
x - 2 . ' - 15857-1 - 7

/f^ US& OF '
m POLITICAL
o AND

^ i c s j

SEMANTIC MODELLING

FOR

DISCRETE EVENT SIMULATION

MAMDOUH TAYSIR BARAKAT

The London School of Economics

Thesis submitted in fu l f i lm e n t of the requirement

fo r the degree o f Doctor of Philosophy at

the London School o f Economics,

University of London.

1992

UMI Number: U615772

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U615772
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Discrete event simulation modelling has been established as an

important tool for management planning. This process has been aided

by the a v a i la b i l i ty of o ff - th e -s h e lf simulation systems for

microcomputers. Trad itionally these have had text-based interfaces

and very limited graphics. As the a v a i la b i l i ty of powerful colour

microcomputers have increased, graphical front-ends have been added.

As clients have got used to consistent graphical interfaces (e.g.

Apple Macintosh or Microsoft Windows), they have desired the same

level of integration in th e ir simulation support environments.

Research in other fie lds has been u tilised in improving simulation

environments. These fie lds include re la tional databases, expert

systems, formal languages and graphical environments. This thesis

examines the use of a r t i f ic ia l intelligence in the discrete event

simulation f ie ld with the aim of examining some potential areas in

which i t might be possible to improve simulation environments.

Existing simulation research in the a r t i f i c ia l in te lligence (AI)

f ie ld is extended by investigating the graphical AI knowledge-base

called semantic networks. This thesis demonstrates semantic

modelling, a discrete event simulation modelling approach based on

semantic networks, which attempts to give a consistent graphical

interface throughout the l i f e cycle of a simulation study. The

semantic modelling approach also incorporates expert system and

natural language research. A prototype system of th is approach is

described.

ACKNOWLEDGEMENTS

I would l ik e to thank my supervisor Dr Ray J. Paul for a l l the help

and support he has provided.

I would also l ik e to thank my family and members of the LSE's

Department of Information Systems for th e ir encouragement throughout

th is research.

CONTENTS

CHAPTER 1 : INTRODUCTION
1.1 : INTRODUCTION 1
1.2 : SIMULATION MODELLING 2
1.3 : DISCRETE EVENT SIMULATION 2
1.4 : TRADITIONAL SIMULATION DEVELOPMENT CYCLE 4
1.5 : ARTIFICIAL INTELLIGENCE 11
1.6 : THESIS OUTLINE AND OBJECTIVES 13

CHAPTER 2 : AI LITERATURE IN SIMULATION
2.1 : INTRODUCTION 14
2.2 : HISTORICAL LINK BETWEEN SIMULATION AND AI 15

2.2.1 : Production rules in simulation 15
2.2.2 : Expert systems in simulation 18
2.2.3 : AI concepts in simulation 19

2.3 : INTEGRATED SIMULATION SUPPORT ENVIRONMENTS 23
2.3.1 : The goal 24
2.3.2 : A ctiv ity cycle diagram approach 25
2.3.3 : Database approach 27
2.3.4 : Object-orientated language approach 29
2.3.5 : Expert Systems (production rules) approach 30
2.3.6 : Semantic network approach 31

2.4 : CONCLUSION 33

CHAPTER 3 : SEMANTIC MODELLING : DESIGN ISSUES
3.1 : INTRODUCTION 36
3.2 : UNDERLYING STRUCTURE OF SEMANTIC NETWORKS 36

3.2.1 : Synonyms 38
3.2 .2 : Core objects, instances and

the "IS A" relationship 39
3.2 .3 : The "PRECEDES" relationship 40
3.2 .4 : The "DURATION" relationship 41

3.2 .5 : The "NUMBER" and "INIT NUMBER" relationship 42
3 .2 .6 : Examples 43

3.3 : GRAPHICAL INTERFACE 44
3.4 : NATURAL LANGUAGE UNDERSTANDING AND PROCESSING 47

3.4.1 : Syntactic Analysis during NLUP 48
3.4 .2 : Semantic Analysis during NLUP 51

3.5 : ACTIVITY AND ENTITY CYCLE INPUT 53
3.6 : PROCEDURAL ATTACHMENT OF PRODUCTION RULES 53
3.7 : VALIDATION AND VERIFICATION 54
3.8 : INFERENCE ENGINE 56
3.9 : SIMULATION RUNNING 61
3.10: SEMANTIC MODELLING ARCHITECTURE 62
3.11: CONCLUSION 63

CHAPTER 4 : SASIM PROTOTYPE : IMPLEMENTATION ISSUES
4.1 : INTRODUCTION 68
4.2 : GRAPHICAL INTERFACE 69
4.3 : MULTI LEVEL MENU SYSTEM 74

4.3.1 : Worksheet Sub-menu 75
4.3 .2 : F ile Sub-menu 76
4.3 .3 : List Sub-menu 77
4.3 .4 : Move Sub-menu 78
4 .3 .5 : Delete Sub-menu 78
4 .3 .6 : Hide Sub-menu 78
4.3 .7 : In fer Sub-menu 78
4 .3 .8 : Validate Option 80
4 .3 .9 : Simulation Run Option 81
4.3.10 : Quit Sub-menu 81

4.4 : NATURAL LANGUAGE UNDERSTANDING AND PROCESSING (NLUP) 81
4.5 : ACTIVITY AND ENTITY CYCLE INPUT INTERFACE 83
4.6 : SIMULATION RUNNING PROCESS 86
4.7 : CONCLUSION 87

CHAPTER 5 : PROCEDURAL ATTACHMENT
5.1 : INTRODUCTION 88
5.2 : STANDARD TERMINOLOGY 90
5.3 : STRUCTURE OF PASCAL USER CODE 91
5.4 : CALLABLE PROCEDURES 98
5.5 : COMPILING USER CODE 104
5.6 : AUTO GENERATING USER CODE 104
5.7 : CONCLUSION 105

CHAPTER 6 : ANALYSIS OF SEMANTIC MODELLING
6.1 : INTRODUCTION 106
6.2 : THE PUB EXAMPLE 107
6.3 : WAR ARSENAL PROBLEM 110
6.4 : ANALYSIS OF SEMANTIC MODELLING 112
6.5 : CONCLUSION 114

CHAPTER 7 : SUMMARY AND CONCLUSION
7.1 : SUMMARY 115
7.2 : CONCLUSION 116
7.3 : FUTURE RESEARCH 117

APPENDIX 1 : NATURAL LANGUAGE SYNTAX DEFINITION 120

APPENDIX 2 : NATURAL LANGUAGE CONVERSION MASKS 126

APPENDIX 3 : TEST OF SASIM ON THE PUB
3.1 : NLUP TRANSLATION 129
3.2 : LIST OF LINKS 134
3.3 : LIST OF OBJECTS 136
3.4 : LIST OF RELATIONS 137
3.5 : OUTPUT FROM VALIDATE OPTION 138

3.5.1 : PROBABILITY SECTION 138

3.5 .2 : ENTITY CYCLE SUMMARY 138
3 .5 .3 : ACTIVITY SUMMARY 140

3.6 : PASCAL MODIFICATION TO THE PUB EXAMPLE 141
3.7 : SCREEN PRINTOUTS DURING SIMULATION 145

APPENDIX 4 : WAR ARSENAL PROBLEM 159

APPENDIX 5 : TECHNICAL DATA AND INSTALLATION GUIDE 166

APPENDIX 6 : KNOWLEDGE REPRESENTATION IN MEMORY 167

APPENDIX 7 : GLOSSARY OF ABBREVIATIONS / NAMES 169

APPENDIX 8 : BIBLIOGRAPHY 172

CHAPTER 1

INTRODUCTION

Section 1.1 : INTRODUCTION

Discrete Event Simulation has been widely used for decades to

analyse systems which could not themselves be experimented on in the

real world, for e ither technical, social or financial reasons. I t

has proven i t s e l f in many real l i f e situations as a very useful tool

for the management and control of complex environments. This

process has been considerably aided by the a v a i la b i l i ty of

inexpensive microcomputers. Recently, the a v a i la b i l i ty of colour

graphical environments (for example the Apple Macintosh computer or

the Windows environment) have provided an impetus to increase the

user friendliness of the text-based simulation systems. This thesis

investigates whether semantic networks, an a r t i f i c i a l in telligence

knowledge-base, can be u tilised in improving simulation

environments.

The next two sections define both general simulation and discrete

event simulation. The trad itional simulation development cycle is

described in section 1.4, which also highlights the lack of

integration between the d iffe ren t stages of a simulation cycle.

Section 1.5 introduces a r t i f ic ia l in telligence and explains this

thesis 's interest in its tools and techniques. The thesis objective

is explained in the final section.

1

Section 1.2 : SIMULATION MODELLING

One defin it ion of simulation modelling is :

"Simulation involves experimentation on a model of some system.

The model is used as a vehicle for experimentation, often in a

' t r i a l and error' way to demonstrate the l ik e ly effects of

various po lic ies. Thus those which produce the best results

would be implemented in the real system." Pidd (1988)

Computer simulation, where a simulation is performed with the aid

of a computer, can be a very time consuming and complex task,

despite the special purpose simulation languages, program generators

and commercial packages available. This is mainly due to the time

i t takes to describe a problem to a computer simulation system, to

test the system, to experiment with the system and f in a l ly to draw

a conclusion from these experimentation. I t is thus possible to

regard computer simulation as a las t resort, to be used i f no other

alternative is successful.

Section 1.3 : DISCRETE EVENT SIMULATION

Discrete event simulation is defined [Pidd, 1988] as a simulation

that uses the "next event" time mechanism. This is a simulation

where the time jumps from the present time to the time of the next

event (ie the s tart or end of an a c t iv i ty) . Only at th is new time

w ill the state of the system be examined and updated. This can only

2

be achieved i f i t is possible to 'p red ic t ' the e a r l ie s t time of the

next change of state. This can be achieved i f the time i t takes to

actually change state can be sampled at the 's ta r t of the change of

s ta te ' , and, once sampled, can not be changed. For example, the

time i t takes to drink a glass of beer can be sampled from a normal

distribution whenever a customer begins to drink from the glass.

This approach is suitable where the variables (people, machines,

goods) move from one d is tinc t state to another d is t in c t state (fo r

example from one queue to another queue). This has the advantage of

examining the system more frequently in times of high a c t iv ity and

less frequently in periods of low a c t iv ity , considerably speeding up

the simulation. Discrete event simulation also has the advantage of

indicating c learly periods of high a c t iv ity (time would move forward

slowly) and vice-versa. However extra information must be stored

for discrete event simulation (ie the timing tre e) , as opposed to a

t im e-slic ing approach where time jumps by a pre-determined fixed

in te rv a l .

3

Section 1.4 : TRADITIONAL SIMULATION DEVELOPMENT CYCLE

The trad itiona l process of simulation can be summarized, at the cost

of over-sim plification, to the four stages :

{ Real } (i) (i i) (i i i) (iv)
{ World } — CONCEPTUAL— >PR0GRAM------ >OUTPUT--->RECOMMENDATION
{Problem} MODEL

Stages (i) Problem formulation

(i i) Program generation

(i i i) Simul at ion running (and rerunning)

(iv) Output analysis

Stage (i) is the problem formulation stage. I t is a very d i f f i c u l t

area to tackle in real l i f e , and the techniques are not easily

taught due to the multiple disciplines necessary (p o l i t ic s ,

economics, social sciences, computing, operational research,

a r t i f i c ia l in te lligence). I t is in th is environment that early

investigation into Natural Language Understanding and Processing

(NLUP) had been undertaken, including SPIF [Doukidis, 1985] at the

London School of Economics. However SPIF was conducted on the

premise that the computer controlled the conversation with the

c l ie n t , who could only input his knowledge in d irect response to a

computer question. This was interfaced to the next stage of the

development cycle.

The conceptual model is the output from the problem formulation

4

stage. I t would be desirable i f the conceptual model is unambiguous

(as contrasted with standard spoken languages) in order to be able

to be used as a d irect input into an automatic program generator, as

w il l be highlighted in stage (i i) below. I t would also be desirable

to be able to d irec tly inspect and amend the conceptual model, since

th is would provide an immediate feed-back to the user, thus

increasing the poss ib ility of spotting and correcting errors at th is

stage. I t would be advantageous i f the c lien t could be involved at

th is stage to increase the simulation's accuracy and increase the

c l ie n t 's confidence in the model. Therefore f l e x ib i l i t y , s im plic ity

and transparency are desired characteristics for a conceptual model.

However they could be contradictory (increased f l e x ib i l i t y may lead

to increased complexity and reduced transparency).

There are a wide variety of methods for representing the conceptual

model of a problem [Ceric and Paul, 1989]. One of the most widely

used conceptual models is an A ctiv ity Cycle Diagram (ACD),

popularized by Clementson (1982), H il l (1971), Mathewson (1974),

Pidd (1988), Syzmankiewicz et al (1988) and Tocher (1963). Its

popularity is reflected in its use by a number of successful

commercial simulation software packages, including HOCUS

[Syzmankiewicz, 1984], CAPS program generator [Clementson, 1982],

VS7 [Chapman and Dayer-Smith, 1990] as well as the research work of

Au and Paul (1990).

5

Stage (i i) is the program generation stage. This is where the

conceptual model is transformed (preferably automatically, for speed

and accuracy) into a form that can be executed by a computer (fo r

example from an ACD to pascal code). In some environments,

including HOCUS [Syzmankiewicz, 1984] and VS7 [Chapman and Dayer-

Smith, 1990], there is no requirement for a program generation

stage, since a data-driven simulation could be run d ire c t ly from the

conceptual model. However, most simulations are too complex to be

handled 100% by e ither d irec tly running from the conceptual model or

by using an automatic program generator. So a strategy that has

been successfully used is the generation of a large portion of the

code (around 70% [Crookes, 1987]) by an automatic program generator,

and then le t the simulation practit ioner manually program the

remainder. Powerful environments would enable the user to run a

simple data-driven simulation, before generation of the code, to

help the validation and verif ica tion of the model at an early stage,

and then to automatically generate the bulk of the code. The

programs generated need not be restricted to any specific modelling

approach, including those lis ted by Pidd (1988) (process interaction

approach, event-based approach, three phase approach etc)

[Mathewson, 1974]. The concepts of program generation are similar

to those used in the Programming by Questionnaire System of RAND

[Oldfather et a l , 1966]. There are now many In teractive Simulation

Program Generators (ISPGs), notably CAPS [Clementson, 1982], DRAFT

[Mathewson, 1977] and VS7 [Chapman and Dayer-Smith, 1990]. The

6

f i r s t and most famous [Paul and Chew, 1987] ISPG is CAPS

[Clementson, 1982] which produces ECSL code from an ACD input.

DRAFT can produce models coded in FORTRAN [Mathewson, 1977]

[Mathewson, 1982] or in SIMULA [Mathewson and Beasley, 1976]. The

use of program generators, with some manual programming by the

simulation practit ioner, can produce a very wide class of models,

but forces the c lien t to require "repeated recourse to the

specia list as changes of model structure are required" [Crookes,

1987] since the c lien t would generally not have enough computer

knowledge to a lte r the simulation program himself. Crookes proposes

an a lternative approach of requiring the simulation practit ioner to

put in a big programming e ffo rt at the s ta rt in order to build a

generic model, specific to a class of model which the c l ien t is

interested in, and to build a special-purpose ed ito r(s) which the

c lie n t can use by himself, without program input, to modify the

deta ils of the generic model. However, since the generic model must

be able to handle a ll particular instances of the chosen class of

model (which even the c lien t may not have thought of) i t requires

increased programming s k il ls from the simulation practit ioner and

would take a longer time i n i t i a l l y for the simulation practit ioner

to build his f i r s t working simulation than with a program generator

approach. Naturally, i f the simulation practit ioner had already

b u ilt the editor and generic model for another c l ie n t , the

simulation practitioner can just give the new c lie n t a copy of the

editor and generic model and le t him use i t immediately, thus saving

7

time and e f fo r t .

The simulation program needs to be v e r if ie d . Verif ica tion is the

process of checking that the computer program corresponds to the

conceptual model. S im ilarly, the conceptual model needs to be

validated (the process of checking that the conceptual model

corresponds to the real l i f e process). These can be done by using

existing data about the system and checking that the computer model

behaves the same way as the real world system. I f the system does

not ex is t, this would require a thorough walk through of the code

and sens it iv ity analysis to ensure that the model behaves as the

c lie n t would antic ipate. Without validation and v e r if ica tio n the

simulation program would give wrong results , and lead to wrong

conclusions.

Stage (i i i) is the simulation running (and rerunning) stage of the

program. I t needs, for effic iency, a good software subsystem.

There are many such systems (Witness, Simscript I I . 5 [Caci, 1976],

Modsim I I etc) which increasingly use visual displays. Research in

visual in teractive modelling (VIM), which use a graphical display to

both display the model and allow the user to in teractive modify i t

(thus increasing the very important feedback to the user), include

[Au and Paul, 1990] [Chapman and Dayer-Smith, 1990] [Hurrion, 1986]

[Withers and Hurrion, 1982].

8

Stage (iv) is the output analysis stage. I t is a re la t iv e ly

immature f ie ld , as i t re lies on common sense, judgement and inside

knowledge of the real world system. This process, for general

simulation, is well beyond the current capab ilit ies of a r t i f i c ia l

in telligence (A I) . Limited attempts have been made to provide an

automatic linkage of the data from a simulation run to a s ta t is t ic a l

analysis package, such as Minitab or SPSS. One of these research

attempts was done by Taylor and Hurrion (1988).

These stages are ite ra t iv e . For example, i t is usual to move from

any of the stages (i i) - (iv) back to stage (i) , the problem

formulation stage, a fte r discovering an anomaly in the computer

model. I t is therefore desirable not to lose any of the information

/ customisation added in the la te r stages. However this requirement

for quick ite ra tion is where the present simulation systems have

d i f f ic u l t ie s . For example, the SPIF problem formulator creates a

conceptual model. This conceptual model is not complete and would

require some extra manually added data. Rerunning SPIF would result

in the loss of the added data. This same problem affects the

program generators, since once the simulation code is generated and

then customised, rerunning the program generator would overwrite the

customised code. Thus, the very d is tin c t interfaces between the

stages produce an implied single-direction chain of events, as

opposed to the i te ra t iv e concepts of simulation.

9

These d iffe ren t solutions, despite lim ited integration,

unfortunately do not present a consistent interface to the

simulation practit ioner. As noted by Balci and Nance (1987),

"Automated support of a simulation study throughout i ts entire l i f e

cycle is undeniably needed to confront the problems iden tif ied by

Balci (1986)". As an example of the problems encountered, the

graphical interface tends to be added a fte r the model has already

been developed. This, as noted by Paul (1988), is curious since the

graphical output represents the computer model which represents the

logical model which represents the real world problem, therefore why

is the real world problem not expressed in graphical form f irs t?

Hurrion (1986) has noted the importance of the a b i l i t y , during

visual interactive modelling (VIM) with the user, to be able to

respecify the model, rather than just l im it the interaction to

parameter changes [Withers and Hurrion, 1982] [O'Keefe, 1984]. Even

though the extension of the visual interaction to the problem

formulation stage has already been attempted by In teractive

Simulation Program Generators (see above), these tend to have a

d iffe re n t interface to the run-time VIM. I f they do have a

d iffe re n t interface, this would at the very least increase the

learning time for users (since they would need to learn two

interfaces, as opposed to one interface) and could po ten tia lly

confuse the user.

10

There have been a number of attempts to integrate these stages into

a single simulation support environment, for example SMDE [Balci and

Nance, 1987] (based around a relational database), KBS [Baskaran and

Reddy, 1984] (based around a schema representation language [Reddy

and Fox, 1982]), ROSS [McArthur et a l , 1986] (based around an

English-like, interactive object-oriented language implemented in

Lisp), JADE [Unger et a l , 1986] and ANDES [B ir tw is t le et a l , 1984].

These w il l be investigated in section 2.3 "Integrated Simulation

Support Environments".

Section 1.5 : ARTIFICIAL INTELLIGENCE

A r t i f ic ia l intelligence (AI) is a broad term used to describe the

research area for making machines, including computers, more human

l ik e . This might result in both a better understanding of the

nature o f the human mind, and in making computers easier to use.

There are a number of separate research areas in AI, including

Natural Language Processing, Expert Systems and Robotics. A large

number of tools and techniques have been developed, for example

object orientated computer languages, natural language interfaces

and expert system techniques. A strong undercurrent in A I, also

found in so-called 4th generation re lational databases, is the

desire for the e x p lic it representation of data. The data for a

situation/problem would thus be separated from the actual computer

11

code to create knowledge-bases. These knowledge-bases could be

either textual (e.g. a l i s t of objects), or graphical (displayable

and modifiable as an image on a computer screen, such as the

semantic network knowledge-base).

Chapter 2 w ill highlight the long-standing use of AI in simulation.

I t is worth noting at this stage that simulation practitioners have

been using some of these techniques long before the AI f ie ld had

investigated and labelled them as AI techniques. Recent simulation

systems have used AI to aid th e ir simulation environment. These

systems w ill be examined in the next chapter. Nearly a l l these

systems are at the research level [Paul, 1991]. Although Paul

contends that there is no real application of a ' t ru e ' a r t i f i c ia l

in telligence system combined with simulation, I hope that this is a

re flection on the short comings of the existing systems (or th e ir

marketing) rather than a more fundamental problem.

12

Section 1.6 : THESIS OUTLINE AND OBJECTIVES

This research project examines the use of a r t i f i c ia l in telligence in

the discrete event simulation f ie ld with the aim of examining some

potential areas in which i t might be possible to improve simulation

environments. This thesis describes the results of this research.

Some of the current research in the use of a r t i f i c i a l in telligence

in simulation is described in the next chapter. The chapter

describes the importance of the search for a suitable integrated

simulation support environment. A number of AI and re lational

database techniques have previously been applied in this area, with

varied practical success due to the environments' in tr in s ic

complexity. The c r i t ic a l area which is examined is the knowledge

representation (ie the knowledge-base), since th is w il l ultim ately

decide the power, f l e x ib i l i t y and user-friendliness of the resultant

systems. As there already exists a graphical AI knowledge-base

called semantic networks, i t was a natural candidate to be

investigated to see whether i t can be u t i l is e d in improving

simulation environments. This led to the development during this

research of semantic modelling, a discrete event simulation

modelling approach based on semantic networks. Semantic modelling

is described in chapter 3. A prototype implementation of this

approach is described in chapters 4 and 5. Chapter 6 presents an

analysis of semantic modelling. Chapter 7 presents the summary and

conclusion.

13

CHAPTER 2

AI LITERATURE IN SIMULATION

Section 2.1 : INTRODUCTION

This chapter highlights the long-standing uses of a r t i f i c ia l

in telligence (AI) in simulation. Even though this has resulted in

benefits to both f ie ld s , this thesis concentrates on the benefits

to simulation. Section 2.2 indicates that there are many elements

in trad it io na l simulation which are now regarded as a r t i f i c ia l

in te lligence. Section 2.3 highlights the present international

research in integrated simulation support environments. These

environments are b u ilt around a knowledge-base which can be derived

e ither from trad itiona l simulation techniques (fo r example a c t iv ity

cycle diagrams), fourth generation techniques (databases) or from

the a r t i f i c ia l intelligence f ie ld (for example object-orientated

1 anguages).

This chapter w ill aim to provide the research foundation for this

thesis by examining what a simulation environment should do and

which aspects of both a r t i f ic ia l intelligence and non-AI tools and

techniques are probably appropriate to achieve these aims.

14

Section 2.2 : HISTORICAL LINK BETWEEN SIMULATION AND AI

Simulation and a r t i f i c ia l intelligence (AI) are closely related in

four ways [Doukidis, 1987] : methodological s im ila r i t ie s , expert

systems in simulation, AI concept usage in simulation, and the Gains

for AI when applying the ideas from simulation (th is las t s im ila r ity

is not considered fu rth er). These common areas are also examined by

Paul (1989a, 1989b).

The next three sub-sections highlight each of these main

s im ila r it ie s . The methodological s im ila r it ie s are described in

Section 2.2.1 "Production Rules in Simulation". Section 2.2.2

describes expert systems usage in simulation. Section 2.2 .3

describes the usage of AI concepts (sp ec if ic a lly Natural Language

Understanding and Processing and the object-orientated approach) in

simulation.

Section 2.2.1 : PRODUCTION RULES IN SIMULATION

I t is important to realise that production rules are not synonymous

with expert systems, but they are one way of developing expert

systems that represent knowledge e x p l ic i t ly [Browston et a l , 1985]

or non-explic itly [Doukidis, 1987]. Production rules were used in

several f ie lds well before being taken up by expert systems; in

symbolic logic by Post (1943) and in lingu is tics by Chomsky (1957).

15

Production rules are the classic IF-THEN rules in the form :

IF {condition}

THEN (action)

They have naturally been used in computing programs to hold the

branching conditions of programs, as championed by Tocher (1963) and

Newell and Simon (1972), while in simulation programs they are used

to hold the conditions required to s tart a c t iv i t ie s , as well as to

decide on the route of entit ies [Vaucher, 1985] [O'Keefe, 1986a].

In this form they are called 'ACTIVE' rules, because data and the

program are intercombined. Doukidis (1987) goes one step further,

and says that simulation models are production-system models. An

example of an active production rule might be :

VAR
DOG, POSTMAN : ENTITY (* DECLARATION *)

PROCEDURE CACTIVITY
BEGIN

IF ((QSIZE(DOG) >= 1) AND (QSIZE(POSTMAN) >= 1) THEN
BEGIN

(START BARK)
(SCHEDULE END OF BARK IN x MINUTES)

END; (* BARK occurs before BITE)
END;

QSIZE() is a function indicating the number of an e n tity waiting in

a queue. As can be seen by the above example, we have e x p l ic i t ly

defined the Dog and the Postman as e n tit ies at the s ta rt of the

program. These must be declared by the simulation practit ioner

before th e ir use, with a c t iv it ie s being defined im p lic it ly in the

C_EVENT procedure of the simulation.

16

However i t is apparent that to describe even a small simulation

requires a large number of production rules. This could take a long

time to enter. To solve this problem many in teractive simulation

program generators have been produced, e ither stand alone, such as

DRAFT [Mathewson, 1977], or as part of a powerful simulation

environment such as VS7 [Chapman and Dayer-Smith, 1990]. Thus the

sole use of production rules, when describing a simulation, does not

lend i t s e l f to the novice user, or even the experienced user, since

the lack of transparency of the code can and does result in logical

errors in coding which are very d i f f i c u l t to pinpoint (ie both

validation errors in interpreting the c l ie n t 's description of the

s ituation, and verif ica tion errors in in terpreting the conceptual

model). Program generators can help to both reduce the time i t

takes to describe a simulation, as well as reduce the chances of

input errors, but only up to a point. And in any case, the eventual

clients needs to be convinced of the accuracy of the model. These

problems have been tackled by adding graphical interfaces onto the

simulation, but unfortunately usually as an after-thought [Paul and

Chew, 1987], with considerable extra e f fo r t by the practit ioner.

I t is worth noting that with the pressures from commercial expert

systems, whose knowledge-base can be changed quickly and easily ,

active rules are being overshadowed in AI c irc les by textual (or

'PASSIVE' rules) [Flitman and Hurrion, 1987]. The advantage of

passive production rules are that fundamental deta ils in a

17

simulation can be changed during a simulation without needing to

recompile the simulation program.

Section 2 .2 .2 : EXPERT SYSTEMS IN SIMULATION

Expert systems can be used to aid the user in developing his

simulation model, whether being integrated into a simulation too l,

such as the ruled-based program generator of Khoshnevis and Chen

(1986), or stand-alone to help a simulation practit ioner in both

validation and v e r if ic a tio n .

An example of a stand-alone expert system is SIPDES [Doukidis and

Paul, 1991], which is short for a "Simulation Program Debugger using

Expert Systems". This aids in the debugging of a fau lty simulation

program written for the eLSE environment [Crookes et a l , 1986]. The

problems covered are both run-time errors and logical errors. The

theory is that this w ill reduce the burden on the few experts who

knew the eLSE environment. Syntactic errors are not covered, since

they are trapped by the compiler. However since the eLSE

environment was continually being enhanced, SIPDES could not be

upgraded fast enough, therefore its use has been discontinued.

There was also a big problem in knowledge acquisition to build up a

database of the problems, since users tended to forget the

problems/solutions they encountered a fte r the event.

18

Section 2 .2 .3 : AI CONCEPTS IN SIMULATION

There are a number of AI concepts which have been used in

simulation. Most notably, knowledge-based simulations and Natural

Language Understanding and Processing. The next two subsections

highlight these concepts. I t is worth repeating that nearly a l l of

these interests are at the research level [Paul, 1991].

KNOWLEDGE-BASED SIMULATIONS

A knowledge-based simulation can be defined [O'Keefe and Roach,

1987] as the use of a knowledge-based framework, with the system

being simulated represented within a typical knowledge structure

(fo r example a number of ru les). The inference mechanism commonly

used with the knowledge structure is extended by the addition of a

time-flow mechanism. This c learly d iffe rs from trad it io n simulation

programs where some or even a ll the deta ils of the model is

contained in the simulation program, which is compiled before

running. In a knowledge-based simulation, the knowledge structure

i t s e l f can be analysed, manipulated and altered e ither manually, or

automatically by an inference engine. The concept that knowledge

based simulations is essential for integrated simulation support

environments w ill be examined in section 2.3 below.

Section 2.2.1 highlighted production rules as one type of e x p l ic i t

knowledge-base used by both expert system and simulation

practitioners . A second type of knowledge-base used is object-

19

orientated languages, including SIMULA [B irtw is t le et a l , 1979],

the f i r s t object-orientated language which was i n i t i a l l y designed

as a discrete event simulation language, ROSS [McArthur et a l ,

1986], based around an English-like, object-oriented language

implemented in Lisp, SIMKIT [Harmon and King, 1985] and T-Prolog

[Futo and Szeredi, 1982], where a simulation system is constructed

using Prolog clauses. There are also experimental systems using

object-orientated languages, including HIRES [Fishwick, 1985],

SIMYON [Ruiz-Mier et a l , 1985], BLOBS [Middleton, 1986] and PROSS

[O'Keefe and Roach, 1987].

A th ird type of e x p lic it knowledge-base which is derived from the

Al/expert system area is semantic networks, a graphical AI knowledge

representation technique. Semantic networks were o r ig in a lly

designed as a way to represent the meaning of English words [Rich,

1983], but section 2.3 .6 and chapter 3 w il l propose that semantic

networks be used both as a simulation knowledge-base and as a core

for an integrated simulation support environment.

NATURAL LANGUAGE UNDERSTANDING AND PROCESSING (NLUP)

Natural Language Understanding and Processing (NLUP) is the

technique of understanding the spoken or written sentence. The

f i r s t generation systems began in the 50s with the appearance of

translation systems. These concentrated on syntax (grammar) but

ignored semantics (meaning), which severely lim ited th e ir use. The

20

second generation systems in the 60s operated on 'toy ' domains and

were impressive in keeping up conversations. The th ird generation

systems in the 70s were designed to be used in r e a l - l i f e

applications, but were limited in terms of syntax and semantics

(domain). The two most advanced th ird generation systems [Doukidis,

1987] which were applied to the problem formulation stage of a

simulation are SPIF [Doukidis, 1985] and NLPQ [Heidorn, 1972]. NLUP

can also be used in querying the results of a simulation. One such

system was designed by the Carnegie Group (1986).

NLPQ accepts a wide variety of sentences, but on a very lim ited

domain. SPIF can only be used in defining the logic of the model

[Doukidis, 1987], where i t controls the conversation, as opposed to

accepting a sentence in any area of the simulation. This has the

advantage of forcing the analyst and user to be very concise and

methodical. However there were a number of problems which made the

system impractical. One of these problems is that the user tends to

get very bored with describing each entity and a c t iv ity in the model

in turn to the analyst, who then relates the feed back of the system

to the user (a problem partly due to the limited syntactic structure

of the sentences). Another lim ita tion derives from its interface

with AUTOSIM [Paul and Chew, 1987] in teractive program generator,

since once SPIF is used and its conceptual model output is added to

in la te r stages of the simulation, rerunning SPIF would resu lt in

the loss of this added data.

21

In most of these systems, the underlying methodology is the same two

stage translation, a syntactic analysis stage, to check the word

sequences and to build a syntactic tree or equivalent, followed by

a semantic analysis stage to build the fina l knowledge-base. For

example :

A fter Barking, the Dog then bites the postman.

The syntactic analysis stage tr ies to find a syntactic pattern which

matches the sentence, with the possible aid of a dictionary, such

as :

AFTER [a c t iv i ty] , the [e n tity] THEN [a c t iv i ty] the [en t ity]

However, there could be more than one possible match, even a fte r the

interface has eliminated the matches which are not consistent with

the existing knowledge-base. Here the system could e ither choose

the most l ik e ly pattern or ask the user which pattern is the correct

one. Since there is also the p o ss ib ility that the existing

knowledge-base is incorrect, and an automatically eliminated

syntactic structure was actually correct, the a b i l i t y of the user

to examine the 'eliminated' structures would be useful.

The semantic analysis stage depends on the type of knowledge-base

used, as well as the scope of the domain of the system. As a result

of semantic analysis, new knowledge gained from the sentence can be

22

added to the knowledge-base.

An NLUP can be e ither hard-coded or data-driven. In a hard-coded

NLUP, the syntactic and semantic structures are embedded in a

compiled program which can not be changed without laboriously

changing and recompiling the program. A data-driven NLUP accepts

the de fin it ion of the syntactic and semantic structures as a

separate input and applies them to the sentence being examined.

The hard-coded approach was used in this research pro ject's f i r s t

attempt at NLUP and a prototype program called SEF (Semantic

Formulator) was developed. In the la tes t prototype, SASIM, a data-

driven NLUP was developed. The data-driven approach adds

f l e x ib i l i t y to the system because the syntactic d e f in it io n , held in

a text f i l e , can be examined and altered by a simple word-processor,

without recompiling the system.

Section 2.3 : INTEGRATED SIMULATION SUPPORT ENVIRONMENTS

Simulation research has recently began to emphasis the development

of integrated simulation support environments [Rozenblit et a l ,

1990] [Henriksen, 1983] [Hu et a l , 1989] [Hu, 1989].

This section highlights current research in this area.

23

Section 2.3.1 : The goal

Section 1.4 mentioned that the goal of an integrated simulation

support environment is to integrate the four stages of a simulation.

Thus the integrated environment would provide automated support

starting at the in i t ia l problem formulation stage righ t through to

output analysis, with the a b i l i ty to i te ra te back to an e a r l ie r

stage.

In order to build an integrated simulation support environment, i t

is essential to pursue the goal of e x p lic i t knowledge representation

(ie knowledge-based simulation). This is because during any stage

of development of a simulation model i f some description of the

problem is changed (e.g. arriva l d istr ibution of customers or

addition of an e n t i ty) , a ll other processes of the simulation

environment must have automatic access to the new information. This

s h if t from program to the model view is highlighted by Nance (1983).

The e x p lic i t knowledge-base however need not be lim ited to AI

concepts (fo r example object-orientated languages), but can be

achieved using a 4th generation approach (re la tiona l databases), or

other techniques, such as using a c t iv ity cycle diagrams. Exp lic it

knowledge representation has the very important advantage that

reasoning can be performed d irec tly on the knowledge-base. These

w ill be described in the next sub-sections.

24

The d i f f ic u l t ie s in achieving this aim are highlighted by Balci and

Nance (1987):

"The complete set of requirements for developing [a simulation

model development environment (SMDE)] poses a s ign ificant

challenge to SMDE designers and implementers. Nevertheless, we

are confident that the challenge can be met by way of an

evolutionary development of SMDE prototypes".

Despite the extent of the challenge of building an integrated

simulation support environment, these d i f f ic u l t ie s are increasingly

becoming surmountable, especially with the technical/cost

improvements in general purpose computers with integrated m ulti-

media capability .

Section 2 .3 .2 : A ctiv ity cycle diagram approach

As mentioned in section 1.4, a c t iv ity cycle diagrams (ACDs) are one

of the four key diagrammatic methods for representing the conceptual

model of a problem. The other three diagrammatic methods are

Augmented Petri Nets, Event Graphs and GPSS block diagrams. ACDs

and Event Graphs have the least number of concepts. ACDs are also

claimed to be the easiest diagrammatic method to explain to c lients

[Paul and Ceric, 1990]. Thus the ACD's graphical nature and its

transparency enable both the simulation practit ioner and the c lien t

to understand each other and the system being modelled.

25

The ACD has been notably used by CAPS [Clementson, 1982] and HOCUS

[Syzmankiewicz, 1984] among others. In the la t t e r case, i t is

possible to run a data-driven simulation straight from the ACD,

without going through a program generation stage.

However a disadvantage of ACDs is that complex conditions for

cooperation between objects in an a c t iv ity are d i f f i c u l t to

represent graphically [Pidd, 1988] [Syzmankiewicz et a l , 1988].

This disadvantage is offset by the a v a i la b i l i ty of automatic program

generators which take the ACD as input and allow the complex

conditions to be programmed into the generated code. A sign of the

usefulness of the ACD [Paul and Ceric, 1990] is that nearly a ll

known automatic program generators based on a diagrammatic

conceptual modelling method use ACDs.

However, the generation of code is fundamentally problematic in that

i t implies a single directional progress, while simulation is

in tr in s ic a l ly i te ra t iv e . This can be il lu s tra te d by the following

scenario :

A conceptual model has been b u il t and a program generator has

then been used to generate the code. The code has subsequently

been altered, manually, to customise the application (say around

30% new code [Crookes, 1987]). At th is stage, a correction or

enhancement to the conceptual model has been requested. The

choices are e ither to a lte r the conceptual model and regenerate

26

the code (thus losing the manual customisation), or to manually

change the code (a long and laborious task).

This i l lu s tra te s some of the problems which are bound to be

encountered by not s t r ic t ly separating the part of the knowledge

base contained in the conceptual model (say 70%) and rest of the

knowledge-base contained in the customisation rules (production

ru les). The customisation rules become irrevocably intermeshed in

a computer program. This reinforces the argument that integrated

simulation environments should aim for e x p lic i t knowledge

representation, where i f the conceptual model and customised rules

were kept 'separate', the conceptual model could be altered at a

very la te stage, without the need to re-enter the customisation

rules. This approach would thus eliminate the requirement of a

program generator stage (although the program generation of small

parts of the conceptual model may s t i l l be advantageous to provide

a base on which the customised code can be added).

Section 2 .3 .3 : Database approach

The approach of using a database as a central knowledge-base for an

integrated simulation support environment has been used by Reese and

Sheppard (1983), El Sheikh (1987) and Balci and Nance (1987). The

structured textual nature of a database, however, can present

d i f f ic u l t ie s in representing complex conditions for cooperation

27

between objects. I t also presents d i f f ic u l t ie s in the visualisation

of the problem, as well as performance d i f f ic u l t ie s due to the large

processor overhead of trad itional re la tional databases.

Reese and Shepard (1983) developed the Simulation Software

Development Environment (SSDE). This is b u ilt around a series of

databases and a language. El Sheikh (1987) produced INGRESSIM which

ran on a VAX minicomputer. An automatic program generator was added

to INGRESSIM by Mashour (1989). Balci and Nance (1987) developed a

research prototype called Simulation Model Development Environment

(SMDE), based on the conical methodology [Nance, 1981], which ran on

a colour SUN 3/160 graphical windowed workstation. Notably both

INGRESSIM and SMDE used the Ingress re la tional database package as

th e ir central knowledge-base. In both cases they re lied on a

program generator to generate the executable code, in order to allow

for the complex interactions between objects. This, as explained in

section 2.3 .2 above, implies a single directional progress. Ideally

an integrated simulation support environment should be able to read

the information from the re lational database, together with any

customisation rules (again stored as data) and then run the

simulation d irec t ly without generating any code.

28

Section 2 .3 .4 : Object-orientated language approach

As has been mentioned in section 2 .2 .3 , object-orientated languages

have been widely used to develop simulation systems. Due to th e ir

e x p lic i t knowledge representation, i t is natural that they are used

as the central knowledge-base for a simulation support environment.

Some of these environments are :

The Rand Object-oriented Simulation System (ROSS) [McArthur et a l ,

1986], is probably the f i r s t and most developed AI based simulation

tool [O'Keefe and Roach, 1987]. I t is based around an English-like,

object-oriented language implemented in Lisp. The objects can

receive and send messages which can be intercepted by the simulation

p ractit ion er. The simulation can be interrupted and examined at any

time. ROSS has been used to develop a graphical m il i ta ry simulation

system called TWIRL [Klahr et a l , 1986].

Knowledge-based Design and Simulation Environment (KBDSE) [Rozenblit

et a l , 1990] is an integrated simulation support environment

implemented in Lisp. There are two basic components for the system,

a front end for the model construction process and an object-

oriented simulator supporting the evaluation of h ierarch ica l, m ulti-

component models. Model specification is performed using the

discrete event system specification (DEVS) formalism [Kim and

Zeig ler, 1987], However, as investigated by Domingo (1991), formal

methods are not very easy to use in the simulation environment,

29

notably due to th e ir large textual nature, even to describe a simple

simulation.

Other systems include SIMYON [Ruiz-Mier et a l , 1985], which is an

object-orientated language prototype and MAGEST [Oren and Aytac,

1985], which is a knowledge-based modelling and simulation system.

Section 2 .3 .5 : Expert Systems (production rules) approach

I t has been shown by Flitman and Hurrion (1987) that an expert

system can hold the controlling logic (production rules) for a

discrete event simulation model. This is an important step forward,

since the conceptual model of the problem could be contained in a

form (e .g . ACD) which is independent of the controlling rules. A

p o ss ib il i ty , which is not highlighted by Flitman and Flurrion, is

that of localised control, where the ACD could control most of the

model running, without requiring e x p lic i t production rules, with the

expert system containing the part of the tota l logic which is

required to be manually customised. This can be achieved by using

production rules which are attached to individual objects (mainly

a c t iv i t ie s) which regulate the ir starting conditions, th e ir effects

and the fin ishing instructions. This AI technique is called

Procedural Attachment [Rich, 1983].

30

E a rlie r , a simulation production-system (using a PROLOG simulation

engine) was also developed at the University of Warwick, but th e ir

strategy of separating the controlling logic from the simulation

system, while sharing some data, conforms to the structure suggested

by O'Keefe (1986b). Thus the user benefits both from the features

of existing simulation environments and from the additional benefits

of using an expert system to aid in achieving the desired "needs,

goals and objectives" [Shannon, 1985].

Other simulation production-systems have been developed by Robertson

(1986) and Goodman et al (1987). These are along the same lines as

the Prolog based simulation system developed at the University of

Warwick.

Section 2 .3 .6 : Semantic network approach

Semantic networks are a graphical AI knowledge representation

technique where information is represented as a network of nodes (or

objects) with relationships between them expressed by labelled and

directed arcs (or Links). A detailed description of semantic

networks is contained in the next chapter. A good description of

semantic networks can also be found in Rich (1983) and Shirai and

Tsujii (1984).

31

Semantic networks were f i r s t proposed by Q uillian (1968) and Raphael

(1968) for representing the meaning of English words in Natural

Language Understanding and Processing (NLUP) systems. The only

record of an attempt to use a semantic network approach to

simulation is Knowledge-based Simulation System (KBS) [Baskaran and

Reddy, 1984], renamed Simulation C raft. KBS enables in teractive

model creation and a lte ra tion , simulation monitoring and control and

graphical display. I t is based around a schema representation

language [Reddy and Fox, 1982]. This is a knowledge-representation

language based upon frames and written in Lisp. Frame

representation structure is a technique which uses pre-designed

semantic networks as a knowledge-base for a specific problem-solving

task. The approach then applies a s lo t -a n d - f i l le r algorithm to

super-impose the pre-designed semantic network knowledge-bases

(represented in multiple frames) onto the real world system to find

the frame that f i t s best, thus 'understanding the system'.

Typically a single frame describes a class of objects, e.g. DESK or

ROOM. Multiple frames are linked together into a frame system to

represent complex environments. 'Frame theory' was invented by

Minsky (1975) at MIT and discussed in Kuipers (1975). However frame

theory d if fe rs from the semantic network approach because i t is

specific to the class of model which the frames are b u ilt fo r , and

therefore not as f le x ib le as a general semantic network where the

semantic network can expand with new structures.

32

However KBS's app licab il ity to discrete event simulation is limited

because i t was f i r s t l y implemented as a textual database (as opposed

to graphical), and secondly i t provides a conceptual view of a

simulation (s im ilar to system dynamics) and not a discrete event

system [O'Keefe and Roach, 1987]. KBS, instead, places considerable

emphasis on introspection (where a simulation model learns about

i t s e l f) and other methods of automatic analysis, without running a

time-based simulation.

Section 2.4 : CONCLUSION

From the above analysis, i t is possible to speculate what an ideal

simulation environment should do and which aspects of both

a r t i f i c i a l intelligence and non-AI tools and techniques are probably

appropriate to achieve these aims.

The main aim of our ideal simulation environment is to create an

integrated simulation support environment which would provide

automated support starting at the in i t ia l problem formulation stage

r igh t through to output analysis, with the a b i l i ty to ite ra te back

to an e a r l ie r stage. This environment should be b u ilt around an

central e x p lic i t knowledge-base which should be able to be viewed

and modified using a consistent graphical in terface. The knowledge

base should be able to hold complex interactions between objects

using procedural attachment of production rules (id ea lly passive

33

rather than active production ru les). Using the consistent

graphical interface, i t should be possible to create, view and/or

enhance the underlying knowledge-base using d if fe re n t representation

techniques, including natural language, production rules and

a c t iv ity cycle diagrams. Since a simulation should be b u ilt around

a single central knowledge-base, once the knowledge-base is updated

using one representation technique, a ll views of the knowledge-base

using other supported representation techniques should be updated

automatically. Some representation techniques, for example natural

language, may however be most useful as an input mechanism, rather

than an output mechanism. I f desired by the user, i t should be

possible to re s tr ic t a view to sub-parts of the knowledge-base, thus

possibly avoiding the display of information not immediately

relevant to the task the user wishes to perform at that time. I t

should be possible to automatically check the knowledge-base for

internal anomalies and inconsistencies (to aide validation and

v erif ic a tio n of the simulation model). There should also be an

inference engine which should be able to trace the links between

objects in the knowledge-base (e.g. spot d irect and indirect

interactions between e n t i t ie s) . The inference engine should be able

to take into account the production rules held in the knowledge-base

using procedural attachment. I t should be possible to perform an

actual simulation run, even i f only part of the knowledge-base is

entered, thus providing some feed-back at an early stage. During

the simulation run, i t should be possible to view the en tit ies

34

moving around the system using any of the supported representation

techniques (e.g. a c t iv ity cycle diagram view). This would thus make

i t possible to have a consistent view of the simulation while both

creating and running the simulation model. I t should be possible

during a simulation run to view the histograms of any of the queuing

times and queue length, and i f desired, to change the knowledge-base

during a simulation run. I t should be possible to specify custom

histograms and also to automatically analyse captured data from the

simulation run.

Ruiz-Mier et al (1985) speculate on the future use of a network

simulation language in an AI programming environment. This is the

area which this research project tackles. Since an ACD can be

regarded as a network of nodes (or objects) with relationships

between them expressed by labelled and directed arcs (or Links) [a

d efin it io n of semantic networks], the semantic network knowledge

base seems a natural area for further investigation. The fact that

semantic networks were f i r s t used in natural language processing is

an added advantage, since this is one of the areas of research in

the problem formulation stage of a simulation. These ideas led to

the development during this research of semantic modelling, a

discrete event simulation modelling approach based on semantic

networks. Semantic modelling is described next in chapter 3.

35

CHAPTER 3

SEMANTIC MODELLING : DESIGN ISSUES

Section 3.1 : INTRODUCTION

The previous chapter indicated that the semantic network knowledge

base requires further investigation. This chapter explores th is

knowledge-base to see i f i t can be adapted to the simulation

environment. Section 3.10 demonstrates semantic modelling, a

discrete event simulation modelling approach based on semantic

networks, which attempts to achieve the aims, highlighted in the

previous chapter, of what an ideal simulation environment should do.

Chapter 4 describes a prototype implementation of semantic

model 1ing.

Section 3.2 : UNDERLYING STRUCTURE OF SEMANTIC NETWORKS

Semantic networks are a graphical AI knowledge representation

technique. Information is represented as a network of nodes (or

objects) with relationships between them expressed by labelled and

directed arcs (or Links). The trad itiona l application of semantic

networks in the AI community is for Natural Language Understanding

and Processing (NLUP).

36

An example of a very small semantic network is

is d
DOG--------------------------- > ENTITY

A A A

I I I
object l in k object

(" is a" is a relationship and i t can be involved in many links)

Using this structured representation, networks can be b u i l t up

expressing relationships between objects, together with th e ir

properties. The networks can be applied to many f ie ld s , each

requiring specific customisation, but this project concentrates on

the discrete event simulation f ie ld . However semantic networks

provide no automatic internal structure, since an individual node

can contain any type of data (possible a single word, or a

paragraph, or a whole encyclopedia, or a visual image). In addition

each relationship, regardless of what i t is called by the person who

entered i t , can mean d iffe ren t things to d if fe re n t users, and may

not be understood at a ll by a computer program trying to understand

the semantic network knowledge-base. Thus I have had to impose a

structure on the semantic network to convey meaning applicable to a

discrete event simulation. These w ill be highlighted in the next

subsections.

37

Section 3 .2 .1 : Synonyms

Synonyms occur when d iffe ren t words mean the same thing, for example

"Nine" and "9", "Drinking" and "Drink", "Leave" and "Exit", "For"

and "Duration", "Served" and "Service", "Customers" and "Customer".

This would c learly cause problems, for example when trying to decide

whether an object being described by a c l ie n t is a new object or a

further description of an existing object. I propose that a ll

plurals should be automatically converted to the singular (e .g.

"Customers" converted to "Customer") and a ll numbers to be stored as

the arithmetic number (e.g. "Nine" converted to "9") and a ll verbs

converted to the 'base' verb (e.g. "Served" converted to "Service").

I t should be noted that where d if fe ren t 'base' verbs are possible,

e.g. "Service" or "Serve" or even "wait on", the actual base verb

stored in the semantic network is not important, as long as i t is

used consistently throughout the semantic network (i . e . there should

not be two nodes where one is called "Service" and the other

"Serve", where they both refer to the same a c t iv i ty) . This

conversion of synonyms would need to be done automatically. Since

there may be d iffe ren t programmes accessing and updating the

knowledge-base, they should use the same synonym conversion

algorithm to avoid inconsistencies.

38

Section 3 .2 .2 : Core objects, instances and the "IS A" relationship

I have defined three core objects, these are "ACTIVITY", "ENTITY"

and "DECISION". An object on the semantic network can then be

linked to one of these core objects using the "IS A" relationship,

e.g. "POSTMAN" IS A "ENTITY"

or "BITE" IS A "ACTIVITY"

or "IF IT IS RAINING" IS A "DECISION"

An object can only have one "IS A" relationship, ie an object can

not be both an a c t iv ity and an en tity . I f an object does not have

an "IS A" relationship, i t is s t i l l held on the semantic network,

but assumed to be of an undefined type. Once these relationships

are defined, a query such as " l is t a ll known a c t iv it ie s " can be done

by finding a ll objects which have a "IS A" "ACTIVITY" l in k . The

decision core object is described further in section 3 .2 .3 .

A further important concept is that of an instance of an e n tity .

This is an extra defined object for every a c t iv ity which an en tity

gets involved in. For example, i f a customer might drink and he

might rest, there would in addition to the "CUSTOMER" IS A "ENTITY"

l in k , be two extra instances "CUSTOMER (DRINK)" and

"CUSTOMER (REST)". These two objects are instances of "CUSTOMER".

These 'e x tra ' instances are required in order to be able to express

individual facts about en tit ies involved in a c t iv i t ie s , such that as

more than one entity is needed in an a c t iv ity or to express the

cycle of an en tity . The instances would be linked to the master

39

e n tity with the "IS A" relationship as follows

"CUSTOMER (DRINK)" IS A "CUSTOMER"

and "CUSTOMER (REST)" IS A "CUSTOMER".

The actual name of the instances, for example using "SLEEPER"

instead of "CUSTOMER (REST)" is not important, but by default, I use

the en tity name with the a c t iv ity name in brackets.

Section 3 .2 .3 : The "PRECEDES" relationship

The "PRECEDES" relationship defines the cycle of an e n tity . For

example, i f a customer drinks and then he rests, the "PRECEDES"

relationship would indicate this by the following l in k :

"CUSTOMER (DRINK)" PRECEDES "CUSTOMER (REST)"

In an en tity cycle, the "PRECEDES" relationship would create the

cycle. For example :

precedes
CUSTOMER (DRINK) ------------------ > CUSTOMER (R

CUSTOM

■ST)

precedes
precedes

nrecedes v
IR (ARRIVE) <---------------- CUSTOMER (EXIT)

To conform to the standards of an a c t iv ity cycle diagram, a ll cycles

of e n tit ies must be closed. Therefore the "CUSTOMER (EXIT)"

PRECEDES "CUSTOMER (ARRIVE)" was added to close the Customer's

40

cycle. I t is worth noting that, as opposed to an a c t iv ity cycle

diagram, there are no e x p lic i t queues, but in my semantic network

approach each instance has an im p lic it queue associated with i t .

For a decision (ie for a condition), the "PRECEDES" relationship

would indicate the flow of the instance, e.g. ' IF THE POSTMAN RUNS,

THE DOG WILL CHASE7 would be expressed as :

precedes precedes
DOG (BARK) -----------------> i f postman runs -----------------> DOG (CHASE)

is a
v

DECISION

Section 3 .2 .4 : The "DURATION" relationship

The duration relationship defines the length of time an a c t iv ity

takes. For example,

"REST" DURATION "3"

"DRINK" DURATION "10"

"ARRIVE" DURATION "NEGEXP(10,5)"

For the simulation being modelled, the time unit (seconds, minutes,

hours e tc .) would be consistent for a ll links which use the duration

relationship. There is no constraint on the d istr ibution used, such

as negative exponential, normal or poisson, as long as the

simulation running process can understand i t .

41

Section 3 .2 .5 : The "NUMBER" and "INIT NUMBER" relationship

A discrete event simulation requires that the number of each e n tity

there is in the system is defined (with the po ss ib il i ty that some

e n tit ie s are in d e fin ite ly large). This information would be

contained using the "NUMBER" relationship which would be referred to

from the master en tity . For example, i f there are ten glasses in

the system, this would be expressed as :

"GLASS" NUMBER "10"

Additionally , at the s tart of a simulation the individual e n tit ies

may be distributed throughout the system, as determined by the user.

This information would be contained using the "INIT NUMBER"

relationship which would be referred to from the instances of the

e n t ity . For example, i f , at the start of simulation, seven of the

above ten glasses are ready to use in the service a c t iv ity and the

other three are waiting to be washed, this would be expressed as :

"GLASS (SERVICE)" INIT NUMBER "7"

"GLASS (WASH)" INIT NUMBER "3"

As part of the validation check, the tota l of the "INIT NUMBER"

relationships for an entity should be equal to the tota l as defined

by the "NUMBER" relationship. Certain en tit ies which operate as

central f a c i l i t i e s , for example barmaids who e ither wash and serve

depending on demand, would only require a "NUMBER" relationship.

42

Section 3 .2 .6 : Examples

'THE DOG BARKS' would be expressed as :

is 3
DOG - - -> ENTITY

is a
needs

DOG (BARK) < BARK

is a

ACTIVITY

'THE DOG BITES THE POSTMAN' would be expressed as :

1 S 3i 1 s j

DOG------------------ > ENTITY <----------------POSTMAN
A A

is a

DOG
needs

BITE) <------------------ B
needs

T E --------------- >

is a

is a

>OSTMAN (BITE)

ACTIVITY

'AFTER BARKING, THE DOG THEN BITES THE POSTMAN' would be expressed

as :

is a is a i s a
DOG (BARK) ---------------> DOG > ENTITY <-------- POSTMAN

A A A

\ is a
\ precedes needs needs

■> DOG (BITE) <•

is a

 BITE

needs is a
is a v

BARK-- > ACTIVITY

> POSTMAN (BITE)

This new semantic network is created by the 'merging' of the two

43

simpler semantic networks shown e a r l ie r , with the addition of the

following lin k between the instances DOG (BARK) and DOG (BITE) :

precedes
DOG (BARK) -------------------- > DOG (BITE)

Section 3.3 : GRAPHICAL INTERFACE

As can be seen from the previous section, a semantic network for

even a re la t iv e ly simple simulation can not be easily represented in

two dimensions, whether on paper or on a two dimensional computer

screen, since the links would overlap too often, impairing

understanding of the network. There are two complementary

approaches to getting round this problem, where the actual network

is stored in terna lly as a single knowledge-base but is represented

on the screen as multiple smaller knowledge-bases.

The f i r s t approach is to use vertical decomposition whereby there is

a global picture whose elements could be examined in d e ta i l . At

th is more detailed (lower) leve l, there are also elements which can

themselves be examined in further d e ta i l , and so-on. This could be

visualised as breaking down a single large semantic network

knowledge-base into smaller semantic networks (fo r example a

hospital can be s p li t between in-patients and out-patients).

The second approach re lies on the d is tin c tive classes of the

relationships found in a semantic network. I f only selected

44

relationships (and th e ir associated objects) are displayed, i t may

be easier to ascertain information re la ting to those specific

relationships (at a cost of not seeing the other re lationships).

For example, i f the "IS A" relationship is hidden from the semantic

network translation of the statement 'AFTER BARKING, THE DOG THEN

BITES THE POSTMAN' (shown in section 3 .2 .6) , the sentence would be

expressed graphically as:

needs needs
DOG (BITE) <---------------- B IT E ----------------- > POSTMAN (BITE)

A

precedes
needs

DOG (BARK) <------------------ BARK

This is much more compact and readable (ie more transparent) than

the semantic network shown in the previous section. (Note that we

do not need to display the objects "Entity", "A ctiv ity" , "POSTMAN",

"DOG" since they are not linked to any other objects on this graph).

One way of visualising the s p li t t in g up of the semantic networks

into d is tinc tive classes of relationships is to think of each class

as a d if fe ren t "level" of one large network, with the a b i l i t y of

moving between d iffe ren t levels, by means of a " l i f t " . A l in k ,

relationship or object can be on more than one le v e l. Where an

object exists on more than one leve l, the l i f t mechanism can then be

used to move the user from one level containing a specific object

d ire c t ly to a ll other levels containing that object, while skipping

levels not containing i t . This could be helpful when examining a ll

knowledge held about an object.

45

Having 's p l i t ' up the large semantic network into smaller units,

which because of th e ir smaller size should be more manageable than

the original single network, i t is desirable to use the power of

modern computer graphics to display the objects as "icons" on a

screen with the links being displayed as arrows. The name of the

links (ie the relationship name) can be displayed along the arrow

(s im ilar to the semantic networks described e a r l ie r) . Links can be

added (or deleted) by simply pointing to the two objects (fo r

example using a mouse) and typing in the relationship name (or

highlighting the relationship name from a menu of a ll known

re lationships). The a b i l i ty to move quickly around the semantic

network is essential, together with the a b i l i ty to modify any object

or relationship name by simply highlighting the name on the screen

(fo r example using a mouse) and editing i t . The a b i l i ty to ZOOM OUT

or ZOOM IN, in order to see a fu l le r or more detailed view of a

leve l, is also desirable.

The graphical level also needs to contain the main menus of the

system since the user should always s tart from the graphical

interface when selecting any of the other f a c i l i t i e s of the system.

This is in keeping with the idea that the semantic network can be

used as the central knowledge-base in an integrated simulation

support environment.

46

Section 3.4 : NATURAL LANGUAGE UNDERSTANDING AND PROCESSING

The previous section highlighted that, by s p li t t in g the semantic

network, i t may be possible to make the network more transparent to

the user. However this brings up the problem of m ainta inab ility .

How do you add new links when the objects may be on d if fe re n t

levels? A further problem, as seen above, is that a simple piece

of knowledge may require multiple links in order to be expressed in

a semantic network. What is required are concepts which take simple

inputs (in whatever form) and automatically translate them into the

semantic network. There is po tentia lly a large number of such

concepts, but I w i ll examine two concepts to try and overcome these

problems. F irs t ly an input f a c i l i t y for a c t iv it ie s and/or en tity

cycles (fo r example working from an A ctiv ity Cycle Diagram) which is

highlighted in section 3.5. Secondly a Natural Language Interface

which can take a 'standard' english sentence and translate i t into

the semantic network format.

In order to translate an English sentence, there are a number of

hurdles to overcome. They can be expressed as follows :

(a) Superfluous words in a sentence (fo r example "A",

"Also", "At").

(b) D ifferent words meaning the same thing, for example

"Nine" and "9" or "Drinking" and "Drink" or "Leave"

and "Exit" or "For" and "Duration" or "Served" and

"Service".

47

(c) The phrases in a language have to be expressed to a

computer.

(d) Sentences can have d if fe re n t meanings depending on

the context and the environment.

Problems (a), (b) and (c) can be regarded as syntactic, while

problem (d) can be regarded as semantic.

Most Natural Language Understanding and Processing (NLUP) systems

take a two stage approach : F irs t ly , syntactic analysis to build a

number of syntactic structures (trees) representing the sentence.

Secondly, semantic analysis which takes each possible syntactic

structure and tr ie s to eliminate the ones which are not consistent

with the knowledge-base.

Section 3 .4 .1 : Syntactic Analysis during NLUP

The f i r s t stage of syntactic analysis is to s p l i t the sentence into

separate words and to translate them to some 'core' set of words,

using a dictionary. The core set of words is dependent on the

domain. For example :

Hundred -> 100

A1 so -> <ignore>

A -> <ignore>

For -> Duration

48

Drinking -> Drink

Barmaids -> Barmaid

There w i l l tend to be rules for some of these, for example

translating plural into singular (fo r example "*MEN" to "*MAN" or

"*S" to "*") or past tense verbs to present tense (fo r example "*ED"

to "*" or H*ING" to However to every rule there are

exceptions (fo r example "*ERVING" to "*ERVICE" or "AS" to "AS"), and

so the system should be able to be told the rules together with the

exceptions in order to minimise the size of the dictionary.

The second stage of syntactic analysis is to build a ll possible

syntactic structures which the sentence conforms to. This raises

two problems, the f i r s t being the expression of the syntactic

structures (phrases) in the language, the second being how these

syntactic structures are mapped onto a semantic network. This

second stage of syntactic analysis should be performed as follows:

A sentence would be defined as a number of possible structures, for

example

KEY A indicates start of a keyword

* indicates beginning of syntactic structure (phrase)

; indicates ending of syntactic structure (phrase)

~ indicates optional word or structure

/ indicates alternate structure

> semantic translation of phrase

" " indicates a group of words to be treated as a label

49

Syntactic Structure

♦SENTENCE :

ATHERE AIS ENTITY_P ,,A."

>

/
ATHERE AIS ACTIVITY_P "A."

>

Notes

Definition of "Sentence"

One possible structure

(always end with a ' . ')

or

Another structure

» End of structures

where ENTITY_P and ACTIVITY_P are substructures defined as :

*ENTITY_P : Definition of "ENTITY_P"

~obj_nUmber obj_name "obj_number" optional

> obj_name ANUMBER obj_number, e .g . barmaid number 10

obj_name "AIS A" AENTITY e.g. barmaid is a entity

/ or

~obj number obj name ~AWHICH ~AIS ~AAN AENTITY Another structure

> obj_name ANUMBER obj_number,

obj_name "AIS A" AENTITY

>

♦ACTIVITYP :

obj_activ ity

> obj_acti v ity "AIS A" ACTIVITY

/
obj_activ ity ~AWHICH ~AIS ~AAN ACTIVITY

> obj_activ ity "AIS A" ACTIVITY

e.g . BARMAID NUMBER 10

e.g. BARMAID IS A ENTITY

End def. of ENTITY_P

Definition of ACTIVITY_P

One possible structure

e.g . WASH IS A ACTIVITY

or

Another structure

e.g . WASH ISA ACTIVITY

End def. of ACTIVITY P

50

The sentence "There is one drink." would thus only have one

syntactic structure based upon the above structures. The mapping of

th is onto the semantic network would be :

"DRINK" NUMBER "1"

and "DRINK" IS A "ENTITY"

However, the sentence "There is a drink." would have two syntactic

structures. The mapping onto the semantic network being :

(a) DRINK IS A ENTITY (ie based on f i r s t sentence structure)

or (b) DRINK IS A ACTIVITY (ie based on second sentence structure).

Semantic analysis, described in the next section, is required to

c la r i fy which is the correct translation.

Section 3 .4 .2 : Semantic Analysis during NLUP

Syntactic analysis results in a number of possible syntactic

structures. I t is the role of semantic analysis to reduce these to

a single syntactic structure, which is then used to update the

knowledge-base.

This can be achieved by following four steps. F i rs t ly , the

elimination of a ll structures which are not consistent with the

existing knowledge-base. For example i f i t is known that "DRINK IS

51

A ACTIVITY", any structure which stated that "DRINK IS A ENTITY" can

be eliminated. Secondly, the elimination of a l l structures which

are not in terna lly consistent (i . e . as previous step, but comparing

the separate phrases in the sentence). Thirdly, using probability

theory where appropriate to rank the p o s s ib il i t ie s (th is step was

not implemented in the prototype implementation because i t would

require the syntactical structure de fin it io n to indicate the

frequency of use of each syntactic structure in a typical sentence).

The fourth and f inal step, where there is s t i l l uncertainty, would

be to ask the user which of the translations is correct. These four

steps should result in a single syntactic structure, which is then

used to update the knowledge-base.

The above steps assume that the existing knowledge-base is correct.

A possible enhancement to the semantic analysis stage would be to

provide a mechanism to override the existing knowledge-base with new

'contradictory' information, and delete the parts of the existing

knowledge-base which are not consistent with the new information.

52

Section 3.5 : ACTIVITY AND ENTITY CYCLE INPUT

As highlighted in section 3.4, the a c t iv ity and e n tity cycle input

concept takes a graphical input of a c t iv it ie s and/or en tity cycles

(useful, for example, when the problem has been already described

using as A ctiv ity Cycle Diagram) and automatically translates i t

into e ither a new semantic network, or adds i t to an existing

semantic network.

Two approaches need to be handled, e ither tracing each entity around

i ts cycle or choosing an a c t iv ity and identify ing the e n tit ies

involved in i t . This would enable the easy introduction of new

e n t it ie s , instances, a c t iv it ie s and links .

The entry of a c t iv it ie s or en tit ies would be aided by using a

combination of a mouse to select the objects from a screen and using

a keyboard to enter the name of new objects which are not presently

represented on the network. However mouse support was not

implemented in the prototype implementation because of the lack of

a mouse support capability in the programming environment used.

Section 3.6 : PROCEDURAL ATTACHMENT OF PRODUCTION RULES

As noted in section 2 .3 .2 , complex conditions for cooperation

between objects in an a c t iv ity are d i f f i c u l t to represent

graphically. Active production rules, as highlighted in section

53

2 .2 .1 , have been used in simulation to hold the conditions for

cooperation between objects. I t is therefore a requirement to

u t i l is e production rules on a semantic network but without

detracting from the semantic network being the central knowledge

base. As section 2.3 .5 highlighted, the procedural attachment

technique enables production rules to be attached to individual

objects (mainly a c t iv it ie s) which regulate th e ir starting

conditions, th e ir effects and the fin ishing instructions.

Production rules can be implemented as e ither passive (i . e . to ta l ly

data-driven) or active (i . e . contained in program code which is

compiled). Passive production rules would be enterable from a

keyboard by f i r s t moving to the object to which the rules are to be

attached, and then typing them in. I t would then be possible to

examine any of these production rules by selecting any object on the

semantic network. Its production rules, i f any, would then be

displayed in a window on the screen and they can then be changed by

editing them. In addition, since they are passive, they can then be

used by the inference engine described in section 3 .8 . I t is

therefore c learly desirable to use passive production rules, as

opposed to active production rules, although they are much harder to

implement. The prototype implementation uses active production

rules because i t aims to i l lu s tra te the concept of procedural

attachment, and the required extra e f fo r t to implement passive

production rules would not further the aims of th is thesis.

54

Two possible problems arise from the procedural attachment approach.

F irs t ly i t is not a graphical knowledge-base and therefore may be

harder to integrate into the graphical interface showing semantic

networks, especially since concepts which manipulate and analyse

the semantic network knowledge-base would not automatically be able

to do the same with production rules. Secondly, in some problems,

for example the port problem, described by El Sheikh et al (1987),

the a c t iv ity cycle diagram conceptual model (and therefore the

semantic network implementation) is very simple, but these are

problems because of th e ir very complex rules and conditions (e.g.

rules for loading and unloading). These, in a semantic network

implementation, would be implemented using procedural attachment,

which in these complex examples would relegate the importance of the

actual semantic network since the procedural attachment would

control most, i f not a l l , the simulation run.

Section 3.7 : VALIDATION AND VERIFICATION

Validation is the process of checking that the conceptual model

corresponds to the real l i f e process. Since, in the semantic

modelling approach, the conceptual model (knowledge-base) is held

either d ire c tly using a semantic network or in d irec tly using

procedural attachment, i t is desirable to validate i t . Since the

knowledge-base is also the computer model, the v e r if ic a tio n that the

55

computer model corresponds to the conceptual model is s im plified,

since in trad itiona l simulation systems most errors from going from

the conceptual model, contained on paper, to the computer model are

caused by incorrect manual input of the conceptual model into the

program generator.

The validation process would detect a number of anomalies (not

necessarily errors), including :

(a) Entities which do not complete a cycle.

(b) Entities which are superfluous (do not take part in any

a c t iv i t i e s) .

(c) Semantic networks which are not cohesive. This would occur

i f i t is possible to separate the network into a number of

independent sub-networks. This would imply that the domain

is two separate simulation domains and not one.

(d) Lack of information on e n tit ies (fo r example number of

e n t it ie s , starting locations in a simulation e tc).

I f appropriate, this stage can actually enhance the knowledge-base

with additional links (for example in order to complete a cycle).

Section 3 .8 : INFERENCE ENGINE

Having constructed, validated and verif ied a knowledge-base, there

are a number of approaches to in fer extra knowledge about the

domain. Two of the possible approaches are e ither a quantitative

56

approach, ie running a trad itional simulation (described in section

3 .9) , or a qualita tive approach using an inference engine. This

section w il l highlight such an inference engine for the qualita tive

approach which is derived from using expert system techniques.

The graphical nature of semantic networks lends i t s e l f to logical

inferencing, where the links between two objects can be

q u a lita t iv e ly ascertained by finding the 'chain of relationships'

between two objects in the network, using searching algorithms, then

attempting to draw some conclusions based on the knowledge of the

types of objects and relationships along the chain. This la t te r

stage depends on some 'in b u i l t ' knowledge of what some

relationships and objects mean, such as the relationship 'PRECEDES'

is a one-way relationship, while 'NEEDS' is a two-way relationship.

I t is important to stress that this qu alita tive information is used

to complement the quantitative information resulting from an

experimental simulation run using the same semantic network.

The three main search algorithms are the same as the shortest path

algorithms used to find the shortest path through a network of

nodes, without v is it in g the same node twice. These are :

57

1) DEPTH FIRST

Form a NODESSTACK consisting of only one NODE, being the starting

NODE.

REPEAT

I f the NODESSTACK is empty, announce destination can not be

reached, and STOP.

Else I f the f i r s t NODE in the NODESSTACK reaches the destination

SIGHT, announce destination reached, with the route and distance,

and STOP.

Else remove the f i r s t NODE from the NODESSTACK and add a ll the

NODES, which are children of the discarded NODE, i f any, to the

front of the NODESSTACK. I f progress required, display discarded

NODE.

2) BREADTH FIRST

Form a NODESSTACK consisting of only one NODE, being the starting

NODE.

REPEAT

I f the NODESSTACK is empty, announce destination can not be

reached, and STOP.

Else I f the f i r s t NODE in the NODESSTACK reaches the destination

SIGHT, announce destination reached, with the route and distance,

and STOP.

Else remove the f i r s t NODE from the NODESSTACK and add a ll the

NODES, which are children of the discarded NODE, i f any, to the

58

back of the NODESSTACK. I f progress required, display discarded

NODE.

3) BRANCH AND BOUND

Form a NODESSTACK consisting of only one NODE, being the starting

NODE.

REPEAT

I f the NODESSTACK is empty, announce destination can not be

reached, and STOP.

Else I f the f i r s t NODE in the NODESSTACK reaches the destination

SIGHT, announce destination reached, with the route(s) and

distance, and STOP.

Else remove the f i r s t NODE from the NODESSTACK and add a ll the

NODES, which are children of the discarded NODE, i f any, to the

NODESSTACK, position being consistent with maintaining a

NODESSTACK with the least distant nodes at the front, (while i f

one of the NODES reaches the destination, this is added as fa r

down the NODESSTACK as possible, while s t i l l maintaining a sorted

1 is t .

Branch and Bound is the slowest, due to the requirements to maintain

a sorted stack but i t is the only algorithm that guarantees

optim ality . Depth f i r s t can sometimes find a quick route between

objects, but i t can be diverted into 'dead ends'. Breadth F irs t

systematically searches a ll routes, always h itt in g on the route with

59

least number of links , without regard to any weights (or distances)

on the route.

In semantic networks, most distances are the same, except when logic

dictates that a relationship is one way, or that the relationship is

ir re levan t, whence the effective weighting of that l in k , in the

direction being investigated, is set to in f in i ty . Since links can

be weighted, and the requirement is always to propose the nearest

causal relationship f i r s t , Branch and Bound is the best algorithm

to use in the inference engine. This is the approach used in the

prototype implementation, with a ll links being the same weight (bar

one way 1 in ks).

60

Section 3.9 : SIMULATION RUNNING

Since semantic networks are a graphical knowledge-base, i t lends

i t s e l f ideally to a graphical interface during a simulation run.

During a simulation, objects move from one a c t iv ity to a waiting

queue before starting another a c t iv ity . This motion can be

indicated with an 'icon' moving from one instance of an object to

another instance, for example CUSTOMER (DRINK) to CUSTOMER (REST).

I t would also be desirable for some a c t iv it ie s to be indicated as a

conveyor belt with icons moving along the b e lt . The number of

e n tit ie s waiting in a queue for an a c t iv ity can be indicated by a

number displayed above the instance object. The number of en tit ies

actually involved in an ac tiv ity can be indicated by a number

displayed below the instance object. Histograms of waiting times,

queue length and time series can be viewed by selecting any object

from the semantic network, even DURING a simulation run. Results

can be viewed on the screen or output to a f i l e . With this

information, i t may be possible to spot bottlenecks as well as to

use the results as a basis for further study.

In theory, the semantic network knowledge-base can be altered even

during a simulation run, though this may present some implementation

problems.

61

Section 3.10 : SEMANTIC MODELLING ARCHITECTURE

The previous sections described semantic networks, together with

various concepts which t ry to make the network manageable and

maintainable. This section describes how these concepts can be

assembled together to create a discrete event simulation modelling

approach, called semantic modelling, which uses semantic networks as

the central knowledge-base to an integrated simulation support

environment which attempts to give a consistent graphical interface

throughout the l i f e cycle of a simulation study. The semantic

modelling approach is best described by the following diagram :

/
/

/ NATURAL
/ LANGUAGE

/ UNDERSTANDING 1
/ AND

/ PROCESSING " R
" A

\
\

\
SIMULATION \

PROCESS

' C " c II

' A SEMANTIC " A II

INFERENCE 1 L II II " PRODUCTION
NETWORK RULES

ENGINE I II II " (procedural
' N "KNOWLEDGE-BASE " N " attachment)
1 T II l l J

R

\ VALIDATION " A
\ & 11

\ VERIFICATION"
\

\ PROCESS
\

\

' F "
A " ACTIVITY

C C
E

\

ENTITY /
/

CYCLE /
/

CAPTURE /
 /

""" = INTERFACE BETWEEN SECTIONS

62

As can be seen from the above structure, the semantic network is

used as the central knowledge-base, with the graphical interface

acting as the user interface between the various concepts and the

central knowledge-base.

The semantic modelling approach is an extension of the approach used

by the Simulation Model Development Environment (SMDE) prototype

developed by Balci and Nance (1987), which is based on the conical

methodology [Nance, 1981]. A key difference between semantic

modelling and SMDE is that SMDE uses the INGRES re lational database

as the central knowledge-base, instead of semantic networks. SMDE

s im ilarly has a number of tools build around the knowledge-base,

including a Model Generator, Model Analyser (using AI techniques) to

validate the model and Model V e r if ie r which analyses the executable

program.

Section 3.11 : CONCLUSION

This chapter has described both semantic networks and semantic

modelling, a discrete event simulation modelling approach based on

semantic networks, which attempts to give a consistent graphical

interface throughout the l i f e cycle of a simulation study. The f ive

main AI techniques used in semantic modelling are the semantic

network graphical knowledge-base, data-driven natural language

understanding and processing, procedural attachment, expert systems

63

and shortest path algorithms. Since the approach is an open

architecture, more techniques, possibly from other research areas,

could be added in future to improve the simulation environment.

Chapter 2 speculated what an ideal simulation environment should do.

The main aim was to create an integrated simulation support

environment which would provide automated support starting at the

in i t i a l problem formulation stage right through to output analysis,

with the a b i l i ty to ite ra te back to an e a r l ie r stage. Semantic

modelling attempts to do this by using semantic networks as the

central e x p lic i t knowledge-base which could be viewed and modified

using a consistent graphical interface. Complex interactions

between objects could be held using procedural attachment of

production rules. Using the consistent graphical in terface, i t is

possible to create, view and/or enhance the underlying knowledge

base using d iffe ren t representation techniques, including natural

language, production rules and a c t iv ity cycle diagrams. Another of

the highlighted aims was that once the knowledge-base is updated

using one representation technique, a ll views of the knowledge-base

using other supported representation techniques should be updated

automatically. In semantic modelling, this is achieved by using

semantic networks as the central knowledge-base, for example

knowledge entered as natural language could be viewed and enhanced

using the a c t iv ity cycle diagram representation. The aim to

re s tr ic t the view of users to sub-parts of the knowledge-base, was

64

achieved by using the concept of levels. The aim of checking the

knowledge-base for internal anomalies and inconsistencies was

achieved by the Validation and Verif ica tion process. The

requirement of an inference engine is also included in semantic

modelling, but since the production rules implemented in the

prototype were active, the inference engine could not take them into

account. The requirement to perform an actual simulation run, with

the a b i l i ty to view the en tit ies moving around the system, together

with th e ir histograms, using the same views as seen when creating

the knowledge-base, was also included in semantic modelling.

However one of the aims has not been supported. There is no support

for the automatic analysis of captured data from the simulation run.

I t is possible to note some potential problems with the semantic

modelling approach. F irs t ly , there may be a problem with the size

of the network. As shown in section 3.2, even a simple simulation

can generate many semantic network links. These would need to be

displayed ' in te l l ig e n t ly ' . This means enabling the user to view

just the links he is investigating, and not to overload the screen

with intercrossing links. This size problem leads to a number of

related problems, which are described below.

Secondly, there may be a problem with the physical screen size.

Following from the size of the network, i t is obvious that a large

65

high resolution screen (and supporting software platform) would be

very advantageous. The IBM-PC family i n i t i a l l y had the Colour

Graphics Adapter (CGA). This was superseded f i r s t by the Enhanced

Graphics Adapter (EGA) then by the Video Graphics Array (VGA). The

VGA i t s e l f has been superseded by a number of very high resolution

displays, including Extended Graphics Array (XGA), and other non

standard adapters (over 1024x768 pixels - 256 colours). This again

indicates that technical improvements are bound to make semantic

networks more implementable (but not necessarily more understandable

by the user).

Thirdly, there may be a problem with the internal complexity of the

implementing software. This is an unavoidable problem since the aim

of the approach is to create an integrated simulation support

software. However the choice of a standard high level language and

a standard hardware architecture w ill ease the problem of building

and supporting the system, especially as d if fe ren t programmers w ill

be responsible for support and development over time.

Fourthly, there may be a problem with the ease of use of the

software. The complexity of the software (and i ts radical approach)

could present a conceptual challenge to the user. This can be best

overcome by adopting standard interfaces (e.g IBM's SAA interface,

Windows/Macintosh mouse interface or a Lotus 1-2-3 l ik e menu

in te r fa c e) .

66

Despite these potential problems, semantic modelling may make a

contribution to the discrete event simulation community. The next

chapter describes a prototype implementation of semantic modelling.

Chapter 5 shows how procedural attachment is implemented in this

prototype. Chapter 6 c r i t ic a l ly analyses both the semantic

modelling approach and the prototype.

67

CHAPTER 4

SASIM PROTOTYPE : IMPLEMENTATION ISSUES

Section 4.1 : INTRODUCTION

The previous chapter has presented the semantic modelling approach.

This chapter presents the workings of a prototype implementation

called SASIM. This detailed description helps to advance the

readers understanding of the practical implications of implementing

the approach.

The implementation of procedural attachment in the prototype is

described in chapter 5. Working t r ia ls of the prototype, together

with a c r i t ic a l analysis of semantic modelling concept, are

contained in chapter 6.

68

Section 4.2 : GRAPHICAL INTERFACE

SASIM runs on IBM PC's and compatibles and is designed around the

fam ilia r spreadsheet concept that is used in Lotus 1-2-3 and Excel.

This interface was chosen to reduce the potential learning curve of

the user of the system, since many users have used and understand

the concept of spreadsheets.

The requirement is to display and manipulate complex semantic

models. These, as seen in the previous chapter, can resemble a

road/ra il network linking d iffe ren t nodes. I f a ll links were shown

at once then i t would be very d i f f i c u l t to see and understand the

model. Therefore, just l ike there are overview maps for main

motorways, another for main railway links , and detailed maps for

towns or counties, semantic networks can be s p l i t into m ulti-levels

for ease of understanding. SASIM has a f ive level model as

described below. There is no particu lar reason for there being only

f ive levels , more levels can be added as appropriate. The f ive

levels in the prototype represent a convenient division of the

hierarchy into d iffe ren t logical or visual levels .

Each relationship is automatically allocated to one (and only one)

leve l, and only objects which have a relationship at the current

level are displayed on the screen. In a general semantic modelling

implementation, a relationship could be on more than one leve l, but

this would present additional implementation d i f f ic u l t ie s . The user

69

can subsequently also make an object appear on another leve l, but

only the relationships of the current level w il l be displayed. This

considerably reduces the number of links and objects displayed at

any one time, and by lo g ica lly bunching the links which are s im ilar,

i t considerably increases understandability. The f ive levels used

on SASIM are i l lu s tra te d using the example sentence :

AFTER BARKING, THE DOG THEN BITES THE POSTMAN

0) BASE LEVEL (a l l relationships not fa l l in g under the other levels)

needs needs
DOG (BITE) <--------------- B IT E ----------------- >P0STMAN (BITE)

needs
DOG (BARK) <------------------ BARK

This is the level where each a c t iv ity and the e n tit ies involved in
that a c t iv ity are shown.

1) ENTITY CYCLE LEVEL (Relationship PRECEDES)

precedes
DOG (BARK) ------------------ > DOG (BITE)

This level shows the cycle of an e n tity , including conditional
branching (decisions).

2) ' IS A' LEVEL (Relationship 'IS A')

i S 3 i S 3
ENTITY <------- POSTMAN <--------- POSTMAN (BITE)

A

is a

DOG
A A

is a / \ i s a
/ \

DOG (BARK) DOG (BITE)
This shows a ll decisions, act iv i t i es , e n tit ies (and th e ir
instances).

70

3) NUMBERS LEVEL (Relationship NUMBER and DURATION)

This level would contain knowledge of how many dogs and postmen

where in the simulation system :

number
for example DOG------------------ > 10

This level would also contain the knowledge i f 2 dogs where

necessary to bite the postman (since he can cope with one dog

without being bitten) :
number

DOG (BITE) --------------- > 2

4) USER LEVEL

This level contains objects, without any re lational arrows. This

enables f le x ib i l i t y in the graphical presentation. Objects must

be located on this level using the graphical in terface. This is

essentia lly a notepad where selected objects can be placed for

monitoring and/or manipulation.

Each object is automatically allocated a cell on at least one.level,

with relationships between objects shown by labelled and directed

arrows. The interface enables the user to move the objects around

to provide better transparency of the problem. In addition, when

object names are edited on one leve l, a l l other occurrences of this

object on other levels are automatically changed.

The f i r s t screen on starting the prototype is a blank spreadsheet.

At this point, the user could choose between four ways to create a

71

semantic network knowledge-base (spreadsheet). Their f i r s t option

is to re tr ieve a saved knowledge-base (spreadsheet f i l e) using the

m ulti- level menu system described in section 4.3 (accessed by

pressing the ' / ' key). A second option is for the user to enter the

a c t iv ity cycle of an en tity , as described in section 4.5 (accessed

by pressing the [F6] key). A th ird option is to enter an English

sentence for translation, as described in section 4.4 (accessed by

pressing the [F8] key). A fourth option is to type in each object

name in d iffe ren t cells on the spreadsheet and then use the [F9] key

to point at two d iffe ren t objects and create a relationship (arrow)

between them. These options are naturally not exclusive, therefore

a retrieved knowledge-base can be updated with both English

sentences and then a c t iv ity cycle input.

Once a semantic network is p a r t ia l ly b u i l t , i t is important to be

able to move about the network quickly in order to examine or change

the semantic network. There is a single cursor which the user can

move about the spreadsheet cells using the arrow keys (including

[PAGEUP] and [PAGEDOWN]). Whatever the object the cursor is

standing over is called the 'current ob ject'. Pressing the [F2] key

edits the name of the current object (e.g. to correct misspellings).

In order to display a ll relationships for the current object,

pressing the [F I0] key displays them (these relationships could be

on any of the leve ls). To see the other relationships graphically,

pressing [PAGEUP] or [PAGEDOWN] keys changes the level to the next

72

level in which this object occurs. I t is also important to be able

to see an overview of the current leve l, and be able to 'zoom in '

for an increased magnification of an area. This can be done by

pressing the [CONTROL Z] key. The present implementation of zoom is

lim ited to only one increased magnification of a problem (due to the

poor graphical support available with the Turbo pascal language used

to write the prototype)). I t would be ideal i f the resolution could

be gradually increased or decreased by the user.

To aid experimentation (when adding or deleting objects or

re lationships), a ll new relationships added are displayed in a

d iffe re n t colour (ie they are Non-permanent) until they are made

permanent (by committing them) or are removed (ie Rolled Back).

This is analogous to the Commit / Rollback option of commercial

databases. Thus i f a wrong sentence was typed in, i ts effects can

be immediately and instantly unwound by using the ' / Worksheet Roll

back' command in section 4 .3 .1 . While pressing the [F3] key commits

the changes done (identical to the ' / Worksheet Commit' command in

section 4 .3 .1) . Pressing the [DEL] key makes a permanent l in k ,

selected with the [SPACE] key, non-permanent, and thus enabling i ts

deletion using ' r o l l back'.

As on an ordinary spreadsheet, a ll objects and relationships are

held in memory until the user saves the work into a f i l e on disk by

using the ' / F ile Save' command in section 4 .3 .2 .

73

The user may wish to hide the borders and column/row numbers, for

example to make the interface v isually cleaner. This can be done by

pressing the [CONTROL B] key.

Section 4.3 : MULTI LEVEL MENU SYSTEM

As mentioned in the previous section, the m ulti-leve l menu system,

which is sim ilar to the Lotus 1-2-3 menu interface, is accessed from

the graphical interface by pressing the ' / ' key. The m ulti-leve l

menu system is based on the concept that, at any one time, there are

a number of options (including Sub-menus) which can be chosen by

either moving the cursor over them and pressing [RETURN] or pressing

the f i r s t le t te r of option t i t l e . When moving the cursor, a help

l ine is shown at the line below the cursor to b r ie f ly explain the

purpose of the highlighted option.

The top level menu structure is as follows :

/ = Call Menu

Worksheet F ile List Move Delete Hide In fer Validate Simulate Quit
&

Simulate

The above sub-menus and are described in the next sections. Some of

these options prompt for a range. The technique for highlighting

a range are f i r s t l y to move the cursor to a corner of the range.

74

Then to press the fu ll-s to p to 'anchor' the cursor. To 'unanchor'

the cursor press the [ESC] key. Thirdly to move the cursor to the

opposite corner and press the [RETURN] key. I f the fu ll-s to p key is

pressed, the cursor is moved to the next corner in a clockwise

direction.

Section 4 .3 .1 : Worksheet Sub-menu

This sub-menu is concerned with general worksheet settings. The

following options can be chosen :

Reset : Clears a ll data in memory, thus prepares the worksheet

for another session.

In : Zooms into the current cell of the worksheet. This has the

e ffec t of reducing the number of cells displayed at one time from

11 x 10 to 4 x 4. The column width would thus be set to 19.

Out : Zooms out. This returns the screen to display 11 x 10

c e lls . The column width would thus be set to 7.

Commit : This makes a ll permanent.

Roll Back : This removes a ll non-permanent relationships. I f an

object only had non-permanent relationships, then that object

would be deleted.

Width : This sets the column width of the c e lls . In does not

change the number of cells displayed v e r t ic a l ly .

75

S e c t io n 4 . 3 . 2 : F i l e Sub-menu

This sub-menu is concerned with loading and saving f i le s from disk.

The following options can be chosen :

Retrieve : This clears a ll data in memory and retrieves a

spreadsheet from the disk. A l i s t of a l l spreadsheet f i le s are

displayed, and can be chosen by moving the cursor to the relevant

spreadsheet and pressing return, a lte rn a tive ly the name of the

f i l e (including and change in the directory or drive) can be

typed in.

Save : Save the worksheet in memory as a spreadsheet f i l e on

disk. The user w ill be prompted for the f i l e name. The user can

accept the suggestion by pressing [re tu rn], or type in the f i l e

name himself. .

Combine : This combines the data in two spreadsheets. [Not yet

implemented]

Translate : This takes english sentences from a f i l e on disk, and

translates i t into the semantic network representation.

Extract : This extracts a range from the worksheet in memory and

saves i t as a separate spreadsheet f i l e on disk. [Not yet

implemented]

76

S e c t io n 4 . 3 . 3 : L i s t Sub-menu

This sub-menu is concerned with l is t in g objects and relationships in

the present knowledge-base (spreadsheet). The following options can

be chosen :

Objects : Lists objects in the worksheet, sorted alphabetically .

Relations : Lists relationships in worksheet, sorted

alphabetically.

Links : Lists a ll links in the worksheet, not sorted.

Links_Relationships : This prompts for a relationship name, and

i t l is ts a ll links involving this relationship.

Spool On : This starts spooling the non-graphical screen output

to a disk f i l e . I f the f i l e already exists then a ll of i ts

contents are erased.

Spool Stop : This stops spooling.

77

S e c t io n 4 . 3 . 4 : Move Sub-menu

This options allows the movement of objects from one place to

another (on the same le v e l) . I t prompts for a range to move, then

i t prompts for the top l e f t hand corner of the range to move to.

There is no danger of objects being 'over-w ritten ' since i f a cell

in the TO-RANGE is occupied, the corresponding cell in the FROM-

RANGE is l e f t in i ts old location.

Section 4 .3 .5 : Delete Sub-menu

This option deletes objects (and th e ir links on a ll leve ls) . I t

prompts for a range.

Section 4 .3 .6 : Hide Sub-menu

This removes objects from a level where that object does not have

any links . I f the object does not have any links at a l l , then the

object is deleted. This option prompts for a range.

Section 4 .3 .7 : In fer Sub-menu

This is an option where SASIM tr ies to investigate the links between

two objects (whether en tit ies or a c t iv i t ie s) . This might be useful

i f , a fte r a simulation run, the results of a change in the number of

one en tity counter-in tu itive ly affected another object. There are

clearly many possible links, some of which are relevant, some of

which may in certain conditions be relevant and some links which are

blatantly wrong (an analogy of the complexity involved would be the

78

problem of finding every possible way to travel from A to B, with

ample public and private transport, when money is no l im ita tio n and

style and speed is ir re le van t). The process w il l hopefully 'H IT' on

a successful l in k (ie a l in k which turns out to be the causal l in k ,

analogous to the c r i t ic a l path in CPA analysis). The shortest links

are highlighted f i r s t (based on the number of l in k s) .

The option f i r s t prompts for a causal object (chosen simply by using

cursor keys), then i t prompts for a second object which the user

would l ik e to have some insight into i ts impact i f the f i r s t object

was changed. The use would then be stepped through the f i r s t l in k

chain found (stepping through by pressing the [SPACE] key). At the

end of every l ink chain, the user has the option to abort this

investigation, or to continue and locate another l in k chain.

The inference engine is based on the Branch and Bound algorithm.

The inference engine is prevented from choosing objects 'ENTITY' or

'ACTIVITY', or relationships 'NUMBER' or 'DURATION' as part of the

chain of relations since these are meaningless in this type of

analysis, and i t is also prevented from transversing the cycle of an

e n tity the wrong way round.

This type of semantic analysis in only possible because the

knowledge-base is limited to a simulated system. SASIM already knows

the meaning of some relationships ('AFTER' or 'PRIORITY') as well as

79

some objects ('ENTITY' or 'ACTIVITY'). This is an essential

constraint in this environment, but SASIM would need to be modified

i f i t were to be used in another environment, such as medical

diagnosis.

Section 4 .3 .8 : Validate Option

A fter the knowledge-base has been input, the software must provide

a f a c i l i t y for validation (a fte r a l l , there is a very high

probability of the user missing out one or more re lationships).

This option tr ie s to l i s t cycle of every e n tity i t has discovered,

as well as l is t in g the en tit ies involved in every a c t iv i t ie s . I t

also checks that the cycles do not break into two or more separate

components (in the PUB problem, described in section 6 .2 , i t

correctly notes that 'DOG' cycle is non-existent, as well as that i t

is not connected to other cycles).

The system w ill ask for any missing information necessary to run a

simulation, including the starting points of e n t it ie s , the stop

time, the run in period and the pause in terv a l. These w i l l be

stored on the NUMBER level of the semantic network. The next

section w il l describe the menu option which starts the actual

simulation run.

80

S e c t io n 4 . 3 . 9 : S im u la t i o n Run O p t io n

This option starts a simulation run. The system w il l automatically

ask for any missing information necessary to run a simulation (e.g.

i f the validate option in section 4 .3 .8 has not been run by the

user). A description of the simulation run process is contained in

section 4 .6 . I f the user has the 'SPOOL TO FILE' option enabled, he

w il l be asked whether he would l ike to store a fu l l audit t r a i l of

the simulation run, or just a s ta t is t ic a l summary.

Section 4.3 .10 : Quit Sub-menu

This option allows the user to ex it SASIM. WARNING I f the

worksheet has not been saved, i t w ill be lo st. SASIM prompts the

user to confirm that he would l ike to continue and ex it out of the

software package.

Section 4.4 : NATURAL LANGUAGE UNDERSTANDING AND PROCESSING (NLUP)

The setting up of the semantic network manually, by entering each

object in separate spreadsheet cells and then setting each

relationship in turn (using the [F9] key), is very time consuming

and error prone. There is therefore a need to enter an English

sentence which could be translated into many semantic network

objects and relationships. The interface which was developed in

SASIM takes a free text english and converts i t automatically into

the semantic network format. This can c learly break the in i t ia l

81

barrier between the c lien t and the simulation practit ioner

[Doukidis, 1985] in that the practit ioner converts the c l ie n t 's

dialog for the system in such a way that the user's understanding is

retained. An example of a valid sentence is :

Customers a fte r drinking, then rest for three minutes.

(a l l sentences finishing with a fu l l-s to p)

This uses the syntax :

ENTITY AFTER ACTIVITY THEN ACTIVITY (ACTIVITY_DESC).

The syntactic formats allowed are summarised in Appendix 1. This

syntax can be expanded by simply changing a data f i l e . Appendix 3.1

contains a fu l l NLUP worked example for the PUB problem.

In SASIM, these sentences can be e ither typed in, one a fte r another,

using function key [F8], or a lte rnative ly by f i r s t creating a f i l e

using any text ed itor, such as Turbo Pascal or Wordstar (using non

document mode) or Wordstar 2000 (using format "unformatted"). The

only constraints on the f i l e are that the lines are not longer than

100 words, and the maximum length of a word is 49 le t te rs . As a

convention, the f i l e should have an extension of '.ENG'. To read

th is f i l e , the option from the menu system is from the 'FILE' Sub

menu, Option 'TRANSLATE'.

82

The problem of d iffe ren t words meaning the same thing (fo r example

Service and Serving), as well as singular and plural representations

of words, has been solved by using a 'd ic t io n a ry '. This provides a

'mask' approach which changes a ll nouns to the singular, as well as

a ll verbs to a common tense (for example Serving to Service).

Appendix 3 l is ts these masks, which are checked in turn, starting

from the f i r s t one on the l i s t , and as soon as one mask is found to

f i t , the conversion is stopped. All inputs are also converted to

upper case. The problem of synonyms has also been handled by a

second dictionary look up.

A very useful feature is the automatic handling of arriva l (or

regular occurring) mechanisms. I t looks for the keyword 'EVERY',

and i t then builds in an arrival (regulating) mechanism.

SASIM attempts to tackle the translation from the written sentence,

but not the spoken word, although i f a speech subsystem was used i t

could be easily integrated into SASIM.

Section 4.5 : ACTIVITY AND ENTITY CYCLE INPUT INTERFACE

In addition to the NLUP interface, SASIM provides a graphical

interface to quickly input e ither ACDs, whether p a r t ia l ly or fu l ly

completed, or simply a l i s t of a c t iv it ie s and/or e n t it ie s . These

would be automatically translated into the semantic network

83

knowledge-base, and would thus enable the integration of both NLUP

and graphical cycle input to be used in the formulation stage of a

simulation.

The input process is started by pressing the [F6] key. SASIM would

then prompt for an entity and/or an a c t iv i ty , which can be chosen by

just typing in its name, or i f the object is already defined, using

the arrow keys to locate the object on the semantic network and

pressing <enter>. I f SASIM does not already know this object is an

en tity or an a c t iv ity i t would prompt the user to indicate which one

i t is .

The interface is based around the concept of two state counters, one

indicating the current instance of an e n t ity , the other indicating

the current a c t iv ity . These two counters are indicated at the

bottom of the screen.

I f the user chooses an a c t iv ity then the current instance is assumed

to move from the present instance to the new a c t iv i ty . I f the user

chooses an entity (or any of its instances), then the e n tity is

assumed to be involved in current a c t iv ity . In both cases, SASIM

no tif ies the user of a ll links added to the semantic network. To

e x it , press the [ESC] key at any stage.

84

The following is and example of using the A ctiv ity and Entity Cycle

Input in terface. Starting with an empty semantic network knowledge

base, the following is a typical user session :

user Input SASIM reply

[F6] key
CUSTOMER [enter]
(choosing) ENTITY

(any key)
ARRIVE (enter)
(choosing) ACTIVITY

(any key)

(any key)

(any key)
SERVED
(choosing) ACTIVITY

(any key)

(any key)

(any key)

(any key)
BARMAID
(choosing) ENTITY

(any key)

(any key)

[ESC]

Please input A ctiv ity and/or Entity
'ACTIVITY or ENTITY' menu
'CUSTOMER IS A ENTITY' added,

press any key to continue
Please input A ctiv ity and/or Entity
'ACTIVITY or ENTITY' menu
'ARRIVE IS A ACTIVITY' added,

press any key to continue
'CUSTOMER (ARRIVE) IS A CUSTOMER' added

press any key to continue
'ARRIVE NEEDS CUSTOMER (ARRIVE)' added

press any key to continue
Please input A ctiv ity and/or Entity
ACTIVITY or ENTITY' menu
'SERVICE IS A ACTIVITY' added,

press any key to continue
'CUSTOMER (SERVICE) IS A CUSTOMER' added

press any key to continue
'SERVICE NEEDS CUSTOMER (SERVICE)' added

press any key to continue
'CUSTOMER (ARRIVE) PRECEDES CUSTOMER

(SERVICE)' added
press any key to continue

Please input A ctiv ity and/or Entity
'ACTIVITY or ENTITY' menu
'BARMAID IS A ENTITY' added,

press any key to continue
'BARMAID (SERVICE) IS A BARMAID' added

press any key to continue
'SERVICE NEEDS BARMAID (SERVICE)' added

press any key to continue
Please input A ctiv ity and/or Entity

returns to normal view.

85

S e c t io n 4 . 6 : SIMULATION RUNNING PROCESS

The basic concept behind the simulation running process is that the

user s t i l l sees the original semantic network while seeing each

e n tity involved in an a c t iv ity (or moving between a c t iv i t ie s) . For

example CUSTOMER (DRINK), has two counters: the counter above

displays the number of occurrences waiting to s ta rt that a c t iv ity ,

and the counter below displays the number of occurrences actually

involved in that a c t iv ity . By pressing the [CONTROL H] key, the

user can view the histograms of an e n t ity , including the queuing

time and queuing length of that en tity , as described in section 2.4.

When an occurrence of an entity moves from one a c t iv ity to another,

the user actually sees the icons moving simultaneously on the

screen. In addition, the text area at the top of the screen

indicate the name of present object, the status of the simulation

(ie paused, running or stopped), the time in the simulation and the

simulation delay. The user can change this delay factor by pressing

the '< ' or '> ' key. Pressing the [SPACE] key pauses or recontinues

the simulation, which would be useful i f the user wished to examine

the state of the system during the simulation run. Pressing the

[ESC] key stops the simulation run.

86

S e c t io n 4 .7 : CONCLUSION

This chapter has presented SASIM, a prototype implementation of the

semantic modelling approach. The prototype uses the fam ilia r Lotus

1-2-3 menus and spreadsheet concept to reduce the conceptual jump

required for many user. The prototype implements a ll the semantic

modelling concepts, including natural language processing and

simulation running. As discussed in section 3 .7 , complex problems

require additional conditions for cooperation between objects. The

implementation of this procedural attachment concept in the

prototype is described in the next chapter.

87

CHAPTER 5

PROCEDURAL ATTACHMENT

Section 5.1 : INTRODUCTION

Section 3.6 highlighted the advantages of procedural attachment as

a means to represent complex cooperation between objects. This

chapter presents the implementation of procedural attachment in the

SASIM prototype.

SASIM implements procedural attachment of active production rules

(written in Turbo Pascal) into the simulation process, thus taking

charge of selected sections of semantic network (localized contro l).

There is the a b i l i ty to set up and monitor a ttr ibu tes , and to set up

peculiar restric tions and interactions which can not be easily

represented in a semantic network. The decision to use active

production rules, as opposed to passive production rules, was taken

because of the complexities of writing the in terpreter required for

passive production rules (whereas active production rules are

compiled by the Turbo Pascal compiler). Unfortunately, the

inference engine is not able to analyse active production rules.

Despite th e ir less f lex ib le nature, active production rules

i l lu s t r a te the use of procedural attachment to supplement the

semantic network knowledge-base.

88

I t is important to realise that the user supplied code, whether

input d irec tly by the user or aided by the in b u il t 'PROGRAM

GENERATION' option, does not create a completely d if fe re n t

environment as is customary in other environments. What i t does is

to create a customised SASIM environment which interacts d ire c t ly

with the la tes t semantic network knowledge-base and modifies the

movement and cooperation between en tit ies in selected areas of the

semantic network during simulation running. In other words,

procedural attachment enables selected a c t iv it ie s to 'opt out' of

the in -b u i l t simulation running executive and thus be controlled and

managed by the user supplied code, with reference s t i l l to the

graphical semantic network knowledge-base. This s t i l l enables

modification of the semantic network AFTER the user code is created

or modified.

This chapter f i r s t details the structure of the procedural

attachment program f i l e (named USERCODE.PAS). All user supplied

code is contained in this f i l e . Section 5.5 deta ils the main

callable procedures defined by SASIM. These would be mixed with

standard Turbo Pascal code in order to define the required

relationships. The user supplied code f i l e , USERCODE.PAS, needs to

be compiled by Turbo Pascal which automatically integrates the code

into the simulation environment, creating a customised internal

knowledge-base (contained in the main executable f i l e SASIM.EXE).

Appendix 3.6 i l lu s tra te s the use of procedural attachment in the

pub problem as described in section 6.2.

89

S e c t io n 5 .2 : STANDARD TERMINOLOGY

The idea that an en t ity , such as a CUSTOMER, has multiple instances,

for example CUSTOMER (SERVICE) or CUSTOMER (DRINK) has already been

described. Since each instance is a d if fe re n t state which the

e n tity can be in, relationships between the instances can be defined

on the semantic network, for example "CUSTOMER (SERVICE)" proceeds

"CUSTOMER (DRINK)". However when en tit ies in terac t, i t is important

to both keep track of d iffe ren t occurrences of a single instance,

and occurrences of an entity when i t moves from one instance to the

next.

For example, to monitor the time that a specific customer takes from

entering the pub to leaving i t , the customer is allocated a unique

occurrence code which he carries with him and which defines other

data specific to him (for example arrival time, number of drinks so

fa r e t c .) .

Entit ies , instances, a c t iv it ie s or descriptions are objects since

they are located at discrete cells on the semantic network. The

actual location of the objects on the semantic network is irre levant

to the user code.

90

S e c t io n 5 .3 : STRUCTURE OF PASCAL USER CODE

All user code is in a f i l e called 'USERCODE.PAS'. This f i l e has

separate high-level sections (or procedures), each assigned a

d iffe re n t ro le . Since these procedures are called by SASIM during

a simulation, they can d irec t ly affect the course of a simulation.

These high-level procedures can contain any Turbo Pascal procedures

or specialised SASIM callable procedures (highlighted in section

5 .4) . I f the high-level procedures do not contain customised code,

or only contain code for selected objects, the unmentioned objects

contained in the knowledge-base are not affected, thus achieving the

goal of 'attaching' code to objects.

The f i r s t high-level section is the occurrence d efin it io n section.

For example, the pub problem requires the creation an integer data

item for each customer to log the number of drinks required. The

pub problem contained the following occurrence d efin it io n section :

{$1 USERCODE.INI)
ATT = RECORD

INTERNALJJSE : OCC;
N0_DRINKS : INTEGER;

END;
{$1 USERCODE.IN2)

The second high-level section is the global variable d e fin it io n

section. For example, to create a histogram requires the d e fin it io n

of a pointer to a predefined histogram record (called HHISTOGRAM).

I t is also desirable to be able to define variables to point to

91

selected objects on the semantic network (OOBJECT is a predefined

pointer to an object). The pub problem contained the following

global variable de fin it ion section :

VAR
DOORARRIVE, D00R_ARRIVE_ARR,
CUSTOMERARR, ARRIVE, CUSTOMER_REST, CUSTOMER_SERVICE,
CUSTOMER_EXIT, GLASSES, CUSTOMERS, BARMAIDS,

GLASS_WASH : OOBJECT;
DRINK_HIST,SERVE_TS, BARMAID_TS : HHISTOGRAM;

The th ird high-level section is the set hooks procedure. This

procedure is called once at the beginning of each simulation run to

enable 'hooks' to be inserted into the semantic network for a ll

objects which are to be managed by this pascal code. These hooks

are latched on with the LOCATEOBJECT function. Once latched on, an

a c t iv ity can be set for manual (customised code) control by setting

the CONTROL f ie ld in the object to USER (e.g. ARRIVED CONTROL : =

USER). This section would also be used to define customised

histograms (using the INITIALISE_HIST procedure defined in section

5.4) - noting that a ll instances already have, by defau lt, a queuing

time and length histogram defined. This section is also ideal to

contain the ICON_MATRIX procedure (defined in section 5.4) which

defines the graphical shape of objects using a simple 2x2 character

92

m a t r i x . The pub p rob lem c o n ta in e d th e f o l l o w i n g s e t hooks

p r o c e d u re :

PROCEDURE SET_H00KS;
BEGIN

D00R_ARRIVE := L0CATE_0BJECT('D00R_ARRIVE');
D00R_ARRIVE_ARR := L0CATE_0BJECT(/ D00R_ARRIVE (ARRIVE)');
CUSTOMERARR := L0CATE_0BJECT('CUSTOMER (ARRIVE)');
CUSTOMER_REST := L0CATE_0BJECT('CUSTOMER (REST)');
CUSTOMER_SERVICE := L0CATE_0BJECT('CUSTOMER (SERVICE)');
CUSTOMEREXIT := L0CATE_0BJECT('CUSTOMER (E X IT) ');
CUSTOMERS := LOCATE_OBJECT('CUSTOMER');
GLASSES := LOCATE_OBJECT('GLASS');
GLASS_WASH := LOCATE_OBJECT('GLASS (WASH)');
BARMAIDS := LOCATE_OBJECT(' BARMAID');
ARRIVE := LOCATE_OBJECT('ARRIVE');
IF NOT ERR THEN

ARRIVED CONTROL := USER;
ICON_MATRIX(0,0,238,221,154,WHITE,BLACK,GLASSES); (* * | 238,221

U 154*)
IC0N_MATRIX(0,0,12 ,11 ,1 ,YELLOW,BLACK,CUSTOMERS); (* Face *)
DEFINE_C0NVEY0R(-1,0 ,1 ,0 , 2, GREEN, GLASS_WASH); (* X,Y, XSTEP,

YSTEP, LENGTH, COLOUR, INSTANCE *)
INITIALISE_HIST(DRINK_HIST,CUSTOMER_ARR,'NUMBER OF DRINKS');
INITIALISE_TSERIES(SERVE_TS,CUSTOMER_SERVICE,

'CUSTSERV',3 ,0 ,15);
INITIALISE_TSERIES(BARMAID_TS,BARMAIDS,'BARMAID',3 ,0 ,15);

The fourth high-level section is the graphic object procedure. This

procedure would be used to define complex graphical shapes (using

Turbo Pascal graphics). This procedure is called for every object

on the network just before i t ' s name is output on the screen. This

object can then, i f desired, be drawn graphically rather than just

named on the screen. The procedure (function) returns a number,

being the length, in character positions, of the name (to accurately

locate the s tart and end of the relationship arrows). I f the number

93

returned is negative, this would indicate that the object has been

drawn graphically, and therefore does not require i ts name to be

output. The pub problem contained the following graphic object

procedure:

FUNCTION GRAPHIC_OBJECT(OBJ : OOBJECT; XG1,YG1 : INTEGER;
DRAW : BOOLEAN) : INTEGER;

VAR
T1,T2 : INTEGER;
PENTAGON : ARRAY [1 . .4] OF POINTTYPE;

BEGIN
IF OBJA.NAME = 'CUSTOMER (DRINK)' THEN
BEGIN (* shape of a man *)

IF DRAW THEN
BEGIN

SETCOLOR(WHITE);
YG1 := YG1-YD0TS_PER_CHAR;
XGI := XG1+XD0TS_PER_CHAR;
CIRCL E(XG1 ,YG1, R0UND(YD0TS_PER_CHAR*0.2));
YG1 := YG1+R0UND(YD0TS_PER_CHAR*0.2);
LINE(XGI, YG1, XGI, YGl+YDOTS_PER_CHAR);
YG1 := YGl+YDOTS_PER_CHAR;
LINE(XG1-ROUND(XDOTS_PER_CHAR*0.5),

YG1+R0UND(YD0TS_PER_CHAR*0.5) ,XG1,YG1);
LINE(XG1+ROUND(XDOTS_PER_CHAR*0.5),

YG1+R0UND(YD0TS_PER_CHAR*0.5),XG1,YG1);
YG1 := YG1-ROUND(0.66*YDOTS_PER_CHAR);
LINE(XG1-ROUND(XDOTS_PER_CHAR*0.5),

YG1, XG1+R0UND(XDOTS_PER_CHAR*0. 5) ,YG1);
END;
GRAPHIC_OBJECT := -3;

END
ELSE
IF OBJA.NAME = 'CUSTOMER (SERVICE)' THEN
BEGIN (* money sign to indicate payment when served *)

IF DRAW THEN
BEGIN

SETCOLOR(WHITE);
RECTANGLE(XG1-13,YG1-4,XG1+21,YG1+12);
SETUSERCHARSIZE(5,5,5,5);
SETTEXTSTYLE(SMALLFONT,HORIZDIR,USERCHARSIZE);
SETCOLOR(GREEN);
OUTTEXTXY(XG1 -10 ,YG1 , ' MONEY') ;

END;
GRAPHIC_OBJECT := -5;

END
ELSE

94

IF (OBJA.NAME = 'GLASS (SERVICE)') OR
(OBJA.NAME = 'GLASS (DRINK)') THEN

BEGIN (* beer glass shape *)
IF DRAW THEN
BEGIN

SETCOLOR(BROWN);
s e t f i11 s t y le (s o l id f i l l , BROWN);
PENTAGON[1] .X := XG1+2;
PENTAGON^]. Y := YG1+ROUND(YDOTS_PER_CHAR*0.5);
PENTAGON[2] .X := XGl+2*XDOTS_PER_CHAR-2;
PENTAGON[2].Y := YG1+R0UND(YD0TS_PER_CHAR*0.5);
PENTAGON[3] .X := XGl+2*XDOTS_PER_CHAR;
PENTAGON[3].Y := YGl-YDOTS_PER_CHAR;
PENTAGON[4] .X := XGI;
PENTAGON^].Y := YGl-YDOTS_PER_CHAR;
DRAWPOLY(SIZEOF(PENTAGON) DIV

SIZEOF(POINTTYPE), PENTAGON);
FILLPOLY(SIZEOF(PENTAGON) DIV

SIZEOF(POINTTYPE),PENTAGON);
PIESLICE(XG1, YG1-YDOTS_PER_CHAR,90,270,2);
PIESLICE(XG1+2*XD0TS_PER_CHAR,

YG1-YD0TS_PER_CHAR,0,90,2);
PIESLICE(XG1+2*XD0TS_PER_CHAR,

YG1-YD0TS_PER_CHAR,270,360,2);
SETCOLOR(WHITE);
s e t f i11style(INTERLEAVEFILL,WHITE);
BAR(XG1, YG1-ROUND(1 .2*YD0TS_PER_CHAR),

XG1+2*XD0TS_PER_CHAR,YG1- YDOTS_PER_CHAR);
END;
GRAPHIC_OBJECT := -2;

END
ELSE

IF OBJA.FORGROUND_COLOUR = -1 THEN (* default section *)
GRAPHIC_OBJECT := LENGTH(OBJA.NAME)

ELSE
GRAPHIC_OBJECT := 2;

95

The f i f t h high-level section is the B event procedure. This

procedure is used to define where an occurrence, OCCUR, moves on to

a fte r completion of the a c t iv ity associated with instance

CURRENTOBJECT (i . e . during the B phase in a three phase

simulation). I f the movement of an occurrence is not e x p l ic i t ly

defined, i t is automatically moved on according to the semantic

network knowledge-base. The pub problem contained the following

B event procedure :

PROCEDURE B_EVENT(CURRENT_OBJECT : OOBJECT; OCCUR : OOCC);
BEGIN

IF CURRENT_OBJECT = CUSTOMER_REST THEN
BEGIN

DEC(ATTRIBUTE(OCCUR)A.N0_DRINKS);
IF ATTRIBUTE(OCCUR)A.NO_DRINKS > 0 THEN

ADD_TO_B_QUEUE(CUSTOMER_SERVICE, OCCUR)
ELSE

ADD_TO_B_QUEUE(CUSTOMER_EXIT, OCCUR);
END

END;

The sixth high-level section is the C event procedure. This

procedure is used to define when a c t iv it ie s begin (i . e . during the

C phase in a three phase simulation). This procedure is only called

for a c t iv it ie s which are set for manual (customised code) control in

the set hooks procedure above. The pub problem contained the

96

f o l l o w i n g C e v e n t p ro c e d u re

PROCEDURE C_EVENT(CURRENT_ACTIVITY : OOBJECT);
VAR

SAMPLE_TIME : INTEGER;
OCCUR : OOCC;

BEGIN
IF CURRENT_ACTIVITY = ARRIVE THEN

WHILE (QSIZE(DOORARRIVE) > 0) AND (QSIZE(CUSTOMER_ARR) > 0)
DO
BEGIN

SAMPLE_TIME := SAMPLE_ACT_TIME(ARRIVE);
OCCUR := BEHEAD(CUSTOMER_ARR);
ATTRIBUTE(OCCUR)A.NO_DRINKS := RAND0M(3)+2;
UPDATE_HIST(DRINK_HIST,ATTRIBUTE(OCCUR)A.NO_DRINKS,1);
ADD_TO_TREE(SAMPLE_TIME,OCCUR,CUSTOMER_ARR);
ADD_TO_TREE(SAMPLE_TIME,BEHEAD(DOOR_ARRIVE),

DOOR_ARRIVE_ARR);
END;

END;

The seventh high-level section is the report procedure. This

procedure is called at the end of each simulation run (or sub-run),

and is thus the place to dictate which histograms to display. The

pub problem contained the following report procedure :

PROCEDURE REPORTS;
BEGIN

DISPLAY_HISTOGRAM(DRINK_HIST);
PRINT_HIST(CUSTOMER_SERVICE);

END;

The eighth high-level section is the main section. This procedure

is called only once on loading the SASIM prototype. I t could be

used to in i t ia l is e some global in i t ia l is a t io n . However i ts use is

not required in the pub problem. The pub problem thus contained the

97

following default main section

BEGIN
{BLANK MAIN}

END.

Section 5.4 : CALLABLE PROCEDURES

The section details the main procedures defined by SASIM which can

be called by the user supplied code. These would be mixed with

standard Turbo Pascal code in order to define the required

relationships. The defined procedures can be s p l i t into groups

according to which of the eight sections they are most l ik e ly to be

used in. To understand the parameters required, the following type

defin itions are used :

HHISTOGRAM is a pointer to a histogram.

LSTRING is defined as a standard string.

OOCC is a pointer to an occurrence record.

OOBJECT is a pointer to an object record. This can be any

object on a semantic network, including an instance or an

a c t iv ity .

98

The th ird high-level section, the set hooks procedure, may require

the following procedures :

FUNCTION LOCATE_OBJECT(ObjName : LSTRING) : OOBJECT;

Returns the pointer to an object (whether an a c t iv i ty , e n tity ,

instance or description) whose name is "Obj_Name". This function

thus provides the hooks in the semantic network through which a ll

the defined functions are dependent upon. This procedure would

be placed in the SETHOOKS section, since i t only needs to be

called once.

PROCEDURE ICON_MATRIX(TopLeft, TopRight, BottomLeft, BottomRight,
Character, ForgroundColor, BackgroundColor :
INTEGER; Obj : OOBJECT);

Defines the object "Obj" on the screen using a simple 2x2

character matrix. The ASCII of each character in the matrix is

passed in the function c a l l . In addition an ASCII character for

each occurrence to indicate an occurrence moving from one

instance to another is also passed as parameter "Character". The

background and forground colours of the object can be specified.

An ASCII of '0 ' indicates a default value. This procedure would

be placed in the SET_H00KS section, since i t only needs to be

called once.

99

PROCEDURE INITIALISEHIST(Hist : HHISTOGRAM; Obj : OOBJECT;

Histname : LSTRING);

This creates a customised histogram "Hist" whose name is

"HIST_NAME", and attaches i t to object "Obj". I t is the user

code's responsibility to update a customised histogram. This

procedure would be placed in the SET_H00KS section, since i t only

needs to be called once.

The f i f t h high-level section, the B event procedure, may require the

following procedures :

PROCEDURE ADD_TO_F_QUEUE(Obj : OOBJECT; Occur : OOCC);

PROCEDURE ADD_TO_B_QUEUE(Obj : OOBJECT; Occur : OOCC);

Adds an occurrence "Occur" e ither to the front or the back of

the associated with instance (or f a c i l i t y) "Obj". This would be

used in the end phase of the three-phase simulation (i . e . B-

phase) to move an occurrence forward to another queue.

FUNCTION RETURN_NUMBER(Occur : OOCC) : INTEGER;

Returns a unique number for occurrence "Occur". This is a unique

sequential number for a ll occurrences of an e n t ity . This would

be required i f i t is desired to trace individual occurrences

through the system. This may also be useful in the C event

procedure.

100

FUNCTION RETURN_UNIQUE_NUMBER(Occur : OOCC) : INTEGER;

Returns a unique number for occurrence "Occur". This is a unique

sequential number for a l l occurrences regardless of the actual

e n tity . This would be required i f i t is desired to trace

individual occurrences through the system, possibly when

occurrences 'transform' from one en tity to another. This may

also be useful in the C event procedure.

PROCEDURE UPDATE_HIST(Hist : HHISTOGRAM; Obs,Occ : INTEGER);

This updates histogram "Hist" with an observation, "Obs", which

occurred "Occ" times. This is required to build up the

s ta t is t ic a l data in the histogram (fo r example the number of

drinks). This may also be useful in the C event procedure.

The sixth high-level section, the C event procedure, may require the

following procedures :

FUNCTION QSIZE(Obj : OOBJECT) : INTEGER;

Returns the size of the queue associated with instance (or

f a c i l i t y) "Obj". This function would be used to find out i f

there are any occurrences of an entity waiting to be involved in

an a c t iv ity .

101

FUNCTION CYCLE(Obj : OOBJECT) : OOCC;

Causes the front occurrence of the queue associated with object

"Obj" to be sent to the back, and returns the occurrence now at

the front of the queue. This function would be used to scan a ll

occurrences in a queue (for example to find out who should be

served f i r s t) .

FUNCTION SAMPLE_ACT_TIME(C u rre n ta c t iv ity : OOBJECT) : INTEGER;

Samples a time of ac t iv ity " C u rre n ta c t iv ity " , based upon the

information in the semantic network. This would be used in the

C_EVENT section when i t is desired to scan a ll occurrences in a

queue (fo r example to find out who should be served f i r s t) .

FUNCTION RND(SrSTREAM) :REAL;
FUNCTION NORMAL(M:REAL; SDrREAL; S:STREAM) : INTEGER;
FUNCTION NEGEXP(MrREAL; SrSTREAM) : INTEGER;
FUNCTION WEIBULL(A,B:REAL; S:INTEGER) : INTEGER;
FUNCTION POISSON(MrREAL; S:INTEGER) : INTEGER;
FUNCTION ERLANG(E l: INTEGER; MrREAL; S:STREAM) : INTEGER;

These are standard sampling functions. This would be placed in

the C_EVENT section to sample durations, a ttributes etc.

FUNCTION BEHEAD(Obj : OOBJECT): OOCC;

Returns the occurrence at the front of the queue associated with

instance (or f a c i l i t y) "Obj". This function is generally called

as a prelude to calling the ADD_TO_TREE procedure - see next.

102

PROCEDURE ADD_TO_TREE(Duration : INTEGER; Occur : OOCC;

Instance : OOBJECT);

Starts an occurrence "Occur" into the a c t iv ity associated with

instance "Instance". The duration of the a c t iv ity is "Duration".

This would be used in the s tart phase of the three-phase

simulation (i . e . C-phase) to indicate the s tart (and thus end) of

an a c t iv ity .

The seventh high-level section, the report procedure, may require

the following procedures :

PROCEDURE DISPLAY_HISTOGRAM(Hist:HHISTOGRAM);

This displays on the screen histogram "Hist". This should only

be used in the REPORTS section. I f spool is switched on, i t w il l

prin t to a f i l e as wel1.

PROCEDURE PRINT_HIST(Obj : OOBJECT);

Prints a ll histograms of object "Obj". This should only be used

in the REPORTS section. I f spool is switched on, i t w i l l prin t

to a f i l e as wel1.

103

S e c t io n 5 .5 : COMPILING USER CODE

To compile the code, simply use the TURBO 4 compiler, loading up the

f i l e SASIM.PAS and pressing [F9] to compile the code. This is now

a customised version of SASIM.EXE (the original version should be

kept safe), and can be run as normal.

Section 5.6 : AUTO GENERATING USER CODE

To speed up the customization process (using procedural attachment),

SASIM can create a sample USERCODE which contains the HOOKS onto the

Semantic network for the objects which the user wishes to modify.

As indicated above in section 4.5, the user is prompted as to

whether to generate the user code a fter each simulation run. I f the

user chooses to generate the user code, the user is prompted to

indicate a ll objects he is interested in, by using the cursor keys

and pressing {enter} for each object in turn, and then press {esc}.

I t is again important to restate that program generation does not

mean, as in trad itiona l systems, creating code describing the whole

problem. What program generation does is to speed up the creation

of the hooks onto selected areas of the semantic network (i . e .

calling the L0CATE_0BJECT() function) and setting up the 'C' event

code for selected a c t iv it ie s .

104

S e c t io n 5 .7 : CONCLUSION

This chapter has presented the implementation of procedural

attachment in SASIM. The decision to use active production rules,

as opposed to passive production rules, was taken for pragmatic

purposes. Despite th e ir less f le x ib le nature, active production

rules i l lu s t ra te the use of procedural attachment to supplement the

semantic network knowledge-base and thus modify the running of a

simulation.

An i l lu s tra t io n of the use of procedural attachment in the pub

example is contained in appendix 3.6. The next chapter c r i t ic a l ly

analyses both the semantic modelling approach and the prototype.

105

CHAPTER 6

ANALYSIS OF SEMANTIC MODELLING

Section 6.1 : INTRODUCTION

The previous chapters have presented both the semantic modelling

approach and the SASIM prototype implementation of th is approach.

This chapter presents two case studies where SASIM was used to

implement a simulation. The f i r s t case study is the implementation

of the simple pub example. The second is a more complicated problem

on the e ffec t of warship and replenishment ship a t t r i t io n on war

arsenal requirements. These case studies w il l provide v ita l

feedback on the p ra c tic a l ity of implementing the semantic modelling

approach and provide the foundation for future improvements and

research. Section 6.4 w ill present an analysis of the semantic

modelling approach.

106

S e c t io n 6 .2 : THE PUB EXAMPLE

The pub example is a common f i r s t simulation written by newcomers

learning about simulation. For this reason, i t was chosen as the

f i r s t test of SASIM. The detailed description of the pub example

and the output from the SASIM prototype is contained in appendix 3.

The standard simulation does not contain the e n tity Dog, however I

have added i t to this case study in order to i l lu s t r a te the validate

option's a b i l i ty to spot en tit ies which are not connected to other

e n t it ie s .

Since the example is commonly described in english, i t was natural

to use the natural language interface as the main technique for

inputting the description. This simple problem was useful since

i n i t i a l l y the syntactic structures and dictionary were very basic.

I t highlighted the requirement to cope with d if fe ren t words meaning

the same thing (for example SERVED refers to SERVICE e tc) . These

experimental improvements are expected in a prototype system, and

sim ilar enhancements w ill be required when coping with other

domains. There were also a few phrases in the in i t i a l description

of the pub which needed to be re-phrased before inputting in to the

natural language interface. This was due to e ither th e ir ambiguity

or superfluousness. The a lternative of adding the syntactic

structure to the natural language interface was done in most cases.

107

Each sentence was translated in turn by the natural language

in terface, in each case l is t in g the sentence as well as the

trans la tion . These are l is ted in appendix 3. There were 13

sentences in the original english description. These were

translated to 107 semantic network links (appendix 3 .2) . Having

translated the sentences, the semantic network looked untidy on the

screen. Some time was therefore necessary to move the objects to

provide a neater view. The tid ied up semantic network can be seen

in appendix 3.7.

I t was clear from the entity cycle level that the customer cycle was

not complete. There was no lin k between CUSTOMER (EXIT) and

CUSTOMER (ARRIVE). This l in k is not defined by the english but is

ju st a convention used in simulation, in order to close a l l . e n t i t y

cycle loops. The lin k "GLASS (SERVICE) PRECEDES GLASS (DRINK)" was

also missing. Even though i t is possible to spot and add these two

links manually, the validate section automatically located these

missing links and added them, assuming a ll that was missing was a

single l in k to close the loop (as can be seen from the screen output

of the validate option in Appendix 3 .5 .2) . Since i t is possible

that the validate option could be run before the whole system is

described, the system should have prompted the user as to whether to

add the 'missing' links or not. Various missing data was also

prompted fo r , including the number of glasses and the duration of

a c t iv ity Exit. The validate section also highlighted a number of

108

anomalies, notably that the condition "IF THEY DRUNK LESS THAN THREE

TIMES" can not be d irec tly interpreted because the prototype does

not provide automatic support of a ttr ibu tes , since a fu l l

in terpretation requires the procedural attachment modifications

shown in appendix 3.6. So as to provide a partia l in terpretation

during a simulation run, the probability of any customer satisfying

th is condition is requested. The probability is set at 66.6% (ie

that a customer has a 66.6% chance of ordering another drink a fte r

fin ishing one glass, and a 33.3% probability of e x it in g) . The

validate section also highlighted that there was no cycle for en tity

DOG and i t was not linked to the rest of the network. The validate

section l is ted the cycles of a ll the e n t it ie s , as well as l is t in g

a ll e n t it ie s involved in each a c t iv ity .

Procedural attachment was also used to define graphical icons for

the objects (for example glasses), as well as adding a conveyor belt

for the glass washing a c t iv ity . This is most notable in the top

graphical level (shown in appendix 3 .7) . The fu l l l is t in g of the

procedural attachment code is in appendix 3 .6 .

The simulation was run on the enhanced semantic network, with

procedural attachment code. Various time series, histogram of queue

length and queuing times are shown in appendix 3 .7 . The simulation

subsystem in SASIM provided the a b i l i ty to examine the behaviour of

the system both during the running of the simulation and at preset

109

intervals defined before the start of the simulation. A detailed

printout of a ll a c t iv ity s tart and end timings is possible for

validation and verif ica tio n purposes.

Section 6.3 : WAR ARSENAL PROBLEM

The problem "The Effect of Warship and Replenishment Ship A t tr i t io n

on War Arsenal Requirements" is described by Holder and G ittins

(1989). This is a real world problem which was solved using the

eLSE simulation subsystem [Crookes et a l , 1986]. There was a

m ili ta ry requirement to access whether the stores held by warships

and replenishment ships is presently set at an appropriate level

once the po ss ib ility of destruction of the ships by enemy action has

been taken into account. The basic set up is that ships are in one

of three layers, the outer, inner or core layers. They could be

attacked by e ither a irc ra fts or submarines, where they must engage

outer ships f i r s t , then i f they survive they may engage inner ships

and la s t ly core ships. These layers create a re p e tit iv e type of

a c t iv ity cycle.

Even though, because of the m ili ta ry se n s it iv ity of th is kind of

simulation, i t was not possible to obtain detailed data on the

problem, this case study was chosen because of the complexity of the

cycles and its repe tit ive nature which would require a large

semantic network, thus stretching the SASIM prototype. I t was not

110

the intention to actually run a simulation, but to create a

knowledge-base containing the main a c t iv ity cycles.

The main means to enter the problem was the "Activ ity and Entity

Cycle Input". This was chosen since an a c t iv ity cycle diagram for

the problem was given. The natural language interface was most

useful for arriva l mechanism entry. By simply saying "x arrives

every y minutes", SASIM creates a door mechanism (where an e n tity

arrives, based on a s ta t is t ic a l d is tr ib u tio n , from an in d e f in ite ly

large pool of e n t i t ie s) . The considerable size of the network

presented a few memory and location problems. For example there are

25 a c t iv i t ie s , each having a link with the object "ACTIVITY". I t is

not easy to show a ll these links on a small PC screen, while s t i l l

maintaining le g ib i l i t y . The fu l l semantic network can be seen in

appendix 4.

Building the large semantic network was very beneficial in

understanding the war arsenal problem (especially when examining the

en tity cycle level of the semantic network). However, th is

understanding, gained by both the simulation prac tit ioner and the

c lie n t , could also be a side effect of any kind of modelling

exercise.

Building the large semantic network highlighted some lim itations of

SASIM's graphical interface, which w il l be analysed in the next

111

section. By the nature of the problem, procedural attachment is

required to provide a fu l ly working model of the system, but due to

the m il i ta ry sen s it iv ity of the problem, not enough deta ils of the

problem were available.

Section 6.4 : ANALYSIS OF SEMANTIC MODELLING

One of the in i t ia l reasons for choosing semantic networks as the

central knowledge-base is its graphical nature. I t should thus be

th eore tica lly easier to spot errors and misunderstandings than in

textual databases. An example of one such error is when the

semantic network breaks down into more than one part due to a

missing l in k . This beneficial e ffect was indeed noticed in the

prototype, but not without noting that the screen displays (and

graphical software) used is not as powerful as idea lly required.

This short coming is most noticed in the lack of c la r i ty on the

screen of some of the object names. This was because the small

fonts needed a higher resolution monitor than the IBM PS/2's VGA

screen. A larger screen would be advantageous since i t would enable

the display of more of the semantic network at any one time. With

a higher resolution display, the option of seeing each e n tity in a

queue and not just the grand total of the numbers in a queue may be

achievable. Icons should also be able to change shape depending on

which a c t iv ity or queue they are involved in. Defining objects

using an icon editor would also simplify the in terface. The above

112

can best be achieved by moving to a fa r more powerful graphical sub

system, for example Windows or Macintosh. This graphical sub-system

should accept a mouse, thus relationships could be drawn by just

pointing and c licking.

The natural language in terface's syntactic structures and dictionary

could also be made fa r more thorough. The present structures have

been b u il t up on a case by case basis. A fa r more thorough

investigation of syntactic structures would be very benefic ia l. I t

would also be desirable for the system to learn new structures

automatically (learning by example).

I t was also noted that implementing procedural attachment of passive

production rules, using the Turbo Pascal compiler, considerably

steepened the learning curve for complex simulations. Additionally ,

these production rules were not used in the inference engine. Both

these problems could possibly be overcome by making the production

rules passive (i . e . tex tu a l) .

There is also a class of changes which would make the simulation

running more powerful. Seed numbers could be methodically tackled,

rather than allocated randomly in the validate section. S ta t is t ic a l

analysis could also be improved, together with more advanced

s ta t is t ic a l sampling. The poss ib ility of relationships being

'weighted', whereby a high weight would indicate a distant

113

re lationship, should be analysed to see whether i t could aid logical

inferencing.

Section 6.5 : CONCLUSION

This chapter has presented an analysis of the practical implications

when using semantic modelling in its present implementation, which

w il l be very important in developing the next prototype. Section

3.11 described how semantic modelling t r ie s to achieve most of the

requirements of an ideal simulation support environment proposed in

section 2.4. Therefore the main question is whether semantic

modelling is implementable.

I t is clear that the SASIM prototype is not ready for commercial

use. For .th is , i t would require a number of the improvements

highlighted in section 6.4 to be implemented, especially higher

defin it io n screens and the implementation of passive production

rules. However, even though SASIM has many rough edges and can be

made easier to use, quicker to run, and can be updated to support

fa r bigger simulations, i ts most important contribution is that i t

has shown the potential of semantic modelling through its

implemention.

114

CHAPTER 7

SUMMARY AND CONCLUSION

Section 7.1 : SUMMARY

The objective of this thesis was to examine the use of a r t i f i c ia l

in telligence in the discrete event simulation f ie ld with the aim of

examining some potential areas in which i t might be possible to

improve simulation environments. To this end, Chapter 1 described

the general discrete event simulation environment, including the

stages in the trad itiona l simulation process. Chapter 2 presented

some of the current research in the use of a r t i f i c i a l in telligence

in simulation and speculated what an ideal simulation environment

should do. Chapter 3 demonstrated semantic modelling, a discrete

event simulation modelling approach based on semantic networks,

which attempts to give a consistent graphical interface throughout

the l i f e cycle of a simulation study, and described how semantic

modelling t r ie s to achieve most of the requirements of an ideal

simulation support environment. Chapter 4 and 5 described the

prototype implementation of the semantic modelling approach.

Chapter 6 c r i t ic a l ly analysed both the semantic modelling approach

and the prototype.

115

S e c t io n 7 .2 : CONCLUSION

Existing simulation research in the a r t i f i c i a l in te lligence (AI)

f ie ld is extended by investigating the graphical AI knowledge-base

called semantic networks. This thesis has demonstrated semantic

modelling, a discrete event simulation modelling approach based on

semantic networks, which attempts to give a consistent graphical

interface throughout the l i f e cycle of a simulation study. The

semantic modelling approach is an extension of the approach used by

the Simulation Model Development Environment (SMDE) prototype,

developed by Balci and Nance (1987), which used a re lational

database as the central knowledge-base, as opposed to semantic

networks.

The f ive main AI techniques used in semantic modelling are the

semantic network graphical knowledge-base, data-driven natural

language understanding and processing, procedural attachment, expert

systems and shortest path algorithms. Since semantic modelling is

an open architecture, more techniques, possibly from other research

areas, could be added in future to improve the simulation

environment.

This thesis has also presented a working prototype which implements

semantic modelling. This has shown the potential of semantic

modelling through its implemention. The prototype may provide a

stepping stone to a better prototype. These derived systems could

116

u t i l is e more modern programming techniques and environments,

including object oriented programming and windowed environments (as

opposed to the present implementation that used Turbo Pascal under

DOS).

Section 7.3 : FUTURE RESEARCH

There is considerable potential for further research in th is area,

as indicated in the analysis of the working prototype (section 6 .4) .

This includes the investigation of the best type of graphical

interface for semantic networks. Additionally , the investigation of

the p ra c t ic a l ity of using passive production rules, as opposed to

active production rules, could increase the user-friendliness of the

interface and improve the inference engine. Additionally , i t may be

beneficial to investigate whether the inference engine can be

enhanced by the analysis of the results of simulation runs. The

investigation of both the syntactic structures and the dictionary of

the natural language interface may produce a consistent way to

define them, rather than ad hoc techniques presently adopted. The

investigation of whether i t is possible to use the syntactic

structures of the natural language interface to 'work backwards'

from a semantic network to produce sentences could lead to a

translation capability (between any languages which have a pre

defined syntactic structure). There are also l ik e ly to be other

additional concepts which would increase the user-friendliness of

117

semantic networks, such as a lternative input techniques or

alternative types of knowledge-base attachment techniques (in

addition to procedural attachment).

These areas are an indication of the many cross-disciplines and

domains which the semantic modelling approach u t i l is e s . This

reinforces the view that this research has added to the level of

understanding of the app licab il ity of a r t i f i c ia l in telligence to

simulation environments. Hopefully, some of the ideas put forward

in this thesis w ill also benefit the wider computer science f ie ld .

118

A P P E N D I C E S

119

APPENDIX 1

NATURAL LANGUAGE SYNTAX DEFINITION

This appendix contains the data d e fin it io n of the natural language
interface in the SASIM prototype. I t is contained in the f i l e
NLUP.SYN and can be easily modified by most word-processors.

N.B. A indicates keywords
indicates optional

> is the semantic translation
/ means "or"
* ; indicate beginning and ending of syntactic structures
" " indicate words to be treated as a single label

♦SEPARATOR :
" \ " -SEPARATOR / AA / AAND -SEPARATOR / AALS0;

♦ENTITYP :
~ATHE ~AA ~obj_number ^ENTITY ~AWHICH ~AIS ~ACALLED obj_name

> obj_name ANUMBER obj_number,
obj_name "AIS A" A ENT ITY /

~ATHE - AA ~obj_number obj_name ~AWHICH AIS ~AAN AENTITY
> obj_name ANUMBER obj_number,

obj_name "AIS A" ^ENTITY /

~ATHE ~AA ~obj_number obj_name
> obj_name ANUMBER obj_number,

obj_name "AIS A" AENTITY /

~ATHE AHE

= obj_name HE=LAST_ENT;

♦ENTITYFORACT :
- ATHE ~AA ~obj_number A ENT ITY ~AWHICH ~AIS ~ACALLED obj_name

> obj_name "AIS A" AENTITY /

~ATHE ~AA ~obj_number objname ~AWHICH AIS ~AAN AENTITY
> obj_name "AIS A" AENTITY /

~ATHE - AA ~obj_number obj_name
> obj_name "AIS A" AENTITY /

~ATHE AHE

= obj_name — obj_number HE=LAST_ENT;

120

♦TIMEEXPRESSION :
AHOUR / AMINUTE / ADAY / AYEAR / AMONTH / AWEEK;

*ACTIVITY_BODY :
~AAN ACTIVITY ~ACALLED obj_activ ity ~AAGAIN

> ob j_activ ity "AIS A" ACTIVITY /

ob j_activ ity ~AAGAIN ~AWHICH ~AIS ~AAN ACTIVITY
> o b ja c t iv i t y "AIS A" ACTIVITY /

ob j_activ ity ~AAGAIN
> obj_activ ity "AIS A" ACTIVITY /

ATHIS ACTIVITY

= ob j_activ ity THIS=LAST_ACT;

♦STRING :
obj_word -STRING

= obj_word STRING;

*MU LTI ENTITY ACT :
ENTITY_FOR_ACT /

ENTITY_FOR_ACT SEPARATOR ~MULTI_ENTITY_ACT

= ENTITY_FOR_ACT MULTI ENTITY ACT;

♦ONEINSTANCEACT :
ENTITY_FOR_ACT /

ENTITY_FOR_ACT AAS AA rel_name

= ENTITY_FOR_ACT ~rel_name;

♦INSTANCEACT :
ONE_INSTANCE_ACT /

ONE_INSTANCE_ACT SEPARATOR INSTANCE_ACT

= ONE_INSTANCE_ACT INSTANCE_ACT;

121

♦MULTIENTITY :
ENTITYP /

ENTITY_P SEPARATOR ~MULTI_ENTITY

= ENTITY P MULTI ENTITY;

♦ONEINSTANCE :
ENTITY_P /

ENTITY_P AAS AA rel_name

= ENTITY P ~rel name;

♦INSTANCE :
ONEJNSTANCE /

ONE_INSTANCE SEPARATOR INSTANCE

= ONE INSTANCE INSTANCE;

♦ACTIVITYTIME :
AEVERY obj_number TIMEEXPRESSION /

ATAKES obj_number TIMEEXPRESSION

= obj_number -EVERY;

♦ACTIVITY DFSC *
a c t iv iTybody ~ACTIVITY_TIME

> ACTIVITY_BODY DURATION ACTIVITY_TIME /

ACTIVITY_BODY ACTIVITY_TIME -SEPARATOR AUSES INSTANCE_ACT
> ACTIVITY_BODY DURATION ACTIVITY_TIME,

INSTANCE(ACTIVITY_BODY,INSTANCE_ACT) DUMMY DUMMY /

ACTIVITY_BODY -SEPARATOR ~AUSES INSTANCE_ACT -SEPARATOR
-ACTIVITYTIME

> ACTIVITY_BODY ADURATION ACTIVITYTIME,
INSTANCE(ACTIVITY_BODY,INSTANCE_ACT) DUMMY DUMMY

= ACTIVITY_BODY;

122

♦ACTIVITYP :
ACTIVITY_DESC /

ACTIVITYDESC SEPARATOR ACTIVITYP

= ACTIVITY DESC ACTIVITY_P;

♦SENTENCE :
ACTIVITYP ~AHAS PRIORITY ~AOVER ~AON ACTIVITY_P_2 "A."

> ACTIVITY P PRIORITY ACTIVITY_P_2 /

ATHERE AIS ACTIVITY_P "A." /

ATHERE AIS MULTIENTITY "A. '7

ACTIVITY P ,,A." /

obj_word rel_name obj_word2 "A."
> objword rel_name obj_word2 /

ENTITY_P ~AIS ACTIVITY_P ,,A."
> ACTIVITYP ANEEDS INSTANCE(ACTIVITY_P,ENTITY_P) /

ENTITY_P ~AIS ATHEN ~APRECEDES ~ATO ACTIVITY_P "A."
> INSTANCE(LAST_ACT,ENTITY_P) APRECEDES

INSTANCE(ACTIVITY_P,ENTITY_P) /

ENTITY_P ~AIS ATHEN ~APRECEDES ~ATO ACTIVITY_P AIF STRING "A."
> INSTANCE(LAST_ACT,ENTITYP) APRECEDES "IF &STRING",

"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P,ENTITY_P),
"IF &STRING" ,,AIS A" ADECISION /

ENTITY_P ~AIS ATHEN ~APRECEDES ~ATO ACTIVITY_P AIF STRING AELSE
~AHE ACTIVITY_P_2 "A."

> INSTANCE(LAST_ACT,ENTITYP) PRECEDES
INSTANCE(ACTIVITYP2, ENTITY_P),

INSTANCE(LAST_ACT,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P,ENTITY_P),
"IF &STRING" "AIS A" ADECISION /

ENTITY_P AAFTER ~AHE ~AIS ~ABEEN ACTIVITY_P -SEPARATOR ~AIS ~AHE
~ACAN ~ATHEN - APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES
INSTANC E(ACT IVITY_P_2, ENTITY_P) /

123

ENTITYP AAFTER ~AHE ~AIS ~ABEEN ACTIVITY_P -SEPARATOR - AIS ~AHE
~ACAN ~ATHEN ~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 AIF
STRING "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITYP2, ENTITY_P),
"IF &STRING" ,,AIS A" ADECISION /

ENTITY_P AAFTER ~AHE ~AIS ~ABEEN ACTIVITY_P -SEPARATOR - AIS ~AHE
~ACAN ~ATHEN ~APROCEED - ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 AIF
STRING AELSE ~AHE ACTIVITY_P_3 "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES
INSTANCE(A C TIV ITY P 3, ENTITY_P),

INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P),
"IF &STRING" "AIS A" ADECISION /

AAFTER ENTITYP ACTIVITY_P -SEPARATOR ~AHE - ACAN ~ATHEN
~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 "A."

> I N S T A N C E (A C T I V I T Y _ P , E N T I T Y _ P) APRECEDES
INSTANCE(ACTIVITY_P_2,ENTITY_P) /

AAFTER ENTITY_P ACTIVITYP -SEPARATOR ~AHE ~ACAN ~ATHEN
ACTIVITYP2

AIF STRING "A."
> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",

"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P),
"IF &STRING" MAIS A" DECISION /

AAFTER ENTITY_P ACTIVITYP -SEPARATOR ~AHE ~ACAN ~ATHEN
~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 AIF STRING AELSE

~AHE ACTIVITYP3 "A."
> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES

INSTANCE(ACTIVITY_P_3,ENTITY_P),
INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P),
"IF &STRING" ,,AIS A" ADECISION /

AAFTER ACTIVITY_P -SEPARATOR ENTITY_P ~AHE ~ACAN ~ATHEN
~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES
INSTANCE(ACTIVITY_P_2,ENTITY_P) /

AAFTER ACTIVITY_P -SEPARATOR ENTITY_P ~AHE ~ACAN ~ATHEN
ACTIVITY_P_2 AIF STRING ,,A."

> INSTANCE(ACTIVITY_P, ENTITY_P) PRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2, ENTITY_P),
"IF &STRING" ,,AIS A" ADECISION /

124

AAFTER ACTIVITY_P -SEPARATOR ENTITY_P ~AHE ~ACAN - ATHEN
~APRECEDES ~ATO - ABE ~AUSED - AIN ACTIVITY_P_2 AIF STRING AELSE
- AHE ACTIVITY_P_3 ,,A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES
INSTANCE(ACTIVITYP3, ENTITYP) ,

INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P),
"IF &STRING" "AIS A" ADECISION.

125

APPENDIX 2

NATURAL LANGUAGE CONVERSION MASKS

NOTE : F irs t word on every line contains the mask which is compared
to the word being tested. A means any number of characters. I f
a match is found, the entered word is replaced by the second word on
the l in e (i f no second word is present then the original word would
be ignored). The l i s t is held in f i l e CONVERT.DAT.

A
AGAIN
ALSO
AN
AND
ONE 1
ARE
AT
AVAILABLE
BE
BEING
BEGINS
BETWEEN
BOTH
CALLED
CAN
CURRENTLY
EIGHT 8
FOUR 4
FIVE 5
FOR DURATION
FURTHER
HAPPENS
HAS
HAVE
HUNDRED 100
IN
INSIDE
INTO
IS
IT THEY
LAST
OCCURS
OF
ON USES
OVER
PRECEDES PRECEDES
*MEN MAN
MINUTE
MINUTES

126

MUST
NEEDED
NINE 9
NOW
OTHER
SEVEN 7
SIX 6
TEN 10
THE
THERE
THEREARE
THIRTY 30
THOUSAND 1000
THREE 3
TIMES TIMES
TO
TWENTY 20
TWO 2
USED
WILL
WHICH
WHO
*ERVING ERVICE
*IVAL IVE
*NING NE
*PPIN GP
*TTIN GT
*VING VE
USING USES
*ING
*IES Y
*SS SS
*SSES SS
USES USES
*ES E
*IS IS
*CEED CEED
*EED EED
*ERVED ERVICE
*IED Y
*CED CE
*LLED LL
*LED LE
*PPED P
*VED VE
*NED NE
*ED
AS AS
*S
*UNK INK
*LY LE

127

The following words are synonyms and are translated by SASIM:

BY
FOR
LATTER
LEAVE
NEED
OBJECT
PEOPLE
PROCEED
TAKE
THEM
WITH
WHEN

USES
DURATION
THEY
EXIT
USES
ENTITY
ENTITY
THEN
DURATION
THEY
USES
AFTER

128

APPENDIX 3

TEST OF SASIM ON THE PUB

APPENDIX 3.1 : NLUP TRANSLATION

To i l lu s t ra te th is , I w il l try to formulate a simple PUB example as
an english representation acceptable to SASIM, then as represented
in a semantic network (which was produced by SASIM):

INPUT ENGLISH REPRESENTATION :

There is an a c t iv ity called service.
This a c t iv ity uses one barmaid as a server.
This a c t iv ity also needs 1 customer, a glass as a cup and
takes 5 minutes.
Customers arrive every negexp(10,5) minutes.
They are then served.
Customers a fte r being served, then drink for 10 minutes,
with a glass.
The la t te r are then washed by the barmaids.
Service has p r io r i ty over washing.
Customers a fte r drinking proceed to rest for
three minutes.
They are then served again i f they have drunk less than three times,
else they e x it .
Glasses a fte r washing can then be used in serving.
There are 10 glasses and ten barmaids and one dog.
Washing takes 15 minutes.

SEMANTIC NETWORK TRANSLATION :

The English sentence was :

There is an a c t iv ity called service.

TRANSLATION IS

SERVICE IS A ACTIVITY

129

The E n g l i s h s e n te n c e was :

This a c t iv ity uses one barmaid as a server.

TRANSLATION IS

BARMAID (SERVICE) NUMBER 1
SERVICE SERVER BARMAID (SERVICE)
BARMAID (SERVICE) IS A BARMAID
BARMAID IS A ENTITY

The English sentence was :

This a c t iv ity also needs 1 customer, a glass as a cup and
takes 5 minutes.

TRANSLATION IS

SERVICE DURATION 5
SERVICE CUP GLASS (SERVICE)
GLASS (SERVICE) IS A GLASS
GLASS IS A ENTITY
CUSTOMER (SERVICE) NUMBER 1
SERVICE NEEDS CUSTOMER (SERVICE)
CUSTOMER (SERVICE) IS A CUSTOMER
CUSTOMER IS A ENTITY

The English sentence was :

Customers arrive every negexp(10,5) minutes.

TRANSLATION IS

CUSTOMERDOOR (ARRIVE) NUMBER 1
ARRIVE NEEDS CUSTOMER_DOOR (ARRIVE)
CUSTOMER_DOOR (ARRIVE) IS A CUSTOMER_DOOR
CUSTOMER_DOOR IS A ENTITY
ARRIVE DURATION NEGEXP(10,5)
ARRIVE NEEDS CUSTOMER (ARRIVE)
CUSTOMER (ARRIVE) IS A CUSTOMER
ARRIVE IS A ACTIVITY

130

The English sentence was :

They are then served.

TRANSLATION IS

CUSTOMER (ARRIVE) PRECEDES CUSTOMER (SERVICE)

The English sentence was :

Customers a fte r being served, then drink for 10 minutes,
with a glass.

TRANSLATION IS

DRINK NEEDS GLASS (DRINK)
GLASS (DRINK) IS A GLASS
DRINK DURATION 10
CUSTOMER (SERVICE) PRECEDES CUSTOMER (DRINK)
DRINK NEEDS CUSTOMER (DRINK)
CUSTOMER (DRINK) IS A CUSTOMER
DRINK IS A ACTIVITY

The English sentence was :

The la t t e r are then washed by the barmaids.

TRANSLATION IS

WASH NEEDS BARMAID (WASH)
BARMAID (WASH) IS A BARMAID
GLASS (DRINK) PRECEDES GLASS (WASH)
WASH NEEDS GLASS (WASH)
GLASS (WASH) IS A GLASS
WASH IS A ACTIVITY

The English sentence was :

Service has p r io r i ty over washing.

TRANSLATION IS

SERVICE PRIORITY WASH

131

The E n g l i s h se n te n c e was

Customers a fte r drinking proceed to rest for
three minutes.

TRANSLATION IS

REST DURATION 3
CUSTOMER (DRINK) PRECEDES CUSTOMER (REST)
REST NEEDS CUSTOMER (REST)
CUSTOMER (REST) IS A CUSTOMER
REST IS A ACTIVITY

The English sentence was :

They are then served again i f they have drunk less than three times,
else they e x it .

TRANSLATION IS

CUSTOMER (REST) PRECEDES CUSTOMER (EXIT)
EXIT NEEDS CUSTOMER (EXIT)
CUSTOMER (EXIT) IS A CUSTOMER
EXIT IS A ACTIVITY
IF THEY DRUNK LESS THAN 3 TIMES IS A DECISION
IF THEY DRUNK LESS THAN 3 TIMES PRECEDES CUSTOMER (SERVICE)
CUSTOMER (REST) PRECEDES IF THEY DRUNK LESS THAN 3 TIMES

The English sentence was :

Glasses a fte r washing can then be used in serving.

TRANSLATION IS

GLASS (WASH) PRECEDES GLASS (SERVICE)

132

The E n g l i s h se n te n c e was :

There are 10 glasses and ten barmaids and one dog.

TRANSLATION IS

DOG IS A ENTITY
DOG NUMBER 1
BARMAID NUMBER 10
GLASS NUMBER 10

The English sentence was :

Washing takes 15 minutes.

TRANSLATION IS

WASH DURATION 15

133

APPENDIX 3 . 2 : L IST OF LINKS

T h is s e c t i o n p r e s e n ts a l i s t o f a l l l i n k s c re a te d by t h e a u to m a t ic
NLUP t r a n s l a t i o n o f th e pub p ro b le m , shown in a p p e n d ix 3 . 1 .

WASH DURATION 15
DOG IS A ENTITY
DOG NUMBER 1
BARMAID NUMBER 10
GLASS NUMBER 10
GLASS (WASH) PRECEDES GLASS (SERVICE)
CUSTOMER (REST) PRECEDES CUSTOMER (EXIT)
EXIT NEEDS CUSTOMER (EXIT)
CUSTOMER (EXIT) IS A CUSTOMER
EXIT IS A ACTIVITY
IF THEY DRUNK LESS THAN 3 TIMES IS A DECISION
IF THEY DRUNK LESS THAN 3 TIMES PRECEDES CUSTOMER (DRINK)
CUSTOMER (REST) PRECEDES IF THEY DRUNK LESS THAN 3 TIMES
REST DURATION 3
CUSTOMER (DRINK) PRECEDES CUSTOMER (REST)
REST NEEDS CUSTOMER (REST)
CUSTOMER (REST) IS A CUSTOMER
REST IS A ACTIVITY
SERVICE PRIORITY WASH
WASH NEEDS BARMAID (WASH)
BARMAID (WASH) IS A BARMAID
GLASS (DRINK) PRECEDES GLASS (WASH)
WASH NEEDS GLASS (WASH)
GLASS (WASH) IS A GLASS
WASH IS A ACTIVITY
DRINK NEEDS GLASS (DRINK)
GLASS (DRINK) IS A GLASS
DRINK DURATION 10
CUSTOMER (SERVICE) PRECEDES CUSTOMER (DRINK)
DRINK NEEDS CUSTOMER (DRINK)
CUSTOMER (DRINK) IS A CUSTOMER
DRINK IS A ACTIVITY
CUSTOMER (ARRIVE) PRECEDES CUSTOMER (SERVICE)
CUSTOMER_DOOR (ARRIVE) NUMBER 1
ARRIVE NEEDS CUSTOMER_DOOR (ARRIVE)
CUSTOMER_DOOR (ARRIVE) IS A CUSTOMER_DOOR
CUSTOMER_DOOR IS A ENTITY
ARRIVE DURATION NEGEXP(10,5)
ARRIVE NEEDS CUSTOMER (ARRIVE)
CUSTOMER (ARRIVE) IS A CUSTOMER
ARRIVE IS A ACTIVITY
SERVICE DURATION 5
SERVICE CUP GLASS (SERVICE)
GLASS (SERVICE) IS A GLASS
GLASS IS A ENTITY

134

CUSTOMER (SERVICE) NUMBER 1
SERVICE NEEDS CUSTOMER (SERVICE)
CUSTOMER (SERVICE) IS A CUSTOMER
CUSTOMER IS A ENTITY
BARMAID (SERVICE) NUMBER 1
SERVICE SERVER BARMAID (SERVICE)
BARMAID (SERVICE) IS A BARMAID
BARMAID IS A ENTITY
SERVICE IS A ACTIVITY

135

APPENDIX 3 .3 : L IST OF OBJECTS

T h is s e c t i o n p r e s e n ts a l i s t o f a l l o b je c t s c re a te d by t h e a u to m a t ic
NLUP t r a n s l a t i o n o f th e pub p ro b le m , shown i n a p p e n d ix 3 . 1 .

1
10
3
5
ACTIVITY
ARRIVE
BARMAID
BARMAID (SERVICE)
BARMAID (WASH)
CUSTOMER
CUSTOMER (ARRIVE)
CUSTOMER (DRINK)
CUSTOMER (EXIT)
CUSTOMER (REST)
CUSTOMER (SERVICE)
CUSTOMER_DOOR
CUSTOMER_DOOR (ARRIVE)
DECISION
DOG
DRINK
ENTITY
EXIT
GLASS
GLASS (DRINK)
GLASS (SERVICE)
GLASS (WASH)
IF THEY DRUNK LESS THAN 3 TIMES
NEGEXP(10,5)
REST
SERVICE
WASH

136

APPENDIX 3 .4 : L IST OF RELATIONS

T h is s e c t i o n p re s e n ts a l i s t o f a l l r e l a t i o n s h i p s c r e a te d by th e
a u to m a t ic NLUP t r a n s l a t i o n o f th e pub p ro b le m , shown in a p p e n d ix
3 . 1 .

NAME LEVEL

CUP 0
DURATION 0
IS A 2
NEEDS 0
NUMBER 3
PRECEDES 1
PRIORITY 0
SERVER 0

137

APPENDIX 3 .5 : OUTPUT FROM VALIDATE OPTION

This section presents the result of the validate option run on the
knowledge-base created by the automatic NLUP translation of the pub
problem, shown in appendix 3 .1 .

3 .5 .1 : PROBABILITY SECTION

ENTER PROBABILITY OF IF THEY DRUNK LESS THAN 3 TIMES (%) : 66

3 .5 .2 : ENTITY CYCLE SUMMARY

ACTIVITIES OF ***FACILITY * * * BARMAID

SERVICE
HAS PRIORITY OVER ==>

WASH

ACTIVITIES OF CUSTOMER

* * * * * * * * *

CUSTOMER (EXIT) PRECEDES CUSTOMER (ARRIVE)

THE ABOVE LINK HAS BEEN ADDED

* * * * * * * * *

ARRIVE
FOLLOWED BY ==>

SERVICE
FOLLOWED 00 -< II II V

DRINK
FOLLOWED AIIII>-CO

REST
FOLLOWED 00 -< II II V

EXIT

ENTER NUMBER OF CUSTOMER IN THE SYSTEM : 30

THERE ARE 30 CUSTOMER TO ALLOCATE
ENTER NUMBER AT CUSTOMER (ARRIVE) : 30

138

ACTIVITIES OF ***FACILITY * * * CUSTOMER_DOOR

ARRIVE

ENTER NUMBER OF CUSTOMER_DOOR IN THE SYSTEM : 1

ACTIVITIES OF DOG

* * * * * * * * *

COULD NOT COMPLETE CYCLE FOR DOG
PRESS <ESC> TO CONTINUE

* * * * * * * * *

* * * * none * * * *

ACTIVITIES OF GLASS

* * * * * * * * *

GLASS (SERVICE) PRECEDES GLASS (DRINK)

THE ABOVE LINK HAS BEEN ADDED

* * * * * * * * *

DRINK
FOLLOWED BY ==>WASH
FOLLOWED BY ==>

SERVICE

THERE ARE 10 GLASS TO ALLOCATE
ENTER NUMBER AT GLASS (DRINK) :

THERE ARE 10 GLASS TO ALLOCATE
ENTER NUMBER AT GLASS (WASH) :

THERE ARE 10 GLASS TO ALLOCATE
ENTER NUMBER AT GLASS (SERVICE) : 10

139

3.5 .3 : ACTIVITY SUMMARY

ENTITIES INVOLVED IN ARRIVE

CUSTOMER DOOR
CUSTOMER

ENTITIES INVOLVED IN DRINK

GLASS
CUSTOMER

ENTITIES INVOLVED IN EXIT

* * * * * * * * *
ENTER DURATION OF EXIT
* * * * * * * * *

0

CUSTOMER

ENTITIES INVOLVED IN REST

CUSTOMER

ENTITIES INVOLVED IN SERVICE

GLASS
CUSTOMER
BARMAID

ENTITIES INVOLVED IN WASH

GLASS
BARMAID

* * * * * * * * *
DOG IS NOT CONNECTED TO GLASS

PRESS <ESC> TO CONTINUE
* * * * * * * * *

140

APPENDIX 3 . 6 : PASCAL MODIFICATION TO THE PUB EXAMPLE

An example of the modification required in the pub example to allow
customers between 2-4 drinks follows :

{$1 USERCODE.INI}
ATT = RECORD

INTERNALJJSE : OCC;
NO_DRINKS : INTEGER;

END;
{$1 USERCODE.IN2}
VAR

DOORARRIVE, D00R_ARRIVE_ARR,
CUSTOMER_ARR, ARRIVE, CUST0MER_REST, CUSTOMER_SERVICE,
CUSTOMER_EXIT, GLASSES, CUSTOMERS, BARMAIDS,

GLASS_WASH : OOBJECT;
DRINK_HIST,SERVE_TS, BARMAID_TS : HHISTOGRAM;

PROCEDURE SETHOOKS;
BEGIN

DOOR_ARRIVE := LOCATE_OBJECT('DOOR_ARRIVE');
DOOR_ARRIVE_ARR := LOCATE_OBJECT('DOOR_ARRIVE (ARRIVE)');
CUSTOMER_ARR := LOCATE_OBJECT('CUSTOMER (ARRIVE)');
CUSTOMER_REST := LOCATE_OBJECT('CUSTOMER (REST)');
CUSTOMER_SERVICE := LOCATE_OBJECT('CUSTOMER (SERVICE)');
CUSTOMEREXIT := LOCATE_OBJECT('CUSTOMER (E X IT) ');
CUSTOMERS := LOCATE_OBJECT('CUSTOMER');
GLASSES := LOCATE_OBJECT('GLASS');
GLASS_WASH := LOCATE_OBJECT('GLASS (WASH)');
BARMAIDS := LOCATE_OBJECT(' BARMAID');
ARRIVE := LOCATE_OBJECT('ARRIVE');
IF NOT ERR THEN

ARRIVED CONTROL := USER;
ICON_MATRIX(0,0,238,221,154,WHITE,BLACK,GLASSES); (* e| 238,221

U 154*)
ICON_MATRIX(0,0 ,1 2 ,1 1 ,1 ,YELLOW,BLACK,CUSTOMERS); (* Face *)
DEFINE_C0NVEY0R(-1 ,0 ,1 ,0 , 2, GREEN, GLASS_WASH); (* X,Y, XSTEP,

YSTEP, LENGTH, COLOUR, INSTANCE *)
INITIALISE_HIST(DRINK_HIST,CUSTOMER_ARR,'NUMBER OF DRINKS');
INITIALISE_TSERIES(SERVE_TS,CUSTOMER_SERVICE,

'CUSTSERV',3 ,0 ,15);
INITIALISE_TSERIES(BARMAID_TS,BARMAIDS,'BARMAID',3 ,0 ,15);

141

FUNCTION GRAPHIC_OBJECT(OBJ : OOBJECT; XG1,YG1 : INTEGER;
DRAW : BOOLEAN) : INTEGER;

VAR
T1,T2 : INTEGER;
PENTAGON : ARRAY [1 . .4] OF POINTTYPE;

BEGIN
IF OBJA.NAME = 'CUSTOMER (DRINK)' THEN
BEGIN (* shape of a man *)

IF DRAW THEN
BEGIN

SETCOLOR(WHITE);
YG1 := YGl-YDOTS_PER_CHAR;
XG1 := XGl+XDOTS_PER_CHAR;
CIRCLE(XG1, YG1,R0UND(YD0TS_PER_CHAR*0.2));
YG1 := YG1+R0UND(YD0TS_PER_CHAR*0.2);
LINE(XG1,YG1,XG1, YGl+YDOTS_PER_CHAR);
YG1 := YGl+YDOTS_PER_CHAR;
LIN E(XG1-ROUND(XDOTS_PER_CHAR*0.5) ,

YG1+ROUND(YDOTS_PER_CHAR*0. 5) ,XG1,YG1);
LINE(XG1+ROUND(XDOTS_PER_CHAR*0.5),

YG1+R0UND(YD0TS_PER_CHAR*0.5),XG1, YG1);
YG1 := YG1-ROUND(0.66*YDOTS_PER_CHAR);
LINE(XG1-ROUND(XDOTS_PER_CHAR*0.5),

YG1, XG1+ROUND(XDOTS_PER_CHAR*0. 5) , YG1);
END;
GRAPHIC_OBJECT := -3;

END
ELSE
IF OBJA.NAME = 'CUSTOMER (SERVICE)' THEN
BEGIN (* money sign to indicate payment when served *)

IF DRAW THEN
BEGIN

SETCOLOR(WHITE);
RECTANGLE(XG1-13,YGl-4,XG1+21,YG1+12);
SETUSERCHARSIZE(5,5,5,5);
SETTEXTSTYLE(SMALLFONT,HORIZDIR,USERCHARSIZE);
SETCOLOR(GREEN);
OUTTEXTXY(XG1 -1 0 ,YG1 , ' MONEY') ;

END;
GRAPHIC_OBJECT := -5;

END
ELSE
IF (OBJA.NAME = 'GLASS (SERVICE)') OR

(OBJA.NAME = 'GLASS (DRINK)') THEN
BEGIN (* beer glass shape *)

IF DRAW THEN
BEGIN

SETCOLOR(BROWN);
s e t f i l 1s t y le (s o l id f i l l , BROWN);
PENTAGON[1] . X := XG1+2;
PENTAGON[I] . Y := YG1+ROUND(YDOTS_PER_CHAR*0.5);

142

PENTAGON[2] .X := XGl+2*XDOTS_PER_CHAR-2;
PENTAGON^]. Y := YG1+R0UND(YD0TS_PER_CHAR*0.5);
PENTAGON[3] .X := XGl+2*XDOTS_PER_CHAR;
PENTAGON[3] . Y := YGl-YDOTS_PER_CHAR;
PENTAG0N[4].X := XG1;
PENTAGON[4]. Y := YGl-YDOTS_PER_CHAR;
DRAWPOLY(SIZEOF(PENTAGON) DIV

SIZEOF(POINTTYPE) , PENTAGON);
FILLPOLY(SIZEOF(PENTAGON) DIV

SIZEOF(POINTTYPE), PENTAGON);
PIESLICE(XG1,YG1-YDOTS_PER_CHAR,90,270,2);
PIESLICE(XGl+2*XDOTS_PER_CHAR,

YG1-YD0TS_PER_CHAR,0,90,2);
PIESLICE(XGl+2*XDOTS_PER_CHAR,

YGl-YDOTS_PER_CHAR,270,360,2);
SETCOLOR(WHITE);
s e t f i11style(INTERLEAVEFILL,WHITE);
BAR(XG1, YG1 - ROUND(1 .2*YD0TS_PER_CHAR),

XG1+2*XD0TS_PER_CHAR,YG1-YD0TS_PER_CHAR);
END;
GRAPHIC_OBJECT := -2;

END
ELSE

IF OBJA. FORGROUND_COLOUR = -1 THEN (* default section *)
GRAPHIC_OBJECT := LENGTH(OBJA.NAME)

ELSE
GRAPHIC_OBJECT := 2;

END;

PROCEDURE B_EVENT(CURRENT_OBJECT : OOBJECT; OCCUR : OOCC);
BEGIN

IF CURRENT_OBJECT = CUSTOMER_REST THEN
BEGIN

DEC(ATTRI BUTE(OCCUR)A.NO_DRINKS);
IF ATTRIBUTE(OCCUR)\NO_DRINKS > 0 THEN

ADD_TO_B_QUEUE(CUSTOMER_SERVICE, OCCUR)
ELSE

ADD_T0_B_QUEUE(CUSTOMER_EXIT, OCCUR);
END

END;

PROCEDURE C_EVENT(CURRENT_ACTIVITY : OOBJECT);
VAR

SAMPLE_TIME : INTEGER;
OCCUR : OOCC;

BEGIN
IF CURRENT_ACTIVITY = ARRIVE THEN

WHILE (QSIZE(DOOR_ARRIVE) > 0) AND
(QSIZE(CUSTOMER_ARR) > 0) DO

BEGIN
SANPLE_TIME := SAMPLE_ACT_TIME(ARRIVE);

143

OCCUR := BEHEAD(CUSTOMER_ARR);
ATTRI BUTE(OCCUR)A.NO_DRINKS := RANDOM(3)+2;
UPDATE_HIST(DRINK_HIST,ATTRIBUTE(OCCUR)A.NO_DRINKS,1);
ADD_TO_TREE(SAMPLE_TIME,OCCUR,CUSTOMER_ARR);
ADD_TO_TREE(SAMPLE_TIME,BEHEAD(DOOR_ARRIVE),

DOOR_ARRIVE_ARR);
END;

END;

PROCEDURE REPORTS;
BEGIN

DIS PLAY_HISTOGRAM(DRINK_HIST);
PRINT_HIST(CUSTOMER_SERVICE);

END;

BEGIN
{BLANK MAIN}

END.

144

APPENDIX 3 .7 : SCREEN PRINTOUTS DURING SIMULATION

On starting a simulation run, the system w il l prompt for the
following (assuming they have not been supplied before) :

Question User
Answer

STOP SIMULATION AT 1000

START RECORDING AT 200

PAUSE INTERVAL (AFTER STARTING RECORDING) 200

DO YOU WHICH ONLY A SUMMARY TO BE PRINTED ? Y

There follows screen printouts of a ll f ive levels of the pub
produced during a simulation run, together with s ta t is t ic a l
output.

145

Ui :
TIME IS 940 STATUS : RUNNING SIMULATION DELA¥ IS 64

GLASS
3

GLASS
1

GLASS
5

(DRINKX- BEINK REST
N E E D S

N N
E E
E E
D D
s S _

if I j 1f 0 T

EXIT

CUSTOMERj(DRINK)
3

CUSTOMER
0

(REST) CUSTOMER
0

(EXIT)

(SERUICEX-

DJSTOMER (SERUICE)
1 +

N
E
E
D
S

SERUICE---
C U P

(UASH)<-
N E E D S

UASH

----- ^BARMAID (SERUICE)
SERUER 2

------- >BARMAID (UASH)
N E E D S 5

CUSTOMER (ARRIUE)
1

N
E
E
D
S

ARRIUE

:i A R R IU E (A R R IU E]
1

BARMAID (SERUICE) > BARMAID

Ui :
TIME IS 553 STATUS : RUNNING SIMULATION DELAV IS 128

[F THEY’ DBUNK LESS THAN 3
TCMES

CUSTOMER (SERUICE) CUSTOMER (ARRIUE)CUSTOMER (REST)^JCUSTONER (DRINK)
1 inij —-_ _ 7

CUSTOMER (EXIT)
0

GLASS (DRINKX
2 N

GLASS (SERUICE)
2 +D

GLASS (UASH)
4

CUSTOMER (SERUICE) > CUSTOMER (DRINK)

Ul :
TIME IS 967 STATUS : RUNNING SIMULATION DELA¥ IS 128

BARMAID (UASH) ->BARMAIB<-
I S A

GLASS (DRINK)
0

GLASS (SERUICE)
A I

I S A
BARMAID (SERUICE)

GLASS
i s

GLASS (UASH) i s CUSTOMER (SERUICE)

 »ENTIT¥<---
A_ 0 1 S

■* CUSTOMER^

D O O R J R R IU E (A R R IU E)

 rqor_a!riue
A 0
CUSTOMER (DRINK)

CUSTOMER (REST) isClfe TONER (ARRII^)a 'CUSTOMER (EXIT)

DECISION*-
I S A

SERUICE

[T THEY DRUNK LEES THfiN 2
TEHEE

UASH

ACTIUITV

ARRIUE

PRDBFiBt LITY
->66

DRINK

REST

BARMAID (SERUICE) > BARMAID

U1 : REST
TIME IS 977 STATUS : RUNNING SIMULATION DELAV IS 128
NUMBER OF TIMES STARTED 26

BARMAID

REST
D U R A T I O N

->3

UASH
D U R A T I O N

->15

SERUICE
D U R A T I O N

->5

DRINK
D U R A T I O N

^ 1 0

ARRIUE-------- >NEGEXP (10 f 5)
D U R A T I O N

(UASH) =======> BARMAID

BARMAID----------
10 N U M B E R

->10

GLASS-----------
10 N U M B E R

->10

GLASS (SERUICE)-------- >10
0 [NIT NUMBER

CUS TOMER----------
15 N U M B E R

->15

CUSTOMER (ARRIUE)-------
1 [NIT NUMBER

>15

U1 : DRINK
TINE IS 982 STATUS : RUNNING SIMULATION DELA¥ IS 128
NUMBER OF TIMES STARTED 26

DRINK CUSTOMERS SERUICE

BARMAID (SERUICE)

UASHING

> BARMAID

\.n•...i

::h::

■■•■■■I......
■ ii. ■■■

... .
ci::
l"n:;
i... .

i... .pi:i

i... i
I:...
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

4991199119944994

196^915995^^

9911991199^^

91 9559^39149914994^^^15994

fiiPPFsT TTHF m■j • - • z - . i - .— z : i 1 i : *_* j l:::::::::: BASIC STATISTICS OF
: :
llZ 7 .ll
-7-

: :
“

variance =
Su.ii of (f rsq^0.bs5 =
lo ta l nO: Of frequency f p H
L" i." L i: t - .u - L:
i f v . : - - : l i i : : L I- v v H : : - •_=

Width of Histoyran - d

t it l t -..— ■ r-tsss : : r : :: m.—.
r .K ty j HN: K t i 1U L u n i i n u L

ISTOGRr H OF QUEUE TIKE OF CUSTOHEk (SERUICE)
r rS h LIS nOy________

PRESS RNV REV TO CONTINUE

CURRENT TIME 981 :=!===:=:= BASIC STATISTICS OF
i t :.-.

gf (t r s q ± Q b ;)

SnVariance
I: :Total no= of frequency = 588Ease of Histograii = 8

Width of Histograii = I

r r r
:

r.:::: : :t-. :: sr. rr.:: rr t ::: :r.

mi S L Y 1 U U J U i i n U L

i:..n

i:..
n

3UEUE LENGTH OF CUSTOMER (SERUICE) =3958
■ / - i f z i ’- i=8921

z z S z z z S zr:r:r:r:
O i O t .

••
= /

HISTOGk h H OF QUEUE LENGTH OF CUSTOMER (SERUICE)

y KEy TO CONTINl

i.r:i
■■■•••I

>:!s;:i

■•••••I
iipi:; i

:i i•i i
i• i
i

::i::
i::n
•:::i

.....

i;.o
......i... ipi:;

I;....,
I I
I I
I I
I I
I I
I I
I I I I
I I
I I

391199549985

991599

^97139715934

159915

0966

753975

493449314931

193149544994

053975

141995

5499547911

r U T i S r i i 1? T T i = ~ ~ i z z

• ■ J J r , r , L v = l i i i l L

z z z z z z z z z z BASIC STATISTICS OF QUEUE LENGIfHsan - ■:= j O l v
■J : -J -J L * :SB - 8=9721variance i= G . - i . iQ
rJ :Sim of (f rgq^O.bs)Total no...of frequency

—
G G G G = G G G G

1
1

Bass of Histograii £

I 1
: : 1 : i : _ : : I . i _ _ . .
= === == = UI flLblUMTdn = i

ppr?C; cmVFV TH m yTTM IIF — 'is : : : : i i i - i i : :

BfiRMAID

 ...

I;....,

 .

:::::
J

:: i::o i:h;:i
P;:j >:i.i i"1.:! j

li-'i
S 5 '

 i on i::i- i i p-i ■«::!" i.r:i■■>••■1

■:i.i i i i i i i i i i i i i i i i

•■■•■■I o n «s:i" \ . m i::i-i i:\:i i.r-i
■•■■■•I i i •'■••■I

11
11
11

I:-—i

I:...

APPENDIX 4

WAR ARSENAL PROBLEM

The problem "The Effect of Warship and Replenishment Ship
A tt r i t io n on War Arsenal Requirements" has been described in
section 6.3 . There follows screen printouts of the semantic
network implementation of the problem. However a Pascal
modification of the knowledge-base would be required to produce a
r e a l is t ic simulation run.

159

z-io

SOLID SHAD (REPLEN OUTER)

OUTER SHIP (REPLEN) « REPLEN llUTER » OOP SHftD (PEPLEN OUTER)
HEEDS NEEDS

DDDRJUIHUE.FTD (ARRIVE) OUTER SHIP CATTACK.FTD) OUTER SHIP (ATTACK. RTO)
■iw ■f'H

ARRIUE®. FTO ATTACK®. F TO AT TACK. RTO

I.a FTO (ARRIUE) FTO (ATTACK) SUB (ATTACK .RTO)

j finnrnr rn
T|j

ARRIUE®.RTO

SUB (ARRIUE)

INNER SHIP (REPLEN INNER)

DOORJRRIUE. FTl (ARRIVE)
■t'U

ARRIUE®. FT I

FTI (ARRIUE)

ADR SHAD (REPLEN INNER)
+0< REPLEN INNER- ■» SOLID SHAD (REPLEN INNER)

HEEDS NEEDS

INNER SHIP (ATTACK.FTI) INNER SHIP (ATTACK.RTI)
•fw ‘t'M

ATTACK®. FT I ATTACK®. RTI

FTI (ATTACK) SUB (ATTACK.RTI)

SOLID SHOD (REPLEN CORE) <-

CORE SHIP (REPLEN CORE)
•t’M

 REPLEff CORE-
NEEDS NEEDS

-> ADR SHAD (REPLEN CORE)

LEUEL 0 Base Leuel Range of t h is Leuel : Z-1Q..AC13 32419

AC 13

DBDRJRRDJE. FTC O W E)
+g

ARRIUE.FTC
la

FTC (ARRIUE)

SOLID (AREA DEFENCE)

AOR (AREA DEF)

CORE SHIP (ATTACK.FTC) CORE SHIP (ATTACK.RTD (ATTf° ' A
■t'W +w +g

ATTACK.FTC ATTACK.RTC ATTACK.AIR
+w +w +g

FTC (ATTACK)

DEAD.SUE

SUB (ATTACK.RTC) AIRCRAFT (ATTACK)

N E E D S
->SUB (DEAD)

DEAD.MIS ^MISSILE (DEAD)

SOLID (SELF DEFENCE)

,b AOR (SELF DEFENCE)
N E E D S

INNER SHIP (UREA DEFENCE) "<Eq<PaREA DEFENCE

CORE SHIP (AREA DEFENCE) ĥ b

OUTER SHIP (AREA DEFENCE)

ENGAGE.2ND

ICRAFT (El®AGE. 2ND)

MISSILE (AREA DEF)

ENGAGE.1ST
'I'w

AIRCRAFT (El®AGE. 1ST)

SELF DEFENCE:# ^ > INNER SHIP (SELF DEFENCE)

CORE SHIP (SELF DEFENCE)

MISSILE (SELF DEFENCE) OUTER SHIP (SELF DEFENCE)

FLVBACK

AIRCRAFT (FLYBACK)

DEAD.AIRCRAFT

AIRCRAFT (DEAD)

AIRCRAFT (PREPARE)
+g

PREPARE

ARRIUE. MIS t [B)
I NEEDS

MISSILE (RRRIUE)

DODC-fiQBEUE. flEE CfiBBEUE. M

LEUEL 0 Base Leuel Range of t h is Leuel : 2 - 1 0 . . AC13 32419

AD11 : FTC (ATTACK)

AIRCRAFT (FLYBACK

AIRCRAFT (PREPARE) ^AIRCRAFT (ATTACK)-> AIRCRAFT tENGASE. 1ST

AIRCRAFT (DEAD)

MISSILE (ARRIUE)— * MISSILE (AREA DEF!
nns

SUB (ARRIUE)^

)— ^SUB (ATTACK.RTC) MISSILE (DEAD)SUB (ATTACK.RTO)— >SUB (ATTACK

------>FTO (ATTACK)
PRECEDES

------>FTI (ATTACK)
PRECEDES
------>FTC (ATTACK)
PRECEDES
AAO..AD11 32419

SUB (DEAD) p FTI (ARRIUE)

LEUEL 1

AC5 : DOOR ARRIUE.FTC (ARRIUE)

LEUEL

AEPCRAFF (ENB
ABE. 2ND)

AERCRAFF (FL ’r’
BALK)

V 1<« -^AIRCRAFTc— SSnftrT Iftrr
AERCBAFT (DEA

F T O (

EDLED (AREA D
EFEMCE)

EDLED (SELF D
EFENCE)

CODE EHEP (EE
LF DEFENCE)

CODE SHIP (PE
PLEN CDPE)A FTO

a SOLID FTI
CNNEP EHEP (A
FFACK. FTO

[NNEB EHEP (A
PEA DEFENCE)

CDPE EHfP (AP
EA DEFENCE)

| CDPE EHEP (AT
PACK. FTC)

[NNER EHEP (E
ELF DEFENCE)

EIEEEELE (APBE
IJE)

flEEEELE (EELF
DEFENCE)

[NNEP EHEP (P
EPLEN E NNEP)

NEEEELE (DEAD

ADP (APEA DEF NEEEELE (APEA
DEF)

ADP (EELF DEF
ENCE)

DDDP-APPEUE. M DDDP_APDEUE.ri
EE (APPEUE. H+-

DUrEP EHEP (E
ELF DEFENCE)

DUFEP EHEP (A
FFACK. PTD)

DDDP_APDEUE. P
TD (APPEUE)

DDDP-APPEUE. P
TD

DUFEP EHEP (A
FFACK. FFD)

DDDP-APPEUE. F
FC (APPEUE)

DDDP_APPEUE. F
FC

ISA Leuel U-6..AC17 32419Range o this Leuel

AC17 : ATTACK.FTC

FLVBACK D

DUTEP EHEP (ft
PEA DEFENCE)

DUTEP El
EPLEN)

FTC (ARRIUE)

DQQP_ftPQ[UE. F y DDDP-ftPPCUE. E
t r \ T r «* «*•.r . r ir i ir“-»TE (APPE UEIi

DDDP-ftPPEUE. F v DDDP-ftPPCUE. E
■rr. (rr, .• .vnr.r i if.TD (APPEUE)

DDDP_fiTTfiCK. ft , DDDR.ftTTACK.ftrr. x rr. .• .■••n-.--.r-L-ep (f trr ftE K . R I

DDLED EHftD CP iS/i
EPLEN COPE) V A S U B (A R R I U ESUB<
EDLED EHftD (P EDLED EHftD (P A r m
EPLEN ENNEP) EPLEN DUTEP) H U n o n r i U

/Y \ k
ADD EHftD (PEP

EUE (ATTACK.P
TD)

EUE (ATTACK. P
T OSUB (DEAD) \ ri

ATTACK. RTI

LE CDPE

ftDP EHftD (PEP ftDP EHftD (PEP
LEN ENNEP) LEN DUTEP)

EUE (ATTACK. P
T O■RIUE.FTC SELF DEFENCE SS A T T A C K . R T F

ENUAGE.1ST

ATTACK.FTO

ATTACK.RTO

IE 1 AREA DEFENCE A T T A C K . A H

REPLEN I

PBEPABE ENGAGE.2ND ATTACK.FTI U E . F T O

REPLEN CORE

DEAD.MIS

REPLEN OUTEF

ACK.FTC

LEUEL 2 ISA Leuel Range of t h is Leuel : U -6 ..AC 17 32419

A:/B

AD3 :

LEUEL

NUMBER
ARRIUE.RTO

D U R A T I ON

DOOR ARRIUE.FTO
NUMBER

- > 1 ARRIUE.FTO
D U R A T I ON

->10

DOOR ARRIUE.FTI
NUMBER

->1 ARRIUE.FTI
D U R A T I ON

-> 10

DOOR ARRIUE.FTC
NUMBE R

->1 ARRIUE.FTC
D U R A T I ON

^ 1 0

DOOR ARRIUE.RTO
NUMBER

^ 1 ARRIUE.MIS
D U R A T I ON

DOOR ATTACK.AIR
NUMBE R

->1 ATTACK.AIR
D U R A T I ON

"> 1 0

3 Numbers Leuel Ranqe of this Leuel : AA0..AD10 32419

APPENDIX 5

TECHNICAL DATA AND INSTALLATION GUIDE

DATA FILES

*.ENG : Files containing the 'english' text
*.REL : Relationship Data Files

SOURCE UNITS

CYCLEINP.PAS
GLOBAL.PAS
GLOBAL2.PAS
GRAPHRTN.PAS
MENUS.PAS
NLUP.PAS
SASIM.PAS
SIMULATE.PAS
USERCODE.PAS

VALIDATE.PAS

OTHER FILES

USERCODE.INI
USERCODE.IN2
EGAVGA.BGI

LITT.CHR
CONVERT.DAT

RUNNING

The f i l e s containing the executable code needs to be copied
onto the same directory, whether on a floppy drive, or in a
subdirectory on a hard disk. To start SASIM, simply make the
default disk (and drive) the same as that which contain these
f i l e s , and type the following command :

SASIM [dr ive:\data directory] followed by [ENTER].

So i f "SASIM C:\DATA" is typed in, the data would be read from
and written to the directory "C:\DATA"

A second parameter could be a screen mode number (as defined in
TURBO 4 manual). This is not normally necessary as SASIM
automatically detects the type of screen.

Contains the code for cycle input.
Contains general subroutines.
Contains general subroutines.
Contains the main graphical routines.
Contains the menus.
Contains the NLUP code.
Skeleton f i l e to l ink the other modules.
Contains the main simulation code
Contains user code to modify the order
of the simulation.
The validate section.

: Small include f i l e
: Screen driver for an EGA and VGA

compatible screen
: Fonts f i l e
: Contains conversion masks for SEF

166

APPENDIX 6

KNOWLEDGE REPRESENTATION IN MEMORY

In order to achieve a theoretically sound memory representation, I
re l ied on Network Database Theory to model the relationships. The
main analogy is that each of the three main linked l i s t s in memory
correspond to a database table.

The network data model is as follows :

NODE (OBJECT) NAMES RELATIONSHIP NAMES
\ /

\ 2:N /
\S0URCE /

\ & / 1:N
\DESTINATION /
\ /

v v
LINKS

Each of the tables have the following f ie lds :

1) Node (Object) Names :

FIELD NAMES TYPE

NAME Character (LENGTH 20)

INDEX Pointer to a l i s t of relationships. The l i s t is of
all relationships which this object is involved in.

2) Relationship Names :

FIELD NAMES TYPE

NAME Character (LENGTH 20)

INDEX Pointer to a l i s t of all links which this
relationship is involved in.

167

3) Links

FIELD NAMES TYPE

SOURCE Pointer to the source object of this l ink .

DESTINATION Pointer to the destination object of this l ink .

RELATIONSHIP Pointer to the relationship of this l ink

N.B.

1) All the records in a table are linked together with a 'forward'
pointer. I f the records were stored in a memory array, these
pointers are unnecessary, since the record number implies the next
record, but this would seriously l im i t the f l e x i b i l i t y of using
records and pointers.

2) All the l i s ts are implemented as pointer chains, terminated by
a 'NIL' pointer, as opposed to a circular l i s t which is
asymmetrical when the l i s t is empty.

3) The Objects table is also sorted alphabetically on the name to
aid both the speed of a ' f ind ' enquiry, as well as to make the
order of any query output more sensible.

4) The reason for this theoretical background is that i f a
relationship or object was renamed, only one f ie ld has to be
changed (but the object l i s t needs to be resorted to maintain the
alphabetic l i s t i n g) . This is a direct result of the elimination
of redundancy in the data.

5) Relational Database advocates would have replaced a l l pointers
by 'name' f ie lds , implying the need for indexes to access a record
given a name. This would considerably slow down access speeds, as
well increasing the programming and memory overheads.

168

APPENDIX 7

ACD

AI

ASPES

AUTOS IM

BRANCH
AND

BOUND

BREADTH
FIRST

CAPS

CASM

CSL

DEPTH
FIRST

DEVS

ECSL

eLSE

GASP IV

GLOSSARY OF ABBREVIATIONS / NAMES

A ct iv i ty Cycle Diagram. A very widely used modelling method
for representing the logic of a simulation problem.
Popularized by H i l ls (1971).

A r t i f i c ia l intell igence.

A Skeletal Pascal Expert System. Developed at the LSE
[Doukidis and Paul, 1987].

An Integrated Simulation Program Generator developed at LSE
[Paul and Chew, 1987] [Chew et a l , 1985].

A search algorithm which guarantees optimality.

A search algorithm which tr ies to explore nearest l inks f i r s t .

An early Interact ive Simulation Program Generator for ECSL.
Uses an ACD as the main input. Written by Clementson (1982).

The Computer Aided Simulation Model. A team set up in 1982 at
the London School of Economics to investigate computer aided
simulation modelling [Balmer and Paul, 1986].

Control and Simulation Language. Developed by Buxton and
Laski (1962) at IBM UK and Esso.

A search algorithm which t r ies to explore long l inks f i r s t .

Discrete event system specification formalism. A
hierarchical, modular formalism [Kim and Zeig ler, 1987].

Extended Control and simulation Language. An extension of
CSL. Written by Clementson (1982). Uses an a c t iv i ty scan.

Extended Lancaster Simulation Environment. Simulation
routines or ig ina l ly created at Lancaster University and
subsequently modified at the LSE [Crookes et a l , 1986]. After
1987 upgrade, i t is now called LIBSIM.

Simulation language combining discrete change, continuous
change and mixed models. [Pritsker, 1974].

169

HOCUS

ISPG

KBS

LANGEN

LIBSIM

LSE

NLUP

ROSS

SASIM

SEMANTIC
NETWORKS

SIMKIT

SIMSCRIPT

SIMULA

SIPDES

SMDE

SPIF

Simulation package. Uses an ACD as an input [Syzmankiewicz,
1984].

Interactive Simulation Program Generator.

The Knowledge-based Simulation System. [Baskaran and Reddy,
1984] [Reddy et a l , 1986]. renamed Simulation Craft.

Renamed to AUTOSIM during 1986.

Latest version of eLSE.

London School of Economics.

Natural Language Understanding and Processing.

Rand Object-oriented Simulation System. An english-1ike,
interact ive object-orientated language implemented in LISP.
[McArthur et a l , 1986].

Semantic Analyser in Simulation Methodology. Program
implementing semantic modelling methodology [Barakat and Paul,
1988].

A graphical Al knowledge-base. I t is described in Rich
(1983),

An object-orientated simulation language. Produced by
In te l l icorp . Requires KEE (the Knowledge Engineering
Environment) running on a dedicated Hi-resolution graphics
Lisp machine [Harmon and King, 1985].

A very popular commercial simulation language [Caci, 1976].

The f i r s t object orientated language which was i n i t i a l l y
designed as a discrete event simulation language [B ir twist le
et a l , 1979].

A Simulation Program Debugger using an Expert System.
[Doukidis and Paul, 1991]. Developed using the ASPES shell
[Doukidis and Paul, 1987].

Simulation Model Development Prototype. Developed as a
research prototype by Balci and Nance (1987).

Simulation Problem In te l l igent Formulator. Program develop by
Dr George Doukidis, which attempts natural language processing
for a simulation. [Doukidis, 1985].

170

TESS The extended simulation system [Stanbridge et a l , 1985].

T-PROLOG

TURBO

VAX

VS6

WFF

An object-oriented, Prolog based simulation language. A
combined discrete/continuous version is avai lable, called TC-
Prolog. Developed by Futo and his associates at the Inst i tu te
for Coordination of Computer Techniques in Hungary. [Futo and
Szeredi, 1982].

A very good Pascal compiler for an IBM PC.

DEC mini computer.

An advanced simulation program environment developed at LSE
[Knox, 1988].

Well-Formed Formulas, used in predicate logic knowledge-bases.

171

APPENDIX 8

BIBLIOGRAPHY

Ackoff, R.L. and Sasienei, M.W. (1968). "Fundamentals of Operation
Research". Wiley, New York.

Au, G. and Paul, R.G. (1990). "A Complete Graphical Discrete Event
Simulation Environment". CASM Report, Department of Information Systems,
London School of Economics and Pol it ical Science, University of London.
Balci (1986). "Requirements for model development environments."
Computer Operational Research 13, 53-67.

Balci, 0. and Nance, R.E. (1987). "Simulation Model Development
Environments : A Research Prototype". Journal of the Operational
Research Society 38, 753-763.

Balci, 0. and Nance, R.E. (1987b). "Simulation Support : prototyping the
automation-based paradigm". In proceedings of the 1987 Winter Simulation
Conference, Atlanta, Georgia, December 1987, 478-485.

Balmer, D.W. (1987). "Modelling styles and the ir support in the CASM
environment". In proceedings of the 1987 Winter Simulation Conference,
Atlanta, Georgia, December 1987, 478-485.

Balmer, D.W. and Paul, R.J. (1986). "CASM - the r ight environment for
simulation". Journal of the Operational Research Society 37, 443-452.

Barakat, M. and Paul, R.J. (1988). "Semantic Modelling for Discrete Event
Simulation". CASM Report, Department of Information Systems, London
School of Economics and Pol it ical Science, University of London.

B ir tw is t le , G.M.; Dahl, O.J.; Myhrhaug, B. and Nygaard, K. (1979).
"SIMULA Begin". Chartwell-Brant, Bromley, England.

B ir tw is t le , J .J . and Wyvil l , B.L.M. (1984). "ANDES : an environment for
animated discrete event simulation". United kingdom Simulation
Conference, Bath, September 1984.

Browston, L.; Farre l l , R.; Kant, E. and Martin, N. (1985). "Programming
Expert Systems in 0PS5-Introduction to Rule-Based Programming". Addison-
Wesley, Reading, Massachusetts.

Buxton, J.N. and Laski, J.G. (1962). "Control and simulation language".
A description of CSL. The Computer Journal, 5,3.

Caci Inc (1976). "Simscript I I . 5 Reference Handbook". CACI Inc, Los
Angeles.

172

Carnegie Group (1986). "A natural language interface to a manufacturing
simulation expert system". Carnegie Group, Pittsburgh.

Ceric, V. and Paul, R.J. (1989). "Pleminary Investigations into
simulation model representation". 11th International Symposium "Computer
at the University", Cavtat, 1989.

Chapman, M. and Dayer-Smith, C. (1990). "VS7: A comprehensive Product
Review". Prospect Group, Kent.

Chew, S.T.; Paul, R.J. and Balmer, D.W. (1985). "Three Phase Simulation
Modelling using An Interactive Simulation Program Generator". CASM
Report, Department of S ta t is t ica l and Mathematical Science, London School
of Economics and Pol i t ica l Science, University of London.

Chomsky, N. (1957). "Syntactic Structures". La Haye, Mouton.

Clementson, A.T. (1982). "Extended Control and Simulation Language".
Cle. Com. Ltd, Birmingham.

Crookes, J.G.; Balmer, D.W; Chew, S.T. and Paul, R.J. (1986). "A Three
Phase Simulation Modelling System Written in Pascal". Journal of the
Operational Research Society 37, 603-618.

Crookes, J.G. (1987). "Generators, Generic Models and Methodology".
Journal of the Operational Research Society 38, 765-768.

Domingo, L. (1991). "Formal Methods of Specifying Discrete Event
Simulation Models". PhD Thesis, London School of Economics and Pol i t ica l
Science, University of London.

Doukidis, G . I . (1985). "Discrete Event Simulation Model Formulation
using Natural Language Understanding Systems". PhD Thesis, London School
of Economics and Pol i t ica l Science, University of London.

Doukidis, G . I . (1987). "On the Homology of Simulation with Al".
Journal of the Operational Research Society 38, 701-712.

Doukidis, G . I . and Paul, R.J. (1986). "ASPES : A Skeletal Pascal Expert
System". Expert Systems and A r t i f i c ia l Intell igence in Decision Support
Systems. (H.G. Sol et a l , Eds.). Reidel, Dordrecht, 227-246.

Doukidis, G . I . and Paul, R.J. (1991). "SIPDES ; A Simulation Program
Debugger using an Expert System". Expert Systems with Application 2.

El Sheik, A.A.R. 1987. "Simulation modelling using a relat ional database
package". PhD Thesis, University of London.

173

El Sheik, A.A.R. and Paul, R.J. (1988). "INGRESSIM: simulation modelling
using a relat ional database package INGRES". CASM Research Report, Dept
of S ta t is t ics , London School of Economics and Pol i t ica l Science,
University of London.

El Sheikh, A.A.R.; Paul, R.J.; Harding, A.S. and Balmer, D.W. (1987). "A
Microcomputer-Based Simulation Study of a Port". Journal of the
Operational Research Society 38, 673-681.

Fishwick, P. (1985). "Hierarchical reasoning: simulating complex
processes over multiple levels of abstraction". PhD Thesis, Department
of Computer and Information Sciences, University of Pennsylvania.

Flitman A.M. and Hurrion R.D. (1987). "Linking Discrete-Event Simulation
Models with Expert Systems". Journal of the Operational Research Society
38, 723-733.

Futo, I . and Szeredi, J. (1982). "A discrete simulation system based on
a r t i f i c i a l intell igence techniques". In Discrete Simulation and related
f ie lds (I . Javor, Ed.), 135-150. North-Hol1 and. Writing about the T-
Prolog and TC-Prolog packages.

Goodman, D.H.; Balmer, D.W. and Doukidis, G. I . (1987). "Interfacing
expert systems and simulation for job-shop production scheduling".
Presented at the 3rd International Expert Systems Conference, London,
1987.

Harmon, P. and King, D. (1985). "Expert Systems, A r t i f i c ia l Intell igence
in Business", 218. Wiley, New York.

Heidorn, G. (1972). "Natural language inputs to a simulation programming
system". Technical Report, Naval Postgraduate School.

Henriksen, J.O. (1983). "The integrated simulation environment
(Simulation software of the 1990s)". Operational Research 31, 1053-1073.

H i l l s , P.R. (1971). "HOCUS". P-E Group, Egham, Surrey.

Holder, R.D. and Git t ins, R.P. (1989). "The Effects of warship and
Replenishment Ship a t t r i t io n on War Arsenal Requirements". Journal of
the Operational Research Society 40, 167-175.

Hu, J. (1989). "Knowledge-based design support environment for design
automation and performance evaluation". PhD Thesis, University of
Arizona, Tucson, Arizona.

Hu, J . ; Huang, Y. and Rozenblit (1989). "Frases - A knowledge
representation scheme for engineering design". In Advances in Al and
Simulation. The Society for Computer Simulation, Simulation Series 20,
141-146.

174

Hurrion, R.D. (1976). "The design use and required f a c i l i t i e s of an
in teractive visual computer simulation language to explore production
planning problems". PhD Thesis, University of London.

Hurrion, R.D. (1986). "Visual Interactive Modelling". In International
Trends in Manufacturing Technology, Simulation, 3-13. IFS (Publications)
Ltd.

Hurrion, R.D. and Seeker, R.J.R. (1978). "Visual in teractive simulation,
an aid to decision making". Omega, 6(5) , 419-426.

Khoshnevis, B. and Chen, A.P. (1986). "An expert simulation model
builder". In In te l l igen t Simulation Environments, (P. Luker and H.
Adelsberger, Eds.). The Society for Computer Simulation, Simulation
Series 17, 129-132.

Kim, T.G. and Zeigler, B.P. (1987). "The DEVS formalism : hierarchical,
modular system specification in an object-oriented framework". In
proceedings of the 1987 Winter Simulation Conference, Atlanta, Georgia,
December 1987, 559-566.

Kim, T.G. (1988). "A knowledge-based environment for hierarchical
modelling and simulation". Technical Report mAIS-7, PhD Thesis,
University of Arizona, Tucson, Arizona.

Klahr, P.; E l l is , J.W.; Giarla, W.D.; Narain, S.; Cesar, E.M. and Turner,
S.R. (1986). "TWIRL : tactical warfare in ROSS language". In Expert
Systems Techniques, Tools and applications, 224-273. Addison-Wesley,
Reading, Massachusetts.

Knox, P.M. (1988). "Automated Graphically-Based Discrete-Event
Simulation Systems". PhD Thesis, London School of Economics and
Pol i t ica l Science, University of London.

Kuipers, B.J. (1975). "A frame for frames". In Representation and
Understanding (D.G. Bobrow and A. Coll ins, Eds.). Academic Press, New
York.

Lehmann, A.; Knodler, B.; Kwee E. and Szczerbicka (1985). "Dialog-
orientated and knowledge-based modelling in a typical PC environment".
In proceedings of the European Conference on Al applied to Simulation,
Ghent, Belgium. The Society for Computer Simulation, Simulation Series
18, 91-96.

175

Markowzitz, H.M. (1979). "SIMSCRIPT: Past, Present and some thoughts for
the future". In Current Issues in Computer Simulation (N.R. Adam, and A.
Dogramaci, eds.). Academic Press, New York.

Mashhour, A. (1989). "Automated Simulation Program generation Using a
Relational Database Simulation System". PhD Thesis, London School of
Economics and Pol i t ica l Science, University of London.

Mathewson, S.C. (1974). "Simulation Program Generators". Simulation
23(6) , 181-189.

Mathewson, S.C. (1977). "A Programming Manual for SIMON Simulation in
FORTRAN". Imperial College, University of London.

Mathewson, S.C. (1982). "DRAFT I I/FORTRAN Manual". Department
Management Science, Imperial College, University of London.

Mathewson, S.C. (1985). "Simulation program generators: code and
animation on a PC". Journal of the Operational Research Society 36, 583-
589.

Mathewson, S.C. and Beasley, J.E. (1976). "DRAFT/SIMULA". In proceedings
of Fourth SIMULA Users Conference. National Computer Centre.

McArthur, D.J.; Klahr, P. and Narain, S. (1986). "ROSS : an object-
oriented language for constructing simulations". In Expert Systems :
Techniques, Tools and Applications (P. Klahr and D.A. Waterman, Eds.),
70-91 Add ison-Wesley, Reading, Massachusetts.

Middleton, S. and Zanconato, R. (1986). "BLOBS: an object orientated
language for simulation and reasoning". In A r t i f i c ia l Intell igence
applied to Simulation (E.J. Kerckhoffs, G.C. Vansteenkiste, and B.P.
Zeigler, Eds.), 130-135, The Society for Computer Simulation, San Diego,
California.

Minsky, M. (1975). "A framework for representing knowledge". In The
Psychology of Computer Vision (P. Winston, Ed.). McGraw-Hill, New York.

Murray, K.J. and Sheppard, S.V. (1987). "Automatic model synthesis using
automatic programming and expert systems techniques towards simulation
modelling". In proceedings of the 1987 Winter Simulation Conference,
Atlanta, Georgia, December 1987, 534-543.

Nance, R.E. (1981). "Model representation in discrete event simulation:
the conical methodology". Technical report CS81003-R, Department of
Computer Science, Virginia Tech, Blacksburg, Virg in ia .

Nance, R.E. (1983). "A tutor ia l view of simulation model development".
In proceedings of the 1983 Winter Simulation Conference, Arlington, Va,
December 1983, 325-331.

176

Nance, R.E.; Balci 0. and Moose, R.L. (1984). "Evaluation of the UNIX
host for a model development environment". In proceedings of the 1984
Winter Simulation Conference, Dallas, Texas, December 1984, 577-584.

Newell, A. and Simon, H.A. (1972). "Human Problem Solving". Prentice-
H a l l , Englewood C l i f f s , New Jersey.

O'Keefe, R.M. (1984). "Developing simulation models: An in terpreter for
visual in teractive simulation". PhD Thesis, University of Southampton.

O'Keefe, R.M. (1986a). "Advisory systems in simulation". In Al Applied
to Simulation, (E.J. Kerckhoffs, G.C. Vansteenkiste, and B.P. Zeig ler,
Eds.). The Society for Computer Simulation, Simulation Series 18, 73-78.

O'Keefe, R.M. (1986b). "Simulation and expert systems: a taxonomy and
some examples". Simulation 46, 10-16.

O'Keefe, R.M. and Roach, J.W. (1987). "Al Approaches to simulation".
Journal of the Operational Research Society 38, 713-722.

Oldfather, P.; Ginsberg, A.S.; Love, P.L. and Markowitz, H.M. (1966).
"Programming by Questionnaire : How to construct a Program Generator".
RAND report RM-5129-PR.

Oren, T . I . and Aytac, K.Z. (1985). "Architecture of MAGEST: a knowledge-
based modelling and simulation system". In Simulation in Research and
Development. The Society for Computer Simulation, Simulation' Series 17,
99-109.

Paul, R.J. (1987). "Editor ial" . Journal of the Operational Research
Society 38, 671-672.

Paul, R.J. (1988), "Simulation modelling : The CASM project". Paper
presented at The Annual Operational Research Symposium of Yugoslavia
(1988) and The 2nd Brazil ian Workshop on Simulation (1988).

Paul, R.J. (1989a). " A r t i f ic ia l intell igence and simulation modelling".
In Computer Modelling for Discrete Event Simulation (M. Pidd, Ed.),
Wiley, Chichester.

Paul, R.J. (1989b). "Combining a r t i f i c i a l intel l igence and simulation".
In Computer Modelling for Discrete Event Simulation (M. Pidd, Ed.).
Wiley, Chichester.

Paul, R.J. (1991). "Recent developments in simulation modelling".
Journal of the Operational Research Society 42, 217-226.

Paul, R.J. and Balmer, D.W. (1991). "Simulation Modelling". Chartwell-
Bratt Student Text Series.

177

Paul, R.J. and Chew, S.T. (1987). "An interactive Simulation Program
Generator". Journal of the Operational Research Society 38, 735-752.

Paul, R.J. and Ceric, V. (1990). "Conceptual modelling in discrete event
simulation using diagrammatic representation". London School of
Economics and Pol i t ica l Science (University of London) and University of
Zagreb jo in t paper.

Pidd (1987). "Simulating automated food plants". Journal of the
Operational Research Society 38, 683-692.

Pidd, M. (1988). "Computer simulation in management science". Wiley,
Chichester. 2nd edition.

Post, E. (1943). "Formal reductions of the general combinatorial
decision problem". American Journal of Mathematics. 65, 197-268.

Pritsker , A.A.B. (1974). "The GASP IV Simulation Language". Wiley, New
York.

Quil l ian , R. (1968). "Semantic memory". In Semantic Information
Processing (M. Minsky, Ed.). MIT Press, Cambridge, Massachusetts.

Raphael, B. (1968). "A computer program for semantic information
r e t r ie v a l" . In Semantic Information Processing (M. Minsky, Ed.). MIT
Press, Cambridge, Massachusetts.

Reddy, Y.V.; Fox, M.S.; Husain, N. and McRoberts, M. (1986). "The
knowledge-based simulation system". IEEE Software 3, 26-37.

Reddy, Y.V. and Fox, M.S. (1982). "KBS : an a r t i f i c i a l intell igence
approach to f lex ib le simulation". IEEE Software 3, 26-37.

Reese, R. and Sheppard, S. (1983). "A software development environment
for simulation programming". In proceedings of the 1983 Winter
Simulation Conference, Arlington, Va, December 1983, 419-426.

Rich (1983). " A r t i f ic ia l Intel l igence", McGraw-Hill, New York.

Rivett, B.H.P. (1972). "The Art of Model Building". Wiley, Chichester.

Robertson, P. (1986). "A rule based expert simulation environment". In
proceedings of the conference on In te l l igen t Simulation Environments, San
Diego, Cal i forn ia . The Society for Computer Simulation, Simulation
Series 17, 9-15.

Rozenblit, J.W. (1985). "A conceptual basis for integrated model-based
system design". PhD Thesis, Wayne State University, Detroit , Michigan.

178

Rozenblit, J.W.; Hu. J . ; Kim, T.G. and Zeigler , B.P. (1990). "Knowledge-
based Design and Simulation Environment (KBDSE) : Foundational Concepts
and Implementation". Journal of the Operational Research Society 41,
475-489.

Rozenblit, J.W. and Zeigler, B.P. (1985). "Concepts for knowledge-based
system design environments". In proceedings of the 1985 Winter
Simulation Conference, San Francisco, Cal ifornia.

Ruiz-Mier, S.; Talavage, J. and Ben-Arieh, D. (1985). "Towards a
knowledge-based network simulation environment". In proceedings of the
1985 Winter Simulation Conference, San Francisco, Cal ifornia, December
1985, 232-236.

Shannon R.E. (1985). "Expert systems and simulation". Simulation 44,
275-293.

Shirai Y. and Tsuj i i J. (1984). "A r t i f ic ia l inte ll igence - Concepts,
Techniques and Applications". Wiley, Chichester.

Stanbridge, C.R.; Vaughan, D.K. and Sale, M.L. (1985). "A tu to r ia l on
TESS : the extended simulation system". In proceedings of the 1985
Winter Simulation Conference, San Francisco, Cal i fornia , December 1985,
73-79.

Sutton, D.W. and Coates, P.A. (1981). "On-line mixture calculation
system for stainless steel production by BSC stainless: the least through
cost mix system (LTCM)". Journal of the Operational Research Society 32,
165-172

Syzmankiewicz, J. (1984). "A Description of the HOCUS simulation
system". P-E Information Systems, Egham, Surrey.

Syzmankiewicz, J . ; Me Donald J. and Turner, K. (1988). "Solving Business
Problems by Simulation". (2nd Edition), McGraw-Hill, Maidenhead.

Taylor, R.P. and Hurrion, R.D. (1988). "An expert advisor for simulation
experimental design and analysis". In proceedings of the conference on
A r t i f i c i a l Intell igence and Simulation : the d ivers ity of applications
(T. Hendson, Ed.). The Society for Computer Simulation, San Diego,
Cal ifornia.

Tocher, K.D. (1963). "The Art of Simulation". Hodder and Stoughton
Educational publishers, London.

Unger, B.; Dewar, A.; Cleary, J. and Bir twist le (1986). "A distr ibuted
software prototyping and simulation environment : Jade". In proceedings
of the conference on In te l l igen t Simulation Environments, San Diego,
California. The Society for Computer Simulation, Simulation Series 17,
63-71.

179

Vaucher, J.G. (1985). "Views of modelling: comparing the simulation and
Al approaches". In 'Al Graphics and Simulation' (G. B ir tw is t le , Ed.),
3-7. The Society for Computer Simulation.

Wales, F.J. and Luker, P.A. (1986). "An environment for discrete event
simulation". In proceedings of the conference on In te l l ig en t Simulation
Environments, San Diego, Cal ifornia. The Society for Computer
Simulation, Simulation Series 17, 58-62.

White, D.J. (1975). "Decision Methodology". Wiley, Chichester.

Withers, S.J. and Hurrion, R.D. (1982). "The interactive development of
visual simulation models". Journal of the Operational Research Society
33, 973-976.

Zeig ler, B.P (1987). "Hierarchical, modular, discrete-event models in an
object-orientated environment". Simulation, 50, 219-230.

Zeig ler, B.P. (1990). "Object-Orientated Simulation with Hierarchical
Modular Models: In te l l igen t Agents and Endomorphic Systems". Academic
Press, Boston.

Zeig ler, B.P. and Wael, L. De (1985). "Towards a knowledge based
implementation of multifaceted modelling methodology". In proceedings of
the European Conference on Al applied to Simulation, Ghent, Belgium. The
Society for Computer Simulation, Simulation Series 18, 42-51.

180

