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Abstract

This thesis consists of three theoretical essays on the consumption and sav
ing behavior of agents with unorthodox preference specifications in an uncertain 
environment. The first paper puts forward a model in which agents have hetero
geneous priors with regard to their assessment of the underlying systemic risk.
It considers the particular case of domestic agents being more pessimistic than 
financial markets. The second paper studies the effects of dynamic inconsistency 
in the consumption and saving decisions under systemic risk, assuming naive 
hyperbolic agents. The third paper investigates the joint consumption-savings 
and portfolio-selection problem under capital risk, assuming sophisticated hy
perbolic discounting agents.

Chapter 1 introduces an economy exposed to external stochastic shocks ca
pable of triggering a crisis. We show that under the assumption of heterogeneity 
of beliefs, and in particular of pessimistic domestic consumers, it is possible to  
explain demand booms that arise on the back of policy responses even when 
the latter were not wealth improving. Quite the opposite, such an expenditure 
boom could be sparked in conjunction with a cycle of persistent current account 
deficits and debt accumulating dynamics that would result in higher future risk 
of collapse.

Chapter 2 considers a setting in which time inconsistent agents discount util
ity flows with a hyperbolic function instead of a classic, exponential one. This 
feature effectively characterizes a consumer that is "present biased" or short
term impatient. The agent is assumed to be naive, in the sense that she does 
not internalize her time inconsistency problem. As opposed to the orthodox, 
exponential discounting model, our model is able to generate a negative rela
tionship between the saving rate (or the current account) and the underlying 
risk premium.

Chapter 3 solves the classic Merton (1969,1971) problem of optimal consumption- 
saving and portfolio-selection in continuous time, assuming sophisticated but 
time-inconsistent agents with hyperbolic preferences as specified in Harris and 
Laibson (2008). We find closed-form solutions for the optimal consumption 
and portfolio allocation rules. The portfolio rule remains identical to  the time- 
consistent solution with power utility with no borrowing constraints. However, 
the marginal propensity to consume out of wealth is unambiguously greater 
than the time-consistent, exponential case.
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Chapter 1

A Model of Self-fulfilling Scepticism 

about Stabilization Policy

1.1 Introduction

When stabilization plans have been implemented in highly indebted economies in 

the hope that situations of severe economic and financial distress could be redressed, 

a brand new regime has typically been introduced, often involving the exchange-rate 

system, to provide the country with sounder economic fundamentals.

By and large, the incumbents tend to claim victory when, following the implemen

tation of a new policy set, the economy enjoys a boom in demand. They SQQifn to believe 

that a consumption boom is almost irrefutable evidence of policy success.

As a matter of fact, conventional wisdom would have anticipated that sounder eco

nomic fundamentals should bring about more sustainable macro dynamics, a lower 

sovereign risk premium, renewed access to capital markets and, in general, a positive 

wealth effect.

However, in a number of instances, the initial recovery has proved to be only tempo

rary and has been followed by inflationary cycles, over-appreciation, debt accumulation
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and, ultimately, by economic and financial collapse.

In this paper, we claim that such an optimistic view may be precipitate and flawed 

by shortsightedness. Although, admittedly, the emergence of expansionary dynamics 

could result from a wealth effect ensuing an improvement in fundamental systemic risk, 

we argue that the observation of a boom could also be the result of an intertemporal tilt 

of consumption stemming from heterogeneity of perceptions of risk between domestic 

consumers and international capital markets. Specifically, a negative tilt effect imply

ing a short-term consumption surge would be consistent with local agents being more 

pessimistic than capital markets with regard to the sustainability of the new regime, i.e. 

if  the former attached a greater probability to a collapse event than the latter.

In particular, if after a new regime is introduced local consumers anticipate a greater 

probability of a crisis than capital markets do, the model would predict a consumption 

surge and the appearance of current account deficits. The intuition is that consumers’ 

scepticism about the sustainability of a new regime makes borrowing rates look rela

tively inexpensive, which induces local agents to build up debt in order to finance higher 

current expenditure at the expense of future consumption.

In sum, this paper argues that an initial surge in demand constitutes no proof of the 

soundness of a recently inaugurated regime. An economic boost could also ensue from 

the domestic consumers’ scepticism-relative to the capital markets’ own assessment- 

about the sustainability of the new regime notwithstanding the direction of the wealth 

effect. Under such an heterogeneity of beliefs, an initial apparent short-run recovery 

could instead be the prelude of perverse macro dynamics, persistent debt accumulation 

and higher future risk of collapse.

As an illustration, recall Argentina’s experience with a currency-board. The regime 

was installed in 1991 under the auspices of the IMF and with the consent of the inter

national financial community. It was nonetheless abandoned in 2002 in the midst of 

painful economic and financial turmoil. This instance illustrates the pattern: a boost in
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consumption right after the adoption of the new regime was followed by eight years of 

persistent current account deficits together with relentless inflation and loss of compet

itiveness.

Arguably, the sustainability of the regime was put in jeopardy by high levels of 

external debt and the undermined competitiveness of the real economy, which made the 

financial system vulnerable to external shocks. In effect, the deteriorating fundamentals 

cast doubt on the sustainability of the regime and ultimately triggered an attack on the 

currency that brought about the abandonment of the system in January 2002 along with 

an announcement of sovereign debt default.

The idea that demand dynamics are affected by agents’ perceptions beyond the fun

damental vulnerabilities of an economic system is certainly not new. From the seminal 

work of Calvo (1986) and Drazen and Helpman (1987), the literature has given partic

ular attention to the implications of imperfect credibility on the part of domestic agents 

with regard to the durability of newly implemented policies or regimes. Further ex

tensions and applications include Calvo and Vegh (1994), Velasco (1996), Calvo and 

Drazen (1998), and Velasco and Neut (2003), among others.

The literature has endeavored to explain temporary consumption booms following 

the introduction of a new regime based on a limited-policy-durability problem. The 

models have generally assumed incomplete markets and perfect-foresight, in the sense 

that the time of the policy reversal is deterministic and common knowledge. The logic 

is that the anticipation of a collapse of a newly implemented regime implies that agents 

expect that inflation (or another form of tax) will be higher in the future. Therefore, 

the opportunity cost of present consumption is relatively lower, which induces higher 

current levels.

Drazen and Helpman (1988,1990) and Calvo and Drazen (1998) introduced a more 

realistic setup. Rather than assuming that agents have a defined belief over the precise 

time of collapse, as is commonplace in the literature, they allow local agents to attach
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certain positive hazard rate to the regime-switching event. However, these models were 

also deterministic in the sense that agents are assumed to know with certainty that a 

regime switch is due to occur on or before a predetermined maximum time Tmax at 

which the collapse would have happened with probability one.

In these latter models, a temporary consumption surge after a new regime is imple

mented results from a set of policies that are known to yield an increase in income. The 

initial consumption boom is followed by current account surpluses. In turn, the wealth 

effect coming from wealth accumulation results in increasing consumption. When a 

collapse arrives, consumption declines to the lower level that corresponds to an inferior 

regime.

Importantly, however, without the Tmax-assumption, these models could generate 

no consumption boom or current account imbalances.

In contrast, our model does not assume a Tmax and instead allows for the new regime 

to be able to survive an undetermined length of time. It tackles the problem from a 

purely stochastic approach: a collapse event, associated with the occurrence of a gener

alized financial crisis and sovereign debt default, could happen at any point in time with 

positive probability given by a hazard rate (conditional on it not having already hap

pened). We allow the hazard rate to be a function of the current state of the economy 

and, in particular, of time-varying indices that reflect the vulnerabilities of the econ

omy, such as the net debt position. The latter captures the notion that a highly leveraged 

entity is more vulnerable to exogenous shocks.

Importantly, contrary to Drazen and Helpman (1988,1990) and particularly to Calvo 

and Drazen (1998) (in which the hazard rate increases exogenously with no apparent 

reason despite the fact that the country runs current account surpluses), in our model a 

boost in consumption is followed by current account deficits and a gradual deterioration 

of the net foreign asset position. Accordingly, the sovereign risk premium increases and 

converges to the subjective risk level perceived by domestic consumers as a matter of
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an asymptotic self-fulfilling prophecy.

To abstract from dynamic considerations that are not pertinent to the discussion in 

this paper, we assume that output remains constant at all times, so that the smoothing 

channel to explain current account imbalances has been deliberately closed.

The remainder of the Chapter is structured in four additional sections. Section 1.2 

introduces the model. Section 1.3 solves a saddle path stable system for the general 

case of a CRRA - CES utility function. Section 1.4 experiments with regime shocks 

and identifies the bearings of the wealth effect and intertemporal substitution effect on 

the consumption and debt dynamics. Section 1.5 concludes, underscores a number of 

policy issues and proposes possible directions for further research.

1.2 The Model

1.2.1 Probability of Collapse

In the model, a collapse can be thought of as an event potentially triggered by a gen

eralized banking crisis that would subsequently result in liquidity constraints, external 

debt default, exclusion from access to international capital markets and a situation of 

virtual autarky.

The timing of this occurrence is uncertain. For a given regime i, the probability that 

an event of collapse arrives in the next time interval dt -conditional on it not having 

already happened- is determined by the hazard rate

<j>\ = bt), with d(f)/dbt < 0  ( 1 .1)

where 6l is a set of fixed economic fundamentals inherent in the regime i and bt is the 

state of a set of time varying macroeconomic indicators. Both variables determine a 

country’s economic performance and capacity to pay. In particular, we let bt denote
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the country’s aggregate net foreign asset position at any given time t. Hence, risk <j>\ 

increases as the foreign asset position deteriorates, i.e. as external debt accumulates.

We assume that capital markets are neutral and that the residual value of a defaulted 

bond after collapse is zero. In consequence, the premium above the risk-free rate re

quested on any new loans to the country at hand is equal to sovereign risk of collapse, 

so that the forward interest rates schedule would be given by {r +  $ }  , where r  is the 

risk free rate. 1 We assume that contracts are enforceable and that there are no other 

sources of risk, such as income shocks or counterparty risk.

1.2.2 Heterogeneity of beliefs

We assume that agents are characterized by heterogeneity of beliefs. In particular, 

domestic consumers and capital markets differ in their perception of risk; the former are 

assumed to be relatively more pessimistic and attach a higher probability to a collapse 

than the latter.2

This assumption is central in our model and can be justified as the reduced form 

to a problem of asymmetry of information that could arise due to the costs involved 

in accessing and interpreting market data by domestic agents. In particular, domestic 

consumers may be unable to accurately assess the country risk since monitoring the day- 

to-day macro indicators would involve informational barriers or access costs; therefore, 

they would have to guesstimate the current probability of collapse. Calvo and Mendoza 

(2 0 0 0 ) have neatly described this situation:

"Trading emerging-markets securities requires the collection o f  detailed

information about the countries involved. This information is costly and

1 See the Appendix 2.C. 10 for a proof that the hazard rate <f>lt that determines the default probability is 
in effect the risk premium over the risk free interest rate r  when the zero recovery value is assumed to be 
zero.

2Our assumption is similar to Fostel and Geanakoplos (2009), who assume heterogeneity o f  priors 
about the probability o f default between a small group o f optimists and the general public, the pessimists. 
Their model provides an explanation for the volatile access o f emerging economies to international fi
nancial markets.
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"depreciates" quickly. Moreover, fixed information costs are large, because 

assessing country risk requires gathering andprocessing information about 

all key macroeconomic and political variables on a recurrent basis, inde

pendently o f investment size."

On the other hand, capital markets’ institutions are able to closely monitor the evo

lution of all relevant economic statistics because they are in a much better position to 

afford the fixed information costs. Accordingly, we assume that capital markets can 

monitor and interpret the economy’s developments permanently and accurately.

Additionally, we assume market incompleteness, so that consumers are allowed to 

disagree with the market’s risk estimate, i.e. consumers do not deduce the probability 

of collapse from the forward rate curve priced by the financial markets.

In the context of our model, it could be argued that fundamentals 6 \  distinctive 

of regime i, are public information for all agents, whereas the state of the time varying 

indicators (in this case the aggregate net foreign asset position bt), is private information 

to capital markets and is therefore not internalized by the domestic consumers’ risk 

assessment.3

Formally, under given fundamentals 6l the representative domestic consumer as

signs a Poisson process distribution to a fatal financial crisis event and attaches proba

bility k;* =  k(0 z), with dn/db (t) = 0 , to the occurrence that a crisis occurs during the 

immediate one time period, conditional on it not having occurred before. Accordingly, 

the random variable T  (or time until collapse) is exponentially distributed with density 

function fr ( t)  = k% exp(—nlt), and the expected time until collapse at any point in time 

during a given exchange rate regime will be E (T ) = (/c*)- 1 .

The probability of experiencing a crisis at some point during the interval from

3Although this is not a necessary assumption, it simplifies the analysis as it will allow the sovereign 
risk premium to converge to the constant subjective risk level perceived by the local agents in a given 
regime i. Alternatively, an assumption that k varies with b (t ) could also lead to a steady state equilibrium 
so long \d<t>/db(t)\ >  \dK/db(t ) \ .
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present to t periods ahead is given by the cumulative distribution FT(t) = 1—exp(—Klt), 

for all t  > 0. Conversely, the probability of survival or of not experiencing a crisis dur

ing the time interval from present to t  periods ahead is given by 1 — FT(t) = exp (—«‘t) .

Technically, for the purpose of obtaining the qualitative results in our model, we do 

not need to specify whose risk assessment is correct. But for motivational purposes, 

we shall assume that markets have an accurate, correct assessment of the country’s 

risk while domestic consumers would need to guesstimate it and are inherently more 

pessimistic i.e. they assign a greater probability to a regime collapse event.

In other words, domestic consumers are assumed to systematically overestimate the 

risk of collapse -a t least with respect to the capital markets’ inference. This situation 

may arise from the fact that domestic agents have sceptical priors with regard to the 

benefits of a newly implemented set of policies sponsored by their incumbent, and since 

they have to rely on softer information than capital markets do, their guesstimate is 

biased towards a more pessimistic assessment.

1.2.3 Consumer’s Maximization Problem

A country is assumed to have full access to capital markets at international risk

free interest rates r plus the sovereign risk premium <j>\ in a given regime i. However, 

we assume that upon arrival of a financial crisis an indebted economy is forced to de

fault on its external debt and is excluded from accessing international capital markets, 

which would bring it to a situation of virtual autarky; i.e. post-collapse consumption of 

tradables and non-tradables is bound by the corresponding domestic production levels, 

forever, after the collapse event.

The representative consumer maximizes the expected discounted utility drawn from

19



her consumption flow. The objective function at any time 2 is

Ez |  j u ( $ , c ? )  , (1.2)

where Ez stands for the unconditional expectation operator and c[ and are random 

variables that stand for consumption levels in tradables and non-tradables respectively. 

They can take values c[  and if a collapse has not occurred, but are constrained to 

autarkic production levels yT and yN if an event of collapse had arisen. Specifically, at 

a given time 2, the distributions of both variables are

cT WD p—K'it—z)
^  (1.3)

yT,yN wp 1 — e K ^ ^

where yN and yT are constant output values.

Using (1.3), the objective function (1.2) becomes:

OO

J E z {U (c[, c^ ) } e~pt't~^dt
Z

OO

=  J  ( u  ( c f .c f ) e-"'*4-*) +  U (yT,yN) ( l  -  e"',(4_J,)dt
z
00 00

= [ u ( c l , c ? ) e - (-‘H-'‘,Xt- z'>dt + U ( y r ,yN) J  ( l  -  e ^ - ^ d t
z  z

We note that the value shown in the second term of the last expression is a constant. 

Therefore, the consumer’s optimal behavior is tantamount to maximizing the first term

00

f v  {$.<!) ,-w w - i j i  (14)
Z

subject to the intertemporal budget constraint (IBC).
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In other words, the consumer’s problem has reduced to maximizing the flows of 

consumption ad-infinitum as if a crisis was never due to occur, similar to a problem in 

a non-stochastic environment. However, we note that in our stochastic problem the dis

count rate has incorporated the perceived risk of collapse. In fact, the consumer behaves 

as i f  prevailing regime i were to remain in status-quo forever (immune to crises), but 

with the subjective discount rate being augmented by risk factor n%. Blanchard (1985) 

refers to this occurrence in the context of "lifetime utility maximization with constant 

probability of death."

1.2.4 Intertemporal Budget Constraint

Much of the literature related to demand booms after the introduction of new poli

cies or regimes has focused on the dynamics of nominal variables and relies on the 

assumption of cash-in-advance constraints or other sources of demand for money.4 In

stead, our model focuses on the dynamics of real variables and dispenses with real 

balances.

A country’s net financial asset position could take the form of foreign bond holdings 

or foreign currency denominated external debt. Thus, the increase in a country’s net 

financial asset position in terms of tradables is determined by the current account:

bt = {r + 4>\)bt +  y j  +  —  -  c j  -  — , (1.5)
et et

where bt is the aggregate net foreign asset position at time t  (i.e. bt < 0  means net 

debt) and et is the real exchange rate defined as the price of tradables in terms of non

tradables,
_ PJ StP,T*

6t P f  PtN

4Important exceptions are the works o f Calvo and Drazen (1998), Velasco (1996) and Velasco and 
Neut (2003).
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where St is the nominal exchange rate and P T* is the price of tradables in foreign 

currency. Prices of non-tradables Pf* are assumed to be fully flexible. The dollar- 

denominated nominal interest rate charged by capital markets is r  +  4>\, \ / t , where the 

risk-free interest rate r is assumed to be constant, and cj)lt is the premium associated with 

the sovereign risk of default under regime i.

Intertemporal consumption is bounded by a resource constraint that presupposes ac

cess to capital markets as long as a collapse event has not arrived. Integration of the cur

rent account (1.5) with respect to time under the transversality condition lim bte~ St(r+^ T̂ dT
t — >oo

0, delivers the intertemporal budget constraint (IBC):

OO OO

/  ( qT +  J - S) e ~ Itjr+'HT))drdt =  b* +  J  ( y j + ^ P j e ~ ^ r+,l’{T)')dTdt (1.6)
z z

This equation indicates that the market value of intertemporal consumption in the LHS 

is constrained by total wealth Wt in the RHS. Wealth at any point in time t  would be 

defined by the net asset position bt plus the market's valuation of the future income 

stream discounted at the rates at which capital markets are willing to lend, i.e. {r +  

for all t >  z. 5

1.2.5 Characterization of the Problem

Each consumer maximizes the objective function (1.4) subject to her own individual 

intertemporal budget constraint (1.5). The current value Hamiltonian for the represen-

5Note that neither government transfers nor revenues from seigniorage appear in the IBC as we have 
assumed absence o f monetary policy. Note further that the consumers’ resource constraint and the IBC 
are identical. However, this needs not to be the case in general. For instance, other monetary approaches 
o f the problem, such as the model o f temporariness o f credibility in Calvo and Vegh (1993), introduce 
a cash-in-advance framework where authorites use the revenues from the inflation tax for undertaking 
wealth transfers to consumers. Atomistic consumers choose optimal consumption in consideration of 
the opportunity cost implied by inflation when holding real balances. However, consumers take wealth 
transfers as parametric. This setting results in the individual’s IBC separating the parametric transfers 
from the endogenous cost o f holding money for consumption. On the other hand, at the level o f the overall 
economy the revenues and transfers from the inflation-tax unequivocally cancel out and the aggregate 
IBC (or Resource Constraint) looks exactly like (1.6).
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tative consumer would be

where the shadow price of the budget constraint Xt is the marginal utility of wealth 

valued at time t, or the extra current utility generated by a marginal increment of the 

stock of financial assets at time t.6

Without loss of generality, we assume a measure-one continuum of identical agents. 

Note that the risk premium <j>\ is a function of the aggregate net foreign asset position 

bt in line with definition (1 .1), and not a function of the individual bt optimally set by 

the individual consumer. This implies that the nominal interest rate r  +  (j)(bt , 6l) is 

taken as parametric in the optimization problem of an atomistic representative agent, 

as individual actions have a negligible effect on the aggregate.

To be sure, the representative consumer maximizes intertemporal utility with re

spect to her individual bt (a control variable) but takes aggregate bt embedded in the 

risk premium function <f>(bu 6l) as parametric. However, by construction, aggregate bt 

appears with the same value as individual bt .

Fist Order Conditions

We can solve the consumer’s problem by maximizing (1.7) with respect to the con

trol variables, the state variable and the shadow price, in account of the transversality 

condition lim Atbte~(p+Kl>)t = 0. The first order conditions are:
t —*oo

1) H ct = 0 which delivers

Uct {cJ , c? ) =  A, (1.8)

6More generally, At is the extra utility, valued at time t, o f relaxing the IBC by one marginal unit.
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2) H cn = 0 which delivers

et

Using (1.8) and (1.9) we can write

Uct (cJ , c? )

Uc,  (4 ,0 ? )  = - \ t (1.9)

Uc» ($ ,< ? )
— et (1.10)

which shows that at the optimum, at every point in time, the marginal rate of substitution 

~ ^ r  = ĵ°T (cf c^) e9 ua ŝ marginal rate of transformation e* =

3) Hbt = (p +  hL)Xt — Xt which delivers

— ^t(p + — (r + $)) (1-11)

Notice that in the above equation, the derivative of 4>\ with respect to time is zero

because the individual consumer takes the value <j)\ as parametric.

4) HXt = bt which simply restates the IBC (1.5).

Equilibrium conditions

Supply Side We assume constant output of traded and non-traded goods V t, before 

and after a possible collapse event:

yJ =  y T (1.12)

y ?  =  y N (1.13)
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Demand Side Domestic prices of non-tradables are assumed to be fully flexible, i.e. 

Pf* is such that the non-traded market clears at all times:

d? = yN (1.14)

Given the conditions (1.12), (1.13) and (1.14), the current account (1.5) reduces to

ih = (r + <f>l)bt + yT ~ c j  (1.15)

Accordingly, the IBC (1.6 ) can be simplified to

oo oo

f  ̂ e - ^ ’^ +̂ T))dTds = bt + yT f e - ^ ^ ^ T))dTds (1.16)
t  t

1.3 The CES Utility Function Case

Suppose that the instantaneous utility function in equation (1.4) takes the constant- 

elasticity-of-substitution form

where a  is the intertemporal elasticity of substitution and c* =  c(c[, c^) is a consump

tion index defined as

(h = +  (1 - 7 ) ’ (1.17)

Parameter 77 is the intratemporal elasticity of substitution between tradables and non

tradables. Note that we can find a price index qt such that the product qtCt transforms
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total expenditure of the consumption composite q  in terms of units of tradables, i.e.

T i 1 Nqtct =  ct +  - c t . (1.18)

The relevant price index is a function of the real exchange rate qt = q(et) with qf < 0 

and takes the form7

Qt =

l-T)'
7 + ( 1 - 7 )  ( -

l-T)

(1.19)

The representative consumer optimization problem boils down to maximizing

oo

/( CT —  1
( 1.20)

subject to her IBC.

The Hamiltonian corresponding to the maximization of (1.20) subject to the IBC in 

equation (1 .6 ) is

t ¥  =  °¥~  + At ( ( r  + <t>l)bt + y? + ^ r - q tc(cJ,<^) \ .
CT,c?,\t,bt, \ a _ 1 /  \  et J

Recalling FOC (1.8), the solution for H ct =  0 results in

£=l-l dcti ___
1 f t f j

=  A* (I -21)

dct - i
where =  c? (cj) r>. 8 Similarly, from (1.9), solving for H cn =  0 renders

uct 1

z = i - 1  d c t
— At—

et
( 1.22)

7Price index q(et ) is in fact the minimum expenditure Z  =  c f  +  in terms o f units o f tradables 
that would be needed if  an agent desired to acquire one unit o f the consumption index ct , for a given real 
exchange rate et = *t

8 See the Appendix for details on the derivation o f dct / d c [  and dct / d c f .
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-  1 _ 1 
c? (1 — y)* (c f)  v . Dividing (1.21) by (1.22), we get the relationwhere

(1.23)

which, in consideration of equilibrium condition (1.14), can be written as

This last equation establishes the direct relationship between consumption of tradables 

and the real exchange rate. Namely, for any level of c j , the real exchange rate et will be 

such that the non-tradable market clears at all times. Recall that the real exchange rate 

can adjust at any time thanks to the flexibility of prices of non-tradables.

Replacing in (1.18) by equation (1.23) we obtain

Also, from (1.21) and (1.22) the following expression for c* can be obtained:9

and replacing c* in (1.25) by equation (1.26) results in the following expression for 

demand of tradables as a function of the price index qt :

T Vct = 7  CtQt (1.25)

Ct1/ff =  A tqt (1.26)

(1.27)

9See the Appendix for details o f the derivations of (1.25) and (1.26).
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Finally, FOC (1.11) implies

£  =  ,  +  * * - (r +  *{) (1.28)
At

1.3.1 Equations of Motion

By log-differentiating (1.26) with respect to time, we obtain

-  = - a  v  +  -  I ■ (U 9 )
Q  Qt I

which, using equation (1.28), results in the following Euler equation:

Ct
Ct

The terms r +  (f)lt — — can be regarded as the real consumption-index-based interest 
Qt

rate. Therefore, the tilt of the real consumption-index is determined by the difference 

between the consumption-index based rate of return and the subjective discount rate p +  

k,\ and its sensitivity is positively related with the elasticity of intertemporal substitution

a. Note that a higher price-index inflation — implies a lower consumption-index interest
Qt

rates and a lower intertemporal tilt of the consumption bundle c*.

Log-differentiation of (1.25) with respect to time results in

t  I n  ( \~T = — + Q—, (1.30)
q  (k qt

which, together with (1.29) and with log-differentiation of (1.27), can be written as

%  =  - o  + 0 7 - 0 - )  —, (1-31)
q  A t I Qt
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Using equation (1.28), equation (1.31) can be expressed as

>)
(1.32)

This last equation reveals the tension between two effects of the rate of change of the 

(traded-denominated) price index qt onto the determination of the rate of growth of 

traded goods consumption. Each effect is associated with one of the two types of elas

ticity of substitution. On the one hand, the greater the intertemporal elasticity of substi

tution cr, the more important the negative effect that lower real interest rates will have 

on the saving rate, and on the consumption growth rate. This occurs, as stated above, as 

the consumption-index interest rate decreases with price-index inflation qt/qt-

On the other hand, higher elasticity of substitution rj between tradables and non

tradables implies a greater switching effect between the two types of goods as their 

relative prices changes. Note from (1.19) that increasing qt translates in increasing 

l / e t =  P f* /P j. Thus, as qt increases, consumption is diverted away from non-traded 

goods towards traded goods, thereby encouraging the growth rate of cj.

In turn, relative prices are a function of demand. In particular, their dynamics are 

such that equilibrium in the non-traded market is preserved at all times. In order to see 

this, we log-differentiate (1.24) to obtain

The relation between the growth rates between the price index and the real exchange- 

rate can be found by log-differentiating (1.19) to get:

(1.34)
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which together with (1.33) and (1.30) returns

et _  1 1 Ct
et r ) l - ' f f t ct

(1.35)

where (et) £ [0,1] with \E'/ <  O. 10 This last equation evidences the negative relation-

demand. Intuitively, as total demand increases, relative prices of non-tradables ought 

to increase in order to divert the demand away from these goods towards the tradable 

goods.

In order to solve for the equation of motion of we use (1.33), (1.34) and (1.31)

to obtain

where <j)lt = <j)(bt , 6l) is defined in (1 .1).

Note that, ultimately, the sign of c j / c j  will be solely determined by the differential 

between market interest rates and the subjective discount rate, and more specifically by

ship between the real exchange rate appreciation and the growth rate of consumption

(1.36)

where Et =  E fo  <7 , et) > 0 and § |  > 0 , >  0 , fg- >  0  if a < rj, and fg- <  0 if
•T

a > 77.11 . Since £ t is positive, ^  has the opposite sign than Inserting equation

(1.28) in the last equation, and assuming that p = r, we can rewrite it as

(1.37)

10 See details o f  this expression and its derivation in the Appendix.
11 Qpp thp A nnpndiv for dptoile An fhp dpri\;o+iAn nf (1 Qfi) ond tViA <See the Appendix for details on the derivation o f  (1.36) and the characterization o f E t.
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1.3.2 Steady State

Let’s rewrite the system of equations of motion (1.15) and (1.37) for the variables 

c j  and bt:

c j  = £ t ( 4  -  k*) c j  (1.38)

i>t = (r + 4>(bt ,e i))b t + yT - ^ .  (1.39)

Consider the steady state (SS) such that CgS — 0 and bss = 0- The SS condition 

corresponding to (1.38) becomes

tfss — 0 =  St (<̂ 55 — «*) c js , (1*40)

where (j)lss = (j)(bls s ,6l) is set in accordance with definition (1.1). Equation (1.40) 

implies that at the SS the following must hold:

<f>{V-ss,0i) = Ki, (1.41)

where blss  is the steady state level of net foreign asset position in a given regime i 

such that the sovereign risk premium has converged to the consumers’ perceived risk 

of collapse.12 Note from (1.28) that under the assumption that p = r equation (1.41) 

is also consistent with a constant shadow price of wealth and a constant level of wealth 

throughout time. Correspondingly, as the model assumes constant output levels for 

tradables and non-tradables, we can verify from (1.6) that constant wealth requires a 

constant net foreign asset position, which in steady state is tfsS'

Given a constant shadow price of wealth, steady state consumption of tradables is 

implicitly determined by (1.21), so that at every point in time the marginal utility of

12Note that if  the net asset position deteriorated below bls s , further loans would have brought interest 
rates higher than the consumers’ subjective discount factor p  +  n%, making them no longer attractive for 
consumers. Therefore, the continuing deterioration o f net foreign asset position below the level bls s  can 
be ruled out.
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consumption equals its opportunity cost.

From (1.39) and (1.41), the SS in foreign asset accumulation requires a balanced 

current account:

bss = 0 =  (r +  Kl)blss  +  yT -  cTss  (1.42)

or,

css  = (r +  «*) blss  +  yT (l-4^)

That is, the SS consumption of tradables is equal to the permanent (constant) income yT 

plus the interests payments (positive or negative) on the SS net foreign asset position, 

so that the current account (1.5) is in balance.13

Recall from condition (1.14) that domestic prices, and through them the real ex

change rate, are such that the non-traded market remains in equilibrium. At the SS, the 

real exchange rate will be determined by (1.24) and (1.43). Specifically:

e7? — T________ U._______  (i 44s)
655 ( 1 - 7 )  I/1*+(*■ +  * )  *55 ^

or the weighted ratio of non-tradable wealth to tradable wealth, where the weights come 

from the shares in the consumption composite (1.17).

1.3.3 Phase Diagram

The dynamic system (1.38)—(1.39) is characterized by the loci c j  = 0, scheduled

at a level b\ = blss  as determined in (1.41) and the loci bt = 0, determined by (1.43),
d(b

which has with slope r +  4>t +  bt —— >  0 as depicted in Figure 1.1.
ob±

13Note that (1.43) is also consistent with the resource constraint (1.16) at the steady state, at which 
point the risk premium {<frls } remains constant at k1. Therefore, the resource constraint reduces to:

T T
_ E 2 ^ =6ss + ^ U
r  +  k1 r  +  k1
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I

Figure 1.1: Saddle-path stable system 

A linearization of the system allows us to write

CT

I
Cr

-
i

tjL-t \ i^dY<t det
(0 (') K } det 

-1

— E cT 
dbt *

r +  <£(•) +  bt
dcj)_
dbt J

i

C
l

i

----------1i

and since around the steady state <t>lss  =  k*, the linearized system becomes

d<t>Ztc l• T
q

b t
S S

0
db*

— 1 r  +  K? +  bt
dcj)
dbt J

i
Ci

---
--

*

i t-
---

- (1.45)

&(j)
The Jacobian | J\ — —— Y,tcJ is negative, so the system (1.45) is saddle-path stable

obt
around the steady state equilibrium.

Note however that since at every point in time there is a positive conditional prob

ability that a collapse could occur over the next period ahead, the system’s dynamics
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could stop before they reach a SS.14

1.4 Regime Shock

In this paper we will not discuss the issues relative to the circumstances that could 

have led a given country to adopt a new regime. Instead, the interest of the present 

analysis is to establish the behavior of macroeconomic aggregates once an economy 

faces a new set of fundamentals. In particular, we endeavor to identify the effects that 

heterogeneous priors about the risk perceptions between domestic agents and capital 

markets would have on the dynamics of macro variables.

As a matter of example, consider an economy that lies at the steady state under 

certain given regime I  (say, a floating exchange rate regime). Then, consider the an

nouncement of a new regime I I  (say, a fixed exchange rate regime) that is introduced as 

a surprise to all agents at a given time t = 0 and brings with it a new set of fundamentals

e11.15

1.4.1 Wealth Effect

When an indebted emerging economy enjoys a decrease in its risk premium as a re

sult of positive news following the installation of a new, sounder regime, a wealth effect 

would, not surprisingly, bring on higher level of consumption (in tradables, as non

tradables are bound by domestic fixed production). The direct channel of the wealth is 

the alleviation of the debt service burden. Conversely, a negative regime shock involv

ing higher systemic risk would have entailed a decrease in consumption.

14However, for a decreasing hazard rate, it is not necessarily true that an event o f collapse must happen 
in the future. In other words, if  the hazard rate <j>t decreases fast enough, the probability that a collapse 
event will never take place is positive.

15 If the economy has entered regime I  from a situation o f financial distress, it is assumed that the 
new regime I I  has been introduced as part o f  a package o f measures that secures access to borrowing 
in the international capital markets. Typically, new regimes are introduced in conjunction with a set 
o f policies that often include the renegotiation o f the external debt overhang. The latter is expected to 
achieve substantial debt alleviation and the reinsertion o f the country in the international capital markets.
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As a benchmark, consider the case of complete markets, perfect insurance, symme

try of information and homogeneity of beliefs across all agents. After a regime shock, 

the subjective perception of risk by local consumers shifts at par with the change in the 

market pricing of the sovereign risk of default: A k = A<j>. It is clear from (1.41) that, 

under the assumption that r = p, a situation of perfect insurance would imply constant 

levels of consumption and intertemporal wealth and that there would be no change in 

the steady state level bss-16 From (1.43) we observe that consumption of tradables (the 

jumpy variable) will immediately reach its new SS, permanent level and its change will 

be given by A CgS = A nbss- Figure 1.2 depicts the case of a negative regime shock 

A k , = A <j> >  0 (negative news means higher premium) in a given indebted country with 

negative initial net foreign asset position bss < 0- The economy would immediately 

shift from point A to the new steady state C, with lower consumption of tradables and 

unchanged level of net foreign assets. Intuitively, as interest rates increase, a lower 

consumption of tradable goods is required in order to service more onerous interest 

payments.

1.4.2 Intertemporal Substitution Effect

The gap between actual risk and subjective risk assessment, motivated in subsec

tion (1.2.2), drastically changes the pattern of intertemporal consumption and wealth 

dynamics. In particular, subject to resource constraint (1.6), wealth and consumption 

intertemporal paths would depend on the difference between market’s forward interest 

rates r + <j>\ and the consumer’s subjective discount rate p +  «*.

In order to illustrate the tension between the wealth effect (WE) and the intertempo

ral substitution effect (ISE), we consider the case where domestic consumers are more 

sceptical than capital markets in regard to the fate and sustainability of a newly intro-

16This would be the case in a perfect insurance setting similar to Blanchard (1985), in which both 
consumers and markets take account o f the same risk o f "death". The former will internalize such risk in 
the their subjective discount rates, and the latter will internalize that risk in the market interest rates.
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Figure 1.2: Negative regime shock under the assumption of homogeneity of believes

duced set of policies. Namely, consumers subjectively assign a higher risk of collapse 

than capital markets at a given time t = 0 when a new regime I I  is introduced:

k11 > 4>{0n M )  (1-46)

where 911 is the new set of fundamentals, 4>(0n , b0) is the initial sovereign risk premium 

of the new regime at t — 0 and b0 = bgS is net foreign asset position inherited from 

previous regime I. Recall that by assumption the domestic consumers’ risk assessment 

is time-independent, i.e. n11 =  k (6u ).

A Positive Regime Shock

Suppose that the inauguration of a new regime I I  brings about apparent good news 

and lower risk of collapse relative to the previous regime / ,  i.e. (j)(0n , bo) < </>(07, b0). 

The introduction of a less risky regime I I  results in a positive wealth effect stem-
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Figure 1.3: Positive regime shock with fully  sceptical domestic consumers

ming from the alleviation of the debt service. A positive WE can be visualized as a 

clockwise rotation of the b =  0 schedule. Additionally, consumers’ relative scepticism 

results in an ISE that boosts current expenditure even further (at the expense of future 

consumption). Graphically, the latter effect is reflected in a leftward shift of the cT = 0 

and the S S  schedules.

As an example, consider the case of complete lack o f  credibility, in which after the 

positive regime shock domestic consumers did not believe in any fundamental improve

ment of the county’s inherent vulnerabilities and, instead, keep their risk assessment just 

identically as before the regime shock, i.e. A n  =  0. As depicted in Figure 1.3, the dy

namics show an instantaneous boost in consumption thanks to both effects: the wealth 

effect pushes consumption from A to B’, and the intertemporal substitution effect ad

vances it further from B’ to B. From B onwards, consumption follows a downward 

trend towards the new steady state level at point C. Sovereign risk ( $  will gradually 

increase together with net debt accumulation and at the new SS the country’s sovereign
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risk would have returned to her previous level k1 .

Note that despite the positive wealth effect and the initial consumption boost, the 

lack of credibility and asymmetric perceptions of risks lead to an unambiguously infe

rior long-term consumption level. From (1.43), the new steady state consumption in 

regime I I  will be c^s = yT +  (r +  k) b£5 , clearly lower than before as k had remained 

unchanged while the level of net debt would have deteriorated, i.e. b ^  < bss <  0-17

A Negative Regime Shock

Interestingly, under the assumption of heterogeneity of beliefs and of sceptical do

mestic consumers, the arrival of bad news and a switch towards a higher-risk regime, 

i.e. < f)(6 n , b0) > bo), could also entail a short-term boost in current expenditure 

and prices, despite the negative WE.

After the implementation of a new, riskier regime, higher risk premium and interest 

rates would have a negative effect on wealth and on the net present value of intertempo

ral consumption. However, as the subjective discount rate of sceptical consumers would 

be higher than the post-shock interest rates (see Figure 1.4), the ISE would induce con

sumers to tilt their consumption towards the present.

Therefore, the direction of the initial jump of consumption would depend on which 

one of the two effects dominates as can be seen in Figure 1.5 andFigure 1.6. A negative 

WE would result in an anti-clockwise rotation of the b =  0 schedule, and, as before, the 

ISE that corresponds to the sceptical consumers case is reflected in a shift to the left of 

the cT = 0 and the S S  schedules.

Since by assumption p = r, the new SS risk premium (f/Jg would be equal to k11 

only when the net asset position reaches steady state b1̂  . At this point, the consumer’s 

subjective discount rate p -I- n11 is at par with the market lending rates r + 4>ss- The 

new SS net asset position would be unambiguously worsened. This implies that, since

17Note, however, that if  consumers are only partially sceptical, with k11 such that </>qJ <  k 11 <  k1 , 
then CgS in regime I I  is not unambigously lower than in regime I.
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Figure 1.4: Introduction of a riskier new regime with partially sceptical, pessimistic 
agents

k,11 > «7, the new steady-state consumption will also be unambiguously lower and 

equal to c |s  =  (r  +  k" )  tfs's  +  yT.

In this saddle-path stable system, c j  is jumpy while bt is sticky and (dis)accumulates 

following the current account equation (1.39). Therefore, at time t =  0 when a change 

in regime is announced, consumption would shift on impact onto the stable arm of the 

new saddle-path system. The actual direction of the jump of c j  would depend on the 

relative strength of the WE versus the ISE. The case where WE dominates is depicted in 

Figure 1.5: at the time of the introduction of a new, riskier regime, consumption lowers 

from A to B. The negative wealth effect from higher risk premium and interest rates has 

a greater negative impact on current consumption, equal to the distance from A to B’, 

than the positive ISE, which slightly shifts up consumption from B’ to B. From point B 

on, consumption will continue to decrease gradually along the stable arm towards the 

new steady state in point C.

But it may also be that the intertemporal substitution effect is strong enough to offset
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Figure 1.5: Negative regime shock: WE dominates

the negative WE in the short-run, and that immediate consumption actually increases 

on impact. This is an interesting case of study where bad news about a switch to a new 

regime with weaker fundamentals could result in expansionary dynamics, and shows 

that such an expenditure boost is not proof of wealth improving policies. Graphically, 

in Figure 1.6, consumption would jump from A to B (despite the negative wealth effect, 

given by the distance A to B’) followed by a gradual cooling-off period towards the 

steady state point C, along with a process of further debt accumulation. The greater the 

discrepancy between n11 and (f)(6n , 60), the stronger the ISE. In other words, the greater 

the "degree of scepticism" of local agents about the sustainability of a newly announced 

regime, the more likely the reverse-overshooting of domestic consumption.

Note that in all cases prices and the real exchange rate are determined by the non- 

traded goods market clearing condition (1.14). From the first order condition (1.24) it 

follows that
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Figure 1.6: Negative regime shock: ISE dominates

where St is the nominal exchange rate and P T* is the (constant) exogenous price of 

tradables in foreign currency. Thus, assuming a fixed nominal exchange rate, domestic 

prices PtN follow a path that is positively related with c j . Intuitively, when the opportu

nity cost of consumption Xt is low the consumer is eager to increase current expenditure. 

Accordingly, higher non-tradables prices (or an appreciation of the real exchange rate 

et) would divert the excess demand towards tradable goods and out of non-tradables.

A Note on the Shadow Price

The expansionary dynamics can also be understood by observing the effects of a 

shock on the opportunity cost of consumption, reflected in the shadow price A*. Note 

from (1.36) that tradable consumption growth is inversely related to the growth of Xt. 

Following a regime shock, the path of the shadow price will also be determined by the 

WE and the ISE. On the one hand, the WE of the implementation of a new, riskier 

regime would result in a positive impact on Xt because the value of wealth decreases on
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Figure 1.7: Negative regime shock: WE dominates

impact (due to the heavier debt service profile) so the marginal value of consumption 

increases. On the other hand, the ISE would tilt up the opportunity cost schedule.

Figure 1.7 illustrates the case of a negative regime shock where WE dominates the 

initial reaction of the shadow price, leading to an immediate drop in tradable consump

tion, while Figure 1.8 displays the case where ISE dominates, leading to an initial drop 

of the shadow price of wealth and a corresponding boost in consumption, despite the 

negative wealth effect of the shock.

1 .4 .3  T h e  R o le  o f  B e l ie f s

In the long-run, domestic agents’ beliefs become (asymptotically) self-fulfilling. If 

the risk perceived by locals is higher than the sovereign risk premium, i.e. if  k,11 > </>[7, 

then perverse current account dynamics would lead to a process of debt accumulation 

and the economy’s sovereign risk would converge towards the higher subjective risk 

level, irrespective of the sense of the shock and of the direction of the initial jump of 

consumption.
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Figure 1.8: Negative regime shock: ISE dominates

A mirror analysis could be undertaken for consumers taking a less sceptical assess

ment regarding a regime shock than capital markets. In such a case, a change in regime 

will tilt up consumption and the ISE would favor current account surpluses that would 

result in a gradual improvement of the net foreign asset position. Again, the sovereign 

risk premium would converge to the subjective risk assessment as the economy gradu

ally becomes a better subject of credit.

1.5 Conclusion

Time and again, the announcement of a regime change has been a common course 

of action when policy makers aim to redress an economy that struggles with weak fun

damentals. Too often though, the incumbents do not hesitate to congratulate themselves 

soon after the domestic demand appears to pick up. As a matter of fact, an initial con

sumption surge has by and large been considered as an indisputable sign of success. 

Even disregarding the effect on production, conventional wisdom would anticipate the
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that lower sovereign risk premium and less expensive access to capital markets would 

bring about a positive wealth effect that should be reflected in greater consumption.

In contrast, we have argued that an immediate expansion following a regime shock 

does not necessarily mean that an economy had entered in a sustainable path. In par

ticular, if such asymmetries of perception of risk exist and local consumers attach a 

greater probability of collapse than markets do, a consumption surge could instead be 

the prelude of perverse external account dynamics that would lead to a debt build-up 

and an escalation of the risk of collapse.

A crucial assumption in our model is that beliefs are heterogeneous. In particular, 

we look into the case of study where capital markets price uncertainty based on the 

entire available information set while domestic consumers assess sovereign risk based 

on a subset of incomplete information due, for instance, to costly barriers to access 

information. Thus, domestic agents ought to guesstimate the systemic risk.

In addition of being less well informed than capital markets, domestic consumers 

are assummed to attach a greater probability to a systemic collapse than markets to.18

We have analyzed the cases of positive and negative regime shocks assuming scep

tical local consumers. If a new regime is fundamentally favorable, implying a reduction 

in the systemic risk, the WE and the ISE would reinforce each other to set off a surge 

in consumption.

More interesting perhaps is the case of the inauguration of an inherently riskier 

regime that could also be followed by an initial expansion of domestic demand despite 

the negative WE. This situation could obtain insofar as local agents were “sufficiently 

sceptical” to guarantee that the ISE is the dominant effect. In these circumstances, the 

initial consumption surge would be followed by current account deficits and a gradual 

contraction of demand towards an unambiguously inferior steady state. In addition, debt 

accumulation and the deterioration of the net asset position would result in higher future

^Alternatively, they anticipate a lower expected duration o f the current regime.
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systemic vulnerabilities. Accordingly, the sovereign risk premium is set to converge 

towards the higher subjective risk level perceived by local consumers, as a matter of an 

asymptotic self-fulfilling prophecy.

In all, irrespective of whether the policy change had initially generated positive 

or negative wealth effects, the condition of heterogeneous beliefs and relatively more 

sceptical domestic consumers is, in the present model, at the basis of the persistent 

current account deficits.

Recent experiences seem suitable to illustrate the predictive dynamics of the model. 

In the past few decades, a number of countries have adopted radical ultra-fixed exchange 

rate regimes as credibility shocks aimed at restoring stability amidst situations of eco

nomic and financial distress. Such instances include Argentina’s currency board (1991 - 

2002) and Ecuador’ official dollarization regime (2000 - date). Arguably, in both cases 

capital markets initially welcomed the inauguration of the regimes and interpreted the 

ensuing demand booms as credible signals of recovery.

The regimes were supposed to be in place for good, especially given that, ex-ante, a 

reversal was thought to potentially entail extremely damaging consequences. Allegedly, 

the idea of a very high cost of a collapse event should have dissuaded policymakers 

from pursuing loose economic policies. Specifically, a required condition to insure the 

stability was the commitment to tight fiscal policy.

Unfortunately, in both instances events gave due credit to the local consumers’ 

scepticism: governments eventually became unwilling to comply with their commit

ted conservative fiscal stance. Arguably, in retrospect, anyone who had attached a high 

probability to this scenario would have proved to be correct.

In the terms of our model, if  locals distrusted local authorities’ ability to commit 

to sustainable policies, the regime would be perceived as involving a serious systemic 

risk. In turn, the fate of a regime would also be affected by credibility itself. As would 

have been predicted by the model with sceptical local agents, after the inauguration of

45



each of the above mentioned regimes, both economies experienced a sharp acceleration 

of demand and persistent current account deficits.

In Argentina, a surge in domestic demand, an aggressive debt accumulation and real 

appreciation coming from inflationary dynamics undermined the economy’s fundamen

tals and made this country increasingly vulnerable to shocks and speculative attacks. 

Eventually, a reversal of the regime occurred in January 2002 together with a unilateral 

declaration of default.

In the case of Ecuador, although the dollarization regime, introduced in 2000 is 

still underway,19 the system is going through a very dangerous current account pattern. 

The success of dollarization depends on the economy’s ability to maintain its com

petitiveness over time. A necessary condition is that authorities pursue a disciplined 

conservative fiscal stance. Otherwise, real over-appreciation and debt overhang would 

follow, and the possibility of a regime reversal could be terribly harmful.20 Regret

tably, though, it is apparent that actual policymaking in Ecuador is seriously flawed by 

time-inconsistency problems. A fiscal spending spree began shortly after the regime’s 

inauguration and has significantly accelerated since 2007. To be sure, if  it were not 

for the unexpectedly high oil prices and the weakening of the US dollar since 2006 -  

admittedly both completely unanticipated external shocks back in the early 2000s- the 

stability of the regime would have been under serious threat. From the point of view 

of our model, local agents’ scepticism would have been perfectly consistent with the 

rapid expansion in demand and low saving rates that have characterized Ecuador since

19Full official dollarization was implemented in early 2000, whereby the country gave up its monetary 
policy and adopted a foreign currency (the US dollar) as the legal tender. Adopting the US dollar got 
rid o f exchange-rate noise which was meant to make the economy more attractive to foreign investment 
flows. The price to pay was the abandonment o f  a discretionary monetary policy and the "apparent" 
irreversibility o f the regime. The expected benefits o f  the dollarization regime were believed to outweight 
the costs stemming from the possibility o f a regime breakdown in the future, a catastrophic event with 
very small probability. See Mendoza (2001), Chang and Velasco (2003) for an analysis o f advantages 
and disadvantages o f dollarization.

20A crisis in dollarization becomes particularly treacherous as the financial system has no longer sup
port from a Lender o f  Last Resort (LLR), which is de-facto absent in this regime.
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the outset of the dollarization regime.21

In sum, the fate of a regime depends not only on its inherent characteristics but also 

on how much credibility it enjoys. In the empirical cases recalled above, it can inferred 

that the scepticism of local agents may have contributed to the perverse dynamics that 

ultimately increased the chances of catastrophe.

This paper suggests a number of policy lessons. First, it stresses the fact that scep

ticism or lack of credibility has first order effects and can be self-Julfilling. Low credi

bility implies low saving rates and perverse external account dynamics until the actual 

systemic risk converges to the local consumer’s subjective estimation.

Second, it makes the point that an initial demand boom may not necessarily be good 

news. For instance, a fundamentally positive new regime flawed by serious lack of 

credibility could move towards an unambiguously inferior steady state in the future. 

The difficulty, however, is that these perverse dynamics could be masked for the inju

dicious analyst who observes the positive effect on short-run demand. Even worse, a 

fundamentally negative new regime could also display a short-run consumption boost 

on the back of the IES that stems from the lack of credibility of local agents. Therefore, 

following the implementation of a set of policies, close attention must be given to the 

current account pattern.

And third, policymakers may need to consider the implementation of policies that 

counterbalance eventual excessive consumption, such as a counter-cyclical policy fiscal 

rule. This would in turn help build up credibility of local agents and alleviate perverse 

current account dynamics.

To be fair, in this paper, we have paid special attention to the case of domestic con-

2'On the other hand, it was apparent that markets received the news o f the switch in regime with rel
ative optimism. Only one year after having defaulted on all external debt categories, Ecuador regained 
access to capital markets and enjoyed a rapid decrease o f EMBI premium from 60% by end 1999 to 12% 
over LIBOR by end 2000. Right after the inauguration o f dollarization, economic indicators appeared 
encouraging. Debt-to-GDP ratios decreased, partly due to the debt reduction achieved by the renegotia
tion o f the Brady debt in 2000 but also due to major real appreciation that took place during the first 24 
months o f dollarization, when USD denominated domestic prices increased by a cumulative 150%.
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sumers being more sceptical about the sustainability of a new regime relative to capital 

markets. A mirror image analysis would study the case where local consumers take a 

less sceptical stance, i.e. them being more optimistic than capital markets. Under this 

assumption, the general results would be reversed: a change of regime would increase 

domestic savings, contract aggregate demand and generate current account surpluses. 

Accordingly, these dynamics would trigger a gradual improvement of the net foreign 

asset position and the sovereign risk premium.22

Further empirical research to quantify the magnitude of the effects leading to con

sumption booms would be most wanted. We have hereby provided with a qualitative 

approach, but it would be key to quantify the degree of heterogeneity of risk percep

tions and how much of a consumption surge is prompted by an intertemporal substi

tution effect in order to estimate the importance of this channel. We leave for further 

research a more thorough analysis of the empirical evidence when reform programs or 

new regimes have been introduced and credibility has been a determinant factor of the 

demand and current account behavior.

22This could have been the case o f Brazil and the "Lula effect" in 2002. Immediately after the regime 
shock, there was a recession followed by increase in saving rates and current account surpluses.
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l.A Appendix: Derivations and characterizations

1.A.1 Derivation of ^  in equation (1.21)
o c t

From equation (1.17), we can take the partial derivative of q  with respect to c j  and 

obtain

dct
d c j

V
T) ~l

77 “  1 1 /  T x ^ - l  
■71 (cf) *

~  1. , rp\ 7?~ ^  1

=  ) ”

-(  T \r-s 
7  v(ct ) ”

. rp.  _i
=  c t l v \ c t )  77

dct
A similar derivation is used later for — QED.

u<?t

1.A.2 Derivation of equation (1.25):

Equation (1.23) can be rewritten as

_   7)Ct = et ct
7

Introducing this last expression into (1.18), we get

qtCt =  +

=  (7 +  ( l/e t)1_,' (1 - 7 ))

T  ̂ I — 77 
=  c t - Q t7

T 1-T7 
=  CtQt »
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T  V

QED.

1.A.3 Derivation of equation (1.26):

We can write (1.21) as

* z z i — l  -  1 rp v - l  1

C t *  c f j i i c t )  n =  X t

s = l - l  I  A ,
Ct * C t T ’ f e )  ’ =  a  tcJ

Similarly, we can write FOC (1.22) as

Ct* xc? ( 1 - 7 ) ’ (cf ) ^  1 =  At —  
ct

Ct* c? ( 1 - y ) '•(<£) * = \ t - c l  
Ct

,N

By summing up (1.47) and (1.48), we get

<7 —1 __-| ±

C t*  c j

<7—1  -j _±

< k ’  Ct 7 ' ( < ? p - + ( l - 7 ) ' W O  '
v - \ _ l  i T? ~ 1

C t C t v

— 1
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Xt 

A t Q tC t

XtQtCt

A tQ tC t

XtQtCt,

T i 1 T' 
c t  +  - C t  

Ct

Ct1 /" =  A(g (

(1.47)

(1.48)

QED.

Alternatively, we could have expressed the Hamiltonian in terms of consumption

53



index ct =  c(ctr ,c f )  and taken FOC with respect to c[, c^. Specifically

H
N

where

Qt = 7 + a - 7 ) ( £ )  ”
1 - 7 ]

Ct =
TJ-l

FOCs would be

dc?

dH
dc?

=  0

=  0

z=i-i dctn ° -----
‘ d c f ,  

s=i-\ dct
d ^ \

—  ^tQt

=  A tqt

dct
d c j

dct
dc»

Note that either (1.49) or (1.50) allow us to write

q . l/a =  Atqt

which is equation (1.26). QED.

1.A.4 Derivation of (1 .35 ):

Recall (1.19)
l - T j l  1 _ ,

q j =  7 +  (1 -  7) ( I /* ) 1- ”

Then log-differentiate and get

Qt

\x-n

Qt e*
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f t  =  _  ( 1 - 7 ) (1/ f t )1 1 \  f t

f t  7  +  ( 1 — 7 ) ( i / e<)1_ /  e*

or

* =
Qt e t

where

and < 0 . 

Recall (1.33)

The previous two equations lead to

.t, / \   ( 1 - 7 )  (1/ft) r  rn(ft) =  — —  ----- ' -  7 i=j €  [0,1]
7 +  (1 -  7) (1/ft)

ft n c[

qt
qt n <%’

and using the last three equations together with equation (1.30), results

f t

e t

Ct

QED.

1.A.5 Derivation of (1.36):



=  -  t ,,¥

where

E* =
( i  _  („ _

QED.

1.A.6 Characterization of £ ( 77, <r, et)

Et can also be written as

=  —__________

(l + (; -  1)*, (et ) )

It follows that ^  > 0 and ^  > 0, so long cr, rj > 0 and 0 <  < 1- Note that

HI* >  0  if a < rj and < 0  otherwise.

Proof that Et is positive

Et is positive if

( i  -  fa  -  <7) ^ )  > 0

(??_ <7) _ < i

1 -  %  < 1 
v j

°  1 1
-  >  1 -  — ,
V

which is true since cr, rj > 0 and \&t € [0,1]. QED.
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Chapter 2

Consumption and saving behavior of a 

hyperbolic discounting agent under 

systemic risk

2.1 Introduction

The economic literature has extensively studied the effects of uncertainty on the de

cisions of economic agents. Part of this literature focused on the study of the particular 

type of risk consisting of a hazard rate that determines the probability of arrival of a 

crisis.

As an example of such event, we consider a country exposed to infrequent exoge

nous, “lethal” shocks that would result in a systemic crisis involving a default on its 

sovereign debt and its exclusion from capital markets. So long the event has not oc

curred, economic agents are allowed to set their optimal intertemporal decisions, know

ing that if and when a crisis arrives their plans would become obsolete and they will be 

constrained to a new economic environment worth a certain “residual value”.

In this paper we endeavour to study whether dynamic inconsistency could affect the
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way in which consumption and saving decisions are made under systemic risk. We do 

this by introducing time inconsistent agents who discount utility flows with a hyper

bolic function instead of an exponential one. This feature effectively characterizes a 

consumer that is impatient when she undertakes short-term trade-offs and more patient 

when she evaluates long-term ones. O’Donoghue and Rabin (1999, 2001) refer to this 

peculiarity as “present bias.” It was Robert Strotz’s (1955) who first formally conjec

tured that people are more impatient when they make short-run trade-offs than when 

they make long-run ones:

"When two rewards are both far away in time, decision-makers act rela

tively patiently. But when both rewards are brought forward in time, pref

erences exhibit a reversal, reflecting more impatience.”

The example put forward by Thaler (1981) also nicely illustrates this behaviour:

“I prefer two apples in 101 days, rather than one apple in 100 days. But I 

prefer one apple right now, rather than two apples tomorrow."

In our setup, the agent is naive in the sense that she is unable to realize her time- 

inconsistency problem. To be sure, she believes, in a wishful-thinking manner, that 

she will behave according to her present optimal saving-consumption plan.1 Alas, as 

time goes by, she changes her mind and reassesses the situation by formulating a new, 

different plan. Despite this element of surprise, she never adjusts her expectations about 

her future behaviour.

We put forward a full-fledged continuous time hyperbolic function as opposed to 

the quasi-hyperbolic discounting (QHD) setup typically studied in the literature2. The

lrThe literature has provided evidence o f at least partial naivety (Strotz 1955, Phelps and Poliak 1968, 
O’Donoghue and Rabin 1999), which more recently has been emphasized in the theories o f default 
options (Choi et al 2005, and other references therein) and excess borrowing behaviour (Skiba and To- 
bacman 2007).

2 See, for example, Laibson (1994, 1997) and Harris and Laibson (2003),
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discrete-time, QHD version was introduced as an approximation to the hyperbolic prob

lem mainly for tractability purposes. To be sure, the QHD model is appealing for its 

recursivity, which makes it suitable for being dealt with Dynamic Programming meth

ods.3 Instead, our HD model recalls the original characterization of the discount fac

tor as initially proposed by Ainslie (1975) and generalized by Loewenstein and Prelec 

(1992) and makes use of the Pontryagin’s Maximum Principle.4

To abstract from considerations that are extraneous to our discussion, we consider 

an economy with constant output, absence of frictions, price rigidities, transaction costs 

and credit constraints, and impose that all agents are identical and well informed.

The literature has shown that in the case of a ffictionless economy with an infi

nitely lived representative agent and perfect and homogeneous information, the ortho

dox exponential model delivers no interaction between the saving rate and changes in 

the systemic risk. This result was put forward by Yaari (1965) and further developed by 

Blanchard (1985) in the context of "lifetime utility maximization with constant proba

bility of death”. They show how an increase in systemic risk has two opposite effects 

that cancel each other out: higher risk premium implies higher returns on savings, but 

it also implies that the discount rate is being augmented by the corresponding hazard 

rate. The net effect on the saving rate turns out to be nil.

Another trend in the literature dealing with systemic risk pays attention to the shape 

of the utility function. For instance, Barro (2009) departed from the non-recursive utility 

setup and introduced Epstein-Zin-Weil preferences. He shows how a small hazard rate 

that determines the probability of a catastrophic “rare event” can help resolve the equity 

premium puzzle. However, his setting do not generate a change in the agent’s risk 

attitude as it was pointed out in his paper: “In an endowment economy, agents do not

3 Harris and Laibson (2008) introduced a continuous time, more refined version o f the QHD model 
where the transition from present to future is stochastic. Their specification recovers recursivity and 
continuity o f  the policy functions.

4Other references that used a pure hyperbolic discounting characterization include Barro (1999) and 
Luttmer and Mariotti (2002).
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react to changes in uncertainty by altering saving and investment.” 5

The main result of our paper is that the saving behaviour of naive, hyperbolic dis

counting agents is indeed affected by the probability of arrival of a crisis. In particular, 

we obtain the result that higher systemic risk effectively lowers the HD agent’s saving 

rate.

The relationship between the probability of a crisis and the saving rate of a time 

inconsistent agent can be understood by recalling the HD agent’s “present-bias”, i.e. 

she is short-term impatient but anticipates becoming more patient over time. Formally, 

a hyperbolic discount factor implies that the subjective discount rate is high in the short

term but declines with the time horizon, in clear contrast with the ED case in which the 

discount rate is set to be constant.

As we noted before, the higher risk premium enters additively in the interest rate 

schedule and in the subjective discount rate. Contrary to the ED case, however, in the 

HD setup a change in risk premium has an asymmetric effect along the term structure 

of the subjective discount rate because the latter is not flat (as in the ED model) but 

decreases with the time horizon. Consequently, the longer-term, lower subjective dis

count rates change proportionally more than the short-term, higher discount rates. For 

that reason, an increase in risk premium would result in the longer-term utility flows 

being discounted relatively more heavily than the short-term utility flows, which would 

be reflected in a lower desire to save now for future consumption.

Given the insensitivity of the saving rate to permanent changes in systemic risk in 

the ffictionless ED model, the economic theory has enriched the basic setup by taking 

account of the temporary nature of shocks,6 or by incorporating frictions, asymme

tries and heterogeneities. Our present model intends to complement this literature by 

putting forward a new mechanism that generates such a negative relationship and pro

5In Barro (2009), Section V, he introduces an AK growth model and allows for endogenous saving and 
investment. The saving ratio in that case increases with uncertainty so long the intertemporal elasticity 
o f substitution is greater than one.

6 See, for example Kraay and Ventura (2000,2002).
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vides testable implications for the behaviour of the saving rate and the current account.

For instance, observational evidence suggests that the current accounts of emerging 

economies often improve after a positive external shock has reduced their risk of de

fault and helped them gain access to capital markets at cheaper rates. Some of these 

economies have even been in a position to change their saving patterns completely and 

switch their current account from persistent deficits to surpluses. Our model is able to 

provide an explanation for these sign reversals if the positive external shock is large 

enough.

In addition, our model would make it consistent that two countries with similar 

growth outlooks and dissimilar fundamental vulnerabilities could present opposite cur

rent account patterns.

The remainder of this Chapter is structured in five additional sections. Section 2.2 

introduces the model and characterizes the problem. Section 2.3 solves the model as

suming a constant hazard rate. We present the main result obtained in the hyperbolic 

discounting setup, namely the negative relationship between the saving rate and the risk 

premium, and provide some intuition. We undertake comparative statics and analyze 

the effects of unexpected permanent shocks that affect the risk premium and contrast 

the characteristics of the HD setup with those pertaining to the exponential discounting 

model. In Section 2.4 we extend the analysis to the case of a variable risk premium, 

which we allow to be a function of the inherent vulnerabilities of the economy and, in 

particular, of time varying indicators such as the debt-to-income ratio. We show that 

the system is unstable, which results in what we call “world polarization”—a system 

in which there will always be economies that have entered into exploding debt accu

mulating dynamics that would necessarily lead them towards high indebtedness ratios, 

wealth exhaustion and high probability of arrival of a systemic crisis. In Section 2.5 

we discuss the general equilibrium implications. Section 2.6 concludes, underscores a 

number of policy issues and proposes possible directions for further research.
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2.2 The Model

2.2.1 The event of default

We assume that a "credit event" or a country’s default on its sovereign debt could oc

cur only as a result of exogenous shocks that would force the country to discontinue the 

service of its external debt payments. As in Chapter 1, we assume away the possibility 

of strategic defaults.7

In addition, for simplicity we assume that if and when a country defaults it would be 

excluded from the international capital markets forever and would be led to a situation 

of virtual autarky. This assumption is technically convenient as it imposes a constant 

residual value for the future income stream after a default event.

Default probability

The timing of a crisis is uncertain. At any future point in time s, the actual proba

bility of a crisis occurring in the immediate time period dt -conditional on it not having 

happened before- is determined by the hazard rate 4>(s) 6  [0 , +oo).

Without loss of generality, we assume zero recovery value of the defaulted debt. 

Therefore, the premium </> above the risk-free rate r would compensate risk-neutral 

investors for the default risk and would make them indifferent between investing at the 

risk-free rate r and holding a risky bond yielding r

Perceived default probability

A representative consumer standing at time t  assigns probability K,(s)ds to the oc

currence that a crisis could occur in a future interval (s; s +  ds), Vs > t, conditional on

7In order to rule out voluntary defaults, we assume that a credit event involves a fixed cost that would 
always make the country worse off compared to a pre default situation.

8See the Appendix 2.C. 10 for a proof that the hazard rate that determines the default probability
is in effect the risk premium over the risk free interest rate r,  assuming zero recovery value.
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it not having occurred before. The hazard function is defined by «(s) =  i r ^  ̂  where 

fr{s )  is the density function of the random variable T, the "time until collapse". There

fore, the survival probability, or the likelihood of not experiencing a crisis during the 

time interval from the present time t  to some future time s is 1 — Ft (s ) or, equivalently,

exP [~ It ^ ( j ) dT\ ■

Homogeneity of beliefs

In contrast with the model developed in Chapter 1, in which we assumed hetero

geneity of beliefs between different type of agents, here we assume forward-looking 

agents with homogeneous beliefs and symmetry of information. This implies that the 

consumers’ perceived probability of collapse n(s) is identical to the markets’ estimation 

of sovereign risk of default

Notation 1 Denote {x(s)}* the time path values that any given variable x(s) takes from 

time t to infinity.

In practice, a representative agent is assumed to trust the market’s assessment of 

the underlying default risk and takes these values parametrically from the forward-rate 

curve or, alternatively, from the credit default swap (CDS) market. The forward-rate 

curve at time t is determined by the points {r +  <f>{s)}t , for all s > t. Thus,

ac(s) =  0(s), Vs >  t. (2.1)

2.2.2 Consumer’s maximization problem

A representative agent optimizes her intertemporal consumption path knowing that 

post-default consumption would be bound to the country’s autarkic production. She 

maximizes the expected discounted intertemporal utility drawn from her consumption
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flow

Et U (c(s)) F {t,s)ds > (2.2)

where F ( t , s) is the consumer’s discount factor, Et {•} is the unconditional expectation 

operator, and c(s) is consumption, which is a random variable: it could take values c(s) 

if a crises has not arrived, but would be constrained to the autarkic constant production 

y if  a credit event has arisen. Specifically, for any given time t < s, the density function 

would be

where k ( s )  is the hazard rate that reflects the subjective probability of default Vs > t .  

Using the density function (2.3) into (2.2) we can rewrite the objective function as

The second term in the RHS is merely a terminal value that does not involve the control 

c (s). Therefore, the consumer’s optimal consumption plan reduces to maximizing the 

first term, or

subject to the intertemporal budget constraint. Notice that the reduced objective func-

(2.3)

V

oo

I  ( u  (c(s)) e~ "M*" +  U (y) ( l  -  e~ R  ,c(T)‘iT)  )  F (t, s)ds
t

OO

oo

oo

(2.4)

where

(2.5)
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tion (2.4) conveniently deals with a non-stochastic type of problem. In sum, the rep

resentative agent’s problem reduces to maximizing the sum of discounted utility flows 

from present time t to infinity as if  it were a deterministic problem. Note, however, 

that utility flows are not discounted with the discount factor F(t, s) but instead with 

the augmented discount factor x(t, s), which effectively takes account of the risk of 

collapse.

2.2.3 Intertemporal Budget Constraint

Prices are fully flexible so the non-traded goods market clears at all times. Tradable 

output y is assumed to be constant. The traded goods market clears via the current 

account. The current account determines the country’s savings or the change in its net 

foreign asset position:

b(s) = (r +  <fi(s))b(s) +  y -  c(s) (2 .6 )

where b(s) is the net foreign asset position at time s and r+(f>(s) is the forward instanta

neous interest rate. Implicitly, the maturity of each debt instrument is ds and rolls-over 

continuously at the current rates r  +  <£(s), Vs.

The IBC presumes endless access to capital markets insofar a credit event has not 

arrived, in which case the current account would become zero. The risk-neutral finan

cial markets already take account of the inherent risk in a loan extended to a particular 

sovereign borrower by charging her a premium over the risk free rate. The intertem

poral budget constraint (IBC) is obtained by integrating (2.6) with respect to time in 

consideration of the transversality condition lim b (s) e“ (r+^ ^(r)dr)(s_t) — o. The 

IBC reduces to

oo

J c(s) exp
t
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where W(t)  stands for intertemporal wealth, defined as the net foreign assets position 

b (t ) plus the present value of the future income stream discounted at market lending 

rates:

The IBC (2.7) shows that the market value of the planned consumption flow can be no 

greater than total wealth. Note that the time path of the risk premium {0(s)}t is known 

ex-ante as it is provided by the forward-rate curve {r +  4>(s)}t ,\/s > t.

It follows from (2.8) and the current account (2.6) that the equation of motion for 

wealth can be stated as the difference between the return on wealth, or annuity value o f  

wealth, and instantaneous consumption:9

Definition 1 The consumption rate C (t) is defined as the marginal propensity to con

sume out o f  wealth:

Definition 2 Similarly, the saving rate S  (t ) is defined as the rate o f  total wealth accu

mulation

y ex  p —r (s  — t) (2.8)

W  (s) =  (r +  <p(s))W (s) -  c ( s ) , V0 (s) (2.9)

S ( t )  = W { t )  / W ( t ). (2.10)

From the above definition and from (2.9) we can write:

(2.11)

which reveals that the saving rate is equal to the wealth annuity rate (r  +  4>) minus the 

consumption rate.

9See the Appendix 2.C.7 for the derivation of the wealth equation of motion.
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2.2.4 Characterization of the problem

From (2.4) and (2.6), the present value Hamiltonian can be written as

CS)
H  = U  (c.) x s +  ft, ((r +  <l>,)bs + y - c 3) (2.12)

where x s =  x (^  s) *s the representative agent’s augmented discount factor given by

(2.5), in which the discount rate may be time-varying. 10 The shadow price of the budget 

constraint fis is the marginal utility of wealth valued at present time t or, equivalently, 

the present value (valued at time t) of the utility generated by releasing the constraint 

by one unit .n

For convenience, we can write the problem in the form of a current value Hamil

tonian

where \ s = fisx s 1 is the shadow price valued at time s. Note from (2.5) that x s 1 =

F(t,  s ) - 1  exp k ( t ) ( 1 t \  , Vs G  [t, oo).

2.3 Constant Hazard Rate

In this Section we solve the model assuming that the risk of default is fixed at certain 

level (j) > 0. Most of the insights of the paper come from this Section, and in particular 

the negative relationship between the saving rate of a hyperbolic agent and the hazard 

rate that determines the probability of a arrival of a crisis.

10See the Appendix for the derivation o f the Pontryagin’ Maximum Principle conditions for the general 
dynamic optimization problem with time-varying discount rates. The time-independent, exponential 
discounting is a special case.

11 More generally, /zs is the extra utility valued at time t  o f releasing the IBC by one marginal unit.

(2.13)
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2.3.1 Intertemporal Budget Constraint

If the risk premium were constant, equation (2.7) would reduce to

oo

[ c(s) exp [ -  (r +  4>) (s -  t)} ds = b(t) H (2.14)
J r + (p

where the RHS is the intertemporal wealth defined as

r +  0

Recalling (2.9) we can write

W(t)  =  (r + <j>) W(t )  -  c(t) (2.16)

where (r +  </>) W  (t) is the annuity value of wealth.

The current account (2.6) simplifies to

b(t) = (r + <t>)b(t) + y -  c(t)

or, in terms of wealth, given that y and r + <j) are constant,

b{t) = {r + ( j ) )W{t ) -c{ t ) (2.17)

and therefore

W(t)  = b(t) (2.18)

Note that only if the representative agent consumed the same amount as the wealth 

annuity, the current account would be in balance and wealth would remain constant 

over time.
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2.3.2 Exponential Discounting

At the risk of being over-explanatory, we solve the exponential, time-consistent 

case in a step-by-step manner, which will make it readily comparable to the hyperbolic 

discounting case analysed in Section 2.3.3.

The discount factor

In the classic exponential discounting (ED) case, the consumer’s discount factor is

F{t ,s)  =  exp [-p (s  -  t)] 

and the corresponding augmented discount factor defined in (2.5) is

X* =  exp - p ( s  -  t) -  J  « (r)d r

where k (r) =  k = <j>, Vr in line with our assumption of homogeneity of beliefs 

formulated in (2 .1 ).

The objective function (2.4) takes the form

OO

/U ( c  ( s ) )  exp [— (p  4 - k )  ( s  — £)] d s

t

where we note that the ED consumer solves her intertemporal consumption problem 

as if the status-quo ante situation were non-stochastic and were due to last forever, 

immune to financial crises, but with the subjective discount rate being augmented by 

the subjective risk of default k .u

12 As noted in Chapter 1, Section 1.2.3, this result is reminiscent o f Blanchard (1985), who refers to 
this occurrence in the context o f the "lifetime utility maximization with constant probability o f death."
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First order conditions

We want to determine the consumption and wealth dynamics for given parameters 

r, p and </>. For tractability purposes, we assume log instantaneous utility13

U(c(s)) = In c(s). (2.19)

The consumer’s optimal intertemporal choice will be determined by the Maximum

Principle conditions. The first-order-condition (FOC) of the current value Hamiltonian

(2.13) with respect to c(s) is

1 =A(s)  (2.20)
c(s)

and the FOC with respect to the net foreign asset position b(s) is

A ( s )

Together, both FOCs result in the Euler equation:

c ( s )

=  p +  n - ( r  +  <t>). (2.21)

c(s)
=  r +  (f> —( /?+«) ,  Vs > t  (2.22)

where 4> is assumed to be constant throughout the current Section, implying that the 

forward rate curve also remains flat at the level r +  <f), which is common knowledge to 

all forward-looking agents who set k = </>. So the Euler equation simplifies to

c(s)
- f + = r - p  (2.23)
c(s)

In order to find the instantaneous consumption at time t, we use the equation of

13 The qualitative results in this paper are also valid for the more general CRRA utility, as will be 
verified later in this Section.

70



motion (2.23) into the resource constraint (2.14) and get

oo oo

c(t) J ■ e - (r+^ (s- t)ds =  b(t) + y f  e“(r+*)(' “‘><is (2.24)

or,

Ĉ  =  b(t) 4- (2.25)
p +  (f) r + (/>'

where the RHS is simply the intertemporal wealth W(t)  defined in (2.15). Thus, the 

last equation can be written as

c(t) = C (t) W{t)  (2.26)

where the consumption rate is

C(t) = p + </> (2.27)

and the saving rate (2 .1 1 ) becomes

S(t)  =  ^H =  (r +  ^ ) - ( p  +  0 ) (2.28)

=  r — p

which is given by the difference between the annuity rate of wealth r +  0  and the 

augmented subjective discount rate p +  k , where k = p due to the heterogeneity of 

beliefs assumption.

Interpretation The last equation indicates that wealth growth rate is determined by 

the difference between the rate of return on savings and the rate at which wealth is de

pleted by consumption. In other words, wealth would increase (decrease) over time 

if the wealth annuity (r +  </>) Wt were greater (lower) than per period consumption 

(p + (J))W(t ). A patient agent is a natural saver and would be characterized by a pos
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itive saving rate S  (t). Thus, her consumption would be lower than the annuity value 

of wealth, which would allow her to run current account surpluses to ensure wealth 

accumulating dynamics.

The opposite would be true for an impatient agent characterized by a negative saving 

rate. Her per period consumption would be higher than the wealth annuity and would 

run current account deficits resulting in wealth being depleted over time. Incidentally, 

note that if  the annuity rate and the consumption rate were equal, i.e. p +  4> — r +  </>, the 

saving rate would be zero and the current account would be in balance implying that 

both wealth and the consumption level would remain constant over time.

Notice from (2.28) that, in the ED case, the saving rate S  (t) is constant and insen

sitive to changes in risk 0 . 14 That is, the current account is set to remain an invariable 

share of wealth over time, regardless of the probability of a crisis arrival. In contrast, 

as we shall see in Section 2.3.3, this insensitivity property would not hold when agents 

are time-inconsistent. On the contrary, the level (f) will have important implications for 

the consumption and saving behavior of hyperbolic discounting agents.

Shocks in productive capacity y and in risk premium (j>

The effect of unanticipated shocks in y or in (j> on consumption depend on the agent’s 

degree of impatience, reflected in her saving rate. Consider a patience-neutral repre

sentative agent for whom the saving rate S  = r — p is equal to zero. In this case, the 

economy’s current account would be in balance before and after the shock.

An unanticipated shock in production y or in risk premium 4> would make the sys

tem jump on impact from one steady state to another, while the current account would 

remain in balance. In particular, an increase in permanent income y would result in a 

one-on-one shift in consumption, i.e. Ac =  Ay.

14The properties regarding the linear sensitivity o f the consumption rate and insensitivity o f the saving 
rate to changes in (f> is not exclusive o f the log utility case. In particular, they also hold in the more general 
CRRA utility. See the Appendix.
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In turn, a permanent shock in risk premium Acf) would shift the patience-neutral 

agent’s consumption to a new steady state that would be either higher or lower depend

ing on whether the agent is a net debtor or a net creditor. In particular, the steady state 

consumption would shift by Ac =  A <j> b. For instance, if  the risk premium rose by 

A(f> > 0 and the agent were a net debtor, i.e. b < 0 , the steady state consumption 

would fall in order to give way to a higher share of disposable income that needs to be 

reallocated to servicing higher interest payments.

Next, consider the effects of unanticipated shocks when the representative agent is 

not patient-neutral, i.e. when the saving rate S  ^  0. Let’s recall (2.26) and rewrite it as

c(t) = (p + 40 (&(*) + - A _ ) .

Take a patient consumer, characterized by S  > 0 and positively tilted consumption. A 

positive shock in permanent income A y  would result in higher consumption on impact 

but of lesser magnitude than Ay; specifically, Ac =  f ^ A y  < Ay. This undershooting 

of consumption reflects the patient consumer’s saving-prone behavior, as she reallocates 

some of the wealth windfall to increase longer-term consumption at the expense of 

immediate consumption. 15

A mirror-image effect would happen for an impatient representative agent with a 

negative saving rate, i.e. S  < 0 , and a negatively tilted intertemporal consumption path. 

In such a case, a positive shock A y  would result in an overshooting of consumption, 

i.e. Ac =  ^  A y  > Ay.

As for a risk premium shock, it would also bring about a non-neutral wealth effect

15 In particular, a permanent increase in the productive capacity A y  would allow consumers to boost 
their consumption schedule by an equal amount A y  in every future period. However, a "parallel" upward 
shift o f the intertemporal consumption schedule would violate the Euler equation c(t) / c(t) =  r  — p  as it 
would imply a decline o f the rate or growth. Therefore, the optimal consumption path is such that a higher 
share o f the windfall is being allocated to future consumption at the expense o f short-term consumption.
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if an agent is not patient-neutral. Let’s differentiate (2.26) to get

=  g W s  + QW,
^  I .E .  W .E .

=  w ® - c r h ? ’(r +  <p)

where C = r + cj) — S  by equation (2.11). An increase in </> implies a positive income 

effect (higher consumption rate C) captured by the first term of the RHS and a negative 

wealth effect (lower intertemporal wealth W ) captured by the second term of the RHS.

We can rewrite this last equation as

^  =  &(*) +  S t- J - j . (2.29)
dq> (r +  <f>)

Leaving aside the net asset position h{t), the second term reveals that the net effect of 

higher cj) on consumption would depend on the relative magnitudes of p versus r, and 

specifically on the saving rate S  = r  — p. This term reflects the tension between the 

income and the wealth effects. As for the first term, we note that if b (t) > 0, the income 

effect would be strengthened as higher (j) would imply higher revenues from a positive 

net foreign asset position, while if b (t) < 0, the income effect could be hampered as 

higher </> would imply a more burdensome debt service.

In general would be positive for a patient, saving-prone agent (unless the out

standing debt —b (t ) were sufficiently large) as an unanticipated rise in 4> would imply 

higher greater returns on savings, which would allow for greater future and present 

consumption, in conformity with the Euler equation (2.23).

The case of an impatient agent would be the mirror image of the one described 

above: a rise in risk premium would imply an increase in the cost of borrowing, which 

would result in lower future and present consumption (unless the initial net asset posi

tion is positive and sufficiently large).
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Importantly, note that for both patient and impatient consumers, the consumption 

rate C = p + (f> increases linearly in 4> while the saving rate S  = r — p is insensitive to 

changes in </>, as can be checked in (2.27) and (2.28).

2.3.3 Hyperbolic Discounting

“Lord, make me chaste, but not y e t” St. Augustine (354-386)

In this Section we depart from the orthodox approach and let the representative 

agent discount intertemporal utility flows with a hyperbolic factor rather than with an 

exponential one. We show how, when the representative agent is naive, the hyperbolic 

model could account for a negative relationship between the saving behavior and an 

exogenous probability of a crisis arrival. Specifically, the saving rate would deteriorate 

when the systemic risk cj) increases and the sign of the current account would depend on 

the level of </>.

Given the insensitivity of the saving rate to permanent changes in systemic risk in 

the frictionless ED model, the economic theory has enriched the basic setup by taking 

account of the temporary nature of shocks, or by incorporating frictions, asymmetries 

and heterogeneities.

We propose a new mechanism that generates such a negative relationship and may 

shed some light on the behaviour of the saving rate and the current account observed 

in different occurrences in the empirical world. Our model would be consistent with 

a case of study in which two economies with similar growth outlooks present opposite 

current account dynamics on the back of their dissimilar fundamental vulnerabilities.

The hyperbolic model can also account for current account sign reversals when an 

exogenous shock has affected a country’s fundamental probability of a crisis. This result 

could help explain how an economy can be in a position to change its saving patterns 

completely and switch its current account from deficits to surpluses even if the nature
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of the shock were permanent.

In what follows, we continue to have in mind a representative agent in a country 

that faces an exogenous probability of a systemic crisis. We leave for future research 

additional applications of this mechanism to other settings and agents. I

Naivety and time inconsistency

We introduce agents who discount utility flows with a hyperbolic function instead 

of an exponential one. An agent with hyperbolic discounting preferences faces a time 

inconsistency problem characterized by a higher degree of impatience in short term 

trade-offs than in long term ones.

In the context of this paper, the representative HD consumer is naive, as opposed 

to sophisticated.16 A naive agent draws an optimal intertemporal plan for saving and 

consumption, which she believes she will stick to. However, as time goes by, she would 

decide to depart from her plan and reset her consumption and saving strategy, and she 

will do it continually without ever realizing her time-inconsistency problem.

In other words, once the naive hyperbolic agent is one instant away, she reassesses 

her intertemporal maximization problem and draws a new consumption-saving plan that 

is effectively inconsistent with the previous one. To be sure, every consumption plan 

will prove to be nothing but "wishful-thinking", as it will be inevitably violated by the 

agent’s future selves who will choose to divert from it (unless we assumed some type 

of intertemporal commitment device). As a result, the actual consumption path differs 

from all those paths that an agent had originally anticipated.

Notation 2 Anticipated versus actual variables. The expression t%(s) denotes the

16Note that although empirical evidence suggests at least a degree o f naivity, most o f the theoretical 
work with hyperbolic discounting agents have assumed fully sophisticated agents, including the classic 
references o f Laibson (1994, 1997) and Harris and Laibson (2001a, 2001b, 2008). These papers assume 
that consumers are sophisticated in the sense that they realize that in the next period her own se lf  will 
not align to the planned consumption path but will instead tend to overconsume. Therefore, in that 
sophisticated setting, the optimal decision is to consume even more at present time, so that future selves 
have less wealth at their disposal.
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value that at time t an agent anticipates that a variable x  will take at time s, Vs > t. 

For the sake o f handiness, i f  a variable is parametric from a representative agent's 

viewpoint -implying that its anticipated and actual future values are identical- we will 

dispense with the anticipation operator altogether and simply express the variable as 

x ( s ) .

The discount factor

We put forward a generalized hyperbolic function as initially defined by Harvey 

(1986) and derived axiomatically by Prelec (1989) and Loewenstein and Prelec (1992). 

The hyperbolic discounting agent (HD) discounts events occurring (s — t) periods away 

with weight

r ( i )s) = (l + a ( s - t ) P /“ (2.30)

where parameters 7  and a  are positive and are assumed to be such that

7  >  r  >  7  — a  >  0 .

Contrary to the ED factor that declines at constant rate p, the rate of decay of the HD 

factor (2.30) falls with the time horizon s — t  :17

F( t , s) _  7  (231)
F(t , s)  l  + a ( s - t )

17Note that the exponential discount factor is the limit o f the hyperbolic discount factor (2.30) when a  
tends to 0 :

^lmio [( i +  Q ! ( s - t ) ) -7/Q ] =  Jhmo ( ( 1  +  a  (s -  *))1/a)  7j

=  (exp [s — t ] ) - 7  

=  exp [ — 7  (s -  t )]

where the discount rate (2.31) is constant at 7 .
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Following (2.5), the corresponding augmented discount factor takes the form 

X s =  exP t« (r)d r (1 +  a (s  — £))-7/a

where *k(t) =  n is constant and equal to 0 in accordance with (2.1).

First order conditions

Let’s determine the consumption and wealth dynamics for given parameters r ,  7 ,  a , 

and cf). As in the previous Section, we assume instantaneous log utility function, so the 

consumer’s objective function (2.4) can be written as

00J  In [tc(s)] exp [—n (s — £)] (1 +  a (s  — t))_7 “̂ ds
t

where *c(s) stands for anticipated consumption.

The consumer’s optimal consumption-saving paths are found by applying the Max

imum Principle conditions.18 The FOC with respect to anticipated consumption is

1 =  «A (a) (2.32)tc(s)

The FOC with respect to the anticipated net asset position tb(s) renders19

t ^ ( s )  7

*A(s) 1 +  a(s — t)
+  k -  (r +  (j)) (2.33)

Vs > t, where <j> is assumed to be constant. Equations (2.32) and (2.33) combine to 

bring about the equation of motion of anticipated consumption, or the anticipated Euler

18See Appendix 2.B for the derivation o f the Maximum Principle conditions for the general case of a 
time-varying discount factor F(t ,  s).

19See the Appendix for details o f the derivation o f the FOC with respect to tb(s) in the HD case.
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^  = r + <j>-( -  j   r + / c )  (2.34)

equation

t c ( s )  ' ' V 1 +  a ( s  “  0

Vs >  t, which, under the assumption of homogeneity of beliefs and perfect information, 

reduces to

=  r  1 . (2.35)
tc(s) 1 +  a(s -  t )

From the Euler equation we note that the assumption that 7 > r essentially reflects
7the consumer’s relative short-run impatience. In particular, the term ^ ^ i s  

simply the rate of decline of the discount function F(t,  s)  specified in (2.31), which 

falls with horizon s — t, for all s > t.20 Accordingly, the HD agent anticipates that the 

negative present consumption growth tc(t) /tc(t) = r — 7  becomes less negative and 

eventually turns positive  in the future. Effectively, the optimal anticipated consumption 

plan displays a U-shape where the inflection point occurs at a time s  such that (See 

Figure 2.1):

r  =  1 +  1- <2-36)1 +  a{s — t )

The FOC with respect to the shadow price results in the anticipated  current account

tb(s) = (r + <j>) tb(s) + y -  tc(s) (2.37)

which we integrate with respect to time, from s > t  to infinity, to obtain IBC anticipated

at time t :

00 00

J tc{r ) e - ^ ^ d T  =  tb(s) +  y J e - (T+4')(T- s)dT (2.38)
s s

-  lim tbr e-(r+«(T-»)
T  — ►oo

20The ED model would have this term replaced by a constant subjective rate o f discount p as in equa
tion (2.23).
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Figure 2.1: Anticipated consumption path of a hyperbolic discounting agent.
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Vs > t, where the last term lim tbr e (r+<Mr  s) =  0 by the Transversality condition.
T  — > 0 0

The saving and consumption plans

Intuition In order to determine the dynamics of the actual variables in the model, it is 

essential to understand how the naive, time-inconsistent agent anticipates the evolution 

of her control variables. The HD consumer is short run impatient but more patient 

in the long run. She would be eager to spend a higher share of wealth in immediate 

consumption and, at the same time, she plans to become a better saver in the future, 

which would allow her to accumulate wealth for the longer term. Thank to this wealth 

accumulation the consumer anticipates that she would be able to afford higher future 

consumption despite the higher saving rate and lower consumption rate. In terms of 

levels, high consumption in the short term and in the long term would come at the 

expense of medium term consumption.

More specifically, the HD agent chooses high levels of consumption at the present 

time t  and anticipates (naively, in a wishful thinking manner) a higher future saving 

rates tS  (s) and a decreasing consumption rate tC  ( s ) .  When the consumption rate 

tC  ( s )  falls below the annuity rate r +  <j) the saving rate would turn positive, as would 

also do the growth rate of wealth21. At a later point in time s, defined by equation (2.36), 

the growth rate of wealth would have overtaken the rate of decline of the consumption 

rate and consumption tc (s) = tC  ( s )  1W  (s) itself would start growing at positive 

rates. Therefore, the saving plan is consistent with the U-shape consumption schedule 

set in the Euler equation (2.35). (See Figure 2.2).

The HD agent’s saving behavior is intuitive from the point of view of the opportunity 

cost o f  consumption. The instantaneous subjective discount rate is 7 /  (1 +  a (s — t)); it 

takes the value 7  > r at present time t  and declines with time horizon s —t. This implies 

that the discount factor declines at a relatively fast pace in the short term but slowly in

21 Recall that the wealth growth rate is | j ^  =  S  (t ) in line with (2.10).
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the long term, so that the consumer would be increasingly indifferent about consuming 

in either two consecutive periods if the time horizon is far away. As the opportunity 

cost of consumption is anticipated to increase in the future, it would also make sense to 

anticipate a more aggressive future saving plan.

Characterization Let’s characterize more formally the saving and consumption path 

described above. Using the IBC (2.35) and the Euler equation (2.38) we obtain

where the RHS is anticipated wealth tW  (s ) defined as the net present value of the 

future income plus the net foreign asset position that at time t the consumer anticipates 

will prevail in a future point in time s :

tW ( s ) =  tb(s) + - ^ ~  
r +  (p

Thus, the anticipated consumption s — t  periods ahead would be given by22

*c(s) =  A(t,s;(f>) tW  (s)

and the anticipated consumption rate tC{s) becomes

(2.39)

where A(t, s; <j>) is given by

oo — 1

ss

2 2  See the Appendix for details on the derivation o f (2.39) and the characterization o f A (t, s; 4>).
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5t

Figure 2.2: Anticipated consumption and saving rates of a naive hyperbolic discounting 
agent. In this case the initial saving rate S  (t ) is negative but is expected to turn positive 
after s.
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Proposition 2.1 For any constant risk premium levels  G [0, oo), the HD representative 

agent's optimal anticipated path is such that the consumption rate tC(s) declines over 

time and asymptotically tends to cj).

Proof, See the Appendix.

The Appendix gives the characterization of A(£, s; </>). See the bottom diagram in 

Figure 2.2. Under the assumption that 7  > a  > 0, the function A(t, s ; 4>) is greater than 

<j), declines with time horizon s — t and has the following limits:

lim A(t, s;(f>) = (j) and lim A(t, s; 0) =  A (</>),
s—* 00 s—

where

A (0) =  U ?e-*(T_‘)(1 +  a ( r  -  > <j> (2.41)

Therefore, recalling (2.39), the long-term anticipated consumption rate is

lim tC(s) = 4>, (2.42)
s — >oo

and the present consumption rate is

lim tC(s) = C(t) = AU) > 4. (2.43)
a—

Rem ark 1 The declining anticipatedpath o f  the consumption rate putforward in Propo

sition 2.1 is in clear contrast with the consumption rate path o f an ED representative 

agent formulated in equation (2.27). In particular, note that an ED agent would con

sume a constant share o f wealth p +  4> at all times.
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Corresponding to a declining consumption rate is an increasing saving rate. It fol

lows from (2.11) and (2.37) that the anticipated current account is given by

b (s) = (r +  4>) tW  (s) -  tc (s )

=  ( r + </>)- A(£, s; </>)] tW  (s)

and given that W(s)  = b(s) from (2.18), the anticipated saving rate is

tS  (s) =  (r +  4>) -  K{t, a; <t>) (2.44)

where expression A(t, s; (ft) is given by (2.40). Recalling the limits (2.42) and (2.43), 

the long-term anticipated saving rate becomes

That is, in the long run, as the anticipated consumption rate tends towards 0, wealth

where A (0) is given by (2.41). Note that the initial saving rate and the current account 

could be either positive or negative depending on whether A(0) is greater or lower than 

r + </>.

Proposition 2.2 For any initial current account (either in surplus or in deficit), an 

increase in the anticipated saving rate specified in (2.44) would generate enough future 

wealth growth to turn future consumption growth positive.

Proof See Appendix.

growth itself would be anticipated to tend to r, i.e. lim =  r. Similarly, the

present saving rate S  (t), such that s = t, would be

(2.45)
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Proposition 2.2 implies that the U-shape determined by the Euler equation is con

sistent with the declining path of the consumption rate specified in Proposition 2.1 and 

equation (2.39). In particular, even if the saving rate were initially negative (see the 

middle diagram in Figure 2.2), the consumer would anticipate to turn it positive at some 

point in time s and to generate enough pace of wealth accumulation that would allow 

consumption to start increasing at a certain point in time s > s , despite the declining 

consumption rate. Similarly, if the saving rate were initially positive, the agent expects 

it to improve it in the future so that the pace of wealth accumulation outpaces the rate 

of decline of the consumption rate (see Figure 2.3 ).

The actual consumption path

The representative consumer is dynamically time-inconsistent. That is, the values 

of consumption for future dates t  +  s, Vs chosen at date t do not solve the maximization 

problem of the same consumer standing at a point in time other than t. The implication 

is that the anticipated consumption path (*c(s)} would differ from the actual consump

tion path (c(s)}, except for s = t.

Characterization The actual consumption path would be drawn by a continuum of 

present consumption values (tc(£)} that solve the consumer’s intertemporal optimiza

tion problem at every point in time t, subject to the anticipated IBC, i.e. the continuum 

of initial points tc(t) = c(t) that solve the anticipated Euler equation (2.35) subject to 

(2.38).

In order to find the expression for tc(t) in the consumer’s optimization problem, 

let’s rewrite (2.35) as

-^-(ln t c ( s ) ) = r -  7
ds 1 +  a (s  — t)
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C(s)

r + (j)

5t

Figure 2.3: Anticipated consumption and saving rates of a naive hyperbolic discounting 
agent. In this case the initial saving rate S  (t ) is already positive, and is anticipated to 
improve in the future so that wealth accumulation outpaces the rate of decline of the 
consumption rate.
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and integrate both sides over time to get23

tc(r) =  t c { t )  er(r-£) (1 +  a ( r  -  t ) ) ~ *

Vr > t, where tc(t) = c(t). Plug this expression in the LHS of the anticipated budget 

constraint (2.38) for starting time t  to obtain

oo oo

c(t) J  (1 +  a(r  -  t))~° exp [-</> (r -  t)] dr = b(t) + y J  exp [ -  (r +  (f>) ( r  -  t)] dr,

or

CW  =  +  _ 1 _  (2 .46)
A ((/>) r + (f)

So, actual consumption rate becomes

C(t) = A (<f>) ■ (2.47)

which defines the share of consumption for a given risk premium <f> and is perfectly

consistent with (2.43).

The function A ((f)) specified in (2.41) is characterized by the following properties 

(see Figure 2.4):24

(i) under the assumptions that 7 ,  a, r > 0 and 0 < 7  — a < r :

A ((f)) > cf) > 0, A' ((f)) > 1, A" ((/>) < 0,

(ii) the partial derivatives with respect to the parameters are d A / d ^  > 0 and d A / d a  <

0,

2 3  See Appendix for details o f the derivation.
24See the Appendix for details o f the derivation o f these properties.
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Figure 2.4: Function A (<̂>) has slope greater than 1.

(iii) the limits are

A(0 ) =  7  — a  lim [A(</>(f)) — 0 (£)] =  7
4>{t)— >00

So, actual consumption will be a constant share of wealth given by (2.47) for a 

given risk premium cj). Correspondingly, wealth dynamics will be given by the saving 

rate S  (t ) . Recalling equation (2.17), we note that the actual current account and the 

saving rate would be positive (negative) if the wealth annuity rate is greater (lower) than 

the consumption rate given by (2.47), that is

S( t )EE W(t)/W(t)  =  

=(r + 0) — C(t)

or

S(*) =  r  +  0 - A ( 0 ) . (2.48)

89



As opposed to the ED case, when utility flows are discounted hyperbolically, the saving 

rate and the sign and magnitude of the current account depend on the risk premium. 

Specifically, the saving rate is decreasing in cj). The derivative of the saving rate S  (t) 

with respect to <j> is

! _ ‘ - A ' W < 0

where A' {4>) > 1.

For low levels of systemic risk 0, consumption would be higher than the wealth 

annuity and the saving rate S  (t) would be positive, reminiscent of the behavior of an ED 

patient consumer. In turn, for high levels of risk premium the saving rate S  (t ) would be 

negative and the agent’s behavior would evoke an ED impatient agent. However, in the 

HD framework the attributes of "patient" and "impatient" do not qualify the nature of 

the agent’s utility function. To be sure, all agents are assumed to be identical, enjoying 

the same utility function and discount factor, and following the same Euler equation. 

Instead, a patient (impatient) agent is defined in terms of her saving behavior being 

observationally equivalent to a patient (impatient) ED agent.

Intuition The negative relationship between the probability of a crisis and the saving 

rate of a time inconsistent agent can be understood by recalling the HD agent’s “present- 

bias”, i.e. she is short-term impatient but anticipates becoming more patient over time. 

Formally, a hyperbolic discount factor implies that the subjective discount rate is high 

in the short-term but declines with the time horizon, contrary to the ED case in which 

the discount rate is set to be constant.

As we noted elsewhere, a higher risk premium enters additively in the interest rate 

schedule and in the subjective discount rate. So higher (j) implies greater interests on 

future savings, and it also implies greater augmented discount rates. In the ED model, 

these two effects cancel out because interest rates are r+<j> and the subjective augmented 

discount rate is x  ( s )  / x  (s) = P  +  so the saving rate remains at S  =  r — p.
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However, in the HD setup a change in risk premium has an asymmetric effect along 

the term structure of the subjective discount rate because the latter is not flat (as in the 

ED model) but is instead decreasing in the time horizon. Specifically, the anticipated 

subjective augmented discount rate is

tX (s) 7 . ,
t X (s) 1 + < x ( s - t ) + 9

Consequently, the longer-term, lower subjective discount rates change proportionally 

more than the short-term, higher discount rates. For that reason, an increase in risk 

premium would result in the longer-term utility flows being discounted relatively more 

heavily than the short-term utility flows, which would be reflected in a lower desire to 

save now for future consumption.

All in all, the higher interest rates r  +  0 do not compensate for the increase in the 

longer term subjective impatience rates. Thus, when 0 increases, the agent behaves as 

if she had become more impatient (in terms of an ED agent’s observationally equivalent 

behavior) as she reduces her current saving rates.

Definition 3 Define 0* as the level o f risk premium such that the saving rate is zero:

S  (0*) =  r  +  0* -  A (0*) =  0 (2.49)

An implication of Definition 3 is that when risk premium takes value 0*, consump

tion c(t)  would be equal to the value of wealth annuity (r +  0) W (t), the current 

account would be in balance and wealth would remain constant over time. However 

wealth growth would be positive (negative) if 0 < 0* (> 0*), as the consumption rate 

A (0) would be higher (lower) than the annuity rate (see Figure 2.5). In other words, an 

"impatient" representative agent would consume more than the annuity value of wealth. 

This economy would run current account deficits, resulting in wealth deteriorating dy

91



namics. The opposite would be true for an economy with a "patient" representative 

agent consuming less than the wealth annuity.

Shocks in permanent income y and in risk premium (j>

Similarly to the case of an ED consumer analysed in Section 2.3.2 above, the effect 

on consumption of an unanticipated shock in y  or (f) would depend on the prevailing 

saving rate S  ((f)). However, as opposed to the ED case, in the HD model unanticipated 

shocks affect consumption differently depending on the level of systemic risk in a given 

economy.

Let’s recall (2.46) and rewrite it as

c(t) =  C(<j,)-W{t)

=  A ((f>) (b(t) +  ^
r +  (f)

We note that Ac =  Ay. If 4> < </>*, the agent behaves as an impatient consumer with 

S  (( f ) )  < 0, implying that A ((f) )  >  (r +  4>), and an unexpected rise in permanent income 

y would result in an overshooting of consumption, i.e. Ac > Ay. The opposite would 

happen if (f) > (f)*, as the consumer would behave as a patient consumer with saving rate 

S  ( ( f ))  > 0. In this latter case, consumption would have undershot the change in income.

Consider now the effect of a shock in (j). The derivative of (2.46) with respect to <j> 

would be

d  = C 'W  + C W r

where C  =  A ((f ))  and C' = A! ( ( f ) ) . The first term of the RHS is the (positive) income 

effect and the second term is the (negative) wealth effect. More precisely, we can write25

= c'(<t>)W + (S (4>) -  r  + 4>) y
d(f> (r +  4>y

25 See Appendix 2.C.8 for a detailed derivation o f the income and wealth effects.
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y-a

S( t) = r  + <f>- A (<t>)

r - y

Figure 2.5: Actual saving rate as a function of (j). The saving rate is negative if <j)> (j>* 
as the consumption rate A (0) is greater than the annuity rate r +  <j>. Otherwise, it is 
positive.
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where S  (cj)) = r  +  cp — C ((/>). The above equation can be written as

^  =  6 +  5  (*) — 5 - 5  -  S ' (0) W  (t) (2.50)
d<p (r +  <p)

where S' (<p) = 1 — A' (<p) < 0. The interpretation of the first and the second terms 

is identical to the ED case described in Section 2.3.2. In particular, the saving rate 

S  {(p) reflects the tension between the income and the wealth effects, i.e. a higher S  (ip) 

would strengthen the income effect of a saving prone consumer and vice versa. We note, 

however, that compared to equation (2.29) in the ED model the saving rate is dependent 

on </>, so the sign of would ultimately depend on the magnitude of (p. Note, also, 

that the third term of the RHS was absent in the ED model because in the latter case S  

was constant and S'  ((p) =  0. In the HD case, this third term is positive and reflects the 

effect of the change of <p onto the saving rate: if <p increases, the saving rate deteriorates 

giving way to a further boost of consumption, thereby reinforcing the income effect.

The HD income effect will be particularly strong for low values of <p, where S  (ip) 

is the steepest. It would be particularly relevant for understanding changes in the sign 

of the current account for large changes of (p. For instance, as can be seen in Figure 2.6, 

the current account would switch from surplus to deficit if  (p increased from point A to 

B (accordingly, the saving rate S  (cp) = W  (t) / W  (t ) would become negative). This 

change in sign would be consistent with an overshooting of consumption (relative to the 

ED case) required to generate a current account deficit.

Note also that this switch of saving patterns is observationally equivalent to an ED 

consumer changing her behaviour from "patient”, or wealth accumulating, to "impa

tient", or wealth depleting, if confronted to an increase in the systemic risk of collapse.
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S(O = r + 0-A(<*)

5(0 tS(s)

0

r - y r - y

Figure 2.6: A large unanticipated increase in risk premium <f> could change the sign of 
the saving rate.

Actual Solvency Condition

It is in order now to verify that the actual solvency condition is satisfied when the 

consumption path is determined by a continuum of selves that solve the HD intertempo

ral consumption problem at every point in time, subject to the anticipated intertemporal 

budget constraint.

Consumption is anticipated to follow a U-shape following the Euler equation (2.35). 

However, from (2.47) we note that actual consumption remains a constant share of 

wealth. Therefore, actual consumption growth rate is given by

m eg) wtt)
c(t) C(t) '

where =  0 for constant 4> and where the second term is given by (2.10), in particular
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=  S  (t). Thus, consumption growth is

^  =  s  (t) = r + <t> -  A (4>) (2.52)

and the consumption level is

c(r) =  c(t) exp [r +  0 — A (0)] (r  — t ) , Vr >  t. (2.53)

The actual solvency condition (2.7) for constant risk premium is

oo

f  c(r) exp [ -  (r + <j>){r — t)\ dr < b(t) H (2.54)
7 7̂ +  0
t

and using (2.53) into the last equation, we obtain

oo

[  c(t) exp [—A (0)] dr < b(t) H — - (2.55)
J  r  +  cp

or

C®  < b{t) + (2.56)
A (0) r +  0

which defines the consumption values that would satisfy the solvency condition for 

given b(t) and risk premium 0.

Therefore, from (2.46) it is apparent that the actual consumption path resulting from 

the hyperbolic optimization process satisfies the actual solvency condition, as the net 

present value of consumption is simply the binding solution of the solvency condition 

(2.56).
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2.4 Variable Risk Premium

In this Section we extend the previous case and get similar, although richer, results 

when we allow the risk premium be a function of two sets of variables: a time-invariant 

variable that captures the fundamental vulnerabilities inherent in the structure of the 

economy 6, and the time-varying variable that captures the dynamics of vulnerability 

indices.

At any point in time s , the actual probability of a crisis occurring in the immediate 

time period dt -conditional on it not having happened before- is determined by the 

hazard rate cj)(s) E [0, + 0 0 ), defined as

<f>{s) = (j> (£(s), 9) ,

where 0 is a set of time-independent variables that account for the fundamental vulner

abilities inherent in a particular economy, and <5(s) is a vector of time-varying macro- 

economic indicators. In our particular setting, 5(s) denotes the country’s net foreign 

debt-to-output ratio at time s :

where b(s) stands for the country’s net foreign asset position at time s (i.e., negative 

b(s) is equivalent to a net debtor position) and y stands for the national income flow, 

which we assume to be constant and parametric. Arguably, a crisis is more likely to 

occur in a country that is highly leveraged or indebted. Together, £(s) and 6 determine 

the country’s likelihood of a crisis event as well as its ability to continue servicing the 

debt.

Without loss of generality, we assume that the likelihood of default for a net creditor
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Figure 2.7: Default probability function. If fundamentals deteriorate, i.e. 9' > 9, the 
curve shifts up.

country is zero. Thus, the hazard rate function takes values

*(*(«),*)
> 0  if 6{s) > 0

=  0 if  6(s) <  0
(2.57)

and is continuously differentiable for all positive values of debt 5 E (0, oo). The deriv

atives of <j) (<f(s), 9) are

<j>x > 0 and 02 ^  V6 > 0.

The implication of the first derivative <j>x >  0 is that the risk of default would increase 

if the level of indebtedness increases over time.26 Similarly, 02 >  0 implies that the 

arrival of a shock that worsens the economy’s fundamentals would result in a discrete 

shift of the default probability function on impact. (See Figure 2.7).

26The point is that in an economy that is subject to random exogenous systemic shocks the probability 
that a negative shock leads to a systemic bankruptcy is higher if  the country’s balance sheet is highly 
leveraged.
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2.4.1 Intertemporal Budget Constraint

When the risk premium is time-varying, the IBC (2.7) can be written as

OC

c(s)exp —r ( s  — t ) — / </>(r)dr ds = W ( t )  (2.58)
Jt

where wealth is

W(t)  = b(t) + y (2.59)

and the function II is defined as

- l

f  exp I ■— r ( r  — t) — f  </>(s)ds ] dr (2.60)

where 0 (r) is the forward instantaneous risk premium. Accordingly, the instantaneous 

forward interest rate is given by r

Note that the function II has the following properties: (i) it has positive partial deriv

ative27 dH/dr  > 0 and (ii) it would reduce to r +  (j) if the risk premium were constant.

Note that the schedule {(f>(s)}t depends on the forecasted path of the aggregated 

foreign asset position {6(s)}t . However, when the infinitesimal representative agent 

solves her intertemporal maximization problem, she takes the forward rates curve as 

parametric and does not consider the impact of her own decision on the aggregate asset 

position.

2.4.2 Solvency condition

The transversality condition implies that wealth and consumption are restricted to 

be non-negative. An agent has access to capital markets inasmuch as her net wealth

27See the Appendix for the proof o f the sign o f the derivatives o f II (•).
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remains positive, that is so long the following condition holds:

or,

(2.61)

where 8(t) =  — ̂  is the debt-to-output ratio. This condition defines the upper bound

of indebtedness consistent with non-negative consumption.

Since the risk premium (j) (•) is a function of the debt-to-output ratio 8 , we can write 

the inverse function of (2.57) as

where the function 8 ((f)(s), 9) is continuously differentiable in 4> for all </> € [0, +oo]. 

The signs of the partial derivatives are Si > 0 and 8 2  < 0, V <f>(s) > 0.

a variable {v  (s)}t , where s is the time index and t is the present time. The expression 

G\v denotes the value that G (•) would take i f v ( s )  =  v, for  all s > t .

Recall the solvency condition (2.61) and consider a situation of a current account 

deficit. This implies net debt accumulation, which would increase the LHS of (2.61). 

In turn, higher debt ratios would result in higher risk premia, which raises the term II (t) 

and lower the value of the RHS of (2.61). It can be verified that there is a maximum level 

of indebtedness 8 ** = 8 ((f)**, 9) for which the solvency condition is binding. Therefore, 

the domain of possible risk premium values is <f>(s) e  [0, </>** (r, 9)], where the maximum

/

< 0

if 4>(s) > 0 

if (f)(s) =  0
(2.62)

V

Notation 3 Consider any given function G (•) that depends on the entire time path o f
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possible level of risk premium </>** is characterized by:

(2.63)

This equality implicitly defines 0** as a function of parameters r and 9. If  the risk

premium reached level (f)**, wealth and consumption would be zero, meaning that the 

wealth annuity would be utilized in full for servicing the debt, i.e. for paying interests 

equal to — (r +  (/>**) b**.

In order to represent the system’s dynamics graphically, we note that the solvency 

constraint (2.61) can be written as

where both sides are functions of the risk premium: S(t) is defined by (2.62) and U(t) is 

defined by (2.60). Figure 2.8 displays the two equations as functions of </> (t): schedule 

ZZ is just the inverse of function (2.62), corresponding to the LHS of (2.64):

and schedule RR represents the values of II under the particular assumption that the lat

ter remains constant at the present level </> (t) . Recall from the properties of the function 

(2.60) that if </> is constant, the function reduces to r  +  cj). Hence, we can write

The horizontal coordinate of the intersection of ZZ and RR corresponds to $**, 

which is the maximum possible risk premium value for given parameters r and 9. Cor

respondingly, the maximum net debt level consistent with non-negative wealth and con

Si t ) -1 >  n(t), (2.64)

(ZZ)

(RR)
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Figure 2.8: The maximum possible risk premium is </>**, for which the solvency condi
tion is binding.

sumption is such that

<5(<r,0)-1 = r  +  , r ,  (2.65)

which corresponds to the vertical coordinate of the intersection of both schedules.

Note that if r increases, RR shifts up and <j>** decreases. Similarly, (f>** reduces 

as fundamentals deteriorate, i.e. as the variable 6 (the fundamental vulnerabilities) in

creases. This would in turn shift the schedule ZZ to the right and increase the maximum 

value 4>**. Hence, the signs of the partial derivatives are d<p** /d r  <  0 and d(j)**/dO > 0.

2.4.3 Exponential Discounting

As in Section 2.3 with constant 0, we first treat the orthodox time-consistent, expo

nential case in order to compare it later with the hyperbolic discounting case developed 

later in Section 2.4.4. The system of differential equations cannot be solved explicitly
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because the IBC depends on the entire anticipated path of risk premium, which is in 

turn determined by the aggregate of individually optimized paths of the net foreign as

set position. However, we are able to characterize the model’s dynamics by examining 

the stability at the steady state.

The discount factor

As before, the consumer’s intertemporal discount factor in the ED model is

where k ( s ) = <j> (s ) under the assumption of homogeneity of beliefs and perfect infor

mation.

However, in this Section the risk premium is not a constant. Accordingly, the ob

jective function (2.4) takes the form

Remark 2 As in Section 2.3 with constant 4>, the ED consumer solves her intertemporal 

consumption problem as i f  the status-quo ante situation were non-stochastic and were 

due to last forever, immune to financial crises. Here, however, the discount rate is

F(t ,s)  = e x p [ - p ( s - t ) ]

and the augmented discount factor is

oo
(2 .66)

augmented by the "spot" subjective risk o f default s ) =  f*
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First order conditions

For convenience, we assume log instantaneous utility U(c(s)) = Inc(s). Proceed

ing in similar way as in the previous Section, the first-order-conditions result in the 

following Euler equation

c( 5 ^
- j - r  = r  +  <j>(s) -  (p +  k ( s ) )  , V s > t  
c(s)

which, under the assumption of homogeneity and perfect information, simplifies to

c(s)
c(s)

— r — p (2.67)

The forward-rate curve at time t  is given by {r +  </>(s)}t where r is constant and 

W W }t“  is common knowledge to all forward-looking agents.

Instantaneous consumption at present time t  can be found by using the equation of 

motion (2.67) into the resource constraint (2.7) to get

oo oo

c{t) J  <Hr)drds =  + y f e- r ^ d r dg

or
oo

c m j  e
t

which can be written as

(t) J  e-rf*-1)--!’’ ̂ iTds = b(t) + yf  m d T ds (2.68)

c®  = b(t) +  (2.69)n(i, p) II(t, r)

or

c(t) = U( t , p ) W( t )  (2.70)

where the function II (t, •) has been defined in (2.60) and W  (t) is intertemporal wealth.
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Correspondingly, the consumption rate is

C(t) = U(t ,p)

Note that both II(t, r) and U(t: p) depend on the entire time path of the risk premium 

{0(s)}t. In turn, every level of default risk 4>(s) also depends on the debt level as per 

equation (2.57). So, consumption c(t) is governed by the expected time schedule of the 

aggregate net foreign asset position {b(s)}t for the entire time set s € [t, oo).

Steady State

In order to characterize the steady state (SS), let’s recall three key equations: (ZZ), 

or the (inverse of the) indebtedness level as a function of risk premia; (RR), or the value 

of II (£, r) under the assumption that the risk premium remained constant at <fi (t) ; and 

equation (EE), which is the value of function U(t ,p)  if the risk premium remained 

constant at <j> (t). Specifically,

state variables are constant at SS levels {b*, c* ,</>*}. The SS resource constraint can be 

written using (2.69), (RR) and (EE) as

(ZZ)

n (r )Ut) = r + 4>(t) (RR)

n 0 )U () =  p + <P(t) (EE)

At the steady state the equations of motion are such that b = c = <f> = Oso that all

p+r (2.71)
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or, in terms of SS consumption,

c* = (p + <l>*)W* (2.72)

where W* is the SS wealth:

W  =  6* +  V
r + <f>

Accordingly, the consumption rate at the steady state is

C* = p + <p. (2.73)

In turn, the current account (2.6) at the steady state becomes

b* = (r +  (j)*) W* -  c* = 0

or, using (2.72),

b* = (r — p) W* = 0.

This last equation implies that the steady state {</>*,b*,c*} is consistent with either 

W* =  0 or with r = p. As for the former possibility, we note that wealth exhaustion 

would be ruled out since it would correspond to zero consumption, infinite marginal 

utility and u(0) =  ln[0] =  —oo. In other words, if r  < P, the system would approach 

to that equilibrium only asymptotically. The latter possibility, r — p, corresponds to 

a non-tilt consumption path, as can be verified in the Euler equation (2.67). In other 

words, the steady state would require the saving rate to be zero:

S* =  0 =  r — p

The SS therefore requires r = p at all times. Note that in order to abstract from
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dynamic considerations that are not pertinent to our discussion, we have assumed that 

output remains constant at all times so that the smoothing channel to explain current 

account imbalances has been deliberately closed. Therefore, if all agents across the 

globe had the same impatience rate, there would be no tilt in consumption and the 

current account should always remain in balance.

Out of Steady State dynamics

The system of differential equations cannot be solved explicitly because the IBC 

depends on the entire anticipated path of risk premium, which is in turn determined by 

the aggregate of individually optimized paths of the net foreign asset position. However, 

we are able to characterize the model’s dynamics by examining the system’s stability at 

the steady state.

Proposition 2.3 In the ED model with constant output, the current account is in surplus 

iff r > p, and in deficit iff r < p (or i f  the domestic interest rate r  +  <j>(t) is greater 

than the subjective discount rate p +  </>(t) fo r  any given 4>(t)). Graphically, the current 

account is in surplus when the schedule RR lies above EE, and i t ’s in deficit when RR 

lies below EE (see Figures 2.9 and 2.10)

Proof (By contradiction.). Recall the current account (2.6) and use (2.59) and 

(2.70) to find the following expression:

b(t) = ((r +  m )  -  n(t, r)) b(t) -  (n (t, p) -  n(i, r)) W(t)  (2.74)

Consider the possibility o f  r > p being consistent with b(t) <  0 or, equivalently, with 

>  0 . First, from inspection o f (2.60) we note that <j){t) > 0 implies II( t,r)  > 

r  +  <j>(t). Since by assumption b(t) < 0, the first term o f  the RHS o f  (2.74) is positive. 

Second, it follows from Property (i) offunction (2.60) that r > p implies II (t,r) > 

n(t, p). Since wealth W(t)  is non-negative, the second term o f the RHS o f (2.74) is
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[ZZ]

Figure 2.9: Case of positive current account: b > 0. As the net asset position improves, 
the systemic risk declines and eventually vanishes.

positive. Therefore, the sign o f (2.74) would be positive, which contradicts the prior 

that b(t) < 0. Hence, r > p can only be consistent with b(t) > 0 (or, equivalently 

<p{t) < 0, fo r  all (j){t) € (0, </>**).28

A similar proof shows that r < p ijfb(t) <  0 or 4>{t) >  0 ,fo r  all (f>{t) G  (0, Q E D .

The implication of Proposition 2.3 is that if r > p an economy would experience

an improvement in its net foreign asset position over time, which would eventually

eliminate the risk of default. In the opposite case, if r < p, the economy will steadily

accumulate debt, thereby exhausting her net wealth over time as the sovereign risk

asymptotically approaches (f>** (see Figure 2.9).

28More precisely, the solution b(t) >  0 for the case r  >  p  implies that r 4- <p(t) >  II(£,r). Thus, 
although the first term o f  the RHS o f (2.74) would be negative, its absolute value must be lower than the 
second term, which is positive. The opposite argument is true if  r <  p.

108



5 '
[zz]

o+d> [£ £ ]

r

P

[**]

Figure 2.10: Case of a positive current account: b < 0. As the net asset position deteri
orates, the systemic premium approaches to (j)**'

2.4.4 Hyperbolic Discounting

The HD model with endogenous risk premium is consistent with most of the results 

of the previous Section 2.3.3, which develops the HD case assuming constant risk pre

mium. In particular, we still obtain the result that the magnitude and sign of the saving 

rate could change when an economy is confronted to exogenous shocks.

Discount factor

As in the previous Section, the consumer’s discount factor is

where 7  >  0 and a > 0 are such that 0 < 7  — a  < r, and the augmented discount factor 

is

F{t, s) = (1 +  a (s  -  t)) 1,a
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where, as before k (s ) = cf) (s ) , Vs >  t, under the assumptions of homogeneity of 

beliefs and perfect information.

First order conditions

Assuming log-utility and time-varying k (s ) , the consumer’s objective function 

(2.4) can be written as

ooJ  In [*c(s)] exp tAc(s)dr (1  +  a (s  — t))~7//Q ds
t

The first order conditions determine the consumer’s anticipated Euler equation

*£(*) „ , j,/ x (  7
tc(s) = r + M - ( l + a[s - t) + *«'))’ (2.75)

where, under the assumption of homogeneity of beliefs ,the (infinitesimally small) rep

resentative agent adopts the markets’ pricing of risk </> (s ) , which is taken as parametric:

t«(s) =  0(s) (2.76)

Accordingly, equation (2.75) simplifies to

tM  = r  1 ____  (277)
tc(s) 1 + a ( s - t )  K ’

where 7  > r, just as in Section 2.3.3 with constant risk premium (j). In other words, the 

anticipated U-shape consumption is identical to the case of constant (j).

However, in the present case with time varying </> (s), the intertemporal budget con

straint is determined by the entire path {</>(s)}t . Let’s recall the anticipated current 

account

tb(s) = (r + <j) (t)) tb(s) + y -  tc(s)
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and integrate it with respect to time, from any time s > t  to infinity, to get the anticipated 

IBC:

oo oo

/  tc(r)e-' <T- ‘> - =  tb(s) + y j e - ri-T- ‘ ) - ^ ^ z ', i l d T  (2.78)
s s

-  lim tbr <Hz)i*
T — > 0 0

Vs > t, where the last term is zero under the Transversality condition.

The risk premium forward schedule {</> (s)}f is implicit in the forward-rate curve 

{r 4 - (j>(s)}t provided by the financial markets. Note that a risk premium future level 

<f) (s) depends on the aggregate actual future b(s), and not on the future asset position 

that an individual anticipates for herself. To be sure, the individual’s anticipated path 

(*6 (s)} is inconsistent with the a c tu a l  a g g r e g a te  p a th  {b(s) } . 29

In similar way as in Section 2.3.3 with constant </>, the hyperbolic naive agent antic

ipates a U-shaped consumption plan following the Euler equation (2.77) and subject to 

the IBC (2.78). However, due to the time-inconsistency problem, actual consumption 

would differ from the planned consumption path..

Actual consumption path

The actual consumption path is drawn by the continuum of initial consumption val

ues Sc(s), Vs >  t that solve the consumer’s intertemporal optimization problem at every 

point in time, subject to the anticipated IBC. Specifically, the continuum of initial points 

tc(t) = c(t) that solve the anticipated Euler equation (2.77) subject to (2.78).

29Consumers are assumed to be able to extract the probability o f a crisis from the market and are 
assumed to agree with it. A  naive agent however would still optimistically believe that she will be 
able to commit to her consumption and debt accumulation paths, although by accepting the path { 0 } t 
determined at the (actual) aggregate demand level, she is implicitly acknowledging that all other agents 
are time-inconsistent.
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Integrating (2.77) with respect to time we obtain30

tc(r) = tc(t) er(r (1 +  a ( r  -  t )) « (2.79)

Vr >  t, where tc(t) = c(t). Inserting this in the LHS of the anticipated IBC (2.78) 

results in

oo oo

c(t) J  (1 +  a(r -  *(s)d‘ d T  = b(t) + y f  *<*>*d r , (2.80)

or

=  6(f) + —^ — r (2.81)
V(t ,a ,  7) n(t,r)

or

c(t) = nt ,<*, 'v )W(t)  (2.82)

where, as before, wealth W  (t) is given by

+  ,2'«>

and function II has been defined in equation (2.60). Function \I/ is defined as follows

^ ( t , a , 7 ) =  ( j  (1 + a ( r - t ) )  « e x p ^ - ^ *  <j>(s)di

where (j) (s) is the forward instantaneous risk premium. The function ^  has the follow

ing properties : (i) it has partial derivatives31

d '& /dy > 0  and d ^ / d a  <  0

3 0  See Appendix for details on the derivation.
31 See the Appendix for the proof o f the sign o f the derivatives o f  ̂  (•).
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and, (ii) \I/ would reduce to A (0) if the risk premium were a constant, where A (4>) is 

defined by (2.41).

Note that expressions \I> above and II in (2.81) depend on the entire risk premium 

path {</>(s)}, Vs G [t, oo), which in turn is governed by the path {&(s)}. Therefore, c(t) 

is also governed by the entire path of aggregate {6(s)}, for s G [t, oo).

Steady State

In order to characterize the steady state (SS) let us recall three key equations: (ZZ), 

or the (inverse of the) indebtedness level as a function of risk premia; (RR), or the 

value of II(t, r ) under the assumption that the risk premium remained constant at 4> (t ); 

and equation (HH), which states the values of function 7 )  if the risk premium

remained constant at </> (t). Specifically,

Figure 2.11 displays the SS equilibrium {<j)*,b*,c*} such that b = c = <j) = 0. 

Recalling equations (RR) and (HH), we can write the budget constraint (2.81) at the SS 

as

(ZZ)

n (r )W> = r + (RR)

=  A W ) ) (HH)

so SS consumption (2.82) becomes

c* =  A (</>*) W*. (2.84)

where SS wealth would simply be W* = b* +  Or, in terms of the SS consumption
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Figure 2.11: Steady state equilibrium (f>* is unstable

rate:

C* = A((f>*).

Recalling the current account (2.6), in the steady state it becomes

b* = o =  (r +  </>m) W* -  c*

or,

b* = 0 = ( r + </>*- A ((f)*)) W* 

or, in terms of the SS saving rate,

S* = r + (f)* -  A (</)*) = 0

Therefore, since S* = b* = 0 at the SS equilibrium it must be that

A(</>*)
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which defines the steady state variables {0*, b*, c*} as a function of parameters r, a  and 

7  (that characterize function A ) . A condition for the existence of <j>* is that r > 7  — a ? 2 

In accordance to the steady state condition (2.86), the level <j>* = 4>*(r, a, 7 )  corresponds 

to the horizontal coordinate of the intersection between schedules HH and RR. Notice 

that if r  increases, schedule RR shifts up and <f>* increases. On the contrary, an increase 

in 7  — a  would shift schedule HH up and </>* would decrease. It is then clear that 

the signs of the partial derivatives of a ,  7 )  are d<f>*/dr > 0 ,  d<j>*/dj < 0  and 

d<f>*/da > 0.

Stability

Proposition 2.4 The steady state equilibrium {$*, b*, c*} that fulfills condition (2.86) 

is unstable.

Proof. See Appendix.

Proposition 2.4 implies that the current account would be in deficit if  the initial 

(j) (t) > 4i*, which would imply further deterioration of the net asset position and greater 

future risk premium. Similarly, the current account would be in surplus if (j) (t) < <j>*, 

which would imply a decreasing risk premium. Therefore, the risk premium would tend 

to diverge either towards 0 or </>** depending on its initial position, and would remain 

unchanged if and only if </> (t ) =  </>*.

Note from (2.85) that there is another stable steady state solution {<j)**,b**,c**} 

that corresponds to a situation of zero wealth or wealth exhaustion. Recall from (2.63) 

that at this point the risk premium would reach its maximum possible value 0**, as 

income would be entirely devoted to interest payments and no resources would be left

32This condition will always hold in general equilibrium where r is endogenous: if  r <  7  — a,  then 
all countries would run current account deficits. Therefore r  would rise so that global financial market is 
in balance. See Section 2.5.
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for consumption. Since <p** is a constant, the budget constraint (2.81) would become

^____    L** . #
A r + <f)**'

or

c** =  A (</>") W** (2.87)

where W** = b** +  . This last equation indicates that despite of the fact that

the consumption rate is positive at C** =  A (</>**), actual consumption would be zero. 

At equilibrium {</)**, b**, c**} income is entirely devoted to interest payments and no 

resources are left for consumption, i.e. </>** is such that y =  —b** (r  +  </>**) or the 

solution of equation (2.65)

W rJ )  = r + r '

which corresponds to the horizontal coordinate of the intersection of schedules ZZ and 

RR in Figure 2.11.

World Polarization

The instability of the steady state implies that countries would tend to polarize in 

net debtor and net creditor economies. The equilibrium <j>* corresponds to a balanced 

current account b* = 0. However, Proposition 2.4 states that such an equilibrium is 

unstable. Recalling Figure (2.11), if an economy departed towards a risk premium 

lower than <j>* the current account would turn into surplus, resulting in e v e r  im p r o v in g  

n e t  f o r e ig n  a s s e t  p o s i t i o n , which would eventually turn positive as the economy turns 

into a n e t  c r e d i to r  c o u n tr y . As such, a country running current account surpluses would 

eventually enjoy zero risk premium, as per equation (2.57).

Conversely, if an economy posted a risk premium greater than 4>* the current ac

count would be in deficit as the representative agent would post negative saving rates
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Figure 2.12: Two possible forward-rate curves depending on the initial rate is higher or 
lower than r +  <f>*.

and would consume more than her disposable income. This would result in deteri

orating wealth and declining consumption. Thus, debt accumulating economies are 

led towards the maximum level of over-indebtedness that corresponds to a situation of 

wealth exhaustion, i.e. equilibrium {</>**, b**, c**}, in which income is entirely used for 

servicing interests payments.

Forward interest rates

Proposition 2.5 I f  the risk-free rates r are assumed to be constant, the forward curve 

that corresponds to an economy that presents (f> > (ft* is upward-sloping and has its long 

end anchored at r +  (/>**. Similarly, the forward curve that corresponds to an economy 

with 4> < ( f  is inverted, and its long end is simply interest rate r (see Figure 2.12).

The above Proposition provides a fixed point for the long end of the forward curve 

depending on the starting level of interest rates. Thus, there are two mutually exclusive 

forward-rate curves that could prevail depending on whether the initial interest rates is 

above or below the steady state interest rate level r+<j>*. Accordingly, the interest rate of
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a debt accumulating country that runs current account deficits would converge towards 

the maximum possible rate r + whereas interest rates of a wealth accumulating 

economy would reach the risk-free rate r corresponding to a zero risk of default.

Shocks in perm anent income y and in risk premium </>

The HD setup seems to be adequate for explaining reversals of current account 

patterns when economies experience shocks at the level of permanent income y or on 

other fundamental variables 6  that affect the risk premium.

Note that changes in the income level y affect the debt-to-income ratio and through 

it the risk premium. Let’s recall the schedules ZZ, RR, HH and consider an unexpected 

rise in permanent income y  for an overindebted country that has reached the bad equi

librium As y  increases, the debt-to-income ratio 5 decreases on impact, thereby 

lowering the country’s risk premium. This would allow the debtor country to regain 

access to capital markets. If the shock were small, the agent will continue to behave im

patiently and will overshoot consumption (i.e. Ac > Ay) as the current account would 

become negative (from having been in balance, as b** = 0). As debt accumulates, the 

risk premium would resume its debt risk deteriorating pattern and will be set to con

verge back to </>** with an identical debt-to-income ratio as before the positive income 

shock.

Interestingly, and in contrast with the ED case, if the magnitude of the shock were 

large enough to lower the debt-to-income ratio to a level that corresponds to a risk 

premium below </>*, the saving behavior of the representative agent would change. The 

consumer would start posting positive saving rates and current account surpluses. Thus, 

a big enough positive shock could indeed help a country break the perverse recurrent 

debt cycles. (See Figure 2.13)

Consider an unexpected improvement of the fundamental vulnerabilities of an over-
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Figure 2.13: A positive shock on 4> of sufficient magnitude could lead to an immediate 
decline in risk premium resulting in the country changing its current account pattern 
toward wealth accumulating dynamics.

indebted country, i.e. a declin in 6 (for example an increase in permanent income y ), 

and through it a decline in 4>. As can be seen in Figure 2.14, schedule ZZ would shift 

inwards, leading to an increase of the maximum level of indebtedness 5** and a decline 

of the maximum permissible risk premium (/)**. As (j) declined and the economy became 

a better credit, it regains access to capital markets. If the post-shock risk premium is 

still higher than <j>*, debt would start to accumulate and the risk would increase again. 

Note however that, thanks to the improvement in fundamentals, the maximum level of 

indebtedness 5** has been extended.

Again, in contrast with the ED case, if the fundamental shock were sufficiently 

important to lower the risk premium below </>* threshold, the saving behavior of the 

representative agent would change to a net wealth improving one, as she would start 

posting positive saving rates.

Similar examples can address the cases of economies with positive initial saving 

rates, i.e. less indebted economies with positive current accounts or even net creditor
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Figure 2.14: A permanent income y shock could lead to a decline in risk premium large 
enough that could to switch the country’s current account from deficit to surplus.

countries. Incidentally, note that in the case of a net creditor country with cf> =  0, a 

rise in y or an improvement in fundamentals 0 would simply translate in greater present 

and future consumption, and an improvement of its current account surpluses, but the 

saving rate would remain constant at r — A(0 ) =  r — (7  — a).

2.5 General Equilibrium

2.5.1 World polarization and long term risk-free interest rate

In general equilibrium r  would be endogenous and such that financial markets at all 

times clear. Assuming identical agents across countries and frictionless economies with 

the same economic fundamentals and growth rates normalized to zero, the ED model 

would set r be equal to p\ otherwise all economies would run either current account 

surpluses or deficits, which is naturally impossible. In terms of the EE-RR-ZZ system, 

schedule RR would always overlay schedule EE regardless of the level of debt or risk
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Figure 2.15: Exponential Discounting in General Equilibium

premia prevailing in the different countries.33 For example, in Figure 2.15 , if  r < p 

and the current account were negative in all countries, the worldwide excess demand of 

funds would make r to jump immediately so that financial markets are cleared.

The ED model requires that in general equilibrium r — p at all times. In a fric- 

tionless environment, this implies that in a ED setup in order to explain differences in 

current account patterns of economies with similar growth prospects we would need to 

assume that their representative agents are endowed with different utility functions or 

subjective discount rates.

However, the HD model provides a new channel through which two countries with 

identical growth prospects (although different leverage ratios) could post opposite cur

rent account dynamics, while still preserving the assumptions of homogeneity of agents 

and frictionless economies.

In general equilibrium, the HD model implies a tendency of polarization of seem-

33Note that if  we assumed income to grow at rate g,  the interest rate would be such that the goods 
market clear and that consumption also grows at rate g. In particular, the Euler equation =  r  — p 
implies that r =  p  +  g.
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Figure 2.16: Countries C  and D, with zero net debt, before the balance-sheet shock

ingly similar economies between net creditor or wealth accumulating economies and 

net debtor or wealth depleting ones.

As a matter of example, let’s assume a world integrated by two countries, C  and 

D, which are originally at the steady state SS with zero debt and no risk premium, i.e. 

4>* = 0. As can be seen in Figure 2.16 that recalls the hyperbolic HH-RR-ZZ system, 

this steady state requires that no country runs a current account imbalance, and the 

corresponding world interest rate would be rss = 7  — a.

Now, consider a balance-sheet shock: imagine that a court sentenced country D  to 

be liable for past damages incurred against country C. From that instant, country C  has 

got a claim on country D  equal to the amount of reparations, i.e. bc  =  —bD > 0. While 

risk premium in country C  remains at zero, country D  experiences a deterioration of its 

risk premium, which jumps to (f)D> > 0 (see Figure 2.17).

In this situation, interest rates rss  would no longer clear the markets. As the risk 

premium for country D  increased, the representative agent would tend to run current 

account deficits. But at interest rates rss  there are no incentives for country C  to lend, 

so the excess demand of funds will be cleared by a rise in world interest rates from rSs
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Figure 2.17: Balance-sheet shock: country C has got a claim on country D. The latter’s 
risk premium increases, which makes it run current account deficits.

y - a

Country C Country D

Figure 2.18: Balance-sheet shock: country C has got a claim on country D. The excess 
demand for credit results in an increase in world interst rates.
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Figure 2.19: Wealth improvement versus wealth deterioration.

to r' as can be seen in the Metzler diagrams in Figure 2.18. Correspondingly, the RR 

schedule in Figure 2.17 shifts up. Since 0D/ is to the right of </>*' the current account 

for country D  is negative, while C  would turn its current account into surplus as its risk 

premium remains at ( ff  = 0.34

As time goes by, country D  will continue to exhaust its wealth. Eventually, negative 

current accounts would become narrower as consumption asymptotically tends to zero 

and income is increasingly used for servicing interest payments. So country D  grad

ually becomes of "smaller" importance for international capital markets as its demand 

for credit fades away. On the contrary, economy C  had entered into wealth-improving 

dynamics, and would tend to post increasingly large current account surpluses. There

fore, the excess supply of funds would need to be cleared by declining interest rates as 

can be seen in the Metzler diagrams in Figure 2.19.

34 Recall the fact that expected return o f  a risky position in a foreign country is r. Alternatively, we 
could imagine that market provides full insurance - via credit default swaps - to cover for the default risk.
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Figure 2.20: "World polarization".

The steady state in general equilibrium is one in which country D  has accumulated 

debt up to a point where all income is allocated to interest payments and nothing is left 

for consumption. Correspondingly, demand of funds in international markets is nil. On 

the other hand, any further supply of funds from country C  is closed as interest rates 

should return to rss  =  7  — a: this is what we call "world polarization". (See Figure 

2 .20).

2.5.2 Shocks in permanent income y  and in risk premium <j)

In general equilibrium it is still also possible for a debtor country to switch its cur

rent account patterns. An unexpected improvement in the growth prospects (in our 

case, an increase in permanent income y ) or in the fundamental vulnerabilities of net 

debtor countries (a decline in 9) could signify not only a resumption of access to capi

tal markets but also the opportunity for some of them to make the leap towards wealth 

accumulating dynamics.
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Figure 2.21: A positive shock on permanent income y of over-indebted economies in 
general equilibrium. Some economies would make the transition towards a wealth ac
cumulating patter. Others, like this one, would not.

Start from a steady state of "world polarization". Consider for example a positive 

shock on permanent income benefiting a number of indebted economies. Such a posi

tive shock would imply excess demand of credit that would increase the world interest 

rate (See Figure 2.21). Interestingly, while some indebted countries that see their ac

cess to capital markets renewed would just resume their credit overhang pattern, other 

countries may actually become on impact part of the current account surplus countries 

club.

2.5.3 Conclusion

In this paper we studied how dynamic inconsistency could affect an agent’s con

sumption and saving decisions under systemic risk. By introducing naive, hyperbolic 

discounting agents characterized for being short-term impatient or "present-biased", our 

model has been able to generate a negative relationship between the saving rate (or the
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current account) and the risk premium.

Given the insensitivity of the saving rate to permanent changes in systemic risk in 

the frictionless ED model, the economic theory has enriched the basic setup by taking 

account of the temporary nature of shocks, or by incorporating frictions, asymmetries 

and heterogeneities. Our theoretical contribution intends to complement that literature.

A recurrent critique that has been posed against models of time inconsistency has 

been that, from a macroeconomic point of view, their results are observationally equiva

lent to those pertaining to the exponential discounting setup.35 However, our results are 

surely not equivalent. On the contrary, our model provides with testable implications 

that can be contrasted with empirical evidence and tested against alternative models.

Although the scope of our paper is purely theoretical, we would like to note that 

there is international evidence that suggests that a number of economies that have expe

rienced recurrent cycles of debt accumulations have frequently suffered systemic crises 

and defaults. The question is whether the framework presented in our paper could 

provide any insights beyond the classic intertemporal approach to the current account 

explained under the ED paradigm, which would predict no changes in the saving rate 

unless an economy has been affected by a temporary shocks. In contrast, our model 

is able to explain such changes in the saving rate even when shocks are of permanent 

nature.

One example of positive external shock is the commodities boom that surged as 

a result of China’s exceptional demand for natural resources in the past decade. It 

could be argued that the nature of this shock is permanent rather than temporary, and 

nevertheless several emerging markets have been able to switch their current account 

pattern from persistent deficits to surpluses.36

We have focused, mainly for illustrative purposes, on the case of a representative

35See, for example, Barro (1999).
36 See for example the case o f Brazil, which turned its current account to a surplus in 2003, in tandem 

with a drastic decline o f its risk premium, after a decade a current account deficits.
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agent in a country that faces an exogenous probability of a crisis. We leave for future 

research further applications of our results to other settings and agents, such as individ

uals or corporations.
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2.A Proofs of Propositions

2.A.1 Proof of Proposition 2.1

1. The equation of motion for the anticipated consumption path is dictated by the 

Euler Equation (2.35) which implies that a consumption level r  — t periods ahead 

is expected to take value

tcT =  cter<T- t\ l  +  a ( T - t ) ) - l  ( 2 . 8 8 )

2. Let’s define anticipated wealth r  — t  periods ahead of time t  as the net present 

value of future income plus the net foreign asset position

tW T =  tbT +  - f -  ( 2 . 8 9 )
r +  0

where r  +  0 is the relevant steady state interest rate.

3. Therefore, the anticipated current account

tbT = {r +  4>) tbT +  y -  tcT (2.90)

can be rewritten as

tbT = {r + (f>)tWT -  tCr (2.91)

4. Since y  is constant, wealth changes with net foreign asset position

tWT = tbT (2.92)
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5. We can rewrite (2.91) as

or

tWr =  (r +  <t>) tWr -  tCr

tCr =  -  ( t W T ~  ( r  +  4,) tW T) (2.93)

6. Multiplying both sides of (2.93) by e (r+M r *) and integrating it with respect to 

time from time s to 0 0 , Vs >  t, we obtain

0 0  0 0

J e-(r+*)(T-t) tCrdT = _ J g-(r+*)(T-t) - ( r  + 4>) tWr} dr

or

00

j e - ^ T- » tCrdT = -  e - (-r+^ T- t) tWT]

Um tw T) -  e-i'+M*-*) tw s
T  > 0 0  7

lim e- (r+'*)(T- t) ( tbr + — -  e-(r+*)(*-t) tW .
t— >00 \  r +  (p J

Um e“ (r+^ (T- !) tbT -  e“ (r+'*,)(<,“t) tWs

where limT >oc et- ( r + 4 , ) { r - t ) h _tbT = 0 by the transversality condition. Therefore,

00

/e-(r+*)(r-«) tCrdT =  e-(r+*)(.-t) (H/5 (2.94)

7. Recall equation (2.88), which states anticipated consumption taking place r  — t 

periods away of period t :

*cT =  Cter(T *)(1 +  a ( r  -  £)) - X (2.95)
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and, similarly, for consumption taking place s — t periods away of period t :

tcs = cteri<3~t\  1 +  a (s  -  t))~« (2.96)

with t  >  s.

8 . Using (2.95) and (2.96) we can write tcT in terms of tc8, Vr >  s. Let’s rewrite 

(2.96) as

and introduce it into (2.95) to get

tcT = «C.er(r-*) ( l t a!r ~ !!)  ‘ (2-97)\ 1  +  a (s  — t)J

or
- 2.

A t - s> f 1 + . “ (Tr ,S), J  ‘ (2.98)\  1 +  a (s  — t)J

9. We can insert this last equation into (2.94) and get

OO  'y \

,(r+*)(.-t) t(, ' j e -(r+*)(T- t )  er(T-.) A  +  )  “ ) f a  =  ^

s
(2.99)

or

(2.100)

10. Therefore, we can write the anticipated consumption path as

tcs = h{t,s',4>) tWs (2.101)
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or
t^s

t W s

where

=  A (M ;0 ) (2 .1 0 2 )

- 1

and where a(t, s) = 1+a°8_t) ■

Characterization of function A(£, s ;  4>) :

1. Since a ( t , 5 ) is decreasing in s ,  and the integrand is decreasing in function a(t, s ), 

then =  A(£, s ;  </>) is decreasing in time s .

2. Limits: At present time s = t, we have lims d ( £ ,  s )  =  a  therefore

Um A(t, s; <j>) = A ((f ) )  (2.104)s—>f

UU

where A(<̂ ) =  J e ~ ^ T~3>) (1  +  a (r  — s))~“ dr.
s

Also note that when time horizon s — t  goes to infinity, lim a(t, s) = 0, thuss—>00

lim A(£, s; <j>) =  (j) (2.105)

QED.

2.A.2 Proof of Proposition 2.2

Claim 1 The current account is anticipated to run increasingly large surpluses in the 

future regardless o f  the initial sign o f  the current account.
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1. Similar to the actual current account, the anticipated current account can be writ

ten as

tC A s t^s (r 0) tbs t^s

2. Let’s use the anticipated wealth definition (2.89) and equation (2.101) into the 

anticipated current account equation to obtain

tC A s =  tbs = (r +  0) ^tbs +  ^ ^  — A(t, s; 0)

or

< 2 io 6 )

which increases with time horizon s — t. (Recall from our previous discussion 

around equation (2.103) that expression A(t, s; 0) declines with time horizon s —

t).

3. By differentiating (2.89) with respect to time we find that tb3 = tW a, which allow 

us to write (2.106) as follows:

J _ i =  r  +  <f>-A(t,s;<l>) (2.107)

This clearly differentiates from the ED model, where ratio =  r — p at

all times.

4. Recall from (2.104) that A (t, s ; 0 ) for present time s = t simplifies to A (0). 

If at time s = t we had A (0) < r +  0 and the current account were initially 

in surplus, it is clear from (2.106) that as A(t, s; 0) declines over time current 

account surpluses become increasingly large.

5. Similarly, if initially A (0) > r +  0, the current account would initially be in 

deficit and equal to C A t = ( ( r  +  0 ) — A (0 )) Wu but it is anticipated to turn
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into surplus at some future point in time s such that

A(t, s; </>) = r +  (j).

Note that this point in time s exists because, as has been shown in (2.105), as time

horizon s — t  goes to infinity, then lims >OQ A(t, s; 4>) = </>, which is lower than

r +  <j>.

6 . It also follows that the current account to wealth ratio asymptotically converges 

to risk-free rate r, i.e. lim =  r > 0 .tW. twm

7. Since wealth is positive and increasing if A (<f>) < r +  4> (or turns positive after 

time s if  initial current account were in deficit or if A (</>) >  r +  4>) it must be that 

the anticipated current account runs increasingly large surpluses after time s.

Claim 2 A declining anticipated consumption-to-wealth ratio as specified in (2.101) 

must allow anticipated wealth to grow so that at certain future point in time s the an

ticipated rate o f  wealth accumulation outpaces the rate o f  decline o f  the consumption- 

to-wealth ratio, thereby allowing anticipated consumption to increase.

1. Recalling the anticipated Euler equation (2.35), we know that, under the assump

tion that 7  > r, declining anticipated consumption would bottom at future time 

s, such that
7 r,

1 +  a(s — t)

after which time consumption is anticipated to increase.

2. We aim to prove that at such a future point in time s the wealth positive growth 

rate outpaces the rate of declining consumption-to-wealth ratio. We can state
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equation (2 .1 0 1 ) in terms of growth rates as

t^S _

V  ~  W s  T V J V s )

tWa + A
t W ,  A

where >  0  and the rate of chance of the consumption-to-wealth ratio is

0 . So anticipated consumption would turn positive when > —A.

3. Let’s first find A and rewrite Aft, s; 4>) as

/ oo '

Aft, s’, 4>) =  I +  efts — t))° J e~^T~t\ l  +  cftr — t))~*dr

- l

which we can rewrite for convenience as

where F{t, s) =  (e^s *ftl +  efts — £))“ )
/  oo >

Aft, s; (j>) =  I J e“^ r_^ ( l  +  cftr — t))~*dr

4. Thus, the share of anticipated consumption in wealth -L̂ r  = A grows at rate

A =  F(t, s) Aft, 5 ; (j>) 
A F(t ,s )  A ft, s;</>)

where

^ - s) =  _ f t +  7
F(t ,s )  \  1 +  efts — £)
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and

oo
d

A(t, s ; 0)

J e  *)(1 +  a ( r  — £)) “dr
s
oo

J  e- (̂T_t)(i +  a(r — t))~*dr
s

e - < p ( s - t _|_ a ^5 _  £ ) ) “ *

OO
J e - ^ ( r - t ) ( i  _(_ _  t))~idr

- 1

(1 +  a(s — t)) “ • y j e Q!(r  — ^  “^r

=  —e- ^ s-^ (l +  a(s — t))_“ • A(t, s; 4>)

= A

5. Therefore,

( t c . / > a) A
( * + 1  + a ( s - + A

(■tCsltWs) A V l +  Q ;(s-t)

which, incidentally, is negative, as per the above discussion about (2.103).

6. Since consumption share on wealth is declining and wealth itself is improving, 

consumption growth will be positive if and only if +  A > 0

7. Recalling (2.107), we can write

tcs tWs A ~ f  7 \  . 7

A  “  \  T T a ( r ^ ) J
=  * ■ - , —

1 +  a(s — t)

which is independent of <j> and defines the time s beyond which anticipated con

sumption growth is positive. This is perfectly consistent with Euler Equation 

(2.35).
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Claim 3 I f  initial current account is negative, it is anticipated to become positive at 

some future time s before time s at which anticipated consumption growth rate turns 

from negative to positive.

For consumption to increase requires that wealth increases at a faster rate than the 

rate of decline of the share of consumption in wealth. A necessary condition is that the 

current account is positive (so that rate of growth rate of wealth is also positive).We 

must show that the minimum time s at which the current account becomes positive 

must take place before time s at which consumption growth rate turns from negative to 

positive.

1. By definition, time s is such that A(t, s;(j>) = r  +  (j). From (2.107) it follows that 

s corresponds to fjjjb- =  0 .

2. From (2.101) we can verify that for anticipated consumption tcs =  A(t, s; <f>) tWs 

to we positive it must be that > — j  > 0. From (2.107) we notice that this 

requires A(t, s; <j>) < (r +  <j>). Since A(£, s; 4>) is decreasing with time horizon 

s — t, it must be the case that the time s at which anticipated consumption growth 

turns from negative to positive, (i.e. when =  0 ) takes place some time after 

s. QED.

2.A.3 Proof of Proposition 2.4

1. Steady state (ff is stable iff
d(f)
d(j)

< 0

or unstable if otherwise, where $ = cj>{8(t), 9) is given by equation (2.57), were

m  =
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2. Differentiating </>(•) with respect to time, we get

where <f>s > 0 and y > 0 is constant. Therefore,

dcf) 1 db(t)
d<j) 6 y dcj)

we note that the sign of is the opposite of the sign of db(t)

3. Recall the equation of motion for b(t) given by (2.6):

b{t) = (r + <p) b(t) + y -  c(t)

4. Taking derivatives with respect to 0, we obtain

d<j> d(j)
(2.108)

5. Therefore, we need to find

dcj)
~d4

1 db{t) 
= -<P8 ~y d<j)

where
db(t)

d(j)
= b, M t )

d<t>

where, at the steady state, b* < 0 and consumption is given by (2.84) which we 

recall:

c* = A (cj)*)W\
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6. Deriving c(t) with respect to any constant <j> obtains

^  =  A  [A {4>) W(t ,  <f)]

d
= A' (<f>) W(t,  0) +  A (0) —  [W(t, <f>)\

= A'(*)(■b(t) + V \  A ((/>) y
r +  <j> J r + <j)r + (j)

where A'(</>) > 1 for any constant </> as was already proved by the facts that (i) 

A '(0) >  1, (ii) A'(</>) >  0 and (iii) A"(</>) <  0 and (iv) lim A'(</>) =  1 or
4>— »oo

lim [A (<(>) -</>] = 7 .
</> KX>

7. Thus, we can write

dc(t)
d(j>

= A' (^*) 6* +  A' (<£*) — ^
r  +  0  r-\ -(j )r  + (f)

and since at the steady state A ((f)*) =  r  +  </>*,

dc(i)
d4>

=  A '(< n 6 * +  I A '(0 * ) -1  | ^
<*>* V'— ' +(^

> 0

which is unambiguously positive.

8 . Therefore, 

unstable.

db{t)
dcfr < 0  and * >  0 , which proves that the steady state is

9. Additionally, the sign of the steady state cannot reverse in the space <j> (s) G 

[0 , (j)**) because in that space there in only one possible steady state, i.e. {</>**, b**, c**}. 

QED.
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2.B Derivation of First Order Conditions and Transver-

with Hyperbolic Discounting

This development generalizes the first-order-conditions and transversality condition 

for a dynamic optimization problem where the discount factor is not necessarily expo

nential, as is typically the case in the current-value Hamiltonian literature. In particular, 

we set up the maximization conditions for the case of hyperbolic discounting.

2.B.1 The general finite-horizon case

The general problem is to

sality Condition for General Dynamic Optimization

maximize V  =  J0T F(t, b, c)dt (2.109)

s.t. c(t) e C  i t  e  [0, T] 

b = f ( t ,b ,c )  i t  € [0, T]

(2.110)

(2.111)

br >  0 Non-Ponzi-Game condition (2.112)

T  given (2.113)

6 0 given (2.114)

Pontryagin9 Maximum Principle conditions:

Define the Hamiltonian as

H(t,  b, c, fj) = F ( t , b, c) +  v( t ) f ( t ,  b, c) (2.115)
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Assuming that the Hamiltonian is differentiable with respect to c, G [0, T], and that 

there is an interior solution, Pontryagin’ Maximum Principle dictates that the maximum 

value of the functional (2.109) subject to (2.110) - (2.114) requires that the following 

first order conditions and transversality condition hold:

3B_
dc

dH

= 0

db

dH_
dfi

=

=  bt

(2.116)

(2.117)

(2.118)

fi(T)br = 0  (2.119)

with complementary slackness : fi(T) > 0 ; br > 0

Proof of the Maximum Principle conditions

If the equation of motion b = f ( t ,  b, c) is strictly adhered to for the entire time period 

[0,T], we can incorporate it into the objective functional V  and create a Lagrangian. 

Maximization of objective functional (2.109) subject to (2.110) - (2.114) is therefore 

equivalent to maximizing a properly defined Lagrangian in the following manner:

1. Recalling the Kuhn-Tucker theorem, we can construct a Lagrangian function of 

the form

L  =  f  F ( t , 6 , c)dt +  f  fi(t) f ( t , b,c) — b 
Jo Jo L

dt +  vbr (2 .120)

The second term is just the integration of constraint (2.111) that must hold for

Vf € [0, T], i.e.

f  K*)  /(*» b,c) — b 
Jo 1 J

dt = 0
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where fi(t) is the shadow price of the constraint Vt E [0, T\.

The third term comes from the inequality (Non-Ponzi-Game) condition (2.112), 

which implies

i/br = 0 (2.121)

with complementary slackness i.e. v > 0 and bT > 0, where v  is the Langrange 

multiplier associated with constraint (2 .1 1 2 ).

2. We can rewrite (2.120) as

L = J  | F(t,b,c) + fi(t) f ( t ,  6 , c) -  bj |  dt +  i/br

3. Integration by parts of expression J0T (i(t)bdt allows us to write the above expres

sion as

L = f  [F(t,b,c) + n( t) f ( t ,b ,c)  + fib(t)\dt +iJ,(0)bo -  fi(T)br + vbT 
Jo

or,

L  =  f  [H(t,b,c,fi) +  pb(t)\dt — fi{T)br +  /x(0)60 +  vbT (2 .1 2 2 )
Jo

where H(-) is defined as the Hamiltonian function of the form

H(t,  b, c, fi) =  F(t,  b, c) +  v( t ) f ( t ,  b, c) (2.123)

where fi(t) is the costate variable37.

Notice that the Lagrangian (2.122) depends on the paths of 6 , c and fi.

37Economic interpretation: /xt is the shadow price o f the budget constraint or the marginal utility o f  
wealth Wt  valued at time 0. It is the extra utility in present value units o f a marginal increment o f the 
stock o f financial assets b at time t. Alternatively, /zt is the extra utility (valued at time 0) o f releasing the 
IBC by one marginal unit.
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4. We can generate paths for c and b to be compared with neighboring optimal paths. 

To do this we take known paths c*(t) and b*(t) and adopt perturbing "arbitrary" 

curves p(t) and q(t) so that

c(t, e) = c*(t) +  ep(t)

b(t, e) = b*(t) +  eq(t)

Similarly, if T  and br were free variables, we can write

T(e) = T *  + eAT

brit)  — bj< +  eAbr

5. We cannot choose p  to be a function of e or an arbitrary curve. Notice from 

definition (2.123) that ^  = f{ t ,  b, c). Therefore, so long the equation of motion 

of the state variable b = f ( t ,  b, c) is strictly adhered to, as per condition (2 .1 1 0 ), 

the optimal path p(t) must be such that

d H  ;
— — bt (2.124)op

6 . The Lagrangian (2.122) can be written in terms of the artificially generated paths 

c(t, e) and b(t, e) and definitions for T(e) and 6r(e) :

r n  6)
L = /  [H(t,b(t ,e),c(t ,e),p) +  p[b(t,e)]]dt (2.125)

Jo
+p(0)b0 -  p(T(e))bT(e) +  vbT(e)

Notice that L  has been transformed into a function of e only.

7. We can take first order conditions and maximize (2.125) with respect to e, i.e.
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setting

f  =  0
de

8 . Using Leibniz rule, we find

0 =  [ f H 4) +  l b ( 4) +  w ( 0 ]  dt + [ #  (4> •) +  AH4)](= t  f f

-  -  A CO & rf + (2.126)

9. Noting that ^  =  AT and ^  =  A 6T and that [A&(^)]t=r ^  =  fi(T)bTAT,  the 

above equation simplifies to

0  =
dL
de fJo

OH
db +  A

/ x d H
q(t) + -fcPtf) dt

fix
+ [H]t=TA T  + [ v - n ( T ) ] A b r

H = T

02

(2.127)
O3

10. Since we chose arbitrary perturbing curves and —  = 0 must hold, it must be that 

the term Qivanishes for any curves p(t) and q(t). This requires that

8H_
dc

=  0 (2.128)

and
d H
db =  -A* (2.129)

Equation (2.128), invoked in place of "max H ", assumes that the Hamiltonian is
C

differentiable with respect to c and that there is an interior solution. Equation 

(2.129) gives the equation of motion for the costate variable.

11. As for the second component, =  0 is true if T  is by assumption fixed, i.e. 

AT =  0

147



12. In order to make Q3 =  0, it must be the case that

v =  n(T) (2.130)

that is, the costate variable fi(T) at the terminal date must equal the static La

grange multiplier v associated with the non-negativity constraint on br at the 

terminal date.

13. From (2.130) we can rewrite the boundary complementary slackness condition 

(2 .1 2 1 ) as

This is the the Transversality Condition.

Pontryagin’ Maximum Principle therefore dictates that the maximum value of the 

functional (2.109) subject to (2.110) - (2.114) require that first order conditions (2.124), 

(2.128) and (2.129), and transversality condition (2.131) hold.

2.B.2 The general infinite-horizon case

In an infinite-horizon framework, the general problem is to

fi(T)br  = 0 (2.131)

maximize V  = / 0°° F(t,  b, c)dt (2.132)

s.t. c{t) G C Vt G [0,0 0 ) (2.133)

b = f ( t , 6 , c) W G [0,0 0 ) (2.134)

Non-Ponzi-Game condition (2.135)

b0 given (2.136)
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Pon try agin’ Maximum Principle conditions:

Define the Hamiltonian as

H(t, 6 , c, fi) = F{t , 6 , c) +  b, c) (2.137)

Assuming that the Hamiltonian is differentiable with respect to c, Vt 6  [0, oo), and that 

there is an interior solution, Pontryagin’ Maximum Principle dictates that the maximum 

value of the functional (2.132) subject to (2.133) - (2.136) requires that the following 

first order conditions and transversality condition hold:

f l T T

* -  =  0 (2.138)
oc

g  — A (2.139)

= k  (2.140)
Of!

lim ii(T)bT = 0 (2.141)
T->oo

with complementary slackness : lim ii(T) > 0; lim br > 0
T —oo T->oo

Proof of the Maximum Principle conditions for the infinite-horizon case

1. If the equation of motion b = f ( t ,b ,c )  is strictly adhered to for the entire period 

of time [0, oo), we can incorporate it into the objective functional V  and create 

a Lagrangian. Maximization of objective functional (2.132) subject to (2.133) - 

(2.136) is therefore equivalent to maximizing a properly defined Lagrangian.

2. Recalling the Kuhn-Tucker theorem, we can construct a Lagrangian function of
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the form

dt+v lim frrexp [ — / i(t)dt 
T^°° \  Jo

poo poo r
L =  I  F(t,b,c)dt+ ii(t) f ( t ,b ,c)  — b 

Jo Jo  L
(2.142)

The second term is just the integration of constraint (2.134) that must hold for

\/t e  [0 , oo), i.e.
poo

/  mW f ( t ,  b,c) — b 
Jo L J

dt = 0

where is the shadow price of the constraint Vt G [0 , oo).

The third term comes from the inequality (Non-Ponzi-Game) condition (2.135), 

which implies

v lim br exp ( —
T —too

f  i(t)dt 
Jo

=  0 (2.143)

with complementary slackness i.e. v > 0  and ^lim br exp i(t)dtj >  0 ,

where v is the Langrange multiplier associated with constraint (2.135).

3. When the heuristic proof for the finite-horizon case is adapted to the infinite- 

horizon framework with T  —> oo, the first order condition (2.127) of the La

grangian becomes

0 =  —

dL
de - a

d H
db +  A

/ x dH  
Q(t) +  - f c P W dt

f2i

+  lim [H]t=T A T  — lim
T —*oo T —too

-V '“
02

i/exp
p T  >

—  I  i(t)dt
, Jo  >

~ K T )

(2.144)

A bn
"'v'-
f̂ 3

4. As for the finite-horizon case, the Lagrangian maximizing condition requires that 

each of components (fii, 0 2, fi3) vanishes individually.

5. Vanishing of term fii give rise to two first order conditions. Specifically, the max

imization of the Hamiltonian with respect to control variable c and the equation
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of motion for the costate variable:

(2.145)

and
dH (2.146)

6 . It is the vanishing of and O3 that give rise to the Transversality Conditions.

7. The second term f)2, notice that AT is non-zero in an infinite-horizon problem. 

To make fl2 vanish we must impose the first infinite-horizon transversality con-

Economic interpretation: If H  function sums up the overall (current plus future) 

utility prospect associated with each admissible value of control variable c, so 

long as H  remains positive, there is yet some utility to be made by the appropriate 

choice of control c. This conditions is not in dispute.

8 . In order to make Q3 =  0, the following must hold

that is, when T  —> oo the costate variable fi(T) must equal the discounted value 

of the Lagrange multiplier v associated with the non-negativity constraint of the 

discounted value of bT (Non-Ponzi-Game condition).

9. From equation (2.147) we can rewrite the boundary complementary slackness 

condition (2 .1 2 1 ) simply as

dition

lim \ H ] , t  = 0
T —x x  t~1

(2.147)

lim a(T)bT =  0
T —yoo

(2.148)
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This is the Transversality Condition.

2.B.3 Generalized current value Hamiltonian

Assume that functional (2.132) above can be written in such form that the integrand 

F ( t , 6 , c) comprises the present utility function U(t, b, c) multiplied by discount factor

x( t ) ,  i-e-
F(t,b,c) = U(t, b,c)x{t)

The dynamic problem becomes:

maximize V  = / 0°° U(t,b,c)x{t)dt  (2.149)

s.t. c(t) € C  W G [0 , oo) (2.150)

b = f ( t ,b ,c)  Vt G [0 , oo) (2.151)

l imbT e x p ^ — JQT i(t)dtj  > 0  Non-Ponzi-Game condition (2.152)

bo given (2.153)

The corresponding present value Hamiltonian can be written as

H(t,b ,c ,p)  = U(t,b,c)x(t)  + p( t) f( t ,b ,c)  (2.154)

Definition 4 Define now the Current Value Hamiltonian as

H  = H Xt l
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Therefore, we can write

H ( t , b, c, /x) =  U(t, 6 , c) +  A b, c) (2.155)

where

A t = Vtx ; 1 (2.156)

is the shadow price valued at time t.

Maximum Principle conditions for a current value Hamiltonian

The Maximum Principle conditions applied to the current value Hamiltonian, be

come

Hc = 0 (2.157)

K  = -  (Xt + X tX^X,)  (2.158)

HXt =  k  (2.159)

^im At Xt ^t  — 0  (2.160)

with complementary slackness : lim At  >  0 ; lim brXr  — 0
T  —»oo T —>00

Let’s find each of the three first order conditions and the transversality condition 

above, making use of definition (2.155):

Maximization of H  with respect to c : Recalling (2.155) and FOC (2.138) we can 

restate Hc = ^  =  0 in terms of H  as follows:

Hc = 0

d
s W  - 0

153



Since Xt *s constant for any given t, it follows that

x f i c  =  0

Hc = 0 (2.161)

Equation of motion for the costate variable A : Recalling (2.155), FOC (2.139) and

(2.156), we can restate Hb =  ^  =  — (i in terms of H , \ t  as follows:

Hb = - j i

x 4 b ( A ) =

K x t  =  - | ( W

**■ =  X(_1 { - J t  (Atx‘})

=  - X 7 ' j t (>HXt)

- i  A  , 9
~  ~ X t  l ^ t X t  +  A f — X t

= - ( ^  + w ( | x t) )

<J=4>

Hit = -  (A, + XtxT'Xt) (2.162)

Equation of motion for the state-variable b : Recalling (2.155), FOC (2.140) and

(2.156), we can restate ^  =  bt in terms of H  and Xt as follows:
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H ,t = bt

* |; ( * )  - k

dHdXt  .
X t  O > rjd \ t dn t 

XtH \ tX t 1 =

#At = k  (2.163)

Transversality condition: Recall FOC (2.141)

lim /ir 6r  =  0
T-voo

We can restate the above equation in terms of \ t  and simply by inserting definition

(2.156) in place of jj,t . The Transversality Condition therefore becomes

^lim At Xt ^t — 0 (2.164)

with complementary slackness : lim XT > 0; lim bT X r  ^ 0
T —>oo T —>oo

2.B.4 Case of Hyperbolic Discounting with no risk premium 

Current value Hamiltonian

Recall the current value Hamiltonian (2.155)

H(t, b, c, p) =  U(t, 6 , c) +  A 6 , c) (2.165)
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Define the particular case of a discount factor taking the hyperbolic form

X t =  ( !  +  a t )  1,0t (2.166)

with a , 7  > 0

Maximum Principle conditions

For the particular case of hyperbolic discounting, we realize that the FOCs and 

Transversality Condition are the same as those stated for the general case in equations

(2.157) - (2.160), except that now equation (2.159) must consider the hyperbolic dis

count factor as defined by equation (2.166). In particular, the Maximum Principle con

ditions will be

Hc = 0 (2.167)

(2.168)

(2.169)

lim At Xt ^t — 0 (2.170)

with complementary slackness : lim A^ >  0 ; lim ^  0

Derivation of (2.168) We can use the specification of the hyperbolic discount factor 

(2.166) to evaluate FOC (2.162):



**<* = T X “ A  -  A* <2-171)1 +  a t

Twhere the term  falls with t, as opposed to what would have been the case if the
1 “I- Qtt

discount function were exponential.
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2.C Derivations

2.C.1 Derivatives of function II

Recall function II (i, x , (0(s)}t):

/ oo ’

n (t,  x , {*(*)},) =  I J  exp [ -  (:r +  </>(£, r)) (r -  t)] dr

- l

where <f)(t, r) = Jtr 0(s)ds is the spot risk premium for period (t, r]. The partial deriv

atives of II with respect to x  is

flll(-)   i_ _ a
d x  n ( - ) 2 d x

oo
J  exp [— (x +  <j>(t, t ) )  ( t  -  i)] d r

Therefore,

an (.)  a
S lg n ^ r  =  - S l g n f e

oo
J  exp [ -  (x +  , t ) )  ( t  -  t)] dr

Using the Leibniz’s rule to derive the expression in the RHS, we get

d_
dx

oo
J  exp [ -  (x  +  0 (i, r ))  ( r  -  £)] dr

oo

= j  -  9[Xd x t)] eXP [”  (X +  t ) )  ( t
t oo

= - J  ( j  -  t ) exp [ -  ( x  +  </>(£, r))  ( r  -

Therefore, >  0. QED.

2.C.2 Derivation of (2.20) -  (2.21)

— £)] dr 

£)] d r < 0

Recall that the Maximum Principle conditions for a current value Hamiltonian for 

any modified discount factor x s correspond to equations (2.157) - (2.160) in the Appen-
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dix. Applied to an ED problem enjoying utility function U cn  ( c s , c ^ )  and intertemporal 

discount F ( t , s) — exp [—p(s — t)], the Maximum Principle conditions are the follow

ing

1. Hcn = 0,

2. HCm = 0 ,

The ratio of (b) to (a) is

Ucn (c ,c ^ )  =  —A, (a)
e*

Uc(cs,c?) = As (b)

B- ^  ( o
o

3. Hba = -  +  A ,

From (2. 13)  we note that the LHS is given by Hbs = As ( r + < ^ ( s ) ) .  As for the RHS, 

recall that the ED modified discount factor is x s =  e x p  [—p(s — t) —  f *  k ( t ) cLt ] . 

So, x 8 becomes

- j < T ) d r \
s ds \  J

= i  ( ~ fl(s ~ t} ~  I K(T)dr)  *•

=  ( - P - « ( s) ) xs

Therefore, this FOC is

As(r +  <j)(s)) =  —Xs +  As (p +  / t ( s ) )

or, written differently,

=  P +  ^ ( s ) “  (r  +  <KS)) (d)A,
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4. HXs = ba,

which restates the current account (2 .6 ).

5. Transversality Condition

lim As x sbs =  0
s—>oo

2.C.3 Derivation of (2.24)

1. Rewrite (2.23) as

| ( l n c s) =  r - p

which can be integrated over time,

d_

d s
(lnc(s))

r
=  I  ( r - p ) d s  

t J t

or,

or,

In c(t) — lnc(t) =  (r — p )  ( r  — t )

In c(t) =  In c ( t )  +  (r — p )  (r — i)

Taking exponential of both sides of the last equation, we obtain

c(r) =  c ( t )  exp [(r - p ) { r -  t)]

Vr > t .
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2. Insert this last expression in the LHS of the resource constraint (2.7), and obtain

oo

c ( t )  J  exp [(r — p )  (r — t ) ]  exp r  (r — t )  — 4>(s )ds

t
oo

b ( t )  +  y  J  exp —r (r — t )  — J  cf>(s)ds

d r

or,

oo oo
( t )  J  exp — p ( r  — t )  — ( j ) ( s )ds  d r  =  b ( t ) + y  J  exp —r (r — t )  — (f>{s)ds d r

where <f)(s) = <i>(b(s), 0). QED.

2.C.4 Derivation of (2.33)

Notation: For convenience, throughout this derivation we dispense with the antici

pation operator.

1. Following equation (2.158) in the Appendix corresponding to the general case of 

current value Hamiltonian, the FOC for with respect to tb(s) is Hbs =  — ^Aa -I- AsX^Xs)

2. Recall that the augmented discount factor for the HD case is

X a =  exp [ -  Jts «(r)dr] F ( t , s), where F{t , s) = (1 +  q; ( s  -  t))~1,a .

3. First, find x s. Given definition (2.5), it can be derived as

( e - S t‘ K(T)dr'j F ^s  ^ + e - f : < r ) d r d _

( _ It e~S' K(T)dTlr (.s>t) + e~f‘ K{T)iT£  ((1 + a (s  -  *)P/a)

d_

d s
d_

d s
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= -K(s)e-^K̂ dTF(s,t) + e - ^ K(T)dr _2Q,(1 + a(s *)) W \
a  1 +  a (s  — t) J

=  - K(s )e- f t'«r)iTr { s t ) + e -  S; « t)4t ^ _ _ L _ F ( s t ) j

-  “ (“w + r p ^ i j )

4. Therefore, the FOC can be rewritten as:

Hbs = -  (A* +  XsXs

=  -  I As -  XsXs xXa ( «(s) +  7
1 +  a (s  — t)

Xs — As ( k ( s )  +  7
1 +  a(s — t)

-  [ K { s ) + l  +  J ( s - t ) ] X a ~ Xs

5. Note from (2.13) that the LHS of the FOC is given by Hba =  As(r +  </>(s)).

6 . Therefore, the FOC can be solved as follows:

A»(r +  <j>{s)) = ( k(s ) + —  ) As -  A,

or, reintroducing the use of the anticipation operator,

M s ) 7

tA(s) 1 +  a (s  — t)

QED.

+  tK(s) -  (r +  0 (s))
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2.C.5 Derivation of (2.79):

1. Integrate (2.77) over time

^ ( l n  tc(s)) ; - j t k
7 ds

+  o:(s — t)

[  ( t ^ o W  <2172>
2. Change variables of the last term in the RHS of the above equation such that

v = s — t, ds = dv, when s = t , v  = 0 and when s = r, v = r  — t. Then, solve 

this term as

/ 7  7 T *  =  r  ( - J L . )
J t Vi + tt(s-^)y y0 Vi + W

=  [— lnfl +  av]
la

dv

= — ln[l +  a(r  — t)] 
a

3. Therefore, equation (2.172) can be written as

In* c ( t ) -  lnt c(t) = ( r(r  -  t) -  ^  ln[l +  a(r  -  £)])

or,
7lnf c ( t ) =  lnt c(t) +  r ( r  — t )  ln[l +  a( r  — t)]
a

7lnt c(r) =  lnt c(t) +  r ( r  — £ ) ln[l +  a( r  — t)]
a

4. Taking exponential of both sides of the equation, we get (2.79):

tc(r) = tc(t) exp[r(r -  t)](l +  a(r  -  t)) (2.173)

QED.
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2.C.6 Characterization of function A

Partial derivatives of (2.41)

Recall A from (2.41)

/ oo

A ((f)) =  I J e ~ ^ T~t\ l  +  a(r  — t)) - “ dr

- l

which can be rewritten by changing variables: v = r  — t, dv = dz; when r  =  t, v = t 

and when r  = oo, v =  oo. Therefore,

A
■ = /

dv
o ( v a + l ) ;

The partial derivatives of A 1 are:

1 .
OA- l

d(f)

oo

=  — J ve_<̂ ( l  +  av)~*dv  < 0

2 .

dA - l

da
A .
da

fJorJo

fJo

J. (ya +  1 );
dv

7
q 2  (va +  l ) a 7  a (va + 1 ) q 7 + 1

dv

,-W> 7
a 2 (va +  1 ) “ 7 

1 7
a2 (va +  1 ) “ 7

— In (va +  1 ) — 7 va

a 2 (va +  l)" 7 (VQ; +  i)

In (va +  1 ) —
va

(va +  1)
dv > 0

which is positive since In (va +  i)  > (ua+l) ‘
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3.

dA - l d_
d'y (va +  1 );

dv

. - ^ ln (u a  +  l) 

(va +  1 )'
dv < 0

Therefore, the derivatives of A with respect to the three parameters will be just the 

opposite sign of the derivatives with respect to A-1 . QED.

Limiting properties of

Proof of lim^, >o [A (<f>) — 4>] = j  — a

1. The limit can be written as

lim [A (0) -  0]
<p Mj

lim<j>—>o |A(0)J 
1

lim [S<P—>o

lim^ — >0 [A(0)]
(2.174)

2. In order to solve the denominator, recall the definition A((f)) from (2.41) and solve 

for the limit

lim [A(0)](p—>u
lim

(p—>o j e  ^ ( l  +  o;(r — t)) °dr
t

J  (1  +  a(r  — t))~«dr

3. The last integral can be easily solved by changing variables: 2: =  1 + a(r  — t),
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dr = -dz:  when t  = t, z = 1 and when r  =  oo, z =  oo. Therefore,a 5 " 7 ?

lim [A(^)]<p ►U

oo

/ 1 ,—z adz 
a

1 | V - i  

1

a  1 - 2L a -»

7  — a
> 0

4. Using this result in equation (2.174) result in

lim [A (<j>) -  4>](p—>u
1

lim^ — >0 [A(0)]
1
i

7 —Q

7  — a .

QED.

Proof of lim^—̂oo [A (0) -  <j>] = 7 .

1. Recall A(0) from (2.41) and write

lim [A (</>) -</>]= lim
<p— >oo <p— >00

- 1

J e  + a(r  — t)) “ d r j — (j)

2. Change variables such that v =  ^ (1 +  a ( r  — t ) ) , so d r =  ^dv; if r  =  £, then 

v = - .  Therefore,rv  “

lim [A (<£) -  0] =  lim
!>---->00 <p---->00

00 _7  ^

° l dv

-1

0
j

166



=  lim(j>— >00

=  lim
4>— >00

a « e  a( f )  a  —  f  e Vv  a t
4>

<f> 1J  e - v - i dv

= lim
4>— >0

00

where lim^ >00 J  e~vv~«dv  =  0 .

3. Use L’Hopital: if 

where

— >00 f{<j>) 
lim,*,— ,00 g(<f>)

m
9(<t>)= [§] , then lim^—„

oo
/  ((f)) = a*e~°<j)~“ — J  e~vv~*dv

= lim^—,00

and
00

9 (<t>) = r ' f  e~vv~ dv

4. The first derivatives are

nr / / \  3 L - 1 - &  , - 2  2 . - 1  - ±  , - 2 . - 1  , 2 - - 1  - ±  , _ 2j {(p) =  —a a e a(p a — ryaa e a<p a +  e <*<p a

2 _ i  i - 2 - l= —7 a « e a<p a

9' w  = ■(f) 2J e Vv “dv — a* 1e “ 1

167

ZM"
9'(4>) ’

o 
10



5. So,

lim
(p—►oo

[ /  ( 0 1 = lim r / ' ( 0 i
.9 ( 4) . <p----->oo . 9 ' ( 4 ) .

lim
<P >00

1 _ 1  - & I - 3 - - 1
— 7  e <*(p a

—(f) 2J e ~ vv *dv — a* 1e tq!>~
$

lim
<p ►oo

1 - 1  - ± , 1 - 3 .  'yfta e “ 0  “

/ _ i  , . i_ i  -±  / i - ie ocdv +  a« e Q

lim
<p— ►oo

7
OO

/ e~vv a dv

i _ iLQa e Q! O a + 1

where we note that 1 — J  <  0  by assumption.

6 . The limit of the term in the denominator is lim,<p >oo

00f  - v  - 2l e v a dv

l - i  , i - l  a<n e a  (p a
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7. Again, use L’Hopital for this last term alone, so that

lim

oo

/e Vv *dv

i - i0.0, a <p “

lim
<p— >oo

2 . - 1  - &  , - 1  — da xe <x(p “
1 — 2  — ±  l l - l  'Y \  2 — 1 _

—a<* e “0 Q — v — a/ a ° 'f

lim
(j) >oo

8 . Therefore,

limf> >00
7 W =  lim \ r m
.3 WO. (j)----->oo .9’ (4) .

=  lim
<f>— >oo

7

f  iI e~vv <* dv

= lim
(f)— >oo

=  7-

2 _ i  - ±  , i _2- ot ot g a (p ot

7

+ 1

0 + 1

QED.

Proof of lim^ — >0 A(0) =  ^

oo

A(0 ) =  j {l + * {r - t ) ) - U r

Proof. The integral can be easily solved by changing variables: z =  1 +  a(r  — t),
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dr = \dz \  when t  = t, z = 1 and when t  = oo, z = oo. Therefore,

oo

/:=  I —z <*dz 
a

1

1

a

■ i-OL -| oo Z a
I - *a  J

> 0
7 — a

2.C.7 Derivation of the wealth equation of motion from the current 

account equation

Recall the current account equation:

b(t) = r (t ) b (t) +  y (t) -  c (t) (2.175)

So the question is whether we are able to write

W ( t )  = r (t) W ( t ) - c  (t) (2.176)

where r (t ) W  (t) is the wealth annuity at time t.

We define wealth as the net asset position plus the present value of the net income 

stream, or
T

W ( t )  = b (t) + J e - f t r^ dvy (s ) ds (2 . 1 77)
t

so, using Leibniz rule

T

W ( t ) =  b(t) + J ^ \ e~ ^ r(v)dvy ( s ) d s - e - £ r{v)dvy( t )
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i

=  b{t) + r( t )  j e ~ f ' rl-v)dvy (s) ds — y (t)

inserting 2.175 we get

i
W ( t )  = {r  (t) b(t) + y  (t ) — c(t)} + r( t )  j ( a )  d s - y  (t)

t
T

= r ( t )b ( t )  + r ( t )  J e - 5 t rW ' ’y ( s ) d s - c ( t )
t

and recalling 2.177:

W{ t)  = r ( t ) W ( t ) - c ( t )

QED.

Remark 3 Note that as long as (i) the agent has access to capital markets at all times 

and (ii) we define wealth as the sum ofcurrent net asset positions plus the NPV ofthe net 

income stream, discounted at the variable rate r (s) that will be faced by that particular 

agent in the future, the wealth equation can be stated as the difference o f the return on 

wealth, called the annuity value o f  wealth, and the instantaneous consumption rate.

2.C.8 The income effect and wealth effect of a change in 4>

Recall the solution for current consumption (2.46) and derive it with respect to (j) to 

obtain

c' =  C W  + C W '

where W  = b +  Specifically,

= a  {<j>)w -  c  {<t>) yd(j) (r + <j>y
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or

= C'(</>)W + (S (<f>) -  r  + <p) - - r ^ s
d(j) (r +  4>)‘

where S  (</>) =  r +  </> -  C  (</>) and 5" (0) =  1 — C' (</)). So we can write

d cW  = C  ((j>)W + (S  (4>) -  r + <!>) y
d(t> (r +  4>y

< W l = c ' {<t>) w  + s(<f,)
dtj> (r + ^ y r  + tf)

~TT~ = C' (<j>)W + S  (<t>) —W  + b
dtp (r +  <j>)

^  = C ' (<p) W-W + b + S(<p)— ^ - - i  (2.178)
d(p (r +  <p)

'  ^ «\_______
IE W E

The above equation can be written as

^  =  - 5 '  (0 ) W  +  6 +  S  (<f>) —  
d<p (r +  4>)

which is equivalent to (2.50).

Note that:

a . v W » - A W  >
dtp (r +  4>)

The first term in (2.178) is the IE, and the 2nd, 3rd and 4th terms determine the WE:

• ED

-  WE is less negative if S  is higher (and positive)

-  IE: C' = 1, so the IE is always positive and equal to W

• HD

-  WE is less negative for higher values of S  (i.e. for low values of 4>)
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-  IE is more positive if C' ((f)) = A' (<j>) is higher or equivalently if S' (</>) is 

more negative (i.e. for low values of </>).

2.C.9 Saving rate in exponential discounting with CRRA utility

The properties regarding the linear sensitivity of the consumption rate and the in

sensitivity of the saving rate to changes in (j) is not exclusive to the log utility case. In 

particular, they also hold in the more general CRRA utility where

u(c(s))  = J c{s ) â  (2.179)

The consumption rate is

C  =  ap +  (1  — a) r  +  <j>, 

which increases linearly in (j). Also, the saving rate is

S  = a { r - p ) ,

which is insensitive to changes in 4>.

Proof. Consider the utility function (2.179). The corresponding Euler equation is

c ( s )  / \
^ )  =  <T(r - p)

which, together with the intertemporal budget constraint, results in

c(<) = b ( t ) +  y
crp +  (1  — cr) r  +  <f> r + <j>

or,

c (t ) =  (ap +  (1 — a) r +  <j>) W  (t)
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where W  (t) = b (t ) +  or, in terms of the consumption rate:

C (t) = ap +  (1 -  a) r  +  <j> (2.180)

which is linear in </>.

The current account becomes

b (t ) = (r +  (j))W (t) -  c (t )

b (t) = ((r +  4>) -  (ap +  (1 -  a) r +  <j>)) W  (t ) 

or, in terms of the saving rate:

S  =  (r +  4>) -  (crp+ (1 -  cr)r +  <f>) (2.181)

=  ° ( r - p ) .

which is insensitive to 

Q.E.D.

2.C.10 Risk premium and probability of default 

Preamble

Consider a perpetuity, i.e. a bond with maturity equal to infinity. There is a spot 

TSIR {it} that the market uses for discounting a schedule of future flows { X t} corre

sponding to a given security. If there is some risk of default inherent in such a security,

a spot interest rate it 38 with which the flow will be discounted is likely to be higher than

38Assume there is no devaluation risk; e.g.the security in question is issued in the same FX currency 
as the units o f rt .
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the risk-free rate rt , for every maturity t. The difference between prevailing spot rates 

it and risk free rates rt is generally interpreted as the default probability 4>t, so that

h = n  +  </>t

An inattentive market player, could utilize spot rates {it} to discount the discounting 

schedule and calculate the security’s market value as

poo

/ X t exp [—it] dt
J t =o

However, the market player should at all times take the recovery value R  in considera

tion in order to properly assess the security’s actual value.

Constant Probability of Default

No recovery value Consider the case where a credit event could occur in the imme

diate one time period ahead with constant likelihood k, conditional on it not having 

occurred before. Correspondingly, random variable T  -time until collapse- is expo

nentially distributed with density function f ( t )  = «exp [—«£]. The expected time until 

collapse at any point in time, conditional on it not having occurred yet, is E(T)  =  «_1.

The conditional probability of a credit event occurring at some point from present 

time to t periods ahead is given by the cumulative distribution F(t) = 1 — exp [—Kt] ; V 

t > 0. Conversely, the conditional probability of not having experienced a crisis during 

the time interval from present time to t  periods ahead (i.e. the probability of survival of 

the current regime) is given by 1 — F(t) = exp [—Kt] .

Consider a security with flows schedule that is expected to be honored as

long as a credit event does not arrive. Each future flow is in fact a random variable
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variable X t that can take values

X t wp exp [—Kt]
X t =  <

0  wp 1 — exp [—Kt]
V

Thus, the Expected Present Value (EPV) of the instrument is

EPV ( x t) -  r exp [—r t ]  Xt exp [—Kt]  d t
J t =o

I X t exp [— (r +  k )  t] d t
J t =o

Remarks

1. In the case of constant probability of occurrence of default and zero recovery 

value R  =  0, the market would "correctly" interpret </> = i —r as the instantaneous 

probability of default k .  Therefore, 4> can be defined as the no-recovery-value risk 

implicit in the price P  of a security, i.e.

2. Caveat: Beware of confusing the probability of default "by" time t - which would 

be given by the cumulative distribution F(t) =  1 — exp [—Kt] and is always 

increasing in t - with the conditional probability of default "at" time t, which is 

simply k  and is assumed to be constant. If you are provided with an estimate 

F(t) of the probability of collapse by time t , and wanted to find out the implicit 

(constant) instantaneous probability of default (per one time unit), the simple 

transformation is
In (1  — F(t))
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Recovery value Consider the case where the recovery value R  when the credit event 

arrives at some future time T  is greater than zero. We could then consider the recovery 

value as a random variable. R  expected to take place at time E(T)  — «-1 . Since a 

default is a one-off event, R  would be R  at time T, and would be zero before and after 

T. The EPV of the financial instrument would become

E P V  ( * t)  =  J  X t exp [ -  (r +  k)  t] dt + E P V  ( f t)

where the expected present value of R  would be

E P V  ( f t)  =  £ 0  [ft exp [-rT]]

=  R E 0 [exp [~rT]\

Since T  is a random variable with density function f ( T )  = k exp [—kT] , it follows

that

E P V  ( f t)  =  f t /  exp [-rT] f ( T ) d T
poo

= f t /  exp 1-rT] f ( T ) d T  
Jo

poo
= R  I exp [—rT] nexp  [—nT\ dT  

Jo
poo

= I kR  exp [— (r +  k) T] dT  
Jor0

=  f t - K
r  +  k

Therefore E P V  becomes

E P V  =  £  ( X t exp [ -  (r +  «)£] +  R k exp [ -  (r +  «) t]) dt

L

°° K
X t exp [— (r +  «) 11 dt +  R -------

t=0 v +  K
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or, written differently

E P V  =  J  {Xt +  &R) exP [— (r +  K) dt

Remarks

1. Note that in this case, with constant instantaneous probability of default k  and 

positive recovery value R , the market should augmented k R  to each flow before 

discounting them with rates r +  k  . Adding k R  to each scheduled flow X t takes 

account of the residual value effect.

2. Alternatively, the value of the security can be equally calculated as (i) the dis

counted value of the scheduled flows { X t} using rates {r  +  k,} (ii) plus the term

R-*rr+K

3. Notice that both kR  and R ^ ^  are both increasing in k, which should be the case: 

as a credit event becomes more likely, the expected time for it to occur E(T)  

shortens, and the present value of R  increases.

4. An inattentive trader that omitted R  in his calculations would be underestimating 

the value of a security. Similarly, if such a treated attempted to draw the risk of 

default implied in the market value of a sovereign bond, he would erroneously 

believe that the market is underestimating the risk of default.

Variable Probability of Default

Consider the case where a credit event could occur in the immediate one period dt 

ahead with hazard rate «(f), conditional on it not having occurred before, where k(£) 

is defined as K,(t) = 1[p\ty  Correspondingly, random variable T  -time until collapse- 

is exponentially distributed with density function f ( t )  and cumulative distribution F(t)
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with E(T)  = k f 0°° T  exp [—kT] dT?9 In other words, the conditional probability of a 

credit event occurring at some point from the present time 0  to t  periods ahead is given 

by the cumulative distribution F(t) = 1 — exp — f* K(s)ds , V t  > O.40 Conversely,

39The value E (T )  is found as follows:

Since T  is a r.v. with density function f ( T )  =  k exp [—kT] , it follows that

poo
E ( T ) =  /  T f ( T ) d T  

Jo

Recalling our definition /c(£) =  , we can rewrite

poo
E (T )  =  /  T k (T)  (1 -  F(T))  dT  

Jo

where 1 — F ( t ) =  exp — JQ* /c(s)dsj , so

E( T )  =  f  T k (T)  exp J  «(s)d,

p O O

=  /  T k (T)  exp [-k (0 , T)T\  dT
Jo

If k (T) were constant, then k(0, t) =  k, V£, and the above equation becomes

po o
E (T )  =  k T exp  [~kT\ dT

Jo
Integrating by parts, where v  =  T  and u =  — ̂  exp [—kT]

E{ T)  =  A c |- T ie x p [ - /c T ]

dT

simplifying 

by l’Hopital

E {T )  =  -
J p O O

+  /  exp [—kT\ d T
T = 0 J o

E ( T )  =  — ----------
lim T  — > oo

exp [kT]

1
—p  +  /  exp [—kT] dT
: {« ex p  [kT]} J0

p O O

E ( T ) = 0 +  /  exp [—kT] d T  
Jo

E (T )  =  — exp [~KT]dT

=  1/ k
T = 0

40Note that from

k (s ) =
f (s )

1 -F(«)
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the conditional probability of not having experienced a crisis during the time interval 

from present time to t periods ahead (i.e. the probability of survival of the current 

regime) is given by 1 — F(t)  =  exp — f* n(s)ds .

Consider a security with flows schedule that is expected to be honored as

long as a credit event does not arrive. Each future flow is in fact a random variable 

variable X t that can take values

X t = <

f
X t wp exp

■
So K(s)ds

■
0

k.
wp 1 — exp se1

1

No Recovery value The Expected Present Value (EPV) of the instrument is

E P V  ( x () =  r  exp [~rt]Xt (l -  F(t)) dt

poo

J t =0
X t exp ■rt I K,(s)dt

Jo
dt

or

E P V =  j f  X t exp I -  J  (r +  «(s)) ds dt

where r +  K,(t) is defined as the forward rate for every term t. Correspondingly, 

{r +  k(s)}^° would state for the forward curve starting at time 0 .

we could find the relationship between F(t )  and n(t) alone. First, note that the RHS can be written as
d_ 

d s F ( s ) ] > s o

k ( s )  =  ! n [ l - F ( s ) ]

Next, integrate both sides from 0 to t :

J  a c (s)ds =  — J  In [1 — F (s)]^  ds

=  — In [ 1  — .F(s)] |o

=  - l n [ l - F ( t ) ]

Therefore,

1  — F(t )  — exp J  K,(s)ds
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Let the spot rate at time t be r + R(0, t) and, correspondingly, {r +  R{t)}™ would be 

the spot yield curve starting at time 0, where R(0,t) is the average risk premium from 

present time 0  to time t :

«(0 , t) = So K ( s ) d i

t

We can then rewrite the expected present value as

E P V  X t exp [—rt — «(0, t)t] dt
poo

= /  X t exp[—(r + R(0,t))t]dt
J t =o

Remarks

1. In the case of variable probability of default and zero recovery value R  = 0, an 

inattentive trader would "incorrectly" interpret (f>t = it — r as the instantaneous 

probability of default. Some (loosely) define 4>t as the zero-recovery value risk 

implicit in the price P  of a given security, i.e.

poo
P ({ X f} )=  / X t exp [ -  (r +  (j)t) t] dt 

J t =o

2. However, cf)t = /c(0, t), is NOT the instantaneous probability of default at time t 

but rather the average probability of default during the time period (0 , t].

3. In order to find the risk premium from a known term structure of instantaneous 

default probability { ac( s ) } q ,  we must apply the definition R(0, t) = ^  K̂ ds. No

tice that
d«(0 , t) 1

dn(t) t

i.e. n(t) adds to average R(0, t) =  (j)t with weight 1 jt . Therefore, the further away 

is t, the less relevant the instantaneous default probability will be for discounting 

purposes.
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4. Conversely, differentiating the average risk premium with respect to time, we 

obtain

K(t) = « ( 0  ,£) +  —

i.e., if  we wanted to find the instantaneous implicit default probability n(t) from 

a given term structure of average risk {/t(0 , s)}*, we just need to know how much 

the term structure {r + R(Q,t)} changes from time t to t +  dt and apply the above 

equation (assuming that r  remains constant).

Recovery value Consider the case where some value R  > 0 can be recovered at date 

T  when the credit event arrives. We could then consider the recovery value as a r.v. R  

expected to take place at time E(T) .  Since a default is a one-off event, R  would be R  

at time T, and would be zero before and after T. The EPV of the financial instrument 

would become

E P V  (X j) - L  X t exp \—rt — t /c(s)dsj dt +  E P V  (^Rj 

= J  X t exp [— (r +  «(0, t)) t] dt +  E P V

where the expected present value of R  would be

E P V ( R ) =  E 0 [Rexp[-rT]]

= R E 0 [exp [-rT]]

Since T  is a r.v. with density function f ( T )  = At exp [—atT], it follows that

E P V  ( f l)  =  r [  exp [—rX] f ( T ) d T
P O O

= R  exp [~rT] f (T)dT
Jo
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Recalling our definition n(t) = yrpj^y, we can rewrite

E P V  ( p t j = R  f  exp [-rT] (k(T)  (1 -  F(T)))  dT

where 1 — F( t ) =  exp — f* K,(s)ds , so

E P V ( s )  -  r [  exp [—rT] ^k(T)  exp l - J  «(s)dsj
P O O

= R  k(T) exp [~rT\  (exp [—«(0, T)]) dT
Jo

P O O

= R  K ( T ) ex p[ - ( r  + R{0,T))T]dT
Jo

dT

Therefore E P V  becomes

E P V
P O O

X t exp [— (r +  k(0, t)) t}dt + R  I n(t) exp [— (r +  k(0, t)) t] dt
Jo

(2.182)

or,

E P V  ( x ()  =  J  (Xt + ii(t)R) exp [ -  (r +  a(0, t)) t] dt  (2.183)

Remarks

1. Note that the market is correct at adding R(t) = (f>t to the risk free interest rate 

r as long as flows are augmented by K,(t)R, which takes account of the residual 

value effect. Alternatively, the actual value of the security will be equal to (i) the 

discounted value of the scheduled flows { X t} using spot rates {r +  /c(0 ,t)}  (ii) 

plus the value of flows {i?Ac( )̂} °̂ discounted with corresponding spot rates.

2. Note that by definition K,(t) is the probability of default conditional on this event 

not having happened before. So the expected value of variable R ( T ), condi

tional on it not having happened before T  is k(T)R  +  (1 — n(T))  0 =  n{T)R.  

We note that E P V  ( i i )  = f 0°° R k(T) exp [ -  (r +  k(0, T)) T] dT  is simply the
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sum of conditional expected values { R k(T)}^=0 discounted with relevant rates 

{r +  S(0,t)}“=0.

3. Notice that n(t)R  and E P V  \ R \  are both increasing in K,(t), which should in 

fact be the case since as a credit event becomes more likely, the expected time for 

it to occur E(T)  shortens, and the present value of R  increases.

4. An inattentive trader that omitted R  in his calculations would be underestimating 

the value of a security. Similarly, if such trader attempted to draw the risk of 

default implied in the market value of a sovereign bond, he would erroneously 

believe that the market is underestimating the risk of default.
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Chapter 3

Consumption and Portfolio Rules with 

Stochastic Quasi-Hyperbolic 

Discounting

3.1 Introduction

In experiments with humans and animals, subjects often exhibit a reversal of pref

erences when choosing between a smaller, earlier reward and an alternative larger, later 

reward. The smaller, earlier reward is often preferred when both rewards are near, while 

the larger, later reward is preferred as they draw more distant. 1 The persistence and ro

bustness of these dynamic inconsistencies has led some economists and psychologists 

to think “that the problem may not come from some extraordinary condition that im

pairs the normal operation of intentionality, but rather from the process by which all 

people, perhaps all organisms, evaluate future goals” (Ainslie and Haslam, 1992, p.58). 

Recent neurological evidence supports this view (McClure et al, 2004).

Dynamically inconsistent behavior was first analyzed by David Hume, Adam Smith,

1 See Hermstein (1997) and other references therein.
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and later by William S. Jevons, Alfred Marshall, Wilfredo Pareto, and others in their 

discussion of passions, sentiments and intertemporal trade-offs. However, it was not 

until Strotz (1955) that it was first formalized analytically. This first formalization ap

proximates the temporal discount function of individuals by a hyperbola, a function that 

discounts more heavily than the exponential function for events in the near future, but 

less heavily for events in the distant future. Beginning with the work of Laibson (1994, 

1997), during the last decade an important body of literature has studied the kind of be

havior that rational economic agents with hyperbolic discount functions may exhibit.2 

In particular, in order to attain their goals, individuals may prefer to restrict their own 

future choices. The most apparent way for an individual to forestall his change in pref

erences is to adopt some type of commitment device.

Gul and Pesendorfer (2001) propose an alternative approach to incorporate the evi

dence on preferences for commitment. They suggest that temptation rather than a pref

erence change per se (that is, rather than “dynamic inconsistency”) may be the cause 

of these preferences.3 Gul and Pesendorfer (2004) extend the analysis to an infinite 

horizon in an attempt to capture the experimental evidence with tractable, dynamically 

consistent preferences.

A particularly important aspect of this research is the extent to which dynamic in

consistency, temptation, and self-control problems may help us understand individu

als’ consumption-saving decisions, as well as their decisions to allocate savings among 

available investment opportunities. Understanding these decisions is, after all, at the 

heart of a large literature spanning the last few decades on consumption, savings, as

2This discount function has been used to model a wide range o f behavior, including consumption be
havior, contracts, addiction, and others. See Harris and Laibson (2001), O’Donoghue and Rabin (1999), 
DellaVigna and Malmendier (2004), and other references therein.

3 They develop a two-period axiomatic model where an ex ante inferior choice may tempt the indi
vidual in the second period. Individuals have preferences over sets o f alternatives that represent the sec
ond period choices. Their representation o f preferences identifies the individual’s commitment ranking, 
temptation ranking, and costs o f self-control. Moreover, their model yields both different behavioral and 
normative implications than the change in preferences captured by the hyperbolic discounting approach.
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set pricing, macroeconomics and other areas. Households are both consumers and in

vestors, and their decisions reflect these dual roles. As consumer, a household chooses 

how much of its income and wealth to allocate to current consumption, and thereby how 

much to save for future consumption including bequests. As investor, the household 

solves the portfolio-selection problem to determine the allocations of its savings among 

the available investment opportunities. As the modem finance literature emphasizes, 

the optimal consumption-saving and portfolio-selection decisions typically cannot be 

made independent of each other (see Merton 1969,1971).

The purpose of this paper is to study the effects of dynamic inconsistency on the joint 

consumption-saving and portfolio-selection problem. Interestingly enough, despite the 

fact that the consumption-saving problem has received substantial attention in the liter

ature on dynamically inconsistent preferences, the consumption-saving and portfolio- 

selection problem has received virtually no attention.4 In particular, we will examine 

the implications of a hyperbolic discount function for the lifetime consumption-saving 

and portfolio-choice problem of an individual household in a continuous-time setting. 

We would like to argue that the analysis is relevant for the following reasons.

First, it is important to evaluate whether emotions and self-control play a role in 

considerations involving time and risk preferences, and hence in intertemporal con

sumption, saving, and portfolio decisions and in asset prices.5 Hirshleifer (2001), for 

example, surveys and assesses the theory and evidence regarding investor psychology 

as a determinant of asset prices, and considers that “this issue is at the heart of a grand 

debate in finance spanning the last two decades” (p. 1552). Gul and Pesendorfer (2004) 

have shown that their dynamically consistent preferences do have relevant implications 

for these decisions. In particular, increasing the agents preference for commitment

4There is an important amount o f work on intertemporal consumption-savings decisions (e.g., Laibson 
(1994, 1997), Krusell and Smith (2003), Harris and Laibson (2001)). Luttmer and Mariotti (2003) is, to 
the best o f our knowledge, the only paper that also considers households’ portfolio decisions. However, 
they do not study the response o f consumption and prices to changes in risk.

5Halevy (2005) offers some experimental evidence o f the interplay between risk and time preferences.
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while keeping self-control constant increases the size of the equity premium .6 Yet, 

the extent to which dynamically inconsistent preferences have relevant implications for 

consumption-saving allocations, portfolio choices and asset prices remains unaddressed 

in the literature.

Second, as emphasized in the finance literature and indicated above, consumption- 

saving and portfolio-selection decisions typically cannot be made independently of each 

other. In this sense, the available evidence from the consumption-saving problem need 

not be sufficient to provide even a partial understanding of these decisions.

Third, these joint decisions have been subject to a great deal of theoretical and 

empirical scrutiny in the consumption-based asset pricing literature under exponential 

discounting, in particular in the extensive literature on the equity premium puzzle and 

the excess volatility puzzle.7 As a result of these efforts, empirical evidence is readily 

available to evaluate the implications of a hyperbolic discounting structure for observed 

market data on consumption and security returns.

Lastly, during the last two decades several attempts have been made in the literature 

to try to resolve the equity premium and other asset pricing puzzles by departing in 

increasingly complicated ways from the tractable framework of a representative agent, 

time-additive isoelastic preferences, and complete frictionless markets.

In this paper, we will examine the intertemporal consumption and portfolio choice 

problem of an investor with dynamically inconsistent preferences in a stochastic dy

namic programming setting. We consider this setting because it offers valuable ad

vantages. First, the use of continuous-time methods has become an integral part of 

financial economics, and has produced models with a rich variety of testable implica

tions (see Sundaresan (2000) for a review). The adoption of a continuous-time model, 

in addition, offers a crucial advantage over much of the literature, which has mostly

6  Similarly, Krusell et al (2002) elaborate on the Gul-Pesendorfer framework which they use to inter
pret wealth and asset pricing data.

7  See, for instance, Kocherlakota (1996), Campbell (2000) and Mehra (2008) for reviews.
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adopted a discrete-time discount function { l, j36, /3S2, /353, ...}, ft G (0,1), 5 G (0,1), 

to model the gap between a high short-run discount rate and a low long-run discount 

rate. As Harris and Laibson (2001) and other authors have noted, a recurrent problem 

that plagues most applications of the discrete-time discount function employed in the 

literature is that strategic interactions among intrapersonal selves often generates coun- 

terfactual policy functions where consumption functions are not globally monotonic in 

wealth, and may even drop discontinuously at a countable number of points.8 More

over, hyperbolic Markov equilibria are not unique in deterministic discrete-time settings 

(Krusell and Smith, 2003).

These problems can be avoided in a continuous-time setting. Our approach is mo

tivated by Harris and Laibson (2008) Instantaneous Gratification (IG) model, which is 

based on a quasi-hyperbolic stochastic discount function.9 The IG model is dynamically 

inconsistent and, while it captures the qualitative properties of the discrete-time f3 — 5 

model, it resolves the pathologies of multiplicity of equilibria and non-monotonicity 

of the consumption function that have flawed previous theoretical advances in the lit

erature of time-inconsistent preferences. 10 Interestingly, our model yields closed-form 

solutions for the optimal consumption and portfolio rules that makes them readily com

parable to those results obtained under a constant rate of time preference as in Merton 

(1969, 1971).

8These pathologies often occur only in a limited region o f the parameter space which, as Harris 
and Laibson (2008) indicate, typically includes defensible calibrations o f the parameters. O’Donoghue 
and Rabin (1999) note that these pathologies arise only to the extent that individuals are sophisticated, 
i.e. they are aware o f their dynamic inconsistencies. It would be needed to assume that individuals 
are completely naive about their dynamic inconsistency problem; otherwise, the pathologies would be 
reinstated.

9They show the existence and uniqueness o f a hyperbolic equilibrium, and the equilibrium consump
tion function is continuous and monotonic in wealth.

10See Harris and Laibson (2008, Section 5).
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3.2 A Lifetime Consumption-Portfolio Problem with Hy

perbolic Discounting

We study the classical Merton (1969,1971) intertemporal consumption-saving and 

portfolio-selection problem with hyperbolic discounting preferences rather than with 

exponential discounting ones. An individual is due to make consumption and portfolio 

decisions that maximize her discounted lifetime utility of consumption. We assume 

infinite lifetime, complete markets and no borrowing constraints.

Since our setup is an extension of Harris and Laibson (2008)11, we attempt to adopt 

their notation whenever possible. The individual’s wealth x t at any time t  can be in

vested in two assets: a riskless bond with value B t and a risky asset for an amount N tPt, 

where N t is the quantity held the of risky-asset and Pt is its price at time t; in particular,

X t  == N t P t  +  B t .

While the risk-free asset earns a constant rate of return r continuously, the price Pt 

follows a geometric Brownian motion with drift fi and diffusion parameter cr, where we 

assume away a dividend process. Specifically,

dBt = rB tdt

dPt = fiPtdt +  a Ptdzt (3.1)

where zt is a standard Wiener process. The change in the individual’s wealth during 

a period of infinitesimal duration dt is determined by the investment proceeds minus

11 Harris and Laibson (2008) consider a setup with one (risky) asset only and impose credit constraints.
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consumption Ctdt:

dxt = [fiOtx t +  (1  — 6t) rx t — ct]dt + a6tx tdzt (3.2)

where 6t is the proportion of wealth invested in the risky asset at time t.

Following Harris and Laibson’s (2008) quasi-hyperbolic setup, the consumer-investor 

seeks to maximize his expected lifetime discounted utility of consumption:

where (3 G (0,1] and S G (0,1]. The discount function decays exponentially at rate 

7  =  — In 6 up to time t  +  r t, drops discontinuously at t +  r t to a fraction (3 of its level 

just prior to t +  r t, and thereafter decays exponentially at a rate 7  =  — In 8 thereafter. 

The arrival of the "future" is stochastic. In particular, r t is distributed exponentially with

a kinked or discontinuous discount factor. 12 The Instantaneous Gratification (IG) model 

in Harris and Laibson (2008) corresponds to the limit A —> 0 0 .

As is well known, a closed-form solution can be found for the case of constant 

relative risk aversion (CRRA) utility when discounting is exponential (Merton 1969, 

1971). For this reason, we consider the utility flow

^Alternatively, as noted by Harris and Laibson (2003), the value function can be formulated as 
w ( x t ) =  Et  [ / f°° D x (t, s) u (c (xs)) rfs] where the discount factor Dx  (t , s ) is stochastic and equal 
to

Et j  Ŝ s (c (xs)) ds +  I  j35(s €)u (c {x s))ds  (3.3)

parameter A G [0,0 0 ), which effectively smooths the discount factor and avoids having

(3.4)

where b > 0  is the risk aversion parameter.

Lifetime utility is maximized subject to the budget equation (3.2) and initial wealth

D x (t, s) =  |
e *1 wp e A(s ^ <=> if  s — t  < T t

P  . e-i(s-t)  ^  x _  e -A ( s - t )  ^  i f  s _ t > T t '
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x t > 0. Markets are perfect and there are no taxes, transaction costs, trading restrictions 

or other impediments to trade. Also that there are no commitment mechanisms. In 

other words, the introduction of hyperbolic discounting preference is the only difference 

with respect to the classic formulation of the problem in the literature. As Merton 

(1969,1971) shows, this problem can be solved in closed form for optimal consumption 

and portfolio rules under exponential discounting. We will show next that an explicit 

solution also exists for the general stochastic hyperbolic-discounting case. 13

We consider the continuous-time generalization introduced by Harris and Laibson 

(2008) for two reasons:

i. In order to solve for the Markov perfect Nash equilibrium of the intrapersonal 

game induced by the hyperbolic discounting structure we use the equivalence result in 

Barro (1999), Laibson (1997), and Luttmer and Mariotti (2003). They show that in the 

special case of CRRA utility with no liquidity constraints, and no commitment devices, 

the equilibrium of the intrapersonal game exists and is observationally equivalent to a 

dynamically consistent optimization problem that shares the same instantaneous utility 

function and equilibrium policy functions but with a different, higher long-run discount 

rate. 14 This allows us to solve the model as a pure optimization problem.

ii. The Instantaneous Gratification (IG) model developed in Harris and Laibson 

(2008) is an important step forward in the treatment of hyperbolic discounting prefer

ences as many of the pathologies of the discrete-time hyperbolic models are eliminated 

in the continuous time case when A —> oo as will be discussed later.

13Note that the exponential-discounting setup corresponds to the particular hyperbolic-discounting 
case with A —> 0 or (3 =  0.

14Harris and Laibson (2008) got away with the observationally equivalence critique thank to the 
liquidity-constraints assumption. The IG model with liquidity-constrained individuals has the same value 
function o f a dynamically consistent optimization problem with the difference that the utility function is 
wealth contingent. In our problem, however, there are no liquidity constraints.
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The problem for the consumer-investor is to maximize the current-value function

where 7  G (0 , + 0 0 ) is the discount rate and v (xt+Tt) is the continuation-value defined 

as

which discounts utility flows exponentially, and where c stands for the consumption 

levels optimally chosen by future selves. The maximization problem is subject to the 

budget equation (3.2) and the constraints cs >  0 and x 3 >  0, V s > t, given an initial 

wealth endowment x t > 0 .

Assumptions

We impose the following set of assumptions:

A l. b>  I — (3 (feasibility condition),

A 2 . 7  > (1  — b) ( j l— \ba2) (integrability condition),

as will be characterized below. A l and A2 ensure that optimal consumption is nonneg

ative. As discussed in Harris and Laibson (2008, Section 5.1), in practice, these two 

assumptions are always satisfied at the empirical estimates of the coefficients b, (3 and 

7  typically obtained in the literature. A3 is a convergence condition for integral (3.5).

In what follows, for notational convenience we dispense with the time subscripts 

unless it became otherwise necessary.

(3.5)

A3. lim Et {v(x ()}  — 0 , (transversality condition),

where p  and o1 in A2 are the mean and variance of the optimal portfolio return rate,
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The current-value function (3.5) can be written recursively as

w ( x )  = u  (c (x )) dt  +  e xdtE[e ldtw (x +  dx)] +  (l — e xdt) E[e ldt(3v (x  +  dx)]

(3.6)

which satisfies the Bellman equation

7 w (x) = u (c  (x )) +  E[dw (x)\ +  (x ) _  w ( ^a t

where the second term in the right-hand side can be derived applying Ito’s Lemma to 

(3.2) :

E[dw (x)] _  ^  _|_ (^ _  r ) _  c) w > (x ) _|_ -̂(j 2q2x 2w" (x ) 
dt 2

As noted by Harris and Laibson (2008), the term A (fiv (x ) — w (x)) in (3.6) reflects 

the hazard rate A of making the transition from the "present" to the "future", at which 

point the continuation value v (x) begins. The intertemporal discount function that 

applies to the utility flows pertaining to the "future" is a fraction of the function that 

prevails in the "present". Of course, there is no transition effect if /3 =  1. The intuition 

is that when = 1 there is no difference in how present utilities and in future utilities 

are discounted, in which case we would have obtained the classic expression of the 

time-consistent Bellman equation. The same would be true if the transition probability 

from "present" to "future" were nil, i.e. if A =  0.

Let {c*, 9*} denote the optimal policy set of the problem defined as

{c* (x ) , 9* (x)} =  argm ax {w (x)}
c,6

Recalling the Bellman equation (3.7), we can write

{c* (x ) ,  9* (x)} =  arg max {u  (c) +  (rx  +  {fi — r) 9x — c) w' (x) (3.8)
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+\-(j262x2w" (x ) +  A ((3v (x) — w (x))}
Z

or, suppressing the terms that do not contain the controls,

{c* ( x ) , 0* (x)} =  argmax{u (c) +  ((/z — r) Ox — c) wf (x) +  \ o 202x 2w" (x)}
c,6 2

The unique interior optimum from the first order conditions determine the optimal 

consumption and portfolio policies. In particular, such conditions are

0 = (fi — r) xw' (x) +  g26*x2w" (x ) , (3.9)

and

0 =  v! (c*) — w' (x ) , (3.10)

which imply that the optimal policies must satisfy

a* m -  ^ ~ r )
xw" (x) a2

and

v! (c*) =  w' (x ) .

The natural candidate solution for w (x) that corresponds to a CRRA, power instan

taneous utility (3.4) is

w ( x s) = Vs > t (3.11)

and the corresponding optimal portfolio and consumption rules are 15

e* =  \ ^ ~ r \  V x > 0  (3.12)
b az

15Note that equation (3.12) is obtained by inserting the derivatives o f the candidate solution (3.11) into 
(3 .9). In particular, the derivatives are w'  (x ) =  a ^ bx ~ b and w" (x ) =  —b a ^ x ~ b/ x  =  — bwf (x) fx.

195



and

c* (x) =  a n x  (3.13)

where a n  stands for the hyperbolic marginal propensity to consume out of wealth. We 

note from (3.12) that the portfolio strategy is independent of the current wealth level, 

and is identical to the portfolio rule of the CRRA, exponential, time-consistent agent 

studied in Merton (1969, 1971).16 However, as we show below, the wealth dynamics 

will be affected by a different, higher marginal propensity to consume relative to the 

Merton case.

In order to find an explicit solution for a # , we expand the terms in the right-hand 

side of the Bellman equation that characterizes the hyperbolic-discounting problem. 

First, we note that

u (c* (x)) =  anw  (x) (3.14)

Then, inserting (3.12), (3.13), (3.14) and the derivatives of the candidate solution 

w' (x) = (1 — b) \w  (x) , w" (x) = — b (1 — b) (x) into the Bellman equation (3.7), 

we obtain

(„ _  r)2\
JW (x) = a Hw (x) +  (1 -  b) - a H +  r  H 2 1 w (x) +  A (fiv (x) -  w (x))

(3.15)

We show in the Appendix that the last term in the right-hand side of (3.15) is

/
oo

e-(A+7)(s-t)Et (Xa)] ds (3.16)

16Note that technically this is due to the fact that the present self has no control over the variables that
determine the continuation value function v (x), as can be verified in (3 .8).
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where Et [w (xa)] is determined by

Et
w (xs) 
w ( x t)

= E t Xs
Xt

1—6

=  exp { ( 1  -  6 ) - a„  +  r + I (s -  t) }•,
2  ba2

(3.17)

which is derived from the candidate solution (3.11) and the policy rules and by applying 

Ito’s Lemma17.

Finally, using (3.16) and (3.17) into (3.15), in account of the transversality condi

tion A3, we obtain

a H =

(

7 +  a H (1 — P)
A

A +  7  -  (1 -  b) (- olh  +  / i  -  b ^ )
<72

V Effective discount rate

-  (1  -  b) ( M -  b—

(3.18)

where p. =  8*fi +  ( 1  — 8*) r  and a2 =  d*2a2 are the mean and variance of the optimal 

portfolio’s rate of return18. The terms in brackets account for the effective discount rate, 

which is greater than 7  under A l and A2. In the particular case where /3 =  1 or A =  0, 

the effective discount rate would simply be 7  and the marginal propensity to consume 

(MPC) out of wealth would correspond to the exponential discounting model treated in 

Merton (1969, 1971):

a M =  7. b
7  -  (1  -  6 ) ( fi -  b—

d2
(3.19)

In turn, for the case of interest where A —► 0 0  that corresponds to Instantaneous 

Gratification, the MPC reduces to19

1 7 Specifically, the expected growth o f  wealth when the agent chooses optimal policies (3.12)- 

(3.13) is given by E [d x /x \  =  —a n  + r +   ̂ dt. Applying Ito’s Lemma on the candidate

solution (3.11), the expected growth o f the value function is E [d w /w ]  =  E  [<£r1 -b /:r1-6] =  

(1 — b) ( —a n  +  r  +  ■■) dt, which immediately implies (3.17). (See the Appendix for details on
the derivations).

18Note that, the optimal policy 8* =  given in (3.12) implies jl — —r +  >  0.
19Note that if  a =  0, the Merton and the IG propensities to consume would reduce to:
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= ^ - f )  (t ■- (1- b) (p - 4 ) )  • (3'2°)

which is increasing in P e  (0,1) and, under assumptions A1-A2, is unambiguously 

greater than the Merton’s ckm-

Note that the MPC olig is linear in Ji and a2 and is not wealth contingent, contrary 

to what has been posited in previous research that tackled this problem. See for example 

Gong et al. (2006, 2007).

3.3 Discussion

The following results are obtained from the analysis: 

i. C onsum ption , Savin gs an d  P o r t f o l io  C h o ices

First, the relative proportion of wealth allocated to stocks and bonds along the equi

librium path is identical to that obtained in the exponential discounting case (i.e. where 

P = 1 or A =  0). This means that the size of the risk premium of stocks over bonds 

is also identical to that in the exponential case. In other words, the size of the equity 

premium is no more or less puzzling than what it is under exponential discounting.

Second, since the effective rate of time preference is greater than 7  when p  G (0,1) 

and A > 0, the optimal marginal propensity to consume out of wealth a #  is unam

biguously greater than the exponential discounting solution obtained by Merton (1969, 

1971).20 This is in line with the results in the literature that anticipate present bias.21 

Behind this conclusion is the assumption that the hyperbolic discounting model and

ocr =  otM \a=0  =  i  [ 7  -  ( 1  -  b) r] and =  b-r} -s1  fr ~  i 1 ~  b) r] •
<7=0 v ’

°Note that in the particular case o f  logarithmic instantaneous utility, i.e. where b —* 1, for which 
the intertemporal subsitution effect and the wealth effect cancel each other, the marginal propensity to 
consume out o f wealth is simply given by the subjective discount rate 7  in the exponential model, and 
y/j3 in the IG, hyperbolic model.

21 See for instance O’Donoghue and Rabin (1999), Laibson (1994, 1997), Harris and Laibson (2003, 
2008) and Luttmer and Mariotti (2003).
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the exponential discounting model have the same long-run discount rate. While this 

is a useful modelization typically followed in the literature that studies the implica

tions of introducing dynamically inconsistent preferences, this needs not be the case.22 

For instance, the structural estimates reported in Laibson et al (2007) indicate that the 

(3-8 quasi-hyperbolic model may have more short-run discounting and less long-run 

discounting than the exponential model. An alternative formulation could have fol

lowed this route and introduced two different parameters, rather than one, to compare 

the two models. We would then have reached the same general conclusion: hyper

bolic discounting has quantitative implications for consumption-saving allocations and 

whether the model generates greater or lower consumption than in the exponential case 

depends on the specific parameters. For instance, the parameter estimates in Laibson 

et al (2007) indicate that hyperbolic discounting would indeed generate a greater con

sumption share.

Finally, note that under the feasibility assumption A l, a n  increases as j3 E (0,1) 

decreases and as A E (0, oo) increases. As stated above, the exponential discounting is 

a limit case where the marginal propensity to consume is q m  =  olh  \p= l  =  a / / | A = 0  .

These results imply that outcomes are observationally equivalent to the exponential 

case with a suitably higher level o f discounting. Barro (1999) also finds that the basic 

properties of the neoclassical growth model under exponential discounting remain intact 

when allowing for a variable rate o f time preference,

ii. Level of A sset Prices and  Returns

A lower saving rate than in the exponential case implies a lower demand for financial 

assets, which in turn implies lower prices and greater rates of return for both stocks and 

bonds. As a result, hyperbolic discounting preferences may predict a greater risk-free 

rate than exponential preferences as well as a greater return on equity. This implies 

that it would be easier to reconcile the size of the equity premium by simply explaining

2 2  We are grateful to a referee for pointing out this aspect.
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the size of the risk-free rate. In other words, under hyperbolic discounting there may 

be less pressure to explain the size of returns on stocks and more pressure to explain 

the observed low size of the risk-free rate than under a constant rate of time preference. 

In this sense, some of the potential solutions to the risk-free rate puzzle posited in 

the literature may perhaps be sufficient to explain the size of the equity premium if 

discounting is hyperbolic rather than exponential.23

iii. T h e  In s t a n t a n e o u s  G r a t if ic a t io n  C a s e

The Instantaneous Gratification (IG) case put forward in Harris and Laibson (2008), 

in which A —► oo, is of particular relevance for it has dealt with a number of prob

lems inherent in the discrete-time approximation of hyperbolic discount functions, such 

as a kinked discount factor and the necessity to define the expected duration of the 

present term. Importantly, the IG model has resolved the pathologies of multiplicity of 

equilibria and non-monotonicity of the consumption function that have flawed previous 

theoretical advances in the literature of time-inconsistent preferences. In particular, the 

properties of the IG model include the existence and uniqueness of equilibrium as well 

as the continuity and monotonicity of the consumption function 24

For these fundamental reasons, in the sections that follow we focus on this particular 

case of interest.

iv. C o m p a r a t iv e  S t a t ic s  o f  C o n s u m p t i o n  w it h  R e s p e c t  t o  R i s k : T h e  

M a g n i f i c a t i o n  E f f e c t  o f  C h a n g e s  in  R is k

Despite the fact that there are no implications for the risk premium other than quan

titative implications for consumption-saving allocations and the level of asset returns, 

an important difference arises with regard to how consumption is related to risk.

Risk has a linear effect on consumption and depends on the degree of risk aversion. 

Merton (1969) calculated the elasticities of consumption with respect to expected return

2 3  See, for instance, Kocherlakota (1996), Campbell (2000) and Mehra (2008) for reviews o f  the liter
ature.

2 4  See Harris and Laibson (2008, Section 5).

200



fi and to variance a2 for the exponential case, and noted that their sign depend on the 

parameter of risk aversion 6 :

b -  1 1 
/*-c>MlM “ b ^

and

I - 2 b ~ l  1
ec,a2 \M  ~  ~ a  9  7 “Z CXm

In the hyperbolic IG case, the sign of the corresponding elasticities also depend on b 

being greater or lower than 1. However, for a given MPC, the absolute value is unam

biguously greater than in the Merton case for b ^  l :25

b ~ 1 1

and
- 2  6 6 - 1 1

This result arises from the fact that the sensitivity of the hyperbolic MPC to changes 

in a2 and Ji is greater than in the exponential case. In particular, in the exponential case 

the derivative of the MPC with respect to risk is

= —  (3 21)
da2 2 ' ' ’

while in the IG model, the effect of risk on the marginal propensity to consume is

done b 1 — 6

da 2 6 — (1  — /3) 2
(3.22)

We note that in both cases risk has a linear effect on the marginal propensity to 

consume, and that the derivatives are decreasing in risk for 6  >  1 and increasing in risk

2 5  See Appendix for the derivation o f the elasticities o f consumption with respect to fi and o2 .

201



for b < l .26 However, the absolute value of this relationship is greater in the hyperbolic 

case than in the exponential discounting case:

da ic  d a M w, . 1 

> ’ v b * h

This implies that for any 6 ^ 1 ,  hyperbolic discounting generates a greater response of 

the propensity to consume to changes in risk 27

One implication is that although the hyperbolic discounting’s MPC may well be 

observationally equivalent to the exponential case for given a2, p  and risk aversion 

parameter b (i.e. there would be a suitable subjective rate 7 M that would make aia  = 

ckm), the MPC would react more to changes in the risk parameter. In models where risk 

is allowed to change (e.g. models allowing for stochastic volatility), this result provides 

a magnification mechanism to explain the excess price volatility puzzle,

v. Im p l i c a t i o n s  f o r  A s s e t  P r ic e s  in  a  L u c a s  T r e e  M o d e l

We have shown that the relationship between the marginal propensity to consume 

and portfolio volatility is magnified through a greater absolute value of its slope for 

coefficients of relative risk aversion different than one. However, asset prices are ex

ogenous in the Merton model. Hence, to determine the quantitative importance of hy

perbolic discounting as a driving force behind stock market volatility, the introduction 

of a model with endogenous asset prices is in order.

Consider a simple continuous-time version of Lucas’ (1978) representative-agent 

fruit-tree model of asset pricing. A tree (stock) yields fruit (dividends) Dt according to 

a geometric Brownian motion:

dDt ,—— =  v dt +  o dzt . 
Df

26See Merton (1969), Section 7, for a discussion on the effect o f changes in / i  and cr2 on consumption.
27Note that for logarithmic utility both slopes are equal to zero, i.e. |fc =  |fe =  0.
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Investors can buy shares in the stock at the ex-dividend price Pt . The supply of 

shares is normalized to 1 and we assume zero net supply of the risk-free asset. In 

equilibrium, the representative agent follows the optimal policy c\ — a*xt, where a* 

is the optimal MPC out of wealth. Ignoring bubble solutions, we conjecture that the 

equilibrium price is proportional to dividends. Since in equilibrium all dividends are 

consumed and wealth is equal to the value of the stock:

The variability of prices will be directly linked to the variability of dividends and to 

the variablity of the MPC in specifications where, for example, the parameter a  were 

stochastic. As we indicated earlier, it can be shown that

da* dot*
— r < 0 fo rfc > l,  t —̂  >  0 , for b < 1.
da1 do1

The intuition for this is the same as in the exponential case as established in Merton 

(1969).The slope of the schedule will depend on the relative strenght of the substitution 

and income effects of the volatility parameter on consumption, which is determined by 

the risk aversion parameter b.2S However, in the IG model the MPC and consequently 

prices are more responsive to changes in risk.

Next we discuss a number of theoretical and empirical implications of these find

ings:

1. F r o m  a  t h e o r e t i c a l  p e r s p e c t i v e , these drastic differences in the compar

ative statics of consumption and asset prices with respect to risk mean that hyperbolic 

discounting offers a novel mechanism whereby changes in risk may affect consumption 

and stock prices.

2. F r o m  a n  e m p i r i c a l  p e r s p e c t i v e , in order to get a sense of the possible

2 8  See Merton (1969), Section 7, for a detailed discussion.
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quantitative size of the volatility effects, it is useful to study a calibrated model in the 

region of the parameter space that is empirically plausible. Laibson et al. (2007) use a 

structural model and field data to estimate an unrestricted discount function that allows 

the discount rate to differ in the short-run and in the long-run. Theirs are, to the best of 

our knowledge, the best available estimates obtained in field data. Their structural pro

cedure yields estimates for their benchmark case (which sets the relative risk aversion 

parameter at a value of 2) of (3 = 0.7031 and 5 = 0.9580, with standard errors of 0.1093 

and 0.0068 respectively. Letting, for instance, the relative risk aversion parameter be 

3, yields an estimate of (3 = 0.5776 with a standard error of 0.1339, leaving basically 

unchanged the estimate of S.

Since they consider a rich consumption model that includes stochastic labor income, 

liquid and illiquid assets, revolving credit and other ingredients, they can also perform 

several robustness tests to changes in the different parameters of the model. These tests 

include compound cases where parameter changes are allowed to reinforce each other. 

Given the estimates they obtain, reasonable ranges for the parameters we are interested 

in are /3 from0.40 to 0.80 and b from 1.4 to 3.19

In the Table below we report the results of the calibrations for different parameter 

values of the ratio:

o  =  da ,G
d o 2

I  d&M
£<i ^ ?=i

which captures the magnification in the response of the MPC to changes in risk relative 

to the standard, exponential-discounting case. We explore different combinations of the 

parameter of relative risk aversion b and the short-run discount factor /?.

29As Laibson et al. (2007) discuss, the picture with respect to the relative risk aversion coefficient 
is not entirely clear. They consider a value o f 2 for their benchmark case, and also the values 1 and 
3. The usual view in the asset pricing and consumption-savings literatures is that it is in the range 
o f 0.5 to 5. Gourinchas and Parker (2002) find values between 0.1 and 5.3. Barro (2006) notes that 
savings rates (excluding human capital) fall markedly as a country develops if  b is much below 2 , and are 
counterfactually low it is much above 4.
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p 0.4 0.5 0.6 0.7 0.8 1

b a ci a Cl a Cl a Cl a n a Cl

1.4 0.149 1.750 0.133 1.556 0.119 1.400 0.108 1.273 0.099 1.167 0.085 1.000

1.6 0.126 1.600 0.115 1.455 0.105 1.333 0.097 1.231 0.090 1.143 0.079 1.000

1.8 0 . 1 1 0 1.500 0 . 1 0 1 1.385 0.094 1.286 0.088 1 . 2 0 0 0.082 1.125 0.073 1.000

2 0.098 1.429 0.091 1.333 0.086 1.250 0.080 1.176 0.076 1.111 0.068 1.000

2.2 0.088 1.375 0.083 1.294 0.078 1 . 2 2 2 0.074 1.158 0.071 1 . 1 0 0 0.064 1.000

2.4 0.081 1.333 0.076 1.263 0.073 1 . 2 0 0 0.069 1.143 0.066 1.091 0.061 1.000

2.6 0.075 1.300 0.071 1.238 0.068 1.182 0.065 1.130 0.062 1.083 0.057 1.000

2.8 0.069 1.273 0.066 1.217 0.064 1.167 0.061 1 . 1 2 0 0.059 1.077 0.054 1.000

3 0.065 1.250 0.062 1 . 2 0 0 0.060 1.154 0.058 1.111 0.056 1.071 0.052 1.000

Figure 3.1: Magnification effect of changes in the risk parameter a  on the MPC. Cali
bration: 7 =  10%, 5 =  0.95, /i =  8.7%; r — 1% and cr =  23.5%.

We consider values for the relative risk aversion from 1.4 to 3. For each combi

nation, we report the value of Cl and cm/g- For the preferred estimate in Laibson et al 

(2007) of/3 = 0.70, we find that hyperbolic discounting generates between 11.1 percent 

to 27.3 percent greater responsiveness of the MPC to changes in risk than in the stan

dard formulation while keeping otic in the 5.8 - 10.8% range. As /3 gets lower, both the 

ratio Cl for a given value of a jc  and the range of the values that Cl takes increase.

Taking the case where /3 = 0.40, a value which should not be considered unrealisti- 

cally low given the findings in Laibson et al (2007), we find that hyperbolic discounting 

generates a magnification of the response of the MPC to changes in risk that is between 

25 to 75 percent greater than in the exponential case. Even in the case of f3 = 0.80, 

which is a value that may seem perhaps unlikely high, hyperbolic discounting gener

ates between a 7.1 to 16.7 percent greater response of prices to changes in risk than 

exponential discounting.
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Summing up, calibrations of the Lucas model with hyperbolic discounting in the 

empirically plausible region of the parameter space reveal that the MPC, and therefore 

prices, are much more responsive to changes in risk than in the standard case. Most of 

the calibrations, e.g., for/3 e  [0.5,0.7], suggest that this greater responsiveness is in the 

range of 14 to 55 percent. These results arise for low values of the relative risk aversion 

coefficient (between 1.4 to 2.4).

We conclude that in light of the difficulties in the literature for explaining stock 

market volatility, also known as the excess-volatility puzzle for stocks, hyperbolic dis

counting offers a great deal of promise for contributing to explaining an important and 

challenging aspect of asset market data.

3.4 Concluding Comments

The analysis has introduced dynamically inconsistent preferences in the standard 

setting where capital markets are perfect and frictionless, and where wealth is generated 

by stochastic returns on assets. Introducing labor income jointly with the constraint that 

consumers may not borrow against future labor income, incomplete markets, and other 

market frictions (e.g., taxes, transaction costs) are directions that merit future research, 

even though it is typically not possible to obtain closed-form solutions in these settings.

Over the last couple of decades a large literature has significantly departed from 

the tractable framework of a representative-agent, time-additive isoelastic preferences, 

and complete frictionless markets in an attempt to explain asset pricing puzzles. This 

paper maintains the assumption of time and state-separable preferences defined only 

over consumption.

Since our paper considers a frictionless economy with no liquidity constraints, it 

becomes readily comparable to Merton (1969, 1971) and differentiates our work from 

Laibson (1994, 1997) and Harris and Laibson (2003, 2008). As in the Merton’s setup
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with constant relative risk aversion, the porfolio-selection decision is independent of the 

consumption decision. We provide with closed-form solutions for a hyperbolic agent’s 

optimal consumption and the optimal porfolio-selection problems and show that the 

latter is identical to the Merton’s exponential case.

As for consumption, we provided a closed form solution that shows that the mar

ginal propensity to consume can be pinned down from a system of ordinary differen

tial equations. We show that the hyperbolic MPC is unambiguously greater compared 

to the classic exponential case. In addition, we showed how the MPC is more sensitive 

to changes in the risk and expected return parameters, and suggested that our model of 

time inconsistent preferences could help explain aspects of asset market data, particu

larly of stock market volatility. We leave this as a recommendation for further research.
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3.5 Appendix

3.5.1 Derivation of Bellman equation (3.7)

The objective function can be written as in (3.6)

w (x) =  u (c (x)) dt 4- e~xdtE[e~ldtw (x +  dx)\ 4- ( l  — e~Xdt) E[e~ldtftv (x +  dx)]

Multiply both sides by eldt to get

e ^ w  (x) = e ^ u  (c (x)) dt +  e~Xdt E[e~ldtw (x +  dx)\ +  ( l  — e~Xdt) E[j3v (x +  dx)] 

For small dt, we can approximate

A d t
1 — Adf

- 7 d t  ^
/*SJ 1 — 7 d t

P 7  d t  ^ 1 +  7  d t

Therefore, the above equation can be written as

(1  +  7  dt) w (x) «  (1 +  7  dt) u (c (x)) dt+( 1 — A dt) E[w (x  +  dx)]-\-\dtE[{3v (x +  dx)] 

Substracting w (x) from both sides we get

7  dtw (x) «  (1 +  7  dt) u (c (x)) d t+ (  1 — A dt) E[dw (x)]+A dtE[(3v (x +  dx)—/3v (x)—w (x)+(3v (: 

where

dw (x) = w (x -h  dx) — w ( x ) , 

dv (x) =  v (x +  dx) — v (x)

Dividing by dt

71u (x) «  (1 +  7  dt) u (c (x)) +  (1 — A dt) +  \E\Qdv  (x) — w (x) +  fiv (x)]
dt

212



and letting dt —> 0, we obtain

7 w (a;) = u(c  (x)) +  _|_ \E\Qv  (x) — w (a;)]. (3.23)
dt

Applying Ito’s Lemma and taking expectations we find

E  [dw (x)] =  w'E [dx] 4- \ 'w"E  [(dx)2]

where, from (3.2),
E  [dx] = (fiOx +  (1 — 9) r6x — c) dt

and
E  [(dx)2] =  a202x 2dt 

Thus, the Bellman equation (3.23) can be written as

7 w (x) = u(c (x))+(fiQx +  (1  — 6) rQx — c) w' {x)+\-<j262x 2w" ( x ) 4 - A  { /3v  ( x )  — w (x))
z

Q.E.D.

3.5.2 Derivation of (3 .1 6 )

Recall the definitions

r r t + r t  p o o

w (xt) = Et \ e~7(s~^u  (c (xs)) ds +  / ^ e_7 ŝ_^u (c (xs)) ds
YJt J  t + T t

and

/ oo
g -7  (S-V u (c (x s))ds

* t + T t  p o o

= Et \ I e~ ^s~ ^u (c (x s)) ds 4- /  e~1 ŝ~t")u {c{xs))ds
J t + T t

Jt
U t  j  t + T t
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or

[ p t + T t  p O O

/ /3e~1<'s~t\ ( c ( x s) )d s +  / /3e~^s~ty>u ( c (x s))ds

J t  J t+ T t

Therefore,

[
p t + T t  p t + T t

/ /3e_7(s_f)u (c (a;s)) d s -  e_7(s_t)u (c (zs)) ds

[
p t + T t

J  e~1 ŝ~t)u ( c (x s))ds

/ oo

e-x( . - t  )e- ^ - t ) E t [u (c (Xs) ) ]ds

/
OO

e - ( A + 7)(3~ t ) E t  ( c  (a :s ) ) ]

So,

/ oo
e - ( A + 7 ) ( s - t ) ^  ^  d s

or, using (3.14),

/ oo
e-(A+7)(5-t)^ ^  fa

Q.E.D.

3.5.3 Derivation of (3.17)

This equation can be derived making use of the candidate solution (3.11) and the 
policy rules. First, recall the candidate value function (3.11) and apply Ito’s Lemma to 
find dw = w'dx +  \w" (dx)2. Recall that the variation dx is given by (3.2), and note 
that (dx)2 = u202x 2dt. Thus,

dw =  w'dx +  ^-w" (dx)2 

dw =  +  (pt — r) Ox — c] w' +  i a202x 2w d t  +  aOxw'dz
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so the expected variation o f the value function is

E  [dw] =  +  (p — r) Ox — c] w' +  ^ o202x 2w j  dt

where the partial derivatives are w' = (1 — 6 ) f , and w" =  —b (1 — b) It follows
from (3.12) and (3.13) that the variation of the optimal value function is

dw = ( I -  b) - a H +  r  +  ^  ^  ^  wdt +  ^  —— — wdz ,
2boz I b o

with expectation

E  [dw] = (1 -  b) - a H + r +  ^ wdt

which implies

Et [ws] =  w (x t) exp | ( 1  -  b) - a H +  r  +  ^ b o ^ -^J ^  ~~ '

Q.E.D.
Alternatively we could recall the candidate solution (3.11)

w (x s) =  a#  Vs > t

and that w' =  (1 — b) and w" =  — b (1 — b) jjp. And from Ito’s Lemma:

dw = w'dx +  \w "  (dx)2 
&

Q.E.D.
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3.5.4 Derivation of the elasticities of consumption with respect to

the portfolio’s expected return and variance

Recall the MPC of the hyperbolic IG model (3.20)

ss a H|A_  =  b ^ {l _ 0)  ( 7  -  (1  -  b) ( f l  -  6 ^ ) )  .

The elasticity of consumption with respect to expected returns would be

dc 1

Taking the derivative

we note that ^  =  0 , and

therefore

£c,t\l a - » g - c

dc da dx  
dp, d p X r̂ °Ldp

dc da  b — 1

dp d p X b — {\ — (3)X

I _ b — 1 x
b - ( l - P ) c  

Recalling (3.13), we can write

, _ _  6 - 1  1

In similar way we can find the elasticity of consumption with respect to portfolio 
volatility

I - 2  6 6 — 1 1
e<vH/G =  -O' 6 - ( 1 - / 3 )  2

Q.E.D.
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