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ABSTRACT

This research investigates various issues relating to the 
level and volatility of returns on ordinary shares. In particular, we 
have looked at the relation over time between volatility and risk 
premia, both at a univariate and multivariate levels.

We also look at the links between stock markets over the 
world, and whether they are integrated. We evaluate the role of 
measurable economic variables in explaining asset price (co-)movements 
over time. Our model combines an APT factor pricing approach with a 
GARCH-type parameterisation of the volatility of the factors. These 
can be "observable" (i.e. related to economic variables), 
"unobservable" and country-specific. Estimates of these factors and 
their time-varying variances are obtained using a Kalman Filter-based 
Full Information Maximum Likelihood method. Using monthly data on 
sixteen markets it is found that idiosyncratic risk is significantly 
priced, and that the "price of risk" is not common across countries, 
which rejects the null of global capital market integration. Another 
empirical finding is that most of the correlation between markets is 
accounted for by the "unobservables".

The econometric background to the conditionally 
heteroskedastic factor model employed is also analysed. We find that 
the matrix of factor loadings is unique under orthogonal 
transformations, and as a result, that it is possible to evaluate the 
separate contribution of the different factors to the risk premia if 
time-variation in the volatility of the factors is recognised. We also 
obtain a full characterisation of this model under the assumption that 
the conditional distribution is multivariate t, (the normal being a 
special case), and GARCH formulations for the conditional variances.

A fundamental question in Finance is whether the stock 
market satisfies the Efficient Market Hypothesis. In this regard, we 
explore whether lagged variables that help predict stock returns are 
merely proxying for mis-measured risk. Three different ways of 
measuring risk are employed (i.e. semi-parametric, GARCH and lagged 
squared returns). In an application to Japanese data, four key

3



predictor economic variables are shown to have non-trivial additional 
forecasting power irrespective of how risk is measured. Interestingly, 
unlike the US, the level of the lagged dividend yield is not 
positively correlated with returns in either Japan or South Korea. 
Moreover, there is no consistent relationship between expected 
volatility and excess returns.

Another interesting topic is the hypothesis that the degree 
of autocorrelation shown by high frequency stock returns may change 
with volatility. This may result from non-trading effects, feedback 
trading strategies or variable risk aversion. Results using a century 
of daily data suggest that when volatility is low there tends to be 
positive autocorrelation in returns, but this serial correlation can 
become negative during very volatile episodes. Our results also 
suggest that returns are more likely to exhibit negative serial 
correlation after price declines.

Finally, a new Quadratic ARCH model for the conditional 
variance of a time series is introduced, and interpreted as the 
quadratic projection of the square innovations on information. Since 
It nests the original ARCH model and several of its extensions, its 
statistical properties are very similar, while avoiding some of their 
criticisms. In an application to a century of daily US stock returns, 
QARCH models provide a better representation of the data by capturing 
the leverage effect (i.e. volatility is higher following price 
declines than after rises). QARCH models are also able to capture this 
asymmetry in a multivariate context: in a factor model for monthly
excess returns on 26 industrial UK sectors, the common factor (which 
is highly correlated with the FTA500) also shows a significant 
leverage effect.
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Introduction

That there are variations over time in the volatility of 
stock markets has been suggested for quite some time (see e.g. Fama 
(1965)) and, after the experience of the crash of October 1987, it is 
nowadays a widely recognised fact. Given that the concept of 
volatility and its relationship with risk is at the cornerstone of 
many financial theories, it is perhaps surprising that it has not been 
until fairly recently that applied researchers in finance have begun 
to incorporate time-variation in volatility in their work. The purpose 
of this research project is to investigate various issues relating to 
the level and volatility of returns on ordinary shares.

In recent years, a large family of statistical models for 
the variation over time in conditional variances has grown up, mostly, 
but by no means only, around Engle’s ARCH (Autoregressive Conditional 
Heteroskedastic) model, and numerous applications to financial time 
series have already appeared (see Bollerslev, Chou and Kroner (1990) 
for a recent survey). By and large, though, most applied work on the 
stock market has been concerned with a single market: the New York
Stock Exchange. Given that many issues in finance, and in particular, 
asset pricing theories, are related to the variances and covariances 
of many assets, it is of substantial practical importance to have 
manageable models for the time-variation in covariances between 
assets.

One such issue is the links between national stock markets, 
which have been attracting increasing attention recently. Casual 
observation indicates that there are periods when markets seem to move 
in unison - the 1987 crash being an obvious example - and others when 
the correlation between them is low. An empirical objective of the 
study is to account for the time-variation in the covariance matrix of 
returns on sixteen different markets, and in particular, to evaluate 
the role of measurable economic variables in explaining asset price 
(co-)movements over time. In order to identify the main sources of 
changing volatility, excess returns are assumed to depend both on 
innovations in observable economic variables, on common unobservable 
factors and on idiosyncratic (or country-specific) noise. This 
multivariate factor analytic formulation allows us to obtain a 
parsimonious representation of the conditional covariance matrix of 
returns in terms of the changing volatility of the underlying
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Introduction

components. However, if idiosyncratic risk can be eliminated by 
holding a well diversified portfolio, the risk premium on an asset 
should only depend on the volatility of the common factors. Testing 
the APT-type cross equation restrictions enables us to examine the 
issue of whether stock markets over the world are integrated.

The econometric background to the multivariate conditionally 
heteroskedastic factor model employed is also the subject of this 
investigation. In particular the issues of identification, estimation, 
modelling of time-variation and distributional assumptions are 
considered. Identification is not only a fundamental statistical 
question, but also a particularly important one from the economic 
point of view in the context of Arbitrage Pricing Theory-type models, 
as it is of interest to evaluate the contribution of the different 
factors to asset risk premia. Similarly, since it is a generally 
recognised stylised fact that we observe more extreme returns on 
shares that a Gaussian model can generate, even after accounting for 
volatility clustering, the form of the distribution assumed is also of 
substantial practical importance.

A fundamental question in Finance is whether the stock 
market satisfies the Efficient Market Hypothesis (EMH), which states 
that current prices reflect all publicly available information. 
However, in recent years a growing number of researchers have found 
that stock market returns are predictable (see e.g. Fama and French 
(1988a,b), Poterba and Summers (1988)). These findings, though, do not 
necessarily point to the rejection of the EMH because they could be 
explained by an appeal to time-varying risk premia. In this regard, we 
attempt to explore whether lagged variables that help predict Japanese 
stock returns are merely proxying for mis-measured risk. For that 
reason, three different ways of measuring risk are employed - one that 
relies on semi-parametric methods, a second based on the GARCH-M 
model, and a third which just uses lagged squared returns. The first 
two specifications allow lagged variables to directly affect measured 
risk.

It has long been known that high frequency (e.g. daily, 
hourly) returns on shares may show mild positive autocorrelation due 
to the existence of non-synchronous trading. But even when the
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Introduction

non-trading problem is not relevant, if one set of traders follows a 
feedback trading strategy and react to price changes, then returns 
will also exhibit serial correlation. In this respect, another 
interesting topic related to returns and volatility is the hypothesis 
that the degree of autocorrelation shown by high frequency stock 
returns may change with volatility. In a "noise" trader model, as 
volatility rises, "smart" money will allow the feedback traders to 
have a greater effect on the price, and therefore, the extent of 
serial correlation will rise. Further, if risk aversion declines with 
wealth, the extent of positive feedback trading may increase when 
volatility increases. This link between volatility and 
autocorrelations is researched using a century of daily US data.

Another well-known stylised fact concerning the relation 
between returns on shares and their volatility is the so-called 
leverage effect, i.e. volatility is higher following price declines 
than after rises of the same magnitude. However, standard versions of 
the ARCH model are unable to capture this dynamic asymmetry. A 
generalised, fully quadratic version of the ARCH formulation is 
introduced which can in principle capture this dynamic asymmetry in 
stock returns, but at the same time nests the original ARCH model and 
several of its extensions. To see if this new model represents the 
data significantly better than a standard ARCH does, two empirical 
applications are entertained: a univariate one to a century of daily 
US stock returns, the other multivariate for monthly excess returns on 
26 industrial UK sectors.

17



Chapter 1

VOLATILITY AND LINKS BETWEEN NATIONAL STOCK MARKETS
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Chapter 1: Volatility and Links

1.1 Introduction

Attempts to explain the "excess volatility" of stock markets 
have focused in recent research on the issue of modelling time-varying 
volatility and the implied stochastic process for expected returns. A 
large family of statistical models for the variation over time in 
conditional variances has grown up, especially following Engle’s
(1982) work on ARCH processes (cf. sections 2.1 and 5.1), but these 
models do not enable us to disentangle the source of changes in 
volatility. In this chapter we try to identify those factors that are 
responsible for changes over time in stock market volatility. Another 
feature of the existing literature is that, by and large, it is
concerned with explaining volatility only in the US stock market. When 
data on many stock markets are examined (as in section 5.5) an 
explicit multivariate model of the time-varying variance-covariance 
matrix of returns is required.

The links between national stock markets have been
attracting increasing attention (Roll (1989) surveys the recent
literature). There are certain periods - the 1987 stock market crash 
is a conspicuous example - when markets move in unison, and others 
when the correlation between them is low (see Figure 1.1). An
empirical objective of this study is to account for the time-variation 
in the covariances between markets. We are especially interested in 
the role of measurable economic variables in explaining the changes in 
asset price co-movements over time. Understanding changes in
conditional covariances is potentially useful in deciding on 
appropriate country weightings in global portfolio allocation. The 
common use of constant covariances between markets in "optimal" 
portfolio construction might lead to the use of sub-optimal 
portfolios.

We use data on sixteen national stock markets to estimate a 
multivariate factor model in which the volatility of returns is 
induced by changing volatility in the underlying factors. This allows 
us to obtain a parsimonious representation of the conditional 
variance-covariance matrix of excess returns as a function of the 
variances of a small number of factors. Excess returns are assumed to 
depend both on innovations in observable economic variables and on
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Chapter 1: Volatility and Links

unobservable factors. We allow the conditional variances of the 
underlying factors to vary over time and parameterize this in terms of 
GARCH processes (Bollerslev (1986)). We use recent results from 
intertemporal asset pricing theory to model the risk premium on an 
asset as a linear combination of the volatility associated with the 
factors. Our theoretical model can therefore be understood as a 
dynamic version of the Arbitrage Pricing Theory. We estimate jointly 
the model that generates factors from observable economic variables 
and the equation for equilibrium excess returns.

A significant advantage in assuming that the conditional 
variances of the factors vary over time is that statistical 
identification of the factor model is less problematical than is the 
case in the usual static setting (see section 2.3 and Sentana 
(1991a)). In conventional factor analytic tests of the APT, the 
individual risk premia are only identifiable up to an orthogonal 
transformation (e.g. Dhrymes, Friend and Gultekin (1984)). In our 
model, the time-variation in the conditional variances enables us to 
identify the individual risk premia.

Testing the APT-type cross-equation restrictions implied by 
our intertemporal asset pricing model enables us to examine the issue 
of whether stock markets over the world are integrated. In particular, 
we test whether idiosyncratic risk is priced, and whether the "price 
of risk" associated with each factor is common across countries.

The chapter is organized as follows. In section 1.2, we 
discuss the theoretical asset pricing model and the estimation 
procedure. The results obtained by estimating the model using monthly 
data over the period 1970-1988 are presented in section 1.3. In 
section 1.4 we examine the issue of capital market integration, and 
look at the correlations between markets. Our conclusions are stated 
in section 1.5.

1.2 A Heteroskedastic Factor Hodel of Multivariate Asset Returns
and Risk Premia with Time-varying Volatility

The model that we propose to estimate has four components.
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Chapter 1: Volatility and Links

The first is a conditional factor model for excess returns. The second 
is a dynamic model for the asset risk premia in terms of the changing 
volatility of the factors. The third is a method for generating 
factors related to measured economic variables that explain the 
behaviour of excess returns. The fourth is an econometric 
specification for the variation over time in the conditional variance 
of the factors.

1.2.1 Intertemporal Asset Pricing

1.2.1.1 Theoretical set-up

We shall base our theoretical analysis in a world with a
countable (possibly infinite) collection of primitive assets, and
begin by assuming that there is an underlying probability space of
asset payoffs. Let R ^  be the random (gross) return from a unit
investment in asset i during period t, and let Rq  ̂ be the (gross)
payoff on a riskless asset. In order to model the conditional
distribution of time t asset returns, a specification of the
conditioning information set, *s required. We assume that this
set contains (the sigma algebra generated by) the values of asset
returns up to, and including, time t-1, as well as the values of other
published statistics known by both agents and the econometrician1. We
also assume that R ., which is determined in period t-1, is observedot
by the econometrician. In our empirical application, we shall work in 
terms of excess returns, r^, which we measure as (real) excess 
returns above the riskless payoff, i.e. rit*^it”^ot*

Let L . denote the collection of all random variables 2t
defined on the underlying probability space which are measurable with
respect to I^_j an(* have finite conditional variances. Nothing
prevents, though, the unconditional variances from being unbounded.
Define the conditional mean square inner product of two elements of

1/2 2L ^ as (p^q^.) and the associated mean square norm |p 1 ^
Hansen and Richard (1987) show that under mild regularity conditions, 
L is the conditional analogue of a Hilbert space under the 
conditional mean square inner product.

Let R^ be a vector containing N (gross) asset returns (with
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Chapter 1: Volatility and Links

N possibly infinity), and let i>Nt= Et-l^Nt^* SNt= ^t-l^*Nt^ denote 
the conditional mean and covariance matrix of (with [vj|t^i*vit anC*
^^Nt^iJ™0*!jt̂ ' *n *'erms vec^or °f excess returns, r^, we
denote conditional means by ^t-l^Nt^” vNt~Vot so ^ a t  we can
identify them with risk premia. Notice that Vt-l^rNt^“ ^Nt remains
unchanged. We assume that, conditional on means, variances and
covariances of R^, R ^  are bounded, so that they belong to L^. We
assume also that is positive definite for all N (and t), and
restrict the stochastic structure of returns further by assuming that
the unanticipated component of returns, T*Ntsŝ Nt-l,Nt”rNt_^Nt has a 
conditional factor representation.

^Nt = BNft + VNt (1)

where f^ are k (k<N) common factors which capture systematic risk
affecting all assets, while v ^  are idiosyncratic terms which reflect
unsystematic risk (by construction, v^ is conditionally orthogonal to
f^). Notice that this is a statement about the cross-sectional
dependence of asset returns, and essentially says that the "dimension"
of undiversifiable risk is k. The matrix B^ is the associated matrix
of (constant) factor loadings (i.e. [B..]t .=£..) which measure theN lj 1J
sensitivity of the assets to the common factors. To guarantee
^ t - l ^ t ^ ^  We assume that Et-l^t^sB’ Et-l^Vt^=B* a*so assume that 
E. (f f') = A 1 represents a kxk diagonal positive definite matrixt~1 t t tit“ l
of (possibly) time-varying factor variances. Hence, the factors are
assumed to be (conditionally) orthogonal. We finally assume that

2Ei. , (vM . v* ) * Gu*.*. 1 *s a NxN diagonal positive definite matrix oft*l Nt Nt Nt • t““l
(possibly) time-varying idiosyncratic variances, and so we are 
assuming an exact factor structure (cf. Chamberlain and Rothschild
(1983)).

One of the attractions of the (conditional) factor model is 
that it provides a parsimonious representation for the NxN 
(conditional) covariance matrix of excess returns. In the absence of 
any structure, a multivariate model of time-varying volatility would 
consist of time series processes for each of the N(N+l)/2 distinct 
elements of the covariance matrix (see section 2.1). Here, by 
contrast, it follows from the above assumptions that:

Vt-l{rNtJ = Vtlt-A + ̂ Nt: t-1 (2)
22



Chapter 1: Volatility and Links

so that we need only model the (k^+k2 +N) time-varying processes in the 
diagonal of and ^Nt't-l’ In our emPlrical application, k=6, N =
16. The number of processes that must be estimated is reduced, 
therefore, from 136 to only 22, and even more gains could be achieved 
if were constant.

1.2.1.2 Modelling Risk Premia

In order to model the conditional mean returns, or risk 
premia, we shall make use of recent developments in the intertemporal 
asset pricing theory literature. Let p^ be the random return of a 
linear combination or portfolio of the assets, and let P be the 
closure of the linear subspace consisting of all such combinations. 
Since is a conditional linear subspace of L it is also a
(conditional) Hilbert space under the mean square inner product. We 
shall make use of a linear functional defined on P̂ ., namely the 
pricing or cost functional, CO, which maps elements of this space 
onto the information set. The basic mathematical tool that we shall 
use is a conditional version of the Riesz Representation theorem (see 
Hansen and Richard (1987)), which shows that there exists a portfolio 
p^eP^such that C(p^)=Et_^(p*Pt) for all ^t€^t* *'e' rePresents C O  
in Pt.

As a consequence, since we have normalised the assets so 
that they cost one unit, we have that

Et-i(RitPt)=1 «-»•...> (3a)

Et-l(RotptM ’ (3b)

Hence. (rltPj)=0. and (p{)-l/«»ot as

In conformity with the linear factor structure, we assume 
that p* can be represented as:

n  - vi + + vt (4)

where vf=E. „(p?)3. We also assume that E. „(v*v...)=0, which implies t t-1 t t-i t Nt
that R ^  and p* are only correlated through the common factors. As a
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consequence, cov (R ,p*)=0|A. ,. ,&*, where |3. is the i-th row of
t"l It t 1 t I t 1 t 1

B^. If we substitute this into equation (3a) we obtain

MitVt + PiAtlt-l^t = 0 (5)

and it follows that

ît" ~̂ iAt!t-l̂ t/vt = ”̂ iAtlt-lTt (6)

Under the additional assumption that t ^(=-£*/i>*) is constant 
over time, we finally obtain our basic model for excess returns, which 
is given by:

rNt = Vt:t-iT + V t  + vNt (7)

1.2.1.3 Relationship with Other Models

Given the conditional factor structure for risk, the 
arbitrage pricing theory of Ross (1976, 1977) is obviously related to 
our model. If investors can diversify away idiosyncratic risk, and if

4certain regularity conditions are satisfied , we can obtain a 
conditional version of the exact APT pricing relationship

“Nt = V t  (8)

which is usually interpreted as saying that asset risk premia are
linear combinations of k risk premia associated with k factor
representing portfolios (i.e. portfolios with unit loading on only one
factor and zero loadings on the other factors) with weights given by
the factor loadings (see e.g. Admati and Pfleiderer (1985)). If we
call ir =A ,. .x, it is clear that our model is consistent with (8). t t » t"l
But unlike our model, (8) alone is not a model of the time-variation 
in asset risk premia, only a restriction on the relative pricing of a 
subset of assets based on an arbitrage argument. Hence it does not 
provide a fully specified model of time-variation in risk premia, only 
a cross-sectional restriction.

In the case of only one factor, ^ilAlt't-l = T1
cov^_j (r^^,f^^), and we can also relate our model to a standard CAPM
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restriction, with being interpreted as "market" risk. Besides,
xl*lt!t-l’ so Premium on the "factor representing

portfolio", (which in the CAPM is the market portfolio) is
proportional to the conditional variance of that portfolio (cf.
equation 1 in section 3.2.1) and hence is the "market" price of
risk. When k>l, we obtain pit= £ TjCo v ^ ( rit»fjfc) = E ^ij^jt’ with
ir.. =r . A . which could be interpreted as saying that risk premia Jt J Jtit"l
are determined by the covariance of the asset returns with the 
(orthogonal) systematic risk components, which is undiversifiable. A 
non-trivial advantage of having k factors is that the overall "price 
of risk" of each asset, i.e. the trade-off between risk and variance, 

is not constant. This is line with recent research whichJt Jt jjt*
has also relaxed the assumption of a constant price of risk (see e.g.
Chou, Engle and Kane (1990)), and implies that the behaviour of
conditional variances and asset risk premia is allowed to be rather 
different (see also section 3.5.3).

The above pricing formula can also be obtained (see Engle, 
Ng and Rothschild (1989, 1990)) by using the Consumption Capital Asset 
Pricing Model if we interpret p* as the common intertemporal marginal 
rate of substitution in consumption, S^. The advantage of the C-CAPM 
is that it is easier to interpret and can be used to price a complete 
set of asset payoffs, Including derivative claims. One problem with 
our model is that p* is by construction only guaranteed to price 
correctly returns with a linear factor representation, i.e. returns in 
P^. Unfortunately, this space does not necessarily contain the 
derivative claims on those securities, and hence there is no guarantee 
that would belong to P^. However, Gallant, Hansen and Tauchen 
(1990) show that p* can be interpreted as the (least square) 
projection of on P^. As a consequence, the conditional variance of 
p* provides a lower bound on the conditional variance of Ŝ. (see also 
Hansen and Jaganathan (1991)).

1.2.2 Factor Specification

In our empirical application, the k common sources of 
systematic risk include k^ "observable" factors, f^, which attempt to 
capture the correlation between the unanticipated innovations in 
observable descriptors of economic performance (e.g. industrial
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production, inflation, etc. ) and stock returns, and a set of k^ 
"unobservable" factors, f̂ .̂, which are assumed to be only correlated 
with the returns process, and, therefore, orthogonal to innovations in 
the published economic variables used. The advantage of having 
"observable" factors is that the data may be more informative about 
their implied prices. In general, though, neither nor f^  are
literally observable, only partially revealed by the data, although we 
have superior information about f ^  because they are correlated with 
measured economic variables besides stock returns. Much of the 
existing literature assumes that the are wholly revealed by
published economic data, and in that sense they are a special case of 
the framework employed here. However, for convenience, we shall 
maintain the terminology of "observable" and "unobservable". We 
believe that, in spirit, this distinction is meaningful in that while 
the summarize the influence of published economic variables for
stock returns, the f^t”53 either represent the effect of fundamental 
influences on returns that are not captured by innovations in 
published statistics or proxy for changes in "fads" or investor 
sentiment normally associated with noise trader models (cf. section 
3.2.1).

express the variance of asset returns and the risk premia into 
components attributable to "observable" factors, unobservable factors, 
and idiosyncratic terms, although in the case of the risk premia the 
latter should not appear according to our asset pricing equation. If 
we call Bjjj and respectively, the associated Nxk^ and Nxk^ full
column rank matrices of factor loadings . B^ = ^ i n» ®2N^’ 3111(1 ^t = 
(fit’ *2t^’ we can re”write (2) and (7) as

Equation (9) encompasses the models of Engle, Ng and 
Rothschild (1989, 1990), who examined US sectoral stock returns, and 
US bond and aggregate stock returns respectively, and Diebold and

Notice that the orthogonality of the factors enables us to

(9)

and

(10)
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Nerlove (1989), who looked at exchange rates. The former assumed a 
linear factor model with only "unobservable" factors (k^=0) and 
constant idiosyncratic variances (£2̂ =fl5), whereas the latter assumed 
only one unobservable factor and a zero risk premium (k^=0, 
t ^-0). In the case of stock returns it seems essential to relate the 
risk premium to the model of changes in volatility. Equation (9) also 
encompasses the model of Burmeister and McElroy (1988) who considered 
both "observable" and "unobservable" factors but with constant 
variances6.

If we are to have a meaningful distinction between 
"observable" and "unobservable" factors then it is obviously important 
that we use a relatively comprehensive set of economic variables in 
order to generate the set of "observable" factors. However, the 
inclusion of each additional "observable" factor requires us to 
estimate an additional N+M+3 parameters, where N is the number of
assets and H the number of economic variables. It is necessary,
therefore, that the number of factors be kept to a manageable level. 
For that reason we use a factor analytic approach to extract a small 
number of factors from a larger number of publicly known economic 
variables. Since the factors represent unanticipated shocks to asset 
returns, we estimate a vector autoregressive process for the measured 
economic variables, and extract common "observable" factors from the 
innovations of these processes. An important feature of the model is 
that because we are only interested in those innovations to economic 
variables that also drive stock returns, we allow the choice of f ^  to 
be determined endogenously by estimating Jointly the excess returns 
equation and the equation that relates the "observable" factors to 
innovations in the economic variables. The whole system is described
by equation (9) together with the following equations

xt “ E Ajxt-J + et (lla)

et = Clfu + wt (lib)

where x̂. is the (Mxl) vector of measured economic variables, ê. their 
time t innovations, Aj is the matrix of coefficients on the jth lag in 
the VAR, is a (Mxk^) full column rank matrix of factor
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sensitivities for the economic variables, and w. is a (Mxl) vector of
7idiosyncratic error terms . We assume that Ej._^(w^) = 0* Ef. i ^ t Wt̂  = 

0, Ej._j (w ^v ^) = 0 and Ej.^fw^wj.) = ^t't-l* a Positive semidefinite
diagonal matrix8 (cf. equation (3) in section 2.2).

The estimation procedure consists of estimating the excess 
returns equations (9) jointly with the process for the economic
variables (11) by maximum likelihood methods. Before turning to a
description of the actual estimation procedure, we consider first the
important issue of identification.

1.2.3 Identification

Since the scaling of the factors is irrelevant, then in the
case of constant variance (A.,. . =A, Vt) it is usual to impose the

t i t " l
condition that the variance of each of the factors is unity, that is A 
= I. In that case, however, Bf^, C^f^, and Bx are indistinguishable 
from B°f8, C°f° and B°x? where, for arbitrary orthogonal Q, B°=BQ*, 
C°=CjQ’, f°=Qf^, and x°=Qx9 (see section 2.3).

The advantage of modelling time-varying volatility is that 
identification is less problematic as in general the set of admissible 
orthogonal transformation matrices Q that preserve the diagonality of 
A.,. . for all t is substantially reduced. In fact it can be shown
t i t " l
(see Lemma 2 in section 2.3. and Sentana (1991a)) that If A.,. . is

t i t “*l
diagonal (but not scalar) and E ( A . ,) = I, then these conditions are

t i t * l
sufficient to ensure that B and x’ are always identifiable up to 
column sign changes. This result does not depend on any particular 
parameterization of the variances of the factors, only on their 
time-variation. The existence of identification when we relax the 
assumption of homoskedasticity may be apparently paradoxical. However, 
what actually drives the result is the fact that conditional 
orthogonality is a much stronger restriction on the correlation of the 
factors than the standard unconditional one (see the discussion in 
section 2.3).

In conventional factor analytic estimation of the APT, it is 
common for researchers to stress the identification problem and not 
report the non-identified individual risk premia (see Gultekin,
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Gultekin and Penati (1989), Roll and Ross (1980) or Dhrymes, Friend 
and Gultekin (1984) for a detailed discussion). Since our model is, in 
general, identified, we do not face this problem, so, in this respect, 
our approach has a non-trivial advantage over the conventional 
approach.

1.2.4 State Space Representation and Kalman Filtering

In order to estimate of the unknown factors in our model, we 
use the Kalman filter, which is ideally suited to perform this task 
since it produces the best (in the Mean Square Error sense) estimates 
of the factors (see e.g. Harvey (1989) or Sentana (1991c)).

As in standard factor analysis, our model has a natural 
state-space representation (see section 2.4). Taking the common 
factors as the state, the measurement and transition equations are 
given, respectively, by:

' \ ' B1

1
CM

1
4->H

<*-«
I

' vt '

. ct . !-cl 0 1CM1

▼
L « t J

(12)

where:

fn
- f2t • - ^2t -

B A . _T« -1 it:t-i 1 2

P
:t = (xt - r AjXt.j

(13)

(14a)

(14b)

t-1

t-1

vtt
L t J

r

^2t - L

°t:t-i 0
r t:t-i

Ait:t-i 0 
0 A2t:t-i

(15a)

(15b)

The prediction equations for the state vector f^, and its 
covariance matrix, A ,, . are (see Diebold and Nerlove (1989))t i t*"!
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whereas the updating equations are

where

ft:t At:t-iB zt:t-i^t

At:t At:t-i At :t-iB *zt:t-iB At :t-

(17a)

(17b)

If = B1 B2 
C1 0

(18)

zt :t-i
B, Ait:t-i 0

2t:t-i
nt: t-i

t:t-i

B i c i 
B2 0

(19)

Since the transition equation is degenerate, the updated 
estimates f. , coincide with the smoothing estimates f*.,,.. (andt i t Lai
equally A =A.,.) which is analytically very convenient (see sectiont i 1 t i t
2.4. for details).

In order to complete the model we need to specify a 
particular parameterisation for the conditional variances of the 
factors. For practical purposes, we shall assume that the variances of 
f^, v and w^ follow univariate GARCH(1,1)-type processes (Bollerslev 
(1986)). However, much care has to be exercised when dealing with 
conditional variances that depend on past squared values of these 
factors, as the true values of the factors do not belong to the 
information set (see section 2.6 and Harvey, Ruiz & Sentana (1990)). 
In particular, using estimates of the factors in place of the factor 
themselves induces errors in the estimates. One solution to this 
problem is to modify the GARCH framework so that the diagonal elements 
of A,,, depend only on known information (see section 2.6). This can

t i t “ l
be achieved by an equation of the form
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Ait!t-1 = (1"^il”^il)+^ilEt-l(fit-l)+5ilAit-l!t-2 (20a)

where ^il+^il”*’ w^ereas *he diagonal elements of
are represented as

“jt: t-i = W t - i  (vjt-i )+pji“jt-i j t-z (20b)

where 0jQ,0jj,pjjfcO, ^ji+Pjis*» wit^ an analogous equation for the
diagonal elements of I\ .-10. Notice that since E. (f^ )=2 ' 2~ ^“1 111"!
Et-l(fit-l)+ Vt-l(flt-l)= fit-i:t-l+Xlt-i:t-l’ (20a) incorporates a
correction term in the usual GARCH variance which reflects the
uncertainty of the factor estimates. This correction can be easily 
evaluated from the Kalman filter estimates (see section 2.6).

1.2.5 Estimation

If we assume that the factors and the idiosyncratic noise
have a conditional normal distribution (which is a limiting case of
the multivariate t discussed in section 2.5), we may write the
log-1ikelihood of the sample (ignoring initial conditions) as:

t T
L=-(M+N)T/2 ln(27r)-l/2 £ ln!Et, !-1/2 £ C ^ l t - i ^ t  (21)

t = i ' t = i

(cf. equation (16) in section 2.5) where

The computation of our estimates is considerably simplified
if we first obtain consistent estimates of Aj (the coefficients of
x in the vector autoregression) independently by using ordinary J
least squares. Still, the number of parameters to estimate by full 
information maximum likelihood is kj(N+M+3)+k2(N+3)+3N+3M. In order to 
obtain initial values for the maximisation of the global loglikelihood 
function in (21) we use a two-step procedure. Given the estimates of 
Aj obtained by OLS, we take the residuals ĉ ., and, having standardised 
them, we use a principal components analysis to obtain estimates of
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the factor loadings Ĉ . Then we use the estimates of C and T obtained
by this method as starting values for maximum likelihood estimation of
the parameters in the sub-model given by equation (11). In this way we
obtain Kalman filter based factors f,.. and variances A,. ,. .. We nextit 1111—l
regress the actual excess returns on our estimated factors, f ^  and 
apply a principal components procedure on the residuals in order to 
extract estimates of the matrix of factor loadings, B^. These
estimates are then used as starting values for a maximum likelihood
procedure to estimate the sub-model consisting of the excess returns 
equation (9) taking flt and ^ :t—1 as regressors.

This procedure gives us consistent estimates of all of the 
parameters of the model, and these are then used as initial values in 
the maximization of the global likelihood function given by equation 
(21)11.

1.3 Empirical Application

We estimate the multivariate factor asset pricing model
described above on monthly data for returns on sixteen national stock 
markets from 1970:1 to 1988: 10. The sixteen countries are Australia, 
Austria, Belgium, Canada, Denmark, France, Germany, Italy, Japan,
Netherlands, Norway, Spain, Sweden, Switzerland, the United Kingdom 
and the United States. Data on stock returns - the percentage change 
in the share price index plus the dividend yield - were obtained from 
the Morgan Stanley Capital International world indices. All stock 
returns are measured in US dollars, and excess returns were computed 
as the (real, gross) return on each market during the month minus the 
(real, gross) one-month US Treasury Bill yield at the beginning of the 
month. The US consumer price index was used as deflator. Consequently, 
r^ is the real return on stocks over and above the real return on 
cash.

1.3.1 Vector Autoregressions for the Economic Variables

Data on the ten macroeconomic variables that were available 
monthly, and might reasonably be expected to affect stock returns,
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were analysed. The variables are (i) short interest rates measured by
the yield on US Treasury Bills, (ii) long interest rates (index of
yields on long-term bonds weighted by GNP), (iii) the
dollar-deutschmark exchange rate, (iv) the dollar-yen exchange rate,
(v) industrial production for the G3 group of countries (an index
weighted by GNP), (vi) inflation in G3 (consumer price index weighted
by GNP), (vii) US trade deficit (% of GNP), (viii) real money supply
in G3 (weighted by GNP), (ix) real oil price in US dollars, and (x) an
index of real commodity prices. Details of the definitions and sources

12of these variables may be found in the data appendix 1 . Because of
lags in the publication of economic statistics the values of the 
variables for industrial production, the US trade deficit, real money 
supply, and inflation in period t were assumed to be the published 
values for month t-1. We report below the results of varying this 
assumption.

The first step is to estimate innovations in the economic
variables by fitting vector autoregressions described by equation
(8a). These VARs were estimated over the sample period 1970:8 to
1988: 10 - a total of 219 observations. Given that we have only Just
over 200 monthly observations the dimensionality of the VAR has to be
somewhat restricted. We experimented with different lag lengths in
order to obtain a final specification with no detectable serial
correlation in the residuals. The fitted equations also included
seasonal dummies. To test for serial correlation we used the standard
the Lagrange multiplier-based test against 12th order serial
correlation (see Harvey (1981)) as well as a version robust to
conditional heteroskedastlcity (see Wooldridge (1988)). For eight of
the ten variables considered, a specification with thirteen lags for
the dependent variable and three lags for the other variables was
sufficient to ensure that the null hypothesis of no serial correlation
could not be rejected at the 5% level. But for two of the variables -
inflation and real money supply - somewhat different lag lengths were

13necessary in order to ensure that the residuals were white-noise

1.3.2 Estimation of the Joint Factor and Multivariate Returns
Model

Standardized residuals from the VARs are used as data in
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order to estimate the joint factor and multivariate returns model 
described by equations (9) and (lib) by maximum likelihood methods. 
The general model permits both "observable" and "unobservable" 
factors. We used four "observable" factors, that is f ^  is a 4x1 
vector. When estimating (lib) in order to generate initial values for 
the global maximum likelihood procedure, we tested for the
appropriateness of four factors. On the one hand, a likelihood ratio 
test for the existence of a fifth factor yielded a value of 16.96 
(with eleven degrees of freedom) for the difference in loglikelihoods, 
which is statistically insignificant at conventional levels. On the 
other hand, the omission of the fourth factor could be rejected with a 
LR value of 25.7, which is significant at the IV. level (see section 4 
for a discussion of the effect of including additional "observable"

14factors) . In addition to the four "observable" factors, we allowed 
for two unobservable factors. Attempts to allow for a third 
unobservable factor led to the idiosyncratic variance for the
Netherlands market being driven to zero. Since this seemed an 
implausible outcome we used only two unobservable factors.

The matrix, C^, of factor loadings for the economic 
variables that is obtained from estimation of the complete system is 
shown in Table 1.1. One way of interpreting the "observable" factors 
is to look at the weights attached to the innovation in economic 
variables when constructing the factor estimates by means of the 
Kalman filter updating equation (17a). But unless conditional 
variances are constant, these weights change from period to period. 
One possible way of obtaining "average weights" is to regress our
"observable" factor estimates on the economic variables. If the
weights were constant (as in standard factor analysis models), the 
corresponding R would be 1. These results are reported in table 1.2. 
The first factor has relatively large coefficients for the innovations 
in interest rates, both short and long rates. It might be interpreted 
as an "interest rate factor". For the second factor the coefficients 
are high for the dollar-yen and dollar-DM exchange rates. This might 
be thought of as a "dollar exchange rate factor". The third factor 
also has substantial coefficients on the two exchange rate variables, 
but in this case the coefficient on the dollar-yen cross-rate has the 
opposite sign to that on the dollar-DM rate. It measures exchange rate 
shocks among currencies other than the dollar. The fourth factor
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reflects principally innovations in G3 real money supply and the 
inflation rate. Not surprisingly, this interpretation is consistent 
with the elements of the factor loading matrix C^.

Estimates of the matrix of country factor loadings B and the 
vector x of risk premia associated with each of the six factors are 
shown in Table 1.3. The coefficients of the first "observable" factor, 
f^, are, with one exception, negative. If f ^  is an interest rate 
factor, the implication is that unanticipated increases in interest 
rates reduce excess returns. The estimate of the risk premium 
associated with the interest rate factor is positive and statistically 
significant, which implies that an increase in the variance of 
innovations to interest rates is associated with a reduction in the 
required rate of return. This negative relation between risk premia 
and volatility may look surprising at first sight, but it is 
consistent with the empirical and theoretical results of Pagan and 
Hong (1991), Backus and Gregory (1989) and Glosten, Jaganathan and 
Runkle (1989) on the relation between conditional mean and variances 
in asset returns. An interpretation in terms of the consumption 
capital asset pricing model would suggest that this occurs because the 
rate of growth in consumption is positively correlated with 
innovations in interest rates.

As far as the dollar exchange rate factor is concerned, 
there is no unambiguous theoretical prediction about the sign of the 
coefficients. An appreciation of the dollar stimulates the exports of 
companies in other countries, which raises share prices in those 
markets. But it also may increase inflation in non-US economies and 
higher unanticipated Inflation lowers share prices (see, for example, 
Fama and Schwert (1977)). In addition, for a given change in stock 
prices in local currency, a dollar appreciation implies a lower dollar 
return in non-US stock markets, although if currency hedging is 
available, this should not affect excess returns which should be 
invariant to the particular currency used15. Our estimates suggest that 
an unanticipated appreciation of the dollar leads to a fall in all 
non-North American stock markets and a rise in the US and Canadian 
markets.

Estimates for the third "observable" factor imply that an
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unanticipated appreciation of the yen and deutschmark local currency 
leads to increases in the stock market in Japan and Germany,
respectively. As one might expect, the size of the coefficient is
bigger for countries that belong to the "DM block", that is for
Germany, Austria, Switzerland, Netherlands and Belgium, return in 
non-US stock markets. The "price of risk" terms associated with
exchange rate volatility are statistically insignificant, suggesting 
that exchange rate volatility is not priced.

The coefficients on the real money supply factor imply that 
unanticipated increases in the money supply or unexpected falls in the 
inflation rate raise share prices in eleven of the sixteen national 
markets. The negative estimate of the associated risk premium means 
that an increase in the volatility of money innovations increases the 
equity risk premium, but again this is not significantly priced.

Figures 1.2a and 1.2b plot the estimated two factors over 
the sample period. The first unobservable factor is extremely 
volatile. For example, it exhibits a sharp spike in October 1987 which 
coincides with the worldwide stock market crash. Another sharp 
downward movement can be seen in September 1974, and there are upward 
surges in January 1975 and January 1987. The volatility persistence 
measure provided by the sum of the ARCH and GARCH coefficients for 
this factor is relatively high at 0.7899. This factor is uncorrelated 
with the Innovations in the "observable" economic variables that we 
have analysed. The difficulty in explaining the 1987 stock market 
crash in terms of changes to observable fundamental variables is 
illustrated clearly in Figure 1.2a. The plot suggests that there are 
other episodes in the last twenty years when markets have moved 
together without any obvious explanation in terms of observable 
economic variables. The first unobservable factor has a substantial 
loading on most countries, the conspicuous exception being Austria 
which fell least in the 1987 crash. An increase in the volatility of 
this factor leads to a higher estimated equity risk premium, although 
it is not statistically significant. The second unobservable factor 
also exhibits high volatility (see Figure 1.2b), but the volatility 
persistence is much higher at 0.9797, being very close to the IGARCH 
region (cf. Engle and Bollerslev (1986), Nelson (1991))). Besides, the 
volatility associated with this factor seems to be significantly
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priced.

To "learn" more about the nature of the unobservable 
factors, we can regress the factor estimates on the set of stock
returns. Although our model suggests that the "factor representing
portfolios" would change from period to period (cf. Sentana (1991c)), 
we can understand the results reported in table 1.4 as providing 
"average" basis portfolios. It is striking that neither set of weights 
appear to be closely correlated with market capitalization (cf. the 
weightings on Japan with its market capitalization). Hence, not only 
is our model considerably more general than a simple market model in 
that we include two unobservable factors, but our results also 
suggests that including the "world" index as a market factor may
induce a serious misspecification. The first unobservable factor has a 
significant positive association with stock returns in North America 
(US and Canada), and is negatively correlated with German returns. By 
contrast, the second unobservable factor is largely dominated by the 
German stock returns.

Notice that the estimates of the individual t * s are poorly 
determined. This may be due to collinearity in the variances of the 
factors. Therefore, we have computed Joint test of the statistical
significance for groups of r coefficients. The LR test for the 
hypothesis that the risk associated with all 6 factors is not priced 
is 25.90, which is statistically significant. As for the pricing of 
"observable" and "unobservable" risk components, the corresponding 
test statistics yielded 19.56 (*J Q 0^*9.49) and 8.75 (x£ Q Q,.«5.99). 
Therefore, there is evidence that factor risk is priced, although the 
individual components are poorly determined.

1.4. Links Between Stock Markets

1.4.1 Assessing Global Capital Market Integration

The estimates of our model implicitly assume that stock 
markets are integrated. Specifically, we have assumed that:

Al. Idiosyncratic risk is not priced
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A2. The "price of risk", t ,̂ that is associated with the 
volatility of the underlying factors is assumed to be 
the same for each country.

Even if the theoretical restrictions implied by our mode may 
provide a valid representation of asset pricing in a domestic economy, 
it would be surprising if A1 and A2 were valid for the world stock 
markets given the existence of exchange controls (at least for part of 
the sample) and other barriers to investment. Of course, we may reject 
the intertemporal asset pricing model that we have estimated if any of 
the two hypotheses are invalid.

We attempted to test A1 by allowing the idiosyncratic 
volatility of each market to affect the corresponding risk premia. Our 
results are to be found in table 1.5. Note that idiosyncratic risk is 
significantly priced (at the 5% level) in 11 of the 16 countries. 
Moreover, it attracts the right sign (i.e. positive) in all 16 
countries, and a joint test also rejects the null that 
country-specific risk is not priced at conventional levels. Hence, 
assumption A1 appears to be rejected.

Turning to A2, i.e. the assumption that the price of risk is 
common across countries, our results are presented in table 1.6. Here, 
in 2 of the 6 cases (i.e. for the two unobservable factors) we reject 
the null of the cross-equation restriction.

Since our model can be interpreted as a special case of the 
APT in that we make an additional assumption about the risk premia 
associated with the factors, it is obviously possible that we are 
rejecting this particular assumption and a different version of the 
APT might be valid in this context. However, the evidence suggests 
that our assumption of global capital market integration is probably 
unwarranted in the context of an asset pricing model.

It is, however, possible that our rejections stem from using 
the data from the seventies. Yet, the eighties have seen the removal 
of various barriers to foreign investment - e.g. the lifting of 
exchange controls in the UK in 1979, various liberalization measures 
in Japan including the revision of the Foreign Exchange Law in 1980,
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greater harmonization of regulation in the EEC, etc. Therefore, we 
repeated our test for A1 in the subsamples 1970:8-1979:12 and 1980:7 - 
1988:10. The results, though, continue to reject the assumption that 
idiosyncratic risk is not priced.

1.4.2 The Contribution of Observables to the Covariance Matrix of
Returns

One objective of this chapter is to attempt to link changes 
in co-movements between stock markets to variations in the economic 
variables that we consider. Therefore it is of interest to estimate 
the extent to which the covariance matrix of world stock markets can 
be explained in terms of innovations in observable economic variables. 
The conditional variance-covariance matrix of excess returns is given 
by equation (2). This is likely to be informative even though the mean 
restrictions are not satisfied.

Figure 1.3a shows the estimated conditional covariance, and 
the contribution to this of the variance of the "observable" factors, 
for the US and UK markets16. The picture is striking. Although the 
covariance between the two markets has ranged between 0.25 to values 
in excess of 0.6 during the sample period, the contribution of the 
"observable" factors has remained firmly in the range ± 0.05. The 
relative contribution of "observable" factors to changes in the 
covariance between the US and UK appears to have been minuscule. 
Figure 1.3b shows the estimated conditional covariance between the US 
and Japan. The relative contribution of "observable"s in this case is 
somewhat higher. The decline in the covariance in 1978-79 is clearly 
linked to changes in the volatility of "observables". However, during 
the rest of the period, the "observables" do not explain much of the 
variation in the conditional covariance.

Not only do "observable"s account for a small proportion of 
the covariance between markets, they also fail to explain a 
substantial fraction of the variance of the markets. Figures 4 shows 
the decomposition of the variance of the US market into three main 
components attributable to "observable" factors, "unobservable" 
factors, and the idiosyncratic term. For the US the contribution of 
the "observables" to the variance is negligible. It is clear that the
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contribution of the unobservables essentially mirrors the actual
change in the variance. The contribution of the idiosyncratic
component is constant for the US because the coefficients in the

17corresponding GARCH process were estimated to be zero .

The failure of our "observable" variables to account for
changes in the correlations between markets is somewhat disappointing.
It is therefore important to investigate whether our results can be
explained by the fact that we only allowed ourselves four observable
factors in order to economise on the number of parameters. The
inclusion of one additional "observable" factor would raise the number
of parameters to be estimated from 216 to 244. To allow as many
factors as variables would entail the estimation of 374 parameters. In
order to illustrate the effect of including additional economic
variables, we regressed excess returns on all ten series of

2innovations from the VARs, computed the R , and compared them with the
values obtained when we included only the four "observable" factors.

2The results are shown in Table 1.6. As measured by the average R ,
four factors enable us to capture over 75% of the explanatory power
that can be obtained by using all ten innovations separately. This
suggests that the use of four factors has not led us to underestimate

18significantly the contribution of "observable" factors .

It is possible that the "observable" factors are measured
with error. For example, the information set used in our VARs may be
too restricted. Under the efficient markets hypothesis other relevant
information is incorporated in stock prices. Hence we re-estimated the
VARs including in the information set three lags of the return in the
world index as a proxy for variables that had been omitted. This
produced new estimates of the ten innovations in the observable
economic variables. We then regressed excess returns on these
Innovations. There was very little change in the explanatory power of

2the economic variables - the average R actually fell from 0.136 to
0.128. Because of delays in the publication of economic statistics, we
assumed a one month lag in the production of certain monthly series
(see section 1.3.1). We experimented, however, with the current values

2of variables. Again this makes little difference - the mean R rose 
marginally from 0.136 to 0.144.
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The fact that our observable factors do not have substantial 
explanatory power to explain changes in co-movements between markets 
is disappointing, especially if we take into account that our
observable variables do seem to Granger-cause dividends (see table 
1.8).

1.4.3 Changing Links Between National Stock Markets

It is often asserted that the links between national stock 
markets have increased with improved electronic communications and the 
abolition of exchange controls in a number of countries. The 1988 
Brady Commission, however, pointed out that there had been no trend 
increase in the (rolling) correlations between markets (computed by 
using a monthly window of the last twelve observations). Figure 1.5 
plots the (cross-sectional) average estimated conditional correlation 
coefficient between the markets implied by our parameter estimates. 
When we regress this mean conditional correlation coefficient on a 
constant, a dummy variable for the 1980s and a dummy variable for the 
period after the 1987 stock market crash we obtain

CORR = 0.381 + 0.018 D1980s + 0.105 Dcrash

Hence the case for a trend increase in correlations between 
markets depends upon the weight that is attached to the observations 
surrounding the 1987 stock market crash. Those authors who argue that 
markets have become increasingly integrated from data in the period
1986-88 (for example, von Furstenberg and Nam Jeon (1989)) may be 
confusing a transitory with a permanent increase in correlations.

A stylised fact that has been noted before is that periods 
when markets are increasingly correlated are also times when markets 
are volatile (for example, King and Wadhwani (1990) and Roll (1989)). 
Indeed, King and Wadhwani argued that this might be because a rise in 
volatility caused by factors that are not closely related to “news", 
might lead agents to pay greater attention to other markets in an 
attempt to determine the change in the "taste for equity". In our 
model, periods when the volatility of the unobservable factors rises 
are also those when, ceteris paribus, markets appear to exhibit 
greater inter-correlation. To see this, consider a two-asset
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two-factor model

(23a)

(23b)

where 0 ^  > 0 Vi,j. The conditional correlation coefficient between 
the two markets is given by

P12t=(P (24a)

with

l i l t !t-1 12 2tTt-lWlt!t-1+£ l t (24b)

21 it:t-i ^  2t:t-i+w2tit-i (24c)

It follows that the (conditional) correlation coefficient is
an increasing function of X and a decreasing function of A. .
and the idiosyncratic variances. Hence an increase in the volatility 
of those factors that affect all stock markets with the same sign - 
the unobservable factors in our sample - will be associated with an 
increase in the correlation between markets. This is consistent with 
the observed rise in both volatility and inter-correlation around the 
time of the 1987 crash. Rises in the volatility of factors that move 
markets in different directions - exchange rates, for example - may be 
associated with falls in correlation coefficients. The positive link 
between volatility and correlation that has been noted by previous 
authors appears to reflect the fact that the unobservable factors have 
historically been more important in explaining stock returns than the 
"observable" factors. Our analysis provides some confirmation over a 
longer sample period for the stylised fact that conditional 
correlation is related to volatility. It does not, however, enable us 
to assess whether there is a causal relation between volatility and 
correlation.

1.5 Conclusions

Our results seems to suggest that global stock markets are 
not integrated. We were easily able to reject the null hypothesis that
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idiosyncratic risk is not priced. Moreover, the "price of risk" 
associated with the relevant factors is not always the same across 
countries. Also, although it is commonly accepted that globalisation 
has led to national stock markets moving more closely together, we 
were unable to find any trend increase in correlations.

Another of our empirical findings is that only a small 
proportion of the time-variation in the covariances between national 
stock markets can be accounted for by "observable" economic variables. 
Changes in correlations between markets are driven primarily by 
movements in unobservable variables, which may be interpreted as 
unobservable fundamental variables that we have ignored, or as 
variables related to the demand for equities by "noise" traders. Our 
results suggest that constructing models which help predict changes in 
covariances between markets on the basis of observed economic data is 
likely to prove difficult.

Our model is considerably more general than a simple market 
model in that we include two unobservable factors. It is of some 
interest that our unobservable factors do not seem well correlated 
with returns on a world index, (cf. the lack of correlation of the 
factors with Japanese returns and its market capitalization). Hence, 
our results also suggests that including the "world" index as a market 
factor may be misleading.

Further work is required in two main directions. First, it 
may be that the asset pricing restrictions of our model are more 
readily satisfied in other settings (e.g. on different industrial 
sectors in an integrated national stock market). The second is to 
explore alternative models for equity returns.
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ENDNOTES

1 Relations between risk premia and conditional variances are 
sensitive to differential information between agents and 
econometricians (see Pagan and Ullah (1988) or Glosten, Jaganathan 
and Runkle (1989)). We shall therefore make the standard assumption 
in the applied literature that the relevant information is common 
to both.

2 We shall assume that £ 2 ^ ^ , is actually a positive definite matrix 
for all N since otherwise we could form finite portfolios that 
contain only systematic risk.

Equation (4) can be understood as the orthogonal projection of 
p*-v* on the space generated by the factors.

4 In our case, the implicit condition is that E. , (v*v...)=0, which ist— 1 t Nt
equivalent to the condition in Chamberlain (1983) that the pricing 
functional is well diversified. This results in the APT pricing 
formula being exact, rather than approximate.

5 By contrast, Engle, Ng and Rothschild (1989, 1990) do not assume 
that Q is a diagonal matrix.

6 If we define ff=A"^2.f., B?=Ba !'2 ,, x = A , x ,  then our modelt t I t""l t t t i t “ l t t • t"l
can also be interpreted as a time-varying factor-betas model with
homoskedastic factors in which the betas of different assets on a 
factor change proportionately (see Engle, Ng and Rothschild (1990)).

7 In order to make our analysis invariant to changes in scale, we 
divide the residuals from the vector autoregression by their own 
standard deviation - so that all the transformed values of have, 
by construction, unit variance.

8 The matrix I\ is assumed to be positive semidefinite in ordert i t*l
to allow for the possibility that the variance of one or some of 
the w^-s is zero. This is related to the observability of the 
factors. If at least kj of the w^-s are zero, the "observable"
factors would be fully revealed by the set of economic variables,
otherwise, they are only partially revealed. In the extreme case
where T . =0 Vt, the model would be in the spirit of one-modet i t 1
component analysis (see Magnus & Neudecker (1988)).
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One approach in standard factor analysis models is to use some 
sufficiency conditions for identification, such as Dunn*s (1973) 
zero-type restrictions on the factor loadings (see Lemma 1 in 
section 2.3). In the context of the present model these amount to 
imposing a zero restriction on the upper triangle of and C^.

10 The restrictions on the coefficients of the GARCH processes are
necessary to ensure stationarity and positivity of variances,
while, for A..,. ,, we also need to ensure that the unconditional It•t“1
variance is unity (see also sections 2.3 and 2.6).

11 Maximization of the log-1 ikelihood function was carried out on the 
LSE VAX using the NAG library E04JBF routine. The block 
triangularity of the global factor loading matrix B+ and the 
special from of the covariance matrices is exploited by means of 
the Woodbury formula (Householder (1964)) so that the inversion of 
Zj. (a 26x26 matrix) only involves the inversion of the 4x4 matrix

and the 2x2 matrix ^ or case of or
singular, see Sentana (1989)).

12 Aggregate variables with G3 GNP weights have been used as a rough 
way of reducing the number of observable economic variables.

13 See table 1 in King, Sentana and Wadhwani (1990) for details.
14 The appropriateness of four "observable" factors is also confirmed 

by the Akaike information criterion. These tests impose the 
parametric model for heteroskedasticity.

15 This is due to the fact that the difference between spot and 
forward exchange rates is equal to the difference between the two 
domestic Interest rates under covered interest parity.

16 An obvious alternative is to look at conditional correlations. This 
has the advantage that they are easy to interpret. The problem is 
that we our model does not imply an additive decomposition of the 
conditional correlations into components attributable to observable 
and unobservable factors.
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17 This is not the case in the general. For instance, in the UK the 
contribution of the idiosyncratic component is important in 
capturing a sharp rise in volatility between December 1974 and 
February 1975 during which period there was a major fall in the 
market followed by a rapid recovery. This emphasises the need to 
allow for time-varying idiosyncratic variances.

18 Our result that the contribution of "observable" factors to an 
explanation of returns is small is consistent with the findings of 
Cutler, Poterba & Summers (1989).
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Details of 
appropriate the name 
code):

Stock prices and 
dividend yields:

Safe interest rate: 

Short interest rate: 

Long Interest Rate:

Exchange rates:

Index of Industrial 
Production

Consumer Prices:

Trade Account:

Money Supply:

Oil Price:

Commodity Prices:

GNP Weights:

DATA APPENDIX 1

the data series used are as follows (where 
of the series is followed by its Datastream

from Morgan Stanley Capital International 
Perspectives.

yield on 1 month US T Bills, beginning of 
period.

yield on 3 Month US T Bills, end of period 
(USOCTBL*/.).

US Yield on long-term government bonds, 
end of period (USOCLNG*/.)
W. Germany: Yield on long-term government 
bonds,end of Period (BDOCLNGX)
Japan: Yield on Central Government Bonds 
end of Period (JPOCLNG*/.)

US$-Yen, end of period (JPOCEXCH).
USS-DM, end of period (BDOCEXCH).

US (USOCIPRDJ)
West Germany (BDOCIPRDI)
Japan (JPOCIPRDH)

US - all items (USOCPCONF)
W. Germany - total (BDOCPCONF)
Japan - Tokyo, all items (JPOCCPTKF)

US Foreign Trade Balance, US ^million 
(USOCVBALA)

US: M3, US Sbillion, current prices
(US0CM3MNA)
W. Germany: M3 DM million, current prices 
(BDTU0800A)
Japan: Ml + Quasi Money, yen billion
current prices (JP0CM1QSA)

Saudi Arabian Light Oil Spot Price, US$ 
per barrel end of period (SAUDISPT) (up to 
Dec 72 from IMF Financial Statistics)

The Economist World Commodity Price Index 
(last week of each month) (up to Dec 72 
monthly average)

US GNP Sbillion at annual rates, current 
prices (USOCGNPDB)
W. Germany GNP DM billion at annual rates, 
current prices (BDOCGNPDB)
Japan GNP Yen billion at annual rates, 
current prices) (JPOCGNPDB)
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Table 1.1

Matrix of Observable Factor Loadings

Variable fll f 12 f 13 f 14

1. SHORT
INTEREST 0.633 -0.044 -0.067 -0.040
RATE (0.121) (0.061) (0.085) (0.066)

2. LONG
INTEREST 0.578 -0.008 -0.140 -0.065
RATE (0.117) (0.065) (0.081) (0.063)

3. DOLLAR/
YEN EXCH. -0.158 -0.843 0.464 -0.149
RATE (0.065) (0.087) (0.077) (0.074)

4. DOLLAR/
DM EXCH. -0.318 -0.852 -0.362 0. 138
RATE (0.065) (0.061) (0.075) (0.071)

5. INDUST
RIAL PROD 0. 120 -0.053 -0.051 -0.184
UCTION (0.067) (0.064) (0.070) (0.066)

6. INFLA 0.020 -0.152 0.051 0.206
TION (0.068) (0.069) (0.072) (0.067)

7.US TRADE -0.122 0.013 0.087 0.005
ACCOUNT (0.072) (0.069) (0.067) (0.064)

8.REAL
MONEY -0.041 -0.023 -0.318 -0.956
SUPPLY (0.077) (0.066) (0.119) (0.630)

9.OIL 0.040 -0.071 -0.009 -0.020
PRICE (0.040) (0.093) (0.039) (0.034)

10.COMMOD -0.085 -0.321 -0.083 0.086
ITY PRICES (0.064) (0.066) (0.070) (0.067)

Note: Standard errors in brackets
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Table 1.2 
Observable Factor Score Veights

Variable fll fl2 fl3

1.SHORT
INTEREST 0.601 -0.178 -0.073
RATE

2. LONG
INTEREST 0.360 -0.107 -0.044
RATE

3. DOLLAR/
YEN EXCH. 0.034 -0.525 1.135
RATE

4. DOLLAR/
DM EXCH. -0.142 -0.602 -1.008
RATE

5.INDUST
RIAL PROD- 0.043 -0.013 -0.005
UCTION

6.INFLA- -0.019 0.006 0.002
TION

7.US TRADE -0.071 0.021 0.009
ACCOUNT

8.REAL
MONEY -0.068 -0.098 -0.259
SUPPLY

9. OIL -0.015 0.005 0.002
PRICE

10.COMMOD- 0.014 -0.004 -0.002
ITY PRICES
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0.038

0.022

-0.217

0.348

0.003 

- 0.001 

-0.004

-0.962 

0.000 

0.000
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Table 1.3 
Estimates of B and x

Country fll f 12 f 13 f 14 f21 f22

AUSTRAL. -0.105 
(0.053)

-0.091 
(0.058)

0.021
(0.053)

0.001
(0.043)

0.610
(0.061)

0. 143 
(0.080)

AUSTRIA -0.129 
(0.029)

-0.284 
(0.028)

-0.115 
(0.037)

0.054
(0.032)

0.045
(0.029)

0.223
(0.044)

BELGIUM -0.150 
(0.038)

-0.303 
(0.027)

-0.064
(0.039)

-0.001
(0.029)

0.295
(0.036)

0.425
(0.050)

CANADA -0.093 
(0.040)

0.036
(0.039)

-0.061 
(0.037)

0.043
(0.033)

0.524
(0.041)

0.075
(0.051)

DENMARK -0.069
(0.039)

-0.197 
(0.034)

-0.003
(0.041)

-0.022 
(0.028)

0.217
(0.041)

0.202
(0.052)

FRANCE -0.164 
(0.047)

-0.302 
(0.045)

-0.054
(0.053)

0.029
(0.045)

0.367
(0.049)

0.456
(0.062)

GERMANY -0.170 
(0.040)

-0.214
(0.032)

-0.061
(0.042)

0. 014 
(0.044)

0. 108 
(0.043)

0.583
(0.072)

ITALY 0.021
(0.056)

-0.211
(0.057)

0.071
(0.058)

0.029
(0.052)

0.246
(0.060)

0.364
(0.071)

JAPAN -0.065 
(0.037)

-0.295
(0.044)

0.146 
(0.045)

-0.122 
(0.037)

0.210
(0.043)

0.291
(0.054)

NETHERL. -0.115 
(0.037)

-0.153 
(0.034)

-0.086 
(0.045)

0.033
(0.032)

0.347
(0.037)

0.406
(0.056)

NORWAY -0.136 
(0.058)

-0.118 
(0.060)

-0.087
(0.061)

0.065
(0.048)

0.514
(0.065)

0.332
(0.083)

SPAIN -0.077 
(0.040)

-0.176 
(0.047)

0.050
(0.048)

-0.038
(0.034)

0.212
(0.049)

0.231
(0.055)

SWEDEN -0.080 
(0.041)

-0.179 
(0.042)

0.017
(0.042)

-0.043 
(0.029)

0.246
(0.042)

0.273
(0.052)

SWITZER. -0.175 
(0.040)

-0.189 
(0.029)

-0.074
(0.050)

0.016
(0.033)

0.274
(0.037)

0.469
(0.061)

UK -0.065 
(0.043)

-0.114 
(0.045)

-0.038
(0.047)

0.041
(0.036)

0.499
(0.055)

0.353
(0.067)

USA -0.052 
(0.032)

0.052
(0.035)

-0.026 
(0.034)

0.021
(0.026)

0.427
(0.033)

0. 120 
(0.044)

T 0.399 
(0.143)

-0.028
(0.059)

-0.963 
(0.836)

-1.803 
(1.161)

0.223 
(0.144)

0. 175 
(0.062)

Note: Standard errors in brackets
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Table 1.4

Unobservable Factor Score Weights and Market Capitalization

Country f21
%

f22
%

World
%

AUSTRAL. 12.83 -7.51 1.46

AUSTRIA -4.91 -4.93 0.21

BELGIUM -2.81 8.59 0.73

CANADA 33.66 -37.12 2. 19

DENMARK 4. 49 -11.89 0.42

FRANCE 3.51 -3.43 3.02

GERMANY -27.21 89.85 3.54

ITALY 3.46 13.07 1.46

JAPAN 1.70 -2. 58 32.74

NETHERL. 9.87 17.58 1.46

NORWAY 7.53 1.06 0. 10

SPAIN 2.20 2.88 1.25

SWEDEN 1.08 -3.73 0.42

SWITZER. 1.82 23.24 1. 56

UK 7.91 9.89 10.95

USA 44.63 5.03 38.48
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Table 1.5

Estimates of the Price of Idiosyncratic Risk

Country Price t-Ratio

AUSTRAL. 0.188 1.370

AUSTRIA 0.466 3. 152

BELGIUM 1.337 4.019

CANADA 0.654 2.002

DENMARK 0.276 1.555

FRANCE 0.654 3.507

GERMANY 1.487 2.458

ITALY 0.082 0.723

JAPAN 0.639 2.763

NETHERL. 1.062 2.650

NORWAY 0.286 2.312

SPAIN 0.133 1.117

SWEDEN 0.436 2.724

SWITZER. 1.255 2.440

UK 0.383 2.734

USA 0.534 1.214

Joint Test: LR = 29.48 (x = 26.3)16|0•05
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Table 1.6

Likelihood Ratio tests for Common Price of Risk

fll f 12 f 13 f 14 f21 f22

13.26 14.39 22.65 18.61 32.67 25.28

2 = 25.0
15,0.05
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Table 1.7

Proportion of Variance of Excess Returns Explained by Economic Factors

Country 4 Factors 10 Innovations

AUSTRAL.

AUSTRIA

BELGIUM

CANADA

DENMARK

FRANCE

GERMANY

ITALY

JAPAN

NETHERL.

NORWAY

SPAIN

SWEDEN

SWITZER.

UK

USA

0.0142 

0.1936 

0.1641 

0.0619 

0.1149 

0.1471 

0.1486 

0.0535 

0.1936 

0.1175 

0.0654 

0.0583 

0.0748 

0.1852 

0.0356 

0.0380

0.0525 

0.2083 

0.1781 

0.0918 

0.1497 

0.1701 

0.2035 

0.0896 

0.2204 

0.1412 

0.1567 

0.0927 

0.0961 

0.2161 

0.0604 

0.0525

AVERAGE 0.1062 0. 1362

54



Chapter 1: Volatility and Links

Table 1.8

Granger-Causality Tests of Explanatory Variable for Dividends

Country F-Test

AUSTRAL. 2.882

AUSTRIA 2.271

BELGIUM 8.055

CANADA 4.038

DENMARK 3.872

FRANCE 10.890

GERMANY 3. 101

ITALY 3.569

JAPAN 1.659

NETHERL. 3.737

NORWAY 3.268

SPAIN 11.362

SWEDEN 3.753

SWITZER. 3.211

UK 14.140

USA 4. 144

Notes: Estimated regression is
10

A D  = const. + a , A D  + a A D + F / 3 A X
12 Jt 1 12 Jt-12 2 12 Jt-24 u  i 12 it

1=1

H : j3 =0 for 1=1,.., 10 o i

F-Tests include Newey-West (1987) correction (F(10,207) « 1.83)
0.05
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0,180

1973 1975 1977 1979 1981
Sanple Period is 1971( 7) - 1988(10)

Figure 1.1

Equally-weighted average of individual 
cross-country correlation coefficients 
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Chapter 2: Heteroskedastlc Factor Models

2.1 Introduction

In recent years increasing attention has been paid to
modelling the behaviour over time of second moments, especially after 
the introduction of Engle’s (1982) Autoregressive Conditional 
Heteroskedasticity (ARCH) model (see Bollerslev, Chou and Kroner 
(1990) for a recent survey). The ARCH(q) formulation assumes that the 
random variable is generated according to the following model:

Et = qt/2ct' V  U d  (0>1)- qt=a0 + ^ V t - 8  (1)8=1

This model has been extended to the multivariate case by 
Kraft & Engle (1983) as follows (cf. section 5.5):

yt=H" V t. y;~ iid ( O . y .  V Ao +^ V t - s  (2)
8=1

where y^ is a mxl vector, ht=v(Ht), 7>t=v ŷtyt^’ Ao is a
vector, the A are square matrices of order m(m+l)/2 and v() is thes
vector-lower triangle operator which stacks the lower triangular
portion of a matrix (see Magnus (1988)).

However, the empirical application of dynamic conditional 
heteroskedasticity in a multivariate context has been hampered by the 
sheer number of parameters involved. For instance, without any 
restrictions, the number of parameters to be estimated in (2) is 
0(qm4) (cf. section 5.5), and for this reason in practice only two 
particular cases have been considered. The first one is the diagonal 
ARCH model which takes A (s=l,p) to be diagonal (see e.g. Attanasio & 
Edey (1987), Bollerslev, Engle & Wooldridge (1988) or Engle, Granger & 
Kraft (1984) as examples). The other one is the k-factor ARCH model of 
Engle (1987) in which k orthogonal linear combinations of the y^“S 
follow univariate ARCH processes (see e.g. Engle, Granger & Kraft 
(1984), Engle (1987), Engle, Ng & Rothschild (1989, 1990), Kroner
(1987), Lin (1991)).

Bollerslev (1990) has recently proposed a different 
parameterization for the time-varying variance-covariance matrix which 
holds the conditional correlation structure constant. Although this 
assumption simplifies the model considerably, in some instances the
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interest of the study may be the changing correlations themselves (as 
in chapter 1).

A new alternative approach to multivariate conditionally 
heteroskedastlc models has been introduced by Diebold & Nerlove (1989) 
and extended in Chapter 1, and it is based on the same idea as 
traditional factor analysis models (see e.g. Johnson & Wichern 
(1982)). That is, it is assumed that each of m observed variables is a 
linear combination of k (k<m) common factors plus an idiosyncratic 
noise term, but allowing for dynamic conditional heteroskedastlc-type 
effects in the underlying factors1. As in standard factor analysis it 
is in this way possible to obtain a parsimonious representation of the 
(conditional) second moments in terms of fewer processes.

In fact, Diebold & Nerlove (1989) propose this model as a 
natural way of capturing the co-movements in the variances of seven 
dollar exchange rates with a more parsimonious representation than the 
unrestricted multivariate ARCH model of (2), or Indeed the diagonal 
version2.

An additional advantage of this formulation is that in some 
cases (particularly in the context of Ross’ (1976) Arbitrage Pricing 
Theory) it can be given a direct economic interpretation (see the 
discussion in section 1.2.1.3).

However its statistical properties have not been studied in 
detail. Several issues are particularly relevant. First the 
identification problems which affect factor analysis models (see 
section 1.2.3) have not been investigated for the case in which the 
factors show dynamic conditional heteroskedastlc. This has important 
Implications for empirical work related to the Arbitrage Pricing 
Theory, as the lack of identiflability of standard factor analysis 
models implies that the individual risk premia components associated 
with each factor are only identifiable up to an orthogonal 
transformation.

Another important issue that arises in the context of 
conditional heteroskedasticity is what distributional assumption 
should be made. Gaussianity is the most common one. However, although
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it can be proved that the associated unconditional distribution has 
thicker tails than the normal, conditional normality does not seem to 
capture completely the degree of leptokurtosis often observed in 
practice, especially in financial data. For this reason fat-tail 
conditional distributions have also been entertained in univariate 
models (see sections 4.3.2 and 5.4). Here we shall generalize 
Bollerslev’s (1987) approach to the multivariate case by assuming that 
the joint conditional distribution of the factors is (proportional to) 
a multivariate t distribution, which includes the multivariate normal 
as a limiting case, but has generally fatter tails. This assumption 
ensures that the conditional distributions of the observed variables 
will be leptokurtic (see section 5.5 for an application).

Finally, the presence of unobservable variables makes 
statistical inference in this model somewhat complicated. In 
particular, it is of interest to discuss how ARCH-type effects can be 
handled since a standard ARCH model for the factors introduces 
unobservable components in the variance (see section 1.2.6 or Harvey, 
Ruiz & Sentana (1990)). For this reason, a Monte Carlo comparison of 
two related approaches to the Kalman-fliter based maximum likelihood 
estimation procedure is carried out.

In section 2.2 the model is formally introduced. 
Identification is discussed in section 2.3, in which a generalization 
of sufficiency conditions for the constant-variance case is presented. 
The equations associated with the Kalman filter are derived in section 
2.4. Maximum likelihood estimation is studied in section 2.5, whereas 
alternative ways to introduce ARCH and GARCH effects specifically are 
discussed in section 2.6. Some numerical simulations to compare the 
performance of these alternatives are carried out in section 2.7. 
Finally the conclusion are presented in section 2.8 together with some 
suggestions for further work.

2.2 A Multivariate Conditionally Heteroskedastlc Latent
Factor Model

Let’s consider the following multivariate model
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xt = Cft + wt (3)

where
x^is a mxl vector of observed variables

a kxl vector of unobservable common factors 
a mxl vector of unobservable idiosyncratic noises 

C a mxk matrix of factor loadings, with m^k and rank(C)=k, 
and both f̂. and ŵ. are stochastic processes which show 
dynamic conditional heteroskedasticity.

In particular, we assume that given the information set
available at time t-1, Xt-l=*Xt-l’Xt-2 mmm *̂ ft=At^t-lft and —1/2 ♦ , * 
wt t:t-iwt’ Hhere:

rci
■ ' 0 '

~ iid »

i 0
0 (4)

A . is a kxk positive definite diagonal matrix t • t ~ 1
and T ,. a mxm positive semidefinite diagonal matrix,t i t"l
with

AitIt-1 ” Al^Xt-l^ i=1»k (5a)

= V W  J=1>m (5b)

so that both A ,. , and I\ , are measurable with respect to thet « t “ 1 t • t * 1
information set (as in chapter 1) . In order to retain full generality 
we shall not impose any restrictions on the exact functional forms in 
(5a) and (5b) (other than measurability with respect to ) until 
section 2.6. In any case, it is easy to see that the elements of f^ 
and w^ are serially uncorrelated with zero mean and a finite
unconditional variance as in the homoskedastic case (provided that
appropriate stationarity conditions are fulfilled), but in general
they are not serially independent and their unconditional
distributions are more leptokurtic than those of f* and w* (see
section 5.3). Note also that the diagonality of A.,. and 1\ ,.t • I I t“l
together with the contemporenous uncorrelatedness of implies
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that the factors are conditionally orthogonal. This, as we shall see, 
has important implications for the identiflability of the model.

This model is a straightforward generalization of Diebold & 
Nerlove (1989) who considered the case where k=l, the variance of w^ 
is constant (i.e. Vt) and the conditional variance of the common
factor has an ARCH-type form. It is also am important special case of 
the model introduced in section 1.2.1, in which the variance of the 
common factors affects the mean of (see also section 2.8 below), 
and the one discussed in Harvey, Ruiz and Sentana (1990), who allow 
for general dynamic in the mean. Besides if f^ and ŵ . are 
conditionally homoskedastic Vt, it then reduces to the standard factor 
analysis model (e.g. Johnson & Wichern (1982)).

2.3 Sufficiency Conditions for Identification

Our assumptions imply that the distribution of x̂ . given X^  ̂
has conditional mean 0 and covariance matrix 2... =V(x /X. ,) givent • L“ 1 t t*l
by:

st:t-i ' c At:t-i c’ + rt:t-i (6)

It is clear than an arbitrary element of the model is the 
scaling of the factors. To remove this indeterminacy it is customary 
in the constant variance case to consider factors with unit variances. 
By analogy we shall require here V(f^)=I4.

Let’s suppose that we were to ignore the time-variation in 
the conditional variances and base our estimation in the unconditional 
covariance matrix of x., 2. Assuming that V(w )=E(T . )=T exists,t t tIt"l
the unconditional variance is simply 2=CC*+T.

As is well known from standard factor analysis models, it 
would then be possible in principle to generate an observationally 
equivalent model to (3) by premultiplying f by an arbitrary 
orthogonal kxk matrix Q and postmultiplying C by the transpose of that 
matrix since the covariance matrix 2 remains unchanged (see also the 
discussion in section 1.2.3).
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Hence, some restrictions would be needed on C, and one way 
to impose them would be to use Dunn’s (1973) set of sufficiency 
conditions for the homoskedastic factor model with orthogonal factors. 
These conditions are zero-type restrictions that guarantee that the 
only admissible orthogonal matrices Q above are I and its square roots 
(i.e. that C is locally identifiable up to column sign changes ). The 
conditions are stated in the following result:

Lenina 1:

Let A=I and suppose that the columns of C are arranged so
(s)that for s=l,2,...,k column s contains at least s-1 zeros. Let C be 

any submatrix of C consisting of the s-1 left-most elements of any s-1 
rows of C which have zeros in column s.

Then C is unique under orthogonal transformations (except
for column sign) if for all s=2,3 k there exists C (,) such that
|C(8) |*0.

Proof: see Dunn (1973)

When C is otherwise unrestricted, imposing f°r J>^
(i.e. C lower trapezoidal ) implies that the condition above is 
satisfied. These restrictions mean that x^t depends only on the first 
factor, x2t on the first two, and so on until x^, t* ’ ‘ ’ Xmt
which depend on all k factors. Although this is clearly arbitrary 
(unless k=l), the factors can be orthogonally rotated to simplify 
their interpretation once the model has been estimated. In some other 
cases, identiflability can be achieved by imposing plausible a priori 
restrictions. For example, if in a two factor model it is believed 
that the second factor only affects a subset of the variables (say the 
first m^, with m^<m, so that ^or • • • *m ) the non-zero
elements of C will always be identifiable.

Other alternative sets of sufficient local identiflability 
restrictions have been suggested, and for example Jennrich (1978) 
proves that when C is otherwise unrestricted, fixing (not necessarily 
to zero) the k(k-l)/2 supra-diagonal coefficients of (a permutation 
of) C also guarantees identifiability.
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However, when time variation in A. ,. . is explicitlyt I t*l
recognized in estimation, the set of admissible Q matrices is
substantially reduced since the covariance matrix of the transformed 

*factors f^ = Qf^ has to remain diagonal Vt.

Without loss of generality, let’s divide the factors into 
two groups, the second of which, if it exists, is characterised for 
all t by a scalar covariance matrix (of at least dimension 2), i.e.:

At:t-i
Ait:t-i

x2t:t-lJk2
(8)

If we partition C accordingly, i.e.:

C = 5 C2) (8)

the following result, which generalises Lemma 1, can be stated:

Lemma 2:

Let A. , take the form of (7) and let V(f )=I.
t i t  1 t

Then is unique under orthogonal transformations (except
for column sign) whereas the identiflability of can be established 
following Lemma 1

Proof: see appendix 2.

Notice the generality of Lemma 2 since it has been obtained
without assuming any particular parameterization for the dynamic
conditional heteroskedasticity, and hence relies only on 
time-variation of the conditional variances.

This result is apparently paradoxical, for relaxing the 
assumption of conditional homoskedasticity is what makes 
identification possible. The intuition, however, is as follows. Assume 
for simplicity that A.,. . is not partially scalar (i.e. k =0). It is111 1 cLo *certainly true that for any t , the orthogonally rotated factors f̂ .® =
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QA”i ^ o  f • and the rotated factor loading matrix C.® = Ca Jo^.® Q*t It “ 1 t t t i t  “ 1
generate the same conditional covariance matrix for x^®, for any 
orthogonal Q. Unlike in the homoskedastic case, though, different 
orthogonal rotations are required for different time periods. Hence 
the parameters in C are identifiable with respect to time-invariant 
orthogonal transformations.

As for the factors with common conditional variance, the 
particular parameterization chosen for will imply more often
than not that the only way two factors will always have the same 
variance is when this common variance is in fact constant. Lemma 2 
could then be re-stated so that it would refer only to the relevant 
case when A_ =1 Vt. However in its present form it makes itc t  • t"*l
clearer that the lack of identiflability comes from the factors having 
common, rather than constant, variances. Also, Lemma 2 could be
modified by using an alternative set of identiflability conditions for
C^, such as the ones by Jennrich (1978) mentioned above.

The main message is the identif lability of C^, so that even
when C is unrestricted, identification problems only arise if the
number of homoskedastic factors is at least 2. Therefore if none or
only one of the factors is conditionally homoskedastic, the matrix C
is locally identifiable under orthogonal transformations without
additional restrictions, and the factors are uniquely defined. In this
case, the imposition of unnecessary restrictions on C would produce
totally misleading results. Nevertheless, the accuracy that can be
achieved in estimating C depends on how much variability there is in
A.,. ,, for if the elements of this matrix are essentially constant t • t—l
for most of the time, identiflability problems will reappear.

2.4 Kalman Filter Equations

The multivariate conditionally heteroskedastlc latent factor 
model (3) has a natural state-space representation. Taking f^ as the 
state it is clear that equation (3) can be interpreted as a 
measurement equation, with w^ being the measurement error, whereas the 
transition equation is trivial (Diebold & Nerlove (1989)):
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ft = «t (9)

where V(Ct/Xt_1)=A(.|t_1.

Expressions (3) and (9) allow us to derive the Kalman filter 
prediction equations:

ft:t-i = 0 (10a)

xt:t-i = 0 (10b)

wt:t-i s 0 (10c)

!t:t-i = At:t-i (lOd)

t"f t: t-i) (f t“f t : t-i5' ̂ t - i 1 (11)

£2

with

=Et(f

(where the notation t!t-l indicates the timing of expected value ! 
information set).

In order to obtain minimum mean square error estimates of f^ 
(and w ) given X., f*,*, and the variances of the correspondingt t t i t
prediction errors, 0.,., we need the distributions of these variablest • t
given which ultimately depend on the distributions of f^ and w^.
Normality is the usual assumption, and among other things it implies 
that the conditional distribution of x^ given is normal. However,
although the associated unconditional distribution will have thicker 
tails than the normal, conditional normality does not seem to capture 
completely the degree of leptokurtosis often observed in practice.

At the same time one must bear in mind that once a 
parametric distribution for *s assumec*» the linear form in
(3) implies a particular distribution for x^/X^_^ on which maximum 
likelihood estimation is based6, and a conditional distribution for 
f^/X^ from which the Kalman filter updating equations are derived. 
Fortunately, the special structure of the transition equation (9) 
allows for disturbances with fat-tailed conditional distributions.

In this respect, to allow for leptokurtosis while retaining 
tractability we shall assume that f* and w* follow a (standardized)
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multivariate t distribution (see Johnson & Kotz (1972) or Prucha & 
Kelejian (1984)), i.e.:

f* = [Ut/(i>-2)]~1/2f* (12a)

wt = [<Jt/(*'-2)]”1/2w* (12b)

• •where f^, w^ belong to a spherical normal distribution and is an
2 7independent x with v degrees of freedom (v>2 but unknown) . This

implies that given each factor (both common and idiosyncratic) is
(proportional to) a Student’s t distribution with v degrees of 
freedom. Notice however that although the factors are conditionally 
orthogonal, they are not independent because of the common 
denominator.

* —  1 /2If we now define the standardized variable x . 1x.t tiL~1 t
analogously, it is clear that x^, f^ (given X^_1) follow a Joint
multivariate t distribution with variances I, and I respectively, andK in— 1 /2 i/2covariance 2 CA ... As a consequence each x (J=l,m) has atit"! t i J L
conditional distribution which is proportional to a standardized 
Student’s t. Therefore by allowing v<« we can have not only a 
leptokurtic unconditional distribution due to the ARCH effects, but 
also a fat tall conditional distribution with kurtosis coefficient 
3(v-2)(v-4)"1 (provided v>4) (see Bollerslev (1987) or Engle & 
Bollerslev (1986)).

Using the properties of the multivariate t distribution (see
e.g. Zellner (1971)), the so-called updating equations, which give us
the mean and variance of f conditional on X^, would be:

ft:tlsAt:t-i c’Ic At:t-i c + rt :t-i1 xt (13a)

wt:t = V Cft:t (13b)

nt .t = (v-z) (v+m-2)“1[l + (v-2)’1xj.z^lt_1xt] •

*(At:t-i" At:t-ic zt:t-ic At:t-iJ (13c)

where £2 , is not generally diagonal.
t i t
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Notice that equations (13a) and (13b) coincide with the 
standard updating equation under normality (see Harvey (1989)), 
whereas a simple heteroskedastic scalar correction, which converges to 
1 as v-xx>, is introduced in (13c). Hence, no real extra complication

garises by relaxing Gaussianity .

Another extremely convenient property of the model is that, 
given X̂ ., and f^+ are independent Vu*0 because of the degenerate 
nature of the transition equation. The smoothing equations then reduce 
to:

ft:T = ft:t (14a)
nt:T " °t:t (14b)

i.e. the smoothed estimates of f^ are the same as the filtered
estimates (in fact f.,.^ “f*,* and £5. =Q. Vu^O). The intuition ist!t+u tit t!t+u tit
that once x^ is observed, there is no extra information on f^ in 
future observations (see section 1.2.4). This property generally leads 
to substantial simplification in the way particular variance 
structures are handled (see sections 2.6 and 5.5 for examples)

Notice that for the standard (conditionally homoskedastic) 
orthogonal factor model, which is nested in equation (3) when 
A Vi.t and 7 <fl. ,=7, VJ,s, the Kalman filter estimates:

f. ,.*=C’ (CC’+ n ’Sc. (15)t i t I

correspond to what is known in the factor analysis literature as 
regression estimates of the factor scores, f^ (Johnson & Wichern 
(1982)). In fact, since given our assumptions, ft and w^ are serially 
uncorrelated (but neither Independent nor do they follow a Student's 
t) with zero mean and variances Aj=l *j=^*Jt * t-1 ̂ ’ t are m^n^mum 
mean square linear estimators even in the presence of conditionally 
heteroskedastic effects. This suggests that traditional methods, such 
us principal components based factor analysis, can also be applied to 
estimate the parameters in C and T. However, in general not all the 
elements of C will be identifiable without restrictions using this 
procedure, as discussed in section 2.3.
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2. 5 Maximum Likelihood Estimation

The likelihood function of the sample can be constructed
(ignoring initial conditions) as the product of the conditional
distributions of the x^~s given For the multivariate t
distribution we have that:

L = -Tm/2 ln[ir(v-2)] + T{ln T[ (v+m)/2]-ln r(v/2> -

- 1/2 I {In |St;t_1 1 + (i>+m) ln[l+(v-2)"'x|.Z‘]t_1xt]} (16)

where is given by equations (6). This equation reduces to
equation (25) in section 1.2.5 when v co, i.e., under normality.
Maximum likelihood estimates of the parameters of interest are then 
obtained by numerical maximization of (16). Note that the
non-normality assumption does not make the evaluation of the 
likelihood function more cumbersome, except for the gamma functions 
which do not depend on t.

Pre-sample values of A..,. . and r..,. , could be set toit:t-i jt:t—l
their unconditional expectations (1 and respectively), and the
corresponding values of 0^ to 0. As a consequence V(fj/Xg)=I#
V(w1/XQ)=r, their unconditional counterparts.

The fact that m is usually much bigger than k and the
diagonality of A.,. . and T. . can be exploited by means of the

t. I t“ l t i t “ 1
Woodbury formula (Householder (1964)) so that the inversion of Z.,. .t • t"l
(a mxm matrix), only involves the inversion of the kxk matrix
[A.I. ,+C’r 1 C] (for the case of T not having full rank seet i L — 1 t i L — 1 t i L — 1
Sentana (1989)).

2.6 Introducing ARCH and GARCH-type effects

So far, we have deliberately left unspecified the functional 
forms of the conditional variances of the factors. In practice, 
though, a particular parameterisation is required, and undoubtedly, 
Engle’s (1982) ARCH and Bollerslev’s (1986) Generalised ARCH (or
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GARCH) are the most popular ones. For simplicity, we shall start with 
ARCH(q) formulations (but see section 5.5 for an extension of this 
approach to a more general formulation).

There are basically three different ways of allowing for 
ARCH-type effects in ffc and w^:

a) The most obvious one is to assume that they follow 
Engle’s (1982) ARCH(q) processes, i.e.:

fit= fitAit2 ■ fn (*io + E 1=1-k (17a)s = 1

Wjt " wJtTjt2- WJt(ejo * J ieJ«WJt-«)1/2 J=1’m '17b)

Positivity of and non-negativity of is ensured by
the parameter restrictions Vi.s, ^^0>0 Vl» and ejsfc0 V J»S ej0fc°»
Vj.

The main advantage of this parameterization is that standard 
results apply: e.g. the elements of f and w^ are serially
uncorrelated (but not Independent) with zero mean and unconditional

q 9 qvariance given by A = /(I - 7  0. ) and r =0. /(I- 7 0. ) (providedi io u is J jo ^ Js
8=1 8=1 q q

that Y. ^is<l Vi, and £ ®is<* anc* their unconditional
8=1 S 8=1

distributions are leptokurtic. Besides, if fourth moments exist, the
2 2autocorrelation functions of f ^  and w^^ behave like the

autocorrelation function of q-th order autoregressive processes with
coefficients \b. and 0. .is Js

However neither f. nor wt are measurable with respect to t-s t-s
xt-i and hence Ait:t-I=v(fit/Xt-1 ) and yjt:t-i“v(wjt/xt-i) d0 notP P2 2 generally coincide with \b. + Y 0. f.. and 0. + 7  0. w u  above.6 J rio ^ is it-s jo js jt-s

8 = 1  s=i
In fact:

■ *io + ^ i s E(fu - s /xt-i> i=1-k (18a)
8 = 1
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yjt:t-i = %  + ^ ejsE(Mjt-s/xt-i) J=1’m (18b)s = 1

where we have used the fact that the conditional expectation of f^ and
Wj. given are 0. Besides it is not difficult to see that all
covariances (given between the elements in both vectors are 0,
so that A . - and r . are diagonal matrices.

t I t —  1 t I t 1

A more fundamental problem of using (17a) and (17b) is that 
the form of the conditional distribution of f^ (and ŵ .) given is
unknown, and e.g. there is no distribution for f* which results in 
conditional normality for f^/X^.^ (see also Harvey, Ruiz & Sentana
(1990)). As a consequence, the Kalman filter is not optimal in the
sense that it does not provide minimum mean square error estimates of
the state variables f^ and w^. However, as

ft-s = ft-s!t-l + (ft-s“ft-s:t-lJ (19)

(where the notation t-s!t-1 indicates the timing of the Kalman filter 
estimate ! information set), if one proceeds using the Kalman filter 
"as if" anc* wt/̂ t-l were ^-distributed, then the approximate
conditional variance for f^t will be given by:

Ait!t-1 “ (1~ E ^is* + E ^isfit-s!t-l+ E ^isWiit-s!t-l (20)■=1 B— 1 B=1

where w... ,. is the i-th diagonal element of the mean square error 1X v S i v X  ̂̂
matrix £3 and where from (14), !t-l can be replaced by It-s .t“S •t“1

K 2
Comparing with ^it^io + ^ ^isfit-s is clear that

B=1
the former is the latter evaluated at the estimates of the factors as 
of time t-1 plus a term reflecting the uncertainty in those estimates.

Also, since:

“t-s ” yt-s"Cft-s tyt-s"cft-s:t-i)+c(ft-s ft-s:t-i)
“t-s:t-i + c(ft-s-ft-s:t-i> (21)

then we have
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rjt:t-i “ ejo + ̂  ejswjt-s:t-i+ E ejscjnt-s:t-icj (22)S= 1 8=1

where is the j-th row of C, and again the last term reflects the
uncertainty of not knowing w .J t-s

b) One possible way to get around these difficulties is to
1/2 ♦ 1/2 +assume as an alternative formulation that f =A.,. .f. and w =r. ,. 1w.,t tit“ l t t tit"l t

with the elements of A.,. . and I\ . given by (18a) and (18b), sotit“ l tIt"l
that the conditional variances are now measurable functions with
respect to the information set As a consequence, (20) and (22)
become exact and f. ,, and 0. .. are indeed E(f. /X. ) andt-s!t-s t-s!t-s t-s t-s
V(fj._s/Xj._s) respectively. This is the specification chosen in chapter 
1.

The main problem with this approach is that the elements of 
ft and w^ no longer follow Engle’s (1982) ARCH(q) processes, and hence 
ARCH results cannot be used. Despite this fact, it turns out to be the 
case that the T^-s and w^-s so-generated are also uncorrelated with 
zero mean and the same unconditional variance, and their unconditional
distribution are leptokurtic as well, although less than in the

2 2previous case. Besides, f ^  and w ^  are also serially correlated, but
their autocorrelation functions are bounded from above by the
autocorrelation function of qth order autoregressive processes with
coefficients and (see the appendix in Harvey, Ruiz & Sentana
(1990) for details). The intuition is that this second formulation

2 2implies smoother processes for f^t and Wj^ (but not for f ^  and wjt) 
than (17) do.

c) The third possible way of introducing ARCH-type
1 /2 ♦behaviour in f^ and w^ is to assume, as in b), that ^^B^'t-l^t 

w .w* but with the elements of A. . and T. ,. , given by:t tit*l t t•t"l t •

and

Ait:t-i = (1- Z * i s >  + *>isEB=1 8=1

1 = 6, + E 0 - E ^  J  jt:t-i jo js t-s t-is= 1

(23a)

(23b)
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which, again, are measurable functions with respect to the information 
set so that the Kalman filter equations are exact. Notice that the 
square is now over the expectation, not over the unobservable 
components.

This is the actual specification used in Diebold & Nerlove 
(1989), and has the advantage that the recursion for ,. does nott i t
need to be carried out, as the elements of this matrix no longer 
affect any other estimate.

Once more, the problem with (23) is that standard ARCH
results cannot be used. However it is possible to prove that f ^  and
w.. are still uncorrelated with zero mean but with a smaller
unconditional variance, and that their unconditional distributions are

2leptokurtic, although even less than in the previous case. Besides f ^  
2and w.. are also serially correlated, but their autocorrelation

functions are now bounded from above by the autocorrelation function
of the processes discussed in b) (see Harvey, Ruiz & Sentana (1990)).

2The intuition again is that (23) imply even smoother processes for f..
and w^ .J t

Two likelihood functions can been used to estimate the 
parameters of the models discussed in a), b) and c). They are both 
based on (16) but differ in the precise form of the conditional 
variances. In the first case, i) say, equations (20) and (22) are 
used, whereas in the second case, ii) say, equations (23a) and (23b) 
are used instead. The validity of i) or ii) obviously depends on which 
one of the three data generation process a), b) or c) is the "true" 
one:

a) In this case i) is an approximation to the true 
likelihood function in the sense that neither is ^it^t-l 
t-distributed nor is (20) its conditional variance. In turn, ii) is an 
approximation to this approximation since it ignores the contribution
of !t-1'

b) Here i) is the exact conditional distribution as 
fit/Xt_i is indeed t-distributed with (20) as its exact conditional
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variance. However, ii) is still an approximation because it uses the 
wrong conditional variance (although the right functional form).

c) Now the reverse situation occurs since ii) becomes 
exact whereas i) approximate. This apparent paradox arises because b) 
and c) have in fact been devised so that i) and ii) yield the 
corresponding exact likelihood functions.

In practice, the choice between a), b) and c) cannot be 
decided completely on a priori grounds as, after all, our only concern 
must be the conditional distribution of the observed series x^, and 
not the conditional distribution of the unobservable components. As a 
matter of fact, a) and b) are indistinguishable in the data as both 
are estimated using the same likelihood function.

In order to see how we could deal with Bollerslev’s (1986) 
GARCH(p,q)-type effects in the factors let’s consider a 
GARCH(1,1)-type process for simplicity.

a) In this case

Ait = *10 + V n - i *  *nAn-i 1=1’k (24)

which, provided that can be re-written as:

Ait * E * n ('(’io+*itf it-i-j) 1=1>k t25)
J = 0

i.e. as an ARCH(») with exponentially declining weights (see 
Bollerslev (1986)). As a consequence,

Aitlt-1 “ ^^ii^io^ii^it-l-jit-l^iit-l-jlt-l^ (26)

Applying the so-called Koyck transformation we obtain:
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DO
1 (f it-l-j ! t-l+Wiit-l-j ! t-1

2
” (fit-l-j:t-2+Wiit-l-j:t-2}1

But given that in this model conditioning on the future is 
equivalent to conditioning on the present (cf. the smoothing equations 
(13a) and (13b)), the last term vanishes and we are simply left with:

Ait! t-1 “ ^io+^ii(fit-1! t-l+Wiit-l! t-1 )+*iiAit-l 11-2 (27)

which has the same structure as (24).

b) If we replace equation (26) by:

(28)Ait: t-i E * a I*io+*i.E(fJt-i-j/xt-i)I i=1-kJ = 0

an analogous transformation yields eventually:

xit: t-i " *io + + (29)

which has the same structure as (27) but it is now exact.

c) Proceeding as in a) and b) it is clear that we will 
have in this case

Aitlt-1 “ *io * ^ii^^it-l^t-l5 + *iiXit-i:t-2 (30)

as expected.

2.7 Numerical Simulations

Given that £2. , does not have to be computed if we use a t ( t
likelihood function based on (23a) and (23b), which may produce 
substantial savings in the computations, it is interesting to check 
the validity of such procedure when in fact the conditional variances
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are given by (20) and (22). Besides, it is also interesting to see the 
effects of estimating the model ignoring its ARCH structure. As in 
Diebold and Nerlove (1989) and chapter 1, conditional normality of f̂ ., 
Wj. has been assumed.

To do so a small simulation study has been conducted in 
which five hundred samples of 200 observations each (plus another 100 
for initialization) have been generated according to the following 
simple model using the NAG library G05DDF routine:

(31)
xlt' clft + wIt
*2t~ °2ft + w2t
X3t= C3ft + w3t

with c^=C2 =c^=c and

At: t-1 = ^  + ^ t - Z V l 3 (32)

rlt!t-l “ ®o + 0iE(wlt-l/Xt-l)

r2t:t-l = 0o + eiE(w2t-l/Xt-l) (33)

y3t:t-l = eo + eiE(w3t-l/Xt-l)

where for simplicity the factor loadings and ARCH parameters of the 
idiosyncratic variances are common11. Having only one factor implies 
that the c-s are identifiable even in the homoskedastlc case.

In order to make the comparison of simulations simpler, the
value of 0 is chosen so that the unconditional variance of the x-s is o
one, i.e.:

G = (1-0 )(l-c2) (34)o 1

which implies that the unconditional correlation between the variables 
is simply c2.

Two values of c have been selected, c=0.5, 0.9 representing
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low and high correlation (0.25, 0.81 respectively). Two values have 
also been selected for 0 and 0 , namely 0.2 and 0.8 representing low 
and high persistence in variance. Therefore 8 parameter combinations 
in all have been considered.

Maximization of the log-likelihood function (16) with 
respect to the 6 parameters (c^,C2 ,c^ 0»0Q and 0^) was carried out on 
the LSE VAX using the NAG library E04JBF routine. Non-negativity and
stationarity restrictions on 0, 0 and 0 were imposed by

2 *  ̂ *2  ̂ 2 * * *reparameterizing in terms of sin (0 ), 0Q and sin (0J), with 0 , 0Q
and 0 unrestricted.l

The results are presented in Tables 1 to 6. For simplicity 
of exposition, only averages are presented for all items which vary 
across equations, e.g. c^=l/3 (c^c^c^.

Table 2.1 shows the mean parameter estimates together with 
their biases, variances and mean square errors across replications for 
both exact and approximate ML estimates.

The most obvious result is that both estimates of c^ are 
generally upward biased, the latter substantially more than the 
former, especially for high 0. Besides the persistence parameters of 
the variances, 0 and 0 , are mostly underestimated, with the
approximate and exact ML estimates being usually similar. As for the 
remaining parameter, ©o, both methods yield upward biased estimates 
but the bias in the exact ML method is much smaller, almost
negligible.

Although only eight parameter combinations are obviously not 
enough to carry out a detailed analysis of how these biases depend on 
the parameter values, it is perhaps worth mentioning that it seems 
that the biases in estimating c increase with 0 and slightly decrease
with c itself, and also that the biases of the estimates of 0 , and
especially 0, appear to increase with the value of the corresponding 
true parameter.

Table 2.2 contains the average of the square differences 
between the exact and approximate factor scores estimates and the true
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ones, i.e. the mean square errors of these factor scores estimates.

The first thing to notice is that despite the different 
parameter estimates, these statistics are remarkably close for the 
approximate and exact methods, with the ones based on the former being 
nearly identical for w.. and slightly larger for f..J t t

These mean square errors tend to decrease with c and 0 , but 
while those referring to the common factor seem to increase with 
those related to the specific errors appear to be a decreasing 
function of 0. However if we divide the reported mse by the 
corresponding unconditional variances, the estimates of w. do 
relatively better than those of f^ for c=0.5 and relatively worse for 
c=0.9. This is hardly surprising since the unconditional signal to 
noise variance ratio goes from 1/3 to 81/19 for f^, and from 3 to 
19/81 for w respectively.

A similar, and unit free, measure of signal extraction 
performance is given by the correlations between the estimated and 
true factor scores presented in table 2.3.

For the common factor, the correlations vary from as low as 
0.700 to as high as 0.979, whereas for the specific factors they go 
from 0.833 to 0.934. In fact, the pattern of correlations between 
factor scores across experiment designs is very similar to that of the 
(weighted) mean square errors in table 2.2, and again approximate and 
exact methods yield very similar results.

Table 2.4 presents the average sample means of the different 
estimates of the conditional variances of f and w . In addition thisU J L
table also contains the values of the (log) density function evaluated 
using the conditional variances of x^ given by the exact and 
approximate ML methods.

In order to analyze the results for the ML variance 
estimates, it is worth noticing that the sample averages of the true 
variances tend to be smaller than their theoretical counterparts (1 
and 0.75 for c=0.5, 0.19 for c=0.9) when the associated persistence 
parameter is high. Recalling that in our simulations high persistence
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is associated with a smaller constant in the conditional variance to 
maintain the unconditional variance at the same level (cf. eqs. 26 and 
28), the discussion in Hendry (1986) on the small persistence of 
simulated ARCH effects may rationalize this finding (see also Engle, 
Hendry and Trumble (1985)). Hence, it is not surprising that the 
averages of the time-varying variance of these factor scores are 
smaller the greater the corresponding ARCH effects, mimicking the 
behaviour of the true ones on a bigger scale.

The results also show that the approximate ML method produce 
substantially smaller variances of the common factor than the exact 
one, especially for high 0 and low c, as one would expect since the 
approximate method in (22) has one less term than (15). However the 
averages for the specific variances are very much the same, despite 
the difference between (23) and (18).

The picture that emerges from the above results is that 
although the approximate method produces more upward biased estimates 
of c and smoother common factor scores than the exact ML procedure, 
they balance in such a way that both methods do am equally good Job in 
decomposing the observed series and their conditional variances into 
common and idiosyncratic components. This similarity is not too 
surprising as the latent factor model analysed here has no dynamics in 
the mean, only in the variance. Hence, the correction term has a 
one-off effect on the variamce of the current observation amd does not 
carry over to further observations.

If we recall that the (log) sample density functions (cf. 
(16)) differ in the way V(xt/Xt_^) is computed, this conclusion is 
confirmed by the fact that in table 2.4 the average values of the 
likelihood function for both methods are almost identical, with a 
perfect correlation. Again, this is not unexpected: since the model
has no conditional mean, the forecast error in (c^ times) f^ must 
cancel with the forecast error in Wjfc.

The performance of the principal components based factor 
analysis is summarized in tables 5 and 6. For comparative purposes the 
sample variances and covariances of the generated observations x.. are 
included in table 2.5.
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In order to analyse the results it is worth remembering 
three facts about how these estimates are computed:

* they are based on the unconditional variance of x^, and 
therefore should be less efficient that the ML based 
factor scores which exploit the conditional variances 
(although less so for 0, low).

* they use an approximation to the unconditional covariance 
matrix Z=CC’ +r which assumes T small, and so should do 
badly for T high.

* the actual parameter estimates are essentially chosen so
A A

as to minimize the trace of the residual variance Z-CC’,
so one would expect C to be biased upwards while T
downwards.

This is broadly speaking what happens. Indeed this method
performs best for c high, 0, 0̂  low (with factor scores almost as good
as the ML based ones), and worst for c low, 0, 0^ high. Nevertheless,
the results for the parameter estimates are distorted by the fact that
the sample covariance matrix of xfc (on which these estimates are
based) is generally downward biased when the ARCH effects are high, in

12line with the variances of the factors

2.7 Conclusions

In this chapter the issues of identification and exact vs 
approximate estimation of multivariate conditionally heteroskedastic 
latent factor models have been discussed.

It turns out to be the case that the model only suffers from 
lack of identification in as much as the variances of some of the 
common factors are constant. In particular, if all but one common 
factor have time-varying variances the factor loading matrix C is 
(locally) identifiable under orthogonal transformations. Thus, there 
is a non-trivial advantage in explicitly recognising the existence of 
dynamic conditional heteroskedasticity when estimating factor analytic
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models.

With respect to the validity of the approximation used by 
Diebold and Nerlove (1989), our simulations suggest that the exact ML 
estimation procedure employed in chapter 1 performs significantly 
better in terms of the estimates of the factor loading matrix C and 
the time-varying variance of f^/X^^, with the approximate method 
producing upward and downward biased estimates of this quantities 
respectively. However these biases appear to balance each other so 
that the decomposition of the observed series and their conditional 
variances into common and idiosyncratic components achieved by both 
methods are nearly identical. Unsurprisingly, the exact procedure 
involves a larger computational burden (about 45% slower on average in 
terms of CPU time).

The results also suggest that ignoring the ARCH structure of 
the factors imply that the variance of the specific terms may be
seriously underestimated, although, as expected, this method works 
quite well when both the ARCH effects and the idiosyncratic variances 
are small. Besides, one would expect it to be more robust to
specification errors. However in many economic applications of 
interest considering time-varying volatility seems crucial.

Details of the use of a multivariate t distribution with 
unknown degrees of freedom as an alternative to the multivariate 
normal are also presented. This distribution has thicker tails than 
the normal but converges to it as the degrees of freedom increase. 
This assumption allows for a higher degree of excess kurtosls in the 
unconditional distribution of the observed variables, and therefore 
should capture a higher proportion of the leptokurtosls exhibited by 
many financial data sets.

The model discussed in this chapter can be extended in 
several interesting ways. An important extension would include weakly 
exogenous or lagged dependent variables in the conditional mean of
(3), e.g. x^ could be the innovations of a vector autoregressive
process. Although this does not pose any theoretical difficulty and 
does not affect the analysis in section 2.4, in practice the 
maximization is not so simple since the number of additional unknown

87



Chapter 2: Heteroskedastic Factor Models

parameters would be generally large. Not surprisingly both Diebold & 
Nerlove (1989) and ourselves in Chapter 1 estimate first the 
autoregressions and carry out the maximum likelihood method on the 
residuals. Therefore finding efficient computational methods, 
constitutes an important remaining task.

The result presented here can also be applied to other 
closely related models, and in particular to the one in chapter 1 in
which the conditional variance of the factors affects the mean:

xt = “ tu-i1 - Cft + wt (35)
where i is a vector of ones. Note that the results of section 2.4 are 
perfectly valid since A . is by definition known at time t-113.t i t 1

The identification results also apply to the model in 
Harvey, Ruiz and Sentana (1990) as well as to the common trends model
(see e.g. Harvey (1989) or Stock & Watson (1988)):

x = Cyt + w (36a)

yt = yt-i + ft (36b)

where yt_j is a kxl vector of common trends and f^, w^ are defined as 
in (2a), (2b). Again, time-variability in the conditional variances of 
the f^”S will eliminate the lack of identiflability of the matrix C 
which arises when conditional homoskedasticity is assumed.
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ENDNOTES

1 Despite the similarity in their names, the conditionally 
heteroskedastic latent factor model discussed here should not be 
confused with Engle's (1987) Factor ARCH model. The main difference 
is where the time-varying variances are introduced: on the 
unobservable orthogonal factors in the heteroskedastic factor 
model, on the linear combinations of the observed variables which 
proxy the factors in the Factor ARCH model. In many respects, 
though, both models are rather similar.

2 Since they only have one common factor and the idiosyncratic 
factors are homoskedastic, the conditional variances of the 
observed variables are perfectly correlated in their model. This 
would also be true in Engle's (1987) one-factor ARCH model.

3 In this respect, it is worth noticing that the information set 
available at time t-1, contains only lagged values of x̂ ..
This has the fundamental implication that in general neither f^_^ 
nor belong to the information set, and hence much care has to
be exercised in specifying the conditional variances of f̂. and w^ 
(see sections 1.2.4 and 2.6).

If the unconditional variance does not exist, other scaling 
assumptions could be made Just as well, e.g. A^(0)-1 Vi.

5 The local identiflability can be trivially transformed into a 
global one by fixing arbitrarily the sign of one non-zero 
coefficient in each column of C.

6 Stable distributions, which are invariant under addition, would be 
potential candidates, were it not for the fact that the only member 
of this class with finite variance is the normal. Hence we must 
look for non-independent distributions.

7 The thickness of the tails of the multivariate t distribution 
depends on the degrees of freedom parameter v. This distribution 
converges to a spherical normal distribution as v tends to 
infinity.
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10

11

These results can be further generalised if we assume that 
[f*\w*’l follow a joint elliptical distribution (see Fang, Kotz 
and Ng (1990)), of which the multivariate normal and the 
multivariate t are examples. In that case, [f̂ , x^] is also jointly 
elliptical given as the elliptical class is closed under
linear transformations. As a consequence, f. is still given byt a t
(13a) since the regression functions are linear for all elliptical 
distributions, and again Qt;t * g(xJ.Z”| t-ixt* ’*At't-l“ 

,t-iC ^t^t-lC At't-1^’ w^ere S O  *s a scalar function whose form 
depends on the particular member of the class used (see also
Sentana (1991c)).

This implies that to fix the scale of the factors so that V(f^)=I,
q

we shall require E 0is (as in section 1.2.4).
8 =  1

If f./X. . and w./X. , were t-distributed, then f. =t t-1 t t-1 t-s!t-s
E(f. /X. ) and 0. =V(f. /X. ).t-s t-s t-s!t-s t-s t-s
The fact that the true c-s are common is not exploited in
estimation. However the restriction of common ARCH parameters in
the idiosyncratic variances is imposed when maximizing the
likelihood function.

Results similar to those presented in this section are obtained
using [ (1—0) + 0 f ))1/2 and wit®w^t *Go+0iwit-l as the
data generation process (cf. section 2.6 a).

13 + 1 / 2If we were to assume that the data generation process is f^=f^A^ 
(cf. section 2.6a), it would be tempting to think that equation 
(35) should be replaced by x̂. = DA^i ♦ Cf^ ♦ w^, which would pose a
problem as Afc is not in the econometrician’s information set.
However if the agents information set is Indeed this
formulation would be inappropriate because any underlying economic 
model would still imply equation (35). This potential problem Is 
not shared by the ARCH-M model of Engle, Lillien & Robins (1987), 
in which z^= + et» with given by (1), and g() being an
arbitrary function of the variance. To see why let’s consider the 
"alternative" process z^ = glVtz^/Z^^) ] + ê .. In this case is 
certainly in the information set at time t but then V(z^/Z^_^ )=q^.

12
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APPENDIX 2

To prove Lemma 2, * let’s call A. ,, , thet l t"l
the transformed factors ft= Qff where Q is an
matrix.

Let’s partition Q as:

k-k k2 2

Q = Q 11

1
CMH

a k-k2

- ^ 1 °22 J k2

in accordance with (7) and (8).

We shall show that the only admissible transformations are
given by:

k-k k2 2
I1/2 0 k-k

°22 -

where Q^  is orthogonal and I1/2Il/2s I,

To see why let’s partition A . - ^ Q A . , Q ’ as:tit"l tlt"l

At:t-i!
QiiAit:t-iQii+A2t:t-iQi2Qi2
Qi iAi t: t - i ^ i ^ t : t-iQi2Q22 
Qi iAi t: t-i^i^ X2t: t-iQ i2Q22

t: t - i ^ i ^ t : t-i Q22Q22-

Given that A,,,, , is time varying, for A.,. , to preserve
1 ti t * l  t i l " l

the form of (7) for all t the following conditions must all hold:

a) Qn Ait:t-iQii dla8°nal

b) Q12Qi2 dia8°nal

c) Qn Ai t : t - i Q2 i  nul1
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d) §12^22 nul1

e) scalar

f) Q22Q22 SCalar
thLet q211 be the i-th column of and the i-

diagonal element of A,.. i (1=1,k-k ). Then e) can be re-written as:1 t i l " l  2

k-k2
*1=1 ^Xit't-lq21iq21i

Now, since ^n^lt-l varies with both i and t, the expression 
in e) will be scalar if and only if <J2liq21i is scalar for a11 But
q21iq21i is scalar if and only if ^21 i”0, so ^21=0, 2111(1 is also 
satisfied.

Besides f) transforms into:

f ’ ) 0 ^ = 1

so that Q2 2  must be orthogonal. But then d) is satisfied if and only 
if Q12=0, 3111(1 then b) is also satisfied.

Finally if is the i-th column of (i=l,k-k2), a) can
be re-stated as:

k-k2
a’)£  Am : t - i W m diagonal

By a similar argument this condition will be satisfied if 
and only if each has a single non-zero element. Positive
definiteness and the exclusion of mere permutations of the factors 
imply that must be (a square root of) the unit matrix, q.e.d.
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Table 2.1 
Maximum Likelihood Estimates

Ci 0 eo G1
T E A T E A T E A T E A

Param 0.5 0. 509 0. 556 0.2 194 0. 203 0.600 o. 600 0.621 0.2 o- 183 o- 184
bias2 0. 000 0. 003 0. 000 0. 000 0. 000 0.000 0. 000 0. 000
var 0. 012 0.028 0. 048 0. 053 0. 005 0.004 0. 007 0. 008
MSE 0. 013 0. 031 0. 048 0. 053 0. 005 0.005 0. 008 0. 008
Param 0.5 0. 503 0. 524 0.2 0- 197 0- 194 0.150 0. 153 0.213 0.8 0- 772 o. 765
bias2 0. 000 0. 001 0. 000 0.000 0. 000 0.004 0. 001 0. 001
var 0. 003 0. 004 0. 024 0. 024 0. 001 0.001 0. 010 0. 010
MSE 0. 003 0. 005 0. 024 0. 024 0. 001 0.005 0. 011 0. 011
Param 0.5 0. 572 0- 772 0.8 °- 636 °- 603 o ON o o 0. 601 0.618 0.2 0- 192 0. 192
bias2 0. 005 0. 074 0. 027 0. 039 0. 000 0.000 0. 000 0. 000
var 0. 082 0. 134 0. 094 0. 092 0. 004 0.003 0. 006 0. 006
MSE 0. 087 0. 208 0. 121 0. 131 0. 004 0.004 0. 006 0. 006
Param 0.5 0. 549 0- 735 0.8 °- 719 0. 708 0.150 0. 151 0.201 0.8 0. 776 0-774
bias2 0. 002 0. 055 0. 007 0. 008 0. 000 0.003 0. 001 0. 001
var 0. 041 0. 082 0. 042 0. 043 0. 001 0.001 0. 008 0. 007
MSE 0. 043 0. 137 0. 049 0. 052 0. 001 0.003 0. 008 0. 008
Param 0.9 °- 897 0. 905 0.2 0- 189 0- 189 0.152 0- 153 0. 164 0.2 0- 187 0- 188
bias2 0. 000 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 0. 000
var 0. 005 0. 005 0. 014 0. 014 0. 000 0.000 0. 011 0. on
MSE 0. 005 0. 005 0. 014 0. 014 0. 000 0.000 0. 011 0. 011
Param 0.9 0. 905 0- 910 0.2 o. 195 0- 194 0.038 0- 040 0.064 0.8 0* 776 o. 758
bias2 0. 000 0. 000 0. 000 0. 000 0. 000 0.001 0. 001 0. 002
var 0. 004 0. 004 0. 012 0. 012 0. 000 0.000 0. 012 0. 012
MSE 0. 004 0. 004 0. 012 0. 012 0. 000 0.001 0. 013 0. 013
Param 0.9 0. 949 1-029 0.8 0- 732 0-727 0.152 0. 153 0. 163 0.2 0. 192 0. 192
bias2 0. 002 0. 017 0. 005 0. 005 0. 000 0.000 0. 000 0. 000
var 0. 154 0. 161 0. 026 0. 025 0. 000 0.000 0. 010 0. 010
MSE 0. 156 0. 177 0. 031 0. 031 0. 000 0.000 0. 010 0. 010
Param 0.9 o. 947 0- 996 0.8 0- 744 0- 740 0.038 0.039 0.062 0.8 0- 769 o. 764
bias2 0. 002 0. 009 0. 003 0. 004 0. 000 0.001 0. 001 0. 001
var 0. 196 0. 194 0. 021 0. 021 0.000 0.000 0. 011 0. 011
MSE 0. 198 0. 203 0. 024 0. 025 0. 000 0.001 0. 012 0. 012

T: True values, E: Exact ML estimates, A: Approximate ML estimates
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Table 2.2 
Factor Scores Mean Square Errors

Common factor Idiosyncratic factors
c 0 91 E A E A

0.5 0.2 0.2 0.502 0.510 0.129 0. 130
0.5 0.2 0.8 0.327 0.331 0.083 0.083
0.5 0.8 0.2 0.475 0.530 0.114 0. 115
0.5 0.8 0.8 0.338 0.416 0.071 0.072
0.9 0.2 0.2 0.074 0.074 0.058 0.058
0.9 0.2 0.8 0.046 0.047 0.035 0.035
0.9 0.8 0.2 0.153 0.163 0.054 0.054
0.9 0.8 0.8 0.104 0. 115 0.032 0.032

T: True values, E: Exact ML estimates, A: Approximate ML estimates
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Table 2.3

Correlations between Factor Scores Estimates

Common factor Idiosyncratic factors
c 0 91 E vs T A vs T A vs E E vs T A vs T A vs E

0.5 0.2 0.2 0.707 0.706 0.999 0.910 0.910 1.000
0.5 0.2 0.8 0.822 0.821 0.999 0.922 0.921 1.000
0.5 0.8 0.2 0.700 0.700 0.995 0.922 0.922 0.999
0.5 0.8 0.8 0.816 0.814 0.998 0.934 0.933 0.999
0.9 0.2 0.2 0.963 0.963 1.000 0.833 0.833 1.000
0.9 0.2 0.8 0.979 0.978 1.000 0.872 0.872 0.999
0.9 0.8 0.2 0.952 0.952 1.000 0.846 0.846 1.000
0.9 0.8 0.8 0.972 0.972 1.000 0.882 0.881 0.999

T: True values, E: Exact ML estimates, A: Approximate ML estimates
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Table 2.4

Sample Averages of Conditional Variances and Likelihood Function

Common factor Specific factors Likelihood function
c 0 G1 T E A T E A E A E vs A

0.5 0.2 0.2 1.00 0.99 0.87 0.75 0.74 0.74 -273.0 -273.0 1.000
0.5 0.2 0.8 1.00 1.00 0.92 0.70 0.70 0.69 -141.9 -142.2 1.000
0.5 0.8 0.2 0.95 0.85 0.53 0.75 0.75 0.74 -265.9 -266.2 1.000
0.5 0.8 0.8 1.03 0.92 0.54 0.70 0.70 0.70 -115.7 -116.4 0.999
0.9 0.2 0.2 1.00 1.00 0.99 0. 19 0. 19 0.19 -55.7 -55.7 1.000
0.9 0.2 0.8 1.00 1.00 0.99 0.18 0.18 0. 18 38.1 37.1 0.999
0.9 0.8 0.2 0.97 0.90 0.75 0.19 0.19 0. 19 -0.6 -0.6 1.000
0.9 0.8 0.8 0.95 0.94 0.81 0. 18 0. 18 0. 18 104.9 104.0 0.999

T: True values, E: Exact ML estimates, A: Approximate ML estimates
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Table 2.5

Principal Components based Estimates

ci 7 'ii ' u
T P T P T p T P

Param 0.5 0.700 0.75 0.490 1.0 0.994 0.25 10.251
bias2
var
MSE

0.040
0.014
0.054

0.068
0.008
0.076

0.000
0.014
0.014

0.000
0.006
0.006

Param 0.5 0.671 0.75 0.394 1.0 0.943 0.25 [0.256
bias2
var
MSE

0.029 
0.099 
0. 128

0.127 
0.033 
0.160

0.004
0.578
0.581

0.000
0.005
0.005

Param 0.5 0.686 0.75 0.496 1.0 0.989 0.25 0.234
bias2
var
MSE

0.035
0.021
0.056

0.064
0.011
0.076

0.000
0.024
0.024

0.000
0.015
0.015

Param 0.5 0.657 0.75 0.395 1.0 0.995 0.25 0.263
bias2
var
MSE

0.025 
0. 127 
0. 152

0.126 
0.041 
0.167

0.004
0.655
0.658

0.001 
0. 116 
0. 116

Param 0.9 0.929 0.19 0. 126 1.0 0.994 0.81 0.804
bias2
var
MSE

0.001
0.004
0.005

0.004
0.000
0.004

0.000
0.015
0.015

0.000
0.012
0.012

Param 0.9 0.935 0.19 0.112 1.0 0.995 0.81 0.821
bias2
var
MSE

0.001
0.008
0.010

0.006
0.003
0.009

0.000
0.048
0.048

0.000
0.013
0.013

Param 0.9 0.869 0.19 0.126 1.0 0.969 0.81 0.778
bias2
var
MSE

0.001
0.088
0.089

0.004
0.000
0.004

0.001
0.977
0.978

0.001
0.976
0.977

Param 0.9 0.858 0.19 0.114 1.0 0.940 0.81 0.761
bias2
var
MSE

0.002
0.089
0.091

0.006
0.003
0.009

0.004 
1.096
1. 100

0.002
1.065
1.067

T: True values, P: Principal Component based estimates
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Table 2.6

Factor Scores Mean Square Errors and Correlations

Common factor Idiosyncratic factors
c 0 G1 MSE P vs T MSE P vs T

0.5 0.2 0.2 0.598 0.702 0.261 0.807
0.5 0.2 0.8 0.627 0.687 0.341 0.775
0.5 0.8 0.2 0.634 0.673 0.267 0.806
0.5 0.8 0.8 0.750 0.644 0.349 0.769
0.9 0.2 0.2 0.077 0.963 0.064 0.814
0.9 0.2 0.8 0.075 0.965 0.066 0.797
0.9 0.8 0.2 0.200 0.949 0.064 0.813
0.9 0.8 0.8 0.199 0.947 0.072 0.793

T: True values, P: Principal Component based estimates
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SEMI-PARAMETRIC ESTIMATION AND THE PREDICTABILITY 
OF STOCK MARKET RETURNS: SOME LESSONS FROM JAPAN
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3.1 Introduction

There is growing evidence for the view that stock market 
returns are predictable (see, e.g. Fama & French (1988a,b), Poterba & 
Summers (1988)). Fama & French argue that these lagged variables which 
help predict returns are merely proxying for risk1. By contrast, other 
authors (e.g. Shiller (1984)) argue that stock returns are predictable 
because of the existence of "fads" or "noise traders". Since risk is 
not directly observable, its modelling is a crucial part of any 
attempt to discriminate between these two views.

For that reason, we attempt to model risk in three different 
ways - the standard procedure of using lagged squared excess returns 
as a proxy, a measure based on assuming a Generalised Autoregressive 
Conditional Heteroskedasticity in Mean specification (GARCH-M 
hereafter - see Engle et al. (1987)) and a measure of volatility based 
on recent advances in semi-parametric econometrics (see Pagan & Ullah 
(1988)).

We choose to study the Japanese stock market - in part 
because it is a market that puzzles outside observers (and investors!) 
and also because it is relatively under-researched and therefore most 
likely to yield evidence of a different character. We find that, in 
contrast to the evidence from Anglo-Saxon markets, the lagged dividend 
yield does not have a positive association with future returns. We go 
on to present some evidence from Korea, which suggests that there is a 
negative association between the dividend yield and stock returns.

Other predictor variables that we use include lagged returns 
and nominal interest rates, both of which normally have some 
predictive ability in the Anglo-Saxon markets. Further, in deference 
to much comment in the financial markets that the "weight of money" is 
important in Japan, we also include velocity.

The rest of the chapter is organised as follows. Section 3.2 
reviews possible theoretical arguments for including the above 
variables. The econometric methodology is presented in section 3.3. 
Results are discussed in section 3.4, and we explore other 
possibilities in section 3.5. Finally, we conclude in section 3.6.
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3.2 Theoretical Considerations

3.2.1 The Efficient Markets Model vs the "Fads" Model

The most commonly used model of stock returns makes the 
expected excess return a function of volatility (see, e.g. Merton 
(1980) and section 1.2.1.3), i.e.:

Mt = P*\ (1)

2where <r̂  denote the conditional mean and variance of excess
returns in period t (as of time t-1), rt return on
the market portfolio, r£ the risk-free rate, and p a measure of 
aggregate risk aversion, which we assume to be constant.

If we additionally assume Rational Expectations, then actual 
ex-post returns are given by

rt = pot + et (2)

where E^_j(c^)=0, ^'e 1' we have the “Efficient Markets”
implication that information available at time t-1 cannot help us earn 
risk-adjusted excess returns.

A prominent alternative to the efficient markets model (EMM, 
hereafter) are those models where "fads" or "noise traders" influence 
share prices (see, e.g. Shiller (1984), De Long et al. (1987)). 
Typically, one has two kinds of agents: the "ordinary" investors who 
act exogenously and have some (proportionate) demand for shares, 
say (see section 4.2 for an example); and the "smart money" who are 
assumed to have a demand function for shares of the form:

Et-i(rt>
V i  = - 5 7 - (3)

where is the fraction of shares that they hold and p(o*t) is the
risk premium needed to induce them to hold all the shares. The 
essential assumption in (3) is that p’ ()>0, i.e. that "smart" agents
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are risk averse so they do not take infinitely large positions when 
the expected return on the market deviates from the risk-free rate. 
Imposing market-clearing (i.e. ^t- 1  = D  yields the result that:

Et-i(rt)=K > -  n c * X - i  (4)

If we linearise p() in (4), it is clear that the EMM in (2) 
is nested within (4). The "fads" model has the property that any 
variable dated t or earlier which are known to affect the demand of 
"ordinary" investors, will also help predict future returns.

Therefore, in principle, if there are variables that help 
predict risk-adjusted excess returns, then this finding may be 
interpreted as evidence in favour of the "fads" model and against the 
EMM2.

We next discuss some possible variables that might help 
predict risk-adjusted excess returns.

3.2.2 Dividend Yields and Stock Returns

The view that dividend yields help forecast returns is not 
new (see, e.g. Dow (1920)). Unsurprisingly, various possible 
explanations have been offered for this finding. One possibility is 
that the lagged dividend yield is Just a proxy for risk (see, e.g. 
Fama & French (1988a)). Campbell & Shiller (1988) show that the log 
dividend-prlce ratio is (approximately) a function of the entire 
expected future time path of the difference between the return on 
equity (r^) and dividend growth (gt)» i-e-

ln(Dt/Pt) - Et [ I *{(rt+J-gt+J) ♦ (5)
J = 0

where <f>.t are constants of linearisation. So if we mis-measure the
expected value of r^ (by using an incorrect proxy for say), then
the dividend yield is likely to act as proxy for variations in

2expected returns. Therefore, when we estimate (2), we shall make a 
function of the dividend yield. If the dividend yield continues to 
have an additional direct influence on expected returns, we shall
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argue that this fact makes an explanation based on risk less likely. 
Notice also that the risk-based explanation predicts a positive link 
between dividend yields and returns.

An alternative explanation of a link between dividend yields 
and returns may be in terms of "fads" (see Shiller (1984)). On this 
view, the dividend yield is a proxy for the optimism of ordinary 
investors, so, e.g. a period of excessive optimism is characterised by 
a dividend yield that is "too low" (relative to some steady-state 
value) and is likely to lead to a price fall (negative return). This, 
once again, results in a positive association between excess returns 
and the dividend yield.

However, casual inspection of the Japanese data suggests 
that a positive association between this two variables is unlikely. 
The dividend yield has been on a downward trend, its average value of 
0 . 5754 (on an annual basis) during 1985-89 was only a quarter of its 
average value during 1970-1974 (see Table 3.I)3. This fall in the 
dividend yield has been associated with a huge increase in five-year 
excess returns (20054 in 1985-89 as compared to 2954 in 1970-74). Hence, 
the relationship between dividend yields and stock returns in Japan 
may be quite different from that in the Anglo-Saxon countries.

3.2.3 The Effect of Liquidity

Practitioners commonly assert that the standard share
valuation models should be disregarded in assessing the Japanese 
market, and that one should look at alternative factors4. Notable 
among these factors is the real money supply, which is a commonly
recurring "explanatory" variable (see, e.g. Goldman, Sachs & Co.,
International Economic Analyst, March 1988). We shall therefore
whether past (and known) levels of the money supply can help predict 
excess returns. Such a link could be rationalised in terms of a "fads" 
model of share price, if it were true that the demand for shares by 
"ordinary" investors, Ŷ ., were correlated with real money supply.

3.2.4 Inflation and Stock Returns

There is a great deal of evidence that higher inflation
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and/or nominal interest rates lead to lower stock returns (see, e.g.
Fama & Schwert (1977), for the US, Cohn & Lessard (1981), for
international evidence). One possible explanation is that higher
inflation may lead to an increase in the variance of stockholders'
returns either because higher inflation leads to greater relative
price variability, or it is associated with more uncertain inflation
(see, e.g. Pindyck (1984)). So, provided that we measure risk
appropriately, there should be no link. Just as in the case of the

2dividend yield, we shall make cr̂  a function of inflation. Note, 
though, that Pindyck’s model explain why unanticipated changes in 
inflation can lead to lower excess returns today, for an unanticipated 
rise in inflation leads to a rise in expected volatility which, this 
period, causes a fall in share prices. However, if inflation, and 
therefore volatility, are expected to remain higher thereafter, this 
then leads to higher excess stock returns because the required return 
is higher - so there is a positive association between the level of 
expected Inflation and stock returns. Yet the evidence from 
Anglo-Saxon markets suggests a negative association.

Another popular explanation of the link between inflation
and share prices is that advanced by Modigliani & Cohn (1979). They
argue that investors commit valuation errors and, in particular, 
incorrectly compare the earnings yield with the nominal interest rate. 
We could embed such considerations into the "fads" model discussed 
above, where we may argue that the demand for shares by ordinary 
investor, depends negatively on future expected inflation.
However, in equilibrium, this yields a positive association between
returns and expected inflation, which, again, is not consistent with 
existing evidence.

3.2.5 Autocorrelation in Returns

In recent years, the view that stock returns are 
uncorrelated has been increasingly questioned. Instead, there appears 
to be evidence for a mean-reverting, transitory component in stock 
prices, which tends to induce negative autocorrelation in returns, 
especially at longer horizons (see Fama & French (1988a), or Poterba & 
Summers (1988)). This transitory component could either result from 
variations in equilibrium expected returns, or could be consistent

104



Chapter 3: Predictability

with the "fads" model, with Y^, for example, representing long 
temporary swings away from the fundamental values. It is difficult to 
discriminate between these alternative hypotheses. In our case, since 
our baseline model does allow equilibrium expected returns to vary 
over time, if we did find that lagged excess returns help predict 
future returns, we might interpret that as supportive of the "fads" 
model.

3.3 Methodology

3.3.1 Alternative Hypothesis

Given our discussion in section 2, we shall consider the 
following alternative to (2)

rt=p0t+al(L) ‘V / V l  )+0t2 (L)Rf t-l+ 
a3 {L)(Mt-l/Pt-l0t-l)+<X4 (L)rt-l+Ct (6)

where the aj(L) represent lag polynomials, ^t-l^t-l *s la8gec*
dividend yield, *^-1 *s nominal interest rate, and

is the ratio of (real) money supply to GDP. The EMM requires
that Hq: aj(L)=0. Notice that we only include lagged values of
variables, as the EMM could easily explain why contemporaneous
variables might matter (i.e. they would be correlated with "news" as

2in section 1.2.2). The main econometric problem arises because is 
unknown, so the finding that some variable helps predict excess return 
in (6) may be due to the fact that our proxy for risk is
inappropriate. Therefore, we shall use three different ways of
modelling risk.

3.3.2 Modelling the variance

2A traditional way of proxying <r̂  is to use squared values of 
actual past returns (see Merton (1980)). A significant drawback of 
this method is that it measures the total variability of excess 
returns, and not the ex-ante uncertainty regarding them, and as a 
consequence leads to inconsistent estimates. For this reason, it has 
become more common to adopt a GARCH-M specification (see, e.g. Engle,
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2Lilien & Robins (1987)) where <r̂  is essentially parameterised as a 
function of its past values, and where it is explicitly recognised 
that expected returns 
estimated jointly with

2that expected returns vary with 0 *̂ . Specifically, equation (6) is

q p k2 2 JL 2 2 £ . 2 2  _ ,22 .'t = eo + j ? / j zJ.t-i (7)

where z. ._1 represent variables dated time t-1 or earlier which mayj l
help predict volatility. In order to make use of maximum likelihood 
methods we assume that the conditional distribution of is Gaussian 
(cf. section 2.4).

The GARCH formulation is both simple and attractive, but the 
underlying theoretical model is not very informative about the 
appropriate specification of (7). We shall therefore use a
specification test of the Newey (1985a) variety, where we test the

2 2 2 2 requirement Et_^(et) = <r by regressing the estimated value of
2on a constant and o*̂ , and checking the significance of the coefficient

2 2 2 2 on o*̂ , since, under the null, I (ê -o-̂  )<r̂  ]=0. , i.e. there should be
no information in <r(which is based in lagged information) which

2helps us predict c^ better. Since the GARCH-M model imposes some 
rather tight, parametric restrictions, it is as well to also
experiment with alternative methods.

So for our next method, we use recent developments in
semi-parametric econometrics (see Pagan & Ullah (1988) and Pagan &
Hong (1991) for details). Here, we do not Impose any specific

2functional form on a n^_j) anc* make use of the fact that

't = m2t-mlt (8)

where m^^=^t-l^rt^ can es^^ma^e<̂  using standard, non-parametrie, 
regression techniques. We obtain two different estimates of m ^  and 
m^^ by using both a kernel estimator and a nearest-neighbour 
estimator. Assume that is a vector of d variables such that
<r (1^ )̂ is actually known to only depend on z^. A kernel estimate of 
the regression function m^(z), 1=1,2 at z=ẑ . is

106



Chapter 3: Predictability

T det(h) E rj K[h
mi t ---------- ;-t "—  -------------  (9)

T det(h) j ^ 111 (Zj”ZtJ1

where we take the "kernel" function K() to be the spherical
multivariate normal density and the "bandwidth" matrix h proportional
to diag(Sj), where Sj is the (sample) standard deviation of the jth
explanatory variable (see, e.g. Robinson (1983)). We have experimented
with four different values for the bandwidth5. We should also mention

2at this juncture that when estimating (r̂  we dropped the t-th 
observation from the formula for computing the nonparametric moments 
(see Pagan & Hong (1991), for discussion of this point).

Let be the rth nearest neighbour of z^, where we
divide each explanatory variable by its sample standard deviation 
prior to computing the Euclidean distance and let rj.(r) be the 
corresponding observations for r̂ . For a given smoothing parameter k, 
let the weights cr (r=0,.. .,T-1) be positive for l^r^k, 0 otherwise, 
and add up to 1. Assuming for exposition that there are no tied 
observations, then the K-nearest neighbour (KNN) estimator of m^(z) at 
z=z^ is defined as

T im. *. = T c r. , . (10)it u r t(r)
r = 1

(see, e.g. Robinson (1987)) where we have chosen uniform weights 
(cr=l/k for r=l,k) and tried three different values for k (i.e. 7, 15 
and 30)6. Notice that in this case the definition of (10) already 
"leaves out" the t-th observation.

~ 2  » * 2Using either method a nonparametric estimate of o*̂  - m2t_mlt 
is obtained, as well as an estimate = ^t'^lt residual* The

2  a 2natural next step is to replace <r̂  by <r̂  in (2) and (6) and estimate 
by least squares, although this induces a "generated regressor" bias 
(see Pagan (1984)). However, we may avoid this problem by using an IV 
estimator, where <r̂  is used as an instrument for (cf. Pagan & Ullah 
(1988)), though White’s (1982) correction for the standard errors also 
needs to be used. Although the IV estimator will be consistent, it is

A 2likely to be fairly inefficient, especially if is not highly
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correlated with e^. Therefore, we shall report both OLS and IV 
estimates.

Although the semi-parametric estimators are, conceptually,
more general than a GARCH-M model, we should emphasize that, in
practice, our sample size constrains us to use a relatively small
number of conditioning variables. So, if the true model generating <r̂

2were indeed GARCH, this would imply a dependence of cr̂  on an infinite 
number of lagged values of the risk premium and our nonparametric 
estimator would then be mis-specified (see Pagan & Hong (1991)).

3.4 Empirical Results

We use monthly data for Japan from January 1969 onwards,
providing us with a sample of 236 observations. For the share price we
used the end-of-month values of the Tokyo New Stock Exchange share 
price index, the safe rate is provided by the call money rate, while 
we used a broad money measure (Ml+Quasi-money) scaled by GNP as our

7measure of liquidity. (Further details are in the Data Appendix 3) .

3.4.1 OLS Estimates using the Proxy Method

We first estimated equation (2) by using the lagged squared
2excess return as a proxy for cr̂ . Our results are presented in column 1 

of table 3.2. Notice that although p is positive, it is not 
statistically significant. We next include the level of the lagged 
dividend yield. It attracted a coefficient of -0.499 (with a t-ratio 
of -0.11) - so unlike the Anglo-Saxon countries, there is no
significant positive association between the dividend yield and stock 
returns in Japan.8

We then went on to estimate (6), where we initially entered 
3 lags of each variable, and, after simplification, obtained the

9equation reported in column 2 of table 3.2 . Given evidence of a
January effect in US stock returns, we also included seasonals in our

10 2 regression . Notice that <r̂  has a coefficient with the "wrong" sign,
although it is statistically insignificant. In addition, notice that
the Efficient Market Model is easily rejected in that we have
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identified 4 economic variables which are statistically significant. 
Further, there seems to be substantial overall predictability of stock 
market returns, the R2 of 0.16 for monthly returns is rather higher 
that what is typically obtained for the UK or US.

Our results suggest that changes in the dividend yield are 
negatively correlated with future excess returns - this is quite 
different from the more standard positive relationship between 
dividend yields and excess returns that is observed for the 
Anglo-Saxon countries. There is a more familiar negative relationship 
between changes in the nominal interest rate and excess returns. 
Further, those who believe that the Japanese market is partly driven 
by the "weight of money" will be pleased by the positive coefficient 
on the change in our proxy for liquidity. Finally, there appears to be 
positive autocorrelation in returns using Japanese monthly data. It is 
of some interest to note that the seasonal pattern of returns in Japan 
seems quite different from that in, say, the US. On including 12 
seasonal dummies we found that the following seasonal coefficients had
|t|>in :

February 0.027 ( 2.27) October -0.018 (-1.72)
March 0.025 ( 2.48) November 0.011 ( 1.11)
July -0.013 (-1.28) December 0.022 ( 2.15)

We should emphasis that the relationship that we have 
estimated appears to be reasonably stable. If we split the sample at 
October 1979, then a standard Chow test suggests that we cannot reject 
the null of parameter constancy. The change in the coefficients over 
time is displayed in Figures 3.1a though 3. Id. Notice that all the 
coefficients essentially stabilise after around 1976 (the fluctuations 
before that can probably be attributed to the small size of the 
sample). In addition, the ratio of the out-of-sample mean square error 
during 1979:10 - 1988:10 to the in-sample standard error is 0.74, so, 
the equation’s performance during the eighties is actually better than 
what would have been predicted by its fit during the seventies. This 
is in contrast to some of the results in Campbell & Hamao (1989), 
whose particular set of predictor variables did worse in the 1980-s. 
We believe the result that the equation has constant coefficients to 
be fairly impressive for there are sound a priori grounds for
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anticipating parameter instability. It was not until 1978 that the 
authorities completely lifted restrictions on the short-term interest 
rate. Further, it was only in 1980 that restrictions on foreign 
capital flows were eased with the revision of Foreign Exchange Law.

In addition, note that the F-test for the inclusion of the
extra explanatory variables is highly significant. This, combined with
the stability of the coefficients, makes it highly unlikely that the
significance of our regressors derives from spurious "data-mining".
Further, a test of predictive failure for the period November 1987 -

12October 1988 also suggests that the model performs adequately

These results cast serious doubt on the particular version 
of the EMM that we have been considering. Therefore, it is of some 
interest to consider whether these variables are significant because 
we have mis-measured risk.

3.4.2 GARCH-M Estimates

We initially Jointly estimated equations (2) and (7), where 
we allowed (the squares of) our first three predictor variables from 
Table 3.2 to directly affect cr̂ . We started with a GARCH(3,3)
specification, which was then simplified to an ARCH(3) model (the 
relevant LR test yielded 2.8, x *7.81). Our results are reported

3,0. OS
in column 1 of table 3.3. Notice that while p is positive, it is still 
statistically lnslgnifleant. There is, though, some support for the 
view that an increase in the dividend yield increases risk (from the 
equation for <r̂ ). We next estimated equations (6) and (7) jointly 
-i.e., we included the predictor variables in the equation for the 
mean as well. Again, we initially started with a GARCH(3,3)
specification but the simplified it to a GARCH(2,1) model (LR=2.94,
2

X =7.81). Our results are reported in Table 3.3, column 2.
3,0.05

Crucially the coefficients on the four predictor variables are largely
unchanged, as is the fact that they are statistically significant.

2Further, the coefficient of cr̂  is negative and statistically 
insignificant. So, although there is some weak evidence that higher 
dividend yields increase risk, this does not affect the statistically
significant association between lagged dividend yields and future
excess returns.
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Notice that there is some persistence in volatility (the sum 
of the coefficients is about 0.64) but the evidence does not point to 
any significant link with stock returns. However, there is significant
evidence that our volatility series is mis-specified - the Newey test

2 2 2 indicates that <r̂  can help predict This suggests that we may
2want to look for better measures of <r̂ .

3.4.3 Semi-Parametric Estimates

Given our results above, we now calculated m^t and m^t as a
function of the four variables that help predict stock returns. It is

2possible that a better measure of would yield a positive
relationship between excess returns and volatility, and that the
predictor variables might lose their significance. However, our
estimates of equation (6) are not noticeably different from our
previous results. The coefficient on risk is never statistically
significant, although there are some instances when it attracts a
positive sign. Our four predictor variables continue to help us
forecast excess returns despite the fact that we allow them to affect 
2

0 *̂ , hence pointing to a rejection of the EMM.

Notice that our results (see columns 1-4 of table 3.4) do 
not appear to depend on the method of estimation that happens to be 
adopted. There is little to chose between the IV and the OLS 
estimates. Further, the Nearest Neighbour and kernel-based estimates 
are also very similar. Also, our results were not sensitive to varying 
the bandwidth.

2We may learn about the link between these variables and
by inspecting the plots of against each of these (kernel estimate
c=4), which are presented in turn in Figures 3.2a-3.2d. In figure 3.2a
a larger change in the dividend yield does appear to imply a higher 
2cr̂ . There is no indication of any systematic relationship between a

2change in the interest rate and <r̂  in Figure 3.2b. There is a
suggestion of a positive association between a change in liquidity and 
2<r. in figure 3.2c. Finally there is some evidence for the notion that

2a large negative excess return raises cr̂. more than a large positive 
excess return (Figure 3.2d), a fact that has been noticed before (e.g.
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Black (1976) and chapter 5).

We also experimented with other measures of risk. First,
varying the functional form of the return-risk relationship made 
little difference. Second including the conditional covariance between 
the Japanese index and the world did not significantly affect our 
results (further details in Sentana & Wadhwani (1989)). In deference 
to the Consumption CAPM, we included the expected change in 
consumption. Even though it attracted a positive coefficient, our 
predictor variables continued to significantly help predict returns.

3.5 Further Explorations

3.5.1 Extending the Sample

Sentana and Wadhwani (1989) estimated the model using data 
up to 1988:10 with the last 12 observations for forecasting purposes 
(as is true for the preceding sections). However, the Japanese market 
has fallen steeply during 1990, and it was of some interest to 
investigate how well the model has fared since. We, therefore, 
performed a predictive failure test until 1990:4. The value of the
relevant test statistic is 40.14 (y *43.77), and, so, we were

30,0.05
unable to reject the null of parameter constancy. It is rather 
impressive that the equation has continued to perform well in these 
turbulent times on the Japanese stock exchange.

Next we turn to the issue of why we began estimation in
1969. We also considered estimating the model over the sixties. 
However, it is worth recalling that there was virtually no free 
short-term Interest rate before 1970, with the Gensaki market only 
beginning in 1969 (see e.g. Feldman (1986) or Suzuki (1987)). Also, 
note that the first issue of government bonds only occurred in 1966, 
and that there was no secondary market for them until 1977. Suzuki 
argues that, prior to the liberalisation of the market, "... short 
rates seemed not to reflect (the) demand and supply for funds...
(p.155). An indication of the change in the interest rate regime after 
around 1970 is provided by the fact that during 1960-1969 the interest 
rate change only in 45 out of a possible 120 months, while during

112



Chapter 3: Predictability

1970-1988 it changed in 210 out of 228 months. Given this fact we 
would be surprised if our estimated relationship between stock returns 
and the short interest rate were invariant to deregulation.

When we did re-estimate our model to include the sixties, we 
found that over 1960:6-1988:10:

rf- -64.07 ADiv.Yield + 76.14 ALiquidity + 0.25r +
1 (-2.14) * 1 (2.61) Z 1 (1.98)
-23.00 ARf + 32.70 ARf *D60 - 0.10 v + seasonals 
(-2.67) W  (2.21) W  (-0.15) r

where D60 takes the value 1 during the sixties.

Notice that, with the exception of the interest rate, all 
the other variables continue to have a similar effect on stock 
returns. We are fairly encouraged by these results.

3.5.2 Evidence from South Korea

We have put much emphasis on the fact that the lagged 
dividend yield is not positively correlated with stock returns in 
Japan. However, even if it were true that dividend yields were truly 
positively correlated with returns it is possible to find a country 
with the opposite relationship. For this reason, we offer some 
evidence from another country in the same geographical region - South 
Korea. This is another market which has seen spectacular stock price 
gains, e.g. the index rose by a factor of 10 in the eighties.

We initially regressed excess returns (detailed data 
definitions and sources are in the appendix) on the lagged dividend 
yield, seasonals and a measure of volatility over the period 1975:6 - 
1987:9. A selection of results are to be found in table 3.5. Notice 
that the level of the dividend yield attracts a statistically

A 2significant negative coefficient, as does <r̂ . Hence as in Japan, there 
is no evidence of a positive association between returns and the 
lagged dividend yield. However, as in Japan, unit root tests suggest 
that while we cannot reject the hypothesis that the dividend yield is 
1(1), returns seem to be 1(0). Therefore, one should be appropriately 
cautious about these regressions.
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We next examined the relationship between returns and the 
change in the dividend yield. As in Japan, this attracted a negative 
coefficient, as did a (cf. columns 4-6, Table 3.5).

We view our results for South Korea as being broadly
supportive of our work for Japan, in that, once again, we were unable
to find any evidence for a positive association between returns and 
the lagged dividend yield in either country.

3.5.3 Time-Variation in the "Price of Risk"

In the basic model that we estimate (i.e. = P^^h P is a
measure of aggregate risk aversion which depends on the distribution
of wealth and underlying preferences over risk. In practice, changes
in wealth and its distribution, social provision for the poor, changes
in the “spirit of the times", etc., can all lead to variations in p.
The failure to allow p to vary over time implies that our estimation
procedure may be incorrect. Equally, if p were allowed to vary over
time in an entirely unrestricted fashion in (1), then there is no
longer anything to test!. Therefore, the strategy that we followed was

2 2to compute an implicit price of risk series p^=<r^/n^, where were
estimated by using a kernel estimator with c=2. The results are 
presented in Figure 3.3. (Similar results were obtained with nearest 
neighbour estimates and different bandwidths). THey imply wide 
variations in p . For example, it rises from a value of about -5 to 
one over +25 and back to 0 all within one year!. In another two-year 
period (1980-1982), it fall from 0 to about -12, then rises to about 
+17, only to fall back to about zero. It is theoretically possible for 
our results to be consistent with a version of the EMM where the price 
of risk is allowed to vary (as in section 1.2.1.2). However, we would 
still need to explain why the price of risk varies as much as it does 
in figure 3.3.

3.6 Implications and Conclusions

Our substantive conclusions are:
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i) Higher volatility does not appear to lead to 
significantly higher excess returns in Japan or South Korea. This 
finding is robust across three different ways of measuring risk (i.e. 
lagged squared excess returns, GARCH and semi-parametric methods)

ii) There is no significant positive association between 
returns and the dividend yield in either Japan or South Korea. If 
anything, there is a negative relationship in S.Korea. This would be 
difficult to explain in terms of risk considerations, which normally 
predicts a positive association (as normally found in Anglo-Saxon 
countries). This result is also at odds with standard mean reversion 
stories. Further, the lagged change in the dividend yield has a 
negative relationship with current excess returns.

iii) Lagged changes in the nominal interest rate also help 
predict excess returns (they are negatively related). This is 
difficult to explain. As already discussed a standard "noise" traders 
model cannot account for it.

iv) There is some support for the "weight of money" 
explanation of share price rises, in that lagged increases in velocity 
do lead to a lower excess return.

v) Excess returns are positively autocorrelated on a 
monthly basis

vi) The above results are robust to the use of different 
statistical measures of volatility, and to whether or not we use 
consumption risk, or market risk.

Our results suggest that you can predict Japanese monthly 
excess returns using lagged information even after controlling for 
risk, with an explanatory power of about 16%. The relationship between 
these predictor variables appears to be stable over our sample period.

It is possible that we have not modelled risk appropriately. 
It may well be possible to write down some rather general model of 
risk where the price of risk varies substantially (as in chapter 1 ) 
although we would still need to link this variation to our predictor 
variables. Our results suggest that it is these models of risk that we 
should be using - the standard models that we have experimented with 
above do not appear to fare particularly well.
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ENDNOTES

1 Attanasio & Wadhwani (1990) have shown that in the U.S., the lagged 
dividend yield only helps predict returns because it also helps to 
predict future volatility.

2 It would, of course, only constitute evidence against our rather 
particular version of the EMM. Variants of the EMM with, say,
time-varying price of risk could be consistent with our findings.

3 Despite recent falls in the market, the dividend yield had only 
recovered to 0.81% in October 1990.

4 A prominent Japanese securities house placed a full page
advertisement in the Financial Times on January 30, 1989 describing
P-E ratios as an outdated criterion.

5  The baseline bandwidth value was 0(T~1/(d+4>). We then halved it, 
doubled it and quadrupled it. We are grateful to Peter Robinson for
helpful advice on this point.

6  We are also grateful to Peter Robinson for his helpful advice.
7 We are extremely grateful to Orazlo Attanasio and Miguel Delgado 

for providing us with the Fortran code to estimate GARCH-M models 
and non-parametric kernel regressions respectively. The
non-parametric nearest neighbour regression program is available on 
request. All these were run on the LSE VAX. The rest of the 
computations were performed using the regression packages DFIT and 
TSP.

0 We need to be appropriately cautious when interpreting this result,
because we found that while standard tests did not reject the view
that excess returns are 1 (0 ), we could not reject the hypothesis 
that the dividend yield is 1 (1 ).

g We did perform unit root tests on all our predictor variables. In 
all cases we could not reject the null that these variables are 
1(0).

1 0  Note, though, that since we do not measure monthly dividends 
accurately, the seasonals may be proxying for a seasonal component 
in the measurement error.
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11

12

The value of the test for the significance of these dummies is 
17.64 (x2 =12.59).6,0.05

While our variables are dated t-1 and earlier, it is possible that, 
because of announcement lags, our measure of liquidity is not 
actually known to market participants. Therefore, we re-estimated 
our equation, where lagged liquidity was now instrumented using 
earlier values. However the relevant coefficients were unchanged 
(the relevant Hausman (1978) tests yielded t=0.47).
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DATA APPENDIX 3

Details of the data series used are as follows (where appropriate, the 
name of the series is followed by its Datastream code).

Japan:

Interest rate:
Share Prices:

Consumer Prices:

Money:

Income:

Dividend Yield:

Consumption:

World Stock Price 
Index and Dividend:
Exchange Rate:

South Korea:

Interest Rate:
Share Price Index:
Dividends:

118

JPOCCAL (Call Money Interest Rate).
JPTOKYO (Tokyo New Stock Exchange Share Price 
Index, End of Month Value, 1968=100).
JPOCCPTKF (Consumer Prices, Tokyo: All Items,
1980=100).
JPOCMIQSA (Money Supply Ml plus Quasi-Money, Yen 
Billion, Current Prices).
JPOCGNPDB (GNP at annual rates, Yen Billion, 
Current Prices, Linearly Interpolated).
Average Yield (End of Month, Dividend Paying 
Companies only, Economic Statistics Annual, 
Research & Statistics Department, Bank of Japan). 
JPCONEXPP (Personal Consumption Expenditure, 1980 
Prices).

Morgan Stanley Capital International Index. 
JPOCEXCH ($-Yen Exchange Rate, End of Period).

K0I60 (Discount Rate).
K0RC0MP (End of Month).
From “Stock" & "Securities Statistics Yearbook", 
Korean Stock Exchange.
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Table 3.1

Average Dividend Yield and Returns 
1970-89

Time Period Average Dividend Yield Five-Year Excess Return

1970-1974 2. 30% 29%
1975-1979 1.53% 41%
1980-1984 1 .2 2 % 6 8 %
1985-1989 0. 57% 2 0 0 %
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Table 3.2

Excess Returns Equations - Proxy Estimates
1969:3-1987:10

Independent Variables (1) (2)

ADividend Yield

Alnterest Rate

ALiquidityt _ 1

Excess Return 

n 2

t- 1

t- 2

t- 1

Serial Correlation Test

Predictive Failure Test 
(forecast to 8 8 :1 0 )

ARCH test

0.65
(0.88)

(*

0.0026 
7.91 
=21.0 2)12.0.05

13.08 
ix2 =21.0 2)12.0.05

12.94 
{■X =21.0 2)12.0.05

Parameter Stability Test 0.33
(split at 1979:9) (F =3.03)

r  2,220,0.05

F-test for significance 
of economic predictor variables

s. e. 0.04427

-0.33
(-0.38)

-119.44
(-2.26)
-25.84 
(-3.26)
136.38
(2.71)
0.46
(2.29)
0.160
8.75

(X2 =2 1 .0 2 )12.0.05

15.05 
ix2 =21.02)12.0.05

15.93 
iX2 =2 1 .0 2 )12.0.05

0.99
(F =1.68)

17.190.0.05

4.74 
(F =2.41)4.207.0.05

0.04195

Notes: (i) (1) includes a constant, (2) seasonals
(ii) heteroskedastic-consistent t-ratios in parentheses 

(as in Eicker (1963) and White (1980))
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Table 3.3

Excess Returns Equations - GARGH Estimates
1969:3-1988:10

Independent Variables (1) (2)

ADividend Yield

Alnterest Rate 

ALiquidityt_^ 

Excess Return

t- 1

t- 2

t- 1

0.90
(0.53)

log L 637.29

-0.61
(-0.25)
-119.19 
(-2.46)
-15.71
(-2.53)
122.97 
(3.12)
0.41
(2.52)

656.55

Variables affecting <rj 
2
V i2
Ct- 2

2
Ct-3
2

°t-l
ADividend Yield

Alnterest Rate

ALlquidityt_^

Newey Test 

s. e.

t- 1

t- 2

0.0
0.39 
(2.95) 
0. 15 
(1.91)

-4
2 . 1  x 1 0  

(1.64)
0.0

0.0

-3.73

0.04438

-4

0.0
0.35
(3.51)

0.28 
(2.96) 

1.75 x 10 
(0.95)
0.0

0.0

-2.40

0.04135

Notes: (1 ) includes a constant in the mean and seasonals in the 
variance, whereas (2 ) additionally includes seasonals in 
the mean.
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Table 3.4

Excess Returns Equations - Semi-Parametric Estimates
1969:3-1987:10

(4)
IV
(NN)

Independent (1 ) (2 ) (3)
Variables OLS IV OLS

(Kernel) (Kernel) (NN)

-2 -8 . 2 0 3.63 3.99t (-0.85) (0.80) (0.76)
ADividend -120.79 -141.39 -130.13

Yieidt.i (-2.30) (-2.35) (-2.40)
Alnterest -25.11 -24.49 -25.59

Rale,.,., (-3.24) (-3.00) (-3.23)
ALiquidityt _ 1 130.74

(2.82)
132.29
(2.61)

133.14 
(2.85)

Excess 0.42 0.42 0.44
Return 1

o
(2.37) (2.26) (2.43)

R2 0 . 16 0 . 16
Serial Correlation 9.29 7.42
{X2 =2 1 .0 2 )12,0.05

Predictive Failure 14. 57 15.56
ix2 =2 1 .0 2 )12,0.05

Parameter Stability 0.97 0.93
(F =1.68)

17,190,0.05

F-test for significance 4.59 5.01

-3.34
(-0.74)
-113.27
(-2.21)
-26.44
(-3.10)
133.30
(2.97)
0.46
(2.47)

of predictor variables 
(F =2.41)4,207,0.05

S. e. 0.04402 0.04571 0.04201 0.04173
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Table 3.5

Excess Returns Equations - South Korea
1975:6-1987:9

Independent (1) (2) (3) (4) (5)
Variables OLS OLS IV OLS OLS

(Proxy) (Ker) (Ker) (Proxy) (Ker)

-1.28 -1.08 -3.19 -1.21 4.75t (-1.89) (-1.19) (-0.97) (-1.76) (1.14)
Dividend -2.39 -2.15 -2.03
Yieldt _ 1 (-2.51) (-2.28) (-1.76)

Dividend -8.06 -6.15
Yieldt _ 1 (-1.53) (-1.17)

(6)
IV
(Ker)

3.33
(1.25)

-6.07
(-1.27)

123



Chapter 3: Predictability

2 0 0

100

0
-100

-200
-300

1973 1975 1977 1979 1981 1983 1985 1987 1989
Sanple Period is 1971( 3) - 1987( 9)

Coefflc1tnt on Dividend Yield + 2 + S.E.

Figure 3.1a

150

100

-50

-100

-150

1973 1975 1977 1979 1981 1983 1985 1987 1989
Saxple Period is 1971( 3) - 1987( 9)

Coefficient on Interest Race + 2 + S.E.

Figure 3.1b

124



Chapter 3: Predictability

00
00
00
00
00
0

-100

-200
-300

1973 1975 1977 1979 1981 1983 1985 1987 1989
SjhpI* Period is 1971( 3) - 1987C 9)

C o e f f i c i e n t  on L i q u i d i t y  ♦  2 ♦  S. E.

Figure 3.1c

3.80

2.00

1.00

0.00

•1.00

- 2.00

1973 1975 1977 1979 1981 1983 1985 1987 1989
Suple Period is 1971( 3) - 1987( 9)

Coefficient on Lagged Rlak Premlun + 2 + S.E.

Figure 3.Id

125



Chapter 3: Predictability

Volatility vs Chanyos in Dividend Yield
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Volatility vs Changes in Liquidity
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FEEDBACK TRADERS AND STOCK RETURNS AUTOCORRELATIONS: 
EVIDENCE FROM A CENTURY OF DAILY US DATA
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4.1 Introduction

In recent years, increased attention has been devoted to 
models of share price determination that rely on the existence of 
heterogeneous investors - e.g. Shiller’s (1984) "fads" model, or the 
"noise trader" model (see e.g. De Long, Shleifer, Summers & Ualdman 
(1990)). There has also been renewed interest in the serial 
correlation properties of stock returns (see e.g. section 3.2.5). For 
example, Cutler, Poterba & Summers (1990) have argued that the 
characteristic serial correlation patterns in a variety of assets can 
be accounted for by models with feedback traders. We extend the logic 
of their analysis to look at the links between volatility and serial 
correlation.

If one set of traders follow a feedback trading strategy 
(i.e. they react to price changes), then returns will exhibit serial 
correlation. Further, as expected volatility rises, "smart" money will 
allow the feedback traders to have a greater effect on the price, and, 
therefore, the extent of serial correlation will rise. In this 
context, a greater degree of predictability of stock returns from 
higher (in absolute value) serial correlation is still compatible with 
equilibrium because high volatility makes it more risky for "smart" 
money to take advantage of the predictable patterns in stock returns. 
It is this link between volatility and return autocorrelations that we 
seek to test in this chapter.

Serial correlation in returns may also arise from a variety 
of reasons unconnected to the feedback traders model. One distinct 
possibility that we shall consider in interpreting the results, is 
that the serial correlation may arise from non-synchronous trading. It 
is also important to emphasize that if preferences exhibit a degree of 
risk aversion that declines with wealth, then a positive feedback 
trading strategy may be entirely rational (see e.g. Black (1988)). 
Such considerations lead to the additional testable implication that 
the extent of positive feedback trading rises with volatility.

We present evidence on the links between volatility and 
returns autocorrelations by using both hourly data around the period 
of the October 1987 crash and daily data for 1885-1988. We use
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alternative measures of volatility based on a standard GARCH 
specification, an exponential GARCH model (EGARCH), and, also, on 
non-parametric methods.

The rest of the chapter is organised as follows. The 
feedback traders model is summarized in section 4.2.1 and the 
consequences of non-synchronous trading are discussed in section 
4.2.2. The empirical evidence is presented in section 4.3. We then 
explore some extensions to our basic framework in section 4.4 and 
finally some conclusions are to be found in section 4.5.

4.2 Theoretical arguments for serially correlated returns

4.2.1 Feedback traders and serial correlation

As in section 3.2.1, we consider here a simple model where 
agents follow different trading strategies1. The first group (smart 
money) are assumed to have a demand function for shares of the form:

Qt = --- -̂ (1 )
"t

where is the fraction of shares that they hold, r® is the ex-post 
return on the market in period t, E^-l denotes the expectation
operator using information available as of time t-1 , a is the return 
at which the demand for shares by this group is zero and is the 
risk premium needed to induce them to hold all the shares. We shall 
assume again that:

Pt “ (2)

with p’()>0 , where <r̂  denotes the conditional variance of returns in 
period t (formed at time t-1 ), so that these investors are risk
averse (cf. section 3.2.1). Hence a rise in expected volatility
increases the risk premium needed to induce smart money to hold all 
the shares. Notice that if all investors had demand functions of the 
form (1), then market equilibrium (Q^=l) would yield the familiar 
Capital Asset Pricing model:
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Et-i(rt)"a='l(<rt) (3)

with a set to the risk-free rate (see, e.g. Merton (1980) and section 
3.2.1).

We shall assume initially that the second group of traders 
buy after price increases, i.e. positive feedback trading, so that 
their demand function is given by:

with y>0. Such behaviour is consistent with that of portfolio insurers 
and those who use stop-loss orders. It can also occur as a result of 
"distress" selling after significant market declines. In this respect, 
Shiller (1987) found that the single most important reason that 
prompted investors to sell shares in October 19th, 1987, was the fact 
that prices had fallen.

Market equilibrium requires that:

which yields:

Q ♦ Y = 1 (5)

Hence, on comparing (6 ) with the standard CAPM model in 
equation (3), we have an additional term (— )r™_^) so that returns 
will exhibit negative serial correlation. Importantly, the extent to 
which the returns are serially correlated varies with volatility. 
Intuitively, as expected volatility rises, smart money needs a higher 
expected return, and this allows a larger deviation of the current 
price from its fundamental value, which, then, leads returns to 
exhibit stronger serial correlation. The above model suggest that 
stock price anomalies are larger when volatility is high.

So far, we have only allowed ourselves the possibility of 
positive feedback traders (yX)). However, it is possible that some
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individuals adopt a negative feedback strategy (y<0 ) - i.e. buying 
after price declines. This is consistent with so-called "buy low, sell 
high" strategies, and also with those that assign a constant share of 
wealth to a particular asset. From our previous discussion it is clear 
that this would induce positive autocorrelation in stock returns.

Combining both kinds of feedback investors it is indeed
possible that (the cross-sectional average) y varies over time with
changes in volatility. In this regard, it is important to recognize
that a portfolio insurance strategy can be entirely rational if
preferences exhibit risk aversion that declines rapidly with wealth
(see e.g. Black (1988, 1989) or Marcus (1989)). In such settings, an
exogenous reduction in the values of the shares (the risky asset) can
lead to an even larger reduction in the demand for the risky asset.
These models also have the property that a given reduction in wealth
induces more portfolio insurance selling the lower the initial level
of wealth is . Hence, in equation (4), y depends on current wealth, or
more correctly, current wealth, W, relative to current "subsistence"

2wealth, Wmin. Note that a ceteris paribus rise in volatility, <r̂ ,
2lowers wealth and thereby raises y. Therefore we shall set y=y(<r^) in 

equation (6 ), with the expectation that y* ()>0 .

Allowing y to depend on volatility enables us to generate a 
richer set of possible implications for the pattern of serial 
correlation from equation (6 ). For example, it is possible that, at
low levels of volatility, negative feedback trading predominates (i.e. 
y<0) and returns exhibit positive serial correlation. However, as
volatility rises, this might increase the demand for portfolio 
insurance-type strategies (i.e. y>0 ), which then leads to returns
exhibiting negative serial correlation.

4.2.2 Non-synchronous trading and serial correlation

It is well-known that non-synchronous price quotes (i.e. the 
non-trading problem) induces serial correlation in returns (see e.g. 
Fisher (1966), Cohen et al (1980), Lo and Mackinlay (1990)). If the 
returns to two stocks A and B are independent, but B trades less 
frequently than A, then the price of A will respond more quickly when 
news affecting both stocks arrives. As a consequence, the return on B
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will appear to respond with a lag to the return on A, i.e. there will 
be positive cross-autocorrelation. If we now consider an index made up 
of a large number of securities (as is true of the indices used in our 
empirical work below) the positive serial cross-correlations will

3manifest themselves as positive autocorrelation in the index . Lo and 
Mackinlay (1990) show that such positive autocorrelation in an index 
can be represented by an AR(1) specification for index returns. In the 
case of a portfolio of securities with the same non-trading 
probability, the AR(1) coefficient actually equals the non-trading
probability.

In the light of our discussion of the model with feedback
traders, it is important to establish whether and how we would expect
any serial correlation that arises from non-synchronous trading to 
vary with the volatility of the market. If high trading volume on an 
index is an indicator of more trading, then the observed positive 
time-series correlations between volume and volatility (see Tauchen 
and Pitts (1983) or Schwert (1989b)) would suggest that periods of 
high volatility are also periods when the non-trading effect is small. 
On the other hand, one may recall that a period of exceptional 
volatility like the October 1987 crash was characterised by 
considerable non-trading of securities. Nevertheless, it is possible 
that the effect of higher volatility could be to reduce the index 
autocorrelation that is Induced by non-trading. In this setting, the 
index autocorrelation could in principle fall from a positive number 
to zero, as the non-trading probability shrunk to zero, whereas in the 
model with positive feedback traders, the already negative
autocorrelation rises in absolute value. Note that models of 
non-synchronous trading do not usually predict negative 
autocorrelation in index returns4.

4.3. Empirical evidence

4.3.1 Evidence based on hourly data around the October 1987 crash

The October 1987 crash saw the largest single-day decline in 
New York this century. As a consequence there was an obvious rise in 
share price volatility. Indeed, if we compute the standard deviation

134



Chapter 4: Feedback Traders

of hourly returns for each week during July 1987 - February 1988, we 
find that the standard deviation of returns in New York was more than 
seven times as high as it had been in the period preceding the crash5. 
Therefore, the 1987 crash can be seen as providing something close to 
a natural experiment: it should enable us to assess the effects of
volatility on the serial correlation pattern of returns without having 
to actually specify a measure of volatility as few would disagree with 
the proposition that the Crash was a period of higher volatility (see 
Pagan & Ullah (1988) for a discussion of some of the difficulties 
associated with measuring volatility).

We therefore estimated the following equation:

r“ = a + (y+y Crash.)r“ . + e (7)t O C t  t"l t

where Crash^. is one during the crash week and 0 otherwise, using
hourly data for both the US and the UK6. Our results are reported in
table 4.1.

In the US we find that the coefficient of is negative,
and that it became significantly more negative during the crash week: 
the coefficient changed from -0.09 to -0.45. In the UK, the
coefficient on was positive, but it became negative during that
week, moving from 0.12 to -0.05.

If we attempt to interpret our results In terms of the
theoretical models discussed in section 4.2, they suggest that in the 
US, there are enough positive feedback traders to give us negative 
serial correlation, even though non-trading effects would tend to 
generate positive autocorrelation. The fact that there is even more 
negative serial correlation during the crash week would support the 
model outlined in section 4.2.1 above. Higher volatility made smart 
agents more cautious, and this allowed portfolio insurers and 
stop-loss traders to have a bigger effect on the price, which shows up 
as higher negative serial correlation in returns. The rise in the 
(absolute) value of the coefficient of is also consistent with a
rise in the extent of positive feedback trading (i.e. y rising) or
with a possible decline in the contribution from the non-trading
effect.
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The results for the UK suggest that for much of the period, 
returns exhibited positive serial correlation. This could arise from 
non-synchronous trading and/or negative feedback trading and the fact 
that at prevailing levels of volatility, the amount of positive 
feedback trading is not enough to offset the other effects. However, 
during the crash week, the coefficient turned negative, which is 
consistent with a decline in the non-trading effect, and with positive 
feedback traders having become more important.

The results for the UK are especially encouraging as the 
stock index used is based on mid-market prices. Hence, the negative 
serial correlation cannot attributed to prices bouncing between bid 
and ask.

We view our results as being consistent with the models of 
feedback traders that we outlined in section 4.2.1. However it could 
be argued that we should use more data, and that we should attempt to 
measure volatility. This is the subject of the next subsection.

4.3.2 Evidence using daily data from 1885-1988

We used the time series of daily data from 1885-19887. This 
data set (29,137 observations) consists of Dow Jones returns between 
February 3, 1885 and January 3, 1928. From January 4, 1928 through
July 2,1962, we use the dally returns on the S&P composite portfolio. 
Finally, from July 3, 1962 through December 31, 1988, we use the CRSP 
value-weighted portfolio (see Schwert (1990), for further discussion 
of the data).

We next seek to estimate a linearised variant of (6 ) with 
r=r(<^), i.e.:

Dl 2 / 2 v in f \rt = a ♦ po-t+ ( V V t )rt-l + et (8)
2There are various alternative methods of proxying for <r̂

(see section 3.3.2 for three such methods, and Pagan & Schwert (1990)
2for a comparison). We did use three different models for o*̂ , the 

GARCH-M model (as in section 3.4.2), the Exponential GARCH model (see
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Nelson (1991)) and a semi-parametric proxy (as in section 3.4.3). 
Since the results were quite similar, we only discuss the Exponential 
GARCH model here.

We estimated equation (8 ) jointly with

ln • I m eot+ s eiln °t-i+ gt - i + £ V t - i - j  (9)i = 1 j = i °  J

*
0 . * 0  +ir N. (10)ot o o t

gt = * ?t + S (|€t |-E|€t |) (11)

where N. Is the n u m b e r  of non-trading days (Including holidays and
gweekends) between trading day t- 1  and t .

Note that this model allows for sign (leverage) effects (cf. 
Black (1976), figure 3.2d and chapter 5) through 0C^9-

The results obtained by estimating equations (8 ) and (9) are 
presented in table 4.2. Notice that there is strong evidence for 
leverage effects; 0  is negative, implying that volatility tends to 
rise more when a constant-modulus return surprise is negative than 
when it is positive. Our estimates also suggest a high degree of 
persistence in the variance (with the highest root being almost 1 ) as 
well as leptokurtosis of the conditional distribution (i>=1.4, 
significantly smaller than 2 )

Crucially, we find that higher volatility is more likely to
lead returns to exhibit negative serial correlation - for values of 
2<r^>5.84, returns will exhibit negative serial correlation. An 

illustration of the practical importance of this effect is provided in
the context of the 1929 and 1987 crashes respectively. In 1929 the
EGARCH measure of volatility peaked at nearly 42, implying a
first-order autocorrelation coefficient of -0.71. The preceding week 
the implied coefficient had been 0.04. Similarly in October 87 the 
peak was even higher at over 56 with an implied serial correlation 
coefficient of -1 when the previous week it had been 0.08. This
dramatically illustrates the extent to which the autocorrelation 
properties of stock returns can change with variations in volatility.
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Hence our results about links between volatility and returns 
autocorrelations remain consistent with the notions discussed in 
section 4. 2.

In the next section, we explore some extensions to our basic 
framework10.

4.4 Some further explorations

4.4.1 Is there more positive feedback trading after market 
declines?

The evidence presented above is consistent with the notion 
that the extent of positive feedback trading rises with increases in 
volatility. It is also possible that large price declines lead to more 
positive feedback trading as compared with large price rises. This 
asymmetry could stem from the fact that those who trade on margin, and 
make large losses after price declines, often have no choice but to 
sell their holdings in order to meet their obligations (see section
4.4.3. below). It may also directly result from the already-mentioned 
possibility that if risk aversion declines rapidly with wealth, then a 
decline in wealth (caused by r”_j<0) leads to an increase in positive 
feedback trading.

We explored the possibility that such an asymmetry exists by 
including an additional term, 7  |r® .|, in the returns equation soS t"*l
that the coefficient on would be:

7  + 7  + 7  a\ if r" .fcO-io s l t t- 1

2  . _ m , _
if rf 1 <Ĉ  o s  it t—1

(12)

2Ignoring for the moment the fact that may depend on the
sign of r® ., equation (1 2 ) implies that for 7  >0 , market declines t 1 s
make it more likely that returns will exhibit negative serial
correlation (as there will be more positive feedback trading).

2However, since in the EGARCH formulation we allowed to have an 
asymmetric response to price changes, it is possible that the effect
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that we seek to find here has already been captured.

On using the above formulation in the context of the EGARCH 
model we obtained the following parameter values (asymptotic standard 
errors in brackets):

A A A
7  =0.101 7  =0.054 7  =-0.019o "s l

(0.004) (0.004) (0.001)

so the evidence seems to strongly suggest that there is more positive 
feedback trading after market declines than there is after market 
rises.

4.4.2 Margin requirements and the extent of positive feedback
trading

It is sometimes argued that when stocks are purchased on 
margin, price declines cause positions to be liquidated. This selling 
causes further price declines, further liquidation of margin 
positions, and so on. This is usually called depyramiding (see e.g. 
Garbade (1982)).

This view predicts that a decrease in margin requirements 
increases the vulnerability of a market depyramiding. There has 
recently being renewed interest in the relation between margin 
requirements and stock market volatility (see e.g. Hardouvelis (1989), 
Hsieh & Miller (1990), Salinger (1989) and Schwert (1989b)). While 
Hardouvelis (1989) claimed to find that higher margin requirements 
depresses stock market volatility, much of the other research 
disagrees with this claim.

Here we look for evidence of depyramiding by examining the 
effects of margin requirements on the serial correlation pattern of 
returns. Since in our model positive feedback trading is associated 
with negative serial correlation in returns, depyramiding should 
increase the absolute value of this serial correlation.

We interacted with (one minus) margin requirements as a
proxy for margin credit, so that the additional component of the
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coefficient of is 0 (1-margin^). If higher margin requirements
did reduce the extent of positive feedback trading, then, we would 
expect ^ i < 0

We re-estimated our model from 1934 onwards (when the 
Federal Reserve Board first set compulsory margin requirements) and 
obtained:

« 0. 0020 
(0.0019)

which is statistically insignificant, and in fact, assumes the 
opposite sign to what was predicted by the above analysis. There is no 
evidence hence for the view that variations in margin requirements 
significantly affect the serial correlation of returns.

One does, though, need to be cautious. For much of this 
period, margin credit has been a rather small proportion of the value 
of New York Stock Exchange stocks, e.g. between 1945-85, margin credit 
never exceeded 1 1 /2 % of the market value. It is perhaps necessary to 
look at periods when margin credit was more important (e.g. the 
1917-1930 period when it was well over 10%) in order to examine the 
effects of variation in margin requirements. Unfortunately, we have 
little time series information on the average of broker-imposed margin 
requirements.

4.5 Conclusions

The empirical work reported here suggests that when 
volatility is low, stock returns at short horizons exhibit positive 
serial correlation, but when volatility is rather high, returns 
exhibit negative autocorrelation. This time-varying nature of the 
serial correlation pattern appears to be robust across different 
periods and different measures of volatility.

These results are consistent with a model where some traders 
follow feedback strategies, and where non-synchronous trading also 
contributes to the serial correlation of returns. As volatility
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increases, the positive feedback traders have a greater influence on 
the price (not only because smart traders are more cautious but also 
because there is then more positive than negative feedback trading), 
which then manifests itself in greater negative serial correlation in 
returns. The increase in the extent of positive feedback trading could 
also be consistent with rational behaviour if some investors have 
preferences with risk aversion that declines with wealth (see e.g. 
Black (1988) or Marcus (1989)). This, combined with a possibly 
diminishing contribution from non-synchronous trading can go some way 
towards explaining the switch in sign in the serial correlation of 
returns.

Although we know of no other empirical work that documents a 
volatility-induced switch in sign in the serial correlation of 
returns, there is other work on the foreign exchange market that is 
broadly consistent with ours. Ito & Roley (1986) and Goodhart and 
Giugale (1988) have demonstrated, using hourly data, that log price 
changes exhibit negative serial correlation, with the degree of serial 
correlation rising substantially after large "jumps" in exchange rates 
(which should correspond to periods of high volatility).

We also find some evidence which suggests that the extent of 
positive feedback trading is greater following price declines than it 
is after price rises. This asymmetry is consistent with both the 
possibility that risk aversion declines rapidly with wealth and with 
the existence of significant distress selling after price declines. 
Note, though, that we were unable to detect any effect of initial
margin requirements on the serial correlation of returns.

An explanation of the time-varying pattern of serial
correlation in returns that is based on feedback traders is of course 
not the only way in which one may interpret our results. It is likely 
that alternative explanations of the serial correlation in returns
that rely on changes in the price of risk (see e.g. Black (1989),
Marcus (1989)) could be modified in order to accommodate our empirical 
findings. Further, explanations based on market micro-structure might 
work11, though note that neither non-synchronous trading nor the 
existence of bid-ask spreads can explain our findings.
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ENDNOTES

1 The model here is a special case of Shiller’s (1984) fads model - 
for recent examples of the use of this model, see, e.g. Cutler, 
Poterba & Summers (1990).

2 Note that the size of the current level of wealth, W, is to be 
assessed relative to some threshold value, Wmin, which gradually 
increases with a rise in prosperity. So the model need not predict 
that the extent of portfolio insurance falls as investors get 
richer.

3 Non-trading may induce negative autocorrelation in the returns to 
an individual security. However, when considering an index, we 
would expect the positive serial cross-correlation to dominate the 
individual securities’ autocorrelation.

4 Another possible reason for the existence of serial correlation in 
returns could be that transactions bounce randomly between bid and 
ask prices. We would, though, be surprised if this were a serious
problem in the case of daily returns for the index, which is what
we consider here. It is possible that, in exceptional periods, a 
large number of stocks may close at either the bid or ask at the 
same time. Note, though, that the stock index for the UK is based 
on mid-market prices, and does not suffer from this problem.

5  For New York we use hourly values of the Dow Jones Index, and for
London, we use the Financial Times 30 Share Index.

6  To avoid weekend and overnight effects, we choose to drop the first 
observation on each day.

7  The data from 1885 up to 1962 was kindly provided to us by 
G.W.Schwert. The return series is expressed in percentage terms.

8  We also experimented with Including a separate dummy variable in 
the variance for the trading halt between July 31 and December 12, 
1914, with no significant effect on the results.
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To capture the degree of leptokurtosis exhibited by stock market 
data, we shall assume that the standardized innovation 
follows an i.i.d. Generalized Error distribution with 0 mean, unit 
variance and tail-thickness parameter v (for v-2 this distribution 
reduces to the standard normal distribution, whereas for v<2 it 
becomes leptokurtic).

1 0  We have also re-estimated our model over 3 sub-samples (1885-1916, 
1917-1947 and 1948-1988) with very similar results. The only major 
difference was a striking increase in rQ in the last sub-period.

1 1  While explanations based on market micro-structure can generate 
serial correlation (of either sign), we do not know of any model 
that can explain a switch in sign with changes in volatility.
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Table 4.1

Serial Correlation in Returns 
Estimates using Hourly Data (July 1987 - February 1988)

INDEPENDENT U. S. U. K.
VARIABLE Data Data

rt-1 -0.09 0.12
(-1.79) (2.75)

Crash^r^.^ -0.36 -0. 17
(-5.06) (-2.77)

No.obs. 973 1138

R2 0.083 0.018

Notes: (i) Equation estimated is = a + (rg+^Crash^)r^_j + e
(ii) Asymptotic t-ratios in brackets.
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Table 4.2

EGARCH Model: Parameter Estimates 
Daily data 1885-1988 (29,137 obs)

PARAMETER ESTIMATE T-RATIO

a 0.047 6.383

p -0.002 -0.201

7 0.111 16.493o

7 -0.019 -7.272l

0 - 0.000 2.001 o

7i -0.000 -0.523o

0 1.891 176.864l

0 -0.891 83.8062

w -0.978 273.823l

0.215 21.442

-0.116 22.019

1.403 -40.487

t-ratio for v tests normality (i.e. v=Z)
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QUADRATIC ARCH MODELS:
A POTENTIAL RE-INTERPRETATION OF ARCH MODELS
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5.1 Introduction

The analysis of economic time series data usually involves 
the study of the first and possibly second conditional moments of the 
series (given past behaviour) in order to characterise the dependence 
of future observations on past values. As an example, consider the 
univariate stochastic process x^, t=l,2,..., whose first two
conditional moments given the information set (generated by)

x t-i=(lct - r x t-2— } are:
Mt = E(x)./Xt_1) = (la)

•t = ' " V ’W  (lb)

In this context, the first step often consists in the
2estimation of the conditional mean, p^, and variance, In practice,

though, this is not a simple task as both p() and <r () are generally 
unknown functions of the information set The most common
approach employed is to assume a particular functional form for p() 
and <r () characterised by certain unknown parameters (which have to be 
estimated), although non-parametrie techniques (which obtain estimates 
of and directly) and mixed approaches (semi-parametric) have 
gained increased attention recently (see Robinson (1988) and Ullah
(1988) for recent surveys).

Within the class of parametric functions, ARMA models are
predominant for the conditional mean p(), while ARCH models enjoy a
similar status, although to a lesser extent, with respect to the

2conditional variance <r (). While all models are by definition
simplifications of reality, ARMA models are usually rationalized from 
a statistical point of view using the Wold Decomposition theorem. 
Potential Justifications for ARCH are only beginning to emerge. Given 
that ARCH models closely resemble ARMA models for the squared
innovations (see e.g. Bollerslev (1986) or Pantula (1986)) one obvious 
possibility is that Wold’s theorem also applies to this process (see 
Brock, Hsieh and LeBaron (1990)), but this implicitly assumes that the 
non-negative squared innovations constitute a linear process. A less 
obvious justification is provided by Nelson (1990b), who shows that 
ARCH models can consistently approximate continuous time diffusion (or
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near diffusion) models when the sample frequency increases. This 
property is shared, though, with many other parameterizations for 
<r2().

But there are at least two other interpretations of ARMA
models which can also be useful in modelling dynamic
heteroskedasticity. For the sake of clarity, let’s assume that
is in fact a function of the past r values of xt only, i.e. =
u(x. ), with x. = (x. ,,x. ...,x. ). In this framework, it ist-r t—r 1 t—z t-r
always possible to understand AR(r) models from an analytical point of
view as first-order Taylor approximations to the unknown conditional
mean function u O 1. That is, if we linearise u(x. ) around somet~r
arbitrary point as:

K(*t_r > “ “ “ + r’xt-r (2)

where Dp(x. ) denotes the gradient vector of u() evaluated at x. , t—r t—r
and 7=Du(x. ), a=u(x. )-Dp(x. )’x. , we obtain an AR(r) process .t—r t-r t—r t—r
But from a forecasting point of view we can also think of AR(r) models
as approximating the conditional mean p(x^_^) (which is the Minimum
Mean Square Error predictor of x^ based on the relevant information
set, x. ) by the Minimum Mean Square Error Linear Predictor of x,, t—r t
say BLP(x^/x^_ )= a+3r’x^_ . This yields the familiar interpretation of

^ ^ 3
Zj as a (theoretical) regression coefficient .

The empirical success of ARMA models and the fact that there 
is no such universally accepted model for the conditional variance4 
suggests that it is perhaps worth extending these two interpretations 
of the conditional mean to the conditional variance function <r (). The 
main difference is that although <r () will be positive (almost)
everywhere, there is no guarantee that a Taylor approximation to <r (),
or Indeed some projection of the squared innovations on the
information set, would5. In fact it is clear that a first-order
polynomial cannot be always positive (unless it is trivially 
constant), and this is also true of any odd-order one. Therefore, an 
even-order polynomial is required.

The purpose of this chapter is to discuss how to model the
2conditional variance <r () as a quadratic function of To stress
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this point we shall call this formulation the Quadratic ARCH (or 
QARCH) model. Despite the fact that we shall often treat QARCH as if 
it were the true data generation model, it should be clear from the 
above discussion that it might be more realistic to interpret it as 
the quadratic projection of the square innovation on the information 
set, or, alternatively, as a second-order Taylor approximation to the 
unknown function cr ().

Under certain conditions the QARCH model reduces to the 
recently proposed Augmented ARCH (AARCH) model of Bera and Lee (1990), 
which in turn encompasses Engle’s (1982) original ARCH model. It also 
nests the linear "standard deviation" model discussed by Robinson 
(1991), and the asymmetric ARCH model in Engle (1990). This nesting 
has at least three non-trivial advantages. First, many theoretical 
results derived for these models still hold with minor modifications 
for the QARCH model, including estimation and testing, stationarity 
conditions and persistence properties, autocorrelation structure, 
temporal and contemporaneous aggregation, forecasting, etc. Second, 
QARCH conditional variances can also be easily integrated in economic 
models, Just as traditional time series models for the conditional 
mean are (see Hentschel (1991) for an application to a stock returns 
model). Third, the QARCH model is capable of improving the empirical 
success of ARCH models, since it avoids some of its criticisms without 
departing significantly from the standard specification. In 
particular, it provides a very simple way of calibrating and testing 
for dynamic asymmetries in the conditional variance function of the 
kind postulated for some financial series (see e.g. Black (1976), 
Nelson (1991), and figure 3.2d).

In turn, the QARCH model may be nested into two 
nonparametric approaches to dynamic conditional heteroskedasticlty. 
First, a quadratic polynomial constitutes the leading term in 
Gallant’s (1981) Flexible Fourier Form approach, where extra 
trigonometric terms are added to the conditional variance function 
(see in this context Pagan and Hong (1991) and Pagan and Schwert
(1990), or Andrews (1991) for other nonparametric polynomial series 
procedures which would also nest QARCH). Second, a piecewise quadratic 
spline approximation to the unknown conditional variance function 
would also encompass QARCH as a trivial smooth example, as well as the
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models of Glosten, Jaganathan and Runkle (1989) and Zakolan (1990). 
Hence, QARCH may also provide a useful benchmark to compare the 
relative performance of these estimators.

At the same time, given that many issues in finance, and in 
particular, asset pricing theories, are related to the variances and 
covariances of many assets, it is of the upmost practical importance 
in this context to be able to extend univariate models so as to 
capture time-variation in the (conditional) mean vector and covariance 
matrix. An additional advantage of the QARCH formulation is that it is 
very easy to generalize to multivariate models, either directly, or 
more conveniently, through the different covariance structures 
suggested in the literature. Hence, it can also capture potential 
dynamic asymmetries at a multiple assets level.

The chapter is organised as follows. Section 5.2 introduces 
the QARCH(q) model, and interprets it both as the quadratic projection 
of the square innovations on the information set, and as a quadratic 
Taylor approximation to the unknown conditional variance function. It 
also discusses its generalization to GQARCH(p,q) along the lines of 
Bollerslev (1986), and states under what parameter restrictions all 
the other proposed quadratic models can be obtained from it. Section 
5.3 re-formulates the GQARCH model as a random coefficients model, and 
obtains the stationarity condition as well as an expression for the 
unconditional variance. Fourth moments, the autocorrelation function 
for the squares of the series and the covariances between these and 
lagged levels are also discussed. In section 5.4, an illustrative 
empirical application of the model to daily data on US stock returns 
is carried out. Potential generalizations to the multivariate case are 
entertained in section 5.5. In particular, a latent factor model with 
GQARCH factors is discussed in some detail, and estimated for monthly 
stock returns of twenty six UK sectors. Finally section 5.6 concludes.

5.2 The QARCH Model

5.2.1 Definition

2Let’s assume initially that p(X^_^)=0 and that <r is a
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2 2function of the past q values of only, i.e. <r x̂t-q^’
with x. = (x. „,x. x. ). The following conditional variancet-q t-1 t-2 t-q
parameterization:

<r2(x. ) = 0 + 0’x. + x. ’Ax. (3)t-q t-q t-q t-q

is the most general quadratic version possible of the parametric ARCH
variance function h(x. ;0) considered in Engle (1982), and for thatt—q
reason we shall call it the Quadratic ARCH (QARCH hereafter) model. It 
therefore encompasses all the examples of quadratic variance functions 
proposed in the literature: the Augmented ARCH model of Bera and Lee
(1990), the standard ARCH model of Engle (1982), the linear "standard 
deviation" model considered by Robinson (1991), and the asymmetric 
ARCH model in Engle (1990) and Engle and Ng (1991). The AARCH model 
assumes that 0=0, whereas Engle’s ARCH assumes that, in addition, A is
diagonal. The linear standard deviation model assumes that = (p +

2 2 6 f ’x ) which implies 0=p , 0=2p^p and A=<p<p', a rank 1 matrix . An c—q
obvious fourth restricted parameterisation, of which the asymmetric 
ARCH model is a special case, is also encompassed: a model with A
diagonal but 0*0, which we shall term the diagonal QARCH process. In 
order to see more clearly the differences between the various 
specifications nested in the QARCH model, let’s rewrite equation (3) 
as

q q

°t " 8 " E *ixt-i+ E an xt-i + I au xt-iVj (4)1=1 1=1 1*J

Engle’s (1982) ARCH model7 would only include the second 
term in the right hand side of (4), Bera and Lee’s (1990) AARCH both 
the second and third terms, whereas the diagonal QARCH, and therefore 
Engle’s (1990) asymmetric ARCH, the first two. On the other hand, the 
linear "standard deviation" model of Robinson (1991) would include all 
three but with restrictions on the parameters.

The cross-product terms give an indication of the extra
effect of the interaction of lagged values of x̂. on the conditional
variance. Hence, by allowing them to be non-zero, it is possible to
account for the possibility that the occurrence of e.g. two successive 
large values of x̂. of the same sign affects the conditional variance
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by more that a ARCH model would allow. But the substantive advantage
of the QARCH formulation versus the AARCH and ARCH models which it
nests, is that by allowing 0 to take any value, i.e. by not centring
the quadratic polynomial for <r () at 0, an dynamic asymmetric effect

2 8of positive and negative lagged values of x̂. on <r̂  is allowed . As an
2 2 example, let’s take the QARCH(l) model, i.e. = 0 + an xt-i*

If 0^ is negative, the conditional variance will be higher when
9is negative than when it is positive . In the context of stock market

volatility, this could capture the leverage effect noted by Black
(1976). Hence, the QARCH model may provide an additive heteroskedastic
alternative to the asymmetric multiplicative heteroskedastic EGARCH
model of Nelson (1991) used in section 4.3.2. On the other hand, in
ARCH and AARCH models (i.e. 0^=0), only the magnitude, not the sign, 

2of affect <r̂ . By contrast, in the linear standard deviation model
symmetry is only achievable if p=0 (in which case we have AARCH with 
<r (0)=0), or under homoskedasticity.

As we mentioned before, one of the reasons for using a
quadratic polynomial is to ensure that our parameterization implies a
positive variance everywhere. To see under what conditions the right
hand side of (3) will be positive for any x. , let's consider thei—q
case when A has full rank. Then (3) can be re-written as:

<r2(x ) = 0-1/4 0’A " V(** +1/2 a " V ) ’A(x . +1/2A_10) (5)t-q t-q t-q

This quadratic function will be positive if and only if A is 
positive definite and 0 - 1/4 0’A *0 > O10. But from the practical 
point of view we are interested in parameter!sing (3) in such a way 
that the estimated conditional variance is always non-negative. In 
view of the previous discussion one possible simple way of achieving 
this is as follows (see Schwallle (1982)):

o-2. = (i,x; jroVu.x; r (6)t t-q t-q

where P a (q+l)x(q+l) unit lower triangular matrix and D a diagonal 
matrix of the same order. The relation between (3) and (6) is obtained 
by regarding p dV  as the Cholesky decomposition of the (q+1)

symmetric matrix [ */2 J ] . Unfortunately, this reparameterization
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is only one-to-one if A has full rank. For suppose that the last q 
elements of D are zero (as in the linear "standard deviation" model, 
where It is then clear that the sub-diagonal elements in the
last q^ columns of P do not appear in the expression for the variance.

5.2.2 QARCH models and Quadratic Projections

Given that we are assuming that M(X. , )=(),
2 2<r (Xt_j)=E(xt/Xt_j) can be regarded as the Minimum Mean Square Error 
(MMSE) Predictor of x2 based on ^t-1' That is, 
E[x^-<r2(Xt_1)]2^E[x^-P(x^/Xt_1)]2 for any predictor of x2, P(x2/Xt_1), 
which uses X^_^ as the information set. However, as <r () is generally 
of unknown functional form, a natural generalization of the usual 
practice of replacing conditional means by linear (least squares)
projections of information would be to approximate o* () by the MMSE

2 2 quadratic predictor of x^ given X^_^, say BQP(xt/Xt_^).

Taking as the space spanned by all possible linear
combinations of the elements of the vector xt-l s

<l,xt_r x  xt-l’ xt-2* * ’Xt-lXt-2’Xt-lXt-3' * * ‘ we can deflne
2 2 quadratic predictors of x^ given X^_^ as linear predictors of x^ based

on the "quadratic" information set *t-l* That *s*
QP(x2/Xt_1)=LP(x2/Xt_1). Therefore, the MMSE (or best) quadratic
predictor of x. given X.,, will simply be the least squares 

2projection of x^ on ,. For this reason, we shall refer to
2 2 BQP(xt/Xt_1) as the quadratic projection of x^ on Xt_̂ .

As expected, the prediction error will be orthogonal to any
linear combination of lag values of x^, its squares or cross-products,
but the significant result is that this projection will take the form
given in (3), i.e. it will look like a QARCH model (with q possibly
infinite). Hence, all QARCH parameters can be interpreted in this

2framework as the (theoretical) regression coefficients of x̂. on
For example, consider the QARCH(l) model where BQP(x2/X^_^) = G +

2 2 0^xt-1+ an xt-l’ Since this can be re-written as x^ = 0 + +
allXt-l + ^t’ T,t=Xt~B^P X̂t/Xt - l under the additional
assumptions that E(xt)=0 and all necessary moments exist,
a^=cor(x2,x2_^) and 0 = cov(x2, ) / V ( x ^ ) . Hence, a ^  is a measure 
of the correlation in the square series, while 0^ measures dynamic
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asymmetry11.

An important result is that if the Joint distribution of
xt,Xt-l’’‘* *S symmetric anc* the conditional variance function is also 

2 2symmetric (i.e. <r (X̂ ._j)=<r in an abuse of notation), then the
quadratic projection will be symmetric too. The reason for this is
that cov(x^,xt__j)=E(<r2(Xt_1)xt_j)+E( [x̂ -<r2(Xt-1)]xt_j)=0, so ^  must
be 0 for all J. This actually suggests that cov(x2,x^_j) could be a
useful tool to identify potential dynamic asymmetries even if QARCH is

2 2not the true model, since when <r (Xj._̂ )*<r this third moment
12may differ from 0 . This result also implies that when the data

generation process is x.=xV(r ), with xf iid N(0,1) and <r (x. )t t t-q t t~ q
non-quadratic but symmetric (as in Higgins and Bera (1990), Schwert 
(1989b) or Engle and Bollerslev (1986)) the quadratic projection will 
simply be of the AARCH (or ARCH) forms.

This property is also consistent with the results of Drost 
and Nijman (1990) and Nijman and Sentana (1991) in the context of 
temporal and contemporaneous aggregation respectively of GARCH

13processes . These papers show that if such terms do not appear in the 
quadratic projections of the underlying series, then they do not 
appear in the projection of the aggregated one either (but it is easy 
to prove that if one series shows dynamic asymmetry, then so will the 
aggregated one).

5.2.3 QARCH Hodels and Second-Order Taylor Approximations

If <r2(X. ,) ■ <r2(x. ), a quadratic Taylor approximation to
2 ^ _«r (X. «) around some arbitrary point x. is given by, t-—l x» -q

^ ' V q *  “ + Dff2(it-q)'(Xt-q-it-q)

+ 1/2 (x. -x. )' DV(x. ) (x. -x. ) = (7)t-q t-q t-q t-q t-q

2 — 2  2 ~where Do* (x. ) and D <r (x. ) denote respectively the gradient vector
(i.e. 6(t2/5x. ) and Hessian matrix (i.e. 62<r2/6x. d x \  ) of <r ()t-q 2 _ t-q t-q
evaluated at x. If we call 0 = <r (x. ) - D<r (x. )’x. + 1/2t “C| t-q t ”(j t»“(j
x- O 2̂ 2(3C ) x , 0 = D<t2(x ) - D <r2(x )x , A = 1/2t q t q t q  t q  t q t q
D2(r (x . ), the right hand side of (7) is again of the QARCH form,t-q■q
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From the discussion in section 5.2.1, an obvious example of
a point, for which the approximation in (7) will be positive
everywhere, is the minimum of cr2(), say x"ln, since at the minimum thet— q
gradient is zero and the Hessian would be positive (semi) definite.
However, there is no reason to believe that x"ln is the only such

2 ^value. For instance, if <r () is itself quadratic any point will do
Just as well. Therefore, although is tempting to view (7) as <r2(x“ln)t~(j
+ 1/2 (x^_^- D2o*2(x^ ”) (x ^_^- this interpretation
cannot be taken for granted (cf. the discussion in footnote 2 about
the mean). Notice also that the minimum of <r2(), x?ln, is not

** -inecessarily equal to the minimum of the approximation, -1/2 A 0,
unless we could choose x. = x“ln 14.t-q t-q

5.2.4 Estimation and Testing for QARCH effects

Given the interpretation of QARCH models as quadratic 
2projections of x^ on x^_y a consistent method of estimating the 

parameters is provided by the OLS regression of x̂. on the relevant 
elements of x^_j Weiss (1986)). If QARCH is the true model,
though, this regression ignores information about the properties of 
the projection errors, t)̂ , resulting in inefficient parameter 
estimates. The preferred method of estimation for ARCH models has been 
maximum likelihood, but since this involves a nonlinear procedure, it 
is of some interest to have a simple preliminary test for the presence
of QARCH effects. For the ARCH(q), Engle (1982) proposed an LM test

2 2 which cam be computed as TR of the OLS regression of x^ on a constant
2and its first q lags. This test is distributed as a y under the null

of no ARCH even if x^ is not conditionally Gaussian provided that the
fourth moment of x^ is constant and finite (see Koenker (1981)). Bera,
Higgins and Lee (1991) have extended this test to the case of AARCH(q)
by including cross-product terms of the form x._.x._. in the above
regression, resulting in a %q(q+i)/2 distribution. It is
straightforward to check that if we also add the first q lags of x^ as
regressors, an LM test for QARCH (q) is obtained, which will be 

2distributed as *q(q+3 ) / 2  under homoskedasticity. It is worth noticing 
that this test is the analogue of White’s (1980a) general test for 
static heteroskedasticity, which suggests that it may also have good 
power against most other dynamic heteroskedastic alternatives. As
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White’s test, it can also be derived as a test for random coefficients 
(see section 5.3.1 below)

But as in the ARCH(q) model (see Demos and Sentana (1991a)), 
some of the true parameters lie at the boundary of the parameter space 
under the null of no QARCH. Although this does not affect the 
distribution of the LM test, intuition suggests that a more powerful 
test could be achieved by taking the (partially) one-sided alternative 
into account. For the sake of clarity let’s consider testing against a
QARCH(l) alternative. As we have seen, the two sided LM test is based

2 2 on the regression of on a constant, and Notice that if
Xj. is symmetrically distributed, the regressors are orthogonal under
the null, and we would expect each OLS coefficient to take any sign
independently of the other. But under the alternative we would expect

2the coefficient of to be positive. Hence, a partially one-sided
test of Hq: vs H : 0^*0, seems more appropriate. The
test statistic will be the result of adding to the square of the

2t-ratio associated with xt_j» the square t-ratio for when the
coefficient is positive (cf. Yancey et al (1980)). Under the null this

2 2 15statistic is distributed as a 50:50 mixture of x^ and x^

5.2.5 GQARCH(p,q) models

So far we have maintained the assumption that the relevant 
information set contains only a finite number of lags, q. But this may 
be too restrictive (for instance, Nelson’s (1990b) consistency results 
depend on q being unbounded). Besides, even if q were finite, 
estimating the model for large q will be difficult as the number of
parameters in A is 0(q ), and we would need to Impose some structure
on this matrix. For example, one could introduce a rank k (k<q) 
structure in A (e.g. if k=l, we would thus obtain the linear "standard 
deviation" model) but even in that case, the number of parameters 
could still be excessive for q large. Perhaps the most natural way to 
solve this problem is by introducing a declining structure on the 
coefficients. Just as in conditional mean models, this structure can 
be either rapidly decaying or more slowly so (as in Robinson (1991)).
In particular, an exponentially declining lag structure can be

2obtained by including lagged values of <r̂  on the right-hand side of 
(3), as in Bollerslev (1986). That is:
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= 0 + 0’x. + x! Ax. + £ S.trf . (8)t-q t-q t-q ^  j t-j

By analogy with Bollerslev’s (1986) GARCH and Bera and Lee’s
(1990) GAARCH models, we shall term these models Generalized QARCH
models of orders p and q, or GQARCH(p,q) for short. As in the case of
ARMA models, these GQARCH models will generally result in longer
memory models with a flexible lag structure, which, at the same time,
could offer a more parsimonious approximation to the conditional
variance function. For instance, the asymmetric GARCH(1,1) model in
Engle (1990) and Engle and Ng (1991), a GQARCH (1,1) model, is
equivalent for S^<1 to a diagonal QARCH(co) model with an infinite
dimension matrix A whose diagonal elements decline exponentially at a00
rate 5., and an infinite dimension vector 0 whose elements also 1 00
decline at the same rate. For higher order (invertible) models the
pattern of coefficients of A and 0 will become more complex, but00 00
notice that the order of band-diagonality of A will always be 2q-l,00
where q is the order of the QARCH part .

5.3 Properties of the QARCH Model

5.3.1 Stationarity Conditions and Moments of the
Unconditional Distribution

Let’s now consider the following process:

xt " + E 'nVi + E Sjt't-j (9)1=1 J=1 ^

where the anc* ^jt_s are ranc*om coefficients. If we assume
that is i.i.d. (0,0), T). *= (u,..... tj . ) i.i.d. (0,A) witht t It qt
cov(T)t,Ct)=l/2 0, £t = (€u  €pt) i.i.d. (0,A), with A diagonal,
and independent from and we will then have that x̂ . is a
stochastic process whose conditional mean is 0 and whose conditional

17variance is given by (8), i.e. a GQARCH(p,q) process .

This interpretation is not unexpected, since the GQARCH 
model encompasses the GAARCH model of Bera and Lee (1990), which is
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18introduced as a random coefficients model Although either the
quadratic projection or the second-order Taylor-approximation
interpretations of QARCH (and hence AARCH) models are more intuitive,
the random coefficients formulation allows us to derive more easily

19the (covariance) stationarity conditions . In this respect, it is
q p

possible to prove (see appendix 5) that, provided that £ a.
i=i 1=1

less than 1, the unconditional variance of xt is given by

q p
V(xt) - 0 / (1- j an - £ 5 ) (10)

1=1 1=1

Notice that the covariance stationarity of x^ does not
depend at all on the linear term in the conditional variance, 
only on the quadratic term associated with the matrix A. Loosely 
speaking, it is as if the quadratic term asymptotically dominates the 
linear one. Besides, the stationarity condition for GQARCH (and hence 
GAARCH) is the same no matter what the off-diagonal elements of A are,
and so it coincides with that of the nested GARCH model. Notice also
that the actual value of the unconditional variance does not depend on 
0. Besides, as (10) does not depend on the off-diagonal elements a ĵ* 
the unconditional variance of a GAARCH(p.q) process equals the 
unconditional variance of the GARCH(p,q) process obtained from it by 
setting the off-diagonal elements of A to 0.

An heuristic proof of (10) may help us understand the reason
for the similarity of the unconditional variances for GQARCH, GAARCH
and GARCH models. Let’s suppose that Etx^) exists and is equal to
<r2=E(<r2). Then, if we use the parameterisation of the conditional

q q2 2variance given in (8) (i.e.. <r = e E aliXt-l
1 = 1  1 = 1

P 2+ y a, ,x, ,x, , + V 8 .<r . .), take expectations at both sides and ^  1J t-i t-J j t-j
solve for tr2, we get exactly expression (10) as both the linear terms
and the cross products vanish because x^ is a zero-mean uncorrelated
process.

q p
As in standard GARCH models, the sum £ a. . + £ 5. provides

1=1 j=i
a measure of the persistence of shocks to the variance process (but
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see Nelson (1990a)). Hence, we can analogously define Integrated 
GQARCH process as those for which this sum is 1 (cf. Engle and 
Bollerslev (1986)). For instance, the IGQARCH(1,1) will be defined as 
<r2s=0+0x^_j+(l-S)x2_j+5<r2_j, which shares with the IGARCH(l.l) the 
property that E(<r^+j/Xt_1 )=J0+cr^ 20.

In order to discuss higher moments, let’s define x* as the 
standardized variable associated with x^ (i.e. xj^x^/o*^). So far we 
have mainly assumed that E(x*/Xt_1)=0, and E(x*2/X^_^)*1, but if we 
assume that x*/X^_^ is symmetric, so is the unconditional distribution 
of x^. To obtain static fourth moments, assume for simplicity that x* 
is i.i.d. with finite fourth moment n . Provided that the appropriate

4 4moments exist, by Jensen inequality we will have that E(x^) = i^ECo*^) 
H4E2(<r̂ ) = M4V2(xt), which shows that the degree of leptokurtosis of 

the unconditional distribution of any zero mean conditionally 
heteroskedastic model is higher than the degree of leptokurtosis of 
the assumed distribution for x* (see also Clark (1973)). Thus, GQARCH 
models share this property with GAARCH and GARCH ones (or indeed with 
any other Conditionally Heteroskedastic model). In general, though, it 
is very difficult to make any general comparison of their 
leptokurtosis.

The GQARCH(1,1) process is an important exception. Assuming
symmetry for x*, it is possible to show that, provided 

2 2f i ^ a ^ + 2 a ^ ^ e  fourth moment of x^ is given by:

**4® 2-------- ----------- ------------  [0(l+a +5 ) + 0 ] (11)(1 “ M4air2anar V (1'airV
which reduces to the expression in Bollerslev (1986) for 0^=0 and 
(i.e. normality). However, if 0^*0, the GQARCH(1,1) process is more 
leptokurtic than the GARCH (and GAARCH) (1,1) model which it nests, 
although the condition for existence of fourth moments is the same 
(see Bollerslev (1986) for a plot of the appropriate region).

5.3.2 Dynamic Correlation Structure

QARCH processes are uncorrelated but certainly not serially
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independent. As an example, Bollerslev (1986) proves that in the
GARCH(p,q) case the autocorrelation functions for corresponds to
that of an ARMA[max(p,q), p] and suggests using the sample
autocorrelations as a tool for tentatively selecting the orders p and
q, the intuition being that GARCH models can always be re-written as

2ARMA processes for x^. In the general GQARCH(p,q) model, though, the 
2process for x̂ . is more complicated. From (8):

(12)

with and ‘̂̂ t ^ t - l

Nevertheless, under the assumptions that x* is symmetrically 
distributed and the fourth moment of x̂. exists, it is easy to see that 
for k>max(p,q-l) the autocorrelations, p^, follow the analogue of the 
Yule-Walker difference equations:

pk = £ an pk-i+ E 6A - j  (13)

whereas for k^max(p,q-1), the autocorrelations will depend on all the
21parameters (0,0,A,6) .

In particular, the autocorrelations of the squares of the 
GQARCH(1,1) process are exactly the same as those of the GARCH(1,1) 
model. As a matter of fact, the similarity between GQARCH(l.l) and 
GARCH(l.l) is remarkable: they both have the same unconditional mean, 
variance and autocorrelation functions for both the series and its 
squares. Nevertheless, the GQARCH(l.l) has the advantage that with a 
single extra parameter (0^) it allows for both an asymmetric effect on 
the conditional variance and higher kurtosis than the GARCH(1,1) 
process which it nests, and therefore, it goes in the right direction 
towards capturing some of the stylised facts characterising many 
financial time series.

As we saw earlier on, the asymmetry in the conditional
variance can be captured more formally by dynamic third moments of the 

2form k.=Cov(x , x,.). In the GQARCH(p,q) case, a look at (12) shows J J
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that Kj also follow an analogue of the Yule-Walker equations for j>q. 
This apparently surprising results is again due to the quadratic 
structure of the conditional variance function, in which the square 
terms eventually dominate all others. These moments, though, have to 
be understood as unconditional, and therefore unable to capture 
conditional asymmetries. The AARCH(2) model provides an interesting 
example in which Kj=0 for all j, but E ^ ^ t - i ^ t - Z ^ ^ l Z ^ - Z ^ t - l '

QARCH processes may also allow for oscillatory behaviour in 
the conditional variance, which is ruled out in standard GARCH models 
(see Nelson (1991)). As a very simple example consider a stationary 
GQARCH(1,1) process under the additional assumption that the
standardized innovation x* is either 1 or -1 with probability 1/2.

2Since x* will be identically 1, we can write the variance process as:

= (an +5i)(‘rt-i'°‘2) + (14)
2 2For the sake of clarity, assume that 0j is negative and <rQ=<r . Then a

2 2 positive (negative) x* will make <r̂ smaller (greater) than <r by the
2amount 0̂ <r. Whatever value c t a k e s  will obviously depend on x*, but

2 2its expectation, as of period 0, will be closer to <r than <r̂  because
(a^+Sj) is less than 1. In the GARCH case, though, 0^=0 and the
conditional variance will always be equal to the unconditional 

2variance <r . In general, the extra linear term means that the 
GQARCH(l.l) conditional variance will be oscillating around the 
GARCH(1,1) one, being below it when is positive and above when
negative.

5.4 An empirical application to daily stock returns

Econometric models of time-varying variances and covariances 
are particularly relevant in finance applications, and specifically in 
estimation and testing of asset pricing theories. Thus, it is hardly 
surprising that the analysis of financial time series have turned out 
to be the most fruitful application of conditionally heteroskedastic 
models (see Bollerslev, Chou and Kroner (1990) for a recent survey). 
Perhaps the best illustration of this is the sheer volume of research 
on different aspects of stock market return behaviour which assumes
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ARCH-type formulations to model time-varying variances. With this 
background in mind, we shall use here a time series of daily US 
returns from 1885-198822 to investigate whether GQARCH models 
significantly improve the empirical success of standard GARCH models 
in representing the conditional variance of stock market returns.

In order to concentrate on the modelling of the conditional 
variance function <r (), the conditional mean of the returns series r^ 
is assumed to be simply a linear function of its conditional variance, 
plus a simple first order moving average term in an attempt to capture 
the small serial correlation present in the data, i.e.:

''t' “ + - *et-i (15)

where c^ is the innovation in r^ (ct=r^-pt), which we assume follows a
23GQARCH(p,q) process of the type introduced in (3) . To make use of

maximum likelihood methods we require to make an assumption on the 
conditional distribution of e^. Since conditional normality does not 
seem to capture completely the degree of leptokurtosis exhibited by 
financial data, fat-tail conditional distributions are often used (see 
e.g. Bollerslev (1987) or Nelson (1991)). Here we shall assume as in 
Nelson (1991) and section 4.3.2 that the standardized innovation 
e*-e^/<r^ follows an i.i.d. Generalized Error distribution with 0 mean, 
unit variance and tail-thickness parameter v.

Most applications of GARCH models to stock market returns 
have found that a GARCH(1,1) or GARCH(1,2) formulation provides a 
reasonable representation of the data (see Campbell and Hentschel 
(1991), Chou (1988), Engle and Ng (1991), French, Schwert and 
Stambaugh (1987), Pagan and Schwert (1990), etc.). Hence, we have 
taken a GARCH (1,2) model as our benchmark and nested it into a

24GQARCH(1,2) . The number of free parameters is therefore 11. The
estimates of the parameters are reported in table 5.1

The novel result that we obtain is that the vector ^ is 
significantly different from zero (see also Engle (1990), Engle and Ng
(1991)). The Likelihood Ratio test for GAARCH(1,2) vs GQARCH(1,2) 
(distributed as a x with 2 degrees of freedom) yields a value of 
289.7. In fact, a large proportion of the improved fit could be
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achieved with 0^ as the single extra parameter: when we fix 02 to 0 
(minus twice) the difference between the likelihoods is 253.6. There 
is also strong evidence of AARCH-type effects. The off-diagonal 
element of the matrix A is estimated to be significantly different 
from 0: the LR test for the null hypothesis of aj2 =^ a diagonal
GQARCH model) equals 81.58. The sum of both effects is very important: 
the 3 restrictions which reduce the estimated GQARCH(lt2) model to a 
standard GARCH(1,2) model are rejected with a LR of 394.60. 
Nevertheless, the overall evidence against 0=0 is more important than 
the evidence against a^2=0. The LR test for GARCH vs GAARCH is 104.9 
whereas the corresponding LR test for GARCH vs diagonal QARCH is 
313.02. Therefore, these results seem to provide some empirical 
support for the GQARCH formulation of (or rather approximation to) the 
(unknown) conditional variance function as a potential candidate to 
generalize GARCH models for time-varying variances.

As for the parameter values, the most important result is 
that the estimated 0^ is negative, which supports the common view that 
a decline in share prices increases volatility by more than a price 
increase of the same size does: the so-called "leverage effect" (see 
e.g. Black (1976), Nelson (1991), Campbell and Hentschel (1991))25. 
Besides, since the off-diagonal element of A is positive, two 
successive (say) negative return innovations (i.e. bad news) increase 
volatility (ceteris paribus) by more than a standard GARCH model would 
allow. As for the persistence of volatility, we find that the the 
denominator in the unconditional variance formula (i.e. the trace of A 
plus Sj) is estimated to be 0.98579. This is again in accordance with 
earlier results. Note that the degree of leptokurtosis is also high, 
with an estimate of the tail-thlckness parameter v equal to 1.38500, 
which is significantly smaller than 2 (its value under normality), and 
Indicates that the conditional distribution of returns has fat tails. 
Notice that the "price of risk" coefficient p is positive, although 
only marginally statistically significant, a fact which might be 
puzzling from the economic point of view but consistent with other 
empirical work in this area (see e.g. Pagan and Hong (1991), Nelson
(1991) or the results in sections 3.4 and 4.3.2).

We have also estimated the model for the subperiod July 
1962-October 1988. Although there are compelling reasons to believe
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that there may be a structural break in the model after the 1929 crash 
(see Pagan and Schwert (1990) or Schwert (1989b)), our specification 
seems to perform very similarly in the sub-sample. In fact, the major 
difference is the secular increase in the degree of serial correlation 
in the data consistent with the results in section 4.3.2. Although no 
claim is being made about the generality of the estimated 
specification, we have carried out several specification tests in this 
subsample based on the moment restrictions imposed by our assumptions 
on the "standardised" innovations e* (cf. Nelson (1991) and Braun, 
Nelson and Sunier (1990)). In particular, we have tested for zero
mean, unit variance and static symmetry of e*, as well as serial

2independence of e* and (e* -1) for lags 1 to 5. Following Nelson
(1991), we can compute conditional moment tests (cf. Newey (1985b)) by 
replacing these theoretical moments by their sample counterparts and 
checking if they are significantly different from 0. On the basis of 
the results in table 5.3 it seems that the model performs reasonably 
well. The most significant result is the fifth order serial 
correlation in e*, which is hardly unexpected given that no attempt 
has been made to capture the day-of-the-week seasonality in stock 
returns26.

5.5 Multivariate Extensions

Let y^ be a multivariate stochastic process of dimension m 
whose conditional mean is p = ^^t^t-1^ = ^^t-1^ anc* w^ose
conditional varlance-covariance matrix is = ^^t^t-l^ * ^^t-1^’ 
where ^t-l^^t-l • ̂ t-2' ^or sake of clarity, we shall
deal initially with the case in which the dependence of the 
conditional moments on the past is limited to a finite number of lags 
of yt- As in the univariate case, it is straightforward to see that 
multivariate AR(r) processes can be understood as first-order 
multivariate Taylor approximations to the unknown conditional mean 
function p(), or as the linear projection of ŷ. on the multivariate 
information set. A similar approach is available for the covariance 
matrix, but again it is clear that only an even-order polynomial can 
guarantee the positive (semi) definiteness of the conditional 
covariance matrix for all possible values of variables in the 
conditioning set.
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Let yt_^ = vec(yt l> yt_2  yt-q^ be the mqxl vector
containing the values of the m series for those q lags, and let =
v(Z. ) = v[Z(Y. ,)] = s(y. ), be the vector valued function which t t— 1 t~<j
contains all the distinct elements of the conditional covariance 
matrix, where v() is the vector-lower triangle operator which stacks 
the lower triangular portion of a matrix (see Magnus (1988)). Since 
contains m conditional variances and m(m-l)/2 different conditional 
covariances, the dimension of sfc is n=m(m+l)/2. For simplicity let’s 
assume that p(Y^_^) = 0 so that [v(y^y^) ]. Again we can define
a multivariate QARCH model as the quadratic projection of v(y^y^) on 
Yj._j , or as the quadratic Taylor approximation of s(Y^_^) around some 
arbitrary which is given by the expression:

s(yt_q) - s(yt_q ) ♦ Ds(Pt_q )(yt.q-yt_q ) ♦

+ 1/2 ‘V ^ t - q ' W 1 =
= e + + (In8y^_q )Ayt_q (16)

—  2 2 ""where Ds(y. ) and D s  (y. ) denote respectively the Jacobian (i.e.t—q
3s(y. )/dy\ ) and Hessian (i.e. 3vec* [6p(y. )/6y’ )/9y* )q t.—q t~q t — q t~q
matrices of s() evaluated at y^_ , and 0 * 5 ^t- *

1/2 (In®^t-q')D2s(yt-q) *t-q’ * " (In**t-q’ * =
1/2 D By analogy, we shall call this formulation the
Multivariate QARCH(q) model27.

If we partition the nqm x qm matrix A in n square blocks of 
size qm, and if , in addition to ¥ being 0, each one of these n blocks
is in turn a block diagonal matrix with q square blocks of size m, the
right hand side of equation (16) reduces to the multivariate ARCH(q) 
model introduced by Kraft and Engle (1983) (see section 2.1):

■t = B0 ♦ I B V  (17)
1 =  1

where B is a nxl vector and the B -s are nxn matrices and o>, =o i t
v(ytyj.). On the other hand, when ¥=0 but the blocks of A are not block 
diagonal, equation (16) constitutes a multivariate generalization of 
the AARCH model.
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Two problems affect the feasibility of estimating the
multivariate QARCH process in (16). The first one is finding necessary
and sufficient conditions to guarantee the positive (semi)
definiteness of Z^. To date, this problem has not been solved
completely even for the multivariate ARCH(q) model, although Baba et
al. (1989) give a very general parameterization which ensures positive
definiteness. The most important practical problem, though, is the
sheer number of parameters involved, since 8 is n x 1, ¥ is n x mq and
A is nmq x mq, with n=m(m+l)/2. Even the multivariate ARCH(q) model 

2contains n+qn parameters, and in practice further restrictions have 
been imposed (e.g. the diagonal ARCH model used in Attanasio and Edey 
(1987) or Bollerslev, Engle and Wooldridge (1988)).

But as in standard multivariate ARCH models, there are 
several alternatives to simplify the multivariate QARCH model above. 
One would be the a k-factor QARCH model (as in Engle (1987)) in which 
k linear combinations of the y^-s follow univariate QARCH processes. 
Another would be a model in which the variances follow QARCH processes 
but the conditional correlation structure is held constant (as in 
Bollerslev (1990)). Finally, a conditionally heteroskedastic latent 
factor model of the type introduced by Diebold and Nerlove (1989), and 
extended in chapters 1 and 2 but with QARCH-type effects on the 
underlying factors can also be entertained.

However, since only information about lagged values of y^ is 
available, much care has to be exercised when dealing with QARCH-type 
effects in the unobservable factors f̂ . An argument similar to that in 
section 2.6 shows that the conditional variances of each of the
factors, ,t-l=V^k t /Yt-l^’ wil1 ^  given by:

q
Xkt!t-1 = 0k + E ^klfkt-i!t-i + £ akijfkt-i:t-ifkt-j:t-j1=1 l*j °

+ E akii(fkt-i:t-i+wkkt-i:t-i) + E 5kjXkt-j:t-j-l (18)1=1 J=1

where fkt_i , t.j=E(fkt_i/Yt_j) and , t_j=v(f it-i^t-j **

Notice that the only difference between expression (18) and 
a pure GQARCH(p,q) variance like (8) is the inclusion of a correction
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in the standard ARCH terms (which reflect the uncertainty in the 
Kalman filter estimates), but not in the AARCH or linear terms. 
Besides, the Kalman Filter prediction, updating and smoothing 
equations derived in section 2.4 for the latent factor model under the 
assumption that the conditional distribution of the factors is 
proportional to a (standardized) multivariate t with unknown degrees 
of freedom remain valid here since they do not actually depend on the 
particular functional form adopted for the conditional variances.

As a simple example to see whether the QARCH formulation is
able to detect potential dynamic asymmetries at a multiple asset
level, which could not be captured by multivariate ARCH models, we
have estimated a conditionally heteroskedastic latent factor model
with QARCH effects using monthly data from 1971:2 to 1990:10 on excess
stock returns on 26 UK sectors (see the data appendix 5 for details).
The fact that the first two eigenvalues of the unconditional
covariance matrix are 20.46 and 0.73 suggest that one common
unobservable factor is probably a reasonable initial assumption. Given
the small number of observations, we have only considered GQARCH(l.l) 

28parameterizations .

The most important result for our purposes is that there 
appears to be a significant leverage effect in the common factor, 
which is consistent with the results in Braun, Nelson and Sunier
(1990). The LR statistic for f̂=0 under the assumption of conditional 
normality for the factors is 10.74. Figure 5.1 compares the two 
estimates of the conditional variances. The most noticeable difference 
is around January 1975, when there was a 51.6% surge in stock prices, 
which the GARCH(l.l) treats in an analogous manner as the 26.3% drop 
in October 1987 (despite the fact that the rest of 75 was not 
particularly volatile). The factor estimates, though, are remarkably 
close (r=0.999). In fact, the correlation of both the extracted 
factors with the (demeaned) FTA500 excess return series for the same 
period is also very high (=0.984). Not surprisingly, when we fit 
GARCH(1,1) and GQARCH(1,1) models to this series (see table 5.4), 
there is again evidence for a dynamic asymmetric effect (LR=17.67), 
with the corresponding variance estimates being very similar 
(r>0.99)29.
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We have also estimated the model under the alternative 
assumption of multivariate t conditionally distributed factors. In 
this respect, we find that the estimated degrees of freedom parameter 
is 9.73, with a LR test of 516.724! (29.418 for the FTA500 series) , 
which captures the typical excess kurtosis found in stock return data. 
Nevertheless, the QARCH effect is still significantly present in the 
results (LR test of 13.27 for the multivariate data, 9.832 for the 
FTA500).

5.6 Conclusions

In this chapter a general quadratic model for the 
conditional variance of a time series is introduced. The model can be 
interpreted as a second-order approximation to the unknown conditional 
variance function, or perhaps more interestingly, as a quadratic 
projection of the square innovations on the information set. This 
seems to be a natural generalization of the usual assumption that

31conditional means are linear projections of information . It has also 
the advantage of yielding a class of models that, like ARMA models, is 
closed under temporal and contemporaneous aggregation.

It turns out that this model is the most general quadratic 
version possible of the class of Autoregressive Conditionally 
Heteroskedastic (ARCH) models introduced by Engle (1982) and for that 
reason we have called it Quadratic ARCH, or QARCH. It encompasses the 
Augmented ARCH model of Bera and Lee (1990), which allows interactions 
between different lags of the series to affect the conditional 
variance, and the standard ARCH model of Engle (1982). It also nests 
the "linear standard" deviation model in Robinson (1991) and the 
asymmetric ARCH model in Engle (1990). Its main distinctive feature is 
that it does not restrict the quadratic approximation to be centred at 
0, and therefore allows an asymmetric effect of positive and negative 
lagged values of the series. It therefore provides an asymmetric 
"additive" heteroskedastic alternative to the "multiplicative" EGARCH 
model of Nelson (1991). To allow for infinite dependence on the past, 
lagged values of the conditional variance can be included as in 
Bollerslev (1986).
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The fact that this new model nests both (G)AARCH and 
standard (G)ARCH models implies that the time-series properties of a 
(G)QARCH process are very similar to those of Bollerslev’s (1986) 
GARCH. In particular, GQARCH(1,1) and GARCH(1,1) models are remarkably 
close: they both have the same mean, variance and autocorrelation
functions for both the series and its squares, as well as the same 
forecasting recursion rule. Nevertheless, the GQARCH(1,1) has the 
advantage that by adding a single parameter, it can allow for both an 
asymmetric effect on the conditional variance and higher 
(unconditional) kurtosis, which goes in the right direction towards 
capturing some of the stylised facts characterising many financial 
time series. An additional advantage of quadratic ARCH models is that 
they are easy to integrate in economic models, just as linear models 
for the conditional mean are.

An empirical application to a century of daily US stock 
returns provides support for the fact that the GQARCH approximation to 
the unknown conditional variance function represents the data 
substantially better than a standard GARCH model, or even a GAARCH one 
does. The main reason is that it is able to capture the so-called 
leverage effect (i.e. price falls increase volatility by more than 
price increases) which the other two are ruling out a priori.

Multivariate extensions of the QARCH model are 
straightforward in theory, but as in multivariate ARCH models, 
difficult to estimate given the number of parameters involved. 
However, QARCH formulations are particularly easy to adapt to the 
context of conditionally heteroskedastic latent factor models, and do 
not entail a large computational burden. An application of such a 
model to 26 UK industrial sectors also shows empirical support for the 
GQARCH formulation versus the GARCH one. Again, this seems to be 
mainly due to the dynamic asymmetric effect.

An important extension of our model would be to allow for 
other variables to affect the conditional variance in an unrestricted 
quadratic manner. In standard GARCH models, if these variables can 
take both positive and negative values, only their squares may 
actually enter the variance, and with positive coefficients. Using a 
straightforward generalization of our approach we could allow for
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linear and quadratic effects of these variables, and for interactions 
both amongst themselves and with lagged innovations in x^. This 
generalization would be closely related to traditional (additive) 
quadratic heteroskedastic models. In view of the high persistence 
found in conditional variances, we could also consider extending QARCH 
along the lines of long-memory models (cf. Robinson (1991)) as an 
alternative to the GARCH-type generalization. There is also scope for 
exploring alternative estimators. Since the quadratic projection 
interpretation of QARCH models stresses the relation between 
coefficients and moments, Hansen's (1982) Generalised Method of 
Moments is a clear candidate (see e.g. Rich et al. (1991)).

There is obviously no compelling theoretical reason why the 
conditional variance function should be literally quadratic, Just as 
there is no reason why conditional means should be linear. If
anything, one could expect non-linearities as well as
"non-quadratities" to be the rule, rather than the exception, and not 
surprisingly, the literature on non-linear conditional mean and 
variance models is growing fast. At the same time, semi-parametric and 
non-parametric methods for mean and variances are becoming ever more 
popular. Hence no generality claim should be made about our approach. 
But equally, it seems sensible to use the quadratic conditional 
variance function discussed here as a first approximation (or 
benchmark), Just as one would initially use linear models for
conditional means.

170



Chapter 5: Quadratic ARCH

ENDNOTES

1 Taylor expansions are only locally valid, and may not perform
adequately outside a neighbourhood of the point of expansion (see 
e.g. White (1980b)). Nevertheless, in some instances they may still 
provide a reasonably good overall approximation.

2 —Notice, though, that since is arbitrary, it is not possible to
infer much about fi() from (2), as different functions could produce
the same a and y for different (or even the same) x. -s.r

3 In practice r can be big, and y difficult to estimate accurately. 
This may be solved by imposing some structure on the elements of 
the vector y. For instance, an invertible MA(1) process is an AR(oo) 
with exponentially declining coefficients, and far more complicated 
structures can be achieved by using mixed models.

4 See e.g. Engle’s (1982) ARCH and Bollerslev’s (1986) GARCH,
Nelson’s (1991) Exponential GARCH, MilhoJ’s (1987) Multiplicative 
ARCH, Gourieroux and Monfort’s (1990) and Zakoian’s (1990) versions 
of the Threshold ARCH, Bera and Lee (1990) Augmented ARCH, Higgins 
and Bera (1990) Nonlinear ARCH, Taylor (1986) and Schwert (1989b) 
Absolute Value ARCH.

5 By continuity, the Taylor approximation will have locally the same 
sign as the function. However we are interested here in 
approximating the unknown function everywhere.

6 It does not encompass, though, the models of Taylor (1986) and
Schwert (1989b), in which the variance is quadratic in the absolute 
value of Innovations.

7 Engle’s (1982) original model is sometimes referred to as linear
ARCH. However, the term linear is unfortunate since as (4) shows it
is only linear in the squares of the past values, not in the
information set
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Both the (serially uncorrelated) AARCH model and the ARCH model are
examples of processes for which "no news is good news" (as in
Campbell and Hentschel (1991) since the minimum of the conditional
variance function is achieved when x. =0. The fact that thist-q
property is not shared by the QARCH model (unless 0=0) could be 
considered as a disadvantage. However, whether the shape of the 
unknown conditional variance function <r () results in an estimated 
value of 0 different from 0 is, in fact, an empirical question 
which can be tested using the QARCH model, but not the AARCH or 
ARCH models.

9 2Besides, when 0^<O the absolute value of the derivative of <r 
with respect to x^_j =̂^i+^an xt-l ̂ *s a^so higher for negative 
than positive Hence, the conditional variance function is not
only asymmetric, but also steeper for x^_^ negative. The rate of 
growth of this derivative, though, is assumed to be the same

('an>-
j q 2 2 _If rank ID <r (x. ) ]=rank(A)=s<q, the conditions for positivity oft—q

(3) are more complex. Let A=UAU’ be the spectral decomposition of
the symmetric matrix A, with U^U^.l^) and A = diag(A^,0). Then 0 +
0* x. + x* ’Ax* = 0 + 0’UU’x* + x. ’UAU’x. = 0 + 0*’x? +^ t-q t-q t-q ^ t-q t-q t-q t-q
x? ’Ax? . Given that the last q-s elements of A are zero, it is t-q t-q
clear that positivity requires the last q-s elements of 0* to be
zero as well. We are then left with 0 + 0?’x* + x* ’A,x* = 01 lt"(J 1 1
- 1/4 0?’a 710? + (x* +l/2A710?)’Ai (x* +1/2 a 710?). which showsi l l  it—q l l  l it—q l l
that to guarantee ®*̂ >0, in addition to ^q_s+j=- • • A has to be
positive semi-definite and 0-1/4 0*’Aj10*>O. It Is worth mentioning
that parameter!sing the log variance instead of the variance would
eliminate the non-negative problem in the univariate case (cf.
Nelson (1991)).
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11 2We can also consider MMSE quadratic predictors of xt+j given
which coincide with the corresponding conditional variances if
QARCH is the true model. In this respect, a useful property of
QARCH(q) projections with q finite (and in some cases infinite, cf.
equation (8)), is that they follow a simple recursion. As an
example, suppose that BQP(x 2/X^_j ) is of the QARCHC2) form. Since
2 2 2 x^+  ̂ can be expressed as 0+ ^2Xt-l+ allXt+ a22xt-l+
2ai2xtxt-i+ wlth 1»t+i“xt+i-BQP(xt+i/xt)> then
B®,(x?*i/xt-i)"BLP(x?*i/xt-i)” e+ a1iBQP(xt/xt-i)+ Vt-1+ a22Xt-l'
because is (quadratically) unpredictable from (and X^.^)
and E(xt/Xt_1 )=0 by assumption. For J^2, E x̂t+j-ixt+j-2/^ t - l 2111(1
EQP(xt+/ V l )= e+ allBQP(xt+J-l/Xt-l) + a22BQP(Xt+J-2/Xt-l)' Just
as in the ARCH(2) case.

12 Campbell and Hentschel (1991) alternatively use the correlation
2coefficient between x^ and x j._j t° measure what they call 

"predictive" (i.e. dynamic) asymmetries in stock returns. Of
course, as with the usual skewness coefficient, it may be that in

2 2 2 some special cases cov(xt,xt_j)=0 but <r (X^_^)*<r (-X^_^).
13 Drost and Nijman (1990) Weak ARCH concept is a particular case of 

what we call quadratic projections, in which linear and cross 
product terms are not included.

14 Since the AARCH model is obtained from (3) when 0 * 0 ,  it could be
interpreted as a second-order Taylor approximation at a point x.
where Do*2(x. ) * D2<r2(x. )x. and the Hessian D2<r2(x. ) ist-q t-q t-q t-q
positive (semi) definite. If x* n e 0, the minimum could be such at-q
point but again there might be others. If in addition the 
cross-derivatives are zero we would get the standard ARCH model.

15 It can be proved that the distribution of the corresponding LR and
Wald tests is the same. To do so it is more convenient to work with

2the one-to-one reparameterization cr̂  = ^oo+^oiXt-l +
{6 +<t>2 /6 )xf «. If the distribution of x. is not symmetric, *11 roi *oo t-1 t
though, the mixing weights in all three tests will change.
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16 Conditions for the positivity of the conditional variance in (8),
can be obtained as a straightforward extension to 0 , 0 and A of00 00 00
the finite q results in 2.1. However, as Drost and Nijman (1990) 
and Nelson and Cao (1991) point out for the standard GARCH(p,q) 
model, requiring the positivity of the QARCH part plus SjfcO for all 
j is unduly restrictive. As in the GARCH(p,q) model, though, 
finding restrictions on the original parameters which guarantee 
nonnegative variances is not an easy task (see Nelson and Cao
(1991) for some special GARCH cases and Demos and Sentana (1991b) 
for some GQARCH ones).

17 If we take as a (white noise) state vector, equation (9)
can be interpreted as the state-space representation of the 
GQARCH(p,q) process. Strictly speaking, though, it is only valid 
for those cases when A and A are positive semi-definite, and 
0-1/40* A'V^O.

18 Bera and Lee (1990) introduce autoregressive behaviour in by 
allowing to have a non-zero mean. This results, though, in a 
model which is different from an AR(r) process with AARCH 
disturbances, since the conditional variance function depends on 
the actual series directly, not on deviations from its conditional 
mean (see Bera, Higgins and Lee (1991)). Given that the conditional 
mean is linear, though, theirs will actually be an AR(r) process 
with QARCH disturbances. We shall not pursue this generalization 
here as our main interest is the conditional variance function, but 
it is worth noticing that for linear conditional mean models, a 
quadratic ARCH is obtained whether we use innovations or the actual 
series.

19 The random coefficients interpretation also suggests potential 
generalizations of the GQARCH model. For example, one could allow 
for non-zero covariances between and/or with as well as 
non-zero covariances between different F°r instance, the
asymmetric nonlinear GARCH model in Engle and Ng (1991) can be 
written as Ct+T*ltxt_1+€lt°*t_1» with cov(i)lt,£ )*0.
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20 IGARCH processes are clearly not covariance stationary, but they 
are strictly stationary and ergodic (cf. Nelson (1990a) and 
Bougerol and Picard (1990)). Given that the behaviour of GQARCH 
processes is dominated by the quadratic terms, one would expect a 
similar result to be true of IGQARCH. Unfortunately, the presence 
of linear and cross-products terms implies that the recursions 
usually employed to prove strict stationarity are not easy to 
solve, even in the simplest IGQARCH(1,1) case.

21 In the GARCH(p,q) model, the autocorrelations follow equation (13) 
for k>p (see Bollerslev (1986)). Here, however, the existence of 
the other terms in (12) implies that the first q-1 autocorrelations 
do not follow equation (13) even when p=0.

22 The data from 1885 up to 1962 was kindly provided by G.W.Schwert. 
See Schwert (1990) for further discussion of the data. It is worth 
noticing that we work with market returns, not excess returns. The 
results in Nelson (1991) suggests that this should make little 
difference as far as estimation of the conditional variance is 
concerned.

23 It is unlikely that a simple MA(1) component will capture the type 
of serial correlation observed in high frequency returns (see Lo 
and MacKinlay (1990), LeBaron (1990) or Sentana and Wadhwani 
(1991)). We have also ignored other effects such as day-of-the-week 
or month-of-the-year seasonality (see Thaler (1987) or the the 
contribution of non-trading periods to market variance (see e.g. 
French and Roll (1986)).

24 Although we recognize that a simple MA(1)-GQARCH(l,2)-M model may 
not provide a complete representation of a century of daily stock 
returns, our aim is merely to see if this offers an improvement 
over the standard GARCH(1,2) model. It is worth mentioning that our 
conclusions are rather robust to the particular values of p and q 
used.
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25 The fact that ^  positive seems to contradict this claim.
2However, notice that the presence of lagged values of in the 

variance equation implies that the estimated values of Zoo
(=^2+5j^) in the QARCH(co) representation of the model 
(<r.=0 +0’x. +x’ Ax. ) is -0.0405, consistent with the reportedL 00 00 u-00 t“00 00 t—00
asymmetric effect.

26 Given the discussion in section 5.2.2, we have also tested the 
third moment restriction -l)e*_^]=0 in order to see if the
estimated specification captures correctly dynamic asymmetries. The 
corresponding mean value and t statistic presented in Table 5.3 are 
-0.0336 and -0.8303 respectively (see Engle and Ng (1991) for 
alternative LM-type tests for dynamic asymmetries).

27 Infinite dependence on the past can again be achieved by including 
lagged values of s^ on the right hand side of (16) as in 
Bollerslev, Engle and Woodridge (1988).

28 To concentrate on the modelling of the conditional covariance 
matrix, the data has been demeaned prior to estimation (cf. Braun, 
Nelson and Sunier (1990))

29 In the GQARCH(1,1) case, positivity of the variance is achieved if 
a^.SjfcO and 0^s4a^0 (cf. Demos and Sentana (1991b)). To impose 
these restrictions, we have re-parameterised <r () as

(rt=:c2+1ll(ct-l"bl)2+dl<rt-l (cf* eq‘ Notice that the fact that
c is estimated to be close to 0 (2.82x10 8) implies that the
covariance matrix of the random coefficients and is almost
singular (cf. eq. 9). If d^ were 0, it would correspond to a linear
standard deviation model.

30 As in Bollerslev (1988), we have parameterlsed the degrees of
freedom in terms of l/i\ so that this parameter is 0 under the

2null. The distribution of the LR test is then a mixture of ^  (a 
constant equal to 0) and x*, with a 5V, critical value of 2.7 (see 
Bollerslev (1988) or Demos and Sentana (1991a)).
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31 Nelson and Foster (1991) have recently provided a different 
justification for a GQARCH(1,1)-type model. They show that if the 
true data generating model is given by the stochastic volatility 
model:

1/2
hX (k+l)h = hXkh+h^ h Xkh*h°kh^+h h°kh hZl,kh

h ^ k + D h  = h°*kh+h^^hXkh’ h^kh^+h A(hXkh* h^kh5 hZ2,kh

with (,Z, ,.,.2- ) iid normal with zero mean, unit variances andh 1, Kh h 2, kh
correlation p, the optimal choice of ARCH functional form (in the 
sense of minimising the variance of the filtering error) is a 
linear combination of linear and quadratic past residuals (see 
Nelson and Foster (1991) for details).
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APPENDIX 5

To prove covariance stationarity, it is more convenient to 
work with the following alternative re-parameterization:

x t  = < t  + £  + £  (A1) i = 1 j = i J °

where the b^-s are constant parameters and the and £jt“s
random coefficients. If we assume that tk «   t) . ) is i.i.d.t it q t
(0,LL*), = (Clt.... Cpt) i.i.d. (0,A), with A diagonal, also
i.i.d. (0,c), with 7)̂ , and mutually independent, we will then 
have that is a stochastic process whose conditional mean is 0 and 
whose conditional variance is that of a GQARCH(p,q) process:

- c * (*t-q'b) LL’ (*t-q~b) + CA2)

Let s=max(p,q), and let zt= x̂t’xt-l’* ’ Xt-s+l ̂ ’
• ’̂ t-s+l), anc* Ut= ^ t ’ ‘’^  ^  sxl vectors- Let’s also 

define the following sxs matrices:

* =

■-1 (s-l)xl

7)! 0t lx(«-q)

0 0 (■-l)xq (s-l)x(s-q)

lx(s-p)

0 0(s-l)xp (s-l)x(s-p)

so that the process can be represented as:
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Let Vj. = E(ztzj._1). Then, recalling the mutual and serial 
independence of T)̂ , and Ct* it follows that:

Vt = E(*zt.1z*.1*>) ♦ E C ^ z ^ z ^ * ’) +

(A4)

where:

G =
lx(s-l)

0 0(s-l)xl (s-l)x(s-l)

Apart from the inclusion of b’LL’b in the constant term, 
this expression is the same as the one derived by Bera and Lee (1990) 
for the GAARCH model (i.e. when b=0), and hence the stationarity 
condition for GQARCH models, stated in the following proposition, is 
the same as the stationarity condition for GAARCH models:

Let

L = 
8

qx(s-q)

0 0 (s-q)xq (s-q)x(s-q)

be a sxs lower triangular matrix, and let

A 0

A =
px(s-p)

0 0 (s-p)xp (s-p)x(s-p)

be a sxs positive semi-definite diagonal matrix.
Then x^ as generated by equation (8) is covariance 

stationary if and only if all the eigenvalues of the sxs matrix R are 
less than 1 in absolute value, where:

R = ($®$) + vec(G)vec* (L L’+A )s s s (A5)

Proof: see Bera and Lee (1990)

Provided that this condition is satisfied, the unconditional
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variance of z^, V, will be:

vec(V) = (c+b’LL’b) [(I®I )-R]_1 vec(G) (A6)8 S

Given the shape of G, the unconditional variance of x^ will
be given by (c+b'LL’b) multiplied by the element 1,1 of [(I ®I J-R]”1,8 8
which is easily seen to be the reciprocal of the determinant of
[(I ®I )-R]-1. Tedious algebra shows that this determinant is equal to 8 8 q p
the familiar expression 1- Z * where a is the ith diagonal

i =i j=i J
element of the matrix A=LL’. Therefore the unconditional variance of 
x^ is indeed given by equation (10)
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DATA APPENDIX 5

The following list refers to the definition of the 26 
Financial Times Actuaries Sector Indices as of December 31, 1990, and 
includes the DATASTREAM four-letter sector mnemonics (all starting 
with FTA).

BANK Banks
BDIS Brewers and Distillers
BMAT Building Materials
CHEM Chemicals
CONC Contracting, construction
ELEC Electricals
ENGG Engineering General
FDMG Food Manufacturing
FDRT Food Retailing
INBR Insurance (Brokers)
INCM Insurance (Composite)
INLF Insurance (life)
INVT Investment Trusts
LEIS Leisure
MERB Merchant Banks
METL Metals and Metal Forming
MISC Miscellaneous
MISF Other Financial
MTRS Motors
NWSP Publishing and Printing
OILS Oil and Gas
PAPA Packaging and Paper
PROP Property
SHPT Shipping and Transport
STOR Stores
TEXT Textiles

Of this sectors, seven (Banks, Life Insurance, Insurance 
General, Insurance Brokers, Merchant Banks, Property and Investment 
Trusts) are not in the FTA 500 share index (FTA500I). The beginning of 
the month 3-month Tbill rate was used as the safe interest rate 
(UKTRSBL*/.).

181



Chapter 5: Quadratic ARCH

Table 5.1

GQARCH(1,2) and GARCH(1,2) Parameter Estimates 
US Daily Stock Returns 1885-1988 (29(137 obs)

PARAMETER
GQARCH 

ESTIMATES 
(STD.ERROR)

GARCH 
ESTIMATES 
(STD.ERROR)

11

21

22

0.04725
(0.00594)
0.09878
(0.00637)
0.01685
(0.00847)
0.01293
(0.00089)
-0.10533 
(0.00843)
0.05370 
(0.00949)
0.11336 
(0.00558)
0.02475 
(0.00278)
- 0.02212  
(0.00636)
0.89455 
(0.00322)
1.38500 
(0.01512)

0. 06364 
(0.02591)
0. 08400 
(0.01775)
0.01121
(0.01438)
0.01030 
(0.00233)

0.13319 
(0.03832)

-0.04222
(0.07057)
0.89912
(0.03110)
1.34818
(0.01562)

Log-Likelihood -34001.00 -34198.30

182



Chapter 5: Quadratic ARCH

Table 5.2

GQARCH(1,2) and GARGH(1,2) Parameter Estimates 
US Daily Stock Returns 1962-1988 (6,662 obs)

PARAMETER
GQARCH 

ESTIMATES 
(STD.ERROR)

GARCH 
ESTIMATES 
(STD.ERROR)

11

21

22

0.03728 
(0.01409)
0.22902 
(0.01500)
0.02729 
(0.02086)
0.00679
(0.00121)
-0.06489 
(0.01646)
0.01413
(0.01901)
0.10774 
(0.02033)
0.02124
(0.00421)
-0.02114
(0.02433)
0.90649
(0.00876)
1.48123
(0.03731)

0.06190
(0.01030)
0.21659
(0.01263)
0.02000 
(0.02053)
0.00648
(0.00110)

0.11616 
(0.01780)

- 0.02012
(0.02401)
0.89819
(0.01081)
1.43908 
(0.03247)

Log-Like1ihood -6928.81 -6983.48
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Table 5.3

GQARGH(lf2) Conditional Moment Tests 
US Daily Stock Returns 1962-1988 (6,662 obs)

Orthogonality condition Sample Average t statistic

E(e*)=0 . -0.0103 -0.8416
E(e*2-1)=0 0.0050 0.2044
E(e*|e*|)=0 -0.0354 -1.2927

E(etet-1)=0 0.0185 1.3946

EtctCt-2)=0 0.0120 0.9850

E(etct-3)=0 0.0208 1.6005

E(ctCt-4)=0 0.0213 1.7029

E(ctet-s)=0 0.0280 2.2559
0.1779 1.0157

E[(c*2-l)(e*f2-l)]=0 -0.0095 -0.1919
E[(c*2-l)(e*f3-l))=0 0.1327 1.0408
E[(e;2-1 H e ; 2 -1)1=0 t t-4 0.0470 1.1319
E[(e*2-l)(e*f5-l)]=0 0.0358 0.7862
E[(c .2-1)c ._1]-0 -0.0336 -0.8303
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Notes:

Table 5.4

GQARCH(1,1) and GARGH(1(1) Parameter Estimates 
UK Monthly Excess Stock Returns 1971:2-1990:10 (237 obs)

PARAMETER
GQARCH 

ESTIMATES 
(STD.ERROR)

GARCH 
ESTIMATES 
(STD. ERROR)

11

0.00000 
(0.20276)
1.18553 
(0.23073)
0.31322
(0.05189)
0.82814
(0.03099)

0.29589
(0.08809)

0.42521 
(0.08903)
0.84102
(0.06655)

Log-Likelihood -269.487 -278.326

lll

0.13789 
-0.23261 
0.09810 
0.68582

0.08755

0.18080 
0.70732

Equation estimated:

V  c2+1n(ct-rbi)2+di,rt-i ■ e+Vt-i+aiict-i+Vt-i
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Conditional Variance of Common Factor
GQARCH(l, 1) Gaussian Estimates

8

7

6

5

4

3

2
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Figure 5.1a

Conditional Variance of Common Factor 
GARCH(l. 1) Gaussian Estimates

4

7 1 : 2 7 3 : 1 7 5 : 1 7 7 : 1 7 9 : 1 8 1 : 1 8 3 : 1 8 5 : 1 8 7 : 1 8 9 : 1 9 0 : 1 0

Figure 5.1b
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Conclusions

In this research we have investigated various issues related 
to the level and volatility of returns on ordinary shares. In 
particular, we look at the relation over time between volatility and 
risk premia, both at a univariate and multivariate levels.

We have studied the behaviour of volatility for sixteen 
world stock markets, and tried to identify its major determinants. We 
have also attempted to assess the extent of capital market 
integration. Our results seem to suggest that global stock markets are 
not integrated in that idiosyncratic risk is significantly priced and 
the "price of risk" associated with the different factors is not 
common across countries. Another empirical finding is that only a 
small proportion of the covariances between national stock markets can 
be accounted for by "observable" economic variables. Changes in 
correlations between markets seem to be driven primarily by movements 
in unobservable variables.

An important result obtained is that it is possible to
evaluate the separate contribution of the different factors to the 
risk premia in an APT-type model when time-variation in the volatility 
of the factors is taken into account in estimation. This result
derives from our proof that in that case the matrix of factor loadings
is unique under orthogonal transformations of the factors. We have
also discussed the issues of Kalman filtering and estimation of this 
class of conditionally heteroskedastic latent factor models under the 
assumption that the conditional distributions are multivariate t 
(which Includes the usual Gausslanlty assumption as a special case) 
and GARCH formulations for the conditional variances of the factors. 
Both assumptions are particularly important in practice given the 
degree of leptokurtosis and volatility clustering of many financial 
time series.

We have also attempted to explore whether the Japanese stock 
market is efficient so that the lagged variables that help predict 
stock returns there are merely proxying for mis-measured risk. 
However, four key predictor economic variables are shown to have 
non-trivial additional forecasting power irrespective of how risk is 
measured. Interestingly, unlike the US, the level of the lagged 
dividend yield is not positively correlated with returns in either
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Japan or South Korea. Moreover, there is no consistent relationship 
between volatility and excess returns, and a model with a constant 
"price of risk" is clearly rejected by the data. These findings are 
inconsistent with many existing models of the stock market, and they 
suggest either the existence of "noise" traders or the need for better 
models of risk.

We have also discussed whether the degree of autocorrelation 
shown by high frequency stock returns may change with volatility. 
Results using a century of daily data suggest that when volatility is 
low there tends to be positive autocorrelation in returns, but this 
serial correlation can become negative during very volatile episodes. 
Our results also suggest an important asymmetry: returns are more
likely to exhibit negative serial correlation after price declines. 
This is consistent with price declines being more likely to induce 
positive feedback trading. We also find no significant relation 
between margin requirements and the serial correlation of returns.

Throughout this research we have encountered a well-known 
asymmetry in stock market volatility: the so-called leverage effect, 
i.e. volatility is higher following price declines than after rises of 
the same magnitude. To capture this dynamic asymmetry we have 
introduced a new, generalised, fully quadratic version of the ARCH 
formulation which nests the original ARCH model and several of its 
extensions. As a consequence, its statistical properties are very 
similar to those of standard models, but it avoids some of their 
criticisms. This model can also be interpreted as a second-order 
Taylor approximation to the unknown conditional variance function, or 
as the quadratic projection of the squared series on the information 
set. In an application to a century of daily US stock returns, QARCH 
models provide a closer approximation to the data because they are 
able to capture the so-called leverage effect. QARCH formulations are 
also easy to incorporate in multivariate models so as to capture 
dynamic asymmetric effects that GARCH rules out. In this respect, we 
have estimated a one-factor model for monthly excess returns on 26 
industrial UK sectors, and again, found empirical support for the 
QARCH as the common factor (which is highly correlated with returns on 
the FTA500 index) shows a significant leverage effect.

189



Conclusions

Overall, we find that the link between volatility and risk 
premia seems to be rather weak and changing over time. This is true 
for different ways of modelling risk premia and different econometric 
measures of volatility. Our results are consistent with other 
empirical and theoretical results (see e.g. Pagan and Hong (1991), 
Backus and Gregory (1989), Glosten, Jagannathan and Runkle (1989)) on 
the relation between conditional means and variances in asset returns. 
They suggest the need to explore for alternative empirical models for 
equity returns.
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