenarios, namely,

Max {ft. }< 1 and Max{R ,}> \ as case 1 and 2 respectively.
j e U J j e U

Case 1: M ax{ft.}<l.
j e U J

This case can happen only if z* < 1 which implies that either z* < 1 or

z* = 1. In such a situation, we claim that DMUt is a non-generator and also that

all the peers to score it correctly are in set GEN. Before proving this claim, we

illustrate what happens geometrically.

When Max {/?.}< 1, the dual values n* =(v'*, w'*) define a supporting
j e U

hyperplane of both the partial PPS and the full PPS. To see this, consider the

hyperplane h given by u*Yj - v * X j = 0. The input-output vector (Xs, Ys) for

generators s e GEN with y* > 0 or Rs = 1 lie on h. It follows that these

Vu Y
generators s g GEN have ft̂ = =1 and act as peers for DMUt. Finally,

as Max
j e U

u'*Yj —v* X j < 0,Y /e N . In fact h here is not only a supporting hyperplane but

its intersection with the partial PPS defines a facet of the full and partial PPS. As

per our claim, in this case, DMUt’s efficiency analysis is resolved. Figure 4-4

illustrates this case when DMU F is evaluated with its only peer DMU A already

identified as a generator in set GEN. Note that in all the figures in this chapter,

the partial frontier corresponding to the relevant set GEN is shown in dotted lines

while the non-overlapping part of the actual frontier is shown in bold.

We now introduce the following two lemmas to prove our claim by

showing that the solution obtained for GBA LP-1 is also an optimal solution for

LP-1.

{ft.}< 1, both the full and the partial PPS lie in the half space

1 Note that the condition Max i f t , f= 1 dictates that Max |f t ,• f = 1.
j e GEN J J j e N / U

74

Lemma 4.1: If z* < 1 and Max (f t. }< 1, DMUt is inefficient with score 9 '*,
i d T 1

input-output weights given by n* and peers given by j \ y* > 0 .

Proof: Consider LP-1 for DMUt. We adapt the optimal solution of GBA LP-1 to

define an optimal solution for LP-1 as follows.

The variables of LP-1 are Xj and 9t and the dual variables are n t =(v,w).

Assign for these variables values in the following fashion: 6t = 9[*, Jtt = k* ,

Xj = y*j for j e GEN and Xj = 0 for j &GEN. Then the adapted solution can be

seen to be feasible and optimal for LP-1 and LP-2 for DMUt. Q.E.D.

Lemma 4.2: If z* =1 and Maxvft. j = l , DMUt is on the overall frontier with
j e U J

9'* = 1 but not a generator.

Proof: z* - (ff = 1 means that DMUt is on the frontier of the partial PPS

described by model GBA LP-1 with y* > 0 for at least one je GEN.

Suppose y* > 0. Note that s * t . Once again consider LP-1 for DMUt. The same

construction as in the proof to lemma 4.1 shows that the optimal values obtained

in GBA LP-1 lead to an optimal solution to LP-1. As 9t (= 9't*) = 1 in LP-1,

DMUt is on the overall frontier. DMUt is not an extreme-efficient unit as it does

not satisfy Characteristic 2 (Xs —y*s > 0 for s * t). Q.E.D.

This case can happen under two circumstances. First, when z'* < 1 but

In the first situation, we can classify DMUt as a non-generator but do not

have all the peers in set GEN to score it correctly. As Max {/? .}> 1, there are
j e U J

some DMUs in U that are outside die current partial PPS, at least one among

which is a peer for DMUt.

Note that if z f = 1 then Max {ft.} cannot be less than 1.
j e U 1

Max {ft. }> 1 and second when z't* > 1.
j e U 1

75

In the second situation, DMUt is outside the partial PPS generated by the

DMUs in GEN as Rt > 1 and its status is still unknown. Although DMUt is

outside the partial PPS, it may or may not be a generator itself.

In both situations, we apply procedure FindNewGen described below to

find a new generator among the units in U . Before doing so, we illustrate

geometrically what happens in this case.

When Max {/?,}> 1 and z'*< 1, the hyperplane h given by
j e U J

u*Yj - V ' X j = 0 supports the partial PPS but not the full one. The input-output

vector (Xs, Ys) for generators s e GEN with y*s >0 or Rs = 1 lie on h. In h we

have a separating hyperplane that has DMUt and the entire partial PPS on one

side of it (satisfying u*Yj - v*Xj < 0) and all the DMUs with Rj > 1 (including

some of its peers) on the other side of it. Figure 4-3 illustrates this case when

evaluating DMU G.

When z*> 1, the hyperplane h given by u*Yj - V * X j = 0 separates the

partial PPS for which u*Yj — v* X j < 0 or Rj < 1 from those DMUs, including

DMUt, for which R;. >1 or u*Yj — v * Xj > 0 . Figures 4-2 and 4-5 illustrate this

case when evaluating DMUs D and B respectively.

4.3.2 Procedure FindNewGen

Upon evaluating the ratio values, Rjt compute ArgMax }. We present
y e t /

three different scenarios that can arise upon computing ArgMax } and ways
yet/

to proceed with them.

1. Suppose, ArgMax {i?.} = DMUf and it is unique. We prove in lemma 4.3
yet/

below that in this case DMUf is a generator. In particular, if f = t, then

DMUt is a generator. Append it to set GEN and evaluate the next DMU

in set U in the subsequent iteration.

76

2. Suppose, ArgMax } = DMUf, is unique and f ̂ t. In this case, append
M U

DMUf to set GEN. The status of DMUt is still unresolved; one can now

evaluate DMUt again in the next iteration against the augmented set of

generators in GEN. Or, one can append it at the end of set U and choose

the next DMU in U in the subsequent iteration. The latter practice,

though computationally inefficient, will be followed in section 4.4 of this

chapter for purely illustrative purposes.

3. If there is a tie for ArgMax {i?y}, there are different ways of breaking it
M U

and they are discussed in chapter 7. The final outcome is a new generator

among the tied units which is appended to set GEN. If the status of DMUt

is still unresolved, it is added to the end of the queue in set U and the

next DMU in U is evaluated in the next iteration.

Lemma 4.3: If the weights n * obtained by solving GBA LP-1 lead

to Max {ft, }>1 and ArgMax {ft, }= DMUf is unique, then DMUf is a generator.
J e U M U

/* y
Proof: Let Max\R^\=—t— —=d n . Let v = civ'* and u = u* so that R f = 1 at

J * U 1 J i V ' * X f f

(v, u). Now scale the input weights by the input value a - vXf so that the input

value of DMUf is 1. To maintain the ratio of output value to input value for

DMUf as 1, one has to scale the output weights by a as well; i.e.,

v = —, u = —. At (v, w), R f = 1, R/ < 1, for all j ^ f, and (v, u) provide a
a a

feasible solution to the dual of LP-1, i.e., LP-2, for DMUf. This implies that

- v X f + uYf = 0 and - vX j + uYj < 0 for all j * f . The corresponding primal

solution for LP-1, Ay. = 0 for all j & f and Xf =1, is feasible with the same

objective function value of 1 as the dual LP. The primal solution is unique as

11 As we have assumed that the data is strictly positive, V * X j & 0 and indeterminate ratios
cannot occur guaranteeing ‘d’ to be a finite value. The technical challenge of dealing with
indeterminate ratios are discussed in chapter 5 and chapter 7.

77

- vX j + uYj ^ 0 for all j ^ f . Hence, the primal and dual feasible solutions are

also optimal and DMUf is a generator as it satisfies Characteristic 2. Q.E.D.

4.3.3 Description of GBA

We present our new algorithm to solve the input-oriented CRS model

under the assumption of strictly positive data below.

P r o c e d u r e GBA

Step 0: Initialisation

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R j , j e U at n *;

0.1 Identify, using heuristics, a generator from set U and move it to GEN.

End Initialisation.

Step 1: Iteration. While U =£ {^}, do:

1.1 Select the first DMU from U , DMUt, and solve GBA LP-1 for it; let die

set GEN = {«>}, U = {!...«}, TU = {<#};

optimal weights be 7t ' =(v/ , ,a '”);

1.2 Evaluate Rj at n* for j e U ;

1.3.1 Record the optimal weights, peers and slacks for DMUt;

1.3.2 Remove DMUt from U and go to Step 1.1;

j e U J

1.4.1 Compute ArgMax\Rj } and T U ;

1.4.1.1 If \TU\>1, go to Step 1.4.2;

78

1.4.1.2 If \TU\ = 1 and ArgM ax\Rj}= DM Uf , record the optimal
j e U

weights for DMUf; Move DMUf to set GEN; Go to Step 1.1;

1.4.2 Resolve the tie in ArgMax in some fashion. Identify one generator,

DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set GEN; Go to Step 1.1;

End Procedure.

Numeric issues are important to acknowledge here. They can arise even

while processing datasets using the standard algorithm, BuildHull or an enhanced

version of the algorithms. For GBA they are critical while computing reduced

cost and ratio values as all the values are computed to a fixed precision of 7

decimal points. While acknowledging that there can be pathological cases where

computing values to a fixed precision could lead to inaccurate identification of

generators, slacks and peers, the thesis does not elaborate on them. For a detailed

discussion on the numeric issues in DEA, see Ali (1994) and Ali et al (1995).

4.4 An illustration of GBA

We illustrate our algorithm graphically using a small example. The

example used below was also used in our report to the DfE on Dula’s work.

Appendix 2 contains this report giving a diagrammatic view of Dula’s algorithm
19BuildHull applied to the same problem .Consider the following example with 8

DMU, 2 inputs, and 1 output.

12 Some of the notations used in Appendix 2 are slightly different but fully explained. It is hoped
that this does not cause a problem.

DMU X I X2 Y1

A 2 4 1

B 2.5 2.5 1

C 4 1.5 1

D 8 1 1

E 10 1 1

F 3 7 1

G 7 4 1

H 4 3 1

Table 4-1 : DEA data for GBA illustration

Plane o f Output Y1 = \

GEN = { C

X1 axis

Figure 4-1 : Step 1 of GBA

Figure 4-1 illustrates GBA for the m x n = 3x8 DEA problem of example

4-1 starting with GEN = {C}. The full (extended) frontier is shown in bold (the

vertical line north of A, A-B-C-D-E and the horizontal line east of E). The partial

frontier with GEN = {C} is shown in dotted lines (the vertical line north of H, H-

C and the horizontal line east of C). The only overlap between the two is at point

C, the only generator in set GEN.

We have started our procedure by identifying C as a generator using

heuristics (for e.g., by using random weights 1, 2, and 7, for input 1, input 2, and

output 1 respectively) leading to Mox{Rj \= 1 and ArgMax)= {c}.
Je N je N

80

To illustrate different cases we set U = {D, G, F, B, A, H, E} and

examine DMUs in the order in which they are listed in set U .

Zj > X'MaxyRj > 11 3& v 3'
GEN = {C}

Figure 4-2 : Step 2 of GBA

"I

Hyptrplam <1/7,0; 4i7H

Figure 4-3 : Step 3 of GBA

GEN - ; C, D, A

H|rperplan*<10w0;23>

z:>XMax\R,\> 1 r >«v K }'

GEN - (C, D, A

Figure 4-4 : Step 4 of GBA

'flew

Hypetpldne <1145, 9j45: 524 5>

Figure 4-5 : Step 5 of GBA

In step 2 (see figure 4-2), DMUt = D is evaluated using GBA LP-1

defining a 3x2 LP problem. D is outside the partial PPS, and we have the

following results, z* = 3/2, k * = (0, 1, 3/2), Max\Rj }= 1.5 > 1.
je U

As shown in figure 4-2, n * defines the hyperplane

(y2 x Y<)-(° x X { + l x 2 f 2) = 0 passing through generator C for which Rj = 1

separating D from the partial PPS. The ratio Rj is maximised for both D and E

so that ArgMax \={D,E} at this n *. Assume for now that using some tie-
je U

breaking rule, we have identified DMU D as the new generator.

81

Now, GEN = {C, D} and U = {G, F, B, A, H, E}.

We proceed to the next iteration where DMUt = G is evaluated using a

3x3 LP. See figure 4-3. G is inside the partial PPS and we have the following

results, z'* =4/7, n*= (1/7, 0, 4/7), Max {/?.•}=2 >1.
je U J

Though the h y p e r p l a n e x Y{) - x X x + 0 x X 2)= 0 supports the

partial PPS at C, it doesn’t support the full PPS as A and B are DMUs in set U

that are outside the partial PPS with R: >1 at this n t*. As ArgMax \Rj \={a) , it
je U

implies that DMU A is a generator. So DMU A is removed from U and

appended to GEN while G is put at the back of the queue in U .

Now GEN = {C, D, A}, and set U = {F, B, H, E, G}.

In the next iteration (see figure 4-4) DMUt = F is evaluated using a 3x4

LP. We have the following results, z'* = 2/3, 7r'*= (1/3, 0, 2/3), Max{Rj }= 1.

As seen in figure 4-4, the h y p e r p l a n e x Yx) - x X r + 0 x X 2)=0

supports the partial PPS and the full PPS at A, one of the generators in the set

GEN. By lemma 4.1, we have computed the correct efficiency score of F and

also its proper set of peers, input-output weights and slacks. F can now be

discarded from further analysis.

So now GEN = (C, D, A} and U = {B, H, E, G}.

In the next iteration (see figure 4-5) DMUt = B is evaluated using a 3x4

LP. B is outside the partial PPS and we have the following results, z'* = 52/45,

<•=(10/45,8/45, 52/45), Mzx{fl,}=1.1556 >1, ArgMax { R ^ B } .
Je U je U

As shown in figure 4-5, 7t'* defines the hyperplane

(^ 4 5 x f J - (f x X { + x l 2) =0 passing through generators A and C for

which Rj =1 separating B from the partial PPS. As B achieves the unique

maximum value of Rj for j e U at K *, it is another generator.

So at this stage, GEN = (C, D, A, B} and U = (E, G, H}. Now that we

have identified all the generators in the dataset, every iteration henceforth will

involve solving a 3x5 LP. Its solution will give the correct efficiency score,

input-output weights, and proper set of peers and slacks for DMUt. For example,

82

the efficiency of E upon solving GBA LP-1 with GEN = {C, D, A, B} is 100%

and its only peer is unit D. Its input-output weights are (0, 1, 1) and it has 2 units

of slack in X L The efficiency of G upon solving GBA LP-1 with GEN = {C, D,

A, B} is 48.08% and its peers are units B and C. Its input-output weights are

(1/13, 3/26, 25/52). Lastly, the efficiency of H upon solving GBA LP-1 with

GEN = {C, D, A, B} is 73.53% and its peers are units B and C. Its input-output

weights are (1/13, 3/26, 25/52). Units G and H are technically inefficient but mix

efficient while unit E is technically efficient but mix inefficient.

To summarise, after finding one generator, we had to solve 7 LPs of

maximum size 3x5 with additional algebra for the evaluation of ratio values and

ArgMaxX {/?.} to solve a DEA exercise for a 8 DMU 3 factor problem.
mu

4.5 Ratios and Reduced cost values

Based on the proof of lemma 4.3, in procedure FindNewGen we
/*tr

U \employed R. = —— —,y e U , to identify a new generator. It is important to
v ' x i

realise why the reduced cost values , i.e., RC, = u 'Y , — v ' X , , j e U , could not

be used for the same purpose. As we are dealing with the CRS case, any data

vector can be scaled by a positive scalar without changing the PPS and therefore,

the set of generators. While Rj remains unchanged under the scaling operation,

RCj changes for DMUj, thus making Max{RCj} arbitrary. The following

example illustrates this.

Consider a data set with two DMUs A and B each consuming two inputs

(XI and X2) to produce a single output (17) in a CRS environment.

13 Note that in the input-oriented case, u*Yj — V* X j gives the negative of the reduced cost as

used in the standard LP terminology. In the output-oriented case, u*Yj — V * X ■ gives the

reduced cost value according to the standard LP terminology. For the sake of simplicity, we will
dub u*Yj — v* X j , the reduced cost of DMUj.

83

DMU XI X2 17

A 5/4 1 1

B 1/2 1/3 1/2

Table 4-2 : Reduced cost and ratio values

W.l.o.g., assume that we are provided with the following set of dual

values n'* =(v'*, w'*) = (l, ^ , 4). Now, the reduced cost values of the DMUs in

U are, RCA = u'*Yj - V 'X } =4 - 2.75 = 1.25 and RCB = = 2 - 1

= 1; so Max { rC .)= 1.25 and ArgMax \RC .\= A . Suppose we scale unit B’s
J e U j e U

data vector by a factor of 2, Max {/?C. }= 2 and ArgMax {ftC. }= B . Therefore
J e U j e U

RCj cannot be used to decide whether DMUj is a generator. As we are dealing

with the CRS case, only the ratios at the specified /r'* can identify generators.

The ratios for the DMUs are RA — —= ------ = 1.45 and
A v * X A 2.75

U* Y 2
Rb = — ——= — = 2. Hence, only DMU B can be classified as a generator at this

v X B 1

n* as it produces the unique maximum of the ratio values. Note that the

significance of reduced costs is different under VRS assumption and we will

discuss it in chapter 5.

4.6 Advantages of GBA

Chapter 8 gives a detailed account of the excellent relative computational

performance of GBA in comparison with BuildHull and the conventional two-

phase solution procedure. The overarching reason is that GBA solves only n

small LPs. Phase 2 is not required and the size of the LPs solved progresses from

m x l to mx(k +1). The downside is the work needed to compute the R j s and

ArgMaxX {/?y.} at each iteration after solving an LP. However, as shown in
y e t /

chapter 8, this is more than compensated for by not having to solve n extra LPs

and keeping the size of the LPs small.

84

4.6 Conclusion

This chapter presented a new algorithm, the GBA, for solving the input-

oriented envelopment form DEA model under the assumption of constant returns

to scale and positive data. Before every iteration we have a list of as yet

unresolved DMUs. An iteration consists of an LP with columns of data of all the

generators found so far and a new DMU from the list. At each iteration either

another generator is discovered or the status of the DMU under evaluation is

resolved, i.e., its efficiency score, input-output weights, peers, and slacks are

obtained. The GBA algorithm identifies all the extreme-efficient units in the

dataset and the correct efficiency scores, peers and slacks for all the non-extreme

efficient units.

Theoretically we showed that for solving a DEA exercise involving m

factors and n DMUs, GBA requires the solution of utmost n LP problems. In

addition, the maximum size of any LP solved is mx(k +1) where k is the

number of extreme-efficient DMUs which we call generators. Technical

complications that can arise when using the GBA under CRS, extensions to the

VRS and other standard models under different orientations will be examined in

chapters 5, 6 and 7. Computational experience is presented in chapter 8.

85

5 TECHNICAL CHALLENGES AND EXTENSION OF GBA

TO OTHER DEA MODELS

GBA was presented in Chapter 4 for the input-oriented CRS model only,

and under the restrictive assumption of positive data. Moreover some technical

problems were not fully addressed. In this chapter we extend GBA to oriented

and non-oriented CRS and VRS models without the assumption of strictly

positive data and present the technical problems in each of them.

The technical problems occur at step 1.1, 1.2 and 1.4.2 of the algorithm

described in section 4.3.3 and are relevant to any extension of GBA to other

models. Here is a list of the technical problems.

i. At step 1.1 we solve the relevant LP for DMUt and then use the optimal

solution in what follows. What if the LP is infeasible?

ii. At step 1.2 we evaluate the ratio R .,V /e U . Can Rj be indeterminate

because its denominator is zero?

iii. At step 1.4.2 we talk about resolving ties in ArgMax{Rj} in some

fashion. Are ties always an issue and how do we resolve them?

It is clear that upon encountering any of the above three challenges in

GBA, they have to be resolved without proceeding to the next iteration. The first

step to resolving these issues is to understand the conditions under which they

can or cannot occur in the various DEA models when applying GBA. In the rest

of this chapter, we describe when infeasibility and indeterminate ratios can and

cannot occur for different DEA models. Ways to resolve LP infeasibility is

presented in chapter 6 and indeterminate ratios are resolved in chapter 7. The last

of these is taken up in chapter 7 where a new closed-form method is developed to

resolve ties.

For the sake of completeness we mention one final technical problem,

viz., finding a generator to initialise the algorithm. In chapter 3, heuristics

developed by Ali (1993) and Chen and Ali (2002) to identify some generators in

a dataset were described in detail. Given the various limitations within these

heuristics, we will only use them to identify one generator to initialise GBA.

86

More on heuristics is discussed in chapter 8 which deals with computational

comparisons of GBA with extant algorithms.

5.1 GBA for the general input-oriented CRS model

In this section, we discuss the two technical challenges, viz., LP

infeasibility and indeterminate ratios, that can arise when applying GBA for this

model without the assumption of positive data.

5.1.1 LP infeasibility

Zeroes naturally occur in many multi input-output datasets (see,

Thompson et al, 1993). For example, with the DfE’s DEA model for primary

schools in England, the percentage of students with English as an Additional

Language (EAL), is an input factor which does have zero value for some schools.

Let us consider the following examples to illustrate LP infeasibility in the

presence of zeroes in the data.

DMU X I X2 Y1

A 10 2 24

B 15 0 24

Table 5-1 : Infeasibility due to 0 inputs

Using random weights (2, 2, 1) for input 1, input 2, and output 1

respectively, we can see that DMU A is a generator. Suppose, we now evaluate

DMU B with DMU A in set GEN; the resultant LP would be,

Minimise 0B
subject to,
0'B\ 5 - y A 10>0
0'BO - yA2 > 0

0 + 7 ^ 2 4 >24

87

Clearly, the second constraint can only be satisfied for yA = 0; but then,

the third constraint cannot be satisfied leading to infeasibility. Now, consider the

example below.

DMU X I Y1 Y2

A 10 2 24

B 10 0 30

Table 5-2 : Infeasibility due to 0 outputs

Using random weights (3, 1, 1) for input 1, output 1, and output 2

respectively, we can see that DMU B is a generator. Suppose, we now evaluate

DMU A with DMU B in set GEN; the resultant LP would be,

Minimise dA
subject to,
0'Aio -rBio>o
0 + yB 0 > 2
0 + ^ 3 0 >24

9'a , 7b > 0

It is clear that the second constraint cannot be satisfied, leading to infeasibility.

Presence of zero data entries is a necessary condition for infeasibility to

occur in this model (see, Thrall, 1996b; Zhu, 1996; Dula & Hickman, 1997). In

the example in table 5-1, DMU B has a unique zero for a particular input factor,

while in example in table 5-2, due to a unique zero in a particular output factor

for DMU B, the resultant LP for DMU A becomes infeasible. It follows that

infeasibility can occur when there are zeroes in inputs and/or outputs. As

discussed in chapter 2, in the standard super-efficiency model, an infeasible

solution for DMUt corresponds to it being a generator. But as GBA works with

partial PPS, the resultant LP can become infeasible even when evaluating a non

generator. For example, if to the data in table 5-1, one adds DMU C with data

(13, 0, 24) for input 1, input 2, and output 1 respectively, it is easy to see that

DMU B cannot be a generator (in fact, it becomes inefficient). However, the LP

solved does not change if B is evaluated against A. It is still infeasible. Similarly,

if in table 5-2, one adds DMU C with data (10, 3, 25) for input 1, output 1, and

88

output 2 respectively, it is easy to see that DMU A cannot be a generator (and is

again inefficient) even though it results in an infeasible LP when evaluated

against B.

5.1.2 Indeterminate ratios

In step 1.2 of the algorithm, once the LP is solved, we evaluate

u * iR, = ----- — for all the DMUs in U . If the dataset contains some zeroes, then
7 v ' X j

indeterminate ratio can occur. This is illustrated using the example below.

DMU X I X2 X3 Y1

A 10 2 8 24

B 12 0 7 38

C 0 8 5 28

Table 5-3 : Indeterminate ratio

Using random weights (2, 3, 2, 1) for input 1, input 2, input 3, and output

1 respectively, we can see that DMU B is a generator. Suppose, we evaluate

DMU A with DMU B in set GEN; then the resultant LP would be,

Minimise 0fA
subject to,
^ 1 0 - ^ 1 2 S 0
0'a2 - rB0 > 0
0 '8 - Yb7 SO

0 + Yb 38 >24

^ Y b * 0

The (unique) optimal solution to this LP is

dA =0.757895, v'*= (0.1,0, 0), u*= (0.031579). The ratio Rc at this /r" is

indeterminate. Incidentally, if we had chosen to evaluate DMU C (instead of

DMU A) against DMU B, it is easy to see that the resultant LP will be infeasible.

89

Before we proceed to the next section, we show why indeterminate ratios

cannot occur when the data is strictly positive. In other words, similar to the

technical challenge of infeasibility, presence of zero data entries is a necessary

condition for this challenge to occur. This can be seen from GBA LP-2 which is

copied below.

Maximise uY t
subject to,
v X t = 1 (GBA LP-2)
uYj —v'Xj < 0,V /e GEN

u , v'>0

The first constraint will be satisfied as an equality at any optimal solution, i.e.,

v'*Xt = 1. Since, the data is strictly positive, X j , Ty > 0 and as v * X t = 1,

/« v-
/* u v * 0. Hence, the ratios R , =—— - , V/ e U cannot become indeterminate.

' v'*Xj

5.2 GBA for the output-oriented CRS model

The LP to be used in GBA to solve the output-oriented CRS model to

evaluate DMUt is shown below.

Maximise Tj'
subject to,

0 + 1LPjX j - X < (GBALP-3)
jeG E N

n X - Y jP X i - 0
jeG E N

tj'free; Pj > 0, j e GEN

The optimal objective function value ijf* is >0 as in the corresponding

super-efficiency model. The dual to the above LP is shown below:

Minimise v'Xt
subject to,
uY t - 1 (GBALP-4)
-u 'Y j +v'Xj >0,Vf e GEN

u , vr>0

90

where, u , v are the weights of the output and input factors respectively.

As in the standard CRS models presented in chapter 2, there is a useful

relationship between the solutions of input and output-oriented super-efficiency

CRS models and their modified versions in GBA LP-1 and GBA LP-3. This

relationship makes it possible to derive the solutions to one model from the other.

The procedure for solving the output-oriented CRS model using GBA is

similar to the procedure described for its input-oriented counterpart. Hence with

no modification to the GBA procedure presented in section 4.3.3, one can carry

out a DEA exercise using the output-oriented CRS model.

5.2.1 LP infeasibility

Regardless of whether the data is strictly positive or not, the output-

oriented CRS super-efficiency model (and so also GBA LP-3) is never infeasible

because rf* = 0 , = 0 is a feasible solution for any DMUt (see, Zhu, 1996;
jeG E N

Dula & Hickman, 1997).

5.2.2 Indeterminate ratios

When the dataset contains some zeroes, indeterminate ratios can arise as

shown in the following example.

DMU X I Y1 Y2

A 10 2 24

B 12 0 36

C 16 8 28

Table 5-4 : All zero solution

Using random weights (3, 1, 1) for input 1, input 2, and output 1

respectively, we can see that DMU B is a generator. Suppose, we now evaluate

91

DMU A against DMU B in set GEN; the resulting LP and its dual are shown

below.

Primal LP:

Maximise tj’a
subject to,

0 + p B12<lO

2t1'a ~ PbO<0
24tj'a - p B36<0

rj'A free\ p B > 0

Dual LP:

Minimise 10v'
subject to,
2 u[+ 24u2 = 1
12v[-0 u [- 36u '2 >0
v[,u[,u2 > 0

Clearly, the second constraint (in the primal LP) dictates that the trivial

“all zero” solution rj'j = p B = 0 is the only feasible solution and hence optimal,

with dual values v'* = (0) and u* - (0.5,0).

In the case when all the generator(s) in set GEN have zero value for an

output factor s and Yst > 0 , if X t > 0, it follows that v'* = 0 because of the

strong duality theorem. (For our example in 5-4, DMU B has Y1 = 0; also, Y1

for A is 2 and XI is positive for A. Hence, v '*=0). Therefore, Rj is

indeterminate for all j e U . In addition, for j e GEN the dual constraints dictate

that both v* X j = 0 and u'*Yj = 0 leading to Rj . Unit B in our example

illustrates this.

It can be shown that, when the output-oriented CRS model has an “all

zero” optimal solution for DMUt, the corresponding input-oriented model is

infeasible. We show in lemma 5.1 that an “all-zero” solution cannot be an

optimal solution to GBA LP-3 when the data is strictly positive. This proviso can

92

be seen as analogous to the input-oriented CRS model where LP infeasibility

cannot occur when the data is strictly positive.

Lemma 5.1: When the data is strictly positive, an “all-zero” solution cannot be an

optimal solution to GBA LP-3.

Proof: This can be seen from the primal-dual relationship between the LPs (GBA

LP-3 and GBA LP-4). Suppose that J]'* is 0. By the strong duality theorem,

v'*Xt = 0 and since X j , Yj > 0,V j , this can only happen if v'*= 0. The output

weights cannot be trivial as u*Yt = 1 and hence u'*Yj > 0 for any j in GEN. This

means that the second constraint —uYj + v'Xj > 0,V/e GEN cannot be satisfied.

Hence, by contradiction, an “all-zero” solution cannot be an optimal solution to

GBA LP-3. Q.E.D.

Corollary to lemma 5.1: When the data is strictly positive, indeterminate ratios

cannot occur.

Proof: We know from lemma 5.1 that when the data is strictly positive v 'V 0.

Given that X } > 0 , it follows that V * X ^ 0. Hence the ratios evaluated as

/* Vu Yf
R . = —— —, j e U , cannot be indeterminate. Q.E.D.

V A j

5.3 GBA for the input-oriented VRS model

The standard LP for computing the efficiency of DMUt using the input-

oriented VRS model is shown below.

93

Minimise Ot
subject to,

e , x , - ' Z z Jx / i o
j =1

(LP-6)o +'£zJrJzrl
y=i

o + 2 > , = i
y=i

Ot free’, Xj > 0,y m l,...,w

The dual to LP-6 , described as LP-7 in chapter 2 is presented below.

Maximise uYt + w0

subject to,
vXt + 0 = 1 (LP-7)
w7y. - vA'y + m0 < 0; j = 1... w

m, v> 0 , m0

The LP to be used with GBA for solving the input-oriented VRS model is

shown below.

Minimise (ft
subject to,

er,x,- Y,r,xj>°
j e GEN

0 + £ y / j > Yt (GBALP-5)
jeG E N

o + £ > , = i
jeG E N

tfjree; Yj > 0 , j e GEN

The corresponding dual LP to GBA LP-5 is shown below:

Maximise uY t +w0

subject to,
v X t =\ (GBA LP-6)
uYj - v X j +u0 < 0,Vye GEN

u , v '>0; u0 free

where, u and v' are the weights for the outputs and inputs factors respectively

and Uq is the dual value associated with the convexity constraint.

94

Let the optimal solution to GBA LP-5 be represented by y* and O'* and

the dual solution by 7t'* = (/* , u * , u*0). Let the objective function value at the

optimal solution be z * . Here, z* = O'*. At the optimal solution, z '* = O'* > 0 ,

v'*Xt =1, and the strong duality theorem dictates that u'*Yt + u*0=z '* . There are

two possible outcomes of interest for z '* , viz., 0 < z* < 1 or z* > 1 .

GBA has to be slightly modified to take into account the dual value of the

convexity constraint w0 when defining R} . For this purpose, we define

/* tr . *u Y, + u0
R ,= p ,V/e U , and apply procedure GBA of section 4.3.3 without

v ' x j

further changes.

5.3.1 Using the reduced costs RCj instead of the Rj values in GBA

In section 4.5, we showed why it is not possible to use the reduced cost

values RCj to identify generators in the CRS case. The VRS case is

fundamentally different because arbitrary scaling of a data vector is not allowed.

So here it is possible to use Mox\r Cj \ value in FindNewGen to identify a

generator. For this purpose, define RCj at k '* =(v'*, u'* ,Uq) as

RCj={u'*Yj + u l) - v ' * X j , V jg U . We will presently see how the GBA

procedure needs to be modified when the reduced costs, RCj , of the units in U

are used instead of their Rj values.

Note that there are only two possibilities for RCj upon solving GBA LP-

5 for DMUt, viz., Max\RC .}< 0 and M ax\RC .}> 0 . It follows from our proof
j e U J j e U J

to the CRS case that in the former situation, the efficiency analysis for DMUt is

complete. In the latter case, we need to identify a new generator among the units

in U . In lemma 5.2 we show that the unit that achieves the maximum of the

reduced cost v a l u e s 7 y +u*0) - v ' * X j , V j e U , if unique, is another

generator.

95

Lemma 5.2: If the weights n 'f = (v'*, w'*,wj) obtained by solving GBA LP-5 lead

to M 3x{KC .}>0 and ArgMax \r C \= DMUf is unique, then DMUf is a
Je U je U

generator.

We show that using K* , it is possible to construct weights n ” for which

LP-6 has a unique optimal solution at DMUf.

Proof. l&\Max\RCj\=(u'*Yj +wj)-v'*X; =d> 0 for j —f. We know that

Max\RC,\=Q.
jeG E N L 1 1

Let uQ = (wj ~ d). Then, Mox{r Cj }= (u'*Yj,+ u0) -v '*Xj =0 for j —f and

M zx{rC.}< 0. This implies that Rf = 1 and Rj < 1 for all j i f . By suitable
j e N / f 1

scaling, a feasible solution to LP-7 for DMUf can be derived. Scale the input

weights by the input value, a - v'*Xf 14, such that the input value of DMUf is 1.

To maintain R/= 1, one has to scale the output weights along with u0 by a as

/ * / * *

well; i.e., let v” = - —, u” = ——, u” - — . At n ” - (v*,w*, u l), R/=1, Rj< 1, for j
a a a

i f . Also, 7t” provide a feasible solution to the dual of LP-6, i.e., LP-7, for

DMUf. This implies, +u*)-v*Xf = 0 and (w'y/ +u*) -v 'Xj < 0 for

j & f . The corresponding primal solution for LP-6, Xj = 0 for j & f and

Xf = 1, is feasible with the same objective function value of 1 as the dual LP.

The primal solution is unique as (ii*Yj +u”̂) - v ”X } ^ 0 for j * f . Hence, the

primal and dual feasible solutions are also optimal and DMUf is a generator by

Characteristic 2. Q.E.D.

14 We assume here that V * X j & 0 . If v '* X j — 0 , then using the closed-form solution

introduced in chapter 7, we can arrive at a positive set o f weights for DMUf such that at this new
set of weights, ArgM ax {i?Cy }=DMUf is unique. We can then apply the proof presented here

je U

to prove that DMUf is a generator.

96

From lemma 5.2 it follows that if ArgMax {i?Cj j = / is unique and / =
je U

t, then DMUt is a generator. In this case, we append DMUt to set GEN and

proceed to the next iteration. If t, the status of DMUt is still unresolved; one

can now evaluate DMUt again against the augmented set of generators in the

next iteration. If there is a tie for ArgMax {RCj}, there are different ways of
MU

breaking it and they are discussed in chapter 7. The final outcome is a new

generator.

5.3.2 LP infeasibility

As the VRS model is enclosed in the CRS model, the technical challenges

that need to be taken care of in the CRS case also apply for its VRS counterpart.

Furthermore, the VRS model has additional complications. First, GBA LP-5 for

DMUt can be infeasible even when the data is strictly positive. This can be seen

from the example in table 5-5 below.

DMU X I Yl Y2

A 5 6 2

B 5 1 1

C 5 5 5

Table 5-5 : LP infeasibility with positive data

All the 3 DMUs consume 5 units of input 1 to produce two outputs. We

know that DMUs that use minimum of any inputs or produce maximum of any

outputs if unique are generators. Since all the DMUs consume the same amount

of input 1, we have DMU A (unique max for Yl) and DMU B (unique max for

Y2) as our starting subset of generators. Suppose we evaluate DMU C, the

resultant GBA LP is shown below.

97

Minimise Q'c
subject to,
*c5 - yAS - y BSZO
0 + yA6 + 7b1^ 5
0 + ^ 2 + yBl > 5

0 + y ^ i + r » i = i
6£> ee; yA, y B> 0

This is infeasible. If we combine constraints 2 and 3 we get,

0 + yA 8 + ^ 8 > 10 which is impossible for yA + yB = 1 .

When the input-oriented CRS model is infeasible, the corresponding VRS

model is also infeasible as both have the same LP formulation with the VRS

model having an additional convexity constraint. And we now know that the

input-oriented VRS model can become infeasible even with strictly positive data.

Clearly, infeasibility is a more common issue when applying GBA to solve the

input-oriented VRS model.

5.3.3 Indeterminate ratios

If we chose to use RCj in procedure FindNewGen, the question of

indeterminate ratios does not arise because reduces costs are not ratios. If we do

opt for Rj as defined at the start of this section, indeterminate ratios can arise as

shown in the example below.

DMU X I X2 X3 Y l

A 10 2 8 24

B 12 0 7 38

C 0 8 5 28

Table 5-6 : Indeterminate ratios

98

Using random weights (2, 3, 2, 1) for input 1, input 2, input 3, and output

1 respectively, and w0 = 0, we can identify DMU B as a generator. Suppose, we

evaluate DMU A against DMU B in set GEN; the resultant LP is shown below.

Minimise 0'A

subject to,

0A1O - y B\2>0
0'a2 - yB0 > 0

0'As - y Bi > o
0 + yB 38 >24
0 + yB= 1

&A f ree> T b ^ °

The solution to the above LP is 0A = 1.2, v'* =(0.1,0,0), u * =(o), wj = 1.2. The

ratio Rc at this 7t* is indeterminate. Incidentally, if we had chosen to evaluate

DMU C against DMU B, the resultant LP is infeasible.

As in the CRS case, indeterminate ratios cannot occur when the data is

strictly positive. This can be seen from GBA LP-6 . The first constraint needs to

be satisfied as an equality at any optimal solution, i.e., v'*Xt =1. Hence, v'* ^0 .

/ * \ r . *
U Yi + Ur.

With X,>Q, v X,.>0 so that the ratios R,= ------ ,V/g U cannot result
j > j j

in an indeterminate form.

5.4 GBA for the output-oriented VRS model

The LP to be used in conjunction with GBA for solving the output-

oriented VRS model is shown below.

Maximise 7j'
subject to,

0 + S p ,x , s x .
jeGEN

TJX - £ PjYj <0 (GBALP-7)
jeGEN

0 + S ^ = 1
jeGEN

Tj'free-, Pj > 0 J e GEN

99

The output-oriented model aims to find the maximum multiple of outputs

possible with the inputs currently consumed by DMUt. Hence, the optimal

objective function value is rf* > 1 when evaluating a DMUt that is inside the

partial PPS. When evaluating a DMUt that is outside the partial PPS, if GBA LP-

7 is feasible, the objective function value is bounded between 0 and 1, i.e.,

0 < rj't* < 1. This implies that in certain cases a “zero” solution,

7]'* = 0, =1, is a feasible solution for DMUt. We will revisit the “zero
j e GEN

solution” to GBA LP-7 towards the end of this section.

The corresponding dual to GBA LP-7 is shown below.

Minimise v X t + v0

subject to,
uY t = 1 (GBALP-8)
- uY j + v'X j + v0 > 0, Vy g GEN

u , v '> 0; v0 free

If we chose to use Rj for this model, we will have to redefine it to take

account of v*0 . Specifically, the ratios to be evaluated are

/* Vu Yj
Rj = -------- -— ,Vf e U . GBA as described in 4.3.3 can be applied without

v *Xj +v0*

further modifications.

In addition, as in the input-oriented case, we can (in place of the ratio

values) use the reduced cost values at ^■'*=(v/*,M/*,vj) to decide whether

DMUt’s efficiency analysis is complete or that we need to identify a new

generator. So instead of computing ratio values, we can compute the reduced cost

values RCj = u*Yj - (v'*Xj +vj),Y/G U to identify a new generator. The rest

of the procedure is the same as in applying GBA to solve the input-oriented VRS

model using R C j .

100

5.4.1 Infeasibility

As in the input-oriented case, the output-oriented VRS model can become

infeasible even when the data is strictly positive. This can be seen from the

example below.

DMU X I X2 Y1

A 6 2 5

B 1 1 5

D 3 4 5

Table 5-7 : LP infeasibility with positive data

All DMUs produce 5 units of output 1 by consuming varying amounts of

inputs 1 and 2. Since all DMUs produce the same quantity of output 1, if we look

at the input factors, we have DMU A (unique min for input 2) and DMU B

(unique min for input 1) as our starting subset of generators. Suppose, we now

evaluate DMU D, the corresponding LP is shown below:

Maximise 7]'D

subject to ,
0 + p A6 + p Bl <3
0 + p A2 + p Bl <4

5Vd ~ P a $ ~ P b $ - 0

P a + P b =1
n'D free; p A, p B > 0

This is infeasible. If we combine constraints 1 and 2, we

have p A 8 + p B 8 < 7. This is impossible for p A + p B - 1.

5.4.2 Indeterminate ratios

As in the input-oriented case, if we chose to use RCj in procedure

FindNewGen, the question of indeterminate ratios does not arise. If we do opt for

Rj as defined at the start of this section, indeterminate ratios can arise. As

101

observed earlier, any technical challenge with the output-oriented CRS model

will also be reflected here and we saw in section 5.2.2 that indeterminate ratios

was one such challenge when the dataset contains zeroes.

Interestingly, unlike other models, indeterminate ratios can occur in this

model even when the data is strictly positive. This is illustrated using the

example below.

DMU X I X2 Y1

A 2 0.5 3

B 4.5 4.5 7

C 0.125 2 4

D 3.25 2.5 5

Table 5-8 : Indeterminate ratios with positive data

The above data is strictly positive and units A, B and C are generators. Suppose,

at a particular iteration we had identified DMUs A and B to be generators. If we

evaluate DMU D against A and B in GEN, the optimal solution to GBA LP-7 is

1 =1, v'*=(8,0), u'* =(5), Vq = - 1 . The ratio Rc at this n * is indeterminate.

Incidentally, if we had chosen to evaluate DMU C against the generators A and

B, it is easy to see that the resultant LP will be infeasible.

As indicated at the beginning of this section, we will now examine the

condition under which a “zero solution” to GBA LP-7 can occur. Specifically,

we will show using lemma 5.3 that when the data is strictly positive, a “zero”

solution cannot occur while solving the output-oriented VRS model using GBA.

Lemma 5.3: A “zero” optimal solution does not exist for GBA LP-7 when the

dataset is strictly positive.

Proof: When GBA LP-7 is feasible, the optimal objective function value is

bounded below at 0, i.e., Tj't* > 0 . To prove that r ff * 0 when the data is strictly

positive, we restate GBA LP-7 below.

102

Max Tj't + Z p j O
jeG E N

subject to,

jeG E N
(GBA LP-7)

jeG E N

0 + 1 ^ = 1
jeG E N

rt't free-, p } > 0 , j e GEN

Without loss of generality, choose a DMUg (observed or obtained

through a convex combination of some generators) in set GEN as a comparator

unit for DMUt. Let the input and output vector of DMUg be represented

for this is X g < X t as indicated from the input constraints. Using simple algebra,

we can see from the output constraints that a lower-limit on 77, is given by

Lemma 5.3 along with the section on infeasibility discussed in section

5.4.1 shows that when the dataset is strictly positive, either GBA LP-7 for DMUt

is infeasible or else jj* > 0.

5.5 GBA for the CRS additive model

The super-efficiency form of the additive CRS model employed in GBA

to evaluate DMUt with respect to the set of generators in GEN is shown below.

Maximise e ’ s' + e° s° + 0 Xj
subject to ,

by (Xg ,Yg). Assume that GBA LP-7 for DMUt is feasible; a necessary condition

m2
7jt > w , where w = Min- dataset is strictly positive, w > 0 and

since the sense of the objective function is maximisation, rj* > 0 . Q.E.D.

(AGBALP-1)
ye GEN

y e GEN

s i , s ° , A j > 0 , j € GEN

103

where, s ' , s° are the input and output slack vectors of dimension ml and m2

respectively; e' and e° are conformable vectors of l ’s of dimension ml and m2

respectively. The dual to the LP problem AGBA LP-1 is shown below.

Minimise vX , + uY t
subject to ,
vX j + uY j > 0,V j e GEN (AGBALP-2)

v > +1
u < -1

As we are solving a CRS model, it is not appropriate to use RCj here. So

GBA for this model parallels to the oriented CRS cases although the ratio Rj

requires a minor modification as u < -1 .

We note that if DMUt is outside the partial PPS, it will be identified by

- u Y
v*Xt +u*Yt < 0. In other words, 1 < — — L = Rt which essentially is our original

v X ,

ratio test for the oriented CRS models as u < 0 and hence, - u > 0 and Rt > 1.

For the units je GEN that are in the optimal basis of AGBA LP-1,

v*Xj +u*Yj = 0 or Rj = 1. Hence, except for the LP problem solved, the

procedure for solving the CRS additive model using GBA essentially remains the

- u Y ,
same as in 4.3.3 with R , =

5.5.1 Infeasibility

It is interesting to note that even when the dataset is strictly positive,

when using GBA for this model, the resultant LP can become infeasible. As we

aim to maximise both the inputs and outputs slacks of DMUt and as the slacks

are constrained to be non-negative (i.e.,5',5° >0), if DMUt lies outside the

partial PPS, the corresponding LP problem will be infeasible; obviously, this can

happen regardless of whether the dataset is strictly positive or otherwise. In other

words, DMUt’s activity must be dominated by some of the units in set GEN for

104

AGBA LP-1 to be feasible. To illustrate this point, let us consider the following

example.

DMU X I Y1 Y2

A 1 2 3

B 1 6 2

Table 5-9 : LP infeasibility with positive data

Both A and B are extreme-efficient and our data is strictly positive.

Suppose our set GEN consists of unit A and we evaluate B15. For the oriented

case, the corresponding oriented GBA models are feasible as the data is strictly

positive. However, AGBA LP-1 for DMU B is infeasible as DMU B is not

dominated by A.

5.5.2 Indeterminate ratios

The issue of indeterminate ratios does not arise when employing GBA to

solve the additive CRS model as the input weights are constrained to be strictly

positive, i.e., v > -hi.

5.6 GBA for solving the VRS additive model

The standard additive VRS model is shown below.

Maximise e's' + e°s° + 0 Zj
subject to ,

i ' + 0 + f i xJx J = x,
(VALP-1)

0 - + T , A]r J = Y,
7 = 1

0 + 0 + 2 X j = 1
7 = 1

s ' , s ° , A j > 0 ,y in 1,..., n

15 Note that this is equivalent to solving the standard additive CRS super-efficiency model (LP-10
in chapter 2) for unit B as there are only two units in our dataset. Hence, the result presented here
also applies for the standard additive CRS super-efficiency model.

105

where, s ' , 5° are the input and output slack vectors respectively of dimension ml

and m2 respectively; el and e° are conformable vectors of l ’s of dimension mx

and m2 respectively.

The dual to the above model is shown below.

(VALP-2)

Minimise vX , + uY t + ft
subject to ,
vX j + uY j + P > 0,Vy
v > +1
u < -1
P free

where, P is the dual value of the convexity constraint and is unconstrained in

sign.

The super-efficiency form of the additive VRS model employed in GBA

to evaluate DMUt with respect to the set o f generators in GEN is shown below.

e' s ' + e° s° + 0 X j

(AGBA LP-3)

Maximise
subject to ,
s ' + 0 + £ Z j X j = X,

j e GEN

0 - s c + Y * , Y, = r <
j e GEN

0 + 0 + 2 X j = 1
j e GEN

s \ s ° ,Aj > 0, j e GEN

The dual to AGBA LP-3 is shown below.

Minimise vX t + uYt + P
subject to ,
vX j + u Y j + P > 0,Vye GEN

v > +1
u < —1
P free

As in the oriented VRS models, we can use the reduced cost values at

ft'* = (v*,u'*,Vq) to decide whether DMUt’s efficiency analysis is complete or

that we need to identify a new generator. If an unit, DMUt is outside the partial

(AGBA LP-4)

106

PPS, it will be identified by v*Xt +u*Yt + J3* < 0 or - v*Xt —u*Yt - ft* > 0 . As

w<0, - u > Q and hence its reduced cost RCt =- v* Xf - u Y f — 0* > 0 . It

follows that when Max\RCj\> 0 , j e U , one can compute ArgMax{RCj}, j e U

to identify a new generator. Also, when Max{R C .} < 0, y e U , the efficiency

analysis for DMUt is resolved.

If we chose to use Rj for this model, we will have to take account of 0 *.

First we note that for the units j in set GEN that are in the optimal basis of

- u ' Y - B * - u Y .
AGBA LP-3, v ' X , + w*7,. + /T = 0 or J— ^— = ----------J— = 1. For a

7 7 H v 'X j v ' X j + f i '

DMUt that lies outside the partial PPS, RCt > 0; in other words,

1 -w*L -/?* „ , -u*Yl < ------- — {— = R, or l < —------ - —= R , . This implies that the ratio values
v X t ' v X t + 0 ' 1

-14%-p* -uYj
given by R, = ----------- or R, -= ------- -— can be used in GBA for the
5 y 7 v X j 7 v X j + 0 *

VRS additive model.

5.6.1 Infeasibility

The GBA additive VRS model will be infeasible when the corresponding

CRS model is infeasible. As indicated in section 5.5.1, the additive CRS GBA

model can become infeasible even when the data is strictly positive. Hence, the

GBA additive VRS model can also become infeasible regardless of whether the

data is strictly positive or otherwise.

5.6.2 Indeterminate ratios

If we chose to use RCj in procedure FindNewGen, the question of

indeterminate ratios does not arise. Even if we do opt for the ratio value

-u'Y.-P*
R = ------ in FindNewGen, indeterminate ratios cannot occur as v > +1.

7 v 'X j

107

5.7 Conclusion

In this chapter we extended the application of GBA to solve the oriented

and non-oriented CRS and VRS models without the assumption of strictly

positive data. We also set forth the technical challenges of LP infeasibility and

indeterminate ratio that one can encounter when applying GBA to solve these

models. Importantly, we have shown in this chapter that GBA can handle DEA

models with weight restrictions by way of considering CRS and VRS additive

models in which the weights are constrained to be non-zero. The upshot is that

GBA can handle DEA models with additional constraints in terms of additional

weight restrictions as long as the resulting model is linear.

Ways to resolve the technicalities are presented in chapters 6 and 7.

108

6 WAYS TO RESOLVE THE LP INFEASIBILITY ISSUE IN

GBA16

The purpose of this chapter is to present ways to handle the principal

technical challenge of GBA, viz., LP infeasibility, for solving all the DEA

models discussed in chapter 5 except for the output-oriented CRS model which is

never infeasible as shown in section 5.2.1. The main tools developed are two

penalty methods and a model specific clustering technique for the DfE dataset.

The clustering technique presented in section 6.1.1 works when zeroes exist only

in the input factors of a CRS dataset while the penalty methods can tackle

infeasibility under all circumstances. Within the penalty methods, only the big

penalty method can guarantee that whenever possible, DMUt is evaluated only

against the units in set GEN adhering to the GBA procedure introduced in

chapter 4. The small penalty method can only guarantee that DMUt will not

evaluate with itself if it lies inside the partial PPS. Both the penalties invoke

FindNewGen appropriately and are valid for use within GBA. For ease of

computation, the small penalty method is to be preferred to avoid LP infeasibility

in GBA.

6.1 Infeasibility in the input-oriented CRS model

The input-oriented CRS model can become infeasible only when there are

zeroes in the data. In this section, we will examine two different approaches to

handle infeasibility when using GBA for this model, viz., clustering and penalty.

6.1.1 Natural Clustering for the input oriented CRS case
The DfE model of primary schools in England contained zeros only in

one input factor. While working with this dataset, we developed the following

clustering approach.

16 Dr. Argyris had developed alternative LP models to handle the infeasibility issue in GBA.
These models are not discussed in the thesis and are presented in Appa et al (2006b).

109

When zeroes exist only in the input factors of a dataset, a simple method

to avoid infeasibility is to cluster DMUs based on the input factors having a zero

value for some DMUs and treat each cluster as a separate DEA problem. The

number of clusters depends on the number of combinations of input factors

having a zero value; in other words, the number of clusters depends on the

different pattern of zeroes in the input factors that exist in a dataset. If r is the

number of input factors that have a zero value for some DMUs(r<mx), the

number of theoretically possible input combinations/clusters is given by (2r - l) .

For a given problem, some of these clusters could be empty. We will describe the

clustering technique using the following example.

DMU X I X2 X3 X4 Y1 Y2

A 4 0 0 0 3 6

B 6 0 0 0 14 8

C 7 1 0 0 8 9

D 3 9 0 0 7 11

E 4 0 6 0 15 2

F 6 0 0 8 13 5

G 8 0 1 2 10 10

H 4 4 9 9 4 6

I 8 2 0 5 14 12

J 5 6 7 3 12 12

Table 6-1 : Clustering DMUs based on zero valued input factors

The steps to be followed in employing the clustering technique are as follows:

i. Define the clusters:

110

Identify the r input factors that have a zero value for some DMUs and

the corresponding DMUs that have them. Cluster the DMUs in terms of the right

combination of zero containing input factors that they uniquely share. This can

be achieved as follows.

Let C be the set of inputs belonging to cluster c. Then DMUje c

iff X rj = 0 when r e C and X rj > 0 otherwise. This ensures that each DMU with

zeros for some inputs belongs to a unique cluster c . For our example in 6-1, we

can see that only DMUs H and J have strictly positive (input) data and so all

other DMUs have to be clustered based on the pattern of zero valued input

factors. Three inputs, viz., inputs 2, 3, and 4 have zero value for some DMUs

while input 1 is strictly positive for all DMUs. Hence, r = 3 and the possible

number of clusters are(2r - l) = (23 - l) = 7. However, there is no DMU with

zeros for input 4 only. So there are six clusters in all and details of them can be

seen in table 6-2 below.

Input

Cluster

c

{X2,X3,XA} {X3 ,XA) [X2 ,XA) {X2,X3} {*2} {*3} {X4)

DMUs

with

iff

r t C

A,B C,D E F G I None

Table 6-2 : Clusters in example 6-1

ii. Define the order in which clusters will be analysed:

The idea behind clustering is that in analysing the DMUs within a cluster,

the zero valued inputs can be ignored because all of them share the zero value.

I l l

This leaves the clustered DEA problems with strictly positive data so that the

resultant GBA LP cannot be infeasible17.

To apply GBA with a clustering technique that achieves this we need to

establish a hierarchy among clusters. This is done with the notion of a parent

cluster. Cluster cf is a parent of cluster Cj if Cy c C, where, Cj and Cy are the

sets of inputs belonging to cluster c, and cy respectively. In example 6-1, cluster

{X2 ,X3 ,X4} is the parent cluster for all the other 5 clusters, while {X3,X4} is

a parent cluster for {Af3} but not for {X l} . Note that a cluster can have more

than one parent and also that a cluster with a parent can also be a parent of some

other cluster. Figure 6.1 below illustrates this hierarchy. In it, each cluster is

represented as a node and a directed arc ct —> Cj represents the fact that cluster

cf is a parent of cluster cy. Also, the number of layers in a clustered problem

depends on the cardinality o f the clusters. For our example in 6.1,

cluster {X2, ̂ 3 ,^ 4 } is of cardinality 3 and is placed in layer 3. Clusters

{X3 ,X4} ,{X 2 ,X 4} and {X2,X3} are of cardinality 2 and are placed in layer 2.

Finally, clusters {X2}, {X3} and {*4} are of cardinality 1 and are placed in

layer 1.

LAYER 3

LAYER 2

LAYER 1

Figure 6-1 : Underlying hierarchical structure of example 6-1

17 Clustering in this fashion cannot lead to infeasibility even if the zero valued input factors
within clusters are retained. The reason being that the units within a cluster share the s a m e

p a t t e r n o f z e r o s in them.

112

iii. Apply GBA to DMUs within a cluster ignoring the cluster defining

inputs:

We apply GBA on the clustered DMUs first, taking one cluster at a time

in a hierarchical order that ensures that a cluster is analysed only after all its

parent clusters have been analysed. In other words, if R is the set of clusters

remaining to be analysed, choose the next cluster c from R in such a way that

there is no cluster c 'e R that is a parent of c .

Applying this rule to example 6-1 implies that cluster {X 2 ,X 3 ,X 4} in

layer 3 of figure 6.1 containing DMUs A and B is the first cluster to be solved

after which we can solve any one of the three clusters in layer 2. Suppose the

second cluster to be solved is {X3, X4} and the third one is {X2,X4}. Then the

fourth can be [X2,X3] or {X4} because neither has a parent in R at this stage.

As all the DMUs within a cluster have zero value for the same set of

inputs, GBA can be applied to them after blocking the cluster defining inputs. So,

for example 6-1, the first cluster with three inputs will give rise to a 1 input 2

outputs DEA problem (by blocking inputs 2, 3, and 4). Similarly, while

evaluating cluster {X2,X4} after the parent node cluster is evaluated, we can

block inputs 2 and 4.

iv. Define set GEN before applying GBA to each cluster:

Start applying GBA to a cluster without any parents - {X2,X3, X4} in

our example. For any such cluster, set GEN is empty at the initial stage of

applying GBA. We can apply the usual heuristics to identify a generator among

them. On the other hand, for any cluster with one or more parents, the union of

GENs found in all the parent clusters defines the initial set GEN. This ensures

that all the DMUs in the initial set GEN for cluster c also have zeros in the input

factors contained in set C defining cluster c .

An alternative simpler way to define GEN for a cluster c is to append all

the generators from the previous layers to set GEN. However, if we do this it is

no longer valid to disregard input factors of set C in applying GBA to cluster c

as some of the units in GEN will not share the same set of zeroes compared to set

C . For example, while evaluating cluster {X2}, the only generators that need to

113

be appended are from its parent nodes, viz., {X 2 ,X 3 ,X 4}, {X2,X3} and

{X 2 ,X 4 \. We can then block input 2 while evaluating DMU G in cluster {X2}.

However, if we also append the generators (if any) from cluster {X3, X4} while

evaluating cluster {X2}, we cannot block input 2 as cluster {X3,X4} does not

contain DMUs that have a zero value for input 2. So this simpler method for

creating GEN will end up with larger LPs.

v. GBA for the non-clustered DMUs:

After completing the efficiency analysis for all the clustered DMUs in the

hierarchy described above, the generators identified from all the clusters will

now form the starting set of generators when applying GBA to the DMUs that

have strictly positive data - in our example for DMUs H and J. Apply GBA to

this set of non-clustered DMUs to complete the analysis.

vi. Finer details of the clustering technique:

A simple way to program the technique is to divide the clusters into r

layers based on the cardinality of the set of input factors in cluster ck. Let set K

defining the layers have numbers {l,...,r}. Then f o r K , cluster ck is placed

in layer^ if \Ck\ = %, where Ck is the set of inputs belonging to cluster ck and

|Ct | denotes the cardinality of the set Ck. Now we apply GBA first to clusters in

layer r (provided there are any), followed by layer r - 1 and so on. The

advantage is that there cannot be a parent for any cluster from its own or lower

levels. Figure 6.1 illustrates the levels and hierarchy for example 6-1. Within

each level there is still some choice in choosing the cluster to be evaluated which

can be resolved arbitrarily. Efficiency analysis of clusters in the same layer can

be carried out independently with only their parent generators forming the

starting set of generators.

For the clusters at the highest level the following characteristics hold:

• Given that zero is the best possible input value a DMU can have,

if the cluster(s) in the highest layer have a single DMU, then it

must be a generator.

114

• If cluster(s) in the highest layer has more than one unit, as in

example 6-1, we apply GBA within them to identify some

generators as there must be at least one among them.

• We can complete the efficiency analysis of all the DMUs within

these cluster(s) without reference to generators from outside the

cluster as for the non-generators in them, only the generators in

them can act as peers.

vii. Illustration of the clustering technique for example 6-1:

The first cluster to be looked at is the cluster {X 2 ,X 3 ,X 4} in layer 3

containing DMUs A and B. Upon evaluating cluster {X2iX 3 iX4} using GBA,

we find that both A and B are generators. The maximum size of the GBA LP

solved at this stage is (3x2).

Now, we move to the clusters in layer 2 and there are three clusters to

choose from. Suppose, we choose arbitrarily cluster {X3, X 4 \ containing units C

and D. GEN={A,B} at this stage. While evaluating this cluster by blocking

inputs 3 and 4, we find that unit D is a generator and unit C is inefficient with

peers A, B and D. The maximum size of the GBA LP solved at this stage

is (4x4). Suppose, we next choose cluster {X2,X3} containing unit F.

GEN={A,B} and the size of the GBA LP solved is (4x3). While evaluating F

by blocking inputs 2 and 3, we find that the unit is inefficient and its only peer is

DMU B. We then move to the only remaining cluster {X2,X 4} in level 2

containing DMU E. Given that GEN={A,B}, the size of the GBA LP solved is

again (4x3). While evaluating E by blocking inputs 2 and 4, we find that unit E

is a generator. As we have evaluated all the clusters in layer 2, we can move to

clusters in layer 1.

Suppose we arbitrarily choose cluster {X2}. The starting set of

generators is GEN={A,B,E} given by the union of generators found in

analysing all its parents, viz., {X2,X 3,X 4}, {X2,X3} and {X2,X4}.

Evaluating unit G by blocking input 2, we find that the unit is inefficient and its

peers are units A and B. The size of the GBA LP solved at this stage is (5x4).

115

Now analyse cluster {X3}. Set GEN={A,B,D} and upon evaluating

DMU I by blocking input 3, we find that the unit is inefficient and its peers are

units A, B and D. The size of the GBA LP solved is again (5x4).

Now that the efficiency analysis of all the clustered DMUs is completed,

we can move to the set of units with strictly positive data. The generators

identified from all the clusters will now form the starting set of generators when

applying GBA to the DMUs H and J. So, GEN={A,B,D,E}, and we find that

unit J is a generator and unit H is inefficient and its peers are units A and J. The

maximum size of GBA LP solved at this stage is (6 x 6).

6.1.1.1 Pros and Cons of the Clustering technique

Natural clustering is a simple technique to overcome the GBA LP

infeasibility issue when the DEA dataset has few input factors that take 0 values.

In the case of the DfE’s data on primary schools, only one of the school’s input

factors, namely, % of students taking English as an Additional Language (EAL)

has zero values. This means that we are dealing with just one cluster, viz., the

cluster of DMUs having zero value for the input factor EAL. After completing

the efficiency analysis of all the units in this cluster (by appropriately blocking

the EAL factor), we can move to the cluster of DMUs having strictly positive

data with a list of generators. This is similar to the hierarchical decomposition

principle introduced by Barr and Durchholz (1997) in that we decompose the

original problem into smaller sub-problems; however, the sub-problems are

trimmer as we block the (common) input factors having zero values within each

cluster and the efficiency analysis does not require a second phase. Hence, the

clustering method can be seen as a hybrid of the decomposition techniques

described in Barr and Durchholz (1997) and Korhonen and Siitari (2009).

The drawbacks of the natural clustering technique are obvious. First, the

number of clusters can quickly explode as there is a combinatorial escalation.

Secondly, the hierarchical order to evaluate clusters as presented for the example

above, requires the parent generators to be stored and recalled properly in

different layers. This could be tedious and taxing on the run time although

116

parallel processing as discussed in Barr and Durchholz (1997) could possibly

alleviate it. However, the issue of recalling generators appropriately is not a

necessity of the clustering technique, i.e., one can instead have all the generators

identified so far (and not just from its parents) from all the previous layers in set

GEN when evaluating any cluster.

In addition, we showed in section 5.1.1, that GBA LP infeasibility can

occur in the input-oriented CRS model when there are zero values in the output

factors. Clustering as explained above will not work in the case of zeroes in the

output factors. This is because, in case of inputs factors, zero is the best possible

value a DMU can have while it is the worst value for any output factor (assuming

that the data is non-negative). Whether a DMU with a zero value for certain

output factors is a generator or not depends on the input-output correspondence

of its other factors relative to all other DMUs. An example elucidating this was

shown in table 5-2.

In the next section, we present the penalty method by which the GBA LP

infeasibility issue can be resolved regardless of which factors contain zeroes.

This is achieved by introducing DMUt into the coefficient matrix along side the

generators but penalising its use.

6.1.2 Penalty methods for the input oriented CRS case

6.1.2.1 Big Penalty or Big-M method

The Big-M method avoids GBA LP infeasibility by introducing DMUt

into the coefficient matrix of generators. Its usage carries a very large penalty M

thereby ensuring that DMUt compares with itself iff there is no feasible solution

using only the set of generators in GEN. In other words, the modified GBA

applied to DMUt behaves like the original GBA super-efficiency model (GBA

LP-1) when there is a feasible solution to it and compares with itself when there

isn’t. This technique was first employed by Banker and Chang (2006) in the

output-oriented VRS super-efficiency model for the purpose of identifying

outliers. Here, we attempt to quantify M in the case of the input-oriented CRS

model.

117

Recall that GBA LP-1 is defined as follows.

Minimise Q't
subject to,
3 ' ^ - (GBALP-i)

jeG E N

0 + X > / y >K,
jeG E N

0't free; Yj ^ 0 , j e GEN

The modified GBA LP, MGBA LP-1, to avoid infeasibility in the input-

oriented CRS super-efficiency model is shown below.

Minimise 0{+ ^ AjQ+^M
jeGEN

subject to,

6ftX t - £ XjX j - XtX t > 0 (MGBA LP-1)
jeGEN

0 + £ Z ft+ W Z Y ,
jeGEN

o', free; Xjt Xt > 0; j e GEN

The only difference between MGBA LP-1 and GBA LP-1 is that, along

with the list of generators, DMUt is included in the coefficient matrix in MGBA

LP-1 with penalty M in the objective function. This results in an additional

column in MGBA LP-1 compared to GBA LP-1.

The dual to MGBA LP-1 is presented below.

Maximise uYt
subject to,
v X = l

, , ^ (MGBALP-2)
u Yj - v'Xj < 0, Vy e GEN v }
u'Yt - v'Xt < M
u , v'>0

*

Obviously, MGBA LP-2 has an extra row compared to GBA LP-2.

The following two lemmas are important in proving theorem 6.1 which

quantifies M.

118

Lemma 6.1: Applied to DMUt, GBA LP-1 results in infeasibility only if DMUt

lies strictly outside the partial PPS spanned by the generators in set GEN.

Before proving lemma 6.1, we illustrate in figure 6-2 what an infeasible

solution to GBA LP-1 looks like. In section 5.1.1, we had presented a two DMU

DEA problem in table 5-1, wherein the GBA LP for DMU B is infeasible when

evaluated against the generator DMU A. The corresponding illustration is shown

in figure 6-2 below.

The partial PPS while evaluating DMU B is the region to the north-east

of the generator DMU A and the boundary of the partial PPS is shown using

dashed lines to the east and north of A. The radial projection direction for DMU

B is along the XI axis as its value for X2 is 0. The corresponding GBA LP is

infeasible as it is not possible to reach the boundary of the partial PPS by means

of this projection direction.

PLANE OF Y1 = 24

X1 * XI AXIS SCALE
1 cm = 2cm

Figure 6-2 : Graphical illustration of infeasibility

Proof: For there to be a feasible solution to DMUt, its radial projection must lie

on the boundary of the partial PPS. Suppose DMUt is not outside the partial PPS.

119

In this case, a linear combination of some of the generators dominates DMUt

leading to 0 < O'* < 1. So unless a DMUt lies outside the partial PPS, it cannot

effect an infeasible solution to GBA LP-1. Q.E.D.

Note that if DMUt is outside the partial PPS, GBA LP-1 can be feasible

with O'* > 1, or it may be infeasible as illustrated in figure 6-2.

We now proceed to establish a value for M . Let be the largest input

value, the smallest positive input value, the largest output value and

the smallest positive output value among all the inputs and outputs of all the

DMUs in the dataset.

Formally,

= M a { l .} , for r = l,...,ml; j = l9...9n;

X+n =M in{Xn)> 0 ,fo r r = 1,...9ml\ j = 1,...,«;

Fmax =M*x{?;y.},for 5 = l9...9m2; j = 1,

7 ^ = Min{rjy.}> 0, for s = l9...9m2; j = l9...9n;

Lemma 6.2: The maximum finite value that O'* can take as a solution to GBA

LP-1 is given .
•̂ min m̂in

Proof: DMUt can be positioned inside or outside the partial PPS. Lemma 6.1

demonstrates that for any DMUt that is inside the partial PPS, GBA LP-1 is

feasible with a maximum finite value of O'* = 1. Should O'* take a finite value

when DMUt lies outside the partial PPS, GBA LP-1 has to be feasible, i.e., all

the constraints must be satisfied simultaneously. If y* and O'f satisfy the most

restrictive of the input and output constraints in GBA LP-1, they must satisfy all

120

the m constraints. Hence by focusing on what could, hypothetically, be the most

restrictive situation, we can work out the maximum value of O'*.

The “extreme” situation with the ml input constraints occurs when

•Af̂ in = X /t a n d = X /g, g e GEN for some input factor r' \ i.e., DMUt has

the smallest positive input value in the dataset for a certain input factor r ' and

the overall maximum input value happens to occur for a DMUg in the set GEN,

also for the same factor r ' . The “extreme” situation with the m2 output

constraints occurs when = Ys>g, g e GEN and Y ^ = Y/t for some output

factor s ' ; i.e., DMUt has the maximum output value for a certain output factor

s ' and the overall smallest positive output value occurs for DMUg in set GEN
1 ftfor the same output factor.

Algebraically, this reduces to the following.

Y .
y. Y . > Y ’ => y.
• J s g — s t • J — y ’

*'g

e ’. x , , > r jX ,g^ 6 ; > ^ x r j :
^ r't

where, X r. , = X ^ , Y,, = ,X , g = . Y,g = .

Since the sense of the objective function is minimisation, the largest possible 0'

value is given by M ax{e’’} = ^ - x ^ - . Q.E.D.
X ■„ Y-„■ nun m m

Now we show that whenever there is a feasible solution to GBA LP-1

there is always a cheaper solution to MGBA LP-1 than the one with Xt = 1. We

show in Appendix 3 that it not possible to have an optimal solution to MGBA

LP-1 with 0 < Xt < 1, i.e., either Xt = 0 or Xt = 1. This is valid for the penalty

methods used throughout this chapter.

18 Note that both the “extreme” conditions can occur simultaneously such that DMUt does not
dominate (any of) the generator(s) in set GEN.

121

X Y
Theorem 6.1: In MGBA LP-1 the penalty value of M = —™ x - ^ - ensures that

■^min ^min

DMUt evaluates with itself only if the corresponding GBA LP-1 is infeasible.

Proof: The proof can be constructed by comparison with the following two

cases where GBA LP-1 is feasible for DMUt.

Case 1: DMUt is inside the partial PPS.

There is always a feasible solution with Xt = 0 and 6 * < 1 which is cheaper than

the solution with Xt =1 for which the overall objective function value is

m + o; .

Case 2: DMUt is outside the partial PPS but GBA LP-1 is feasible.

By lemma 6.2 we know that the maximum value O'* can take for any DMUt is

X Y— âx_x _^L. Since the X j’s of the generators in the coefficient matrix have a 0
^ m in ^min

value in the objective function, if Xt = 0 , the maximum possible objective

X Y
function value in this case is —^ Lx - sf L= M . In contrast, suppose DMUt tries

■Xmjn ^rnin

to evaluate with itself in MGBA LP-1 even though GBA LP-1 for DMUt is

feasible. It is easy to see that O'* = Xt = I in this case. However, Xt = 1 has a

penalty of M in the objective function so that the overall objective function value

becomes M + 1. So the solution with Xt = 0 is cheaper. Q.E.D.

It is a simple task to arrive at the value of M from the data and after

computing it, we can use MGBA LP-1 to carry out the efficiency analysis for all

the DMUs using GBA as described in 4.3.319. Whenever DMUt evaluates with

19 Note that die value of M — — X needs to be computed only once from the data at
X ^niin

the beginning of the analysis.

122

itself because there is no other feasible solution, the objective function value will

be greater than 1 indicating that the unit lies outside the current partial PPS. In

such a case, as with the usual GBA procedure, we would invoke the

FindNewGen procedure to identify a new generator among the units in U .

Hence, the GBA procedure is unaffected except for the LP being solved for

DMUt.

Note that one can obtain a tighter bound M ' on M if instead of

identifying the smallest and largest input and output values across the whole

dataset, one looks at the smallest and largest values within each input and output

factor20. However, it is obvious that M > M ' and calculating M is easier than M'

as it circumvents searching for the maximum ‘ratio’ value in each input and

output factor. Hence, we retain the penalty for including DMUt in the coefficient

X Ymatrix as M = — even though it may not be the tight most bound.
•̂ min m̂in

6.1.2.2 Small-m method

A valid data independent penalty for Xt can be any positive value, say,

0.1. However, at this penalty, we cannot guarantee that DMUt will evaluate with

itself iff the corresponding GBA LP-1 is infeasible. We can only guarantee that,

even at this small penalty, DMUt will not evaluate with itself if it lies inside the

partial PPS. For the purpose of GBA this is enough because all that is needed at

steps 1.3 and 1.4 is a way to decide when to invoke procedure FindNewGen

which is required whenever DMUt is outside the partial PPS.

The reason that this penalty is valid for our use is that when DMUt

evaluates with itself at a small penalty of say 0 .1, its overall objective function

value is 1.1 > 1 indicating that the unit lies outside the current partial PPS. In

such a case, as with the usual GBA procedure, we would apply the FindNewGen

procedure to identify a new generator among the units in set U . Hence, the GBA

procedure is unaffected except for the LP solved for DMUt.

A tighter penalty to be computed is given by,

M '=M ax^jd- } > 0; j = 1,...,n;k = 1,...,n; j * ,Ysd>0;c = 1,...,n;d = 1,...,n;c *

123

6.2 Infeasibility in the input-oriented VRS model

6.2.1 Big-M method

As seen in the previous chapter in section 5.3, regardless of whether the

data is strictly positive or not, the input-oriented VRS model (GBA LP-5) can

become infeasible. We can handle the infeasibility issue by employing the Big-M

method developed in the previous section. Theorem 6.2 helps us to quantify the

value of M for the input-oriented VRS model which turns out be the same as M

that was quantified for the CRS counterpart. Before showing these results, we

present below the modified version of GBA LP-5, the Big-M incorporated GBA

super-efficiency model, to be used to solve the input-oriented VRS model.

Minimise 0 ' + y^/1,0 + XtM
jeG E N

subject to,
e ; x , ~ ^ A jX j - A , x , z o

(MGBALP-3)
o + ^ A JrJ + A , r , > Y,

jeG E N

0 + + A, =1
jeG E N

6't free\ , Xt > 0\ j e GEN

The only difference between MGBA LP-3 and MGBA LP-1 for the CRS

counterpart is the additional convexity constraint present in the VRS model.

Compared to GBA LP-5, MGBA LP-3 has one additional column.

X Y
Theorem 6.2: In MGBA LP-3, the penalty value of M - —™ x - ^ 5- ensures

m̂in

that DMUt evaluates with itself only if the corresponding GBA LP-5 is

infeasible.

Proof: Without loss of generality, choose a DMUg (actual or obtained through a

convex combination of some generators) in set GEN as a comparator unit for

DMUt. Let the input and output vector of DMUt and DMUg be represented by

124

{X t , Yt) and (Xg, Yg) respectively. Assume that GBA LP-5 for DMUt is

feasible; a necessary condition for this is Yg > Yt as indicated by the output

constraints. Now using simple algebra, we can see from the set of input

«. \X rg\
constraints that an upper-limit on 6, is given by 6t < w , where, w = j

21. Given that the sense of the objective criterion is minimisation, it is easy to see

that the maximum O'* value that was quantified for the input-oriented CRS

model, viz., Max\p'*} = ~ ~ r ~x , will also hold for its VRS counterpart as
rmn * min

X Ymax w max
VV ̂ ■

m in min

It is now straight-forward to see that the proof for theorem 6.1 can be

easily adapted to prove theorem 6.2. That is, at the penalty value of

X YM = —es«_x—5H2- f DMUt will evaluate with itself only if the corresponding
mm m̂in

GBA LP-5 is infeasible. Q.E.D.

So to avoid infeasibility in applying GBA in the input-oriented VRS case,

X Ycalculate the penalty M from the data by finding —*p_x _2£*_ and use MGBA
-̂ min -̂ min

LP-3 to solve the model using GBA. The GBA procedure described in chapter 5

for solving VRS models essentially remains the same except for the LP being

solved for DMUt.

6.2.2 Small-m method

Here also, the penalty can take any positive value, say, 0.1 and everything

works out exactly as it did for the CRS case. Thus, at this penalty, we cannot

guarantee that DMUt will evaluate with itself iff the corresponding GBA LP-5 is

21 As we assume that GBA LP-5 is feasible, if X rt = 0 , then X rg — 0 . Hence, while

0
computing w , we ignore — . The upshot is that w is determinate.

125

infeasible. We can only guarantee that, DMUt will not evaluate with itself if it

lies inside the partial PPS. Unlike the Big-M method, DMUt may compare with

itself if it lies outside the partial PPS even if the corresponding GBA LP-5 is

feasible. The conclusion is that even at this data independent penalty value for 2,,

the GBA procedure is unaffected except for the LP solved for DMUt.

6.3 Infeasibility in the output-oriented VRS model

As seen in section 5.4.1, regardless of whether the data is strictly positive

or otherwise, the output-oriented VRS super-efficiency model, GBA LP-7, can

become infeasible. To handle infeasibility in this case we can employ the Big-M

technique but a penalty value has to be calculated in this context. Banker and

Chang (2006) article introduced a modified super-efficiency model with penalty

for DMUt calculated in the context of identifying outliers in the data. They used

an output-oriented VRS model for this purpose with a penalty of ‘- 2 ’ for DMUt.

Although this penalty is also valid for our purposes, in this section we will try to

develop an improved penalty meaning a better lower bound and if possible the

infimum, for DMUt in the context of GBA which ensures that DMUt compares

with itself iff the corresponding GBA LP-7 is infeasible. For arriving at this

value, we present below the modified version of GBA LP-7.

Maximise Tj'+ ^ pjO + p tM
jeGEN

subject to,
0 + £ p ,X t +p,X , <x,

(MGBA LP-4)
n X -

jeGEN

0 + pj +pt =1
jeGEN

rft free\ p j , p t > 0 ; j e GEN

We start with the simplest case wherein the data is strictly positive. The

following theorem uses lemma 5.3.

Theorem 6.3: When the data is strictly positive, the penalty at which any DMUt

can be brought into the coefficient matrix of the set of generators such that it

evaluates with itself iff the corresponding GBA LP-7 is infeasible is M = -1.

126

Proof: From lemma 5.3, we know that when GBA LP-7 for DMUt is

feasible, r ff > 0 . So there is a solution to MGBA LP-4 with p t = 0. Since the

coefficients of p } in the objective function are 0 , the overall objective function

value in MGBA LP-4 in this case is tj'* > 0 . In contrast, when DMUt compares

with itself upon solving MGBA LP-4, we can see that 7 '* =1 and p * = \ and

assuming a penalty of M = - l for p t , the overall objective function value

becomes 0. Since the sense of the objective function is maximisation, it is clear

that the former option is better. So p*= 0 unless GBA LP-7 is infeasible for

DMUt. Q.E.D.

In fact, M = -1 is the best lower bound possible when the data is strictly

positive to ensure that DMUt evaluates with itself iff the corresponding GBA LP-

7 is infeasible. Any value of the penalty in the range 0 < M < -1 , although valid

in the context o f evaluating units using GBA, is problematic. This is because

when DMUt lies outside the partial PPS, if a feasible solution exists, 77'* < 1.

The next task is to compute a value for M when the data has some zero

values in them. Fortunately, M = -1 will also hold in this case but with a rider.

The only awkward case is when the objective function value is 0 and there are

multiple optimal solutions to GBA LP-7 for DMUt. This case is illustrated using

the example in table 6-3 below.

DMU X I Y1 Y2

A 10 2 24

B 10 0 36

C 16 8 28

Table 6-3 : Penalty in case of the output-oriented VRS model

Using random weights (3.6, 1, 1) for input XI, outputs Y1 and Y2

respectively and v0 = 0, we can see that DMU B is a generator. Suppose, we

now evaluate DMU A against DMU B in set GEN. The resulting MGBA LP-4

for DMU A is shown below:

127

Maximise rfA + pB0 - pAl
subject to,

0 + +pA\0<\§
n'A2 - Pb® - f t 2 SO

^ 2 4 - p B36 -/0,24£O

A. + =1
Pb’Pa * 0

Clearly, an optimal solution to the above LP “Ha ~ Pb ~ P a ~ ̂

with overall objective function value 0. The optimal weights are v* = 0 and

u* - (0.5,0) with v* = 0 . Another possible optimal solution to the LP is

ti'a= 0, p*B = 1, p \ = 0 with the same optimal weights. The objective function

value in this case is also 0. At either solution, because of the strong duality

theorem, v'*XA + vj = 0 and RA is indeterminate. For both solutions, the

reduced cost value of A, RCA = 1 > 0 indicating that the unit lies outside the

partial PPS.

This is a special case as there are multiple optimal primal solutions which

allow a DMUt that is outside the current partial PPS to evaluate with itself at the

penalty of -1 even when there is an alternative reference set among the

generators in GEN to compare with. However, procedure FindNewGen is

invoked appropriately as RCA > 0.

It is pertinent to note that if we had introduced a penalty of any value less

than -1 for DMUt, then in the above example, the only optimal solution to the LP

would be 7j'A = 0, p B = 1, p \ - 0. Hence, it must be clear from the example that

at the penalty of say ‘-2’, a DMUt would evaluate with itself iff the

corresponding GBA LP-7 is infeasible.

6.4 Infeasibility in the CRS and VRS additive models

As the sense of the objective function in AGBA LP-1 (presented in

chapter 5) is maximisation and we are maximising the total slacks present in

DMUt, the penalty (coefficient of Xt in the objective function) can be any

negative value. We assign a small negative penalty of say -1 toX(so that when

128

DMUt evaluates with itself, its reduced cost value is +1 indicating that it lies

outside the partial PPS and FindNewGen is invoked.

The aforesaid discussion on penalty for the GBA additive CRS model

holds for the VRS model as well; i.e., the penalty for DMUt can be any negative

value and we assign a value of -1 for a clear indication of the location of DMUt

w.r.t the partial PPS.

6.5 Conclusion

In this chapter we presented ways to handle the principal technical

challenge of LP infeasibility in all the DEA models except the output-oriented

CRS model which is never infeasible. In chapter 7, we will discuss the remaining

two technical challenges, namely, tied ratios and indeterminate ratios. We will

also present a novel closed-form solution approach to obtain a positive set of

multiplier values for the generators in the dataset.

129

7 CLOSED-FORM SOLUTIONS TO RESOLVE TIES AND

CONSTRUCT NON-ZERO MULTIPLIER VALUES

In the previous chapter we saw how to deal with the principal technical

challenge of infeasible LPs when applying GBA. In this chapter, we will

examine the issues of ties and indeterminate ratios.

We saw in chapter 4 and 5 that ties and indeterminate ratios are

problematic as in both cases one cannot identify a new generator immediately

upon applying the FindNewGen procedure. In this chapter we present novel

closed-form solutions to resolve both ties and indeterminate ratios in the case of

oriented CRS and VRS models22. Closely connected to these, we also present

closed-form solutions to obtain positive multiplier values for the generators

under CRS and VRS assumptions.

7.1 Indeterminate ratios

7.1.1 Dula’s ratio

One way to avoid indeterminate ratios in the CRS case is to use the ratio

test discussed in Dula (1998). To identify generators at the optimal weights

v*.Ar
(v*,w*), Dula (1998) introduced the r a t i o , =--------- - ,V /e U +; where

eXj

j g U + if RCf =u* Yj - v * X > 0 . SinceMax\RCi }=0, it follows that if
J J J J j e N / U

j g U + then j e U . So, the set U+ c l / contains those status unresolved units

that lie strictly outside the current partial PPS. The vector e is a vector of 1 ’s of

dimension ml and eXj denotes the sum of inputs of DMUj. As eX} > 0 ,Vy,

evaluating R? cannot lead to indeterminate ratio for any DMUj. Dula (1998) has

shown that using R f guarantees the identification of a new generator. In

22 Ties or indeterminate ratios do not pose a problem in the case of CRS and VRS additive
models as the weights in the additive models are constrained to be non-zero.

130

particular, Dula (1998) proved that \£ ArgMaxfa.1? }=DMUf and is unique, then
JeU+

DMUf is a new generator23.

Dula’s ratio R? can be naturally extended to the case of the input and

output oriented VRS models. Assuming that the optimal weights at a particular

iteration are (v*,i/*,i/j) and (v*,w*,vj) for the input and output oriented VRS

models respectively, the original and Dula’s ratios in each case are presented in

table 7.1 below.

Models Original Ratio Dula’s Ratio

Input-Oriented VRS
u 'Y j+ u;

Rj= i \ V j e V
1 v 'X j

n u*Y,.+u;-v*X..
Rf= J ' .V j e U '

•X ,

Output-Oriented VRS
u 'Y j

' . y j e Uv X j +v0
„ u 'Y j- iv 'X j + Va)

R? = 1 ' 1 ,V JeU '
1 eXj

Table 7-1 : Original and Dula’s ratio for the oriented VRS models

As in the CRS case, there are two ratios, viz., Rj and R ? , that can be

evaluated at an optimal solution to the corresponding VRS GBA LP, and one can

potentially24 identify two different generators with one LP solution although only

one is guaranteed.

In GBA, we do not employ Dula’s ratio R^ for the following reason.

While overcoming the problem of indeterminate ratios, R f does not resolve the

issue of tied ratios for which Dula proposes solving a second LP. We will show

_ u Y j - v X j u Y i
23 As shown in Dula (1998), the ratio R , = -------------------- can be reduced to R , = —------;

1 eXj 1 v'Xj

where, v = v* + R ^ and R ^ = Max{R° }, j E U +. Hence, the optimal weights for the

generator DMUf employing his ratio is (v', u*) and not (v*, u*).
24 If ArgMax{Rj }= / and ArgMax\Rj} = / 'w h e r e / ^ / ' , then both / and / ' are

j e U * j e U

generators assuming that the ArgMax is unique in both cases.

131

in the next section that an indeterminate ratio value of Rj does not pose a

problem in itself.

7.1.2 Indeterminate ratios and their association with tied ratios

In section 4.5 we showed why ArgMax{RCj} cannot be used to identify a

generator for the CRS models. However, RCj values can always be used to

decide when to invoke FindNewGen. This is because one of the dual LP

constraints is the reduced cost constraint given by

RCj = uYj - vXj + P < 0, Y/ g G EN , where, P (dual value of the convexity

constraint) is unconstrained in sign under VRS and p = 0 under CRS25. We

showed in chapter 4 and 5 that the efficiency analysis of DMUt is complete if the

dual LP constraints are satisfied for all the n units in the dataset, i.e., if the

condition RCy. = w*Fy. + / T < 0,V/ at (v*,w*,/T) is satisfied. If the

above condition is not satisfied, then the status of DMUt remains unresolved and

we apply procedure FindNewGen to identify a new generator.

Suppose, Afax{RC,}>0 and RCa > 0 for some unit a e U . Then
je U J

a e U +, i.e., unit a lies outside the partial PPS. So, the reduced cost values RCj

also help us to determine the position of the units in U w.r.t. the partial PPS.

Based on this we connect the problematic case of indeterminate ratios to

ties in the value of ArgMax{Rj}. Note that if for a DMUa, its ratio value is
j e U

indeterminate, then Ra = ; this is the best possible value fori^..

Let us first consider the CRS case26. We use the RCj values of the units

in U to ascertain if the efficiency analysis of DMUt is complete. If it is not, i.e.,

u Y .
if RCa > 0 for some a e U , the ratios, ̂ , j e U , are evaluated. If

v X ,

25 To avoid clutter, we simply let P to represent the dual value of the convexity constraint in the
VRS models irrespective of the orientation.
26 We know that in the CRS case the ratio R j remains die same regardless of the orientation.

132

ArgMax{Rj}= DMUf is unique, regardless of whether Max{Rj}= Rf is finite
j e U

or otherwise, DMUf is a generator. Else, when ArgMax{Rj} is not unique,
je U

regardless of whether McocIr ^ is finite or otherwise, we are required to break
MU 1

this tie in ArgMax\Rj} to identify a generator.
MU

As to the VRS models, we saw in section 5.3.1 that RCj can be used to

decide when to invoke FindNewGen and ArgMax{RCj} can be used to identify a
MU

new generator. So the only issue here is how to break ties in ArgMax\RCj}.
M U

In conclusion, indeterminate ratios in themselves do not pose a problem

and can be dealt with in the same fashion as dealing with tied ratios. However,

even when we use RCj and do not have the problem of indeterminate ratios, ties

have to be resolved to identify a new generator. We will see in the next section

how to resolve tied ratio or tied reduced cost values using a novel closed-form

solution approach.

7.2 Ways to resolve ties

From the previous section, we know that the issue of tied ratio or tied

reduced cost values can only occur among DMUs that are strictly outside the

current partial PPS. The task is to identify one generator among the tied units.

Tie breaking plays a crucial role in solving DEA models using faster algorithms

like GBA and BuildHull. Although, Dula (1998) in his extensive experimental

study on solving DEA models remarked that ties do not occur commonly while

using BuildHull, it was found in our experiments using GBA and BuildHull that

ties did occur both in real and simulated datasets .

27 In chapter 8, where we present the computational results, we will see that ties involving several
hundred units occurred while solving a ‘real’ dataset using BuildHull and GBA.

133

7.2.1 Dula’s approach to resolve ties

Dula (1998) proposed a simple approach to identify one generator among

the tied units. This approach is to consider the tied units as a separate smaller

DEA problem and apply BuildHull or any other algorithm for solving the smaller

DEA problem to resolve the status of the tied units. The generators among the

tied units are then appended to set GEN while DMUt (if not resolved) is

evaluated again in the next iteration. Although the approach is entirely valid in

identifying a new generator among the tied units, it has two drawbacks. First, we

would need to solve at least one additional LP to identify a generator among the

tied units. Secondly, the weights obtained by solving the additional LP to identify

a generator among the tied units may not be globally valid to prove its status as a

generator. This is because the new weights that prove that one among the tied

units is a generator cannot guarantee the same when all the units in the dataset

are considered. In other words, the new weights have a local validity but may not

possess a global validity. The second drawback is illustrated in figure 7-1, the

data for which are provided in table 7-2 below.

DMU X I Y1 Y2

A 1 10 8

B 1 7.5 11.5

C 1 7 11.5

D 1 6 11.5

E 1 5.5 11.5

F 1 5 11.5

G 1 3 11.5
Table 7-2 : Data for Dula’s tie-breaking approach

_ D _ . _

PLANE OF XI = 1

B#

u Y1 ►
Figure 7-1 : Graphical illustration of Dula’s tie-breaking approach

Consider the above DEA problem with 2 outputs (Y1 and Y2) and a

single standardised input (XI). There are seven efficient units in total and two

generators overall, namely, A and B. Suppose at a particular iteration, DMUt = B

and GEN = {A}. The current partial PPS is the region to the south-west of A and

the boundary of the PPS is described by dashed lines to the west and south of A.

Upon evaluating B against A, the radial projection of B falls on the boundary line

at B’ to the west of A defined by the set of optimal weights

n \ = (v2, u*i) = (0.695, 0, 0.0869). Dula’s ratio R f would modify the set of

optimal weights to n'2 =(v'2, u*2)={\., 0, 0.0869) and at n '2, Max{/^D}= 1 and

ArgMax[R]D}={B,CyD ,E , F iG}. Let the set of tied units be denoted by
je N

TU = {B,C,D,E,F,G}. Following Dula’s approach, we will consider the units

in TU as a separate DEA problem. If we apply GBA to this DEA problem to

135

identify a generator, we need to choose one unit to be GEN and another to be

DMUt. Suppose we arbitrarily choose DMUt to be B and GEN to be C28. The

partial PPS is the region to the south-west of C and the boundary of the PPS is

described by dashed-dot lines to the west and south of C. Upon evaluating B

against C, the radial projection of B falls on the boundary line to the south of C at

B” defined by the set of optimal weights n \ = (vj, u\)= (0.933, 0.133, 0).

Dula’s ratio R® would once again modify these set of weights to

* j = (v3> «3*)=(1. 0133» 0)- At *s'. M k {r'°} = 1 and ArgMax{R'jD}={B}.
je T U

Hence, applied locally to the units in TU, is a valid set of weights to prove

that unit B is a generator29. But when we apply the weights 7t[to all the n units

in the dataset, Mox{k'z?}= 1.33 and ArgMax^R'^ } = {A}. Hence, does not
j e N

have a global validity to prove that unit B is a generator. In other words, weights

, although valid for the 6 DMU problem, are not valid dual values for the

original 7 DMU problem.

7.2.2 Closed-form solutions to resolve ties

Before we present the closed-form solutions, it is important to recognize

its main limitation. By using the closed-form solutions, we cannot guarantee to

only identify generators from the tied units; rather, the approach can only

guarantee to identify Pareto-Koopmans (P-K) efficient units among the tied

units. We know that both extreme-efficient and efficient but not extreme units

are P-K efficient. In other words, the closed-form solution may not guarantee that

the set of the generators is the minimal subset as it could include Pareto-

Koopmans efficient units that are not generators. Although the GBA originally

introduced in chapter 4 evaluates units only against the set of extreme-efficient

units (generators), it is understood that as long as the units are evaluated only

against P-K efficient units, we will obtain the correct efficiency scores, slacks

and set of peers for all the units. P-K efficient units other than generators are

28 Note that some other arbitrary choice of DMUt and GEN could lead to another tie upon
evaluating the LP. For example, choice of DMUt={C} and GEN={B} leads to another tie.
29 This also dictates that DMU B must be a generator for the original 7 DMU problem.

136

superfluous but their inclusion in GEN, though unnecessary, is un-harmful.

Moreover, it is well-known (see, Thrall, 1996b; Cooper et al, 2007) that efficient

but not extreme units rarely occur in real datasets. This was also the case in our

experience with solving several hundred real and simulated datasets and in

earlier works in Barr and Durchholz (1997) and Dula (1998). Because of the

(almost) total absence of efficient but not extreme units in a dataset, using the

closed-form solutions, we will expect to identify a generator among the tied

units. This was indeed the case in our extensive experiments.

In this section we propose closed-form solutions that not only identify P-

K efficient units among the tied units, thereby circumventing the need to solve

additional LPs, but also such that the new set of weights are strictly positive and

globally valid. First, we will consider resolving ties for the VRS case and

subsequently the CRS case. The reason for this order is that the closed-form

solution for the CRS case builds upon the solution for the VRS case. Orientation

does not affect the logic of the procedure and the closed-form solutions are valid

for the additive models as well. However, tied ratio or tied reduced cost values

do not pose a problem when applying GBA (or BuildHull) to solve CRS or VRS

additive models as all the units tied at the maximum value are guaranteed to be

P-K efficient. This is a consequence of the fact that the weights from the additive

model are constrained to be non-zero.

We note in passing that a naive option upon encountering a tie is to move

DMUt to U and choose another DMU to be evaluated. However, this is

obviously a waste of computational time, and importantly does not guarantee that

one would not encounter a tie again while solving for any other DMU in U

including unit t when it is selected again. By employing our closed-form

solutions, we are able to guarantee that among the tied units we will identify one

P-K efficient unit (in practice, generators) and that the new set of weights are

strictly positive and globally valid. Because of its conclusive nature, we employ

the closed-form solutions to resolve ties in GBA.

137

7.2.2.1 Closed-form solution to resolve ties under VRS

Suppose we had arrived at the optimal set of weights n * = (v*,w*,/r)

where, p* is the dual value of the convexity constraint. Let 7t*f represent the

weights of the input and output factors alone. So K*f = (v*, «*) and

Jt* - (n*f ,p * \ If n*f > 0 , we know that every tied unit is P-K efficient; we can

move all the tied units to set GEN and proceed to evaluate DMUt again (if not

resolved) against the augmented set GEN. The problem of ties arises only when

Kf is not strictly positive.

The closed-form solution computes a set of weights tv with Jvf > 0 from

n* that finds a P-K efficient unit among the tied units. The weights n are

constructed by adding a carefully scaled version n s of n* to unary weights (all

input and output weights are equal to 1 with the dual value of the convexity

constraint p x fixed at 0) n x. So n f = 7Vsf + 7Vxf which is obviously positive. More

importantly the scaling used in constructing 7VS is such that using n to find a

generator breaks the tie. To elaborate, let TU = \tx,t2,...,tk] be the set of k tied

units at the original optimal weights k *, i.e., ArgMax\RC.) . = {/j,^ ,...,^}30.
j e N *

Then weights n with Wf > 0 ensure that a unit p satisfies

ArgMax{RCj}_ = DMUp only if p e T U . The details are as follows.
j e N

Let the total number of units be n and let set N = {l,...,«}. As always,

GEN is the set of currently known generators and U the set of status

unidentified units. Upon solving the relevant GBA LP (GBA LP-5 or GBA LP-

7), suppose we had arrived at the optimal set of weights n* = (v*,w*,y9*).

Assume that the efficiency analysis of DMUt is not complete as U + ^ {^}. In this

case, we apply the FindNewGen procedure using the reduced costs of the units

given by RCj = u*Y j- v*Xj + p * to identify a new generator.

30 A rgM ax \R C ,} . denotes that the ArgMax of the R C , , j e N values is computed at 71*.
j e N K

138

Let Max{ftc } . - a x. Since, MzxIftC,} . = 0 , Max{RC, \ . - a x. Also
j e N J n j e N / U 1 n j e U 1 n

let ArgMax{RCj} . = \tx,t2,...,tk\ , i.e., k> 2 units are tied for the maximum
j e N ”

reduced cost value a x. Let the set of tied units be denoted by TU = {fp /2

The optimal weights are such that n*f > 0 but n*f >0; i.e., some of the factors’

weights are 0 and we need to identify one P-K efficient unit among the k tied

units.

Let, Max v?C, r . = a , . In other words, a , is the second highest reduced
j e N I T U J J * i

cost value at n *. By definition, 0 < a 2 < a x. Also, let a 3 = (al - a 2)> 0.

Now, consider the unary set of weights 7tx = (l, 1,0). /r1 is composed of

input and output weight vectors of Is of appropriate dimensions with the dual

value of the convexity constraint p x fixed at 0. Let Mox{r Cj

Min\RCj} , = ct)2 and co3 = -co2). Assume for now that o\ * (02 and hence
j e N J "

(Or,
0)3 > 0. Let, Y\ - and note that by definition yx > 0 . Finally let

(X3

y2 = yl + £ ,£ > 0 31.

Consider the scaled set of weights given 1oyns = (y2 X f r *) . Since we are

simply multiplying the original LP weights n* by y2,Max\RCj \ , ={y2xcxi)
j e N J n

and ArgMax{RC.} s =]$\,t2,...,tk}. We scale the original LP weights n* by y2
j e N *

to counterbalance the reduced cost values at the unary weights /r1 upon their

amalgamation. Consider now the synthesised set of weights 7t - K s +7tx. Note

that 7tf > 0 because x sf > 0 and n xf > 0 . Also, as n f > 0 , the units achieving

the global maximum of the reduced cost value at n f must be P-K efficient.

We prove in lemma 7.1 below that the global maximum of the reduced

cost values at n will be achieved only by one or more of the units in set T U .

31 We assume a value of 1 for £ in our illustrations and computational experiments.

139

Lemma 7.1: Assuming 0)x ^ co2 , at k , ArgMax\RCj}_ = ylrgMax{/?C;.}_.
j e N j e T U

In words, lemma 7.1 states that the global maximum of the reduced cost value at

It will only be achieved by one or more units in set T U , provided ct)x *co2.

Proof: First consider the effect of choosing the scaling factor yx on k instead

of y2, i.e., define n 's = (yl X7U*) and Jr' = n ’s + n x. Now, given that

? = * , s + x \{ R C J}r = [RC] + {RCj I .

It follows that for j e T U , \rC j }^s = (yx x a x) and we know that

Min\RCj = 0)2. Therefore, over the tied units, M in { R C j> (y l x a l)+ eo2.

On the other hand, among the remaining units, Max }̂ ,s = (y1 x a 2)

and we know that MaxlRC,} . = ax . Therefore, Max t e c , L, < (r, x a 7) + 0),.
j e N L ' V 1 j e N I TU J ' 1 1 1 1

So> I f “ L - [(ft x <*1) +] - [(ft x <*2) + <*>1] • Rearranging

the terms, > \yx x (a x - a 2) \ - (<y,-co2).

Recall that yx = So, yl x (a l - a 2)-(eol -co2) = 0.
a 3 [ax- a 2)

Hence, at a scaling factor of r , , MinlRC . > Max i / ? C , . It follows that if
° 1 yert/ 1 j J * j e N I T U 1 J

n s - y 2xn* - (y, + e)xn* and n = (r, x n ')+ n 1, M n b c , }_ > Max {/?C,}_.• 2 ' V' 2 > ye 7 U «- J * k j e N / T U 1 J J x

This dictates that, provided co{ & (02, the global maximum of the reduced cost

values at n will only be achieved by the units in set T U , i.e.,

ArgMax{RCj}_ = ArgMax{RCj}_. Q.E.D.
j e N j e T U

Now consider the highly restrictive possibility of 0)x = co2, i.e., all the n

units achieve the same reduced value at Kx = (l, 1,0). So a\ - 0)2 = 0 and hence

j f " } { R C j L - M a x f t C j)w = (g x (a, - a 2)) - (o, - m1) = g x (a , - a 2) > 0;

where, g > 0 is the scaling factor to be applied on the original optimal weights

140

7t*. It is easy to see that any positive value of g is enough to ensure that

ArgMax{RCj}_ = ArgMax{RC.}_. The simplest way to implement this would be
j e N K j e T U *

to let g - 1 leading to n = tz* + n x.

7.2.2.1.1 Illustration of the closed-form solution to break ties under VRS

Let us consider the following 10 DMU, 2 inputs and 2 outputs DEA

problem presented in table 7-3 below to illustrate the above closed-form solution.

DMU X I X2 Y1 Y2 RCj
A 1 0 3 4 12
B 1 9 40 7 12
C 6 0 60 2 6
D 6 9 10 5 6
E 0 40 22 1 -37
F 0 15 8 1 -12
G 1 18 5 5 -3
H 4 0 8 4 12
I 4 30 150 10 0
J 5 16 7 2 -10

*'f 0 1 0 3
Table 7-3: Illustration of closed-form solution to break ties 1

Assume that GEN = {I}, DMUt = {A} and upon solving the relevant

GBA LP, we arrived at the optimal weights defined by n*f = (0, 1, 0, 3) with

J3* =032; at 71*, Max{RCj)]i. = 12 > 0 andA rgM ax{R C ^ = {A,B,H}. Unit I is
j e N

in the optimal basis and consequently has RCf = 0 ; units E, F, G and J are

strictly inside the current partial PPS indicated by their non-positive reduced

costs. Using the notations introduced earlier, a x = 12, or2 = 6 and

a 3 ~ (a i ~ a 2) = 12 - 6 = 6 .

32 Clearly the closed-form solution is unaffected if J3* ^ 0 as it is a constant and its value

(positive or negative) affects the RC ■ value of all the units uniformly. Here, for illustrative

purposes we have let f3* — 0 .

141

Now consider table 7-4 below where for the same dataset, the RCj values o f the

units are listed at the unary weights 7tlf = (l, 1, 1, l) with p x = 0 .

DMU X I X2 Y1 Y2 RCj
A 1 0 3 4 6
B 1 9 40 7 37
C 6 0 60 2 56
D 6 9 10 5 0
£ 0 40 22 1 -17
F 0 15 8 1 -6
G 1 18 5 5 -9
H 4 0 8 4 8
I 4 30 150 10 126
J 5 16 7 2 -12

4 1 1 J 1
Table 7-4: Illustration of closed-form solution to break ties 2

Using the notions introduced earlier, a\ = 126 ,co2 = -17 ,

0), =((W1 — <2>2) = 126-(—17) = 143; also, = — = 23.83 and
a 3 6

ft = * + 1 = 24.83.

Now, the synthesised set of weights are given by 7U = 7ZS +7tx where

n s = y2xn* . Hence, ;f = (l, 24.83, 1, 74.5) with fl* = 0 . At Jr, the reduced

costs are listed in table 7-5 below.

DMU X I X2 Y1 Y2 RCj
A 1 0 3 4 300
B 1 9 40 7 337
C 6 0 60 2 203
D 6 9 10 5 153
E 0 40 22 1 -896.83
F 0 15 8 1 -290
G 1 18 5 5 -70.49
H 4 0 8 4 302
I 4 30 150 10 146.00
J 5 16 7 2 -246.33

7tf 1 24.83 1 74.5
Table 7-5: Illustration of closed-form solution to break ties 3

142

We know that the RCj values at n are the sum total of the reduced cost

values at n s and n x. The RCj values at n* are magnified by the factor

y2 = 24.83 such that it counterbalances the effect of the reduced cost values at

the unary weights 7tx. The only purpose of the unary weights n x is to ensure that

the final set of weights is strictly positive. By magnifying the reduced cost values

at n* by the factor y2 we ensure that at the synthesised set of weights n , the

global maximum of the reduced cost value is achieved only by units in set

TU = {A, B, H}. Here, unit B in set TU achieves the unique maximum reduced

cost value at 7 t .

1.2.2.2 Closed-form solution to resolve ties under CRS

Once again ties in the CRS case are an issue only if the optimal LP

weights 7i* is not strictly positive. In contrast to the VRS case, the closed-form

solution approach in the CRS case amalgamates a ‘twice-scaled version’ of the

original LP weights n ss to a ‘scaled version’ of the unary weights n xs. The

additive operation ensures that the synthesised final weights n are strictly

positive.

The closed-form approach under CRS can be broken down into 4 steps.

In the first step, the original LP weights k* are scaled to 7 t s such that only the

tied units are strictly outside the partial PPS. In the second step, the unary

weights 7 t x are also scaled to K xs s o that the reduced cost values of all the n

units are non-positive. In the third step, the modified LP weights n s are scaled

again to n ss so as to ensure that upon adding them to the scaled unary weights

7 t x s , only the originally tied units have a strictly positive reduced cost value. In

the final step, the weights 7 t ss and k xs are amalgamated. Following the above

four steps will ensure that at the final positive weights n , only the tied units

have ratio values > 1 and hence the global maximum of the ratio value can only

be achieved by the originally tied units. In this section we will derive the analytic

form of the closed-form solution. In the subsequent section, we will illustrate its

143

employment using two examples, viz., when the maximum ratio value is finite

and secondly, when it is infinite (indeterminate).

Assume that upon solving the relevant GBA LP (GBA LP-1 or GBA LP-

3), we had arrived at the optimal set of weights ft* - (v*,w*). Let the efficiency

analysis of DMUt be incomplete, i.e., U + * {^}. In this case, we apply the

u Y .
FindNewGen procedure using the ratio values, R . = -----—, to identify a new

v ’ x j

generator among the nnits in U . Let Max\Rj = rx >1. Note that

Max\R , f . could be an indeterminate ratio value, i.e., r, = °o, and the following
j e N L 3 J x

closed-form solution approach will work in such a case as well.

Sine e , M axJ tR])'. =1, M a x ^ ^ . =r,. Let^rgAfax{fl = {r,,r2,...,rt };

i.e., k > 2 units are tied for the maximum ratio value rx. Once again, let the set

of tied units be denoted by TU = {r19/2,...,rt }. The weights are such that ft* >0

but ft* > 0 .

Step 1: Scaling ft* to f ts such that only the tied units are strictly outside the

partial PPS.

Let, Max {ft, r . = r7: i.e., r7 gives the second highest R, value among
j e N I T U J n J

the units in AT. By definition, 1 <r2 <rx. Consider the modified set of weights

f ts = (r2 xv*, w*). As we have simply scaled (multiplied) the input weights by

r2, the ratio values also get scaled down by the same r2 value; i.e., at fts ,

Max{R, L =1, {k,L = ~ = r3 > l , j e T U . Also,
j e N ITU J X J

ArgMaxlR. } s = {t,, t7 a } , Max \r C- } , = 0 and MinlRC. K > 0 , where,
j e N 1 x ̂ KJ j e N ITU 3 j e T U ̂ 3

R C j , the reduced costs of the units at ft*, are given by u*Yj -v * X j. Let,

Step 2: Scaling unary weights f t1 to f t ls so that R C j < 0, V j .

144

Now, consider the unary set o f weights 7tx = (l,l) . Let Max{Rj = r4 .

Consider the modified set of unary weights 7txs = (r4 x l, l) . As we have simply

scaled (multiplied) the input weights of 7tx by r4, the ratio values also get scaled

by the same rA factor; i.e., at 7txs, Max\R . f 1S = 1 and M a x \ R C , =0. Let,
j e N J * j e N L J J r

MimRC , r 1S = a 2 and assume for now that a 2 ^ 0 ; hence, a 2 < 0 . Let,
j e N

an =
or,

and note that by definition yx > 0 . Finally, let y2 = y1+ £ ,£ > 0 .

Steps 3 & 4: Scaling n s by y2 to obtain 7 t ss and amalgamating 7 t ss with n xs to

synthesise J t .

Consider the twice-scaled set of weights given by n ss - (y2 X 7 t s). As we

are scaling both the input and output weights at 7 t s by y2 the Rj values remain

the same at 7 t s s , i.e., M ax\R j}^ = M a x ^ j} ^ =r3 and so

ArgMax\Rj} = {/15̂ 2,...,^}. However, the RC, values get scaled by y2 and so
j e N n

^ { RCJ = (r 2x a t)> 0 and M a x ^ R C j = y2 x 0 = 0 .

Consider now the synthesised set of weights 7 t obtained using the

additive operation n = 7 t ss + n xs. Note that I t > 0 as 7 t ss > 0 and 7 t xs > 0 .

We prove in lemma 7.2 below that, assuming a 2 * 0 , at n the global

maximum of the ratio values will only be achieved by the units in set T U .

Lemma 7.2: Assuming or, ^ 0 , at J t, Max (ft, r_ < M in\R. L .
0 2 j e N I T U J J * j e T U 1 1

In other words, lemma 7.2 states that the maximum of the ratio values at J t will

only be achieved by the units in set T U , provided that a 2 * 0 .

Proof: First consider the effect of choosing the scaling factor of yx on 7 t s

instead of y2, i.e., define 7 t ' ss = (yl x /r5) and 7 t ' = n ,ss + 7 t x s . Now, given that

r = . {sc, I = { r c i } + { s c , .

145

It follows that among the tied units, Min{RCj }̂ /iSS = (y1 x o rj and we

know that Min{RCj}̂ 1S = a 2. Therefore, M m { R C j> (y 1x a l)+ a 2.

On the other hand, among the remaining units,

Max \r C i !,« = 7, x 0 = 0 and we know that MclA r C, } 1S = 0. Therefore,
i e N I T U J J * j e N L 1

M a x { R C \,< 0.
i e W / 7 7 / L J J 1Cj e N I T U

So, Mm{Rc X > y x a x+ a 2 =
or,

x ATj + a 2 > 0 as a 2 < 0 .

Consequently, Min\Rj}__, >1. Hence, at a scaling factor of yl , > 0

and M^{/?y}_,>l. It follows that if ft® = y2 X fts = (yj + f) x /r5 and

= (v x ;r5 }_ > 0 and Min{R,}_ > 1. Given
v/ 2 ’ jeT U 1 ' ; e3T7 L y J *

that Max \RC t }_ < 0 and similarly, Max \RC ■}_ < 0 and
j e N I T U 1' l l j c j e N I T U 1 i } c

consequently, Max y?, L < 1 , Min\R, r_ > Max { f tL . Hence, provided
j e N I T U L j e T U 1 1 j e N I T U J J *

or2 0 , the global maximum of the ratio values at ft will only be achieved by

the units in set TU as all the tied units have a ratio value > 1 at f t . Q.E.D.

Now consider the highly restrictive possibility of a 2 = 0 , i.e., all the n

units have the same ratio value at f tx. So Min{RCj}_ = (g x a x) > 0; where,

g > 0 is the scaling factor on ft® . It is easy to see that any positive value of g is

enough to ensure that Max }_ < Min{Rj}_. The simplest way to implement

this would be to let g = 1 leading to ft = ft® + ft® .

7.2.2.2.1 Illustration of the closed-form solution to break ties under CRS

We will consider two examples to illustrate the above closed-form

solution approach, viz., one in which the data is strictly positive and the

maximum ratio is finite and another in which the data has some zeroes and the

maximum ratio value is indeterminate.

146

Consider first the following 10 DMUs, 2 inputs and 2 outputs positive

data example shown in table 7-6 below.

DMU X I X2 Yl Y2 RCj Rj
A 1 1 3 3.5 6 1
B 5 3 40 10.5 18 1
C 6 2 60 2 2 2
D 6 9 10 5 1 1.11
E 2 40 22 1 -38 0.05
F 3 15 8 1 -13 0.13
G 1 3.5 5 12.25 21 7
H 4 3 8 4 5 2.67
I 4 20 150 10 0 1
J 5 16 7 2 -12 0.25

Tt* 0 1 0 2
e 7-6: Illustration of closed-form so ution to break

Assume that GEN = {/}, DMUt = A and upon solving the relevant GBA

LP, we had arrived at the optimal weights n * = (0,1,0, 2). At n* ,

Mox{Rj } . = 7 > 1 and ArgMax{Rj} . = {A, B, G}. Using the notations
j e N

introduced earlier, r2 =2.67 and the modified optimal weights are

7is = (0, 2.67, 0, 2) . The reduced cost and ratio values at n s can be seen in

table 7-7 below.

DMU X I X2 Yl Y2 RCj R j

A 1 1 3 3.5 4.33 2.625
B 5 3 40 10.5 12.99 2.625
C 6 2 60 2 -1.33 0.75
D 6 9 10 5 -14 0.416
E 2 40 22 1 -104.66 0.018
F 3 15 8 1 -38.00 0.05
G 1 3.5 5 12.25 15.16 2.625
H 4 3 8 4 0 1
I 4 20 150 10 -33.34 0.375
J 5 16 7 2 -38.67 0.0937

- SK 0 2.67 0 2
Table 7-7: Illustration of closed-form solution to break ties 2

As discussed earlier, at 7ts , only the tied units in TU have reduced cost

values > 0 and consequently, ratio values > 1; now, Min{RCj }^s = a x = 4.33 > 0.

147

Consider the following table where for the same dataset, the ratio and

reduced cost values are shown at the unary weights 7tx = (l, 1,1, l) .

DMU X I X2 Y l Y2 RCj R j

A 1 1 3 3.5 4.5 3.25
B 5 3 40 10.5 42.5 6.31
C 6 2 60 2 54 7.75
D 6 9 10 5 0 1
E 2 40 22 1 -19 0.54
F 3 15 8 1 -9 0.5
G 1 3.5 5 12.25 12.75 3.83
H 4 3 8 4 5 1.71
I 4 20 150 10 136 6.67
J 5 16 7 2 -12 0.428

7 t X 1 1 1 1

Table 7-8: Illustration of closed-form solution to break ties 3

By scaling the input weights by the maximum ratio value of 7.75, at the modified

unary weights 7txs = (7.75,7.75,1, l) , we get the following reduced cost and ratio

values.

DMU X I X2 Y l Y2 RCj R j

A 1 1 3 3.5 -9 0.41
B 5 3 40 10.5 -11.5 0.81
C 6 2 60 2 0 1
D 6 9 10 5 -101.25 0.129
E 2 40 22 1 -302.5 0.07
F 3 15 8 1 -130.5 0.064
G 1 3.5 5 12.25 -17.625 0.49
H 4 3 8 4 -42.25 0.22
I 4 20 150 10 -26 0.86
J 5 16 7 2 -153.75 0.055

- I S
K 7.75 7.75 1 1

able 7-9: Ulustraltion of closed-jbrm solution to break ties

At k xs , - a 2 = -302.5 , y1 =
j e N J n

a 2 -302.5
a [4.33

= 69.807 and

y2 = y +1 = 70.807. Now the synthesised set of weights is given by

7z = 7tss +7txs = y2 X7ts +7txs = (7.75,196.57, 1, 142.61). At k , the reduced

cost and ratio values are shown in table 7-10 below.

148

DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 3.5 297.83 2.457
B 5 3 40 10.5 909.0 2.446
C 6 2 60 2 -94.41 0.785
D 6 9 10 5 -1092.56 0.398
E 2 40 22 1 -7713.71 0.020
F 3 15 8 1 -2821.19 0.050
G 1 3.5 5 12.25 1056.29 2.518
H 4 3 8 4 -42.25 0.931
I 4 20 150 10 -2386.26 0.397
J 5 16 7 2 -2891.65 0.0917

n 7.75 196.57 1 142.61
Table 7-11): Illusltration of closed-form so ution to break ties 5

The reduced costs of the n units at n are the sum total of the reduced

cost values at 7tss and n xs. The reduced cost values at the modified optimal

weights 7TS at which some of the units in U , viz., {^,5,(7}, were tied for the

maximum ratio value are magnified by the factor y2 such that it counterbalances

the effect of the RCj and the corresponding Rj values at n xs. Hence, by

magnifying the RCj values at n s by y2 we ensure that at H , the RCj values

are strictly positive only for the units in TU = {A,B,G}. This would dictate that

{i?y.}_ > 1 only if j e T U . The maximum of the ratio values at n is achieved by

units among the k tied units and since the weights are strictly positive, they must

be P-K efficient. In the above example, unit G, which was one of the originally

tied units, achieves the unique maximum ratio value at n .

Consider now the following example with 10 DMUs, 2 inputs and 2

outputs shown in table 7-11 below. The data has some zero values in them and at

a particular iteration, the maximum ratio value is indeterminate (infinite) and tied

for some units in U .

149

DMU X I X2 Y1 Y2 RCf R i
A 1 0 3 3.5 7.00 00

B 5 0 40 10.5 21.00 00

C 6 2 60 2 2.00 2.00
D 6 9 10 5 1.00 1.11
E 2 40 22 1 -38.00 0.05
F 3 15 8 1 -13.00 0.13
G 1 0 5 12.25 24.50 oo
H 4 3 8 4 5.00 2.67
I 4 20 150 10 0.00 1.00
J 5 16 7 2 -12.00 0.25

n 0 1 0 2
Table 7-11: Illustration of closed-form solution to break ties 1

Assume that GEN = {/}, DMUt = A and upon solving the relevant GBA

LP, we arrived at the optimal weights k * = (0,1,0,2) . A t n* ,

Max\Rj \ . = oo > l and ArgMax{Rj} . = {A,B,G). Unit I is in the optimal basis
j e N

and has a ratio value of 1 and units E, F and J are strictly inside the partial PPS

with ratio values < 1. Using the notations introduced earlier, r2 =2.67 and the

modified optimal weights are n s - (0,2.67, 0, 2). The reduced cost and ratio

values at n s can be seen in table 7-12 below.

DMU X I X2 Y1 Y2 RCj Rj
A 1 0 3 3.5 1 00

B 5 0 40 10.5 21 00

C 6 2 60 2 -1.33 0.75
D 6 9 10 5 -14 0.416
E 2 40 22 1 -104.67 0.018
F 3 15 8 1 -38 0.05
G 1 0 5 12.25 24.5 00

H 4 3 8 4 0 1
I 4 20 150 10 -33.34 0.375
J 5 16 7 2 -38.67 0.093

n s 0 2.67 0 2
Table 7-12: Illustration of closed-form solution o break

At k s only the tied units in TU have strictly positive reduced cost

values and hence ratio value = oo > 1; Min{RCj = a x = 7.

150

Now consider the following table where for the same dataset, the ratio

and reduced cost values are listed at the unary weights n x = (l, 1,1, l) .

DMU X I X2 Y1 Y2 RCj
R j

A 1 0 3 3.5 5.5 6.5
B 5 0 40 10.5 45.5 10.1
C 6 2 60 2 54 7.75
D 6 9 10 5 0 1
E 2 40 22 1 -19 0.54
F 3 15 8 1 -9 0.5
G 1 0 5 12.25 16.25 17.25
H 4 3 8 4 5 1.71
I 4 20 150 10 136 6.66
J 5 16 7 2 -12 0.42

7ZX 1 1 1 1
Table 7-13: Illustration of closed-form solution to break ties 3

By scaling the input weights by the maximum ratio value of 17.25, at the

modified unary weights 7txs = (17.25,17.25,1,1), we get the following reduced

cost and ratio values shown in table 7-14 below.

DMU X I X2 Y1 Y2 RCj Rj
A 1 0 3 3.5 -10.75 0.37
B 5 3 40 10.5 -35.75 0.585
C 6 2 60 2 -76 0.449
D 6 9 10 5 -243.75 0.0579
E 2 40 22 1 -701.5 0.0317
F 3 15 8 1 -301.5 0.0289
G 1 3.5 5 12.25 0 1
H 4 3 8 4 -108.75 0.099
I 4 20 150 10 -254 0.386
J 5 16 7 2 -353.25 0.0248

_1S
7 t 17.25 17.25 1 1

Table 7-14: Illustration of closed-form solution to break ties 4

A t/r15,M«{#C..} IS = a 2 = -701.5, yl =
j e N J n

a 2 -701.5
a i 7

= 100.21 and

y2 = yx+\ = 101.21. Now the synthesised set of weights is given by

n = n ss +7txs = y2 x n s + x xs = (17.25, 287.14, 1, 203.42). At n , the reduced

cost and ratio values are shown in the table below.

151

DMU X I X2 Y1 Y2 RCj Rj
A 1 0 3 3.5 697.72 41.44
B 5 3 40 10.5 2089.66 25.22
C 6 2 60 2 -210.957 0.688
D 6 9 10 5 -1660.69 0.382
E 2 40 22 1 -11294.8 0.0195
F 3 15 8 1 -4147.49 0.048
G 1 3.5 5 12.25 2479.65 144.74
H 4 3 8 4 -108.75 0.883
I 4 20 150 10 -3627.68 0.375
J 5 16 7 2 -4266.72 0.088

n 17.25 287.14 1 203.42
Table 7-15: Illustration of closed-form solution to break ties 5

The reduced cost values at the modified optimal weights n s at which

some of the units in U , {A, B, G}, are tied for the maximum indeterminate ratio

value are magnified by the factor y2 such that it counterbalances the effect of the

reduced cost values at k xs . Hence, by magnifying the reduced cost values at Ks

by y2 we ensure that at n , the reduced cost values are strictly positive only for

TU = {A,B, G} and hence }_ > 1 only for j e T U . Also, by amalgamating the

‘twice-scaled’ LP weights 7iss with n xs, we ensure that n is strictly positive

and hence the global maximum ratio value at n will be finite. In the above

example, unit G, one of the originally tied units at an indeterminate ratio,

achieves the unique maximum finite ratio value at n .

7.3 Strictly Positive multiplier values for generators

7.3.1 Literature review
An important topic in the DEA literature that is closely connected with

the closed-form solutions developed in the previous section is obtaining strictly

positive multiplier values for the generators without explicit weight restrictions.

A recent article by Cooper et al (2007) proposed a Mixed Integer Linear Program

(MILP) based approach under CRS assumption for obtaining strictly positive

multiplier values for a generator that currently has some zero weights. The

approach necessitates solving two MILPs for a generator to obtain positive

multiplier values for it. In the first step, they solve a MILP for a generator

152

wherein they try to identify a set of multiplier values that has the maximal

support in the sense of the number of generators (including the generator under

consideration) sitting on the corresponding hyperplane. In the second step, they

solve another MILP, wherein they try to identify a set of multiplier values that

are not only strictly positive, but has the maximal support achieved in the first

step. See Cooper et al (2007) for a review of early works on this important topic,

a detailed discussion of their approach, and application of their method to a real

world example considered in Dyson and Thanassoulis (1988). See also Argyris

(2008) for a discussion on why the approach presented in Cooper et al (2007)

could fail in a special case to arrive at strictly positive multiplier values although

Argyris’ discussion was presented for the VRS case while Cooper et al (2007)

approach was only presented for the CRS case . To show that Argyris’ claim is

also valid for the CRS case, we present an example in table 7-16 below in which

the method developed in Cooper et al (2007) fails.

Consider the following 5 DMU, 2 inputs, 2 outputs dataset presented

below.

DMU X I X2 Y1 Y2
A 2 2 2 4
B 2 2.5 2 4.8
C 2 3.5 2 5.2
D 4 3 4 6
E 4 1 3 5

Table 7-16 : Example in which Cooper et. al.’s (2007) approach fails

All the 5 units are extreme-efficient and the extreme rays of the PPS

described by the five DMUs can be seen in table 7-17 below.

Extreme Rays vl v2 ul u2 Extreme-efficient units supported
wl 77 92 0 80 B, E
w2 19 4 0 10 B, C
w3 11 8 9 5 A, B, E
w4 13 0 0 5 C
w5 0 5 0 1 E
w6 0 3 1 0 E
w7 5 4 8 0 D, E
w8 3 2 3 1 A, D, E
w9 1 0 1 0 A, B, C, D
Table 7-17 : Extreme rays for the 5 DMU, 4 factor example

33 Incidentally, Argyris’ (2008) discussion on fully-dimensional facets and efficient facets needs a
careful inspection as he seems to have missed the fact that under VRS assumption, there can be
efficient facets supporting fewer than m generators.

153

Now among the 9 extreme-rays, if we consider ray w9, units A, B, C and

D are supported at the corresponding hyperplane. For these extreme-efficient

units, ray w9 provides the facet with maximal support of 4 extreme-efficient

units. However, this is a weak-efficient facet34 as it has v2 = 0 and u2 = 0 and

there are no other extreme-rays that has a support of 4 extreme-efficient units but

with strictly positive multiplier values. The only efficient facets for the 5

extreme-efficient units are given by rays w3 and w8 with maximal support of

3 (= m -1) units. In other words, only if to their first MILP, they add a constraint

restricting the maximal support to be < m - 1, the above issue could be

avoided .

A current working paper by Bougnol et al (2010) also looks at obtaining

positive set of multiplier values for extreme-efficient units using Interior Point

Methods (IPM) under VRS assumption. Their method necessitates transforming

the original dataset and solving an LP on the transformed data for each extreme-

efficient unit using IPM. A desirable feature of their method is that, at least in

theory, the multiplier values arrived at using the IPM to solve their LP are not

only strictly positive but also the solution lies in the analytic centre of the optimal

face. In other words, apart from being positive, their multiplier values satisfy a

well-defined optimization criterion by lying in the analytic centre of optimal

face. This optimization criterion, according to them, is desirable as it imparts

balance and uniformity of weights and slack values (see, Gonzalez-Lima et al,

1996). Although this work is still at a nascent stage, we can identify 2 limitations

with it. The first limitation is that they need to transform the original dataset and

solve an additional LP for each extreme-efficient unit using IPM to obtain

positive multiplier values for it. The second limitation is that, as they indicate,

different implementations of IPM to solve their LP arrived at different solutions;

although the solutions from the different implementations are all strictly positive,

they do not necessarily lie in the analytic centre of the optimal face as desired.

34 A facet is weak-efficient if some of the multiplier values it defines are 0. Else, it is strong-
efficient or efficient.
35 Professor Jose Dula in a private communication on 12/06/2010 acknowledged this - "Srini, I
have been thinking about the <=m-l constraint you propose for the MILP in (4)...it is an
interesting way to resolve the obvious problems with the current formulation by Cooper Ruiz and
Sirvent (and Olesen and Petersen) ...One needs to be tactful, however especially in deference to
Cooper”.

154

Given that their work is still a working paper, we will overlook it for comparison

purposes.

In this section, unlike Cooper et al (2007), whose method was presented

only for the CRS case, we describe closed-form solutions to achieve positive

multiplier values under CRS and VRS assumptions thereby circumventing the

need to solve two additional MILPs. Our closed-form solution approach differs

from that of Cooper et al (2007) in that the final multiplier values for a generator

obtained using our approach has the least support in the data. In other words, the

corresponding generator sits alone on the new hyperplane described by strictly

positive weights. This situation is also encountered in the approach presented in

Chames et al (1991) which required solving multiple LPs for a generator36 to

obtain positive multiplier values for it.

7.3.2 A closed-form solution for achieving positive weights under CRS

The closed-form solution approach to break ties under CRS assumption

can be applied with some modification to obtain positive weights for the

generators. The procedure is essentially the same as in breaking ties in that it

involves amalgamating a ‘twice-scaled version’ of original LP weights 7tss to a

‘scaled version’ of the unary weights 7tls. The only difference is that instead of

more than one unit achieving the maximum R. value at the original optimal

weights n *, the maximum ratio value is uniquely achieved by a single unit

which is confirmed to be a generator37; however, n* > 0 and we are interested

in providing this generator with a set of strictly positive multiplier values. We

will describe the closed-form solution approach below before presenting an

example to illustrate its working.

Assume that upon solving the relevant GBA LP (GBA LP-1 or GBA LP-

3), we had arrived at the optimal set of weights n* =(v*,w*). The efficiency

analysis of DMUt is not resolved as U+ & {^}. We apply the FindNewGen

36 Their approach requires solving as many additional LPs for a generator as there are 0 valued
input and output weights at the optimal solution.
37 Note that a necessary condition for our closed-form solution to guarantee a positive set of
multiplier values for any generator is that it achieves the unique maximum ratio value at 7T*.

155

procedure using the ratio values Rj = and realize that Mcvc{Rj = rx > 1

and ArgMax\Rj \ , ={DMUg}. The maximum of the ratio values could be
j e N n

achieved at an indeterminate ratio, i.e., ri = , and the following closed-form

solution will work in this case as well. Some of the weights in n* are 0 and

although DMUg is confirmed to be a generator, we are interested in providing it

with non-zero multiplier values.

Let, Max{Rj } . = r2. By definition, 1 <r2 < rx. Consider the modified set
j e N / g J n

of weights# 5 = (r2xv*, w*). At # 5 , M ax^R .), — 1, {/? } , = — = r3 > l ,
j e N I g J » Tj

ArgMax^Rj)^ ={DMUg}; also, Mox\r Cj \ ^ = 0 and {/?Cg \^s = a x > 0 ,
j e N j ^ N / g

where, RCj are the reduced costs of the units.

Now, consider the unary set of weights n x - (l,l). Let = r4.

Consider the modified set of unary weights # 15 = (r4 x 1, l) . At # 15,

Max\R, [. = 1 and MaxlRC, } = 0. Let, MimRC, f 1S = a 2 and assume for
j e N 1 j e N J * j e N J n

a
a,

and y2 = yl + e , e > 0 .now that a 2 * 0 and hence, a 2 < 0. Let, yx =

Consider, the scaled set of weights given by Kss = (y2 x /r5). At 7tss, as we have

scaled both the input and output weights by y2, Mox{Rj = r3; also,

Mcdc\r Cj = y2 x 0 = 0 and {/?Cg = (y2 x a x) > 0. Consider now the

synthesised set of weights n - 7tss + n xs. Note that # > 0 as Jtxs > 0 and

n 88 > 0 .

We prove in lemma 7.3 that, provided a 2 * 0 , at the synthesised set of

weights # , the global maximum of the ratio values will only be achieved by

DMUg.

156

Lemma 7.3: At K , A rg M a x ^^ = DM Ug , provided a 2 ^ 0 .
j e N *

In words, lemma 7.3 states that the global maximum of ratio values at n will

only be achieved by DMUg, assuming a 2 * 0 .

Proof: First consider the effect of choosing the scaling factor of yx on n s instead

of Y i , i-e-> define n 'ss - (yx xn:s) and n ' = n ss + n xs. Now, given that

+ * “ , { rc X ={Rcy} ^ +{«c;};ris.

It follows that for DMUg, {i?Cg} B = (yx x a x) and we know that

Min\RCj}̂ 1S = a 2. Therefore, {/?Cg >(y1x a l)+ a 2.

On the other hand, among the remaining units, Max {RCj} s = yx x 0 = 0
j e N I g J "

and we know that Max{RCj = 0 . Therefore, Max{RCj}_, < 0.
j e N " j e N I g

a.
So, {RCg > ^ x a , + a 2 =

a,
x a {+ a 2 > 0 as a 2 < 0. Consequently,

Min\Rg} > 1. Hence, at a scaling factor of yx, Min{RCg > 0 and

Min\Rg > 1. It follows that if n ss - y2 x n s - (yx +£)x7ts and

n - (y2 x?rs)+ n xs, {/?Cg }_ > 0 and {/?g }_ > 1. Given that Mox{r Cj < 0 and

similarly, Max{ftC }_ < 0 and consequently,Max[Rj}_ < 1 ,
j e N I g J 71 j s N / g K

Min{Rg}_ > Max{Rj}_. Hence, the global maximum of the ratio values at n

will only be achieved unit g, i.e., ArgMax\Rj}_ = DM Ug , provided a 2 * 0 .
j e N

Q.E.D.

Now consider the highly restrictive possibility of a 2 = 0, i.e., all the n

units have the same ratio value at n x. So Min{RCg}_ = (h x a l)> 0; where,

h > 0 is the scaling factor on ttss . It is easy to see that any positive value of h

157

is enough to ensure that Max\Rj}_ < Min{Rg }_. The simplest way to implement

this would be to let h = 1 leading to 7 r = 7 r ss + k xs .

7.3.2.1 Illustration of the closed-form solution to ensure positive weights under
CRS

We will consider the following example in which the data is positive and

the maximum ratio is at a finite value to illustrate the above closed-form solution.

DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 4 1 8
B 5 3 40 10.5 18 7
C 6 2 60 2 2 2
D 6 9 10 5 1 1.11
£ 2 40 22 1 -38 0.05
F 3 15 8 1 -13 0.13
G 1 3.5 5 12.25 21 7
H 4 3 8 4 5 2.67
I 4 20 150 10 0 1
J 5 16 7 2 -12 0.25

7Z* 0 1 0 2
Table 7-18 : Closed-form solution to obtain positive multiplier values 1

Assume that GEN = {/}, DMUt = A and upon solving the relevant GBA

LP, we arrived at the optimal weights n* - (0,1,0,2). At /r*, Mzrlft ,} . > 1 and
y'eN J K

ArgMax{R.} . = {a } . Unit A is confirmed to be a generator but it has one 0
J e N n

input weight and one 0 output weight. Suppose we are interested in providing it

with strictly positive weights. Using the notations introduced earlier, r2 - l and

the modified optimal weights are 7ts = (0,7, 0, 2). The reduced cost and ratio

values at n s can be seen in table 7-19 below.

158

DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 4 1 1.143
B 5 3 40 10.5 0 1
C 6 2 60 2

o1 0.286
D 6 9 10 5 -53 0.159
E 2 40 22 1 -278 0.007
F 3 15 8 1 -103 0.019
G 1 3.5 5 12.25 0 1
H 4 3 8 4 -13 0.381
I 4 20 150 10 -120 0.143
J 5 16 7 2 -108 0.036

JlS 0 7 0 2
Table 7-19 : Closed-form solution to obtain positive multiplier values 2

As discussed earlier, at tts only unit A has a reduced cost value > 0 and

ratio value > 1; RCA = a x = 1.

Now, consider the following table where for the same dataset, the ratio

and reduced cost values are shown at the unary weights - (l,l,l,l).

DMU X I X2 Y1 Y2 RCj
A 1 1 3 4 5 3.5
B 5 3 40 10.5 42.5 6.31
C 6 2 60 2 54 7.75
D 6 9 10 5 0 1
E 2 40 22 1 -19 0.54
F 3 15 8 1 -9 0.5
G 1 3.5 5 12.25 12.75 3.83
H 4 3 8 4 5 1.71
I 4 20 150 10 136 6.67
J 5 16 7 2 -12 0.428

n l 1 1 1 1
Table 7-20 : Closed-form solution to obtain positive multiplier values 3

By scaling the input weights by the maximum ratio value of 7.75, at the

modified unary weights n xs = (7.75,7.75,1, l) , we get the following reduced cost

and ratio values.

159

DMU X I X2 Y1 Y2 RCj R j

A 1 1 3 4 -8.5 0.451
B 5 3 40 10.5 -11.5 0.81
C 6 2 60 2 0 1
D 6 9 10 5 -101.25 0.129
E 2 40 22 1 -302.5 0.07
F 3 15 8 1 -130.5 0.064
G 1 3.5 5 12.25 -17.625 0.49
H 4 3 8 4 -42.25 0.22
I 4 20 150 10 -26 0.86
J 5 16 7 2 -153.75 0.055

- I Sf t 7.75 7.75 1 1

Table 7-21: Closed-form solution to obtain positive multiplier values 4

At f t iS, Min\RCj} ls = a 2 = -302.5, yx =
j e N J n

(X2 -302.5
a x 1

= 302.5 and

y2 = yj +1 = 303.5. Now the synthesised set of weights is given by

ft = 7TSS + ft ls = y2 x x s + ft ls = (7.75, 2132.25,1, 608). At f t , the reduced cost

and ratio values are shown in table 7-22 below.

DMU X I X2 Y1 Y2 RCj Rj
A 1 1 3 4 295 1.137
B 5 3 40 10.5 -11.5 0.998
C 6 2 60 2 -3035 0.295
D 6 9 10 5 -16186.75 0.158
E 2 40 22 1 -84675.5 0.0073
F 3 15 8 1 -31391 0.0192
G 1 3.5 5 12.25 -17.625 0.997
H 4 3 8 4 -3987.75 0.379
I 4 20 150 10 -36446 0.146
J 5 16 7 2 -32931.75 0.0358

ft 7.75 2132.25 1 608
Table 7-22 : Closed-form solution to obtain positive multiplier values 5

The reduced costs of the n units at ft are the sum total of the reduced

costs at f tss and f t ls. The reduced cost values at the modified optimal weights

fts at which unit A achieved the unique maximum ratio value is magnified by

the factor y2 such that it counterbalances the effect of the reduced cost values

and the corresponding ratio values of the remaining units at f t ls. Hence, by

magnifying the reduced cost values at f ts by y2 we ensure that at f t , the

160

reduced cost value is strictly positive only for unit A and hence }_ > 1. From

table 7-22, we can see that the maximum of the ratio values at n is once again

achieved by unit A but now at a set of strictly positive weights.

7.3.3 Closed-form solution for achieving positive multiplier values under
VRS

Once again, the closed-form solution approach to break ties under the

VRS assumption can be applied with some modification to obtain positive

weights for any generator. The procedure is essentially the same as in breaking

ties in that it involves amalgamating a ‘scaled version’ of original LP weights

n s to the unary weights n x. The only difference is that instead of more than one

unit achieving the maximum reduced cost value at the original optimal weights

k , the maximum reduced value is uniquely achieved by a single unit which is

confirmed to be a generator ; however, n f > 0 and we are interested in

providing this generator with a set of strictly positive multiplier values.

We will describe the closed-form solution approach below before

presenting an example to illustrate its working.

Upon solving the relevant GBA LP (GBA LP-5 or GBA LP-7), we had

arrived at the optimal set of weights n* = (v*, u*,j3*). The efficiency analysis of

DMUt is not resolved as U + ^ {(j)}. Let Max\RC .} . = a x > 0. Since,
j e N 1 n

Max\RCt \ . = 0 , Mca\RCj \ , = a l . Let ArgMax\RC.} . = {DMUg}. Although
j e N / U 1 n j e U 1 n j e ff J n

DMUg is confirmed to be a generator, 7i*f > 0; where, n*f represent the weights

of the input and output factors alone.

Suppose we are interested in providing DMUg with strictly positive

multiplier values for its input and output factors. Let, Mox{r Cj L = a i- By
j e N / g 1 n

definition, 0 < a 2 < a l . Let a 3 = (a]- a 2)> 0 .

38 Note that a necessary condition for our closed-form solution to guarantee a positive set of
multiplier values for any generator is that it achieves the unique maximum reduced cost value at
JC*.

161

Now, consider the unary set of weights /r! = (l,l,0). Let

MaxIftC.} , = o\ , MinlRC } , = co2 and 0)3 = {(0x-0)2). Assume for now that
j e N J n j e N 1 *

G), * cd2 and hence Ct)3 > 0. Let, y, = — and note that by definition /, > 0;
or3

finally, let y2 - yx + e , e > 0. Consider, the scaled set of weights given by

n s = (y2 X 7 T *) . At 7US , Max{RCj}̂ s = RCg = (y2 x a x) and

ArgMax{RCj) s ={DMUg).
j e N n

Consider now the synthesised set of weights 7t - n s + . Note that

n f > 0 as n xf > 0 and 7tsf > 0 . We prove in lemma 7.4 that, assuming <ax * co2 ,

at the synthesised set of weights n , ArgMax{RCj }_ = DMUg; i.e., the global
j e N n

maximum of the reduced cost values will only be achieved by DMUg.

Lemma 7.4: Assuming o \ * C02 , at 7 t , ArgMax{RCj}_ = DM Ug .
j e N n

In words, lemma 7.4 states that the global maximum of the reduced cost value at

K will only be achieved by DMUg, provided (Dx±(02.

Proof: First consider the effect of choosing the scaling factor yx on n instead of

Y2, i.e., define k s = (y xn *) and Ji’ - n ,s + 7tx. Now, given that

r = ^ + ^ , ,{ « c J}r = { « c J l , s + {r c , I .

It follows that for DMUg, \RCg } s = (y x ̂) and we know that

= co2. Therefore, Min{RCg >(yl x a 1)+co2.

On the other hand, among the remaining units, Mox\r C. } ,5 = (y1 x a 2)
j e N I g K

and we know that MaxiRC .} , = cox. Therefore, Max{RC. < {yx x a 2)+ cox.
j e N 1 " j e N / g 1 n

162

So, Min{RC } - Max{RCj} > [fo x or,) + m2] - [fo x a 2) + <0,].
6 " j e N / g J 71

Rearranging the terms, Min{RCg}r - M a x { R C j> [yx x -cc2) \- (cox ~ cq2).

(O-l (a>i — CO-*) / \ / \Recall that yx = — = 7—1 So, ft x (a , - a 2)-{ct)x-co2) = 0.
a 3 (ax- a 2)

Hence, at a scaling factor of f t , M njfiC L > Max\RC . It follows that if
8 n j e N / g J n

K S = Yix n * ~ {ft + £)x a n c * n ~ {Yi x n*)+ }_ > Mzr{RC; }_.

This dictates that, provided cox ^ co2, the global maximum of the reduced cost

values at n will only be achieved by DMUg, i.e., ArgM a^RCj}_ =DMUg.
j e N X

Q.E.D.

Now consider the highly restrictive possibility of cox - co2, i.e., all the n

units achieve the same reduced value at n x = (l,l,0). So cox-co2 = 0 and hence

Min\RC }_ - MaxiRC;}_ = (hx (ax - a 2)) - (a\ - co2) = h x (ax - a 2) > 0;
“ n j e N / g J n

where, h > 0 is the scaling factor to be applied on the original optimal weights

71*. It is easy to see that any positive value of h is enough to ensure that

ArgMax{RC ,}_ = DMUg. The simplest way to implement this would be to let
j e N X

h - 1 leading to n = n* + tux .

7.3.3.1 Illustration of the closed-form solution to ensure positive weights under
VRS

We will illustrate the above closed-form solution using the following 10

DMUs, 2 inputs, 2 outputs DEA problem presented in table 7-23 below.

163

DMU X I X2 Y1 Y2 RCj
A 1 0 3 3 9
B 1 12 40 7 9
C 6 0 60 2 6
D 6 9 10 5 6
E 0 40 22 1 -37
F 0 15 8 1 -12
G 1 18 5 5 -3
H 4 0 8 4 12
I 4 30 150 10 0
J 5 16 7 2 -10

*'f 0 1 0 3
Table 7-23 : Closed-form solution to obtain positive multipliers 1

Assume that GEN = {/}, DMUt = A and upon solving the relevant LP we

arrived at the optimal weights defined by Jt* = (0,1,0,3) with /T = 0 ; at n*,

Mox\r Cj } . > 0 and ArgMax\RCj \ . = {//}. Although unit H is guaranteed to
Je N j e N

be a generator, it has one zero input weight and one zero output weight and we

are interested in providing it with strictly positive set of weights. Using the

notations introduced earlier, = 12, a 2 =9 and a 3 = (ax - a 2) = 12 - 9 = 3.

Now, consider the following table where for the same dataset, the

reduced cost values of the units are shown at the unary weights n x = (l, 1, 1, l)

with J31 = 0 .

DMU X I X2 Y1 Y2 RCj
A 1 0 3 3 5
B 1 9 40 7 34
C 6 0 60 2 56
D 6 9 10 5 0
E 0 40 22 1 -17
F 0 15 8 1 -6
G 1 18 5 5 -9
H 4 0 8 4 8
I 4 30 150 10 126
J 5 16 7 2 -12

n) I 1 1 1
Table 7-24 : Closed-form solution to obtain positive multipliers 2

164

Now, cox = 126, co2 = -1 7 , co3 =(cul -co2) = 126—(—17) = 143; also,

yx = — = = 47.67 and y2 = y: +\ = 48.67. The synthesised set of weights
a 3 3

are given by tz = n s + where 7ts - y 2y.n*. Hence, 7t - (l,49.67,1,147.01)

with p = 0 . At the modified hybrid weights, the reduced costs are shown in

table 7-25 below.

DMU X I X2 Y1 Y2 RCj
A 1 0 3 3 443.03
B 1 9 40 7 472.03
C 6 0 60 2 348.02
D 6 9 10 5 292.02
£ 0 40 22 1 -1817.79
F 0 15 8 1 -590.04
G 1 18 5 5 -155.01
H 4 0 8 4 592.04
I 4 30 150 10 126
J 5 16 7 2 -498.7

Wf 1 49.67 1 147.01
Table 7-25 : Closed-form solution to obtain positive multipliers 3

The reduced cost values at 7t are the sum total of the reduced cost values

at the modified original optimal weights n s and the unary weights K l . The

reduced cost values at n* at which unit H achieved the unique maximum

reduced cost value are magnified by the factor y2 = 48.67 such that it

counterbalances the effect of the reduced cost values at n x. Hence, by

magnifying the reduced cost values at n* by the factor y2, we ensure that at the

synthesised set of weights n , the maximum of the reduced cost values is once

again uniquely achieved by unit H but now at a set of strictly positive multiplier

values.

7.4 Conclusion

In this chapter, we presented closed-form solutions to deal with the

technical challenges of ties and indeterminate ratios while employing GBA under

different returns to scale assumptions. We also presented closed-form solutions

to arrive at a strictly positive set of multiplier values for the generators under

165

different returns to scale assumptions. Note that by employing GBA, it is easy to

provide strictly positive multiplier values for every generator. To see this, recall

that generators are identified in GBA in two different ways. Either ArgMax is

unique, leading to a generator, possibly with some zero multipliers - but the

closed-form solution can lead to strictly positive multipliers; else, a generator is

found by breaking ties using a closed-form method which also guarantees

positive multipliers.

In the subsequent chapter, we will discuss the computational experiments

carried out in solving oriented and non-oriented CRS and VRS models using

GBA to compare its computational performance against Dula’s BuildHull and

the conventional two-phase algorithm.

166

8 COMPUTATIONAL RESULTS FOR GBA

This chapter presents the computational results of solving oriented and

non-oriented DEA models under different returns to scale assumption and data

characteristics. In solving the various models, we compare the computational

performance of GBA against Dula’s BuildHull algorithm and the conventional

solution procedure. Using extensive computational experiments, Dula (1998,

2008) has shown that his BuildHull algorithm is computationally superior to the

hierarchical decomposition procedure of Barr and Durchholz (1997) and the

conventional solution procedure in solving the additive VRS model. We compare

the computational performance of GBA against BuildHull in solving oriented

and non-oriented VRS models using the same datasets that Dula has employed in

his studies. Additionally, we show how GBA and BuildHull compare with the

conventional solution procedure in solving the VRS models. Lastly, we compare

the computational performance of GBA against BuildHull and the conventional

solution procedure in solving the input-oriented CRS model using a problem

suite developed for this purpose.

This chapter is organized as follows. In section 8.1, we present the

problem suite and algorithmic descriptions of the three algorithms, viz., GBA,

BuildHull, and the standard two-phase procedure to solve the output-oriented

VRS model. We discuss the LP solver employed, the programming language and

the software environment in which the experiments were carried out. We then

examine the limitations of our computational experiments. Subsequently, we

present the computational results and study the individual impact of each of three

characteristics of a DEA dataset, namely, cardinality, dimension and density, on

computational time. The above structure is followed in section 8.2 in studying

the computational performance of the three algorithms in solving the additive

VRS model and in 8.3 in solving the input-oriented CRS model.

Results indicate that GBA is consistently faster than BuildHull in solving

the oriented CRS and VRS models. While solving the additive VRS model,

BuildHull outperforms GBA although inconsistently at higher dimensions. We

provide two alternative ways of modifying GBA to solve the additive VRS

167

model and show using preliminary experiments that both the alternative

approaches have distinctive advantages over BuildHull with one of them

consistently outperforming BuildHull at higher dimensions.

8.1 Competitive algorithms to solve the output-oriented VRS model

Dula (1998, 2008) has shown the computational advantage of employing

the BuildHull algorithm over the standard solution procedure and the hierarchical

decomposition procedure using the problem suite developed in Dula (1998). The

datasets developed in Dula (1998) were generated for the specific case where the

returns to scale is variable. Results, as in Dula (1998, 2010), show that under any

characteristic of the dataset, BuildHull is consistently faster than the other two. In

order to prove the computational superiority of GBA over BuildHull, we will use

the same problem suite that Dula has developed and employed in all his papers

(see, Dula, 1998; Dula & Thrall, 2001; Dula & Lopez, 2002; Dula & Lopez,

2006; Dula, 2008; Dula & Lopez, 2009). We discuss this problem suite in section

8.1.1. Using this problem suite, we study the computational performance of

GBA, BuildHull and the conventional two-phase algorithm in solving the output-

oriented VRS model. The primary reason for choosing the output-oriented VRS

model39 is that the sponsor organisation of this research, the DfE, is interested in

using this model to evaluate the primary schools in England. In addition, it is the

most commonly used model in the parametric, semi-parametric and non-

parametric literature on productivity theory (see, Fried et al, 2008). Towards the

end of this section, we discuss the computational performance of GBA,

BuildHull, and PIM DEA Soft v2, die efficiency analysis software currently

employed by the DfE, in solving a real dataset provided by the them.

8.1.1 Description of the problem suite
The problem suite used in our experiments is obtained from Dula’s

website (http://www.people.vcu.edu/~idula/LargeScaleDEAdata/). There are 64

39 Note that the characteristics of a dataset (density, cardinality and dimension) are unaffected by
the orientation of the analysis. Also, there is no immediate reason to expect that the orientation of
the DEA model will have a differential impact on the computational performance of the three
algorithms.

168

http://www.people.vcu.edu/~idula/LargeScaleDEAdata/

datasets with varying characteristics of dimension, density and cardinality. In this

section, we present the configuration of the 64 datasets and refer to Dula (2008)

for a detailed discussion of the Data Generating Process employed in generating

these datasets and the advantages of generating datasets in such fashion.

In the 64 datasets, the cardinality varies between 2500 and 10000 DMUs,

the dimension between 5 and 20 factors, and the density between 1% and 50%.

Each of the three characteristics of the dataset can take 4 different values within

their ranges. In particular, the cardinality can be 2500, 5000, 7500 or 10000, the

dimension can be 5, 10, 15 or 20, and the density 1%, 13%, 25% or 50%, in total

creating 4 x 4 x 4 = 64 datasets. In the first 16 datasets, the dimension of the

problem is fixed at 5 which includes 2 inputs and 3 outputs. In the first 4 of these

16 datasets, the cardinality is fixed at 2500 and the density is varied between 1%

and 50%40. In the second 4 of the 16 datasets, the cardinality is fixed at 5000, in

the third 4, cardinality is fixed at 7500 and in the final 4, it is fixed at 10000 with

the density varied between 1% and 50% in each 4 of the 16 datasets. In the

second 16 datasets, the dimension is fixed at 10 which includes 4 inputs and 6

outputs; in the third 16 datasets, the dimension is fixed at 15 which includes 7

inputs and 8 outputs, and in the last 16 datasets, the dimension is fixed at 20

which includes 9 inputs and 11 outputs41. Within each 16 datasets, the cardinality

and density values are distributed in the manner described above.

8.1.2 Technology and Implementations

The three algorithms were implemented in R 2.8.1 which is a software

environment primarily for statistical computation and software development. Its

source code is freely available under the GNU General Public License. R 2.8.1 is

the programming language in which the algorithms were written. To solve the LP

problems, R 2.8.1 is interfaced with the linear programming solver lp_solve

5.5.0.14. lp solve 5.5.0.14 is a non-commercial linear and integer programming

40 Note that in real datasets, the density is typically never more than 10% as was confirmed in our
experience with the school’s data provided by the DfE and in earlier researches by Barr and
Durchholz (1997) and Dula (1998).
41 In real datasets that we and others have come across (see, Barr & Durchholz, 1997; Dula,
1998), the dimension and cardinality values do not typically go beyond 10 factors and 15000
DMUs respectively.

169

solver based on the revised simplex method and branch and bound procedure for

solving linear and integer problems. The form of lp solve 5.5.0.14 used was the

callable library; i.e., a collection of functions were called from inside a R 2.8.1

program. Although, it has been well documented that non-commercial LP solvers

(like lp solve) are inferior in computational performance when compared to the

commercial solver CPLEX42, lp solve 5.5.0.14 was selected as the solver of

choice for two reasons. The principal reason is that, similar to R 2.8.1, lp solve

5.5.0.14 is freely available under the GNU General Public License and hence

there are no licensing issues involved. This enables our programs to be readily

tested and used by others upon installing R 2.8.1 and lp solve 5.5.0.14, which

are both open source. Second, the interfacing of lp_solve 5.5.0.14 with R 2.8.1 is

uncomplicated and the interfacing package is freely available (see, http://cran.r-

proiect.org/web/packages/lpSolve/index.html). Unfortunately, this is not the case

with interfacing the CPLEX solver with R 2.8.1. Neither is CPLEX freely

available to use within R 2.8.1 and nor is the interfacing straightforward under

Windows XP operating system. Although, CPLEX could have been our solver of

choice, as we are employing the same (software environment, programming

language and) LP solver to compare the performance of the three algorithms, the

differential impact of the solver on any one of the algorithm’s performance, if

any, is expected to be marginal. The programs were executed on a dedicated

DELL personal computer with INTEL Pentium E8200 CPU at 2.66 GHz and

1.95 GB of RAM running a Windows XP operating system.

Now that we have determined the software environment, the LP solver

and the programming language to write and execute the algorithms, we can

decide on the structure of the three algorithms. Since, GBA and BuildHull are

similar in their philosophy, they are written with similar structures. As the three

algorithms are already described in enough detail in the earlier chapters, we will

only present their procedures here. The programmed versions of GBA, BuildHull

and the conventional two-phase procedure to solve the output-oriented VRS

model can be seen in Appendix 5.

42 See, http://lpsolve.sourceforge.net/5.0/LinearProgrammingFAO.htm#Q2.
http://lionhrtpub.com/orms/survevs/LP/LP-survev.html. http://plato.asu.edu/ftp/lpfree.html.
http://plato.asu.edu/ftp/milpf.html and http://scip.zib.de/ for discussions on benchmark results o f
LP and MILP solvers.

170

http://cran.r-
http://lpsolve.sourceforge.net/5.0/LinearProgrammingFAO.htm%23Q2
http://lionhrtpub.com/orms/survevs/LP/LP-survev.html
http://plato.asu.edu/ftp/lpfree.html
http://plato.asu.edu/ftp/milpf.html
http://scip.zib.de/

Before describing the procedures, we would like to mention three

important points. First, the LP acceleration technique of reoptimization or hot-

start is not employed in any of the three algorithms. Second, DEA specific

computational enhancements like early identification of efficient units or reduced

basis entry are not employed in the experiments carried out. Only a naive

implementation of the three algorithms is considered. Third, among the list of

scaling algorithms provided as part of the solver options, the ‘numerical range

based scaling’ algorithm was consistent and faster; hence, the particular scaling

algorithm was invoked within the solver while solving the LPs. We elaborate on

the first two points in section 8.1.3.

8.1.2.1 Description of the GBA procedure

As we are solving the output-oriented VRS model using GBA, we need to

take care of the infeasibility problem. To ensure feasibility of any LP solved

using GBA, we introduce DMUt into the coefficient matrix alongside the set of

generators at a penalty of -2. The technical challenge of ties was resolved using

the closed-form solution approach presented in chapter 7.

There are two parts to the implementation of GBA. The first part is the

initialisation and the second part is the actual run of the algorithm. The

initialisation part of GBA is accomplished by evaluating the reduced costs RCj

of all the units at unary weights (l, 1,0)43 and choosing the unit that achieved the

maximum RCj value as our starting generator44. All other units are placed in the

set of status unresolved units U . The second part of the algorithm is the actual

run of the GBA. The DMUs are evaluated in the order present in the dataset.

GBA, described as above, requires solving (n - 1) LP problems and the

size of the LP increases from (/w + l)x3 to (m + l)x (k + 2), where k is the

number of generators in the dataset. The algorithmic procedure of GBA is

presented below.

43 Since the weights for the input and output factors are strictly positive, the unit(s) achieving the
maximum RCj value must be P-K efficient which were confirmed to be generators in our

experiments.
44 No tie was observed for the maximum R C j value at (l, 1 ,0).

171

P r o c e d u r e G B A

Step 0: Initialisation

set GEN = {</>}, U = {l...n}, TU = {(#};

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R C j , j e U at n *;

0.1 Evaluate R C . — 1 Yj — lX y.,V y e U and let ArgMax\RCj }= D M U f ;
je U

0.2 Move DMUf to set GEN.

End Initialisation.

Step 1: Iteration. While U & {^}, do:

1.1 Select the first DMU from U , DMUt, and solve MGBA LP-4 for it; let the

optimal weights be 7T* = (v*,w*,v0*);

1.2 Evaluate RCj at /r* for j e U ;

1.3 If M ax{R Cj)<0,&o\
j e U 1

1.3.1 Record the optimal weights, peers and slacks for DMUt;

1.3.2 Remove DMUt from U and go to Step 1.1;

1.4 If Mtx{/?C;.}>0,do:
j e U J

1.4.1 Compute ArgMax\RCj } and 777;
je U

1.4.1.1 If \TU\>1, go to Step 1.4.2;

1.4.1.2 If \TU\ = 1 and ArgMax \RCj }= D M U f , record the optimal
j e U

weights for DMUf; Move DMUf to set GEN; Go to Step 1.1;

172

1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify

one P-K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set GEN; Go to Step 1.1;

End Procedure.

8.1.2.2 Description of BuildHull and the Standard two-phase algorithm

The procedure for solving the output-oriented VRS model using

BuildHull is similar to what has been described in Dula (1998) except for the

initialisation part and the subroutine to resolve ties. Similar to GBA, BuildHull

was initialised by evaluating the reduced costs RCj of all the units at unary

weights (l, 1,0). It is important to note that although Dula (1998) described an LP

based procedure to resolve ties, the procedure was never implemented to our

knowledge45. Ties in our implementation of BuildHull were resolved using the

closed-form solution described in chapter 7.

Both BuildHull and the standard DEA algorithm are two-phase

procedures and BuildHull requires solving 2n - k LPs while the standard DEA

algorithm requires solving 2n LPs. The maximum number of columns in any LP

solved in BuildHull is k + \, where k is the number of extreme-efficient units in

the dataset. The number of columns in the standard procedure is fixed at n in

phase-1 and (n + m) in phase-2. For the sake of completeness, we describe our

implementation of the BuildHull algorithm and the standard two-phase algorithm

below.

P r o c e d u r e B u il d H u l l

Step 0: Initialisation

s e t£ = W , I / = { l..J i} .rt/ = ^ } ;

where,

45 In a recent version of his BuildHull algorithm, Dula (2010) suggests resorting to a sorting
algorithm to identify one extreme-efficient unit among the tied units for the VRS case. This
proposal, although valid, was not implemented in his algorithm to our knowledge.

173

E is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R C j, j e U +at 7t*;

0.1 Evaluate RCj = 1 Yj — IX j,, V j e U and let ArgMax\RCj }= D M U f;
j e U

0.2 Move DMUf to set E.

End Initialisation.

Step 1: Phase-1 Iteration. While U ^ {^}, do:

1.1 Select the first DMU from set U , DMUt, and solve the phase-1 VRS LP of

BuildHull for it;

1.2 Let the optimal weights be 7U* = (v*,w*,/T);

1.3 If the optimal objective function value is = 0, do:

1.3.1 Remove DMUt from U and move it to set I; Go to Step 1.1;

1.4 If the optimal objective function value is > 0, do:

1.4.1 Compute RCj at n* for y e U +and T U ;

1.4.1.1 If \TU\>1, go to Step 1.4.2;

1.4.1.2 If |?T/| = 1 and ArgMax\RCj = DMUp , record the
;Gi/+

optimal weights for DMUp; Move DMUp to set E; Go to Step

l.i;

1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify

one P-K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set E; Go to Step 1.1;

End Phase-1 Procedure.

Step 2: Phase-2 Iteration. While / ^ do:

2.1 Select the first DMU from set U , DMUt, and solve LP-8 for it against units

in E; Record the efficiency score, weights, slacks and peers for DMUt;

2.2 Remove DMUt from I; Go to Step 2.1;

174

End Phase-2 Procedure.

End BuildHull Procedure.

P r o c e d u r e S t a n d a r d T w o -p h a s e A l g o r it h m (VRS)

Step 0: Initialisation

set R = M ;

where,

U is the set of status unresolved DMUs;

R is the set of status resolved DMUs;

Step 1: Phase-1 of the standard DEA procedure. While U & \<f)), do:

1.1 Select the first DMU in U , DMUt, and solve LP-8 for it. Record the

efficiency score and weights for DMUt;

1.2 Remove DMUt from U and move it to set R ; Go to Step 1.1;

End Phase-1 procedure.

Step 2: Phase 2 of the standard DEA procedure. While R & {(f)), do:

2.1 Select the first DMU, DMUt, from set R and solve the max-slack VRS
model for it. Record the input and output slacks and peers for DMUt;

2.2 Remove DMUt from R ; Go to Step 2.1;

End Phase-2 procedure.

End Standard two-phase algorithm.

8.1.3 Limitations of the computational experiments

Before we present the results of our computational experiments, it is

important to discuss its limitations. The first two limitations were briefly

discussed in section 8.1.2. The first limitation is that the LP solver lp solve

5.5.0.14 and the programming language R 2.8.1 employed in our study may not

be the best of the options to carry out our computational experiments. A better

choice could be to employ CPLEX solver’s callable library within a Fortran

program as in Dula’s experiments. As mentioned earlier, the principal advantage

175

of our solver and programming language is that both are open source. Also, as

we have programmed the algorithms in the same language and employed the

same solver to solve the LPs, the differential impact on any one of the

algorithms, if any, is expected to be marginal.

The second limitation is that we have restricted ourselves to only a naive

implementation of the three algorithms. Specifically, the LP acceleration

technique of hot starts (reoptimization) and DEA specific enhancement

techniques like earlier identification of efficient units (EIE) and restricted basis

entry (RBE) were not employed in any of the algorithms. Contrasting Barr and

Durchholz (1997), Dula in his studies (see, Dula, 2008; Dula, 2010) has observed

that hot starts and RBE can effect substantial computational savings and could be

readily applied to the conventional DEA algorithm, the hierarchical

decomposition procedure, and BuildHull.

As mentioned in section 3.1, Ah (1993) reports a reduction of 84% for a

particular dataset while in another experimental study by Barr and Durchholz

(1997) and Dula (2008), it has been shown that RBE can reduce the

computational time by 50%.

We did not apply such enhancements in our study for two reasons. First,

by employing these enhancements, the computational performance of the three

algorithms could be affected differentially and hence, our understanding of the

algorithms’ performance could be distorted. Second, employing hot starts was

not an option provided with the version of our LP solver that can be interfaced

with R 2.8.1. Hence, implementing the technique in the algorithms was not

straight forward.

The third limitation is that we evaluate the units in the order present in the

dataset and did not explore other options. For example, when the evaluation of

DMUt is complete, one can choose the unit in U that achieved the second

highest RCj value as the next one because, it is likely to be a new generator (see,

Sueyoshi, 1990). Evaluating units in this manner could help us identify all the

generators in the dataset earlier. This could have a positive impact on the

computational performance of GBA.

176

Another alternative, on proving that DMUt is a non-generator, would be

to identify those units g in U for which the optimal basis for DMUt provides a

feasible solution for the envelopment form model.

8.1.4 Computational results and comparison of algorithmic performances

The computational results in solving the 64 datasets using the three

algorithms can be seen in Appendix 6 . No ties were encountered in solving the

64 datasets using GBA and BuildHull.

The first obvious and encouraging result is that regardless of the

cardinality or dimension or density characteristic of the dataset, GBA solves any

dataset faster than BuildHull. GBA is also consistently faster and by a

considerable margin than the standard two-phase algorithm. BuildHull is also

consistently faster than the standard two-phase DEA algorithm. As expected,

there is a gradual decrease in the computation advantage of GBA and BuildHull

over the standard two-phase procedure as density increases from 1% to 50%. In

addition, if one is only interested in solving the first phase of the standard

algorithm to obtain the efficiency scores of the units, then BuildHull was slightly

outperformed by the conventional algorithm in two instances. When the

dimension of the dataset is 5 and density 50%, and when the cardinality of the

problem is 2500 or 5000, the 1st phase of the standard procedure is slightly faster

than BuildHull. Given that the 1st phase of the standard procedure requires

solving n LPs of fixed size (w + l)x « while BuildHull requires solving 2n - k

LPs of maximum size (m + \) x k , the two instances wherein the former slightly

out-performed the latter is not an altogether surprising result.

To get a better perspective of the individual impact of the characteristics

of a dataset on the performance of the three algorithms, dimension, density and

cardinality were fixed two at a time and for the four different values of the third

factor, the computational times required by the three algorithms are plotted. In

the first instance, the dimension and cardinality are fixed at the lower end of their

ranges, i.e., at 5 and 2500 respectively, and the impact of density on the

performance of GBA, BuildHull, and the standard algorithm (1st Phase and 1&2

177

Phases) are graphically illustrated in chart 8-146 below. Note that for each case,

apart from charting the performance of the three algorithms, we also provide a

chart comparing GBA with BuildHull alone to discriminate their relative

performances better.

Computational Time Vs Density

5-2500-01 5-2500-13 5-2500-25 5-2500-50
Data sets with arying density

—♦— 1st&2ndPhases
—• — 1st Phase

BuildHull
—x — G B A

Chart 8-1 : Computational Time versus Density

Computational Time vs Density

BuildHull
GBA

5-2500-01 5-2500-13 5-2500-25
Data sets with varying density

Chart 8-2 : Computational Time versus Density (GBA vs. BuildHull)

46 On the x-axis, the datasets are varied keeping the dimension and cardinality fixed at 5 and 2500
respectively, and changing the density from 1% to 50%; so 5-2500-01 denotes the dataset with
dimension fixed at 5, cardinality at 2500 and density at 1%.

178

As seen in charts 8-1 and 8-2, GBA solves the problem consistently faster

regardless of the density of the dataset, and as density increases, the

computational advantage of GBA and BuildHull over the standard procedure

reduces gradually. BuildHull performs better than the standard algorithm and the

1st phase of the standard algorithm except when the density is at 50%. The graph

that shows the trend when the dimension is fixed at 20 and cardinality at 10000

and the density is varied from 1% to 50% can be seen in charts 8-3 and 8-4

below.

Computational Time vs Density

35000

30000

25000

1st&2ndPhases
1st Phase
BuildHull
GBA

20000

Z 15000

10000

20-10000-01 20-10000-13 20-10000-25 20-10000-50
Data se ts with varying density

Chart 8-3 : Computational Time versus Density

179

3000 -|

Computational Time vs Density

onnn -

1
zuuu

c
0) 1500 -

BuildHull
E ------GBA
c
£ 1000 -

cnn .sJ\J\J

O -U 1

20-10000-01 20-10000-13 20-10000-25 20-10000-50
Data sets with varying density

Chart 8-4 : Computational Time versus Density (GBA vs. BuildHull)

In the second scenario, the density and cardinality values are fixed at one

end of their ranges, i.e., at 1% and 2500 respectively, and the impact of

dimension at values 5, 10, 15 and 20 on the performance of GBA, BuildHull, and

the standard algorithm are graphically illustrated in charts 8-5 and 8-6 below.

Computational Time vs Dimension

1st&2ndPhases
1st Phase
BuildHull
GBA

5-2500-01 10-2500-01 15-2500-01 20-2500-01

Datasets with varying dimension

Chart 8-5 : Computational Time versus Dimension

180

Computational Time vs Cardinality

oe

9 0mm\J

8®</> 1C1 J
C

«
E

BuildHull
—x—GBA

c 10
3
OH

c
j

nyj

5-2500-01 10-2500-01 15-2500-01 20-2500-01

Datasets with varying cardinality

Chart 8-6 : Computational Time versus Dimension (GBA vs. BuildHull)

As seen in charts 8-5 and 8-6, GBA solves the problem consistently faster

regardless of the dimension of the dataset and its computational advantage over

BuildHull is almost unaffected by the dimension of the dataset. BuildHull also

performs better than the standard algorithm in all cases. The graph that shows the

trend at the other extreme when the density is fixed at 50% and cardinality at

10000 and the dimension is varied from 5 to 20 can be seen below.

Computational Time vs Dimension

35000

30000

25000 -
1st&2ndPhases
1s Phase
BuildHull
GBA

20000

15000

10000

5000 -

10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimension

5-10000-50

Chart 8-7 : Computational Time versus Dimension

181

Computational Time vs Dimension

BuildHull

5-10000-50 10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimension

Chart 8-8 : Computational Time versus Dimension (GBA vs. BuildHull)

In the third scenario, the density and dimension values are fixed at one

end of their ranges, i.e., at 1% and 5 respectively, and the impact of cardinality at

values 2500, 5000, 7500 and 10000 on the performance of GBA, BuildHull, and

the standard algorithm are graphically illustrated in the charts below.

Computational Time vs Cardinality

1st&2ndPhases
1st Phase
BuildHull
GBA

5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-9 : Computational Time versus Cardinality

182

Computational Time vs Cardinality

| 40
BuildHull
GBA

5-2500-01 5-5000-01 5-7500-01

Datasets with varying cardinality

5-10000-01

Chart 8-10 : Computational Time versus Cardinality (GBA vs. BuildHull)

As seen from charts 8-9 and 8-10, GBA solves the problem consistently

faster regardless of the cardinality of the dataset. BuildHull also performs better

than the standard algorithm in all cases. To discriminate better the time taken by

the three algorithms, the following graph in chart 8-11 shows the computational

performance for the same scenario in log seconds47.

1st&2nd Phases
■ 1st Phase

BuildHull
—x—GBA

Computational Time vs Cardinality

10000

1000

5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-11 : Computational Time (log seconds) versus Cardinality

47 Note that the shape of the log-curve depicts the proportional increase in the time taken by the
algorithms to solve the datasets.

183

The same trend is also observed at the other end of the extreme when the

density is fixed at 50%, dimension at 20 and the cardinality is varied from 2500

through 10000. The corresponding graph can be seen in charts 8-12 and 8-13

below.

Computational Time vs Cardinality

35000

30000

25000

c 20000

~ 15000

10000

5000

rrX-
20-2500-50 20-5000-50 20-7500-50 20-10000-50

• 1st&2ndPhases
1st Phase
BuildHull
GBA

Datasets with varying cardinality

Chart 8-12 : Computational Time versus Cardinality

Computational Time vs Cardinality

3000

2500

o 2000

BuildHull
GBA

® 1500 -

3 1000

500

20-2500-50 20-5000-50 20-7500-50

Datasets with varying cardinality

20-10000-50

Chart 8-13 : Computational Time versus Cardinality (GBA vs. BuildHull)

184

Once again, to discriminate the time taken by the three algorithms, the

following graph shows the computational performance for the same scenario in

log seconds.

Computational Time vs Cardinality

100000

10000

to

J> 1000
c
a>
E 100
c3O'

10

20-7500-50 20-10000-5020-2500-50 20-5000-50

Datasets with varying cardinality

—♦— 1st&2ndPhases
— 1st Phase

BuildHull
- k—GBA

Chart 8-14 : Computational Time (log seconds) versus Cardinality

We also recorded the time taken by GBA, BuildHull and PIM DEA

SOFT v2 to solve a real dataset received from the DfE. The real dataset involved

13216 DMUs (primary schools in England) with 6 inputs and 3 outputs. Zeroes

existed in both inputs and outputs. We were asked to provide the efficiency score

of the 13216 schools using the output-oriented VRS model.

BuildHull took 156.77 seconds to solve the dataset. Unlike in the

simulated datasets, 8 ties were encountered with an average of about 111 units

per tie. GBA took 105.27 seconds, a 33% reduction in time compared to

BuildHull. Again, unlike in simulated datasets, 3 ties were encountered with an

average of about 39 units per tie. The commercial DEA software, PIM DEA

SOFT v2, took over 1 hour to solve the same dataset48.

48 Both BuildHull and GBA identified 188 extreme-efficient units among the 13216 units. Hence,
the density o f the real dataset is 1.42%.

185

8.2 Competitive algorithms to solve the additive VRS model

The same problem suite (of 64 datasets) has been employed to compare

the performance of the three algorithms to solve the additive VRS model. The

algorithmic procedures of GBA and BuildHull remain the same as in the oriented

case, except for the LP model solved and the non-issue of ties49. To avoid

duplication of material, their procedures are not repeated here. Unlike in the

oriented models, the standard additive model has a single phase. Once again, its

procedure is not presented here as it remains essentially the same as in the

oriented case except for the LP solved and the absence of a second phase. The

programmed version of GBA, BuildHull and the standard algorithm to solve the

additive VRS model can be seen in Appendix 6 .

The three limitations of our computational experiments observed in our

design to solve the output-oriented VRS model using the algorithms are also

applicable here.

8.2.1 Comparison of algorithmic performances

The computational results from solving the 64 datasets using the three

algorithms can be seen in Appendix 7. Once again, the ‘numerical range based

scaling’ algorithm was invoked in the solver while solving the LPs.

The first obvious result is that GBA and BuildHull consistently

outperformed the standard algorithm. While employing GBA to solve the

additive model, each LP is of size (m + l) x (g + m + 1) , where g < k is the

number of generators identified at a particular iteration and we solve (n - 1) such

LPs. This became a handicap at combinations of higher dimension and density

values. In contrast, while employing BuildHull to solve the additive model, the

first phase LPs are of size (/w + l)x(/* + l), where h < k is the number of

generators identified at a particular iteration, and (n - 1) such LPs were solved.

In the second phase, (in - k) LPs of fixed size (w + l)x(A: + /w) were solved,

where k is the number of generators in the dataset. In our experiments, we

49 Recall that ties are a non-issue here as all the tied units are guaranteed to be P-K efficient and
can be moved to set GEN.

186

observed that when the dimension of the dataset is 20 , regardless of the density

and cardinality values, BuildHull was able to solve the dataset slightly faster than

GBA although not consistently. Also, when the dimension is 15 and cardinality is

7500 or 10000, regardless of the density of the dataset, BuildHull was able to

solve the dataset slightly faster than GBA. At all other combinations, GBA

solved the dataset consistently faster than BuildHull.

Based on preliminary experiments, we can provide two promising

alternative approaches to GBA while solving datasets with extreme dimension

characteristics using the additive model. First, it could be prudent to adopt a two-

phase approach to GBA wherein one solves the corresponding oriented model in

phase-1, score all the non-generators and identify the generators, and in phase-2 ,

solve the additive model to score the non-generators using only the set of

generators identified in phase-1. In this modified two-phase version of GBA,

(« - l) LPs of maximum size (m + l)x(£ + 2) are solved in the first phase and

n - k LPs of fixed size (m + l)x (k 4- m) are solved in the second phase. This can

be seen as analogous to the BuildHull procedure in identifying all the generators

in phase-1 and scoring the remaining units in phase-2. However, at a possibly

higher computational cost, if we use GBA to solve additive models in two phases

as described above, we could provide the efficiency score, peers and slacks for

all the non-generators in the phase- 1 using the (input or output) oriented model,

and also the peers and slacks of the non-generators in the second phase using the

additive model.

The second alternative approach is to solve the multiplier form (dual of

the envelopment form) of the additive model using GBA. In this version of GBA,

we will be solving (n - 1) LPs of maximum size (k + m + l)x (m + 1), where k is

the number of generators in the dataset. It is expected that at higher combinations

of dimension and density values, the performance of GBA applied to the

multiplier form of the additive VRS model can be competitive compared to

BuildHull and GBA. To evaluate this procedure, we also programmed a modified

version of BuildHull wherein in the second phase, the multiplier form of the

additive model is solved for each non-generator using only the set of generators

identified in phase-1; i.e., in the second phase of BuildHull, (n - k) LPs of fixed

187

size (k + m)x (m + 1) are solved. Some preliminary results can be seen in table 8-

1 below. The programmed version of the two alternative approaches to GBA

along with the modified BuildHull procedure to solve the additive VRS model

can be seen in Appendix 8.

Datasets BuildHull BuildHull m GBA org GBA 2ph GBA mult
20-2500-01 24.11 30.59 17.03 27.22 16.83
20-2500-13 73.49 67.56 131.05 74.77 42.19
20-5000-01 59.45 54.22 39.47 62.08 39
20-5000-13 241.28 263.76 1533.81 267.89 173.1
20-7500-01 120.09 122.81 97.73 133.33 96.86
20-7500-13 524.92 599.43 2337.53 574.64 385.25

20-10000-01 165.54 170.71 139.72 211.36 132.77
20-10000-13 921.61 1043.04 3022.21 1032.19 665.67
05-2500-01 17.11 47.66 8.83 29.84 15.8
05-2500-13 26.82 40.54 15.96 54.86 31.79
05-5000-01 33.96 59.27 19.6 65.93 34.38
05-5000-13 78.81 128.95 48.08 136.22 52.72

09-13216-01 161.97 178.72 104.32 749.41 129.74

Table 8-1: Alternative approaches to solve the additive model

In the above table, we consider 12 of Dula’s datasets wherein in the first

8, the dimension is 20, cardinality is 2500, 5000, 7500 or 10000, and density is

1% or 13%; in the next 4, the dimension is 5, cardinality is 2500 or 5000, and

density is 1% or 13%. We also solved the real dataset (with 13216 DMUs, 9

factors and 1.42% density) from the DfE using the 5 algorithms. The table shows

the time taken in seconds to solve the 13 datasets using Dula’s BuildHull, the

modified version of BuildHull (BuildHull m), original GBA (GBA_org), the

two-phase approach to GBA (GBA_2ph) and the multiplier version of GBA

(GBAmult).

From the above table, the only clear trends are that when the dimension is

20 (extremely high dimension), GBA_2ph takes more time than BuildHull to

solve the datasets. Also, among the 5 algorithms, GBA_mult solves any dataset

consistently faster. GBA_2ph is expected to take more time than BuildHull but

still this two-phase approach to GBA requires only a moderate amount of

additional time over BuildHull while providing information from solving the

oriented and additive models. And lastly, when the dimension is 5 or 9 (small to

medium dimension), GBA_org is the fastest among the 5 options.

188

It must be clear that given our limited experiments, the above results

cannot be regarded as being conclusive. The two alternative GBA procedures are

promising avenues for future research although additional work is required to

make GBA consistently faster over BuildHull while solving datasets of any

characteristics using additive models.

8.3 Competitive algorithms to solve the input-oriented CRS model

In this section, we study the computational performance of GBA,

BuildHull, and the standard two-phase procedure in solving different datasets

under CRS assumption. In addition, we evaluate the individual impact of

dimension, density and cardinality characteristics on the performance of the three

algorithms. So far, Dula (1998, 2008) has carried out computational studies only

for the VRS models and the characteristics of the datasets he has generated under

VRS assumption do not hold true under CRS. We will describe our data

generation process (DGP) under CRS assumption before we present the

limitations of our experimental design and the results.

8.3.1 Problem suite under CRS

For comparison purposes, it was decided that the characteristics of the

datasets generated using the data generation process under CRS assumption must

be similar to that used under VRS. Hence, the number of datasets was fixed at 64

and the density was allowed to take values 1%, 13%, 25% or 50%, dimension 5,

10, 15 or 20, and cardinality 2500, 5000, 7500 or 10000. However, unlike in the

VRS datasets, die number of outputs in any m dimensional dataset was fixed at

1. This is because the datasets were generated using the traditional Cobb-Douglas

functional form50 (Cobb & Douglas, 1928) given by y - x “x x x “2 x . . . x r j ;

where y is the single output and x. are the input values for i = 1 to ^ . As we

assume that the production technology exhibits CRS, the exponents on the input

50 Many simulation studies in the DEA literature typically use some variant of the Cobb-Douglas
form to generate the datasets (see, Banker et al, 1993; Banker et al, 2004; Banker & Natarajan,
2008; Banker & Parthasarathy, 2009; Banker et al, 2010).

189

values must sum to 1, i.e., ^ a, = 1. Since adapting the Cobb-Douglas
1=1

functional form for multiple outputs would mean loss of control of the final

density of the dataset, the number of outputs was fixed at 1. To our knowledge,

there is no other uncomplicated way of generating datasets under CRS wherein

the density is decided beforehand. This implies that in all the 64 datasets that

were generated, the number inputs is given by (m - 1) 51.

The datasets were generated in the following fashion . First, the

cardinality and dimension of the dataset are fixed to a certain value within their

ranges. The (m - 1) inputs are then generated randomly and independently from

a uniform distribution in the range (chosen arbitrarily) between 1.5 and 25. The

exponents ’s, for the (m - 1) inputs are generated using another uniform

distribution in the range between 0 and 1 . The random exponents are then

scaled such that they sum to 1. The density of the dataset is then decided to take

any value among 1%, 13%, 25% and 50%. The density along with the cardinality

of the dataset will determine the number of generators and non-generators. For

the units that are generators, the output value is determined by the Cobb-Douglas

functional form y t = ensuring that they are on the frontier of the CRS
i=i

production technology. For the units that are non-generators, the output value as

determined by the Cobb-Douglas functional form is scaled down by a factor of

30 to make the corresponding units strictly interior (and hence, inefficient) w.r.t

the CRS production frontier. By varying the cardinality, dimension and density

of the DEA problem, 64 datasets were generated. Before evaluating the

performance of the three algorithms, the 64 datasets were verified to ensure that

each of the dataset has the number of generators defined by the density of the

problem.

51 Cobb-Douglas functional form imposes equality between isoquants and efficient subsets
thereby eliminating any slacks (see, Fried et al, 2008). Hence, all the efficient units are P-K
efficient and for all practical purposes, generators.
52 Unlike previous studies involving simulation of DEA datasets, the parameter values to generate
the datasets were chosen arbitrarily here. The parameter values are not expected to have a
differential impact on the performance of the three algorithms.
53 The uniform distribution function in R 2.8.1 does not take the extreme values of the range
provided.

190

Having explained the data generating process, we now turn our attention

to the structure of the three algorithms. Since, GBA and BuildHull are similar in

their philosophy, they are written with similar structure. Also, as the algorithms

were already described in enough detail in chapters 3 and 4, we will only present

their procedures here. The programmed version of the data generating process

along with the GBA, BuildHull and the standard two-phase procedure to solve

the input-oriented CRS model can be seen in Appendix 9.

8.3.2 Description of GBA

As all the 64 datasets are strictly positive, any GBA LP we solve will be

feasible. Hence, there is no need to introduce DMUt into the coefficient matrix at

some penalty value. The only other issues to be taken care of are ties and

indeterminate ratios. As we are dealing with strictly positive datasets,

indeterminate ratios cannot occur. Ties can still happen and are resolved using

the closed-form solution described in chapter 7.

Once again, there are two parts to the implementation of GBA. The first

part is the initialisation and the second part is the actual run of the algorithm. The

initialisation part of GBA is carried out by evaluating the R. values of all the

units at unary weights (l,l)54 and choosing the unit that achieved the maximum

of the Rj values as our starting generator55. At the end of the initialisation part of

the algorithm, we are guaranteed to find one generator to be included in set GEN.

All other units are placed in the set of status unresolved units U .

The second part of the algorithm is the actual run of the GBA procedure.

The DMUs are evaluated in the order present in the dataset. As in the VRS case,

the LP acceleration technique of reoptimization is not employed in any of the

three algorithms. Also, DEA specific enhancements like EIE or RBE are not

employed in the experiments carried out. As in the earlier experiments, the

54 Since the weights are strictly positive, the unit(s) achieving the maximum R j value must be P-

K efficient (confirmed to be generators in our experiments).
55 There was no tie for the maximum R j value at (l, l) .

191

‘numerical range based scaling’ algorithm was invoked within the solver while

solving the LPs. The algorithmic procedure of GBA is presented below.

P r o c e d u r e GBA

Step 0: Initialisation

set GEN = {<!>}, U = TU = {<t>}\

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in R j , j e U at K*;

0.1 Evaluate Rj = — —, j e U , and let ArgMax\Rj\= D M U f;
I X j jeU

0.2 Move DMUf to set GEN.

End Initialisation.

Step 1: Iteration. While U & {^}, do:

1.1 Select the first DMU from U , DMUt, and solve MGBA LP-1 for it; let the

optimal weights be 7t* — (/*,*/*);

1.2 Evaluate RCj at 71* for j e U ;

1.3 If Mox{r Cj }< 0, do:
jzU

1.3.1 Record the optimal weights, peers and slacks for DMUt;

1.3.2 Remove DMUt from U and go to Step 1.1;

1.4 If Mzx{flC;.}>0,do:
jeU 1

1.4.1 Compute Rj , j e U and T U ;

1.4.1.1 If \TU\>1, go to Step 1.4.2;

1.4.1.2 If \TU\ = 1 and ArgMax\Rj }= DM Uf , record the optimal
jeU

weights for DMUf; Move DMUf to set GEN; Go to Step 1.1;

192

1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify

one P-K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set GEN; Go to Step 1.1;

End Procedure.

8.3.3 Description of BuildHull and standard algorithm

The procedure to solve the input-oriented CRS model using BuildHull is

similar to the version in Dula (2010) except for the initialisation part and the

subroutine to resolve ties. Note that Dula (1998, 2010) uses an alternative ratio

R? to identify extreme-efficient units in phase-1. For the sake of completeness,

we describe our implementation of the BuildHull algorithm and the standard

two-phase algorithm below.

P r o c e d u r e B u il d H u l l

Step 0: Initialisation

set GEN = {(p), U = TU = {$}\

where,

GEN is the set of generators;

U is the set of status unresolved DMUs;

TU is the set of tied units for ArgMax in , j e U + at n *;

0.1 Evaluate Rj = — —, j e U , and let ArgMax\Rj} = D M U f;
I X j mu

0.2 Move DMUf to set GEN.

End Initialisation.

Step 1: Phase-1 Iteration. While U & {^}, do:

1.1 Select the first DMU from set U , DMUt, and solve the phase-1 CRS LP of

BuildHull for it;

193

1.2 Let the optimal weights be 7t* = (v*, u *);

1.3 If the optimal objective function value is = 0, do:

1.3.1 Remove DMUt from U and move it to set I; Go to Step 1.1;

1.4 If the optimal objective function value is > 0, do:

u * Y v 'X
1.4.1 Compute R ? = ---- --------- - at 7t* for j € U +and T U ;

l X j

1.4.1.1 If \TU\ > 1, go to Step 1.4.2;

1.4.1.2 If \TU\ = 1 and ArgMax\R® = DMUp, record the
jeU+

optimal weights for DMUp; Move DMUp to set E;
Go to Step 1.1;

1.4.2 Resolve the tie in ArgMax using the closed-form solution. Identify

one P- K efficient unit, DMUq e TU and record the weights for it;

1.4.2.1 Move DMUq to set E; Go to Step 1.1;

End Phase-1 Procedure.

Step 2: Phase-2 Iteration. While I & {^}, do:

2.1 Select the first DMU from set U , DMUt, and solve LP-1 for it against units

in E; Record the efficiency score, weights, slacks and peers;

2.2 Remove DMUt from I; Go to Step 2.1;

End Phase-2 Procedure.

End BuildHull Procedure.

P r o c e d u r e S t a n d a r d T w o - p h a s e A l g o r it h m

Step 0: Initialisation

set U = {l, . R = {^};

where,

U is the set of status unresolved DMUs;

R is the set of status resolved DMUs;

194

Step 1: Phase-1 of the standard DEA procedure. While U ^ {$>}, do:

1.1 Select the first DMU in U , DMUt, and solve LP-1 for it. Record the

efficiency score and weights for DMUt;

1.2 Remove DMUt from U and move it to set R ; Go to Step 1.1;

End Phase-1 procedure.

Step 2: Phase 2 of the standard DEA procedure. While R ^ {^}, do:

2.1 Select the first DMU, DMUt, from set R and solve the max-slack CRS
model for it. Record the input and output slacks and peers for DMUt;

2.2 Remove DMUt from R ; Go to Step 2.1;

End Phase-2 procedure.

End Standard two-phase algorithm.

8.3.4 Limitations of the computational experiments

The three limitations that were discussed for the VRS cases, namely, our

choice of the LP solver and programming language, non-implementation of

enhancement techniques like EEE, RBE and reoptimization, and the order in

which the units are evaluated, also hold true under CRS. In addition, our

experimental design under CRS has two further limitations. First, the datasets

generated are strictly positive, a feature also observed in Dula’s datasets. Second,

in all our datasets, the number of outputs was fixed at 1. Considering the various

limitations of our experimental design, although GBA solves fewer LP problems

than BuildHull and is expected to be computationally superior, our

computational results cannot be regarded as providing a categorical view of their

relative performances.

8.3.5 Computational results and comparison of algorithmic performances

The computational results of solving the 64 datasets can be seen in

Appendix 10. No ties were encountered in solving the 64 synthetic datasets using

GBA or BuildHull.

195

The first obvious and gratifying result is that regardless of the

characteristic of the DEA dataset, GBA solves the CRS model faster than

BuildHull. As expected, both GBA and BuildHull are consistently faster than the

standard two-phase procedure. As in the VRS cases, there is a gradual decrease

in the computation advantage of GBA and BuildHull over phase-1 of the

standard algorithm as density increases.

In addition it was noted that the computational saving margin of GBA

over BuildHull is less pronounced while solving CRS models when compared to

the VRS models. An obvious reason for this could be that although GBA solves

n -1 LPs as against BuildHull that requires solving 2 n - k LPs, unlike BuildHull,

GBA requires computation of RCj and Rj values for the units in set U upon

solving an LP. Note that under CRS when the dataset is strictly positive, GBA

requires solving (w -l) LPs, each of size m x (g + 1) where, g is the number of

generators identified at a particular iteration. If the dataset is not strictly positive,

the number of columns in the GBA LP increases by one to include the input-

output vector of DMUt. Upon solving an LP, at worst, GBA requires computing

(n — g) RCj values, and if the duality condition is not satisfied, (n — g) Rj

values. Assuming that the total number of generators in the dataset is k , the

number of times the RCj values have to be computed is (n - 1) and the number

of times the Rj values have to be computed is k . The number of times ArgMax

has to be computed is n + k - l . Assuming that all the mathematical operations

involve numbers with d digits, the time complexity of computing RCj and Rj

values is O(nm2d 2) and O (nm2d 4) respectively, while the time complexity of

the ArgMax operation is O (n) . Under VRS, since the (n - g) Rj values and the

associated ArgMax need not be computed k times, the computational saving of

GBA over BuildHull is more pronounced than CRS although GBA outperforms

BuildHull consistently in both cases.

As in the VRS case, we fixed dimension, density and cardinality two at a

time and varied the third factor to note its impact on the computational time

taken by the three algorithms. Also, for each case, we provide a chart comparing

GBA with BuildHull alone to discriminate their relative performances better.

196

In the first scenario, the dimension and cardinality are fixed at one end of

their ranges, i.e., at 5 and 2500 respectively. The impact of density on the

performance of GBA, BuildHull, the standard algorithm are graphically

illustrated in charts 8-15 and 8-16 below.

Computational time vs Density

120.00

100.00

80.00
1st&2ndPhases
1st Phase
BuildHull
GBA

® 60.00

40.00

20.00 -

0.00
5-2500-01 5-2500-13 5-2500-25

Datasets with varying density
5-2500-50

Chart 8-15 : Computational Time versus Density

Computational time vs Density

60.00

50.00

40.00

BuildHull
GBA

® 30.00

20.00

10.00

0.00
5-2500-01 5-2500-13 5-2500-25

Datasets with varying density
5-2500-50

Chart 8-16 : Computational Time versus Density (GBA vs. BuildHull)

As seen in charts 8-15 and 8-16, GBA solves the problem consistently

faster regardless of the density of the dataset. BuildHull also performs better than

the standard algorithm regardless of the density of the dataset. The same trend is

197

also observed at the other extreme where the dimension is fixed at 20 and

cardinality at 10000, and the density is varied from 1% to 50%. The

corresponding charts can be seen below.

Computational time vs Density

250000.00

200000.00

150000.00 1st&2ndPhases
1st Phase
BuildHull
GBAc 100000.00

50000.00

20-10000-13 20-10000-25
Datasets with varying density

20-10000-5020- 10000-01

Chart 8-17 : Computational Time versus density

^nnn no

Computational time vs Density

JUuv. w

2500.00 -

g 2000.00 -

c
_______________________________ BuildHull

| 1500.00 -
— GBA

c
m m nn -

CAA AAouu.uu ■

n on -
[iifii

U.w 1

20-10000-01 20-10000-13 20-10000-25 20-10000-50
Datasets with varying density

Chart 8-18 : Computational Time versus density (GBA vs. BuildHull)

To discriminate the time taken by the three algorithms better, the

following chart shows the computational performance in log seconds for the

same scenario.

198

Computational time vs Density

1000000.00

100000.00

10000.00

— 1st&2ndPhases
—• — 1st Phase

BuildHull
— GBA

1000.00

100.00

10.00

1.00
20- 10000-01 20-10000-25

Datasets with varying density
20-10000-13 20-10000-50

Chart 8-19 : Computational Time (in log seconds) versus density

In the second scenario, the density and cardinality values are fixed at one

end of their ranges, i.e., at 1% and 2500 respectively, and the impact of

dimension at values 5, 10, 15 and 20 on the performance of GBA, BuildHull, and

the standard algorithm are graphically illustrated in the below charts.

Computational time vs Dimension

400

350

300

250 1st&2ndPhases
1st Phase
BuildHull
GBA

® 200

1 150

100

5-2500-01 10-2500-01

Datasets with varying dimensions

15-2500-01 20-2500-01

Chart 8-20 : Computational Time versus dimension

199

Computational time vs Dimension

12 i

BuildHull
GBA

5-2500-01 10-2500-01 15-2500-01

Datasets with varying dimensions

20-2500-01

Chart 8-21 : Computational Time versus dimension (GBA vs. BuildHull)

As seen from charts 8-20 and 8-21, GBA solves the dataset consistently

faster than the other two regardless of the dimension value. BuildHull also

performs better than the standard algorithm in all cases. The same trend is also

observed at the other extreme of the ranges wherein the density is fixed at 50%

and cardinality at 10000 and the dimension is varied from 5 through 20. The

corresponding graph can be seen in charts 8-22 and 8-23 below.

Computational time vs Dimension

250000.00

200000.00

1st&2ndPhases
1st Phase
BuildHull
GBA

150000.00

z 100000.00

50000.00

0.00
5-10000-50 10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimensions

Chart 8-22 : Computational Time versus dimension

200

Computational time vs Dimension

2 2000.00

BuildHull
GBA

5-10000-50 10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimensions

Chart 8-23 : Computational Time versus dimension (GBA vs. BuildHull)

To discriminate the time taken by the three algorithms better, the

following chart shows the computational performance in log seconds for the

same scenario.

Computational time vs Dimension

1000000.00

100000.00

10000.00 g
1st&2ndPhases
1st Phase
BuildHull
GBA

5-10000-50 10-10000-50 15-10000-50 20-10000-50

Datasets with varying dimensions

Chart 8-24 : Computational Time (in log seconds) versus dimension

In the third scenario, the density and dimension values are fixed at one

end of their ranges, i.e., at 1% and 5 respectively, and the impact of cardinality at

201

values 2500, 5000, 7500 and 10000 on the performance of GBA, BuildHull, the

standard algorithm are graphically illustrated in the below charts.

Computational time vs Cardinality

1600

1400

1200
M§ 1000
c
® 800

§ 600

400

200

0
5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-25 : Computational Time versus cardinality

Computational time vs Cardinality

45

40

35

§ 30
.E 25 o| 20

| 15
10

5

0
5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-26 : Computational Time versus cardinality (GBA vs. BuildHull)

As seen from charts 8-25 and 8-26, GBA solves the dataset consistently

faster than the other two regardless of the cardinality value. BuildHull also

performs better than the standard algorithm in all cases. To discriminate the time

BuildHull
GBA

1st&2ndPhases
1st Phase
BuildHull
GBA

202

taken by the three algorithms better, the following chart shows the computational

performance in log seconds for the above scenario.

Computational time vs Cardinality

10000

1st&2ndPhases
1st Phase
BuildHull
GBA

5-2500-01 5-5000-01 5-7500-01 5-10000-01

Datasets with varying cardinality

Chart 8-27 :Computational Time (in log seconds) versus cardinality

The same trend is also observed at the other extreme when the density is

fixed at 50% and dimension at 20 and the cardinality is varied from 2500 through

10000. Charts 8-28 and 8-29 illustrate this.

Computational time vs Cardinality

250000.00

200000.00

1st&2nd Phases
1st Phase
BuildHull
GBA

" 150000.00

100000.00

50000.00

20-2500-50 20-5000-50 20-7500-50 20-10000-50

Datasets with varying cardinality

Chart 8-28 : Computational Time versus cardinality

203

Computational time vs Cardinality

.

BuildHull

20-2500-50 20-5000-50 20-7500-50 20-10000-50

Datasets with varying cardinality

Chart 8-29 : Computational Time versus cardinality (GBA vs. BuildHull)

Once again to discriminate better the computational time taken by the

three algorithms, the following graph shows the computational performance in

log seconds for the above scenario.

Computational time vs Cardinality

1000000.00

—♦______100000.00

10000.00
1st&2ndPhases
1st Phase
BuildHull
GBA

20-2500-50 20-5000-50 20-7500-50 20-10000-50

Datasets with varying cardinality

Chart 8-30 : Computational Time (in log seconds) versus cardinality

204

8.4 Conclusion

In this chapter, we presented the computational results of solving the

output-oriented VRS model, additive VRS model and input-oriented CRS model

under different characteristics of a dataset to compare the performance of GBA

against Dula’s BuildHull algorithm and the conventional solution procedure. We

also examined the individual impact of each of the characteristic of a DEA

dataset, namely, the cardinality, dimension and density, on the performance of

the three algorithms under CRS and VRS assumptions. In conclusion, bearing in

mind the limitations of our experimental design, we confirmed using our

experiments with real and simulated datasets that GBA is consistently faster over

BuildHull and the standard two-phase algorithm for solving oriented VRS and

CRS models with the computational saving more pronounced in the VRS case.

In the case of additive models, the BuildHull algorithm is slightly faster,

although not consistently, than GBA while processing datasets with dimension

values of over 15, although such extreme values for dimension are not common

in real datasets. While solving additive models, we provided two promising

alternative ways of improving the performance of GBA. Using preliminary

experiments we showed that both the alternative approaches have distinctive

advantages over BuildHull with one of them consistently outperforming

BuildHull at higher dimensions. However, both these alternative approaches to

GBA are at a developing stage and additional research is required to enable GBA

to solve datasets using the additive models consistently faster than BuildHull for

any characteristic of the dataset.

In chapter 9, we discuss the avenues for future research.

205

9 DIRECTIONS FOR FUTURE RESEARCH

Before we discuss directions for future research, we summarize the

contributions of the thesis. The two major contributions are theoretical in nature

and are:

1. The thesis develops an alternative algorithm for processing datasets using

standard DEA models and important extensions of the basic models such

as weight restricted models;

2. The thesis develops closed-form solutions to construct strictly positive

weights for the extreme-efficient units without explicit weight

restrictions;

Extensive computational testing verifies and validates the new algorithm and

demonstrates that upon a naive implementation of the competitive algorithms,

GBA consistently outperforms the others.

We now present directions for future research. These are listed under

three themes:

1. enhancing the computational experiments,

2. extension of GBA to handle negative data and the Free Disposal Hull

(FDH) models, and

3. extension of the closed-form solution approaches.

9.1 Enhancing the computational experiments

The most obvious question to ask here is what are the limitations of

GBA? If we set some arbitrary time limit to computation time - say one hour -

what size problems can be solved in that time? Size could be taken as made up of

three parameters, viz., density, dimension and cardinality and various

combinations of the three can be tried. Obviously the answer would vary

according to the dataset, the hardware and the optimizer used, but it would be

interesting to see if one could solve problems with even low density and

dimensionality, but 100,000 DMUs for example. The DfES wanted at one stage

to solve a DEA model for each pupil. However impractical such a DEA model

may be, would one be able to solve it in real time?

206

Unlike Dula we carried out our experiments without programming DEA

specific enhancements and re-optimization techniques. Also we did not use

CPLEX which is the industry standard. For comparative purposes it does not

seem crucial but it would be interesting to see what difference it makes to the

GBA run times if these are used.

Two further lines of research were mentioned in section 8.1.3 in

connection with choosing the next unit to be evaluated. In particular, we mention

that when the evaluation of DMUt is complete, one can choose the unit in U that

achieved the second highest RCj or Rj value as the one to be evaluated in the

subsequent iteration. Also, if DMUt is identified as a non-generator, one could

use the optimal basis to check if the same basic variables give a feasible solution

in the envelopment form model for any other unit in U. We have developed some

preliminary theoretical results for this problem, building on dominance rules. It

will be useful to expand on these results and also test the two approaches to

select the next unit to be evaluated.

In the Data Generating Process used for our computational experiments

under CRS, two further limitations in terms of data positivity and unary output

were highlighted. These two limitations could be relaxed in future works.

Finally while solving the additive models, it was noted that BuildHull

outperforms GBA for datasets with extreme dimension values. Two alternative

approaches of modifying GBA to solve the additive VRS model were presented.

Using preliminary results we showed that both of them have distinctive

advantages over BuildHull with one of them consistently outperforming

BuildHull at higher dimensions. However, it was also noted that at smaller

dimensions, the original GBA approach is consistently faster than all the options.

Hence, additional work is required to develop an unifying approach to GBA to

solve the additive models that can consistently outperform BuildHull for any data

characteristics.

9.2 Extension of GBA to handle negative data and the FDH models

First, given the swell of literature devoted to dealing with negative data

(see, Emrouznejad et al, 2010 for a recent review), it will be useful to extend the

207

application of GBA to handle negative data as well. This can be pursued in two

ways and are listed below:

i. examining the translation invariance property of the various DEA

models and identifying cases where GBA can or cannot be

applied;

ii. examining whether GBA can handle the alternative DEA models

developed for this purpose.

There are cases where negative data does not cause a problem as some

DEA models are invariant to data translation, i.e., the solution is unaffected upon

adding a large enough constant to the data thereby translating it to the positive

orthant. This data translation technique is applied to all the models whose

solution are invariant to this translation. In particular, we know that the additive

VRS model is translation invariant w.r.t inputs and outputs (Ali & Seiford,

1990), and the oriented VRS models are partially translation invariant if only

inputs (outputs) have negative data while solving the output (input) oriented

model. Hence it will be possible to apply GBA upon translation to these models.

While addressing the issue of negative data that arises in many

applications (such as net profit/loss or negative returns if treated as outputs),

various alternative DEA models have been developed in the literature. A partial

list could include the modified slacks-based model of Sharp et al (2006), range

directional model of Portela et al (2004), and semi-oriented radial measure model

of Emrouznejad et al (2010). It will be useful to investigate whether GBA can

handle such models.

Second, it will be useful to extend the application of GBA to solve the

Free Disposal Hull (FDH) models introduced in Deprins et al (1984). FDH

models are similar to the oriented VRS models but with the additional

requirement that the efficiency evaluations are effected from only the actually

observed units. These models are typically solved using sorting algorithms or

MILPs (see, Cooper et al, 2000). GBA cannot be readily applied to solve the

FDH models partly because of the ‘Principal Theorem’ of Thrall (1999) which

shows that there are generators which do not satisfy Characteristic 3 in 4.1.

However, Agrell and Tind (2001) have developed a linear programming

equivalent of the corresponding MILP models. It will be useful to examine

whether GBA can be applied to solve it efficiently.

208

9.3 Extension of the closed-form solutions

Regarding the closed-form solutions to break ties and construct strictly

positive multiplier values, there are four avenues for future work. First, it will be

satisfying to extend the closed-form solutions such that only the zero valued

multipliers are changed to some positive value. Preliminary analysis indicate that

for the VRS case, such an amendment is straight-forward and the current version

of the closed-form solution can be applied without any modification wherein (in

place of the unary weights) only the zero valued multipliers are changed to some

positive value. However, such an extension is complicated in the CRS case.

The second extension would be to restrict the range of the multiplier

values obtained from the closed-form solutions. The closed-form solutions in the

current form produce a set of strictly positive multiplier values without any

regard to the range of the values it ends up with.

A closely connected point is to enable the closed-form solutions such that

they satisfy some pre-specified restrictions on the set of multipliers. Preliminary

analysis indicates that some commonly applied restrictions can be

accommodated by the closed-form solutions under the VRS case. This is because

n* will automatically satisfy the restrictions which would have been

incorporated in the LP. All we need is some positive weight vector n r which

also satisfies the restrictions and synthesise k * with n r instead of the unary

weights. However, yet again, this extension is not straight-forward in the closed-

form solutions employed in the CRS case.

Lastly, it was mentioned in chapter 7 that the necessary condition for the

closed-form solutions to produce strictly positive multipliers is that the generator

in question achieves the unique maximum Rj (for CRS) or RCj value (for VRS)

at n *. It will be useful to relax this condition to generalise the application of our

closed-form solutions.

209

Appendix 1 - Shephard’s (1970) output distance function and related

Debreu-Farrell measure

Similar to representing the production technology

T = {{X J)\Y > 0 can be produced from X > 0, X ^ o} by the input sets, one can

also represent it using the output sets P (X) . P(X) can be represented

asP(X) = {Y : (X,Y)e T}, which for every X have output isoquants

l (X) = \Y : Y e P (X), AY € P (X),A > \} and output efficient subsets given by

E(x) = {Y:YeP{x) ,Y'£P{x) ,Y'>Y} and the three sets satisfy

e {x) q i {x) ^ p {x).

Shephard’s (1970) output distance function provides another functional

representation of the production technology under CRS. The output distance

function is Z)0 = min{^: (^) g P(A")}. For Ye P(x),D0(X,Y)< 1 and for

Ye l(x),D0(X,Y) = 1. Given standard assumptions on Tc described in chapter

1, the output distance function D0(X,Y) is non-increasing mX and is non-

decreasing, homogeneous of degree + 1, and convex in Y.

The Debreu-Farrell output-oriented measure of technical efficiency TE0

is simply the value of the function TE0 = max{0: (f>Y e P (X)} and it again

follows that TE0{X,Y) = — ^ ---- r 56. For Y e P{x), TE0(X ,Y)> \ and for
Do\X> Y)

Y e l(x), TE0(X ,Y) = \. Similar to the properties of the Shephard’s (1953,

1970) distance functions, we can state three properties of the Debreu-Farrell

measures following Russell (1988,1990), namely,

1. TEj(X,Y) is homogeneous of degree -1 in inputs and TE0 (X, Y) is

homogeneous of degree -1 in outputs.

2. TEj(X,Y) is weakly monotonically decreasing in inputs and TE0(X,Y)
is weakly monotonically decreasing in outputs.

56 Given that TE0 {X, F) > 1 , TE0 (X, Y) is sometimes referred to as the radial measure of

technical inefficiency of activity (X, Y). Hence, technical efficiency in the output-oriented case

is given b y r and is equal to D0 (X, Y).
YE0(X, Y)

210

3. TE7(X,Y)and TE0(X ,Y) measures are invariant to the unit of

measurements of the input and output factors.

211

Appendix 2 - July 2006 report to the DfE on Dula’s work

Report 2 under contract 2 due on 1 July 2006

The best method for computing DEA efficiency scores for large data sets -

Dula’s work

Introduction:

The first report entitled ‘A Review of literature on methods to speed up

the solution of large scale data sets in DEA (LSDEA)’ outlined three major

approaches, viz.,

i) Pre-processing and LP accelerator methods developed since 1993 by Ali

[1,3]

ii) Hierarchical Decomposition by Barr and Durchholz [2] published in 1997

and

iii) Dula’s work ([4] to [8]) on finding all efficient DMUs first published as a

Mississippi University report in 1998 and in various journals from 2001.

Among all these, Dula’s work is by far the best. For really large data sets

it is the only viable approach developed so far. For that reason this report

concentrates on Dula’s work. We give a non-technical overview; an introduction

to the technical side of Dula’s work with diagrams and our view of the relevance

of Dula’s work for the DfES in the light of our attempts at implementing Dula’s

method.

Outline of the report:

a) An overview of Dula’s approach

b) Technical details of Dula’s algorithm BuildHull:

1. Main concepts and definitions

2. Starting with at least one extreme efficient DMU

3. A typical iteration - Finding an extreme efficient DMU or

discarding a DMU

4. Output from Dula’s work

c) Relevance of Dula’s work for the DfES

a) An overview of Dula’s approach

We begin with a bird’s eye view of what Dula’s method is and explain

why we think it is the best. This section is deliberately kept non-technical.

212

Dula’s method works in two stages. Irrespective of the DEA model used

(oriented or additive model under variable, constant, increasing or decreasing

returns to scale), he sets out to find all the extreme efficient DMUs in stage 1.

Then in the second stage the inefficient ones are scored through normal LPs in

which only the extreme efficient DMUs are included. The main advantage is that

the size of the LP remains relatively small.

Adapting Dula’s terminology we shall call the extreme efficient DMUs in

a DEA model the generators. See figure 1 where the generators are A, B, C and

D. Note that not all the DMUs on the DEA frontier are generators, e.g., DMUs E,

I, and J in figure 1. In a constant returns to scale DEA model in which input

minimisation is the goal, E, I and J will have efficiency score of 1 but none of

them is a generator. E and I have positive slacks while J is on the line segment

joining C and D. Roughly speaking the generators consist of all those DMUs on

the efficient frontier which can appear as peers in explaining the inefficiency of

others and cannot be expressed by a convex linear combination of other DMUs.

So, excluding a generator alters the efficient frontier and can lead to a change in

the efficiency status of some DMU while excluding a DMU which is not a

generator leaves the frontier and the efficiency status of all other DMUs

unchanged.

The number of generators in any data set is relatively small. In an

application to the state of Texas’ southwest district banks containing 8748 banks

and nine factors (6 inputs + 3 outputs) Barr and Durchholz [2] report that no

more than 1% were efficient. The DfES data set with 9 factors (8 inputs + 1

output) had only 111 generators out of 1258 schools; while in the current data set

with 10 factors, out of 1200 non-sixth form (NSF) and 1653 sixth form (SF)

schools, only 188 NSF and 232 SF schools are extreme efficient - or generators.

The main problem in solving LSDEA is that if the number of schools is n,

we need to solve n LPs of size mx(n+l) where m is the number of factors (inputs

+ outputs). Restricted basis entry (which eliminates any school identified as

inefficient from further computations) and early identification of efficient

schools can reduce the size of the largest LP solved as we come closer and closer

to n. For example, for the last school analysed, the LP will have only the

generators and the last school, the columns of all the inefficient ones having been

eliminated on the way. So the largest LP solved is mx(n+l) and the average size

213

is greater than mx(.5n). The beauty of Dula’s method is that the largest LP it has

to solve is mx(k+l) where k is the number of generators. As k seems not to

exceed 15%, the saving in total time is significant and increases rapidly as n, the

number of schools, goes up. Moreover, for really large data sets (over 10, 000

schools and if pupil-level model is required even 50, 000 DMUs?) this seems to

be the only viable alternative. We discuss this aspect in section c), taking in to

account the extra work required by Dula’s method to score inefficient DMUs in

the second stage.

b) Technical Details of Dula’s algorithm BuildHull

1. Main concepts and definitions

Dula’s algorithm is called BuildHull. We describe it here for an input

minimisation DEA model under the constant returns to scale assumption.

BuildHull is an algorithm for finding all the generators. It starts with one

generator, easily found by known heuristics, and at each subsequent iteration

either finds a new generator or decides that the DMU under consideration is not a

generator and can be discarded. Suppose that at a typical iteration there are /

generators indexed by 1 to / and collectively denoted by set J/. The space

enveloped by the efficient frontier generated by these / DMUs is called the

partial hull, denoted Pi. (See diagram 3 where C is the only DMU in set Jj.) What

we are after is a set Ji that generates the fu ll hull, i.e., where all n DMUs are

within Pi.

So the job is to decide for each DMU whether it is a generator or not.

Given I generators we consider a DMU/ not belonging to Ji at the next LP

iteration. If the input/output vector a of DMUt belongs to the partial hull P i ,

then t cannot be a generator. We can discard it and consider another DMUt from

the ones not classified so far.

When ci<£ P i , the dual LP solution delivers a hyperplane h that separates

ct from Pi. A theorem proves that among all those DMUs which are outside Pi

and on the same side of h as DMUt, there is at least one generator. Modifying

optimal LP dual values tt* the algorithm then creates a set of input/output

weights (designated nbar) which finds a generator. The process is then repeated

with the augmented set Ji and another DMUt from the ones not classified so far.

The most innovative part of the algorithm is the way it decides if DMUt

is in the partial hull or not. To achieve this a new DMU is synthesised from set Ji.

214

Its inputs and outputs relate to the average of inputs and outputs of the DMUs in

set Ji. We shall call it the average DMU and designate its input/output vector as

av1.

Definitions:

Let the input/output vector for DMUj be written as:

a1 =
. Y>

where X is the vector of mi inputs and Y the vector of m2 outputs.

The average DMU used for each LP run in BuildHull is defined by the vector:

av1 = - t —t ~ e) where e is an (mxl) vector of 1 ’s.

Vector av helps to identify any vector d outside P . Barring minor

technical considerations one could say that the LP solved at each iteration tries to

find the minimum multiple a required to express the input/output vector d (of

DMUt) as a non-negative linear combination of the input/output vectors in Ji and

av1. The Primal and Dual LP solved at each iteration are:

Primal LP (?) Dual LP fDI

Min CL

av1 a+ > a*
je J1

a > 0 ,X j > 0

Max tl d

s.t. Kaj <0 , j e J t

n (av1) < 1
7t> 0

(Note that row and column vector multiplications such as ltd are assumed to be

for conformable vectors.)

Expressing the optimal primal and dual values by superscript *, we have

the following important results.

Lemma 1: d e P1 if and only if a* = 0. (In words, DMUt is in the partial

hull and therefore not a generator if and only if a* = 0 .)

Lemma 2 : If a* > 0 , the hyperplane h defined by it* d = 0 separates P

from d , ensuring that it* d > 0.

It is instructive to note why Lemma 2 holds. The strong duality theorem

of LP states that the objective function value of the primal and dual LP are equal,

leading to a* = it*d. As a* > 0, so is ltd. But any point in P has to satisfy the

dual LP conditions n*d < 0. Hence it* delivers a separating hyperplane h.

215

Before introducing Dula’s algorithm we need a few more definitions.

1. fi = a constant vector with value l ’s for the mi input factors and 0 ’s for

the m2 output factors. For example, in a 2-inputs, 1-output DEA problem,

*= [1, 1, 0]
2. Set J* consists of all j such that n* d > 0

3. T|* = Min n , s.t. j e J +
71 a 1

_ b a r *7Z — 71—

5. argmin = the index of the DMU that gives minimum rj*
To illustrate the algorithm we have created a 2-input, 1-output example

with 8 DMUs (denoted A to H). The model chosen is an input minimisation

model under constant returns to scale. See figure 2 for the data of the model and

the production frontier in the 2-input space with unit output level.

2. Starting with at least one efficient DMU
This is the first initialisation step of BuildHull. Dula’s algorithm can be

started with any number of generators or even without any. However, it is easy to

find some generators by well known heuristics, obviating the need to use an LP

for initialisation. Essentially any set of non-negative weights n such that the ratio

of the weighted sum of outputs to weighted sum of inputs is one for only one

DMU (the generator) and less than one for all the others, will do. In part d) we

briefly describe our work on finding several generators by heuristics.

The data for our example is shown in figure 2 which also shows a plot of

the production possibility set enveloped by the production frontier for this data

set. In figure 3, C has been identified as a generator by using weights 1 and 2

respectively for the two inputs and weight 7 for the output. This provides a

starting point for applying BuildHull for the example in figure 2. The partial hull

determined by C is illustrated in figure 3.

3. A typical iteration - Finding a generator or discarding a non-generator

DMU

We describe all the iterations needed for the small example in order to

illustrate various possibilities. The reader can skip this section when s/he feels

comfortable with how the method works.

Iteration 1: Step 2 of BuildHull

We start with Ji = {C}; DMUt = D.

216

From the formula: av1 =-■r-r ^ { a J- e) we g e t:

'5 - 8"
av1 = 2.5 ; d = - 1

0 1

Figure 4 shows these two vectors. (Strictly speaking what is shown in all

these diagrams is the -X i, -X2 space which conforms with the normal

diagrammatic representations in which the input vector is not multiplied by -1.)

Note that av1 is plotted as vector Z.

The LP solved is:

Min a

"5 - 4 ' - 8"
2.5 + 2C -1.5 > - 1

0 1 1

a > 0, Xc > 0

The optimal solution gives a* = .2 and n* = (0, .4, .6)

D is outside the partial hull. The separating hyperplane h given by n*d = 0 is the

horizontal line shown in figure 4. For D and E, 7t*d > 0; for all other points (i.e.,

A, B, C, F, G and H) K*d < 0. The scaling factor is I/ti* = 1 / -.0222 = - 45 and

**"' = [1,19,27].

As we can see in figure 5, the separating hyperplane is swivelled while
L

keeping it hinged at C. This creates a new hyperplane with coefficients n . The

half space indicated by 7t*d > 0 is now swept with the new hyperplane to find

the point furthest away. This is point D in figure 5. So the new DMU we were

investigating is a generator. (Note that 7̂ ar also provides a set of optimal weights

forD.)

Iteration 2

We repeat Step 2 with Ji = (C, D}; DMUt = G.

217

'7
/ _ av — 2.25 ; a = - 4

0 1

The LP solved is:

Min a

"7 " -4 " - 8
2.25 + x c -1 .5 + XD - 1 > - 4
0 1 1 1

a > 0, Xc, XD> 0

The optimal solution gives: a* = 0 which implies that DMU G is within

the partial hull of units C and D and hence not a generator. Since G is contained

within the partial hull, it will also be contained in the full hull and can be

discarded from subsequent operations. (Note that this doesn’t mean C and D are

the peers for G in the final analysis.)

Iteration 3
We repeat Step 2 with Jj = (C, D}; DMUt = F.

~1 " -3 “
i _ av — 2.25 ;* '= - 7

0 1

The LP solved is:

Min a

"7 " -4 " - 8 - 3
2.25 +2C -1.5 + XD - 1 > - 7
0 1 1 1

a > 0, Xc, XD > 0

The optimal solution gives a* = 0.143 and k* = (0.143, 0, 0.571)

Figure 6 shows the new partial hull. DMU F is outside Pi , leading to the

separating hyperplane h given by n*d = 0 which is the vertical line passing

through C. For F, A, and B, iz*d > 0; for all other points n*d < 0.

The scaling factor l/r|* = 1/-0.0475 = - 21.05 and nbar = [4.01, 1, 12.02].

The swivel and sweep operation using nbar leading to point A is illustrated in

figure 7. Instead of fixing the status of F, we have identified A as a generator. So

218

F would be considered again in another iteration. In this case it will turn out to be

a non-generator, but we cannot be sure of that unless we find a partial hull that

contains it. However, the status of A is fixed at this iteration and no LP is wasted.

Iteration 4

We repeat Step 2 with Jj = {C, D, A}; DMUt = B.

"5.67" -2 .5 “
av1 = 3.17 ;* '= -2 .5

0 1

The LP solved is:

Min a

s.t. a
5.67 - 4 - 8 - 2 -2 .5
3.17 +2C -1.5 + XD - 1 + XA - 4 > -2 .5
0 1 1 1 1

a > 0, Xc, XD, XA >0

The optimal solution gives a* =.0854 and it* = (0.122, 0.098,0.634)

Figure 8 shows the new partial hull. DMU B is outside P i, leading to the

separating hyperplane h given by it*d = 0 which is a line passing through C and

A. For B, it*d > 0; for all other points it*d < 0.

The scaling factor l/r|* = - 59.52 and i^ar = [8.26, 6.83, 37.74]

Iterations 5, 6, and 7

Since we have all the generators of the production possibility set, running

LPs with Ji = {C, D, A, B}; DMUt = F, H, and E (separately) will return an

objective function value of 0 as in iteration 2 , implying that none of them are

generators and can be discarded.

4. Output from Dula’s work

In this section we outline what the current version of Dula’s algorithm

delivers and what we think can be obtained from it after further work.

What BuildHull delivers for generators

At the end of phase 1 BuildHull delivers a complete set of generators.

The efficiency values of each one of these is 1 and the weights nbar used to find

the generator gives a set of optimal weights at which the generator in question is

219

efficient. These weights are not the extreme weights normally delivered by the

usual LP solved for an input oriented CRS model. They are more like the weights

produced by PIMSOFT which are also non-extreme, except that PIMSOFT

generated weights are biased towards producing as many non-zero weights as

possible. In fact it becomes obvious from the proof of the main result (Result 3 in

[4]) that the weights 7tbar are such that the all the input weights are guaranteed to

be non-zero.

Can BuildHull deliver non-zero weights for generators?

By combining i£ar with the weight vector produced for the same

generator by PIMSOFT we can produce new weights for any generator which

have more non-zeros in them. For example if PIMSOFT produced some zero

weights for r inputs, a straight forward average of PIMSOFT’s and BuildHull’s

weights will provide a valid weight which will have at least r more non-zeros. It

seems straight forward to modify the definition of ft so that all the output weights

in are positive. If this hunch proves to be correct, we can produce all non

zero weight vectors for each generator.

There is a strong possibility that with more research work a method

can be developed from this to produce non-zero weights for all the

generators!

What BuildHull delivers for non-generators:

At first sight it may seem that Phase 1 of BuildHull delivers nothing for

non-generators except for their classification. But there is more. Suppose in a

1000 schools exercise with 100 generators we have found all the generators after

analysing 800 schools. We do not know this until the end, but the information

obtained for each of the remaining 200 schools was gleaned with the help of an

mxlOl LP which is very closely related to the mxlOl LP we would solve in

phase 2. Consider a typical school t from these 200. The peers obtained for this

school by solving the normal DEA model will be closely connected to the peers

chosen in phase 1. Again there is a strong possibility that with more research

a method can be developed to score the last 200 schools in this example

without solving a separate LP in phase 2.

c) Relevance of Dula’s work for DfES

Currently DfES uses PIMSOFT to analyse DEA models for comparing

schools. This seems to work satisfactorily when the number of schools in the

220

model is in hundreds. When thousands of schools are to be analysed there seems

to be a significant increase in computation time. To improve performance

Hierarchical Decomposition methods are being looked in to. Using Dula’s work

instead can lead to significant improvements.

To implement Dula’s method for scoring all schools and finding a set of

optimal weights we need to solve nearly 2n LPs of maximum size mx(k+l).

(Nearly 2n because in phase 2 we need to solve an LP for each one of the non-

generator school, i.e., n-k LPs, of size mxk+1). Solving nearly twice the number

of LPs compared to the normal methods is relevant only if 2n smaller LPs can be

done faster than n larger LPs. In a sense this is a practical question needing

empirical evidence. Dula [7, 8] reports on tests he has carried out. As presented

by him, the evidence is overwhelmingly in favour of his method. While one can

be forgiven for being a bit sceptical of this, common sense dictates that he must

be right. After all if there are 100,000 schools of which only 1500 are generators,

we are comparing the solving of 100,000 LPs with between 100,000 and 55,000

variables as opposed to nearly 200,000 LPs with only 1501 variables at most.

Each LP in the first case can take several minutes as opposed to several seconds

in the latter case. So while the number of LPs doubles for Dula, the time per LP

can be a small fraction of that required by standard approaches.

How can DfES use this? I think it is premature to ask PIMSOFT team to

implement Dula in their software without further experimentation with

BuildHull. What is needed is to run the largest available data set (say 3000+

schools in the current data set) by Dula’s method and also by PIMSOFT. It may

be that one could find the generators outside of PIMSOFT and then use it to

score all the schools. On the other hand a separate optimisation sub-routine

within PIMSOFT may be able to handle the large data set and deliver all the

generators to the normal DEA part of it.

Bear in mind though that the working of Dula’s algorithm can be

significantly improved. In part b) we outlined how all positive weights for

generators and actual efficiency scores for some of the non-generators (the ones

analysed after all the generators were found) can be achieved. Even more can be

done for finding generators without doing LPs. For example, Ali had developed

elementary heuristic methods to find some generators. We have developed more

sophisticated methods as well as some even simpler ones and are able to produce

221

at lease twice as many generators as Ali’s methods do. In fact our simplest

approach, requiring only a random number generator, is proving very promising

indeed. In all the data sets tried so far (including the DfES data) we are able to

find 10% of generators within seconds.

The best way to take this forward is perhaps to give us access to a state of

the art solver such as CPLEX and let Nikos and Srini work with this to get the

best out of Dula’s method.

References

1. Ali, A. I. (1993), Streamlined computation for data envelopment analysis,

European Journal of Operational Research 64, 61 -67

2. Barr, R. S., and Durchholz M. L. (1997), Parallel and hierarchical

decomposition approaches for solving large-scale DEA models, Annals

of Operational Research 73, 339 - 372

3. Chen, Y and Ali, A. I. (2002), Output-input ratio analysis and DEA

frontier, European Journal of Operational Research 142,476 - 479

4. Dula, J. H. et. al. (1998), An algorithm for identifying the frame of a

pointed finite conical hull, INFORMS journal on computing, 10, No. 3

5. Dula J. H. (1998), An algorithm for the DEA, School of Business,

University of Mississippi, MS 38677

6 . Dula, J. H., and Thrall, R. M. (2001), A computational framework for

accelerating DEA, Journal of Productivity Analysis, 16, 63 - 78

7. Dula, J. H. (2002), Computations in DEA. Pesquisa Operacional, 22, 165-

182.

8. Dula, J. H. (2006), A Computational study of DEA with massive data

sets, Computers and Operations Research (forthcoming) .

222

In this figure there are 10 DMUs with A, B, C, and
D being the generators of the production possibility
set (PPS)

A, B, C, D, E, I, and J are the boundary points but
not all of them are generators of the PPS.

s/xe zx

Generators in DEA

Observed production frontier

X 1 ax is

DMU X1 X2 Y1

A 2 4 1
B 2.5 2.5 1
C 4 1.5 1

D 8 1 1
E 10 1 1
F 3 7 1

G 7 4 1

H 4 3 1

An 8 DMU. 3 factor DEA problem to
graphically illustrate Dula's algorithm

X2
ax

is

Plane o f Output Y1 = 1

Observed production frontier

Production Possibility Set - PPS

X1 axis

Plane o f Output Y1 = 1

By simple pre-processing C is initially
identified as a generator

Partial hull of C containing
non-generators G and H

X1 axis

LP model solution {size: 3 x 2)

J) = C is the subset of generators;
Z = av1, DMUt = D:

Plane of Output Y1 = 1Objective Function value = 0.2

7i* = <0, 0.4, 0.6>

 _^epe_ratinjg_Hyperp Laaeĵ Q^OU lP.6>V
th ro u g h C , w ith D a n d E to o n e s i d e
a n d t h e r e s t o n th e o th e ■ s i d e

X1 axis

Plane of Output Y1 = 0

Minimum if = -0.022; ArgMin = D; <1, 1, 0>

71^= ft— ^E_j = <1. 19. 27>

Stepl - Hinge at C and swivel to n 91*

Step2 - Sweep to an extreme point

Hyperplane <-1 X1 - 19 X2 - 27 Y = 0> at which Efficie i

z

Plane of Output Y1 = 0

X2

ax
is

Plane of Output Y1 = 1

X1 axis

^ - Hinging and snivelling the seperating hyperplane

- Sweeping to an extreme point, here, D

LP model solution {size: 3 x 3)

Ji = C and D is the subset of generators; Z = av?
DMUt = F:

Objective Function value = 0.143

7t* = <0.143,0, 0.571>

z

Plane of Output Y1 = 0

stxe
zx

Partial Hull o f C and D containing non
generators G, H, and E

Plane of Output Y1 = 1

X1 axis

Separating Hyperplane <0.143,0; 0.571>
th r o u g h C , w ith A , B , a n d F to o n e s id e
a n d t h e r e s t o n th e o th e r s i d e

229

Minimum if = -0.0475; ArgMin = A; tF* - <4.01, 1, 12.02>

Plane of Output Y1 = 0

X2

ax
is

Piane o f Output Y1 = 1

X1 axis

Htyperplane <wj.01 X1 - 1 X2 -12.02 Y = 0> at
which efficiency of A is 1

f \ - Hinging and swivelling the seperating hyperplane

- Sweeping to an extreme point, here, A

LP model solution {size: 3 x 4)

J i - C , D. and A are the subset of generators;
Z = avl ; DMUt = B:

Objective Function value = 0.0854

7i* =<0.122. 0.098, 0.634>

z

Plane o f Output Y1 - 0

Partial Hull of A, C, and D containing non
generators E, F, G, and H

Plane of Output Y1 = 1

'X1 axis

Separating Hyperplane <0.122.0.098; 0.634> through A andC
with B to one side and rest on the other side

Minimum rf = -0.0168; ArgMin = B; n b a r - <8.26, 6.83, 37.74>

Plane of Output Y1 = 1

C\l

X1 axis

Hyperplane <-8.26 X1 - 6.83 X2 - 37.74 Y = 0> at
which efficiency of B is 1

Plane o f Output Y1 = 0

232

Plane o f Output Y1 = 1

Partial Hull of A, B, C and D making up the full
hull

Sumnwr/

Starting with generator C, Dula's algorithm takes 3 iterations (LPs) to
identify the remaining generators and 1 each for the non-generators,
i. e., 7 in total

X1 axis

Units E, F, G, and H are identified as non-generators as in the LPs
corresponding to them the objective fn. value is 0. Graphically they are
contained in the partial hull of some generators

Figure 10

Appendix 3 - Proof that Xt is either 0 or 1 in the penalty enabled GBA

models

First, it is obvious that Xt is bounded between 0 and 1, i.e., 0 < Xt < 1. We

show below that there are only two possibilities for Xt in the penalty enabled

GBA models regardless of the penalty value, viz., either Xt = 0 or Xt = 1.

To show this, we take the particular case of solving DMUt using MGBA

LP-1. The logic applied here can be extended with little modification to the other

models for any valid penalty value.

Now, DMUt is either inside or on the partial PPS; else, it is strictly

outside the partial PPS. We investigate the two cases below.

Case 1: DMUt is inside or on the partial PPS:

In this case a linear combination of some of the generators in GEN

dominate DMUt leading to 0 < O'* < 1. Let the optimal dual values be

7t'* — {v'*, u '*). This means that the reduced cost of DMUt,

RCt =u*Yt -v '* X t < 0 . If Xt > 0 , then the corresponding dual constraint will

be binding, i.e., u'*Yt -v '* X t = M . Given that M > 0, RCt > 0 but this

contradicts with the stipulation that 0 < O'* < 1 . Hence, Xt = 0.

Note that for any value of M > 0, the above reasoning is valid.

Case 2: DMUt is strictly outside the partial PPS:

Consider any generator DMUg in GEN. For Xg > 0 along with Xt > 0 ,

the relevant hyperplane h defined by n* ={v'*,u'*) must support both DMUt and

DMUg. However, this requirement is incompatible. If Xt > 0 , then

RCt =u'*Yt -v '* X t = M > 0. In this case, the hyperplane h is defined by

233

u*Yj - v'*Xj = M . If Xg > 0, then RCg = 0 and the hyperplane h in this case is

given by RCj = u'*Yj - V * X } - 0 .

Given that Max\RC. r = 0 , and X > 0 dictates RC, = M , the hyperplane
j&GEN yJ

h cannot be supporting both units for a given n *. Either, h supports at DMUt in

which case the units in GEN lie strictly inside the half-space

u*Yj - v'*Xj G EN. Else, h supports DMUg in GEN in which case

the hyperplane separates the units in GEN lying in the half-space

u*Yj - v* X j < 0,V/ e GEN from DMUt lying in the half-space

u*Yt —v'*Xt > 0 .

Note again that for any value of M > 0, the above reasoning is valid.

Hence, Xt x Xg = 0 in the penalty enabled GBA models. This dictates

that either Xt - 0 or Xt = 1 to achieve a feasible solution to MGBA LP-1.

234

Appendix 4 - R codes to solve the output-oriented VRS model using GBA, BuildHuli and the standard DEA algorithm

R code to solve the output-oriented VRS model using GBA

dudat<-read.xls("d.xls", ty p e-’double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml <-6
m2<-3
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=dudat[l:n,l:ml]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
x<- -dudat[l:n,l:ml]
y<- dudatfl :n,m3:m]

235

dm<-cbind(x,y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<-abs(rowSums(a[,m5:m7]))-rowSums(a[,2:m3])
maxs2<-max(s2)
ql<-which.max(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
al l<-a3
sq<-nrow(a3)
d4<-ncol(a4) /* End of initialisation */
g<-l
tim 1 <-proc.timeQ
while(sq>=l) /* Beginning of GBA procedure */
{
b2<-matrix(nrow=l ,ncol=m)
b2[,l:ml]=a3[l,2:m3]
b2[,m3:m]=0
b3<-rbind(t(b2), 1)
b2 1 <-matrix(nrow= 1 ,ncol=m)
b21[,l:ml]=a3[l,2:m3]
b21 [,m3 :m]=a3 [1 ,m5 :m7]

236

c2<-matrix(nrow= 1 ,ncol=m)
c2 [,l:m l]=0
c2[,m3 :m]=-a3 [1 ,m5 :m7]
c3<-rbind(t(c2),0)
asd<-cbind(t(b21),a4[-1,])
asd2<-rbind(asd, 1)
abc2<-cbind(c3 ,asd2)
lt2<-(c(l ,pen,rep(0,d4)))
f.dir <-c(rep("<-’,1̂ , " = ")
vtr2<-lp(direction="max",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const.rhs=b3,compute.sens=l,scale=3)
s3<--(a3[,m5:m7]%*%vtr2$duals[m3:m])-vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
sasz<-max(s3)
if(sasz<=0)
{
sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1] ,vtr2$solution[1])
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
g<-g+i
}
if(sasz>0)
{
ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the tied units */
{
notie<-notie+l

237

tieunits<-tieunits+smx3
s3tie<-sort(s3,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-vtr2$duals[l :m7]*par7
duals3 [1 :m6]<-duals3 [1 :m6]+1
s3<--(a3 [,m5 :m7]%*%duals3 [m3 :m])-(a3 [,2:m3]%*%duals3 [1 :m 1])-duals3 [m7]
>
sq<-nrow(a3)
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3 [,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1)<-c(1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of GBA procedure */

238

s6<-s5[complete.cases(s5),]
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by GBA to solve the dataset */
notie /* Number of ties encountered */
tieunits /* Average number of tied units per tie */

R code to solve the output-oriented VRS model using BuildHull

dudat<-read.xls("d.xls",type-’double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml <-6
m2<-3
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0

239

a<-matrix(nrow=n,ncol=m)
a[1 :n, 1 :m 1]=dudat[1 :n, 1 :ml]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
x<- -dudat[1 :n, 1 :m 1]
y<- dudat[l:n,m3:m]
dm<-cbind(x,y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<-abs(rowSums(a[,m5:m7]))-rowSums(a[,2:m3])
maxs2<-max(s2)
ql<-which.max(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4) /* End of initialisation */
g<-l
timl<-proc.timeO
while(sq>=l) /* Beginning of Phase-1 of BuildHull procedure */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [l,l:m]<-l

240

c2<-matrix(nrow= 1 ,ncol=m)
c2[l,]=-a3[l,-l]
c3<-rbind(t(c2),l)
abc2<-cbind(t(b2),-a4[-l,])
fp<-c(0,rep(1 ,d4))
abc3<-rbind(abc2,fp)
lt2<-(c(l ,rep(0,d4)))
f.dir <-c(rep(">=",m),"=")
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc3,const.dir=f.dir,const.rhs=c3,compute.sens=l,scale=3)
if(vtr2$solution[1] = 0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
g<-g+i
}
else
if(vtr2$solution[1]>0)
{
sq<-nrow(a3)
if(sq = l)
{
s3<--(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])+vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[1 :ml])
}
else
if(sq>l)

241

{
s3<--(a3[,m5:m7]%*%vtr2Sduals[m3:m])+vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
}
ms3<-max(s3)
smx3 <-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the ties */
{
s3tie<-sort(s3,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-vtr2$duals[l :m7]*par7
duals3[l :m6]<-duals3[l :m6]+l
s3<--(a3[,m5:m7]%*%duals3[m3:m])-(a3[,2:m3]%*%duals3[l:ml])+duals3[m7]
}
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3[,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l ,m8)
skl<-sk[,-m8]
dim(sk 1)<-c(1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]

242

dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of BuildHull procedure */
s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
if(zx = l)
{s6<-t(s6)}
si l<-matrix(nrow=zx,ncol=2)
a5<-matrix(nrow=sx,ncol=m)
a5=a4[-l,]
for(i in l:zx) /* Beginning of Phase-2 of BuildHull procedure */
{
b<-matrix(nrow=l ,ncol=m)
b[,l :ml]=s6[i,2:m3]
b[,m3:m]=0
b2<-rbind(t(b),l)
c<-matrix(nrow= 1 ,ncol=m)
c[,l:m l]=0
c[,m3 :m]=-s6[i,m5 :m7]
cl<-t(c)
§)2<-c(0,rep(1 ,sx))
abc<-cbind(c 1 ,a5)
abc3<-rbind(abc,fp2)
lt3<-c(l,rep(0,sx))
f.dir <-c(rep("<=",m),"=")

243

vtr3<-lp(direction-,max,,,objective.in=lt3,const.mat=abc3,const.dir=fdir,const.rhs=b2,compute.sens=l,scale=3)
s 11 [i,]<-cbind(s6[i, 1] ,vtr3 $solution[1])
} /* End of Phase-2 of BuildHull procedure */
tim /* Time taken by BuildHull to solve the dataset */
notie /* Number of ties encountered */
tieunits /* Average number of tied units per tie */

R code to solve the output-oriented VRS model using the conventional PEA algorithm

dudat<-read.xls("DEA.xls,,,type=’,double") /* Reads the dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol=l)
s2<-matrix(nrow=n,ncol= 1)
ml <-7
m2<-8
m3<-ml+l
m4<-m2+l
m<-ml+m2
nm<-n+l
mn<-m+ 1
a<-matrix(nrow=n,ncol=m)
a[1 :n, 1 :m 1]=dudat[1 :n, 1 :m 1]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
xl<-t(dudat[l:n,l:ml])
dim(xl)<-c(ml,n)
y2<—dudat[1 :n,m3 :m]
timK-proc.timeQ

244

for(i in l:n) /* Beginning of Phase-1 of the conventional algorithm */
{
b<-matrix(nrow= 1 ,ncol=m)
b[,l:ml]=xl[,i]
b[,m3 :m]=rep(0,m2)
bl<-rbind(t(b),l)
c<-matrix(nrow=l ,ncol=m)
c[, 1 :m 1]=rep(0 ,m 1)
c[,m3:m]=-y2[i,]
fp2<-c(0 ,rep(l ,n))
abc<-cbind(t(c),t(a))
abc3<-rbind(abc,fp2)
dim(abc3)<-c(mn,nm)
lt<-(c(l,rep(0 ,n)))
f.dir <-c(rep("<-,,m),"=")
vtr<-lp(direction="max",objective.in=lt,const.mat=abc3,const. dir=f.dir,const.rhs=bl,compute.sens=l,scale=3)
s 1 [i]<-1 /vtr$solution[1]
} /* End of Phase-1 of the conventional algorithm */
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by Phase-1 of the conventional algorithm */
for(j in l:n) /* Beginning of Phase-2 of the conventional algorithm */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [,l:m l]=t(xl[j])
b2[,m3:m]=-y2[j,]*l/sl[j]
b3<-rbind(t(b2), 1)
a2<-matrix(nrow=n,ncol=m)

245

a2 [,l:ml]=t(xl)
a2[,m3:m]=-y2
si 1 <-matrix(nrow=m,ncol=m 1)
sll[l:m l,l:m l]=diag(m l)
sll [m3:m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [1 :m 1 ,]=rep(0 ,m 1)
sl2[m3:m,l :m2]=-diag(m2)
abcd<-cbind(sl 1 ,sl2 ,t(a2))
fp3<-c(rep(0,m),rep(l ,n))
abcd2<-rbind(abcd,fp3)
f.dir2<-c(rep("==",m),"— ")
lt2<-c(rep(1 ,m),rep(0 ,n))
V t r 2 < - l p (d i r e c t i o n = " m a x " , o b j e c t i v e . i n = l t 2 , c o n s t . m a t = a b c d 2 , c o n s t . d i r = f . d i r 2 , c o n s t . r h s = b 3 , c o m p u t e . s e n s = l , s c a l e = 3)

s 2 [j] < - s u m (v t r 2 $ s o l u t i o n [l : m])

}/* End of Phase-2 of the conventional algorithm */
tim3<-proc.time0
tim<-tim3-timl
tim /* Total time taken by the conventional algorithm */

246

Appendix 5 - Computational performance of the competitive algorithms in solving the output-oriented VRS model

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) Is tP hase (secs)

5-2500-01 16.5 9.47 98.19 47.47 10-2500-01 17.44 10.36 185.36 87.05
5-2500-13 26.86 16.19 102.14 49.44 10-2500-13 33.88 20.92 191.67 89.47
5-2500-25 38.61 24.5 101.67 48.27 10-2500-25 51.73 33.35 201.84 90.65
5-2500-50 63.58 48.42 106.51 52.37 10-2500-50 91.16 68.75 205.25 91.19

5-5000-01 33.78 19.64 366.02 176.64 10-5000-01 37.69 23.19 716.5 336.05
5-5000-13 76.43 44.5 370.24 180.65 10-5000-13 107.85 64.3 766.92 353.44
5-5000-25 121.78 79.24 376.36 178.88 10-5000-25 176 114.7 783.56 364.57
5-5000-50 232.92 178 392.16 188.81 10-5000-50 348.03 262.22 825.6 372.13

5-7500-01 54.19 32.19 792.95 383.43 10-7500-01 57.3 38.25 1631.55 764
5-7500-13 145.82 88.98 826.67 395.26 10-7500-13 212.04 130.81 1770.97 811.61
5-7500-25 254.02 166.95 837.72 403.7 10-7500-25 382.99 249.78 1738.06 790.84
5-7500-50 512.82 389.38 866.02 426.19 10-7500-50 786.64 595.25 1786.41 788.26

5-10000-01 71.84 44.7 1388.48 662.89 10-10000-01 87.41 60.08 2758.63 1290.45
5-10000-13 243.91 146.23 1511.32 714.36 10-10000-13 372.1 228 2952.36 1366.01
5-10000-25 437.79 283.38 1480.84 708.81 10-10000-25 686.69 441.5 3015.35 1370.14
5-10000-50 889.87 683.58 1518.36 741.34 10-10000-50 1415.07 1053.96 3184.28 1411.23

247

Computational performance of the competitive algorithms in solving the output-oriented VRS model (Contd.)

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs)

15-2500-01 17.83 10.39 269.79 123.15 20-2500-01 21.53 13.45 371.58 168.69
15-2500-13 40.64 25.5 339.08 118.67 20-2500-13 48.61 31.97 361.67 165.36
15-2500-25 63.68 42.64 290.64 136.06 20-2500-25 82.97 58.04 381.71 184.6
15-2500-50 122.33 92.29 312.23 149.7 20-2500-50 155.94 118.73 479.85 276.52

15-5000-01 39.72 26.03 1057.53 486.2 20-5000-01 52.72 32.82 1808.2 708.67
15-5000-13 135.27 86.05 1109.06 518.94 20-5000-13 175.77 116.23 1480.17 712.69
15-5000-25 242.77 157.15 1138.03 531.41 20-5000-25 302.52 204.94 1820.28 1039.33
15-5000-50 478.11 357.44 1172.45 556 20-5000-50 611.22 460.53 2675.05 1839.89

15-7500-01 68.66 51.77 2447.45 1172.11 20-7500-01 77.48 57.85 3164.79 1430.81
15-7500-13 291.44 197.63 2444.99 1142.78 20-7500-13 364.46 243.13 3403.11 1632.72
15-7500-25 562.25 365.36 2509.72 1187.72 20-7500-25 673.91 448.67 4603.53 2803.26
15-7500-50 1143.89 867.57 2633.24 1301.57 20-7500-50 1233.39 947.53 6159.97 4306.56

15-10000-01 101.01 72.33 4145.72 1992.64 20-10000-01 112.46 86.18 5786.72 2722.22
15-10000-13 500.78 378.4 4363.72 2083.6 20-10000-13 617.73 411.04 6065.78 2895.7
15-10000-25 994.25 654.31 4468.03 2148.45 20-10000-25 1155.51 777.41 9736.8 6486.5
15-10000-50 2022.14 1520.06 4713.23 2319.67 20-10000-50 2401.78 1899.21 30788.23 27471.23

248

Appendix 6 - R codes to solve the additive VRS model using GBA, BuildHull and the standard DEA algorithm

R code to solve the additive VRS model using GBA

dudat<-read.xls("DEA.xls",type="double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of the initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
m l < - 9

m 2 < - l 1

m 3 < - m l + l

m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m 8 < - m 7 + l

s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=dudat[l:n,l:m l]
a[1 :n,m3 :m]=dudat[1 :n,m3 :m]
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<~rowSums(a[,m5:m7])+rowSums(a[,2:m3])

249

mins2<-min(s2)
ql <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
al l<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l
pen<—1 /* End of initialization */
timl<-proc.time()
while(sq>=l) /* Beginning of the GBA procedure
{
c2<-matrix(nrow= 1 ,ncol=m)
c2 [1 ,]=abs(a3 [1,-1])
c3<-rbind(t(c2),l)
si 1 <-matrix(nrow=m,ncol=m 1)
s l l [l : m l , l : m l] = d i a g (m l)

si 1 [m3 :m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [1 :ml ,]=rep(0 ,m 1)
sl2[m3 :m, 1 :m2]=-diag(m2)
abcd<-cbind(sl 1 ,sl2,a4[-1,])
fp3<-c(rep(0,m),rep(l ,d4))
abcd2<-rbind(abcd,Q)3)
abcd3<-cbind(abcd2,c3)
f.dir2<-c(rep(,,= ,,,m),, -= ”)
lt2<-c(rep(l ,m),rep(0,d4),pen)

250

vtr2<-lp(direction="max",objective.in=lt2,const.mat=abcd3,const.dir=f.dir2,const.rhs=c3, compute.sens=l,scale=3)
s3<-(a3[,-l:-m3]%*%vtr2$duals[m3:m])+vtr2$duals[m7]+(a3[,2:m3]%*%vtr2$duals[l:ml])
sasz<-min(s3)
if(sasz>=0)
{
sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1] ,sum(vtr2$solution[1 :m]))
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
g<-g+l
}
else
if(sasz<0)
{
sq<-nrow(a3)
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-min(sx3 [,m8])
q4<-which.min(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1)<-c(1 ,m7)
a4<-cbind(a4,t(sk 1))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]

251

a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
d4<-ncol(a4)
>

} /* End of GBA procedure */
s6<-s5[complete.cases(s5),]
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by the GBA to solve the dataset */

R code to solve the additive VRS model using BuildHull

dudat<-read.xls("DEA.xls",type-’double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
ml<-9
m2< -ll
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s 1 <-matrix(nrow=n,ncol= 1)
s5<-matrix(nrow=n,ncol=m+1)
ni<-ml

252

no<-m2
a<-matrix(nrow=n,ncol=m)
a[1 :n, 1 :m 1]=dudat[1 :n, 1 :m 1]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+l)
s2<-rowSums(a[,m5:m7])+rowSums(a[,2:m3])
mins2<-min(s2)
q 1 <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
a l l < - a 3

sq<-nrow(a3)
d4<-ncol(a4)
g<-l /* End of initialization */
tim 1 <-proc.time()
while(sq>=l) /* Beginning of Phase-1 of BuildHull */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [l,l:m]<-l
c2<-matrix(nrow= 1 ,ncol=m)
c2[l,]=-a3[l,-l]
c3<-rbind(t(c2),l)
abc2<-cbind(t(b2),-a4[-l,])
fp<-c(0,rep(l,d4))
abc3<-rbind(abc2,fp)

253

It2<-(c(l,rep(0,d4)))
f.dir <-c(rep(">=",m),"=")
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc3,const.dir=f.dir,coiist.rhs=c3,compute.sens=l,scale=3)
if(vtr2$solution[1] = 0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
g<-g+l
}
else
if(vtr2$solution[1]>0)
{
sq<-nrow(a3)
if(sq = l)
{
s3<--(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])+vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[1 :m 1])
}
else
if(sq>l)
{
s3<--(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])+vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[1 :m 1])
}
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3 [,m8])

254

q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1)<-c(1 ,m7)
a4<-cbind(a4,t(sk 1))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of BuildHull */
s6<-s5[complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
s2<-matrix(nrow=zx,ncol= 1)
if(zx = l)
{s6<-t(s6)}
si 1 <-matrix(nrow=zx,ncol=2)
a5<-matrix(nrow=sx ,ncol=m)
a5=a4[-l,]
for(j in l:zx) /* Beginning of Phase-2 of BuildHull */
{
b2<-matrix(nrow= 1 ,ncol=m)
b2 [,l :m]=abs(t(s6[j,-l]))

b3<-rbind(t(b2), 1)
si 1 <-matrix(nrow=m,ncol=m 1)
sll[l:m l,l:m l]=diag(m l)
si 1 [m3 :m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [1 :m 1 ,]=rep(0 ,m 1)
sl2[m3 :m, 1 :m2]=-diag(m2)
abcd<-cbind(sll ,sl2,abs(a5))
fp3<-c(rep(0,m),rep(1 ,sx))
abcd2<-rbind(abcd,Q)3)
f.dir2<-c(rep("=",m),"=-')
lt2<-c(rep(1 ,m),rep(0,sx))
vtr2<-lp(direction-'max",objective.in=lt2,const.mat=abcd2,constdir=fdir2,constrhs=b3,compute.sens=l,scale=3)
s2Lj]<-sum(vtr2$solution[l :m])
} /* End of Phase-2 of BuildHull */
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by BuildHull to solve the dataset */

R code to solve the output-oriented VRS model using the conventional PEA algorithm

dudat<-read.xls(’’DEA.xls’',type-’double") /* Reads the dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
m l < - 9

m 2 < - l 1

256

m3<-ml+l
m4<-m2+l
m<-ml+m2
nm<-n+l
mn<-m+l
a<-matrix(nrow=n,ncol=m)
a[1 :n, 1 :m 1]=dudat[1 :n, 1 :m 1]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
x 1 <-t(dudat[1 :n, 1 :ml])
dim(x 1)<-c(m 1 ,n)
y2<—dudat[1 :n,m3 :m]
timK-proc.timeO
for(j in 1 :n) /* Beginning of conventional algorithm */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [,l:m l]=t(xl[j])
b2[,m3:m]=-y2[j,]
b3<-rbind(t(b2), 1)
a2<-matrix(nrow=n,ncol=m)
a2 [,l:m l]=t(xl)
a2[,m3:m]=-y2
si 1 <-matrix(nrow=m,ncol=m 1)
sll[l:m l,l:m l]=diag(m l)
si 1 [m3 :m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [1 :m 1 ,]=rep(0 ,m 1)
sl2[m3 :m, 1 :m2]=-diag(m2)
abcd<-cbind(sll ,sl2 ,t(a2))

257

fp3<-c(rep(0,m),rep(l ,n))
abcd2<-rbind(abcd,fj?3)
f.dir2<-c(rep("=",m),"=")
lt2<-c(rep(1 ,m),rep(0 ,n))
vtr2<-lp(direction-'max",objective.in=lt2,const.mat=abcd2,const.dir=f.dir2,const.rhs=b3,scale=3)
s2[j]<-sum(vtr2$soluti°n[1:m])
} /* End of conventional algorithm */
tim2<-proc.time()
tim<-tim2 -timl
tim /* Time taken by the conventional algorithm to solve the dataset */

258

Appendix 7 - Computational performance of the competitive algorithms in solving the additive VRS model

Dataset BuildHull (secs) GBA (secs) Std Additive model (secs) Dataset BuildHull (secs) GBA (secs) Std Additive model (secs)

5-2500-01 17.11 8.83 68.6 10-2500-01 18.85 10.05 130.99
5-2500-13 26.82 15.96 71.3 10-2500-13 36.79 22.64 133.54
5-2500-25 38.86 24.82 71.36 10-2500-25 59 37.9 138.45
5-2500-50 64.95 50.09 71.23 10-2500-50 98.89 83.98 132.98

5-5000-01 33.96 19.6 267.69 10-5000-01 38.57 24.06 525.39
5-5000-13 78.81 48.08 267.83 10-5000-13 120.48 76.06 526.75
5-5000-25 128.33 83.23 280.63 10-5000-25 198 135.19 547.53
5-5000-50 240.47 185.84 271.06 10-5000-50 375.42 299.95 538.61

5-7500-01 54.81 32.3 593.35 10-7500-01 64.53 40.57 1174
5-7500-13 154.82 94.13 600.66 10-7500-13 250.69 155.83 1219.92
5-7500-25 270.29 175.31 609.17 10-7500-25 431.53 297.49 1212.29
5-7500-50 523.89 410.67 602.96 10-7500-50 836.61 674.18 1179.36

5-10000-01 76.7 46.53 1037.85 10-10000-01 91.12 61.19 2071.57
5-10000-13 260.55 159.36 1046.44 10-10000-13 415.5 269.14 2190.15
5-10000-25 456.5 301.31 1059.72 10-10000-25 762.12 520.5 2097.48
5-10000-50 914.45 714.23 1071.3 10-10000-50 1501.83 1203.5 2169.21

259

Computational performance of the competitive algorithms in solving the additive VRS model (contd.)

Dataset BuildHull (secs) GBA (secs) Std Additive model (secs) Dataset BuildHull (secs) GBA (secs) Std Additive model (secs)

15-2500-01 21.31 11.6 183.45 20-2500-01 24.11 17.03 269.05
15-2500-13 49.25 39.6 178.14 20-2500-13 73.49 131.05 272.8
15-2500-25 77.35 63.78 186.88 20-2500-25 128.52 1434.9 268.11
15-2500-50 143.45 128.51 197.28 20-2500-50 200.92 1944.67 312.53

15-5000-01 44.52 31.35 766.56 20-5000-01 59.45 39.47 1824.39
15-5000-13 166.09 126.09 783.68 20-5000-13 241.28 1533.81 1846.67
15-5000-25 362.16 298.42 799.2 20-5000-25 424.42 1653.58 2332.08
15-5000-50 654.19 620.21 802.2 20-5000-50 789 1778.97 2413.56

15-7500-01 89.29 59.12 1839.44 20-7500-01 120.09 97.73 3221.3
15-7500-13 394.6 392.91 1832.7 20-7500-13 524.92 2337.53 3301.68
15-7500-25 715.29 1258.17 1945.3 20-7500-25 905.67 3266.24 3611.11
15-7500-50 1402.67 1940.27 1962.56 20-7500-50 1832.5 4745.32 6264.22

15-10000-01 140.06 121.66 3447.93 20-10000-01 165.54 139.72 5570.45
15-10000-13 673.69 972.3 3380.14 20-10000-13 921.61 3022.21 5810.16
15-10000-25 1255.26 2911.31 3656.89 20-10000-25 1824.92 5500.06 6866.34
15-10000-50 2530.95 3418.15 3848.12 20-10000-50 3242.82 7257.86 11763.13

260

Appendix 8 - R codes of the two alternative GBA approaches and an alternative BuildHull approach to solve the additive VRS model

R code of the two-phase version of GBA to solve the additive VRS model

dudat<-read.xls("d.xls",type="double") /* Reads a dataset from the current directory */
n<-nrow(dudat) /* Beginning of initialisation */
ml <-6
m2<-3
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s 1 <-matrix(nrow=n,ncol= 1)
s5<-matrix(nrow=n,ncol=m+1)
ni<-ml
no<-m2
a<-matrix(nrow=n,ncol=m)
a[1 :n, 1 :m 1]=dudat[1 :n, 1 :ml]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
x=dudat[l:n,l:ml]
y=-dudat[1 :n,m3 :m]
e<-c(l:n)
a<-c(e,a)

261

dim(a)<-c(n,m+1)
s2<-rowSums(a[,m5:m7])+rowSums(a[,2:m3])
mins2<-min(s2)
dm<-cbind(-x,-y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
q l <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l
pen<—2 /* End of initilisation */
timl<-proc.time() /* Beginning of phase-1 of GBA */
while(sq>=l)
{
b2<-matrix(nrow=l ,ncol=m)
b2[,l:ml]=a3[l,2:m3]
b2[,m3:m]=0
b3<-rbind(t(b2), 1)
b2 1 <-matrix(nrow= 1 ,ncol=m)
b21[,l:ml]=a3[l,2:m3]
b21 [,m3 :m]=a3 [1 ,m5 :m7]
c2<-matrix(nrow=l ,ncol=m)

262

c2 [,l:m l]=0
c2[,m3 :m]=-a3 [1 ,m5 :m7]
c3<-rbind(t(c2),0)
asd<-cbind(t(b21),a4[-1,])
asd2<-rbind(asd, 1)
abc2<-cbind(c3,asd2)
lt2<-(c(l ,pen,rep(0,d4)))
f.dir <-c(rep("<-!,m),"==")
vtr2<-lp(direction="max",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const.rhs=b3,compute.sens=l,scale=3)
s3<-round(-(a3[,-l:-m3]%*%vtr2$duals[m3:m])-vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml]),digits=10)
sasz<-max(s3)
if(sasz<=0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
g<-g+i
}
else
if(sasz>0)

ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the tied units */
{
notie<-notie+l

263

tieunits<-tieunits+smx3
s3tie<-sort(s3,decreasing=TRUE)
par5<-max(s3tie[smx3+l] ,0)
par6<-ms3-par5
par7<-abs(parl/par6)+l
duals3<-vtr2$duals[l :m7]*par7
duals3[l :m]<-duals3[l :m]+l
s3<-(-(a3 [,m5 :m7]%*%duals3 [m3 :m]))-(a3 [,2 :m3]%*%duals3 [1 :m 1])-duals3 [m7]
}
sq<-nrow(a3)
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3 [,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1)<-c(1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of GBA */

264

s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
s2<-matrix (nro w=zx ,ncol= 1)
if(zx = l)
(s6<-t(s6)}
si 1 <-matrix(nrow=zx,ncol=2)
a5<-matrix(nrow=sx,ncol=m)
a5=a4[-l,]
for(j in l:zx) /* Beginning of Phase-2 of GBA */
{
b2<-matrix(nrow= 1 ,ncol=m)
b2 [,l:m]=abs(t(s6[j,-l]))
b3<-rbind(t(b2), 1)
si 1 <-matrix(nrow=m,ncol=m 1)
si 1 [1 :m 1,1 :m 1]=diag(m 1)
si 1 [m3 :m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [1 :m 1 ,]=rep(0 ,m 1)
sl2[m3 :m, 1 :m2]=-diag(m2)
abcd<-cbind(sl 1 ,sl2,abs(a5))
Q)3<-c(rep(0,m),rep(l ,sx))
abcd2<-rbind(abcd,Q)3)
f.dir2<-c(rep(,,==",m),"==',)
lt2<-c(rep(1 ,m),rep(0 ,sx))
Vtr2<-lp(direction="max",objective.in=lt2,const.mat=abcd2,const.dir=f.dir2,const.rhs=b33compute.sens=0,scale=3)
s2 [j]<-sum(vtr2$objval[l])
} /* End of Phase-2 of GBA */

265

tim /* Time taken by GBA to solve the dataset */
notie /* Number of ties encountered */
tieunits /* Average number of tied units per tie */

R code of the multiplier GBA approach to solve the additive VRS model

dudat<-read.xls("DEA.xls",type="double",colNames=FALSE) /* Reads the dataset from the current directory */
n<-dudat[l,l] /* Beginning of initialisation */
n2<-n+l
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml<-dudat[l,2]
m2<-dudat[l,3]
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
pen<-0.1
x<- dudat[2 :n2 ,l:m l]

266

y<- -dudat[2:n2,m3:m]
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=x
a[l:n,m3:m]=y
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<--rowSums(a[,m5:m7])-rowSums(a[,2:m3])
maxs2<-max(s2)
q 1 <-which.max(s2)
a4<-a[ql,]
dim(a4)<-c(1 ,m+1)
a3<-a[-ql,]
sq<-nrow(a3)
d4<-nrow(a4)
g<-l /* End of Initialisation */
tim 1 <-proc.time()
while(sq>=l) /* Beginning of the GBA procedure */
{
abcd<-cbind(a4,1,-1)
abcdl<-abcd[,-l]
abcd2<-c(a3 [1,-1],1,-1)
adc<-diag(m+2)
adc3<-rbind(abcdl ,abcd2,adc)
c2<-c(rep(0,d4),-1 ,rep(l ,m),0,0)
c3<-t(t(c2))
ml5<-d4+m+3
f.dir2<-c(rep(">=,,,ml 5))

to* w*
*d

d
o

%-»

°co co

1 . 8
s Ica x®r\ gjN

V *II s®
COd £ 7<L) <2 on S
u • •
-a «nd ,_JJ
I So i

m g
o •
onJ=l

a o • ̂ -4-»

a *9 S w
S s a I’d 4̂

£T
a

*9 "c
I
d -a o ,3
« o

^ <2

! led ^
S g't-* • *cq m
§ £ °. V

<N O

•S o
I s
$ I-Z-, N®
0 *

• * ^£ 0s
M c o 1s a
1 Xfi id ,2 lJIr- ̂ C -5 n ^

y—t , _ T O Cd c n
i d V on

oo

O .S3 W '-5' /—S
■ nrt »rt >< OV w g s II

fs j& I a y.*3
Y d v ? v «
V g g V £ 3,
3 d > ^ g Jt3

do• w* +->
j3
'oon
OO
(N

\ °0s
*
v®0s-
CO1a
cs

m
cd

OO

£
‘‘d"o
-4-i

o
CO

00

1
F 1a,
‘d 'o

o
Vi

oo
<N

m
£
"d"o
'+j
j3
oCA

OO
<N

x®O '
*
X®o '
fO1
B

*3

oo
VO(N

I

* S < ahv 'W
„S ^ V ^

& v ^ v w j . fm CT'm ^ g cr1 V
1 M W M d ^ W OJj .

u
CO

<D

O
A
N
3co

00

✓-X Ĉ~ <- V
00 d 71d -H I— , ^ ««

>3 ' ' 2

CO 71 .5
X co ^ o
8 «o >’, J» , >

\> v \> ¥ --d ^ 3̂
CO 'd CO

a v•H ^
• d cd

a4<-unique(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-nrow(a4)
>

} /* End of GBA procedure */
s6<-s5[complete.cases(s5),]
tim2<-proc.time0
tim<-tim2-timl
tim /* Time taken by GBA to solve the dataset */

R code of the multiplier BuildHull approach to solve the additive VRS model

dudat<-read.xls("d57.xls",type="double") /* Reads a dataset from the Current directory */
n<-nrow(dudat) /* Beginning of initialisation */
ml<-9
m2<-l 1
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l

269

s 1 <-matrix(nrow=n,ncol= 1)
s5<-matrix(nrow=n,ncol=m+1)
ni<-ml
no<-m2
a<-matrix(nrow=n,ncol=m)
a[1 :n, 1 :m 1]=dudat[1 :n, 1 :m 1]
a[1 :n,m3 :m]=-dudat[1 :n,m3 :m]
e<-c(l:n)
a<-c(e,a)
dim(a)<-c(n,m+1)
s2<-rowSums(a[,m5:m7])+rowSums(a[,2:m3])
mins2<-min(s2)
ql <-which.min(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l /* End of initialization */
tim 1 <-proc .time()
while(sq>=l) /* Beginning of Phase-1 of BuildHull */
{
b2<-matrix(nrow= 1 ,ncol=m)
b2 [l,l:m]<-l
c2<-matrix(nrow= 1 ,ncol=m)
c2[l,]=-a3[l,-l]
c3<-rbind(t(c2),l)

270

abc2<-cbind(t(b2),-a4[-1,])
fp<-c(0,rep(l,d4))
abc3<-rbind(abc2,fp)
lt2<-(c(l ,rep(0,d4)))
f.dir <-c(rep(">=",m),"=")
vtr2<-lp(direction=,,min,,,objective.in=lt2,const.mat=abc3,const.dir=f.dir,const.rhs=c3,compute.sens=l,scale=3)
if(vtr2$solution[1]==0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
g<-g+i
}
else
if(vtr2$solution[1]>0)
{
sq<-nrow(a3)
if(sq = l)
{
s3<--(a3[,m5:m7]%*%vtr2$duals[m3:m])+vtr2$duals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
}
else
if(sq>l)
{
s3<--(a3[,m5:m7]%*%vtr2$duals[m3:m])+vtr2Sduals[m7]-(a3[,2:m3]%*%vtr2$duals[l:ml])
}

271

ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one extreme-efficient unit among the tied units */
{
s3tie<-sort(s3 ,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-vtr2$duals[1 :m7] *par7
duals3 [1 :m6]<-duals3 [1 :m6]+1
s3<--(a3[,m5:m7]%*%duals3[m3:m])-(a3[,2:m3]%*%duals3[l:ml])+duals3[m7]
}
sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3[,m8])
q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(sk 1)<-c(1 ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
d4<-ncol(a4)

272

}
} /* End of Phase-1 of BuildHull */
s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
s2<-matrix(nrow=zx,ncol= 1)
if(zx = l)
(s6<-t(s6)}
si 1 <-matrix(nrow=zx,ncol=2)
a4<-t(a4)
for(j in l:zx) /* Beginning of Phase-2 of BuildHull */
{
abcd<-cbind(a4,1,-1)
abcdl<-(abcd[,-l])
adc<-diag(m+2)
adc3<-rbind(abcdl ,adc)
c2<-c(rep(0,d4),rep(1 ,m),0,0)
c3<-t(t(c2))
ml5<-d4+m+2
f.dir2<-c(rep(">=",ml5))
It2<-c(s6[j,-l],l,-l)
dim(lt2)<-c(l ,m8)
vtr2<-lp(direction=l,min,,,objective.in=lt2,const.mat=adc3,const.dir=f.dir2,const.rhs=c3, compute.sens=l,scale=3)
sslc<-abs(-(s6[j,-1 :-m3]%*%vtr2$solution[m3 :m])-vtr2$solution[m7]+vtr2$solution[m8] -(s6[j ,2:m3]%*%vtr2$solution[1 :m 1]))
sll[j,]<-c(s6[j],ss\c)
} /* End of Phase-2 of BuildHull */
tim /* Total time taken by BuildHull to solve the dataset */
notie /* Number of ties encountered */

273

tieunits /* Average number of tied units per tie

Appendix 9 - R codes of the DGP, GBA, BuildHull and the standard DEA algorithm to solve the input-oriented CRS model

CRS Data Generating Process using the Cobb-Douglas production function

n<-5000 /* Assume the number of units in the dataset to be 5000 */
m l<-4 /* Assume the number of inputs to be 4 */
m2<-l /* The number of outputs in any dataset is 1 */
den<-l /* Assume the density of the dataset to be 1% */
nl<-den*n/100
n2<-nl+l
n3<-n-nl
n4<-n3+l
x<-matrix(nrow=n,ncol==m 1)
for(j in l:m l) /* Generating ml random inputs using the uniform distribution function */
{
x[j]<-runif(n,1.5,25)
}
y<-matrix(nrow=n,ncol=m2)
rl<-runif(ml) /* Generating m l random coefficients using the uniform distribution function */
r2<-sum(rl)
r3<-rl/r2 /* Scaling the exponents so that they sum to 1 */
for(i in 1 :n3) /* Generating inefficient points */
{
y[i]=prod((x[i,rr3))/30
}
for(j in n4:n) /* Generating efficient points */
{
y[j]=prod((x[j,]Ar3))

275

}

R code to solve the input-oriented CRS model using GBA

s 1 <-matrix(nrow=n,ncol= 1) /* Beginning of initialisation */
s2<-matrix(nrow=n,ncol= 1)
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+l
m<-ml+m2
m7<-m+l
m8<-m7+l
s5<-matrix(nrow=n,ncol=2)
ni<-ml
no<-m2
notie<-0
tieunits<-0
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=x
a[l:n,m3:m]=-y
dm<-cbind(x,y)
rc<-rowSums(dm)
rcl<-max(rc)
rc2<-min(rc)
parl<-(rcl-rc2)
e<-c(l:n)
a<-c(e,a)

276

dim(a)<-c(n,m+1)
s2<~(a[,m5:m7])/rowSums(a[,2:m3])
maxs2<-max(s2)
q 1 <-which .max(s2)
a4<-t(a[ql,])
dim(a4)<-c(m+1,1)
a3<-a[-ql,]
all<-a3
sq<-nrow(a3)
d4<-ncol(a4)
g<-l /* End of initialisation */
tim 1 <-proc.time()
while(sq>=l) /* Beginning of the GBA procedure */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [,l:m l]=0
b2[,m3:m]=- a3[l,m5:m7]
c2<-matrix(nrow=l ,ncol=m)
c2[,l:ml]= a3[l,2:m3]
c2[,m3:m]=0
abc2<-cbind(t(c2),-a4[-1,])
lt2<-(c(l ,rep(0,d4)))
f.dir <-c(rep(">=M,m))
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const.rhs=t(b2),compute.sens=l,scale=3)
s3<--(a3[,m5:m7]*vtr2$duals[m3:m])/(a3[,2:m3]%*%vtr2$duals[l:ml])
sasz<-max(s3)
if(sasz<=l)
{

277

sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1] ,vtr2$solution[1])
a3<-a3[-lj
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
g<-g+ i
>

if(sasz>l)
{
ms3<-max(s3)
smx3<-sum(s3==ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among the tied units */
{
notie<-notie+l
tieunits<-tieunits+smx3
s4<--(a3 [,m5 :m7] *vtr2$duals[m3 :m])-(a3 [,2:m3]%*%vtr2$duals[1 :ml])
s3tie<-sort(s4,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-(vtr2$duals [1 :m] *par7)+1
s3<--(a3[,m5:m7] *duals3[m3:m])/(a3[,2:m3]%*%duals3[1 :ml])
}
sq<-nrow(a3)
sx3<-cbind(a3 ,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3 [,m8])
q4<-which.max(sx3 [,m8])

278

sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(skl)<-c(l ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of GBA procedure */
tim2<-proc.time()
tim<-tim2 -timl
tim /* Time taken by GBA to solve the dataset */
notie /* Number of ties encountered */
tieunits /* Average number of tied units per tie */

R code to solve the input-oriented CRS model using BuildHull

sl<-matrix(nrow=n,ncol=l) /* Beginning of Initialisation */
s2<-matrix(nrow=n,ncol= 1)
m3<-ml+l
m4<-m2+l
m5<-m3+l

279

o
00CN

a
<N

d4<-ncol(a4)
g<-l /* End of initialisation */
timl<-proc.time()
while(sq>=l) /* Beginning of Phase-1 of BuildHull */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [l,l:m]<-l
c2<-matrix(nrow= 1 ,ncol=m)
c2[1 ,]=-a3 [1,-1]
c3<-rbind(t(c2))
abc2<-cbind(t(b2),-a4[-1,])
abc3<-rbind(abc2)
lt2<-(c(l ,rep(0,d4)))
f.dir <-c(rep(">=H,m))
vtr2<-lp(direction="min",objective.in=lt2,const.mat=abc3,const.dir=f.dir,const.rhs=c3,compute.sens=l,scale=3)
s3<--(a3 [,m5 :m7] *vtr2$duals[m3 :m])/(a3 [,2 :m3]%*%vtr2$duals[1 :m 1])
if(vtr2$solution[1] = 0)
{
sq<-nrow(a3)
s5[g,]<-a3[l,]
a3<-a3[-l,]
dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
g<-g+l
}
else
if(vtr2$solution[1]>0)
{

281

sq<-nrow(a3)
if(sq = l)
{
s3<~(a3 [,m5 :m7] *vtr2$duals[m3 :m])/(a3 [,2:m3]%*%vtr2$duals[1 :m 1])
}
else
if(sq>l)
{
s3<—(a3 [,m5 :m7] *vtr2$duals[m3 :m])/(a3 [,2 :m3]%*%vtr2$duals[1 :m 1])
>
ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one extreme-efficient units among the tied units */
{
notie<-notie+l
tieunits<- tieunits+smx3
s4<--(a3 [,m5 :m7] *vtr2$duals[m3 :m])-(a3 [,2 :m3]%*%vtr2$duals[1 :m 1])
s3tie<-sort(s4,decreasing=TRUE)
par5<-s3tie[smx3+l]
par6<-ms3-par5
par7<-parl/par6
duals3<-vtr2$duals[l :m7]*par7
duals3 [1 :m]<-duals3 [1 :m]+1
s3<--(a3 [,m5 :m7] *duals3 [m3 :m])/(a3 [,2:m3]%*%duals3 [1 :m 1])
>

sx3<-cbind(a3,s3)
dim(sx3)<-c(sq,m8)
sd<-max(sx3 [,m8])

282

q4<-which.max(sx3 [,m8])
sk<-sx3[q4,]
dim(sk)<-c(l,m8)
skl<-sk[,-m8]
dim(skl)<-c(l ,m7)
a4<-cbind(a4,t(skl))
a4<-unique(t(a4))
a4<-t(a4)
sdxc<-skl[l]
a3<-a3[-q4,]
dim(a3)<-c(sq-1 ,m+1)
sq<-sq-l
d4<-ncol(a4)
}
} /* End of Phase-1 of BuildHull */
s6<-s5 [complete.cases(s5),]
sx<-ncol(a4)
zx<-(n-sx)
if(zx = l)
(s6<-t(s6)}
si 1 <-matrix(nro w=zx,ncol=2)
a5<-matrix(nrow=sx,ncol=m)
a5=a4[-l,]
for(i in l:zx) /* Beginning of Phase-2 of BuildHull */
{
b<-matrix(nrow=l ,ncol=m)
b[,l:m l]=0
b[,m3 :m]= -s6[i,m5:m7]

283

b2<-rbind(t(b))
c<-matrix(nrow=l ,ncol=m)
c[,l:ml]=s6[i,2:m3]
c[,m3:m]=0
cl<-t(c)
abc<-cbind(c 1 ,-a5)
abc3 <-rbind(abc)
lt3<-c(l,rep(0,sx))
f.dir <-c(rep(">=",m))
vtr3<-lp(direction="min",objective.in=lt3,const.mat=abc3,const.dir=f.dir,const.rhs=b2,compute.sens=l,scale=3)
si 1 [i,]<-cbind(s6[i,l],vtr3$solution[l])
} /* End of Phase-2 of BuildHull */
tim2<-proc.time()
tim<-tim2 -timl
tim /* Total time taken by BuildHull to solve the dataset */
notie /* Number of ties encountered */
tieunits /* Average number of tied units per tie */

R code to solve the input-oriented CRS model using the standard PEA algorithm

sl<-matrix(nrow=n,ncol=l) /* Beginning of initialisation */
s2<-matrix(nrow=n,ncol= 1)
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+1
m<-ml+m2
m7<-m+l

284

m8<-m7+l
a<-matrix(nrow=n,ncol=m)
a[l:n,l:m l]=-x
a[l:n,m3:m]=y
tim 1 <-proc.time()
for(i in l:n) /* Beginning of Phase-1 of the conventional algorithm */
{
b<-matrix(nrow=l ,ncol=m)
b[,l:ml]=t(x[i,])
b[,m3 :m]=rep(0,m2)
c<-matrix(nrow=l ,ncol=m)
c[,l:ml]=rep(0 ,ml)
c[,m3:m]=y[i,]
cl<-t(c)
abc<-cbind(t(b),t(a))
lt<-(c(l,rep(0,n)))
f. dir <-c(rep(">=,,,m))
vtr<-lp(direction="min",objective.in=lt,const.mat=abc,const.dir=f.dir,const.rhs=c 1, scale=3)
s 1 [i,]<-vtr$solution[1]
} /* End of Phase-1 of the conventional algorithm */
tim2<-proc .timeO
tim<-tim2-timl
tim /* Time taken by Phase-1 of the conventional algorithm */
for(j in 1 :n) /* Beginning of Phase-2 of the conventional algorithm */
{
b2<-matrix(nrow=l ,ncol=m)
b2 [,l :ml]=t(x[j,])*sl [j]
b2[,m3:m]=y[j]

285

b3<-t(b2)
si 1 <-matrix(nrow=m,ncol=m 1)
sll[l:m l,l:m l]=diag(m l)
si 1 [m3 :m,]=rep(0,m2)
sl2<-matrix(nrow=m,ncol=m2)
sl2 [1 :m 1 ,]=rep(0 ,m 1)
sl2[m3 :m, 1 :m2]=-diag(m2)
abcd<-cbind(sl 1 ,sl2 ,abs(t(a)))
f.dir2<-c(rep("=",m))
lt2<-c(rep(1 ,m),rep(0 ,n))
vtr2<-lp(direction="max",objective.in=lt2,constmat=abcd,const.dir=f.dir2,const.rhs=b3, scale=3)
s2 [j,]<-sum(vtr2$solution[1 :m])
} /* End of Phase-2 of the conventional algorithm */
tim3<-proc.time()
tim<-tim3-timl
tim /* Total time taken by the conventional algorithm to solve the dataset */

286

Appendix 10 - Computational performance of the competitive algorithms in solving the input-oriented CRS model

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) IstPhase (secs)

5-2500-01 7.39 4.17 88.47 42.65 10-2500-01 7.92 5.11 169.12 79.51
5-2500-13 13.91 11.03 95.14 49.28 10-2500-13 20.44 17.74 179.75 88.04
5-2500-25 23.61 20.75 98.02 51.50 10-2500-25 37.24 34.49 186.94 93.58
5-2500-50 50.90 46.89 101.11 53.67 10-2500-50 81.78 78.95 196.55 100.08

5-5000-01 17.30 9.91 360.03 177.92 10-5000-01 21.05 13.77 703.29 335.75
5-5000-13 44.78 39.39 417.00 224.88 10-5000-13 73.38 68.57 760.19 378.89
5-5000-25 84.30 77.74 424.32 230.90 10-5000-25 142.10 133.70 787.36 400.57
5-5000-50 198.39 186.05 416.85 226.68 10-5000-50 334.96 316.42 809.40 409.60

5-7500-01 28.11 17.90 801.10 401.21 10-7500-01 36.89 26.14 1608.44 783.13
5-7500-13 99.48 89.30 887.40 473.79 10-7500-13 154.78 149.53 1705.75 861.55
5-7500-25 186.54 172.58 893.61 482.91 10-7500-25 316.92 310.07 1774.93 901.87
5-7500-50 445.16 421.05 926.98 507.05 10-7500-50 749.86 734.86 1826.36 924.44

5-10000-01 41.45 27.20 1469.97 741.75 10-10000-01 57.59 43.28 2843.33 1393.08
5-10000-13 164.47 151.49 1590.69 854.00 10-10000-13 273.25 263.96 3120.25 1614.14
5-10000-25 334.11 314.89 1693.55 957.99 10-10000-25 549.92 529.57 3181.53 1651.67
5-10000-50 797.75 766.20 1751.50 989.38 10-10000-50 1340.25 1296.34 3341.36 1760.05

287

Computational performance of GBA, BuildHull and Standard two-phase procedure in solving the input-oriented CRS model (contd.)

Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) Is tPhase (secs) Dataset BuildHull (secs) GBA (secs) 1st&2ndPhases (secs) Is tPhase (secs)

15-2500-01 9.54 5.92 255.34 112.98 20-2500-01 10.06 6.64 377.23 154.98
15-2500-13 27.86 25.33 303.04 137.95 20-2500-13 34.79 32.33 1254.18 178.41
15-2500-25 52.18 48.86 336.07 143.33 20-2500-25 69.00 65.39 3683.23 190.03
15-2500-50 116.28 111.16 429.17 151.19 20-2500-50 153.29 148.33 9658.47 193.37

15-5000-01 23.41 17.45 1064.31 476.75 20-5000-01 27.60 21.49 1572.37 653.98
15-5000-13 105.83 101.59 1312.29 603.76 20-5000-13 136.25 130.40 5431.12 780.84
15-5000-25 202.96 200.42 1491.36 614.42 20-5000-25 279.06 268.50 16344.87 814.61
15-5000-50 468.60 458.04 1879.12 615.37 20-5000-50 619.78 600.58 42289.59 787.05

15-7500-01 44.71 34.31 2466.61 1132.08 20-7500-01 53.89 43.92 3644.08 1552.93
15-7500-13 228.50 223.60 3011.96 1313.95 20-7500-13 301.69 295.06 12465.48 1699.32
15-7500-25 454.78 448.17 3474.16 1376.60 20-7500-25 663.53 630.34 38075.79 1825.13
15-7500-50 1085.03 1034.95 4906.78 1437.17 20-7500-50 1414.70 1409.30 110427.07 1838.12

15-10000-01 70.66 56.33 4432.20 2047.99 20-10000-01 88.21 74.92 6547.97 2809.32
15-10000-13 395.05 387.67 5451.03 2447.23 20-10000-13 565.17 540.42 22559.97 3164.99
15-10000-25 812.51 809.00 6427.69 2546.34 20-10000-25 1147.36 1110.31 70445.62 3375.99
15-10000-50 1946.52 1858.16 9120.21 2483.81 20-10000-50 2542.44 2500.10 205250.31 3176.76

288

Appendix 11 - R code to solve the output-oriented VRS model with built-in subroutine to construct strictly positive multiplier values for
the generators

dudat<-read.xls('*H:/d5.xls",type-'double",colNames=FALSE) /*Reads a dataset from the current directory */
n<-dudat[l,l] /* Beginning of initialisation */
n2<-n+l
s 1 <-matrix(nrow=n,ncol= 1)
s2<-matrix(nrow=n,ncol= 1)
ml<-dudat[l,2]
m2<-dudat[l,3]
m3<-ml+l
m4<-m2+l
m5<-m3+l
m6<-m4+1
m<-ml+m2
m7<-m+l
m8<-m7+l
notie<-0
tieunits<-0
slack<-matrix(nrow=n,ncol=m)
weight 1 <-matrix(nrow=n,ncol=m+1)
gens<-matrix(nrow=n,ncol=m8)
inprsav<-matrix(nrow=n,ncol=m 1)
peerf<-matrix(nrow=n,ncol=m7)
s5<-matrix(nrow=n,ncol=m+1)
ni<-ml
no<-m2

289

ma
<N

saJ
C/3

£
2

£7 ca rnI a

<N
•3

r cn a
CN

■tJ £3 'O ■
■8 -f

I I
V V
X >>

s i s

V V

&■ <u

_ r ia v . . .^ a v v vI 1 O H M in
A & n vi n

29
0

sq<-nrow(a3)
d4<-ncol(a4)
gn<-l
gens[gn,]<-c(a4[gn, 1] ,rep(1 ,m),0)
g<-l
gn<-2 /* End initialisation */
timl <-proc.timeO
while(sq>=l) /* Beginning of GBA procedure */
{
b2<-matrix(nrow=l ,ncol=m)
b2[,l:ml]=a3[l,2:m3]
b2[,m3:m]=0
b3<-rbind(t(b2), 1)
b2 1 <-matrix(nrow= 1 ,ncol=m)
b21 [, 1 :m 1]=a3 [1,2 :m3]
b21 [,m3 :m]=a3 [1 ,m5 :m7]
c2<-matrix(nrow=l ,ncol=m)
c2 [,l:m l]=0
c2[,m3 :m]=-a3 [1 ,m5 :m7]
c3<-rbind(t(c2),0)
asd<-cbind(t(b21),a4[-1,])
asd2<-rbind(asd, 1)
abc2<-cbind(c3 ,asd2)
lt2<-(c(l ,pen,rep(0,d4)))
f.dir <-c(rep("<=",m),"==")
vtr2<-lp(direction="max",objective.in=lt2,const.mat=abc2,const.dir=f.dir,const,rhs=b3,compute.sens=l, scale=3)
s3<-round(-(a3 [,m5 :m7]%*%vtr2$duals[m3 :m])-vtr2$duals[m7]-(a3 [,2:m3]%*%vtr2$duals[1 :ml]),digits=l 0)
duals3<-vtr2$duals[l :m7]

291

duals3m<-vtr2$duals[1 :m]
dim(duals3)<-c(l ,m7)
dim(duals3m)<-c(1 ,m)
sasz<-max(s3)
if(sasz<=0)
{
sq<-nrow(a3)
s5 [g,]<-c(a3 [1,1], 1 /vtr2$solution[1])
peer<-matrix(nrow=l ,ncol=d4)
for(j in 1 :d4) {if(vtr2$solution[j+2]>0) {peer[j]<-a4[l,j]}}
peer2<-t(peer)
peer3<-peer2[complete.cases(peer2),]
dim(peer3)<-c(1 ,length(peer3))
peer4<-matrix(nrow=l ,ncol=m)
peer4<-c(peer3,rep(0,m-length(peer3)))
peerf[g,]<-c(a3 [1,1] ,peer4)
sol<-vtr2$solution[3: length(vtr2$solution)]
sol<-replace(sol,sol=="0",NA)
sol<-na. exclude(sol)
if(ncol(peer3)= 1) (compu<-(a [p e e r3 1] * sol [1: length(peer3)])}
if(ncol(peer3)> 1) {compu<-colSums(a[peer31] *sol[1: length(peer3)])}
projp<-matrix(nrow= 1 ,ncol=m)
projp[l:ml]<-(abs(a3[l,2:m3])*vtr2$solution[l])
projp[m3 :m]<-abs(a3 [1 ,m5 :m7])
inprsav[g,]<-abs(a3 [1,2:m3])-projp[1 :m 1]
slack[g,]<-abs(projp-abs(compu))
weight 1 [g,]<-vtr2$duals[1 :m7]
a3<-a3[-l,]

292

dim(a3)<-c(sq-1 ,m+l)
sq<-sq-l
g<-g+i
>
if(sasz>0)
{
ms3<-max(s3)
smx3<-sum(s3=ms3)
if(smx3>=2) /* Tie breaking routine to identify one P-K efficient unit among tied units */
{
notie<-notie+l
tieunits<-tieunits+smx3
s3tie<-sort(s3,decreasing=TRUE)
par5<-max(s3tie[smx3+l],0)
par6<-ms3-par5
par7<-abs(par 1 /par6)+1
duals3<-vtr2$duals[l :m7]*par7
duals3 [1 :m]<-duals3 [1 :m]+l
s3<-(-(a3[,m5:m7]%*%duals3[m3:m]))-(a3[,2:m3]%*%duals3[l:ml])-duals3[m7]
duals3m<-duals3 [1 :m]
dim(duals3m)<-c(1 ,m)
>
if(sm x3=l)
{
if(apply(duals3m,l,prod)=0) /* Subroutine to generator positive multiplier values for the generators */
{
s3tie<-sort(s3,decreasing=TRUE)
if(length(s3tie> 1)) { par5<-max(s3tie[smx3+1],0)}

293

co
03

•§

co
03
13
•8
*
qN

CN
£

Vm
c3a

■S&*i- it>
£

co
£
co

II *0« S3•J3 & co •
03 CO '_' 03
t fa v <3 'o
S' ^^ a,

vo
S -3Oh 2■s .3
H &0cJ
3 S
03 >

X> I13 v
\/ ^ V cor- 2̂
S 3
O h T 3

a s<-H O'
I___I *co n°
03 On

13 FT
•8 a
V *2
re 1 2S «-S
£,*3

oi V
£ ^ 03 03

CO(3
¥O

CO
03

*3
a

•
hO01
V
CO
X

/ — > oo
£&
CO

00
£

CO ' X
00 03

s s',_J} Cj
CO g

• * 3\ / 03 43 V s_ ̂ O

-̂->
00
£

£ £
CO
X
03

OO

V I
^ 4 CO

CO

£ V. V V s ' 2
^3 T* X ^ ^3 *±4
“ co ” co ” CO

^ ^ ^
+0. c3 rT, _h.

V
V ^ 3 ^ -—' c cr ̂
4*- 43 3 cd
03 O

"g V V V•g Tj- Tfr Tf
'O c$ cS c3

CO
03

13
4
l

1
'o'

+
£

cr
01

v ^ V
? 'I? ± "M ^ X. "Ts-liaj *a 3, g*

I 03 . ■, O i, V I

r—n

'S

3 v \ v g v v
& S ' ! *3 3

V £ VfO .h n

0a1
V

29
4

} /* End of GBA procedure */
s6<-s5 [complete.cases(s5),]
tim2<-proc.time()
tim<-tim2-timl
tim /* Time taken by the GBA to solve the dataset */
notie /* Number of ties encountered by GBA */
tieunits /* Average number of tied units per tie */

295

BIBLIOGRAPHY

Afriat, S. (1972). Efficiency estimation of production functions. International

Economic Review 13(3), 568-598.

Agrell, P. J., and Tind, J. (2001). A dual approach to nonconvex frontier models.

Journal o f Productivity Analysis 16 (2), 129 - 147.

Ali, A.I. and Seiford, L.M. (1990). Translation invariance in data envelopment

analysis. Operations Research Letters 9,403-405.

Ali, A. I. (1993). Streamlined computation for data envelopment analysis.

European Journal o f Operational Research 64, 61 -67.

Ali, A. I. (1994). Computational Aspects of DEA. In: Chames A., Cooper,

W.W., Lewin A., Seiford, L.M., editors. Data envelopment analysis, theory,

methodology and applications, 63-88.

Andersen, P. and Petersen, N.C. (1993). A procedure for ranking efficient units

in data envelopment analysis. Management Science 39, 1261-12264.

Appa, G. and Parthasarathy, S. (2006a). 2nd report submitted to the DfES.

Appa, G. and Parthasarathy, S. (2007). A faster algorithm for solving DEA

models. Proceedings o f the 5th International Symposium on DEA.

Appa, G., Argyris, N., and Parthasarathy, S. (2006b). A faster and trimmer

algorithm based on generators for solving DEA problems. LSE Working Paper

LSEOR 06.84, ISBN: 07530 2076 9.

Aparicio, J., Ruiz, J. L., and Sirvent, I. (2007). Closest targets and minimum

distance to the Pareto-efficient frontier in DEA. Journal o f Productivity Analysis

28 (3), 209 -218.

Argyris, N. (2008). Polyhedral attributes of Production Possibility Sets in Data

Envelopment Analysis, with applications to Sensitivity Analysis and Cross-

Evaluation Methodologies. PhD thesis, London School of Economics.

Andersen, P., and Petersen, N. C. (1993). A procedure for ranking efficient units

in Data Envelopment Analysis. Management Science 39 (10), 1261 - 1264.

Banker, R. D., Chames, A., and Cooper, W. W. (1984). Some models for the

estimation of technical and scale inefficiencies in data envelopment analysis.

Management Science 30, 1078-1092.

296

Banker, R. D. (1984). Estimating most productive scale size using data

envelopment analysis. European Journal o f Operational Research 17, 35 - 44.

Banker, R.D. and Gifford, J.L. (1988). A relative efficiency model for the

evaluation of public health nurse productivity. Mellon University Mimeo,

Carnegie.

Banker, R. D. and Thrall, R. M. (1992). Estimation of returns to scale using data

envelopment analysis. European Journal o f Operational Research 62, 74-84.

Banker, R. D., Cooper, W. W., Seiford, L., Thrall, M., and Zhu, J. (2004).

Returns to Scale in different DEA models. European Journal o f Operational

Research 154, 345-362.

Banker, R. D. and Chang, H. (2006). The super-efficiency procedure for outlier

identification, not for ranking efficient units. European Journal o f Operational

Research 175, 1311-1320.

Banker, R. D. and Parthasarathy, S (2009). Estimation and inference in two-

stage, semi-parametric models of production processes: a comment. In

preparation.

Banker, R. D., Natarajan, R, and Parthasarathy, S (2010). Nonparametric

Estimation and Statistical Tests of Components of Productivity Change. In

preparation.

Barr, R. S. and Durchholz, M. L. (1997). Parallel and hierarchical decomposition

approaches for solving large-scale DEA models. Annals o f Operational Research

73, 339-372.

Boles, J. N. (1971). The 1130 Farrell Efficiency System — Multiple Products,

Multiple Factors. Giannini Foundation o f Agricultural Economics, February

1971.

Bougnol, M. L., Dula, J.H., and Rouse, P. (2010). Interior point methods in DEA

to determine non-zero multiplier weights. In preparation.

Chames, A., Cooper, W. W., and Rhodes, E. (1978). Measuring the efficiency of

decision making units. European Journal o f Operational Research 2,429-441.

Chames, A, Cooper, W.W, and Rhodes, E. (1979). Short communications:

measuring the efficiency of decision-making units. European Journal o f

Operational Research 3 (4), 339.

297

Chames, A., Cooper, W.W, and Rhodes, E. (1981). Evaluating program and

managerial efficiency: an application of data envelopment analysis to program

follow through. Management Science 27 (6), 668 - 697.

Chames, A., and Cooper, W. W. (1984). The Non-Archimedean CCR Ratio for

Efficiency Analysis: A Rejoinder to Boyd and Fare. European Journal o f

Operational Research 15, 333-334.

Chames, A., Cooper, W. W., Golany, B. and Stutz, J. (1985). Foundations of

Data Envelopment Analysis for Pareto-Koopmans efficient empirical production

functions. Journal o f Econometrics 30, 91 - 107.

Chames, A., and Cooper, W. W. (1984). Preface to topics in Data Envelopment

Analysis. Annals o f Operational Research 2, 59-94.

Chames, A., Cooper, W. W., and Thrall, R. M. (1991). A structure for classifying

and characterizing efficiency and inefficiency in Data Envelopment Analysis.

Journal o f Productivity Analysis 2, 197 - 237

Chames, A., S. Haag, P. Jaska and J. Semple (1992). Sensitivity of efficiency

classifications in the additive model of data envelopment analysis. International

Journal Systems Science 23, 789-798.

Chames, A., Rousseau, J. J., and Semple, J. H. (1996). Sensitivity and stability of

efficiency classifications in data envelopment analysis. Journal o f Productivity

Analysis 7, 5-18.

Chen, Y. (2005). Measuring super-efficiency in DEA in the presence of

infeasibility. European Journal o f Operational Research 161, 545-551.

Chen, Y. and Ali, A. I. (2002). Output-input ratio analysis and DEA frontier.

European Journal o f Operational Research 142, 476 - 479.

Chen, W.C. and Cho, W.J. (2009). A procedure for large-scale DEA

computations. Computers and Operations Research 36 (6), 1813 - 1824.

Cobb, C. W. and Douglas, P. H. (1928). A Theory of Production. American

Economic Review 18, 139-165.

Coelli, T. (1998). A multi-stage methodology for the solution of orientated DEA

models. Operations Research Letters 23 (3-5), 143 - 149.

Cook, W.D., Liang, L., Zha, Y., and Zhu, J. (2008). A modified super-efficiency

DEA model for infeasibility. Journal o f the Operational Research Society 60 (2),

276-281.

298

Cooper, W. W, Seiford, L. M., and Tone, K (2000). Data Envelopment Analysis.

Kluwer Academic publications.

Cooper, W. W., Park, S. K., and Ciurana, P. J. T. (2000). Marginal rates and

Elasticities of substitution with additive models in DEA. Journal o f Productivity

Analysis 13,105-123.

Cooper, W. W., Ruiz, J. L., Sirvent, I (2007). Choosing weights from alternative

optimal solutions of dual multiplier models in DEA. European Journal o f

Operational Research 180 (1), 443-458.

Debreu, G. (1951). The Coefficient of Resource Utilization. Econometrica 19,

14-22.

Deprins, D., Simar, L., and Tulkens, H (1984). Measuring Labor Efficiency in

Post Offices. In Marchand, M., Pestieau, P., and Tulkens, H. (eds.), The

Performance of Public Enterprises: Concepts and Measurements. Amsterdam:

North Holland.

Dula, J. H., and Helgason, R. V. (1996). A new procedure for identifying the

frame of the convex hull of a finite collection of points in multidimensional

space. European Journal o f Operational Research 92,352-367.

Dula, J. H. and Hickman, B. L. (1997). Effects of excluding the column from

being scored from the DEA envelopment LP technology matrix. Journal o f the

Operational Research Society 48,1001-1012.

Dula, J. H. (1998, 2007, 2010). An algorithm for the DEA. Working paper,

School of Business, University of Mississippi, MS 38677.

Dula, J. H., Helgason, R. V., and Venugopal, N. (1998). An algorithm for finding

the frame of a pointed finite conical hull. INFORMS Journal o f Computing 10,

323-300.

Dula, J. H. and Thrall, R. M. (2001). A Computational Framework for

Accelerating DEA. Journal o f Productivity Analysis 16, 63-78.

Dula, J.H. and Lopez, F.J. (2006). Algorithms for the frame of a finitely

generated unbounded polyhedron. INFORMS Journal on Computing 18 (1), 97 -

110.

Dula, J. H. (2008). A Computational study of DEA with massive data sets.

Computers and Operations Research 35 (4), 1191 - 1203.

Dula, J.H. and Lopez, F.J. (2009). Preprocessing DEA. Computers and

Operations Research 36 (4), 1204 - 1220.

299

Emrouznejad, A., Parker, B. R., and Tavares, G. (2008). Evaluation of research

in efficiency and productivity: A survey and analysis of the first 30 years of

scholarly literature in DEA. Socio-Economic Planning Sciences 42 (3), 151 —

157.

Emrouznejad, A., Anouze, A. L., and Thanassoulis, E. (2010). A semi-oriented

radial measure for measuring the efficiency of decision making units with

negative data, using DEA. European Journal o f Operational Research 200 (1),

297 - 304.

Fare, R., Grosskopf, S., and Logan, J. (1983). The relative efficiency of Illinois

electric utilities. Resources and Energy 5, 349-367.

Fare, R. and Grosskopf, S. (1994). Comment On: Estimation of returns to scale

using data envelopment analysis. European Journal o f Operational Research 79,

379-382.

Fare, R., Grosskopf, S., Lindgren, B., and Roos, P. (1994). Productivity

Developments in Swedish Hospitals: A Malmquist Output Index Approach. In:

Chames, A., Cooper, W., Lewin, A. Seiford, L., (Editors), Data Envelopment

Analysis: Theory, Methodology and Applications. Kluwer Academic Publishers,

Boston: 253-172.

Farrell, M. J. (1957). The Measurement of Productive Efficiency of Production.

Journal o f the Royal Statistical Society Series A, 120(111), 253-281.

Farrell, M. J. and Fieldhouse, M. (1962). Estimating Efficient Productions

Functions under Increasing Returns to Scale. Journal o f the Royal Statistical

Society 125, 252-267.

Forsund, F. R. and Sarafoglou, N. (2002). On the origins of data envelopment

analysis. Journal o f Productivity Analysis 17 (1-2), 2 3 -4 0 .

Fried, H. O., Lovell, C. A. K., and Schmidt, S. S. (2008). The Measurement of

Productive Efficiency and Productivity Growth. Oxford University Press.

Gattoufi, S., Oral, M., and Reisman, A. (2004). Data Envelopment Analysis

literature: a bibliography update (1996-2001). Socio-Economic Planning

Sciences 38 (2-3), 122-159.

Gonzales-Lima, M.D., Tapia, R.A., and Thrall, R.A., 1996. On the construction

of strong complementarity slackness solutions for DEA linear programming

problems using a primal-dual interior-point method. Annals o f Operations

Research 66,139 -162.

300

Koopmans, T. C. (1951). Activity Analysis of Production and Allocation. New

York: Wiley.

Korhonen, P. J. and Siitari, P. A. (2009). A dimensional decomposition approach

to identifying efficient units in large-scale DEA models. Computers and

Operations Research 36 (1), 234 - 244.

Kuosmanen, T. and Post, G. T. (1999). Robust Efficiency Measurement: Dealing

with Outliers in Data Envelopment Analysis. Rotterdam Institute for Business

Economic Studies Report 9911.

Lovell, C. A. K. and Rouse, A. P. B. (2003). Equivalent standard DEA models to

provide super-efficiency scores. Journal o f the Operational Research Society 54,

101-108.

Olesen, O. B., and Petersen, N. C. (1996). Indicators of El-Conditioned Data Sets

and Model Misspecification in Data Envelopment Analysis: An Extended Facet

Approach. Management Science 42 (2), 205-219.

Pareto, V. (1906, 1971). Manual of Political Economy. Societa' Editrice Libraria,

Milan. Reprint. Augustus Kelley, New York.

Pastor, T. (1996). Translational invariance in DEA : A generalization. Annals o f

Operations Research 66 (2), 93 - 102.

Portela, M.C.A.S., Thanassoulis, E., and Simpson, G. (2004). A directional

distance approach to deal with negative data in DEA: An application to bank

branches. Journal o f Operational Research Society 55 (10), 111 1-1121.

Ray, S., and Desli, E. (1997). Productivity Growth, Technical Progress, and

Efficiency Change in Industrialized Countries: Comment. American Economic

Review 87,1033-1039.

Rousseau, J.J. and J.H. Semple (1995). Two-person ratio efficiency games.

Management Science 41,435-441.

Russell, R. R. (1988). On the Axiomatic Approach to the measurement of

technical efficiency. In: W. Eichom, ed., Measurement in Economics: Theory

and Applications of Economic Indices. Heidelberg: Physica - Verlag.

Russell, R. R. (1990). Continuity of Measures of Technical Efficiency. Journal

o f Economics Theory 51 (2), 255 - 267.

Seiford, L. M. and Zhu, J. (1998a). Stability regions for maintaining efficiency in

data envelopment analysis. European Journal o f Operational Research 108 (1),

127-139.

301

Seiford, L. M. and Zhu, J. (1998b). Sensitivity analysis of DEA models for

simultaneous changes in all the data. Journal o f the Operational Research

Society A9(10), 1060-1071.

Seiford, L. M. and Zhu, J. (1999). Infeasibility of super-efficiency data

envelopment analysis models. INFOR Information Systems and Operational

Research 37 (2), 174- 187.

Sharp, J.A., Liu, W.B., and Meng, W. (2006). A modified slacks-based measure

model for data envelopment analysis with ‘natural’ negative outputs and inputs.

Journal o f Operational Research Society 57 (11), 1-6.

Shephard, R. W. (1953). Cost and Production Functions. Princeton University

Press, Princeton, N.J.

Shephard, R. W. (1970). The Theory of Cost and Production Functions,

Princeton University Press, Princeton, N.J..

Simar, L. and Wilson, P. (1998). Sensitivity analysis of efficiency scores: How to

bootstrap in nonparametric frontier models. Management Science, 44,49-61.

Simar, L. and Wilson, P. (1999). Estimating and bootstrapping Malmquist

Indices. European Journal o f Operational Research, 115 (3), 459-471.

Simar, L. and Wilson, P. (2000). A general methodology for bootstrapping in

non-parametric frontier models. Journal o f Applied Statistics, 27, 779-802.

Simar, L. (2003). Detecting Outliers in Frontier Models : A Simple Approach.

Journal o f Productivity Analysis, 20 (3), 391-424.

Sueyoshi, T. and Chang, Y. L. (1989). Efficient algorithm for additive and

multiplicative model in data envelopment analysis. Operations Research Letters

8, 205-213.

Sueyoshi, T. (1990). A special algorithm for an additive model in data

envelopment analysis. Journal o f the Operational Research Society 41,249-257.

Thompson, R. G., Dharmapala, P. S. and Thrall, R. M. (1993). Importance for

DEA of zeros in data, multipliers, and solutions. Journal o f Productivity Analysis

4 (4), 379 - 390.

Thrall, R. M. (1996a). The lack of invariance of optimal dual solutions under

translation. Annals o f Operations Research 66 (2), 103-108.

Thrall, R. M. (1996b). Duality, classification and slacks in DEA. Annals o f

Operations Research 66 (2), 109-138.

302

Thrall, R. M. (1999). What is the Economic Meaning of FDH?. Journal o f

Productivity Analysis 11, 243-250.

Wilson, P. (1995). Detecting influential observations in data envelopment

analysis. Journal o f Productivity Analysis 6, 27-45.

Xue, M. and Harker, P. T. (2002). Note: Ranking DMUs with Infeasible Super-

Efficiency DEA Models. Management Science 48 (5), 705-710.

Zhu, J. (1996). Robustness of the efficient DMUs in data envelopment analysis.

European Journal o f Operational Research 90,451-460.

303

