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Abstract

This thesis aims at developing robust methods of estimation in order to draw 

valid inference from contaminated time series . We concentrate on additive and 

innovation outliers in structural time series models using a state space representation 

The parameters of interest are the state , hyperparameters and coefficients of 

explanatory variables .

Three main contributions evolve from the research . Firstly , a filter named the 

approximate Gaussian sum filter is proposed to cope with noisy disturbances in both 

the transition and measurement equations . Secondly , the Kalman filter is 

robustified by carrying over the M—estimation of scale for i.i.d observations to 

time—dependent data . Thirdly , robust regression techniques are implemented to 

modify the generalised least squares transformation procedure to deal with 

explanatory variables in time series models . All the above procedures are tested 

against standard non—robust estimation methods for time series by means of 

simulations . Two real examples are also included .
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1.1 The outlier problem

It is common in most statistical analysis to assume that observations are 

homogeneously generated from the same probability structure . However , in real 

data , we often find the appearance of outliers , that is , observations which seem to 

be inconsistent with the main group of data . Whether we consider such observations 

to be aberrant depends on our beliefs concerning the underlying probability model . 

Outliers are a sample phenomenon and we have to decide if they are genuine 

members of the population .

Discordant observations can be due to errors in reading , recording or 

calculating the data . Their appearance may also be due to some non—repetitive 

exogenous interventions or execution faults in assembling the data . All these give 

rise to outliers of deterministic nature which can be removed or replaced once they 

are identified . Sometimes , outliers are just manifestations of the inherent 

variability in the data generation process . Such discrepant observations are not 

controllable and are regarded as having random or inexplicable nature.

The presence of outliers violates the homogeneity assumption of data . It 

follows that the statistical properties of estimators which are based on this 

assumption are invalidated . In fact , contaminants create difficulties in our attempt 

to represent the population from which we believe the sample is drawn . Hence , it is 

necessary for us to recognize , interpret and make allowance for outlying observations 

with the help of appropriately designed techniques.
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1.2 Treatment of outliers

There are two distinct approaches in the treatment of outliers . Firstly , we 

can "test" to determine whether an aberrant observation should be retained or 

ignored . The second approach is to use all the data but minimizing the influence of 

discordant observations . The choice between these two methods depends on the aim 

of the investigation .

1.2.1 Testing for discordance

Although we cannot be sure that a discrepant observation is spurious , we may 

feel that the loss in accuracy in the statistical analysis caused by rejecting several 

good values is small compared to the loss caused by keeping one bad value . This 

leads to testing outliers with the intention of throwing them away . There are several 

ways to detect deviant observations . For example , we can use graphical procedures 

or perform hypothesis testing .

Using graphical displays to exhibit outliers i s , perhaps , the simplest and most 

popular method . In the time series context , we usually study the residual plot after 

fitting the model . Although there exist some graphical procedures specifically aimed 

at detecting outliers , see Gnanadesikan (1977) , very often , other assumptions 

underlying the statistical analysis are also under investigation . It is sometimes 

difficult to differentiate between the departures from the various assumptions . 

Therefore , this method should be treated as an informal screening process used only 

as a preliminary step in the analysis.
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To introduce some degree of objectivity in the rejection of outliers , a 

statistical test is often used to decide whether aberrant observations belong to the 

main population ; see Barnett and Lewis (1977) for a detailed summary of these 

statistics . For linear models , most tests use residuals from least squares as a source 

for identifying outliers . Fox (1972) discusses the likelihood ratio test for 

autoregressive time series models . But what turns out to be a outlier in one test 

may not be considered as a outlier in another . Which result , then , should the 

investigator use ? Besides , we cannot , in most cases , construct tests which are 

globally uniformly most powerful.

As mentioned earlier , we can first apply conventional statistical procedures on 

our data set and then inspect the residuals for discordant values . Detecting outliers 

in this manner , with the help of graphical methods or hypothesis testing , gives rise 

to two problems . Firstly , the initial or trial fit can cause the effect of an outlier to 

be smeared across several residuals so that good observations are mistaken as outliers 

, see Bruce and Martin (1989) . Secondly , the initial results can be so badly 

distorted that bad observations do not appear as outliers . Aberrant data points may 

also appear in a particular configuration resulting in their effect being masked , see 

Atkinson (1986) .

Once the outliers are identified in a time series , we can throw away these 

aberrant observations and proceed with analyzing the remaining data set based on 

the original m odel. Otherwise , we can modify the model to incorporate the outliers 

in a non—discordant fashion or concentrate attention on deviant values so as to 

identify unexpected phenomenon in the data generation process . Relevant action is 

taken depending on our interest in the practical situation .
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1.2.2 Robust procedures

Sometimes our interest is simply in inferring characteristics of the basic model 

regardless of the presence or nature of outliers . Then contaminants only have 

nuisance value and we wish to accommodate them . We turn to statistical procedures 

constructed to draw valid inference about the population from which the bulk of the 

sample is drawn and which will not be seriously distorted by contaminants . Such 

methods are said to be robust against the presence of outliers because they minimize 

the impact of bad data points . Here , outliers themselves are not of prime concern 

and we can estimate or test parameters of the basic model in spite of them .

Unless we are sure of the underlying distribution of the data set , which is 

rare when dealing with real data , estimators are no longer derived from some optimal 

principles for a particular distributional assumption . Rather , robust estimators are 

derived to achieve good performance over a broad class of distributions , especially 

long—tailed ones . The presence of rogue values can be modelled by letting the 

underlying distribution be a mixture of the distributions of "good” and ’’bad” data , 

the latter having a substantially bigger variance than the former . By considering 

robustness in terms of distributional assumptions , we leave aside problems involving 

dependence among observations . By using heavy—tailed distributions , the robust 

estimators will be less vulnerable to the effect of outliers . Huber (1977) stated that 

"for most practical purposes , ’distributionally robust’ and ’outlier resistant’ are 

interchangable" . The concept of robustness is well discussed in Hampel (1971) 

(1974) . A good review of robust estimators is given by Huber (1972) (1977) . In the 

time series context , Abraham and Box (1979) ; Denby and Martin (1979) ; Dejongh 

and Dewet (1985) ; and Martin (1980) propose some robust estimation techniques . 

Martin and Yohai (1985) gives an informative review on the robust estimators for



Introduction [ch 1. pg. 22]

autoregressive moving average models .

1.3 Outliers in Time Series

The analysis of time series is an important area of statistics that has many 

practical applications . Because the observations are not independent , the effect of 

outliers now depends on their position in the series and their time configuration , i.e. , 

whether they are isolated or occur in patches . In fact , any discrepant observation 

tends to influence adjacent values due to the correlation pattern of the basic process . 

It becomes more difficult to detect bad data points as they need not be extreme 

values and can be cloaked to some extent by the general structure of the process.

1.3.1 Outlier models in time series

In due consideration of the above , care has to be taken in modeling outliers in 

time series . Martin and Yohai (1986) proposed the following general replacement 

model for a series of length T .

Let ŷ . be the contaminated process ;

Xj. the core process which is often Gaussian ; 

the contamination process ; 

and z j  a 0—1 process where 0 < 7  < 1 and p(z^ = 1) = 7  .

Then the general replacement model is given by
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y t  =  C1 — ) x t +  z t (1.3.1)

for t= l,2 ,...,T

The probability that any one observation is free from contamination being 1—7 .

This general replacement model allows for two distinct types of outliers in 

time series , namely , additive and innovation outliers.

(a) Additive outlier model

An additive outlier is caused by an isolated measurement or execution error 

superimposed on an otherwise reasonable realization of the process . It is not 

reflected in the values of adjacent observations . The manifestation of such outliers 

can sometimes be dramatic and obvious .

An additive outlier model is obtain by letting and in the general 

replacement model have the following relationship .

(1.3.2a)

The contaminated process is , thus , given by

^ = xt +  zt vt (1.3.2b)

for t= l,2 ,...,T

The time configuration of abnormal records can be modelled by the definition of z j .
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(b) Innovation Outlier Model

This is a more inherent form of contamination , eg , it can be caused by a local 

change in the mean or variance of the series . Innovation outliers are reflected 

through the correlation structure of the process in neighboring values . Hence , 

detection is more difficult than additive outliers.

The difference between additive outlier and innovation outlier models can 

more clearly be seen by considering the pth order autoregressive process:

xt =  |=1 / W k  +  et (1-3-3)

for t= l,2 ,...,T

The additive outlier model is

yt =  xt "I" zt vt (1.3.4a)

xt =  jj=1 V t - k  +  £t (1-4-4b)

where follows a Gaussian process.

Additive outliers affect only the measurement equation but not the actual 

autoregressive process.

The innovation outlier model has
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yt =  xt (1.3.5a)

P
xt = l=1 V t - k  + et

where has a long—tailed distribution .

Here , there is no measurement error but any shock to the system influences both 

current and subsequent observations.

1.4 Time series models

1.4.1 ARIMA modeling

The robustified version of some statistical procedures has been developed for 

stationary time series , see Deny and Martin (1979) , Fox (1972) and Martin (1980) . 

Autoregressive moving average (ARMA) models are frequently used in representing 

stationary time series . Non—stationary series are first differenced to achieve 

stationarity and then modeled in this way . This class of models is known as the 

autoregressive integrated moving average (ARIMA) models , see Box and Jenkins 

(1976) . Robustness work done in this context can be found in DeJongh and DeWet 

(1985) , Martin et al (1983) , Martin and Yohai (1985) (1986) . However , such an 

approach in dealing with the problem of outliers in time series poses several 

difficulties .

(1.3.5b)
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Firstly , differencing the series results in more contaminated time points .

Suppose we have a set of data , say ,
*

y i , y 2 , . . . , y n v . . , y T

with only one error occurring at time n . Taking first difference , i.e. ,

*yt =  yt -  yt_ i

gives us

Ay2 ,Ay3 ,...,Ay*,Ay*+ 1 ,...,A yT  

Notice that the single aberrant observation affects the differenced series at two 

different time points , namely , at n and n+1 . Such proliferation of aberrant points 

accentuates the outlier problem when we deal with differenced series .

Besides , a single abnormal record can obscure the model fitting process . The 

model identification stage of ARIMA modeling usually involves the use of the 

autocorrelation function (ACF) . When we estimate the ACF , we weight deviated 

time series by their absolute distance from the series mean . The presence of an 

outlier will cause both an increase in the series variance as well as a drop in the 

covariance leading to an underestimation of the low lags of the ACF . Thus , due to 

the nature of the estimated ACF , a wrong model could be fitted . Furthermore , 

contaminated data often show certain nonstationary characteristics which makes 

model identification problematic.

To overcome these and other difficulties , we shall consider the outlier problem 

within another framework of time series modeling .
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1.4.2 Structural time series models

In structural time series modeling , observations yt are regarded as arising 

£rom a composition of independent processes . Each component has a direct 

interpretation in terms of the structure of the model although it is not directly 

observable . For instance , the "basic structural model" , see Harvey and Peters 

(1984) takes the form

yt = mt + 8t+ et (1A1)
where

m  ̂ is the trend which represents the long term movement of the series;

is the seasonal component which takes into account seasonal effects by

means of a fixed period periodic function ;

and Cj. is the irregular term which captures the random and temporary effects on

the series.

The process generating the trend can be regarded as giving a local 

approximation to the linear trend , i .e . ,

mt = mt - i+ V i + vt (1A2a)
bt =  bt - l +  ut (1 4 -2b)

where 7/t and u  ̂ are distributed independently of each other and over time with
2 2mean zero and variances and respectively . The level and slope both change 

slowly over time according to a random walk process .

The process generating the seasonal component is
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n—1
(1.4.3)

where is an independently distributed disturbance term with mean zero and

therefore , slowly changing but by a mechanism which ensures that the sum of the 

seasonal components over any n consecutive time periods has expected value zero and 

a variance which remains constant over time .

Let us consider the simple random walk plus noise model which is also known 

as the local level m odel. It is a series with only trend and irregular component , the 

former following a random walk .

where and are assumed to be white noise . A white noise variable has zero mean

and a constant variance . Taken as a sequence , they are uncorrelated .

Suppose there is a recording mistake at time n which only affects the 

observation at that time . Then at time n ,

o
variance and n is the number of seasons in a year . The seasonal pattern is ,

yt =  nit +  ft

m t  =  m t - i +

(1.4.4a)

(1.4.4b)

y =  m +  e +  v„ •'n n n n
and in =  in , +  v n n—1 'n

(1.4.5a)

(1.4.5b)

This corresponds to the additive outlier model . However , if a step change occurs at 

time n , a more permanent effect is produced and the model becomes



Introduction [ch 1. pg. 29]

(1.4.6a)

(1.4.6b)

This corresponds to the innovation outlier model.

1.4.3 State space form and the Kalman filter

Structural time series models can easily be put in state space form . First , we 

have a set of variables , called the state vector , which changes over time . This 

state vector is related to the observations via the measurement equation

& respectively . These two equations make up the state space representation . Notice 

that the local level model is already in the state space form with state variable mt .

The state space form for the basic structural model in equations (1.4.1) to

(1.4.3) is given by

and is generated by a transition equation

(1.4.7a)

(1.4.7b)

Both et and rjt are assumed to be white noise with variance <% and variance-covariance

y* =  (1 0 1 0 ... 0)xt +  et (1.4.8a)
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mt - i
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+
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(1.4.8b)

Additive outliers , being spurious values occurring in the observed series , affect only
3

the observation equation . On the other hand , innovation outliers corresponding to 

rogue values that affect the driving noise , have a more lasting effect on subsequent 

values of the series . Innovation outliers disturb the state equation only .

Once the model is put in state space form , we can apply the Kalman filter for 

sequential estimation of the state vector . The Kalman filter comprises prediction 

and updating equations for the state vector and its covariance matrix .

Under the Gaussian assumption of the disturbances , the prediction equations 

give the best one—step ahead estimate of the state vector , and its

mean-square error matrix , . The prediction equations are :

S t / t - l  -  Tt~ t-1  (1.4.9a)

where a, and P, are the best estimate of the state vector and its covariance ~t—1 t—1
matrix at time t—1 .

Whenever a new observation y  ̂ is available , the new information is
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incorporated to give an optimal estimate of the state at time t , a^ . The updating 

equations are

at =  S t / t - i  +  p t / t - i s t (yt "  atat / t - i ) / ft (1.4.10a)

“ d Pt =  Pt / t _ ! -  P t / t - l 2 t2tPt / t - l / ft (14-10b)

^  ft =  2tP t / t - l 5 t +  a]  (1.4.10c)

where is the prediction error variance at time t . The Kalman filter produces 

optimal estimates under the normality assumption of the disturbances et and rĵ  . 

The filter also gives the prediction errors and their associated variances which can be 

used in the evaluation of the log—likelihood for the observations . This is useful when 

we want to evaluate the maximum likelihood estimate of the parameters in the model 

such as the variance of the disturbance terms . Prediction of future values beyond 

the series can also be made using the filter .

1.5 Robust estimation in time series

As mentioned earlier , additive and innovation outliers affect the measurement 

and transition equations respectively . These discrepant observations can be 

incorporated into the model by letting the disturbance terms e  ̂ or 

appropriate , take on long—tailed distributions . These are symmetric distributions 

with more mass on the tails than the corresponding Gaussian . Such a heavy—tailed
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distribution gives rise to occasional large values . An example of this kind of 

distribution is the contaminated normal distribution . This is a mixture of normal 

densities given by :

(1—7) N(0,<Tj) +  7 N(0,o*)

2 2 where 0̂  is much bigger than 0^ and 7 is small . This model arises when the
o

disturbances are assumed to be normal with variance a^ but a fraction 7 of them 

are subjected to gross errors . The contaminating distribution is normal with a big 

variance . Letting the noise terms and follow the contaminated normal 

distribution implies that the normality assumption of the disturbances are no longer 

valid . It follows that the one step ahead estimates of the state , 1 , from the

Kalman filter are no longer optimal but they are still the best linear unbiased 

estimates (BLUE) . Unfortunately , such linear least squares estimates can behave 

quite badly in the presence of outliers , see Huber (1972) .

To illustrate the bad behaviour , a time series of length fifty is generated from

a local level model . The measurement noise term follows a contaminated normal
2 2distribution with 7= 5% , 0-^=1 and 0-2=100 while the system noise is normally 

distributed , N(0,1) . This is to allow for additive outliers only in the series . A plot 

of this series is found in figure 1.1 . Running the Kalman filter on the data set 

produces one—step ahead predictions which are also plotted in figure 1.1 . The 

one—step ahead predictions are badly distorted by aberrant values and each outlier 

affects several subsequent predictions . On the other hand , corresponding values 

from a robust filter are less sensitive to the influences of heavy—tailed distributions , 

see figure 1.1 .
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In the next chapter , we shall look at robust filtering or robust sequential 

estimation in time series . Various filters have been proposed by Masreliez (1975) , 

Martin and Masreliez (1977) , Ershov and Liptser (1978) , West (1981) ,Martin et al 

(1983) and Guttman and Pena (1985) to produce robust estimates of the state given 

past observations . These filters are computationally attractive because they have 

the same recursive structure as the Kalman filter . Modifications are carried out at 

the updating equations in order to bound observations with large prediction errors . 

Such filters are based on Masreliez assumption which assumes normality for the state 

prediction density . We show in the chapter that this assumption is not valid in the 

presence of extreme additive or innovation outliers . This means that the above 

filters cannot cope with such a situation .

Non—Gaussian filters which are derived directly from the recursive relations 

underlying the sequential estimation process , namely the Gaussian sum filter 

proposed by Alspach and Sorenson (1972) , Kitagawa’s filter (1988) and Student—t 

distribution filter (1989) are discussed . The latter uses mixtures of Student—t 

distributions to represent the density functions while Kitagawa’s filter uses a 

numerical method based on piecewise linear approximations of the density functions . 

On the other hand , the Gaussian sum filter uses mixtures of normal terms to 

represent each density function . Although these filters are designed to deal with 

series having both forms of outliers present, they are computationally inconvenient.

A modification of the Gaussian sum filter is described in Chapter three . The 

basic procedure is to collapse the normal terms in each mixture in order to curb the 

exponential growth in the number of components in each density . This method of 

collapsing is similar to that used by Harrison and Stevens (1976) . The resulting 

approximate Gaussian sum filter (AGSF) is computationally feasible and can handle
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situations where both additive and innovation outliers are present . This filter is 

developed in the context of the local level model but can be easily extended to a 

m ulti-state system . Parameter estimation is carried out by the maximum likelihood 

estimation procedure whilst the level of contamination can be determined by a broad 

grid search . If we have a rough idea of the level of contamination , a robustified 

version of the likelihood can be used for parameter estimation . Application of the 

AGSF to a real data set is illustrated .

Chapter four deals with the scale estimation problem , i.e. , we shift our

attention from the sequential estimation of the state to the estimation of the 
2 2hyperparameters and . In the presence of additive outliers , the Kalman

o
filter tends to overestimate the hyperparameter . This is because the estimate 

includes the variation of the contaminating component so that we are actually 

estimating the overall variance instead of . After examining the scale

model for steady state observations , we carry over the M—estimation technique from 

i.i.d. situation to time series context . The multidimensional Huber function , see 

Hampel (1986) , is employed to bound the influence of outliers . A sampling 

procedure for calibrating the estimators in order to achieve Fisher consistency is 

described . The M-estimation of the hyperparameters is carried out using the 

Kalman filter and is robust against additive outliers only .

In the final chapter , the local level model is extended to include explanatory 

variables . The generalised least squares transformation (GLST) method , see Ansley 

and Kohn (1985) , is robustified . This modified procedure involves an iteration 

between the M-estimation of scale and trimmed least squares estimation of the 

regression coefficients . Robust estimates can be obtained for both the regression 

parameters and the hyperparameters as the explanatory variables take on several
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different models . An application of the robustified GLST procedure to a real data 

set is discussed.
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Figure 1.1 Plot of series with additive outliers and one-step ahead predictions 

from Kitagawa's filter and the Kalman filter
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2.1 Recursive Relations

2.1.1 The Model

In the previous chapter , see equation (1.4.7) the state space representation of 

a univariate time series is given by

yt =  it2 t  +  £t (2-L la)

8t = V t - l  + St (21'lb)
for t =  1,2,...,T

To simplify the problem , let us first consider a time invariant system whose state 

consists of only one elem ent. The measurement equation becomes

yt =  zc*t +  et (2 .1.2a)

and the state evolves according to

=  h a ^  +  ijt (2.1.2b)

for t =  1,2,...,T

2 2The variances of the disturbance terms , a and , are known as the7 € 7} 7

hyperparameters of the model . In this chapter , we are concerned with the robust

estimation of the state a^ .
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2.1.2 Recursive Relations using Bayes7 theorem

A recursive scheme for the state at can be formed by applying Bayes’ theorem 

Specifically , we can express the state’s prediction density at time t , 

P(a t / yl ’y2’- ’yt - l )  ’ *n terms updating density at time t—1 ,

P(at—i / yi»y2’"*’yt—l) * When a new observation yt becomes available , it can be 

incorporated with this prediction density to give the updating density at time t , 

p(o!t/yi ’y2’---’yt) • Denoting all the past observations up to the current time , i.e. 

{y1}y2>->yt } » as ^  we ^ave ^°^ow n̂S relations

(i) One Step Ahead Prediction

(2.1.3a)
—OD

(2.1.3b)
— CD

(ii) Updating

(2.1.4a)

=  p(«t .yt /Y t_ i)  /  p(yt_ 1/Y t_ 1) (2.1.4b)

=  p ( y t / t t t )  P(at /Y t_ i)  /  p(yt /Y t_ 1) (2.1.4c)

where the normalizing constant p(yt /Y^._^) is given by
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p(yt/ Yt_ i) =  /  p ( V Yt - i )  p(yt/ “t) dat (2-L5)
— CD

We can express the initial density p ^ / y g )  in the same form as in equation (2.1.4c) . 

That is ,

p(<*o/y0) = p( V ao) ! p(yo) (2.1.6)

We observe that the prediction density p(at / a t_^) in (2.1.3b) depends on the system 

noise density p(^t ) and the transition equation (2.1.2b) . On the other hand , the 

updating density p(yt /<*t ) in (2.1.4c) involves the observation noise density p(et ) and 

the measurement equation (2.1.2a) . Hence , a knowledge of the distribution of the 

disturbances , p (^ ) and p(fy) enables us to determine the prediction and updating 

densities of the state at any time t . We shall call these four densities pertinent 

densities.

2.1.3 Pertinent Densities having Elliptical Distributions

If the initial state and disturbance terms are Gaussian , the above set of 

equations (2.1.3) to (2.1.5) can be evaluated . In fact , at any time t , both the 

prediction and updating densities are normal . Hence , it is enough to consider the 

first two moments of each distribution . This is why the Kalman filter evaluates only 

the means and variances at each stage . The filter makes use of the fact that normal 

distributions are closed under linear transformations and that the conditional 

expectations is linear in the linear conditioning variables . A class of elliptical 

random processes , see Chu (1973) , which includes Gaussian densities has such
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properties . Therefore , when the joint distribution of the initial state and the 

disturbances are elliptical , the Kalman filter can still be applied . However , the 

random variables dlq , and 77̂  must in general be dependent because the joint 

distribution of two independent elliptical random variables is not elliptical except 

when both marginals are Gaussian . This lack of independence amongst the variables 

in the non—Gaussian case , is a restrictive condition on the use of the Kalman filter.

2.1.4 Non—Gaussian Pertinent Densities

In the non—Gaussian case , the pertinent densities cannot be characterized by 

a finite number of moments . As a result , the system cannot be solved in a closed 

form and it becomes necessary to evaluate the non—normal densities explicitly at each 

stage . Besides , the conditional mean , which is the minimum variance estimate in 

the Gaussian case , is no longer a linear function of the measurement data . At the 

same time , the conditional variance now depends on the observations . Generally , it 

is not possible to evaluate analytically the integrals in equations (2.1.3) to (2.1.5) and 

the densities cannot be determined in most applications . This is , in particular , true 

when we let the densities take on heavy—tailed distributions to allow for outliers . 

Some form of approximation is , therefore , necessary to realize the formulae in the 

recursive relations .
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2.2 Kitagawa’s Filter

Kitagawa (1987) uses a numerical method based on piecewise linear 

approximations to evaluate the density functions in the recursive relations . First , 

he represents a non—stationary time series in the state space form as in equations

(2.1.2) . Neither the observation nor the system noise is necessarily Gaussian . 

Rather , they can take on heavy—tailed distribution to incorporate aberrant 

observations . Sequential estimation of the state is performed by carrying out 

prediction and filtering as in section 2.1.2 .

Each density function in the recursive relations is approximated by a piecewise 

linear function alternatively known as a first order spline . Thus , we can specify 

each density by the number of segments , k ; the position of the nodes , nQ , n^ ,...,n^ 

and the value at each node . The outermost nodes nQ and n^ are selected so that the 

essential domain of the density is covered . This is to ensure that the error caused by 

truncation is negligible . Hence , for long—tailed distributions , the extreme nodes 

should be located further out . The degree of accuracy we have in the approximation 

depends on the number of segments . Increasing the number of nodes increases the 

accuracy at the expense of more computation . The values at the nodes define the 

entire function under the piecewise linearity assumption of the function .

To simplify the computation , the same node scheme is used for all the density 

functions . Once we assume the distribution of the noise terms , we can calculate its 

density at any point . Using notations P t (<*) , ft (a) , r(et ) and q(f?t ) for the 

prediction , updating , measurement noise and transition noise densities respectively , 

we have the following algorithms.
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(i) One Step Ahead Prediction

For each a  =  nQ , n^ ,...,n^

pt (a) =  P(at /Y w )

= /  P(y/Yt_ 1) p(a/y) dy

= J  ft_ 1(y )q ( a -h y ) d y
—OD

k /*ni
?  /  f t _ i ( y )  q ( « - k y )  d y  ( 2 .2 . x )

1=1 “i - l

Assuming the functions f^_j(y) and q(a — hy) to be linear in any segment {nj_^,n.} , 

each integral can be approximated as follows

/  1 ft_i(y)q(“-hy)dy 
V i

s [ft_ i(ni_ i)q (" -hni_ i) +  ft - i ( ni)q(°,_hni)] ( W i  ) /2

( 2 . 2 .2 )

Substituting (2.2.2) into (2.2.1) gives the prediction density as 

k
pt (a) « E [ft_ 1(ni_ 1)q(o^-hni_ 1) +  ft_ 1(n;)q(l>-hni)] (nj-n i_ 1 ) /2

(2.2.3)
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(ii) Updating

ft (a) =  p(at /Y t )

=  Pt («)r(yt  “  za) / c (2-2.4)

where the normalizing constant c is given by

c = p(yt/Yt-i)

= J pt (y) r(yt - z y )  dy
“ OD

k /.ni
s  /  pt (y) r(yt -* y )  dy (2.2.5)
1=1 V i

As before , we assume p^(y) and r(ŷ . — zy) to be linear functions on any interval 

{m_^,n.} so that we can approximate c by the following relation

k
c 8 ? (pt(ni—1 )r(yt-zni—1 ̂ + Pt(ni>r(yt-̂ ni>] (VV1)/2

(2.2.6)

To start the recursions , we need the density of the initial state , p(g£q) . If no 

prior information on the state is available , we can use a non—informative prior or a 

diffuse prior , see Harvey and Peters (1984) . For instance , we can let the initial 

state <*0 follow a normal distribution with a zero mean and a very big but finite
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variance . Given the distributions of the noise terms r(ct ) and q(*7t ) , Kitagawa’s 

filter produces an approximation to the prediction and updating densities at each 

stage .

Estimation of the parameters in the system (2.1.2) can be easily carried out 

with Kitagawa’s filter . Maximum likelihood estimates are obtained by maximizing 

the log—likelihood function which can be expressed as follows

T
In L(Yt ) =  E _  In p(yt /Y t_ j) 

t —1
(2.2.7)

This breaks the joint density of dependent observations down to a simpler form . An 

approximation to each conditional density p(y^/Y^._^) is already produced when 

running Kitagawa’s filter , see (2.2.6) . Thus , the computation of the log—likelihood 

function can be easily incorporated into the filter .

We use a maximization routine from the NAG library named E04JAF 

together with an algorithm for Kitagawa’s filter to estimate parameters in the model 

in equation (2.1.2) . Two function subroutines are included to evaluate the 

observation noise and system noise densities . Recall the time series generated at the 

end of Chapter one which only has additive outliers , let us specify correctly in 

Kitagawa’s filter the distribution of the measurement and system noise terms . They 

follow a contaminated normal distribution with parameters 7  =  5% , g =  100 , = 1 ,  see

3.1.2a) and a normal distribution N(0,1) respectively . Running Kitagawa’s filter on this 

time series gives us a set of prediction density functions . The mean of each of these 

densities is computed and plotted in figure 1.1 . Comparing these values with those 

produced by the Kalman filter shows that Kitagawa’s filter is robust against outliers.
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Kitagawa employs a direct method for his filter but a great deal of 

computation is required . This is especially true when we extend the filter to analyse 

models with multidimensional state . In this case , the system disturbance term will 

have a multivariate distribution and we need to deal with the convolution of such 

density functions . This means that the amount of computation is greatly increased . 

The number of nodes can be reduced by using a variable mesh or a moving mesh , see 

Kitagawa (1987) . However , this makes the algorithm more complex which takes up 

more computation time . Higher order splines can also be used but they may not be 

numerically stable . In conclusion , although Kitagawa’s filter is easy to understand 

and implement , it is not computationally attractive .

2.3 Gaussian sum filter

Alspach and Sorenson (1971) proposes another non—Gaussian filter based on 

the recursive relations in section 2.1.2 . They investigate efficient and simplified 

methods for approximating and computing the conditional probability density for the 

state . Each density is approximated by a convex combination of Gaussian density 

functions . Every Gaussian sum approximation is a valid density function and 

converges uniformly to any density of practical concern . We note that the 

long—tailed contaminated normal distribution used to model the disturbances is itself 

a Gaussian mixture .

The system under consideration is given in (2.1.2) . We denote the normal
2 2density for variable y with mean /z and variance a  by N (faa  ) . Suppose the initial

y
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state density is represented by

P ( V  “  Ôi N J aOi’ POî  (2.3.1a)

Let the measurement and system noise , e  ̂ and 7̂  , be serially and pairwise 

independent , with density functions taking the form

m t 9
P(«t ) =  s _  7t i N( 0 ,4 )  (2.3.1b)

p ty )  =  I*  %  N(0,<^) (2.3.1c)

Then , the Gaussian sum filter is made up of a group of Kalman filters with 

a set of mean values and corresponding variances to be computed . These means and 

variances are used to construct prediction and updating densities as Gaussian sum .

Suppose that the prediction density at time t is described by

P(“ t / Yt - l )  =  j ' ^ t i  N J at / t —l,i’Pt / t —l,i) (2.3.2)

Then , the updating density is given by
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where

= at / t - i , i  +  p t / t - i , i 2 /  fij (2-3-4a)

4 = p t / t - i , i - p ? / t - i , i z 2 / f ij (2 -3 4 b )

fij =  z2 +  ^  (2.3.4c)

Cij =  W t j  Nyt b̂ij’^ij^  ̂ j =1 ^ =1 ptl^tm

(2.3.5a)

using the notations

bij =  zat / t - l , i  (2'35b)

j =  z2pt / t - l , i  + 4  (2-3-5c>

Note that c .. > 0 for all i,j and
•I

1. m .
S* S* C-. = 1 (2.3.5d)
i = l  j = l  1J

If we rewrite the updating density as

p ( V Yt) =  f l / t i  NJ at / t , i 'p t/t,i)  (2-3-6)

Then the prediction density is

P( V Yt-l>  =  ^  V t j  Na(hat/t,i>A?j) (2'3'7a)
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where

(2.3.7b)

Since the initial state density has been put in the same form as the posterior 

density p(a^/Y^) , see (2.3.1a) , the Gaussian sums repeat themselves from one stage 

to the next whereby (2.3.2) and (2.3.6) are the general forms for an arbitrary stage . 

Hence , the Gaussian sum is almost reproducing except for the growing number of 

components in the mixture . It follows that the densities are not described by a fixed 

number of parameters . If the Gaussian sums for all the prior densities in (2.4.1) 

consist of only one term , that is , if they are normal variables , the filter described

above in (2.3.2) — (2.3.7) , reduces to the Kalman filter . In fact , the terms /a. . and
2 2 ^a . . in (2.3.4) and the terms ha. /. • and A., in (2.3.7) represent the Kalman filter ij V1)1 ij

equations for the ij th density combination of the Kalman filters . Parameter 

estimation is carried out by the maximum likelihood procedure as in the Kitagawa’s

One disadvantage of this method is the problem of finding the appropriate 

Gaussian sum representation . The second difficulty is the exponential growth in the 

number of terms in the sums as the steps are processed . This problem can be 

reduced by combining terms with nearly equal moments and ignoring terms with

sum substantially but introduce some error into the calculations . Hence , like the 

Kitagawa’s filter , the Gaussian sum filter is computationally inefficient .

filter .

diminishing weighting factors . These mechanisms reduce the number of terms in the
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2.4 Student—t distribution filter

R.J. Meinhold and N.D. Singpurwalla (1989) approach the non—Gaussian filter 

problem from a Bayesian viewpoint using the recursive relations in section 2.1.2 . 

This filter produces robust estimates of the state in a state space model such as the 

one in equation (2.1.2) by letting the disturbance terms and the initial state assume 

independent Student—t distributions . This will result in the prediction and updating 

densities following "poly—t 1’ distributions with no closed form representation . A 

recursive approximation scheme is proposed , implementing two theorems on the 

convergence of the pertinent densities depending on their degrees of freedom .

Suppose the updating density at time t—1 is represented by a mixture of 

Student—t distributions , that is ,

N w
a t - l  ~ t (aj , t - l ,Pj , t - l ’n) (2.4.1a)

J

N t -1
with E S . . ,  =  1 (2.4.1b)

j = l  J’1

where 3 -^  and n denote -the tne.3n,.variance, dod of -fregdkxvi r-esf&diy/Qiy a

Like the Gaussian sum filter , the prediction density at time t is formed by a

componentwise convolution of each term in the mixture with the system noise

density. Hence , the prediction density is given by
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(2.4.2)

We note that the number of components in the sum remains the same since the 

disturbance term has only one component in its density .

According to equation (2.1.4) , each of the terms in the updating density 

at time t is given by

n degrees of freedom ; centered at a . , which is set to the mode of the posterior ;
J»l

weight 6•. remains the same at S; . - ; and scale P- . is determined by setting the 
J>1 j»l

approximating density equal to the height of the actual density at the mode .

However , if the term in (2.4.3) is bimodal , then it will be approximated by a 

mixture of two Student—t densities , each with n degrees of freedom . These densities 

will be centered at the two modes of the original densities . The scale parameters are 

found by equating the curvature of the approximating densities to the curvature of 

the actual density at their modes. The weights of the mixture are

(2.4.3)

If this component is unimodal , it will be approximated by a Student—t density with

(2.4.4a)

j2,t jjt—1 jlj t (2.2.4b)
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Hence , the number of terms in this mixture of Student—t distribution also increases 

as we process the series . Another difficulty associated with this filter is the 

determination of the degrees of freedom for the distributions of the disturbance terms.

2.5 Masreliez Assumption and the gain function

2.5.1 Masreliez Assumption

We shall now turn our attention to non—Gaussian filters which retain the 

computationally attractive recursive structure of the Kalman filter . These filters 

have been derived based on the Masreliez (1975) assumption of a normal distribution 

for the state prediction density , p (^ /Y t_^) , at each step . It is because of this 

assumption that the filters can be put in the Kalman filter form . As discussed in 

section 2.1.3 , we know that the Masreliez assumption is true when there is no 

contamination in the series . In practice , this assumption is usually closely satisfied 

when there are only additive outliers present in the series . However , the presence of 

extreme additive or innovation outliers invalidates the assumption .

We generate a series of length one hundred from the local level model with the 

measurement noise assuming a contaminated noise distribution and the system noise 

following a normal distribution . Additive outliers are modelled by making the 

variance of the second component fifty times bigger than the first , see pg 32 . By 

running Kitagawa’s filter on this data set with only additive outliers , we obtain a 

sequence of state prediction densities . A normal probability plot of the state



A review o f robust filters [ch 2. pg.53]

prediction density is made at an outlier point and its adjacent point . These plots 

can be found in figure 2.1 . We observe that the normal plot at both the outlier and 

non-outlier point is a straight line , indicating the normality of the state prediction 

densities at such points . Thus , when the series has only additive outliers , the 

Masreliez assumption is closely satisfied .

Next we generate another series from the local level model but with the 

system noise following a contaminated normal distribution . We allow for innovation 

outliers in the series by letting the variance of its second component be fifty times 

bigger than the first . Running Kitagawa’s filter on this data set produces yet 

another sequence of state prediction densities . The normal probability plots here , 

see figure 2.2 , show a definite deviation from normality at both outlier as well as 

non—outlier points . It follows that the Masreliez assumption is not valid when 

innovation outliers are present in the series .

2.5.2 Kalman filter and the gain function

Attempts have been made to modify the Kalman filter to handle a 

non—Gaussian observation density . Consider the Kalman filter equations for system 

in (2.1.2) . They are

(a) Prediction

at / t —1 =  k at - l  (2.5.1a)

Pt / t _ l  =  k2 Pw  + (2-S.lb)
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(b) Updating

where

at “  at / t —1 +  P t / t - l  z T7 (2.5.2a)
u

p t = p t / t - l - p ? / t - l z 2 ^  (2-5-2b)

vt =  yt - z a t / t - l  (2-5-3a)

ft  =  z2 Pt / t - l  +  (2.5.3b)

The terms and are the one—step ahead prediction error , also known as 

innovation , and its variance respectively . Alternatively , we can express (2.5.2a) 

and (2.5.2b) as

at -  at / t - l  +  Pt / t - l  (2.5.4a)

Pt =  P t / t - l - P ? / t - l z 2 ^ ( ^ } ^  (2 '5 '4b)

where the psi—function ^  is an identity function , i.e. ,

i P ( v l )  = u (2.5.4c)

and iff is the derivative of ip .

A plot of this psi—function is given in figure 2.3a .

vt
The psi—function is actually a gain function operating on scaled residuals, — .
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Hence , its shape determines the influence of these residuals on the updated estimate . 

In the case of the Kalman filter , residuals of different magnitude are given equal 

emphasis since the psi—function is a straight line . Robustification of this filter can 

be done by selecting a gain function which de—emphasizes large residuals usually 

caused by outliers . This is similar to finding a robust estimate by using the influence 

curve , see Hampel (1974) . Consider a series from the linear system (2 .1.2) with a 

small probability that any observation is an additive outlier . Based on Masreliez’ 

assumption , a robust filter takes on the same prediction (2.5.1) and 

updating equations (2.5.4a)—(2.5.4b) as the Kalman filter . However , to discount 

aberrant observations , different gain functions are used . This allows the 

psi—function to act as a non-linear transformation on the residuals to desensitize the 

procedure to outliers.

2.6 Robust filters based on Masreliez assumption

2.6.1 Missing value filter

Martin et al (1983) apply the hard rejection rule for the gain function , i.e. ,

U

0

M l  < b

lull >  b
(2.6.1)

A plot of this function is found in figure 2.3b . Whenever the innovations are greater 

than b times its standard deviation , the current observation is discarded and no
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updating occurs . This is equivalent to identifying observations with big residuals 

and then treating them as missing values . The choice of b depends on the 

compromise between robustness and efficiency of the filter . If b is kept sm all, more 

observations will be regarded as outliers . Thus , while the procedure is well 

protected from discordant observations , it becomes less efficient when more good 

observations are thrown away . Usually , b takes the value 2 or 3 .

Outliers can be identified using the scaled innovations only if the variances of 
2 2the noise terms , <r and cr are known . Otherwise , an initial robust estimate for the 1 e Tj *

scale of the innovations , denoted by f^ , is needed . In which case , the criterion for 

modification of the psi—function is replaced by ||vt || > b f t . The maximum 

likelihood procedure can , then , be applied to estimate the parameters in the model. 

This also applies to the rest of the filters in this section .

2.6.2 Minimax filter

Another robust filter proposed by Martin and Masreliez (1977) generates 

min—max estimates , a^/t—1 * resPect to êast favourable distribution , Fq , 

see Huber (1964) . Under Masreliez* assumption , the prediction equations turn out 

to be the same as those in (2.5.1). However , updating equation for variance (2.5.4b) 

is approximately given by

t
where ip* is the first derivative of the gain function ip , 

and the expectation is taken over the distribution F .

(2 .6.2)
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The updating equation for the state still takes the form (2.5.4a) with the gain 

function , see figure 2.3c , being defined as

H u )  =
u ||u|| < b

(2.6.3)
b sign(u) ||u|| >  b

where the choice of b is affected by the same consideration as before . This means 

that all innovations greater than b times the scale of prediction error will have the 

same impact on the updated estimate . In this way , the procedure is desensitized 

towards random large disturbances . Accompanying this choice of psi—function , the 

least favourable distribution , Fq , is Gaussian in the middle with exponential tails . 

Maximum likelihood estimates can be obtained from this filter as in the previous one

For strict inequality to hold in (2.6.2) , another gain function is applied . The 

corresponding estimates produced are known as p—value estimates , see Martin and 

Masreliez (1975) and the psi—function is defined as

tan( STft) /  sb llu ll i  b 

H  u) =  (2.6.4)

tan( i f " ) sgn(u) I sb Ml > b

See figure 2.3d for a plot of this psi—function . The least favourable distribution , Fq
o

, here has a density which goes like cos (u) in the middle with exponential tails . 

Considering only observations whose scaled residuals are smaller than b , more 

emphasis is given to those with bigger innovations . This is appropriate only when 

the distributions of the disturbances are less heavy—tailed than the corresponding 

Gaussian density . Therefore , the use of p—value estimates is not recommended
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when we want to deal with outliers . If the psi—function (2.6.4) is used , the 

expression the right of (2.6 .2) is actually an upper bound for P t which may be 

approached arbitrarily .

2.6.3 Masreliez filter

Masreliez (1975) suggests a filter that provides protection against outliers 

associated with heavy—tailed deviations from Gaussianness and which reduces to the 

Kalman filter in the Gaussian case . Under the assumption of normal state prediction 

density , the filter is derived using the recursive relations in section 2.1.2 . The 

prediction and updating equations remain as (2.5.2) and (2.5.4a)—(2.5.4b) 

respectively . But now the gain function is the negative score function , i.e. ,

The shape of this psi—function clearly depends on p(yt /Y t_^) which is the 

convolution of the state prediction density and the measurement noise density . 

When the density is Gaussian , the filter reduces to the Kalman filter . To cope with 

outliers , p(yt /Y t_^) takes on a symmetric long—tailed distribution leading to a odd

residuals , see figure 2.3e .

Parameter estimation can be carried out by direct maximization of the 

log—likelihood function (2.2.7) noting that the density p(y^/Yt_^) is already 

computed at each stage . Now , the convolution of a normal density , p(xt /Y t_^)

(2.6.5)

symmetric non-linear psi—function which de—emphasizes the influence from large
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with a contaminated normal density , p(e^) can easily be evaluated . But if the 

observation noise term follows another long—tailed distribution , the convolution may 

be difficult to evaluate . In any case } the distribution of the observation noise term 

is assumed to be known .

2.6.4 West’s filter

To avoid this need for the convolution of the densities , West (1981) rewrites 

the updating equations in (2.5.4) as

at =  at / t - l  +  Pt8(vt) (2-6-6a)

P?  =  [Pt-1  +  ° 5]_1 +  GK )  (2.6.6b)
where

d In p (u )
g(u) = ------------    (2 .6.6c)

d  u

fl^ln p (u )
G(u) = ----------- k----- (2.6.6d)

d IT

and leaving the prediction equations as (2.5.1) . In this way , the gain function is 

now expressed in terms of the measurement noise density instead of p(y^./Y^._^) . For 

certain choices of likelihood , however , g(u) redescends to zero and G(u) becomes 

negative for large values of u . It is , therefore , necessary to truncate G(u) , setting 

it to zero outside the range of positive values . This will introduce some error into 

the calculations .
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2.6.5 Ershov and Liotser’s filter

A non—optimal , non-linear filter is presented in Ershov and Liptser (1978) to 

cope with contamination in the measurement process . The system noise assumes a 

normal distribution N(0 ,cj^) in the linear system (2.1.2) . Recalling the general 

replacement model in Chapter one , the observation noise term is specified as

*
et " ( l - z t )et +  z ^  (2.6.7a)

where

et ~ N(0,a^) 

a>t ~ NfOjOg) and

z  ̂is 0—1 process with p(z^.=l) =  7 

such that

7 ^  > (1—7)ai  (2.6.7b)

As with the above filters , the prediction equations are given in (2.5.1) . Updating , 

however , takes the following form

at ”  at / t —1 +  P t / t - l  z f
t

t

P — P — P^ 1.
t "  ^ t / t - l  ^ t / t - l  Z f

t

(2 .6.8a)

(2.6.8b)

(2.6.8c)

where s. is an estimate of z, . It is a indicator function given by
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st = 1 { iivt n * * • “) )  (2-6-9a)
where the constant c is chosen to satisfy

p ( IKt ll > c(t,a) /  zt =  0 ) =  a  (2.6.9b)

The term a  is a pre—assigned number .

Unlike the previous filters , robustification is carried out through the

^ t / t —1modification of the Kalman gain , —t—  , instead of the gain function ^(u) .
*t

Suppose that the estimate ŝ . is replaced by the mean of the zt process which is 7 in

the above equations , a linear filter is obtained . Simulation results in the paper show

that the non-linear filter performs better that the linear one .

2.6.6 Guttman and Pena’s filter

Guttman and Pena (1985) also considered the situation whereby the 

measurement noise term follows a contaminated normal distribution while the 

Gaussian assumption is maintained for the driving noise term 77t . We see in section 

2.3 that using the Gaussian sum filter will result in a proliferation of normal terms in 

both the prediction and updating densities . This can be curbed by approximating 

each Gaussian sum by a single normal distribution . The collapsed distribution is 

uniquely determined by the first and second moments of the mixture distribution .

The method of collapsing is similar to that used in Harrison and Stevens

(1976) . Consider approximating a contaminated normal distribution by a single
2 o

Gaussian component . That is , representing (1—7) N ( ^ ,^ )  +  by



A review o f robust filters [ch 2. pg.62]

2 2 N(/i,cr ) .  Then , the parameters p, and o are evaluated as

M =  (1-7)/*! +  7/*2 (2.6.10a)

a2 =  (1—7)(°! +  (M -^)2) +  l { ° l  + (tir-l^)2) (2.6.10b)

We see that the overall mean of the distribution is kept constant in (2.6.10a) . The 

variance of the collapsed distribution is that of the mixture plus a term which 

accounts for the distances between the old and new means .

In the case where innovation outliers are absent , the Gaussian sum filter can 

be modified to have Kalman filter’s prediction equations (2.5.1) . Updating is carried 

out as before , see section 2.3 . At each stage , the updating density will have two 

normal components which are collapsed into one term in the manner described above. 

An algorithm for this procedure is found in Guttman and Pena (1985) .

2.7 Summary

We see in figure 2.2 that the Masreliez assumption on the normal distribution 

of the state prediction density is not always satisfied . It follows that the filters 

discussed in section 2.6 are incapable of coping with series having extreme outliers . 

On the other hand , non—Gaussian filters designed to deal with both additive and 

innovation outliers in the series , see section 2.2 and 2.4 , are difficult to implement. 

Therefore , an approximation to the Gaussian sum filter is proposed in the next
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chapter . This filter does not depend on Masreliez assumption and is computationally 

attractive .
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3.1 Introduction

3.1.1 The Gaussian Sum filter

The Gaussian sum filter , proposed by Alspach and Sorenson (1971) , is 

described in Chapter two . When the initial state <*q as well as the disturbances et 

and 7/j. of the random walk plus noise model are mixtures of normal densities , this 

filter produces minimum variance estimates for the state . If outliers in the model 

can be accommodated by letting the noise terms take on contaminated normal 

distributions , then the Gaussian sum filter will make a good robust filter . However 

, the implementation of this filter is cumbersome because it requires an exponentially 

increasing memory storage . Some form of approximation can be carried out to 

reduce the number of terms at each stage . For the resulting filter to work properly , 

the approximation has to be accurate at both outlier and non—outlier points . This 

chapter discusses a modification of the Gaussian sum filter which is easy to 

implement .

3.1.2 The model

Consider a linear system given by

yt =z at + £t
at = h V i +  \  

for t =  1,2,...,T

(3.1.1a)

(3.1.1b)
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where z and h are known constants and ||h|| < 1 . To allow for both additive and 

innovation outliers in the series , we let both the observation noise and system noise 

terms have contaminated normal distributions . That is ,

P(£t ) =  (1-7) N(M f)  +  7 N(0,g<r^) (3.1.2a)

P(vt ) =  ( 1 - 0  N(0,aj) +  0 N(0,b<rj) (3.1.2b)

where 0 < -y,/3 < .5 ; g cT > <r( and bcr^» <?_ .

When a diffuse prior is employed , the initial state c*q takes a normal distribution

N(0,/c) where k -» qd . However , we want to put it in the same form as (3.1.2) for

ease of exposition afterwards . Hence , we write

p (“q) =  (1“ V  N(°>/c) +  N(0>k) (3.1.3)

3.2 Robust filtering by AGSF

3.2.1 Prediction equations

Suppose the updating density of the state at time t is a normal mixture 

consisting of only two terms . That is ,

p( V Yt) =  (1“ ^t^N ât / t Jl ,Pt / t fl^ +^ ( at/ t ,2 ’Pt/t,2 ) (3.2.1)
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From equation (2.1.3) , the next prediction density is then defined as a convolution of 

this updating density with the system noise density . Hence , we have

p(at + l / Yt) “  ^  ^ t^ 1 ^  N(hat / t , l  ’ 11 Pt / t , l

+  ( l - 5t ) ^ N ( h a t / t i l ) h 2P t / t l  +  b a J )

(3.2.2)

The resulting prediction density comprises four normal terms which can be 

approximated by a Gaussian sum of only two terms . This is carried out by a 

collapsing method which improves that of Guttman and Pena (1985) which is 

illustrated in Chapter two . The procedure maintains the overall mean while 

computing the new variance as the old but taking into account the distance between 

the old and new means . It is desirable to combine two components only when they 

are close enough . Usually , the first term of (3.2.2) is combined with the third and 

the second with the fourth . However , due to the nature of the weights in the 

prediction density (3.2.2) , this will always lead to the collapsed terms having the 

same means . Hence , the collapsed prediction density will always be symmetric and 

such an approximation is bad at extreme outlier points .

In order to achieve a good representation of the prediction densities , it is 

necessary to distinguish between symmetric and asymmetric distributions . The 

presence of extreme additive or innovation outliers causes the state prediction 

densities to become skewed and/or bimodal at some points , see Kitagawa (1987) . It
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is vital for the collapsed prediction density to retain such features whenever they 

occur . To achieve this , it is useful to note that a combination of two close 

components results in a unimodal symmetric function while a bimodal or 

heavily-skewed function is formed by two terms with considerable different means , 

see figure 3.1 . No distinction is made between unimodal or symmetric distributions 

from bimodal or skewed ones in Guttman and Pena (1985) .

The method of collapsing begins with the testing of symmetry and 

unimodality of the state prediction density . Referring to equation (3.2.2) , the

dose to each other . Then , the approximate density is formed by combining the first 

with the third term and the second with the fourth term , see figure 3.2b . This 

collapsed density has a contaminated normal structure in that the first term 

dominates the second . On the other hand , when the distance between the two 

means , a ^ t  ̂ and a ^ t ^ > *s large , the prediction density is asymmetric or bimodal. 

In this case , the two components of the collapsed density should have greatly 

differing means to maintain the bimodal or skewed structure . This is achieved by 

combining the first two terms and then the last two terms together , see figure 3.2a . 

In this way , each four term normal mixture is well represented by a two term 

Gaussian sum .

We now have

density function is symmetric and unimodal if its two means , a

+ pt+l N(at+l/t,2 ’ Pt+l/t,2̂ (3.2.3a)
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Let dij =  (at / t , i - at+ i / t , j ) h (3-2-3b)

We define the weights , means and variances of the above density for two separate 

cases below .

(a) Symmetric density

(i) weights

~  0  (3.2.4a)

(ii) means

at + l / t , l  =  hat / t , l  +  t̂ hat/t,2  (3.2.4b)

at+ l / t ,2  =  at + l / t , l  (3.2.4c)

(iii) variances

Pt+ 1 /M  =  ( ^ t )  (h2pt / t , l  +  %  +  dl l )  +  (h2pt/t,2  +  %  +  d2l)
(3.2.4d)

Pt+ l/ t ,2  =  ( ^ t )  (h2pt / t , l  +  +  dl 2) +  *t (h2pt/t,2  +  +  d22)
(3.2.4e)

(b) Asymmetric density

(i) weights

Pt+ 1  =  «t (3.2.5a)
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(ii) means

at + l / t , l  =  hat / t , l  (3.2.5b)

at+ l / t ,2  =  hat/t,2  (3.2.5c)

(iii) variances

p t+ i / t , i  =  <h»> (h2pt / t,i +  $ + 0  (h2pt / t ,i +  b%)

Pt+ l/ t ,2  =  ( M )  (h2pt/t,2  +  +  P (h2pt/t,2  +  b^ )

(3.2.5d) 

(3.2.5e)

The distinction between cases (a) and (b) is determined by the following rule . We 

say that the prediction density is symmetric iff

Hat / t , l  “  at/t,2^ - 3Pt / t , l  (3.2.6)

3.2.2 Updating equations

Consider the prediction density , equation (3.2.3a) , at time t , the state is 

updated when a new observation yt becomes available . From equations (2.1.4) and

(2.1.5) , we see that the updating density is written as a ratio of the product of the 

prediction density and the observation noise density to the convolution of these two 

densities . Thus , we have ,

2 2
p(a  /Y  ) =  S I  c.. N(ft.,®?.)/T (3.2.7a)

i = l j = l  J J J
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where

cij =  V j  N(zat / t - i , i  > z2pt / t - i , i + rj)/T  (3-2-7b>

using the following notation

Pi = p ; P2 =  1~p 

=  7 ; 72 =  !“ 7

rl = ’ r2 = 6ffe

2 2
T =  E E c . . , which is the density p(y+/Y, n) 

i= l j= l 1J 1 1-1

= at /t- i,i + pt/t- i,i z(yt- zat /t- i ,i)/(z2pt / t - i>i+rj)
(3.2.7b)

" z2pt /t- l ,i / (z2pt/t- l,i+Ij> (327C)

Some properties of the normal density functions , see Alspach and Sorenson (1971) , 

are used to derive these expressions . These properties will be discussed in the next 

section 3.2.4 when an extension of the AGSF is considered .

Unlike the prediction density (3.2.2a) , the means of the four components in 

the updating density (3.2.7a) are all different . Hence , the combination of the first 

with the third term and the second with the fourth term does not always result in a 

symmetric collapsed density . The updating density is now approximated as (3.2.1)
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where

(i) weights

5j. — "i" c22 (3.2.83.)

(ii) means

at / t , l  =  cl l ^ l l  +  c21^21 (3.2.8b)

at/t,2  =  c12^12 +  c22^22 (3.2.8c)

(iii) variances

denoting M y - t y y  by Ay,

Pt / t , l  =  Cl l ^ l l +Al l )  +  C21^21+A21  ̂ (3.2.8d)

Pt/t,2  =  c12^12+ a12  ̂ +  c22^22+ a22  ̂ (3.2.8e)

We see in equation (3.1.3) that the prior density can be expressed as a 

two—term normal mixture . It follows that if the above procedure is carried out from 

the beginning , the prediction and updating densities at each stage are represented by 

Gaussian sums with only two components . The exponential growth in the number of 

terms in the sum is , therefore , curtailed and the amount of computation is greatly 

reduced . This modified filter is simple to implement even though it does not depend 

on Masreliez assumption . Hence , it can be applied to time series where both types 

of outliers are present.
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3.2.3 Two examples

To compare the AGSF with the Kalman filter , a data set of length fifty is

first generated from the local level model with additive outliers only . With reference
2 2to the linear system (3.1.1) and (3.1.2) , the parameters are set as follows : =  a

= 1 , 7  =  / ? = 5 % ,  g =  100 , b = l .  Assuming knowledge of these parameter values, 

we run the AGSF and the Kalman filter on this series . A plot of the generated state 

a j. and its estimate a^ —i from the filters are found in figure 3.3 . It is clear from 

the graph that the AGSF is more robust than the Kalman filter since the former’s 

estimate of the state are less sensitive to the outliers . Another series of length fifty 

is generated from the local level model but this time with both additive and 

innovation outliers . The parameters are kept the same as above except for the 

factors of contamination which are now g =  100 and b =  10 . Figure 3.4 is a plot of 

the state and its estimate from the AGSF and the Kalman filter . Again we see the 

sequential estimates of the state from the AGSF are less affected by the additive 

outliers compared with those from the Kalman filter .

Since a robust filter is not significantly affected by the additive outliers , it is 

able to track the state better . We can try to identify the aberrant observations by 

examining the scaled innovations . It may be possible to find explanations for these 

abnormalities in the series in terms of identifiable events . Appropriate adjustment 

may then be made to the system to deal with the outliers . The Kalman filter can be 

used to handle the adjusted series.
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3.2.4 Extension to higher order state system

In the derivation of the Gaussian sum filter , see Alspach and Sorenson (1971), 

two results regarding the properties of the normal density function are used . They 

are

(i) For z t  0 ,

N (zx.o3) =  Nx( f , 4 )  /  z (3.2.9)
J z

and

(ii) Nx(^,<rf) Nx(Mj,<r]) =  N ( ^ + < 7?) N ^ . , ^ )  (3.2.10a)

where

=  O ^ j  +  ( i f? )  /  +  <̂ j) (3.2.10b)

a?. = a? c ? /  (a? + <r?) (3.2.10c)

The Gaussian sum expressions for the prediction and updating densities are based on 

these results . When analysing univariate time series having multidimensional state , 

see (1.4.7) , an extension of these results is necessary . Corresponding results for the 

multivariate case and their derivation are given as follows .

Lemma one

Ny(2’S > a<1) =  Nx(&y ’ X) /  J f e l l  (3.2.11a)

where

z’a =  1 (3.2.11b)



The approximate gaussian sum filter [ch S.

Proof

Letting K =  1 /

K exp

2ira , we have for the L.H.S.

( y - z ’ £ ) 21

2(r"

=  K exp

= K exp

=  K exp

(y—z’x) (y—z’x)"iv / W fsj w/

2^2

(z’x—y)(z*x—yV'rv iv * ' 'iv iv * '

2<r2

fe’fe-sy)] ’ Is’fe-ay)]"
2(72

since z’a =  1IV M

I l l ’ ll zz’isirv

exp •
ZZrursj

7
f e - a y )

=  R.H.S.

Lemma two

where

N x ( t f l ’S l )  N x ^ 2 ,S 2^ “  N « ( l f e ,^ l + ^2^ N x ^ 1 2 ,S 12^rsj tv fv\ rv

Hl2 = (̂ i + 2̂ ) Ml + ^2 0%)

S12 =
lx-1

PS-78]

(Q.E.D.)

(3.2.12a)

(3.2.12b)

(3.2.12c)
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Proof

(i) L.H.S. has determinant | |E j | | ^  l l ^ l l ^

R.H.S. has determinant p 1 +  E ^ 1/ 2 IKEj4  +

Squaring both determinants and equating them gives 

ySj +  S2|| =  IIEjEj  (E^1 +  E ^)||

=  P :  +  S2|| (Q.E.D.)

(ii) Consider the exponent of the L.H.S. multiplied by a factor of —2

(£ -& )’ ^ I1 ( s - f t )  +  T2 ^rH2>

= + 2̂ )j — tfx + $2 fe) + Hi + 2̂̂ 2 te

=  [s -  +  S ^ fc )]  ’ V "1 [x -  V ( E ^  +  E ^ ) ]

— P*i lifi +  ^2 fc) ^  (^1 ifi +  ^2 +  <fl +  H2

where V =  (E“X + E '1)-1  =

This expression is the same as —2 times the exponent of the N
fij

except for a constant term . The three components of this constant term can also be
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re-written as

(a) [^i +  e2) Hi

(b) #2^2 ~^2 V 2̂ ]#2 = #2^1 + #2

(c) (^i +  2̂ ) ^2 #2 = ""2^i(Sl +

The equations in part (a) and (b) are due to the matrix inversion lemma and that in

(c) holds because

( S i + a , ) - 1 = s X 1 +

=» h + h  = s 2( ^ 1 + ^ 1)E 1
= S1 +  s2 (Q.E.D.)

The constant term works out to be the exponent of N > ^1+^2  ̂ mu^^P^eĉ  by a

factor of —2 . We have , thus , shown that both the L.H.S. and the R.H.S. have the 

same exponent.

Hence , the properties of the normal density function hold for the multivariate 

case . As a result , the recursive relations in the Gaussian sum filter extends readily 

to the multi—state process . The method of collapsing described earlier can be 

applied here to curb the proliferation of normal terms in the sum of each density . It 

follows that the AGSF encompasses in a straight forward manner the multivariate 

approach .
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3.3 Parameter Estimation by AGSF

This chapter has so far been concerned with robust filtering , that is ,

sequential estimation of the state when the parameters of the model are assumed to

be known . We shall now turn our attention to the estimation of the variances of the
2 2disturbance terms e  ̂ and 7̂  . This involves the hyperparameters and cr* as well as

the level of contamination which is determined by g , b , 7  and /? . Suppose we are

analysing a series that has both additive and innovation outliers . Maximum

likelihood estimation of the hyperparameters under the assumption of normality will
2 2result in over—estimation of 0 £ and . There is a positive bias because the Kalman 

filter is trying to allow for the outliers in the system . In other words , it will 

attempt to estimate the variance of the contaminated normal distribution and does 

not separate the contamination from the true values of the hyperparameters . ML 

estimation using the AGSF is , therefore , recommended .

3.3.1 The likelihood function

The likelihood of the observations can be expressed as a product of conditional 

densities p(y^/Yt_^) , see equation (2.2.7) . Each of these conditional densities is 

itself a convolution of the state prediction density and the observation noise density , 

see equation (2.1.5) . To achieve an accurate representation of the likelihood , the 

uncollapsed prediction at each stage is used in the convolution . Hence , the four 

Gaussian terms in (3.2.2) are convoluted with the contaminated normal density in 

(3.1.2a) . It follows that each conditional density is represented by a normal mixture 

with eight components . Thus , at time t , we have
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(3.3.1)

where

(i) the weights w. for i=l,2,...,8 are

( l - i t ) ( l - /J ) ( l -7 ) , 

( l - i t )(l-/3) 7 , 

( l-« t ) /? (1-7) , 

( l-« t ) fi 7 ,

6t (l-/3 )(l-7 ) ,

St (1-0) 7 ,

ft 0 (1-7)

(ii) the first four components have a common mean h a ^   ̂ while the last four 

terms have common mean h a ^  ^ . Hence , we have

and respectively.

for i=l,2,3,4 

for i=5,6,7,8

and (iii) the variances a. for i=l,2,...,8 are

h Pt / t , l  + an + 6<Te ’

h2pt / t , l  +  ■
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h2pt / t ,i +  h ° l + ^  •

h2P,

h2P,

h2Pj

and hzP

t,2  + al  + ^  '

. n +  bcr2 +  tf2 t ,2  7] e

2 2 t 2 +  bcr^ +  gc7-f respectively.

The computed values of In p(yt /Y t_^) at each stage are added up to give the 

approximation to the log—likelihood of all the observations

First , let us assume the level of contamination in the model to be known . 

Then , we can evaluate the MLE of the hyperparameters by maximising over the 

log—likelihood function . Since the level of contamination is seldom known in practice 

, we shall investigate its effect on our hyperparameter estimates in the next section 

and see how these factors of contamination can be estimated in section 3.3.3 .

3.3.2 Contour Maps for the likelihood function

In order to concentrate on the estimation of the hyperparameters , we set z =

h =  1 . That is , we reduce the linear system in (3.1.1) to a local level model . Both
2 2disturbances are generated from the contaminated normal distributions with o £

=  1 , 7 =  =  5% and g =  b =  10 . A series of length a hundred is generated from

this m odel. We then run the AGSF with correctly specified level of contamination on
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it to obtain a grid of likelihood values in terms of a e and a  . Figure 3.5a shows a

contour map of the log—likelihood curve as a function of the hyperparameters . Note 

that the function is smooth and that it has global maximum at (0.80,1.31) . Such a 

well-behaved likelihood implies that there is no starting value problem for the 

optimisation procedure . This means during the optimisation procedure, the 

estimates of the hyperparameters will converge to the optimal point even when 

started at different places .

Other grids for the likelihood function have been obtained for the same series 

but with misspedfications of the model when running the filter . Figures 3.5b and 

3.5c are the contour maps of the log—likelihood function when the level of 

contamination are misspecified in the filter as (a) 7 =  /? =  5% , g =  b =  1 and (b) 

7 = / ? = 5% , g  =  b =  100 respectively . That i s , the factors g and b are set roughly 

ten times smaller in case (a) and ten times bigger in case (b) than their actual value . 

In comparison with figure 3.4a , the log-likelihood curve shifts towards the right in 

case (a) and it shifts towards the left in case (b) . This usually results in an 

over-estimation of the hyperparameters in case (a) and an under-estimation of the 

hyperparameters in case (b) . The optimal points for the two cases are (1.18,1.36) 

and (0.63,1.46) respectively .

Consider the overall variance of the disturbance terms , that is , the 

hyperparameters together with the variance of the contaminating components. We 

can express these terms as follows

V(«t ) =  (1— + 7g<^

=  (1 -  7 +  7g)<^ (3.3.2a)
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and V fy ) =  (1 -  p  + 0b)o* (3.3.2b)

o
The underlying model from which the data is generated has V(e.) =  1.45a andX 6

2
V(f7t ) =  l-45a^ . Assuming the specification of case (a) , the corresponding values

becomes V(cj.) =  and V(?7t ) =  while for (b) , V(ct ) =  5.95o^ and V(?7t )
2

= 5.95a . The optimisation procedure is actually estimating the overall variance of
2 2the noise terms . Hence . there is likely to be an over-estimation of a  and a in case

1 * € 7 }

(a) and an under-estimation in case (b) . It is , therefore , necessary for us to 

identify the true level of contamination in order to estimate the central components 

only .

3.3.3 Estimation of the factors of contamination

Suppose the percentages of contamination , 7 and 0  , are known . We

concentrate on the estimation of the factors of contamination , g and b . The

likelihood as a function of these parameters is rather flat . This is because the factors

of contamination only affect the series a small proportion of time . Besides , the 
2 2hyperparameters , <rf and 0^ , are increased only by a factor of (1—7 + 7g) and (1—0  

+  0b) instead of g and b when there is contamination , see equation (3.3.2) . Hence , 

the inclusion of these factors of contamination into the numerical optimisation 

procedure for maximum likelihood estimation is not a viable proposition . A more 

suitable method for identifying the levels of g and b is to use a broad grid search . 

Suppose that initial estimates of the factors of contamination , denoted by gg and bg , 

are available . A scale of ten can be used to form the grid , that is , we have jjj gQ , 

gQ and 10 gQ spanning the horizontal axis and ’ ^0 ^0 sPann*n8

vertical axis . The ML estimation procedure for the hyperparameters is repeated over
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this broad grid of values for g and b . By comparing the ML value for each 

combination , the best model is chosen as the one with the biggest likelihood value . 

We note that the grid search for the factors of contamination is similar to the model 

identification method employed by Kitagawa (1987) which uses the Akaike 

information criterion .

We could try a slightly different version of the above AGSF . Suppose that no 

collapsing was done at the prediction stage , i.e. , all four terms of the prediction 

density are used in the updating process . The state updating density will end up 

with eight terms which are combined to give a two term mixture . Like the previous 

filter , the normalising constant p(yt /Y t_^) which contributes towards the likelihood 

value is also made up of eight terms . However , these terms are different from those 

in the previous filter . In the latter , a distinction is made between outliers and 

non-outliers, leading to better estimates of the state . It seems a bit surprising that 

the model selection process using the AIC does not work with this new version of 

AGSF . Hence , we conclude that the identification of aberrant points at the 

prediction stage helps to make the likelihood function more sensitive towards the 

specification of the contaminating component in the m odel.

Initial estimates for the factors of contamination can be evaluated with the 

procedures used to obtain starting values for the hyperparameters . The latter are 

usually derived from the sample variance and covariance of a differenced series . 

Taking first differences of the observations, we have from a local level m odel,

=  ’'t +  et -  V i (3.3.3)
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Thus , the variance and covariance of this differenced series can be written as

Var(A y^) =  c? +  2 (3.3.4a)

and Cov(a yt ,A yt+ 1) =  -  <?€ (3.3.4b)

Such functional relations enable us to obtain rough estimates of the hyperparameters 

based on the sample estimates of V(a y^) and Cov(a y ,̂A y ^ j )  • Due to presence of 

outliers , it is necessary for the latter to be robust . Some trimming of proportion a  

can be introduced . Hence , we have

V(& yt ) =  ( l - a j(T - l)  (3 3-5a)

Cov(a yt ,A y t + 1 ) ---------- ( i -a ) (T -2 )--------  (3.3.5b)

where Ay is the median of the differenced observations and the summations exclude
^  j - y
j  proportion of the largest and ^  proportion of the smallest summants . On the 

other hand , if we use all the differenced observations and compute V(Ay^) and 

Cov(Ayt ,Ayt _j_̂ ) as the sample variance and covariance , we end up with rough 

estimates of the overall variances . Using the relations in equation (3.3.2) , we can 

then work out approximate values of g and b from these initial estimates of V(e .̂) , 

V(r?t ) , c? and .
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3.3.4. Simulation results

In order to study the performance of the MLEs from the AGSF and compare 

them with those from the Kalman filter , we carry out some simulations . Series of 

length one hundred are generated from the local level model . When generating the 

data , the first thirty observations are discarded to remove the effect of the initial 

state on the series . An optimisation routine C05NBF from the NAG library is 

applied to carry out the ML estimation for both the AGSF and the Kalman filter . 

One hundred replications are used in each set of simulations . The summary 

statistics of the estimates , namely the bias and mean square errors (MSE) , taken 

over these one hundred replications are then evaluated . We shall investigate the 

sampling properties of the two types of estimators for the following set of parameter 

values :

( a ) ^  = 2 , o J = l ;

(b) =  2 , =  2 ; and

( c )  ^  =  l , a j  =  1 . 5 .

In order to facilitate the comparison amongst the three cases , we perform a

logarithmic transformation on the hyperparameters . Hence , we estimate the

logarithms of the scales , i.e. In and In a , in the three sets of simulations . If

there is at least one breakdown in any set of simulations , another set of summary
*

statistics which are more resistant is computed . The bias , denoted by bias , is now
♦

evaluated using the median while the mean square error , denoted by MSE , is 

computed using the pseudovariance , see Hoaglin et al (1983) . The latter is the 

square of the interquartile range scaled by 1.349 which makes it comparable with the 

standard deviation of the Gaussian distribution . We say that there is a breakdown
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in the estimation when the estimate of a parameter in at least one replication is way 

off from most other estimates within the same simulation . The number of cases 

which are excluded , M , is also indicated when presenting this alternative set of 

summary statistics .

When comparing the summary statistics of two different estimation procedure, 

we have to ensure that any difference found in the bias and mean square error are not

due to sampling variability . Suppose that the sample estimate of the mean p and
2 -2 variance a  of a distribution are x and a  respectively . Then , assuming normality ,

we have

and

-2
var(x) » ^  (3.3.6a)

9 t Avar(<j ) 8 2^-_ -̂  (4.5.6b)

Denoting the bias and mean square error of the distribution by (5 and <p respectively , 

it follows that

and

var(/?) 8 £

var(0) 8 2 cA 1 4- 1
n n-1

(4.3.7a)

(4.3.7b)

To check if the difference in the summary statistic is significant , we need to consider 

the variance of this difference . Independence of the simulations is assumed so that 

this variance is given by the sum of the variance from each sampling distribution . 

Once , we obtain the following statistics
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_ d ifference  in  summary s t a t i s t i c s  
standard deviation  of d ifference

, we can compare it with the z^ value from the normal table . We conclude that the 

difference is significant at the pth level when z > z^ . In our analysis of the 

simulation results , we shall fix p at the 5% level, unless otherwise stated .

The simulation results are categorised according to the types of contamination 

present in the system . We shall consider four different cases , namely , clean data ; 

additive outliers only ; innovation outliers only ; and both additive and innovation 

outliers . These cases can be modelled by the distribution of the disturbance terms , 

see equation (3.1.2) . For simplicity , let us fix the percentage of contamination , 

both 7 and /3 , at 5% and assume that to be known . Then , the above four types of 

contamination are produced by setting :

Case 1 g =  b =  1 ;

Case 2 g =  20 , b =  1 ;

Case 3 g =  1 , b =  10 ; and

Case 4 g =  20 , b =  10 .

For each case , we shall first present the summary statistics from the AGSF and then 

from the Kalman filter .
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Case 1 Clean data

TABLE 3.1 SUMMARY STATISTICS FROM AGSF (dean data)

Estimator of Bias MSE

(i) lOg <7£

(a) 0.3466 -0.0213 0.0175

(b) 0.3466 -0.0296 0.0285

(c) 0.0 0.0055 0.0041

(ii) lQg %

(a) 0.0 -0.0647 0.0672

(b) 0.3466 -0.0661 0.0552

(c) 0.2027 -0.0906 0.0459

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.6 to 3.8 .
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TABLE 3.2 SUMMARY STATISTICS FROM KALMAN FILTER (dean data)

Estimator of Bias MSE

( i ) lo g

(a) 0.3466 -0.0152 0.0129

GO 0.3466 -0.0258 0.0221

(c) 0.0 -0.0053 0.0332

( l i ) l o g ^

(a) 0.0 -0.0165 0.0496

( b ) 0.3466 -0.0121 0.0308

(c) 0.2027 -0.0504 0.0371

The sampling distributions of these two MLEs for the three different sets of 

parameter values are given in figures 3.9 to 3.11 .

We observe , in the absence of contamination , that the MLE of In a  from the

two filters are not significantly different in terms of their summary statistics .

However , we can see more clearly the edge which the Kalman filter estimator has
o

over that produced by the AGSF for the parameter In a . In case (b) , where a =
T) €

2
<7\ =  2 , both the bias and mean square error for the MLE of In a from the Kalman V V
filter are significantly smaller than those from the AGSF . We expect slightly better 

behaviour for the estimators from the Kalman filter when there are no outliers in the 

data because unlike the AGSF , it does not involve the estimation of the levels of 

contamination.



The approximate gaussian sum filter [ch S. P0.93]

Case 2 Additive outliers only

TABLE 3.3 SUMMARY STATISTICS FROM AGSF (AO only)

Estimator of Bias MSE

(i) log <r£

(a) 0.3466 0.0329 0.0168

(b) 0.3466 0.0417 0.0292

(c) 0.0 0.0393 0.0363

(ii) k>g av

(a) 0.0 -0.1617 0.1263

(b) 0.3466 -0.1071 0.0661

(c) 0.2027 0.0811 0.0476

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.12 to 3.14 .
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TABLE 3.4 SUMMARY STATISTICS FROM KALMAN FILTER (AO only)

Estimator of Bias MSE

(i) log a(

(a) 0.3466 0.3001 0.1358

00 0.3466 0.2967 0.1389

(c) 0.0 0.3005 0.1449

(H) log <rv

(a) 0.0 -0.1071 0.0740

(b) 0.3466 -0.0754 0.0529

(c) 0.2027 -0.0695 0.0457

The sampling distributions of these two MLEs for the three different sets of 

parameter values are given in figures 3.15 to 3.17 .

When additive outliers are present in the series , we find that the AGSF can

estimate In <jf better than the Kalman filter . This is evident from Tables 3.3 and 3.4

where we see the summary statistics for the MLE from the Kalman filter are

significantly bigger than those from the AGSF in all three cases . Since outliers are

absent from the transition equation , the parameter In a  is still quite well estimated

by the Kalman filter . The summary statistics for lno^ from the two filters are not
2 2very different except in case (a) where a^ — 2 and a = 1 t where we see a 

significantly smaller MSE for the estimator from the Kalman filter . Hence , we 

conclude that the AGSF is more robust towards additive outliers compared with the 

Kalman filter .
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Case 3 Innovation outliers only

TABLE 3.5 SUMMARY STATISTICS FROM AGSF (10 only)

Estimator of Bias MSE

(i) log a (

(a) 0.3466 -0.0181 0.0178

(b) 0.3466 0.0122 0.0486

(c) 0.0 0.0348 0.0494

(«) tog av

(a) 0.0 -0.0183 0.1028

(b) 0.3466 0.0190 0.0597

(c) 0.2027 -0.0052 0.0532

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.18 to 3.20 .
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TABLE 3.6 SUMMARY STATISTICS FROM KALMAN FILTER (10 only)

*  *
Estimator of Bias MSE Bias MSE

(i) log <re

(a) 0.3466 -0.0116 0.0161

(b) 0.3466 -0.1163 0.6569 0.0104 0.0240

(c) 0.0 -0.6620 6.2078 0.0180 0.0380

(«) log aV

(a) 0.0 0.1454 0.0660

(b) 0.3466 0.1237 0.0804

(c) 0.2027 0.1374 0.0817

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.21 to 3.23 .

The presence of innovation outliers in the system not only affects the

estimation of In <7^ by the Kalman filter but also causes its estimation of In cr£ to

sometimes breakdown . Such breakdown in the estimation of In a  does not occur
2 2with the AGSF . In case (a) where <7, =  2 and <7 =  1 , the MLE of In a  from thev 1 e V c

Kalman filter does not break down and there is no significant difference in its 

summary statistics compared with corresponding values from the AGSF . With the 

exception of the MSE for case (a) , we see that for the parameter In <7^ , the bias as 

well as the mean square error obtained from the Kalman filter are significantly bigger 

than corresponding values produced by the AGSF in all three cases . This leads to 

the conclusion that unlike the Kalman filter , the AGSF is rather insensitive towards 

innovation outliers .
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Case 4 Additive and Innovation outliers

TABLE 3.7 SUMMARY STATISTICS FROM AGSF (AO and 10)

Estimator of Bias MSE

(i) log <Tf

(a) 0.3466 0.0329 0.0197

0>) 0.3466 0.0268 0.0386

(c) 0.0 0.0348 0.0494

(«) lQg ar,

(a) 0.0 -0.0433 0.1159

(b) 0.3466 0.0059 0.0651

(c) 0.2027 0.0052 0.0532

The sampling distributions of the two MLEs from the two filters for the three

different sets of parameter values are given in figures 3.24 to 3.26 .
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TABLE 3.8 SUMMARY STATISTICS FROM KALMAN FILTER (AO and 10)

Estimator of Bias MSE Bias MSE

(0 log <re '

(a) 0.3466 0.2991 0.1371

(b) 0.3466 0.2909 0.1426

(c) 0.0 0.2357 0.4765 0.2985 0.6014

(ii) lQg %

(a) 0.0 0.0797 0.0903

(b) 0.3466 0.1039 0.0848

(c) 0.2027 0.1101 0.0807

The sampling distributions of these two MLEs for the three different sets of

parameter values are given in figures 3.27 to 3.29 .

Here , both the measurement and transition equation of the system are

contaminated by aberrant data . The AGSF shows a definite edge over the Kalman

filter in the estimation of In a  . Both the bias and mean square error from the

Kalman filter are significantly bigger than corresponding values from the AGSF . In 
2 2case ( c ) , where =  1 and a  =  1.5 , there is a breakdown in the estimation of In 

by the Kalman filter . The improvement made by using the AGSF is less obvious in 

the estimation of In a  . This is partly because a smaller factor of contamination is 

used , i.e. b < g . In case (a) , there is no significant difference in the summary 

statistics of the two filters. However , the summary statistics from the Kalman filter 

for the other two cases are significantly bigger than those produced by the AGSF .
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Thus , we say that the AGSF can cope with the presence of both additive and 

innovation outliers better in terms of the estimation of the hyperparameters than the 

Kalman filter .

o
Consider the ratio of the system noise variance to the observation noise 

2
variance o and denote this quantity by q . In the above simulations , we have 

considered different sets of parameter values with q assuming the values 0.5 , 1 and

1.5 . When the value of q is big , it seems as if the MLE procedure for estimating a 

tends to break down . This is because scale is a positive parameter so that negative 

estimates are given the value zero . This results in a lump at the zero level for the 

sampling distribution of the MLE . In the logarithm scale , this corresponds to large 

negative estimates for In a  . Let us consider all one hundred replications in the 

simulation for case (c) when the data is clean . Figures 3.30 and 3.31 show the 

sampling distributions for the MLEs of the In a  from the Kalman filter and the 

AGSF respectively . Two cases of breakdown at replications 41 and 57 can be 

identified for the Kalman filter estimator . Corresponding estimates from the AGSF 

at these two replications reveal that with the AGSF breakdowns occur less frequently 

and less drastically . In order not to confound this effect with the distortion caused 

by outliers , we excluded the estimates from these replications for both filters in all 

the above simulations for case (c) .

3.3.5 Some Examples

Recall the two examples given in section 3.2.3 . Suppose we now run the 

AGSF and the Kalman filter on the generated series without assuming knowledge of 

the parameter values . That is , we have to perform ML estimation of the
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hyperparameters before tracking the state . For the AGSF , a broad grid search of 

the factors of contamination is included though the percentage of contamination is set 

correctly at the 5% level.

Let us first consider the series with only additive outliers , i.e. g=100 , b = l . 

The scale , namely , o £ and a  are estimated as 1.05 and 0.91 respectively by the 

AGSF while the Kalman filter’s estimates are 1.75 and 1.00 respectively . A plot of 

the generated state at and its estimates from both filters are found in figure

3.32 . We observe that the AGSF , being more robust towards outliers , can track 

the state better than the Kalman filter . The other series has noisy disturbances at 

both the measurement and transition equations, i.e. g=100 and b=10 . Estimates of 

scale a and a  from the AGSF are 1.04 and 0.93 respectively . Corresponding valuesc T}
produced by the Kalman filter are 1.74 and 1.01 respectively . Figure 3.33 consist of 

a plot of the generated state and its estimates from the two filter . We conclude that 

the AGSF can still track the state better than the Kalman filter even in the presence 

of noisy state disturbance term . We observe that with the estimation of 

hyperparameters , the Kalman filter is not as sensitive to additive outliers , compare 

figures 3.32 and 3.3 . This is because its over—estimation of crf will lead to a smaller 

estimate of the ratio q which results in slower reaction of the filter to the 

observations .

Next , let us consider a real example . We have a set of monthly data on UK 

retail price index from 1968 to 1984 . We first difference the series and then fit a 

local level model to it . Any step changes in the original series will become additive 

outliers after differencing . Running the AGSF on this series produces estimates of 

scale cr(  and a  as 3.57 and 0.77 respectively . Corresponding estimates from the 

Kalman filter are 7.61 and 0.99 . Figure 3.34 gives a plot of the series yt and the
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one—step ahead predictions at ^ —l r̂om two ^ ters • We observe that the 

Kalman filter is more sensitive towards the aberrant observations , see the 76th and 

132nd observation which correspond to prices in 1974 and 1979 . Oh the other hand , 

the state predictions from the AGSF are more robust towards the outliers .

3.4 Non—normal contamination

So far , we have been generating outliers by allowing the distribution of the 

disturbance terms take on contaminated normal distributions , see equation (3.1.2) . 

However , other forms of long—tailed distribution may also be reasonable 

approximations to reality . We shall let the central component of the disturbance 

terms remain as normal variates but use a t—distribution with two degrees of freedom 

for the contaminating components . That is , a series with both additive and 

innovation outliers is generated by having

P(«t ) =  (1-7) N(0,<^) +  7 u>l t  

P(7?t ) =  (1-0) N (0 ,^ ) +  /} w2t (4.4.1b)

(4.4.1a)

where and ~ ^  distribution

To investigate how the two filters , namely , the AGSF and the Kalman filter 

cope with outliers of this nature , we repeat the simulations for case 4 where 

contamination occurs at both equations of the system . The summary statistics for
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the three sets of parameter values are given in Tables 3.9 and 3.10 below .

TABLE 3.9 SUMMARY STATISTICS FROM KALMAN FILTER (t2 distribution)

Estimator of Bias MSE
* * 

Bias MSE

(0 log a e

(a) 0.3466 -0.0432 0.3110 -0.0002 0.0146

(b) 0.3466 -0.2406 2.6564 -0.0026 0.0190

(c) 0.0 -0.4210 3.7872 0.0150 0.0382

(«) i ° g ^

(a) 0.0 0.0541 0.0848

(b) 0.3466 0.0248 0.0587

(c) 0.2027 -0.0628 0.0667

The sampling distributions of these two estimators for the three different sets of

parameter values are given in figures 3.35 to 3.37 .
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TABLE 3.10 SUMMARY STATISTICS FROM AGSF (t2 distribution)

Estimator of Bias MSE

(i) log ae

(a) 0.3466 -0.0121 0.0142

(b) 0.3466 -0.0216 0.0272

(c) 0.0 -0.0441 0.0639

(H) log %

(a) 0.0 -0.0855 0.1066

(b) 0.3466 -0.0588 0.0493

(c) 0.2027 -0.0341 0.0367

The sampling distributions of these two MLEs for the three different sets of 

parameter values are given in figures 3.38 to 3.40 .

The presence of non—normal contamination causes the Kalman filter to 

breakdown in its estimation of In <rf for all three cases . Breakdown occurs for the 

estimation of In a by the Kalman filter for only case (c) . Estimation of neither 

hyperparameter broke down for the AGSF . The summary statistics for the 

estimator of In a  from the AGSF are not significantly different from those produced 

by the Kalman filter in cases (a) and (b) . Hence , we conclude that the AGSF is 

more robust when compared with the Kalman filter towards non—normal 

contamination . In fact , the performance of the MLE from the AGSF would improve 

as we increase the number of terms in the Gaussian sums . This is because we can 

achieve a more accurate representation of a non—normal component with more terms 

in the normal mixture . But this will lead to an increase in the computation time .
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There is , thus , a trade off between good representation and computation time 

involved . In most economic time series data , it is enough to model the outliers 

using a normal contaminating component since wild outliers can usually be identified 

and removed during a preliminary examination of the plot of the series .
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Figure 3.1a Mixture of two 
close components

Figure 3.1b Mixture of two 
well—separated components
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f W M

W ' t

a trt , i  a -y t ,2
Figure 3.2a Asymmetric collapsed density

Q

Figure 3.2b Symmetric collapsed density



The approximate gaussian sum filter [ch S. pg. 107]

Tracking of state (—  
parameter estimation 

1
WH ll

4 -  !',

-) by AGSF (------- ) and Kalman filter (------- ) without

Q
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Figure 3.3 5 =  100 , =  1

6 -i

5 -

4 -

2 -

- 0 -

- 2 -

- 4 -

- 5 -

- 6
503020100

Figure 3.4 g =100 , b =  10
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Contour maps for the log-likelihood function

0 . 9 -

0 . 7 -

0 . 5 -

0 . 3 0 . 7 1 . 51 . 1

Figure 3. 5a Correct specification of GK and BK

0 . 9 -

0 . 7 -

0 . 3 0 . 7 1 . 5 1 . 91 . 1
Figure 3. 5b Under—specification of GK and BK
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9 -

0 . 9 -

0 . 7 -
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Figure 3. 5c Over-specification of GK and BK
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Sampling distributions for MLE of (a) In <rf and (b) In ^  from AGSF for dean data

Midpoint Count
-0.1 2 **

0.0 1 *
0.1 6 ******
0.2 16 ****************
0.3 29 *****************************
0.4 31 *******************************
0.5 13 *************
0.6 2 **

(b) Midpoint Count
-1.4 1 *
-1.2 0
-1.0 0
-0.8 2 **
-0.6 2 **
-0.4 8 ********
-0.2 25 *************************

0.0 39 ****************************************
0.2 17 ******************
0.4 6 *******

Figure 3.6 <? — 2 and =  1 
e 7)

(a) Midpoint Count
-0.3 1 *
-0.2 1 *
-0.1 0

0.0 3 ***
0.1 9 *********
0.2 16 ****************
0.3 25 *************************
0.4 22 **********************
0.5 16 ****************
0.6 7 ******
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(b) Midpoint Count
—0.7 1 *
-0.6 0
-0.5 0
-0.4 2 **
-0.3 0
-0.2 2 **
-0.1 2 **

0.0 2 **
0.1 11 ***********
0.2 20 ********************
0.3 18 ******************
0.4 23 ***********************
0.5 10 **********
0.6 d *********

Figure 3.7 <72 =  2 and <72 = 2

(a) Midpoint Count
-0.4 3 ***
-0.3 6 ******
-0.2 9 *********
-0.1 12 ************

0.0 20 ********************
0.1 35 ***********************************
0.2 9 *********
0.3 4 ****

(b) Midpoint Count
-0.5 1 *
-0.4 2 **
-0.3 0
-0.2 6 ******
-0.1 11 ***********

0.0 12 ************
0.1 20 ********************
0.2 22 **********************
0.3 16 ****************
0.4 8 ********

Figure 3.8 <r2 =  1 and a2 = 1.56 7}
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Sampling distributions for MLE of (a) In a^ and (b) In 6^ from Kalman filter for 
dean data

(a) Midpoint Count
********0.1 8

0.2 15
0.3 30
0.4 34
0.5 11
0.6 2

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * *
* *

(b) Midpoint Count
-1.2 1 *
-1.0 0
-0.8 0
-0.6 2 **
-0.4 4 ****
-0.2 24 ************************

0.0 36 *************************************
0.2 28 ****************************
0.4 5 ******

Figure 3.9 = 2 and o ^ =  1€ T)

(a) Midpoint Count
0.0 5 *****
0.1 9 *********
0.2 14 **************
0.3 28 ****************************
0.4 22 **********************
0.5 16 ****************
0.6 6 ******

(b) Midpoint Count
-0.4 1 *
-0.3 0
-0.2 1 *
-0.1 1 *

0.0 2 **
0.1 5 *****
0.2 18 ******************
0.3 22 **********************
0.4 27 ***************************
0.5 15 ***************
0.6 7 *******
0.7 1 *

Figure 3.10 o ' =  2 and <? =  2 ° e 7}
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(a) Midpoint Count
-0.6 1 *
-0.5 2 **
-0.4 2 **
-0.3 5 *****
-0.2 11 ***********
-0.1 9 *********

0.0 24 ************************
0.1 29 *****************************
0.2 10 **********
0.3 5 *****

(b) Midpoint Count
-0.4 2 **
-0.3 1 *
-0.2 3 ***
-0.1 11 ***********

0.0 6 ******
0.1 19 *******************
0.2 25 *************************
0.3 21 *********************
0.4 8 ********
0.5 2 **

Figure 3.11 cr2 = l  and 2 =  1.56 7)

Sampling distributions for MLE of (a) In a  and (b) In <£ from AGSF for data withC
additive outliers only

(a) Midpoint Count 
0.0 1 *
0 1 5 *****
0.2 8 * * * * * * *
0 3 21 *********************
0.4 39 ***************************************
0 5 17 *****************
0 6 9 *********
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(b) Midpoint Count
-1.4 2 **
-1.2 1 *
-1.0 0
-0.8 1 *
-0.6 10 **********
-0.4 9 *********
-0.2 26 **************************

0.0 35 ************************************
0.2 14 ***************
0.4 2 **

Figure 3.12 cr2 =  2 and <r2 =  1 e 7}

(a) Midpoint Count
-0.1 1 *

0.0 2 **
0.1 8 ********
0.2 6 ******
0.3 18 ******************
0.4 30 ******************************
0.5 20 ********************
0.6 12 ************
0.7 2 **
0.8 1 *

Midpoint Count
-0.4 3 ***
-0.3 1 *
-0.2 3 ***
-0.1 4 ****

0.0 9 *********
0.1 11 ***********
0.2 13 *************
0.3 22 **********************
0.4 16 ****************
0.5 13 *************
0.6 3 ***
0.7 2 **

Figure 3.13 <? =  2 and a2 =  2e 71
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(a) Midpoint Count
-0.4 4 ****
-0.3 6 ******
-0.2 5 *****
-0.1 9 *********

0.0 25 *************************
0.1 22 **********************
0.2 17 *****************
0.3 8 ********
0.4 1 *
0.5 1 *

(b) Midpoint Count
-0.5 3 ***
-0.4 0
-0.3 0
-0.2 7 *******
-0.1 10 **********

0.0 9 *********
0.1 19 *******************
0.2 21 *********************
0.3 19 *******************
0.4 8 ********
0.5 2 **

Figure 3.14 &*= 1 and =  1.5 e rj

Sampling distributions for MLE of (a) In o^ and (b) In cr̂  from Kalman filter for data 
with additive outliers only

(a) Midpoint Count
0.2 2 **
0.3 8 ********
0.4 15 ***************
0.5 7 *******
0.6 16 ****************
0.7 18 ******************
0.8 16 ****************
0.9 12 ************
1.0 4 ****
1.1 1 *
1.2 4 ****
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(b) Midpoint Count 
—0.8 2 * *

-0.6 5 *****
-0.4 14 ****
—0.2 23 ***********************

0.0 37 ************************************** 
0.2 15 ***************
0.4 4 ****

Figure 3.15 <? =  2 and or2 =  1 e ri

Midpoint Count
0.1 2 **
0.2 3 ***
0.3 4 ****
0.4 14 **************
0.5 10 **********
0.6 13 *************
0.7 21 *********************
0.8 12 ************
0.9 14 **************
1.0 5 *****
1.1 1 *
1.2 1 *

(b) Midpoint Count
-0.4 1 *
-0.3 0
-0.2 2 **
-0.1 8 ********

0.0 5 *****
0.1 10 **********
0.2 13 *************
0.3 21 *********************
0.4 21 *********************
0.5 12 ************
0.6 4 ****
0.7 3 ***

Figure 3.16 a 1 =  2 and cr2 =  2 e 7]
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(a) Midpoint Count
-0.4 1 *
-0.3 1 *
-0.2 2 **
-0.1 3 ***

0.0 7 *******
0.1 11 ***********
0.2 11 ***********
0.3 19 *******************
0.4 17 *****************
0.5 13 *************
0.6 9 *********
0.7 2 **
0.8 2 **

(b) Midpoint Count
-0.6 1 *
-0.5 0
-0.4 1 *
-0.3 1 *
-0.2 8 ********
-0.1 7 *******

0.0 9 *********
0.1 19 *******************
0.2 22 **********************
0.3 18 ******************
0.4 9 *********
0.5 3 ***

Figure 3.17 c? = 1 and <? =  1.5c Tf

Sampling distributions for MLE of (a) In and (b) In from AGSF for data with 
innovation outliers only.

(a) Midpoint Count 
0.0 2 * *
0.1 7 *******
0.2 22 * * * * * * * * * * * * * * * * * * * * * *
0 3 24 ************************
0 4 22 **********************
0.5 20 ********************
(X6 3 ***
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(b) Midpoint Count
-1.2 1 *
-1.0 0
-0.8 4 ****
-0.6 4 ****
-0.4 4 ****
-0.2 16 ****************

0.0 31 *******************************
0.2 29 *****************************
0.4 10 **********
0.6 1 *

Figure 3.18 <P — 2 and <P — 1
€ 7)

(a) Midpoint Count
-0.4 1 *
-0.3 0
-0.2 0
-0.1 2 **

0.0 1 *
0.1 5 *****
0.2 12 ************
0.3 23 ***********************
0.4 29 *****************************
0.5 19 *******************
0.6 7 ******

(b) Midpoint Count
-0.3 1 *
-0.2 2 **
-0.1 4 ****

0.0 7 *******
0.1 10 **********
0.2 7 *******
0.3 20 ********************
0.4 19 *******************
0.5 14 **************
0.6 8 ********
0.7 4 ****
0.8 2 **
0.9 2 **

Figure 3.19 o^ = 2 and <P — 2
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(a) Midpoint Count
-0.6 1 *
-0.5 3 ***
-0.4 1 *
-0.3 6 ******
-0.2 9 *********
-0.1 6 ******

0.0 21 *********************
0.1 20 ********************
0.2 17 *****************
0.3 9 *********
0.4 5 *****

(b) Midpoint Count
—0.5
-0.4

2
0

**

-0.3 1 *
-0.2 2 **
-0.1 10 **********

0.0 6 ******
0.1 15 ***************
0.2 19 *******************
0.3 15 ***************
0.4 18 ******************
0.5 7 *******
0.6 2 **
0.7 1 *

Figure 3.20 =  1 and a^ =  1.5

Sampling distributions for MLE of (a) In and (b) I n f r o m  Kalman filter data 
with innovation outliers only

(a) Midpoint Count 
0.0 2 * *
0 i  7 *******
0 2 17 *****************
0 3 23 ***********************
0.4 33 *********************************
0 5 15 ***************
0.6 3 ***
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(b) Midpoint Count 
-0.8 1 *
- 0.6  0
-0.4 2 **
 q  2  3  * * * * * * * *

0 0 28 ****************************
0.2 38 **************************************
0 4 22 **********************
o!6 1 *

Figure 3.21 <72 =  2 and <r2 =  1 e rj

2 observations below the first class 

(a) Midpoint Count
-0.4 1 *
-0.3 0
-0.2 1 *
-0.1 1 *

0.0 4 ****
0.1 6 ******
0.2 9 *********
0.3 24 ************************
0.4 23 ***********************
0.5 17 *****************
0.6 10 **********
0.7 2 **

(b) Midpoint Count
-0.3
-0.2

1
0

*

-0.1 2 **
0.0 2 **
0.1 8 ********
0.2 7 *******
0.3 6 ******
0.4 15 ***************
0.5 20 ********************
0.6 16 ****************
0.7 11 ***********
0.8 7 *******
0.9 3 ***
1.0 1 *
1.1 1 *

Figure 3.22 o ' =  2 and <r2 =  2€ 7)
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9 observations below the first class 

(a) Midpoint Count
-0.6 1 *
-0.5 0
-0.4 4 ****
-0.3 2 **
-0.2 6 ******
-0.1 14 **************

0.0 19 *******************
0.1 24 ************************
0.2 11 ***********
0.3 7 *******
0.4 1 *

(b) Midpoint Count
-0.4 1 *
-0.3 0
—0.2 1 *
-0.1 3 ***

0.0 7 *******
0.1 9 *********
0.2 10 **********
0.3 18 ******************
0.4 15 ***************
0.5 15 ***************
0.6 11 ***********
0.7 4 ****
0.8 2 **
0.9 2 **

Figure 3.23 cP̂  =  1 and =  1.5

Sampling distributions for MLE of (a) In a^ and (b) lnc^ from AGSF for data with 
both additive and innovation outliers

(a) Midpoint Count
-0.1 1 *

0.0 1 *
0.1 2 **
0.2 11 ***********
0.3 22 **********************
0.4 31 *******************************
0.5 22 ***********************
0.6 10 **********
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(b) Midpoint Count
-1.2 1 *
-1.0 2 **
-0.8 1 *
-0.6 8 ********
-0.4 8 ********
-0.2 13 *************

0.0 27 ***************************
0.2 29 *****************************
0.4 9 *********
0.6 2 **

Figure 3.24 <? = 2 and a2 =  16 7}

(a) Midpoint Count
-0.2 2 **
-0.1 1 *

0.0 3 ***
0.1 8 ********
0.2 8 ********
0.3 15 ***************
0.4 26 **************************
0.5 21 *********************
0.6 10 *********
0.7 6 ******

(b) Midpoint Count
-0.4 1 *
-0.3
-0.2

0
3 ***

-0.1 4 ****
0.0 5 *****
0.1 9 *********
0.2 7 *******
0.3 15 ***************
0.4 19 *******************
0.5 15 ***************
0.6 10 **********
0.7 9 *********
0.8 2 **
0.9 1 *

Figure 3.25 a2 =  2 and a2 =  2e 7)
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(a) Midpoint Count
-0.6 1 *
-0.5 3 ***
-0.4 1 *
-0.3 6 ******
-0.2 9 *********
-0.1 6 ******

0.0 21 *********************
0.1 20 ********************
0.2 17 *****************
0.3 9 *********
0.4 5 *****

(b) Midpoint Count
-0.5 2 **
-0.4 0
—0.3 1 *
-0.2 2 **
-0.1 10 **********

0.0 6 ******
0.1 15 ***************
0.2 19 *******************
0.3 15 ***************
0.4 18 ******************
0.5 7 *******
0.6 2 **
0.7 1 *

Figure 3.26 (?  =  1 and ov, =  1.5c 7?

Sampling distributions for MLE of (a) In and (b) l n ^  from  Kalman filter for data 
with both additive and innovation outliers

(a) Midpoint Count
0.2 2 **
0.3 9 *********
0.4 13 *************
0.5 8 ********
0.6 16 ****************
0.7 19 *******************
0.8 14 **************
0.9 12 ************
1.0 4
1.1 2 **
1.2 1 *
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(b) Midpoint Count 
— 0.8 1 *

- 0.6 2 * *
 q 4 g *********
—0.2 14 **************

0.0 20 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0.2 29 ***************************************
0.4 19 *****************************
0.6  6 * * * * * *

Figure 3.27 c? =  2 and =  1

Midpoint Count
0.0 1 *
0.1 3 ***
0.2 2 **
0.3 7 *******
0.4 7 *******
0.5 12 ************
0.6 18 ******************
0.7 17 *****************
0.8 14 **************
0.9 11 ***********
1.0 5 *****
1.1 2 **
1.2 1 *

(b) Midpoint Count
-0.4 1 *
-0.3 1 *
-0.2
-0.1

0
3 ***

0.0 4 ****
0.1 7 *******
0.2 6 ******
0.3 10 **********
0.4 11 ***********
0.5 16 ****************
0.6 19 *******************
0.7 9 *********
0.8 8 ********
0.9 5 *****

Figure 3.28 c? = 2 and =  2
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1 observation below the first class 

(a) Midpoint Count
-0.5 2 **
-0.4 1 *
-0.3 0
-0.2 2 **
-0.1 3 ***

0.0 4 ****
0.1 11 ***********
0.2 13 *************
0.3 20 ********************
0.4 14 **************
0.5 10 **********
0.6 11 ***********
0.7 4 ****
0.8 2 **

(b) Midpoint Count
-0.6 1 *
-0.5 0
—0.4 0
-0.3 1 *
-0.2 4 ****
-0.1 4 ****

0.0 8 ********
0.1 6 ******
0.2 11 ***********
0.3 12 ************
0.4 23 ***********************
0.5 12 ************
0.6 10 **********
0.7 2 **
0.8 3 ***
0.9 1 *

Figure 3.29 <72 = 1 and cr2 = 1.5
€ 7}



The approximate gaussian sum filter [ch 3. pg. 126]

Sampling distribution for MLE of In a^ when q =  1.5

Each * represents 2 observations

Midpoint Count 
*-14.0 1

-12.0 0
-10.0 0
-8.0 0
—6.0 0
-1.0 1
-2.0 0

0.0 98
2.0 1

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*

Figure 3.30 MLE from the Kalman filter

Midpoint Count
-0.7 1 *
-0.6 0
-0.5 0
-0.4 3 ***
-0.3 6 ******
-0.2 9 *********
-0.1 12 ************

0.0 20 ********************
0.1 36 ************************************
0.2 9 *********
0.3 4 ****

Figure 3.31 MLE from the AGSF
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Tracking of state (---------) by AGSF (--------) and Kalman filter (------- ) with
parameter estimation
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Figure 3.33 g  =  100 and 6 = 1 0
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Figure 3.34 Plot of differenced UK price data (--------- ) and one step ahead
predictions from AGSF (-------- ) and the Kalman filter (-------- )
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Sampling distributions for MLE of (a) In o f and (b) bi 
with non—normal contamination

1 observation below the first class 

(a) Midpoint Count
-0 .3 1 *
-0 .2 0
-0 .1 0

0.0 3 ***
0.1 2 **
0.2 13 *************
0.3 31 *******************************
0.4 26 **************************
0.5 13 *************
0.6 8 ********
0.7 0
0.8 1 *
0.9 1 *

Midpoint Count
-0 .6 2 **
-0 .4 4 ****
-0 .2 23 ***********************

0.0 34 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 5

0.2 27 ***************************
0.4 4 ****
0.6 3 ***
0.8 2 **
1.0 0
1.2 0
1.4 1 *

Figure 3.35 =  2 and =  1

3 observations below the first class 

(a) Midpoint Count
-0 .2 1 *
-0 .1 0

0.0 5 *****
0.1 2 **
0.2 11 ***********
0.3 29 *****************************
0.4 25 *************************
0.5 14 **************
0.6 8 *******
0.7 0
0.8 1 *
0.9 1 *

from Kalman filter for data
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1 observation above the last class 

(b) Midpoint Count
-0.2 1 *
-0.1 3 ***

0.0 3 ***
0.1 9 *********
0.2 14 **************
0.3 13 *************
0.4 26 **************************
0.5 15 ***************
0.6 7 *******
0.7 3 ***
0.8 2 **
0.9 3 ***

Figure 3.36 = 2 and =  2

7 observations below the first class 

(a) Midpoint Count
-0.6 1 *
-0.4 3 ***
-0.2 14 **************

0.0 38 **************************************
0.2 26 **************************
0.4 7 *******
0.6 0
0.8 2 **

6 observations above the last class 

(b) Midpoint Count
-0.3 1 *
-0.2 4 ****
-0.1 2 **

0.0 12 ************
0.1 11 ***********
0.2 19 *******************
0.3 23 ***********************
0.4 15 ***************
0.5 2 **
0.6 5 *****
0.7 1 *
0.8 0
0.9 1 *
1.0 1 *

Figure 3.37 a 1 =  1 and a^ =  1.5 ° e 7)
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Sampling distributions for MLE of (a) In crf and (b) ln<r̂  from AGSF for data with 
non—normal contamination

(a) Midpoint Count
-0.1 1 *

0.0 2 **
0.1 4 ****
0.2 12 ************
0.3 35 ***********************************
0.4 32 ********************************
0.5 12 ************
0.6 2 **

(b) Midpoint Count
-1.4 2 **
-1.2 0
-1.0 1 *
-0.8 0
-0.6 5 *****
-0.4 7 *******
-0.2 28 ****************************

0.0 33 *********************************
0.2 20 ********************
0.4 4 ****

Figure 3.38 c? = 2 and c? = 1€ 7)

(a) Midpoint Count
-0.5 1 *
-0.4 0
-0.3 0
-0.2 0
-0.1 3 ***

0.0 1 *
0.1 3 ***
0.2 16 ****************
0.3 29 *****************************
0.4 27 ***************************
0.5 14 **************
0.6 6 ******
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(b) Midpoint Count
-0.3 3 ***
-0.2 0
-0.1 5 *****

0.0 4 ****
0.1 10 **********
0.2 17 *****************
0.3 17 *****************
0.4 24 ************************
0.5 11 ***********
0.6 5 *****
0.7 4 ****

Figure 3.39 <? — 2 and &* = 2
€ 7)

Each * represents two observations 

(a) Midpoint Count
-1.6 1 *
-1.4 0
-1.2 0
-1.0 1 *
-0.8 0
-0.6 3 **
-0.4 5 ***
-0.2 14 *******

0.0 53 ***************************
0.2 19 **********
0.4 2 *

(b) Midpoint Count
-1.4 1 *
-0.3 2 **
-0.2 4 ****
-0.1 4 ****

0.0 16 ****************
0.1 16 ****************
0.2 20 ********************
0.3 18 ******************
0.4 12 ************
0.5 3 ***
0.6 2 **

Figure 3.40 a? =  1 and = 1.5
€ 7}
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4.1 The Scale Estimation Problem

Consider the local level m odel,

yt = at + ft (4-1-la)
“t =  " t - i +  \  (4 l l b )

where a  ̂ is the state while et and 7̂  are disturbance terms usually assumed to be 

normally distributed .

However , to model outliers in the system , we may allow the noise terms to take on 

mixture distributions . For example , if additive outliers are present , the density of 

et can be chosen as

P(£t ) =  (1 -7)N (0 ,^) +  7 S( (4.1.2)

where 7 is the proportion of outliers and the contaminating component 6 has a
o

distribution with longer tails than N(0,a e) .

In Chapters 2 and 3 , the main concern was robust sequential estimation of the 

state c*t . This corresponds to a location estimation problem in the i.i.d. case . The 

estimation of variances of the disturbance terms was carried out by the maximum 

likelihood estimation procedure . It was necessary to identify the level of

contamination or the contaminating distribution by a grid search or by some 

information criterion such as the AIC .
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However , in practice we may wish to treat the contaminating component as a

nuisance parameter and not want to estimate it . Instead , the usual parameters of
2 2interest are the variances of the noise terms , a  and a , free from distortion by’ € T) ’ J

contamination . In this chapter , the aim is to produce estimates of these 

hyperparameters which are not sensitive to outliers .

4.2 M-estimates of Scale for i.i.d. case

First , let us consider a set of i.i.d. observations . Suppose each

has density function f^(x.) where 0 is the scale parameter . Then , the scale model is 

given by

(4.2.1)

Taking logarithms results in

In f^Xj) =  -In  6 +  In f(^i) (4.2.2)

and differentiation gives 

d In f^ x j)
1 + £ ( | )

t (4.2.3)

Scale invariance is achieved by multiplying the first derivative by the scale parameter 

, that i s , the expression
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(4.2.4)

is independent of the unit of measurement . A maximum likelihood estimator (MLE) 

of the scale parameter is defined as the solution to

Such a influence function show that the MLE is not robust . Figure 4.1 gives a 

plot of the psi—function for normal observations . We note that its gross error 

sensitivity (GRE) is not bounded . It follows that an extreme observation could have 

unlimited influence on the estimator . To robustify the scale estimation procedure , 

we can use a generalised maximum likelihood estimator , alternatively known as 

M-estimator . We can modify the MLE by bounding its GRE . The psi—function in

(4.2.6) is replaced by

n
The new estimator of scale is obtained by equating E to zero . The modified

i = l  1

n
fA ) = o

M  — O ------
(4.2.5)

Hence , the influence function of a MLE takes the form

(4.2.6)

f - b $  < -  b
ty(y) =  <^(y) - c = $ (y) elsewhere

l b  > b$  >
(4.2.7)

score function is , in fact the original score function adjusted by c when the
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magnitude of the derivative is smaller than a bound b . This is very like the MLE 

when the magnitude of all the derivatives is smaller than the bound b . But when 

this value exceeds the bound , the derivative is replaced by a constant , retaining its 

sign . In order to obtain Fisher consistency , the original psi—function ^(y) has to be 

shifted by a constant c . Thus , the constant c is found by setting

E ( tf(y) ) =  0 (4.2.8)

where the expectation is taken over the distribution of y , usually normal . In this 

way , the new estimator is made comparable to the standard deviation at the normal 

distribution .

4.3 Scale Model and Sensitivity Curves for Time Dependent Observations

Consider a time series ypy2>--->y»p • Although the observations are now time 

dependent , their joint likelihood can be broken up into conditional densities 

p(yt /Y t_^) . Hence , the probability density function in the i.i.d case f i s  now 

replaced by the conditional likelihood p(y^/Y^_^) . The latter is a function of the 

one—step ahead state prediction error v̂ . and its scale f̂ . . Unlike the previous

and the scale f̂  are now dependent on the 

parameters of interest . To make the situation more comparable to the i.i.d. case , 

reparameterisation is appropriate . We would like to estimate the standard deviation 

of the measurement noise term a and the ratio of the standard deviation of the two 

noise terms Vq =  .

section , both the location
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4.3.1 Sensitivity curve for time dependent observations

To gain a better understanding of the problem , we shall first see how sensitive

the MLE of V5 > which is denoted by V5 > is towards outliers . In other words , we

want to investigate the sensitivity curve of Vq , assuming a  given . According to the 

definition of a sensitivity curve , the change in the ML estimate of >Jq is measured 

when an additional observation (xn) is included in the sample of size n—1 . Unlike 

the i.i.d. situation where the position of this new observation in the sample is not 

important , it makes a difference as to where we place the new observation in the 

series . For simplicity , let us consider the new observation being added to the end of 

the series . This corresponds to the notion of conditional influence function discussed 

in Kunsch (1984) and is appropriate in the prediction error decomposition approach . 

The sensitivity curve denoted by SC is the difference in the estimates taken as a 

proportion of change in the sample size and is a function of the additional 

observation. Thus , we have

A A

o n , * _  V 5 (^ i^ - . ,x n_ 1) -
 1-----------------------

Two series were generated from the local level model given in (4.1.1) with 

normally distributed disturbances defined as e ~ N(0,2) and N(0,1) , i.e. q = 

0.5 . The first is of length 300 and the second has length 400 . Plots of the 

sensitivity curves for these two series are found in figures 4.2a and 4.2b . The 

functions turn out to be similar to that of a scale variable in the i.i.d. case . They are 

both quadratic and symmetric about zero which means that deviation of the new 

observation from the actual observation in either direction will influence the MLE of

(4.3.1)
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Vq in a similar way . This should be the case since Vq is a symmetric parameter .

When the additional observation assumes an extreme value of either sign , it becomes

an outlier , thereby increasing the estimate for system noise standard deviation a

since the measurement noise standard deviation a is fixed and known . A resulting

increase in the new MLE of Vq leads to a negative value for the sensitivity curve .

Hence , the functions are negative and downward sloping . We note that there is

stability in the shape of the curves for the two series of different lengths . We next

generate another series of length three hundred from the same model but with
2 2different hyperparameter values , namely o^ — 1 and a =  5 i.e. q =  5 . The 

sensitivity curve for this series with bigger Vq value , see figure 4.2c , has a shape 

similar to the above functions . However , we see that the estimator is more sensitive 

to outliers in this case .

4.3.2 The Kalman Filter and the Likelihood Function

With reparameterisation , the local level model can be set up as

y =  at +  et Var(et ) =  (4.3.2a)
o

\  Var(?7t ) =  q<r6 (4.3.2b)

Let 0 be the vector of parameters , i.e. , 6 =  (<r ,^)*  . It is not necessary to involve
2

the hyperparameter o in the recursive equations of the Kalman filter . Thus , we 

have for

(i) Prediction

h / t - i  =  at - i (4.3.3a)
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p t / t - i  ~  p t - i +  q (4.3.3b)

(ii) Updating

at =  at / t - i +  pt /t—i vt / ft 

pt = pt / t - i - p? /t- i  / ft
where

vt =  -  at / t - i

ft =  p t / t - i + 1

(4.3.3c)

(4.3.3d)

(4.3.3e)

(4.3.3f)

Under the normality assumption of the disturbance terms , the conditional density of
2

each observation p(y^/Yt_^) is normal with mean and variance . Hence,

the log likelihood function is given by

s  I n  P ( y t / Y t _ i )  =  s
t = l  1 1 1 t = l

2i

This is is often replaced by the following objective function

(4.3.4)

S (S) =  I ln f  ff2 +  S ^
t = l  1 e t = l  f Vt e

(4.3.5)

2
In order to perform optimisation over one instead of two parameters , a is usually 

concentrated out of the likelihood function . This is carried out by replacing a by 

its MLE which is
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o 1 T 2
cr — m S ?t (4.3.6)

c 1 t = l  *t

However , after substituting (4.3.6) into (4.3.5) , the resulting form of the objective 

function will have a derivative which is quite complicated so that modifications done 

in the i.i.d. case cannot be carried over easily . Therefore , to simplify the expression 

for the first derivative and to make it more comparable with the i.i.d. case , both 

parameters and Vq will be estimated simultaneously .

4.3.3 Derivatives of the Likelihood function

It is clear from (4.3.5) that the first derivative of the objective function will 

involve the derivative of f̂  and and the Kalman filter equations in (4.3.3)

show that these variables are dependent on the parameter Vq . The first derivative of 

fj. and with respect to (w.r.t.) Vq can be evaluated by running another set of

recursions in parallel with the Kalman filter . Corresponding to the set of equations 

in (4.3.3) , they are

9 a t / t - l  _  9 a t - l
djq.

(4.3.7a)

9 P t / t - l  9 P t-1   =   — + 2 & (4.3.7b)

9 a t _ 9 j t  / t -1 1 Pt / t - l
♦3

9 p t / t —i Pt / t —1 9 f t
dy/q d<Jq ft J dy/q ft 5^/5.

(4.3.7c)
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d<fq 5\/q [ t J [ t J 5V q
(4.3.7d)

where

(4.3.7e)
m  9,/q

(4.3.7f)
^/q 0\/q

On the other hand , the recursive relations in the Kalman filter (4.3.3) do not involve 

the parameter a f . This implies that the derivative of ft and w ,r t- a € are

zero. The actual expressions for the derivative of the objective function will be given 

in the next section 4.4 .

4.3.4 Steady State

Another representation of the Kalman filter can be achieved by combining the 

prediction equations with the updating equations , namely (4.3.3a) with (4.3.3c) and 

(4.3.3b) with (4.3.3d). Hence , the recursive equations can be written as

at -  at - i +  pt / t - i V ft (4.3.8a)

* at ~ r tat - i  +  \ yt (4.3.8b)

and

p t + i / t  -  p t / t —i  p t / t - i / ft +  q (4.3.9)

where v  ̂ and f̂  are given in (4.3.3e) and (4.3.3f) respectively .
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In order to obtain an explicit expression for the psi—functions like (4.2.7) in the i.i.d. 

case , we shall consider observations after the steady state is reached . When the 

Kalman filter reaches steady state , the variance of the state becomes time invariant . 

Thus , (4.3.9) becomes

P =  P — P2/f  +  q (4.3.10a)

where f =  P +  1 (4.3.10b)

=> q =  P2/  (P +  1) (4.3.10c)

P deno+es- ihe error cowrianoe rrjdtrix ffffer steady sfo+e is reached ,

This is the one—one functional relation between the parameter of interest q and P .

The steady state recursions for the state is

at “  T at - l  +  T ' yt (4.3.11)

Repeated substitution gives

, » " t i 7 T w + 1  + P ,ta (4-312)m m

where steady state starts from the (m +l)th  observation . Suppose only steady state 

observations are used , then , the last term in the above expression is dropped . This 

gives us

t - m  ,  -

v ? = i  7 y ‘- i + 1 ( 4 3 1 3 )
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Since f > 1 , this is not a bad approximation especially when t is considerably greater

than m . Differentiating w.r.t. f results in

9  at „ ( l- i) f  +  i , A ,
T T  a ?=  1 — p T “  yt - i+ l  (4.3.14)

Excluding all observations before steady state is reached , the objective function in 

(4.3.5) becomes

T 2 T (yr  at - i ) 2S{6) a S In i a i  +  £ 1 /  1 (4.3.15)
t = m + l t= m + l f a

where f and a^_^ are defined in (4.3.10b) and (4.3.13) respectively .

4.4 M-estimators for Time Dependent Observations

4.4.1 Psi—functions for Parameters of Interest

Suppose the estimation of the two parameters , and Vq , is carried out 

separately . Let us first consider the estimation of a e when Vq is given . The 

differentiation of the tth  component of the objective function (4.3.5) w.r.t. a  is
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To ensure that the estimator for does not depend on the unit of measurement, the 

psi—function is given by

d S(<7 )
* (V } =  " t — r fo a _

(4.4.2)

Considering only steady state observations and substituting (4.4.1) into (4.4.2) , we 

have

tf(cre,t) « 2
i o *cJ

(4.4.3)

It follows that a M—estimator of crf with bounded gross error sensitivity is the root of 

the following function

T
(4.4.4a)

t = l
where

^(<r£.t) =  <
-  b j

— ci  =  ^  (o'g.t)
b.

< -b x
elsew here*

> b 1
(4.4.4b)

This estimator has a GRE which is related to b^ and c  ̂ is the shift in the

psi—function needed to obtain Fisher consistency .

Next , we consider the estimation of */q assuming a  to be known . The

derivative of the tth  term of the objective function in (4.3.5) w.r.t. Vq is
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d t .9  S (V q ) _  1 _ A  +  I r 

d Vq f t 5y/q a'
-

f. 5V5
I t

2 ^

d jq
(4.4.5)

Since vt =  yt — at_^ , it follows that

d v da
t = t-1

&Jq d jq

& t_i a f t
(4.4.6)

Substituting (4.4.6) into (4.4.5) gives

df.d S(Vq) _  1 ^ t  | 1 l ^ t
d-/q fjSv/q

— 2v. * t - l  vt 

3 f t f t
(4.4.7)

Consider a psi—function which is this differential scaled by the derivative of the In f , 

i.e. ,

*G/q.t) =  9 / i f h
/  t o &

(4.4.8)

1 /) fSince the steady state is reached quickly , the scaling term is constant at -  - — most
f 5V5

of the time . Substituting (4.4.7) into (4.4.8) results in
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Considering steady state observations only and substituting (4.3.14) into (4.4.9) gives

* (V5,t) « 1 +  i 2 [ -  2vt E=  (1 ^ + 1  1 yw + 1  -  -* (4.4.10)

We note that this psi—function is independent of the unit of measurement . Hence , a 

robust estimate of >/q is the root of the following function

T
(4.4.11a)

t = l
where

2 *
^ (V q ,t ) - c 2 =  4- (Vq,t)

b„

*  <  -b 2
elsew here*
*  > b2

(4.4.11b)

This M—estimate of Vq has GRE bounded at bg and Cg is the shift in the psi—function 

needed to attain Fisher consistency .

All the observations , not only the steady state ones are used in the 

computation of the M—estimates . We run the two sets of recursions , namely the 

Kalman filter in section 4.3.2 and its derivatives in section 4.3.3 , on the series in 

question . Instead of evaluating the expressions (4.4.3) and (4.4.10) directly , we can 

use (4.4.2) and (4.4.8) to evaluate the psi—functions at each stage . Since the score 

functions are truncated , the estimates are no longer consistent . Some adjustments 

by the terms c^ and Cj in (4.4.4b) and (4.4.11b) is necessary to achieve Fisher 

consistency . Having fixed the bounds b^ and b2 as constants , the values of c^ and 

Cg are determined by letting the mean of the psi—functions ^ (o ^ t)  and $(Vq,t) be
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zero , i.e. ,

(4.4.12a)

(4.4.12b)

where the expectation is taken over the distribution of y .

The terms and Cg can be found by Monte Carlo methods described later in section

4.5.1 .It turns out that both c^ and Cg are functions of the parameter Vq •

4.4.2 Two-dimensional Huber Function

The purpose of this section is to obtain M-estimates of the parameters crf and

Vq simultaneously . That is , we are looking at a generalisation of the robust

estimation procedure for a single parameter to a multi—dimensional context . A

discussion of the generalised Huber function can be found in Hampel s± a 1098?), Let the
* *

two psi—functions ^  (^c,t) and ^  (V5>t) from (4.4.4b) and (4.4.11b) respectively 

form a vector z . The magnitude of this vector is measured by its norm which is

The bound of this two-dimensional psi—function , z , is now the surface of a sphere

smaller than the bound b . But when the length of z exceeds this bound , z is 

replaced by its nearest point on the sphere . This two-dimensional Huber function 

can be written as

H i l l  =  I +  - M v / q . t )2 (4.4.13)

with radius b . No modification of the estimates are needed if the norm of z is

h(z,t) =  z min 1 (4.4.14)
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and a plot of this function is shown in figure 4.3

Figure 4.3 Two dimensional Huber function z —> h(z,t)

Suppose the parameters <?€ and Vq have quite different order of magnitude .

In the above estimation procedure , when either one of the psi—functions is zero , the

other estimator will have the same cu t-o ff, b . Such symmetric treatment of the the

two parameters will then be inappropriate . Hence , weights should be attached to

the psi—functions to increase efficiency in estimation . Leaving the coefficient of the 
*

psi—function ¥  (\/q,t) as one , a coefficient d is attached to the psi—function 
*

^  (o'f ,t) . Thus , the vector z in the two-dimensional Huber function in (4.4.14) is 

now defined as

z = (4.4.15)

The value of d is chosen to make the variance of the psi—functions equal, i.e. ,
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E(dtf*(<r£,t)2) =  E(f*(Vq,t)2) (4.4.16)

From the initial estimates of scale , described in Chapter 3 , we can roughly gauge 

their order of magnitude . If these turn out to be very different , we can try to set a 

value for d so that more weight is given to the smaller parameter . Recalibration to 

obtain the corresponding values for c  ̂ and Cg is necessary . For our investigations 

below , d is kept at the value of one .

4.4.3 Starting Values

Once we have found the functional relation of c  ̂ and Cg in terms of the parameters crf 

and Vq , M-estimates of these parameters can be obtained by solving for the roots of 

the Huber function in (4.4.14) . Since this is a two-dimensional search , it is 

important to have good starting values . These are usually resistant estimates 

derived from the sample variance and covariance of a differenced series , see Chapter 

3 . Alternatively , we can use estimates of hyperparameters obtained by running 

another filter such as the AGSF on the series as starting values .

4.5 Simulation results

4.5.1 Calibration

With reference to equations (4.4.4b) and (4.4.11b) , we see that the
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M—estimators need adjustment in order to achieve Fisher consistency . To perform 

the calibration of these estimators , we express the two-dimensional Huber function 

in (4.4.14) as

(4.5.1)

Letting the GRE be 0.5 , the values of c^ and Cg are found by solving the following 

respective equations

T

t = l  1 e

T
£ h,(Vq,t) =  0 (4.5.2b)
t = l

A root—finding routine from the NAG library C05NBF is used to compute c^ and Cg 

for each generated series.

Unlike the i.i.d. situation , the terms c  ̂ and Cg are no longer constants but are 

likely to be functions of one or both parameters of interest . Hence , the values of c  ̂

and Cg are obtained over a grid of values for crf and Jq  . The values used for the scale 

of the observation noise are 1.00 , 1.75 and 2.25 while the parameter Jq  ranges from

0.1 to 10. For each pair of values of the parameters , one hundred series each of 

length five hundred are generated from the local level model . A long series ensures 

that its hyperparameter values are actually the same as those used to generate it . 

One hundred replications are used for each case to allow for sampling variability in 

the computed values of c^ and c^ • This means that for each set of parameter values ,

(4.5.2a)
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we have the sampling distributions of and Cg . Only the means of the distributions 

are used in the calibration and they are tabulated below .

TABLE 4.1 CALIBRATION RESULTS FOR M—ESTIMATORS

V5 C1 c2

0.1 1.00 1.2893 0.7124

1.75 1.2907 0.6822

2.25 1.2980 0.7081

0.3162 1.00 1.2255 0.6426

1.75 1.2271 0.6729

2.25 1.2378 0.6569

0.7071 1.00 1.1767 0.6126

1.75 1.1666 0.6082

2.25 1.1579 0.6034

1.0 1.00 1.1039 0.5658

1.75 1.1260 0.5731

2.25 1.0945 0.5612

2.0 1.00 1.0678 0.5390

1.75 1.0606 0.5343

2.25 1.0662 0.5369

3.1623 1.00 1.0608 0.5324

1.75 1.0628 0.5320

2.25 1.0664 0.5355

10.0 1.00 1.0568 0.5284

1.75 1.0590 0.5296

2.25 1.0543 0.5273
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A statistical package Minitab is used to analyse the results in Table 4.1 in order to 

find expressions for c^ and Cg in terms of the parameter cr£ and Vq . It turns out 

that neither c^ nor Cg depends on the parameters , see figures 4.4a and 4.5a . On 

the other hand , figures 4.4b and 4.5b reveal that both c^ and Cg have a well-defined 

relation with the parameter Jq  . Using power transformations , we can write the 

functions as follows.

cx =  0.994 +  0.111/(v/q)'3 R2 =  97.0% (4.5.3a)

c2 =  0.483 +  0.081/(Vq)'3 R2 =  96.3% (4.5.3b)

o
Note that the high R values indicate a good fit for each case . A comparison of the

fitted and actual values of C-̂  and Cg , see figures 4.4c and 4.5c , confirms the above

relations .

In order to see whether the length of the series has any effect on the 

calibration terms , we repeated the calibration procedure for shorter series of length 

two hundred. The hyperparameter values of the series are not necessarily the same as 

those values used to generate them because they are not long enough . Hence , we 

expect more variability in the calibration terms and the number of replications used 

for each set of hyperparameter values is increased to two hundred to cope with this 

problem . Otherwise , figures 4.6a and 4.6b reveal that the functions c^ and C2 in 

terms of Vq are very similar to those given in (4.5.3) . We , therefore , conclude that 

the calibration terms are invariant to the length of the series and that the relations in 

(4.5.3) can be applied to series of different lengths.



Robust estimation of scale [ch 4. V9-154]

4.5.2 Performance of M—estimators

We can investigate the performance of the M-estimators of scale for different 

hyperparameter values by simulation . The three cases considered are

(a) o * - 2 , a J = l , i . e . , q = 0 . B

(b) &  ̂ = 2 , <£ = 2 , i .e . , q =  1.0 and

(c) a \  = l  ,<>2 = 1 .5 ,  i .e . , q =  1.5

For each case , one hundred random series each of length a hundred are generated

from the local level model . Later in this section , we see that one hundred

replications used in each simulation is enough to reveal differences amongst the
o

various estimators . As discussed in Chapter 3 , the parameter o is sometimes 

estimated as zero when the value of q is big . When the ML estimation procedure is 

carried out with clean data , this happened at replication 57 . Hence , to remove this 

effect , replication 57 is discarded whenever we investigate case (c) . We start off 

with clean data where both disturbances are generated from the normal distributions 

N (0 ,^ ) and N(0,<7^) . A root—finding routine from the NAG library C05NBF is 

used to estimate the parameters and >/q for each series . The estimates are values 

which equate the two-dimensional Huber function in (4.4.14) to zero . Note that c  ̂

and c2 are replaced by the functions in (4.5.3) found during the calibration process . 

The root—finding routine sometimes does not converge to the global minimum of the 

negative log—likelihood function . To understand this phenomenon , we look at the 

contour map for the objective function of one such case , see figure 4.7 . Although 

the objective function has a well-defined minimum , see figure 4.7a , it also has a 

long plateau to the right , see figure 4.7b . When the routine is searching over this 

region, it becomes difficult to distinguish between big or small values of In V5 • To
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overcome this problem , different starting values especially those which avoid the flat 

region are used when non—convergence is indicated by the root—finding routine . We 

define breakdown cases to be those which produce estimates which are very far from 

the minimum .

We judge the performance of the M-estimators by looking at the summary

statistics of the estimates taken over the one hundred replications . This number of

replications is enough to reveal differences between the different types of estimators .

We perform a logarithmic transformation on the hyperparameters in order to

facilitate the comparison amongst the three cases . Hence , we estimate the

logarithms of the scales , i.e. In o  and In ^  , in the three sets of simulations . The

sampling distributions of the two estimators for the three cases are found in figures

4.8 to 4.10 . Table 4.2 below shows the bias and mean square error (MSE) of the

M—estimators for the different cases . As in Chapter 3 , if there is at least one

breakdown in any set of simulations , another set of summary statistics which are
*

more resistant is computed . These are the bias , bias , evaluated using the median
*

and the mean square error , MSE , computed using the pseudovariance . The 

number of cases which are excluded in the computation of these statistics , M , are 

also indicated when presenting this alternative set of summary statistics .
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TABLE 4.2 SUMMARY STATISTICS FOR M—ESTIMATORS (dean data)

Estimator of

(i) In <7e

Bias MSE

(a) 0.3466 —0.0511 0.0489

(b) 0.3466 -0.0858 0.0848

(c) 0.0 -0.1110 0.1305

(«) In v'q

(a) -0.3466 -0.0487 0.2375

(b) 0.0 0.0087 0.2616

(c) 0.2027 0.0381 0.2947

To better judge the performance of the M—estimators , we shall compare them 

with the MLEs produced from the Kalman filter . The MLE of the hyperparameters 

can be found by equating the psi—functions in (4.4.2) and (4.4.8) directly to zero . No 

calibration terms are needed here since the psi—functions are not truncated . We 

repeat the above simulations , finding ML estimates for the same series generated 

before . The sampling distributions of the two MLEs for the three cases are given in 

figures 4.11 to 4.13 . Their summary statistics are given in Table 4.3 below .
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TABLE 4.3 SUMMARY STATISTICS FOR MLE (dean data)

Estimator of Bias MSE

0) In a

(a) 0.3466 -0.016 0.0128

(b) 0.3466 -0.0264 0.0221

(c) 0.0 -0.0391 0.0361

(M) In Vq

(a) -0.3466 -0.0017 0.0917

(b) 0.0 0.0126 0.0858

(c) 0.2027 0.0269 0.1026

From the above tables , we observe that for the parameter In a^ , both the 

bias and mean square error of the sampling distributions for the MLEs are 

significantly smaller than those of the M—estimators . On the other hand , there is 

no significant difference in the bias for the two types of estimators of In i/q , although 

there is a larger difference in their mean square errors . We also see that the 

sampling distributions of the MLEs are much tighter than those of the M-estimators. 

Hence , the MLEs perform better than the M-estimators which is expected in a 

situation where there are no outliers since the MLEs are best estimators under 

normality .

We next compare the performance of the M-estimators with the MLEs in the 

case where there is contamination in the series. To allow for additive outliers only in 

the series , the observation noise term is generated from a contaminated normal 

distribution , i.e. ,
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P(et ) =  (1 -7)N (0 ,^) +  7N(0,k<r2) (4.5.4)

cohere Ihe “fn ^ io p  k p o n d s  "to ^  <’o c h a p te r  dhinas, .

while the disturbance term in the transition equation is generated from a normal 
2

distribution N(0, cr̂ ) . The percentage of outliers is fixed at 5% in the simulations 

for convenience . In order to maintain roughly the same the level of contamination in 

all three cases , we consider the reduced form of the local level model . The 

differenced series and its variance are given by

Ayt = T}t + et ~  £t - i  (4-5-5)

Var(iyt ) =  q<72 +  2 Var(et ) (4.5.6)

Let us denote the variance of the differenced series with and without contamination 

as Varc(Ayt ) and Varn(Ayt ) respectively . Hence , we have

Varn(Ayt) =  ((l+2)<rc (4-5-7)

Varc(Ayt) =  qtr2 +  2 (0.95 +  .05k) tr2

=  (1.9 +  0.1k +  q)o 2( (4.5.8)

The ratio of these two variances, denoted by r , is

r = Varc(Ayt) 

Varn(Ayt)

_  1.9 +  0.1k +  q 
“  2"^Fq (4.5.9)
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To keep a comparable level of contamination in all three cases of different 

hyperparameter values , we just have to fix the ratio r at the same constant in each 

case . Let the factor k be 20 in case (a) . Then ,

Keeping the ratio fixed at 1.76 , the following relation is derived from (4.5.9)

Hence , the corresponding factors of contamination in cases(b) and (c) work out to be

23.8 and 27.6 respectively .

The above simulations to evaluate the M—estimates and ML estimates for 

series with different hyperparameter values are repeated with contaminated data . 

The levels of contamination in the three cases are (a) 7 =  5% , k = 20 ; (b) 7 = 5% 

, k =  25 and (c) 7 =  5% , k =  30 . Sampling distributions of M-estimators are 

found in figures 4.14 to 4.16 while those of the MLEs are given in figures 4.17 to 4.19. 

Tables 4.4 and 4.5 contain the summary statistics derived from the simulation

r _  1.9 +  ^0.1 +  0.5

= 1.76 (4.5.10)

k =  16.2 +  7.6q (4.5.11)

results.
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TABLE 4.4 SUMMARY STATISTICS FOR M-ESTIMATORS (t=5%)

Estimator of

(i) In a

Bias MSE

(a) 0.3466 0.0733 0.0481

(b) 0.3466 0.0692 0.0836

(c) 0.0 0.0864 0.0990

(ii) In Vq

(a) -0.3466 -0.1818 0.2779

(b) 0.0 -0.1322 0.2783

(c) 0.2027 -0.1417 0.2585

TABLE 4.5 SUMMARY STATISTICS FOR MLE (r=5%)

Estimator of

(i) In

Bias MSE

(a) 0.3466 0.2999 0.1357

(b) 0.3466 0.3457 0.1808

(c) 0.0 0.3905 0.2273

(«) In Vq

(a) -0.3466 -0.4057 0.2936

(b) 0.0 -0.4233 0.3142

(c) 0.2027 -0.4605 0.3575

The simulation results show that the MLEs are more affected by the outliers
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than the M—estimators are . There is a considerable shift in the sampling 

distributions of the MLEs resulting in significantly bigger biases . The mean square 

errors for the MLEs are also smaller than those for the M—estimators . This 

difference is more significant for the parameter In Vq • Such poor performance of the 

MLEs is because we are performing maximum likelihood estimation when there is a 

misspecification in the model , see White (1982) . Such estimators derived from 

optimising an incorrectly assumed Gaussian likelihood are known as quasi—MLEs . 

Suppose that the fourth moment of the disturbance term in the reduced form of - the 

model exist . Then , as proved in Dunsmuir (1979) , the quasi—MLE is consistent 

though its asymptotic variance is increased . Hence , we conclude that the 

M—estimators are more robust than the MLE .

4.5.3 Non—normal contaminating component

Additive outliers in a series can be generated from other mixture distributions

beside the contaminated normal distribution . We shall investigate the performance

of the M-estimators in comparison with MLEs when the contaminating component in

the mixture distribution is non—normal . Let us first fix the hyperparameter values 
2 2at 2 for both a f and , i.e. we are considering the case where q = 1 . Suppose that 

the disturbance term in the measurement equation is given by

P(et ) =  (1-7) N(0,o^) +  7  wt (4.5.12)

where the contaminating component follows a t—distribution with 2 degrees of 

freedom in case (a) and a Cauchy distribution in case ( b ) . The percentage of outliers 

is again fixed at 5% for convenience . One hundred random series each of length a
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hundred are generated from the local level model in each case . M—estimates as well 

as ML estimates are then obtained for each replication . Sampling distributions for 

M-estimators are found in figures 4.20 to 4.21 while those of the MLE are given in 

figures 4.22 to 4.23 . Tables 4.6 and 4.7 contain the summary statistics derived from 

the simulation results.

TABLE 4.6 SUMMARY STATISTICS FOR M-ESTIMATORS 
(non—normal contamination, 7=5%)

Distribution of ^  Bias MSE

(i) Estimate of In a  (0.3466)

(a) t2 -0.0674 0.0708

(b) Cauchy -0.1047 0.1315

(ii) Estimate of In Jq  (0.0)

(a) t2 0.0026 0.1943

(b) Cauchy 0.0607 0.3603
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TABLE 4.7 SUMMARY STATISTICS FOR MLE 
(non—normal contamination,7= 5%)

$ $
Distribution of u t Bias MSE Bias MSE M

(i) Estimate of In a  (0.3466)

(a) t 2 -0.1816 3.2802 0.0074 0.0154 1

(b) Cauchy -0.0811 3.1219 0.0694 0.1003 3

(ii) Estimate of In V5 (0.0)

(a) t2 0.1590 3.5522 -0.0240 0.0774 1

(b) Cauchy 0.0830 4.6097 -0.1330 0.2083 3

Table 4.7 indicates that the non—normal contaminating component causes the 

ML estimation procedure to breakdown . The number of breakdown cases is more for 

case (b) where the outliers are more extreme being generated from the Cauchy 

distribution . Such breakdowns do not occur with the M-estimation technique . In 

fact , the summary statistics for the M-estimators reveal that the hyperparameters 

are still reasonably well estimated . Hence , we say that the MLE are unable to cope 

with extreme outliers in terms of scale estimation and that the M-estimators are 

more robust than the MLE even when the outliers are not generated from the 

contaminated normal distribution .

4.5.4 Median estimators of scale

Suppose the series under consideration has a high percentage of contamination,

i.e. with a big value for , running the M-estimation procedure described in the
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previous section will result in big standard deviations for the M—estim ators. To deal 

with heavily contaminated series , a smaller bound for truncation b , is used so that 

the derivative of more observations are modified . In the limiting case , b is chosen 

to be zero in order that the derivative of all the observations are adjusted . In fact , 

only their direction is taken into account during the computation . Hence , the 

Huber function in (4.4.14) is now replaced by

K g.1) =  j||||- (4.5.13)

where the elements of z remain the same as those in section 4.4.2. We call this new 

estimator the median estimator of scale since it corresponds to the median in the 

location estimation problem .

As before , the psi—functions constituting the vector z have to be shifted to 

attain Fisher consistency . These calibration terms are different for different 

truncation bound values and they can be found by using the procedure described in 

section 4.5.1 . Results for median estimators are tabulated in Table 4.8 and the 

functional forms of c  ̂ and Cg turn out to be similar to those of the M-estimators , see 

figures 4.24 and 4.25 .
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TABLE 4.8 CALIBRATION RESULTS FOR MEDIAN ESTIMATOR

V5 C1 C2

0.1 1.00 1.2963 0.7137

1.75 1.2976 0.6827

2.25 1.3034 0.7088

0.3162 1.00 1.2332 0.6427

1.75 1.2358 0.6738

2.25 1.2446 0.6576

0.7071 1.00 1.1874 0.6141

1.75 1.1756 0.6089

2.25 1.1677 0.6052

1.0 1.00 1.1213 0.5707

1.75 1.1450 0.5788

2.25 1.1105 0.5659

2.0 1.00 1.0930 0.5490

1.75 1.0876 0.5453

2.25 1.0901 0.5469

3.1623 1.00 1.0883 0.5459

1.75 1.0920 0.5459

2.25 1.0947 0.5494

10.0 1.00 1.0817 0.5407

1.75 1.0845 0.5426

2.25 1.0765 0.5386

These calibration results indicate that Cj and Cg can be expressed in terms of the 

parameters a  and Vq in the following relations
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cx =  1.020 +  0.101/(Vq)0'3 (4.5.14a)

c2 =  0.497 +  0.0752/(v'q)0'3 (4.5.14b)

Comparing these equations with those in (4.5.3) , we see that the calibration terms 

for median estimators are hardly different from those for the M—estimators with b = 

0.5 .

To investigate the performance of the median estimators , we repeat the 

simulations in section 4.5.2 first for the case of clean data . Table 4.9 below consists 

of the summary statistics for the estimators in the absence of contamination . Their 

sampling distributions are found in figures 4.26 to 4.28 .

TABLE 4.9 SUMMARY STATISTICS FOR MEDIAN—ESTIMATORS (clean data)

Estimator of

(i) In a

Bias MSE

(a) 0.3466 -0.1201 0.0982

(b) 0.3466 -0.1657 0.1433

(c) 0.0 -0.2251 0.3039

(«) In Vq

(a) -0.3466 -0.2737 0.4822

(b) 0.0 -0.2089 0.3853

(c) 0.2027 -0.1622 0.5433

The bias and mean square errors for the median estimators are significantly 

bigger than the corresponding values for the MLEs in the estimation of both In a
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and In V5 • In fact , all the summary statistics here are bigger than those of the 

M—estimators , see Table 4.2 . On the comparison of their sampling distributions , we 

see that the median estimators have longer tails than the MLEs and the 

M—estimators . This is because there is a substantial loss in information when the 

median estimation technique only uses the direction of z , see equation (4.5.13).

Next , we repeat the simulations in section 4.5.2 for the case of additive outlier 

contamination but with the percentage of contamination increased to 10% . The 

relation between k and q remains as

k =  16.2 +  7.6q (4.5.15)

Hence , the value of k for the three cases are 20 , 25 and 30 . Simulation results for 

both median estimators and MLEs are summarized in Tables 4.10 and 4.11 below . 

Their sampling distributions are found in figures 4.29 to 4.34 .

TABLE 4.10 SUMMARY STATISTICS FOR MEDIAN—ESTIMATORS (t=10%)

Estimator of

(i) In a

Bias MSE

(a) 0.3466 0.1159 0.0685

(b) 0.3466 0.1034 0.1413

(c) 0.0 0.1367 0.1032

(ii) In Vq

(a) -0.3466 -0.1534 0.3902

(b) 0.0 -0.1083 0.4713

(c) 0.2027 -0.0908 0.2564



Robust estimation o f scale [ch 4 . P0.168]

TABLE 4.11 SUMMARY STATISTICS FOR MLE (7= 10%)

Estimator of Bias MSE

(i) In

(a) 0.3466 0.4879 0.2830

0 0 0.3466 0.5572 0.3672

(c) 0.0 0.6203 0.4513

(ii) In Vq

(a) -0.3466 -0.5952 0.5076

(b) 0.0 -0.6418 0.5639

(c) 0.2027 -0.7011 0.6435

Here , we see the median estimators having a definite edge over the MLEs in terms of 

their summary statistics . Both the bias and mean square errors for the MLEs are 

significantly bigger than the corresponding values for the median estimators .

We next repeat the simulations in section 4.5.3 to compare the performance of 

median estimators with that of MLEs when the contaminating component is 

non—normal . However , the percentage of contamination is now held at 10% . 

Simulation results are given in Tables 4.12 and 4.13 and the sampling distributions 

are found in figures 4.35 to 4.38 .
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TABLE 4.12 SUMMARY STATISTICS FOR MEDIAN ESTIMATORS 
(non—normal contamination,7=  10%)

Distribution of Bias MSE

(i) Estimate of In a  (0.3466)

(a) t 2 -0.1297 0.0918

(b) Cauchy -0.1566 0.1848

(ii) Estimate of In >/q (0.0)

(a) t 2 0.1111 0.2197

(b) Cauchy 0.1505 0.4601

TABLE 4.13 SUMMARY STATISTICS FOR MLE 
(non—normal contamination,7= 10%)

Distribution of Bias MSE Bias MSE M

(i) Estimate of In (0.3466)

(a) t2 -0.1416 2.6025 -0.0096 0.0310 1

(b) Cauchy 0.1436 9.0266 0.2254 0.3270 4

(ii) Estimate of In Vq (0.0)

(a) t2 0.1220 2.8642 -0.0220 0.2273 1

(b) Cauchy 0.0010 16.4511 -0.3510 0.5193 4

Again , we observe that both the MLE break down with non—normal 

contamination , see Table 4.7 . On the other hand , the median estimators do not 

break down even for the case where there is 10% contamination modelled by the
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Cauchy distribution . Hence , we conclude from the simulation results that the 

median estimator is more robust towards outliers when compared with the MLE . It 

is recommended for use with contaminated data especially when the percentage of 

contamination is suspected to be high .

4.6 Redescending estimators

4.6.1 The estimation procedure

Another robust estimator of scale is the redescending estimator which is 

designed to deal with extreme outliers . Consider a univariate M-estimator of scale , 

for example , the one given in (4.2.7) . A redescending estimator is similar to this 

Huber curve in that the psi—function remains unmodified if it is small . However , if 

the influence of an observation is too big , the psi—function is no longer replaced by a 

constant . Instead , it is downweighted by a function which goes to zero . Thus , 

when the influence of an observation exceeds a bound r , its psi—function is given zero 

weight . Andrew’s curve AC(x) uses a sine function to downweight the influence of 

outliers and it is given by

AC(x) =  ^  sin x) 0 < x < r (4.6.1)

where r acts as a tuning constant which determines the width of the window . We 

note that the sine function is like the identity function when its argument is very 

small .Hence , for very small values of x ,
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AC(x) =  x (4 .6 .2 )

Redescending estimators for the parameters a  and y/q are then defined as the 

roots of the following equation

T
£ R(z,t) =  0
t = l

(4.6.3a)

where R(z,t) corresponds to the Huber function h(z,t) in (4.4.14) and is given by

with 0 =  (0 0)’

* *
and z comprises the two psi—functions $  (^ f,t) and ¥  (\^ ,t) as in (4.4.14) . When 

the magnitude of z is very sm all, the function R(z,t) acts as an identity function and 

the psi—functions in z , are not modified . As the magnitude of z increases , both 

psi—functions have a weight which is less than one and it declines to zero . All 

observations whose influence ||z|| exceeds the cut-off r are given zero weight , i.e. , 

they are not taken into account in the sum (4.6.3a) . In this way , extreme outliers 

are discarded during scale estimation and the resulting estimators are more robust . 

However , such redescending estimation procedure often produce multiple roots .

z

(4.6.3b)
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4.6.2 Performance of redescending estimators

The calibration process described in section 4.5.1 is repeated here except for 

the replacement of the Huber function h(z,t) by the redescending function R(z,t) and 

r is fixed at five . The values of c  ̂ and Cg for different sets of parameters values are 

tabulated below
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TABLE 4.14 CALIBRATION RESULTS FOR REDESCENDING ESTIMATORS

V5 a € C1 c2

0.1 1.00 1.4566 0.9113

1.75 1.4565 0.8828

2.25 1.4650 0.9172

0.3162 1.00 1.3386 0.8169

1.75 1.3394 0.8567

2.25 1.3436 0.8347

0.7071 1.00 1.2000 0.7035

1.75 1.1943 0.7040

2.25 1.1815 0.6966

1.0 1.00 1.0698 0.5650

1.75 1.0820 0.5687

2.25 1.0681 0.5654

2.0 1.00 1.0407 0.5266

1.75 1.0578 0.5249

2.25 1.0411 0.5250

3.1623 1.00 1.0340 0.5188

1.75 1.0405 0.5212

2.25 1.0413 0.5226

10.0 1.00 1.0390 0.5195

1.75 1.0370 0.5185

2.25 1.0349 0.5177

A plot of Cj and Cg against the parameters o and Vq are found in figures 4.39 and 

4.40 . We see from figure 4.39a and 4.40a that the calibration terms are independent
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of the the parameter cr£ . If we shift the curves in figures 4.39b and 4.40b down so 

that they tend to the origin , non-linear optimisation gives the following relations of 

and Cg in terms of ^  .

Cj =  1.0 +  l./(1.8 +  10.3Vq°'94) R2 =  99.4% (4.6.4a)

c2 =  0.5 +  l./(2.3 +  12.2,/q1'3) R2 =  99.5% (4.6.4b)

Like the functions in (4.5.3) , the above relations are a good fit to the sampling
o

results as indicated by the high R values . These relations are also confirmed by the 

fact that the actual values of c^ and Cg are almost identical to their fitted values , see 

figures 4.39c and 4.40c . Hence , they are used in the simulations below .

To check the performance of redescending estimators , the simulations in 

section 4.5.2 and 4.5.3 are repeated for this new estimation procedure . The series 

which have been generated previously for the three cases are used here . For each 

series , we have to obtain starting values for the hyperparameters as in Chapter 3 . 

Like the M—estimators , we have to use different starting values for cases of 

non—convergence , see pg 154. With the tuning constant r fixed at five and replacing 

Cj and Cg in (4.6.3) by the functions in (4.6.4), we have the following results :
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TABLE 4.15 SUMMARY STATISTICS FOR REDESCENDING ESTIMATORS
(clean data)

Estimator of Bias MSE Bias MSE

(i) In a

(a) 0.3466 -0.2153 0.4989 -0.1267 0.1876

00 0.3466 -0.1993 0.2840

(C) 0.0 -0.2907 0.7684 -0.1697 0.2335

(ii) In Vq

(a) -0.3466 -0.7640 1.8833 -0.6080 1.3711

(b) 0.0 -0.4490 1.3337

(c) 0.2027 0.0303 1.8478 -0.1647 0.9630

The sampling distributions of the above estimators are given in figures 4.41 to 4.43 . 

From the above table , we see that redescending estimators sometimes breakdown 

even when the data is clean . This is due to multiple solutions associated with 

redescending estimators . A comparison of these results with those in Table 4.3 show 

that the redescending estimators have bigger bias than the MLEs especially for the 

estimator of lnv/q . The figures reveal that the sampling distribution of redescending 

estimators have rather long tails . Thus , the mean square errors for the MLEs are 

significantly smaller than those for the redescending estimators with clean data .
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TABLE 4.16 SUMMARY STATISTICS FOR REDESCENDING ESTIMATORS
(7=5%)

Estimator of Bias MSE Bias MSE

(i) In a

(a) 0.3466 -0.1758 0.7031 0.0075 0.2253

(b) 0.3466 -0.1519 0.5779 0.0451 0.0849

(c) 0.0 -0.0878 0.5632 0.0518 0.0978

(ii) In Vq

(a) -0.3466 -0.4924 2.0381 -0.3814 0.8213

(b) 0.0 -0.3490 1.5001 -0.2680 0.4993

(c) 0.2027 -0.3537 1.4964 -0.2987 0.4480

The sampling distributions of the above estimators are given in figures 4.44 to 4.46 .

We observe that there are either one or two breakdowns in each of the cases above .

By looking at the resistant set of summary statistics , we see that In y/q is poorly
*

estimated because of its big MSE . The sampling distributions for the estimator of 

this parameter are generally long—tailed . In comparison with the MLEs , we say 

that the redescending estimators are more robust in that there is no significant shift 

in their sampling distributions . Thus , the biases of redescending estimators tend to 

be smaller than those of the MLEs . However , the sampling distributions of the 

MLEs are much tighter than those of the redescending estimators .
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TABLE 4.17 SUMMARY STATISTICS FOR REDESCENDING ESTIMATORS
(non—normal contamination,7= 5%)

$ $
Distribution of Bias MSE Bias MSE h

(i) Estimate of In (0.3466)

(a) t2 -0.2337 0.6586 -0.0322 0.1133 2

(b) Cauchy -0.1990 0.4568 -0.0703 0.0895 1

(ii) Estimate of In Vq (0.0)

(a) t2 -0.2610 1.4795 -0.1130 0.3194 1

(b) Cauchy -0.3300 1.4966 -0.2080 0.6526 1

The sampling distributions of the above estimators are given in figures 4.47 and 4.48 . 

The redescending estimators behave in a similar way regardless of the distribution of 

the contaminating component . There are one or two breakdowns in the cases above 

and ln<7f is better estimated than ln^q . If we compare the above results with those 

of case (b) in Table 4.16 , we see that the redescending estimators are quite 

insensitive towards the type of contamination . When comparing with the M LEs, we 

still observe tighter sampling distributions for the MLEs . However , there are fewer 

cases of breakdown for the redescending estimators when the outliers are generated 

from the Cauchy distribution .

Since the M-estimators do not breakdown so easily , they are preferred to 

redescending estimators in obtaining robust estimates of scale .
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4.7 Other Estimators

A structural time series model can be expressed as an autoregressive 

integrated moving average (ARIMA) model . In particular , the local level model 

corresponds to a ARIMA(0,1,1) m odel. That is , it becomes a MA(1) or a first order 

moving average model after taking first differences on the observations . Hence , 

from the y  ̂in (4.1.1) we have

A =  "t +  s  -  £t - i

=  « t  -  « t _ i  ( 4 -7 -1 )

It follows that there is a functional relation between the hyperparameters of a 

structural model and the parameters in a ARIMA model . The following relations 

can be derived from equation (4.7.1)

-  -jp (4.7.2a)

S =  (2+q) ± J  q2+4q (4.7.2b)
 2----------

o
This implies that the estimation of a  and q in the local level model is linked to the 

2
estimation of a^ and 6 in the MA(1) m odel.

Various robust estimators have been proposed for the estimation of parameters 

in ARIMA models , see Martin and Yohai (1985) . We shall discuss these estimators
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in the context of a MA(1) model which is given by

yt =  ut “  K - i (4.7.3)

y
The parameter of interest here is 6 while a , the variance of the disturbance û . , is 

often regarded as a nuisance parameter and is estimated from the residuals u .̂(0) in 

an iterative process . The least squares estimate of 0 is obtained by minimising

where

T 2 E uf(0)
t = l  1

V ^ “ T=5Cyt
OD .

=  E t.L y. 
i= 0  1 ‘

(4.7.4a)

(4.7.4b)

The lag operator is denoted by L . M—estimates are then , defined as the solution to

(4.7.5a)

or

T
E ^  
t = l

rM * )
bt (fl) =  o

where

(4.7.5b)

(4.7.5c)

Note that ip is the derivative of the function p and can be the Huber function defined 

in Chapter 2 , equation (2.6.3) . Both the least squares and M—estimators are not 

robust since their sums in (4.7.4) and (4.7.5) are not bounded . To accomodate the
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outliers , three different robust estimators are proposed . They are

(a) General M—estimates

GM—estimates is first introduced for the robust estimation of regression 

parameters and takes the form of weighted least squares . It is the root of the 

following equation

(4.7.6a)

where C is an estimate of the variance of bt_^(0) . The u  function usually assumes 

one of the following forms

(i) Mallows type

(u)V’2(v1^2)
(4.7.6b)

(ii) Hampel—Krasker—Welsch type

(4.7.6c)

(b) Residual Autocovariance (RA) estimates

Using the equation (4.7.4b) , the M—estimates in (4.7.5) can be rewritten as
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^ = 0 ‘h(tf) W ^  =  0 (4.7.7a)

where

T - i  
\{ f f )  =  s  ip 
1 t = l

ut («) (4.7.7b)

which is an estimate of the residuals autocovariance at lag i multiplied by a factor 

In RA estim ates, this is replaced by the following robust estimate

T - i  
W )  =  S V 
1 t = l

(4.7.8)

Like the u  function in GM—estimates , the rj function here can take on the Mallows 

type in (4.7.9a) or the Hampel type in (4.7.9b) below .

7?(U,V) =  V'1(u)V’2(v) 

»?(u,v) =  V<uv)

(4.7.9a)

(4.7.9b)

Both the GM and RA estimators are mainly used to estimate parameters in a 

stationary ARMA m odel. We should not try to estimate the hyperparameters of the 

local level model through these estimators using the relations in (4.7.2) . This is 

because differencing of the observations in (4.7.1) will result in a proliferation of 

outliers .

(c) Approximate Maximum Likelihood estimates (AMLE)

This type of estimator is more appropriate for sequential estimation . The 

ARIMA model is first put in state space form and then a filter is used . As seen in
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the previous chapters , eg. in (2.2.7) , the likelihood of a time series can be 

decomposed into its conditional densities . Thus , we can write

T
In L(Yt ) =  E In g+(v+) (4.7.10a)

1 t = l  1 1

where v̂ . is the prediction error while gt is a convolution of p(x^./Y^_^) and p(e^) . 

Under Masreliez assumption and letting the disturbance et take on a long tailed 

distribution , the following approximation is carried out .

where f̂  is the scale of the prediction errors . Thus , to obtain maximum likelihood 

estimates we minimise

AMLE are obtained by minimising the following robustified objective function

(4.7.10b)

E In JF  — E In g —  
t = l  1 t = l

(4.7.10c)

T
E In vTT — 
t = l  1

(4.7.11a)

Letting z be the ratio of v̂ . to ^  and c be the c u t-o ff, one of the forms which p can 

take is
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p(z) =

r 2 /ft—cz -  z /2 z < —c

z2 /2  ||z || < c (4.7.11b)
2/ocz - z  /2 z > c

In the control engineering literature , see Ljung (1978) , this procedure is 

known as the prediction-error method . Robustness is achieved by letting the p 

function "increase more slowly than quadratically" in . However , this method is 

based on the assumption that is independent of the parameters of interest . With 

reference to section 4.3.2 , we see that although v  ̂ and f̂  are independent of the 

parameter a  , both v^.and f̂ . are functions of q , the exact relation is given in (4.4.3) 

and (4.4.6) . Hence , neither the approximation in (4.7.10b) nor the independence 

assumption is satisfied .
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Figure 4.1 Psi-function for observations from N(l,2) distribution
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Figure 4.2a T = 300 and q = .5
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SC -  
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Figure 4.2b T =  400 and q =  .5
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Figure 4.2c T =  300 and q =  5.
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Calibration term for , Cj of M-estimators

(a) cx -  A

1.260+

1.190+

B B B

C

1.120+ D
D

Figure 4.4a Plot against o

D

2 3 2
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itoo 125 150 1.75 2̂ 00 225 ^

(b) cj -  C 
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1.260+

-  3

1.190+
-  A
-  2

1.120+ B 
A 
C

3 3 B
1.050+ 2

+ + + + +--------------
0 2  4  6 6  10 -7i

Figure 4.4b Plot of c  ̂ against V5
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(c) Cx -  

1.260+

1.190 +
A
2

1.120+ B
' -  A

C

-  B 3 3
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Figure 4.4c Plot against its fitted values

Calibration term for V>(^,t) , of M-estimators
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Figure 4.5a Plot of c2 against a€



Robust estimation o f scale P 0.188]
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Figure 4.5b Plot of C2 and V5
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Figure 4.5c Plot of C2 against its fitted values
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Calibration terms and of M-estimators when T=200
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Figure 4.6a Plot of c  ̂ against Vq
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Figure 4.6b P lo t  of c2 against V5

r



Pg*>0\
\cM -

t io « ° fSCttU
* * * * *

120-

*140 — 140

V60

-180-
-200
220 -

-2 4 0

36<



Robust estimation o f scale [ch 4• V9* 191]

- 8 . 0 -
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X AXIS- *10  1
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Figure 4.7b Lower right-hand corner of the objective function
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Sampling distributions for M-estimator of (a) In and (b) In V5 for dean data

(a) Midpoint Count 
-0 .4  1 *
-0.2 4 ****

0 0 13 *************
0.2 30 *****************************
0.4 38 *************************************
0.6 13 *************
o!s 1 *

(b) Midpoint Count 
- 2.0 1 *

-1 .5  3 ***
 IQ  10 ****************
—0.5 42 *****************************************

0.0 29 ****************************
0 5 8 ********
i!o 1 *

Figure 4.8 <? = 1 and <7^=1c 7/

(a) Midpoint Count
-0.8 1 *
-0.6 2 **
-0.4 1 *
-0.2 8 ********

0.0 8 ********
0.2 30 ******************************
0.4 35 ***********************************
0.6 14 **************
0.8 1 *

(b) Midpoint Count
-1.2 3 ***
-1.0 0
-0.8 4 ****
-0.6 9 *********
-0.4 8 ********
-0.2 19 *******************

0.0 16 ****************
0.2 17 *****************
0.4 8 ********
0.6 6 ******
0.8 5 *****
1.0 3 ***
1.2 0
1.4 2 **

Figure 4.9 <? — 2 and <? =  2c 7/
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(a) Midpoint Count
-1.4 1 *
-1.2 1 *
-1.0 2 **
-0.8 2 **
-0.6 7 *******
-0.4 11 ***********
-0.2 18 ******************

0.0 28 ****************************
0.2 24 ************************
0.4 4 ****
0.6 1 *

Midpoint Count
-1.0 2 *
-0.8 2 **
-0.6 1 *
-0.4 8 ********
-0.2 11 ***********

0.0 18 ******************
0.2 17 *****************
0.4 13 *************
0.6 8 ********
0.8 7 *******
1.0 5 *****
1.2 3 ***
1.4 1 *
1.6 2 **
1.8 1 *

Figure 4.10 <r2 =  1 and <? =  1.5
c 7}

Sampling distributions for MLE of (a) In and (b) In Vq for dean data

Each * represents 2 observations

(a) Midpoint Count 
0.0 2 *
0 2 37 *******************
0.4 55 ****************************
0.6 6 * * *
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Each * represents 2 observations

(b) Midpoint Count 
-1.5 1 *
-1.0 7 ****
—0.5 53 ***************************

0 0 38 *******************
o!5 1 *

Figure 4.11 <? =  2 and <?" =  1
€ T)

(a) Midpoint Count
0 0 8 * * * * * * * *
0.2 38 ****************************
0.4 46 **********************************************
0 6 8 * * * * * * * *

(b) Midpoint Count
-1.0 1 *
-0.8 0
-0.6 3 ***
-0.4 7 *******

0.2 27 ***************************
0.0 19 *******************
0.2 29 *****************************
0.4 8 ********
0.6 6 ******

Figure 4.12 <? =  2 and cr2 =  2 e rj

(a) Midpoint Count 
- 0.6 1 *
 Q  ^  J Q  * * * * * * * * * *

—0.2 24 ************************
0.0 39 ***************************************
0 2 23 ***********************
0.4 2 **

(b) Midpoint Count
-0.6 1 *
-0.4 3 ***
-0.2 7 *******

0.0 26 **************************
0.2 19 *******************
0.4 27 ***************************
0.6 7 *******
0.8 8 ********
1.0 0
1.2 1 *

Figure 4.13 <? = 1 and = 1.5
€ 7)
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Sampling distributions for M—estimator of (a) In and (b) In V5 for contaminated
data (t=5%)

(a) Midpoint Count *-0.6 1
-0.4 0
-0.2 0

0.0 5
0.2 17
0.4 40
0.6 32
0.8 5

*****
****************
***************************************
*******************************
*****

(b) Midpoint Count
-2.0 1 *
-1.6 2 **
-1.2 12 ************
-0.8 32 ********************************
-0.4 31 *******************************

0.0 14 **************
0.4 7 *******
0.8 0
1.2 0
1.6 1 *

Figure 4.14 <7̂  =  2 and =  1e 7}

(a) Midpoint Count
-1.0 1 *
-0.8 0
-0.6 1 *
-0.4 0
-0.2 3 ***

0.0 7 *******
0.2 9 *********
0.4 39 ***************************************
0.6 30 ******************************
0.8 10 **********
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(b) Midpoint Count
-1.6 1 *
-1.2 3 ***
-0.8 7 *******
-0.4 37 *************************************

0.0 34 **********************************
0.4 11 ***********
0.8 5 *****
1.2 0
1.6 1 *
2.0 1 *

Figure 4.15 c? =  2 and <? =  2
€ 7)

(a) Midpoint Count
-1.4 1 *
-1.2 0
-1.0 1 *
-0.8 0
-0.6 2 **
-0.4 5 *****
-0.2 8 ********

0.0 26 **************************
0.2 36 ************************************
0.4 17 *************
0.6 3 ***

(b) Midpoint Count
-1.2 1 *
-0.8 4 ****
-0.4 23 ***********************

0.0 39 ***************************************
0.4 22 **********************
0.8 7 *******
1.2 1 *
1.6 0
2.0 2 **

Figure 4.16 &* = 1 and a \ =  1.5
c 7/

Sampling distributions for MLE of (a) In and (b) In Vq for contaminated data
(7= 5%)

(a) Midpoint Count
0.2 4 ****
0.4 25 *************************
0.6 29 *****************************
0.8 32 ********************************
1.0 g ********
1.2 2 **
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(b) Midpoint Count 
-1 .6  3 ***
 2 2 19 *******************
—0.8 42 ******************************************
—0 4 32 ********************************

0.0 4 ****

Figure 4.17 &i =  2 and =  1c T)

(a) Midpoint Count
0.0 1 *
0.2 5 *****
0.4 19 *******************
0.6 23 ***********************
0.8 27 ***************************
1.0 21 *********************
1.2 4 ****

(b) Midpoint Count 
- 1.6 1 *

- 1.2 2 * *
—0.7 29 *****************************
—0.2 42 ****************************************** 

0.3 22 **********************
0 ;8  4  * * * *

Figure 4.18 0̂  = 2 and =  2

(a) Midpoint Count
-0.4 1 *
-0.2 3 ***

0.0 10 **********
0.2 20 ********************
0.4 28 ****************************
0.6 28 ****************************
0.8 7 *******
1.0 2 **

(b) Midpoint Count 
- 1.2 2 * *
—0 8 15 ***************
—0.4 42 ******************************************

0.0 28 ****************************
q 4  7  * * * * * * *

0̂ 8 2 **

Figure 4.19 <7̂  =  1 and 0^ =  1.5
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Sampling distributions for M-estimator of (a) In and (b) In V5 when <? =  cr2 =  2 
with non—normal contaminating component (7= 5%)

(a) Midpoint Count
-1.0 1 *
-0.8 0
-0.6 1 ♦
-0.4 0
-0.2 6 ******
-0.0 10 **********

0.2 29 *****************************
0.4 36 ************************************
0.6 16 ****************
0.8 1 *

Midpoint Count
-1.0 1 *
-0.8 4 ****
-0.6 9 *********
-0.4 9 *********
-0.2 14 **************

0.0 29 *****************************
0.2 15 ***************
0.4 8 ********
0.6 3 ***
0.8 5 *****
1.0 2 **
1.2 0
1.4 1 *

Figure 4.20 contaminating component has distribution 

(a) Midpoint Count
-1.4 1 *
-1.2 0
-1.0 0
-0.8 2 **
-0.6 2 **
-0.4 2 **
-0.2 5 *****

0.0 12 ************
0.2 24 ************************
0.4 33 *********************************
0.6 18 ******************
0.8 1 *
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(b) Midpoint Count
- 2.0 1 *
-1.5 0
- 1.0 2 **
-0.5 31 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0.0 33 *********************************
0.5 22 **********************
1.0 6 ******
1.5 4 ****
2.0 1 *

Figure 4.21 contaminating component has Cauchy distribution

Sampling distributions for MLE of (a) In <jf and 
non—normal contaminating component (7= 5%)

1 observation below the first class

(a) Midpoint Count 
-0.0 5 *****

0.2 33 *********************************
0.4 49 *************************************************
0 6 12 * * * * * * * * * * * *

(b) In V5  when a  ̂  — a

1 observation above the last class

(b) Midpoint Count 
- 0.8 1 *

- 0.6 2 * *
—0 4 11 ***********
—0 2 22 * * * * * * * * * * * * * * * * * * * * * *

0 0 33 *********************************
0 2 20 * * * * * * * * * * * * * * * * * * * *
0 4 9 *********
o!6 0
0.8 1 *

Figure 4.22 contaminating component has distribution

=  2 with
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3 observations below the first class

(a) Midpoint Count
-0.2 1 *

0.0 2 **
0.2 20 ********************
0.4 45 *********************************************
0.6 11 ***********
0.8 4 ****
1.0 3 ***
1.2 4 ****
1.4 1 *
1.6 1 *
1.8 2 **
2.0 2 **
2.2 0
2.4 1 *

3 observations above the last class

(b) Midpoint Count
-2.5 1 *
-2.0 0
-1.5 7 *******
-1.0 7 *******
-0.5 24 ************************

0.0 46 **********************************************
0.5 11 ***********
1.0 1 *

Figure 4.23 contaminating component has Cauchy distribution
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Calibration term for , of Median estimators

(a) cx -

1.260+

B B
B

1.190+

1.120+ D

2
G

C

D

D
2

-+■
1 0 0 115 150 1.75 2.00

Figure 4.24a Plot of Cj against a

(b) c, -
-  3

1.260+
-  C
-  2

1.190+ A
-  B
-  C

B

1.120+ A 
C

3 3

2*25

- + -

2
- + ■

S 6 10

Figure 4.24b Plot of Cj against V5
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(c) Oj -

1.260+
C
2

1.190+ A
B
C

B

1.120+ A
C

3 3

A

%
1.05 1.10 .115 1.20 1.25 1.30

Figure 4.24c Plot c, against its fitted values

Calibration term for V{Vq,t) , c, , of Median estimators

(a) c2 -  
0.720+

A A

A
B

0.660+ B

B

-  C C
0.600+ C

D
D D

— E F
0.540+ 2 3 2

-+  + + + + +— 0-
1.0 tZ 5 150 1.75 2.0 2.25 €

Figure 4.25a Plot c2 against
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(b ) ”

0.720+
2

-  B
-  B 

0.660+ C

-  A

-  2 
0.600+ C

B
2

_ A C
0.540+ 2 2

Figure 4.25b Plot of c9 against Vq

(e) Cj -
0.720+

B
0.660+ C

2
0.600+ C

B
2

_ Q ^
0.540+ 3 2 2

- +  + -

8  10

2

B

Q.525  0.560 0595 0.630 0.660 0.100

Figure 4.25c Plot of c9 against its fitted values
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Sampling distributions for Median estimator of (a) In crf and (b) In V5 for dean data

(a) Midpoint Count
-1.0 1 *
-0.8 0
-0.6 1 *
-0.4 5 *****
-0.2 3 ***

0.0 18 ******************
0.2 26 **************************
0.4 33 *********************************
0.6 12 ************
0.8 1 *

(b) Midpoint Count
-2.5 1 *
-2.0 1 *
-1.5 4 ****
-1.0 12 ************
-0.5 31 *******************************

0.0 35 ***********************************
0.5 9 *********
1.0 6 ******
1.5 1 *

Figure 4.26 a2 = 2 and <? =  1
€  7}

1 observation below the first dass 

(a) Midpoint Count
-0.6 2 **
-0.4 5 *****
-0.2 6 ******

0.0 21 *********************
0.2 26 **************************
0.4 25 *************************
0.6 13 *************
0.8 1 *

Midpoint Count
-1.0 4 ****
-0.5 24 ************************

0.0 29 *****************************
0.5 31 *******************************
1.0 10 **********
1.5 1 *
2.0 0
2.5 1 *

Figure 4.27 a2 =  a2 =  2
€ 7}
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(a) Midpoint Count
-2.2 1 *
-2.0 1 *
-1.8 2 **
-1.6 0
-1.4 1 *
-1.2 1 *
-1.0 2 **
-0.8 4 ****
-0.6 6 ******
-0.4 15 ***************
-0.2 19 *******************

0.0 21 *********************
0.2 21 *********************
0.4 3 ***
0.6 2 **

(b) Midpoint Count
-1.2 1 *
-1.0 2 **
-0.8 2 **
-0.6 1 *
-0.4 6 ******
-0.2 12 ************

0.0 15 ***************
0.2 13 *************
0.4 12 ************
0.6 8 ********
0.8 8 ********
1.0 7 *******
1.2 3 ***
1.4 3 ***
1.6 1 *
1.8 0
2.0 1 *
2.2 1 *
2.4 2 **
2.6 1 *

Figure 4.28 c? =  1 and 0̂  =  1.5
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Sampling distributions for Median estimator of (a) In and (b) In V5 for 
contaminated data (7 =̂10%)

(a) Midpoint Count
- 0.6 1 *
—0.4 0
- 0.2 2 **

0.0 5 *****
0.2 10 **********
0.4 29 *****************************
0.6 41 *****************************************
0.8 11 ***********
1.0 1 *

Midpoint Count
- 2.0 2 **
- 1.6 2 **
- 1.2 15 ***************
- 0.8 18 ******************
-0.4 39 ***************************************

0.0 13 *************
0.4 3 ***
0.8 7 *******
1.2 1 *

Figure 4.29 o? =  2 and =  1 ; 7 =  10% and k =  20

(a) Midpoint Count
-1.4 1 *
- 1.2 0
- 1.0 1 *
- 0.8 0
- 0.6 0
-0.4 2 **
- 0.2 4 ****

0.0 4 ****
0.2 9 *********
0.4 25 *************************
0.6 34 **********************************
0.8 18 ******************
1.0 2 **
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(b) Midpoint Count
-2.5 1 *
- 2.0 0
-1.5 2 **
- 1.0 6 ******
-0.5 35 ***********************************

0.0 34 **********************************
0.5 11 ***********
1.0 7 *******
1.5 3 ***
2.0 0
2.5 1 *

Figure 4.30 c? =  =  2 ; 7 =  10% and k =  25

(a) Midpoint Count
- 1.0 2 **
- 0.8 0
- 0.6 1 *
-0.4 3 ***
- 0.2 11 ***********

0.0 17 *****************
0.2 34 **********************************
0.4 25 *************************
0.6 6 ******

(b) Midpoint Count
- 1.0 1 *
- 0.8 1 *
- 0.6 6 ******
-0.4 9 *********
- 0.2 19 *******************

0.0 21 ***********
0.2 12 ************
0.4 5 *****
0.6 12 ************
0.8 7 *******
1.0 3 ***
1.2 1 *
1.4 1 *
1.6
1.8

0
1 *

Figure 4.31 <? =  1 and <? =  1.5 ; 7 =  10% and k =  30 € V
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Sampling distributions for MLE of (a) In a  and (b) In \/q for contaminated data 
(7=10%)

(a) Midpoint Count
q 4 7 *******
0.6 20 ********************
0.8 31 *******************************
1.0 33 *********************************
1 2  8 * * * * * * * *
1.4 1 *

(b) Midpoint Count 
- 2.0 1 * 4 0 43 *************
 4 2 26 **************************
—0.8 41 *****************************************
—0 4 16 ****************

0.0 3 ***

Figure 4.32 <? -  2 and <? =  1 ; 7 =  10% and k =  20
€  7}  '

(a) Midpoint Count
0.4 4 ****
0.6 16 ****************
0.8 28 ****************************
1.0 31 *******************************
12 19 *******************
1.4 2 **

(b) Midpoint Count 
- 2.0  1 *
 4 g 0 * * * * * *
 4 Q  34 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

—0.5 45 *********************************************
0 0 17 *****************

Figure 4.33 0^ =  = 2 ; 7 =  10% and k =  25

(a) Midpoint Count 
0.0 1 *
0 2 8 * * * * * * * *
0 4 24 ************************
0 6 26 **************************
0 8 23 ***********************
10 15 ***************
1.2 2 * *
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(b) Midpoint Count
- 1.6 1 *
-1.4 2 **
- 1.2 4 ****
- 1.0 7 *******
- 0.8 17 *****************
- 0.6 18 ******************
-0.4 21 *********************
- 0.2 11 ***********

0.0 12 ************
0.2 5 *****
0.4 1 *

Figure 4.34 <? =  1 and (?  =  1.5 ; 7 =  10% and k =  306 T)

Sampling distributions for Median estimator of (a) In <7f and (b) In \/q when c? =
=  2 with non—normal contaminating component (7= 10%)

(a) Midpoint Count 
- 0.6 1 *
—0.4 4 ****
—0.2 13 *************

0.0 6 ******
0 2 28 ****************************
0 4 36 ************************************
0 6 11 * * * * * * * * * * *

0̂ 8 1 *

(b) Midpoint Count 
-0.8 3 ***
-0.6 3 ***
—0 4 15 ***************
—0 2 14 **************

0 0 21 * * * * * * * * * * * * * * * * * * * * *
0 2 11 * * * * * * * * * * *
0 4 12 ************
0 6 6 * * * * * *
0 8 11 * * * * * * * * * * *

1.0 3 ***
1.2 0
1.4 1 *

Figure 4.35 Contaminating component has %2 distribution
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(a) Midpoint Count
-1.4 1 *
- 1.2 1 *
- 1.0 1 *
- 0.8 1 *
- 0.6 3 ***
-0.4 3 ***
- 0.2 6 ******

0.0 15 ***************
0.2 21 *********************
0.4 34 **********************************
0.6 11 ***********
0.8 3 ***

(b) Midpoint Count 
-1.5 1 *
—1.0 5 *****
—0.5 21 *********************

0.0 38 **************************************
0.5 18 ******************
1.0 10 * * * * * * * * * *
1.5 4 ****
2 !o 2 **
2.5 1 *

Figure 4.36 Contaminating component has Cauchy distribution

9 9Sampling distributions for MLE of (a) In o^ and (b) In Vq when a^ =  or =  2 with 
non-normal contaminating component ( t = 10%)

1 observation below the first class

(a) Midpoint Count 
- 0.2 1 *

0.0 5 *****
0.2 33 *********************************
0.4 37 ************************************* 
0.6 19 *******************
0.8 2 * *
1.0 1 *
1.2 1 *
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1 observation above the last class 

(b) Midpoint Count
- 1.0 1 *
- 0.8 3 ***
- 0.6 7 *******
-0.4 8 ********
- 0.2 23 ***********************

0.0 20 ********************
0.2 22 **********************
0.4 12 ************
0.6 2 **
0.8 1 *

Figure 4.37 contaminating component has tg distribution 

4 observations below the first class

(a) Midpoint Count
-0.4 1 *
- 0.2 0

0.0 2 **
0.2 6 ******
0.4 30 ****************************
0.6 16 **************
0.8 13 ***********
1.0 3 ***
1.2 8 ******
1.4 6 ****
1.6 3 ***
1.8 1 *
2.0 2 **
2.2 1 *
2.4 1 *
2.6 3 ***

6  observations below the first class

(b) Midpoint Count
-3.0 1 *
-2.5 1 *
- 2.0 3 ***
-1.5 6 ******
- 1.0 17 ****************
-0.5 27 ***************************

0.0 32 *******************************
0.5 6 ******
1.0 1 *

Figure 4.38 contaminating component has Cauchy distribution
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Calibration term for of Redescending estimators

(a) Cj -  A A A
1.44+

B B B
1.32+

1.20+ C

1.08+ D D
D

3 3 3
~ • +  ~ + —— --------  -i----------------+ -----------------+-----------------"+---

1.00 125 1.50 175 2.00 105

Figure 4.39a Plot of Cj against <rf

(b) Cl -  3 
1.44+

-  3 
1.32 +

1.20+  2
-  C

1.08+ 2 
C

3 3 3
+  +  +  +- ■ +  + ----------------

0 2 4  €  8 10

Figure 4.39b Plot of Cj against Vq
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(c) -
1.44+

1.32+

1.20+ 2
C

1.08+

- 3 3 3  
 + -

2
C

1.04 1-12
- + •

1.20
- + •

1,28 13S

Figure 4.39c Plot of against its fitted values

114

Calibration term for > c2 of Redescending estimators

(a) c2 -  

0.84 +
B

A
B

B

0.72+
C

0.60+
D

3

100

D

1.25

D

- + ■

150 1.75 2 . 0 2.25

Figure 4.40a Plot of c2 against o
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(b) ^  -  2
-  B
-  B 

0.84+ C
-  A

0.72+
-  3

0.60+
3

3 3

+  +  ■ ~ 1 +  ■ +  

0. 2 4 6

Figure 4.40b Plot of against Vq

(c) C2 -

0.84+

0.72+
3

0.60+
3

3 33

H---------------+--------------+--------------+—

0,48 0.56 0.64 0.72

Figure 4.40c Plot of C2 against its fitted values
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Sampling distributions for Redescending estimator of (a) In and (b) In Vq for clean 
data

2 observations below the first class 

(a) Midpoint Count
-1.4 1 *
- 1.2 0
- 1.0 2 **
- 0.8 0
- 0.6 4 ****
-0.4 3 ***
—0.2 8 ********

0.0 14 **************
0.2 24 ***********************
0.4 17 *****************
0.6 16 ****************
0.8 8 ********
1.0 1 *

1 observation above the last class 

(b) Midpoint Count
-3.5 3 ***
-3.0 4 ****
-2.5 3 ***
- 2.0 7 *******
-1.5 6 ******
- 1.0 18 ******************
-0.5 34 **********************************

0.0 14 **************
0.5 8 ********
1.0 2 **
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(a) Midpoint Count
-1.4 2 **
- 1.2 2 **
- 1.0 0
- 0.8 2 **
- 0.6 5 *****
-0.4 5 *****
- 0.2 4 ****

0.0 18 ******************
0.2 23 ***********************
0.4 15 ***************
0.6 17 *****************
0.8 4 ****
1.0 3 ***

(b) Midpoint Count **-3.5 2
-3.0 1
-2.5 5
- 2.0 6
-1.5 8
- 1.0 8
-0.5 18

0.0 30
0.5 15
1.0 4
1.5 2
2.0 1

*
*****
* * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * *
* *
*

Figure 4.42 =  2 and =  2
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3 observations below the first class 

(a) Midpoint Count
- 1.6 3 ***
-1.4 0
- 1.2 0
- 1.0 3 ***
- 0.8 8 ********
- 0.6 4 ****
-0.4 14 **************
- 0.2 21 *********************

0.0 15 ***************
0.2 14 **************
0.4 9 *********
0.6 2 **
0.8 1 *
1.0 2 **

2  observations above the last class 

(b) Midpoint Count
-3.5 2 **
-3.0 2 **
-2.5 5 *****
- 2.0 3 ***
-1.5 6 ******
- 1.0 9 *********
-0.5 15 ***************

0.0 19 *******************
0.5 26 **************************
1.0 6 ******
1.5 3 ***
2.0 1 *

Figure 4.43 <?= I and <72 =  1.5 e 7)
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Sampling distributions for Redescending estimator of (a) In and (b) In for 
contaminated data

2 observations below the last class 

(a) Midpoint Count
- 1.6 1 *
-1.4 0
- 1.2 1 *
- 1.0 2 **
- 0.8 1 *
- 0.6 1 *
-0.4 2 **
- 0.2 5 *****

0.0 12 ************
0.2 17 ****************
0.4 26 **************************
0.6 18 ******************
0.8 9 *********
1.0 3 ***

2 observations above the last class 

(b) Midpoint Count
-4.0 1 *
-3.5 4 ****
-3.0 3 ***
-2.5 3 ***
- 2.0 10 **********
-1.5 7 *******
- 1.0 22 **********************
-0.5 26 **************************

0.0 17 *****************
0.5 5 *****

Figure 4.44 = 2 and 0^  =  1 ; 7 =  5% and k =  20
€  7)  1 1
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3 observations below the first dass 

(a) Midpoint Count
- 1.6 1 *
-1.4 1 *
- 1.2 1 *
- 1.0 1 *
- 0.8 0
- 0.6 2 **
-0.4 0
- 0.2 , 7 *******

0.0 7 *******
0.2 18 ******************
0.4 29 *****************************
0.6 21 *********************
0.8 7 *******
1.0 1 *
1.2 1 *

1 observation below the first dass 
1 observation above the last dass

(b) Midpoint Count
-3.0 3 ***
-2.5 3 ***
- 2.0 1 *
-1.5 2 **
- 1.0 14 ************************
-0.5 27 ***************************

0.0 27 ***************************
0.5 16 ****************
1.0 3 ***
1.5 0
2.0 1 *
2.5 0
3.0 1 *

Figure 4.45 cr2 = 2 and <? =  2 ; 7  = 5% and k =  25€  Tj



Robust estimation o f scale [ch 4 . pg.220]

2 observations below the first dass 

(a) Midpoint Count
-1.8 1 *
-1.6 1 *
-1.4 1 *
-1.2 1 *
-1.0 0
-0.8 2 **
-0.6 1 *
-0.4 8 ********
-0.2 15 ***************

0.0 22 **********************
0.4 28 ****************************
0.2 11 ***********
0.6 5 *****
0.8 0
1.0 0
1.2 1 *

2 observations above the last dass 

(b) Midpoint Count
-3.6 2 **
-3.2 1 *
-2.8 0
-2.4 3 ***
-2.0 0
-1.6 3 ***
-1.2 4 ****
-0.8 9 *********
-0.4 19 *******************

0.0 27 ***************************
0.4 21 *********************
0.8 5 *****
1.2 1 *
1.6 1 *
2.0 0
2.4 1 *

Figure 4.46 <r̂  =  1 and <7^ =  1.5 ; 7  =  5% and k =  30
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Sampling distributions for Redescending estimator of (a) In and (b) In Jq  when 
2=  01 =  2 with non—normal contaminating component

2 observations below the first dass 

(a) Midpoint Count
-1.4 1 *
- 1.2 2 **
- 1.0 0
- 0.8 2 **
- 0.6 2 **
-0.4 7 *******
—0.2 6 ******
- 0.0 9 *********

0.2 18 ******************
0.4 27 ***************************
0.6 19 *******************
0.8 2 **
1.0 2 **
1.2 1 *

1 observation above the last class 

(b) Midpoint Count
—4.0 1 *
-3.5 1 *
-3.0 5 *****
-2.5 1 *
- 2.0 2 **
-1.5 3 ***
- 1.0 6 ******
-0.5 17 *****************

0.0 41 *****************************************
0.5 13 ************
1.0 7 *******
1.5 2 **

Figure 4.47 contaminating component has tg distribution and 7 = 5%
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1 observation below the first class 

(a) Midpoint Count
- 1.6 1 *
-1.4 0
- 1.2 2 **
- 1.0 1 *
—0.8 1 *
- 0.6 1 *
-0.4 2 **
- 0.2 6 ******

0.0 18 ******************
0.2 20 ********************
0.4 33 *********************************
0.6 9 *********
0.8 1 *
1.0 3 ***
1.2 0
1.4 1 *

1 observation above the last class 

(b) Midpoint Count
-3.5 2 **
-3.0 2 **
-2.5 3 ***
- 2.0 4 ****
-1.5 3 ***
- 2.0 12 ************
-0.5 18 ******************

0.0 31 *******************************
0.5 16 ****************
1.0 5 *****
1.5 3 ***

Figure 4.48 contaminating component has Cauchy distribution 
and 7 = 5%
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5.1 Introduction

5.1.1 The Model

We have been developing robust estimation procedures for the local level 

model . However , in many applications , some variation in the series can be 

attributed to observable variables . We shall , thus , consider an extension of the 

local level model to allow for explanatory variables in the system . Keeping the 

transition equation (4.1.1b) the same , we include regressors in the measurement 

equation . The model now becomes

yt =  /*t +  + h
=  Mt_ !  +  vt

where is a p*l vector of explanatory variables 

and 6 is the corresponding p*l vector of fixed unknown coefficients .

The observable variables are assumed to be weakly exogenous , see Harvey 

(1989) . This means that they are treated as fixed in repeated samples . Such an 

assumption allows for the estimation of unknown parameters in the model conditional 

on the explanatory variables . The regression coefficients 8 are seldom known in 

practice and have to be estimated .

(5.1.1a)

(5.1.1b)



Regressors in time series [ch 5. pg.225]

S .1.2 State space representation

A state space representation of the above system is achieved by including the 

regression coefficients in the state vector . Now , we have an augmented state vector 

a t which is (/^ where 6  ̂ = 6q =  6. Using the time—invariant property of the 

regression coefficients , that is ,

we can express the model in (5.1.1) as

In this way , the regression coefficients 6 can be estimated along with the state .

5.2 The Generalised Least Squares Transformation (GLST) Procedure

As an alternative to using the augmented state vector , the estimation of the 

regression coefficients and other unknown parameters in the model can be carried out 

by using the GLST procedure , see Ansley and Kohn (1985) . We can view the linear 

system in (5.1.1) as a regression of y  ̂ on x̂ . with correlated errors given by

yt = (x + £t (5.1.3a)

(5.1.3b)
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£ t = ^  +  et (5.2.1)

A transformation , say L , is performed on this disturbance term to remove its 

correlation . Such a transformation , which uses the Cholesky decomposition , is 

equivalent to running the Kalman filter for the stochastic part of the model on the 

error term and treating the resulting innovations as transformed variable , . It

follows from the measurement equation that the same transformation , L , has to be 

carried out on y — X 6  where y is the vector of all the observations , i.e. , 

(ypy2>-..,yT)’ ^ XP matrix X is ( x p ^ , . . . , ^ ) ’ . Since the Kalman filter is

linear , we can run it separately on y and then on X to produce the prediction errors 

Ly and LX respectively . The covariance matrix of the transformed variables L(y — 

X S) is simply that of Ly because the explanatory variables are assumed to be fixed 

It is a diagonal matrix F where the diagonal elements are the scale of the 

innovations produced while filtering y . Our regression model now becomes

where the disturbance term L£ is uncorrelated and has covariance matrix F . 

Conditioned on the other parameters in the model and based on normality 

assumption , the MLE of the regression coefficient is given by the following weighted 

least squares estimate

and have to be estimated together with the regression coefficients 6 . We note that if

LX = L X 5 + L £ (5.2.2)

6 =  (X’L’F- 1LX)- 1X’L’F- 1LX (5.2.3)

In most cases , the hyperparameters of the model , a  and a  , are not known

the regression coefficients are known , we can treat jr — x’ 6 as a new series and
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apply the Kalman filter for the stochastic part of the model to it . This suggests that 

we can concentrate the regression parameters out of the likelihood function and use 

an iterative estimation procedure . Given an initial estimate of the regression 

coefficients , , the MLE of the hyperparameters are found by applying the Kalman

filter for the local level model on the series v — xl . The Kalman filter based on 

these hyperparameter estimates is then used to filter y and X in order to obtain the 

regression model (5.2.2) . This leads to a new estimate for the regression coefficient 

^  found by evaluating the expression in (5.2.3) . Using this new estimate of 6 , the 

hyperparameters are re-estimated . This procedure is repeated until convergence 

takes p lace.

The initial estimate Sq needed to start the iteration procedure has to be found 

without involving the hyperparameter values . By taking first differences of the 

observations in (5.1.1) , we reduce the system to a regression model with a stationary 

disturbance term . We have

*yt =  Axt $ + \  + 4£t  (5-2-4)

where the noise term follows a MA(1) process . Assuming finite second

on Axt produces

a consistent though inefficient estimate for 6 which is used as our .

moments of et and tĵ  , ordinary least squares (OLS) regression of ay.
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5.3 Robustifi cation of the GLST Procedure

The GLST procedure described in the previous section does not allow for the 

presence of outliers in the series . Neither the scale estimation nor the estimation of 

the regression coefficients is robust . Suppose we have a series that is from the 

system defined in (5.1.1) but with a measurement noise term which follows a 

long—tailed distribution . Application of the GLST procedure on this series will 

produce parameter estimates which are distorted by additive outliers . To overcome 

this problem , we can robustify the scale estimation process by replacing the ML 

estimates from the Kalman filter by M—estimates discussed in Chapter four . When 

the Kalman filter with robust estimates of the hyperparameters is used to transform 

the variables y , outliers are carried over to the new variables Ly because the 

innovations are affected by outlying points . Robust regression technique are , hence, 

necessary to estimate the coefficients 6 from these transformed variables . We cannot 

use a robust filter such as the missing value filter described in Chapter two for the 

transformation process. This is because most robust filters do not have the following 

linear property

which is necessary for the iterative estimation procedure .

5.3.1 Regression quantile

Let us begin with the initial estimate of 6 required to start the iteration

L(X — X5) =  Ljr — LX 6 (5.3.1)
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process . In order to accomodate outliers , it is no longer appropriate to use OLS

aberrant observations at the beginning or end of the series although those occurring 

at other parts of the series tend to cancel out . This is because differencing produces 

outliers of equal magnitude but in opposite directions . Instead , we start the 

iteration process with a very robust estimate such as the regression median or the 

.5th regression quantile , see Koenker and Bassett (1978) . A regression quantile is a 

generalisation of a sample quantile in the location model to the linear m odel. It can 

be found by solving the following minimisation problem . Consider a linear model of

found in (5.2.2) . The 0th regression quantile for the model (5.3.2) is defined as the 

solution to

T

estimates from the reduced model (5.2.4) . This estimate is especially vulnerable to

the form

(5.3.2)

where y is ( y ^ d ^ v ^ 'p ) ’ > the T*p matrix X is ( x j , ^ , . . . , ^ ) ’ and the noise term 

is i.i.d. . Note that we can re—write the system in (5.1.1) in this form by letting 

y* be Ly.F and X* be LX.F- ^  where Ly , LX and F are the same as those

(5.3.3a)

where
’ 0u u > 0 

u < 0^ U) =  ' (£ - l)u (5.3.3b)

for 0 < 6 < 1

Standard linear programming technique are used to compute the regression quantiles
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A program which serves this purpose is given in &>enker and DsOrey (1987) . However 

, some of the solutions may not be unique . In this case , only a subsequence of x* is 

used or the explanatory variable is perturbed to give a unique solution .

5.3.2 Trimmed least squares estimation

Once the iteration procedure is started , we can estimate the regression 

coefficients at each stage by a more efficient robust method such as trimmed least 

squares (TLS) estimation , see Welsh (1987) . The latter is also known as the 

trimmed mean in the linear model . The idea is to identify and remove outlying 

observations and then compute a least squares estimate based on the remaining data 

set . In the regression context , an "extreme" observation is usually associated with 

one that has a large residual . This means that a preliminary estimate is first 

required to evaluate the residuals of the observations . Then , observations with 

either large positive or large negative residuals are deleted .

The performance of TLS estimators is dependent on the preliminary estimate 

used , see Ruppert and Carroll (1980) . A robust preliminary estimate will improve 

on its efficiency . In the robust GLST procedure , the estimates of the regression 

coefficients from the previous stage of iteration is used as the preliminary estimate . 

This is also a TLS estimate except at the first stage where the regression median is 

used . It follows that the preliminary estimate used at each stage is robust . Given 

the preliminary estimate , the residual of each transformed observation yt is 

evaluated . These residuals are then ranked according to their magnitude . Suppose 

that the trimming proportion is a  , observations whose residuals have magnitude at 

the top ax 100% , are discarded . We use ten percent trimming for our simulations
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below . This level should , however , vary according to how heavily we think the 

series is contaminated . A higher level of trimming is appropriate when there are 

more outliers present . But if the proportion is too high , a drop in efficiency will 

result due to the loss of "good" observations . The regression coefficients are then 

estimated by the OLS procedure using the rest of the data s e t .

5.3.3 Influence in regression

In the previous section , we have referred to outlying observations in 

regression as those with large residuals . There is also a need to consider influential 

observations , see Atkinson (1986) , when dealing with robust regression . These are 

points which are crucial to the inferences drawn from the data . Omission of any one 

influential observation will result in a substantial change in the estimates of the 

regression coefficients . Since a robust estimate is one which is not overly affected by 

minor changes in the data s e t , it is also necessary to discard influential observations. 

We note that outlying points may not necessarily be influential . This is often the 

case when the aberrant point is not far enough from the bulk of the observations to 

cause a "swing" in the fitted regression line . However , it is still necessary to remove 

such observations in order to reduce the variability of the regression parameters’ 

estim ates.

Influential observations are usually leverage points , that is , observations 

which has an extreme value of one or more explanatory variables . A high leverage 

point often forces the fitted model close to its observed value leading to a small 

residual. In order to identify leverage points , let us consider the regression model in

(5.3.2). The "hat" matrix of dimension TxT is defined as
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H =  X*(X*’X * r X :—lv* (5.3.4)

The diagonal elements of this hat matrix , denoted by h. , measures the remoteness of 

an observation in a factor space . Hence , if the observation is a leverage point , the 

value of h- will be substantially bigger than the rest of the h. values . However , not 

all leverage points are influential observations since they may be in line with the rest 

of the data . In which case , they may contain important information and their 

inclusion in the data set will help improve the variability of the estim ates. Although 

we do not trim all leverage points , the measure of leverage is used to identify 

influential observations .

In order to measure the influence of an observation , we need to evaluate its 

studentized residual. Ordinary residuals from least squares estimation are given by

S =  ( ! - % * (5.3.5a)

They have a scale dependent distribution with

Var(et ) =  (1 -  \ ) a 2 (5.3.5b)

o
for t =  1,2 ,...,T . The value of a is one in our model (5.3.2) . A studentized 

version of these residuals has a scale—free distribution and is given by

(5.3.6)

A statistic D̂ . for determining whether the tth  observation is influential is a function
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of both ht and r  ̂ . We have

(5.3.7)

This is derived based on the difference in the least squares parameter estimates when 

the tth  observation is omitted from the data set , see Cook and Weisberg (1982) . 

We infer that the ith case is influential if the value of D. is substantially larger than 

the bulk of the values .

It is found that if we trim both outlying and influential observations at each

stage of the GLST procedure , the iterations become unstable and convergence may

be affected . Hence , influential observations are removed only at the last stage and

not during the intermediate steps of the iterations . At the final stage of the GLST

procedure , residuals computed using the preliminary estimate are ranked according
o

to their magnitude as before . But only those at the top ^ a  * 100% are discarded .

Influential observations based on least squares estimates are identified by evaluating

and ranking the statistic Dt for the whole series . Those at the top ^ a  * 100% are

omitted . In this way , the trimming proportion is maintained roughly at the level a.

This is because outlying points can sometimes be influential , i.e. , there may be an

overlap of points being identified as both aberrant and influential . Thus , the
2 4trimming proportion will vary between and .

With the estimation of regression coefficients and scale being replaced by 

robust technique , the GLST procedure is made more resistant towards outliers . 

However , there may be a few cases of non-convergence in the iteration procedure . 

This can sometimes occur when there is a flip-flop between two sets of parameter

D. =  ^r t 1 -  h.
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estimates or when the scale estimation is not smoothly carried out , as indicated by a 

non—zero IF AIL value . It is hence necessary to have an alternative stopping criteria 

such as fixing the maximum number of iterations . We expect the average number of 

iterations to increase with the number of exogenous variables . Thus , the maximum 

number of iterations should be made to depend on the number of explanatory 

variables in the system , p . As seen in the simulations below such cases of 

non-convergence usually takes place less than 5% of the time .

To test that this robustified GLST procedure is working properly , we check 

for uncoupling effects between the explanatory variables X and the regression 

coefficients 6 . We find that by fixing the observations y and changing the sign of X , 

the regression parameter estimates are affected only by a change in sign . Similarly , 

scaling the explanatory variables by a factor m while holding the observations 

constant results in the regression coefficient estimates being scaled by i  . Hence , we

conclude that there is no uncoupling effect between X and 6 .

A summary of the robustified GLST procedure is given as follows

Step I  The .5th regression quantile or regression median is computed from the

differenced series Aŷ  to give us an initial resistant estimate of the regression 

coefficients 6 .
rv

Step 2 Based on the current estimate of the regression coefficient , robust estimates 

of the hyperparameters are obtained using the M—estimation technique .

Step 3 Both the series and the explanatory variables are transformed using the new 

estimates of the hyperparameters . Trimmed least squares estimates are then 

evaluated from these transformed variables .

Step 4 Iteration between steps 2 and 3 is carried out until convergence takes place or 

when the maximum number of iterations is reached .
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Step 5 The final stage of trimmed least squares estimation of the regression 

coefficients is repeated . This time both outlying and influential observations are 

discarded .

5.4 Simulation Results

A comparison of the GLST procedure described in section 5.2 against its

robustified version described in the previous section can be carried out by means of

Monte Carlo studies . We shall consider series of length a hundred and have two

hundred replications for each set of simulations . We use two hundred replications so

that the difference found in the summary statistics of the estimators especially those

for the regression coefficients are not too dependent on sampling variability . Data is

generated from the system (5.1.1) with the outliers modelled by the distribution of

the measurement noise term , ^  . As in Chapter four , uncontaminated series are

generated with a normal distribution N(0,2) while additive outliers are allowed in the
o

series by adopting a contaminated normal distribution with parameters ^  =  2 , 7  =  

5% and k =  100 . A bigger factor of contamination , k =  100 , is used here instead of 

k =  20 used in previous simulations . This is because outliers are more difficult to 

detect when explanatory variables are present in the series . The exogenous variables 

usually increase the range of the series and hence , mask the presence of outliers . 

Innovation outliers are assumed to be absent from the system and so the transition 

noise term follows a normal distribution , N(0 ,2) . Cases with different 

hyperparameter values are investigated later .
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In each set of simulations below , both the GLST procedure and its robustified

version are first run on clean data and then on contaminated data . Summary

statistics from the simulations consist of the bias and mean square etror (MSE) of the

estimators . If there is a breakdown in the estimation , i.e. , when the estimate of a

parameter in at least one replication is way off from most other estimates within the

same simulation , then , the number of cases which broke down , M and a separate

set of summary statistics is presented . This more resistant set of statistics , denoted 
* *

by Bias and MSE , is derived from the median and pseudo—variance of the 

sampling distributions , see Chapter four . Sampling distributions of the estimators 

are also given below .

5.4.1 Non—deterministic exogenous variables

The simulation results are categorized according to the model assumed by the 

explanatory variables . We begin with only one exogenous variable in the model , p 

=  1 . Three different cases are considered . They are 

Case 1 A stationary process where xt follows a AR(1) model

xt =  0 .5 * ^  +  Ct (5.4.1)

Case 2 A random walk model

xt = xt - i +  ^ (5.4.2)

Case 3 A random walk plus drift model
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xt = V i +  01  +  Q (5-4-3)

where ~ N(0,0.25) in all the above cases.

In order to study the effect of outliers , it is pertinent to keep the variation of the 

noise term in the regressor low . The value of var(^ ) is kept small relative to the 

hyperparameter values to prevent the explanatory variable from dominating the 

series rendering the effect of outliers insignificant . Otherwise , so much information 

about the exogenous variable is available that the regression coefficient is well 

estimated despite the presence of outliers . On the other hand , the hyperparameter 

values cannot be so big as to completely mask the observable variable . For each 

simulation , the explanatory variable is generated once and used in all the two 

hundred replications . The parameter value , S is fixed at one . Other values will be 

considered later .
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Case 1 Explanatory variable from an ARfl) process

TABLE 5.1 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 6 -0.0734 0.3347

(b) In <re -0.1058 0.1032

(c) In a  -0.0623 0.0875

(ii) MLE estimates of

(a) 6 -0.0489 0.1812

(b) In <re -0.0354 0.0280

(c) In ff -0.0177 0.0405

The sampling distributions of the robust estimators and the MLEs are found

figures 5.1 and 5.2 respectively .
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TABLE 5.2 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator 

(i) Robust estimator of

(a)

00

(c)

(u) M LEof

(a)

00

(C)

6

In a t

In a.
7

6

In a t

In a.

Bias

-0.0790

0.0250

-0.0167

-0.0649

0.7349

-0.1184

MSE

0.3284

0.0894

0.1325

0.5514

0.6855

1.0803

Bias MSE M

-0.0233 0.0591 1

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.3 and 5.4 respectively .
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Case 2 Explanatory variable from a random walk model

TABLE 5.3 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 6 -0.0443 0.3309

(b) In a € -0.0976 0.0996

(c) In a  -0.0780 0.0926

(ii) MLE estimates of

(a) 6 -0.0299 0.1685

(b) In er€ -0.0264 0.0262

(c) In a -0.0261 0.0406

The sampling distributions of the robust estimators and the MLEs are found

figures 5.5 and 5.6 respectively .
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TABLE 5.4 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator 

(i) Robust estimator of

(a)

(b)

(c)

(ii) MLEof

(a)

(b)

(c)

5

In a i

In

6

In a 

In a.

Bias

-0.0533

0.0324

-0.0005

-0.0615

0.7431

-0.4196

MSE

0.3082

0.0933

0.1249

0.4088

0.6966

5.1133

Bias MSE* M

-0.0426 0.0699 5

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.7 and 5.8 respectively .
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Case 3 Explanatory variable from a random walk plus drift model

TABLE 5.5 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 6 -0.0280 0.2528

(b) In <r£ -0.0798 0.0571

(c) In o  -0.0647 0.1058

(ii) MLE estimates of

(a) S -0.0374 0.1697

(b) In a  -0.0284 0.0268

(c) In tr -0.0242 0.0414

The sampling distributions of the robust estimators and the MLEs are found

figures 5.9 and 5.10 respectively .
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TABLE 5.6 SUMMARY STATISTICS FOR CONTAMINATED DATA

$ $
Estimator Bias MSE Bias MSE M

(i) Robust estimator of

(a) 6 —0.0618 0.3285

(b) In a e 0.0387 0.1095

(c) In a  -0.0287 0.1804

(ii) MLE of

(a) 6 -0.0776 0.3844

(b) In a e 0.7404 0.6916

(c) In a  -0.1378 1.0898 -0.0374 0.0587 1

The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.11 and 5.12 respectively .

Four factorial replicates are carried out to check the simulation results for 

different sets of parameter values. They are
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TABLE 5.7 FACTORIAL REPLICATES OF SIMULATION 
FOR ONE EXPLANATORY VARIABLE

x ~2 2
e  7)

Test 1 1  2 2

Test 2 10 1 2

Test 3 1 1 1

Test 4 10 2 1

All four experiments reveal a similar pattern of behaviour for the estimators

from the two estimation procedures . Let us first consider the estimation of the

regression coefficient across the three cases . In the absence of outliers , the GLST

procedure seems to be insensitive to the different models which generate the

explanatory variable . Let us denote the mean square error associated with the

estimate of the regression coefficient by r  . Hence , the value of r  is very similar in

all three cases . In order to make the different cases comparable , we have held
'  2 2everything else constant . Thus , the same parameter values for 6 , and

var(£t ) are used to generate data for the three cases . There is , however , no 

uniformity in the performance of the GLST procedure when outliers are present in the 

series . The system with a stationary exogenous variable is most affected by 

contamination . Let the r  value be 7q when the data is clean and when it is not . 

Consider the ratio of Tq to r  ̂ , denoting it by r . This ratio is less than one because 

of the worsening effect outliers have on the estimates of the regression coefficient . 

We observe that the r value is smallest in case 1 and increases as we move to cases 2 

and 3 . This means that the further we move from stationarity in the explanatory 

variable , the less sensitive the GLST procedure becomes towards aberrant



Regressors in time series [ch 5. pg.245]

observations .

On the other hand , the robust procedure shows similar performance regardless 

of the model which generates the explanatory variable . Hence , the r  value is 

approximately the same for all three cases for both contaminated as well as clean 

data . Besides , the ratio r is nearly one for all the three models . This indicates that 

the modified GLST procedure is robust towards outliers for all three cases . We , 

therefore , conclude that this new version of the GLST is resistant to changes .

We now compare the performance of the estimators from the two procedures 

for the cases of dean and contaminated data . Considering the estimator of the 

regression coefficient 6 only , we generally observe a very small downward bias . No 

significant difference can be detected between the bias of the robust and the MLEs for 

both clean and uncontaminated data . This means that both estimators are fairly 

unbiased regardless of the presence of outliers in the series . Any comparison between 

the two estimators has to be made by looking at their mean square errors . For clean 

data , the mean square error of the MLE is smaller than that of the robust estimator . 

When the series is contaminated , the mean square error of the MLE is bigger than 

that of the robust estimator in all three cases . This difference turns out to be most 

significant in case 1 , where the explanatory variable comes from a stationary process 

. However , there is no significant difference in case 3 where the MLE is not overly 

affected by outliers . A significant difference for this case can be obtained by 

increasing the level of contamination . Hence , we conclude that the estimator of the 

regression coeffident from the robust procedure performs better than that obtained 

from the GLST procedure in the presence of outliers .

However , we observe that this improvement is not very significant . Firstly ,



Regressors in time series [ch 5. pg.246]

the initial estimate for the iteration process £q produced by the GLST procedure is

not badly affected by the outliers . This is because when we difference the series , an

outlier in the original data will appear twice and in opposite directions after

transformation . Exceptions to this are cases where discordant values appear at the

start or end of the series . Application of OLS estimation on the differenced series

will mostly result in a nullifying effect of the outliers on the parameter estimate .

Besides , at each stage of the iterative procedure , we are using the transformed 
*

variable y  ̂ instead of the original observations yt . Each aberrant value in the 

original series perturbs several innovations . This results in a smearing effect of the 

outliers during the transformation process . In addition , outlying points on both 

sides of the regression line tend to average out during the OLS estimation . Hence , 

we expect more significant improvement to be made in terms of the scale of the 

regression coefficient . We shall discuss special configurations of outliers whereby 

more substantial improvement in the regression parameter estimate is made by the 

robustified GLST procedure in section 5.4.5 .

With regard to the scale estimators , both the bias and the mean square error 

of the MLEs are significantly smaller than those of the M—estimators for clean data . 

We expect a better performance from the MLE when there is no contamination . 

However , we see a very significant improvement in the both summary statistics when 

we replace the MLE of ln<7c by a M—estimator of scale in the contaminated case . 

Besides , there is a tendency for the MLE of lno^ to break down when outliers are 

present . If we exclude these cases , the MLE of ln<7 is better than the robust
7}

estimator even with contamination . This is because the outliers are only present at

the measurement equation , thereby more directly affecting the disturbance term et . 
*

Thus , the MSE of the MLE of Incr is smaller than the MSE of the robust estimator 

in the absence of innovation outliers . As mentioned in chapter four , there is a
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misspecification of the model when the GLST procedure tries to produce MLE under 

contamination . We also observe that the scale estimators are not too sensitive 

towards the model assumed by the exogenous variable .

5.4.2 A deterministic trend

Let us now consider the system (5.5.1) but with a deterministic explanatory

variable . In the three cases above , the exogenous variable has been generated with a

perturbation term f  . Suppose now that the explanatory variable takes the form of a

deterministic trend , that is , x  ̂ =  t . This particular model is often used in

econometric models . Recall that in both the GLST procedure and its robustified

version , transformation of the variables y and x is carried out using the Kalman

filter . However , when the Kalman filter is run on a deterministic trend t , the

prediction errors become constant after a while . This will result in the transformed 
*

variable x̂ . having the same value most of the time . A regression plot for this case is 

found in figure 5.13 below .
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Figure 5.13 Regression plot for the case xt =  t

It is clear from the diagram that we do not have very much information on the

regression parameter 6 . Since the GLST procedure uses all the observations , it is

not surprising to see in Tables 5.8 and 5.9 below that the mean square error of the

MLE of the regression coefficient is significantly smaller than the robust one for both

clean and contaminated data . After transformation , most outliers will fall on either

side of the vertical line , rendering the trimming process unnecessary . Again , the

bias of the estimators for this regression parameter is rather small . Similar

conclusions can be drawn with regards to the scale estimators lnaf . That is , the

MLE have smaller bias and mean square errors than the M-estimators for clean data

whilst the M-estimators have an definite edge over the MLE for contaminated data .

As for the other scale estimator ln<r . the MLE starts to break down even when the
V

data is clean . The number of breakdown cases increasing when there is 

contamination . This pattern of behaviour for the estimators is observed for all the
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factorial replicates given in Table 5.7 . As before , we only present the simulation 

results for Test 1 below .

TABLE 5.8 SUMMARY STATISTICS FOR CLEAN DATA

Estimator 

(i) Robust estimator of

(a) 6

(b) In <r

(c) In o.

(ii) MLE estimates of

(a) S

(b) In a (

(c) In a

Bias

0.0098

-0.0780

-0.0967

0.0024

-0.0187

-0.1171

MSE

0.0317

0.0917

0.1014

0.0204

0.0275

1.0543

Bias MSE M

0.0200 0.0383 1

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.14 and 5.15 respectively .
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TABLE 5.9 SUMMARY STATISTICS FOR CONTAMINATED DATA
3|c *

Estimator Bias MSE Bias MSE M

(i) Robust estimator of

(a) S 0.0061 0.0332

(b) In <re 0.0394 0.1069

(c) In a_ -0.0156 0.1918\ / jj

(ii) MLE of

(a) S -0.0008 0.0205

(b) In <T( 0.7911 0.7570

(c) in a  -0.5986 7.1756 -0.0626 0.0824 8\  j  yj

The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.16 and 5.17 respectively .

5.4.3 Two uncorrelated explanatory variables

We now consider the system (5.1.1) with more than one explanatory variable . 

Suppose there are two exogenous variables , one from the stationary process in (5.4.1) 

and another following a local level model given in (5.4.2) . Our aim is to compare the 

robust estimators with the MLEs for both cases of clean and contaminated data . 

Since we are estimating more parameters from series of the same length , we expect 

the estimators here to be more vulnerable to outliers as compared with the case where 

there is only one regressor in the model . It turns out that a contamination factor of
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k =  50 is enough to reveal the differences between the two estimation procedure . To 

generalise the results across a range of parameter values , the simulations are 

repeated eight times in the following way .

TABLE 5.10 FACTORIAL REPLICATES OF SIMULATION FOR 
TWO EXPLANATORY VARIABLES

*L S2

Test 1 1 1 1 1

Test 2 10 10 1 1

Test 3 10 1 1 2

Test 4 10 1 2 1

Teat 5 1 10 1 2

Test 6 1 10 2 1

Test 7 1 1 2 2

Test 8 10 10 2 2

These replicates produce a similar pattern of behaviour for the estimators . 

Therefore, we shall only present the simulation results for Test 7 which is most 

comparable to Test 1 of Table 5.7 .
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TABLE 5.11 SUMMARY STATISTICS FOR CLEAN DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 0.0179 0.2822

(b) S2 -0.0687 0.2836

(c) In o ( -0.0886 0.0934

(d) In o- -0.1148 0.1001

(ii) MLE of

(a) ^  -0.0198 0.1642

(b) S2 -0.0343 0.1927

(c) In o t  -0.0203 0.0260

(d) In o^  -0.0683 0.0485

The sampling distributions of the robust estimators and the MLEs are found in

figures 5.18 and 5.19 respectively .
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TABLE 5.12 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator Bias MSE

(i) Robust estimator of

(a) 0.0005 0.2782

(b) S2 -0.0812 0.2858

(c) In <t€ -0.0455 0.0903

(d) In a  -0.0947 0.1740

(ii) MLE of

(a) 6X -0.0466 0.3948

(b) <$2 -0.0759 0.4114

(c) In <re 0.5504 0.4019

(d) In a  -0.1025 0.0975

The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.20 and 5.21 respectively .

In the absence of contamination , we observe that the relative performance of 

the two estimation procedure is similar whether there is one or more explanatory 

variables in the system . All the parameters are well estimated by the GLST 

procedure for clean data . Their mean square errors are significantly smaller than 

corresponding values from the robust procedure . The bias of both types of 

estimators for the regression coefficients are negligible . On the other hand , the bias 

for the scale estimators are significantly different , those of the MLEs being smaller .
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When outliers are present in the series , the reverse is true . That is , all the mean 

square error of the MLEs are significantly bigger than those of the robust estimators 

with the exception of the hyperparameter lna^ . With the factor of contamination 

fixed at 50 , the MLE of lncr does not break down . Since the contamination does 

not occur at the transition equation , its mean square error is actually significantly 

smaller than that of the robust estimator , although there is no significant difference 

in the bias . The bias in the estimators of the regression coefficients remain quite 

sm all. Only the bias of the robust estimator of ln<rf is significantly smaller than that 

of the MLE . We conclude that the robust procedure has an edge over the GLST 

procedure at the occurrence of aberrant values . This is more apparent when there 

more exogenous variables in the m odel.

5.4.4 Two correlated explanatory variables

In real data , the exogenous variables in the system are usually correlated . 

We shall investigate the effect which correlation amongst regressors has on the 

estimators from the GLST and robust procedure . Let us respecify the explanatory 

variables in section 5.4.3 such that for t = 1,2,...,T

xl t  =  ° '5xl t - l  +  0 lx2 t - l  +  (5'4'4a)

=  x2t—1 +  01xl t  +  <2t (5'4'4b)

where x^q =  XgQ =  0 and ~ N(0,0.25) for i = l ,2

The exogenous variables are still mainly from the stationary and random walk models
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but are now correlated . We repeat the simulations in the previous section , including 

all eight factorial replicates , on this new system . Again , we obtain similar pattern 

of behaviour for the estimators across different sets of parameter values . The 

summary statistics for Test 7 of Table 5.10 are found in Tables 5.13 and 5.14 below .

TABLE 5.13 SUMMARY STATISTICS FOR CLEAN DATA

* *
Estimator Bias MSE Bias MSE M

(i) Robust estimator of

(a) Sl  0.0118 0.2807

(b) 62 -0.0646 0.1914

(c) In a € -0.0731 0.0896

(d) In a  -0.1415 0.1234

(ii) MLE of

(a) Sx -0.0279 0.1652

(b) S2 -0.0338 0.1171

(c) In <rf -0.0145 0.0265

(d) In <7 -0.1411 1.0528 0.0494 0.0383 1

The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.22 and 5.23 respectively .
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TABLE 5.14 SUMMARY STATISTICS FOR CONTAMINATED DATA

Estimator

(i) Robust estimator of

(a)

(b)

(c)

(d)

(ii) MLE of

(a)

(b)

(e)

(d)

2

In

In a  _

u2

In a t

In a.

Bias

-0.0239

-0.0387

0.0582

-0.0845

-0.0512

-0.0579

0.5586

-0.4556

MSE

0.2519

0.1972

0.0798

0.1561

0.3983

0.1985

0.4115

5.1182

Bias MSE M

-0.0646 0.0570 5

The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.24 and 5.25 respectively .

Like the uncorrelated case , the bias of all the estimators of the regression 

coefficients are very small . For clean data , the mean square errors for the MLE of 

both the regression parameters are significantly smaller than those of the robust 

estimators . However , we note that the mean square error for the estimator of the 

second regression parameter ^  *s smaller than that of the first . This happens in 

both estimation procedures . The reason for this is that the range of the second 

explanatory variable is wider than that of the stationary one * The difference being
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more marked when there is correlation between the regressors . Contamination in a 

series will cause the transformed explanatory variables in the GLST procedure to 

become smaller . As seen earlier , in section 5.4.1 , a series from a stationary process 

is more affected by outliers than one from a random walk model . Hence , we see a 

much smaller mean square error for the MLE of the second regression parameter 

compared to the first . In fact , for this non—stationary exogenous variable , no 

significant improvement is made by replacing its MLE by a robust estimator at the 

contamination level of k =  50 . Although the mean square error for the MLE of the 

first regression coefficient is significantly bigger than that of the robust estimator at 

that level of contamination .

With correlation present between the two exogenous variables , estimation of 

the system becomes more difficult . We see this when the MLE of the 

hyperparameter lno^ starts to break down for clean data . Disregarding this 

particular case , the bias and mean square errors for the MLE of both the scale 

parameters are significantly smaller for clean data . In the presence of outliers , the 

bias and mean square error for the MLE of lnp^ are very much bigger than the 

summary statistics for the robust estimators and the MLE of lntr^ breaks down more 

often . Overall , we conclude that the robust procedure has an edge over the GLST 

procedure when there is contamination in the series .

5.4.5 Special configurations of outliers

As mentioned earlier in section 5.4.1 , the effect of outliers is smeared during 

the transformation process for removing autocorrelation in the disturbance term ^  . 

Hence , the GLST procedure is able to produce good estimates of the regression
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coefficients despite contamination . However , if outliers occur at the start or end of 

the series , a substantial improvement is made by the modified GLST procedure . 

This is illustrated in the following two simulations . We use the clean data generated 

from the system with two correlated explanatory variables , see section 5.4.4 . In the 

first simulation , we increase the first observation of each replication by a multiple of 

ten . That is , there is only one outlier occurring at the start of each series . In the 

second simulation , we contaminate the last observation instead . Again we increase 

the original data by a factor ten . Running the GLST procedure and its modified 

version on these two sets of replications gives rise to the following results .

TABLE 5.15 SUMMARY STATISTICS FOR CONTAMINATION AT FIRST
OBSERVATION

$  $
Estimator Bias MSE Bias MSE M

(i) Robust estimator of

(a) Sx 0.0078 0.2613

(b) S2 -0.0551 0.1797

(c) In a ( -0.1601 0.1570

(d) In <7 0.0197 0.0833

(ii) MLE of

(a) ^  -0.2016 0.9130

(b) S2 0.0097 0.1853

(c) In a £ -2.6566 45.2992 0.2684 0.9417 45

(d) In c  0.3584 8.4864 0.7044 1.5949 7
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The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.26 and 5.27 respectively .

The above table reveal a substantial improvement made by the robust GLST 

procedure in the estimation of the first regression coefficient 6^ . Both the bias and 

mean square error for the MLE of this parameter is significantly bigger than 

corresponding values from the robust procedure . Comparing with Table 14 , we find 

that the MLE is more affected by outliers here . Like before , there is no significant 

difference in the two estimators for the second regression coefficient 6^ • Since the 

outlier is at the start of the series , it will appear as a single outlying point in the 

differenced series . This will distort the OLS estimate of the regression parameters 

which are used as the initial estimates of the iteration procedure . The sampling 

distributions in figures 5.27c and 5.27d show that ML estimation of the 

hyperparameters breaks down for this type of contamination . On other hand , the 

M—estimators of scale do not break down and perform w ell.
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TABLE 5.16 SUMMARY STATISTICS FOR CONTAMINATION AT LAST
OBSERVATION

*  $
Estimator Bias MSE Bias MSE M

(i) Robust estimator of

(a) Sx 0.0009 0.2669

(b) 62 —0.0522 0.1926

(c) In a -0.0544 0.0866

(d) In a  -0.1241 0.1129

(ii) MLE of

(a) 6X 4.5190 28.5553

(b) S2 -0.8650 7.8185

(c) ln<r6 -5.9366 104.1166 11.112 280.432 102

(d) In 0.9934 19.4723 2.0734 6.1614 14

The sampling distributions of the robust estimators and the MLEs are found in 

figures 5.28 and 5.29 respectively .

From the above table , we can easily see the edge which the modified 

procedure has over the GLST procedure . All the summary statistics for the MLE of 

the regression coefficients are significantly bigger than those for the robust 

estimators. Like the previous simulation , contamination at the end of the series will 

upset the initial estimate used for the iteration process . Besides , the outlier at the 

last observation will only affect the last innovation from the Kalman filter . Thus , 

there is no smearing effect in this case .



Regressors in time series [ch 5. pg.261]

ML estimation of the hyperparameters is also very unsatisfactory here . For 

the scale parameter In <rf , more than 50% of the cases broke down . The other scale 

parameter for the transition equation In a  is also badly estimated by the GLST 

procedure . The sampling distributions for the M—estimators of scale , see figures 

5.28c and 5.28d , show that they do not break down . According to their summary 

statistics , they perform rather well in the estimation of the hyperparameters . 

Therefore , we conclude that the modified procedure produces more robust estimates 

of the parameters than the GLST procedure . This is especially so when the outliers 

appear at the start or end of the series .

5.5 An application to real data

In this section , we consider the application of the robust GLST procedure on 

a real data set . The latter is that of Durbin and Watson (1951) on the annual 

consumption of spirits spanning 1870 to 1938 , i.e. , there are 69 observations . The 

variables are log consumption of spirits per head (y) , log real income per head (x^) 

and log relative price of spirits (xj) . This data set has been analysed by Ansley and 

Kohn (1989) . They did not use an iterative procedure for their estimation of the 

parameters in the model . Instead , both the scale and the regression parameters are 

estimated together using a concentrated likelihood function , see Ansley and Kohn 

(1985) . Only the first 60 observations were used in their analysis and the estimates 

for the regression coefficients with their standard deviation are 

6X =  0.69 (0.13)

62 =  -0.97 (0.07)
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Suppose we run the GLST procedure on the first 60 observations of the data 

set . We obtain the following similar estimates 

Sx =  0.65 (0.15)

S2 =  -0.92 (0.08)
2 2The hyperparameters , and or , are estimated as 1.53 and 1.71 respectively .

Figures 5.30a to 5.30c show the regression plot for eachexogenous variable , namely ,
*  *  * *  

yt against and yt against x ^  as well as a plot of one explanatory variable

against the other . The diagrams suggest that there are leverage and influential

points in the transformed data set .

In Ansley and Kohn (1989) , a measure of influence for the standard regression 

model , see section 5.3.3 , is generalised for signal plus noise models . Hence , this 

measure of influence can be used on the model given in equation (5.1.1) . In the 

paper , observations 46 to 50 were identified as influential and were discarded during 

the re—estimation of the parameters . The new estimates are 

\  =  0.6 (0.13)

62 =  -0.53 (0.12)

By removing the same observations 46 to 50 from the data set and using the GLST 

procedure , we obtain these estimates 

\  =  0.49 (0.16)

62 =  -0.77 (0.07)

Regression plots for the truncated data set are found in figures 5.31a and 5.31b .

Comparing with figures 5.30a and 5.30b , the first two diagrams have a smaller range
♦

on the vertical axis . This means that the range of the transformed variable yt is

smaller after trimming the data set . However , some outlying points still appear in

the p lo ts .
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Application of the robustified GLST procedure on the original data set gives 

rise to the following estimates 

=  0.52 (0.14)

62 =  -0.73 (0.10)
2 2The hyperparameters , and cr  ̂ , are estimated as 1.42 and 1.48 respectively . 

During the estimation process , 7 observations are discarded because they are either 

identified as outlying or influential . They are observations 6,40,46,47,49,53 and 58 . 

Corresponding regression plots are found in figures 5.32a to 5.32c . We notice from 

these plots that all the transformed variables have smaller range and there are no 

apparent influential or outlying points.
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Explanatory variable from a AR(1) process

(a) Midpoint Count
-0.4 2 **
- 0.2 5 *****

0.0 8 ********
0.2 14 **************
0.4 19 *******************
0.6 25 *************************
0.8 22 **********************
1.0 26 **************************
1.2 21 *********************
1.4 24 ************************
1.6 14 **************
1.8 13 *************
2.0 4 ****
2.2 3 ***

Each * represents 2 observations 

(b) Midpoint Count
- 1.2 1 *
- 1.0 2 *
- 0.8 0
- 0.6 3 **
-0.4 8 ****
- 0.2 8 ****

0.0 20 **********
0.2 58 *****************************
0.4 74 *************************************
0.6 25 *************
0.8 1 *

Each * represents 2 observations 

(c) Midpoint Count
- 0.8 1 *
- 0.6 2 *
-0.4 6 ***
- 0.2 9 *****

0.0 26 *************
0.2 49 *************************
0.4 59 ******************************
0.6 39 ********************
0.8 9 *****

Figure 5.1 Sampling distributions for robust estimator of (a) 5 ,
(bj In a( and (c) In a for clean data
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(a) Midpoint Count
- 0.2 1 *

0.0 4 ****
0.2 5 *****
0.4 22 **********************
0.6 23 ***********************
0.8 36 ************************************
1.0 36 ************************************
1.2 36 ************************************
1.4 15 ***************
1.6 11 ***********
1.8 7 *******
2.0 4 ****

Each * represents 5 observations 

(b) Midpoint Count
- 0.2 6 **

0.0 16 ****
0.2 57 ************
0.4 107 **********************
0.6 14 ***

Each * represents 2 observations 

(c) Midpoint Count
- 0.6 1 *
-0.4 0
- 0.2 5 ***

0.0 13 *******
0.2 61 *******************************
0.4 78 ***************************************
0.6 39 ********************
0.8 3 **

Figure 5.2 Sampling distributions for MLE of (a) 6 ,(b) In <r£ and
(c) In a for clean data
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(a) Midpoint Count
-0.4 1 *
- 0.2 5 *****

0.0 5 *****
0.2 20 ********************
0.4 21 *********************
0.6 22 **********************
0.8 23 ***********************
1.0 23 ***********************
1.2 26 **************************
1.4 23 ***********************
1.6 11 ***********
1.8 11 ***********
2.0 5 *****
2.2 3 ***
2.4 1 *

Each * represents 2 observations 

(b) Midpoint Count
- 0.8 1 *
- 0.6 2 *
-0.4 5 ***
- 0.2 10 *****

0.0 13 *******
0.2 29 ***************
0.4 63 ********************************
0.6 59 ******************************
0.8 18 *********

(c) Midpoint Count
- 1.2 1 *
- 1.0 1 *
- 0.8 2 **
- 0.6 2 **
-0.4 6 ******
- 0.2 4 ****

0.0 16 ****************
0.2 44 ********************************************
0.4 49 *************************************************
0.6 41 *****************************************
0.8 32 ********************************
1.0 2 **

Figure 5.3 Sampling distributions for robust estimator of (a) 6 ,
(bj In crf and (c) In for contaminated data
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3 observations above the last dass 

(a) Midpoint Count
- 1.2 1 ♦
- 1.0 1 *
- 0.8 1 *
- 0.6 1 *
-0.4 6 ******
- 0.2 6 ******

0.0 8 ********
0.2 13 *************
0.4 17 *****************
0.6 18 ******************
0.8 20 ********************
1.0 30 ******************************
1.2 19 *******************
1.4 16 ****************
1.6 15 ***************
1.8 13 *************
2.0 6 ******
2.2 4 ****
2.4 1 *
2.6 1 *

(b) Midpoint Count
0.0 1 *
0.2 0
0.4 15 ****************
0.6 21 *********************
0.8 29 *****************************
1.0 37 *************************************
1.2 34 **********************************
1.4 30 ******************************
1.6 22 ****************************
1.8 10 **********
2.0 1 *

Each * represents 2 observations 
1 observation below the first dass

(c) Midpoint Count
- 0.8 2 ♦
- 0.6 0
-0 .4 3 **
- 0.2 7 ****

0.0 25 ************
0.2 57 *****************************
0.4 61 *******************************
0.6 37 *******************
0.8 7 ****

Figure 5.4 Sampling distributions for
(c) In or for contaminated data
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Explanatory variable from a random walk model

Each * represents 2 observations

(a) Midpoint Count 
-0 .4  4 **

0.0 18 *********
0 4 33 *****************
0 8 44 **********************
1.2 57 *****************************
1.6 30 ***************
2 0 13 *******
2̂ 4 0
2.8 1 *

Each * represents 2 observations

(b) Midpoint Count
- 1.2 1 *
- 1.0 2 *
—0.8 0
- 0.6 2 *
-0.4 8 ****
- 0.2 9 *****

0.0 18 *********
0.2 55 ****************************
0.4 70 ***********************************
0.6 34 *****************
0.8 10 *****

Each * represents 2 observations 

(c) Midpoint Count
- 0.8 1 *
- 0.6 3 **
-0.4 7 ****
- 0.2 9 *****

0.0 34 *****************
0.2 46 ***********************
0.4 58 *****************************
0.6 32 ****************
0.8 10 *****

Figure 5.5 Sampling distributions for robust estimators of (a) 6 ,
(b j In a£ and (c) In a for clean data
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Each * represents 2 observations

(a) Midpoint Count 
0.0 7 ****
0 4 31 ****************
0.8 73 *************************************
1 2 58 *****************************
1.6 27 *******************
2.0 4 **

Each * represents 5 observations

(b) Midpoint Count 
-0.2 4 *

0.0 18 ****
0.2 52 ***********
0.4 108 **********************
o!6 18 ****

Each * represents 2 observations 

(c) Midpoint Count
- 0.6 1 *
-0.4 0
- 0.2 4 **

0.0 19 **********
0.2 58 *****************************
0.4 81 *****************************************
0.6 35 *************
0.8 2 *

Figure 5.6 Sampling distributions for MLE of (a) 6 ,(b) In
(c) In for clean data
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(a) Midpoint Count
—0.2 5 *****

0.0 11 ***********
0.2 11 ***********
0.4 19 *******************
0.6 20 ********************
0.8 31 *******************************
1.0 28 ****************************
1.2 18 ******************
1.4 22 **********************
1.6 12 ************
1.8 17 *****************
2.0 3 ***
2.2 2 **
2.4 1 *

Each * represents 2 observations 

(b) Midpoint Count
- 0.8 1 *
- 0.6 6 ***
-0.4 3 **
- 0.2 3 **

0.0 16 ********
0.2 32 ****************
0.4 62 *******************************
0.6 62 *******************************
0.8 15 ********

(c) Midpoint Count
- 1.0 1 *
- 0.8 1 *
- 0.6 3 ***
-0.4 5 *****
- 0.2 9 *********
- 0.0 20 ********************

0.2 42 ******************************************
0.4 45 *********************************************
0.6 43 *******************************************
0.8 29 *****************************
1.0 2 **

Figure 5.7 Sampling distributions for robust estimator of (a) 8 ,
(b j In a^ and (c) In for contaminated data
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(a) Midpoint Count
- 0.6 2 **
-0.4 6 ******
- 0.2 3 ***

0.0 11 ***********
0.2 11 ***********
0.4 13 *************
0.6 24 ************************
0.8 27 ***************************
1.0 19 *******************
1.2 20 ********************
1.4 26 **************************
1.6 17 *****************
1.8 10 **********
2.0 6 ******
2.2 3 ***
2.4 0
2.6 1 *
2.8 0
3.0 1 *

(b) Midpoint Count
0.2 1 *
0.4 12 ************
0.6 22 **********************
0.8 31 *******************************
1.0 36 ************************************
1.2 35 ***********************************
1.4 30 ******************************
1.6 22 **********************
1.8 10 **********
2.0 1 *

Each * represents 2 observations 
5 observations below the first class

(a) Midpoint Count
- 0.8 1 *
- 0.6 2 *
-0.4 3 **
- 0.2 11 ******

0.0 24 ************
0.2 51 **************************
0.4 69 ***********************************
0.6 28 **************
0.8 6 ***

Figure 5.8 Sampling distributions for MLE of (a) 6 ,(b) In a and
(c) In <r for contaminated data
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Explanatory variable from a random walk pins drift model

(a) Midpoint Count
-0.4 1 *
- 0.2 8 ********

0.0 8 ********
0.2 10 **********
0.4 17 *****************
0.6 19 *******************
0.8 30 ******************************
1.0 25 *************************
1.2 25 *************************
1.4 25 *************************
1.6 17 *****************
1.8 5 *****
2.0 6 ******
2.2 3 ***
2.4 1 *

Each * represents 2 observations 

(b) Midpoint Count
- 1.2 1 *
- 1.0 1 *
- 0.8 1 *
- 0.6 2 *
-0.4 6 ***
- 0.2 11 ******

0.0 19 **********
0.2 56 ****************************
0.4 73 *************************************
0.6 28 **************
0.8 2 *

Each * represents 2 observations 

(c) Midpoint Count
- 0.8 1 *
- 0.6 3 **
-0.4 6 ***
- 0.2 9 *****

0.0 32 ****************
0.2 49 *************************
0.4 58 *****************************
0.6 32 ****************
0.8 10 *****

Figure 5.9 Sampling distributions for robust estimator of (a) 6 ,
(bj In oc and (c) In o for clean data
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(a) Midpoint Count
0.0 3 ***
0.2 6 ******
0.4 23 ***********************
0.6 23 ***********************
0.8 27 ***************************
1.0 43 *******************************************
1.2 34 **********************************
1.4 18 ******************
1.6 16 ****************
1.8 6 ******
2.0 1 *

Each * represents 5 observations 

(b) Midpoint Count
—0.2 4 *

0.0 18 ****
0.2 53 ***********
0.4 108 **********************
0.6 17 ****

Each * represents 2 observations 

(c) Midpoint Count
- 0.6 1 *
-0.4 0
- 0.2 5 ***

0.0 16 ********
0.2 60 ******************************
0.4 82 *****************************************
0.6 34 *****************
0.8 2 *

Figure 5.10 Sampling distributions for MLE of (a) 6 ,(b) In and
(c) In a for clean data
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(a) Midpoint Count
—0.6 2 **
-0.4 1 *
- 0.2 3 ***

0.0 11 ***********
0.2 13 *************
0.4 14 **************
0.6 16 ****************
0.8 30 ******************************
1.0 35 ***********************************
1.2 23 ***********************
1.4 23 ***********************
1.6 7 *******
1.8 12 ************
2.0 7 *******
2.2 2 **
2.4 1 *

Each * represents 2 observations 

(b) Midpoint Count
- 1.0 2 *
- 0.8 0
- 0.6 6 ***
-0.4 2 *
- 0.2 2 *

0.0 14 *******
0.2 30 ***************
0.4 66 *********************************
0.6 58 *****************************
0.8 17 *********
1.0 1 *
1.2 2 *

Each * represents 2 observations 

(c) Midpoint Count
- 2.0 1 *
- 1.6 0
- 1.2 3 **
- 0.8 3 **
-0.4 10 *****

0.0 45 ***********************
0.4 84 ******************************************
0.8 53 ***************************
1.2 1 *

Figure 5.11 Sampling distributions for robust estimator of (a) 
(bT In <7 and (c) In o* for contaminated data

C '  '  7 /
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(a) Midpoint Count
- 0.8 1 *
- 0.6 1 *
-0.4 3 ***
- 0.2 4 ****

0.0 14 **************
0.2 10 **********
0.4 17 *****************
0.6 18 ******************
0.8 29 *****************************
1.0 20 ********************
1.2 21 *********************
1.4 30 ******************************
1.6 8 ********
1.8 18 ******************
2.0 4 ****
2.2 1 *
2.4 1 *

(b) Midpoint Count
0.2 1 *
0.4 12 ************
0.6 22 **********************
0.8 29 *****************************
1.0 38 **************************************
1.2 35 ***********************************
1.4 30 ******************************
1.6 22 **********************
1.8 10 **********
2.0 1 *

Each * represents 5 observations 
1 observation below the first class

(c) Midpoint Count
- 1.2 1 *
- 0.8 1 *
-0.4 11 ***

0.0 52 ***********
0.4 119 ************************
0.8 15 ***

Figure 5.12 Sampling distributions for MLE of (a) 6 ,(b) In and
(c) In <7^ for contaminated data
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Explanatory variable being a deterministic trend 

(a) Midpoint Count
0.5 2 **
0.6 3 ***
0.7 11 ***********
0.8 23 ***********************
0.9 31 *******************************
1.0 50 **************************************************
1.1 36 **********************************
1.2 26 **************************
1.3 13 *************
1.4 4 ****
1.5 1 *

Each * represents 2 observations 

(b) Midpoint Count
- 1.0 1 *
- 0.8 2 *
- 0.6 2 *
-0.4 6 ***
- 0.2 7 ****

0.0 22 ***********
0.2 51 **************************
0.4 67 **********************************
0.6 40 ********************
0.8 2 *

Each * represents 2 observations 

(c) Midpoint Count
- 1.0 1 *
- 0.8 1 *
- 0.6 1 *
-0.4 8 ****
- 0.2 11 ******

0.0 31 ****************
0.2 58 *****************************
0.4 47 ************************
0.6 34 *****************
0.8 8 ****

Figure 5.14 Sampling distributions for robust estimator of (a) 6 ,
(b) In and (c) In <r for clean data



Regressors in time series [ch 5. pg.277]

Each * represents 2 observations 

(a) Midpoint Count
0.6 2 *
o.r 6 ***
0.8 20 **********
0.9 40 ********************
1.0 63 ********************************
1.1 36 ******************
1.2 24 ************
1.3 9 *****

Each * represents 2 observations 

(b) Midpoint Count
-0.4 1 *
- 0.2 2 *

0.0 10 *****
0.2 63 ********************************
0.4 100 **************************************************
0.6 24 ************

Each * represents 2 observations 
1 observation below the first class

(c) Midpoint Count
- 0.6 2 *
-0.4 0
- 0.2 6 ***

0.0 17 *********
0.2 62 *******************************
0.4 85 *******************************************
0.6 25 *************
0.8 2 *

Figure 5.15 Sampling distributions for MLE of (a) 6 ,(b) In o and
(c) In for clean data



Regressors in time series [ch 5. pg.278]

(a) Midpoint Count
0.3 1 *
0.4 0
0.5 2 **
0.6 2 **
0.7 7
0.8 23 3fca|e3|;3|ca|c3|e4c3|c3|c3|c3|e3|c3|ca|;3|c3|c4c3|e3|c3|e3|e3)c3|c
0.9 38 **************************************
1.0 48 ************************************************
1.1 39 *************************************
1.2 23 ***********************
1.3 9 *********
1.4 8 ********

Each * represents 2 observations 

(b) Midpoint Count
- 0.8 2 *
- 0.6 1 *
-0.4 7 ****
- 0.2 6 ***

0.0 14 *******
0.2 33 ****************
0.4 62 *******************************
0.6 49 *************************
0.8 22 ***********
1.0 2 *
1.2 2 *

Each * represents 2 observations 

(c) Midpoint Count
-1.4 3 ***
- 1.2 0
- 1.0 2 **
- 0.8 1 *
- 0.6 4 ****
-0.4 7 *******
- 0.2 9 *********

0.0 22 **********************
0.2 32 ********************************
0.4 40 ****************************************
0.6 45 *********************************************
0.8 27 ***************************
1.0 8 ********

Figure 5.16 Sampling distributions for robust estimator of (a) 6 , 
(bj In and (c) In a for contaminated data



Regressors in time series [ch 5. pg.279]

Each * represents 2 observations 

(a) Midpoint Count
0.6 1 *
0.7 7 ****
0.8 22 ***********
0.9 45 ***********************
1.0 54 ***************************
1.1 37 *******************
1.2 26 *************
1.3 8 ****

(b) Midpoint Count
0.2 4 ****
0.4 7 ******
0.6 12 ************
0.8 27 ***************************
1.0 37 *************************************
1.2 43 *******************************************
1.4 36 ************************************
1.6 25 *************************
1.8 9 *********

Each * represents 2 observations 
8 observations below the first class

(c) Midpoint Count
- 1.2 1 *
- 1.0 0
- 0.8 1 *
- 0.6 3 **
-0.4 2 *
- 0.2 12 ******

0.0 28 **************
0.2 52 **************************
0.4 59 ******************************
0.6 28 **************
0.8 5 ***
1.0 1 *

Figure 5.17 Sampling distributions for MLE of (a) 8 ,(b) In and
(c) In (Ty for contaminated data



Regressors in time series [ch 5. pg.280]

Two uncorrelated explanatory variables : 
from AR(1) process and from a random walk model

(a) Midpoint Count
-0.4 3 ***
- 0.2 0

0.0 6 ******
0.2 10 **********
0.4 10 **********
0.6 22 **********************
0.8 33 *********************************
1.0 30 ******************************
1.2 25 *************************
1.4 25 *************************
1.6 16 ****************
1.8 10 **********
2.0 5 *****
2.2 4 ****
2.4 1 *

(b) Midpoint Count
- 0.6 1 *
-0.4 0
- 0.2 3 ***

0.0 6 ******
0.2 12 ************
0.4 19 *******************
0.6 31 *******************************
0.8 25 *************************
1.0 22 **********************
1.2 34 **********************************
1.4 18 ******************
1.6 15 ***************
1.8 8 ********
2.0 3 ***
2.2 2 **
2.4 1 *



Regressors in time series [ch 5. pg.281]

(a) Midpoint Count
- 1.0 2 **
-0.9 0
- 0.8 1 *
-0.7 2 **
- 0.6 1 *
-0.5 0
-0.4 1 *
-0.3 4 ****
- 0.2 6 ******
- 0.1 8 ********

0.0 8 ********
0.1 16 ****************
0.2 24 ************************
0.3 44 ********************************************
0.4 33 *********************************
0.5 32 ********************************
0.6 14 **************
0.7 3 ***
0.8 1 *

Each * represents 2 observations 

(d) Midpoint Count
- 0.8 2 *
- 0.6 2 *
-0.4 8 ****
- 0.2 10 *****

0.0 37 *****************************
0.2 49 *************************
0.4 54 ***************************
0.6 30 ***************
0.8 8 ****

Figure 5.18 Sampling distributions for robust estimator of (a) ^  ,
(b) ^  > (c) In Qt and (d) In a  for dean data



Regressors in time series [ch 5. pg.282]

(a) Midpoint Count 
*2.0 1

0.0 1
0.2 5
0.4 17
0.6 23
0.8 42
1.0 36
1.2 35
1.4 16
1.6 15
1.8 6
2.0 3

*
*****
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * *
******************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * *
* * *

(b) Midpoint Count
0.0 4 ****
0.2 8 ********
0.4 23 ***********************
0.6 20 ********************
0.8 31 *******************************
1.0 37 *************************************
1.2 30 ******************************
1.4 22 **********************
1.6 19 *******************
1.8 4 ****
2.0 0
2.2 1 *
2.4 1 *

Each * represents 2 observations 

($) Midpoint Count
—0.2 1 *
- 0.1 6 ***

0.0 5 ***
0.1 16 ********
0.2 26 *************
0.3 47 ************************
0.4 56 ****************************
0.5 33 *****************
0.6 9 *****
0.7 1 *



Regressors in time series [ch 5. pg.283]

Each * represents 2 observations 

(d) Midpoint Count
-0.6 1 *
-0.4 0 r .

-0.2 12 ******
0.0 18 *********
0.2 68 **********************************
0.4 77 ***************************************
0.6 21 ***********
0.8 3 **

Figure 5.19 Sampling distributions for MLE estimator of (a) ^  ,
(b) ^  > (c) la and (d) In a  for clean data

Each * represents 2 observations 

(a) Midpoint Count
-0.5 4 **

0.0 10 *****
0.5 43 **********************
1.0 82 *****************************************
1.5 46 ***********************
2.0 14 *******
2.5 1 *

(b) Midpoint Count
-0.4 2 **
-0.2 4 ****

0.0 6 ******
0.2 16 ****************
0.4 15 ***************
0.6 27 ***************************
0.8 29 *****************************
1.0 29 *****************************
1.2 26 **************************
1.4 15 ***************
1.6 14 **************
1.8 12 ************
2.0 4 ****
2.2 1 *



Regressors in time series [ch 5. pg.284]

Each * represents 2 observations 

(c) Midpoint Count
-1.0 1 *
—0.8 2 *
-0.6 0
-0.4 1 *
-0.2 9 *****

0.0 14 *******
0.2 34 *****************
0.4 56 ****************************
0.6 68 **********************************
0.8 12 ******
1.0 2 *
1.2 1 *

Each * represents 2 observations 

(d) Midpoint Count
-1.6 1 *
-1.2 0
-0.8 8 ****
—0.4 16 ********

0.0 53 ***************************
0.4 85 *******************************************
0.8 36 ******************
1.2 1 *

Figure 5.20 Sampling distributions for robust estimator of (a) ^  ,
(b) ^  > (c) ln &6 and (d) In for contaminated data



Regressors in time series

Each * represents two observations 

(a) Midpoint Count
-1.5 1 *
-1.0 1 *
-0.5 6 ***

0.0 14 *******
0.5 49 *************************
1.0 72 ************************************
1.5 38 *******************
2.0 12 ******
2.5 6 ***
3.0 1 ****

(b) Midpoint Count
-0.6 2 **
-0.4 1 *
-0.2 7 *******

0.0 10 **********
0.2 15 ***************
0.4 24 ************************
0.6 14 **************
0.8 25 *************************
1.0 27 ***************************
1.2 21 *********************
1.4 13 *************
1.6 14 **************
1.8 15 ***************
2.0 5 *****
2.2 4 ****
2.4 2 **
2.6 1 *

Each * represents 2 observations 

(c) Midpoint Count
0.0 2 *
0.2 6 ***
0.4 16 ********
0.6 31 ****************
0.8 37 *******************
1.0 52 **************************
1.2 41 *********************
1.4 13 *******
1.6 2 *



Regressors in time series [ch 5. pg.286]

Each * represents 5 observations 

(d) Midpoint Count
-1.6 1 *
-1.2 0
-0.8 0
-0.4 13 ***

0.0 62 *************
0.4 107 **********************
0.8 17 ****

Figure 5.21 Sampling distributions for MLE of (a) 6  ̂ , (b) ^  >
(c) In <7c and (d) In for contaminated data

Two correlated explanatory variables

(a) Midpoint Count
-0.6 1 *
-0.4 2 **
-0.2 1 *

0.0 6 ******
0.2 10 **********
0.4 12 ************
0.6 19 *******************
0.8 26 **************************
1.0 34 **********************************
1.2 31 *******************************
1.4 23 ***********************
1.6 19 *******************
1.8 6 ******
2.0 5 *****
2.2 4 ****
2.4 1 *

(b) Midpoint Count
-0.2 2 **

0.0 5 *****
0.2 6 ******
0.4 15 ***************
0.6 31 *******************************
0.8 36 ************************************
1.0 33 *********************************
1.2 31 *******************************
1.4 24 ************************
1.6 11 ***********
1.8 4 ****
2.0 1 *
2.2 1 *



Regressors in time series [ch 5. pg.287]

Each * represents 2 observations 

(c) Midpoint Count
- 1.0 2 *
- 0.8 1 *
- 0.6 2 *
-0.4 5 ***
- 0.2 13 *******

0.0 13 *******
0.2 54 ***************************
0.4 66 *********************************
0.6 42 *********************
0.8 2 *

Each * represents 2 observations 

(d) Midpoint Count
- 1.0 2 *
- 0.8 1 *
- 0.6 3 **
-0.4 6 ***
- 0.2 15 ********

0.0 34 ***************************
0.2 60 ******************************
0.4 47 ************************
0.6 23 ************
0.8 9 *****

Figure 5.22 Sampling distributions for robust estimator of (a) 6^ ,
(b) 52 , (c) In a e and (d) In a  for clean data

(a) Midpoint Count
- 2.0 1 *

0.0 0
0.2 9 *********
0.4 10 **********
0.6 33 *********************************
0.8 35 ***********************************
1.0 43 *******************************************
1.2 25 *************************
1.4 23 ***********************
1.6 12 ************
1.8 6 ******
2.0 3 ***



Regressors in time series [ch 5. pg.288]

Each * represents 2 observations 

(b) Midpoint Count
0.2 10 *****
0.4 9 ******
0.6 24 ************
0.8 33 *****************
1.0 57 *****************************
1.2 33 *****************
1.4 26 *************
1.6 5 ***
1.8 3 **

Each * represents 5 observations

(c) Midpoint Count 
—0.4 1 *
- 0.2 2 *

0.0 15 ***
0 2 53 ***********
0 4 104 ********************* 
0̂ 6 24 *****
0.8 1 *

Each * represents 2 observations 
1 observation below the first class

(d) Midpoint Count 
-0.4 1 *

0.2 9 *****
0 0 22 * * * * * * * * * * *
0 2 68 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0 4 77 ***************************************
0 6 19 **********
o!8 3 **

Figure 5.23 Sampling distributions for MLE estimator of (a) ^  ,
(b) > (c) to &€ and (d) to a for clean data



Regressors in time series [ch 5. pp.289]

(a) Midpoint Count 
-  * * *-0 .4 3

- 0.2 1
0.0 4
0.2 12
0.4 14
0.6 23
0.8 23
1.0 40
1.2 34
1.4 18
1.6 12
1.8 8
2.0 7
2.2 0
2.4 1

*
* * * *
************
**************
* * * * * * * * * * * * * * * * * * * * * * *  

* * * * * * * * * * * * * * * * * * * * * * *  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

* * * 3 # C 3 | C * * * * 4 C * * * * * * * *  * * * * * * * * * * * * * * * *  

* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * *

* * * * * * * *
* * * * * * *

(b) Midpoint Count
0.0 4 ****
0.2 13 *************
0.4 18 ******************
0.6 21 *********************
0.8 33 *********************************
1.0 36 ************************************
1.2 23 ***********************
1.4 30 ******************************
1.6 16 ****************
1.8 4 ****
2.0 2 **

Each * represents 2 observations 

(c) Midpoint Count
- 1.0 1 *
- 0.8 0
- 0.6 0
-0.4 3 **
- 0.2 5 ***

0.0 14 *******
0.2 34 *****************
0.4 61 *******************************
0.6 66 *********************************
0.8 14 *******
1.0 2 *



Regressors in time series [ch 5. pg.290]

(d) Midpoint Count
- 1.2 1 *
- 1.0 1 *
- 0.8 1 *
- 0.6 7 *******
-0.4 6 ******
- 0.2 15 ***************

0.0 24 ************************
0.2 47 ***********************************************
0.4 41 *****************************************
0.6 36 ************************************
0.8 15 ***************
1.0 6 ******

Figure 5.24 Sampling distributions for robust estimator of (a) 6^

(b) ^  > (c) ln <re and (d) In a for contaminated data

(a) Midpoint Count
- 1.2 1 *
- 1.0 2 **
- 0.8 0
- 0.6 3 ***
-0.4 2 **
- 0.2 3 ***

0.0 6 ******
0.2 8 ********
0.4 15 ***************
0.6 16 ****************
0.8 28 ****************************
1.0 38 **************************************
1.2 22 **********************
1.4 25 *************************
1.6 14 **************
1.8 6 ******
2.0 4 ****
2.2 1 *
2.4 5 *****
2.4 1 *



Regressors in time series [ch 5. pg.291]

(b) Midpoint Count
-0.4 1 *
- 0.2 1 *

0.0 4 ****
0.2 12 ************
0.4 14 **************
0.6 23 ***********************
0.8 37 *************************************
1.0 38 **************************************
1.2 31 *******************************
1.4 17 *****************
1.6 12 ************
1.8 6 ******
2.0 4 ****

Each * represents 2 observations 

(c) Midpoint Count
0.0 1 *
0.2 7 ****
0.4 16 ********
0.6 30 ***************
0.8 35 ******************
1.0 51 **************************
1.2 43 **********************
1.4 14 *******
1.6 3 **

Each * represents 2 observations 
5 observations below the first class

(d) Midpoint Count
- 0.8 1 *
- 0.6 2 *
-0.4 6 ***
- 0.2 12 ******

0.0 29 ***************
0.2 54 ***************************
0.4 63 ********************************
0.6 23 ************
0.8 5 ***

Figure 5.25 Sampling distributions for MLE of (a) ^  , (b) 6̂  ,
(c) In a £ and (d) In a for contaminated data



Regressors in time series [ch 5. pg.292]

Special configurations of outliers

(a) Midpoint Count
-0.4 1 *
- 0.2 1 *

0.0 8 ********
0.2 6 ******
0.4 17 *****************
0.6 23 ***********************
0.8 21 *********************
1.0 34 **********************************
1.2 35 ***********************************
1.4 20 ********************
1.6 15 ***************
1.8 11 ***********
2.0 5 *****
2.2 3 ***

Midpoint Count
- 0.2 2 **

0.0 4 **
0.2 7 *******
0.4 16 ****************
0.6 26 **************************
0.8 37 ***********************************5
1.0 33 *********************************
1.2 29 *****************************
1.4 30 ******************************
1.6 10 **********
1.8 5 *****
2.0 1 *

Each * represents 2 observations 

(c) Midpoint Count
- 1.8 1 *
- 1.6 0
-1.4 0
- 1.2 3 **
- 1.0 0
- 0.8 2 *
- 0.6 4 **
-0.4 3 **
- 0.2 17 *********

0.0 29 ***************
0.2 49 *************************
0.4 64 ********************************
0.6 26 *************
0.8 2 *



Regressors in time series [ch 5. pg.293]

Each * represents 2 observations 

(d) Midpoint Count
- 1.0 1 *
- 0.8 0
- 0.6 1 *
-0.4 3 **
- 0.2 7 ****

0.0 19 **********
0.2 46 ***********************
0.4 57 ****************************
0.6 44 *********************
0.8 21 ***********
1.0 1 *

Figure 5.26 Sampling distributions for robust estimator of (a) 6^ ,
(b) ^  > (c) to a € and (d) In a  for contamination at first observation

Each * represents 2 observations 

(a) Midpoint Count
-2.5 1 *
- 2.0 0
-1.5 4 **
- 1.0 6 ***
-0.5 14 *******

0.0 19 **********
0.5 44 **********************
1.0 54 ***************************
1.5 37 *******************
2.0 14 *******
2.5 2 *
3.0 2 *
3.5 2 *
4.0 1 *

(b) Midpoint Count
-0.4 1 *
- 0.2 1 *

0.0 3 ***
0.2 3 ***
0.4 12 ************
0.6 23 ***********************
0.8 27 ***************************
1.0 29 *****************************
1.2 37 *************************************
1.4 28 ****************************
1.6 12 ************
1.8 7 *******
2.0 1 *
2.2 1 *
2.4 1 *



Regressors in time series [ch 5. pg.294]

Each * represents 2 observations

(c) Midpoint Count*********************
*
*

-14.0 43
- 12.0 1
- 10.0 1
- 8.0 0
- 6.0 0
-4.0 0
- 2.0 0

0.0 88
2.0 67

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*********************************

Each * represents 5 observations 

(d) Midpoint Count
-14.0 7 **
- 12.0 0
- 10.0 0
- 8.0 0
- 6.0 0
—4.0 0
- 2.0 1 *

0.0 89 *****************
2.0 102 ********************
4.0 1 *

Figure 5.27 Sampling distributions for MLE of (a) 6^ , (b) ^  ,
(c) In and (d) In for contamination at first observation

(a) Midpoint Count
-0.4 2 **
- 0.2 2 **

0.0 6 ******
0.2 9 *********
0.4 13 *************
0.6 17 *****************
0.8 34 **********************************
1.0 27 ***************************
1.2 32 ********************************
1.4 30 ******************************
1.6 14 **************
1.8 6 ******
2.0 4 ****
2.2 3 ***
2.4 1 *



Regressors in time series [ch 5. pg.295]

(b) Midpoint Count
-0.4 1 *
- 0.2 0

0.0 7 *******
0.2 7 *******
0.4 12 ************
0.6 27 ***************************
0.8 41 ****************************************
1.0 28 ****************************
1.2 31 *******************************
1.4 28 ****************************
1.6 12 ************
1.8 4 ****
2.0 1 *
2.2 1 *

Each * represents 2 observations 

(c) Midpoint Count
- 1.2 1
- 1.0 1
- 0.8 0
- 0.6 2
-0.4 5 ***
- 0.2 9 *****

0.0 15 ********
0.2 51 **************************
0.4 70 **********************************
0.6 44 **********************
0.8 2

Each * represents 2 observations 

(d) Midpoint Count
- 1.0 1 *
- 0.8 2 ♦
- 0.6 3 **
-0.4 5 ***
- 0.2 15 ********

0.0 35 ******************
0.2 51 **************************
0.4 47 ************************
0.6 31 ****************
0.8 10 *****

Figure 5.28 Sampling distributions for robust estimator of (a) 6̂
(b) ^  »(c) (re and (d) in a  for contamination at last observation



Regressors in time series [ch 5. pg.296]

Each * represents 2 observations 

(a) Midpoint Count
- 2.0 4 **

0.0 5 ***
2.0 27 **************
4.0 45 ***********************
6.0 65 *********************************
8.0 36 ******************

10.0 11 ******
12.0 4 **
14.0 3 **

(b) Midpoint Count
-5.0 1 *
—4.0 7 *******
-3.0 25 *************************
- 2.0 45 *********************************************
- 1.0 21 *********************

0.0 13 *************
1.0 21 *********************
2.0 20 ********************
3.0 20 ********************
4.0 16 ****************
5.0 7 *******
6.0 3 ***
7.0 1 *

Each * represents 2 observations

(c) Midpoint Count
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
*
* *

-14.0 97
- 12.0 2
- 10.0 3
- 8.0 0
- 6.0 0
-4.0 0
- 2.0 0

0.0 7
2.0 34
4.0 57

* * * *
*****************
* * * * * * * * * * * * * * * * * * * * * * * * * * * *



Regressors in time series [ch  5. p g .297]

Each * represents 2 observations

(d) Midpoint Count 
—14 0 14 *******
- 12^0 0
- 10.0 0

- 8.0 0
- 0.0 0
—4.0 0
- 2.0 0

0 0 20 * * * * * * * * * *
2 0 79 ***************************************
4 0 87 *******************************************

Figure 5.29 Sampling distributions for MLE of (a) ^  , (b) ^  >
(c) In and (d) In for contamination at last observation



Regressors in time series [ch 5. pg.298]

Regression plots from GLST procedure using whole data set
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Figure 5.30b Plot of y  ̂ against x^
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Regressors in time series [ch 5. pg.299]
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Figure 5.30c Plot of x ^  against x<^

Regression plots from GLST procedure using trimmed data set
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Figure 5.31a Plot of y t against x ^



Regressors in time senes [ch 5. P0.3OO]
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Figure 5.31b Plot of y t against x2t
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Figure 5.31c Plot of xJt against x2t
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Regression plots from robustified GLST procedure

*

* *
1 . 6 + *

-  *

I
— *  A  *  *  A

0 . 0  + * k *  z— * * * * * *  
-  * * * * * * * * *

*  *  *
*  * + *  

- 1 . 6 + *
* +  *

★ *
k

- 3 . 2  +
-  -  + -------------------------------------* -----------------------------------* -----------------------------------* ----------------------------------+  -  -

- 1 . 0 0  - 0 . 5 0  0 . 0 0  0 . 5 0  1 . 0 0
* *

Figure 5.32a Plot of y t against

*

— * *
1 . 6 + *

— *  *

-  *  *  *

★ *
- * a * 2 *

0 . 0 + * * 2 *
* * * * 2 2 . *

* A2 2 * **— * * *
* *  * *

- 1 . 6 + *
* * 

* *

- 3 . 2  +

- 1 . 2  0 . 0  1 . 2  2 . ^
* *

Figure 5.32b Plot of y t against x2t

*

* *
*

*  *

1 . 50

*

*

6



Regressors in time series [ch 5. pg.302]

- * * A
- a *
- 2 A

. 0  + A a A *
- *  A 2
— A * * A A
- * *  A *
- * 2 A A

.0  + A k-k A 3 A A

— A
- A 2 A
— A A
- A A

a o
i 

i 
+ * A

- 1 . 2  0 . 0 1 .  2 2 . 4  3 . 6
* *

Figure 5.32c Plot of against X2^



Bibliography [ PS-303]

Bibliography

Abraham,B. and Box,G.E.P. (1979)

"Bayesian Analysis of some Outlier Problem in Time Series"

Biometrika,66,2,229—236

Anderson,B.D.O. and Moore,J.D. (1979)

Optimal Filtering 

Englewood Cliffs: Prentice—Hall

Akaike,H. and Ishiguro,H. (1980)

"Trend Estimation with Missing Observations"

Ann. of the Inst, of Stat. Maths.,32,b,481—488

Alspach,D.L. & Sorenson,H.W. (1971)

"Recursive Bayesian Estimation using Gaussian Sums"

Automatica,vol. 6,465—479

Ansley,C.F. and Kohn,R. (1985)

"Efficient estimation and prediction in time series regression models" 

Biometrika,72,3,694—7

Ansley,C.F. and Kohn,R. (1989)

"A fast algorithm for signal extraction , influence and cross-validation in state 

space models"

Biometrika,76,1,66—79



Bibliography [ pff.304]

Atkinson,A.C. (1986)

Plots 4 Transformations and Regression — An introduction to Graphical Methods of 

Diagnostics Regression Analysis 

Oxford : Clarendon Press

Atkinson,A.C. (1986)

"Masking Unmasked"

Biomet rika,73,533—541

Barnett,V. and Lewis,T. (1977)

Outliers in Statistical Data 

New York : John Wiley publ.

Basawa,I.V. , Huggins,R.M. and Stuadte,R.G. (1985)

"Robust Test for Time Series with an Application to First-order Autoregressive 

Process"

Biometrika,72,559—571

Box,G.E.P. and Jenkins,G.M.M. (1976)

Time Series Analysis : forcasting and control 

Holden—day

Bruce,A.G. and Martin,R.D. (1989) 

"Leave—k—out diagnostics for time series" 

JRSS B,51,363-424



Bibliography [ v g .305]

Chu,K. (1973)

"Estimation and Decision for Linear Systems With Elliptical Random Processes" 

IEEE Trans. Auto. Control,vol AC—20,107—110

Cook,D. (1986)

"Assesment of Local Influence"

JRSS B,48,133-169

Cook,D. and Weisberg,S. (1982)

Residuals and Influence in Recession 

New York : Chapman anf Hall

Denby,L. and Martin,R.D. (1979)

"Robust Estimation on the First Order Autoregressive Parameter"

JASA,74,140-146

Dejongh,P.J. and Dewet,T. (1985)

"Trimmed mean and bounded influence estimators for the parameters of the AR(1) 

process"

Commun. Statist.—Theor. Meth.,14(6),1361—1375

Ershov,A.A. and Liptser,R.S. (1978)

"Robust Kalman Filter and Discrete Time"

Automation and Remote Control,360—369

Durbin an cl b/a^on., 6 , s ,  0 9 5 0

fer  scn d l <'.Orr<?labon ^  keast ?<jua rfs  regression  X i n

Biorryrfrikoi , 89 , -18



Bibliography [ pp.306]

Everitt,B.S. and Hand,D.J. (1981)

Finite Mixture Distributions 

New York : Chapman and Hall

Fox,A.J. (1972)

"Outliers in Time Series"

JRSS B,34,350-363

Gnanadesikan,R. (1977)

Methods for Statistical Data Analysis of Multivariate Observations 

New York : John Wiley

Guttman,I. and Pena,D. (1985)

Comment on "Dynamic Generalisation Linear Models and Bayesian Forcasting" by 

West,M. , Harrison,P.J. and Migon,H.S.

JASA,74,140-146

Hampel,F.E. (1971)

"A General Qualitative Definition of Robustness"

Ann. of Maths. Stats.,42,1887—1896

Hampel,F.R. (1974)

"The Influence Curve and Its Role in Robust Estimation"

JASA,69,383-393



Bibliography [ pg-307]

Hampel,F.R. , Ronchetti,E.M. , Rouseeuw,P.J. and Stahel,W.A. (1986)

Robust Statistics ; The Approach Based on Influence Functions 

John Wiley and Sons publ.

Harrison,P.J. and Stevens,C.F. (1976)

"Bayesian forcasting"

JRSS B,34,1-41

Harvey,A.C. (1981)

Time Series Models 

Philip Allan publ.

Harvey,A.C. (1982)

"Estimating Procedures for a Class of Univariate Time Series Models"

L.S.E. Econometrics Programme,Discussion Paper no. A28

Harvey,A.C. (1982)

"An Alternative Framework for Time Series Model Building and its Implications for 

Econometrics"

L.S.E. Econometrics Programme,Discussion Paper no. 32 

Harvey,A.C. (1989)

Forecasting . structural time series models and the Kalman filter 

Cambridge University Press



Bibliography [ 1^.308]

Harvey,A.C. and Durbin,J. (1985)

"The Effects of Seat Belt Legislation on British Road Casualties : A Case Study in 

Structural Time Series Modelling"

JRSS A,149,187-227

Harvey,A.C. and Phillips,G.D.A. (1979)

"Maximum likelihood estimation of regression models with autoregressive—moving 

average disturbances"

Biometrika,66,1,49—58

Harvey,A.C. and Peters,S. (1984)

"Estimating Procedures for Structural Time Series Models"

L.S.E. Econometrics Programme,Discussion Paper no. A44

Hoaglin , Mosteller and Tukey (1983)

Understanding Robust and Exploratory Data Analysis 

John Wiley & Sons publ.

Huber,P.J. (1964)

"Robust Estimation of a Location Parameter"

Ann. Math. Statist.,vol 35,1,73-101

Huber,P.J. (1972)

"The 1972 Wald Lecture—Robust Statistics:A Review"

Ann. Math. Statist.,vol 43,4,1041—1067



Bibliography [ P0.3O9]

Huber,P.J. (1973)

"Robust Regression:Aysmptotics,Conjectures and Monte Carlo"

The Ann. of Stats,1,799—821

Huber,P.J. (1977)

Robust Statistical Procedures 

Philadelphia: SIAM

Kitagawa,G. (1979)

"Robust Estimation Through the Modelling of Data Generation"

Research Memorandom,177,The Institute of Statistical Maths.,Toyko

Kitagawa,G. (1987)

"Non—Gaussian State Space Modelling of Nonstationary Time Series" (with 

discussion)

JASA,vol. 82,1032-1063

Koenker,R. and Bassett,G. (1978)

"Regression Quantiles"

Econometrica,46,1,33—49

Koenker,R. and D’Orey (1987)

"Computing Regression Quantiles"

Applied Statistics,36,3,383—393



Bibliography [ pg.310]

Kunsh,H. (1984)

"Infinitesimal Robustness for Autoregressive Processes"

Ann. of Stats,12,843—863

Ljung,L. (1978)

"Convergence Analysis of Parametric Identification Methods"

IEEE Trans. Aut. Contr.,vol AC—23,770—783

Martin,R.D. (1980)

"Robust Estimation In Autoregressive Models"

Directions in Time Series,228—254

Martin,R.D. & Masreliez,C.J. (1975)

"Robust Estimation via Stochastic Approximation"

IEEE Trans. Inform. Theory,vol IT—21,263—271

Martin,R.D. & Masreliez,C.J. (1977)

"Robust Bayesian Estimation for the Linear Model & Robustifying the Kalman 

Filter"

IEEE Trans. Auto. Control,vol AC—22,361—371

Martin,R.D. , Samorov,A. and Vandaele,W. (1983)

"Robust Methods for ARIMA Models"

Applied Time Series Analysis of Economic Data, 153—167



Bibliography [ V9- 3H]

Martin,R.D. and Yohai,V.J. (1985)

"Robustness in Time Series and Estimating ARIMA Models"

Handbook of Stats.,5,119—155

Martin,R.D. and Yohai,V.J. (1986)

"Influence Functional for Time Series"

Ann. of Stats.,14,781-855

Masreliez,C.J. (1975)

"Approximate Non—Gaussian Filtering with Linear State & Observation relation" 

IEEE Trans. Auto. Control,vol AC—20,107—110

Meinhold,R.J. and Singpurwalla,N.D. (1989)

"Robustification of Kalman filter models"

JASA,84,479-486

Ruppert,D. and Carroll,R.J. (1980)

"Trimmed least squares estimation in the linear model"

JASA,75,823-838

Stigler,S.M. (1977)

"Do Robust Estimators Work with Real Data?"

Ann. of Stats.,5,1055-1098



Bibliography [ PS-312]

Stoodley,D.C. & Mirinia,M. (1979)

"The Automatic Detection of Transients , Step Changes & Slope Changes in the 

Monitoring of Medical Time Series"

The Statistician,vol 28,163-170

Welsh,A.H. (1987)

"The trimmed mean in linear model"

The Ann. of Stats.,15,20-36

West,M. (1981)

"Robust Sequential Approximate Baysesian Estimation"

JRSS B,43,157-166


