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Abstract

This thesis aims at developing robust methods of estimation in order to draw
valid inference from contaminated time series . We concentrate on additive and
innovation outliers in structural time series models using a state space representation

The parameters of interest are the state , hyperparameters and coefficients of

explanatory variables .

Three main contributions evolve from the research . Firstly , a filter named the
approximate Gaussian sum filter is proposed to cope with noisy disturbances in both |
the transition and measurement equations . Secondly , the Kalman filter is
robustified by carrying over the M—estimation of scale for i.i.d observations to
time—dependent data . Thirdly , robust regression techniques are implemented to
modify the generalised least squares transformation procedure to deal with
explanatory variables in time series models . All the above procedures are tested
against standard non—robust estimation methods for time series by means of

simulations . Two real examples are also included .
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Introduction . [ch 1. 19.18]

1.1 The outlier problem

It is common in most statistical analysis to assume that observations are
homogeneously generated from the same probability structure . However , in real
data , we often find the appearance of outliers , that is , observations which seem to
be inconsistent with the main group of data . Whether we consider such observations
to be aberrant depends on our beliefs concerning the underlying probability model .
Outliers are a sample phenomenon and we have to decide if they are genuine

members of the population .

Discordant observations can be due to errors in reading , recording or
calculating the data . Their appearance may also be due to some non—repetitive
exogenous interventions or execution faults in assembling the data . All these give
rise to outliers of deterministic nature which can be removed or replaced once they
are identified . Sometimes , outliers are just manifestations of the inherent
variability in the data generation process . Such discrepant observations are not

controllable and are regarded as having random or inexplicable nature.

The presence of outliers violates the homogeneity assumption of data . It
follows that the statistical properties of estimators which are based on this
assumption are invalidated . In fact , contaminants create difficulties in our attempt
to represent the population from which we believe the sample is drawn . Hence , it is
necessary for us to recognize , interpret and make allowance for outlying observations

with the help of appropriately designed techniques.
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1.2 Treatment of outliers

There are two distinct approaches in the treatment of outliers . Firstly , we
can "test" to determine whether an aberrant observation should be retained or
ignored . The second approach is to use all the data but minimizing the influence of
discordant observations . The choice between these two methods depends on the aim

of the investigation .

1.2.1 Testing for discordance

Although we cannot be sure that a discrepant observation is spurious , we may
feel that the loss in accuracy in the statistical analysis caused by rejecting several
good values is small compared to the loss caused by keeping one bad value . This
leads to testing outliers with the intention of throwing them away . There are several
ways to detect deviant observations . For example , we can use graphical procedures

or perform hypothesis testing .

Using graphical displays to exhibit outliers is , perhaps , the simplest and most
popular method . In the time series context , we usually study the residual plot after
fitting the model . Although there exist some graphical procedures specifically aimed
at detecting outliers , see Gnanadesikan (1977) , very often , other assumptions
underlying the statistical analysis are also under investigation . It is sometimes
difficult to differentiate between the departures from the various assumptions .
Therefore , this method should be treated as an informal screening process used only

as a preliminary step in the analysis .
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To introduce some degree of objectivity in the rejection of outliers , a
statistical test is often used to decide whether aberrant observations belong to the
main population ; see Barnett and Lewis (1977) for a detailed summary of these
statistics . For linear models , most tests use residuals from least squares as a source
for identifying outliers . Fox (1972) discusses the likelihood ratio test for
autoregressive time series models . But what turns out to be a outlier in one test
may not be considered as a outlier in another . Which result , then , should the
investigator use ? Besides , we cannot , in most cases , construct tests which are

globally uniformly most powerful .

As mentioned earlier , we can first apply conventional statistical procedures on
our data set and then inspect the residuals for discordant values . Detecting outliers
in this manner , with the help of graphical methods or hypothesis testing , gives rise
to two problems . Firstly , the initial or trial fit can cause the effect of an outlier to
be smeared across several residuals so that good observations are mistaken as outliers
, see Bruce and Martin (1989) . Secondly , the initial results can be so badly
distorted that bad observations do not appear as outliers . Aberrant data points may
also appear in a particular configuration resulting in their effect being masked , see

Atkinson (1986) .

Once the outliers are identified in a time series , we can throw away these
aberrant observations and proceed with analyzing the remaining data set based on
the original model . Otherwise , we can modify the model to incorporate the outliers
in a non—discordant fashion or concentrate attention on deviant values so as to
identify unexpected phenomenon in the data generation process . Relevant action is

taken depending on our interest in the practical situation .
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1.2.2 Robust procedures

=

Sometimes our interest is simply in inferring characteristics of the basic model
regardless of the presence or nature of outliers . Then contaminants only have
nuisance value and we wish to accommodate them . We turn to statistical procedures
constructed to draw valid inference about the population from which the bulk of the
sample is drawn and which will not be seriously distorted by contaminants . Such
methods are said to be robust against the presence of outliers because they minimize
the impact of bad data points . Here , outliers themselves are not of prime concern

and we can estimate or test parameters of the basic model in spite of them .

Unless we are sure of the underlying distribution of the data set , which is
rare when dealing with real data , estimators are no longer derived from some optimal
principles for a particular distributional assumption . Rather , robust estimators are
derived to achieve good performance over a broad class of distributions , especially
long—tailed ones . The presence of rogue values can be modelled by letting the
underlying distribution be a mixture of the distributions of "good" and "bad" data ,
the latter having a substantially bigger variance than the former . By considering
robustness in terms of distributional assumptions , we leave aside problems involving
dependence among observations . By using heavy—tailed distributions , the robust
estimators will be less vulnerable to the effect of outliers . Huber (1977) stated that
"for most practical purposes , ’distributionally robust’ and ’outlier resistant’ are
interchangable" . The concept of robustness is well discussed in Hampel (1971)
(1974) . A good review of robust estimators is given by Huber (1972) (1977) . In the
time series context , Abraham and Box (1979) ; Denby and Martin (1979) ; Dejongh
and Dewet (1985) ; and Martin (1980) propose some robust estimation techniques .

Martin and Yohai (1985) gives an informative review on the robust estimators for
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autoregressive moving average models .

1.3 Outliers in Time Series

The analysis of time series is an important area of statistics that has many
practical applications . Because the observations are not independent , the effect of
outliers now depends on their position in the series and their time configuration , i.e. ,
whether they are isolated or occur in patches . In fact , any discrepant observation
tends to influence adjacent values due to the correlation pattern of the basic process .
It becomes more difficult to detect bad data points as they need not be extreme

values and can be cloaked to some extent by the general structure of the process .

1.3.1 OQutlier models in time series

In due consideration of the above , care has to be taken in modeling outliers in
time series . Martin and Yohai (1986) proposed the following general replacement

model for a series of length T .

Let ¥y be the contaminated process ;
X, the core process which is often Gaussian ;
oA the contamination process ;
and zz a 0—1 process where 0 < y< 1 and p(zz =1)=1.

Then the general replacement model is given by
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v, = (12 )x, + 2], (1.3.1)
for t=1,2,...,T

The probability that any one observation is free from contamination being 1—y .

This general replacement model allows for two distinct types of outliers in

time series , namely , additive and innovation outliers.
(a) Additive outlier model

An additive outlier is caused by an isolated measurement or execution error
superimposed on an otherwise reasonable realization of the process . It is not
reflected in the values of adjacent observations . The manifestation of such outliers

can sometimes be dramatic and obvious .

An additive outlier model is obtain by letting w and x, in the general
replacement model have the following relationship .
W, =X, + v, (1.3.2a)

The contaminated process is , thus , given by

v, =X, +2Jv, (1.3.2b)
for t=1,2,...,T

The time configuration of abnormal records can be modelled by the definition of ZZ'
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(b) Innovation Outlier Model

This is a more inherent form of contamination , eg , it can be caused by a local
change in the mean or variance of the series . Innovation outliers are reflected
through the correlation structure of the process in neighboring values . Hence ,

detection is more difficult than additive outliers .

The difference between additive outlier and innovation outlier models can

more clearly be seen by considering the pth order autoregressive process :

p
for t=1,2,...,T

The additive outlier model is

V=% + zth - (1.3.4a)
5
X, = a Ak t & (1.4.4b)

where € follows a Gaussian process.
Additive outliers affect only the measurement equation but not the actual

autoregressive process .

The innovation outlier model has
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yt = xt (1.3.53.)
p .
X, = E:l ¥k T & (1.3.5b)

where ¢, has a long—tailed distribution .
Here , there is no measurement error but any shock to the system influences both

current and subsequent observations.

1.4 Time series models

1.4.1 ARIMA modeling

The robustified version of some statistical procedures has been developed for
stationary time series , see Deny and Martin (1979) , Fox (1972) and Martin (1980) .
Autoregressive moving average (ARMA) models are frequently used in representing
stationary time series . Non—stationary series are first differenced to achieve
stationarity and then modeled in this way . This class of models is known as the
autoregressive integrated moving average (ARIMA) models , see Box and Jenkins
(1976) . Robustness work done in this context can be found in DeJongh and DeWet
(1985) , Martin et al (1983) , Martin and Yohai (1985) (1986) . However , such an
approach in dealing with the problem of outliers in time series poses several

difficulties .
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Firstly , differencing the series results in more contaminated time points .

Suppose we have a set of data , say ,
*
Y1:¥gr-s¥ g p

with only one error occurring at time n . Taking first difference , i.e. ,
A =Y~V

gives us

* %
AY2 )Ay37" * ’Ayn’Ayn+17‘ . '1AyT

Notice that the single aberrant observation affects the differenced series at two
different time points , namely , at n and n+1 . Such proliferation of aberrant points

accentuates the outlier problem when we deal with differenced series .

Besides , a single abnormal record can obscure the model fitting process . The
model identification stage of ARIMA modeling usually involves the use of the '
autocorrelation function (ACF) . When we estimate the ACF , we weight deviated
time series by their absolute distance from the series mean . The presence of an
outlier will cause both an increase in the series variance as well as a drop in the
covariance leading to an underestimation of the low lags of the ACF . Thus ’, due to
the nature of the estimated ACF , a wrong model could be fitted . Furthermore ,
contaminated data often show certain nonstationary characteristics which makes

model identification problematic .

To overcome these and other difficulties , we shall consider the outlier problem

within another framework of time series modeling .
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1.4.2 Structural time series models

In structural time series modeling , observations y, are regarded as arising
from a composition of independent processes . Each component has a direct
interpretation in terms of the structure of the model although it is not directly
observable . For instance , the "basic structural model" , see Harvey and Peters

(1984) takes the form

y,=m, +8 + € (1.4.1) |
where

m, is the trend which represents the long term movement of the series ;

8 is the seasonal component which takes into account seasonal effects by
means of a fixed period periodic function ;
and € is the irregular term which captures the random and temporary effects on

the series.

The process generating the trend can be regarded as giving a local

approximation to the linear trend , i.e. ,

mo=m_;+b_,+m7 (1.4.2a)
b,=b,_; +u, (1.4.2b)

where N and u, are distributed independently of each other and over time with

mean zero and variances 03’ and 0121

slowly over time according to a random walk process .

respectively . The level and slope both change

The process generating the seasonal component is
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n—l1
8, = —?=1 B_jt+ W (1.4.3)

where w is an independently distributed disturbance term with mean zero and -
variance ai and n is the number of seasons in a year . The seasonal pattern is ,
therefore , slowly changing but by a mechanism which ensures that the sum of the
seasonal components over any n consecutive time periods has expected value zero and

a variance which remains constant over time .

Let us consider the simple random walk plus noise model which is also known -
as the local level model . It is a series with only trend and irregular component , the

former following a random walk .

Vp=mp e (1.4.4a)
mo=m_,+7, (1.4.4b)

where € and 7, are assumed to be white noise . A white noise variable has zero mean

and a constant variance . Taken as a sequence , they are uncorrelated .

Suppose there is a recording mistake at time n which only affects the

observation at that time . Then at timen ,

yo=m  +e€ +v, (1.4.5a)
and m =m _,+7 (1.4.5b)

This corresponds to the additive outlier model . However , if a step change occurs at

time n , a more permanent effect is produced and the model becomes
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(1.4.6a)

(1.4.6b)

This corresponds to the innovation outlier model.

1.4.3 State space form and the Kalman filter

Structural time series models can easily be put in state space form . First , we
have a set of variables , called the state vector , which changes over time . This

state vector is related to the observations via the measurement equation

(1.4.7a)

and is generated by a transition equation

(1.4.7b)
Both e and st are assumed to be white noise with variance <% and variance-covariance
respectively . These two equations make up the state space representation . Notice

that the local level model is already in the state space form with state variable mt .

The state space form for the basic structural model in equations (1.4.1) to

(1.4.3) is given by

v =(1010..0)xt+ et (1.4.82)
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Additive outliers , being spurious values occurring in the observed series , affect only
i

the observation equation . On the other hand , innovation outliers corresponding to

rogue values that affect the driving noise , have a more lasting effect on subsequent

values of the series . Innovation outliers disturb the state equation only .

Once the model is put in state space form , we can apply the Kalman filter for
sequential estimation of the state vector . The Kalman filter comprises prediction

and updating equations for the state vector and its covariance matrix .
Under the Gaussian assumption of the disturbances , the prediction equations

give the best one—step ahead estimate of the state vector , 3 ft-1 and its

mean—square error matrix , Pt [t—1" The prediction equations are :
Bt Jt—1 = T2, 4 (1.4.9a)
Pt/t—l = TtPt—th +Q (1.4.9b)

where a, , and P, , are the best estimate of the state vector and its covariance

matrix at time t—1 .

Whenever a new observation Yy is available , the new information is
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incorporated to give an optimal estimate of the state at time t , 3, . The updating

.
equations are

8= 811 + Pope% 0y — 20/ (1.4.10a)

and - Py =Py )~ Py 184 n—1/h (1.4.10b)
. S 2

with £, =2P 1% + % | (1.4.10c)

where ft is the prediction error variance at time t . The Kalman filter produces
optimal estimates under the normality assumption of the disturbances € and -
The filter also gives the prediction errors and their associated variances which can be
used in the evaluation of the log—likelihood for the observations . This is useful when
we want to evaluate the maximum likelihood estimate of the parameters in the model
such as the variance of the disturbance terms . Prediction of future values beyond

the series can also be made using the filter .

1.5 Robust estimation in time series

As mentioned earlier , additive and innovation outliers affect the measurement
and transition equations respectively . These discrepant observations can be
incorporated into the model by letting the disturbance terms € or 7, ,as
appropriate , take on long—tailed distributions . These are symmetric distributions

with more mass on the tails than the corresponding Gaussian . Such a heavy—tailed
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distribution gives rise to occasional large values . An example of this kind of
distribution is the contaminated normal distribution . This is a mixture of normal

densities given by :

(1-7) N(0,62) + 7N(0,02)

where ag is much bigger than a% and v is small . This model arises when the
disturbances are assumed to be normal with variance a% but a fraction 4 of them
are subjected to gross errors . The contaminating distribution is normal with a big
variance ag . Letting the noise terms € and 0 follow the contaminated normal
distribution implies that the normality assumption of the disturbances are no longer

valid . It follows that the one step ahead estimates of the state , a from the

t/t—1°
Kalman filter are no longer optimal but they are still the best linear unbiased
estimates (BLUE) . Unfortunately , such linear least squares estimates can behave

quite badly in the presence of outliers , see Huber (1972) .

To illustrate the bad behaviour , a time series of length fifty is generated from
a local level model . The measurement noise term follows a contaminated normal
distribution with =5% , a%:l and a§=100 while the system noise is normally
distributed , N(0,1) . This is to allow for additive outliers only in the series . A plot
of this series is found in figure 1.1 . Running the Kalman filter on the data set
produces one—step ahead predictions which are also plotted in figure 1.1 . The
one—step ahead predictions are badly distorted by aberrant values and each outlier
affects several subsequent predictions . On the other hand , corresponding values
from a robust filter are less sensitive to the influences of heavy—tailed distributions ,

see figure 1.1 .



Introduction . [ch 1. 09.33]

In the next chapter , we shall look at robust filtering or robust sequential
estimation in time series . Various filters have been proposed by Masreliez (1975) ,
Martin and Masreliez (1977) , Ershov and Liptser (1978) , West (1981) ,Martin et al
(1983) and Guttman and Pena (1985) to produce robust estimates of the state given
past observations . These filters are computationally attractive because they have
the same recursive structure as the Kalman filter . Modifications are carried out at
the updating equations in order to bound observations with large prediction errors .
Such filters are based on Masreliez assumption which assumes normality for the state
prediction density . We show in the chapter that this assumption is not valid in the
presence of extreme additive or innovation outliers . This means that the above

filters cannot cope with such a situation .

Non—Gaussian filters which are derived directly from the recursive relations
underlying the sequential estimation process , namely the Gaussian sum filter
proposed by Alspach and Sorenson (1972) , Kitagawa’s filter (1988) and Student—t
distribution filter (1989) are discussed . The latter uses mixtures of Student—t
distributions to represent the density functions while Kitagawa’s filter uses a
numerical method based on piecewise linear approximations of the density functions .
On the other hand , the Gaussian sum filter uses mixtures of normal terms to
represent each density function . Although these filters are designed to deal with

series having both forms of outliers present , they are computationally inconvenient.

A modification of the Gaussian sum filter is described in Chapter three . The
basic procedure is to collapse the normal terms in each mixture in order to curb the
exponential growth in the number of components in each density . This method of
collapsing is similar to that used by Harrison and Stevens (1976) . The resulting

approximate Gaussian sum filter (AGSF) is computationally feasible and can handle
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situations where both additive and innovation outliers are present . This filter is
developed in the context of the local level model but can be easily extended to a
multi—state system . Parameter estimation is carried out by the maximum likelihood
estimation procedure whilst the level of contamination can be determined by a broad
grid search . If we have a rough idea of the level of contamination , a robustified
version of the likelihood can be used for parameter estimation . Application of the

AGSF to a real data set is illustrated .

Chapter four deals with the scale estimation problem , i.e. , we shift our
attention from the sequential estimation of the state to the estimation of the
hyperparameters a% ¢ and a% 7 In the presence of additive outliers , the Kalman
filter tends to overestimate the hyperparameter a%e . This is because the estimate
includes the variation of the conta.xhinating component so that we are actually
estimating the overall variance instead of a% ¢ After examining the scale
model for steady state observations , we carry over the M—estimation technique from
i.i.d. situation to time series context . The multidimensional Huber function , see
Hampel (1986) , is employed to bound the influence of outliers . A sampling
procedure for calibrating the estimators in order to achieve Fisher consistency is
described . The M-—estimation of the hyperparameters is carried out using the

Kalman filter and is robust against additive outliers only .

In the final chapter , the local level model is extended to include explanatory
variables . The generalised least squares transformation (GLST) method , see Ansley
and Kohn (1985) , is robustified . This modified procedure involves an iteration
between the M—estimation of scale and trimmed least squares estimation of the
regression coefficients . Robust estimates can be obtained for both the regression

parameters and the hyperparameters as the explanatory variables take on several
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different models . An application of the robustified GLST procedure to a real data

set is discussed .
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Figure 1.1 Plot of series with additive outliers and one-step ahead predictions

from Kitagawa's filter and the Kalman filter
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2.1 Recursive Relations

2.1.1 The Model

In the previous chapter , see equation (1.4.7) the state space representation of

a univariate time series is given by

Vi = 54+ & (2.1.1a)
g =Ta ,+1 (2.1.1b)
fort =1,2,...,T

To simplify the problem , let us first consider a time invariant system whose state

consists of only one element . The measurement equation becomes

Yy =20 + € (2.1.2a)
and the state evolves according to '

o, =he_; +7, (2.1.2b)
for t=1,2,.,T

, a% and 0127 , are known as the

The variances of the disturbance terms
hyperparameters of the model . In this chapter , we are concerned with the robust

estimation of the state a -
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2.1.2 Recursive Relations using Bayes’ theorem

A recursive scheme for the state @, can be formed by applying Bayes’ theorem
Specifically , we can express the state’s prediction density at time t |
p(at/yl’y?'"’yt—l) , in terms of the updating density at time t-1 |,
p(at—l/yl’y2""’yt—1) . When a new observation y; becomes available , it can be
incorporated with this prediction density to give the updating density at time t ,
(o, /yl’yz""’yt) . Denoting all the past observations up to the current time , i.e.

{y;7g--¥;} » a8 Y, we have the following relations

(i) One Step Ahead Prediction
®
p(ay/Y, ;)= f p(ay,0 /Y, ;) dey 4 (2.1.3a)
o

= fm p(at/at_l) p(at—-l/Yt—l) dey , (2.1.3b)

(ii) Updating

p(at/Yt) = p(at/yt’Yt—l) (2.1.4a)
= p(at’yt/Yt——l) / p(yt—l/Yt—l) (2.1.4b)
= P(yt/at) p(at/Yt—l) / p(yt/Yt—-l) (2.1.4¢)

where the normalizing constant p(y,/Y, ) is given by
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p/Y, )= [ pla/Y, ;) p(y,/a,) de, (2.1.5)

We can express the initial density p(e,/y,) in the same form as in equation (2.1.4c) .

That is ,

P(ay/yq) = p(yy/ ay) () / p(¥) (2.1.6)

We observe that the prediction density p(a,/a, ;) in (2.1.3b) depends on the system
noise density p(7,) and the transition equation (2.1.2b) . On the other hand , the -
updating density p(yt/ at) in (2.1.4c) involves the observation noise density p(et) and
the measurement equation (2.1.2a) . Hence , a knowledge of the distribution of the
disturbances , p(et) and p(”t) enables us to determine the prediction and updating
densities of the state at any time t . We shall call these four densities pertinent

densities .

2.1.3 Pertinent Densities having Elliptical Distributions

If the initial state and disturbance terms are Gaussian , the above set of
equations (2.1.3) to (2.1.5) can be evaluated . In fact , at any time t , both the
prediction and updating densities are normal . Hence , it is enough to consider the
first two moments of each distribution . This is why the Kalman filter evaluates only
the means and variances at each stage . The filter makes use of the fact that normal
distributions are closed under linear transformations and that the conditional
expectations is linear in the linear conditioning variables . A class of elliptical

random processes , see Chu (1973) , which includes Gaussian densities has such
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properties . Therefore , when the joint distribution of the initial state and the
disturbances are elliptical , the Kalman filter can still be applied . However , the
random variables A and 7, must in general be dependent because the joint
distribution of two independent elliptical random variables is not elliptical except
when both marginals are Gaussian . This lack of independence amongst the variables

in the non—Gaussian case , is a restrictive condition on the use of the Kalman filter.

2.1.4 Non—Gaussian Pertinent Densities

In the non—Gaussian case , the pertinent densities cannot be characterized by
a finite number of moments . As a result , the system cannot be solved in a closed
form and it becomes necessary to evaluate the non—normal densities explicitly at each
stage . Besides , the conditional mean , which is the minimum variance estimate in
the Gaussian case , is no longer a linear function of the measurement data . At the
same time , the conditional variance now depends on the observations . Generally , it
is not possible to evaluate analytically the integrals in equations (2.1.3) to (2.1.5) and
the densities cannot be determined in most applications . This is , in particular , true
when we let the densities take on heavy—tailed distributions to allow for outliers .
Some form of approximation is , therefore , necessary to realize the formulae in the

recursive relations .
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2.2 Kitagawa’s Filter

Kitagawa (1987) uses a numerical method based on piecewise linear
approximations to evaluate the density functions in the recursive relations . First ,
he represents a non—stationary time series in the state space form as in equations
(2.1.2) . Neither the observation nor the system noise is necessarily Gaussian .
Rather , they can take on heavy—tailed distribution to incorporate aberrant
observations . Sequential estimation of the state is performed by carrying out

prediction and filtering as in section 2.1.2 .

Each density function in the recursive relations is approximated by a piecewise
linear function alternatively known as a first order spline . Thus , we can specify
each density by the number of segments , k ; the position of the nodes , 0, 0y ey
and the value at each node . The outermost nodes n, and n, are selected so that the
essential domain of the density is covered . This is to ensure that the error caused by
truncation is negligible . Hence , for long—tailed distributions , the extreme nodes
should be located further out . The degree of accuracy we have in the approximation
depends on the number of segments . Increasing the number of nodes increases the
accuracy at the expense of more computation . The values at the nodes define the

entire function under the piecewise linearity assumption of the function .

To simplify the computation , the same node scheme is used for all the density
functions . Once we assume the distribution of the noise terms , we can calculate its
density at any point . Using notations p,(a) , f,(a) , r(¢,) and q(n,) for the
prediction , updating , measurement noise and transition noise densities respectively ,

we have the following algorithms.
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(i) One Step Ahead Prediction
For each a = LPAPR SRR T

Pt(a) = p(at/Yt—l)

= [ p/Y,_y) plafy) &y

=f ’ f,_1(v) a(e—hy) dy

n.

f nf f;_1(3) a(a—hy) dy (2.2.1)

Assuming the functions f; ,(y) and q(a — hy) to be linear in any segment {n,_,,n.},

each integral can be approximated as follows

n.
S £ a(e—hy) dy
|

# [f,_;(n,_)a(e~hn, ;) + 1, ;(n;)a(ehn,)] (n;—n, , )/2
(2.2.2)

Substituting (2.2.2) into (2.2.1) gives the prediction density as

k
Pt(a) ® ? [ft—l(ni—l)q( a-—hni_l) + ft_.l(ni)Q( a— hnl)] (ni-ni—l )/2

(2.2.3)
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(ii) Updating
For each a = ng, 0y el

ft(a) = p(at/Yt)
= py()r(y, —za)/c (2.2.4)

where the normalizing constant c is given by
¢ =p(y t/ Yt——l)

= [ p(5) rly, —23) dy

J :1 py(3) r(yy —2y) dy (2.25)

As before , we assume pt(y) and r(yt — zy) to be linear functions on any interval

{n,_;m;} so that we can approximate c by the following relation

k
Ccw §=1[Pt(ni_1)r(yt—2ni_1) + p,(0)r(y,~2n))] (nm._,)/2

(2.2.6)

To start the recursions , we need the density of the initial state , p(o:o) . Ifno
prior information on the state is available , we can use a non—informative prior or a
diffuse prior , see Harvey and Peters (1984) . For instance , we can let the initial

state a follow a normal distribution with a zero mean and a very big but finite
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variance . Given the distributions of the noise terms r(et) and q(nt) , Kitagawa’s
filter produces an approximation to the prediction and updating densities at each

stage .

Estimation of the parameters in the system (2.1.2) can be easily carried out
with Kitagawa’s filter . Maximum likelihood estimates are obtained by maximizing

the log—likelihood function which can be expressed as follows

T
In L(Yy) = f=lln p(y,/Y, ) (2.2.7)

This breaks the joint density of dependent observations down to a simpler form . An
approximation to each conditional density p(yt/Yt—l) is already produced when
running Kitagawa’s filter , see (2.2.6) . Thus , the computation of the log—likelihood

function can be easily incorporated into the filter .

We use a maximization routine from the NAG library named E04JAF

together with an algorithm for Kitagawa’s filter to estimate parameters in the model

in equation (2.1.2) . Two function subroutines are included to evaluate the

observation noise and system noise densities . Recall the time series generated at the

end of Chapter one which only has additive outliers , let us specify correctly in

Kitagawa’s filter the distribution of the measurement and system noise terms . They
follow a contaminated normal distribution with parameters ¥y = 5% , g = 100 , 02 =1, see

31.2a) and a normal distribution N(0,1) respectively . Running Kitagawa’s filter on this

time series gives us a set of prediction density functions . The mean of each of these

densities is computed and plotted in figure 1.1 . Comparing these values with those

produced by the Kalman filter shows that Kitagawa’s filter is robust against outliers .
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Kitagawa employs a direct method for his filter but a great deal of
computation is required . This is especially true when we extend the filter to analyse
models with multidimensional state . In this case , the system disturbance term will
have a multivariate distribution and we need to deal with the convolution of such
density functions . This means that the amount of computation is greatly increased .
The number of nodes can be reduced by using a variable mesh or a moving mesh , see
Kitagawa (1987) . However , this makes the algorithm more complex which takes up
more computation time . Higher order splines can also be used but they may not be
numerically stable . In conclusion , although Kitagawa’s filter is easy to understand

and implement , it is not computationally attractive .

2.3 Gaussian sum filter

Alspach and Sorenson (1971) proposes another non—Gaussian filter based on
the recursive relations in section 2.1.2 . They investigate efficient and simplified
methods for approximating and computing the conditional probability density for the
state . Each density is approximated by a convex combination of Gaussian density
functions . Every Gaussian sum approximation is a valid density function and
converges uniformly to any density of practical concern . We note that the
long—tailed contaminated normal distribution used to model the disturbances is itself

a Gaussian mixture .

The system under consideration is given in (2.1.2) . We denote the normal

density for variable y with mean x and variance o2 by Ny(p.,a2) . Suppose the initial



A review of robust filters o [ch 2. p9.47)

state density is represented by
n, .
p(ao) =3 . 60i Na(aOi’ POi) (2.3.1a)
1=

Let the measurement and system noise , € and T be serially and pairwise

independent , with density functions taking the form

Tt 2

e)=3" 75 N0 (2.3.1b)
i=
st 2

p(n;) = 2 By; N(0,07,) - (2.3.1c)

Then , the Gaussian sum filter is made up of a group of Kalman filters with
a set of mean values and corresponding variances to be computed . These means and

variances are used to construct prediction and updating densities as Gaussian sum .

Suppose that the prediction density at time t is described by

1
_yt
p(ey/Yy ) = f=1"ti Na(a‘t/t—l,i’Pt/t—l,i) (23.2)

Then , the updating density is given by

( /Y)—%Jt B e N (1,02 (2.3.3)
PL& T Xy Tie1 o1 a\HipCij o
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where

#y= g1t Py 2 O a8y 1 3) 155
2 2
=Pyt1,i~ Pip-1,i % 1

_ 2, 2
Tl YT R L

1
t Tt
J ptﬂt_] ¥y (bu 5? )/ E Z =1 ptl7tm Yy (blm’glm

using the notations
byj = 3¢

2 _ 2 2
3= 2 Pyt %

Note that c.. > 0 for all i,j and

ij2
1

st pt ¢ =1
i=1 j=1 J

If we rewrite the updating density as

n
_ypt
Pey/Yy) = Ii:=16ti Nolagye pPise )
Then the prediction density is

,\2)

n ]
_ By By
plog/Yy ) =2_ ¥ %y No(bag g

pg.48]

(2.3.43)

(2.3.4b)

(2.3.4¢)

(2.3.58) -

(2.3.5b)

(2.3.5¢)

(2.3.5d)

(2.3.6)

(2.3.72)
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where

22 =P+ afu. (2.3.7b)

Since the initial state density has been put in the same form as the posterior
density p(at/Yt) , see (2.3.1a) , the Gaussian sums repeat themselves from one stage
to the next whereby (2.3.2) and (2.3.6) are the general forms for an arbitrary stage .
Hence , the Gaussian sum is almost reproducing except for the growing number of
components in the mixture . It follows that the densities are not described by a fixed
number of parameters . If the Gaussian sums for all the prior densities in (2.4.1)

consist of only one term , that is , if they are normal variables , the filter described

above in (2.3.2) — (2.3.7) , reduces to the Kalman filter . In fact , the terms ;s and
02

ij
equations for the ij th density combination of the Kalman filters . Parameter

in (2.3.4) and the terms ha, /i and ’\?j in (2.3.7) represent the Kalman filter

estimation is carried out by the maximum likelihood procedure as in the Kitagawa’s

filter .

One disadvantage of this method is the problem of finding the appropriate
Gaussian sum representation . The second difficulty is the exponential growth in the
number of terms in the sums as the steps are processed . This problem can be
reduced by combining terms with nearly equal moments and ignoring terms with
diminishing weighting factors . These mechanisms reduce the number of terms in the
sum substantially but introduce some error into the calculations . Hence , like the

Kitagawa’s filter , the Gaussian sum filter is computationally inefficient .



A review of robust filters , [ch 2. 9g.50]

2.4 Student—t distribution filter

R.J. Meinhold and N.D. Singpurwalla (1989) approach the non—Gaussian filter
problem from a Bayesian viewpoint using the recursive relations in section 2.1.2 .
This filter produces robust estimates of the state in a state space model such as the
one in equation (2.1.2) by letting the disturbance terms and the initial state assume
independent Student—t distributions . This will result in the prediction and updating
densities following "poly—t" distributions with no closed form representation . A
recursive approximation scheme is proposed , implementing two theorems on the

convergence of the pertinent densities depending on their degrees of freedom .

Suppose the updating density at time t—1 is represented by a mixture of

Student—t distributions , that is ,

Nia
DREE IR AR I | (24.1a)
Ny
with §=1 4 =1 (2.4.1b)

where ;.. 5P and n dencte the thean,variance. and degres of freedom res‘aed.‘v@lja
Like the Gaussian sum filter , the prediction density at time t is formed by a

componentwise convolution of each term in the mixture with the system noise

density. Hence, the prediction density is given by
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N

t-1 2 9
% 1 ™ ?=1 64— thayy 1Py, j+opm)  (24.2)
We note that the number of components in the sum remains the same since the

disturbance term has only one component in its density .

According to equation (2.1.4) , each of the N, _; terms in the updating density

at time t is given by

| 2 2 2
t(ha‘j,t—l’h P j’t_l+a7],n)t(yt,ae,m)
® 2 2 2
j;n t(haj,t-l’h P j,t_l+a,7,n)t(yt,ae,m)dx

(2.4.3)

If this component is unimodal , it will be approximated by a Student—t density with
n degrees of freedom ; centered at a4 which is set to the mode of the posterior ;
]

weight 5j ; Temains the same at 6j t—1 and scale Pj ¢ 18 determined by setting the
approximating density equal to the height of the actual density at the mode .

However , if the term in (2.4.3) is bimodal , then it will be approximated by a
mixture of two Student—t densities , each with n degrees of freedom . These densities
will be centered at the two modes of the original densities . The scale parameters are
found by equating the curvature of the approximating densities to the curvature of

the actual density at their modes . The weights of the mixture are

2
6j L t-1 t(ytyae1m)

%16 = (2.4.4a)
J t(y,0m) + t(haj’t_l,h Pj,t—1+”q'n)
6j2,t - 6j,t—1 - ‘5j1,t (2.2.4D)
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Hence , the number of terms in this mixture of Student—t distribution also increases
as we process the series . Another difficulty associated with this filter is the

determination of the degrees of freedom for the distributions of the disturbance terms.

2.5 Masreliez Assumption and the gain function

2.5.1 Masreliez Assumption

We shall now turn our attention to non—Gaussian filters which retain the
computationally attractive recursive structure of the Kalman filter . These filters
have been derived based on the Masreliez (1975) assumption of a normal distribution
for the state prediction density , p(at/Yt—l) , at each step . It is because of this
assumption that the filters can be put in the Kalman filter form . As discussed in
section 2.1.3 , we know that the Masreliez assumption is true when there is no
contamination in the series . In practice , this assumption is usually closely satisfied
when there are only additive outliers present in the series . However , the presence of

extreme additive or innovation outliers invalidates the assumption .

We generate a series of length one hundred from the local level model with the
measurement noise assuming a contaminated noise distribution and the system noise
following a normal distribution . Additive outliers are modelled by making the
variance of the second component fifty times bigger than the first , see pg 32 . By
running Kitagawa’s filter on this data set with only additive outliers , we obtain a

sequence of state prediction densities . A normal probability plot of the state
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prediction density is made at an outlier point and its adjacent point . These plots
can be found in figure 2.1. We observe that the normal plot at both the outlier and
non—outlier point is a straight line , indicating the normality of the state prediction
densities at such points . Thus , when the series has only additive outliers , the

Masreliez assumption is closely satisfied .

Next we generate another series from the local level model but with the
system noise following a contaminated normal distribution . We allow for innovation
outliers in the series by letting the variance of its second component be fifty times
bigger than the first . Running Kitagawa’s filter on this data set produces yet
another sequence of state prediction densities . The normal probability plots here ,
see figure 2.2 | show a definite deviation from normality at both outlier as well as
non—outlier points . It follows that the Masreliez assumption is not valid when

innovation outliers are present in the series .

2.5.2 Kalman filter and the gain function

Attempts have been made to modify the Kalman filter to handle a
non—Gaussian observation density . Consider the Kalman filter equations for system

in (2.1.2) . They are
(a) Prediction

B 1= ha, 4 (2.5.1a)
2 2
Py =B Py + 0 (2.5.1b)
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(b) Updating

v

_ ¢
3 =3yt Py ? T,
2

_ 2 1
Pe=Pipa Py T

where

Vi =Yy T 28
_ 2 2
ft—Z Pt/t_l-i-ae

pg.54]

(2.5.2a)

(2.5.2b)

(2.5.3a)
(2.5.3b)

The terms v, and f, are the one—step ahead prediction error , also known as ’

innovation , and its variance respectively . Alternatively , we can express (2.5.2a)

and (2.5.2b) as
v
ty 1
a, =a + P qu)(__— —_—
t = Y/t—1 T T/l T 7
1 t
2 2 0 Vi1
P,=P,, .—P%, 22—
t = Tt/t-17 Tt /i1 T,
th t

where the psi—function 9 is an identity function , i.e. ,

YW u) =u

and 1 is the derivative of ¢ .

A plot of this psi—function is given in figure 2.3a .

The psi—function is actually a gain function operating on scaled residuals , —.

(2.5.4a)

(2.5.4b)

(2.5.4c)

\(

Vi
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Hence , its shape determines the influence of these residuals on the updated estimate .
In the case of the Kalman filter , residuals of different magnitude are given equal
emphasis since the psi—function is a straight line . Robustification of this filter can
be done by selecting a gain function which de—emphasizes large residuals usually
caused by outliers . This is similar to finding a robust estimate by using the influence
curve , see Hampel (1974) . Consider a series from the linear system (2.1.2) with a
small probability that any observation is an additive outlier . Based on Masreliez’
assumption , a robust filter takes on the same prediction (2.5.1) and

updating equations (2.5.4a)—(2.5.4b) as the Kalman filter . However , to discount
aberrant observations , different gain functions are used . This allows the
psi—function to act as a non—linear transformation on the residuals to desensitize the

procedure to outliers.

2.6 Robust filters based on Masreliez assumption

2.6.1 Missing value filter

Martin et al (1983) apply the hard rejection rule for the gain function , i.e. ,

u flull < b

Wu) = { 0 [l > b (2.6.1)

A plot of this function is found in figure 2.3b . Whenever the innovations are greater

than b times its standard deviation , the current observation is discarded and no
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updating occurs . This is equivalent to identifying observations with big residuals
and then treating them as missing values . The choice of b depends on the
compromise between robustness and efficiency of the filter . If b is kept small , more
observations will be regarded as outliers . Thus , while the procedure is well
protected from discordant observations , it becomes less efficient when more good

observations are thrown away . Usually , b takes the value 2 or 3 .

Outliers can be identified using the scaled innovations only if the variances of

the noise terms , -026 and afl are known . Otherwise , an initial robust estimate for the
scale of the innovations , denoted by f {0 is needed . In which case , the criterion for
modification of the psi—function is replaced by |[lv,[| > b ft . The maximum
likelihood procedure can , then , be applied to estimate the parameters in the model .

This also applies to the rest of the filters in this section .

2.6.2 Minimax filter

Another robust filter proposed by Martin and Masreliez (1977) generates
min—max estimates , a ft—1° with respect to the least favourable distribution , F0 ,
see Huber (1964) . Under Masreliez’ assumption , the prediction equations turn out
to be the same as those in (2.5.1) . However , updating equation for variance (2.5.4b)

is approximately given by

P, » P P2, 2B p(—t)L 2.6.2)
t*Pypi1 ~ Py 2 Ep ¥ AL (26.
t

where 1 is the first derivative of the gain function ¢,

and the expectation is taken over the distribution F .
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The updating equation for the state still takes the form (2.5.4a) with the gain

function , see figure 2.3c , being defined as

u [[ull < b

= 2.6.3
W) [bsign(u) lu > b (263

where the choice of b is affected by the same consideration as before . This means
that all innovations greater than b times the scale of prediction error will have the
same impact on the updated estimate . In this way , the procedure is desensitized
towards random yla,rge disturbances . Accompanying this choice of psi—function , the -
least favourable distribution , F0 , i8 Gaussian in the middle with exponential tails .

Maximum likelihood estimates can be obtained from this filter as in the previous one

For strict inequality to hold in (2.6.2) , another gain function is applied . The
corresponding estimates produced are known as p—value estimates , see Martin and

Masreliez (1975) and the psi—function is defined as

tan( 535) / sb lull < &

Wu) = . (2.6.4)
tan( -5—) sgn(u) /sb |luf| > b

See figure 2.3d for a plot of this psi—function . The least favourable distribution , FO
, here has a density which goes like cos2(u) in the middle with exponential tails .
Considering only observations whose scaled residuals are smaller than b , more
emphasis is given to those with bigger innovations . This is appropriate only when
the distributions of the disturbances are less heavy—tailed than the corresponding

Gaussian density . Therefore , the use of p—value estimates is not recommended
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when we want to deal with outliers . If the psi—function (2.6.4) is used , the
expression the right of (2.6.2) is actually an upper bound for Pt which may be

approached é.rbitrarily .

2.6.3 Masreliez filter

Masreliez (1975) suggests a filter that provides protection against outliers
associated with heavy—tailed deviations from Gaussianness and which reduces to the
Kalman filter in the Gaussian case . Under the assumption of normal state prediction |
density , the filter is derived using the recursive relations in section 2.1.2 . The
prediction and updating equations remain as (2.5.2) and (2.5.4a)—(2.5.4b)

respectively . But now the gain function is the negative score function , i.e. ,

_ d P(yt /Yt—l)
%,

W)= I (e Y] (2.6.5)

5|
[ >

The shape of this psi—function clearly depends on p(yt/Yt—l) which is the
convolution of the state prediction density and the measurement noise density .
When the density is Gaussian , the filter reduces to the Kalman filter . To cope with
outliers , p(yt [Y, ;) takes on a symmetric long—tailed distribution leading to a odd
symmetric non-linear psi—function which de—emphasizes the influence from large

residuals , see figure 2.3e .

Parameter estimation can be carried out by direct maximization of the
log—likelihood function (2.2.7) noting that the density p(y;/Y, ;) is already

computed at each stage . Now , the convolution of a normal density , p(x,/Y, ,)
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with a contaminated normal density , p(¢;) can easily be evaluated . But if the
observation noise term follows another long—tailed distribution , the convolution may
be difficult to evaluate . In any case , the distribution of the observation noise term

is assumed to be known .

2.6.4 West’s filter

To avoid this need for the convolution of the densities , West (1981) rewrites

the updating equations in (2.5.4) as

3y =8y 14 + P.g(v,) (2.6.6a)
Pl = [Pt_l + 037] 1+6(v,) (2.6.6b)
where
0 ln
g(u) =— b pdv) (2.6.6¢)
du
#1n
G(u) = - %(—2 (2.6.6d)
u

and leaving the prediction equations as (2.5.1) . In this way , the gain function is
now expressed in terms of the measurement noise density instead of p(y,c /Yt—l) . For
certain choices of likelihood , however , g(u) redescends to zero and G(u) becomes
negative for large values of u . It is, therefore , necessary to truncate G(u) , setting
it to zero outside the range of positive values . This will introduce some error into

the calculations .
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2.6.5 Ershov and Liptser’s filter

A non—optimal , non—linear filter is presented in Ershov and Liptser (1978) to
cope with contamination in the measurement process . The system noise assumes a
normal distribution N(O,on) in the linear system (2.1.2) . Recalling the general

replacement model in Chapter one , the observation noise term is specified as

*
€&~ (l_zt)ft + Z, Wy (2.6.7a)
where
* 2
e, ~ N(0,07)
2
w, ~ N(0,07) and
z, is 0—1 process with p(z,=1) = v
such that
2 2
705 > (1-1)0] (2.6.7b)

As with the above filters , the prediction equations are given in (2.5.1) . Updating ,

however , takes the following form

v

— t
t
_ 2 21
t
f*—(l—s)02+s02+P (2.6.8¢)
t = U8g)oy + 8,99 + i1 -0-

where 5 is an estimate of z, . It is a indicator function given by
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5, =1 { llv,ll > (t,) } (2.6.92)
where the constant c is chosen to satisfy
P( "th > c(t,@) / 2, =0 )=« ' (2.6.9b)

The term a is a pre—assigned number .

Unlike the previous filters , robustification is carried out through the
P
modification of the Kalman gain , —iéﬁ , instead of the gain function ¢(u) .
t

Suppose that the estimate 8 is replaced by the mean of the z, process which is yin -
the above equations , a linear filter is obtained . Simulation results in the paper show

that the non—linear filter performs better that the linear one .

2.6.6 Guttman and Pena’s filter

Guttman and Pena (1985) also considered the situation whereby the
measurement noise term € follows a contaminated normal distribution while the
Gaussian assumption is maintained for the driving noise term m - We see in section
2.3 that using the Gaussian sum filter will result in a proliferation of normal terms in
both the prediction and updating densities . This can be curbed by approximating
each Gaussian sum by a single normal distribution . The collapsed distribution is

uniquely determined by the first and second moments of the mixture distribution .

The method of collapsing is similar to that used in Harrison and Stevens
(1976) . Consider approximating a contaminated normal distribution by a single

Gaussian component . That is , representing (1—7)N(p1,ai) + 7N(p2,a§) by
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N(k, 02) . Then , the parameters y and o? are evaluated as
p= (1= + e ' (2.6.10a)
2 2 2
o = (1=1)(0} + (m))?) + G + (1)) (2.6.10b)

We see that the overall mean of the distribution is kept constant in (2.6.10a) . The
variance of the collapsed distribution is that of the mixture plus a term which

accounts for the distances between the old and new means .

In the case where innovation ou_t]jers are absent , the Gaussian sum filter can
be modified to have Kalman filter’s prediction equations (2.5.1) . Updating is carried
out as before , see section 2.3 . At each stage , the updating density will have two
normal components which are collapsed into one term in the manner described above.

An algorithm for this procedure is found in Guttman and Pena (1985) .

2.7 Summary

We see in figure 2.2 that the Masreliez assumption on the normal distribution
of the state prediction density is not always satisfied . It follows that the filters
discussed in section 2.6 are incapable of coping with series having extreme outliers .
On the other hand , non—Gaussian filters designed to deal with both additive and
innovation outliers in the series , see section 2.2 and 2.4 , are difficult to implement .

Therefore , an approximation to the Gaussian sum filter is proposed in the next
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chapter . This filter does not depend on Masreliez assumption and is computationally

attractive .
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Figure 2.1a Normality plot for point before additive outlier
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Figure 2.1b Normality plot for point at additive outlier
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(a) m

Figure 2.3 Psi—functions for (a) Kalman filter ; (b) Missing value filter ;

(¢) and (d) Minimax filter ; and (e) Masreliez filter



Chapter Three

The Approximate Gaussian Sum Filter (AGSF)
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3.1 Imntroduction

3.1.1 The Gaussian Sum filter

The Gaussian sum filter , proposed by Alspach and Soremson (1971) , is
described in Chapter two . When the initial state a, a8 well as the disturbances €
and A of the random walk plus noise model are mixtures of normal densities , this
filter produces minimum variance estimates for the state . If outliers in the model
can be accommodated by letting the noise terms take on contaminated normal
distributions , then the Gaussian sum filter will make a good robust filter . However
, the implementation of this filter is cumbersome because it requires an exponentially
increasing memory storage . Some form of approximation can be carried out to
reduce the number of terms at each stage . For the resulting filter to work properly ,
the approximation has to be accurate at both outlier and non—outlier points . This

chapter discusses a modification of the Gaussian sum filter which is easy to

implement .

Consider a linear system given by

yt =z at + et ' (3.1.13)
o=ha_;+n (3.1.1b)
fort =1,2,.,T
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where z and h are known constants and ||h|| < 1. To allow for both additive and
innovation outliers in the series , we let both the observation noise and system noise

terms have contaminated normal distributions . That is ,

p(e) = (1-7) N(O,ai) +7 N(O,gaz) (3.1.2a)
p(n) = (1-A) N (0,037) + 8 N(O,ba%) (3.1.2b)
o2, 2 2, 2
where 0< 7,6< .5 ; L X and ban) U"? .

When a diffuse prior is employed , the initial state a, takes a normal distribution
N(0,x) where x+ o . However , we want to put it in the same form as (3.1.2) for

ease of exposition afterwards . Hence , we write

P(ag) = (1-8;) N(0,x) + &, N(0,x) (3.1.3)

3.2 Robust filtering by AGSF

3.2.1 Prediction equations

Suppose the updating density of the state at time t is a normal mixture

consisting of only two terms . That is ,

Pey/Yy) = (1=6)N(ag yy 1Py g 1) +EN(3g 1y 2Py 14 o) (3.2.1)
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From equation (2.1.3) , the next prediction density is then defined as a convolution of

this updating density with the system noise density . Hence , we have

p(at+1/Yt) = (I_Jt)(l_ﬂ) N(hat/t,l ) h2Pt/t’1+0'$’)

2 2

2)

2
+ 6, (1-6) N(ha't/t,2 , h Pt/t,2 + oy

2)

" (3.2.2)

+ 6, AN(ha ), 5, h’p, /19 + b
The resulting prediction density comprises four normal terms which can be
approximated by a Gaussian sum of only two terms . This is carried out by a
collapsing method which improves that of Guttman and Pena (1985) which is
illustrated in Chapter two . The procedure maintains the overall mean while
computing the new variance as the old but taking into account the distance between
the old and new means . It is desirable to combine two components only when they
are close enough . Usually , the first term of (3.2.2) is combined with the third and
the second with the fourth . However , due to the nature of the weights in the
prediction density (3.2.2) , this will always lead to the collapsed terms having the
same means . Hence , the collapsed prediction density will always be symmetric and

such an approximation is bad at extreme outlier points .

In order to achieve a good representation of the prediction densities , it is
necessary to distinguish between symmetric and asymmetric distributions . The
presence of extreme additive or innovation outliers causes the state prediction

densities to become skewed and/or bimodal at some points , see Kitagawa (1987) . It
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is vital for the cbllapsed prediction density to retain such features whenever they
occur . To achieve this , it is useful to note that a combination of two close
components results in a wunimodal symmetric function while a bimodal or
heavily—skewed function is formed by two terms with considerable different means |,
see figure 3.1 . No distinction is made between unimodal or symmetric distributions

from bimodal or skewed ones in Guttman and Pena (1985) .

The method of collapsing begins with the testing of symmetry and
unimodality of the state prediction density . Referring to equation (3.2.2) , the
density function is symmetric and unimodal if its two means , a, /t,1 and a /12 are
close to each other . Then , the approximate density is formed by combining the first
with the third term and the second with the fourth term , see figure 3.2b . This
collapsed density has a contaminated normal structure in that the first term
dominates the second . On the other hand , when the distance between the two
means , a, ft,1 and ay /4,2 is large , the prediction density is asymmetric or bimodal .
In this case , the two components of the collapsed density should have greatly
differing means to maintain the bimodal or skewed structure . This is achieved by
combining the first two terms and then the last two terms together , see figure 3.2a .
In this way , each four term normal mixture is well represented by a two term

Gaussian sum .

We now have

P(ayy1/Yy) = (=2 1) Ny 1,10 Pogaye,1)

o1 Ny 190 Prgaye2) (32.3a)
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We define the weights , means and variances of the above density for two separate

cases below .
(a) Symmetric density

(i) weights

Pry1 =8 (3.2.42)
(ii) means
31/t = (A0 hag g g + 6 hay (3.2.4b)

at+1/t,2 = at+1/t,1 (3.2.4c)
(iii) variances
_ 2 2 2 2 2 2
Pt+1/t’1 = (1-6,) (h P,‘/t’1 + o+ dj;) + 6, (b Pt/t’2 + o+ d5)
(3.2.4d)
_ 2 2 2 2 2 2
(3.2.4e)

(b) Asymmetric density

(i) weights

Prp1 =5, (3.2.5)
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(ii) means
3441/t~ hat/t,l (3.2.5b)
(iii) variances
P = (1-8) (0%P, . | + o2) + B (%P, ;. . + bo?)
t+1/t,1 t/t,1 T g t/t,1 n
(3.2.54d)
P = (1-B) %P, ;. , + 02) + B(b2P, ,, , + bo?)
t+1/t,2 t/t,2 n t/t,2 n ,
(3.2.5€)

The distinction between cases (a) and (b) is determined by the following rule . We

say that the prediction density is symmetric iff

lag/e,1 =24 /e,0ll € 3Pyss 1 (3.2.6)

3.2.2 Updating equations

Consider the prediction density , equation (3.2.3a) , at time t , the state is
updated when a new observation ¥, becomes available . From equations (2.1.4) and
(2.1.5) , we see that the updating density is written as a ratio of the product of the
prediction density and the observation noise density to the convolution of these two

densities . Thus , we have,

2 2
P(at/Yt) =% X
1

2
2 . ¢ N(;Llj,a. )/T (3.2.7a)

ij
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where

_ 2
Gy =AY Ny 155 2 Py g i +T)/T

using the following notation
PL=P; Py=1=p

NM=75 '72=1_'Y

=% 1. = gg®
I, =0,; Ig= g0,

., which is the density p(yt /Y

2
T= ? 1 Yj t—l)

=1

—. M

_ 2
M= 214 T P 200220 ) F Py i)

2 _ 2,2 2
%3 = Peji-1,i ~ % Py e il @ Py 1)

p9.74]

(3.2.7b)

(3.2.7h)

(3.2.7¢)

Some properties of the normal density functions , see Alspach and Sorenson (1971) ,

are used to derive these expressions . These properties will be discussed in the next

section 3.2.4 when an extension of the AGSF is considered .

Unlike the prediction density (3.2.2a) , the means of the four components in

the updating density (3.2.7a) are all different . Hence , the combination of the first

with the third term and the second with the fourth term does not always result in a

symmetric collapsed density . The updating density is now approximated as (3.2.1)
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where
(i) weights
b, =C1gt+ Coq ' (3.2.8a)
(ii) means
31,0 = C11#11 T Corkey (3.2.8b)
31,2 = C1ak1g T Cogkng (3.2.8¢)

(iii) variances

denoting P By by 85>
_ 2 ,.,2 2 .2

Pii,1 = Cr1(o11+81y) + co(0y+8g;) (3.2.8d)
= 2 ,,2 2 ,.2

P t/1,2 < €19(079+879) + Cog(055+855) (3.2.8¢)

We see in equation (3.1.3) that the prior density can be expressed as a
two—term normal mixture . It follows that if the above procedure is carried out from
the beginning , the prediction and updating densities at each stage are represented by
Gaussian sums with only two components . The exponential growth in the number of
terms in the sum is , therefore , curtailed and the amount of computation is greatly
reduced . This modified filter is simple to implement even though it does not depend
on Masreliez assumption . Hence , it can be applied to time series where both types

of outliers are present .
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To compare the AGSF with the Kalman filter , a data set of length fifty is
first generated from the local level model with additive outliers only . With reference
to the linear system (3.1.1) and (3.1.2) , the parameters are set as follows : 03 = crf}
=1,y=0=5%,g=100,b=1. Assuming knowledge of these parameter values,
we run the AGSF and the Kalman filter on this series . A plot of the generated state
a, and its estimate a, ft-1 from the filters are found in figure 3.3 . It is clear from
the graph that the AGSF is more robust than the Kalman filter since the former’s
estimate of the state are less sensitive to the outliers . Another series of length fifty |
is generated from the local level model but this time with both additive and
innovation outliers . The parameters are kept the same as above except for the
factors of contamination which are now g = 100 and b = 10 . Figure 3.4 is a plot of
the state and its estimate from the AGSF and the Kalman filter . Again we see the
sequential estimates of the state from the AGSF are less affected by the additive

outliers compared with those from the Kalman filter .

Since a robust filter is not significantly affected by the additive outliers , it is
able to track the state better . We can try to identify the aberrant observations by
examining the scaled innovations . It may be possible to find explanations for these
abnormalities in the series in terms of identifiable events . Appropriate adjustment
may then be made to the system to deal with the outliers . The Kalman filter can be

used to handle the adjusted series .
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3.2.4 Extension to higher order state system

In the derivation of the Gaussian sum filter , see Alspach and Sorenson (1971),

two results regarding the properties of the normal density function are used . They

are
(i) Forz#0,
2 Y o?

Ny(zx,a )=N,(£, ;—2) [z (3.2.9)
and
.. 2 2 2, 2 2
(i) N_(w,0%) Nx(uj,aj) = Nui(“j’ai"'aj) Nx(pij,a’ij (3.2.10a)
where

2 2 2 2
2 2 2 2 2 :
a'ij = 0} aj / (a’i + aJ) (3.2.106)

The Gaussian sum expressions for the prediction and updating densities are based on
these results . When analysing univariate time series having multidimensional state ,
see (1.4.7) , an extension of these results is necessary . Corresponding results for the

multivariate case and their derivation are given as follows .

Lemma one

N,(z% )= N (ay, *(z2)™) / |llzz (3.2.112)

where

2N,

2
[
et

(3.2.11b)



The approzimate gaussian sum filter [ch s.

Letting K =1/ |270” , we have for the L.H.S.

(r%%f]
20

o [-023"

(v—2'%) (Y—Z’X)]

(z%)(z 5-y)]
2

sincez’a=1
NN

oo
=Kmm{
{

[z’(z-ay)]’ [2’(5—25')]]

llzz’(| [27o

r Ny

1 1 zZZ
- 1 | exp{ 2‘(’,5—2;}') [o ](zg—y)]

= R.H.S.

N;g(#l’zl) N')V((H'2’22) = NHI(H2:21+22) N§(Hl2’zl2)
where

= (7 + 507 (7 + 55 )

1 11
Zo=(2 +%)

9g.78]

(QED.)

(3.2.12a)

(3.2.12b)

(3.2.12c)
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Proof

(i) L.H.S. has determinant ||Z 1/2 ||E2||1/ 2

1

R.H.S. has determinant |5, + 5| /2 (57 + 55171/

Squaring both determinants and equating them gives

1%, + 5, = 1155, (6 + 5|

11 % 1% (8 + &9
= |15 + 5, (Q.E.D.)

(ii)  Consider the exponent of the L.H.S. multiplied by a factor of —2

(x—11) ‘311 (x—;) + (o) 3351 (x—o)

=25 + 5h)x — 205 Ly, + 51 T+ !

=3E7 + B x - 200 gy + 55 ) + 4k % by

=5 -V + S| VT |5 - vy + 5

= 1% —VE ¥ + 35 k) X = V(E g+ I )

— Ol + 5 ) VT + ) + sl + sl

1 K17 % ke 1 K17 % ko) T E1™ K1 T K% Ko
-1, 1\-1

where V = (211 +3,7) =3,

This expression is the same as —2 times the exponent of the N_(p4,%;0)

except for a constant term . The three components of this constant term can also be
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re—written as

(c) ‘%‘iz-fl(gl-1 + 251)_1251#2 = -241(%) + 22)—1162

The equations in part (a) and (b) are due to the matrix inversion lemma and that in
(c) holds because

Oy +5)7 =R + 55

= 21 + 5, (Q.E.D.)

The constant term works out to be the exponent of N p (k5 » T{+X,) multiplied by a
1

factor of =2 . We have , thus , shown that both the L.H.S. and the R.H.S‘. have the

same exponent .

Hence , the properties of the normal density function hold for the multivariate
case . As a result , the recursive relations in the Gaussian sum filter extends readily
to the multi—state process . The method of collapsing described earlier can be
applied here to curb the proliferation of normal terms in the sum of each density . It
follows that the AGSF encompasses in a straight forward manner the multivariate

approach .



The approzimate gaussian sum filter [ch 8. pg.81]

3.3 Parameter Estimation by AGSF

This chapter has so far been concerned with robust filtering , that is |,
sequential estimation of the state when the parameters of the model are assumed to
be known . We shall now turn our attention to the estimation of the variances of the
disturbance terms € and ) - This involves the hyperparameters a% and 0127

the level of contamination which is determined by g, b, yand f. Suppose we are

as well as

analysing a series that has both additive and innovation outliers . Maximum
likelihood estimation of the hyperparameters under the assumption of normality will

result in over—estimation of a% and 02 . There is a positive bias because the Kalman

n
filter is trying to allow for the outliers in the system . In other words , it will
attempt to estimate the variance of the contaminated normal distribution and does
not separate the contamination from the true values of the hyperparameters . ML

estimation using the AGSF is , therefore , recommended .

3.3.1 The likelihood function

The likelihood of the observations can be expressed as a product of conditional
densities p(y,/Y, ;) , see equation (2.2.7) . Each of these conditional densities is
itself a convolution of the state prediction density and the observation noise density ,
see equation (2.1.5) . To achieve an accurate representation of the likelihood , the
uncollapsed prediction at each stage is used in the convolution . Hence , the four
Gaussian terms in (3.2.2) are convoluted with the contaminated normal density in
(3.1.2a) . It follows that each conditional density is represented by a normal mixture

with eight components . Thus , at time t , we have
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P /Yy y) = fa:l wiN(k,0%) (3:3.1)
where
(i) the weights w; for i=1,2,...,8 are

(1-8)(1=)(1—7)

(1-6,)1-B) v ,

(1-4,) (1) ,

(1-8) By
& (1-B)(1-)
6,(-Ar
8, B (1)
and 6t B respectively .

(ii)  the first four components have a common mean ha, /t,1 while the last four
)

terms have common mean hat /2" Hence , we have
)

_ {hat /1,1 for i=1,2,3,4
i -
hat /1,2 for i=5,6,7,8

and (iii) the variances a? for i=1,2,...,8 are

2 2 2
hPt/t,1+a +d.

n

2 2 2

2 2 2
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2

2 2
h Pt/t,l +ban+gae ,

2 2 2
hPt/t,2+o +U€ ,

n
2 2 2
h Pt/t,2+a17+ 8% »

2 2 2

and h2

2 2 .
Pt /t,2 + baﬂ + 87, respectively.
The computed values of In p(y,/Y, ;) at each stage are added up to give the
approximation to the log—likelihood of all the observations

First , let us assume the level of contamination in the model to be known .
Then , we can evaluate the MLE of the hyperparameters by maximising over the
log—likelihood funétion . Since the level of contamination is seldom known in practice
, we shall investigate its effect on our hyperparameter estimates in the next section

and see how these factors of contamination can be estimated in section 3.3.3 .

3.3.2 Contour Maps for the likelihood function

In order to concentrate on the estimation of the hyperparameters , we set z =
h = 1. That is , we reduce the linear system in (3.1.1) to a local level model . Both
disturbances are generated from the contaminated normal distributions with af = 03’
=1,y=0f=>5%and g=>b=10. A series of length a hundred is generated from

this model . We then run the AGSF with correctly specified level of contamination on



The approzimate gaussian sum filter [ch s. pg.84]

it to obtain a grid of likelihood values in terms of 03 and 03’ .

contour map of the log—likelihood curve as a function of the hyperparameters . Note

Figure 3.5a shows a

that the function is smooth and that it has global maximum at (0.80,1.31) . Such a
well-behaved likelihood implies that there is no starting value problem for the
optimisation procedure . This means during the optimisation procedure,  the
estimates of the hyperparameters will converge to the optimal point even when

started at different places .

Other grids for the likelihood function have been obtained for the same series
but with misspecifications of the model when running the filter . Figures 3.5b and
3.5c are the contour maps of the log-—likelihood function when the level of
contamination are misspecified in the filter as (a) y=f=5%,g=b=1 and (b)
v=p=5%,g=D>b=100 respectively . That is, the factors g and b are set roughly
ten times smaller in case (a) and ten times bigger in case (b) than their actual value .
In comparison with figure 3.4a , the log—likelihood curve shifts towards the right in
case (a) and it shifts towards the left in case (b) . This usually results in an
over—estimation of the hyperparameters in case (a) and an under—estimation of the
hyperparameters in case (b) . The optimal points for the two cases are (1.18,1.36)
and (0.63,1.46) respectively .

Consider the overall variance of the disturbance terms , that is , the

hyperparameters together with the variance of the contaminating components. We

can express these terms as follows
2 2
V(e,) = (1-7)o, + 180,

=(1-7+ 'yg)af (3.3.2a)
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and V() —(1-f+ ﬂb)af’ (3.3.2b)

The underlying model from which the data is generated has V(ei‘:) = 1.4503 and

V(n,) = 1.45037 . Assuming the specification of case (a) , the corresponding values

becomes V(e,) = 02 and V(n,) = af’ while for (b) -, V(¢,) = 5.9503 and V(z,)
= 5.95 o2 The optimisation procedure is actually estimating the overall variance of

-
the noise terms . Hence , there is likely to be an over—estimation of a% and a;‘)‘7 in case
(a) and an under—estimation in case (b) . It is , therefore , necessary for us to

identify the true level of contamination in order to estimate the central components

only .

3.3.3 Estimation of the factors of contamination

Suppose the percentages of contamination , 7 and B, are known . We
concentrate on the estimation of the factors of contamination , g and b . The
likelihood as a function of these parameters is rather flat . This is because the factors
of contamination only affect the series a small proportion of time . Besides , the
hyperparameters , ai and 03’ , are increased only by a factor of (1—y + 7g) and (1-8
+ fb) instead of g and b when there is contamination , see equation (3.3.2) . Hence,
the inclusion of these factors of contamination into the numerical optimisation
procedure for maximum likelihood estimation is not a viable proposition . A more
suitable method for identifying the levels of g and b is to use a broad grid search .
Suppose that initial estimates of the factors of contamination , denoted by g and b0 ,
are available . A scale of ten can be used to form the grid , that is , we have 1% g
g, 2nd 10 g, spanning the horizontal axis and 1 by , by and 10 by spanning the

vertical axis . The ML estimation procedure for the hyperparameters is repeated over
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this broad grid of values for g and b . By comparing the ML value for each
combination , the best model is chosen as the one with the biggest likelihood value .
We note that the grid search for the factors of contamination is simiilar to the model
identification method employed by Kitagawa (1987) which uses the Akaike

information criterion .

We could try a slightly different version of the above AGSF . Suppose that no
collapsing was done at the prediction stage , i.e. , all four terms of the prediction
density are used in the updating process . The state updating density will end up
with eight terms which are combined to give a two term mixture . Like the previous
filter , the normalising constant p(yt /Yt-l) which contributes towards the likelihood
value is also made up of eight terms . However , these terms are different from those
in the previous filter . In the latter , a distinction is made between outliers and
non—outliers , leading to better estimates of the state . It seems a bit surprising that
the model selection process using the AIC does not work with this new version of
AGSF . Hence , we conclude that the identification of aberrant points at the
prediction stage helps to make the likelihood function more sensitive towards the

specification of the contaminating component in the model .

Initial estimates for the factors of contamination can be evaluated with the
procedures used to obtain starting values for the hyperparameters . The latter are
usually derived from the sample variance and covariance of a differenced series .

Taking first differences of the observations , we have from a local level model ,

AYy =¥~V
=n+te—€ ) (3.3.3)
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Thus , the variance and covariance of this differenced series can be written as
| 2 2 L
Var(ay,) = Tyt 20, (3.3.4a)

and  Cov(ay,ay,, ) =0 (3.3.4b)

€
Such functional relations enable us to obtain rough estimates of the hyperparameters
based on the sample estimates of V(a yt) and Cov(a A +1) . Due to presence of
outliers , it is necessary for the latter to be robust . Some trimming of proportion a

can be introduced . Hence , we have

Ny 2
) ¥ (ay,-ay)
V(ay,) = —=girm= (3.3.52)

. ) (Ayt"A;)(Ayt_'_l"A;)
Cov(a Yiod yt+1) = T=a)(T7) (3.3.5b)

where Ay is the median of the differenced observations and the summations exclude
-g- proportion of the largest and -‘2)5 proportion of the smallest summants . On the
other hand , if we use all the differenced observations and compute V(Ayt) and
Cév(Ayt,Ayt +1) as the sample variance and covariance , we end up with rough
estimates of the overall variances . Using the relations in equation (3.3.2) , we can
then work out approximate values of g and b from these initial estimates of V(et) ,

V(nt) , az and a%.
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3.3.4. Simulation results

In order to study the performance of the MLEsfrom the AGSF and compare
them with those from the Kalman filter , we carry out some simulations . Series of
length one hundred are generated from the local level model . When generating the
data , the first thirty observations are discarded to remove the effect of the initial
state on the series . An optimisation routine COS5NBF from the NAG library is
applied to carry out the ML estimation for both the AGSF and the Kalman filter .
One hundred replications are used in each set of simulations . The summary
statistics of the estimates , namely the bias and mean squa.ré errors (MSE) , taken
over these one hundred replications are then evaluated . We shall investigate the

sampling properties of the two types of estimators for the following set of parameter

values :

2 _ 2 _ 5.
(a) 05—2,03-1,
(b) 026=2,02n=2;and
() of=1,07=15.

In order to facilitate the comparison amongst the three cases , we perform a
logarithmic transformation on the hyperparameters . Hence , we estimate the
logarithms of the scales , i.e. In ¢ ¢ and In Ty in the three sets of simulations . If
there is at least one breakdown in any set of simulations , another set of summary
statistics which are more resistant is computed . The bias , denoted by bia.s* , i now
evaluated using the median while the mean square error , denoted by MSE* , is
computed using the pseudovariance , see Hoaglin et al (1983) . The latter is the
square of the interquartile range scaled by 1.349 which makes it comparable with the

standard deviation of the Gaussian distribution . We say that there is a breakdown
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in the estimation when the estimate of a parameter in at least one replication is way
off from most other estimates within the same simulation . The number of cases
which are excluded , M , is also indicated when presenting this alternative set of

summary statistics .

When comparing the summary statistics of two different estimation procedure,
we have to ensure that any difference found in the bias and mean square error are not
due to sampling variability . Suppose that the sample estimate of the mean x and

variance o of a distribution are x and &2 respectively . Then , assuming normality ,

we have
0
var(x) & - (3.3.6a)
and
N
va.r(a )~ 2il::[ (4.56b)

Denoting the bias and mean square error of the distribution by § and ¢ respectively ,

it follows that

22
var(f) & - (4.3.72)
and
4 (1 1 ‘
var(¢) 20 + — 4.3.7b
0= g ] ham)

To check if the difference in the summary statistic is significant , we need to consider
the variance of this difference . Independence of the simulations is assumed so that
this variance is given by the sum of the variance from each sampling distribution .

Once , we obtain the following statistics
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7= difference in summary statistics
standard deviation of difference

, we can compare it with the z o value from the normal table . We conclude that the
difference is significant at the pth level when z > Zp - In our analysis of the

simulation results , we shall fix p at the 5% level , unless otherwise stated .

The simulation results are categorised according to the types of contamination
present in the system . We shall consider four different cases , namely , clean data ;
additive outliers only ; innovation outliers only ; and both additive and innovation
outliers . These cases can be modelled by the distribution of the disturbance terms ,
see equation (3.1.2) . For simplicity , let us fix the percentage of contamination ,
both v and §, at 5% and assume that to be known . Then , the above four types of
contamination are produced by setting :

Casel g=b=1;

Case2 g=20,b=1;

Case3 g=1,b=10; and

Case4 g=20,b=10.

For each case , we shall first present the summary statistics from the AGSF and then

from the Kalman filter .



The approzimate gaussian sum filter [ch 3. 9g.91]

TABLE 3.1 SUMMARY STATISTICS FROM AGSF (clean data)

Estimator of Bias MSE
(i) log o,

(2) 0.3466 ~0.0213 0.0175
(b) 0.3466 —0.0296 0.0285
() 0.0 0.0055 0.0041

. 1

(ii) 0g o,

(a) 0.0 -0.0647 0.0672
(b) 0.3466 —0.0661 0.0552
(c) 0.2027 ~0.0906 0.0459

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.6 t0 3.8 .
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TABLE 3.2 SUMMARY STATISTICS FROM KALMAN FILTER (clean data)

Estimator of Bias MSE
(i) log o,

(a) 0.3466 —0.0152 0.0129
(b) 0.3466 ~0.0258 0.0221
() 0.0 —0.0053 0.0332
(i1) log %y

(2) 0.0 ~0.0165 0.0496
(b) 0.3466 —0.0121 0.0308
(c) 0.2027 ~0.0504 0.0371

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.9 to 3.11 .

We observe , in the absence of contamination , that the MLE of In o, from the
two filters are not significantly different in terms of their summary statistics .
However , we can see more clearly the edge which the Kalman filter estimator has

2

over that produced by the AGSF for the parameter In o, . In case (b) , where o, =

03’ = 2, both the bias and mean square error for the MIT,’E of In %y from the Kalman
filter are significantly smaller than those from the AGSF . We expect slightly better
behaviour for the estimators from the Kalman filter when there are no outliers in the
data because unlike the AGSF , it does not involve the estimation of the levels of

contamination .
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Case 2 Additive outliers only

TABLE 3.3 SUMMARY STATISTICS FROM AGSF (AO only)

Estimator of Bias MSE

(1) log o,

(a) 0.3466 0.0329 0.0168
(b) 0.3466 0.0417 0.0292
(c) 0.0 0.0393 0.0363
(ii) log Ty

(a) 0.0 —0.1617 0.1263
(b) 0.3466 ~0.1071 0.0661
() 0.2027 0.0811 0.0476

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.12 t0 3.14 .
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TABLE 3.4 SUMMARY STATISTICS FROM KALMAN FILTER (AO only)

Estimator of Bias MSE
(i) log o,

(a) 0.3466 0.3001 0.1358
(b) 0.3466 0.2967 0.1389
(c) 0.0 0.3005 0.1449
(ii) 'log Tp

(a) 0.0 —0.1071 0.0740
(b) 0.3466 —0.0754 0.0529
() 0.2027 —0.0695 0.0457

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.15 to 3.17 .

When additive outliers are present in the series , we find that the AGSF can
estimate In o _better than the Kalman filter . This is evident from Tables 3.3 and 3.4
where we see the summary statistics for the MLE from the Kalman filter are
significantly bigger than those from the AGSF in all three cases . Since outliers are
absent from the transition equation , the parameter In %y is still quite well estimated
by the. Kalman filter . The summary statistics for lnan from the two filters are not
very different except in case (a) where a% = 2 and 03’ = 1, where we see a
significantly smaller MSE for the estimator from the Kalman filter . Hence , we

conclude that the AGSF is more robust towards additive outliers compared with the

Kalman filter .
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Case 3 Innovation outliers only

TABLE 3.5 SUMMARY STATISTICS FROM AGSF (IO only)

Estimator of Bias MSE
(i) log o,

(a) 0.3466 —0.0181 0.0178
(b) 0.3466 0.0122 0.0486
(c) 0.0 0.0348 0.0494

ii 1

(ii) 0g o,

(a) 0.0 —0.0183 0.1028
(b) 0.3466 0.0190 0.0597
(c) 0.2027 —0.0052 0.0532

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.18 t0 3.20 .
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TABLE 3.6 SUMMARY STATISTICS FROM KALMAN FILTER (IO only)

: * *
Estimator of Bias MSE Bias MSE
(i) log o,
(a) 0.3466 —0.0116 0.0161
(b) 0.3466 —0.1163 0.6569 0.0104 0.0240 2
(c) 0.0 —0.6620 6.2078 0.0180 0.0380 9
. 1
(ii) log o,
(a) 0.0 0.1454 0.0660
(b) 0.3466 0.1237 0.0804
(c) 0.2027 0.1374 0.0817

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.21 to 3.23 .

The presence of innovation outliers in the system not only affects the
estimation of 1n oy by the Kalman filter but also causes its estimation of In g, to
sometimes breakdown . Such breakdown in the estimation of In & ¢ does not occur
with the AGSF . In case (a) where o> = 2 and af’ =1, the MLE of In o, from the
Kalman filter does not break down and there is no significant difference in its
summary statistics compared with corresponding values from the AGSF . With the
exception of the MSE for case (a) , we see that for the parameter In an , the bias as
well as the mean square error obtained from the Kalman filter are significantly bigger
than corresponding values produced by the AGSF in all three cases . This leads to
the conclusion that unlike the Kalman filter , the AGSF is rather insensitive towards

innovation outliers .
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Case 4 Additive and Innovation outliers

TABLE 3.7 SUMMARY STATISTICS FROM AGSF (AO and IO)

Estimator of Bias MSE
(1) log o,

(a) 0.3466 0.0329 0.0197
(b) 0.3466 0.0268 0.0386
(c) 0.0 0.0348 0.0494

ii 1

(i) og g,

(a) 0.0 -0.0433 0.1159
(b) 0.3466 0.0059 0.0651
(C) 0.2027 0.0052 0.0532

The sampling distributions of the two MLEs from the two filters for the three

different sets of parameter values are given in figures 3.24 to 3.26 .
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TABLE 3.8 SUMMARY STATISTICS FROM KALMAN FILTER (AO and IO)

' * *
Estimator of Bias MSE Bias MSE
(i) log o,
(a) 0.3466 0.2991 0.1371
(b) 0.3466 0.2909 0.1426
(c) 0.0 0.2357 0.4765 0.2985 0.6014 1
. I
(ii) log o,
(a) 0.0 0.0797 0.0903
(b) 0.3466 0.1039 0.0848
(c) 0.2027 0.1101 0.0807

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.27 to0 3.29 .

Here , both the measurement and transition equation of the system are
contaminated by aberrant data . The AGSF shows a definite edge over the Kalman
filter in the estimation of In O, - Both the bias and mean square error from the
Kalman filter are significantly bigger than corresponding values from the AGSF . In
case (c) , where "2 =1 and 03’ = 1.5, there is a breakdown in the estimation of In o,
by the Kalman filter . The improvement made by using the AGSF is less obvious in
the estimation of In Ty - This is partly because a smaller factor of contamination is
used , i.e. b < g . In case (a) , there is no significant difference in the summary
statistics of the two filters . However , the summary statistics from the Kalman filter

for the other two cases are significantly bigger than those produced by the AGSF .
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Thus , we say that the AGSF can cope with the presence of both additive and
innovation outliers better in terms of the estimation of the hyperparameters than the

Kalman filter .

Consider the ratio of the system noise variance a?] to the observation noise
variance a% and denote this quantity by q . In the above simulations , we have
considered different sets of parameter values with q assuming the values 0.5 , 1 and
1.5 . When the value of q is big , it seems as if the MLE procedure for estimating o ¢
tends to break down . This is because scale is a positive parameter so that negative
estimates are given the value zero . This results in a lump at the zero level for the
sampling distribution of the MLE . In the logarithm scale , this corresponds to large
negative estimates for In g, - Let us consider all one hundred replications in the
simulation for case (c) when the data is clean . Figures 3.30 and 3.31 show the
sampling distributions for the MLEs of the In o, from the Kalman filter and the
AGSF respectively . Two cases of breakdown at replications 41 and 57 can be
identified for the Kalman filter estimator . Corresponding estimates from the AGSF
at these two replications reveal that with the AGSF breakdowns occur less frequently
and less drastically . In order not to confound this effect with the distortion caused
by outliers , we excluded the estimates from these replications for both filters in all

the above simulations for case (c) .

3.3.5 Some Examples

Recall the two examples given in section 3.2.3 . Suppose we now run the
AGSF and the Kalman filter on the generated series without assuming knowledge of

the parameter values . That is , we have to perform ML estimation of the
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hyperparameters before tracking the state . For the AGSF , a broad grid search of
the factors of contamination is included though the percentage of contamination is set

correctly at the 5% level .

Let us first consider the series with only additive outliers , i.e. g=100, b=1.
The scale , namely , o ¢ and o, are estimated as 1.05 and 0.91 respectively by the
AGSF while the Kalman filter’s estimates are 1.75 and 1.00 respectively . A plot of
the generated state o, and its estimates a, ft-1 from both filters are found in figure
3.32 . We observe that the AGSF , being more robust towards outliers , can track
the state better than the Kalman filter . The other series has noisy disturbances at |
both the measurement and transition equations , i.e. g=100 and b=10 . Estimates of
scale o ¢ and Ty from the AGSF are 1.04 and 0.93 respectively . Corresponding values
produced by the Kalman filter are 1.74 and 1.01 respectively . Figure 3.33 consist of
a plot of the generated state and its estimates from the two filter . We conclude that
the AGSF can still track the state better than the Kalman filter even in the presence
of noisy state disturbance term . We observe that with the estimation of
hyperparameters , the Kalman filter is not as sensitive to additive outliers , compare
figures 3.32 and 3.3 . This is because its over—estimation of o, will lead to a smaller
estimate of the ratio q which results in slower reaction of the filter to the

observations .

Next , let us consider a real example . We have a set of monthly data on UK
retail price index from. 1968 to 1984 . We first difference the series and then fit a
local level model to it . Any step changes in the original series will become additive
outliers after differencing . Running the AGSF on this series produces estimates of
scale o ¢ and a, 8 3.57 and 0.77 respectively . Corresponding estimates from the

Kalman filter are 7.61 and 0.99 . Figure 3.34 gives a plot of the series ¥y and the
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one—step ahead predictions a from the two filters . We observe that the

t/t—1
Kalman filter is more sensitive towards the aberrant observations , see the 76th and
132nd observation which correspond to prices in 1974 and 1979 . On the other hand ,

the state predictions from the AGSF are more robust towards the outliers .

3.4 Non—normal contamination

So far , we have been generating outliers by allowing the distribution of the
disturbance terms take on contaminated normal distributions , see equation (3.1.2) .
However , other forms of long—tailed distribution may also be reasonable
approximations to reality . We shall let the central component of the disturbance
terms remain as normal variates but use a t—distribution with two degrees of freedom
for the contaminating components . That is , a series with both additive and

innovation outliers is generated by having
p(e,) = (1-7) N(O,o'%) + 7wy, (4.4.1a)
p(n,) = (1-8) N(0,02) + B uy (4.4.10)
where Wy and Woy ™ by distribution
To investigate how the two filters , namely , the AGSF and the Kalman filter

cope with outliers of this nature , we repeat the simulations for case 4 where

contamination occurs at both equations of the system . The summary statistics for



The approzimate gaussian sum filter

29.102]

the three sets of parameter values are given in Tables 3.9 and 3.10 below .

TABLE 3.9 SUMMARY STATISTICS FROM KALMAN FILTER (t2 distribution)

Estimator of
(i)
(a)
(b)
(c)
(ii)
(a)
(b)
(e

log o,

0.3466
0.3466
0.0
1
og o,
0.0

0.3466
0.2027

Bias

—0.0432
—0.2406
—0.4210

0.0541
0.0248
—0.0628

MSE

0.3110
2.6564
3.7872

0.0848
0.0587
0.0667

* *
Bias MSE

-0.0002 0.0146 1
—0.0026 0.0190 3
0.0150 0.0382 7

The sampling distributions of these two estimators for the three different sets of

parameter values are given in figures 3.35 to 3.37 .
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TABLE 3.10 SUMMARY STATISTICS FROM AGSF (t2 distribution)

Estimator of Bias MSE
(i) log o,

(a) 0.3466 -0.0121 0.0142
(b) 0.3466 -0.0216 0.0272
(c) 0.0 —0.0441 0.0639
" 1

(ii) 0g 7,

(a) 0.0 ~0.0855 0.1066
(b) 0.3466 —0.0588 0.0493
(c) 0.2027 —0.0341 0.0367

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.38 to 3.40 .

The presence of non—normal contamination causes the Kalman filter to
breakdown in its estimation of In o ¢ for all three cases . Breakdown occurs for the
estimation of In o by the Kalman filter for only case (c) . Estimation of neither
hyperparameter broke down for the AGSF . The summary statistics for the
estimator of In Ty from the AGSF are not significantly different from those produced
by the Kalman filter in cases (a) and (b) . Hence , we conclude that the AGSF is
more robust when compared with the Kalman filter towards non—normal
contamination . In fact , the performance of the MLE from the AGSF would improve
as we increase the number of terms in the Gaussian sums . This is because we can
achieve a more accurate representation of a non—normal component with more terms

in the normal mixture . But this will lead to an increase in the computation time .
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There is , thus , a trade off between good representation and computation time
involved . In most economic time series data , it is enough to model the outliers
using a normal contaminating component since wild outliers can usually be identified

and removed during a preliminary examination of the plot of the series .
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Figure 3.1a Mixture of two Figure 3.1b Mixture of two
close components well—separated components
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atrt,i a-yt,2
Figure 3.2a Asymmetric collapsed density

Q

Figure 3.2b Symmetric collapsed density
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Contour maps for the log-likelihood function

0.3 0.7 1.1 1.5
Figure 3. 5a Correct specification of GK and BK

0.3 0.7 1.1 1.5 1.9
Figure 3. 5b Under—specification of GK and BK
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0.3 0.7 1.1 1.9
Figure 3. 5¢c Over-specification of GK and BK
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Sampling distributions for MLE of (a) In o, and (b) In ¢, from AGSF for clean data

(a) Midpoint Count
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(b) Midpoint Cgunt
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The approzimate gaussian sum filter [ch s. 9g.112)

Sampling distributions for MLE of (a) In o, and (b) In 6, from Kalman filter for
clean data
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(a) Midpoint Count
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The approzimate gaussian sum filter [ch s. pg.114]
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(a) Mldpomt Count
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Sampling distributions for MLE of (a) In o, and (b) Ing, from AGSF for data with
innovation outliers only
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(b) Midpoint Cgunt
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The approzimate gaussian sum filter [ch s. 9g.121]
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Sampling distributions for MLE of (a) In o and (b) Ing, from AGSF for data with
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The approzimate gaussian sum filter
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The approzimate gaussian sum filter [ch 8. 9g.123]
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Sampling distributions for MLE of (a) In ¢ _and (b) Ing;, from Kalman filter for data
with both additive and innovation outliers
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The approzimate gaussian sum filter [ch s. 09.124]
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Sampling distribution for MLE of In o, when q = 1.5
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Sampling distributions for MLE of (a) In ¢ f and (b) bi from Kalman filter for data
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Sampling distributions for MLE of (a) In o, and (b) Ing,, from AGSF for data with
non—normal contamination
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4.1 The Scale Estimation Problem

Consider the local level model ,

Vp=0 +¢ (4.1.1a)
q=0a_;+7, (4.1.1b)

where o, is the state while € and 1, are disturbance terms usually assumed to be

normally distributed .

However , to model outliers in the system , we may allow the noise terms to take on
mixture distributions . For example , if additive outliers are present , the density of

€, can be chosen as
p(e,) = (1=7)N(0,6%) + 76, (412)

where v is the proportion of outliers and the contaminating component § ¢ has a

distribution with longer tails than N(0,0%) .

In Chapters 2 and 3 , the main concern was robust sequential estimation of the
state o, . This corresponds to a location estimation problem in the i.i.d. case . The
estimation of variances of the disturbance terms was carried out by the maximum
likelihood estimation procedure . It was necessary to identify the level of
contamination or the contaminating distribution by a grid search or by some

information criterion such as the AIC .
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However , in practice we may wish to treat the contaminating component as a

nuisance parameter and not want to estimate it . Instead , the usual parameters of

interest are the variances of the noise terms , a% and 03] , free from distortion by
contamination . In this chapter , the aim is to produce estimates of these

hyperparameters which are not sensitive to outliers .

4.2 M-—estimates of Scale for i.i.d. case

First , let us consider a set of i.i.d. observations Xy KooKy Suppose each

has density function f o(xi) where 0 is the scale parameter . Then , the scale model is

given by

%) = 3 1G) | (4.2.1)
Taking logarithms results in

In f5(x;) = —In 6 + In (%) (4.2.2)

and differentiation gives

o ) 1], L]
—Fg -9t

(4.2.3)

Scale invariance is achieved by multiplying the first derivative by the scale parameter

, that is , the expression
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9 ln fx) [1 N P (%) x.] (4.2.4)

/] = —
77 f(z1)

is independent of the unit of measurement . A maximum likelihood estimator (MLE)

of the scale parameter is defined as the solution to

2 g0 In f4x;)_ g (4.2.5)

i=1

Hence , the influence function of a MLE takes the form

¥(y)=1+ a%l y (4.2.6)

Such a influence function show that the MLE is not robust . Figure 4.1 gives a
plot of the psi—function for normal observations . We note that its gross error
sensitivity (GRE) is not bounded . It follows that an extreme observation could have
unlimited influence on the estimator . To robustify the scale estimation procedure ,
we can use a generalised maximum likelihood estimator , alternatively known as
M-—estimator . We can modify the MLE by bounding its GRE . The psi—function in
(4.2.6) is replaced by

—b . ¥ <-b
U(y) ={¥(y)—c=V (y) e}:sewhere (4.2.7)
b v > b

n -~
The new estimator of scale is obtained by equating % \F(yi) to zero . The modified
i=1

score function is , in fact the original score function adjusted by c¢ when the
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magnitude of the derivative is smaller than a bound b . This is very like the MLE
when the magnitude of all the derivatives is smaller than the bound b . But when
this value exceeds the bound , the derivative is replaced by a constant , retaining its
sign . In order to obtain Fisher consistency , the original psi—function ¥(y) has to be
shifted by a constant ¢ . Thus , the constant c is found by setting

E(¥(y))=0 (4.2.8)
where the expectation is taken over the distribution of y , usually normal . In this
way , the new estimator is made comparable to the standard deviation at the normal

distribution .

4.3 Scale Model and Sensitivity Curves for Time Dependent Observations

Consider a time series Y Yguee¥p - Although the observations are now time
dependent , their joint likelihood can be broken up into conditional densities
p(yt/Yt—l) . Hence , the probability density function in the i.i.d case f 0(xi) is now
replaced by the conditional likelihood p(y,/Y, ;) . The latter is a function of the
one—step ahead state prediction error vy and its scale ft . Unlike the previous
section , both the location a, Jt-1 and the scale ft are now dependent on the
parameters of interest . To make the situation more comparable to the i.i.d. case ,
reparameterisation is appropriate . We would like to estimate the standard deviation
of the measurement noise term o ¢ and the ratio of the standard deviation of the two

noise terms /q = -g-n
€
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4.3.1 Sensitivity curve for time dependent observations

To gain a better understanding of the problem , we shall first see how sensitive
the MLE of /q , which is denoted by q , is towards outliers . In other words , we

want to investigate the sensitivity curve of J& , assuming o ¢ given . According to the
definition of a sensitivity curve , the change in the ML estimate of /q is measured
when an additional observation (x ) is included in the sample of size n—1 . Unlike
the i.i.d. situation where the position of this new observation in the sample is not
important , it makes a difference as to where we place the new observation in the -
series . For simplicity , let us consider the new observation being added to the end of
the series . This corresponds to the notion of conditional influence function discussed
in Kunsch (1984) and is appropriate in the prediction error decomposition approach .
The sensitivity curve denoted by SC is the difference in the estimates taken as a
proportion of change in the sample size and is a function of the additional

observation. Thus , we have

SC(x,) = @(xl’xz""’xn‘l)l— Yabeyry ) (4.3.1)

n-1

Two series were generated from the local level model given in (4.1.1) with
normally distributed disturbances defined as e ~ N(0,2) and n,~ N(0,1) ,i.e. ¢ =
0.5 . The first is of length 300 and the second has length 400 . Plots of the
sensitivity curves for these two series are found in figures 4.2a and 4.2b . The
functions turn out to be similar to that of a scale variable in the i.i.d. case . They are
both quadratic and symmetric about zero which means that deviation of the new

observation from the actual observation in either direction will influence the MLE of
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vq in a similar way . This should be the case since 4/q is a symmetric parameter .
When the additional observation assumes an extreme value of either sign , it becomes
an outlier , thereby increasing the estimate for system noise standard deviation ¢ 7
since the measurement noise standard deviation o, is fixed and known . A resulting
increase in the new MLE of /g leads to a negative value for the sensitivity curve .
Hence , the functions are negative and downward sloping . We note that there is
stability in the shape of the curves for the two series of different lengths . We next
generate another series of length three hundred from the same model but with
different hyperparameter values , namely 03 = 1 and 0?7 = 5ie. q=5 . The
sensitivity curve for this series with bigger /q value , see figure 4.2c , has a shape

similar to the above functions . However , we see that the estimator is more sensitive

to outliers in this case .

4.3.2 The Kalman Filter and the Likelihood Function

With reparameterisation , the local level model can be set up as

Y=o +¢ Var(e,) = az (4.3.2a)

2
=0+, Var(n,) = qo, (4.3.2b)

Let g be the vector of parameters , i.e. , § = (Ue"/—)’ . It is not necessary to involve
the hyperparameter ai in the recursive equations of the Kalman filter . Thus , we

have for

(i) Prediction
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Pyjig =Py +a (4.3.3b)

(ii) Updating

_ 2
Pt = Pt/t-—l - Pt/t—l /ft (4.3.3d)
where
Ve =¥y~ 3/ (4.3.3¢)
ft = Pt/t—l +1 (4.3.3f)

Under the normality assumption of the disturbance terms , the conditional density of
. . . . 2
each observation p(y, /Y;_;) is normal with mean 34 /i1 and variance o' f, . Hence,

the log likelihood function is given by

2
T T (v2y /41)
i) 1ln p(y,/Y, ) = f . —%ln 27— %— In ftaf - % -;—%&}
= = t%

(4.3.4)
This is is often replaced by the following objective function
T 2 T Orry)’
S()=% lnfo? + 5 L Pl (4.3.5)
t =1 t=1 ftae

In order to perform optimisation over one instead of two parameters , 03 is usually
concentrated out of the likelihood function . This is carried out by replacing az by

its MLE which is
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2
B (4.3.6)
t

However , after substituting (4.3.6) into (4.3.5) , the resulting form of the objective
function will have a derivative which is quite complicated so that modifications done
in the i.i.d. case cannot be carried over easily . Therefore , to simplify the expression
for the first derivative and to make it more comparable with the i.i.d. case , both

parameters ¢, and ¥/q will be estimated simultaneously .

It is clear from (4.3.5) that the first derivative of the objective function will
involve the derivative of f, and a, ft1 and the Kalman filter equations in (4.3.3)
show that these variables are dependent on the parameter /q . The first derivative of
ft and a, /i1 with respect to (w.r.t.) y/q can be evaluated by running another set of
recursions in parallel with the Kalman filter . Corresponding to the set of equations

in (4.3.3) , they are

d a 0 a

e (4.3.72)
aq ovq
d P a P
el o 1o (4.3.7b)
0va Vg
02, day;, [1_Pt/t—1 4o P Py 0%
T RY: Bl m N o

(4.3.7¢)
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2
8P, 4P P P o f
P 71 [1 P RLTA Y k7 H] : (4.3.7d)
Y : ¢ ) oA
where .
9 v 03y
—_—= - (4.3.7¢)
q aq
0f o P
t_ __tft=l (4.3.76)
dq 0vq

On the other hand , the recursive relations in the Kalman filter (4.3.3) do not involve
the parameter o, . This implies that the derivative of f, and a, Jt—1 w.rt. o are '
zero. The actual expressions for the derivative of the objective function will be given

in the next section 4.4 .

Another representation of the Kalman filter can be achieved by combining the
prediction equations with the updating equations , namely (4.3.3a) with (4.3.3c) and

(4.3.3b) with (4.3.3d) . Hence, the recursive equations can be written as

3y =2y + Py vil/hy (4.3.82)
_1 f-1
M Ik A T Al (4.3.8b)
and
_ 2
Piy1/t = Pyji—1—Pipa/fy +a (4.3.9)

where v, and f, are given in (4.3.3¢) and (4.3.3f) respectively .
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In order to obtain an explicit expression for the psi—functions like (4.2.7) in the i.i.d.
case , we shall consider observations after the steady state is reached . When the
Kalman filter reaches steady state , the variance of the state becomes time invariant .

Thus , (4.3.9) becomes

P=P-P/f+q (4.3.102)
where f=P +1 (4.3.10b)
s q=PY(P+1) (4.3.10c)

P denctes the errar (ovariance matrix Gfer sfeadxl skote & reached ,
This is the one—one functional relation between the parameter of interest q and P .

The steady state recursions for the state is

1 -1
a,t =7 at__l + T yt (4311)

Repeated substitution gives

N < +Li_a (4.3.12)
t T, f t-+l T Aom m A

where steady state starts from the (m+1)th observation . Suppose only steady state

observations are used , then , the last term in the above expression is dropped . This

gives us
t—m
f-1 :
a, Y —y, . 4.3.13
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Since f > 1, this is not a bad approximation especially when t is considerably greater

than m . Differentiating a, w.r.t. f results in

d a

t—m . .
t 1) + i
TTI_ L_%ITT_ Visir1 (4.3.14)

Excluding all observations before steady state is reached , the objective function in

(4.3.5) becomes

2
T T vy 24) -
2 t “t—1
S(g)=~ 2 Info? + 2 — 4.3.15
) t=m+1 € t=m+1 o ( )

where fand a, , are defined in (4.3.10b) and (4.3.13) respectively .

4.4 M-—estimators for Time Dependent Observations

e e e i, e S D S

Suppose the estimation of the two parameters , o ¢ and 4fq , is carried out
separately . Let us first consider the estimation of o, when vq is given . The

differentiation of the tth component of the objective function (4.3.5) w.r.t. o, is

2
d S(o) v
e _ 2 t
==[1-— 441
do ae[ ta] ( )

€ €
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To ensure that the estimator for o, does not depend on the unit of measurement , the

psi—function is given by

d S(ae)

Y o,t)=0 (4.4.2)

€ aac

Considering only steady state observations and substituting (4.4.1) into (4.4.2) , we

have

2
U(o,t) » 2 [1 _th] (4.4.3)

g
€

It follows that a M—estimator of ¢ ¢ With bounded gross error sensitivity is the root of

the following function

T
¥(o,,t) (4.4.4a)
t=1
where
*
V(o t) ={¥ (o ,t)—c; =T (o,t) e lsewhere (4.4.4b)
b1 v o> b1

This estimator has a GRE which is related to b1 and ¢ is the shift in the

psi—function needed to obtain Fisher consistency .

Next , we consider the estimation of g assuming o, to be known . The

derivative of the tth term of the objective function in (4.3.5) w.r.t. y/q is
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201
8 8(yg_19 t 12 v, 0 v, [w]" ¢ (4.4.5)
dvq ft &g o | f, 00 |f, O
Since v, =y, —a, , ,it follows that
ov, _ _ Gay_y
aq &g
da, , 0f
=1t (4.4.6)
o1 o/q
Substituting (4.4.6) into (4.4.5) gives
sy 1% 1 1%, by v
q = = +_ = _2vt —_—— (447)
o f.o/q a f.0/q of f,

Consider a psi—function which is this differential scaled by the derivative of the In f ,

le.,
9 s(yn 1%
Y(Yat) = / 17t (4.4.8)
8/ 1,0V
Since the steady state is reached quickly , the scaling term is constant at %gff most
q

of the time . Substituting (4.4.7) into (4.4.8) results in

—oy  (4.4.9)

1
‘I’(\/&,t) =1+4+=
03 taf

2
02,y Vi
£ £
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Considering steady state observations only and substituting (4.3.14) into (4.4.9) gives

2 .
t—m . . v
U e 1+ L [— 2v, B @_‘%fﬁ_‘- Va1 — J} (4.4.10)

L i=1 f

We note that this psi—function is independent of the unit of measurement . Hence, a

robust estimate of /g is the root of the following function

T
2 B(4/a,t) (4.4.11a) -
t=1
where
%*

- b2 . v < —b2

T(vg,t) = {U(V,t) — o = ¥ (VG,t) elsewhere (4.4.11b)
by ¥ > b,

This M—estimate of 4/q has GRE bounded at b2 and Cy is the shift in the psi—function

needed to attain Fisher consistency .

All the observations , not only the steady state ones are used in the
computation of the M—estimates . We run the two sets of recursions , namely the
Kalman filter in section 4.3.2 and its derivatives in section 4.3.3 , on the series in
question . Instead of evaluating the expressions (4.4.3) and (4.4.10) directly , we can
use (4.4.2) and (4.4.8) to evaluate the psi—functions at each stage . Since the score
functions are truncated , the estimates are no longer consistent . Some adjustments
by the terms c, and c, in (4.4.4b) and (4.4.11b) is necessary to achieve Fisher
consistency . Having fixed the bounds b1 and b2 as constants , the values of ¢, and

¢, are determined by letting the mean of the psi—functions @(ae,t) and ¥(yq,t) be
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zero , i.e. ,
E(¥(o,t)) =0 (4.4.12a)
and E(¥(/g,t)) =0 ' (4.4.12D)

where the expectation is taken over the distribution of y .
The terms c, and Cy can be found by Monte Carlo methods described later in section

4.5.1 .It turns out that both ¢ and C, are functions of the parameter 4/q .

4.4.2 Two—dimensional Huber Function

The purpose of this section is to obtain M—estimates of the parameters g, and
¥q simultaneously . That is , we are looking at a generalisation of the robust
estimation procedure for a single parameter to a multi—dimensional context . A
discussion of the generalised Huber function can be found in Hampel «t al (198), Let the
two psi—functions \Il*(a ot) and \I!*(ﬁ,t) from (4.4.4b) and (4.4.11b) respectively

form a vector z . The magnitude of this vector is measured by its norm which is

gl =] ¥ (e 07 + ¥ (g’ (44.13)

The bound of this two—dimensional psi—function , z , is now the surface of a sphere
with radius b . No modification of the estimates are needed if the norm of z is
smaller than the bound b . But when the length of z exceeds this bound , z is
replaced by its nearest point on the spheré . This two—dimensional Huber function

can be written as

h(z,t) = 7 min [ 1 —b—] (4.4.14)

)
llzll
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and a plot of this function is shown in figure 4.3

e
PN

Figure 4.3 Two dimensional Huber function z —> h(z,t)

Suppose the parameters ¢ ¢ and /q have quite different order of magnitude .
In the above estimation procedure , when either one of the psi—functions is zero , the
other estimator will have the same cut—off , b . Such symmetric treatment of the the
two parameters will then be inappropriate . Hence , weights should be attached to
the psi—functions to increase efficiency in estimation . Leaving the coefficient of the
psi—function \I!*(,/i,t) as one , a coefficient d is attached to the psi—function
‘I'*( ae,t) . Thus , the vector z in the two—dimensional Huber function in (4.4.14) is

now defined as

(4.4.15)

zZ =
~N

d\II*(ae,t)]
¥ (ya)

The value of d is chosen to make the variance of the psi—functions equal , i.e. ,
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E(¥ (0,t)%) = E(¥ (yat)?) (4.4.16)

From the initial estimates of scale , described in Chapter 3 , we can roughly gauge
their order of magnitude . If these turn out to be very different , we can try to set a
value for d so that more weight is given to the smaller parameter . Recalibration to
obtain the corresponding values for ¢, and ¢, is necessary . For our investigations

below , d is kept at the value of one .

4.4.3 Starting Values

Once we have found the functional relation of ¢ and Cq in terms of the parameters o,
and /q , M—estimates of these parameters can be obtained by solving for the roots of
the Huber function in (4.4.14) . Since this is a two—dimensional search , it is
important to have good starting values . These are usually resistant estimates
derived from the sample variance and covariance of a differenced series , see Chapter
3 . Alternatively , we can use estimates of hyperparameters obtained by running

another filter such as the AGSF on the series as starting values .

4.5 Simulation results

4.5.1 Calibration

With reference to equations (4.4.4b) and (4.4.11b) , we see that the
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M-estimators need adjustment in order to achieve Fisher consistency . To perform
the calibration of these estimators , we express the two—dimensional Huber function

in (4.4.14) as

(4.5.1)

h(gt) = [hl(”"t)]

Letting the GRE be 0.5 , the values of ¢, and c,, are found by solving the following

respective equations

= M

hi(o,t) =0 (4.5.2a)
=1

hy(va,t) = 0 (4.5.2b)

o M=

=1

A root—finding routine from the NAG library CO5NBF is used to compute ) and Co

for each generated series .

Unlike the i.i.d.situation , the terms ¢ and Cq are no longer constants but are
likely to be functions of one or both parameters of interest . Hence , the values of ¢y
and C, are obtained over a grid of values for o, and yq . The values used for the scale
of the observation noise are 1.00,1.75 and 2.25 while the parameter /q ranges from
0.1 to 10. For each pair of values of the parameters , one hundred series each of
length five hundred are generated from the local level model . A long series ensures
that its hyperparameter values are actually the same as those used to generate it .
One hundred replications are used for each case to allow for sampling variability in

the computed values of ¢ and Cq - This means that for each set of parameter values ,
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we have the sampling distributions of ¢y and Cy - Only the means of the distributions

are used in the calibration and they are tabulated below .

TABLE 4.1 CALIBRATION RESULTS FOR M—ESTIMATORS

1 ¢ % )
0.1 1.00 1.2893 0.7124
1.75 1.2007 0.6822
2.25 1.2080 0.7081
0.3162 1.00 1.2255 0.6426
1.75 1.2271 0.6729
2.25 1.2378 0.6569
0.7071 1.00 1.1767 0.6126
1.75 1.1666 0.6082
2.25 1.1579 0.6034
1.0 1.00 1.1039 0.5658
1.75 1.1260 0.5731
2.25 1.0945 0.5612
2.0 1.00 1.0678 0.5390
1.75 1.0606 0.5343
2.25 1.0662 0.5369
3.1623 1.00 1.0608 0.5324
1.75 1.0628 0.5320
2.25 1.0664 0.5355
10.0 1.00 1.0568 0.5284
1.75 1.0590 0.5296

2.25 1.0543 0.5273
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A statistical package Minitab is used to analyse the results in Table 4.1 in order to
find expressions for ¢ and Cy in terms of the parameter. o ¢ and yq . It turns out
that neither ¢y mor ¢, depends on the parameters o ¢ 5ee figures 4.4a and 4.5a. On
the other hand , figures 4.4b and 4.5b reveal that both ¢, and ¢, have a well-defined
relation with the parameter 4/q . Using power transformations , we can write the

functions as follows .

¢; =094 +0111/(y)®  R®=97.0% (4.5.32)

2 _ 96.3% (4.5.3b)

c, =0.483 +0.081/(y)° R
Note that the high R? values indicate a good fit for each case . A comparison of the
fitted and actual values of ¢ and cy , S€€ figures 4.4c and 4.5¢ , confirms the above

relations .

In order to see whether the length of the series has any effect on the
calibration terms , we repeated the calibration procedure for shorter series of length
two hundred. The hyperparameter values of the series are not necessarily the same as
those values used to generate them because they are not long enough . Hence , we
expect more variability in the calibration terms and the number of replications used
for each set of hyperparameter values is increased to two hundred to cope with this
problem . Otherwise , figures 4.6a and 4.6b reveal that the functions ¢ and c, in
terms of 4/q are very similar to those given in (4.5.3) . We , therefore , conclude that
the calibration terms are invariant to the length of the series and that the relations in

(4.5.3) can be applied to series of different lengths .
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4.5.2 Performance of M—estimators

We can investigate the performance of the M—estimators of scale for different
hyperparameter values by simulation . The three cases considered are

2 .

(a) o,=2,0,=1,ie,q=05

(b) 03=2,a

B )

=2,i.e,q=10 and

N3

() *=1,02=15,ie,q=15

=3

For each case , one hundred random series each of length a hundred are generated
from the local level model . Later in this section , we see that one hundred
replications used in each simulation is enough to reveal differences amongst the
various estimators . As discussed in Chapter 3 , the parameter a% is sometimes
estimated as zero when the value of q is big . When the ML estimation procedure is
carried out with clean data , this happened at replication 57 . Hence , to remove this
effect , replication 57 is discarded whenever we investigate case (¢) . We start off
with clean data where both disturbances are generated from the normal distributions
N(O,az) and N(O,a%) . A root—finding routine from the NAG library CO5NBF is
used to estimate the parameters o ¢ and /q for each series . The estimates are values
which equate the two—dimensional Huber function in (4.4.14) to zero . Note that ¢y
and c, are replaced by the functions in (4.5.3) found during the calibration process .
The root—finding routine sometimes does not converge to the global minimum of the
negative log—likelihood function . To understand this phenomenon , we look at the
contour map for the objective function of one such case , see figure 4.7 . Although
the objective function has a well-defined minimum , see figure 4.7a , it also has a

long plateau to the right , see figure 4.7b . When the routine is searching over this

region, it becomes difficult to distinguish between big or small values of In g . To
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overcome this problem , different starting values especially those which avoid the flat
region are used when non—convergence is indicated by the root—finding routine . We
define breakdown cases to be those which produce estimates which are very far from

the minimum .

We judge the performance of the M—estimators by looking at the summary
statistics of the estimates taken over the one hundred replications . This number of
replications is enough to reveal differences between the different types of estimators .
We perform a logarithmic transformation on the hyperparameters in order to
facilitate the comparison amongst the three cases . Hence , we estimate the
logarithms of the scales , i.e. In o, and In /g, in the three sets of simulations . The
sampling distributions of the two estixﬁators for the three cases are found in figures
4.8 to 4.10 . Table 4.2 below shows the bias and mean square error (MSE) of the
M-—estimators for the different cases . As in Chapter 3 , if there is at least one
breakdown in any set of simulations , another set of summary statistics which are
more resistant is computed . These are the bias , bias* , evaluated using the median
and the mean square error , MSE* , computed using the pseudovariance . The
number of cases which are excluded in the computation of these statistics , M , are

also indicated when presenting this alternative set of summary statistics .
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TABLE 4.2 SUMMARY STATISTICS FOR M—ESTIMATORS (clean data)

Estimator of | Bias MSE
(1) Ing,

(a) 0.3466 -0.0511 0.0489
(b) 0.3466 —0.0858 0.0848
(c) 0.0 —0.1110 0.1305
(ii) In vq .

(a) —0.3466 —0.0487 0.2375
(b) 0.0 0.0087 0.2616
(c) 0.2027 0.0381 0.2947

To better judge the performance of the M—estimators , we shall compare them
with the MLEs pro&uced from the Kalman filter . The MLE of the hyperparameters
can be found by equating the psi—functions in (4.4.2) and (4.4.8) directly to zero . No
calibration terms are needed here since the psi—functions are not truncated . We
repeat the above simulations , finding ML estimates for the same series generated
before . The sampling distributions of the two MLEs for the three cases are given in

figures 4.11 to 4.13 . Their summary statistics are given in Table 4.3 below .
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TABLE 4.3 SUMMARY STATISTICS FOR MLE (clean data)

Estimator of Bias MSE
(i) Ino,

(a) 0.3466 —0.016 0.0128
(b) 0.3466 —0.0264 0.0221
(c) 0.0 -0.0391 0.0361
(ii) In /q

(a) —0.3466 -0.0017 0.0917
(b) 0.0 0.0126 0.0858
(c) 0.2027 0.0269 0.1026

From the above tables , we observe that for the parameter In ¢ € both the
bias and mean square error of the sampling distributions for the MLEs are
significantly smaller than those of the M—estimators . On the other hand , there is
no significant difference in the bias for the two types of estimators of In 4 , although
there is a larger difference in their mean square errors . We also see that the
sampling distributions of the MLEs are much tighter than those of the M—estimators.
Hence , the MLEs perform better than the M—estimators which is expected in a
situation where there are no outliers since the MLEs are best estimators under

normality .

We next compare the performance of the M—estimators with the MLEs in the
case where there is contamination in the series . To allow for additive outliers only in
the series , the observation noise term is generated from a contaminated normal

distribution , i.e. ,
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ple) = (1-NN(0,02) + W(0ko%) (45.4)

where e conlmnation factor k wrespands o g i chapter Hree .
while the disturbance term in the transition equation is generated from a normal

distribution N (0,0?7) . The percentage of outliers is fixed at 5% in the simulations
for convenience . In order to maintain roughly the same the level of contamination in
all three cases , we consider the reduced form of the local level model . The

differenced series and its variance are given by
by, =M + €, — €4 (4.5.5)
Var(ay,) = qo” + 2 Var(e,) (4.5.6)

Let us denote the variance of the differenced series with and without contamination

as Var (ay,) and Var (ay,) respectively . Hence , we have
2
Var (ay,) = (¢+2)7, (4.5.7)

Var (ay,) = q0° + 2 (0.95 + .05k)o?
= (19 + 0.1k + q)o? (4.5.8)

The ratio of these two variances , denoted byr,is

e Var c(Ayt)

19+ 01k + g

T (4.5.9)
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To keep a comparable level of contamination in all three cases of different
hyperparameter values , we just have to fix the ratio r at the same constant in each

case . Let the factor k beg{z’o)n case (a) . Then,

_ 19 + (0.1)(20) + 0.5
= 2+ 0.5

=1.76 (4.5.10)

I

Keeping the ratio fixed at 1.76 , the following relation is derived from (4.5.9)
k = 16.2 + 7.6q (4.5.11)
Hence , the corresponding factors of contamination in cases(b) and (c) work out to be

23.8 and 27.6 respectively .

The above simulations to evaluate the M—estimates and ML estimates for
series with different hyperparameter values are repeated with contaminated data .
The levels of contamination in the three cases are (a) y=5%,k =20 ; (b) v=5%
, k=25 and (¢) v= 5%,k =30 . Sampling distributions of M—estimators are
found in figures 4.14 to 4.16 while those of the MLEs are given in figures 4.17 to 4.19.
Tables 4.4 and 4.5 contain the summary statistics derived from the simulation

results.
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TABLE 4.4 SUMMARY STATISTICS FOR M—ESTIMATORS (1=5%)

Estimator of Bias MSE
(1) Ino,

(a) 0.3466 0.0733 0.0481
(b) 0.3466 0.0692 0.0836
(c) 0.0 0.0864 0.0990
(ii) In q

(a) —0.3466 —0.1818 0.2779
(b) 0.0 -0.1322 0.2783
(c) 0.2027 —0.1417 0.2585

TABLE 4.5 SUMMARY STATISTICS FOR MLE (7=5%)

Estimator of Bias MSE
(i) Ino,

(a) 0.3466 0.2999 0.1357
(b) 0.3466 0.3457 0.1808
(c) 0.0 0.3905 0.2273
(ii) In yq

(a) —0.3466 —0.4057 0.2936
(b) 0.0 -0.4233 0.3142
(c) 0.2027 —0.4605 0.3575

The simulation results show that the MLEs are more affected by the outliers
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than the M-estimators are . There is a considerable shift in the sampling
distributions of the MLEs resulting in significantly bigger biases . The mean square
errors for the MLEs are also smaller than those for the M—estimators . This
difference is more significant for the parameter In ig . Such poor performance of the
MLE:s is because we are performing maximum likelihood estimation when there is a
misspecification in the model , see White (1982) . Such estimators derived from
optimising an incorrectly assumed Gaussian likelihood are known as quasi—-MLEs .
Suppose that the fourth moment of the disturbance term in the reduced form of . the
model exist . Then , as proved in Dunsmuir (1979) , the quasi-MLE is consistent
though its asymptotic variance is increased . Hence , we conclude that the

M-—estimators are more robust than the MLE .

4.5.3 Non-—normal contaminating component

Additive outliers in a series can be generated from other mixture distributions
beside the contaminated normal distribution . We shall investigate the performance
of the M—estimators in comparison with MLEs when the contaminating component in
the mixture distribution is non—normal . Let us first fix the hyperparameter values
at 2 for both a% and 0?7 , 1.e. we are considering the case where q = 1. Suppose that

the disturbance term in the measurement equation is given by
p(¢;) = (1-7) N(O,ai) + 7w (4.5.12)

where the contaminating component w follows a t—distribution with 2 degrees of
freedom in case (a) and a Cauchy distribution in case (b) . The percentage of outliers

is again fixed at 5% for convenience . One hundred random series each of length a



Robust estimation of scale , [ch 4. 99.162]

hundred are generated from the local level model in each case . M—estimates as well
as ML estimates are then obtained for each replication . Sampling distributions for
M-—estimators are found in figures 4.20 to 4.21 while those of the MLE are given in
figures 4.22 to 4.23 . Tables 4.6 and 4.7 contain the summary statistics derived from

the simulation results.

TABLE 4.6 SUMMARY STATISTICS FOR M—ESTIMATORS
(non—normal contamination,y=5%)

Distribution of W Bias MSE
(i) Estimate ofIn o, (0.3466)

(2) ty ~0.0674 0.0708
(b) Cauchy —0.1047 0.1315

(ii) Estimate of In +/q (0.0)
(a) ty 0.0026 0.1943

(b) Cauchy 0.0607 0.3603
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TABLE 4.7 SUMMARY STATISTICS FOR MLE
(non—normal contamination,y=5%)

Distribution of w, Bias MSE  Bias® MSE' M
(i) Estimate of In o, (0.3466)

(2) ty —0.1816 3.2802 0.0074 00154 1
(b) Cauchy —0.0811 3.1219 0.0694 0.1003 3

(ii) Estimate of In v/q (0.0)
(a) to 0.1590 3.5522 —0.0240 0.0774 1

(b) Cauchy 0.0830 4.6097 —0.1330 0.2083 3

Table 4.7 indicates that the non—normal contaminating component causes the
ML estimation procedure to breakdown . The number of breakdown cases is more for
case (b) where the outliers are more extreme being generated from the Cauchy
distribution . Such breakdowns do not occur with the M—estimation technique . In
fact , the summary statistics for the M—estimators reveal that the hyperparameters
are still reasonably well estimated . Hence , we say that the MLE are unable to cope
with extreme outliers in terms of scale estimation and that the M—estimators are
more robust than the MLE even when the outliers are not generated from the

contaminated normal distribution .

4.5.4 Median estimators of scale

Suppose the series under consideration has a high percentage of contamination,

i.e. with a big value for ¥, running the M—estimation procedure described in the
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previous section will result in big standard deviations for the M—estimators . To deal
with heavily contaminated series , a smaller bound for truncation b , is used so that
the derivative of more observations are modified . In the limiting case , b is chosen
to be zero in order that the derivative of all the observations are adjusted . In fact ,
only their direction is taken into account during the computation . Hence , the

Huber function in (4.4.14) is now replaced by

z
h(g,t) = "%“ (4.5.13)
where the elements of z remain the same as those in section 4.4.2. We call this new
estimator the median estimator of scale since it corresponds to the median in the

location estimation problem .

As before , the psi—functions constituting the vector z have to be shifted to
attain Fisher consistency . These calibration terms are different for different
truncation bound values and they can be found by using the procedure described in
section 4.5.1 . Results for median estimators are tabulated in Table 4.8 and the
functional forms of ¢ and ¢, turn out to be similar to those of the M—estimators , see

figures 4.24 and 4.25 .
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TABLE 4.8 CALIBRATION RESULTS FOR MEDIAN ESTIMATOR

va % ¢ %
0.1 1.00 1.2963 0.7137
1.75 1.2976 0.6827
2.25 1.3034 0.7088
0.3162 1.00 1.2332 0.6427
1.75 1.2358 0.6738
2.25 1.2446 0.6576
0.7071 1.00 1.1874 0.6141
1.75 1.1756 0.6089
2.25 1.1677 0.6052
1.0 1.00 1.1213 0.5707
1.75 1.1450 0.5788
2.25 1.1105 0.5659
2.0 1.00 1.0930 0.5490
1.75 1.0876 0.5453
2.25 1.0901 0.5469
3.1623 1.00 1.0883 0.5459
1.75 1.0920 0.5459
2.25 1.0047 0.5494
10.0 1.00 1.0817 0.5407
1.75 1.0845 - 0.5426
2.25 1.0765 0.5386

These calibration results indicate that ¢ and ¢y Can be expressed in terms of the

parameters o, and ¥q in the following relations
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¢; = 1.020 + 0.101/(yg)"3 (4.5.142)
¢y = 0.497 + 0.0752/(vq)*> (4.5.14b)

Comparing these equations with those in (4.5.3) , we see that the calibration terms
for median estimators are hardly different from those for the M—estimators with b =

0.5.

To investigate the performance of the median estimators , we repeat the
simulations in section 4.5.2 first for the case of clean data . Table 4.9 below consists
of the summary statistics for the estimators in the absence of contamination . Their

sampling distributions are found in figures 4.26 to 4.28 .

TABLE 4.9 SUMMARY STATISTICS FOR MEDIAN-ESTIMATORS (clean data)

Estimator of Bias MSE
(1) Ino,

(a) 0.3466 -0.1201 0.0982
(b) 0.3466 -0.1657 0.1433
(c) 0.0 —0.2251 0.3039
(ii) In q

(a) —0.3466 -0.2737 0.4822
(b) 0.0 —0.2089 0.3853
(c) 0.2027 —0.1622 0.5433

The bias and mean square errors for the median estimators are significantly

bigger than the corresponding values for the MLEs in the estimation of both In ¢ ¢
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and In +q . In fact , all the summary statistics here are bigger than those of the
M-—estimators , see Table 4.2 . On the comparison of their sampling distributions , we
see that the median estimators have longer tails than the MLEs and the
M-estimators . This is because there is a substantial loss in information when the

median estimation technique only uses the direction of z , see equation (4.5.13) .

Next , we repeat the simulations in section 4.5.2 for the case of additive outlier
contamination but with the percentage of contamination increased to 10% . The

relation between k and q remains as
k =16.2 + 7.6q | (4.5.15)
Hence , the value of k for the three cases are 20 , 25 and 30 . Simulation results for

both median estimators and MLEs are summarized in Tables 4.10 and 4.11 below .

Their sampling distributions are found in figures 4.29 to 4.34 .

TABLE 4.10 SUMMARY STATISTICS FOR MEDIAN-ESTIMATORS (7y=10%)

Estimator of Bias MSE
(1) Ino,

(a) 0.3466 0.1159 0.0685
(b) 0.3466 0.1034 0.1413
(c) 0.0 0.1367 0.1032
(ii) In g

(a) —0.3466 —0.1534 0.3902
(b) 0.0 —0.1083 0.4713

(c) 0.2027 —0.0908 0.2564
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TABLE 4.11 SUMMARY STATISTICS FOR MLE (y=10%)

Estimator of Bias MSE
(i) Ino,

(a) 0.3466 0.4879 0.2830
(b) 0.3466 0.5572 0.3672
(c) 0.0 0.6203 0.4513
(ii) In /q

(a) —0.3466 —0.5952 0.5076
(b) 0.0 —0.6418 0.5639
(c) 0.2027 -0.7011 0.6435

Here , we see the median estimators having a definite edge over the MLEs in terms of
their summary statistics . Both the bias and mean square errors for the MLEs are

significantly bigger than the corresponding values for the median estimators .

We next repeat the simulations in section 4.5.3 to compare the performance of
median estimators with that of MLEs when the contaminating component is
non—normal . However , the percentage of contamination is now held at 10% .
Simulation results are given in Tables 4.12 and 4.13 and the sampling distributions
are found in figures 4.35 to 4.38 .
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TABLE 4.12 SUMMARY STATISTICS FOR MEDIAN ESTIMATORS

(non—normal contamination,y=10%)

Distribution of w, Bias
(i) Estimate of In o, (0.3466)

(a) ty —0.1297
(b) Cauchy -0.1566

(ii) Estimate of In /g (0.0)
(a) ty 0.1111

(b) Cauchy 0.1505

MSE

0.0918

0.1848

0.2197

0.4601

TABLE 4.13 SUMMARY STATISTICS FOR MLE

(non—normal contamination,y=10%)

Distribution of w Bias
(i) Estimate of In o, (0.3466)

(a) o ~0.1416
(b) Cauchy 0.1436

(ii) Estimate of In y/q (0.0)
(a) o 0.1220

(b) Cauchy 0.0010

MSE

2.6025

9.0266

2.8642

16.4511

* *
Bias MSE M

—0.0096 0.0310 1

0.2254 0.3270 4

—0.0220 0.2273 1

-0.3510 0.5193 4

Again , we observe that both the MLE break down with non—normal

contamination , see Table 4.7 . On the other hand , the median estimators do not

break down even for the case where there is 10% contamination modelled by the
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Cauchy distribution . Hence , we conclude from the simulation results that the
median estimator is more robust towards outliers when compared with the MLE . It
is recommended for use with contaminated data especially when the percentage of

contamination is suspected to be high .

4.6 Redescending estimators

4.6.1 The estimation procedure

Another robust estimator of scale is the redescending estimator which is
designed to deal with extreme outliers . Consider a univariate M—estimator of scale ,
for example , the one given in (4.2.7) . A redescending estimator is similar to this
Huber curve in that the psi—function remains unmodified if it is small . However , if
the influence of an observation is too big , the psi—function is no longer replaced by a
constant . Instead , it is downweighted by a function which goes to zero . Thus ,
when the influence of an observation exceeds a bound r , its psi—function is given zero
weight . Andrew’s curve AC(x) ﬁses a sine function to downweight the influence of

outliers and it is given by
_I . T
AC(x) =Zsin(yx) 0<&x<r (4.6.1)
where 1 acts as a tuning constant which determines the width of the window . We

note that the sine function is like the identity function when its argument is very

small .Hence , for very small values of x ,
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AC(x) = x (4.6.2)

Redescending estimators for the parameters o, and 4/q are then defined as the

roots of the following equation

T
¥ R(z,t) = 0 (4.6.32)
t=1 .

where R(z,t) corresponds to the Huber function h(z,t) in (4.4.14) and is given by

zZ
— Zsin |T Izl lzll < 1
R(z,t) = lzll ‘ (4.6.3b)
0 Izl > =

with 0= (00)

and z comprises the two psi—functions \II*(a ot) and ‘If*(@,t) as in (4.4.14) . When
the magnitude of z is very small , the function R(z,t) acts as an identity function and
the psi—functions in z , are not modified . As the magnitude of z increases , both
psi—functions have a weight which is less than one and it declines to zero . All
observations whose influence ||z|| exceeds the cut—off r are given zero weight , i.e.
they are not taken into account in the sum (4.6.32) . In this way , extreme outliers
are discarded during scale estimation and the resulting estimators are more robust .

However , such redescending estimation procedure often produce multiple roots .
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4.6.2 Performance of redescending estimators

The calibration process described in section 4.5.1 is repeated here except for
the replacement of the Huber function h(z,t) by the redescending function R(z,t) and
r is fixed at five . The values of ¢, and c, for different sets of parameters values are

tabulated below
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TABLE 4.14 CALIBRATION RESULTS FOR REDESCENDING ESTIMATORS

Va Te % ‘ Co
0.1 1.00 1.4566 0.9113
1.75 1.4565 0.8828
2.25 1.4650 0.9172
0.3162 1.00 1.3386 0.8169
1.75 1.3304 0.8567
2.25 1.3436 0.8347
0.7071 1.00 1.2000 0.7035
1.75 1.1943 0.7040
2.25 1.1815 0.6966
1.0 1.00 1.0698 0.5650
1.75 1.0820 0.5687
2.25 1.0681 0.5654
2.0 1.00 1.0407 0.5266
1.75 1.0578 0.5249
2.25 1.0411 0.5250
3.1623 1.00 1.0340 0.5188
1.75 1.0405 0.5212
2.25 1.0413 0.5226
10.0 1.00 1.0390 0.5195
1.75 1.0370 0.5185
2.25 1.0349 0.5177

A plot of ¢y and Cy against the parameters ¢ ¢ and yq are found in figures 4.39 and

4.40 . We see from figure 4.39a and 4.40a that the calibration terms are independent
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of the the parameter o ¢ If we shift the curves in figures 4.39b and 4.40b down so
that they tend to the origin , non—linear optimisation gives the following relations of
¢, and ¢, in terms of Va.

¢, =10+1/(1.8 +10.3a8>%)  R%=00.4% (4.6.42)
¢y =05+1/(23+122/a?%)  R%=005% (4.6.4b)

Like the functions in (4.5.3) , the above relations are a good fit to the sampling
results as indicated by the high R2 values . These relations are also confirmed by the
fact that the actual values of ¢ and C, are almost identical to their fitted values , see

figures 4.39c and 4.40c . Hence, they are used in the simulations below .

To check the performance of redescending estimators , the simulations in
section 4.5.2 and 4.5.3 are repeated for this new estimation procedure . The series
which have been generated previously for the three cases are used here . For each
series , we have to obtain starting values for the hyperparameters as in Chapter 3 .
Like the M-—estimators , we have to use different starting values for cases of
non—convergence , see pg154. With the tuning constant r fixed at five and replacing

c; and ¢, in (4.6.3) by the functions in (4.6.4) , we have the following results :
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TABLE 4.15 SUMMARY STATISTICS FOR REDESCENDING ESTIMATORS
(clean data)

' * *
Estimator of Bias MSE Bias MSE M
(i) Ino,
(a) 0.3466 -0.2153 0.4989 —0.1267 0.1876 1
(b) 0.3466 -0.1993 0.2840
(c) 0.0 —0.2907 0.7684 —0.1697 0.2335 3
(ii) In /q
(a) —0.3466 -0.7640 1.8833 -0.6080 1.3711 1
(b) 0.0 —0.4490 1.3337
(c) 0.2027 0.0303 1.8478 —0.1647 0.9630 2

The sampling distributions of the above estimators are given in figures 4.41 to 4.43 .
From the above table , we see that redescending estimators sometimes breakdown
even when the data is clean . This is due to multiple solutions associated with
redescending estimators . A comparison of these results with those in Table 4.3 show
that the redescending estimators have bigger bias than the MLEs especially for the
estimator of Iny/q . The figures reveal that the sampling distribution of redescending
estimators have rather long tails . Thus , the mean square errors for the MLEsare

significantly smaller than those for the redescending estimators with clean data .
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TABLE 4.16 SUMMARY STATISTICS

Estimator of
@)
(a)
(b)
(c)
(i)
(a)
(b)
(c)

Ineo

0.3466
0.3466
0.0

In 4
—0.3466

0.0
0.2027

Bias

—0.1758
—0.1519
—0.0878

—0.4924
—0.3490
-0.3537

MSE

0.7031
0.5779
0.5632

2.0381
1.5001
1.4964

99.176]

FOR REDESCENDING ESTIMATORS

* *
Bias MSE M

0.0075 0.2253 2
0.0451 0.0849 1
0.0518 0.0978 2

—0.3814 0.8213 2
—0.2680 0.4993 1
—0.2987 0.4480 2

The sampling distributions of the above estimators are given in figures 4.44 to 4.46 .

We observe that there are either one or two breakdowns in each of the cases above .

By looking at the resistant set of summary statistics , we see that In 4 is poorly

*
estimated because of its big MSE . The sampling distributions for the estimator of

this parameter are generally long—tailed . In comparison with the MLEs , we say

that the redescending estimators are more robust in that there is no significant shift

in their sampling distributions . Thus , the biases of redescending estimators tend to

be smaller than those of the MLEs .

MLEs are much tighter than those of the redescending estimators .

However , the sampling distributions of the
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TABLE 4.17 SUMMARY STATISTICS FOR REDESCENDING ESTIMATORS
(non—normal contamination,y=5%)

Distribution of Bias MSE  Bias® MSE® M
(i) Estimate of In o, (0.3466)

(2) ty —0.2337 0.6586 ~0.0322 0.1133 2
(b) Cauchy —0.1990 0.4568 —0.0703 0.0895 1

(ii) Estimate of In /g (0.0)
(a) to —0.2610 1.4795 —0.1130 0.3194 1

(b) Cauchy —0.3300 1.4966 —0.2080 0.6526 1

The sampling distributions of the above estimators are given in figures 4.47 and 4.48 .
The redescending estimators behave in a similar way regardless of the distribution of
the contaminating component . There are one or two breakdowns in the cases above
and Ino ¢ is better estimated than Ini/q . If we compare the above results with those
of case (b) in Table 4.16 , we see that the redescending estimators are quite
insensitive towards the type of contamination . When comparing with the MLEs , we
still observe tighter sampling distributions for the MLEs . However , there are fewer
cases of breakdown for the redescending estimators when the outliers are generated

from the Cauchy distribution .

Since the M—estimators do not breakdown so easily , they are preferred to

redescending estimators in obtaining robust estimates of scale .
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4.7 Other Estimators

A structural time series model can be expressed as an autoregressive
integrated moving average (ARIMA) model . In particular , the local level model
corresponds to a ARIMA(0,1,1) model . That is , it becomes a MA(1) or a first order
moving average model after taking first differences on the observations . Hence ,

from the y, in (4.1.1) we have

Ay, =M+ & —€
= ¢, ~ ¢ (4.7.1)

It follows that there is a functional relation between the hyperparameters of a
structural model and the parameters in a ARIMA model . The following relations

can be derived from equation (4.7.1)

2 |
a% = ;_e_ (4.7.2a)
5 = (2+q) + ¥ q’+4q (4.7.2b)

2

This implies that the estimation of a% and q in the local level model is linked to the
estimation of a% and §in the MA(1) model .

Various robust estimators have been proposed for the estimation of parameters

in ARIMA models , see Martin and Yohai (1985) . We shall discuss these estimators
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in the context of a MA(1) model which is given by

Yy =u, — buy_y : (4.7.3)
The parameter of interest here is # while o2 , the variance of the disturbance u, is
often regarded as a nuisance parameter and is estimated from the residuals d,(6) in

an iterative process . The least squares estimate of §is obtained by minimising

T
EEH() (4.7.4a)
t=1 '
where
« 1
8,(6) = 191, ¥4
[11] .
=3 tl'y, (4.7.4D)
i=0 ! |

The lag operator is denoted by L . M—estimates are then , defined as the solution to

T ' .
mion §=1 p(1,(6)) (4.7.5a)
or
3 ¢[u“((f0)] b,(6) =0 (4.7.5b)
t=1
where
b, (6) = g 6,(0) (4.7.5¢)

Note that 7 is the derivative of the function p and can be the Huber function defined
in Chapter 2 , equation (2.6.3) . Both the least squares and M—estimators are not

robust since their sums in (4.7.4) and (4.7.5) are not bounded . To accomodate the
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outliers , three different robust estimators are proposed . They are

(a) General M—estimates

GM-—estimates is first introduced for the robust estimation of regression

parameters and takes the form of weighted least squares . It is the root of the

following equation

o 2
(0 b
t t—1] -
w|—5— T] i, ()b, () =0

T
¥
t

=1

where C is an estimate of the variance of b, ,(0).

one of the following forms

(i) Mallows type

¥,(w)hy(v1?)
w(u,v) = o172

(ii) Hampel-Krasker—Welsch type

/2
) = L2072

(b) Residual Autocovariance (RA) estimates

(4.7.6a)

The w function usually assumes

(4.7.6b)

(4.7.6¢)

Using the equation (4.7.4b) , the M—estimates in (4.7.5) can be rewritten as
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T—2
where
A T—i [1,,.(0) A
%(6) = ?—-1 ¥ t+; ] i,(9) (4.7.7b)

which is an estimate of the residuals autocovariance at lag i multiplied by a factor .

In RA estimates , this is replaced by the following robust estimate

T—i (d,,.(0) (0
%(6) = §=; n u”“,( ) .utf, )] (4.7.8)

Like the w function in GM—estimates , the 5 function here can take on the Mallows

type in (4.7.9a) or the Hampel type in (4.7.9b) below .

”uv) = ¥, (0)hy(¥) (4.7.99)
7(u,v) = ¢Y(uv) (4.7.9b)

Both the GM and RA estimators are mainly used to estimate parameters in a
stationary ARMA model . We should not try to estimate the hyperparameters of the
local level model through these estimators using the relations in (4.7.2) . This is
because differencing of the observations in (4.7.1) will result in a proliferation of

outliers .

(c) Approximate Maximum Likelihood estimates (AMLE)

This type of estimator is more appropriate for sequential estimation . The

ARIMA model is first put in state space form and then a filter is used . As seen in
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the previous chapters , eg. in (2.2.7) , the likelihood of a time series can be

decomposed into its conditional densities . Thus , we can write
T
InL(Yp)=3 Ing(v,) (4.7.10a)
t=1

where v, is the prediction error while g, is a convolution of p(x,/Y, ;) and p(et) .
Under Masreliez assumption and letting the disturbance ¢, take on a long tailed

distribution , the following approximation is carried out .

g (vy) ® . g[ﬁ] (4.7.10b)
s

where ft is the scale of the prediction errors . Thus , to obtain maximum likelihood

estimates we minimise

o3 i (4.7.10¢)
In - Ing|— 4.7.10¢c

o+ M ]

=1

AMLE are obtained by minimising the following robustified objective function

T
ln,/f{—z p

T
)
t=1 t=1

—] (4.7.11a)

Letting z be the ratio of v, to ﬁt and c be the cut—off , one of the forms which p can

take is
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—Cz -22/2 z <—C
o(z) = 2%/2 lzll ¢ ¢ (4.7.11b)
cz —22/2 z > C

In the control engineering literature , see Ljung (1978) , this procedure is
known as the prediction—error method . Robustness is achieved by letting the p
function "increase more slowly than quadratically" in A However , this method is
based on the assumption that ft is independent of the parameters of interest . With
reference to section 4.3.2 , we see that although \ and ft are independent of the
parameter o, , both v,and {; are functions of q , the exact relation is given in (4.4.3)
and (4.4.6) . Hence , neither the approximation in (4.7.10b) nor the independence

assumption is satisfied .
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Figure 4.1 Psi-function for observations from N(1,2) distribution
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SC -~
0+ X X %X % X
- x* *
_ * : *
- x
- * '
~1500+ .
- *
-_— x
- *
~3000+ .
_ *
- x
_ *
—4500+
T«
+ + + + + + - Ay
-105 70 _35 0 35 70 e lis

Figure 4.2b T = 400 and q = .5

(¢) SC -
0 + * x %k * *
- X * *
- * x x
- * '
— x
—6000+ . *
_ x
- X
-12000+ :
- *
_ x
-18000+
%
+ + + _ + + + Y1731
-140 -105 -70 - 35 0 35

Flgure 4.2c T = 300 and q = 5.



Robust estimation of scale. [ch 4. pg.186)

Calibration term for (o .t) , ¢; of M-estimators

(@) ¢ - A
- A A
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- B B B
1.190+
- C
- C C
1.120+_ D
- - D
- D
- 2 3 2
1.050+ G G
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1.00 1,25 . 150 175 2.00 225 ¢

Figure 4.4a Plot ¢, against o,

(b) ¢, - C
-2
1.260+
-3
1.190+
- A
- 2
1.120+ B
- A
- C
- 3 3 B
1.050 + 2
; ; " : : w1

Figure 4.4b Plot of ¢, against Jq
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(c) ¢ - C
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Figure 4.4c Plot C, against its fitted values

Calibration term for ¥(yq,t) , ¢, of M—estimators
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Figure 4.5a Plot of c, against o,
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Figure 4.5¢ Plot of ¢, against its fitted values
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Calibration terms ¢ and c2' of M-estimators when T=200
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Figure 4.6b Plot of c, against vq
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Sampling distributions for M—estimator of (a) In o, and (b) In q for clean data
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(a) Midpoint Count
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Sampling distributions for MLE of (a) In o, and (b) In /q for clean data

Each * represents 2 observations
(a) Midpoint Count
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Each * represents 2 observations

(b) Midpoint Count
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Figure 4.11 o = 2 and afl =1
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Sampling distributions for M—estimator of (a) In o ¢ and (b) In y/q for contaminated

data (y=5%)
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Sampling distributions for MLE of (a) In o, and (b) In g for contaminated data

(r=5%)
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Robust estimation of scale ‘ [ch 4. pg.198]

Sampling distributions for M—estimator of (a) In o, and (b) In Jq when 03 = 03, =2
with non—normal contaminating component (y=5%)
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Robust estimation of scale - [ch 4. 99.199]

(b) Midpoint Count
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(a) Midpoint Count
—0.2 1*

0.0
0.2

o
NS

DRONHHRHEEROO
hiboxamivo®

2

-
= OB N = b QO W =

**
kkkdokkdokkkk kR kokkkkk

*kkd Ak ARk Rk ok ok dkokkok ok ok ko ok ko ko kK kk
sk kkkokkkk

*kkk

Kk

*kkok

*

*

*%

*k

*

3 observations above the last class

(b) Midpoint

2.5
—2.0

|
-t
(<43

roodk,
otmowmo

Figure 4.23 contaminating component has Cauchy distribution

1

Count
1 *

Rk kK

* kR

Fkkck Rk ok k ok kokkkokokkkkokkk

Rk Rk Rk Rkokkokok ok kok ko ok ok ok kK ok kK ok ok K
*kkokkokkkkokk

*

£9.200]



Robust estimation of scale - [ch 4 pg.201]

Calibration term for %o ,t) , c; , of Median estimators
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[ch 4. £9.202]
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Robust estimation of scale , [ch 4. 09.204]

Sampling distributions for Median estimator of (a) In o, and (b) In g for clean data
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(a) Midpoint C
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Robust estimation of scale . [ch 4. pg.206]

Sampling distributions for Median estimator of (a) In o_ and (b) In /g for
contaminated data (y=10%)
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Robust estimation of scale ' [ch 4. 99.208]

Sampling distributions for MLE of (a) In o, and (b) In g for contaminated data
(r=10%)
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Robust estimation of scale , [eh 4. £9.209]

(b) Midpoint Cgunt
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Robust estimation of scale ’ [ch 4. 29.210]
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Robust estimation of scale , [ch 4.
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Robust estimation of scale : [ch 4. 99.212)

Calibration term for ¥(o e’t) » ¢; of Redescending estimators
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Robust estimation of scale _ ) [eh 4. pg.213]
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Robust estimation of scale , [ch 4. pg.215)

Sampling distributions for Redescending estimator of (a) In o, and (b) In /q for clean
data

2 observations below the first class
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3 observations below the first class
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Sampling distributions for Redescending estimator of (a) In o, and (b) In q for
contaminated data
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3 observations below the first class
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2 observations below the first class
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Sampling distributions for Redescending estimator of (a) In o, and (b) In y/q when ai

= a?) = 2 with non—normal contaminating component
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5.1 Introduction

5.1.1 The Model

——

We have been developing robust estimation procedures for the local level
model . However , in many applications , some variation in the series can be
attributed to observable variables . We shall , thus , consider an extension of the
local level model to allow for explanatory variables in the system . Keeping the
transition equation (4.1.1b) the same , we include regressors in the measurement

equation . The model now becomes

Yy =Mt X0+ € (5.1.1a)
M= +0 (5.1.1b)

where . is a px1 vector of explanatory variables

and ¢ is the corresponding px1 vector of fixed unknown coefficients .

The observable variables are assumed to be weakly exogenous , see Harvey
(1989) . This means that they are treated as fixed in repeated samples . Such an
assumption allows for the estimation of unknown parameters in the model conditional
on the explanatory variables . The regression coefficients § are seldom known in

practice and have to be estimated .
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5.1.2 State space representation

A state space representation of the above system is achieved by including the
regression coefficients in the state vector . Now , we have an augmented state vector
g, which is (ut g%)’ where :ét = 'éo = §. Using the time—invariant property of the

regression coefficients , that is ,

S=18 1 (5.1.2)
we can express the model in (5.1.1) as
=0 8)g + 4 (5.1.32)
10 n
a =" ~lo .+ |7 (5.1.3b)
w=|, FJeat Y

In this way , the regression coefficients § can be estimated along with the state by -

5.2 The Generalised Least Squares Transformation (GLST) Procedure

As an alternative to using the augmented state vector , the estimation of the
regression coefficients and other unknown parameters in the model can be carried out
by using the GLST procedure , see Ansley and Kohn (1985) . We can view the linear

system in (5.1.1) as a regression of ¥, on x, with correlated errors given by
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£ =+ € (5.2.1)

A transformation , say L , is performed on this disturbance term to remove its
correlation . Such a transformation , which uses the Cholesky decomposition , is
equivalent to running the Kalman filter for the stochastic part of the model on the
error term and treating the resulting innovations as transformed variable , Lﬁt It
follows from the measurement equation that the same transformation , L , has to be
carried out on y — X§ where y is the vector of all the observations , ie. ,
(yl,yz,...,yT)’ and the Txp matrix X is (;51,;52,...,;5,1,)’ . Since the Kalman filter is
linear , we can run it separately on y and then on X to produce the prediction errors
Ly and LX respectively . The covariance matrix of the transformed variables L(y —
X§) is simply that of Ly because the explanatory variables are assumed to be fixed

It is a diagonal matrix F where the diagonal elements are the scale of the

innovations ft produced while filtering y . Our regression model now becomes
Ly=LX§+L{ (5.2.2)

where the disturbance term L¢ is uncorrelated and has covariance matrix F .
Conditioned on the other parameters in the model and based on normality
assumption , the MLE of the regression coefficient is given by the following weighted

least squares estimate

5= (XLF LX) X UF Ly (5.2.3)
In most cases , the hyperparameters of the model , 03 and 031 , are not known
and have to be estimated together with the regression coefficients § . We note that if

the regression coefficients are known , we can treat y — ')v:"t § as a new series and
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apply the Kalman filter for the stochastic part of the model to it . This suggests that
we can concentrate the regression parameters out of the likelihood function and use
an iterative estimation procedure . Given an initial estimate of the regression

-

coefficients , 'go , the MLE of the hyperparameters are found by applying the Kalman

-

filter for the local level model on the series y — b H 'QO . The Kalman filter based on
these hyperparameter estimates is then used to filter y and X in order to obtain the
regression model (5.2.2) . This leads to a new estimate for the regression coefficient
§1 found by evaluating the expression in (5.2.3) . Using this new estimate of g, the
hyperparameters are re—estimated . This procedure is repeated until convergence

takes place .

The initial estimate §0 needed to start the iteration procedure has to be found
without involving the hyperparameter values . By taking first differences of the
observations in (5.1.1) , we reduce the system to a regression model with a stationary

disturbance term . We have
8y, = ax.’8 + 0, + ¢, - (5.24)

where the noise term 7, + ae, follows a MA(1) process . Assuming finite second

moments of ¢, and 7, , ordinary least squares (OLS) regression of ay, on Ax, produces

a consistent though inefficient estimate for § which is used as our -§0 .
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5.3 Robustification of the GLST Procedure

The GLST procedure described in the previous section does not allow for the
presence of outliers in the series . Neither the scale estimation nor the estimation of
the regression coefficients is robust . Suppose we have a series that is from the
system defined in (5.1.1) but with a measurement noise term which follows a
long—tailed distribution . Application of the GLST procedure on this series will
produce parameter estimates which are distorted by additive outliers . To overcome
this problem , we can robustify the scale estimation process by replacing the ML
estimates from the Kalman filter by M—estimates discussed in Chapter four . When
the Kalman filter with robust estimates of the hyperparameters is used to transform
the variables y , outliers are carried over to the new variables Ly because the
innovations are affected by outlying points . Robust regression technique are , hence,
necessary to estimate the coefficients § from these transformed variables . We cannot
use a robust filter such as the missing value filter described in Chapter two for the
transformation process . This is because most robust filters do not have the following

linear property
L(y—X§)=Ly-LX § (5.3.1
X —A8 M 3

which is necessary for the iterative estimation procedure .

5.3.1 Regression quantile

Let us begin with the initial estimate of § required to start the iteration
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process . In order to accomodate outliers , it is no longer appropriate to use OLS
estimates from the reduced model (5.2.4) . This estimate is especially vulnerable to
aberrant observations at the beginning or end of the series although those occurring
at other parts of the series tend to cancel out . This is because differencing produces
outliers of equal magnitude but in opposite directions . Instead , we start the
iteration process with a very robust estimate such as the regression median or the
.5th regression quantile , see Koenker and Bassett (1978) . A regression quantile is a
generalisation of a sample quantile in the location model to the linear model . It can
be found by solving the following minimisation problem . Consider a linear model of

the form
y =X+ ¢ (5.3.2)

where x* is (y’;,y;,...,y;)’ , the Txp matrix X* is (2‘:’{,2'(;,...,1‘(,})’ and the noise term
E: isii.d. . Note that we can re—write the system in (5.1.1) in this form by letting
x* be Lx.F—I/ 2 and X* be LX.F_I/ 2 where Ly , LX and F are the same as those
found in (5.2.2) . The 6th regression quantile for the model (5.3.2) is defined as the

solution to

T
WIS A (5.3.3a)
Y ot=1
where
fu u>o0
0 ={ (e u<o a3
for 0<f<1

Standard linear programming technique are used to compute the regression quantiles
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A program which serves this purpose is given in Keenker and D’orey (1987) . However
, some of the solutions may not be unique . In this case , only a subsequence of ?5: is

used or the explanatory variable is perturbed to give a unique solution .

5.3.2 Trimmed least squares estimation

Once the iteration procedure is started , we can estimate the regression
coefficients at each stage by a more efficient robust method such as trimmed least
squares (TLS) estimation , see Welsh (1987) . The latter is also known as the |
trimmed mean in the linear model . The idea is to identify and remove outlying
observations and then compute a least squares estimate based on the remaining data
set . In the regression context , an "extreme" observation is usually associated with
one that has a large residual . This means that a preliminary estimate is first
required to evaluate the residuals of the observations . Then , observations with

either large positive or large negative residuals are deleted .

The performance of TLS estimators is dependent on the preliminary estimate
used , see Ruppert and Carroll (1980) . A robust preliminary estimate will improve
on its efficiency . In the robust GLST procedure , the estimates of the regression
coefficients from the previous stage of iteration is used as the preliminary estimate .
This is also a TLS estimate except at the first stage where the regression median is
used . It follows that the preliminary estimate used at each stage is robust . Given
the preliminary estimate , the residual of each transformed observation y’,: is
evaluated . These residuals are then ranked according to their magnitude . Suppose
that the trimming proportion is a , observations whose residuals have magnitude at

the top ax100% , are discarded . We use ten percent trimming for our simulations
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below . This level should , however , vary according to how heavily we think the
series is con_taminated . A higher level of trimming is appropriate when there are
more outliers present . But if the proportion is too high , a drop in efficiency will
result due to the loss of "good" observations . The regression coefficients are then

estimated by the OLS procedure using the rest of the data set .

5.3.3 Influence in regression

In the previous section , we have referred to outlying observations in
regression as those with large residuals . There is also a need to consider influential
observations , see Atkinson (1988) , when dealing with robust regression . These are
points which are crucial to the inferences drawn from the data . Omission of any one
influential observation will result in a substantial change in the estimates of the
regression coefficients . Since a robust estimate is one which is not overly affected by
minor changes in the data set , it is also necessary to discard influential observations.
We note that outlying points may not necessarily be influential . This is often the
case when the aberrant point is not far enough from the bulk of the observations to
cause a "swing" in the fitted regression line . However , it is still necessary to remove
such observations in order to reduce the variability of the regression parameters’

estimates .

Influential observations are usually leverage points , that is , observations
which has an extreme value of one or more explanatory variables . A high leverage
point often forces the fitted model close to its observed value leading to a small
residual . In order to identify leverage points , let us consider the regression model in

(5.3.2) . The "hat" matrix of dimension TxT is defined as
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H = X*(xVx*) " Ix* (5.3.4)

The diagonal elements of this hat matrix , denoted by b, , measures the remoteness of
an observation in a factor space . Hence , if the observation is a leverage point , the
value of h, will be substantially bigger than the rest of the hi values . However , not
all leverage points are influential observations since they may be in line with the rest
of the data . In which case , they may contain important information and their
inclusion in the data set will help improve the variability of the estimates . Although
we do not trim all leverage points , the measure of leverage is used to identify

influential observations .

In order to measure the influence of an observation , we need to evaluate its

studentized residual . Ordinary residuals from least squares estimation are given by

e=(I-Hy" (5.3.5a)
They have a scale dependent distribution with
o2

Var(e,) = (1 -h,) (5.3.5b)

for t=12,.,T. The value of o2 is one in our model (5.3.2) . A studentized

version of these residuals has a scale—free distribution and is given by

I, =——— (5.3.6)

A statistic Dt for determining whether the tth observation is influential is a function
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of both ht and I, . We have

9 b :

D =

¢ I

o=

This is derived based on the difference in the least squares parameter estimates when
the tth observation is omitted from the data set , see Cook and Weisberg (1982) .
We infer that the ith case is influential if the value of D, is substantially larger than
the bulk of the D, values .

It is found that if we trim both outlying and influential observations at each
stage of the GLST procedure , the iterations become unstable and convergence may
be affected . Hence , influential observations are removed only at the last stage and
not during the intermediate steps of the iterations . At the final stage of the GLST
procedure , residuals computed using the preliminary estimate are ranked according
to their magnitude as before . But only those at the top %a x 100% are discarded .
Influential observations based on least squares estimates are identified by evaluating
and ranking the statistic D, for the whole series . Those at the top %a x 100% are
omitted . In this way , the trimming proportion is maintained roughly at the level a. .
This is because outlying points can sometimes be influential , i.e. , there may be an
overlap of points being identified as both aberrant and influential . Thus , the

trimming proportion will vary between %a and %a .

With the estimation of regression coefficients and scale being replaced by
robust technique , the GLST procedure is made more resistant towards outliers .
However , there may be a few cases of non—convergence in the iteration procedure .

This can sometimes occur when there is a flip—flop between two sets of parameter
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estimates or when the scale estimation is not smoothly carried out , as indicated by a
NON—Zzero IFAIL value . It is hence necessary to have an alternative stopping criteria
such as fixing the maximum number of iterations . We expect the average number of
iterations to increase with the number of exogenous variables . Thus , the maximum
number of iterations should be made to depend on the number of explanatory
variables in the system , p . As seen in the simulations below such cases of

non—convergence usually takes place less than 5% of the time .

To test that this robustified GLST procedure is working properly , we check
for uncoupling effects between the explanatory variables X and the regression
coefficients § . We find that by fixing the observations y and changing the sign of X ,
the regression parameter estimates are affected only by a change in sign . Similarly ,
scaling the explanatory variables by a factor m while holding the observations
constant results in the regression coefficient estimates being scaled by I—t- . Hence , we

conclude that there is no uncoupling effect between X and § .

A summary of the robustified GLST procedure is given as follows
Step 1 The .5th regression quantile or regression median is computed from the
differenced series ay, to give us an initial resistant estimate of the regression
coefficients § .
Step 2 Based on the current estimate of the regression coefficient , robust estimates
of the hyperparameters are obtained using the M—estimation technique .
Step 3 Both the series and the explanatory variables are transformed using the new
estimates of the hyperparameters . Trimmed least squares estimates are then
evaluated from these transformed variables .
Step 4 Iteration between steps 2 and 3 is carried out until convergence takes place or

when the maximum number of iterations is reached .
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Step 5 The final stage of trimmed least squares estimation of the regression
coefficients is repeated . This time both outlying and influential observations are

discarded .

5.4 Simulation Results

A comparison of the GLST procedure described in section 5.2 against its
robustified version described in the previous section can be carried out by means of
Monte Carlo studies . We shall consider series of length a hundred and have two
hundred replications for each set of simulations . We use two hundred replications so
that the difference found in the summary statistics of the estimators especially those
for the regression coefficients are not too dependent on sampling variability . Data is
generated from the system (5.1.1) with the outliers modelled by the distribution of
the measurement noise term , & - As in Chapter four , uncontaminated series are
generated with a normal distribution N(0,2) while additive outliers are allowed in the
series by adopting a contaminated normal distribution with parameters a% =2,79=
5% and k = 100 . A bigger factor of contamination , k = 100 , is used here instead of
k = 20 used in previous simulations . This is because outliers are more difficult to
detect when explanatory variables are present in the series . The exogenous variables
usually increase the range of the series and hence , mask the presence of outliers .
Innovation outliers are assumed to be absent from the system and so the transition
noise term follows a normal distribution , N(0,2) . Cases with different

hyperparameter values are investigated later .
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In each set of simulations below , both the GLST procedure and its robustified
version are first run on clean data and then on contaminated data . Summary
statistics from the simulations consist of the bias and mean square etror (MSE) of the
estimators . If there is a breakdown in the estimation , i.e. , when the estimate of a
parameter in at least one replication is way off from most other estimates within the
same simulation , then , the number of cases which broke down , M and a separate
set of summary statistics is presented . This more resistant set of statistics , denoted
by Bias* and MSE* , i8 derived from the median and pseudo—variance of the
sampling distributions , see Chapter four . Sampling distributions of the estimators

are also given below .

5.4.1 Non—deterministic exogenous variables
The simulation results are categorized according to the model assumed by the
explanatory variables . We begin with only one exogenous variable in the model , p

= 1. Three different cases are considered . They are

Case 1 A stationary process where x, follows a AR(1) model
x, = 0.5%_; + ¢, (5.4.1)
Case 2 A random walk model

Case 3 A random walk plus drift model
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X, =% 1 +01+( (5.4.3)
where (; ~ N(0,0.25) in all the above cases .

In order to study the effect of outliers , it is pertinent to keep the variation of the
noise term in the regressor low . The value of var( (t) is kept small relative to the
hyperparameter values to prevent the explanatory variable from dominating the
series rendering the effect of outliers insignificant . Otherwise , so much information
about the exogenous variable is available that the regression coefficient is well

estimated despite the presence of outliers . On the other hand , the hyperparameter
values cannot be so big as to completely mask the observable variable . For each
simulation , the explanatory variable is generated once and used in all the two
hundred replications . The parameter value , §is fixed at one . Other values will be

considered later .
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Case 1 Explanatory variable from an AR(1) process

TABLE 5.1 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias - MSE

(i) Robust estimator of

(a) § —0.0734 0.3347
(b) Ino, ~0.1058 0.1032
() In o —0.0623 0.0875
(ii) MLE estimates of

(a) § ~0.0489 0.1812
(b) Ino, ~0.0354 0.0280
() Ino, —0.0177 0.0405

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.1 and 5.2 respectively .
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TABLE 5.2 SUMMARY STATISTICS FOR CONTAMINATED DATA

' *
Estimator Bias MSE Bias, MSE M

(i) Robust estimator of

(a) § —0.0790 0.3284

(b) Ino, 0.0250 0.0894

(c) no, —0.0167 0.1325

(i) MLE of

(a) 5 —0.0649 0.5514

(b) Ino, 0.7349 0.6855

(c) Ino, —0.1184 1.0803 —0.0233 0.0591 1

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.3 and 5.4 respectively .
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Case 2 Explanatory variable from a random walk model

TABLE 5.3 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 5 ~0.0443 0.3309
(b) Ino, —0.0976 0.0996
(c) In 2 —0.0780 0.0926
(ii) MLE estimates of

(a) § —0.0299 0.1685
(b) Ino, ~0.0264 0.0262
(c) n o, ~0.0261 0.0406

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.5 and 5.6 respectively .
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TABLE 5.4 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator

(i) Robust estimator of

(a) Y

(b) Ing,
(c) In y
(i) MLE of

(a) §

(b) Ino,
(c) In %y

Bias

—0.0533
0.0324

—0.0005

-0.0615
0.7431

—0.4196

MSE

0.3082
0.0933

0.1249

0.4088
0.6966

5.1133

* *
Bias MSE M

—0.0426 0.0699 5

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.7 and 5.8 respectively .
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Case 3 Explanatory variable from a random walk plus drift model

TABLE 5.5 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 5 —0.0280 0.2528
(b) Ino, —0.0798 0.0571
(c) In o —0.0647 0.1058
(ii) MLE estimates of

(a) 5 ~0.0374 0.1697
(b) Ino, —0.0284 0.0268
(c) lno, —0.0242 0.0414

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.9 and 5.10 respectively .
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TABLE 5.6 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator

(i) Robust estimator of

(a) )

(b) Ing,
(c) In 7,
(ii) MLE of

(a) 0

(b) Ino,
(c) In 7,

Bias

—0.0618
0.0387

-0.0287

—0.0776
0.7404

—0.1378

MSE

0.3285
0.1095

0.1804

0.3844
0.6916

1.0898

* *
Bias MSE M

—0.0374 0.0587 1

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.11 and 5.12 respectively .

Four factorial replicates are carried out to check the simulation results for

different sets of parameter values . They are
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TABLE 5.7 FACTORIAL REPLICATES OF SIMULATION
FOR ONE EXPLANATORY VARIABLE

0 0'% af’
Test 1 1 2 2
Test 2 10 1 2
Test 3 1 1 1
Test 4 10 2 1

All four experiments reveal a similar pattern of behaviour for the estimators
from the two estimation procedures . Let us first consider the estimation of the
regression coefficient across the three cases . In the absence of outliers , the GLST
procedure seems to be insensitive to the different models which generate the
explanatory variable . Let us denote the mean square error associated with the
estimate of the regression coefficient by 7. Hence , the value of 7 is very similar in
all three cases . In order to make the different cases comparable , we have held

everything else constant . Thus , the same parameter values f(;r 6, a% , 02 and

n
va,r((t) are used to generate data for the three cases . There is , however , no
uniformity in the performance of the GLST procedure when outliers are present in the
series . The system with a stationary exogenous variable is most affected by
contamination . Let the 7 value be T when the data is clean and 7y When it is not .
Consider the ratio of 7y to 7, , denoting it by r . This ratio is less than one because
of the worsening effect outliers have on the estimates of the regression coefficient .
We observe that the r value is smallest in case 1 and increases as we move to cases 2

and 3 . This means that the further we move from stationarity in the expianatory

variable , the less sensitive the GLST procedure becomes towards aberrant
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observations .

On the other hand , the robust procedure shows similar performance regardless
of the model which generates the explanatory variable . Hence , the 7 value is
approximately the same for all three cases for both contaminated as well as clean
data . Besides , the ratio r is nearly one for all the three models . This indicates that
the modified GLST procedure is robust towards outliers for all three cases . We ,

therefore , conclude that this new version of the GLST is resistant to changes .

We now compare the performance of the estimators from the two procedures
for the cases of clean and contaminated data . Considering the estimator of the
regression coefficient § only , we generally observe a very small downward bias . No
significant difference can be detected between the bias of the robust and the MLEs for
both clean and uncontaminated data . This means that both estimators are fairly
unbiased regardless of the presence of outliers in the series . Any comparison between
the two estimators has to be made by looking at their mean square errors . For clean
data , the mean square error of the MLE is smaller than that of the robust estimator .
When the series is contaminated , the mean square error of the MLE is bigger than
that of the robust estimator in all three cases . This difference turns out to be most
significant in case 1 , where the explanatory variable comes from a stationary process
. However , there is no significant difference in case 3 where the MLE is not overly
affected by outliers . A significant difference for this case can be obtained by
increasing the level of contamination . Hence , we conclude that the estimator of the
regression coefficient from the robust procedure performs better than that obtained

from the GLST procedure in the presence of outliers .

However , we observe that this improvement is not very significant . Firstly ,
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the initial estimate for the iteration process 30 produced by the GLST procedure is
not badly affected by the outliers . This is because when we difference the series , an
outlier in the original data will appear twice and in opposite directions after
transformation . Exceptions to this are cases where discordant values appear at the
start or end of the series . Application of OLS estimation on the differenced series
will mostly result in a nullifying effect of the outliers on the parameter estimate

Besides , at each stage of the iterative procedure , we are using the transformed
variable y: instead of the original observations ¥y - Each aberrant value in the
original series perturbs several innovations . This results in a smearing effect of the
outliers during the transformation process . In addition , outlying points on both
sides of the regression line tend to average out during the OLS estimation . Hence ,
we expect more significant improvement to be made in terms of the scale of the
regression coefficient . We shall discuss special configurations of outliers whereby
more substantial improvement in the regression parameter estimate is made by the

robustified GLST procedure in section 5.4.5 .

With regard to the scale estimators , both the bias and the mean square error
of the MLEs are significantly smaller than those of the M—estimators for clean data .
We expect a better performance from the MLE when there is no contamination .
However , we see a very significant improvement in the both summary statistics when
we replace the MLE of Ino ¢ by a M—estimator of scale in the contaminated case .
Besides , there is a tendency for the MLE of lnan to break down when outliers’ are
present . If we exclude these cases , the MLE of lnan is better than the robust
estimator even with contamination . This is because the outliers are only present at
the measurement equation , thereby more directly affecting the disturbance term € -
Thus , the MSE* of the MLE of Ino_ is smaller than the MSE of the robust estimator

n
in the absence of innovation outliers . As mentioned in chapter four , there is a
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misspecification of the model when the GLST procedure tries to produce MLE under
contamination . We also observe that the scale estimators are not too sensitive

towards the model assumed by the exogenous variable .

5.4.2 A deterministic trend

Let us now consider the system (5.5.1) but with a deterministic explanatory
variable . In the three cases above , the exogenous variable has been generated with a
perturbation term ¢ . Suppose now that the explanatory variable takes the form of a
deterministic trend , that is , x, =1t. This particular model is often used in
econometric models . Recall that in both the GLST procedure and its robustified
version , transformation of the variables y and x is carried out using the Kalman
filter . However , when the Kalman filter is run on a deterministic trend t , the
prediction errors become constant after a while . This will result in the transformed
variable x: having the same value most of the time . A regression plot for this case is

found in figure 5.13 below .
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Figure 5.13 Regression plot for the case x, =1t

It is clear from the diagram that we do not have very much information on the
regression parameter § . Since the GLST procedure uses all the observations , it is
not surprising to see in Tables 5.8 and 5.9 below that the mean square error of the-
MLE of the regression coefficient is significantly smaller than the robust one for both
clean and contaminated data . After transformation , most outliers will fall on either
side of the vertical line , rendering the trimming process unnecessary . Again , the
bias of the estimators for this regression parameter is rather small . Similar
conclusions can be drawn with regards to the scale estimators lna€ . That is , the
MLE have smaller bias and mean square errors than the M—estimators for clean data
whilst the M—estimators have an definite edge over the MLE for contaminated data .

As for the other scale estimator Ing_ , the MLE starts to break down even when the

f”
data is clean . The number of breakdown cases increasing when there is

contamination . This pattern of behaviour for the estimators is observed for all the



Regressors in time series , [ch 5. p9.249]

factorial replicates given in Table 5.7 . As before , we only present the simulation

results for Test 1 below .

TABLE 5.8 SUMMARY STATISTICS FOR CLEAN DATA

*
Estimator Bias MSE Bias. MSE M

(i) Robust estimator of

(a) 5 0.0098 0.0317
(b) Ing, —0.0780 0.0917
(c) lno, ~0.0067 0.1014

(ii) MLE estimates of

(a) § 0.0024 0.0204
(b) Ino, —0.0187 0.0275
(c) Ino, ~0.1171 1.0543 0.0200 0.0383 1

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.14 and 5.15 respectively .
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TABLE 5.9 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator Bias

(i) Robust estimator of

(a) 6 0.0061
(b) Ino, 0.0394
(c) Ing, —0.0156
(ii) MLE of

(a) § —0.0008
(b) Ino, 0.7911
(c) Ing, —0.5986

MSE

0.0332
0.1069

0.1918

0.0205
0.7570

7.1756

* *
Bias MSE M

—0.0626 0.0824 8

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.16 and 5.17 respectively .

5.4.3 Two uncorrelated explanatory variables

We now consider the system (5.1.1) with more than one explanatory variable .

Suppose there are two exogenous variables , one from the stationary process in (5.4.1)

and another following a local level model given in (5.4.2) . Our aim is to compare the

robust estimators with the MLEs for both cases of clean and contaminated data .

Since we are estimating more parameters from series of the same length , we expect

the estimators here to be more vulnerable to outliers as compared with the case where

there is only one regressor in the model . It turns out that a contamination factor of
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k = 50 is enough to reveal the differences between the two estimation procedure . To
generalise the results across a range of parameter values , the simulations are

repeated eight times in the following way .

TABLE 5.10 FACTORIAL REPLICATES OF SIMULATION FOR
TWO EXPLANATORY VARIABLES

& by o, %y
Test 1 1 1 1 1
Test 2 10 10 1 1
Test 3 10 1 1 2
Test 4 10 1 2 1
Teat 5 1 10 1 2
Test 6 1 10 2 1
Test 7 1 1 2 2
Test 8 10 10 2 2

These replicates produce a similar pattern of behaviour for the estimators .
Therefore, we shall only present the simulation results for Test 7 which is most

comparable to Test 1 of Table 5.7 .
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Estimator

(i) Robust estimator of

(2)
(b)
(c)
(d)

(ii) MLE of

(2)
(b)
()
(d)

The sampling distributions of the robust estimators and the MLEs are found in

5

by

Ino
€

1
no,

Bias

0.0179

—0.0687

-0.0886

—0.1148

-0.0198

—0.0343

—0.0203

—0.0683

figures 5.18 and 5.19 respectively .

TABLE 5.11 SUMMARY STATISTICS FOR CLEAN DATA

MSE

0.2822

0.2836

0.0934

0.1001

0.1642

0.1927

0.0260

0.0485
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TABLE 5.12 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 5 0.0005 0.2782
(b) 6, —0.0812 0.2858
(c) Ino, —0.0455 0.0903
(d) In o, —0.0947 0.1740
(ii) MLE of

(a) 5, —0.0466 0.3948
(b) 5, ~0.0759 0.4114
(c) Ino, 0.5504 0.4019
(d) Ina, —0.1025 0.0975

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.20 and 5.21 respectively .

In the absence of contamination , we observe that the relative performance of
the two estimation procedure is similar whether there is one or more explanatory
variables in the system . All the parameters are well estimated by the GLST
procedure for clean data . Their mean square errors are significantly smaller than
corresponding values from the fobust procedure . The bias of both types of
estimators for the regression coefficients are negligible . On the other hand , the bias

for the scale estimators are significantly different , those of the MLEs being smaller .
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When outliers are present in the series , the reverse is true . That is , all the mean
square error of the MLEs are significantly bigger than those of the robust estimators
with the exception of the hyperparameter lnan . With the factor of contamination
fixed at 50 , the MLE of lncrn does not break down . Since the contamination does
not occur at the transition equation , its mean square error is actually significantly
smaller than that of the robust estimator , although there is no significant difference
in the bias . The bias in the estimators of the regression coefficients remain quite
small . Only the bias of the robust estimator of Ino ¢ is significantly smaller than that
of the MLE . We conclude that the robust procedure has an edge over the GLST
procedure at the occurrence of aberrant values . This is more apparent when there

more exogenous variables in the model .

5.4.4 Two correlated explanatory variables

In real data , the exogenous variables in the system are usually correlated .
We shall investigate the effect which correlation amongst regressors has on the
estimators from the GLST and robust procedure . Let us respecify the explanatory

variables in section 5.4.3 such that fort = 1,2,...,T
Xy = 0.5%p, 4+ 0.1x9, 4 + (g4 (5.4.4a)
Xgi = Xop 1 + 0.1xq, + (o (5.4.4b)
where X, =xgq =0 and ¢, ~ N(0,0.25) for i=1,2

The exogenous variables are still mainly from the stationary and random walk models
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but are now correlated . We repeat the simulations in the previous section , including

all eight factorial replicates , on this new system . Again , we obtain similar pattern

of behaviour for the estimators across different sets of parameter values . The

summary statistics for Test 7 of Table 5.10 are found in Tables 5.13 and 5.14 below .

Estimator

(i) Robust estimator of

(a)
(b)
(c)
(d)

(ii) MLE of

(a)
(b)
()
(d)

6

by

In
Te

lna,7

I
no,

Bias

0.0118
—0.0646
—0.0731

—0.1415

-0.0279
—0.0338
—0.0145

-0.1411

MSE

0.2807

0.1914

0.0896

0.1234

0.1652

0.1171

0.0265

1.0528

TABLE 5.13 SUMMARY STATISTICS FOR CLEAN DATA

* *
Bias MSE M

0.0494 0.0383 1

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.22 and 5.23 respectively .
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TABLE 5.14 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator

(i) Robust estimator of

(a) 6,
(b) b,
© In o,
(d) lno,
(i) MLE of
(a) 6,
(b) 6,
(©) Ino,
(d) oo,

Bias

—0.0239

—0.0387

0.0582

—0.0845

—0.0512

—0.0579

0.5586

—0.4556

MSE

0.2519

0.1972

0.0798

0.1561

0.3983

0.1985

0.4115

5.1182

* *
Bias MSE M

—0.0646 0.0570 5

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.24 and 5.25 respectively .

Like the uncorrelated case , the bias of all the estimators of the regression

coefficients are very small . For clean data , the mean square errors for the MLE of

both the regression parameters are significantly smaller than those of the robust

estimators . However , we note that the mean square error for the estimator of the

second regression parameter 62 is smaller than that of the first . This happens in

both estimation procedures .

The reason for this is that the range of the second

explanatory variable is wider than that of the stationary one , The difference being
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more marked when there is correlation between the regressors . Contamination in a
series will cause the transformed explanatory variables in the GLST procedure to
become smaller . As seen earlier , in section 5.4.1 , a series from a stationary process
is more affected by outliers than one from a random walk model . Hence , we see a
much smaller mean square error for the MLE of the second regression parameter
compared to the first . In fact , for this non—stationary exogenous variable , no
significant improvement is made by replacing its MLE by a robust estimator at the
contamination level of k = 50 . Although the mean square error for the MLE of the
first regression coefficient is significantly bigger than that of the robust estimator at

that level of contamination .

With correlation present between the two exogenous variables , estimation of
the system becomes more difficalt . We see this when the MLE of the
hyperparameter lnan starts to break down for clean data . Disregarding this
particular case , the bias and mean square errors for the MLE of both the scale
parameters are significantly smaller for clean data . In the presence of outliers , the
bias and mean square error for the MLE of lnzr‘E are very much bigger than the
summary statistics for the robust estimators and the MLE of lnan breaks down more
often . Overall , we conclude that the robust procedure has an edge over the GLST

procedure when there is contamination in the series .

5.4.5 Special configurations of outliers

As mentioned earlier in section 5.4.1 , the effect of outliers is smeared during
the transformation process for removing autocorrelation in the disturbance term ft .

Hence , the GLST procedure is able to produce good estimates of the regression
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coefficients despite contamination . However , if outliers occur at the start or end of

the series , a substantial improvement is made by the modified GLST procedure .

This is illustrated in the following two simulations . We use the clean data generated

from the system with two correlated explanatory variables , see section 5.4.4 . In the

first simulation , we increase the first observation of each replication by a multiple of

ten . That is , there is only one outlier occurring at the start of each series . In the

second simulation , we contaminate the last observation instead . Again we increase

the original data by a factor ten . Running the GLST procedure and its modified

version on these two sets of replications gives rise to the following results .

TABLE 5.15 SUMMARY STATISTICS FOR CONTAMINATION AT FIRST

Estimator

(i) Robust estimator of

(a) 6,
(b) 5,
() Ino,
(d) In o,
(i) MLE of

(a) )
(b) 6,
(©) o,
(d) In o

OBSERVATION

Bias MSE
0.0078 0.2613
—0.0551 0.1797
—0.1601 0.1570
0.0197 0.0833
-0.2016 0.9130
0.0097 0.1853
—2.6566 45.2992
0.3584 8.4864

* *
Bias MSE M

0.2684 0.9417 45

0.7044 1.5949 7
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The sampling distributions of the robust estimators and the MLEs are found in

figures 5.26 and 5.27 respectively .

The above table reveal a substantial improvement made by the robust GLST
procedure in the estimation of the first regression coefficient 61 . Both the bias and
mean square error for the MLE of this parameter is significantly bigger than
corresponding values from the robust procedure . Comparing with Table 14 , we find
that the MLE is more affected by outliers here . Like before , there is no significant
difference in the two estimators for the second regression coefficient b, . Since the
outlier is at the start of the series , it will appear as a single outlying point in the
differenced series . This will distort the OLS estimate of the regression parameters
which are used as the initial estimates of the iteration procedure . The sampling
distributions in figures 5.27c and 5.27d show that ML estimation of the
hyperparameters breaks down for this type of contamination . On other hand , the

M-—estimators of scale do not break down and perform well .
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TABLE 5.16 SUMMARY STATISTICS FOR CONTAMINATION AT LAST

OBSERVATION

Estimator Bias MSE Bias MSE M
(i) Robust estimator of
(a) 6, 0.0009 0.2669
(b) 6, ~0.0522 0.1926
(c) Ino, —0.0544 0.0866
d) In % —0.1241 0.1129
(i) MLE of
(2) 5, 4.5190 28.5553
(b) 6, ~0.8650 7.8185
() no, —5.9366 104.1166 11.112 280.432 102
(d) lno, 0.9934 19.4723 2.0734 6.1614 14

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.28 and 5.29 respectively .

From the above table , we can easily see the edge which the modified
procedure has over the GLST procedure . All the summary statistics for the MLE of
the regression coefficients are significantly bigger than those for the robust
estimators. Like the previous simulation , contamination at the end of the series will
upset the initial estimate used for the iteration process . Besides , the outlier at the
last observation will only affect the last innovation from the Kalman filter . Thus ,

there is no smearing effect in this case .
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ML estimation of the hyperparameters is also very unsatisfactory here . For
the scale parameter In o, , more than 50% of the cases broke down . The other scale
parameter for the transition equation In o is also badly estimated by the GLST
procedure . The sampling distributions for the M—estimators of scale , see figures
5.28c and 5.28d , show that they do not break down . According to their summary
statistics , they perform rather well in the estimation of the hyperparameters .
Therefore , we conclude that the modified procedure produces more robust estimates
of the parameters than the GLST procedure . This is especially so when the outliers

appear at the start or end of the series .

5.5 An application to real data

In this section , we consider the application of the robust GLST procedure on
a real data set . The latter is that of Durbin and Watson (1951) on the annual
consumption of spirits spanning 1870 to 1938 , i.e. , there are 69 observations . The
variables are log consumption of spirits per head (y) , log real income per head (xl)
and log relative price of spirits (x2) . This data set has been analysed by Ansley and
Kohn (1989) . They did not use an iterative procedure for their estimation of the
parameters in the model . Instead , both the scale and the regression parameters are
estimated together using a concentrated likelihood function , see Ansley and Kohn
(1985) . Only the first 60 observations were used in their analysis and the estimates
for the regression coefficients with their standard deviation are
= 0.69 (0.13)

6
8y, = —0.97 (0.07)
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Suppose we run the GLST procedure on the first 60 observations of the data
set . We obtain the following similar estimates

8, = 0.65 (0.15)

8y = —0.92 (0.08)
The hyperparameters , o® and o2 , are estimated as 1.53 and 1.71 respectively .

¢ n transtormed

Figures 5.30a to 5.30c show the regression plot for each exogenous variable , namely ,
y: against xzt and y: against x;t as well as a plot of one explanatory variable
against the other . The diagrams suggest that there are leverage and influential

points in the transformed data set .

In Ansley and Kohn (1989) , a measure of influence for the standard regression
model , see section 5.3.3 , is generalised for signal plus noise models . Hence , this
measure of influence can be used on the model given in equation (5.1.1) . In the
paper , observations 46 to 50 were identified as influential and were discarded during

the re—estimation of the parameters . The new estimates are

ES

8, = 0.6 (0.13)
8y = ~0.53 (0.12)

By removing the same observations 46 to 50 from the data set and using the GLST
procedure , we obtain these estimates

a

5, = 0.49 (0.16)

8o = —0.77 (0.07)
Regression plots for the truncated data set are found in figures 5.31a and 5.31b .
Comparing with figures 5.30a and 5.30b , the first two diagrams have a smaller range
on the vertical axis . This means that the range of the transformed variable y: is
smaller after trimming the data set . However , some outlying points still appear in

the plots .
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Application of the robustified GLST procedure on the original data set gives
rise to the following estimates
5, = 0.52 (0.14)

By = —0.73 (0.10)

The hyperparameters , 02

p and 03’ , are estimated as 1.42 and 1.48 respectively .

During the estimation process , 7 observations are discarded because they are either
identified as outlying or influential . They are observations 6,40,46,47,49,53 and 58 .
Corresponding regression plots are found in figures 5.32a to 5.32c . We notice from
these plots that all the transformed variables have smaller range and there are no

apparent influential or outlying points .
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Explanatory variable from a AR(1) process
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Figure: 5.1  Sampling distributions for robust estimator of (a)
(b)In _and (c) In o for clean data
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Figure 5.3  Sampling distributions for robust estimator of (a) 6§ ,
(b)In o ¢ and () In o for contaminated data
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Explanatory variable from a random walk model
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Figure 5.5 Sampling distributions for robust estimators of (a) § ,
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Figure 5.8 Sampling distributions for MLE of (a) 4§ ,(b) In ¢
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Regressors in time series , [ch 5. p9.272]

Explanatory variable from a random walk plus drift model
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Figure 5.9  Sampling distributions for robust estimator of (a)
(b§ln o and (c)In 4 for clean data
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Explanatory variable being a deterministic trend
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Figure 5.16 Sampling distributions for robust estimator of (a) § ,
(b§ In o _and (c) In o for contaminated data



Regressors in time series . [ch 5. 2g.279]

Each * represents 2 observations
(a) Midpoint Count
0. 1 *

7 kEkk
99 Fkkkkkkkdkkk

45 FRERRERRkRRR Rk kR

B4 FEErkkkrkkkkkkrkkkkkkok ko
Q7 FrRkkkRRRkk kR Rokkk

96 FHEFEEXkKEKEKK

g FHEk

EERROo9oo
wivRowoao

(b) Midpoint Count
0. 4

*kkk
*kkkkk
12 FFErkkkkkkkk
97 FRkRkRRRkkkRkRRRkk kR kkkkkk
g7 FEERkkRkkkkkkRkkkk kR kkkk Rk kR Rk
43 FEEERRRRRRROORRR Rk Rk Rk
36 FEERRRRRkkkkkkkk kR kR kK
95 FRkkkkkkkkkkkkkkkkkkkkkkk
Q FRREREkEE

e
> b
-J

et O O
CONMDBNO,

Each * represents 2 observations
8 observations below the first class

(c) Midpoint Count
-12 1 *
0

3**

92 ¥

12 kkkkkk

¥ 3k ok ok ok ok sk ok ok ok ok ok ok ok

52 2k 3 ok ok e o ok ok 3 o ok ok ok ok ok ok ok ok ok ok ke k ok ok

59 3 3k sk ok sk o ok o o ok ok ok sk ke ok ok ok ok ok ok ok ok ok ok 3k ok ok ok
928 F¥Fk¥kkxkFAkkkkk

5 *kkk

1 *

rooooobdddl
SComhivovhOI®O
3 -
*

Figure 5.17 Sampling distributions for MLE of (a) § ,(b) In ¢ and
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- Two uncorrelated explanatory variables :
1¢ from AR(1) process and x,, from a random walk model
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Figure 5.18 Sampling distributions for robust estimator of (a) 6y
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Regressors in time series , [ch 5. pg.283]

Each * represents 2 observations
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Figure 5.19 Sampling distributions for MLE estimator of (a) 51 ,
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Regressors in time series , [ch 5. pg.284)

Each * represents 2 observations
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Regressors in time series ' [ch 5. 1g.286]

Each * represents 5 observations
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Regressors in time series _ [ch 5. pg.287]
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Figure 5.22 Sampling distributions for robust estimator of (a) 6y
(b) 6, (c)In o, and (d) In anfor clean data
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Regressors in time series , [ch 5. 19.288)
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Regressors in time series , [ch 5. 19.290]
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Regressors in time series ’ [ch 5. 99.291)
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Regressors in time series _ [ch 5. 9g.293]
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Regressors in time series , [ch 5. 19-294]
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Regressors in time series ' [ch s. 09.295)
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Figure 5.28 Sampling distributions for robust estimator of (a) 6, ,
(b) 6, (c)In o, and (d) In oy for contamination at last observation
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Each * represents 2 observations
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Each * represents 2 observations
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Regression plots from GLST procedure using whole data set
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Regression plots from robustified GLST procedure
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