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ABSTRACT

This thesis is concerned with applications in probability and statistics of 

approximation theorems for weakly dependent random vectors. The basic approach 

is to approximate partial sums of weakly dependent random vectors by 

corresponding partial sums of independent ones. In chapter 2 we apply such a 

general idea so as to obtain a almost sure invariance principle for partial sums of 

(Rd—valued absolutely regular processes. In chapter 3 we apply the results of chapter 

2 to obtain functional limit theorems for non—stationary fractionally differenced 

processes. Chapter 4 deals with applications of approximation theorems to 

nonparamatric estimation of density and regression functions under weakly 

dependent samples. We consider Li—consistency of kernel and histogram density 

estimates. Universal consistency ofthe partition estimates of the regression function 

is also studied. Finally in chapter 5 we consider necessary conditions for 

Li—consistency of kernel density estimates under weakly dependent samples as an 

application of a Poisson approximation theorem for sums of uniform mixing 

Bernoulli random variables.
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CHAPTER 1

1.1 Scope of the thesis

Generally speaking this thesis is concerned with some applications of the general 

idea of directly approximating partial sums of a sequence of dependent random 

vectors by sums of independent ones. More precisely let X j, ..., Xn be dependent 

random vectors. The common element in most applications we deal with in this 

work is that we approximate X j+...+X n by AXi+...+AXn , where the AX's are 

independent. We exploit the fact that if our approximation is good enough in a 

probabilistic sense then asymptotics for the original process will follow from 

corresponding results for the partial sums of independent random vectors.

In a sense we may regard the above described approach as a two step procedure. 

In the first step we filter out dependence features. In the second one we only 

have to cope with independent random vectors. The effectiveness of such a 

procedure depends heavily on the goodness of the approximation performed in the 

first step.

Now let us consider a more primitive issue. Suppose that X and Y are are random 

vectors taking values in R° and respectively. Assume that the "degree of 

dependence" between X and Y in a suitable "scale" is no greater than a(X,Y) (we 

formalize the concepts of "scale " and "degree of dependence" in section 1 .2), 

where the more dependent two vectors are the higher the corresponding a  must 

be. A number of authors have dealt with the problem of constructing an 

approximating vector AY such that AY is independent of X and

P{ | Y-AY | ^ e } < f(a),

where f(.) is a nondecreasing real function. Here f(.) depends on the particular
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"measure of dependence" one is considering. Also in some cases c depends on 

some characteristics of the distribution of Y. Approximations of this style will be 

our main tool for implementing the above mentioned two step procedure.

If on one hand it seems obvious that such a method is far from being optimal 

(loosely speaking), on the other it leads, in some cases, to much simpler arguments 

than those needed in a "one step" approach. An example of the non-optim al 

character of the method we adopt here is shown in Yoshihara ( 1978, page 327 ).

When dealing with stationary stochastic processes an alternative approach might be 

used. It is based on the so called Gordin decomposition which enables us to write 

a partial sum of a stochastic process as a sum of stationary ergodic martingale 

differences plus a random term of small probability order. We refer the reader to 

Hall and Heyde (1980) for a comprehensive discussion on this issue.

1.2 Mixing Processes

Let {Xt} be a R^-valued strictly stationary process, defined on a probability space 

(fl,A,P). Let £?t be the cr—field generated by { Xg , s<t }, which we denote by 

Xs , s<t }. Also let us put F t= <r{ Xg , s>t } and B <*,= (r{ UtBt }. We 

say that {Xt} is a regular process if the <j-field

B-oo := fl { Bx , t € R }

is trivial in the sense that it contains only events with probability zero or one.
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A simple example of a non-regular stationary process is the following. Let { W, 

Zt , t= ... -1 , 0, 1, ... } be a collection of iid random variables. Consider the 

R^-valued stationary process {Xt} := { (W.Z^) }. We can easily see that for this 

case fl-oo 3 <r{ W }. Thus if W is not a constant then {Xt} is not regular.

The above example ( though very artificial ) spots the kind of process one is 

ruling out when restricting the class of stationary processes to the class of regular 

ones. Namely, when considering regular processes the present evolution of the 

process must be approximately independent of its ( remote ) past history. In the 

above example this is obviously false. An equivalent characterization of regular 

processes is given by the following

Proposition ( See Thm. 17.1.1 in Ibragimov and Linnik(1970) ) In order that 

a stationary process be regular, it is necessary and sufficient that, for all B e B m , 

lim sup{ |P(AB) -  P(A)P(B)| , A f Bt } = 0, as t-»-oo . (1 .1)

It is not difficult to see that regularity implies ergodicity for the process {Xt}. In 

this work we will not consider processes which are merely regular. In fact we will 

deal with processes for which (1.1) holds in "more uniform" senses. Let us define 

for any two o—fields B  and F

a(B,F)  = sup{ |P(AB) -  P(A )P(B )|, A e £ , B e F  },

I J
(3(B,F)  = 1 /2  sup{  I  I  IP( A. B .) -  P(A )P(B ) | }

i=l  j=l  J J

where the supremum above is taken over all possible B-measurable ( F-m easurable,

resp. ) partitions { Aj , l<i<I } ( { Bj ,1 <j<J }, resp. ) of 0  ( if G  is a 

<j-field of subsets of 0  a G-measurable partition of fi is a partition whose elements 

belong to G  ). Finally we define
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<p(B,F) = sup{ |P(B | A) -  P(B) | , B € F, A e B }.

Now we can define the first kind of mixing process we consider in this work

Definition 1.1 Let {Xt}, t c Z be a stationary process. We say that {Xt} is

a strong mixing ( or completely regular or a-m ixing ) process with mixing weights

Ok} if

Q!k tt(Bj , Fj+k) = o ( l ) □

Strong mixing processes were introduced in Rosenblatt(l 956) and have appeared in 

a huge number of works since then. In this work, strong mixing is the weakest 

type of regularity we deal with. An important property associated with strong 

mixing processes is the following:

Proposition ( Davydov's inequality ) Suppose that X and Y are random 

variables which are B -  and F-measurable, respectively, and that || X lip =1, || Y 

llq =1, for some 1 <  p,q <<», p “ l + q“ l < 1 ( here and throughout this work we 

denote n X np = { E | X | P  } ^ P  ). Then

I E(XY) -  (EX)(EY) | < 8 { a(B,F) }1/s,

where s- * + p ” l + q”  ̂ = 1 .

Proof: See Davydov(1968).

The next type of mixing process we consider is required to satisfy a stronger 

condition than the a-m ixing processes.



Definition 1.2 Let { Xt , t= -1 , 0, 1, ... } be a stationary process. We 

say that {Xt} is a absolutely regular ( or weak Bernoulli or /3-mixing ) process 

with mixing weights ( or mixing sequence ) {/3n } if

0n := ^p» ^p+n ) = ° 0 )*

Absolutely regular processes were first studied in Volkonskii and 

Rozanov(1961). They attribute the definition of absolutely regular processes to 

Kolmogorov. It is not difficult to see that a k < /3k and thus any weak Bernoulli 

process is strong mixing. The following result provides an alternative definition of 

the /3 weights.

Propositionf Volkonskii and Rozanov (1961) )

0k-  su p p E[ sup  { | P ( BI B ) -  P(B)  | ,  B e Fp+k } ]. □

Absolutely regular processes are in general a bit easier to be handled than strong 

mixing ones. In particular when one is dealing with asymptotics for U-statistics, 

proofs and conditions are much neater under absolute regularity than under strong 

mixing ( See e.g. Yoshihara(1976) and Denker and Keller(1983) ). Also, when 

using the two-step procedure described in section 1.1 the existing approximations 

for absolutely regular processes are better than their strong mixing counterparts. 

We carry out a more detailed discussion on this matter in chapters 2 and 4.

A further type of stochastic process that will be considered in this work is 

represented by the class of linear processes. We say that a process {Xt} is linear 

if it can be represented as
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where <  oo and ( e t)  is a sequence of iid random variables with E e |= 0

and V a r ( e | ) < o o .  The assumptions of independence and/or equality of distribution 

for the sequence {et} are sometimes relaxed. The equality above is in quadratic 

mean i.e. Xt is the limit in quadratic mean of the partial sums of the series in 

(1 .2).

At this point a question which one could naturally make is whether or not linear 

processes are strong mixing or absolutely regular.The following result establishes 

sufficient conditions for linear processes being absolutely regular.

Proposition Let {Xt} be as in (1.2) above. Suppose that the following 

conditions hold true.

( i )  j I g ( v - u )  -  g ( u )  | dv < C i u i , a l l  u,  

where g ( . )  i s  t h e  p d f  o f  .

( i i )  Z l a ^ i  <oo and Z^ a ^z  * 0 , f o r  a l l  I z  I < 1 .

( i i i )  E l e ^ i *3 < oof f o r  some p>0 .

00 00

( i v )  I  { I  l a . |  } P / ( 1+P) < oo. 

k= l j= k  J

Then { } i s  weak B e r n o u l l i  w i t h  mi x i ng  w e i g h t s  su c h  t h a t

P / O + P )0 =  0 n

00 00

I  { I  l a . I  } J 
k=n j =k  ^

Proof: See Phan and Tran(1985).

Similar results hold for strong mixing processes as well (See Gorodetskii(1977b)).
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However there do exist linear processes which are not strong mixing. We will deal 

with such a kind of processes in chapter 3. Let us just give an example of a 

Gaussian linear process which is not strong mixing.

Take k- ^ and e\=  N(0,1) in (1.2), where 1/2 <  6 <  1. It is not difficult to 

see that Var( Xj + ... +Xn )= O (n3- 20). Now by theorem 18.1.1 in Ibragimov and 

Linnick(1970) we know that if {Xt} is strong mixing and for a nondegenerate Z 

we have

(bn) ' 1 { X1+ ... +Xn } => Z, (1.3)

then the law of Z  is necessarily stable ( here and throughout this work the symbol 

=*. stands for weak convergence ). Further if the exponent of the law of Z  is a  ( 

i.e. the characteristic function of Z is proportional to e x p f - c i z i 0), for some c > 0 ,  

0 < a <2 ) then bn= h (n )n ^ a , where h(.) is a slowly varying function in the sense 

of Karamata. Now it is obvious that (1.3) holds true with bn=Var( X |+  ... Xn )* ^  

and Z ~ N(0,1). Therefore we should have

O (n3-20)=  v ar( Xj + ... +Xn )= n(h(n))2,

which cannot hpld since 0<1.  Thus {Xt} is not strong mixing.

Finally the last class of mixing processes we will consider in this thesis is 

represented by the uniform mixing processes.

Definition 1.3 Let { Xt , t= ..., -1 , 0, 1, ... } be a stationary process. We 

say that {Xt} is a uniform mixing ( or ^-m ixing ) process with mixing weights ( 

or mixing sequence ) {^n} if
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^n*= p(  ^p» ^p+n ) = °n)*

The following result, due to Ibragimov, will be repeatedly used in chapter 5.

Proposition ( Ibragimov's inequality ) Suppose that X and Y are random

variables which are B -  and F-measurable, respectively, and that nXiip = 1 =

IlYiiq, where 1< p,q ^ oo and p“ * + q“ l = 1. Then

I E(XY) -  (EX)(EY) | < 2{ <p(B,F) j ^ P .

1.3 Plan of the thesis

In chapter 2 we prove an almost sure invariance principle ( i.p . )for partial sums 

of absolutely regular processes. The rate of convergence depends on moment

assumptions and on the rate of decay for the mixing sequence. However it is faster 

than n l /2 jn the cases we consider.

In chapter 3 we provide an application of the i.p. obtained in chapter 2 in the

study of a non-stationary fractional model. Weak convergence of this model is

discussed under a variety of non-iid assumptions for the sequence of underlying

innovations. ^

•.

In chapter 4 we deal with the subject of Lj -convergence for some nonparametric 

estimates of the regression and density functions. We consider sufficient conditions 

for both weak and strong Lj -consistency for those estimates under mixing

assumptions on the samples.
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In chapter 5 we study necessary conditions for -consistency of kernel density 

estimates under uniform mixing samples. Such conditions turn out to be the same 

as in the iid case.

1.4 Some conventions

In this small section we set some notations and conventions for the rest of the 

thesis.

(1) We denote by Cxi or [[x]] the integer part of x.

(2) Xn =* X stands for the sequence of processes {Xn} weakly converges to

X. We obviously use the same notation for convergence of distributions of random vectors.

(3) We adopt in some places Vinogradov's symbol ^ instead of big "Oh".

That is an 4 bn has the same meaning of an = 0 (b n ).

(4) Given a sequence of random vectors {Xn} l<n<N <<» we denote by 

er{Xn , l < n < N }  the cr—field generated by {Xn}, that is the smallest a -field G  which 

makes all the X's G-measurable.

(5) The Lp norm of a vector v in is denoted by llviip or ivip.  If p is 

equal to 2 we often omit the subscript. If X is a random vector and 1 <p<°° we 

denote nXiip = [ E | X | P ] ^ P .  Also ilXu^ stands for the essential supremum of 

| X | .

The rest of the notations and conventions adopted in this work are standard in the 

statistical literature.
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CHAPTER 2

2.1 Introduction

This chapter is devoted to the study of an almost sure approximation theorem for 

sums of -valued stationary absolutely regular process. More precisely given 

{Xn } as above we will be interested in finding a sequence {Zn} of i.i.d. Gaussian 

random vectors such that 

n
I I  Xfc -  Z^l — o ( n V l ) a . s . ,
k= l

provided E i X^ i * <  oo. There exist some similar results in the literature (see 

e.g. Dehling and Philipp (1982), Dehling (1983)) but in general they are mainly 

concerned with the issue of constructing {Zn} so that 

n
l E X ^ - Z ^ l  -= o ( n i “ 6) a . s .
k= l

for some e >  0. Our study, in a sense, goes in the opposite direction: we fix

our rate of convergence and then try to find out for which sequences (X jJ such

rate is achievable.

Notice that the latter approximation theorem yields all the classical invariance 

principles (law of iterated logarithm and functional central limit theorems). A 

naive question is then the following: why to specify a (somewhat) "much" smaller

rate than n£? In Chapter Three we present an example where such small rate is 

indeed necessary.

The rest of the chapter is divided as follows. In section 2 we introduce some 

concepts on invariance principles and discuss some previous work. In section 3

we state our main result and prove an important corollary to it. As the proof of

our main result is a bit long we present some guidelines to it in section 4.
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Finally in section 5 we discuss the issue of constructing random vectors in "rich" 

probability spaces (p-spaces). The proof of our main result is divided into

appendices A, B and C.

2.2 Invariance Principles

The designation invariance principle was coined by Erdos and Kac (1946) in a

weak convergence environment. They wanted to evaluate limit distributions such 

as

l i mn P{n“ £ max Sj  ̂ < y } , 
l<k<n

where {Xn } is a sequence of i.i.d. r.v. and Sn = X] + ... + Xn. The authors 

realized that for a particular sequence {Xn } such limit distributions could be 

obtained through available analytical methods. In other words when Xj has a 

specific distribution F one can evaluate in a (somewhat) straightforward manner the 

above limit. If we could show that the above limit were invariant for all F in a 

broad class then the problem of finding out the limit distribution above could be 

reduced to studying such limits in a particular case.

Strassen (1964) introduced the concept of almost sure invariance principle for

partial sums of i.i.d. r.v .'s. We can informally assess the difference between

Strassen's and Erdos and Kac's (or its generalizations) concepts of invariance 

principle (i.p.) by means of the usual central limit theorem (an i.p. in Erdos and 

Kac sense). Let {Xn} be i.i.d. r .v .'s  and suppose that EXn = 0, E X j = 1 and 

{Zn } be i.i.d. r.v .'s  with Z | ~ N(0,1). The central limit theorem reads

1imn lP{Xi + . . .  + Xn < yn y} -  P{Zj + . . .  + Zn < yn y } | -  0 .

Now (as convergence in probability implies convergence in distribution) one could
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ask whether or not such a result is consequence of a stronger theorem ensuring the

existence of such a {Zn } that

iXj + . . .  + Xn -  ( Z \  + . . .  + Zn ) |  -  Op( n i )  ,

or perhaps

|X j + . . .  + Xn -  (Z j + . . .  + Zn ) |  = o ( n ^ )  a . s .

Strassen i.p. provides a partial answer to such questions (actually it is not possible, 

in general, to obtain such a rate of convergence assuming only the existence of 

second moments, see Major (1976)). He proved that we can construct a 

sequence (Zn ) as above such that

|X i + . . .  + Xn -  ( Z i  + . . .  + Zn ) |  -  o ( ( n  l og  l og  n ) £ )  a . s .

More precisely

THEOREM  (Strassen's invariance principle!. Let {Xn} be a sequence of i.i.d. 

r .v .'s  such that EXj = 0 and EX^ = 1. Assume that {Xn } is defined on a

p-space (0,F,P). Then we can construct a p-space ( f i i .Fi .Pj )  and two sequences

of i.i.d. r.v .'s  {Xn } and {Z d e f i n e d  on it such that

(i) P^n) *s a copy (in distribution) of {Xn }

(ii) Z j -  N(0,1)
n

( i i i )  l I  Xj  ̂ — Z^l -  o ( ( n  l og  l og  n ) £ )  a . s .
k= l

We refer the reader to section 2.5 for a discussion on the need of redefining {Xn} 

on a new p-space. From now on, for simplicity, when stating almost sure i.p .'s  

we will typically say "we can construct a sequence {Zn } ... such that

IX| + . . .  + Xn -  (Z | + . . .  + Zn ) |  -  o ( q ( n ) ) a . s . " .

The reader should keep in mind that such a construction holds valid in a rich 

enough p-space where a copy of {Xn } is defined on.
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Strassen obtained as a by-product of his i.p. a law of iterated logarithm. Now, 

the rate obtained in (iii) above is not good enough even to imply the usual C .L.T. 

However we can obtain better rates of convergence provided higher order moments 

are assumed to exist. Indeed, from the well known articles of Komlos, Major 

and Tusnady (KMT) we obtain

THEOREM  (Komlos. Maior. Tusnadv (19761. M aior (197611. Let {Xn} be a 

sequence of i.i.d. r.v .'s  such that E | X j | P  <  oo for some p >  2, EXj = 0 and 

EX? = 1. Then we can construct a sequence {Zn} of i.i.d. r .v .'s  with Z |  ~ 

N(0,1) such that

|X | + . . .  + Xn -  (Z j + . . . + Zn ) | — o ( n V P )  a . s .  □

Furthermore, the following result, due to Breiman tells us that the rate in KMT 

theorem is the best possible.

THEOREM  (Breiman (196711. Let {Xn } and {Zn} be sequences of i.i.d. r .v .'s  

such that EXj = 0, EX? = 1, Z 1 ~ N(0,1). Then

n
lim  su p n | I  X^ -  Z j ^ l / n VP  -  + co  a . s . ,  

k=l

provided E i Xj | P = +oo. □

KMT has been recently generalized by Einmahl (1989) to sequences of R^-valued

i.i.d. random vectors. We refer the reader to Csorgo and Revesz (1981) for a

textbook exposition on strong invariance problems related to sequences of i.i.d. 

r.v. 's.

When the assumption of independence is relaxed to weak dependence the rates are 

not, so far, as good as in KMT theorem.
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The first comprehensive study on almost sure i.p .'s  for non-i.i.d . situation was 

done in Philipp and Stout (1975). Previous results on non-i.i.d . processes were 

in most of the cases related to the law of iterated logarithm (see e.g. Heyde and 

Scott (1973), Reznik (1968), Strassen (1967)).

Philipp and Stout (1975) exploited the fact that the block sums of weakly 

dependent random variables behave approximately as martingale differences, to 

which Skorohod embedding theorem can be applied (see Skorohod (1965), Sawyer 

(1967), Hall and Heyde (1980)). In this way they proved a number of i.p .'s  in

a variety of dependence situations.

However as pointed out in Berkes and Philipp (1979) the generalization of such 

approach to random vectors is far from easy. Berkes and Philipp (1979) 

proposed a new method which works in any number of dimensions. Their 

method consists of approximating block sums of weakly dependent random vectors 

by independent random vectors. Their basic approach was subsequently refined in 

Dabrowski (1982), and Bradley (1983).

From  Bradley (1983) we learn

THEOREM  (Bradley's approximation). Suppose X and Y are random vectors 

taking their values in Rm and R, respectively; suppose U is a uniform -[0,l ] r.v. 

independent of (X,Y), and suppose q and y  are positive numbers such that q < 

IlYii^ <  oo. Then there exists a r.v. Y* = f(X,Y,U) where f is a measurable 

function from Rm ® R ® [0 ,1] into R such that

(i) Y* is independent of X

(ii) The probability distributions of Y* and Y are identical, and

(iii) P{|Y * -  Y | > q} < 18(||Y |iyq)7 /(27 +1)o27/ (27 +1),
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where

a  = a (<r (X) , <r(Y)),  and

for any pair of <r-algebras (A,  B) we define

o t ( A , B )  -  s u p { | P ( A  n B) -  P (A ) P ( B )  I , A e A ,  B e B } . □

Actually Bradley's theorem is a bit more general. Further, it can be easily 

generalized for Y taking values in Rd. Let us define

1 1 J|3(A,B) -  7  s u p  E I  lP( Ai  n B j )  -  P C A ^ P C B ; ) !
i ” l  j » l

where the sup above is taken over all pairs of partitions and

of 0  such that each Aj e A  and each Bj e B.

Bradley's result depends on a relation between a  (A,B)  and (3(A,B) and the 

following

THEOREM  (Berbee (197911. Suppose X and Y are r.v .'s  taking their values in 

Rm and Rn respectively, and suppose U is a un iform -[0 ,l] r.v. independent of 

(X,Y). Then there exists a Rn-valued r.v. Y* = f(X,Y,U), where f is a 

measurable function from Rm ® Rn ® R into Rn , such that

(i) Y* is independent of X

(ii) The probability distributions of Y and Y* are identical, and

(iii) P{Y* T Y} < (3(a(X), a(Y)). □

Berbee's theorem will play an important role in our theorem 2.1. It will allow

suitable block sums of weakly dependent random vectors to be approximated by 

independent ones.
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Our final remark in this section is related to the general idea of proving limit 

theorems for weakly dependent sequences by a direct approximation to suitable 

independent ones. It is very unlikely that this method cannot, in general, be 

outperformed by another one which takes into account particularities of the 

dependence structure. However, the simplicity and flexibility of such a principle 

makes it extremely appealing.

2.3 Main Result

In this section we are going to state a a.s. i.p. for sums of weakly dependent 

stationary random vectors. We are going to consider only absolutely regular 

processes with polynomial sequence of mixing weights. The methodology

employed in our proof could be adopted when establishing a similar result for 

strong mixing processes. However, in that case we would need stronger 

assumptions on the relations between moment conditions and the rate of decay in 

the (strong) mixing sequence. Indeed a close look at the proof of our theorem

2.1 reveals that if instead of Berbee's theorem one uses Bradley's approximation 

then no further modification in the structure of the proof will be necessary. The 

strengthening of the assumptions on the mixing weights and the moment conditions 

is necessary because Bradley's approximation yields worse errors than Berbee's one 

(as we could expect since strong mixing is a weaker form of dependence than 

absolute regularity).

Let us now state our main theorem in this chapter

THEOREM  2 .1 . Let {X ^  be a zero mean stationary absolutely regular process 

taking values in Rd. Let {/S^} be the sequence of mixing weights. Assume that

(a )  0k = k -"  ,
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where v > 0 .  Suppose that for some X >  1, 0 <  J <  1 we have

(b )  E\ X i  | 2X( l +0)  < oo, 

where X, 0 and v satisfy

(c) i  + 77T + 2x < 5

1+29 , 2X( l+9)  , 1
v '  X( l+0)  p+2X(l+0)  ( p + l ) X ( l + 0 )

( e )

( f )  2(1+9)  ^  v .

Then enlarging the original p-space, if necessary, we can define a copy of 

(which we will also denote by {Xn}) and a sequence of independent zero 

Gaussian random vectors {Zn } such that

(i) For each m > 1, {Zk , 2m <  k < 2m+l} are i.i.d.

(ii) If

r  = EXjxj + I  EXjxJ + EXkx [  
k> l

is a finite positive definite matrix then

IlCov (Z2m) -  Til = 0 ( 2 _mT) ,  where

r  >  0/2(1+0). 
n

(iii) | £ Xk -  Z k i = o(n1/2(1+0)) a.s.
k= l

Proof. See Appendix 2-C .

{*„>

mean

Let us now make a few comments on theorem 2.1. First of all, it is somewhat 

unusual to impose a moment condition characterized by two parameters (X and 0). 

A more common statement of a moment condition would be E | X j | 2+  ̂ <  °°. We
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have chosen the two-fold parameterization basically for three reasons.

Firstly it provides a sort of location (6) vs. scale (X) interpretation for the order 

of the required moment.

Secondly, conditions (e) and (f) allows one to evaluate the effect, in a somewhat

separate manner, of the joint relations between location and degree of dependence,

and scale and degree of dependence (note 6 <  1).

Finally, adopting a two-param eter characterization provides insights on the effect of 

weak dependence by a direct comparison to the i.i.d. case. In other words, it is 

known that if (Xn ) were i.i.d. then it would be possible to construct {Zn} i.i.d.

such that Zn ~ N(0,cov(Xj)) and 

n
I I  Xk -  Zkl = o ( n l / 2 ( l +<0 ) a .  s . ,
k= l

provided E | X i | 2(1+0) <  °° (see Berger (1982), Einmahl (1987 and 1989)). What 

our result above hints (note I am not being conclusive here) is that in order that 

such a rate be achieved we need to impose the existence of higher order moments. 

It goes without saying that such a "hint" is for absolutely regular processes with 

polynomial mixing rate only.

A second point worth making is related to conditions (c), (d), (e) and (f) as a 

whole. A close look at the proof of our results indicates that such conditions are 

so imposed that a suitable blocking procedure exist. On this respect, it may

seem that condition (c) represents a structural limitation of our method of proof as 

far as the range of 8 is concerned. In other words it may seem that, on using 

our method of proof we can only obtain errors of order at most n 1/3 (0 = £), no

m atter how large v and X are. This is not quite true. I will not go into
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details but what (c) actually represents is a feasibility condition for two inequalities. 

Namely

1 X-l
2 X(l+0) ’

and

^  v6 +  ( 1 + 6 )
7  ( v + l ) ( 1 + 0  ) ’

where 7  is a parameter in our blocking procedure. Now, the second inequality is 

structural, that is it must hold valid whichever blocking one chooses. The first 

one, on the other hand, is not structural. It may be possible to replace the 

upper bound in the first inequality by a more convenient one. In any case, we

will not deal with that issue in this work.

Nonetheless, we would like to point out that there is a structural bound for 0.

When {Xn } are i.i.d. one can only show (iii) by the method we have adopted

(which was first used in Einmahl (1987) for 0 <  1.

Finally, we would like to make a brief comment on a methodological aspect of the 

proof of Theorem 2.1. Accurate probability inequalities play an important role in 

most works on asymptotics in statistics or probability. In our particular case good 

rates of convergence in the Marcinkiewicz-Zygmund law of large numbers (see e.g. 

Chow and Teicher (1988) Theorem 5.2.2) turned out to be essential for Theorem

2.1. Namely good estimates for quantities like

n
a n = P { | I  Xk i > n 1} ,

k=l

where t >  £ and {Xn } is weakly dependent, proved to be necessary.

In works where such kind of estimates are needed the commonest way of bounding 

an is based on Markov inequality and a moment inequality. Let us assume
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t = 1 for simplicity. an can be bounded from above by

n
bn -  n " uE | I  Xk l u .

k-1

Now, provided that some moment and mixing conditions (which obviously include 

E i X i i ”  <  oo) hold true (see e.g. Roussas (1988), Roussas and Ioannides (1987), 

Yokoyama (1980)) it can be shown that bn behaves like its iid counterpart, that is

bn -  0(n-u/2).

However, it is well known that better rates of convergence for a n can be obtained

under iid assumptions. From Theorem IX-27 in Petrov (1975) we obtain

a n -  o ( n “u+1) ,

provided E | X j i u <  oo and EX} = 0. Such estimate is better than the one

derived through moment inequalities provided u >  2 .

In the proof of theorem 2.1 we estimate an by means of an easy generalization of

Petrov's result and Berbee's theorem (see Lemmas 2A1, 2A2, 2A3, 2A4).

Now, theorem 2.1 yields the following.

Corollary 2 .1 : Let {Xn } be as in theorem 2.1. Then the conclusion of theorem

2.1 holds true with {Zn } replaced by {Zn } such that

( i )  {Zn } a r e  i i d .

( i i )  {Zn } -  N(0, r ) .

Proof. It suffices to show that 

n
I I  Zk -  Zk l -  o ( n V 2 ( l + 0 ) )  a . s . ,
k= l

which in turn is a consequence of
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00
I  P{ max I I  Zk -  Zk l > e 2m/ 2 <1+0)} < co,

“ “ I k = l+ 2m

all e > 0  (see the proof of theorem 2.1). Assume with no loss in generality 

that T = I. By virtue of (ii) in theorem 2.1 we can assume w.l.o.g. that r k := 

cov(Zk) is positive definite for all k. Define Zk = r k ^Zk. Kolmogorov's 

inequality (multivariate) yields

k
P{ max | I  Z] -  Z ; |  > e 2m/ 2 ( 1+0>}

2m<k<2 ^ 1  J - 2"

< —  2"> E lZ2m -  Z2ml 2/ 2m/ (1 + 9 ) . ( 2 . 1)
e2

Now Z ^ m -  Z2m ~ N (0 , ( r | m -  I ) 2 ) ,  and t h e r e f o r e

~ ̂ 2m*^ ^ 11 ^ ^ m  ” D 2H

< n r 2m -  III2 -  o (2 ”2mT) , ( 2 . 2 )

where 2r  >  61(1+6). (2 .1) and (2 .2) imply our result. □

2.4 An overview of the proof of the main result

As the proof of theorem 2.1 is rather long it seems worthwhile to present an 

overview of it. Suppose this result has been shown. Let {Zn} be the

corresponding sequence of independent Gaussian random vectors. Let us define

s n = x x + . . .  + x n

and

Tn “  Zj + . . .  + Zn .

It is not difficult to show that |Sn -  Tn | = o ( n ^ 2( I+0)) almost surely holds true 

provided that
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Em P { max lS k -  Tk -  S2m. !  + >  « 2 " > /2 ( l+ « )}  < »  (A)

2 m"1< k<2m

for any 5 > 0 .  Now let us define

4 m) -  Sk -  S2m_ ! , 2">-l < k < 2">

T T T
^k “ ^ m - l  *

Partition the set {2m~l + l , . . . ,2 m} into alternating small and large blocks.

Namely consider

2 - 1  + 1 -  . f 1 ’ <  b f ”  <  a P >  <  b P >  <  a P >  < . . .  <  b<2 > -  2 m,

with

a k + l “  bk + 1

«<1> v,(2 ) + 1a k + l = b k +

and define as the K -th  small (large) block the set

{ J : a k ! )  < J < bk ! ) ) ( { J : a k2) < J < bk.2 ) }> r e s p e c t i v e l y ) .

The small blocks, to be of any use, must be constructed in such a way that they

can be considered negligible. In our case we will design the small blocks so that

I m P{ max | ]r ( l  >k>m)Xj I > 52m/ 2 O + 0 ) }  < oo (B)
2m -l< K<2m

and

P{ max ,E<1 , k , m ) z . , >  $ 2 m/ 2 ( 1+0 ) }  <  oo (CB)

2m-l<K <2m

where l(l>k>m) (£(2»k,m)^ respectively) stands for the summation over those i's  

which are not greater than k and belong to some small (large, respectively) block. 

Actually we will use an approximation argument in order to prove (B).

Now we truncate the original random vectors whose indexes belong to some large
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block. Such a truncation is so performed that

I  = o ( n V 2 ( l + 0 ) )  a . s . ,
k= l

({X^} are the truncated random vectors) which in turn allows us to deal with 

instead of X^. Such truncation is purely technical.

Next we approximate the sums of the Xj’s whose indexes belong to a particular 

large block by independent random vectors. In other words, let us put

^ k , m "  ^  *  j
j :  j  b e lo n g s  to  l a r g e  b l o c k  #k

We approximate each W^ m by random vectors constructed in such a

fashion that {A W ^^} is a collection of independent random vectors and A W ^m  

has the same distribution as Such approximation is so carried out that

k
I m P{max I I  Wj>m -  AWj>ml > 52m/ 2 ( 1+0)} < oo . 

k j= l

As a matter of fact we need a bit more than that. Notice that we have

performed an approximation of large blocks. We still need to ensure that the 

error incurred when one "rounds up" a partial sum l ( 2>k,ni)x. to "nearest" 

partial sum of large blocks is negligible. This can be obtained if

j
I m P f  max max | £ Xi< | > 52m/ 2 (^+ ^ ) |  < oo .

K t< »  a<2><j<b<2 > k“ a<t 2)

Our next step is a further grouping procedure. Consider a partition of 

{1,2...... u(m)} induced by

U = c q  < c j  < . . .  < Cq = u(m; .

We approximate each partial sum



by a Gaussian random vector SZj m with the same mean and covariance matrix as 

SWj>m, such that

I m P{ max | I  SWj m -  S Z j >ml > 52m/ 2 ( l + 0 ) }  < oo . 
l < j < q  k=l

Also, the "rounding errors" are shown to be negligible and the random vectors 

SZ j>m are chosen in such a manner that they are independent.

The final step of our construction is to write each SXj>m as a sum of independent 

homoskedastic Gaussian random vectors (the Z 's  which appear in the very 

beginning of this section). To conclude the proof we show that all the remaining 

"rounding errors" are negligible.

2.5 Constructing Sequences of Random Vectors

In this subsection we will consider some technical subtleties related to the 

construction of random vectors. Every process of constructing a random variable 

in a given p-space (fl,F,P) depends on the richness of such space. For instance 

if F is the trivial a -field then one cannot construct any random variable in (Q,F,P) 

but the constants.

When dealing with the construction of a single random element taking its values in 

an Euclidean space and following a particular probability law one has only to 

assume the existence of a uniformly distributed random variable U defined on the 

original p-space. Things grow a bit tougher when we need to construct a whole 

process (see e.g. the proof of Kolmogorov's existence theorem).

When proving almost sure invariance principles for sums of independent random
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vectors we need a further requirement to be fulfilled. Namely, we must construct 

a process that obeys a given law and is close to a previously defined process in a 

probabilistic sense.

By far, the most popular ways of dealing with such additional requirement rely 

heavily on Strassen-Dudley theorem associated with an estimate of the convergence 

rate in the central limit theorem. The latter is usually given in terms of the 

Prohorov distance between the distribution of Sa(m+ i) -  Sa(m ) and a suitable 

Gaussian random vector, where {Sn} is the partial sum process and {a(m)} is a 

suitable integer sequence. Strassen-Dudley theorem (or a variant of it) allows one 

constructing a Gaussian random vector which is close to Sa (m+ i) -  Sa(m ), 

provided the underlying p-space is rich enough. Under the absence of such 

richness we must redefine our process in a larger p-space where the construction 

of above mentioned Gaussian random vectors can be carried out.

The general idea of the proof of our main result does not differ in essence from 

the procedure just described. There is, however, an intermediate step which aims 

at approximating the sequence (Sc(m) -  Sb(m)} by another sequence of 

independent random vectors {Ym} (say) so that the distributions of Sc(m ) -  

and Ym coincide (here (c(m)} and (b(m)} are suitable integer sequences). Such 

an approximation is done by means of Berbee's theorem. Then we approximate 

the partial sum process for {Ym} by a Gaussian process by means of a variant of 

a normal approximation theorem due to Einmahl (see Lemma 2 -B -2 ).

When using Berbee's result one must explicitly assume the existence of a random 

variable U, which is uniformly distributed over [0,1] and is independent of the 

process of interest. Actually we need a sequence {Un} of iid random variables, 

such that U j is distributed as U above and each is independent of the process
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of interest (we show below that the existence of only one U as above implies the 

existence of such a sequence).

On the other hand, Einmahl's original statement of his result is not so explicit 

about our U. Einmahl uses the classical form of Strassen-Dudley theorem which

reads: there exists a p-space .... It is not difficult to see that working with the

original form of Einmahl's result yields no loss in generality (one can use Lemma 

A .l of Berkes and Philipp (1979) at any stage of the construction of the 

approximating Gaussian process). However it does yield, in our case, notational 

problems. Besides it hides a technical detail which was first pointed out in 

Berkes and Philipp (1979). Namely, suppose that one is interested in constructing 

two independent Gaussian random variables Z j and Z 2 so that Z j + Z 2 is close, 

in a probabilistic sense, to Xj + X2, where Xj and X2 are given independent 

random vectors. One has, in principle, two possible ways of doing this.

(i) We first construct Z j , close to X j, using some variant of Strassen-Dudley 

theorem. A typical statement for such construction could be: enlarging the

original p-space if necessary, we can construct Z j so that Xj is "close" to 

Z |.  Typically Z j will be a measurable function of X | and a uniform [0,1] 

random variable which is independent of X j. The "enlargement" of the 

original p-space is so done as to ensure the existence of such a U j. 

Actually we need Uj to be independent of (X j,X2). If this were not so we 

could not guarantee Z | to be independent of X2 and hence the existence of a 

Z2 independent of Z j and close to X2 would not be necessarily true. The 

next step is to construct Z 2. Again we could appeal to Strassen-Dudley and 

enlarging the p-space, construct Z2 . Notice that the above described 

procedure brings about three "nested" p-spaces (fi,F,P), ( f i j . F i ^ )  and

(n2 .F2 .P2) (^y ). If we were to stop in Z2 everything would be fine. This
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is, however, seldom the case. Usually we are interested in constructing a 

whole sequence {Zn } of independent Gaussian random variables such that 

n
1 xk " z k “  ° ( a n ) . a s -

k=l

where lim an = °°. Now we must deal with the following question. What 

does a.s. mean? In other words which is the underlying p-space one is 

considering above? Such a problem would be solved if we could find a 

"limit" for the underlying sequence of "nested" p-spaces. However, 

following the approach proposed by Berkes and Philipp we do not need such 

unnecessary sophistication. We will describe their approach in the sequel.

(ii) The second way of constructing Z | and Z 2 is the following. Construct Z  in 

such a fashion that Z is close to Xj + X2. Next "deconvolve" Z  into Z j 

and Z2 . That is, construct Z j and Z2 so that Z = Z 1+Z2 with Z j and Z 2 

independent. Again we would need, in principle, "nested" p-spaces (see the 

proof of Lemma 2 -B -2 ) so as to ensure the existence of suitable uniformly 

distributed random variables, which in turn, as in (i) above, would lead to 

unnecessary sophistications.

In our proof of Theorem 2.1 we face both the deconvolution and "construction" 

problems described above. Berkes and Philipp's approach, outlined below, 

provides a neat way of overcoming the possible problems just discussed.

Consider a p-space (fiQ^Q.Po) and a sequence of random vectors {Xn}, defined on 

it. We first enlarge (fiO’^O’^o) t0 so as to obtain one uniformly

distributed random variable U and a sequence of random vectors {Xn} (all of them 

defined on the enlarged p-space) such that

(a) the distributions of {Xn} and {Xn } are identical;

(b) U is independent of {Xn }.
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Such enlargement can be performed as follows. Consider the p-space 

( f i ,F ,p )  -  ( n 0 , f o . po) •  C[ 0 ,1 ]  , B,  X) ,

where B  is the class of borelians in [0,1] and X is the Lebesgue measure
restricted
to the unit interval. Let us define 

X(w, t ) = X(w)

and

U ( w , t ) -  t ,

where (w,t) e Qq ® [0,1]. It is not difficult to show that both (a) and (b) above

hold true. Now we construct an (fi,F,P) a sequence {Un } of iid random variables

with Uj being uniformly distributed over [0 ,1] such that each is a measurable 

function of U (whence (a) and (b) hold valid with U replaced by for any k). 

This can be accomplished in the following way. Consider any one-to -one  

function f: Z+ ® Z+ Z+, such that f(n,k) <  f(n,k+ l), all n,k (for instance if 

{p n} is an enumeration of the prime numbers, define f(n,k) = P£). Let

OO
U ( w , t ) = E 2 “ J a ( j , w , t )

J - l

be the dyadic representation of U. Define

00

Un ( w , t )  -  I  2 ‘ ka ( f ( n , k ) ,  w, t ) .
k=l

It is easy to show that {Un} is a sequence of independent random variables

uniformly distributed over [0 ,1].

What the above construction tells us is that to any element of a Z+-partition (Q m,

m > 1} we can attach a collection of iid -U (0 ,l) random variables with arbitrary

(though denumerable) cardinality. Besides the union of such collections is {Un , 

n > 1} and the intersection of any two distinct collections is empty (in other
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words the family of such collections partition {Un }).

Now let us take a typical step in a construction procedure. Suppose that (Xn )

(note: {Xn } is defined on the enlarged p-space) is a sequence of independent 

random vectors. Assume that we are dealing with the problem of constructing 

(with no further enlargements of the p-space) a sequence of independent Gaussian 

random vectors {Zn } such that (for instance)

2nH-l

^  *k  “ > cm} < 00 •
k=2mfl

Let us denote

2ITH-1
Wm I  Xk .

k=2m+l

Assume that the Prohorov distance between the distributions of Wm and a N(0, I'm) 

is small. Then (see Lemma 2 -B -2  for details) we can construct a zero mean 

Gaussian random vector T m with covariance matrix given by r m such that T m and 

Wm are close in a probabilistic sense and Wm is <7(Tm , V)-measurable, where V 

is an element of the collection Rm (say) of uniform random variables associated to

Qm = {2m+ l ......2m+I}.

Now we perform the deconvolution operation on T m (again we refer the reader to 

Lemma 2 -B -2  for details) and write 

2m+l 

k=2m+l

where each is a (T m , V j,...,V q)-m easurable, with V j,...,V q  in Rm and {Zm, 

2m <  k < 2m+l}  being a set of independent Gaussian random vectors.

Finally, as {Wm } is a sequence of independent random vectors and {Rm} partitions 

{Un } it easily follows that {ZjJ is a sequence of independent Gaussian random
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vectors defined on (0,F ,P) (note: no further enlargements were necessary).

As a final comment we would like to remind that our proof of theorem  2.1 relies 

heavily on Berbee's theorem which also assumes the existence of a sequence like 

{Un }. Obviously our only-one-enlargem ent approach works with such "additional" 

requirement.

Let us just make a few remarks to conclude this section. This section is very 

much a methodological one. Its main goals are

(A) To spot some possible sources of misunderstanding in the long proof of 

theorem 2 .1.

(B) To make possible the use of a "not so heavy" notation in the proof of 

theorem 2 .1.

(C) To justify why we are not going to use either the classical "enlarging the 

original p-space ..."  or Berkes and Philipp Lemma A .l

The reader should keep this in mind when reading the proof of theorem 2.1.
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APPENDIX 2 -A

LEMMA 2 - A - l . Consider the following array of random variables 

*11

X21 x 22

Xn l . . .  Xnn

Let us assume that

(i) For each n, { X ^ , 1 < k < n} is a collection of iid random variables.

(ii) For each e >  0, P{ lX nj i > e nu } = o (l/n 1+t), where u and t are

positive real numbers.

( i i i )  J xdFn (x)  -  o ( l ) ,  where Fn ( . )  i s  t h e  d i s t r i b u t i o n  o f

I x K n

xnl •

(iv) Snn = Xnl + ... + Xnn = O p(nu).

Then

p { 1s nnI > enU} = o ( n _ t ) .

Proof. Consider the sequence of symmetrized random variables

^ ^ I
{x n k » l < k < n ,  n > 1} , i . e .  Xn^ = Xnĵ  -  Xn^  and

(x nk» * < k < n} is an independent copy of { X ^ , 1 < k < n}. Let us denote 

the median of a random variable Z  by /z(Z). It is easy to see that for any 

a , e >  0 we have

4 P( ' Xnl '  M xn l ) l  > < p{ ,xml I >

< 2P { |X n l -  a l  > j } ,  ( 1 . 1 )
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and hence, the symmetrized random variables Xnk satisfy (i) to (iv) above. 

Further, as Snn = Op(nu) we have /*( i Snn/nu i ) = o (l)  and thus

P { I s n n 1 > £nU} "  o ( n _ t ) ,  a l l  € > 0 

is equivalent to

p { |S n n /nU " M s n n /nU) 1 > €)  "  ° ( n “ t )»

all e >  0. Therefore (1.1) enables us to assume with no loss in generality that

(Xjjjj, n > 1, 1 < k < n} are symmetric random variables. Let us define

*nk

Also let us put

x nk l f  lXn k '  < nU

o i f  |XnkI > nu

^nn “  ^  *nk •
k=l

We have

n t p { l S n n l > nu €> < n 1+ t P{ |X n l | > nu}

+ n t p f l S n n i  > nu

-  o ( l )  + n t P { | S n n i > nu ^} . ( 1 . 2 )

Let r be an even integer such that r >  2 t+ l. We have

n t P { | S n n l > enu} < n t e“ r n _ u r . E | S n n l r

< n t - ^ e - r f n E X n i  + n ( n - l  ) E x J j2EXn2 + • • • } •  <1 -3 >

Let r = 2 i| + ... + 2im be a representation of r as a sum of positive even 

integers. The corresponding term in the right hand side of (1.3) is upper

bounded by

* 1 im
C . n t " ru+mEXn l  . . .  EXn l . ( 1 . 4 )
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Now notice that

EX22l| -  J x2J - 1P{ |Xn l | > x}dx

f y U (2 j - l )  P{lXn l , > yU-JyU-l^y 
0

o (n 2 j u - t _ 1 ) i f  2J U > t + 1 »

o ( l o g  n)  i f  2 j u  = t + 1 , ( 1 . 5 )

0 ( 1) i f  2 j u  < t +1

Now let us split the set {ij, j = l,...,m }  into the following three classes

L = {l j>  2 u *j < ^+ t }

E = { i j ,  2 u i j  -  1+*}

G = { i j ,  2 u i j  > 1+ t} .

Also let us denote the cardinalities of L, E and G by nE, n g  and n^j respectively. 

We have

nL + nE + nG m. ( 1 .6 )

It is easy to see, taking (1.5) into account, that (1.4) is bounded from above by

(n t-u r+ m + r-n Gt Nn p N . r. . ^  no '  u  . ( l o g  n) *•), i f  nE+nG > 0

0 ( n t - u r + m ) ,  i f  nE+nG = 0 , 

w here T = E ( 2 u i ? -  1 ) .  Now n o t i c e  t h a t
i j e c

t -u r+ m  < t = u r + r /2  = t -  ( u - £ ) r  < -  £, 

as u > 1 and 2t+l <  r. Thus

( I )  := n t-^ + m E X 2 }1 . . .  EX2 {m = 0 ( n " i )  = o ( l ) ,

if ng=nQ  = 0. On the other hand, if ng=nQ >  0 we can write 

T = u r  -  m -  A -  t n E ,

( 1 . 7 )
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where

A = I  (2u  j -  1 ) .
I j . L

Thus, if ng+nQ >  0 we can write (I) as

o(n t ' A' t(nE+nG) ( lo g  n ) 1̂ )  -  ( I I ) .

If n£+nQ >  1 then we have (II) = o( l )  (as A > 0). On the other hand if n £  

= 0 and nQ = 1 we have (II) = o(n~A) = o (l). Finally if n £  = 1 and n@ = 0, 

then we have n£  >  0 (if this were not so we would have t = ur-1 >  u(2t+l)  -  

1 > 2t), and thus (II) = o (l). Therefore

nt p { , Snn | > enu} -  o ( l ) .  ( 1 . 8 )

Equations (1.2) and (1.8) imply our result. □

LEMMA 2 -A -2 . Let P ^ } , n > 1 be a stationary absolutely regular process,

taking values in R. Suppose that

(i) E X 1 = 0

(ii) E iXj |2X(1+#) <  „

(iii) 0(k) < k " ' ,

where X > l , O < 0 < l , j ' > O  and {/3(k)} stands for the sequence of 

(absolutely regular) mixing weights relative to the process (Xn ). Assume that

(iv) v >  X(3+20)/(X-l).

Finally let y  and co be real numbers such that 0 <  7 ,0) <  1 and

(v) y ( v - l )  > 1

f . v 1 ^ ^ 1 n  v ( X - l ) -  2X(l+0) .
<v l > j;_1 < 70) < m i n { l , p + 2x( l+0)

Then for any 5 >  0

P { lS n l > 6  nA} -  o ( n " (e+1/(TC0))) ,

where e is a suitable positive real number and
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2 7 0 ( 1+0 )

Proof. Assumption (vi) implies that we can find t so that 

^ [ l  + 1 / ( 7 0 ) ] < t

< minfl,   —J—-r- -  1, -a; / 1— r —— - 1 1} • (2.1)v ’ 7 0 ( 1 + 0 )  ’ 2 \ ( l + 0 )  l 7 0  v y

Let us define

e -  [[*»*]]

m -  [ [ n 1 - * ] ]  .

By virtue of Theorem 1 in Yoshihara (1978) we can write

P{ I Sn | > 25nA} < Q P{ITm| > SnA/fi}  + n|3(C)

+ Q P { |X X| > 5 nA/G} = ( I )  + ( I I )  + ( I I I ) ,

where T u = + ... + Zu , with Z j, ..., Z m iid random variables such that Z j

has the same distribution as X j. Now, as

fin*"1 -  1 = o ( l ) ,

-  1 = o ( l )  ,

we can assume with no loss in generality that

G = n t

m = n ^ - t .

We have

( I I )  < n Q.~v = n 1""* < n " ( el +1/ ( T ^ ) ) f ( 2 .2 )

for a small positive real number as a consequence of the first inequality in

(2.1). On the other hand, we can write

P{ITmI > $nA/G} * P{ITml > 6mA/ ( 1" t ) . m- t / ( 1- t )}
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-  P { ITml > 5mu} , ( s a y ) .

Now notice that

u -  ( A - t ) / < l - t )  -  -  t ] / ( l - t )  > }

by our choice of t. Thus, the Central Limit Theorem implies that

Tm = op (m«). ( 2 . 3 )

On the other hand

P ^ l X ! |  > 5mu} = P{IZ] I  > 5mu}

-  m- 2 X (1+ 0 )u o ( i ) | ( 2 . 4 )

by Markov inequality and assumption (ii). Now, by Lemma 2 - A - l ,  (2.3) and 

(2.4), we have

P { |T ml > 5mu} — o ( m l " 2 X ( l + 0 ) u ) f

whence

( I )  -  CP{lTml > 5mu} -  o(mv ) ,

where

v  -  + 1  .  2 x <1+<,> r  1 t il - t  l - t  L 2 7 0 1 ( 1 + 0 ) J

-  + a x t ( i +o  -  i j ]

<  _  _ L  I _
l - t  yo) ’

by our choice of t in (2.1). Therefore we can write

(I) -  o O n - ^ + l / d - t X T o . ) ) ) ,

or

( I I )  -  o ( n ' ( c 3 + 1 / ( 7 w ) ) ,  ( 2 . 5 )

where e j  and C3 are suitable small positive numbers. Finally (2.4) implies
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where

( I I I )  -  o(C .m_2X(1+0)u) = o ( n s ) ,

s -  t  -  2X(1—0) ,  -  t ]2'ya)(l+0 )

< - ( e 3 + L ) .  ( 2 .6 )

(2.2), (2.5) and (2.6) imply our result. □

LEMMA 2 -A -3 . Let {>^}, n > 1 be a zero mean stationary absolutely regular 

process taking values in R. Suppose that

( i )  EiX1 i 2 x <1+0) < oo,

( i i )  0 (k ) < k -» \

where X > 1 , O < 0 < 1 ,  v >  0 and {j3(k)} stands for the sequence of 

(absolutely regular) mixing weights relative to the process {Xn }. Let us also 

assume that

(iii) v >  X(3+20)/(X-l).

Let y  be any real number satisfying

x 1 ^ n  v - 1 - 0  v ( X - l )  -  2X(l+0)-,
<l v > „ + 2X( l+0)  J*

Take 6 >  0 and assume that for n > nQ (say) we have

(v ) c = c ( n , 5 )  := max P { | S n - S j |  > 5A} < 1,
j<n

w here Ss = I  Xk , and  A -  A(n) -  n V ( 27 ( l +0 ) ) . Take h > 0 , t h e n  f o r  
k= l

n large enough we have the following Ottaviani-like inequality

n (7 - ^ / T
P{ max |Sk l > 46A} < 2 ( l - c )  ~l [ P { | Sn l > 5A} + -------------r-p -]

l<k<n ( l o g  n)

Proof. Let us define T = min{k; iSk i >  45A, 1 < k < n}. Put
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R = (k  < n ; P{T=k) > l / [ n V 7 . ( l o g  n ) ^ +^ ] } ,  and  

R -  { 1 , 2 , . . . ,n} -  R.

We have

P { | S n l > 25A, max |S k l > 45A} 
k<n

> I  P { l S n -Sk l < 26A, T =k}. ( 3 . 1 )
k<n

Take k e R.  We have

P { l S n -Sk l < 25A, T=k}

= P{T =k}[1 -  P { l S n -Sk i > 25A, T = k}/P {T «k}]. ( 3 . 2 )

Now Let o) e (0,1) be so chosen that

1    ' - I - *  K X - l )  -  2 X ( l + 0 ) ,
v - \  7 (  ’ ( 1 + p ) ( 1 + 0 ) ’ v + 2X(1+0)

Notice that the existence of such oj is guaranteed by assumption (v) above. Let 

us denote

P -  [ [nw] ]. ( 3 . 3 )

We have

p{ I s n”s k * > 25A» T=k)

^ p 0 ^ n “^k+pl ^  T=k} + P { l S k+p- S k l > 5 A}

= ( I )  + ( I I ) ,  ( s a y ) .  ( 3 . 4 )

We have

( I )  < P { lS n - S k + p i > 5A}P{T=k} + /3(p)

< P{T=k}[c + | 3 ( p ) n V 7 ( l o g  n ) ^ +^ ]

< P{T~k}[ c + n - Wv. n V 7 ( l o g  n ) 1+h]

= P{T=k}[c + o ( l ) ] ,  ( 3 . 5 )

where for the first inequality above we have used the simple fact that a(A ,B )  <
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@(A,B) for any pair of o—fields A,  B. For the second inequality above we have 

used the definition of c (assume WLG n > no) and the fact that k e R .  Finally 

the equality holds by virtue of our choice of w. Now, in order to obtain a

bound for (II) we will apply Lemma 2 -A -2 . Notice that

( I I )  -  P { lS k+p-S k l > 6A}

<» P { l S p l > i  pB},

where B = l/[2*ya>(l+0) ]. Assumptions (i)-(vi) in Lemma 2 -A -2  are obviously in

force and thus we obtain

( I I )  «  P{ ISp I > 6 pB} -  o ( p ‘ ( £ + 1 / ( 7 “ ) ) )

-  o ( n ' ( f  + 1 / 7 ) ) ,  ( 3 . 6 )

where c and e ' are suitable positive real numbers. Thus

p { l s k + p - s k '  > 6A> "  P { T - k } . o ( l ) .  ( 3 . 7 )

Now (3.2), (3.4), (3.5) and (3.7) imply that

I  P { l S n -Sk i < 25A, T=k} 
k eR

> I  P{T =k}[1-c  + o ( l )  ] 
k  eR

> i  I  P { T = k } ( l - c ) ,  ( 3 . 8 )
k eR

if n is large enough. On the other hand

I _ P { l s n - s kl  < 2SA, T=k} > 0 
K eR

> I_P{T=k} -  n / ( n V 7 ( l o g  n ) ^ +^ ) .
KeR

Therefore

P { | S n l > 25A} > P{ISn I > 26A, max |S k l > 45A}
k<n

> l z £  [ I  P{T=k}] -  n ( 7 - 1 ) / 7 ( l o g  n ) " ( 1+h)
k<n
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= P{max |Sj^| > 4{A} -  n ( 7 “ l ) / Y ( l o g  n) ( 1 +^ ) .  □
k<n

LEMMA 2 -A -4 . Let {X ^, n > 1 be a zero mean stationary absolutely regular 

process taking values in R. Suppose that

(i) E iX ^ M I + A )  <  co

(ii) 0(k) < k-",

where X >  1, 0 <  0 <  1, »> >  0 and (|3(k)} stands for the sequence of mixing 

weights relative to the process {Xn }. Assume that

(iii) v >  2X(l+0)/(X-l).

Let y  be any real number satisfying

y , x 1 /  ^ • n  ( k - 1) 1 U( i v )  -  < 7  < min { 1 , 2 x ( 1 + t ) , 1̂  -  7 } .

Take 5 >  0. Then

P { | S n i > 5A} -  o ( n _ ( 1 "7 ) ( 1 + e ) / T ) ,

where e is a suitably chosen positive real number and A = A(n) = n ^ (2 y (l+ 0 ))

Proof: Assumption (iv) enables us to obtain t such that

—  < t < min f l ,  7?—t t t —ttt> / ■y ^  *  \  ~  ( 4 . 1 )y v  v ’ 27X ( l+ 0) ’ 7 ( 1+0 ) s

Let us define

Q = [ [ n t ] ]

m = [ [ n 1 - t  ] ].

By Theorem 1 in Yoshihara (1978) we can write

P { | S n i > 5A} < Q P{ lTml > 6A/Q} + n/3(Q)

+ C P{ I Xj |  > SA/Q} -  ( I )  + ( I I )  + ( I I I )  ,

where T u = Z j + ... + Z u, with Z l. • • •» z m iid random variables such that Z j 

has the same distribution of X ]. We can (and we will) assume WLG that (cf.
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the proof of Lemma l -A -2 )

6 = n*

m = n ^ _ t .

We have by (4.1)

( I I )  -  n 0 ( £ )  < n Q -p -  n 1""* < n ' ( 1 ( 1 + f l >' y ,

where ej is a suitably chosen small positive real number. On the other hand

P { l T ml > 6A/C} « P { l T ral >  JmB} ,

1 1
where B = -j—-  [ ^ ( l'+fl) ~ * ]  > b e c a u se  o f  o u r c h o i c e  o f  t .

Therefore

T,„ -  Op(raB) ,  ( 4 . 2 )

as a consequence of the Central Limit Theorem. Now

P { | Z j |  > m®} * o(m“2X(l+0)B) , ( 4 . 3 )

by virtue of Markov inequality and assumption (i). Thus a simple application of 

Lemma 2 -A - l  yields

P { |T ml > 6m®} = o (m l"2X ( l+0)B )  . ( 4 . 4 )

Hence

( I )  = o tem 1- 2 ^ ^ ) ® )  = o (mt / ( l - t )+ l  ~2X(1+0)B)

But

^  + 1 -  2X(1+#)B -  ^  [1  -  £  + 2X(1+D)t ]

< -  T3T ■ <1 + £ 2 ) ' <4 ' 5 >

where e j is a small positive real number, by (4.1). Therefore

( i )  -  0 (B- 0 - 7 > 0 + « 2 > / [ y ( i - t > ] )

-  o ( n - ( 1 'T ' ) ( 1 + e 2 ) / '>') . ( 4 . 6 )
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Now (4.3), Markov inequality and (4.1) entail

( I I I )  -  o ( n " (1^ y ) ( 1 + C 3 ) / 7 ) .  ( 4 . 7 )

In order to finish the proof take e = min ( e j ,  C2» 63} amd consider the bounds 

for (I), (II) and (III). □

LEMMA 2 -A -5 . Let (Xjj), n > 1 be a zero mean stationary absolutely regular 

process taking values in R. Let (|3(k)}, k > 1 be the corresponding sequence of

mixing weights. Assume that

(i) E lX j  |2X(l+0) <  «,

(ii) 0(k) = k - \

where O < 0 < 1 , X > 1 ,  v > 0. Let us define

%  "  *k  I { ' XkI > N«},

Zk -  x k -  Wk ,

wk = Wk -  EWk> and

Zk = Zk EZk>

where N > 1 is an integer and a  = l / 2 y \ ( l + 6 ) ,  with 0 <  y  < 1. If we 

assume that

( i i i )  0 < a 2 -  EX? + 2 I  EX!Xk .
k>l

Then

|<T2 -  var (N “ i (Z\ + . . .  + ZN) ) |  -  0(N~U) ,

where

u -* max{[X(l+0)  -  1 ] /2X 7( l+0 )  -  1 / 7 *', 1 -  l / y ( v + l ) }

provided

(iv) y v  >  1 .
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Proof. We have

V a r ( N - i ( Z !  + . . . + ZN))

_ 2 N - l   N-l
= EZi  + 2 1  EZt Zk+1 -  2N" 1 E kEZ1Zk+1 

k-1  k-1

N-l _  N-l
-  E ^ - W j ) 2 + 2 1  E(X1-W1) (Xk+1-Wk+1) -  2N' 1 I  ^ E Z ^ Z k+ l

k-1  k-1

-  ( I )  + ( I I )  -  ( I I I ) .  ( 6 . 1 )

It is easy to see that

( I )  -  EX| -  EW2 -  E2W!. ( 6 . 2 )

But

lEWj + E WjI < 2  EWj -  2 E x f l { | X 1 l > Na }

< 2 E|Xj  i 2M 1 +0 ) / n ( x O + 0 ) - 1 ) A 7 O + 0) . ( 6 . 3 )

On the other hand

N-l N-l _  N-l
( I I )  = 2 1 EXjXk+1 -  2 E EW!Xk+1 -  2 I  E X ^ + j

k-1  k-1  k-1

N - l   N-l
+ 2 1  EW!Wk+1 - 2 1  EX!Xk+1 -  ( IV) -  (V) + ( VI ) .  ( 6 . 4 )

k-1  k-1

Let us define

M -  [ [N€ ] ],

where € = \ l 2 y v .

Take K < M. We have

ESl xk+ l -  Ewl x k+1 < l|Xk+l*l2| l * l ,,2 • <6 -5 >

The above inequality and (6.3) imply

EWjXk+i «  k -<X (1+. ) - 1) / 2X7 (X+ . )  (6  6)
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On the other hand

I E ^ X k + j I  < 12ll« 'lll2x ( 1+ 9) llXk+l l l2x ( 1+ s ) [ e ( k ) ] 1 ' 1 /X < 1+ 9) ,

by a well known inequality [see e.g. Roussas and Ioannides (1987]. Therefore 

N
I  EW!Xk+1 < I  l E W j X ^ I  

k=M+l k>M

«  m- ( 1- 1/ X ( 1+ 9 ) ) + 1 (6 7)

Now (6 .6) and (6.7) yield

N
I  

k=l
( I V )  -  I  EWjXk + i  «  mn' ^ 1+^ ' 1 ^ 2X’1̂ 1+^

+ M->’( i - i / x ( i + « ) ) + i  ^  N- Ui (6  g)

by our choice of M. Similarly we can show that

(V) «  (VI) «  N~u . ( 6 . 9 )

Now let 6 = l / 2 y ( y + l )  and L = N 5. We have

L   N
( I I I )  = N"1 I  kEZjZk + N_1 I  kEZjZk

k=l k=L+l

= (VII)  + ( VIII ) .

Schwartz inequality implies

(VII)  = 0(N~S) , ( 6 . 1 0 )

where

s = 1 - 1/ y ( v+1) .

On the other hand an argument similar to that used to obtain (6 .8) yields

(VIII)  «  L“t N"1 «  N - ( 1+6t>

where
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* =  v [ l  x ( l + 0 ) 1 " 2 '

After some arithmetic we obtain

1 + 6 t  > [ X ( l+ 0 )  -  l ] / 2X7 ( l + 0 ) -  1 / y r ,

and therefore

( V I I I )  -  0 ( N ”U) . ( 6 . 1 1 )

Now (6 .8), (6.9), (6.10) and (6.11) yield 

2 N
I EX| + 2 1  EXjXk -  Var [N -^ (Z!  + . . .  + ZN) ] l  

k=l

-  0(N_U) .

Hence, in order to conclude the proof we need only to show that

I I  EX]Xk | -  0 (N_U)
k>N

which can be proved using the same arguments as in (6.7). □

LEMMA 2 -A -6 . Let {Vn }, n )  1 be a zero mean stationary absolutely regular 

process taking values in R^. Let (|3(k)} be the corresponding sequence of mixing

weights. Assume that

(i) E iV j  | 2X(l+0) <  a,

(ii) 0(k) = k -" ,

where O < 0 < 1 , X > 1 ,  v > 0. Let us define for j = l , . . . , d  

Wjl = V|f I { I I  > N“ } ,

4  -  v i  -  K  ,

= wk “ EW|{. and

z l  -  z [  -  EZjj ,

where N > 1 is a fixed integer, a  = l / 27X(l+0), with 0 <  7  <  1 and {V^},
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k > 1, j = are the coordinate processes of {Vn }, n > 1. Assume that

( i i i )  Q -  EVjvj + I  EfVjvJ + VkVj ]
k>l

is a positive definite matrix. Then

llfi -  c o v C N -^ Z !  + . . .  + ZN) ) | |  -  0(N“U) ,

where we have denoted

z k -  (Zfc z^ ) ,

and

u = m a x { [ \ ( l + 0 ) -  1 ] / 2 \ 7 ( l + 0 ) -  l / y v , 1 -  1/ 7 (p+1 ) } ,

provided

(iv) y v  >  1 .

Proof: The proof consists of showing that each element of the matrix

n -  cov(N“ i(Zj  + ... + is 0 ( N -U), which can be shown using the same

sort of arguments we used in the proof of Lemma 2 -A -5  and Schwartz inequality 

at the appropriate places.
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APPENDIX 2-B

LEMMA 2 - B - l . Let ( X ^  be a sequence of identically distributed random 

vectors taking values in R^. Suppose that E i X j i*  <  <», t >  1. Let us define

Z„ "  X n ' { ' x nl < 2m /t} .

for 2m “l <  n < 2m . Then we have 

N
1 xk -  [ zk -  EZk]  " o ( NVt )  a . s . ,  

k=l

provided that EXj = 0.

Proof: As EXn = 0 we have

x n -  [Zn-EZn]  "  x n I{ lX n l > 2">A} -  EXn I{ lX n l > 2">A},

for 2m - l <  n < 2m . Let us denote

H(n) -  2™A i f  2m" 1 < n < 2m, m > 1.

We have

Xn1{ Ix nI > H<n )} * 0 i f f  |Xn» > H<n > •

Also

I nP{lXn l > H(n)}  < I m2n>P{,X2ml > 2™/‘ }

-  I ^ P t l X ! ^  > 2">}. ( 1 . 1)

But E i Xj i *  <  oo implies I P { | X j  |* > K} <  oo and thus (as P f i X j i 1 >  K} is 

nonincreasing in K)

Z2mP { |X 1 11 > 2m} < oo. ( 1 . 2 )

(1.1), (1.2) and Borel-Cantelli lemma imply

P{ |Xn i > H(n) i . o . }  = 0
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and thus (as H(n) -» oo) 

n
I  Xk I{ |X k l > H (k)} -  0 (1 )  = o (H (n ) ) a . s .  ( 1 .3 )

k= l

On the other hand if 2m 1 <  n < 2m then

E IXn 11 { IXn I > H (n)}  -  EIXn 11 { IXn I > 2™/*} 

< [ EI Xn | 1 1 { | Xn | > 2”>/*}]

whence

n
[ I  E|Xk l I { | X n l > H ( k ) } ] / H( n )  

k=l
m

< [ I  2JEIX! | I { | X !  | > 2 j A }  ] /H (n )  
J-l
m

< [ I  2 j E | X ] 1 1 1{ |Xj I > 2 j / t } 2 ~ J ( t - 1 ) / t ] / H ( n )
J-l

m
-  [ I  2 j E | X 1 l t I { | X 1 l t > 2 J} ] /H(n)

J-l
m m

«  [ I  2 J / t E | X 1 l t I { | X 1 l t > 2 J} ] /  I  2k / t
J - l  k=l

= ( I )

Now as E iX j i*1 { |X j i* >  2J} = o (l), a simple application of Toeplitz lemma 

shows that

( 1) = o ( l )

and thus

n
I  E |X k I I { IXk I > H (k)} -  o (H (n ) )

k= l

along with (1.3) imply the lemma. □

The following Lemma is not original. It is just a restatement of Theorem 7
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in Einmahl (1987) in a more rigorous and convenient fashion.

LEMMA 2 -B -2 . Let A W j AWn be zero mean independent random vectors

taking values in Rd and defined on (0,F,P). Assume that there exists a random 

variable U, uniformly distributed over [0,1] defined on (0,F ,P) and independent of 

(A W |,...,A W n). Let us suppose that

,AWkl < J 4^d a . s . ,  k  -  1, . . . ,n ,

where <pn  (^n) is the smallest (largest) eigenvalue of Tn := cov(AWj + ... + 

AWn)» Pn := lAW kl^], e e (0,2). Then there exists a random vector

T n defined on (0,G ,P) taking its values in Rd such that

Tn - N(0,rn)
ElTn -  (AWt + . . .  + AWn ) l 2 < Df vtnPn*f .

where D £ is a positive constant depending on e and d only, and G  = 

< j(A W |,...,A W n , U ). Further T n admits of the following representation

Tn = Z! + . . .  + Zn>

where {Zk}, 1 < k < n is a collection of iid random vectors defined on (fi,G,P)

and Z | is Gaussian.

P roof: We can assume without loss of generality that pn < £. Let Gn be the

distribution of r"£ lfA W k. Let us define

X (F ,C ,5) -  sup{F(A ) -  C(A5) } ,

where the sup above is taken over all closed sets A in and F and G are

distributions in Rd. From theorem 6 in Einmahl (1987) we infer that

X(Cn , N (0 ,1 )  , Cf p J , '€ /2 ) < c ’ pn . ( 2 .1 )

where C e and are positive constants depending on e and d only. Now 

approximate Sn = f~ ilfA W k by a discrete random vector S* such that



50

P { l S n - S * l  >  ( 1 / 3 ) C cp J ' e / 2 }  -  0 .  ( 2 . 2 )

Denote by G* the distribution of S*. A triangle inequality argument for X(.,.,S) 

yields

X(C*. N ( O .I ) ,  J  C£pJ,‘ e / 2 ) < CePn • (2 -3 )

Now let V j,V 2,...,C jvi be iid random variables uniformly distributed over [0,1] such 

that each is a measurable function of U, where M >  dn. The existence of

such random variables can be shown as follows. First we construct two random

variables U j and U2 which are independent, uniformly distributed and measurable 

functions of U (for instance let the binary expansions of U j and U 2 consist of 

alternating digits in the binary expansion of U). Carry on in an inductive 

fashion. Let us denote by the distribution of a standard d-variate normal 

random vector. By virtue of Strassen-Dudley Theorem [see Dudley (1968), 

Theorem 2] and (2.3) we obtain a probability measure Q defined on the Borelians 

of Rd ® Rd such that Q admits of G* and F^ as its marginals and

Q { ( x , y ) ;  i x - y i  >  ^  Ccp i “ 6/ /2) < Cep „ .  ( 2 . 4 )

Now Lemma 2.4 in Berkes and Philipp (1979) and (2.4) imply that we can 

construct a standard d-variate normal random vector T* on (fi,G i,P) such that T*

and S* have joint distribution Q, where G \  = (r(A W | AWn ,V |+ nci) . From

(2.2) and (2.4) we conclude

P { l S n - T * l  >  2CeP n ~ e / 2 }  < C£p® . ( 2 . 5 )

Now argue as in the proof of Theorem 7 in Einmahl (1987) to obtain

ElAWj + . . .  + AWn -  r *  T * | 2 < Df * np2 ‘ C. ( 2 . 6 )

Put T n = T^T*. To conclude the proof we must show the existence of 

Z j , . . . ,Z n , such that T n = Z j + ... + Z n , with {Z^, 1 < k < n} iid. Let X j 

and X2 be independent zero mean d-variate Gaussian random vectors with fu ll-
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rank covariance matrices. It is not difficult to show that there exists a matrix

A2 such that

EXj K X j + A2X2 ) ~  N ( 0 ,0  c o v  (Xa ) ) I , ( 2 . 7 )

where 0 <  0 <  1. Now using V-j.....V^ construct via quantile functions a

standard d-variate normal random vector X2 (which is necessarily independent of

Tn). Choose A2 as in (2.5) with 0 = 1/n and X | = T n . Write

Zj =  ETn l ( T n + A2 X2 ) ,  ( 2 . 8 )

Tn “ Zl + Tn -  Z j  . ( 2 . 9 )

Notice that Z j is independent of Tn -  Z j. Let us denote ^ n -1 “  T n- Z j . 

Construct, using V ^+ i,...,V 2cj a standard d-variate normal random vector X3. 

Notice that X3 is independent of (Z |,T n_^). Choose A3 so that

c o v (Tn - l ,Tn - l  + a3x3> = ^ cov <Tn)

and denote

Z1 " ETn - l ' Tn - l  + a3x3

Tn -2  = Tn -1 " z 2 •

It is easy to see that Z j, Z 2 and T n_2 are independent. Carry on inductively 

and put Zn = T | .  □
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APPENDIX 2 -C

Proof of Theorem 2 .1 : Let us denote for m > 1

Jm -  {2m+ l ...............and

Jo  “

Let 7r and y  be positive real numbers such that ir < y  <  1. tt and y  will be 

chosen more precisely later on. Consider the partition of J m into consecutive 

nonoverlapping blocks

^l,m » ^ l,m » • • •> ^u,m» ^u,m» ^u+ 1 , m»

where

and

#  Ck>m -  [ [2mT] ]

# Pk.m -  [ [2mT] ], 1 < k < u

u -  u(m) — [ [2m/ ( [ [2mT ] ] + [ [2mff] ] ) ]  ]

-  [ [2™(1-T )]  ],

where [[x]] stands for the integer part of x. One obviously has

# PU+l,m < [[2™^]] + [ I 2”1 ] ]  •

We can assume with no loss in generality (see section 2.5.1) the existence of a 

sequence {Un } of random variables defined on (fi,F,P) such that

-  The Un 's are iid

-  U j is uniformly distributed over (0 ,1), (2 .1)

-  {Un } is independent of {Xn }.

Let us define

X r  = X kI{lX k l < 2m/ 2x O + 0 )}  -  E X r I { | X r |  < 2m/ 2 x ( 1+0)} ,

where 2m -l  <  k < 2m . Also let us put
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,m “  ^  *k »
keGt,m

Vt > m -  I  Xt , 1 < t < u and
k f P t,m

^ u + l ,m  “  ^ *k •
^ P U+1 ,m

Now Lemma 2 -B - l yields

lSn- S n l -  o ( n V 2 ( l + 0 ) )  a . s .  ( 2 . 2 )

where

n _
Sn — L Xĵ  , 

k=l

with

*k  = *k k 6 Gt m* f ° r  some t f 01

= Xj(. o th e r w is e .

Now by Berbee's Theorem and (2.1) we can find random vectors AWt m , m > 0, 

1 < t < u(m) such that

AWt m and Wt>m are identically distributed (2.3)

AWt m is independent of

{AWS q, s < t and  q = m o r  q < m and  l < s < u ( q ) }  ( 2 .4 )

-  P{AWt ,m + Wt.m) < P ( [ ( 2mT] ] ) -  ( 2 -5>

A simple induction argument shows that {AWt m} is a (double) sequence of

independent random vectors. From now on we will drop the double bracket 

symbol from quantities like [ [2m?r] ]. In other words we will assume that 

[ [2m7r] ] = 2mir. It is easy, though rather tedious, to show that it does not 

represent any loss of generality so far as our results are concerned. Now (2.5) 

and Borel-Cantelli imply

P{AWt * W t>m i . o . }  -  0 ,  ( 2 . 6 )
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provided

I  2m( l ”Y)/3(2m7r) < oo,

which holds true if

1 - y  < v v . ( 2 .7 )

A similar argument shows that there exists a double sequence of random vectors

{AVt>m}, m > 0, 1 < t < u(m) such that

AVt>m and Vt>m are identically distributed (2.8)

{AVs>m, m > 0, 1 < s < u(m)} is a collection of

independent random vectors (2.9)

-  P{AVt>m T Vt .m} < (3(2m 7) (2.10)

-  p {A vt,m  =f Vt>m i.o.} = 0 if (2.7) holds

true (notice tr <  7 ). (2 .11)

Now let us denote

,m = {a t,m » a t ,m  + 1 > • • • >bt ,m }»

^ t ,m  = { c t,m» c t , m +  ̂ > • • • » , m} •

Let n be such that 2m -l <  n < 2m . We have

m-1 u (q )
I I  

q=0 s = l
I Sn I  AVS ^ q -  I  AWS ,q l  < I I  E Vs } q AVS  ̂q I

m-1 u (q )  t
+ I I  I  Ws  ̂q -  AWg «l  + max I I  Vs   ̂m -  AVS  ̂m I 

q=0 s = l  l < t < u ( q )  s = l

t
I

l < t < u ( q )  s = l

s
+ max max I I  Xk |

l < t < u ( q )  c t m < s < d t m k = c t m

s
+ max max I I  Xk I

l < t < u ( q )  a t>m< s< b t>m k=at>m

m-1 2^
+ 1 1v u ( q ) + l , q 1 + max I I  Xk l

9*0 ^ u (m )fm< s^^m ^= ^+^u(m ),m
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= (I) + (II) + ... + (VIII),

where l '  ( l" ,  respectively) stands for the summation over the pairs (s,q) such that 

cs,q ^  n (as,q ^ n * respectively). Now if (2.7) holds true then (2.6) and (2.11) 

imply

( I )  + . . .  + (IV ) -  0 (1 )  -  o ( n V 2 ( l+ 0 ) )  a . s .  ( 2 .1 2 )

Now choose 5 >  0

max P { lX ; + . . .  + X I > 52m //2(1+0)}
j< 2m7r 2mir

< max P{lX : + . . .  + X | > 62m //2(1+0)}
j <2nry J 2m7

< 6-2  max ElX j + . . .  + X , 2 / 2m/ ^ 1+0) .
j< 2 mV 2mY

Standard arguments (similar to those employed in the proof of Lemma 2 -A -5 ) can 

be used to show that

E|Xj + . . . + X , 2 «= 0 ( 2 m7 ) .
2nry

Whence if m is large enough and

y < T ± e -  <2 - 13>

we obtain

max P { |X j + . . .  + X I > 52m>/2(1+0)} < * . ( 2 .1 4 )
j ^ 2m7r 2m7r

Now Lemmas 2 -A -3  and 2 -A -4  and (2.14) imply

P{ max iXi + . . .  + Xk l > 52m//2^1+ 0)}
l< k< 2m7r

< P{ max |Xi + . . .  + Xk | > 52m //2(1+0)} 
l< k<2ray

-  0 ( l / 2 m (1"7 ) m1+h) , ( 2 .1 5 )
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where h >  0 , provided

1 . . . f1 X-l 1 1 v - 1 - 6  v ( \ - \ ) - 2 \ ( \ + 6 ) y
v _ x < y  < m m { l , 2x ( l + 0 ) ’ 1+0 " ? ’ ( 1 + O O + 0 ) ’ y+2X(l+0) J <2 - 16)

Now stationarity and (2.15) imply

I  P{ max max I £ Xk l > $2m/ 2 ^ +<̂
m-1 l< t< u (m ) c t>m< s<dt>m k=ct m

< I  2m^1_7 )p {  max |Xt + . . .  + Xk l > 52m/ 2 (1 + 0 )} 
m=0 l< k<2m7r

< oo (2 .1 7 )  

Borel-Cantelli and arbitrariness of 6 imply

(IX ) -  max max | L Xk l = o (2 m/̂ 2 ^ + ^ ) ,
l< t< u (m ) c t>m< s<dt>m k=ct>m

almost surely. Now as (V) < (IX) = o (2 (m_l) /2 ( l+ 0 ) )> almost surely and 

n > 2(m~1) we obtain

(V) = o ( n 1/2(1+<?)) a . s .  ( 2 .1 8 )

Now notice that

s
(V I) < max max I I  Xk l

l< t< u (q )  a t>m<s<bt>ln k - a t>m

n
+ I  lXk -  Xk l . 

k= l

The first term in the above inequality is o ( n ^ 2(^+^)) almost surely by the same

arguments we used to deal with (V). The second one is o ( n ^ 2(^+^)) by virtue

of Lemma 2 - B - l .  Thus

. . . . .  l / 2 ( l + 0 ) .(V I) = o (n  ' ) a . s .

As far as (VII) is concerned it is not difficult to show that (2.13) yields

1 p { ' v  / -,+1 ' > 82m /2 (1 + 9 )} < « ,L u (m )+ l,m  Jm
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for any 5 >  0 .

Therefore (Borel-Cantelli)

v „  / v ™  t ~ k / 2 ( l + d )

1 , v u ( m ) + l , m l < c (w> + 1 5 2

k=l  k-1

< C(o>) + 25 2 m / 2 ( 1 + 6 \  a . s .

which yields

? „ /om/ 2 ( l + 0 h
£  u ( k ) + l  ,k '  -  0 ( 2  > a - s '

whence

. . . . . .  l / 2 ( l + 0 ) .(VI I )  = o ( n  ) a . s .

Finally, it is not difficult to show that (VIII) = o (n ^ ^ (^ +0)) almost surely using

Lemma 2 -A -3 . Thus we conclude that

|Sn -  l'AVSfq -  l"AWs>q| < ( I )  + . . .  + (VIII)

, l / 2 ( l + 0 ) . 1Q.= o ( n  ' ) a . s .  ( 2 . 1 9 )

Now notice that by Kolmogorov's inequality (multivariate)

P{ max I Z AVĵ  ^l > 5 2m//2^*+ ^ }  
l<s<u(m) k=l

< d Z E|AVS ml 2 /  522m /(1+ 0) 
s= l

«  2m(1_^) 2mT/ 2 m/ (1+e)  . (2 .20)

(2 .20), and some standard manipulations imply that

Z ' AVS ^q = o ( n 1 /2 (1 + 0 ) ) a . s .  ( 2 . 21 )

provided
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1-7 + » < • (2-22)

Now we will show that we can construct independent random vectors {AZs>q}, q >

0 , 1 < s < u(q) such that AZS q is normally distributed with zero mean and

cov(AZS q) = cov(AWs>q). Such random vectors will be shown to satisfy

00 S
1  P{ max I E AWk>m -  AZk ) ln l > t 2 m / 2 ( 1 + 9 ) } <  <» 

m=l l<s <u (m) k - l

for any e >  0. Let us assume that

7  < ( X - l ) 2 X ( l + 0 )  . ( 2 . 2 3 )

Take a  such that

1  + X ( W  < «  < 1-T  ■

and ( 2 . 2 4 )

1a + 7 < 1+0

Assume without loss of generality that 2m a is integer,

T -  EXjxj + I  EXjxJ + EXkx [  = Id . ( 2 . 2 5 )
k>l

Now Lemma 2 -A -6  implies, in particular, that

lir -  2 _mY/2Cov(AWk m)ll < 1 / 2  ( 2 . 2 6 )

if m > mQ. Let us denote N = 2 mot, L = 2m( l “Y)/N. Also, let us define for 

1 < j < L

- 3 / 2  ^  i 3
^ k ,m *  »

k = ( j - l )N + l

where <pj (\pj, respectively) is the smallest (largest) eigenvalue of

Hj = I  cov(2 ^^AW. ) .  Now (2 .26 )  y i e l d s
J ( j-D N + 1  k ’m
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* N < ^ > j < ^ j < § N ,  1 < j < L . (2 .26)

On the other hand

E i a ' ^ A W k ^ l 3 < 2 - mT'/22raT'2m/2X(1+ # )E l2 - mT'/ 2 AWk iln | 2

«  2rr' ' / 22ra/ 2X^ + 9  ̂ , (2 .2 7 )

by Lemma 2 -A -6 . Now (2.27) and (2.26) imply

p j  «  N- i 2mT'/22m/ 2X(1+9)

«  [ 2-mo+my+m/x( l + « ) j i  _ (2 2g)

for all 1 < j < L = L(m).

(2.28) and (2.24) show in particular that pj = pj(m) = o (l) . Now take e >  0

such that

1 < (1 -  e / 2 ) ( a  -  7  -  l /X ( l+ 0 ) )  + l / ( l + 0 ) .  (2 .2 9 )

Such a choice is possible because of (2.23) and (2.24). As pj = o (l)  we obtain

0 om /2X (l+ 0 ) 0nry/2  e . . ... . .
2 ' 2 -2 4 U j l  l0 g  ’

for all m > mj (say) and 1 < j < L = L(m). Whence 

l2 _m7 / 2AWk(m | < ^  ( p j  lo g  ( l / p j ) ) *

Using Lemma 2 -B -2  we obtain independent random vectors A Z ^ ^  such that 

AZk ra -  N(0,cov(2-">7/2AW kirn) )  (2 .3 0 )

and

n v v /2  2
E [ | 2  "> /  I  AWk _m -  I  AZk _ml ]

k-(j -l )N+1 k - ( j - l )N + l

< Df ((j p j ' e _ (2 .3 1 )
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for all 1 < j < L and m > max{mQ, m^}. Now (2.28) and (2.26) imply that 

the right hand side of (2.31) can be bounded from above by

r m = Dg 2ma{2_mOf+m,y+m//X^1+0  ̂ ] ( 1_c/ 2 > (2 32)

Take S >  0 and define for 1 < t < 2m^ “T)

t
ASt -  I  AWk m , 

k= l

t
I

k = l
A lt "  S AZk,m  •

From Kolmogorov's inequality (multivariate) we obtain

P{ max l 2-"r >'/ 2 ASiN -  ATiNl > j 2"> /2 ( l+ » )2 -m7/2} 
l< j< l

< d_ 2 - m / ( l + « ) 2my £ E|R 2 ( 2 . 3 3 )

i 2 j - l  J

where we have put

nrv/2 JN
Rj “  2 I  AWk>m -  I  AZk>m .

k = ( j - l ) N + l  k = ( j- l)N + 1

By (2.32) we can bound the right hand side of (2.33) by

' _ d ' 9 - m / ( l+ 0 ) omr 9 -mcH-mY+m/X(l+0) . . ( l - e / 2 )Tm -  —  u e Z j
b2

From (2.29) we obtain I  <  <». Therefore

I  P{ max |A S jN -  2nry/2ATjN l > 62m /2 (1 + 0 )} < ~  ( 2 .3 4 )
m l< j<L (m )

From Kolmogorov inequality we obtain

P{ max |ASk -  A S (j_ 1 )N l > 62m /2 (1 + 0 )}
(j-l)N < K < jN

< - --------- ?-------  N ElAWj ml 2 «  N2my2 _m/ (1+0)
b2 2m /( l+ 0 )

«  2m(Q!+7 ) 2 - m/ ( 1+ 0 ) ) , ( 2 .3 5 )
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where the second inequality holds true by virtue of Lemma 2 -A -6 . Therefore if 

m is large enough (2.24) yields

max P{ | AS j N -  ASk i > ^  2m/2(1+<?)}
(j-l)N<k<jN

< P{ max IASk -  AS( j _ 1 ) n | >  ^  2m / 2 ( 1 + 0 ) }
(j-l)N<k<JN

< i .

Ottaviani inequality yields (if m is large enough)

P{ max lASk -  AS( = 1 ) N I > i  2m / 2 ( 1 + # ) }
(j- l)N<k<jN

< 2  p{ ' AsjN -  AS( j - l ) N l  > J  2 m / 2 ( M ) }

< 2 P { l R j , > |  2™/2 ( l+ « ) 2 -">Y/2}

+ 2 P{lATJN -  AT( j . 1 ) n i >  j  2ra/ 2 ( 1+« ) 2 - mT / 2j .  ( 2 . 3 6 )

Hence

r . „ ^m /2 ( l + 0 )-,P{ max max lASk " A S n . j j i j I  > 6 2 '  }
l< j< L  ( j- l)N < k < JN

< L P{ max IASk -  A S (j_ 1 )N l > 6 2m/ 2 <1+e>}
( j- l)N < k < jN

. .  ' , i d r , at at  , .  5 om/ 2 ( l + 0 ) o -my/ 2 1

^  r m + ^  P { I AT j  n  4 J

«  r'm , ( 2 .3 7 )

where the last inequality can be obtained by an exponential inequality for normal 

random vectors and the fact that

E lA TjN -  AT( J . 1)N I2 -  o ( 2 'm /1+92"ry2 ' m f' )

for some small e ' >  0 (note (2.30) and Lemma 2 -A -6 ). Also, by making use 

of the facts just mentioned and Ottaviani inequality we can easily show that
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P{ max max IATj  ̂ -  AT( j —1 )NI > 5 2  m'Y/Z2m/ ^ * + ^ }
l< j< L  ( j- l)N < k < jN

«  r'm . ( 2 .3 8 )

The next step is to deconvolve each random vector 2m7/zAZk>m into a sum of 

independent homoscedastic normal random vectors. Namely write

2” V/2AZk , m -  V "  Zj  ,
j“ak,m

where cov(Zj) = cov(A Z |>m), if j e J m . We can choose our Z 's  in such a way 

that

( z jJ  a k,m  < J < bk,m  f o r  some k >m}

is a collection of independent random vectors (see Section 2.5.1). Adjoin to 

these collections (just for completeness) a further collection of zero mean 

independent Gaussian random vectors

( z j ;  c k,m  < J < dk,m  f o r  some k «m}>

such that this second collection is independent of the first one and

c o v (Z j)  = cov(A Z1>m) i f  j  c J m .

Now, provided that we can choose y  and * satisfying (2.7), (2.13), (2.16) and 

(2 .22) we only need to show

00

m
> I  P{ max max | I  Xj l > 5

l<k<2“ ( l - 7 )  a k>m< j< b k>m i= a k>m

> I  P{ max max | I  Zj  | >  5 2m' ^ ^ + ^ } >
l< k< 2m( 1“7 ) a k>m< j< bk m  i = a k m

^ V ^ e ,,m /2 ( l + 0 ) ,> I  P{ max | I  I  Z j | > 5 2 } ,
K k<2"><!-7) j - l  i = c k m

00

m

00

m

and

> L P{ max max I X Z j I  > 6 2
m K k O m O -T )  c k m<j<dk m i - a k m
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The first relation above is a direct consequence of Lemma 2 -A -4 . The fourth 

one is a consequence of the second. The second and third can be shown by 

combining Ottaviani inequality and exponential bounds for normal random vectors.

Finally it is easy to show that our conditions c, d, e and f imply the existence of 

x and y  satisfying (2.7), (2.13), (2.16) and (2.22). Also, relation (ii) is a trivial 

consequence of Lemma 2 -A -6 . □
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CHAPTER 3

3.1 Introduction

O ur main goal in this chapter is to improve and generalize the following result due 

to Akonom and Gourieroux:

Theorem (See Akonom and Gourieroux(1987)) Let {rft}, t c Z be a sequence of 

iidrv's. Define ct= T)fl{ t> 0  }. Let d > l / 2  and assume that e \  has absolute 

moment of order p, where p is strictly greater than m ax{2,2/(2d-l)}. Consider the 

process defined by

Xt -  ( l - L ) ‘ dA * (L )e t  , 

w here L i s  th e  la g  o p e r a t o r  ( LZt = ) and

00 v 
A*(L) = I  a fL  ,

0 k

Stw i t h  la*  I = 0 (p ) ,  f o r  some 0 < p < l. Then th e  p r o c e s s

[ X ^ ( r )  -  T ( 1 - 2 d ) / 2 X j ^ , .  r  * [ 0 , 1 ]  ] 

w eak ly  c o n v e rg e s  to

[ < T A * ( l ) / r ( d )  ( r - s ) d - 1d B ( s ) , r  e [ 0 , 1 ]  ] ,

2
w here B ( . )  i s  a s t a n d a r d  Brownian  m o t i o n  i n  [ 0 , 1 ]  and  V a r ( e j ) =  a  . □ 

The process {Xt} is a modification of the so-called fractional ARIMA processes. 

Such a modification consists on assuming e t=0 if t<0 and was imposed so as to 

deal with nonstationarity ( which is a consequence of d > l /2 ) in a convenient 

way.
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Our results, to be described below, generalize Akonom and Gourieroux's theorem 

insofar as we allow for a weak dependent sequence of innovations. Also we 

consider a less restrictive rate of decay for the sequence { a jJ  defined above. 

Finally we allow for trending heteroskedasticity in the innovation sequence.

On the other hand we improve the above mentioned result by showing that a 

natural smoothing of X-p(.) satisfies a functional limit theorem under minimal 

moment assumptions on the innovation sequence. Functional limit theorems like 

ours can be applied when deriving tests in regression models under nonstationarity 

assumptions ( See Gourieroux, Maurel and Monfort(1987) ).

The rest of the chapter is divided as follows. In section 3.2 we make a partial 

review of the literature concerning fractionally differenced linear processes. In 

section 3.3 we discuss some intuitive aspects of our results. A proof of our first 

generalization of Akonom and Gourieroux's result is presented in section 3.4. 

Finally, some generalizations are discussed in section 3.5.

3.2 Fractionally Differenced Linear Processes

In the early seventies the field of time series experienced a big boost in both 

theoretical and applied terms. As far as the applications are concerned the book of 

Box and Jenkins(1970) is by far the most important element for the popularization 

of time series models. In their book they present a comprehensive ( though a bit 

informal ) study of the so-called ARIMA models. Such a class of models is the 

subject of study of an enormous number of works.

We define below ARM A and ARIMA models just to set some notation. Let
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t e Z be a sequence of iidrv's such that E e i= 0  and V ar(ej)=  We say that 

{Xt} is a ARMA(p,q) process if we can write

P(L)Xt = Q(L)et , t e Z, 

where

P(L)= 1 -  at L -  ... -  apLP ,

Q(L)= 1 + baL + ... + bqL9 ,

and L is the lag operator. It is well known that if the roots of P(z)=0 lie outside 

the unit circle then {Xt} as above is stationary. An ARIMA process, in turn, is 

non-stationary though it keeps the simplicity, so far as the functional describing its 

evolution through time is concerned, of ARM A processes. We say that {Wt} is a 

ARIMA process ( where d is a non-negative integer ) if Z t = ( l-L )^ W t is a 

ARMA(p,q) process. Let us just mention that a ARMA(p,q) process is a linear 

process.

Once we abandon the class of linear processes, the range of parametric time series 

models (and their associated processes) grows uncountably. Examples of such 

non-linear processes are bilinear models (Granger and Andersen (1978)), threshold 

autoregressive models (Tong and Lim (1980)), amplitude dependent autoregressive 

models (Hagan and Ozaki (1981)), state dependent models (Priestley (1980)) and

many others.

In practice one should either have theoretical justification or to rely on a kind of 

selection procedure so as to choose a particular non-linear model. It seems sensible 

that such a procedure should be nonparametric in nature. A partially successful 

attem pt in this direction is provided by the state dependent formulation of some

non-linear time series models ( See Haggan et al (1984) for details ).

On the other hand it is debatable whether such a two step procedure should be
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preferable to a direct nonparametric approach. We refer the reader to Robinson

(1983) for a study on nonparametric estimates of regression and density functions

under weak dependent samples. For an account on nonparametric methods in 

specification see Robinson (1986).

Although there exists evidence that a number of popular real time series follow 

nonlinear models (for instance the sunspot numbers and the Lynx Cannadensis data, 

see e.g. Haggan et al (1984) and Robinson (1983)), the class of linear time series 

models is still appropriate for a variety of real data collections.

Now let us consider a sample { }, drawn from a linear process. Very

loosely, we could describe an estimation problem as a procedure of choosing the 

particular model which generated the sample based only on the information 

provided by the sample. If we do not restrict the space of possible choices our 

problem is nonparametric (again, very informally) since the space of our possible 

choices is infinite dimensional.

When we reduce the space of possible choices to the class of ARMA(p,q) processes 

( p and q fixed ) we very much restrict the generality of the family of linear 

models inside which the true process is assumed to be. Such a restriction occurs, 

to begin with, insofar as we are imposing an exponential rate of decrease for the 

coefficients of the true model which generates our sample. From a purely technical 

point of view it would be desirable to consider a parametric model that could 

accomodate linear processes with algebraic rate of decrease for the coefficients. 

Loosely speaking such a model would be able to exploit the generality of the class

of linear models in better terms than ARMA models.

A possible parametric model which allows for algebraic rates for the coefficients of
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linear processes can be obtained from when we consider fractionally differenced 

ARMA processes. Let us define the operator (1 -L )_d by

00
( 1 -L)"d = r(d)"1 E { r(k+d)/r(k+l) } Lk , d* 0, -1,  -2,  . . .  

k=0

w here T ( . )  i s  E u l e r ' s  gamma f u n c t i o n

= l o  x P " l e ~X d x » P> 0 *

When p<0 and  p i s  n o t i n t e g e r  we d e f i n e  T(p)  r e c u r s i v e l y  by

r<P) -  p ' 1r ( P+ i ) .

We s a y  t h a t  {Wt } i s  a  f r a c t i o n a l  ARIMA(p,d,q) p r o c e s s  i f

( l - L ) dP(L)Wt -  Q(L)et ,

w here {e*} i s  a w h i t e  n o i s e  w i t h  f i n i t e  v a r i a n c e  and  P and  Q a r e  

p o l y n o m i a l s  o f  o r d e r  p and q r e s p e c t i v e l y ,  w i t h  r o o t s  o u t s i d e  t h e  u n i t  

c i r c l e .  I f  - l / 2 < d < l /2  t h e n  {Wt } i s  s t a t i o n a r y  and  c a n  be w r i t t e n  a s

00

w here aj^= 0 ( k d ^ ) ,  a s  k goes to  i n f i n i t y .  I f  on t h e  o t h e r  hand  d > l /2  

t h e n  { W J  i s  n o n s t a t  i o n a r y .

In other words we say that {Wt} is a fractional ARIMA(p,d,q) if the fractional 

difference of order d of {Wt} follows a ARMA(p,q) process. Fractionally 

differenced processes were introduced by Mandelbrot and Van Ness(1968). 

Asymptotic properties of stationary fractional processes have been studied by a 

number of authors ( See e.g. Adenstedt(1974), Rosenblatt(1976), Granger(1978), 

Granger and Joyeux(1980), Hosking(1981) )

Models involving fractional processes have been recently the subject of a number of 

works in the econometric literature. As argued in Akonom and Gourieroux(1988)
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and Granger (1980) what makes fractional models extremely appealing for economic 

modelling is the fact that this type of process is naturally introduced when we

consider the aggregation of heterogeneous time series. Moreover, nonstationary 

fractional models (see below) provide a smoother and broader description of the

intrinsically nonstationary nature of macroeconomic data than the traditional ARIMA 

models. Further, fractional models seem to be especially suitable for the study of

models with cointegrated time series (see Granger(1986) and Engle and Granger

(1987)). We refer the reader to Robinson (1990) for a discussion on rececnt

developments on estimation and testing issues on fractional time series models.

3.3 An informal look at the functional limit theorem

In this section we present some intuitive background for the functional limit

theorem we prove later on. We will consider a variant of the nonstationary 

process discussed in section 3.2. Let {i7t}, t e Z be a R-valued stationary

process, such that Etji=0, Var(i7|)=  1. We will consider the evolution of a process

which is quite similar (though not equivalent) to the nonstationary fractional process

ARIMA(p,d,q), where d > l / 2 .  Let us define {Xt} , t c Z, by

(1-L)d X, = A(L)et> 

where et = ijtI{  t> 0  } and A(L)= a ^ lX

The coefficients of A(.) will be considered in detail later on. For the moment let 

us just assume that {% } is absolutely summable. Now let us compare the process 

{Xt} with the corresponding (say) usual fractional process given by 

(l-L)<*Yt = A (L ),t .

Let us suppose for the sake of simplicity that A(L)s 1. Also, let us assume that
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EYq = 0. If d=l then we can write 

t
X = E €, , and 

( k - i  k

t

V  Yo + E £k •'  u k - i  K

Clearly, in this case, asymptotics for {Xt} and {Yt} will follow the same pattern. 

For instance, normalizing factors in central limit theorems are the same and so 

forth.

Statistical models based on processes like {Xt} are sometimes much more realistic 

than those based on {Yt}. This is particularly true when dealing with economic

data. The reason is simple: the process ( or the data generation mechanism )

simply did not exist prior to time t=0 .

Now let us go back to our heuristic discussion on the functional limit theorem. As

et=0 if t <0 we can write

Xt -  ( l - L ) ' dA ( L ) e t .

Let

( l - L ) ' dA(L) -  I  T<d) Lk , 
k-0

be th e  fo rm al  r e p r e s e n t a t i o n  o f  A ( L ) ( 1 - L ) " ^ -  We c a n  w r i t e

v  _ r  J V  e
t  . , t - k  k ’k=l

Let  us  d e f i n e  f o r  e a c h  T ^ l ,

X £ ( r )  -  T1 /2 ' d XI T rJ  , r  e [ 0 , 1 ] .

We aim a t  p r o v i n g  a  f u n c t i o n a l  l i m i t  t heo re m  f o r  t h e  se q u e n c e  o f  

D [ 0 , 1 ] - v a l u e d  random  e l e m e n t s  j u s t  d e f i n e d .  We w i l l  show t h a t
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X £ ( . )  - +  W(.)  , 

where

W(r) = c ( r - s ? " 1 dB(s )  , r  e [ 0 , 1 ] ,  

w here

_  _  002 2 a  = Ee1 + 2  I  E e1e, ,
k=2

which is assumed to be a positive real number, and with c=A(l)oVr(d). Also, 

{B(t), t e [0,1]} is a standard Brownian motion, and the integral above is defined 

in the sense of Ito (actually we could use a less powerful definition for the 

stochastic integral above but this would not make our proofs either easier or 

shorter). Now let us denote

s t -  1  vk - l

We c a n  w r i t e

*  _  1/ 2 - d  " r]l ( d )
XT( } , ETrlD-k k k - lk = l

Now we c a n  show t h a t

( d )  _  . u s d - 1 ,
tt. '  «  c ( t - k )  / a .t - k

Now u s i n g  a  s u i t a b l e  a p p r o x i m a t i o n  t h e o r e m  ( f o r  i n s t a n c e  K o m lo s ,

M ajo r  a n d  T u s n a d y ' s  o r  o u r  c o r o l l a r y  2 . 1  ) we c a n  w r i t e

1 2  CTrll ,
X i ( r )  »  I  c  ( CTrH-k ) ( B ( k ) - B ( k - 1 )  ) ,

k = l

w h e r e  {  B ( t ) ,  t^O }  i s  a  s t a n d a r d  B r o w n i a n  m o t i o n .  The  d i s t r i b u t i o n  o f  

t h e  a b o v e  p r o c e s s  e q u a l s  t o  t h a t  o f

1 _ .  t T r J  -
T I  c  ( CTrH-k ) ( B( k / T  ) - B (  ( k - l ) / T  ) )

k= l
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ITrl
« c I  ( r - k /T  ) a_1 ( B( k /T  ) -B( ( k - l ) A  ) )•  

k = l

F i n a l l y  t h e  sum above i s  an  a p p r o x i m a t i o n  t o  t h e  s t o c h a s t i c  i n t e g r a l

c ( r - s ) d _1dB(s )  .

The j u s t i f i c a t i o n  o f  t h e  above e q u i v a l e n c e s  a r e  done in  th e  n e x t 

s e c t i o n .  Let us  now c o n s i d e r  a  f u r t h e r  p r o c e s s .  D e f in e

, n  t T r J
R * ( r )  -  t  7 I  X 1 , r  e [ 0 , 1 ]

k - l

I t  i s  no t  d i f f i c u l t  t o  s e e  t h a t

R ^ ( r )  ® X^(s )  d s .

T h e r e f o r e  a  s im p le  a p p l i c a t i o n  o f  t h e  c o n t i n u o u s  mapping theo re m  

y i e l d s

R * ( r )  ==» c Jo Jo  ̂ U' S dB( s > d u ‘

However a s  we wi l l  s e e ,  t h e  above m en t io n e d  a lm o s t  s u r e  a p p r o x i m a t i o n  

th eo re m  d epends on th e  e x i s t e n c e  o f  moments o f  o r d e r  h i g h e r  t h a n  

two f o r  e \  ( even  when { e t } i s  i i d  ) .  On t h e  o t h e r  hand  we c a n  w r i t e

R * ( r )  -  T' 1 /2 ' d RI T r J  , r  e [0 . 1 ] ,

w here

t i j
R = I  X. = (1 -L )  A(L) e 

'  k= l K K

If we follow the same lines outlined above we can show (at least for the iid case) 

that the last weak convergence theorem holds valid with the minimal assumption 

that moments of order two for the innovation process exist ( See section 3.5 ).
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3.4 A Functional Limit Theorem for X*

Throughout we follow the notation and definitions of section 3.3. Our main goal in 

this section is to prove the following

Theorem 3.1 Let us assume that {i7t} is a zero mean stationary, R-valued,

absolutely regular process with sequence of mixing weights given by Suppose

that there exists 0 * 0 ,  1<X, O < 0< 1  such that

(A) 0 k -  k " '

/¥, N r 2X(l+0) ^(B)  E \ t j1 I '<  oo.

Assume t h a t  a l l  t h e  c o n d i t i o n s  o f  t h e o r e m  2 . 1  h o l d  v a l i d  and

(C) a k -  0 (  k ' 4 ) .

The n i f  2 ( 1 + 0 )  >  m a x { 2 ,  2 / ( 2 d - l ) }  we h a v e

Xj .C.)  =*• [ c  ( r - s  ) d_1 d B ( s )  , r e [ 0 , 1 ]  ] .  □

Let us just make a few comments before we start proving theorem 3.1. First of

all, the stochastic integral above is defined in Ito 's sense. We refer the reader to

Chung and Williams(1983) for an exposition on the theory of stochastic integrals.

Secondly, we note that all the stochastic processes we consider in this chapter take

their values in D[0,1], the space of real functions defined on [0,1] which are right

continuous (cad) and have finite left limits (lag). D[0,1] is also called the space of 

cadlag functions. The paths of X*(.) are obviously elements of D[0,1]. We will 

show below that the paths of W(.) are in D[0,1] with probability one.

We adopt the most popular definition of weak convergence. Namely we say that a 

sequence of D [0,1 ]-valued random elements { Vn(.) } weakly converges to V(.),
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whose pathes are D [0,1 ]-elements with probability one if

limn Ef(Vn ) = Ef(V),

for all f: D[0,1 ]-» R, bounded and continuous with respect to the Skorohod 

topology in D[0,1]. We refer the reader to Billingsley(1968) for details ( See also 

Pollard(1984) for an alternative approach to weak convergence ).

Now in order to show that Vn(.) *=* V(.) we must prove

( a )  (Vn ( t j ) ,  ^  ( t ^ ) )  c o n v e r g e s  i n  d i s t r i b u t i o n  t o

(V ( t j ) ,  V ( t k ) )  , f o r  a l l  0< t j <  t 2< . . . <  t R< 1 ,  r ^ l .

( b )  T h e r e  e x i s t  p o s i t i v e  c o n s t a n t s  a ,  (3, D, i n d e p e n d e n t  o f  n s u c h

t h a t

E{  | V ( r )  -  V ( q )  | “  I V ( s )  -  V ( r )  | “  }  « n n n n J

< D | s - q  | 1+^ , a l l  0< q< r< s <  1.

(c) The trajectories of V(.) are D[0,1 ]-elem ents with probability one.

Now if Vn(.) and V(.) are Gaussian processes the verification of (a), (b) and (c) 

above is quite simple. Indeed in order to verify (a) we only have to show that 

(al)  limn EVn(t) = EV(t) , all t.

(a2) limn E[ Vn (r).Vn(t) ] = E[ V(r) V(t) ], all r, t.

On the other hand, Schwartz inequality yields

E{ | V ( r )  -  V ( q )  1°* I V ( s )  -  V ( r )  | “  }L n n n n J

_ l / 2  . 2a  „ l / 2  „  , N „  , . 2a< E I Vn ( r )  -  Vn ( q )  | E I Vn ( s )  -  Vn ( r )  I

-  Dj [ El Vn ( r )  -  Vn ( q )  | 2 El Vn ( s )  -  Vn ( r )  | 2 f / 2  ,
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w here Dj = E |N ( 0 ,1 ) |^ a . T h e re fo re  (b )  w i l l  fo l lo w  i f  we c a n  show th a t

for all nssl and 0< q <  r <  s< 1 ( take a>2ly>  l+/3= cry/2 and D< D*Dj in (b)).

Finally, in order to show (c) it is enough to show that W (.) is continuous with 

probability one, which in turn follows from ( See Prakasa Rao(1987), page 85 )

f o r  some p o s i t i v e  c o n s ta n t s  a ,  /3 and  D and a l l  0<r<q< 1. Now th e  same 

argum ent u se d  in  (b ) shows t h a t  (d)  h o ld s  t r u e  p r o v id e d

for some positive D and y  and all 0< r <  q< 1.

O ur last comment is related to the operator A(L). Notice that A(L) could be, for 

instance the ratio of two polynomials B(L) and C(L) with roots outside the unit 

circle. In other words, an ARIMA(p,d,q) is a particular case of the class of 

processes we are considering here. We can now proceed with the proof of theorem

Proof of theorem 3 .1 : By corollary 2.1 there exists a sequence {Zn} of iid

t h e r e  e x i s t  p o s i t i v e  c o n s t a n t s  y ,  D* su ch  t h a t

( b l )  El V ( r )  -  V (q)  I E|  V ( s )  -  V ( r )  | < D ^ l s - q l 7 ,n n n n n ^

(d)  El V ( r )  -  V (q)  l "  < D I s - q l 1^

( c l )  E|  V ( r )  -  V (q)  I^ < D | s - q | ^

3.1.

random variables such that Z j ss N(0,a^) and

n
) . a . s .I I  -  Z, | — o(  n 

k=l  K K
( 3 . 1 )

We c a n  w r i t e

U r l  
I  T 

k=l
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-  Q1T( r > + Q2j ( r ) + ^3T( r )  + Q4T( r ) »

w here

Q1T(r)=  c I  ( r-k/T )d' \  V(k)-V(k-1) ) /T 1 / 2 , 
k-l

Q2T( r ) -  <t T1 /2 ‘ d \  *£d£ [ k -  ( V(k)-V(k-1) ) ] ,
k- l

Q3T( r ) -  <r T 1 ' 2 - *  V [ x<d> -  *<*> ( Tr-k ^  ]  (V(k)-V(k-l ) )

V ( r ) " j l / 2 ' d  ( Sb‘ Sb-l  >

k
w here b = b ( r , T ) =  CTrll,  and aV( k)=  E Z . .  Our r e s u l t  w i l l  f o l l o w  I f

j - i  J
(i) Q 1T(.) - *  W(.)

(n) o 2t (  ) = ° p f l)

(iii) Q 3 t(-)  = 0p(!)

(iv) Q4x (  ) = op (l)

(i) Proof of Q1T(.) =» W (.).

First of all notice that Q j x O  *s a Gaussian D[0,l]~valued random process. Thus 

by the discussion right after the statement of theorem 3.1 it suffices to prove that 

(a l) , (a2), (b l) and (cl) hold true.

(a l) : obvious.

(a2): take 0< r< s< 1. Notice that

E W(r)W(s)  = <?“ ( r - x  ) d *( s - x  ) cl *dx.

I f  T i s  l a r g e  enough we have
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IT n  t  \ a  / \ b <r ' T ) - l  2 -1 r k i d -1  r k i  d -1
E Q1T ( r ) Q 1T ( s )  -  E c  T [ r -  f  j [ s  -  f  j

k=l

E asy  a rg u m e n ts  y i e l d  l i m E Q^T ( r ) Q^ T ( s )  -  E W(r )W(s) .

( b l ) :  s e e  lemma 3-A -3

( c l ) :  a  c o n t i n u o u s  v e r s i o n  ( t h e  a rg u m e n ts  a r e  e x a c t l y  t h e  same ) o f  

th e  f i r s t  p a r t  o f  t h e  p r o o f  o f  lemma 3-A -3 y i e l d s

E[ W(s ) -W(r )  ]2 « D ( s - r ) 6 .

T h e r e f o r e  Q ( . )  =» W( . ) .

( i i )  P ro o f  o f  Q2t («)  ”  ° p O ) -  

Summat ion by p a r t s  y i e l d

Q2T( r ) - „  y  , w - d  ( a . .  v ( k )  j ,
k= l

whence

sup  | Q9T ( r )  | <
0 « r « l

< su p  I  I ^ d - 1} I sup  a T 1^ 2 ' 6 I — J  V ( j )  I ,
0 < r « l  k - l  1 D' K 1 j«T  1 ( 7  1

T - l  S
< D E ( T -k  ) d ' 2sup  al  1 / 2 ' d  I — J -  -  V ( j )  I , ( 3 . 2 )

k - l  j<T

w here th e  se co n d  i n e q u a l i t y  h o l d s  by v i r t u e  o f  lemma 3-A -2  and  D i s  a  

s u i t a b l e  l a r g e  c o n s t a n t .  Now by ( 3 . 1 )  we c a n  w r i t e  t h e  r i g h t  hand  s i d e  

o f  ( 3 . 2 )  a s

o ( l )  j 1/ 2 ( l + 0 ) ^  R d - 2T 1/ 2 -d^ (3 3)

k=l

Now i f  d < l , ( 3 . 2 )  and ( 3 . 3 )  y i e l d

sup  | Q2 t ( r ) I < Ta  [ l o g T ]  op ( l ) ,
0 <r<l

w here a=  l / [ 2 ( l + 0 ) ]  -d  + 1 /2 . Which i n  t u r n  y i e l d s

sup  | Q2j ( r )  | -  op ( l ) ,
0 <r<l
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s i n c e  cKO. On th e  o t h e r  hand  i f  d > l , ( 3 . 2 )  and  ( 3 . 3 )  y i e l d

sup  | Q2t ( r ) | < op ( l ) ,
0 <r<l

w here /3= l / [ 2 ( l + 0 ) ]  +d -  1 - [ d - 1 /2  ] < 0 . Thus in  b o t h  c a s e s  ( i i )  

h o l d s .

( i )  P ro o f  o f  Q3j ( - )  = o p ( l )

we c a n  w r i t e

sup  | Q~ ( r )  | <
0 <r<l

< t1/2' V upi z [ *b-k - nay(b~k )d_11 ma? iz(j)l0<r<l  k= l J<T

b —1
+ <r T1 /2 " d sup  I  | ( b -k  ) d _ 1 -  ( T r -k  ) d _ 1 1 max | Z ( j ) |

0« r < l  k - l  w  j<T

= ( I )  + ( I I ) .

We have

( I )  < a  T1 /2 ‘ d I  [ *£d ) -  kd_1 1 max i Z ( j ) l
k - l  w  j«T

T
< D I  k max l Z ( j ) l  ,

k - l  j<T

by virtue of lemma 3 -A -2 , where D is a sufficiently large constant depending on

d only. Now if d<l we can bound the right hand side of (3.4) by

D x 1 /2 " d l og(T)  max | Z ( j ) |  < T~5 'max | Z ( j ) I , ( 3 . 5 )
j«T  j<T

w here 5 ’>0.  On t h e  o t h e r  hand i f  d> l we bound ( 3 . 4 )  by

D i 1/ 2_d max | Z ( j )  | Td_1-  D T_1//2max | Z ( j ) l .  ( 3 . 6 )
j<T j  <T

As f a r  a s  ( I I )  i s  c o n c e rn e d  we n o t e  t h a t  ( Mean Value  Theorem  )

I ( T r - j  ) d 1-  ( b - j  ) d 1 1 = 1  T r - b  | | d-1 I xd 2 , 

w here b - j <  x< T r - j <  b + l - j .  Thus
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I ( T r - j  ) d ' 1-  ( b - j  ) d" 1 I < I d -1  I max( ( b - j ) d 2 , ( b - j + l ) d ' 2 ) .  

Wi th  t h i s  bound and  p e r f o r m i n g  a l g e b r a i c  m a n i p u l a t i o n s  s i m i l a r  t o  t h o s  

e u se d  to  d e a l  w i t h  ( 1) we c o n c lu d e  t h a t

( I I )  4 T" 6 " m a x  | Z ( k ) | ,  ( 3 . 7 )
k<T

w here 5 ' 1>0. Thus

_ f
sup  |Q^t ( r ) | 4 T max l Z ( k ) l ,

0<r< l  k<T

f o r  some S>0. Now f o r  any  x>0

P{ T ' 5 max | Z ( k ) I  > x }  < T P {  | Z ( 1 ) |  > xT^ } 
k<T

< T exp(  -T 5x /(2 c r2 ) ) -  o ( l ) .

( i v )  P ro o f  o f  Q4j ( . )  -  Op(1)

We c a n  wr i t  e

P{ sup |Q.  ( r ) |  > x } < P{ max | e ,  | > xTd }
0<r< l  k<T

< T P{ l € j  I s, xTd ' 1 /2  }

- o (  T . T2 0 + « X l / 2 - d )  J _ o ( 1 ) >

s i n c e  2 ( 1+ 0 ) ( l / 2 - d )+ l  < 0 . □

3.5 Some generalizations of Theorem 3.1

Our goal in this section is to provide generalizations of theorem 3.1 in two 

directions. First we show that smoothed versions of the processes considered in last 

section weakly converges to corresponding smoothed versions of W (.). In principle, 

one could say, this is just a trivial application of the continuous mapping theorem 

(CMT). However our result does not follow from the CMT because we will
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relax the moment assumptions on the innovation sequence.

The second kind of generalizations is concerned with relaxing the stationarity of the 

innovation process. We allow the sequence of variances of the innovations to 

increase polynomially. Throughout we keep the notations and definitions of section

3.3. We focus only on the process defined by

R * ( r )  -  T' d~1/2  E X .  , 0< r< 1 .
k-l

w here b= b ( r , T ) =  IETr]l.

Our f i r s t  r e s u l t  assum es t h a t  t h e  i n n o v a t i o n  se q u en c e  i s  a  w h i t e  n o i s e

Theorem 3.2 Assume that { et } is a sequence of iidrv's such that E (e |)= 0  

and E(e|)^=o'^ <  <». Then without any further moment assumptions we have 

RT =* Y(.) , 

where

Y( r )  = ( r - s  d B ( s ) , w here

c *  -  c r A ( l ) / r ( l + d )  . □

Let us just make a couple of comments regarding this result. First, Rt (.) is a kind 

of smoothed version of X j( .) . Such smoothing yields a more robust functional limit 

theorem in the sense that it holds true ( iid case ) under the minimal assumption 

that E (e j)2  <  oo. Therefore when using either R x(.) or X j( .)  to (for instance) 

construct a test with asymptotic justification the former will, in principle, be 

preferable to the latter.

Secondly, for the iid case, it may be possible to show that X-p W (.) assuming 

only E (e |)2  <  oo. However a different sort of technique should be emploied. For 

the proof of theorem 3.2 we will need the following invariance principle which is 

due to Major(1979).
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Proposition 3.1 ( Major (1979) ) Let {en}, n^ l be iidrv's such that E ej= 0  

and Var(e|)=a^<<». Then enlarging the original p-space if necessary we can

construct a sequence {Z^} of independent random variables such that Z ^ N ( 0 ,a^)

and

(i) | + ... + en -  ( Z f + ... + Z j  ) | = o (n ^ ^ ) t a s>

(ii) lim <rn = a. □

We can now prove our result.

Proof of theorem 3.2 Let {z£} be as above. Notice that we can write for 

0 <r<l

pd+1/2 R *( ) -  ( ! _ L ) - l Xb = ( l - L  )“ (1+d)A(L)e5 .

Decompose Rp as follows

R p(r) = M jp (r) + M2p(r) + M ^p(r) + M4p(r) + M ^p(r), 

where

. b -1 . 1
M ( r )  -  c I  ( r  -  k /T ) (U(k)  -  U ( k - 1 ) ) / T 1 / Z , 

k=l

M2T ( r )  -  a  T' 1 /2 ' d I  *<*+d) [ k g k ~ 1  -  (U*(k)  -  U * (k -1 ) )  ]
k=l

M3T ( r ) -  ffT- 1/ 2 - d . < ^ d) -  (Tr  -  k ) d ] (U(k)  -  U ( k - l )

M4T( r ) =  T~1 / 2 ' d (Sb * Sb-1>

m c , i _  ^  T - V Z - d  K 1 ( 1 + d )  r - 1 ~ *  - 1 7*1
5T , , b-k  I k ‘  k kJ ’k=l

k k .
w here b *= b ( r , T )  = CTrll, aU *(k) — E Z* , and  U(k) = E Z * a . .

j _ i  j  j - i  i  j

Our result will follow if
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(i) M1T(.) - »  Y(.)

(ii) M2x(-) = o p (l)

(iii) M3t ( . )  = o p (l)

(iv) M4T (.) = Op(l)

(v) M5T(-) = °pO )

The proofs of (i), (iii) and (iv) are exactly the same as those of (i), (iii) and (iv) 

in theorem 3.1, respectively. The proof of (ii) follows the same pattern of its 

counterpart in theorem 3.1. We can write

sup | NL ( r )  | <
0<r<l

V UP, i 1 , I I SU?  aT~1 / 2 ~d  [ ~ S ~  '  U* ( J )  10 <r < l  k=l j<T

< D I  ( T -k  ) d' 1 sup <rT'1 / 2 ' d f — J -  -  U * ( j )  ]
k - l  j«T

< D' Td T_d~ ' / 2 sup  [ _ J _  .  u * ( j )  j _  0p ( l ) ,
j<T

where the first inequality comes from summation by parts, the second comes from

lemma 3 -A -2 , the third from the fact that 1 —d < l  and the equality comes from

M ajor's theorem. Now following the same arguments as above we obtain

j  Z*
sup IM, ( r ) i  < T” 1//2 sup f I  (<r. -  a) — 1 -  o ( 1 ) ,

0 < r < l  51 j«T  1 k - l  K ‘"k r

by a simple application of Kolmogorov's inequality and the fact that o'ic=o'+o(l). 

(Note: the Z 's are normally distributed). □

Actually minor modifications in the proof of theorem 3.2 yield

Theorem 3.3 Let {e^} be a sequence of identically distributed random
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variables. Suppose that there exists a sequence of iidrv's { Z jJ  such that 

Z^NCO ,a2) and

^ 1 /2  max l U e . - Z . i - o I T  '  ) ,
k«T j = l  P

t h e n  R * ( - )  =» Y ( . ) ,  w here

Y ( r )  -  [ < r A ( l ) / r ( l + d > ]  ( r  -  s ) d d B ( s ) .  □

Theorem 3.3 allows us considering strong mixing with a rather slow rate of

decreasing for the mixing weights.

Corollary 3.1 Suppose is a strictly stationary strong mixing sequence of

random variables with E e |= 0 , Var(ei)<a> and Var(e^+...+e>p)->oo> as T-*». Let 

{a(k)} be the corresponding sequence of mixing weights. Suppose 5 > 0  and

\ > l + 3 / 5  are real numbers, a(k)=o( (log(k))- ^ ) and

supT [ E(ej  + ...+  ]^[ V ar(e | + ...+  e’p) j(2+5)/2 <  ^

Then there exists 0 <cr^<oo such that 

l im j T - * V ar(e | + ...+  e j )  = cr^, and 

R |( . )  =* Y(.).

P roof: Theorem 4 in Bradley(1983) implies the existence of {Z^} as in 

theorem 3.3 above. □

Now in order to deal with trending heteroskedasticity in the sequence of 

innovations we will need the following result due to Einmahl.

Proposition ( See Einmahl(1987) ) Let {Xn} be a sequence of independent 

random variables with zero means and Var(Xn)=(crn)^. Assume that for some 

0 < 5 < 2  the following holds true
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£n (an)" (2+S) E | X n | 2+« <  », 

where lim an = oo. Then there exists a sequence of independent random variables 

{Zn} with Zn £N[0,((Tn)2] such that

n

1  *k ” Zk “ °^an̂  ’ a s ’ D k=l

We can now state our last result in this chapter.

Theorem 3.4 Let be a sequence of independent random variables such

that there exist 0 < 5< 2 , 0<5/(2+S)  and

I n n"(2+5)/2 E | e n i2+5 <  oo,

E u n | 2 = n « +  O(n0), 

where /3<0. Then the process defined by

R**(r) = T- ( d+«+1/ 2 )  E X r e [0 . 1] ,
k - l  K

we a k l y  c o n v e rg e s  to

Y*(r) -  c* JJJ (r - s ) V  dB(s) . r £ [ 0 , 1] ,

where c* = A (l)/f( l+ d ).

Proof: Use Einmahl's result with an = n ^ 2 . The rest of the proof is 

pratically identical to that of theorem 3 .2 . □
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APPENDIX 3-A

Lemma 3 -A -l Let d be a real number such that d > - l / 2 .  Then 

| r(n+d) nd- ‘ | .  d-2 _
I r(n+i>r(d) r(d) I

P r o o f : From A bram ovi tz  and S t e g u n ( 1 9 7 0 ) , f o rm u la  6 . 1 . 4 7 ,  we o b t a i n  

,  + (. - b ) ^ - D  + o[ i j _b - a  T(x+a)  
C r(x+b)

a s  x^oo. Whence

T(n+d)  _  nd - l  f , ( d - l ) d
T(n+1)

Lemma 3-A-2 For  any  f i x e d  d > - l / 2  we have 

, . < « - $ >  k' - '  , -  0 ( kd ' J >.

P r o o f : We have

(d)  A(1)  d-1
1 " r w  k 1

I E a , . . kd - l  i  a . | 1
j_o k"J r <J+1> j -0  J r(d)

< r(d) 1 [ ( i )  + ( i i )  + ( i i i )  + ( iv)  ], (2 . 1)

where

( I )  -  i a R l T(d)

( I I )  = I  l a  i I -  jd 1
j l l  I r <J+ 1>

/ n T\ V .d-1 , d-1( I I I )  -  I  l a  | i j  -  k i
J - l

00
(IV)  -  | l a .  I kd [r(d)l  

j - k  J
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We have

k  H 2
( I I )  = 0 ( I  | o t k  )

J-1
by lemma 3 - A - l .  We must consider two cases. Namely d^2 and d < 2 .  If d > 2 ,  

summability of { i a n l} yields (II)=0(kd”2) jf on the other hand d < 2  we have

/ u s  ^ v d -2  k .d -2( I I )  4 I  Io:k _ i j  + I  ia,  1 J
j - 1  J j-m+1

-  (V) + ( VI ) ,  

where we have  d e n o t e d  ra -  Ck /23.  Now

(V) < I  l a . I < m"3 < kd ' 2 ,
j>m J

-4b e c a u s e  l a  | (  n . A l s o  n

h
(VI)  < md ' 2 I  la.  .1 4 kd " 2 ,

j-iw-l K' J

a g a i n  by s u m m a b i l i t y  o f  { iQ M } .  Thus

( I I )  -  0 ( k d ' 2 ) .  ( 2 . 2 )  

Now t h e  mean v a l u e  theo re m  y i e l d s  ( excude  t h e  t r i v i a l  c a s e  d=l  )

k ' 1 H 2
( I I I )  < I  i a  | (k  -  j ) 0 °

j - 1  J J
where j<|3<k. I f  d>2 s u m m a b i l i t y  o f  {nio:n l} i m p l i e s  ( 1 1 1 ) = 0 ( k d “2) 

I f  - l / 2 < d < 0  we have

/ m s  ^ v , 1- d  -1- d  . d -1 . d -1(III)  < I  i a  | ik - j  I k  j  +
J-1

m d 2
+ I  l a - _ ,  I Ik -  j l  0  "

j=m+l  ̂ ^

-  (VI I )  + ( V I I I ) ,  

where  j  < <k. Now,
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(VII)  4 k d  1 E i a  I I k 1 _ d  -  j 1 _ d i
J - 1  J

j  -I m j
< ka ’ A I  i a  | ( k  -  ( 2 . 3 )

j - 1  J  J

w h e r e  j <0 <k.  The RHS o f  ( 2 . 3 )  c a n  be  b o u n d e d  fr om  a b o v e  by

kd" V d I  la .  .1 (k -  j )  
j - 1  k‘ J

< k ' 1 I  lot. I j 4  k ' 3  4 k d ‘ 2  , ( 2 . 4 )
j*n  J

_4
s i n c e  i a  | (  n . A l s o  n

(VIII)  < md - 2  I  JIC* I < k d ' 2 ,

j
by s u m m a b i l i t y  o f  { j i a  l } .  I f  0<d<2 we c a n  t r e a t  ( I I I )  i n  a  s i m i l a r

manner  t o  o b t a i n

® j o k-l , _
( I I I )  = I  i a  i ( k  -  j )  + I  I«  . I ( k  -  j )

.  - 2  ^  d - 2  . , d - 2
% m + m ^ k

T h e r e f o r e  we c o n c l u d e  t h a t  

( I I I )  -  0 (  k d ' 2  ) .

F i n a l l y

( I )  4  k ^  ^ a n d  ( IV )  ^  k ^  ^ a r e  o b v i o u s .  □

Lemma 3 -A -3  Let us define for each T ^l

[TrJ d - i
W (r)  -  I  fr -  t  1 I B O  -  B ( ^ - ) |  , r  e [ 0 , 1 ]  

k= l
w h e r e  B ( . )  i s  a  s t a n d a r d  B r o w n i a n  m o t i o n .  Then  t h e r e  e x i s t s  c> 0 ,  e>0 

s u c h  t h a t

E[WT ( r )  -  WT ( q ) ] 2 E[WT ( s )  -  WT ( r )  f  < c ( s  -  q ) £ .
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f o r  a l l  T ^ l , and 0 < q < r < s < l , p r o v i d e d  d > l / 2 .

P r o o f : Take q , r ,  s a s  ab o v e . We c a n  w r i t e

E[WT ( r )  -  WT ( q ) ] 2 -

, IT qJ . d -1  , d -1  2

- [ ‘■ - t ] ] +k=l

1 I T r l  2d -2
T" I  r  -  T] -  D + D .

k=l+ETq]l

m
w here we have a d o p t e d  t h e  c o n v e n t i o n  £ a. -  0 i f  m>n. We f i r s t

k=m

bound Dj= D ^ ( q , r ) .  Ther e  a r e  t h r e e  c a s e s  to  be c o n s i d e r e d .  Suppose

f i r s t  t h a t  d>2.  We have f o r  0<x<q.

. d -1 , s d - lI ( r  -  x)  -  (q -  x)  |

< sup  ( d - 1 ) ( r  -  q)  yd ~2 
0<y<l

< (d -  1) ( r  -  q ) ,

by t h e  mean v a l u e  t heo r e m.  Hence

Dj < (d  -  l ) 2 ( r  -  q ) 2 . ( 3 . 1 )

Now su p p o se  l<d<2.  Minkovski  i n e q u a l i t y  ( n o t e :  0 < d - l < l  ) y i e l d s

/ \ d_1 / \ d “ * / \ d_1 ( r  -  x)  -  (q -  x)  < ( r  -  q)

and  t h e r e f o r e

Dj « ( r  -  q ) 2d ' 2 . ( 3 . 2 )

F i n a l l y  assum e l /2 < d < l ( n o t e :  D^=0 i f  d -1  ) .  I t  i s  e a s y  to  s e e

t h a t  f ( x )  = (q -  x ) d * -  ( r  -  x ) d * i s  n o n - d e c r e a s i n g .  Thus

D < \ o  [ f ( x > ]2 dx
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- <' - «>2d-2 i n  [i - s t T  - i^ ]d' 112 *
. . 2d - l  r q / ( r - q )  r /1 . d -1 d -1 ,2= ( r  -  q)  Jq 4 [ (1 + v)  -  v  ] dx

. . 2d - l  foo . d -1 d -1 ,2 _ _
< ( r  -  q ) Jo [ (1 + v ) -  v ] dx . ( 3 . 3 )

Now, a s  d< 3 /2  th e  i n t e g r a l  above i s  f i n i t e  and t h e n

Dj < ( r  -  q ) 2d_1 Cj . ( 3 . 4 )

( 3 . 1 ) ,  ( 3 . 2 )  and ( 3 . 4 )  imply  t h a t

Dj < a ( r  -  q ) a  , a l l  q<r ,  a l l  T, ( 3 . 5 )

where a > 0 ,  a > 0  depend on d only. Now we bound D 2 = D 2(q,r). If ETr]|=ETq]| 

then D2 = 0. Otherwise we have two cases to consider. First, if d^ l we have

D2 < T" 1 {CTrl -  ETqJ}

< T" 1 { T r -  Tq + 1 } * r  -  q + T_1 ( 3 . 6 )

I f  l / 2<d<l we have

_ rETrJ / T , N2d-2  .
2 * J l+ ET q l / T  ( r  _ x)

+ T_1 [ r  -  E T r3 /T ]2d_2

< }q ( r  -  x ) 2d ' 2 dx + T2d~3

= (2d  -  l ) " 1 ( r  -  q ) 2d_1 + T2d"3 . ( 3 . 7 )

( 3 . 6 )  and  ( 3 . 7 )  imply  t h a t

D2 < b ( r  -  q /  + T ' a , ( 3 . 8 )

w here b>0, |3>0, 5>0 depend  o n l y  on d.

Now i f  s - q  <  1 / T  t h e n  e i t h e r  D2 ( q , r )  =  0 o r  D2 ( r , s )  =  0 .  Assume w . l . o .  

g .  D2 ( q , r )  = 0 .  We h a v e
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E[WT(r)  -  WT(q ) ] 2  E[WT(r) -  WT(s )  ] 2  -  

= D j (q , r) [ D j ( r , s )  + D2 ( r , s ) ]

< a 2 ( r  -  q ) a  + ab  ( r  -  q ) a  + a ( r  -  q ) a  . ( 3 . 9 )

I f  on t h e  o t h e r  hand  s - q  > 1 / t  t h e n

E[WT(r)  -  WT(q ) ] 2  E[WT(r) -  WT<s) f  <

< [ ( a  + b ) 2 + 2a + 2b ] max{ ( r  -  q ) ^ ,  ( s  -  r ) ^  } + T 2^

< [ ( a  + b ) 2 + 2a + 2b ] max{ ( r  -  q ) ^ ,  ( s  -  r ) ^  } + ( s  - q )  2 ^

w here y  = min{ a ,  /3 } .  ( 3 . 9 )  and ( 3 . 1 0 )  i mply  ou r  r e s u l t .  □
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CHAPTER 4

4.1 Introduction

In this chapter we are going to deal with the application of approximation 

theorems to nonparametric statistics. We will be interested in obtaining 

asymptotic results concerning density and regression function nonparametric 

estimates. In particular we will show that under mild weak dependence 

assumptions we can obtain consistency results which parallel those under iid 

samples.

Some of our conclusions appear to be unexpected from an intuitive point of view. 

To be slightly more precise, one could expect that the weak dependence which 

appears in our samples should propagate into our asymptotics. Such a

propagation could occur, for instance, via a strengthening of our basic assumptions 

so as to ensure that a consistency result which holds true under iid samples is still 

true under weak dependent samples. In some cases to be considered below such 

a strengthening is seen not to be necessary

As a matter of fact, there exists numerous asymptotic results in the literature 

concerning nonparametrics under weak dependence which hold true under the same 

assumptions imposed on their iid counterparts. From a finite sample (or perhaps, 

practical) point of view, such robustness should not, as remarked by Robinson

(1983) and other authors, be taken too seriously.
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4.2 L | -consistency for Density Estimates

In this section we deal with L | -consistency for two kinds of density estimates 

under weak dependent samples. The relationship between distance of density

estimates to the true density is considered in section 4.2.1. Kernel and Histogram 

density estimates are discussed in sections 4.2.2 and 4.2.3. We present our main 

results in section 4.2.4. Some straightforward consequences of our main theorems 

are treated in section 4.2.5.

4.2.1 An Informal Framework for 1^-consistency

Let {Xn}, n>l be a sequence of identically distributed random vectors taking values 

in R*. and suppose that Xj admits of a density f (say). Let us consider a

density estimate fn (say) based on {XjJ, l<k<n. Define the L | error between fn 

and the true underlying density by

We will be interested in studying consistency properties (strong and weak) of {fn } 

based on {Jn }, under weak dependence assumptions on {Xn }, n>l .  We say that 

a sequence of density estimates {fn} of f is strongly (weakly, respectively) consistent 

in Lj if J n converges to zero almost surely (in probability, respectively).

Implicit in the above definition is the fact that each fn is integrable. This implies 

that in any study concerning L |-consistency of density estimates one must, to begin 

with, rule out, for instance, the class of Nearest Neighbor density estimates (see 

Loftsgaarden and Quesenberry(1965), Mack and Rosenblatt (1979) and Moore and 

Yackel(1977a,b)). Going into details on Nearest Neighbour estimates is beyond

the scope of this work. Let us just mention that such a class does not provide 

estimates which are integrable because their tails behave like i ixii“ 1.
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L|-consistency for density estimates has been studied by a number of authors. 

Devroye (1979, 1983), Abou-Jaoude (1976a,b,c), Gyorfy (1987) and Tran (1989) 

are some examples. In most of these works a common feature is the

fundamental role played by the relation between J n and multinomial distributions,

on obtaining asymptotics for J n. Such a relation can be seen (very informally) as

follows. Write J n as

J * fn"f * + J 1 fn " f1 »
IF D

where D is a large compact set. Now partition D into {Ej,...,Ejvj}. We have

N
J i f n- f i  -  i  J i f n- f i  .

D k=l Ek

Let Hn be the empirical measure based on X ^,...,X n and n be the underlying 

probability distribution and X(.) be the Lebesgue measure. Approximate fn(x) by 

/*n(Ek)/ X(Ek) and f(x) by ;t(Ek)/X(Ek) when x is in Ek. We have

N N
I  [ l f n- f l  * I  f l^n( Ek) " /*(Ek) | /X(Ek ) 

k=l Ek k=l Ek

N
“  E lMn^Ek^ ** M̂ Ek^  ̂

k=l

Now (n/in (E j) , . . . ,n/xn(Ejsj), n^n(Dc)) is, under the assumption of an independent 

sample, multinomially distributed with mean (n/*(E |) , . . . ,n/i(Ej^), njt(Dc)) . Also, 

the other term in our decomposition can be bounded from above by

f lFn - f I  < [ l f n l + f I f  I -  Mn ( DC> + M(DC)
J Dc Dc Dc

< I (Dc ) -  n ( Dc ) |  + 2/*(Dc ) .

Now /t(Dc) can be made small by our choice of D and therefore J n can be 

written approximately as
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N+l
n ” ^ . E | Zj  ̂ -  EZj^l , 

k-1

where the random vector (zi,...,Zfsj+i) is multinomially distributed with mean

(n/x(Ei) , . . . ,n^i(Ej^), n/i(Dc) ) .  Consistency results will then follow if

(a) We can choose N and the D -partition appropriately;

(b) We can obtain good bounds for

N+l
P { E | Zj  ̂ -  EZj  ̂| > n e} ; 

k= l

(c) We can provide rigorous justification for our informal approximation.

Nonetheless, when dealing with weakly dependent samples, we must handle a

further problem. Namely, the vector (n/in(E^) n ^ E ^ ) ,  njin(Dc)) is no

longer multinomially distributed. Our approach to solve such a problem will be 

to decompose such a vector into a sum of "sub-vectors" in such a way that each 

of these subvectors can be well approximated by suitable multinominal random

vectors.

4.2.2 Kernel Density Estimates

Let {Xn} be a sequence of identically distributed R^-valued random vectors

admitting of a common density f. Let W:R^->R be an integrable function which

integrates to 1. A kernel density estimate of f is defined as

j  1 n  -I
f  (x) -  ( n b V 1 I  w( b‘ * (x - X .) ) .

n  k-1  K

where b = b(n) is a sequence of positive real numbers ( the sequence of

bandwidths or smoothing parameters ).

Kernel density estimates (KDE) were introduced in Rosenblatt(1956) ( See also
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Parzen(1962) and Cacoullos(1966) ) and is probably the best known of all density 

estimates. When W(.) is also a density we can easily see that fn is the density of 

the convolution of the empirical distribution function with a distribution which 

admits b“^W(x/b) as its density. For this reason KDE's are sometimes called

empirical density functions ( See Csorgo and Revesz(1981) section 6.2 ).

We will make no attempt to perform a detailed analysis of previous works on 

KDE's. We refer the reader to the survey papers Bean and Tsokos(1980), 

Fryer(1977) and Wertz and Schneider(1979) for an account on KDE's under 

independent samples. See also chapter 3 in Prakasa Rao(1983) for some Lp 

properties of KDE's. Practical aspects of such estimates are discussed in 

Devroye(1987), Silverman(1986) and Tapia and Johnson(1978).

For dependent samples, asymptotic results on KDE's are much more scattered and, 

there is hardly any single volume providing a comprehensive study of the subject. 

See however the recent book by Gyorfi et al (1989). Pointwise central limit 

theorems were established in Robinson(1983) for strong mixing samples. 

Ahmad(1982) studied the integrated mean square error for KDE's under weak 

dependence. For an account on strong uniform consistency of KDE's under various 

forms of weak dependent samples see Roussas(1988). See Robinson(1987) and Cheng 

and Robinson(1990) for central ( and non-central ) limit theorems for KDE's 

under strongly correlated samples.

In all asymptotic results for KDE's the condition b + (nb^)"! = o (l)  turns out to

be minimal ( for instance such a condition is necessary for pointwise consistency 

for continuous f ). Such a condition imposes upper and lower limits for the rate at 

which the sequence of smoothing parameters goes to zero. Now in pointwise terms, 

the smoothing factor b can be thought of as a measure of the relevance we are
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attributing to observations far from the particular point we are interested in. Thus, 

as ( very loosely ) a sample of n iid random vectors contains "more information" 

on the common distribution than a sample of dependent ones ( same size and 

same underlying density ) we could expect a slower lower limit rate for the 

bandwidths in dependent samples. However, as we show in section 4.3.2, this is 

not necessarily the case. As a matter of fact if the dependence structure is weak 

enough the minimal condition above turns out to be ( as in the iid case ) 

necessary and sufficient for strong L \ consistency of KDE's ( see chapter 5 ).

4.2.3 Histogram Density Estimates

Let {Xn} be a sequence of identically distributed R^-valued random vectors having 

f as their common density. Let {Q n}  be a sequence of R epartitions, Q n“ { ^nj» 

j>l }. Suppose that {Q n}  is rich enough so that

00 00

fl tr( U { B o r e l i a n s  o f  R }
n= l m=n

In that case we define the Histogram Density Estimate of f, based on the sample 

{Xfc , l ^k^n}  and subordinated to the sequence of partitions {Q n}  by

n
f  (x ) = n “ * I  IfX. e A .} [ X(A .) ]“ * , f o r  x e A . , 

n k-1  n j  L n j '  J n j

where X(.) is the Lebesgue measure on R^. The above definition is a generalization 

of the classical histogram estimate where each A nj is a d-fold product of finite 

intervals. Namely each Anj can be written as

d
n (b a  i , ba ( i  + 1) ]  

k-1  K K

where a^ , . . . ,  a^ are fixed positive real numbers, b = b(n) is a smoothing 

param eter and i e Z. H D E's as defined above were considered in A bou-Jaoude



97

(1976a,b).

We refer the reader to the same monographs mentioned in last section for 

practical and theoretical aspects in the classical case under iid samples. H D E's for 

weak dependent samples were studied in Gyorfi(1987) and Tran(1990). Studies of 

H D E's on samples exhibiting strong forms of dependence do not appear in the

literature.

4.2.4 Main Results

In this section we will present sufficient conditions for weak and strong

Lj-consistency of KDE's and HD E's under weak dependence assumptions on the 

sample. As outlined in section 4.2.1 we will handle those issues by approximating 

the random vector (n / ^ E j ) , . . . ,nfin(E jsj)) , where {E^, 1<K<N} is a partition of R^, 

by a sum of multinomially distributed random vectors. Our main tools for such an 

approximation will be Berbee's theorem (see Chapter 2) and the following result 

due to Bradley.

THEOREM  4.2.1 (Bradley, 1983). Suppose X and Y are r.v .'s  taking their values 

in Borel spaces S | and S2 respectively (a Borel space is a measurable space (S,D) 

which is bimeasurably isomorphic to a Borel subset of the real line R; for instance, 

R* is a Borel space); and suppose V is uniform -[0 ,1] r.v. independent of (X,Y).

Suppose N is a positive integer and H  = { H | Hj^} is a measurable partition of

S2 . Then there exists a S2- valued r.v. Y* = f(X,Y,V) where f is a measurable

function from SixS2x[0 ,l]  into S2 such that

(i) Y* is independent of X,

(ii) the probability distributions of Y* and Y on S2 are identical, and

(iii) P{Y* and Y are not elements of the same H e H }  < 

(8N )i a(B(X ),B(Y )).
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where a(B(X),B(Y)) = sup{|P(A nB ) -  P (A )P(B )|, AeB(X), BeB(Y)}, and B(X)  = 

{X“ 1(D), D eD }, with D being the a-algebra that accompanies S j (£(Y) is defined 

analogously). □

Now we can state and prove our approximation result.

THEOREM  4.2.2 Let (X ^ , n>l be a strong mixing (weak Bernoulli,

respectively) stationary process such that Xj takes its values in Rd Let H  -  {Hj, 

l<j<N } be a measurable partition of R^. Let m be a positive integer and e be 

a positive real number satisfying 

n 4
S > 7  • ( 4 . 2 . 1 )m e

Let /%(.) be the empirical measure based on X j,...,X n , and /i(.) be the probability 

distribution of X j. Then 

N
P{ I  |n/ in (Hk ) -  n/*(Hk ) |  > ne} 

k=l

< m0 (m) + 2 ^ . e x p { -  n e ^ / ( 6 4 m) } ,

where 0(m) equals y8N a(m ) if {Xn} is strong mixing and equals |3(m) if {Xn} is 

weak Bernoulli.

Proof. Let us define [[n/m]] = M. We have 

N
P{ I  l/tn (Hi )  -  M(Hf ) I > e}

i = l
N n

-  P{ I  I I  I (Xk e Hj)  -  n/zCHj)! > ne} 
i = l  k-1

m N mM
< I  P{ I  I I  I (Xk f Hj )  -  M/i (Hi) |  > Me/2}

j= l  i= l  k = j , m

N n
+ P{ I  I I  [ I ( X k e Hj)  -  / t ( H i ) ] |  > n e / 2 } , ( 4 . 2 . 2 )

i =1 k=mM+l
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where we have defined

R
I  ak = 

k=j ,m
I

k: k-j+im,i>0,k<R
ak •

Now the second term in the right hand side of 4.2.2 equals zero by virtue of

4.2.1, whereas the first one can be written as

by stationarity. Now by THEOREM 4.2.1 (Berbee's theorem, respectively) there 

exist random vectors Z m ,Z2m ,... ,  such that

(i) Zjjjj and Xm j are identically distributed,

(ii) Zmj is independent of {Zms, 1 < s< j),

(iii) P{Zm j and Xmj are not elements of the same Hj e H }  <

Now, by (ii) and a simple induction argument we obtain that {Zm,Z 2m,...}  is a 

collection of independent random vectors. We can write

N M
P{ I  I I  I (X km e -  M/i ( H j ) | > M e/2} 

i= l  k=l

N M
< P{  I  I I  K X ^  e H j )  -  I (Zkm e H j ) I > M e / 4 }  

i= l  k=l

N M
+ P {  I  I I  I ( Z km e H i )  -  M/i( H i ) I >  M e / 4 }

1=1 k=l

-  ( O  + ( H ) .

N M
( I )  < ( M e / 4 ) “ I ) E I  | I  I (Xkm e -  I ( Z km e H j ) |  

i= l  k= l 
M N

< ( M e / 4 ) ” 1 I  E I  11 (Xjun e H{) -  K Z ^  e H j ) I
k= l 1=1 

N
< ( 4 / e )  max E I  11(x km « Hj )  '  I ( z km € Hi ) l

k i =l

N M
mP{ I  I I  K X ^  e H i)  -  M/x(Hi) | >  M e/2} ,  

i= l  k=l
( 4 . 2 . 3 )

(8N )io(m ) [< /3(m), respectively].

We have,
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< ( 4 / e )  . 2 . *(m) ,  ( 4 . 2 . 4 )

where the last inequality holds valid because of (iii) above. On the other hand

M
( I I )  < 2n max {P{ I  UZiyn e G) -  M/*(C) > M e/8} , G e <r( / / )} ,  ( 4 . 2 . 5 )

k=l

where a( H)  is the a-algebra generated by H  (which possesses 2^  elements). The 

inequality above was obtained using the simple fact that if and v are probability 

measures defined on a measurable space (0 ,F) and H  = {H i,...,H jq} is a 

measurable partition of 0 , then

N
I  U ( H j )  -  /*(Hi) |  -  I  sup {>(G) -  /*(C),  G c ct ( H ) } .  

i = l

Now, Hoeffding's inequality (see Hoeffding (1963)) and 4.2.5 imply

( I I )  < 2^ exp ( -  2e^M/64)  < 2^ exp ( -  6 ^ n / ( 6 4 m ) ) .  ( 4 . 2 . 6 )

4.2.3, 4.2.4 and 4.2.6 imply the result. □

It seems worthwhile to make a few comments on the above result. The first one 

is concerned with similar (though weaker) results that could be obtained by 

application of a different sort of technique. There is quite a number of bounds 

for probabilities of large deviations for centered sums of weakly dependent 

Bernoulli random variables (see e.g. Roussas and Ioannides (1988), Doukhan et.al.

(1984), Carbou (1983), Yoshihara (1978)). Such results could be used so as to 

establish, in a more direct fashion, bounds for 

N n
P { I  I I  I (Xk e Hf) -  n / i ( Hi ) |  > ne} .  ( 4 . 2 . 7 )

i = l  k=l

This approach was adopted in Gyorfi (1987) for uniform mixing samples, obtaining 

rates equivalent to i.i.d. samples. However, when we deal with less restrictive

mixing assumptions, the approach in the proof of our theorem 4.2.2 seems to work 

better. For instance, under the assumption of exponentially strong mixing samples
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(i.e. the mixing weights decrease exponentially), any of the above references would 

provide bounds for 

n
P { | I  I (X^ 6 H j) -  n/*(Hj) |  > ne}

k=l

which are at most like exp(- An*“ ^), where 0 <  5 <  1 and A >  0. Whence 

the best upper bound for 4.2.7 one can obtain (see 4.2.5) is

2^  exp { -  An^” ^} ,

which is clearly worse than the bound obtained in THEOREM  4.2.2. The second

remark is much more a digression on a conjecture. As will be seen later on,

our proofs of strong Lj-consistency are in fact deeper than necessary. Namely 

we will show strong Lj -consistency by proving complete L j -consistency (we recall 

that a sequence of random vectors {Zn} converges completely to a random vector 

Z iff EPf i Z j j - Z i  >  f} <  oo, for all e >  0; Borel-Cantelli lemma implies that

complete convergence is stronger than almost sure convergence). More specifically

let N = N(n) be such that limn n - *N = 0 and suppose that we have a sequence 

of Rd-partition {Hn}, where H n  possesses N(n) elements. Our proofs of strong 

L |-consistency are invariably made by showing that

Tn -  I  " M H) I 0 , c o m p l e t e l y .
HeHn

It seems natural to ask whether T n -> 0, a.s. under ergodic samples. The answer 

is negative for general H n 's. A counter example has been built in Shields 

(1973). He showed, as an application of Rohlin's

theorem that there exists a sequence of Borel sets {An } such that

p { ^ n ( An) " M An>l

for all n > 1, provided that we only assume that the underlying process {Xn} is 

stationary and ergodic.



102

Now we can state

THEOREM  4 .2 .3 . Let (X ^ , n > 1 be a stationary process taking its values in 

Rd and assume that Xj admits of a density f: Rd -» R. Let {fn } be a sequence 

of KDE's with corresponding sequence of bandwidths given by (b(n)} (obviously we 

are assuming that fn is based on X j,...,X n). Also assume that the underlying

kernel W: Rd R is integrable and integrates to 1.

(A) If {Xjj} is weak Bernoulli with mixing sequence {/3n} and there exists a

sequence m = m(n) of positive integers such that

m|3m + m(nbd ) _1 -  o ( l ) ,  ( 4 . 2 . 8 )

then fn is weakly L |-consistent. Further if we also have

I  m(n)0m( n ) < oo, and ( 4 . 2 . 9 )
n

-  o ( l ) ,  ( 4 . 2 . 1 0 )n

then fn is strongly Lj-consistent.

(B) If {Xn } is strong mixing with mixing sequence {o:n} and there exists a

sequence m = m(n) of positive integers such that

mb-d / 2Q!m + m(nbd ) “ l = o ( l )  ( 4 . 2 . 1 1 )

then fn is weakly L\  consistent. Further if we also have

I  m(n) [ b ( n )  ] _d/ 2a m( n ) < oo , and ( 4 . 2 . 1 2 )
n

ml° s n  = o ( l )  ( 4 . 2 . 1 3 )n

then fn is strongly L |-consistent.

Proof: See Appendix 4-B .
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Now we gather some corollaries to the above result.

Corollary 4 .2 .4 : If {X ^  is weak Bernoulli, 1/3^ <  <» and b+(nb^)-  ̂ = o ( l)  then

fn is weakly L |-consistent.

Proof: Let m = m(n) = Cynb^H. Obviously m(nb^)-  ̂ = o (l) . On the other

hand as I/3n <  <», and lim m(n) = <» we also have m/3m = o ( l) .n

The above result improves Corollary 3.1 in Tran (1989). We relax both 

T ran 's assumption on the sequence of band widths and his assumption on the 

sequence of (3-weights.

Corollary 4 .2 .5 : If {X ^  is exponentially strong mixing and b+(log n)(nb^)~^ =

o(l )  then fn is strongly Lj-consistent.

Proof: Take A so that a(A[[log n]]) < n“2~e for all n, and define m (n) =

A[[log n]]. We have, for n large enough,

m n"^/^a(m ) < yn . yn . a(m) < n n “^ " e =

Thus 4.2.12 holds valid. The other condition, 4.2.13 is obviously valid. □

The above result improves Corollary 2.1 in Tran (1989), where strong 

consistency was shown, provided that (log n)^(nb^)-  ̂ = o (l) .

Corollary 4 .2 .6 : If ( X ^  is strong mixing with an = n“ (^+^), where 0 >  0 and

(n20/(l+ 20)bd)-l = ^ e n  fn is weakly -consistent.

Proof: Define m = [ [n ^ O +20)] ]. We have

m( nbd ) “ l = 0 ( n ^ ^ / ( ^ +^ ^ ) b ^ ) ” 1 = o ( l ) ;
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On the other hand

m b "^ /^am = #o( n 0 / ( l + 2 0 )  ) . 0 (n“( l + 0 ) / ( l + 2 0 )  )

= o ( l ) .

Hence 4.2.11 holds valid. □

The above result improves Corollary 2.2 in Tran (1989), where a more 

restrictive rate of decay for (a n) was imposed. Further Corollary 4.2.6 above 

allows the sequence of band widths decreasing faster than in T ran 's result.

Corollary 4 .2 .7 : If { X ^  is strong mixing with = n” (2+6)t where 6 >  0 and

(log n)(1 + 0/(2+ 5)(n$/2+ Sbd ) - l  = 0(1), for some e >  0 then fn is strongly 

L | -consistent.

Proof: Take m = [ [n2/(2+5)#(i0g n )(l + e)/(2+5)j j y / e bave

mb ~ d /2 am _ m 0 ( ( n m~l ) £) . a m =* ymn.am. o ( l )

< nam. o ( l )  = [ n . ( l o g ( n ) ) 1+e ]_ 1 . o ( l )

Thus Im b - ^ 2 am <  Qn the other hand 4.2.13 and m (nb^)”  ̂ = o( l )  are

obviously valid. □

Corollary 4.2.7 above ameliorates Corollary 2.3 in Tran (1989) in the same fashion 

as Corollary 4.2.6 does over Tran 's Corollary 2.2. It also improves Theorem 2

in Gyorfi (1987) provided that 5 >  1. For 

0 <  6 < 1 ,  Gyorfi's rates are better than ours.

Corollary 4 .2 .8 : If P ^ }  is weak Bernoulli with = n“ (2+5) and (log

n)(l + 6) ( l +$) (n 5/ l+5bd ) - l  = o(l )  for some e >  0 then fn is strongly

L | -consistent.
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P roof: Take m = [[(n ^ b ^ lo g  n)l + c >1/2+5] Simple algebraic manipulations

show that

m = o ( n b d ) , 

and therefore

m/3m -  o ( n b d )/3m -  o ( n b d ) . 0 ( n “2b _ d ( l o g ( n ) ) _1“ €) , 

thus Im/3m <  oo. On the other hand 4.2.10 is obviously true. □

Corollary 4.2.8 above improves Corollary 3.2 in Tran (1989) in the same way as 

Corollary 4.2.6 does over Tran 's Corollary 2.2.

As far as L |-consistency for HD E's is concerned we have the following:

THEOREM  4 .2 .9 : Let ( X ^  be a stationary process taking values in Rd and

having common density f. Let {Qn}, n > 1 be a sequence of R epartitions and 

fn be the HDE of f subordinated to Q n = {Anj, j> l}  (say). Assume that

(HO) n °  1cr(u°° Q ) = {Borel  s e t s  o f  Rdl ,n=I m=n m L J

(HI)  For all Borel set A in with 0 <  X(A) <  oo and for all e >  0

there exists an no such that we can find A n in c (Q n) with X(A A

<  e, where A stands for the symmetric difference,

(H2) There exists a sequence m = m(n) of positive integers such that for all

M > 0 and all Borel set C in Rd, with X(C) <  oo we have

lim  s u p n X(UjAn j  n C) = 0,

where the union above is over the integers j satisfying X(Anj n C) < 

Mm/n.

Then either (A l) or (Bl)  below imply that fn is weakly L^-consistent.
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Furthermore either (A l) and (A2) or (Bl)  and (B2) imply that fn is strongly

L | -consistent.

(A l) is weak Bernoulli with mixing sequence {|3n } satisfying

m|3m = o ( l ) .

(A2) *̂m(n)^m(n) <  °°« and

-  o ( i ) .n

(B l) {Xn} is strong mixing with mixing sequence {an } satisfying

nam = o ( l ) .

(B2) In a m <  °°, and

-  o ( i ) .n

Proof: See Appendix 4-B .

Obviously a number of corollaries to theorem 4.2.4 could be obtained in the same 

fashion as we did for theorem 4.2.3. We will not state such corollaries so as to 

avoid repetition.

4.2.5 Some Consequences

In this section we state some simple consequences of the results shown in section 

4.2.4. The first of them is a strengthened variant of Glivenko-Contelli theorem.

Corollary 4 .2 .10: Let {X ^  be a stationary process taking values in and having

common density f. Let us also assume that {Xn} is exponentially strong mixing. 

Let fn be a kernel density estimate based on X j,...,X n , a kernel W, which we
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require to be a density, and a bandwidth b = b(n). Let us define

X1 xd
Fn<x l > x 2 >• • • > x d)  "  J • • •  J f n ( x ) d x >

-0 0  -0 0

where x = (x j,...,x ^ ). We will make no distinction between F n as above defined

and the measure in generated by Fn . If bd + (log n)(nbd)“ l  = o( l )  then

sup  lFn (B) -  F ( B) |  -> 0,  a . s .  a s  n -» <»,
BeBd

where F(.) is the probability measure in R** induced by X j, and Bd is the class of 

Borel sets in F^.

P r o o f :  P{ sup | Fn (B) -  F ( B) |  > e} -  P{ sup  i f  f n -  f  f l  > e}
BeBd Bf Bd B B

Now, the result follows by virtue of Corollary 4.2.5. □

Obviously the result above could have been written in more general terms, taking

into account the assumptions on theorem 4.2.3. We have chosen the exponential 

strong mixing assumption so as to keep the statement short.

Glivenko-Cantelli theorem states that for iid samples we have

sup  |/£n (B) -  F ( B) |  0,  a . s .  a s  n «>,
B eD

where D  = {(-<»,x], x e F^}, and n n is the empirical measure based on X j........ Xn.

When Xj admits of a density we have

sup  |/xn (B) -  F (B) | = 1, a . s . ,  f o r  a l l  n,
BeBd

because for each w the support of /xn( . ,w) has null F-m easure. Hence a result

like Corollary 4.2.10 is obviously not true if we replace Fn by
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An interesting study on the estimate Fn above is presented in Sarda (1991). He 

presents an alternative characterization of Fn and addresses the issue of optimality 

choosing the sequence of band widths.

A second simple consequence is the following.

Corollary 4 .2 .11 : If {X ^  is a scalar process satisfying the assumptions of

Corollary 4.2.10 then the d-dimensional joint density of X i,...,X d (assumed to 

exist) can be L | -consistently estimated by considering the process Yn = 

(Xn ,...,X n+d_ |) .

Proof: Immediate. □

4.3 Regression and Conditional Density Estimates

This section is devoted to the study of -consistency in a different context. We 

will deal with a somewhat similar concept of L |-consistency suitably adapted to 

regression function estimates. Such a concept was originated in Stone (1977) in a 

framework much more general than that we are going to study below. We will

consider a particular kind of nonparametric regression function estimate and prove 

its strong universal consistency. The concept of universal consistency is discussed 

in subsection 4.3.1. The definition and some relevant results on the regression 

estimate with which we will be concerned are treated in subsection 4.3.2. Strong 

universal consistency for such estimates are proved in subsection 4.3.3. Finally in

subsection 4.3.4 we show a strong Iq-consistency result for conditional density 

estimates.
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4.3.1 Universal Consistency and Regression Estimation

Let (X,Y) be a random vector taking values in Rd ® R. Suppose that E | Y |  <

oo. The regression function of Y given X is defined by the conditional 

expectation of Y given X as follows

r ( x )  =  E ( Y | X - x ) ,  x e Rd .

The issue of estimating (either parametrically or nonparametrically) regression 

functions is perhaps the most discussed one in the statistical literature. The 

importance of good nonparametric estimates can be justified on the grounds of at 

least two factors. Firstly, in a exploratory stage practitioners might gain insights 

on the choice of particular parametric models. Nonparametric regression estimates 

may also help a great deal in a confirmatory stage, when certain features of a 

particular parametric model are to be checked (e.g. the functional form of the 

assumed parametric model). Secondly, depending on the amount and quality of 

data, nonparametric regression function estimates might be used, avoiding possible 

misspecification problems brought about by a particular parametric functional form.

Let us now define, in its full generality, a nonparametric estimate of regression 

functions. Let Zn = (Xn ,Yn), n > 1 be a stationary process taking values in 

Rd ® R and put

r ( x )  = E ( Y | X = x ) .

A sequence {rn } of nonparametric estimates of r(x) is defined as

r n (x)  = r n ( x , Z 1  Zn ) ,  x e Rd ,

where rn is a measurable function of its arguments.

The possible advantages of nonparametrically estimating a regression function over 

adopting a parametric estimation strategy are obviously connected to the generality
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of the former. In other words, in an ideal situation, one would like that criteria 

of "good" performance of estimates (e.g. asymptotic unbiasedness, consistency, 

efficiency etc.) were valid for {rn} independently of the joint distribution of Z j. 

Obviously that is a formidable task. Prior to Stone's paper (op.cit.) a number of 

authors have established several theorems on the asymptotic behaviour of particular 

regression function estimates. Such results deal with such important asymptotic

criteria of performance as uniform consistency, asymptotic normality, and so forth. 

Most of those results rely, in one way or another, on a sort of smoothness

assumption either on r(.) or on the distribution of X. Clearly, even with such 

assumptions, the generality of nonparametric estimates is still enormous.

Stone (1977) introduced the following concept of universal consistency for

nonparametric estimates of the regression function.

D efinition: Let 7 ^  = (Xn.Yjj), n > 0 be a stationary process taking values in Rd

® R. We say that rn is weak Lp~Lq universally consistent for r(.) = E(Yq|X o=.) 

iff

l imn E j i r n (x)  -  r ( x ) | P ^ ( d x )  = 0,

for all possible distributions of (X q ,Y q) with I iYqI lq <  °°» q > P > 1. where fi

denotes the probability distribution of X.

The concept of universal consistency is thoroughly characterized when one deals 

with a particular (though very general) class of nonparametric regression estimates. 

Namely consider the following estimate of r(.)

n
r n (x)  -  I  Wn i ( x ) Yif 

i = l

where the sequence of weights Wnj(x) = Wnj(x,X ^,...,X n) satisfy
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n
I  Wn i ( x )  -  1, a l l  x i n  R^,  and

i « l

Wn i ( x )  > 0 ,  1 < i < n,  a l l  x In  R^.

In Stone (1977) we learn

THEOREM  4 .3 .1 : Let rn be as above and suppose that {2^} n > 0, is a i.i.d.

sequence of random vectors. The following conditions are necessary and sufficient

for the weak Lp-Lp universal consistency of rn .

(i) There exists a constant C > 1 such that for every nonnegative Borel 

measurable function f on Rd ,

E[ I i Wn i ( X0 ) f ( X i ) ] < CE f ( Xi ) ,  n > 1,

(ii) IiW ni(xi)I{||Xi-X()ll >  e} = op(l) , for all e >  0, as n -> oo.

(iii) maxj lWni(Xo)l = O p(l) , as n ^  oo. □

Stone applied the results above to prove weak Lp-Lp universal consistency for 

nearest neighbour estimates. Weak Lp-Lp consistency for kernel estimates was 

considered in Devroye and Wagner (1980) and Spiegelman and Sacks (1980). 

Recently, some research has been done on strong universal consistency for 

regression estimates.

D efinition: We say that rn is strongly Lp-Lq universal consistent iff 

1 imn J 1 r n ( x ) " r ( x ) | P / i ( d x )  -  0,  a . s . ,

for all possible distributions of (X,Y) with nYiiq <  <», for q > p > 1.

Devroye and Krzyzak (1987) proved that weak and strong L | -L ^  universal
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consistency are equivalent for kernel regression estimates under iid sampling. 

Gyorfi established strong Lp-Lp consistency for a modified version of the 

partitioning estimate.

Definition: Let Qn = {A ^  .A ^ , . . .}  be a sequence of partitions. We define

the partitioning estimate of r(.) subordinated to {Qn } by

r n<x >
,' n ( An i ) / / ‘n<An | )  l f  x c Ani  and Fn ( Ani> > °>

n
L I  Yj 
n i - 1

i f  Mn ( An i )  “  °* and  x c Ani

where /%(.) is the empirical measure based on (X j,...,X n) and

?n (A) -  n - 1 I  I l Xj  e A}Yj .
1=1

The motivation for such an estimate can be outlined as follows: Let us write

E(YIX=x) -  J y d F ( y l X = x ) .

Now estimate F(yiX=x) by

Fn (YlX-x)  -

L I{Yk<y, Xk 6An i }
k-1__________________

n
I  {Xk e An j }  

k=l

, i f  x f An j and 

M Ani> > 0

n " 1 I  I{Yk < y} , i f  /*n (An i ) = 0 and x e Ani  
k=l

With such an estimate we obviously have 

r n ( x > = J ydFn (y |X=x)  .

Devroye and Gyorfi (1985b) proved strong L ^-L ^  consistency for the partitioning 

estimate based on iid samples. The assumption of independence was relaxed in



113

Gyorfy et.al. (1989).

4.3.2 Universal I4 -I~  consistency for the partitioning estimate 
under mixing assumptions

Our aim in this subsection is to study sufficient conditions for universal Lj -L ^

consistency of the partitioning estimate under dependent samples. As in

subsection 4.2.4, our main tool will be an approximation theorem.

Let Zn = (Xn ,Yn) be a stationary sequence of random vectors taking values in Rd 

® R. Let us define

n
?n (A) = n " 1 I  I ( X j  f A) Y i (  A c  Bd , and

i= l

v (A) = [ r  ( x ) / i (dx)  = Er n (A) , A e Bd .
A

THEOREM  4 .3 .2 : Suppose that { (X ^Y ^}, n > 1 is a strong mixing (weak

Bernoulli, respectively) process such that |Y j 1 < C, a.s. Let H  -  (H j, 1 < j < 

N} be a measurable partition of Rd. Let m be a positive integer and € be a 

positive real number such that

4Cm < ne ( 4 . 3 . 1 )

then

N
P{ I  |nz>n (Hk ) -  ny(Hk ) |  > ne} 

k=l

< m0(m) + 5  2^ e x p ( - n e ^  /  (m[32C]^) )  

where  0(m) = 384 ( C / e ) V 2  a(m) ( 0(m) = |3(m) , r e s p .  )

Proof: Define M = [ [n/m] ]. We have
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N
P {  I  U n C H j )  -  r ( H i )  I >  e}  

i= l
N n

= P { [  I E I(Xk e Hj )Y k -  n v ( H j ) I > n e }
i= l k=l

m N mM
< I  P {  I  I I  l (X k e Hj)Yk -  Mj' ( H j ) | >  M e / 2 }

j= l  i= l  k -j ,m

N n
+ P {  I  I I  { I  (Xk e Hj) Yk -  i ' (Hj )  | >  n e / 2 }  

i= l k=mM+l

N M
= mP{ I  | I  ICXjyn e Hj )Yk -  Mp ( H j ) | >  M e / 2 }

1 = 1  k=l

N n
P {  I  I I  { I ( X k e H j)Y k -  v ( H j ) I > n e / 2 } ,  ( 4 . 3 . 2 )

i= l k=mM+l

where as before 

R
T. a k = £ a k »  i > 0 , k < R,

k= j , m k : k = j + i m

and the last equality in 4.3.2 holds valid by stationarity. Now

N n
I  I I  [ l ( X k e Hj )Yk -  *<Hj) ]l

i =l  k=mM+l

n N n N
< 1 1  11 (Xk e Hj)Yk i + I  I  U ( H j ) l

k=mM+l i= l  k=mM+l i= l
n

< C(n-mM) + I  [  |E(Y|X=x) | / i (dx)
k=mM+l

< 2Cm.

Thus the second term in 4.3.2 equals zero because of 4.3.1.

Now let Q be an integer such that 

(fi-1 ) 5  < 2C <

and define

J i = [ -C  + ( 1 - 1 ) e / 9 ,  -C + i e / 9 ) , 1 < i < C, and
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Jfi -  [ ~C + ( £ - 1 ) 6 / 9 ,  C] .

Now consider the following partition of Rd ® R

H* = {H; e i th e r  H -  Hj ® J j , 1 < i < N, 1 < j < 6  or

N Q.
H = Rd ® R -  u u Hi •  J i }  

i-1 J-l

Obviously H* possesses Nfi+1 elements. Now by THEOREM  4.2.1 (Berbee's 

theorem, respectively) we can find (enlarging the original p-space if necessary) 

random vectors T m , T2m , ... such that

(0  T mj = (u mj» v mj) and z mj = (x mj» Ymj) are identically distributed,

(ii) T m j is independent of {Tm s, 1 < s <  j} ,

(iii) P p m j  and Zmj are not elements of the same H e H*} <

(8(NG+1)) £a(m)[ < 0(m), respectively].

It is easy to show that {Tm , T 2m, ...}  is a collection of independent random 

vectors.

The first term in the right hand side of 4.3.2 can be majorized by 

N M
P{ £ | L I ( l̂cm e ^ i ) Ykm ” I (^km 6 H i)Ykml > Me/4} 

i= l  k=l

N M
P{ I  1 I  I(Ukm e Hj) Vkm -  Mp(Hj) I > Me/4} 

i = l  k=l

-  ( 0  + d O  •

Now let us define

JL-
= {Zjyjj and Tj^ belong to the same H e / / } .

We can write

M N
(I )  < P{ £ Z I I (Xknj e Hj)Yj^m - 1(11^ e H^Vj^l > Me/4}

k=l i= l
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M N
= P{ I  I  I ICXjun e H j J Y ^  -  K U ^  e H j ^ i K A k )  > Me/8}

k- 1  i - 1

M N
+ p { I  I  11 (Xjyjj £ Hi )Ykm -  KUfcn e Hi J Vk n i KAg )  > Me/8}

k- 1  i= l

= ( I I I )  +  ( I V )  .

Now, as i Y j^  i < C we have for each k < M 

N
E 11(Xkm f ^i)^km ” *(^km c ^i)Vkml1(Ak) < c /9 .  

i= l

Whence (III) = 0. On the other hand, by Markov inequality,

M N
( I V )  < <Me/ 8) - l  S E E  11 (Xkm e Hj )Ykm -  I ( U ^  e Hj > ^ 1 1(Xk ) 

k- 1  i - 1

N
< ( 8 / e ) . m a x  E I  11 ( X ^  e Hi ) Ykm -  K U ^  e H j ) V k m I I ( A k ) 

k<M i= l

< ( 8 / e ) . (2 C) .m ax  P{Ak}
k<M

< ( 1 6 C / e )  . ( 8 ( N f i + l ) )  £a (m )[<  /3(m) , r e s p e c t i v e l y ]

< 6 4 C / e . (N C )£ a ( m ) [ < /3(m) , r e s p e c t i v e  i y ]

< 64C/e  . ( 3 6 C / e ) £ .N^ .a (m ) [  < |3(m) , r e s p e c t i v e l y ] ,  ( 4 . 3 . 3 )

where we have assumed w.l.o.g. that 1 < 18C/e. Now, as far as (II) is

concerned we can write

N M
I  I I  KUfcn, e Hi )Vkm -  M ^ H ^ l  

i= l  k=l

N M
< I  I I  [ I ( U km e H i ) V km + (EVkm) I ( U km e -  ^ ( H i )Vkm 

i= l k=l

-  EVkmI ( U km e H | ) ] |
N M

+ I  I I  [ ( E V ^ K U f c n ,  e H i )  -  (EVkm) /x(Hi ) ] |  
i= l  k=l

N M
+ I  I X [ M( H i )Vkm -  (EVkm) / t ( H i ) ] |  

i= l  k=l

-  (V)  + ( V I )  + ( V I I ) .



117

We have

M
( V I I )  -  | I  Vjan -  ME(Vlm) | , and

k=l
N M

( V I )  < |EVl m i I  | I  I ( U ^  € -  M/i ( H i ) I
i -1  k -1

N M
< C I  | I  K U j ^  6 Hi)  -  M/x(Hi) I . 

i -1  k-1

Now notice that 

N M
I  I  [ K U ^  e H i ) V km + ( E V ^ K U j ^  e Hj)  

i - 1  k-1

’  /^(Hi )Vkm -  E V ^ K U ^  6 H j ) ]

-  0 .

Hence

N M
(V) -  I I I  [ I ( Ukm € Hi )Vkm + ( E V ^ K U ^  6 Hj )  -  ^ ( H i )Vkm 

i -1  k-1

-  E V ^ K U ^  6 Hj )  ] |
M

= 2 s u p  I  [ I (Ukm e G)Vkm + (EVkmI (Ujyn 6 G) -  /A(C)Vkm 
G e a ( H )  k-1

" EVkmI( U km 6 C ) ] .

Thus, taking into account the bounds for (V), (VI) and (VII), we have 

M
( I I )  < P{I I  Vkm -  ME(Vlm) |  > Me/16} 

k-1

N M
+ P{ I  I I  I ( U km e Hi )  -  M/a ( H i ) | > M e / ( 16C)} 

i -1  k-1

M
+ P{ s u p  I  [ I (Ukm e G)Vkm -  E V ^ K U ^  e G) ] > Me/32}

Ce<r(//) k-1

M
+ P{ s u p  I  [ (EVjyjj) I ( U j ^  e G) -  /i(G)Vk m ] > Me/32} .

Gecr(H)  k-1

Now by Hoeffding's inequality and the fact that a(H)  possesses 2 ^  elements we
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can easily see that the right hand side of the above inequality can be upper 

bounded by

2 e x p { -2  Mc2 / ( 1 6 C) 2 }  + 2 ^ . 3 . e x p { - 2  Me^/ (32C)^}

< 5 . 2 ^ . e x p { -  n e ^ / [ m ( 3 2 C ) ^ ] } .

Such bound and 4.3.3 imply the result. □

Devroye and Gyorfi (1985b) have shown strong L j-L ^  universal consistency for the 

partitioning estimate of regression functions under iid samples. Their smoothness 

assumptions were the following

(Al )  For  any s p h e r e  S i n  we have

l i mn n " 1 # { i ;  Ani  n S * -  0,

(A2) For  any s p h e r e  S I n we have

l lmn max (d i am(An {)} -  0,
i :An jr»s+<$

where diam(A)  -  s u p { | x - y i ;  x , y  e A}.

It is easy to show that if {Qn} is a sequence of cubic partitions, that is each A nj 

is a rectangle of form 

d
IT [ a j k j  j b ( n )  , a j ( k j j  + l ) b ( n ) ] ,

j - 1

where a j , . . . ^  are positive real numbers and {kjj} are integers then (A l) is 

equivalent to

1 i mn nb^ = oo t

whereas (A2) is equivalent to 

1 i mn b ** 0 .

The following result is essential for dealing with the nonstochastic part (bias) of
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J  I r n (x)  -  r ( x ) l ^ ( d x ) .

THEOREM  4.3 .3 . (Devroye and Gyorfi (1985b)). Let S be a sphere and put 

! Sn = { i : An i n S + 4>} , 

then under (A2) we get

r I v (An i ) .
l i m n 1  I . . / a ' >> ~ r <x > M d x ) "  ° -  D

i t l c  A • n i ^  1l t A Sn rtni

We can now state our main result.

THEOREM  4 .3 .4 : Let {Z^ = (X ^ Y ^ } , n > 1 be a stationary process taking

values in ® R, and assume that iY^ i < C. Let (rn(.)} be a sequence of 

partitioning estimates of r(.) = E(Y^ |X^=.),  subordinated to the sequence of

R epartitions {Qn }, where Q n = {An l , An2, ...} .

(I) if {Zn } is weak Bernoulli with mixing sequence {|3n } and there exists a 

sequence m = m(n) of positive integers such that for every sphere S in R^

m0(m) = o ( l ) ,  ( 4 . 3 . 4 )

m # ( i ; An j n S + $} = o ( n ) ,  and ( 4 . 3 . 5 )

max {diam (An j ) }  -  o ( l ) ,  ( 4 . 3 . 6 )
i : An |r» S+4>

t h e n  E J | r n (x)  -  r ( x ) | / * ( d x )  = o ( l ) .  F u r t h e r  i f  we a l s o  have

I  m/3(m) < oo, and ( 4 . 3 . 7 )

m l° sm = o ( l )  ( 4 . 3 . 8 )

t h e n  J i r n (x)  -  r ( x ) | / i ( d x )  * o ( l )  a . s .
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(II) If {Zn } is strong mixing with mixing sequence {an } and there exists a

sequence m = m(n) of positive integers such that for every sphere S in Rd

H^m [ # M:  Ani  n S*$) -  o ( l )  ( 4 . 3 . 9 )

m # { i : An j n S*4>} -  o ( n ) , a nd  ( 4 . 3 . 1 0 )

max ( d i am (An j ) }  = o ( l )  ( 4 . 3 . 1 1 )
i :An i n S*<t>

t h e n  E J | r n (x)  -  r ( x ) | / i ( d x )  — o ( l ) .  F u r t h e r  i f  we a l s o  have

I  mAm[ #  {i : An j n S*4>} ] i  < and  ( 4 . 3 . 1 2 )

m l og  m = o ( n )  ( 4 . 3 . 1 3 )

t h e n  I -  n (x)  -  r ( x ) | / i ( d x )  -  o ( l )  a . s .

P r o o f : F i r s t  o f  a l l  l e t  us  j u s t  r ema r k  t h a t  a s  {Jirn(x) -  r ( x ) | j i ( d x ) }

is a sequence of uniformly bounded random variables, we have that

E j i r n (x)  -  r ( x ) / t ( d x ) l  -  o ( l )  i s  e q u i v a l e n t  t o  J i r n (x)  -  r ( x ) |

/-i(dx) = op ( l )  . Let  S be a s p h e r e  i n  Rd.  Us i ng  t h e  same n o t a t i o n

a s  i n  t he o r e m 4 . 3 . 3  we h av e :

[ I rn(x) - r(x) |/x(dx) < [ irn(x) - r(x)l/i(dx)
J SC

r i K A  . )
+ I  j  rn (x)  -  - A - f i ( d x )  

ie lc  V , 1 MAni)l

+ I J Ir (x) - ,An\  I /*(dx)
ielc  A, • 1 M A m j l

" ( A_ . )
|r(x) -

Sn Ani  

-  ( I )  + ( I I )  + ( I I I ) .

We have

( I )  < 2 u Y ^ . ^ S C )  ,

which can be made small by our choice of S. Also.
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( H I )  -  o ( l ) ,

by virtue of theorem 4.3.3, (4.3.5) and (4.3.10). On the other hand

r , "n<Ani >  ,

(,) - 1 I rvr:y - wr:y 'l(dx)i < I s  An i  M AniZ ■

I
^ An ^ " n ( An P  n i  n ni

sn

^ ^ u (A •)  *Z*(An i ) ’' n ^ n i ) “ Z*(An i ) v (An i ) I
i e l c  a n

i e I Jn

1

w w  ^

+ ^ u (A 1 ) 1 ^ n ( ^ n i ) ,' n ( ^ n i  ) " /*n(An i ) p (Ani  ) *
i e ! s P n ^ n i )

n̂ (A l )n ni
^ u (A •)  *^n(An i )  " M An i ) *  i e l c  ^n^Am )

Sn

+ I  l ^n ( An i )  -  v  ( An i )* 
i e l c•Jn

^ IlYillco 1 /*n(An i  ) “ /*(An i ^ l
i e l cw n

+ I  U n ( An i )  -  v  ( An i ) 1 • 
i e l cJn

The result follows from a simple application of theorems 4.3.2 and 4.2.2. □

As in theorem 4.2.3, a number of corollaries could be drawn from the above 

result. We will not state them for brevity. Let us just rem ark that for strong 

mixing processes with a n = 0 ( n “ (2+5)), our (not stated) corollary improved 

Theorem  3.2.1 in Gyorfi et.al. (1989).

4.3.3 -strong  consistency for conditional density estimates

Our goal in this subsection is to establish a simple result which parallels theorem
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4.3.4 above, when one is estimating conditional densities, instead of regression 

functions. Let {Zn}, n > 1 be a stationary process taking its values in Rc+d, 

with c,d >  0. Put Zn = (Xn ,Yn), where Xn is c-dimensional and Yn is 

d-dimensional. Let us assume that both Z j and Xj admit of densities given by 

f: Rc+d -» R and g: R° -» R. In this case we have a conditional density for Z j 

given Xj = x, given by

h ( . i x )
f ( x , . ) / g ( x )  i f  g ( x )  > 0

q ( ■) i f  g ( x )  = o,

where q: Rd R is an arbitrary density in Rd. A natural estimate of / i ( . | . )  is 

the following

r f n ( x * y ) / g n ( x ) i f  8n ( x > > 0
^ n ( y ' x ) =

L q( y)  i f  gn ( x ) " °»

where fn(x,y) [gn(x), respectively] is a nonparametric estimate of f(x,y) [g(x), 

respectively]. It is possible, obviously, to consider different classes of estimates 

for fn and gn (e.g. to adopt a KDE for fn and a HDE for gn). However, on 

doing so one, in general, does not obtain the following property (which holds for 

*(.!•)).

(A) for each fixed x e R0, hn (. ix) is a density in R^.

EXAMPLE 1 : Let V: R^ R and W: R0 R be densities. If we take

n
f n ( x >y) -  (n b c + d )" 1 I  v [ ( y - Y k ) /b]W[ (x-Xk ) / b ] ,  and

k=l

gn (x)  = ( nbc ) -1 1 W[ ( x "Xk ) / b ] ,
k=l

and define /in (yix) as above then (A) holds valid. More generally, take

U: R ^ d  R a density in R ^ d . Take W: Rd R as its first marginal, that is

W(x) -  J U( x , y ) d y ,
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and define

n
f n ( x »y) = ( nbc +d) “ 1 I U [ ( x - X k ) / b ,  ( y - y k ) / b ]

k=l

n
gn (x)  -  ( nbc ) ” 1 I  W[ (x-Xk ) / b ] .  

k« l

Taking /in (yix) as above implies that (A) is valid.

EXAMPLE 2 : Let {Qn }, n > 1 ({Rn }, respectively) be a sequence of R epartitions

(Rd -partitions, respectively) such that Qn = {Anj ,An2»...} and

Rn = {Bnj Define T n = {A ® B: A e Q n and B e Rn0}.

Define

f n ( x »y) “  1 I { ( x »y) e D}vn (D) /Xc + d ( D ) , and
DeTn

gn (x)  -  I  I{x e A}/in (A) /Xc (D) 
A€Qn

where pn(.) [/%(•)» respectively] denotes the empirical measure based on

(X ,Y),...,(Xn ,Yn) [X j,...,X n , respectively], and Xc+d(.) [Xc(.), respectively] stands 

for the Lebesgue measure on Rc+d [R0, respectively]. Now defining h n(. | . )  as

before, it is straightforward to verify (A).

EXAMPLE 3 : If one wishes to estimate f and g by

n
f n ( x >y) = (nbc + d) _1 I  U[ ( x -Xk ) / b , ( y - Y k ) / b ] ,

k=l
n

gn (x)  = ( nbc ) _1 I  W[(x-Xk/ b ] ,  
k=l

where U and W are densities in R°+d and R0, respectively, such that W is not the

first marginal of U, then (A) does not hold.
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We can now state our

THEOREM  4 .3 .5 : Let fn and ^  be strong L | -consistent density estimates of f

and g respectively and assume that (A) holds valid. Then

JJ l ^ n ( y , x ) " M y l x )  Idy n ( d x )  -  o ( l ) ,  a . s .

where ft is the probability distribution of X j, provided that the following

assumption holds

(B) f n ( x , y )  = 0,  f o r  a l l  y i f  gn (x)  -  0.

Proof: By virtue of (B), we can assume without loss of generality gn(x) >  0, for

all x and n. Indeed

J J l ^ n ( y | x > " h ( y l x )  idy ji(dx )

x : g n ( x ) - 0

J J l q ( y ) . g ( x )  -  f ( x , y ) i d y  dx

x : g n ( x )=0<g(x )

< JJ q ( y ) l g ( x ) -  gn ( x ) I d y d y  + JJ l f n ( x , y )  -  f ( x , y ) | d y d x

-  J l g ( x )  -  gn ( x ) l d x  + JJ I f n ( x , y )  -  f ( x , y ) i d y d x

— 0 ( 1 ) ,  a . s .

Besides, we can also assume with no loss of generality that g(x) >  0, for all x. 

Indeed

J J \ h n ( y \ x )  -  h ( y | x )  | dy  f i (dx)  -  0,

x : g ( x ) = 0  

because /i(x: g(x) = 0) = 0.

Now, as
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J l gn (x)  -  g ( x ) | d x  -  o ( l )  a . s . ,

we have

JJ f ( x , y ) / g ( x ) l g ( x )  -  gn ( x ) | d y d x  =» o ( l )  a . s . ,

or

JJ f ( x , y ) | l  -  gn ( x ) / g ( x ) i d x d y  -  o ( l )  a . s . .

But

JJ I f n ( x , y )  -  f ( x , y ) I d x d y  -  o ( l )  a . s . .

The last two equations imply

JJ gn ( x ) l f n ( x , y ) / g n (x)  -  f ( x , y ) / g ( x ) i d y d x  

"  JJ l f n ( x »y) -  f ( x , y ) g n ( x ) / g ( x ) i d y d x  = o ( l )  a . s . .

Now, as for each fixed x both fn/gn and f/g are densities on R^, we can write

JJ g ( x ) | f n ( x , y ) / g n (x)  -  f ( x , y ) / g ( x ) i d y d x

- I I + I I
x : g ( x ) < g n (x)  x : g ( x ) > g n (x)

< JJ Sn̂x),fn(x»y)/8n(x) " f(x,y)/g(x)idydx

+ 2 [  g ( x) [ ( f ( x , y ) / g ( x )  -  f n ( x , y ) / g n ( x ) ) d y d x ,
A B

with A = {x: g(x) >  gn(x)} and B = {y; f(x,y)/g(x) >  fn (x,y)/gn(x )), where we 

have u se d  S c h e f f e ' s  t heo r em:  J | u - v |  = 2 J ( u - v ) + i f  u and  v  a r e  

density. Now the second term on the right hand side of last inequality is less 

than
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2 J J ( f (x,y) - fn(x,y))dydx < 2 JJ | f n -  f | .
A B

The last three relations imply the result. □

Let us just point out that condition (B) is valid for the estimates given in example 

1 and 2 above. Finally, let us state a corollary to THEOREM  4.3.5.

THEOREM  4 .3 .6 : Let us consider the estimates given in EXAMPLE 1 above, and

suppose that {Zn} is weak Bernoulli (let us recall that Z n = (Xn ,Yn)) with mixing 

sequence {/3n}. let us assume that there exists a sequence m = m(n) of positive 

integers such that

I  m(n) 0m(n) < oo,
n

m(nbc+d)“l -  o ( l ) , and

E i£S2 -  o ( l ) .n

Then JJ |hn(y|x) - h(y|x)|dy /-i(dx) -  o( l)  a .s .

Proof: Immediate from THEOREMS 4.3.5 and 4.2.3. □

Obviously, a similar result is valid for strong mixing (instead of weak Bernoulli) 

processes; it suffices to use the second half of THEOREM 4.2.3 instead of the 

first. Also using THEOREM 4.2.9 instead of THEOREM 4.2.3 one could obtain 

strong L |-consistency for the conditional density estimates introduced in EXAMPLE 

2 above.
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APPENDIX 4 -A

LEMMA 4 - A - l : Let f: R^ -+ R be an integrable function in Rf*, Suppose that

W: Rd R s a t i s f i e s  Jw -  1. Then

lim  [ I [ b “^ W ( y / b ) f ( x - y ) d y  -  f ( x ) | d x  -  0
b->0

Proof: See Devroye and Gyorfi (1985a), Theorem 2.1. □

LEMMA 4 -A -2 : Let p  be a probability defined in (Rf^.B^), where

B& = {Borel sets in R^}. Take A c B&. Then

J / r(x+A)dx = X(A) ,

where X is the Lebesgue measure in R^.

Proof: Let us first suppose that A is the d-fold product of finite intervals,
d

Put A = II [ a j . b j ] .  We have 
i= l

x+b

J / i (x+a)dx = J J ^ ( d y ) d x

x+b

y - a

= J J dx n ( d y )  = J X(A)/r(dy) = X( A) , 

y -b

by Tonelli-Fubini's theorem. We used the following convention 

v
J P( dy)  d J P ( d y ) ,

U n [u j . v j ]
1 = 1

where v = (vi ^ . . . . . v ^ )  and u = (uj , . . . ,u^),  with vj > uj.

Now let us define
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Gn  -  {A e Bd ; J /*(x + Anl n ) dx  -  X(AnIn ) } ,

d
where  I n = IT [ - n , n ) .  C l e a r l y ,  any f i n i t e  i n t e r v a l  b e l o n g s  t o  Gn

i = l

( t h e  argum ent i s  th e  same a s  a b o v e ) .  Al so

J /»(x + Rdr>In )dx  -  |  n ( x  + I n ) dx  -  X ( I n )

-  X(Rd m n ) ,

thus

( i )  Rd £ c n .

Also if A, B are Gn-elem ents such that A £  B, then

J / a ( x  + (B-A)r»In )dx -  J [ / i ( x  + Br*In ) -  /*(x + Anl n ) ]dx

-  X( BnIn ) -  X(AnIn ) -  X(B-A)oIn ) .

Thus

( i i ) B-A e Gn .

Finally, if {Am} is a sequence of G n elements such that Am £  Am+1 t*ien

Lebesgue's Monotone convergence theorem implies

( i i i )  UAm e Gn .

Therefore, G n is a X-system containing the 7r-system of the d-fold product of

finite intervals. By Dinkyn's ir-X theorem we have

Bd 2  Gn  £  ^ { p ro d u c t o f  f i n i t e  i n t e r v a l s }  -  Bd .

In other words if A e £ d then

J /i ( x  + AHIn )dx = X(Ar»In ) ,  a l l  n.

Take the limit as n goes to infinity and use Lebesgue's monotone convergence 

theorem to conclude the proof. □
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LEMMA 4 -A -3 : Let fn be the HDE considered in THEOREM  4.2.9 above.

Assume that (HO) holds valid. Then

J lE fn -  f |  -* 0

if and only if (H I) holds valid.

Proof: See Abou-Jaoude (1976, pp.216-219)). □
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APPENDIX 4-B

1. Proof of THEOREM  4.2.3

Let us define

gb (x)  = E f n (x)  -  J b - d Wb ( x - y ) f ( y ) d y ,

where we have put Wb(z) = W(z/b). We have

J  * fn  “ ^ I ^ J  I f n  “ SbI + J  18b " ^ •

But

J lg b -  f l -  J i j  b _dWb ( x - y ) f ( y ) d y  -  f ( x ) | d x

" J b " dwb ( y - f ( x -y> dy ■ f ( * ) i d x

-  o ( l ) ,

by Lemma 4 - A - l . Thus we need only to consider

J n “  |  l f n -  8 b ' . ( s a y ) •

For a given e >  0, we can choose constructs M, L, N, Q i , . . . ,Q n , and finite 

disjoint rectangles A |,...,A jsj such that

max { I | , 1 < K < N} < M,

N
U Aj £  [ - L , L ] d , and 

i “ l

J IW(x) -  W*(x)Idx  < e ,

N
where we have p u t W* == I  a j l ^ . ( x ) .  D e f in e  g£ and  a s  gb and  f n

i -1  1
with W* instead of W. We have

J n < J  l f n -  f n ' + J  l f n “ Sb« + J  18b " S b '

< J b“d J IWb ( x - y )  -  Wb ( x - y )  | /in ( d y )d x  

+ J  b ~d J  ' wb ( x_y)  “ Wb ( x - y ) l f ( y ) d y d x
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+ J I f *  - gj, < 2e + J - gj, ,

by Fubini's theorem. Let us just recall that we are denoting by /tn (/*,

respectively) the empirical measure based on Xj , . . .  (the probability distribution

of X j, respectively). We have

* * N
J , f n " Sb1 < E laji J |b"d J f(y)dy - b_d J /in(dy)|dx

1 x+bA j x+bA j

< Mb-d  J |/x(x+bAj) -  /*n (x+bA j) | dx .

Thus it suffices to consider

b~d J |/i(x+bA) -  /*n (x+bA) |d x ,

where A is an arbitrary finite rectangle of 13d .

Let A be as above. We can write

d
A -  IT [ x j ,  Xj + a j ) .

i= l

Take e >  0 and choose T > max{2/minj aj, 4 .( I ja f1)X(A)} where 
d

X(A) — II a j ,  i s  t h e  L ebesgue measure  o f  A. Now l e t  us  c o n s i d e r  th e  
i= l

-partition whose elements are d-fold products of intervals of the form [ (i—1 )b/T, 

ib/T) ,  where i is an integer. Call this partition Let us define

d
A* = IT [ x j  + l / T ,  x j  + a j  -  1 / T ] ,  and  

i= l

Cx = x + b A -  U B £ X + b(A-A*) = C* .
Be1*

Bcx+bA

We have
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J |/*(x+bA) -  /in (x+bA ) |dx

< f I  I /i(B) -  /*n (B) I dx 
Be*

B£x+bA

+ J [̂ (Cx) + /*n(cx) ]dx- O)

Now Lemma 4 -A -2  above implies that the last term  in the above inequality can 

be written as

d d
IT a j  -  IT 

i= l  i -1
2 X ( b ( A - A * > ) -  2 b d X(A-A*)  -  2 b d ( II a j  -  II ( a ( -  | ) )

d 2
-  2bd X(A) (1 -  n (1 -  = = -) )

1-1 T aI

d a “ *
< 4bd X(A) I  < €bd .

i = l

Now choose R so large that

P ( S r )  < c/2X(A) , ( 2 )

where Sr  is the sphere centered at the origin with radius R. We can bound the

first term in (1) from above by

I  l/*n (B) -  B) | J dx
Bef  B£x+bA

BnSj£+4)

+ I  | / in (B) -  #t(B) | f
Be* B£X+bA

Br»Sp=4)

< I  l/*n (B) -  /i(B) I X(A) . bd
Be*

BoSj^+4)

+ [ " Z^(Sr) I + 2/*(Sj>) ]X(A)bd , ( 3 )

where we have used the fact that
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j dx < bdX(A),
B£x+bA

which is easily showing as both A and B are d-fold  products of finite intervals. 

Now as our processes are mixing, they are ergodic and thus l^n(Sft) ”  =

o (l) , a.s., thus the second term in (3) can be bounded from above by bdo (l)  + 

ebd a.s. On the other hand the collection of sets B e ^  with B n S r  ?  i  has 

at most (2RT/b + 2)d = 0 (b -d ) elements. Now apply theorem 4.2.2 to conclude 

the proof. For instance, in order to show that fn is strongly L |-consisten t if

(4.2.8), (4.2.9) and (4.2.10) we need only (by virtue of the majorizations obtained 

above) prove that 

N
E E I/*n(Ank) ” ^ ( Ank) I ^ ^ 00 *
n K=1

for any sequence of R epartitions {Qn} such that

Qn “  ( An l >•••> aNn) *

N = N(n) = 0 ( b " d ) ,

which can be trivially accomplished by theorem 4.2.2. □

2. Proof of THEOREM 4.2.9

L et u s  d e f i n e  gn ( . )  = E f n ( . ) .  By Lemma 4-A-3 we have J l gn - f |  -  o ( l ) .  

Hence we n eed  o n l y  to  c o n s i d e r  J • f n “S n 1, can w r i t e

J l f n  ~ S n 1 = ^ l/*n(An j )  " ^ ^ n j ) 1- 
j

Let M and C be a positive real constant and a Rd-Borelian (respectively) to be 

chosen later. Let us denote by H n the set {j: X(Anj n C) >  M m/n}. We

have
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^ ” M An j )  *

< I  l/in (An j )  -  /*(An j ) |  + I  c l ^ n (An j )  -  At(An j )  |
j  cHn j  €Hn

< I  l/*n ( An j )  " ^ ( A n j ) 1 + l/*n(Bn) “ M(Bn ) 1 + 2M Bn ) » ( 4 )
J eBn

where Bn = U{Anj; j not in Hn}. Take e >  0. Now notice that H n has at 

most 1 + nX(C).(Mm) elements (for each j in H n one has X(Anj n C) >  Mm/n).

Thus {Bn , Anj : j e Hn} is a partition of with at most 2 + nX(C)/(Mm)

elements. Choose C and M so that

1 n e2(2 + nX(C)/Mm) lo g  2 < ^  . , and

/t(Cc ) < 6 /2 .

Now a simple application of THEOREM 4.2.2 yields

P{ £ l/*n (An j )  -  f i ( An j )  | + l ^ n ( Bn) -  /*(Bn>'  > e }

J eHn

< m0(m) + 2 e x p { - ne 2/ ( 1 2 8 m ) } ,  (5)

where 6 is as in the statement of THEOREM 4.2.2. The remaining term in the

right hand side of (4) can be written as

2ji(Bn ) -  2/*(Bn n C) + 2p(Bn n Cc )

< o ( l )  + e,

because of our choice of C and X(Bn n C) = o( l )  (notice that /* is absolutely 

continuous with respect to the Lebesgue measure X). To finish the proof simply 

study each of the assumed relations between m and n separately. □
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CHAPTER 5

5.1 Introduction

In Chapter 4 we dealt with the issue of sufficient conditions on the sequence of 

bandwidths so as to ensure consistency in Lj for kernel and histogram density

estimates in weakly dependent samples. Our goal in this chapter is to study 

necessary conditions to be satisfied by the sequence of smoothing parameters

provided that consistency in Lj holds true for kernel density estimates under a 

particular type of weak dependence assumption. This topic fits in the global 

theme of the thesis insofar as a Poisson approximation theorem for series of

dependent random variables will be our basic tool for proving the main theorem.

5.2 Necessary Conditions for Consistency

Under iid samples, the problem of consistency in Lj was thoroughly studied in 

Devroye (1983) -  kernel estimates -  and Abou-Jaoude (1977) -  histogram

estimates. In each of these works, necessary and sufficient conditions for almost

sure consistency in Lj were obtained. As previously mentioned, the "sufficiency"

part of Devroye's theorem has been generalized by a number of authors so as to 

accommodate dependent samples. On the other hand, the "necessity" part of his 

result does not seem to have been studied under dependence.

An important tool in the first half (sufficiency) of Devroye's result was an upper 

bound for probabilities of large deviations for multinomial random vectors. This 

bound was obtained via an elegant Poissonization trick. On the other hand, for 

the second half of his result, Devroye used a simple bound for the probability of a 

binomial random variable being equal to zero. It turns out that such a bound is 

much more difficult to obtain in the dependent case. One way of tackling this
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problem is via a Poisson approximation for sums of dependent Bernoulli random 

variables.

5.3 Poisson Approximations

The well known Poisson theorem states the weak convergence of binomial random 

variables Xn ~ B (n,pn) (say) to a Poisson random variable X ~ P(X) (say), 

provided that npn -» X, as n goes to infinity. Rates of convergence in the

Poisson theorem are usually stated in terms of the variation distance between the 

distribution of Xn and the corresponding Poisson distribution with the same mean 

(we recall that the variation distance between two probabilities and v defined on 

a measurable space (fi.F) is defined to be d(n ,v )  = sup{ i/i(A)-»'(A) i , A e F}).

Hodges and LeCam in the early sixties obtained the following rate of convergence 

in the Poisson theorem.

Theorem  5.1 (Hodges and LeCam (I960)) Let A1,...,A n be independent events 

in a p-space (ft,F,P). Let N = be the number of such events which

occur.

n n
a = L P (A j )  and e -  E P ( A j ) ^  .

1 1

Suppose e < 2 .  Let N* be Poisson with parameter a. Define

K i ( q )  -  q _1[ -  l ° g  ( 1 - q )  ], and

^ 2 (q )  = q _2[ -  log  O - q )  -  q ] ,

where 0 <  q <  1. Let

a -  j  K ! ( e i ) 2  + K2 (€*)  .

Then
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d(N,N*) < ote □

Let us just point out that a  = a(e)  remains bounded as e goes to zero.

Theorem 5.1 was subsequently generalized and improved by many authors. 

Freedman (1974) succeeded in allowing "dependences” to be taken into account on 

his generalization of Theorem 5.1. He obtained rates of convergence in the 

Poisson theorem similar to those in Theorem 5.1.

Difference rates of convergence for sums of dependent Bernoulli random variables

were obtained in Chen (1975). Chen used the elegant Stein's methodology so as 

to get a number of useful rates in the Poisson theorem under uniform mixing 

assumptions. We refer the reader to Chen (1979) for a survey on applications of 

Stein's methodology in limit theorems for dependent data. See also Stein (1986) 

for a more informal description of Stein's method and its broad spectrum of 

applications. As far as the Poisson theorem is concerned, Stein's methodology 

was also used in Barbour and Hall (1984), Barbour (1987) and Barbour and Holst 

(1989).

Further approaches to obtaining rates of convergence in Poisson and related 

theorems can be learnt from Deheuvels and Pfeiffer (1986) and Borovkov (1988).

O ur first result in this chapter depends heavily on a Poisson approximation theorem 

for sums of dependent Bernoulli random variables, due to David Friedman. By 

ingeniously embedding such a sum in a Poisson process, Friedman obtained.

Theorem  5.2 (Friedman (1974))

Let Aj,A2,... be dependent events in a p-space (fi,F,P). Let F j be the field 

generated by A1,...,A j, and let
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Pi = P { A i l F i _ i }

Let f  be a stopping time relative to {Fj}. Let N be the number of Aj which 

occur with i <

■ r
N = I I  

i

Let a < b be nonnegative real numbers. Let c, 5 be nonnegative real numbers 

less than 1. Suppose

2 2P{a < P i + . . .  + p f  < b and p |  + . . .  + p f  < e} > 1 - a .

Let N* be Poisson with parameter a. Define a  as in Theorem 5 .1 . Then

d(N,N*) < ae + ( b - a )  + 2 5  □

We will not use Theorem 5.2 in its full generality. We will only need to

consider the case when f  = n and 5 = 0 .

5.4 The Concent of Uniformly Mixing in -bo th -d irec tions-o f- 
time Sequences of Random Vectors

In Chapter 1 we defined the concept of uniform mixing processes and presented a

couple of fundamental related results. Uniform mixing is the strongest form of

weak dependence dealt with in this work. Indeed, as can be easily seen, every

uniform mixing process is necessarily an absolutely regular or weak Bernoulli one

(and thus a strong mixing process).

However, uniform mixing processes do not possess a "desirable” property which is 

shared by weak Bernoulli and strong mixing processes. Namely, if we reverse the

direction of time in a uniform mixing process, then it is not guaranteed that the 

new process is still uniform mixing. To be more precise, let {Xn} n e Z  be a 

uniform mixing process with associated sequence of mixing weights given by 

k > 1.
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Let us define the process {Xn}, n e Z  requiring that Xn = X_n, for all n e Z. 

As {Xn } is a uniform mixing process, { ^ } , k > 1 is a null sequence, where

p k -  sup  { |P ( B |A )  -  P(B) I , A € B e ^ +k)  ,
neZ

with

^  a  < k < b} .

This fact, however, does not imply that the sequence of uniform mixing weights

for the process {Xn} is also a null one. This can be easily seen in the
♦ ■'

following.

Example

Let {Zn }, n > 1 be a sequence of iid random variables such that 

P{Z l- l }  -  j -  P {Z !-0}  .

Let us define Z n = 1 if n < 0 and Q n = IT Zk. We will show that {Qn} is
_  k<n

a uniform mixing process and that {Qn } = (Q -n ) ls not a uniform mixing process.

Let

-  sup  { |P ( B |A )  -  P(B) | , A e < r ( . . . ,  Qn - l » Q n )>

B e > (Qn+k *Qn+k+1» • • • ) }
0 '

In order to show that {Qn} is uniform mixing we must prove that y?k = o (l). 

We will only consider a particular kind of event A and B as above. Extending 

our arguments (see below) so as to take A and B in their full generality is 

straightforward though a bit tedious.

Let A = {Qn=a}, B = {Qn+k=b}» w^ere a »b are either 0 or 1. We have

l / 2 n + k , i f  a  -  b -  0

l / 2 n + k , i f  a -  0 ,  b = 1

l / 2 k -  l / 2 n + k , i f  a  -  1, b — 0

. l / 2 k -  l / 2 n + k , i f  a  -  1, b *  0

IP {BIA} -  P {B}
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Therefore < 1/2^ = o(l).

Now, to prove that {Qn } is not a uniform mixing process we only need to find 

events A = A(n+k), B = B(n), k > 1 and n > 1 such that

A e Q - ( n + k + l ) »  Q - ( n + k ) )

B e o- (Q.n , Q- n + 1 » • • • )

and

sup  |P (B |A )  -  P ( B ) |  > i  .
k

Let us define

A -  { Q - ( n + k )  “  ! }  “  {Qn+k “  ! } •  and  

B -  { Q- n  -  1}  -  {Qn -  ! }  ■

We have

|P (B |A )  -  P ( B ) |  -  ,1 -  —  , ,
2n

and thus {Qn } is not a uniform mixing process. □

The need of a symm etric-under-tim e-reversibility weak dependence is especially 

crucial when one is dealing with U-statistics. We refer the reader to Denker and 

Keller (1983) for a discussion on such technical subtleties.

In our case, the above mentioned symmetry is essential insofar as we need that the 

"head" and "tail" tr-fields be jointly weakly dependent of "middle" c-fields. To 

be more precise, we will need that the cr-field generated by F™#, and ^m+p+q+r be 

weakly dependent of '̂21+^+q- degree (or type) to which such a weak

dependence holds could be imposed as an assumption. In our particular problem, 

the assumption of our process under study being uniform mixing in both directions
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of time will provide us a suitable weak dependence between the above mentioned 

(j-algebras.

Definition: Let {X ^ , n e Z be a sequence of random vectors defined on a

common p-space and taking values in R&. We say that {Xn} is uniformly mixing 

in both directions of time if {0k}, k > 1 is a null sequence where

0k = max {p k , and

^  = sup  { | P ( B | A )  -  P ( B ) | , A e f " B e f"  }  ,
neZ

A

*>k -  sup  (I P (A IB)  -  P ( A ) I , A e f " ^ , B e F*+k}  . □
n eZ

When dealing with processes for which the tim e-param eter runs over only the

nonnegative integers (i.e. processes like {Xn}, n > 1) we implicitly assume that

X_n = 0, for n > 0.

5.5 Main Result

We are to introduce some notation for the proof of Theorem 5.3 below. We 

will use the classical partition of the sample into small and large blocks. 

Namely, we are going to split the set of the first n integers into alternate blocks

of length ln (large blocks) and sn (small blocks). Let

^ni = ( *n+ s n) + *  ( i - l ) ( f n+ s n)  + *n}» 1 < i < t*n >

where rn is the largest integer j such that ( j- l) ( /n+sn) <  n - Also let

vf'ni “  { ( • - 1) ( i n+ s n) + *n+ 1 ..............U t n + S n ) } -  • < * < r n> and

^ n r n “  {<r n - 1) < In+ s n) + 'n + 1  n} •

For 1 < k < n and belonging to some An ; let 7 (k) be the order of the large

block to which k belongs (that is 7 (k) = i) iff k e Anj). For 1 < k < n
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belonging to some \pn [, let 5(k) = i iff k e We will also need the following

convention: for each large block Anj let r nj be the innermost portion of Anj far

apart from the boundaries by at least sn "numbers". Namely let

^ n i “  ^ n i  " ( { ( ( ^n+ s n)  + ^ » • • • » ( i ” 1 ) ( ^n+ s n) + s n}

u { ( i - 1 ) ( ^n+ s n)  + *n"s n + * ............... ( l “ l ) ( f n+ s n)  +

Finally, let

rn rn rn
A = u An j , ¥  -  u and  T = u r n j ,

i -1  i -1  i-1

where we have dropped the subscript n from A, ^  and T for notational

convenience.

We can now state and prove our 

Theorem  5.3

Let {Xn } be a stationary process taking values in R& and let us assume that X 1 

admits of a density f (say). Let fn(.) be the kernel density estimate for f based 

on {Xj}, 1 < i < n, that is

1 n x ~ \ r  
f n (x)  -  J -  I  W(- r̂——) , 

nbd k -1  b

where W : R& -> R  is a density in R^.  Let us also assume that (Xn) is uniform 

mixing in both directions of time and that the corresponding sequence of mixing 

weights satisfy 10$ <  oo for some q > 1. Then, if J n 0, in probability, we 

necessarily have b + l/(nb^) -> 0, where

J n  -  J  I f n - f -

Proof: The proof consists of two parts. For the first part we must show that

J n -» 0, in probability, for some density f implies that b(n) -» 0, as n -» oo. The 

proof of this result can be found in Devroye et al. (1985), and therefore will be
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omitted. In the second part, we must show that J n -» 0, in probability, for some 

density f implies that as n 4  oo we have n[b(n)]d -» 00.

The proof of the latter part will be carried out by showing that no subsequence of 

{n[b(n)]d> can converge to a finite limit. Suppose we have such a subsequence 

having finite limit, say, /3. Since J n < 2 and J n 0, in probability, we have

E ( J n ) -  E [ J  l f n (x)  -  f ( x ) l d x ]  -  o ( l ) .

Now let {Xj}, n > 1, be an independent copy of the process {Xn}, n > 1. The

superscript on fn below is to be understood as the estimated density by the

former process. We have

J l f n (x)  -  f ( x ) | d x  + J | f „ ( x )  -  f ( x ) l d x  > J I f n (x )  -  f * ( x ) | d x ,

therefore J n -> 0, in probability and J n being uniformly bounded imply

|  l f n ( x )  -  f ( x ) l dx = o ( l ) ,

in probability, and thus

J E | f n (x)  -  f * ( x ) | d x  -  E J l f n (x)  -  f n ( x ) | d x  -  o ( l ) .

Let R be the positive number such that:

f W(z)dz > 0, (5.1)
BR(a)

where Br (a) stands for the open ball in centered at a and with radius r. Let 

A = A(x) be the event that

XR-x  < Bj;)R( a ) , k e A and  XR-x  |  B|3R( a ) , k f f

Where we have chosen /n and sn in the following manner: take a  so that (1 -a)

q <  a  <  1, choose /n = [ [na ] ], sn = [ [ n ^ -0 ^ ]  ] and, as a consequence, r n = 

0 (n l-Q!). We have:
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E J  I fn  -  f n '  -  J  E K f n  ‘  f n > ' > J  E[ ( f „  -  f ^ U ] -

-  n '1 l '  J E [ ( W b ( x - x £ )  -  Wb (x-Xk ) ) I A ]dx

+ n-1 l" J EWb (x-Xk ) I A dx

-  n-1 I" J EWb (x-X k ) I A dx

-  ( I )  + ( I I )  + ( I I I ) ,  ( 5 . 2 )

where I* ( l" ,  respectively) stands for the summation over all k in T ({1,2........n} -

T, respectively) and Wb(z) = (l/b^)W (z/b). We will need some further notation,

let

D(x) -  {Xj t BbR( x ) ,  j  e A}, ( 5 . 3 )

D- k ( x > "  ( x j  < BbR(x )> J € A- Arry(k)}» k c A, ( 5 . 4 )

D*(x) -  {Xj I BbR( x ) ,  j  € * } ,  ( 5 . 5 )

D- k ( x > "  ( x j  « BbR<x >> J e * - * n 5 ( k ) > -  ( 5 -6 >

For k £ T we have, by the use of Ibragimov's inequality and by Lemma 5.A.2

(see Appendix 5.A):

E Wb (x-X k ) IA -  E[Wb (x-Xk ) lD*]P(D)

> E[Wb (x - X k ) ] P { D ) P (D * )  -  6 « SnEWb (x -X k ) . P { D ) i  ( 5 . 7 )

Also,

E Wb (x-Xk ) I A -  E[Wb (x-Xk ) I D]P(D*)

< E[Wb (x-X k )I{X k ( BbR( x ) } I D_k ]P(D*)

< E[Wb (x-X k )I{X k « BbR( x ) } ] P ( D . k )P(D*)

+ 6E[Wb (x-Xk ) I{Xk « BbR( x ) } ] 0 , nP(D*)

-  E[Wb (x-Xk ) I{Xk I BbR(x )} ]P (D )P(D *)

+ 6E[Wb (x-Xk )I{Xk I BbR( x ) } ] P ( D * ) 0 , n

+ E[Wb (x-X n )I{X k t BbR( x ) } ] P ( D * ) [ P ( D . k ) -  P ( D ) ] .  ( 5 . 8 )
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From (5.7) and (5.8) we see that

( I )  > a n |  E[ (Wb (x-x£) -W b (x-Xk ) ) I { X k ( BbR(xO} ]P(D*)P(D}dx 

+ a nTn , ( 5 . 9 )

where T n is the integral over of the sum of the right hand sides of (5.7) and

(5.8) minus

|  E[(Wb ( x -x £ )  -  Wb (x-Xk ) ) I { X k « BbR(x )} ] P ( D * ) P ( D ) d x ,

and

an “ n"1<Jn -2 s n>rn- 

Now the integral on the right hand side of (5.9) can be written as

a n \  f (y)  [ W(z)P{D*+}P{D+}dzdy, ( 5 . 1 0 )
BR(0)

where D*+ (D+ respectively) stands for {Xj f  BbR(y-zb), j t  ¥} ({Xj <

BbR(y-zb), j e A} respectively). By Lebesgue's density theorem we have

lim  nP{Xj € BbR( y - z b ) }  -  0 Rdv f ( y ) ,  ( 5 . 1 1 )

where V is the volume of the unit ball in i?d. Now by means of Lemma 5.A.1

(see Appendix 5.A.), Fatou's lemma and (5.11) we obtain

Urn a n J E[(Wb (x-Xk ) -  Wb (x-Xk ) ) I{Xk I BbR( x ) }  ]P(D*)P(D)dx

> \  f ( y )  f  W(z)exp(- /3Rdv f  (y)  )dxdy  > 0. ( 5 . 1 2 )
BR(0)

Also, by a further application of Lebesgue's density theorem it is easily seen that 

J E[Wb (x-X k )I{X k « BbR( x ) } ] P { D * ) [ P ( D .k ) - P ( D ) ] d x  -  o ( l ) .

Indeed, the above integrand is majorized by the integrable function h(x) =

E[W b(x-XR)]. On the other hand

P{D_k } -  P{D) < / nP{X] e BbR(x )}  -  o ( l ) ,

by Lebeque's density theorem, our assumption that nbd = 0(1) and /n = 0 ( n a ).
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The other components of T n are also readily seen to be o( l )  because they are 

dominated by

e f EtWbCx-oq) ]dx < $ - o ( i ) ,
s n J s n

where the above inequality was obtained by an application of Young's inequality

J f*g < j f  } g,
where * stands for the convolution operator. Thus

lim  i n f  ( I )  > f  f ( y ) e x p ( - | 5 R dv f ( y ) ) d y  f  W(z)dz > 0.
BR(0)

By a further application of Young's inequality we obtain

( I I I )  < S s ^ - 1 J EWb (x-Xk )dx < S s ^ - 1 -  o ( l ) .

Now from (5.12), Tn = o(l),  (III) = 0(1) and (II) > 0 we obtain

r *lim  i n f  E J I f n — f n I > 0 ,

which cannot hold. Therefore no subsequence of {nbd} can have a finite limit 

and thus lim nbd = <». □



147

APPENDIX 5.A

Lemma 5.A.1 Let {Xn } be a uniform mixing process such that the sequence of 

mixing weights satisfy

£ ( ^ k ) q < °°>

for some q > 1. Consider the following array of events 

Al b ( l )

Al b ( 2 )  A2b(2 )

Al b ( n )  A2 b(n )  • • •  Anb(n )  

and suppose that

(i) For each n and k (1 < k < n) we have Akb(n) e ^(X^),

(ii) For each n and k we have P{Aib(n)} = PfAfctyn)}’

(iii) nP{Alb (n )} = 0 <  «*>.

Let Sb Lj, Mj be (for 1 < i < rn)

^  Aj b ( n ) » ^  Aj b ( n ) * ^  Aj b ( n ) »
j c^ n i  j cAni  J 6^ n i

respectively. Then

(A) lim  i n f n P p ' u S j )  -  0} = 1

(B) l i m i n f n P { l ' l { L | )  -  0} > exp{-|3}

(C) lim  i n f n P p ' U M j )  -  0} > exp{-/3},

where the summations above are for i in { l , . . . ,rn }.

Proof: As the technique of proof is virtually the same for cases (A), (B) and

(C) we will only show (B). We have:

P ( L i )  < JnP { A l b ( n ) }  ( 5 . A . 1 )
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l P { L j |L !  . . .  L j _ ! } - P ( L j } l  < ^ S n . ( 5 . A .2)

From (5.A.1) and (5.A.2) we obtain

rnP{Li)  -  rnps < r  P lL . lL i  . . .  L j . j )
j -1

< r n P I L j )  + r n(i>S n . ( 5 . A . 3)

Also

i*n 2
I  P2 (L j | L 1  L j _ ! } < 2 r n ( P 2 {Lj } +  *>S n )

j -1

< 2 r n ^ p 2 ( A l b ( n ) ) + 2 r n(4 n . ( 5 . A .4)

Let us just recall that /n = O(n^), sn = O(n(1 -0 )cl) and r n = O(n^- 0 ), where ot is 

such that ( l-0 )q  <  8 < 1. Now, as <  <» and limn n P { A |^ nj} = 0, we 

have that the right hand side of (5.A.4) goes to zero as n goes to infinity. 

Assumptions of Theorem 5.2 are in force and we conclude that

l P { I Ll + . . .  + I Lr -  0} -  P{Z = 0 } |

2 2 
< a ( 2 r n Znp 2 { } + r ny?S n ) + 2 r ny?Sn = o ( l )

where Z ~ Poisson (rnP{Lj} -  rny9Sn). Whence

P { l L i  + . . .  + II*. " ° }  = e x p ( - r nP { L | } + o ( l ) )  + o ( l )  
1 r n

Therefore

l i m  i n f  P { I Ll  + . . .  + I L -  0 }

— e x p ( -  l i m  s u p  r nP { L j } )

> e x p ( -  l i m  s u p  r n Zn P{ A i b ( n ) })  = e x p ( - 0 )

where we have used (5.A.1) and assumption (iii).

Lemma 5.A.2 Let A ,  B  and C be sub a-algebras defined in a p-space (fl,F,P).
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Let us define (for any two <r-algebras M  and H ) M v H  as the (r-algebra generated 

by M  and H.  Let us also put

-  sup{ |P(H |M )  -  P(H) , H e H ,  M e M}.

Then

<p(B,AvC) < 3max{<p(BvC,A) , <p(B,C), <p(A,B) } .

Proof: Let us denote by D the algebra generated by A  and C. It is easy to

see that any D -elem ent can be written as 

n
D — u Aj n Cj f 

i= l

for some sets Aj e A,  Cj e C and 1 < n <  <», where (Aj r> Cj) n (Aj n Cj) =

<p, if i t  j. Let B be a B-elem ent. We have

P{Aj n Cj n B} < P{Aj }P{B n Cj } + p ( B vC , A ) P {B r» Cj}

< P ( A j }[ P{B )P{C j} + P{B) .<p(B,C) ] + <p ( B pC , A ) P{B n Cj }

< P{B}[ P{Aj , C j } + P{Aj }<p(A,C) ] + P{Aj}P{B}^(B,C)

+ <p(BpC,A)P{B n Cj)  .

Summarising over i we obtain

n n
P{ u Aj n Cj n B} < P{B}P{ u Aj n C j} 

i= l  i= l

+ P{B} . 3max{<p(BvC, A) , (p(B,C) ,<p(A,B)} .

Similarly we obtain

n n
P{B} {{ u Aj n Cj} < P{ u Aj ft Cj n B} 

i = l  i= l

+ P{B) . 3max{<p(BvC,A) ,<p(B,C) , y?(A, B)} .

Whence
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n n
|P {  u Aj n CjIB} -  P{ u Aj n 

i = l  i= l

< 3max{<p(BvC,A) ,<p(B,C) .

Now the class G  of sets G such that

IP{G |B } -  P{G) I < 3max{<p(BvC,A) ,<p(B,C) ,<p(A,B)} ,

for all B in B is clearly a monotone class (see e.g. Dudley (1989)) containing D.  

Therefore

I P {GIB} -  P{G) I < 3max{<p(Bi>Ct A) ,<p(A,B)}

holds for every G in cr(D) and B e B. □
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