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ABSTRACT
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The purpose of this research is to analyze dynamic models for cohort 

and panel data, with special emphasis in the applications to life-cycle 

consumption.

In the second chapter of the thesis we analyze the estimation of 

dynamic models from time-series of independent cross-sections. The 

population is divided in groups with fixed membership (cohorts) and the 

cohort sample means are used as a panel subject to measurement errors. 

We propose measurement error corrected estimators and we analyze their 

asymptotic properties. We also calculate the asymptotic biases of the non­

corrected estimators to check up to what extent the measurement error 

correction is needed. Finally, we carry out Monte Carlo simulations to get 

an idea of the performance of our estimators in finite samples.

The purpose of the second part is to test the life-cycle permanent 

income hypothesis using an unbalanced panel from the Spanish family 

expenditure survey. The model accounts for aggregate shocks and within 

period non-separability in the Euler equation among consumption goods, 

contrary to most of the literature in this area. The results do not indicate 

excess sensitivity of consumption growth to income.

In the last chapter, we specify a system of nonlinear intertemporal 

(or Frisch) demands. Our choice of specification is based on seven criteria 

for such systems. These criteria are in terms of consistency with the 

theory, flexibility and econometric tractability. Our specification allows us 

to estimate a system of exact Euler equations in contrast to the usual 

practice in the literature. We then estimate the system on Spanish panel 

data. This is the first time that a Frisch demand system has been estimated 

on panel data. We do not reject any of the restrictions derived from theory. 

Our results suggest strongly that the intertemporal substitution elasticity 

is well determined.
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CHAPTER 1. INTRODUCTION

Economic theory can answer many questions related to the economic 

behaviour of agents. However, in most cases, economic theory does not 

provide quantitative answers. For example, the life-cycle permanent income 

hypothesis explains why people do not just expend their current income. 

According to the life-cycle model of consumption, consumers take into 

account their expectations about their future income, and substitute 

consumption over time so as to keep their marginal utility of consumption 

constant (see Hall (1978)). However, the theory does not say anything 

about how "willing" are households to substitute consumption over time, 

or whether the willingness to substitute depends on the particular 

characteristics of the family. If we want to give an answer to these 

questions, we have to go further and use the theory to derive an empirical 

model that can be estimated using the data available. On the basis of the 

estimated model we can obtain the elasticity of intertemporal substitution, 

which is a measure of the willingness to substitute consumption over time.

The purpose of econometrics is not only to provide quantitative 

answers to economic problems, but also to test the theory and to 

discriminate among alternative theories using the empirical evidence. 

Following the example above, we could ask ourselves whether people 

actually behave according to the life-cycle model of consumption, or 

whether, due to imperfections in the credit markets, consumers cannot 

borrow as much as they would like to. It is possible to establish a



theoretical model that explains the behaviour of consumers in the presence 

of borrowing constraints (see Zeldes (1989)). However, if we want to see 

up to what extent borrowing constraints affect consumer's behaviour, we 

have to use econometric techniques to discriminate among the alternative 

models.

If we want to give coherent qualitative answers to economic 

problems, it is crucial that our empirical model is based on the theory. 

Furthermore, we need to use the appropriate data set and the appropriate 

econometric techniques for estimation and testing. For example, it would 

be very difficult to estimate a dynamic model of individual behaviour, in the 

absence of observations for several periods of time. Under certain 

assumptions, some of these models can be estimated using aggregate time 

series data. However, as it has been argued in the literature (see Deaton 

(1992)), these assumptions are sometimes quite unrealistic, and the results 

based on macro data might not be very reliable. On the other hand, 

measurement errors at the micro level are often a very serious problem. On 

balance, it seems to be more appropriate to use a data set that contains 

individual observations for several periods of time, i.e, a micro panel, when 

the objective is to test models of individual behaviour.

There are many authors that have contributed to develop 

econometric techniques to handle panel data (see Chamberlain (1984) and 

Hsiao (1986) for surveys of the literature), and those techniques have been 

widely used in applied work. One of the main advantages of panel data is 

that we can control for unobservable individual effects that are correlated
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with the explanatory variables. This sort of models arise from economic 

theory. For example, in a certain class of life-cycle models, the individual 

effects represent the marginal utility of wealth (see MaCurdy (1981), 

Browning, Deaton and Irish (1985)).

At the firm level, there are good data sets for several countries, and 

these data sets have been used to estimate models of investment, labour 

demand, etc. However, for many countries there is no panel data on 

households. For example, in the U.K., there is no panel data on household 

consumption and labour supply, and even for the US, the PSID contains 

information on food consumption, labour supply, and family characteristics, 

but it does not provide information on expenditures in other goods. The 

lack of panel data on households for many countries was the main reason 

why most of the empirical work on the life-cycle model of consumption 

during the eighties was referred to the US, and was based on the PSID 

(Hall and Mishkin (1982), Zeldes (1989), Runkle (1991), etc). Therefore, 

there is very little evidence based on panel data for other countries 

(Hayashi (1985), Deaton (1991)).

The pioneer work of Deaton (1985) opens an alternative possibility 

to estimate models of individual behaviour using micro data. If we have 

time series of independent cross-sections, that is, if we observe 

independent samples of individuals for different periods of time, we can 

divide the population in groups (cohorts) so that each group contains the 

same individuals over time. Then, we can calculate the sample means for 

each group on each time period, and we can use the sample means as a
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panel subject to measurement errors.

The cohort population means have a genuine panel structure given 

that at the population level the groups contain the same individuals over 

time. However, the sample means are only consistent estimators of the 

true cohort population means, and therefore, when we work with the 

sample means we will have a measurement error problem. The advantage 

in this case is that we can estimate the variance of the measurement errors 

using the survey data. Then, we can use these estimates to correct the 

classical estimators for panel data. Deaton (1985) proposes a measurement 

error corrected within groups estimator for the static model with individual 

effects, which is consistent for a fixed number of observations per cohort. 

He analyzes the asymptotic properties of this estimator. Verbeek and 

Nijman (1993) modify Deaton's estimator to achieve consistency for a fixed 

number of time periods and a fixed number of individuals per cohort.

It is obvious that the larger the number of observations per cohort 

the less severe the measurement error problem will be. However, in 

practice, the cross-section dimension of our data set will be finite and 

therefore, a large number of observations per group will imply a small 

number of groups1. In applied studies with cohort data (see Browning 

Deaton and Irish (1985), Attanasio and Weber (1993), Blundell Browning 

and Meghir (1994)), the population is normally divided in a small number 

of groups with quite a large number of observations in each, and the

1 The cross-section sizes of the most widely used data set are around 2000 -6000  
observations. If the we want to have groups of about 200 observations we will only have 
10-30 groups.
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sample means are treated as a genuine panel. Verbeek and Nijman (1992) 

study under which conditions this approach would be valid. They also 

consider the impact of the cohort sizes on the bias of the classical within 

groups estimator for the static model with individual effects.

In Chapter 2, we deal with the estimation of a dynamic model using 

time series of cross-sections. We propose a generalized method of 

moments (GMM) estimator corrected for measurement errors. This 

estimator is consistent as the number of cohorts tends to infinity, for a 

fixed number of time periods and a fixed number of individuals per cohort. 

We derive the asymptotic distribution of our estimator. We also consider 

a measurement error corrected within groups estimator (WG), which is 

consistent as the number of time periods tends to infinity. Moffitt (1993) 

also analyzes the estimation of a dynamic model from time series of 

independent cross-sections. However, his approach is completely different, 

and the estimator that he proposes is only consistent if the number of 

observations per cohort tends to infinity.

In the second part of this chapter, we obtain the asymptotic biases 

of the non-corrected GMM and WG estimators, and we analyze the size of 

the biases for different values of the parameters of the model. In the last 

section we carry out Monte Carlo simulations, and we discuss the 

performance in finite samples of the estimators proposed.

In the last two chapters of the thesis, we study two different 

questions related to the Euler equations for consumption. In Chapter 3, we 

consider the problem of within period separability. As we mention above,



most of the empirical research on the life-cycle model of consumption using 

panel data is based on the PSID. This data set only contains information on 

food consumption. Therefore, additive within period separability between 

food and non-food consumption has to be assumed. In Chapter 3 we relax 

this assumption by considering a parameterization of the utility function 

which implies that the Euler equation for food consumption depends on 

consumption of other goods. This approach was proposed by Attanasio and 

Weber (1992). They estimate a very similar model using cohort data from 

the American Consumer Expenditure Survey. The advantage that we have 

is the panel structure of our data set (the Spanish Family Expenditure 

Survey). We do not need to group our data, and therefore we have a much 

larger cross-section dimension for our data set. Furthermore, we also 

consider the problem of aggregate shocks, which can invalidate the results 

based on cross-section asymptotics. If the aggregate shocks affect all the 

individuals in the same way, this problem can be easily solved by 

introducing time dummies in the model. However, if the effect of aggregate 

shocks is different for different families, the time dummies would not be of 

much help. If this were the case, we would expect to obtain different 

estimates of the parameters of the model for different periods of time. We 

consider two data sets for two periods of time (1978-83 and 1985-89) 

which are need to test the stability of our results.

In the last chapter, we discuss the specification and estimation of a 

system of intertemporal demands i.e. a Frisch demand system. The 

advantage of this approach is that we can obtain at the same time



estimates of the parameters involved in the intra-temporal and inter­

temporal allocation of consumption. This framework was introduced by 

Browning, Deaton and Irish (1985). In their paper they estimate a system 

of Frisch demands for consumption and labour supply. We start by 

discussing the different methods that have been used in the literature to 

estimate models of inter-temporal allocation of expenditure. We establish 

a set of criteria which should ideally be satisfied by a Frisch demand 

system in terms of consistency with the theory, flexibility and econometric 

tractability. Guided by these criteria, we chose a functional form for the 

Frisch system that allows us to estimate a system of exact Euler equations. 

We then estimate our model using panel data for Spain.
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CHAPTER 2. ESTIMATING DYNAMIC MODELS FROM TIME SERIES OF

CROSS-SECTIONS

1.- INTRODUCTION

As it has been stressed in the literature, the use of panel data is 

sometimes crucial to identify models of individual behaviour. For example, 

dynamic models can not be estimated using a single cross-section. Another 

example of the advantage of panel data is that we can take into account 

unobservable individual characteristics which may influence individual 

decisions. If the individual effects are correlated with the explanatory 

variables, the model can not be identified from a single cross-section. 

However, if these effects are constant over time, the model can be properly 

estimated using panel data.

The problem that arises at this level is that for many countries there 

is no panel data available with the information required to estimate some 

models of individual behaviour. For example, in the U.K. there is no panel 

data on household consumption and labour supply. However, a large survey 

on consumer expenditure and labour supply (The Family Expenditure 

Survey) is carried out with a regular periodicity. This type of data can not 

be treated as a real panel since the individuals in the sample are different 

from period to period. Nevertheless, the population can be divided in 

cohorts (groups with fixed membership over time) according to a certain 

characteristic (eg. year of birth), and the data on the sample means of the 

observations for each cohort in each time period can be used as a panel.
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Furthermore, using cohort data we can avoid the attrition problem that 

often appears in true panels. There are several applied papers in the 

literature using this kind of data (Browning, Deaton and Irish (1985), 

Attanasio and Weber (1993), Blundell, Browning and Meghir (1994)).

It is important to notice that the cohort sample mean is only an 

estimator of the true cohort population mean. Therefore, the estimators of 

the parameters of the model based on the sample means will be biased, 

and these biases will only be negligible if the cohort sample sizes are 

sufficiently large.

The purpose of this chapter is to develop estimators for dynamic 

models using time series of cross-section data, which are consistent as the 

number of cohorts tends to infinity, for a fixed number of observations in 

the time series dimension, and a fixed number of members per cohort. The 

estimation of a static regression model was first consider by Deaton 

(1985). He proposed a corrected within groups estimator for the static 

regression model with unobservable individual effects, which is consistent 

for a fixed number of cohort members. Verbeek and Nijman (1993) analyze 

an alternative estimator which is consistent as the number of cohorts tends 

to infinity (for a fixed number of time periods and a fixed number of 

individuals per cohort). The correction arises naturally as a consequence of 

the errors in variable structure of the data. Verbeek and Nijman (1992) 

propose analytic formulas for the asymptotic bias of the classical within 

groups estimator (without correcting for measurement errors). The 

estimation of dynamic models from cohort data has been considered by
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Moffitt (1993). He derives a class of cohort estimators as instrumental- 

variable estimators based on the micro data. However no attempt is made 

to correct for measurement errors.

For the dynamic model the within groups estimator is not even 

consistent using genuine panel data, unless the number of time periods 

tends to infinity (see Nickell (1981)). In applied work, we do not usually 

have data available for a large number of time periods. Therefore 

generalized method of moments (GMM) estimators, which are consistent 

for finite T, normally lead to less biased estimates (eg. Holtz-Eakin, Newey 

and Rosen (1988), and Arellano and Bond (1991)).

In this chapter we consider GMM estimators for a dynamic 

regression model with unobservable individual effects. Taking into account 

the errors in variable structure of cohort data, we can find instruments for 

the lagged dependent variable in the model in first differences, which are 

correlated with the disturbance term only trough the measurement errors. 

These instruments can be validly used if we correct the GMM estimator 

using the measurement errors variances.

The performance of the different estimators proposed depends 

mainly on two different things. One is the size of the sample we have 

available. If we have individual observations for a very short number of time 

periods, within groups will generally lead to poor estimates. The other thing 

to be considered, is the level of aggregation. Given a certain sample, there 

is a trade-off between improving the performance of the measurement error 

corrected estimators by choosing a large number of cohorts, versus
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diminishing the effect of the measurement errors by choosing a small 

number of cohorts each consisting of a large number of individuals.

The chapter is organized as follows. In section 2 we construct a 

measurement error corrected GMM estimator for the static regression 

model, which sets the framework that we are going to use in the rest of 

the chapter. In section 3, we extend this procedure to deal with dynamic 

models. We also consider a within groups estimator corrected for 

measurement errors which is consistent when the number of time periods 

tend to infinity and the cohort sizes are fixed. In section 4, we calculate 

analytic formulae for the asymptotic bias of different estimators for the 

AR(1) model, and we analyze their behaviour for different values of the 

parameters of the model. In section 5, we present and analyze the results 

from the Monte Carlo experiments. Section 6 concludes.

2.- ERRORS-IN-VARIABLE ESTIMATOR FOR THE STATIC MODEL

Consider the static regression model with individual effects

Yn-XtP+e.+v, v, -  iid(O.o2) (21)
6, -  iid (0,o*)

is the dependent variable for individual i at time t, x* is a vector of 

explanatory variables, 6, is the individual effect, and vrt is the disturbance 

term. We will assume that E(xjtvj8)= 0  vt,s. If the individual effects are 

correlated with the explanatory variables, the model can not be identified
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with a single cross-section2. If the data available are time series of cross- 

sections the model can not be directly estimated using panel data 

techniques, since the individuals are different from period to period. 

However, the population can be divided in groups with fixed membership 

over time (cohorts) according to a certain characteristic. Let g be a random 

variable which determines the cohort membership for each individual (i.e. 

for any individual iEc if and only if gjElc). Taking expectations conditional 

on gj in model (2.1), we have

E(y„/g1etc) =E(xtt/g,elc)/P +E(e,/g1elc)+E(vlt/glele) (2.2)

A necessary condition for identification is that the cohort population means 

vary across cohorts and over time. This is a sensible assumption, for 

example, if we are modelling consumption we can divide the population 

according to the year of birth, and we can expect consumption to vary with 

age. Hence, average consumption will be different for different cohorts and 

will vary over time.

We can rewrite (2.2) using a simple notation as

(2.3)
Vfl -  iid(0,ov.)
0* -  iid(0,o*,)

where y '*  = E ^ /g ^ U , x** = E(xit/gi€lc), etc. The v V s  are uncorrelated 

with the explanatory variables, while the cohort effects are potentially

2 Unless we have external instruments available.



correlated.

The problem estimating this model is that we do not observe the 

cohort population means. However, we do observe a certain number of 

individuals on each group for each time period. We can assume that for any 

individual in a given cohort c

Then, we can consider the sample mean of the observations for each 

cohort in each time period

where nc is the number of individuals per cohort3. The sample means can 

be used as a panel subject to measurement errors, where the measurement 

error covariance matrix will in general be unknown, but it can be estimated 

using the micro survey data.

The covariance matrix of (f^/for/aGI,. and the variance of the v*'s 

can and will normally depend on the choice of the cohorts. The only 

assumption we are making here is that the cohorts are chosen so that, the 

covariance matrix of does not depend on the particular cohort

y»=y«+c*
x it=xct+Tllt

(2.4)

— Eyi .=y«+— y=ry«+Cc«nC|ec nC|ec

~;E xit=xct+~ E  ’lit xct=xa+tlanc,ec nciec (2.5)

3 nc is assumed to be constant across cohorts and over time to simplify notation. This 
assumption can be easily relaxed.
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to which the individual belongs. The validity of this assumption will rely on 

the homogeneity of the cohorts chosen and can be relaxed without 

changing the major findings of this chapter4.

Using (2.5), we can rewrite (2.3) in terms of the observables

ye*=X«P+ee+Uc* t-1 .’.’."IT (2.6)

Uc.=V;+Cct-'laP

As we mention earlier, the cohort effects in (2.6) are potentially correlated 

with the explanatory variables in the model. However, as it happens when 

we work with genuine panel data, we can easily eliminate those effects 

using any operator orthogonal to the unity vector (e.g. first differences, 

deviations from time means, etc.).

Let us consider the model in first differences for the observables as 

a system of equations

Ay^AX^p+auC2
............................. C=1,..,C (2-7)
iy 0T=iXcTP+AucT

Contrary to what happens when we work with panel data, the explanatory 

variables in model (2.7) are correlated with the error terms through the 

measurement errors. However, the matrix

4 If the covariance matrix in (2.4) is different for different cohorts, we will use the 
observations on a particular cohort to estimate its covariance matrix.



can be used as a matrix of instruments for the system. Rearranging the 

columns of Zc in a convenient way, the moment restrictions are given by

E(Z'aUo)= ±  nc

where a u c =  ( a u c2, . . , a u cT) ' .  The measurement error corrected GMM 

estimator of /? (GMMC) is obtained by minimizing

c c
E  (Z > c-Ap -X)'ACE  C&Uc-Ap-\)
C=1 C=1

where the optimal choice of Ac is any consistent estimator of the inverse 

of the covariance matrix of Z c' a u c (cf. Hansen (1982)). The GMMC 

estimator is consistent for fixed T when C goes to infinity and is given by

c c
p =[E (aX^+aoaj: (z'aXc+a)]-1 *

°c Cc (2l9)
I E  (aX^z^ a K E  G & y .-*)]
C=1 C=1

where A y c =  U y c2, . . , A y cT)', and a X c =  ( a x c2, . . , a x cT) ' .  If the covariance

"°0i
•
■

-°Ol

- s .
P+— •

. nc •
°Ol

0 0
•

0 .
•
0

= Ap+A. (2 .8 )
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matrix of the measurement errors is unknown, the GMMC estimator in (2.9) 

is unfeasible. However, we can replace A and A by consistent estimators 

based on the survey data5.

Notice that the corresponding GMM estimator for the true panel 

coincides with the within groups estimator (see Arellano and Bover (1994)). 

However this is no longer the case when we are using cohort data, and this 

estimator does not coincide with the measurement error corrected within 

groups estimator proposed by Deaton (1985) which is consistent using T 

asymptotics. The GMM estimator in (2.9) does not coincide with Deaton's 

first difference estimator either. Deaton's estimator is based on a linear 

combination of the moment restrictions we use in (2.8).

3.- ESTIMATION OF A DYNAMIC MODEL USING COHORT DATA

Consider the following dynamic model

y i.= « y iM +x iiP +e i+vit v „ -  iicK o.o2) ( 3 1 )

0, -  iid(0,Oe)

We will assume that the individual effects are potentially correlated with all 

the explanatory variables in the model, and that E(xitvi.) = 0 vt,s. If the data 

available are repeated cross-sections containing different individuals over 

time, as we said earlier, we can divide the population in C cohorts

5 In the appendix we obtain the asymptotic distribution of the GMM estimator for the 
dynamic model when the covariance matrix of the measurement errors is unknown. For 
the static model this distribution can be derived analogously.
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containing the same individuals over time. Taking expectations conditional 

on the cohort the individual belongs to, and proceeding in a similar way as 

we did above for the static model, we can write the cohort population 

version of model (3.1) as

(3.2)
00 - i'd(O.v) 
v; -  iid(0,<£)

The unobservable cohort population means can be estimated by their 

sample counterparts.

The autoregressive model for a true panel can not be consistently 

estimated (as N-*oo for fixed T) using dummy variables for the fixed effects, 

or equivalently using the within groups estimator because in the deviations 

from time means model the lagged dependent variable is correlated with the 

error term. Notice that this type of convergence is relevant because panel 

data are in most of the cases available for very few periods of time. In the 

genuine panel case, we can estimate the model in first differences using 

lagged, present, and future values of the x's as instruments for the lagged 

y's provided that the x's are strictly exogenous with respect to the v's. 

However, this procedure is no longer possible in the pure autoregressive 

model without exogenous explanatory variables, or in a model with only 

predetermined variables, unless we have external instruments available. 

Furthermore, even if some of the regressors are strictly exogenous, we can 

find more efficient estimators adding lagged values of the predetermined
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variables to the instrument set (see Arellano and Bond (1991)).

When we are working with time series of cross-sections it is very 

important to establish the type of asymptotics for different estimators. 

Depending on the data available and on the size of the cohorts that we 

have chosen, some estimators will lead to better estimates than others. We 

are going to present different types of estimators for the first order 

autoregressive model with explanatory variables, and we will discuss their 

applicability depending on the sample size.

The variables in model (3.2) are unobservable but they can be 

estimated by the cohort sample means. Using (2.5), we can rewrite the 

model in terms of the observables as

We will first consider a measurement error corrected within groups 

estimator. As we said above, even for the true panel, the within groups 

estimator for the dynamic model is only consistent when T tends to infinity. 

When we are dealing with cohort data we can achieve consistency (as 

T-*oo) correcting the within groups estimator by the measurement error 

variances.

The model in deviations from time means is

yc=“yc-i+x4p+0o+uc.
t=2,..,T

ucrv;+Cc, - “ CCM -'laP

(3.3)

ycr«ya- i < P +0c (3.4)

where
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-  T
and Q *=11 * -  - -± ..Xy u • When T goes to infinity all the variables on theCt CO iji — ̂  OS

right hand size of (3.4) are correlated with the error term only trough the 

measurement errors in the following way

u  \  
Yct-1 u, = E

/ - •  \
Yct-1

u, + E ĉt-1 U,

/ - *  \I I '

E
Yct-1

m *• °ct - 0  a s  T -o o

 ̂ X*  t

Cct-1
nc

-a o f
a s  T -<

and the measurement error corrected within groups estimator (WGC) is 

given by

wgc

P̂wgcJ

C T—— EE[ C ( T - 1 ) £ &

{-2 - _ / \ 
Yct-1 Yct-iXct

V--1
_1( ° c °  
nclO 2

2 V -1

(3.5)

Yct-iYct 

I  XctYct ) n c

( 0

In applied work we do not always have data available for a large 

number of time periods, and in this case within groups is not an appropriate 

technique. However we can think of a measurement error corrected within 

groups estimator for fixed T, which will not be consistent but might lead 

to an improvement by eliminating completely the asymptotic bias due to 

measurement errors in the following way



and the measurement errors corrected within groups estimator for fixed T 

(WGCT) is given by

( m  \
“ wgctA
P̂wgcty

1 C T

E E  
c ( v - v h h

f m2 r  - / ^
Yct-1 9 eM *e t

1^0-1 * X ) nc

T-2  2 

T-1 ° c
 T_
"(T-1)

w

(T-1)2
n T - 2 ,O r __ 2j2 <1 T-1

Cl

-1

//

/ f  T  \ \T 2
1 c T E E Y c m Y *

I *«y« J nc
------------° r

(T-1)2
T-2------ Or

< T -1V 1 1 //

(3.6)

This estimator will not be consistent for fixed T, however, it might 

lead to better estimates than the classical within groups estimator for small 

values of T6.

As we said above within groups estimation is not an appropriate 

technique when the time series dimension of the sample is small. Hence, 

we are going to study an alternative estimator which is consistent for finite 

T when C goes to infinity.

Taking first differences in model (3.3) yields to

6 In section 4 we obtain the asymptotic bias of the WG and WGCT estimators (For 
fixed T as C-»oo) for the AR(1) model without explanatory variables. At least in this case 
the asymptotic bias of the WGCT estimator is smaller that the bias of the WG.
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A yc3=aA yc2+A)4 P  + a Uc3

AycT= a A y cT_i +aXcTP +a u cT

c=1,..,C

If the x*'s are strictly exogenous, i.e. Elx^Vg/) = 0 t,s = 1#..,T, the matrix

yci^i»XoT

yc1-ycT-2^1»^T

can be used as a matrix of instruments for the system (see Arellano and 

Bond (1991) for an analysis of this model in the genuine panel case). 

Rearranging the columns of Zc in a convenient way, the moment 

restrictions are given by

nc

0  0  

o.....0

o \  0

o\ 0

°cn 0

Or 0  Cn

-°c n

-°C n S n

0 -S.

0 -S.

iV -P/ nc

0

0

0

0

0

0

- C T

- C T

Cn

Cn

'Cn

'Cn J

=A 6+A.

where a u c =  ( a u c3, . . , a u cT) ' .  The measurement error corrected GMM 

estimator of 6 (GMMC) is obtained by minimizing
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c c
E (Z>c-A5 -X)'AcE (Z'aUc-A5 -X)
C-1 C-1

and is given by

6 =[E (aŴZc+AOAcE (Z'aWc+A)]-1 * (3 7)
IE (awX+aK E  (ZcAyc-x)]

where W 0 =  (yoH,IX0). yc,.n =  (yc2. - .Y ct-i)'. X„ =  (xc3, . . ,x cT)'.

The asymptotic distribution of the GMMC estimator when A and A 

are assumed to be known can be derived straightforwardly using a standard 

central limit theorem

\/C(8 -8 )-d N (0. (DXDo)-1D X V A D oP X D o)_1) (3 8)

where

Ao= plim A,.

D0= Plim -^-E (Z ^ -A S -X J -C E ^ W J + A )
d b ' c

V0= E[(Z^aUc-A8 -X)(Z'aUc-A8 -X)!

We can obtain a consistent estimator of the asymptotic covariance 

matrix in (3.8) by replacing A0 by Ac and D0, V0 by

& = ~ E Z caWc-A
^C=1  

1 c
v  = ^ :E  (ZcAUc-A6-X)(ZcaQc-A6-X)/

O c=1

where aqc is the vector of residuals.

The GMMC estimator in (3.7) is consistent as C-*oo for any choice 

of the weighting matrix. For example, we could use



Notice that in the genuine panel case, this matrix is the natural choice for 

the one step GMM and it is optimal if the disturbances in model (3.1) are 

uncorrelated and homoscedastic.

We can obtain a more efficient estimator in a second step using, as 

weighting matrix, any consistent estimator of V0'1. Once we have a 

preliminary consistent estimate 5, the two step GMMC is obtained using

Ac=
c

(Z^QC-A8-X)(Z^QC-A6-X)/
O c=1

-1

where aqc is the vector of residuals based on the one step estimator.

When the covariance matrix of the measurement errors is unknown, 

it has to be estimated using the micro survey data. A and A are replaced by 

consistent estimates, and the asymptotic distribution of the GMMC 

estimator changes (see appendix a).

4.- ASYMPTOTIC BIASES IN THE AR(1) MODEL

In section 3 we have considered different types of measurement 

error corrected estimators for a dynamic model with individual effects, that 

are consistent under different kinds of asymptotics. The corresponding non­

corrected estimators are not consistent under the same type of
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asymptotics, and it is interesting to know the size of their asymptotic 

biases, in order to have an idea on whether it is worth or not to use the 

measurement error correction. Furthermore, the within groups estimators 

are not consistent for fixed T, however, in order to compare their 

asymptotic behaviour with the GMM type estimators that rely on C 

asymptotics, we will calculate the asymptotic biases of the within groups 

estimators for fixed T.

The asymptotic biases of these estimators for the dynamic model 

with explanatory variables will depend on the particular mechanism 

generating the x's. For this reason, we will concentrate in this section on 

the pure AR(1) model.

Consider the AR(1) model with individual effects

Proceeding analogously as we did earlier for the model with exogenous 

variables, we can write the cohort population version of (4.1) as

The sample means for each cohort are consistent estimators of the cohort 

population means. Following the same notation as in section 3, we can 

rewrite (4.2) in terms of the observables

y»=“yit-i+0i+vit (4.1)

ya=“ya-i+0c+v,,« c-1,..,C
01 t=2,..,T

(4.2)

yc.=«yc.-i+0c+uct

Ud = v ct+ Cct“ a Cct-i

(4.3)

where
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ya=yrt+fe. <c -  iid(° --^ °c )

a) Within Groups Estimators

We can write (4.3) in deviations from time means as

yct=«yct-i+uct (4.4)

The OLS estimator of a in the model above is the within groups estimator. 

Its asymptotic bias for fixed T is (see appendix b)

plimc..(owa-«)= -
M> T-1

■(T-2)#

T -2  , 2a k . T 0 ;<t>—— -h -^ + T ^
1 -a 2 1 -a 4

(4.5)

where

hT =
1 -a

1- 1 1 -a T-1

T-1 1 -a
. , ncoj.

and <b=-----—^ 2
°C

(4.6)

The asymptotic bias (4.5) is negative if 0 < a < 1 , and its absolute value 

decreases as 0  or T increase. If -1<or< 0  the asymptotic bias can be 

positive or negative, and it will increase or decrease with T and 0  

depending on the particular values of a, T and 0.

Next, using T asymptotics



In section 3 we obtained the measurement error corrected within 

groups estimator (3.5), which is consistent using T asymptotics (WGC). For 

the pure AR(1) model (4.4), this estimator is given by

1 T c 
— jr ^ E E y c & M

c-1a
" °C i  T C 2

c r F n E E & i - £

and its asymptotic bias for fixed T is

" T

plimc..(a wgc-o)= - T-1
-a

T ' 2

(4.8)

1 -a2 1 -as

The asymptotic bias of this estimator can be bigger or smaller than the non­

corrected WG depending on the parameters of the model. The bias is 

negative if 0 > 2 7. If the bias is negative its absolute value decreases as T 

or 0  increase.

For the dynamic model with explanatory variables we also derived 

another measurement error corrected within groups estimator (WGCT). This 

estimator was obtained using the appropriate correction to eliminate 

completely the asymptotic bias due to measurement errors (for fixed T). For

7 Notice that <p<2 means that if for instance nc = 25 then ow.2! o 2 < 0 .0 8 , i.e. the 
measurement error variance is at least 12.5 times bigger than the variance of v*c. This 
seems to be quite unreasonable from our point of view.
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the AR(1) model it is given by

C (T -1 )& £ i ~T-1 nc

and

Pliroc~ (“wgcra)= - (4.9)

This bias coincides with the asymptotic bias of the within groups estimator 

for the true panel derived by Nickell (1981), and it is smaller than the 

asymptotic bias of the WG estimator (at least for a positive). Notice that 

this bias is always negative and it decreases as T increases (it approaches 

zero as T-*oo)

b) GMM Estimator

Let us consider model (4.3) in first differences as a system of 

equations

Ayc3=«*yc2+* uc3

AycT - « ^ c T - 1  + a UcT

We can use the matrix
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yci

Zc=
yciyc2

yci-yCT-2

as a matrix of instruments for the system. The GMM estimator without 

correcting for measurement errors is given by

\/ c
E
c=1

A X Z^A y

( c V  c
E Z ĉ - d ZcAyc(_i) 

y c-i

and the asymptotic bias is (see appendix c)

plimc_ (a -a ) = -

1 y
V - — 4> + p  A o p a  

1 +a

1 AV -  <l>+ p
1 +a N v ^ .

where

(4.10)

Aq = plim Ac
p = (1,0,1,0,0,1 ,..)7
v = (1,a,1,a2,a,1

The asymptotic bias in (4.10) is negative if a is positive, and it decreases 

as 0  increases.

In the figures at the end of this section, we have represented the 

absolute value of the asymptotic biases derived above as a function of a8. 

We have considered different values of T (T = 5,7,10,15), and different 

values for the variances av„2, a 2 and ag2. We can consider that a 2!nc is the

8 We have considered positive values of a, and values of 0 > 2 .  Therefore, as we 
explained earlier, the asymptotic biases are all negative.
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variance of the within cohorts component of the model, and <7V. 2, and a02 

are the variances of the between cohorts components of the model (the 

time varying and the time invariant components respectively). Notice that 

the asymptotic bias (for fixed T) of the within groups estimators depends 

on T, a, and 0  (the ratio of the time varying component of the between 

cohorts variance to the within cohort variance); and the asymptotic bias of 

the GMM estimator depends also on p = nca92/ a 2 (the ratio of the time 

invariant component of the between cohorts variance to the within cohort 

variance) through the matrix A09.

The asymptotic bias of the GMM estimator (4.10) is presented in 

figure 1. As a increases, the asymptotic bias increases. For values of a not 

very close to one the bias is small (it is zero for a = 0) and increases very 

slowly. However, for values of a close to one the bias increases rather 

quickly, and it can be very large for values of a around 0.9 (the actual value 

of the bias depends on the other parameters: the ratios of the variances (0 

and p) and T).

Looking at the top of figure 1, we can see that the bigger 0  is, the 

smaller is the bias. The reason is that an increase in this ratio means, on 

the one hand, an increase in the proportion of the between cohort variance 

due to the time varying component and on the other hand, an increase in 

the between cohorts component of the total variance, and both have a 

positive effect on the bias (positive here means that the bias decreases).

9 We are considering the two step GMM estimator and hence Aq is the inverse of the 
covariance matrix of Z'gAu,. which depends on p.
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The influence of p is weaker and has the opposite sign (see bottom 

of fig. 1). An increase in this ratio would mean an increase in the between 

cohorts component of the total variance, and would lead to a reduction of 

the bias, but at the same time, the proportion of the between cohorts 

variance due to the time invariant component increases and this has a 

negative effect on the bias. This two opposite effects together produce a 

total negative effect (the bias increases).

The asymptotic bias of the GMM estimator depends also on the time 

series dimension. As T increases the asymptotic bias becomes smaller (see 

fig.1).

The asymptotic bias of the WG estimator (4.5) is presented in figure 

2. This bias depends on a, 0  and T. As a increases the asymptotic bias of 

the WG estimator increases at a low rate for values of a not very close to 

one and at a high rate for values of a close to one. The asymptotic bias is 

not zero for a = 0.

The asymptotic bias of the WG estimator is smaller the bigger 0  is. 

When the within cohort variance approaches zero, the asymptotic bias of 

the WG estimator approaches the asymptotic bias for the true panel which 

is not zero for finite T. The asymptotic bias of the WG estimator depends 

also on the time series dimension of the data set. As T increases the 

asymptotic bias decreases, however, for T = 10 or T = 1 5  it is still non 

negligible.

In figure 3 we present the asymptotic bias of the different estimators 

proposed in this section, in order to compare their behaviour. As we



mention above, the asymptotic bias of the WGC estimator (for fixed T) can 

be bigger or smaller than the asymptotic bias of the WG estimator 

depending on the parameters of the model. However when we use the 

appropriate measurement error correction for finite T (WGCT estimator), we 

eliminate completely the bias due to the measurement error problem, and 

the asymptotic bias coincides with the asymptotic bias of the within groups 

estimator for the true panel, which is always smaller than the asymptotic 

bias of the non-corrected estimator (WG).

If we compare the asymptotic bias of the WG and GMM estimators, 

we can see that in most of the cases, the asymptotic bias of the GMM 

estimator is smaller than the asymptotic bias of the WG. Only when a is 

close to one and T is not very small the WG estimator will lead to better 

asymptotic results.
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figure 2
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figure 3
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5.- MONTE CARLO SIMULATIONS

In section 4 we obtained analytic formulae for the asymptotic biases 

of different estimators for the AR(1) model without explanatory variables, 

and we presented some figures that help us to analyze their behaviour for 

different values of the parameters of the model. However, it is interesting 

to know up to what extent the asymptotic behaviour approximates the 

actual behaviour observed in finite samples.

To get an idea of the finite sample performance of the different 

estimators for the AR(1) model, we have carried out Monte Carlo 

simulations for different values of the parameters of the model.

The data were generated using the following model. First, the cohort 

population means were constructed using an AR(1) model

y* = ay«-i +0o+Vrt 

V;  -  iid N(0,o*.) e; -  iid N(0,a*.)

Then, the individual observations on each cohort were generated as follows

y„ -  iid N(y;,o<)

After generating the sample, the cohort sample means and variances 

were calculated.

Using the model above, the variance of y can be decomposed in the 

following way



total
variance

within 
cohort + 

variance

time varying + time invarying 
between cohorts 

variance

It is clear that the performance of the estimators will depend on the 

proportion of the variance due to the different components. In order to 

compare the behaviour of the estimators for different values of the 

autoregressive parameter, without having the additional effect of a change 

in the composition of the variance, we have chosen, for each a, the 

appropriate values of a2V. and <7%. to keep this proportion constant.

We have performed experiments for different time dimensions 

T = 5,7,10,15, different values of the autoregressive parameter or = 0.1, 

0.5, 0.9, and different proportions on the composition of the variance of 

y. The size of the cross-sections is 2000 divided in 80 cohorts of 25 

individuals each. The results from the simulations are summarized in tables 

1-410.

Let us consider first the non-corrected estimators. It is clear from the 

tables that the biases of the WG and GMM estimators increase as a 

increases, for any composition of the variance of y, and any time series 

dimension. For example, if we look at table 1, for T = 5 the absolute bias

10 We have generated 100 samples for each experiment. We have also performed 
some simulations with 1000 replications and the results do not change (see appendix D).
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of the WG estimator is 0.28 for a = 0.1, 0.44 for c r = 0.5 and 0.75 for 

0  = 0.9, and for the GMM, the bias is 0.03 for o r = 0.1, 0.11 for a = 0.5, and 

0.53 for a = 0.9. Furthermore, the sizes of the biases are quite close to the 

asymptotic biases (compare the results on tables 1-4 with the 

correspondent figures in section 4).

With regard to the influence of the composition of the variance of y 

on the behaviour of the non-corrected estimators, the conclusion from the 

tables is that the biases of the WG and GMM estimators are smaller the 

bigger is the ratio of the time varying component of the between cohort 

variance to the within cohort variance. The behaviour of these estimators 

depends also on the time series dimension of the sample. The absolute 

value of the bias decreases as T increases for both estimators but the 

influence is stronger for the WG.

If we compare the WG and GMM estimators, we can see that in 

general the GMM estimator leads to better results than the WG. Only when 

T and a are big and the proportion of the within cohort variance is high, the 

bias of the WG is smaller than the corresponding GMM (see table 1, 

a - 0.9, T = 15). This result also coincides with the asymptotic behaviour 

(see fig.3 in section 4).

If we look at the results for the measurement error corrected 

estimators, we can see that they lead to less biased estimates than the 

corresponding non-corrected estimators, with a small increase, in most of 

the cases, of the standard deviation. Notice that the WGCT estimator is not 

consistent as C tends to infinity and it leads to worse results than the
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GMMC estimator specially for small values of T.

We finally comment on the performance of the WGC estimator. As 

we said earlier, the measurement error correction used to construct this 

estimator is the appropriate one in order to eliminate measurement error 

bias as T tends to infinity. Given that we are considering finite values of T 

this estimator leads to worse results than the WGCT estimator and it can 

lead to results even worse than the non-corrected WG for small values of 

T and a. This result coincides with the asymptotic behaviour (see fig.3).
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Table 1
Mean and Standard Deviation of the Estimators

Within cohort variance 50%
Between cohorts variance (time invariant component) 25%  
Between cohorts variance (time varying component) 25%

WG WGC WGCT GMM GMMC

a = 0.1
T  = 5

mean -0 .1844 -0.2059 -0 .1647 0 .0 7 3 0 0 .0766
st. dev. 0 .0629 0.0702 0 .0682 0 .1119 0.1211

T = 7
mean -0 .0866 -0 .0954 -0 .0744 0 .0793 0 .0844
st. dev. 0 .0468 0.0517 0 .0505 0 .0742 0 .0804

T = 10
mean -0 .0255 -0.0279 -0.0161 0 .0825 0 .0877
st. dev. 0.0381 0.0417 0 .0413 0 .0536 0 .0580

T = 15
mean 0 .0136 0.0147 0.0213 0 .0817 0.0871
st. dev. 0 .0333 0.0362 0.0359  

a = 0.5

0 .0448 0 .0485

T = 5
mean 0.0557 0.0651 0.1141 0.3917 0 .4346
st. dev. 0 .0683 0.0798 0.0758 0 .1468 0 .1619

T = 7
mean 0.1903 0.2156 0.2365 0.4141 0 .4600
st. dev. 0 .0488 0.0543 0 .0524 0 .0948 0 .1043

T = 10
mean 0 .2814 0.3133 0.3233 0.4231 0 .4670
st. dev. 0 .0384 0.0417 0 .0409 0.0611 0 .0658

T = 15
mean 0,3449 0.3793 0 .3842 0 .4290 0.4731
st. dev. 0 .0317 0 .0338 0 .0334 0 .0485 0.0521

a  = 0.9
T = 5

mean 0 .1534 0 .2792 0 .4453 0 .3694 0 .5205
st. dev. 0 .0736 0 .1313 0 .1133 0 .2492 0 .3647

T = 7
mean 0.3231 0 .4822 0 .5347 0 .4199 0 .5802
st. dev. 0 .0539 0 .0732 0.0666 0 .1633 0 .2215

T = 10
mean 0.4645 0 .6198 0 .6376 0 .4979 0 .6869
st. dev. 0 .0426 0.0468 0.0441 0 .1062 0 .1290

T = 15
mean 0.5821 0.7185 0.7244 0 .5607 0 .7684
st. dev. 0 .0296 0.0293 0 .0286 0 .0790 0 .0864
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Table 2
Mean and Standard Deviation of the Estimators

Within cohort variance 40%
Between cohorts variance (time invariant component) 20%  
Between cohorts variance (time varying component) 40%

WG WGC WGCT GMM GMMC

a  = 0.1
T = 5

mean -0 .1814 -0 .1918 -0.1715 0 .0792 0 .0815
st. dev. 0.0631 0 .0666 0.0657 0 .1040 0 .1083r*III-

mean -0 .0839 -0.0881 -0.0777 0 .0864 0 .0 8 9 4
st. dev. 0 .0469 0 .0493 0 .0488 0 .0 7 0 8 0 .0 7 3 8

T = 10
mean -0.0221 -0.0231 -0 .0173 0 .0888 0 .0917
st. dev. 0 .0384 0 .0402 0 .0400 0 .0510 0.0531

T = 15
mean 0.0168 0 .0176 0 .0209 0 .0872 0 .0902
st. dev. 0 .0335 0 .0349 0 .0348  

a = 0.5

0 .0438 0 .0 4 5 6

T = 5
mean 0.0732 0.0793 0 .1034 0 .4265 0.4501
st. dev. 0 .0683 0.0739 0 .0720 0 .1338 0 .1 4 0 0

7  = 7
mean 0.2078 0 .2215 0 .2318 0 .4479 0 .4 7 2 4
st. dev. 0 .0484 0.0511 0.0501 0 .0884 0 .0 9 2 6

T = 10
mean 0.3000 0 .3169 0 .3218 0 .4534 0 .4 7 6 8
st. dev. 0 .0383 0 .0399 0 .0395 0 .0 5 7 0 0.0591

T = 15
mean 0.3632 0 .3812 0.3837 0 .4563 0 .4797
st. dev. 0 .0313 0 .0323 0.0321 0.0461 0 .0477

a = 0 .9
T = 5

mean 0.2330 0 .3185 0.3975 0 .5372 0 .6 5 0 6
st. dev. 0 .0734 0 .0979 0.0895 0 .2 5 8 8 0 .3 1 0 6

T - 7
mean 0.3999 0 .4944 0.5201 0 .5867 0 .7 0 5 4
st. dev. 0 .0526 0 .0605 0 .0572 0 .1525 0 .1 6 4 8

T = 10
mean 0.5360 0 .6240 0 .6328 0 .6533 0 .7729
st. dev. 0.0401 0 .0406 0 .0393 0 .0 9 3 0 0 .0952

H II cn

mean 0 .6449 0.7199 0 .7228 0 .6 9 6 4 0 .8195
st. dev. 0 .0273 0.0263 0 .0260 0.0651 0 .0635
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Table 3
Mean and Standard Deviation of the Estimators

Within cohort variance 29%
Between cohorts variance (time invariant component) 14%  
Between cohorts variance (time varying component) 57%

WG WGC WGCT GMM GMMC

T = 5
a  = 0.1

mean -0 .1798 -0.1849 -0.1748 0 .0824 0 .0837
st. dev. 0.0631 0.0649 0 .0645 0 .0979 0 .0999

H II

mean -0.0825 -0 .0846 -0.0794 0 .0905 0.0921
st. dev. 0 .0470 0.0482 0.0479 0.0685 0 .0699

T = 10
mean -0.0203 -0.0207 -0 .0178 0 .0926 0.0941
st. dev. 0 .0387 0 .0396 0.0395 0 .0496 0 .0506

T = 15
mean 0.0186 0.0190 0 .0206 0 .0905 0.0921
st. dev. 0 .0335 0.0342 0.0342  

a  = 0.5

0 .0432 0.0441

T = 5
mean 0.0828 0.0861 0.0981 0 .4446 0 .4569
st. dev. 

1  = 1
0 .0682 0 .0710 0.0701 0 .1248 0 .1276

mean 0.2171 0.2242 0 .2294 0 .4654 0 .4 7 8 0
st. dev. 0 .0482 0.0495 0 .0490 0.0841 0 .0860

T = 10
mean 0.3099 0 .3186 0.3211 0 .4697 0 .4817
st. dev. 

T = 15
0 .0383 0.0391 0.0389 0 .0547 0 .0557

mean 0.3730 0.3823 0 .3835 0 .4712 0 .4832
st. dev. 0 .0310 0.0315 0 .0314 0 .0447 0 .0454

a = 0.9
T = 5

mean 0 .2857 0.3355 0 .3740 0 .6477 0 .7 1 1 0
st. dev. 0 .0724 0.0834 0.0793 0.2471 0 .2674

1  = 7
mean 0 .4482 0.5001 0.5129 0 .6962 0.7631
st. dev. 0 .0514 0.0547 0.0531 0 .1372 0 .1 3 7 6

T = 10
mean 0 .5790 0 .6260 0 .6304 0 .7462 0 .8096
st. dev. 0 .0382 0 .0380 0.0373 0 .0825 0 .0822

T = 15
mean 0 .6812 0 .7206 0 .7220 0 .7766 0 .8413
st. dev. 0 .0258 0.0251 0 .0250 0 .0567 0 .0549
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Table 4
Mean and Standard Deviation of the Estimators

Within cohort variance 18%
Between cohorts variance (time invariant component) 9%  
Between cohorts variance (time varying component) 73%

WG WGC WGCT GMM GMMC

Q II O

T  = 5
mean -0.1789 -0.1814 -0 .1764 0 .0838 0 .0844
st. dev. 0.0631 0 .0640 0 .0638 0 .0942 0.0951

III-

mean -0.0818 -0.0829 -0.0803 0 .0927 0 .0935
st. dev. 0 .0470 0.0476 0 .0475 0.0671 0 .0678

T =  10
mean -0.0193 -0.0195 -0.0181 0 .0947 0 .0956
st. dev. 0 .0389 0.0393 0.0393 0 .0490 0 .0495

T = 15
mean 0 .0195 0.0197 0.0206 0 .0925 0 .0933
st. dev. 0 .0335 0.0338 0.0338  

a = 0.5

0 .0428 0 .0433

T = 5
mean 0 .0877 0.0895 0.0955 0 .4535 0 .4597
st. dev. 0.0681 0.0695 0.0691 0 .1196 0 .1209

T = 7
mean 0.2218 0 .2254 0 .2280 0.4741 0 .4804
st. dev. 0.0481 0.0487 0.0485 0 .0815 0 .0824

T = 10
mean 0.3151 0.3195 0 .3208 0 .4783 0 .4844
st. dev. 

T = 15
0 .0384 0 .0388 0.0387 0 .0536 0.0541

mean 0.3781 0 .3828 0 .3834 0 .4792 0 .4853
st. dev. 0 .0308 0 .0310 0 .0310 0 .0439 0 .0442

a = 0.9
T = 5

mean 0.3164 0.3432 0.3623 0.7061 0.7381
st. dev. 0 .0714 0 .0766 0 .0745 0 .2328 0 .2412

T = 7
mean 0 .4756 0 .5029 0.5092 0 .7549 0 .7890
st. dev. 0 .0505 0 .0520 0 .0512 0 ,1279 0 .1269

T = 10
mean 0.6027 0 .6270 0.6292 0 .7940 0 .8258
st. dev. 0.0371 0 .0368 0.0365 0 .0769 0 .0767

T = 15
mean 0.7007 0 .7210 0.7217 0 .8187 0 .8514
st. dev. 0 .0250 0.0247 0 .0246 0 .0527 0 .0516
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NOTES TO TABLES

(i) 100 simulations.

(ii) Cross-sections of 2000 individuals.

(iii) AR(1) model with individual effects.

(iv) WG: within groups estimator. WGC: measurement error corrected WG 

(appropriate correction for T-*oo). WGCT measurement error corrected WG 

(appropriate correction for finite T).

(v) GMM: Generalized method of moments estimator.

GMMC: measurement errors corrected GMM. Matrix of instruments used

Yci

Zc= y«i y«2

YcT -4  y<iT-3 y<iT-2
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6.- CONCLUSIONS

The problem analyzed in this chapter is how we can estimate 

dynamic models using time series of cross-section data. As it happens 

when we work with panel data, we can consider different type of 

estimators which are consistent for different types of asymptotics (cross- 

section or time series). We propose a measurement error corrected within 

groups estimator which is consistent as the number of time periods tends 

to infinity, and a measurement error corrected GMM estimator which is 

consistent as the number of cohorts tends to infinity. We also calculate the 

asymptotic biases of the non-corrected estimators and we analyze the size 

of the biases depending on the parameters of the model.

In the last section of the chapter we have carried out Monte Carlo 

simulations to study the small sample properties of the estimators 

proposed. The conclusions derived from the simulations reinforce the 

asymptotic results. The measurement error correction seems to be 

important, and the corrected estimators lead to less biased results. 

Furthermore, for small values of T, GMM estimators are better than within 

groups.
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APPENDIX A. Asymptotic Distribution of the GMM Estimator when the 

Covariance Matrix of the Measurement Errors is Unknown.

Let A  and X be consistent estimators of A and A respectively. The 

criterion function we have to minimize is in this case

c c
s(5) = ( Z > c-A6 ( Z > c-AS "*>Uc-1 Lro!

Let

c c
bc(8) = - j E ^ uc-A 6-i) = ^ E ( ^ U c-A8-A)-[(A8+i)-(A 8U )]

Uc-1 Lrc,i

The elements of A and X are either zero or else estimates of the 

variances and covariances of the measurement errors, and given that we 

are assuming that they are constant across cohorts and over time the 

elements of A  and X are calculated as follows

^  £  (y»-yc)2^ Ec c«i (nc-i)TM iec>t c c=1

Analogously we construct a(|j and J .

Using the definition of the vec operator and the Kronecker product

(A6+X)-(A8+jl) = (8'®l)(vecA-vecA)+(X -X)

and it can be written as
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.  .  1 c  
(A6+X)-(A6+X) = (6 ® :l)-y £

C c-i

( \ 
vecA.-vecA
. k - x

where Ac and %c are obtained using the individuals in cohort c. 

Hence

bc(S) =
Oc=1

f , \
ZcaUc-A6 -X
vecAg-vecA = h t : E  ('I’c-’t')Oc=1

The ^ c's are iid with mean y  and covariance matrix vt =E (tyc-iJO (tyc-i|0 

Then, using a CLT

v/5 bc(8) - d N(0,Vo) where V0 = HV,H'

The asymptotic distribution of the GMMC estimator is given by

v/C(6 -  8) N (0,(DXDo) ‘1D X V A D o(D X D q) _1)

where

Ao= plim Ac

D0= plim -^-£ ( Z > c-A6 -i)=-(E(2^iW c)+A) .
36  c

A consistent estimator of the asymptotic covariance matrix is 

obtained by replacing A0 by Ac and D0/ V0 by

& -  ~ E 4 a W c-A  
o c«1

A A A A  /
V = HVt H

where
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1 C ( 1 0 V  ̂ C \
% = pE pE *e| pE *c

' - 'c - l  \  C*1 A U C-1 )

auc has to be replaced by Au the vector of residuals.

APPENDIX B. Asymptotic Bias of the Within Groups Estimator.

Consider the within groups estimator obtained using the t-the cross-

section

awgt

1
p E  yc-i9«
^ c =1_______

5 E & 1V-rc»1

= a +

1
pE9c-iO<

o c-1

and

plim c -(“wgt-“)=

« c
P,im pE ?cM0ct 

P H - 4 E & 1Oc-i

A,
B«

We are going to calculate At and Bt

A|“ E [yc-lUcl = E + E [Cet-iQcJ

The second term can be obtained as follows

E [ ^ O J  = E [CSM(»;+C- -«?«,.1)]-
2 2

e/r ? \ err2 \ T ac T -2  ac 
= E (C c t - iC d ) -“ E (C e i- i)= ‘ 7 ^ — _ “ ^ r — :(T-1)z nc T - i  nc

Following Nickell (1981), we can calculate the first term
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E(y«-iQo) = E (y « -,^ =  -
2

V
(T-1)(1 -a)

4 t-2  T - t , 1 1 "C1 -a1 - a  +-----------
T-1 1 -a

T-1

and

v  -
v ,t-2 „ T -t . 1 1 - a T’ 11 - a'-z-a T-»+.

T-1 1 -a
T T-2

+ a
(T-1)2 T-1 nc

analogously we can obtain Bt

B,= E(y2_,) = E(y;2.,)+E ((*.1)= 
2 2 

°v* T-2 2a °v*
1 - a 2 T-1 1 -a2 (T-1)(1 -a)

t-2 T-t 1 1 “ a- a 1 - a  +----------------
T-1

T-1 1 -a
T-2 °c 
T-1 nc

using the whole sample

awg

1 T C 1 T C

C ( T - 1 ) S S ^  _ _ . C ( T - 1 ) 5 S * omU<

C(T-1)§S9c*'1

= a +

and

plim T..(owg-a)= > 1 t=2

4 T

I -  I t-2

adding up the expressions for ^  and Bt and substituting we obtain
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plimc_(owg-o)=

1
(T-1)(1 -a)

1
[i-  1 I

ncoj.
1 -a 2 T-1 J 2

aC

1 -
1 1-oT"1' ncoj.

T-1 1-a . 2Or
T-2

[CT-1)2 T-1
a

1 -

1H«1 2ncov.
T-1 1-a 2

Or

rearranging terms and defining

hT =
1 -a

1 -
1 1 - o T-1

T-1 1-a
and <|>=

nco*.

we obtain

T-1
+(T-2)a

1 -a 2 1 - a J

Analogously we obtain the asymptotic bias of the measurement error 

corrected within groups estimators (WGC and WGCT).

APPENDIX C. Asymptotic bias of the GMM Estimator.

The non-corrected GMM estimator for the pure AR(1) model with 

individual effects is given by

= _ x
E  Z cAYoM )
C=1

V  C 

A cE Z ^ y ,
C=1

( C \

E
Vc-1

AcE z cAyc(-

=  o + -

( c y  c
£ Z ^ ycH) Ac£ z ' au(

 Z. C=1

c-1
1) E  Z c ^ c ( -1 )

Vc-1

/ c
A c E  z cA yc(-i)

C*1
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Plim c,„(o-a) =

1 0 1 0 pHm - £  iYc(-i)Zc plim Ac plim —£  z ' a u c

_______^C=1_________________________ ^C=1_______

1 c 1 c
piim - £  Ayc/-i)Zc plim A,, plim ~ Y zcAYc(- 

UC«1 v̂ c-1

Let us now calculate the different probability limits in the expression above

Plim Z ^ ycH)=E(Z'AycH)) =E(Zc-'iy ;.i)) +E

Cd
Cd

•c1

>cT-2

aCc2

a^c(T-1)

E(ZC AVc(-i ))“!*”■”  nc

c 2
plim ^ £ Z > =  = E(Z'aUc) =

c c=1 nc

plim A,. = A„

where /j  = 11,0,1,0,0,1,..). 

assuming that the process is stationary

y ; = a v ;H
l -a  j»o

•o

AVa = £  “'av;., 
i=o



57

ZoW;-1)] =

Yci 1

Yci a
y * Aŷ 1

• • = - a2
* * a

Yci AYcT-1. 1

yen’-*).
•
•

2
° V

1 +a
=  -  v

2
_!vl 
1 +a

Then

1
P|imc -7 ;E ^ y e ( - i )  o c_ 1

2 2
° v *  a C-  V  1 Li—
1+a nc

and the asymptotic bias is

plirrL (a -a ) = -
v -^—c^+JAopa

v-J—<|)+p
1 +a

<|> + |I
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Table D
Mean and Standard Deviation of the Estimators

Within cohort variance 50%
Between cohorts variance (time invariant component) 25%  
Between cohorts variance (time varying component) 25%

WG WGC WGCT GMM GMMC

a = 0.1
T = 5

mean -0 .1858 -0.2076 -0.1661 0 .0 6 8 0 0 .0 7 1 8
st. dev. 

T = 7
0 .0584 0.0655 0.0632 0 .1070 0.1161

mean -0 .0936 -0.1031 -0.0820 0 .0723 0 .0766
st. dev. 0.0461 0.0509 0 .0499 0 .0752 0 .0813

T = 10
mean -0 .0303 -0.0331 -0 .0214 0 .0803 0 .0854
st. dev. 0 .0380 0 .0416 0.0411 0 .0552 0 .0598

T = 15
mean 0 .0150 0.0163 0.0229 0 .0823 0 .0877
st. dev. 0.0311 0.0339

a

0 .0336  

= Q.5

0 .0422 0 .0456

T = 5
mean 0 .0507 0.0592 0 .1090 0 .3873 0 .4329
st. dev. 0 .0644 0.0755 0.0712 0 .1455 0 .1 6 4 8

T - 7
mean 0 .1843 0.2089 0.2301 0 .4057 0 .4506
st. dev. 0.0481 0.0539 0.0521 0.0921 0 .1 0 1 6

T = 10
mean 0.2790 0.3105 0.3205 0 .4249 0 .4699
st. dev. 0 .0395 0 .0430 0.0421 0 .0656 0 .0712

T = 15
mean 0.3479 0.3827 0.3876 0 .4323 0 .4769
st. dev. 0 .0297 0.0317 0.0313  

= 0.9

0 .0463 0 .0497

T = 5
mean 0.1425 0.2583 0 .4294 0 .3453 0 .4963
st. dev. 0 .0698 0 .1239 0 .1018 0.2391 0 .3762

T = 7
mean 0.3207 0.4789 0 .5316 0 .4 2 2 0 0 .5989
st. dev. 0 .0513 0.0704 0.0641 0.1601 0 .2298

T =  10
mean 0.4637 0 .6176 0.6353 0 .5078 0 .7077
st. dev. 0.0421 0.0475 0.0451 0 .1159 0 .1427

T = 15
mean 0.5853 0.7215 0 .7272 0 .5714 0 .7819
st. dev. 0 .0308 0.0302 0 .0294 0 .0778 0 .0827
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CHAPTER 3. SEPARABILITY AND AGGREGATE SHOCKS IN THE LIFE­

CYCLE MODEL OF CONSUMPTION: EVIDENCE FOR SPAIN 

1 INTRODUCTION

Since 1978, when Hall published his paper on the life-cycle 

permanent income hypothesis, many authors have estimated revised 

versions of his model and have tested its implications using both aggregate 

and micro data.

At a macro level most of the empirical tests lead to the rejection of 

the permanent income hypothesis (e.g. Flavin (1981), Campbell and 

Mankiw (1991)). However, the fact that the life-cycle model of 

consumption is in general rejected using aggregate time series data does 

not necessarily invalidate the theory at the individual level. As pointed out 

by previous authors, the failure of the model with macro data can be due 

to the violation of the aggregation assumptions needed to justify the use 

of aggregate data (see Ch. 5 Deaton (1992), Attanasio and Weber (1993)).

At a micro level there is evidence in favour and against the 

permanent income hypothesis. Most of the research in this area (e.g. Hall 

and Mishkin (1982), Zeldes (1989) and Runkle (1991)) is based on the 

Panel Study of Income Dynamics (PSID). This data set only includes 

information on food consumption, and therefore, preferences have to be 

parameterized such that the Euler equation for food consumption does not
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depend on consumption of other goods11. As argued in Attanasio and 

Weber (1992), the violation of this assumption can be responsible for the 

rejection of the permanent income hypothesis when the data set used is 

the PSID. The reason why we can spuriously find evidence of excess 

sensitivity of consumption to income, when the consumption measure used 

is food consumption, is the following: if the utility function is not additive 

in food and non-food consumption, the Euler equation for food will depend 

on consumption of other goods. Hence, if no measure of non-food 

consumption is included, a spurious dependence of food consumption on 

income can be induced. This spurious dependence would lead to a rejection 

of the permanent income hypothesis. In this chapter, we consider groups 

of composite commodities, and we estimate the Euler equations derived 

from a life-cycle model of consumer behaviour.

The main data set that we use is a rotating panel from the Spanish 

family expenditure survey (Encuesta Continua de Presupuestos Familiares) 

corresponding to 1985-89. This data set has several advantages, in order 

to estimate the life-cycle model of consumption, compared with other data 

sets used in the literature. On the one hand, in this survey, very detailed 

information on expenditures is recorded. This fact makes this survey more 

appealing than the PSID. On the other hand, the structure of the Spanish 

survey is more convenient than the most widely used consumer surveys.

11 The normalization of the utility function has to be chosen such that the utility 
function is additive separable between food and non-food consumption. Notice that within 
period allocation of expenditures is invariant to monotonic transformations of the utility 
function, but intertemporal allocation of consumption depends on the normalization of the 
utility function.
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In the Spanish survey households are interviewed during eight consecutive 

quarters and a complete information on expenditure, income and family 

characteristics is recorded. The consumer surveys most widely used do not 

have this panel structure. The British Family Expenditure Survey has 

independent waves, and in the American Consumer Expenditure Survey, 

even though households are interviewed in four consecutive quarters, the 

information on income is only recorded in the 1st and 4th interview. The 

frequency of the data, quarterly as opposed to annual, is another advantage 

of the Spanish survey relative to the PSID for the purpose of studying 

consumption decisions.

Another important issue that has recently attracted attention in the 

literature is the presence of aggregate shocks that could invalidate the 

instruments and hence the identification of the model when the time series 

dimension of the data set is small (see Deaton (1992)). If the aggregate 

shocks affect all the individuals in the same way the problem can be easily 

solved by introducing time dummies in the model. However, if the effect 

of the shocks is not the same for everybody, for example some people can 

obtain higher benefits in a recession period, the introduction of time 

dummies will not solve the problem and we will need a long time series 

dimension to obtain valid estimates of the model. Therefore, if the effect 

of aggregate shocks varies over individuals, we may obtain different 

estimates for the parameters of the model for different periods of time, 

even if we include time dummies to pick up these effects. We have used 

a second unbalanced panel from a previous series of consumer surveys for
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Spain (Encuesta Permanente de Consumo) which were carried out between 

1978 and 1983, at a very different part of the cycle, relative to the period 

1985-89 when the economy was booming. On the basis of these two data 

sets we can check the stability of our results.

This chapter is organized as follows. In section 2 we present the life­

cycle model of consumer behaviour that will be used in the chapter. In 

section 3 we describe the information contained in the Spanish family 

expenditure surveys and how the variables of the model have been 

constructed. In section 4 we analyze some econometric issues on the 

estimation of the model. The results are presented in section 5. Section 6 

concludes.

2.- THE MODEL

The decision problem faced by the consumer is how to allocate 

consumption over time to maximize the expected intertemporal utility, i.e.

max Et
[T -t

k-0

(2 . 1)subject to

At+1 +k = 0  +'lt+k) (̂ t+k +yt+k ”Pt+l£i+k) k=0 ,..,T-t

Ar+i ,0

Where c8 is a vector of consumption of n groups of commodities in period 

s, y. is income, i8 is the nominal interest rate and p8 is a vector of prices. 

A8 are assets at the beginning of period s, rj9 *s a vector of family
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characteristics and 6 is the discount rate. E< is the conditional expectation 

operator, conditional on information known by the consumer in period t. 

The set of Euler equations for this problem is

(1 + ^ 6  Uj(ct̂ .1
U jM t)

Where rn is the commodity specific real interest rate (1 + r̂ ) = (1 + it)Pjt/pjt+i 

and Uj is the partial derivative of the utility function with respect to 

consumption of commodity j. We can write (2.2) in terms of the actual 

values as

(1 +rjt)6Uj(ĉ +i,rit+i) e /  \ n /9 Q\
1 u , ^ , )  1 + e M  E r f V i )"0 J =  1 - - n  ( 2 3 )

Consider the following instantaneous utility function, which is not 

additive (given the normalization we use) but simple to guarantee an 

approximate log-linear Euler equation

u(c1t-...cnt,iit)=c1t..crTt<l)(Tit) (2.4)

Where 0  is a function of the vector of family characteristics, which will be 

parameterized as an exponential12. We can write the set of Euler 

equations in (2.3) for the utility function (2.4). Taking logarithms and using 

a second order taylor approximation for log(1 + €*+,), we obtain

12 Notice that even though this utility function is weakly separable, the normalization 
we use implies non-separability in the Euler equations among consumption goods.
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(a,-1)Alogcjw + £  ot^logc*,., +log6
1 H  (2.5)

+-of+log(1 +rJ))+Alog<t>(nt)=ejw

where E ^e^) = 0, o2 = E(£2jt+1) and a  is the first differences operator13. All 

the variables except the interest rate are household specific, but we have 

omitted the household subscript to simplify notation.

We are implicitly assuming additive separability between 

consumption of durable and non-durable goods in the utility function. The 

reasons why we do not include expenditure in durables in our model are 

first, the additional econometric problems involved in the treatment of 

durables (infrequency of purchases); and secondly, the fact that the 

inclusion of durables would complicate the specification of preferences (see 

Hayashi (1985)). On the other hand, we are mainly concerned in testing the 

life-cycle permanent income hypothesis, rather than in modelling 

consumption patterns for different goods.

Another assumption in this model is separability between 

consumption and leisure. To our knowledge, there is not much formal 

evidence about this issue. If we look at the results in Browning, Deaton and 

Irish (1985), the evidence about non-separability between consumption and 

leisure is not very reliable; the reason is that, even though the cross-price 

effects are significant, their signs are contradictory. We have tried to

13 This approximation has been criticized by Altug and Miller (1990). They argue that 
log(1 +£jt+i) is correlated with past information invalidating the instruments widely used 
to estimate this kind of models.
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overcome potential shortcomings by including dummy variables for labour 

market status of the household head and the wife as additional regressors 

in our equation. These dummies will pick up to some extent the potential 

differences in consumption behaviour among households with different 

labour force participation status.

3.- THE DATA

The first data set that we have used is the Spanish family 

expenditure survey (Encuesta Continua de Presupuestos Familiares (ECPF)). 

This survey is carried out by personal interview on a quarterly basis, from 

the 1rt quarter 1985. The survey contains very detailed information on 

family expenditures, information on household characteristics and family 

income. In this application we have used 20 quarters of the survey, from 

1st quarter 1985 to 4th quarter 1989.

Every quarter, about 3000 families are interviewed. The data set is 

a rotating panel, since in principle on each quarter 1/8 of the households 

are renewed. A family stays in the sample at most eight periods but there 

is quite an important percentage of attrition in earlier quarters, mainly 

during the first two years of the survey. In this research we have 

considered families that report full information at least for five consecutive 

periods. The reason why we have dropped households with less than five 

responses is that we need lagged information to instrument the 

endogenous variables of the model.
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Consumption patterns can be very different for households with 

different characteristics (family members, age, etc.). To overcome this 

problem, we can either work with a small sample of "homogeneous" 

consumers, or else we can assume that we know how preferences depend 

on family characteristics. Using the first approach will mean a reduction on 

the sample size and hence a worse performance of the estimators14. The 

problem with the second procedure is to combine flexibility with parsimony. 

Our approach will be a compromise between these two approaches.

Taking into account the considerations above, we keep in our sample 

married couples with or without children, such that the husband is coded 

head of the household. We drop households whose head is either very 

young (younger than 25), or else quite old (older than 65). We also 

condition on another demographic and labour force variables as explained 

below.

For the purpose of this research we have used only expenditure in 

non-durables and services which we have aggregated in three groups of 

commodities: the first one includes food, alcoholic and non-alcoholic drinks 

and tobacco; the second clothing and footwear; and the third energy and 

transport15.

14 Provided the sample selection is based on exogenous variables, otherwise we will 
have additional sample selection problems.

15 Energy and transport is the group of non-durables whose definition is more 
homogeneous in the two data sets we use in this chapter. Unfortunately it does not 
include exactly the same expenses. In the ECPF, energy and transport includes car 
repairing and parking expenditures, while in the second survey these expenses are not 
included in this group.
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The data set includes information on labour market status but not on 

hours of work for any member of the household. We have included as 

regressors dummy variables on labour market status for the household head 

and the wife. We have considered three dummies (full time employed, part 

time employed and unemployed) for each spouse. There is also information 

on the sex and age for each member of the household. We have assumed 

that preferences can also depend on demographics and we have included 

age and age squared of the household head, the number of babies 

(between 0-2 years old), children (3-17 years old), elderly people (older 

than 65), and family size.

The second data set is an unbalanced panel from a previous series 

of consumer surveys for Spain (Encuesta Permanente de Consumo (EPC)). 

This survey was carried out from the first quarter 1978 to the fourth 

quarter 1983. We observe some households for 24 quarters, however, on 

each period, part of the sample is renewed. Due to the reasons explained 

above, we keep families reporting full information for at least five 

consecutive quarters. The subsample we have considered was obtained 

using the same criteria that we used for the ECPF. The EPC does not 

contain information on income, and therefore we can not use this data set 

to test excess sensitivity of consumption growth to anticipated income 

growth. This survey does not provide any information on the labour market 

status of the wife. Therefore, when we use this data set we can only 

consider labour market dummies for the husband.

In the appendix we present descriptive statistics for demographic
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characteristics* expenditures and income, for the two data sets. If we 

compare the means or the medians of real expenditure on energy and 

transport (table A1), we can see that the figures are higher for 1985-89 

(ECPF data), than for 1978-83 (EPC data). As we comment above, in the 

ECPF this group comprises some expenditures that are not contained in this 

group in the EPC. However, this fact does not explain completely the 

observed differences between these two periods. The figures for 

expenditure on clothing are also higher in 1985-89, even though this group 

includes the same expenses. We are aware of these differences which may 

cast some doubts on the comparison between the results obtained from the 

two surveys.

The price index for each group of commodities is derived from the 

disaggregated consumer retail price index for Spain published by the 

National Institute of Statistics (Instituto Nacional de Estadfstica), using the 

same weights that are used to construct the general index. The nominal 

interest rate is an interest rate on deposits provided by Cuenca (1991).

4.- ECONOMETRIC ISSUES

The set of Euler Equations in (2.5) is estimated using the Generalized 

Method of Moments (GMM). If the only component of the error terms in 

these equations were an expectational error, we could use as instruments 

for the model all the variables dated t-1 and earlier. However, if 

consumption is measured with error, additional terms are added to the
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disturbances and even assuming that these measurement errors are serially 

uncorrelated, we can only use as instruments endogenous variables dated 

t-2 and earlier. Another source of stochastic variability in the model are 

random preferences, i.e. individual heterogeneity is not perfectly observed. 

We can model this fact by adding an error term to the vector rjt in (2.5). 

This would add an extra component to the disturbances, and as it happens 

in the presence of measurement errors in consumption, random preferences 

can also invalidate the use of endogenous variables dated at t-1 as valid 

instruments for the model. We have tried several instrument sets, and a 

detailed explanation is provided in the next section.

As we discussed above, the presence of aggregate shocks will 

invalidate the econometric results based on cross-section averages. 

Therefore, we include time dummies in our regression equations, which will 

pick up the effect of the aggregate shocks, provided that their influence is 

similar across households. However, as we mention earlier, if the effect of 

aggregate shocks is different for different families, the estimated 

coefficients will be biased. We estimate the model using the ECPF and the 

EPC and we compare the results. In the presence of aggregate shocks we 

could expect to reject the stability of the coefficients, given that these 

shocks could bias the estimates in different ways for different periods.

The two data sets we have available are incomplete panels but they 

do not overlap. In order to have a longer time series dimension, we could 

join the information contained in the two samples by constructing cohorts 

of families according to the year of birth (see Browning, Deaton and Irish
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(1985), Blundell, Browning and Meghir (1994) amongst others). As we 

explained in Chapter 2, the population can be divided in groups with fixed 

membership over time (cohorts), and the sample means for each cohort on 

each time period can be treated as a panel subject to measurement errors. 

The classical estimators for panel data can be modified in a convenient way 

to obtain consistent estimators using the cohort means. We leave this 

approach for future research.

5.- RESULTS

We have estimated two equations, one for food consumption and 

another one for energy and transport. In both equations we condition on 

the growth rate of consumption of clothing and footwear. The food 

equation to be estimated is

AlogqJ = p^logcJ+PgAlogc^+eiogO+rtVy'^Tiit+seas+en  

where c^, ch* and c^ are consumption by household i in period t of food, 

energy and transport, and clothing respectively; rtf is the commodity- 

specific real interest rate; rjn is a vector of family characteristics, which 

includes the number of babies, children, and household members older than 

64, family size, husband age and age squared and dummies for the labour 

market status of the household head and the wife; seas are seasonal 

dummies and is the disturbance term. The equation for energy and 

transport is analogous. As we mention earlier we estimate the Euler
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equations by GMM16.

We have to choose a set of instruments that are uncorrelated with 

the disturbance term. In our application the instrument set comprises 

lagged values of the endogenous variables and contemporaneous values of 

the exogenous variables as it is explained in detail below. The instruments 

will provide a set of moment restrictions, EiZje^) = 0, j = 1 where Z j is 

the j-th instrument for household i in period t and €■& is the disturbance 

term. These restrictions can be seen as a system of equations relating the 

parameters of the model. In the overidentified case (when we have more 

restrictions than parameters to estimate), as it is in our application, the 

system will not have a solution once we replace the moment restrictions 

by their sample counterparts. The GMM estimator minimizes a quadratic 

form in these sample moments using any positive definite matrix as a 

weighting matrix. The GMM estimates reported in the tables below are 

two-step estimates, i.e. they are obtained in a second iteration using as 

weighting matrix the inverse of a consistent estimate of the variance- 

covariance matrix of the moment restrictions, and the standard errors that 

we present are robust to general forms of heteroscedasticity and serial 

correlation.

As mentioned earlier, in the absence of measurement errors in 

consumption, we could use as instruments for the model any endogenous 

variable dated t-1 or earlier. Since we consider demographic variables as

16 We use the DPD program written in Gauss by Arellano and Bond (1988).
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exogenous17, we only have to instrument consumption variables, the 

interest rate and the labour force dummies using past information. The 

results we obtained estimating these equations by GMM, and including in 

the instrument set: real income, the nominal interest rate, real consumption 

of food, clothing, and energy and transport, and the labour force dummies 

in t-1 and t-2, as well as contemporaneous values of the exogenous 

variables, clearly suggested the inadequacy of some instruments. We 

obtained very large values for the Sargan test of overidentifying 

restrictions. In order to see whether this rejection was due to the fact that 

endogenous variables dated t-1 were not valid instruments, or else that a 

particular instrument was not valid, we estimated the model excluding from 

the instrument set real income, real consumption of food (in the equation 

for food), or real consumption of energy and transport (in the equation for 

energy and transport), and we reached very similar results. Furthermore, 

the negative first order serial correlation of the residuals also indicated that 

endogenous variables dated t-1 were not valid instruments for the model. 

These two issues are indicative of measurement errors in consumption.

The presence of measurement errors in consumption will add extra 

terms to the disturbance. These extra terms will have an MA(1) structure, 

provided that the measurement errors are serially uncorrelated. If this is the 

case, consumption variables dated at t-1 will not be valid instruments 

because measured consumption at t-1 will be correlated with the error term

17 In principle, this assumption is not very convincing in the case of children. However, 
the exogeneity of children when we are modelling consumption does not seem to be such 
an important issue as it is in the context of female labour supply (see Browning (1992)).
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through its measurement error. However, if the measurement errors are 

serially uncorrelated, measured consumption at t-2 or earlier will be a valid 

instrument for the model. Something similar happens in the presence of 

random preferences. If the unobservable component of in equation (5.1) 

is serially uncorrelated an extra MA(1) term will be added to the 

disturbance, invalidating endogenous variables dated at t-1 as instruments 

for the model. Alternative plausible assumptions are that this component 

is constant over time or that it has a random walk structure. In the first 

case the unobservable heterogeneity will vanish since it enters the equation 

as a change over time. In the random walk case, a white noise term will be 

added to the disturbance and variables dated t-1 will still be valid 

instruments. We consequently decided to estimate the model using the 

same instruments as above but excluding consumption and income in t-1 .

We have estimated the model including different lags of the 

endogenous variables in the instrument set. The results obtained for the 

different instrument set specifications were quite similar. The results based 

on the ECPF are presented in tables 1 and 2. The instrument set used in 

both equations includes: income, consumption of food, consumption of 

clothing, and consumption of energy and transport in t-2 and t-4; the 

interest rate and the labour force dummies in t-2 and t-3; and 

contemporaneous values of the exogenous variables. In columns (3) and (4) 

we have included time dummies to pick up the effect of aggregate shocks 

which are not explained due to fluctuations on the interest rate. The set of 

time dummies is significant, however the results are only slightly altered
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when we introduce these dummies, both in the equation for food (compare 

columns (1) and (2) with (3) and (4) in table 1) and in the equation for 

energy and transport (compare columns (1) and (2) with (3) and (4) in table 

2). In columns (2) and (4) we include contemporaneous income growth as 

an additional regressor, the estimated coefficient is not significant providing 

evidence of no excess sensitivity of consumption growth to income.

The Sargan test of overidentifying restrictions does not reject the 

instrument set. This result indicates that endogenous variables dated t-2 

and earlier are valid instruments as we could expect if measurement errors 

are white noise. Furthermore, the values of the ml and m2 statistics for 

first and second order serial correlation of the residuals provide evidence of 

first order but not of second order correlation, reinforcing the evidence of 

white noise measurement errors and hence the validity of the instrument 

set18.

None of the labour market dummies are significant at 5% in any of 

the specifications. This can indicate that changes in labour force status do 

not influence consumption growth but there is not enough evidence to 

guarantee that. The demographic variables do not seem to play an 

important role in explaining consumption growth. In the food equation none 

of these variables is significant at 5%, and in the equation for energy and 

transport only the change in the number of children is significant at 5%. 

The reason why the demographic variables are not significant is probably

18 These statistics are asymptotically distributed as standard normals, see Arellano 
and Bond (1991).
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because Family composition does not change over time for most of the 

households in our sample (the change in the demographic variables that we 

have considered is not zero only for about 4% of the observations).

The growth rate of consumption of energy and transport is 

significant in the food equation, and so is the growth rate of food 

consumption in the equation for energy and transport. This fact provides 

evidence of non-separability in the Euler equations. This result was also 

obtained for the US by Attanasio and Weber (1992).

Given that we do not find evidence of excess sensitivity of 

consumption growth to income, we could think, as we mention earlier, that 

the evidence found in the studies which consider an additive separable 

utility function could be due to this sort of misspecification of the 

normalization of the utility function. However, when we do not include 

conditioning commodities in the Euler equations, we do not find evidence 

of excess sensitivity either.

As we commented earlier, the presence of aggregate shocks that 

influence different families in different ways will invalidate, the results 

relying in cross-section asymptotics. If this were the case, we would 

expect to obtain different values for the estimated parameters of the model 

when we use the second data set (the EPC). In order to test the stability 

of the parameters, we have estimated the Euler equations for food, and for 

energy and transport using the data from the EPC.

The EPC does not provide information on the labour market status 

of the wife. Furthermore, the husband is considered working if he was
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working for at least 13 hours during the reference week. This definition 

coincides with the definition of working full time in the ECPF. To be able 

to test the stability of the parameters, we have to use the same set of 

regressors for the two samples. Therefore, we have estimated the two 

Euler equations conditioning in just to labour market dummies (husband full 

time employed and husband unemployed).

In tables 3 and 4 we present these results for the ECPF (columns (1) 

and (3)) and the EPC (columns (2) and (4)). In columns (3) and (4) we have 

included time dummies. The instrument set that we have used is the 

following: income, consumption of food, consumption of clothing, and 

consumption of energy and transport in t-2 and t-4; the interest rate and 

the labour force dummies in t-2 and t-3; and contemporaneous values of 

the exogenous variables. For the EPC we have excluded from the 

instrument set the lags of the dependent variable.

The estimated parameters for the EPC look different that those for 

the ECPF. In the food equation (table 3), the only variables that are 

significant, when we use the EPC, are the number of children and the 

interest rate. In the equation for energy and transport (table 4), none of the 

variables are significant when we use the EPC. The signs of some of the 

parameters are also different. However, the Wald test of the equality of the 

parameters does not lead to a rejection of the null hypothesis (except when 

we compare columns (1) and (2) in table 4). The reason why we fail to 

reject the null hypothesis is probably the low precision of our estimates.
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Table 1 

Food. Alcohol and Tobacco

(1) (2) (3) (4)
A In (clothing) -0 .0166 -0 .0200 -0 .0285 -0 .0366

(0.0520) (0.0558) (0.0555) (0.0607)
Aln(entr) 0.2779 0.2751 0 .3128 0.3081

(0.1093) (0.1102) (0.1199) (0 .1215)
Ababies 0.0050 0 .0008 0 .0063 -0 .0015

(0.0506) (0.0561) (0.0526) (0 .0597)
Achitdren 0.0683 0 .0645 0 .0757 0 .0689

(0.0406) (0.0447) (0 .0430) (0 .0477)
Aelder 0.0908 0.0911 0.0895 0.0891

(0.1076) (0.1095) (0.1158) (0 .1197)
A fsize 0.0567 0 .0664 0.0583 0 .0772

(0.0355) (0.0583) (0.0373) (0 .0630)
hage -0 .0009 -0.0009 -0.0011 -0.0011

(0.0006) (0.0006) (0.0006) (0.0007)
Ahful/emp -0 .9720 -1 .0023 -1 .2756 -1 .3472

(0.6113) (0.6263) (0.6853) (0.7138)
Ahpartemp -0 .5150 -0.5431 -0 .8249 -0 .8956

(0.6656) (0.6890) (0.7682) (0 .8103)
Ahunemp -0 .7432 -0 .7935 -0 .9856 -1.0931

(0.4972) (0.5466) (0.5604) (0 .6252)
Awfullemp 0 .2812 0.3101 0 .3150 0.3725

(0.4142) (0.4212) (0.4392) (0.4476)
Awpartemp 0 .1259 0 .1107 0 .1263 0 .1005

(0.3809) (0.3895) (0.4045) (0 .4169)
Awunemp 0.5896 0 .5673 0 .6795 0 .6453

(1.0918) (1.0643) (1.1539) (1.1143)
ln (1+r ) 0.0917

(0.5312)
0 .1123

(0.5436)
- -

Inrinc - -0 .0613
(0.2600)

- -0 .1149
(0.2795)

time dummies no no yes yes
seasonal dum. yes yes no no
Sargan Test 14.483 14.247 11.574 11.028
df 13 12 12 11
m l -7 .412 -7.371 -6 .798 -6 .592
m2 0.197 0 .205 0 .516 0 .539

The dependent variable is the growth rate of food consumption.
Numbers in parentheses are standard errors.
The description of the variables is provided below table 4.
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Table 2

Energy and transport Consumption

(1) (2) (3) (4)
Aln(clothing) 0 .0144 0 .0122 0 .0373 0 .0443

(0.1020) (0.1108) (0.1087) (0.1203)
Lin (food) 1.0494 1.0428 1.1139 1.1276

(0.4498) (0.4550) (0.4733) (0.4842)
Ababies -0 .0745 -0 .0766 -0 .0655 -0 .0589

(0.0980) (0.1079) (0.1016) (0.1157)
Lchildren -0 .1778 -0.1796 -0 .1838 -0 .1793

(0.0736) (0.0798) (0.0768) (0.0843)
Lelder -0 .3040 -0.3011 -0 .2782 -0 .2777

(0.2201) (0.2178) (0.2335) (0.2356)
Lfsize 0 .0124 0.0173 -0.0021 -0 .0168

(0.0775) (0.1283) (0.0819) (0.1385)
hage 0.0011 0.0011 0 .0014 0 .0014

(0.0012) (0.0012) (0.0013) (0.0013)
Lhfullemp 1.0290 0 .9966 1.5850 1.6476

(1.2568) (1.2892) (1.4199) (1.4788)
Lhpartemp 0 .3204 0 .2980 0 .9108 0 .9692

(1.3714) (1.3965) (1.5735) (1.6322)
Lhunemp 0 .8704 0 .8337 1.3150 1.4037

(0.9966) (1.1240) (1.1280) (1.2874)
Awfullemp -0 .1762 -0.1330 -0.3031 -0 .3444

(0.9257) (0.9408) (0.9582) (0.9697)
Awpartemp 0.2639 0 .2554 0 .2558 0.2851

(0.8339) (0.8615) (0.8665) (0.9032)
Awunemp -1 .4303 -1.3688 -1 .4876 -1 .4275

(2.7039) (2.8518) (2.7669) (2.8762)
ln (1+r ) 0 .4760

(1.8277)
0 .4710

(1.9099)
- -

Inrinc - -0 .0328
(0.5469)

- 0 .0796
(0.5770)

time dummies no no yes yes
seasonal dum. yes yes no no
Sargan Test 13.485 13.621 10.764 10.650
df 13 12 12 11
m 1 -8 .392 -8.452 -7.571 -7 .400
m 2 0.382 0.374 0.571 0 .584

The dependent variable is the growth rate of consumption of energy and transport.
Numbers in parentheses are standard errors.
The description of the variables is provided below table 4.
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Table 3 

Food. Alcohol and Tobacco

(1) (2) (3) (4)
Lin (clothing) -0 .0394 0 .0056 -0 .0537 0 .0109

(0.0605) (0.0409) (0.0658) (0.0415)
Lln(entr) 0 .3683 -0 .0302 0.4271 -0 .0418

(0.1410) (0.1539) (0.1600) (0.1538)
Lbabies 0 .0120 0.0361 0 .0145 0 .0362

(0.0538) (0.0353) (0.0572) (0.0356)
Lchildren 0 .0795 -0 .0065 0 .0 8 9 8 -0 .0073

(0.0442) (0.0220) (0.0482) (0 .0219)
Lelder 0.1031 0 .0062 0 .1017 0 .0193

(0.1120) (0.0464) (0.1251) (0 .0466)
Lfsize 0 .0510 0 .0869 0 .0517 0.0831

(0.0387) (0.0375) (0.0421) (0.0377)
hage -0 .0008 -0 .0003 -0 .0010 -0 .0002

(0.0006) (0.0003) (0.0007) (0.0004)
Lhful/emp -0 .8418 0 .0675 -1.2391 0 .2029

(0.6729) (0.7490) (0.7863) (0 .7731)
Lhunemp -0 .7199 -0 .1027 -1 .0397 0 .0724

(0.5305) (0.8366) (0.6251) (0.8590)
ln(1 + r) 0 .2008 1.6324 - -

(0.5450) (0.6991)
time dummies no no yes yes
seasonal dum. yes yes no no
Sargan Test 9.426 8.570 6 .766 0 .560
df 7 5 6 4
m l -5 .885 -15 .530 -5 .308 -16 .523
m2 0.405 -0 .258 0 .700 -0 .262

Wald test for stability of the parameters (chi-square distribution)

H0: column (1 )=  column (2), statistic = 17.48 d f= 1 4  p-value = 0 .2313 . 
H0: column (3) = column (4), statistic = 11.99 df = 9 p-value = 0 .2140 .

The dependent variable is the growth rate of food consumption.
Numbers in parentheses are standard errors.
The description of the variables is provided below table 4.
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Table 4

Energy and transport

(1)
Llnfclothing) 0.0528

(0.1109)
Lin (food) 1.0939

(0.4586)
Ababies -0 .0775

(0.0950)
Lchildren -0 .1743

(0.0702)
Lelder -0 .2915

(0.1981)
Lfsize 0.0014

(0.0778)
hage 0.0009

(0.0012)
Lhfu/lemp 0.8236

(1.2497)
Lhunemp 0.8951

(0.9805)
ln(1+r) 0.6007

(1.7219)
time dummies no
seasonal dum. yes
Sargan Test 8.516
df 7
m 1 -8 .978
m2 0 .328

(2) (3) (4)
0 .0568  0 .0793  0 .0515

(0.0711) (0 .1171) (0.0712)
0 .0235  1.1611 0 .0134

(0.2010) (0 .4798) (0 .1998)
0 .0289  -0 .0656  0 .0295

(0.0617) (0 .0986) (0.0615)
0 .0104  -0 .1800  0.0111

(0.0362) (0 .0737) (0 .0360)
0 .0012  -0 .2555  -0 .0032

(0.0806) (0 .2138) (0 .0804)
0 .0872  -0 .0167  0 .0893

(0.0581) (0 .0830) (0 .0584)
0 .0000  0 .0013  0 .0000

(0.0006) (0 .0013) (0 .0006)
0 .9609  1 .5642 0 .8763

(1.6091) (1 .4431) (1 .6115)
1.0850 1.4521 0 .9945

(1.8007) (1.1289) (1 .7881)
-0 .1555  
(0.3108)

no yes yes
yes no no

1.414 5.941 1.3041
5 6 4

-13 .864  -7 .909  -14 .175
-0 .294  0 .549  -0 .265

Wald test for stability of the parameters (chi-square distribution)

H0: column (1) = column (2), statistic = 32 .48  d f= 1 4  p-value = 0 .0034 . 
H0: column (3) = column (4), statistic = 14.06 df = 9 p-value = 0 .1202 .

The dependent variable is the growth rate of consumption of energy and transport.
Numbers in parentheses are standard errors.
The description of the variables is provided below.
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Notes to tables

- clothing, entr and food are real consumption of clothing, energy and 

transported food respectively.

- babies, children and elder are the number of babies (between 0 and 2 

years old), the number of children (between 3 and 17), and the number of 

household members older than 64 respectively.

- fsize is family size.

- hage is the age of the household head.

- hfullemp (full-time employed), hpartemp (part-time employed) and 

hunempl (unemployed), are dummy variables for the labour market status 

of the household head. Analogously wpartemp, wfullemp and wunemp for 

the wife.

- r is the commodity specific real interest rate.

- income is real income.

- Sargan Test is the Sargan test of overidentifying restrictions. It is 

distributed as a chi-square with df degrees of freedom.

- m l and m2 are test statistics for first and second order serial correlation, 

their distribution is standard normal (see Arellano and Bond (1991) for a 

description of these tests).
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6.- CONCLUSIONS

The results we have obtained for Spain add new evidence reinforcing 

the life-cycle permanent income hypothesis. We allow for non-separabilities 

among consumption goods in the Euler equations and we do not find 

evidence of excess sensitivity.

We estimate the Euler equations using two data sets corresponding 

to different periods of time. On the basis of a Wald test we do not reject 

the stability over time of our results, once we include time dummies in the 

model. This fact suggests that the effect of aggregate shocks, which are 

not explained by fluctuations on the interest rate, can be captured by the 

time dummies. However, some of the coefficients are not very well 

determined, a fact that makes a rejection difficult.

Measurement errors in consumption and non-separabilities seem to 

be an important issue, and they may be responsible for the failure of the 

model commonly found in the literature.



Data Appendix
Table A1

Descriptive Statistics for Quarterly Expenditures and Income

Real Expenditures on Food, Alcohol and Tobacco (1983 pesetas)

year Median Mean St. Dev. Minimum Maximum
1978 98070 106565 49129 14408 503645
1979 97743 109235 53489 11632 532677
1980 102094 112094 53198 18050 557679
1981 100998 112143 57812 9080 743292
1982 100886 111760 56470 13364 714264
1983 99758 109438 53701 18774 596327
1985 96412 105515 49196 8662 710813
1986 93099 102685 49769 13509 468421
1987 93582 102749 51253 11025 763150
1988 92790 101222 47393 8079 484540
1989 93426 101464 48489 11112 500322

Real Expenditures on Energy and Transport (1983 pesetas)

year Median Mean St. Dev. Minimum Maximum
1978 21313 30009 29183 213 327059
1979 23290 31277 27972 561 219373
1980 21953 29279 25916 478 247346
1981 21552 28991 25201 435 237739
1982 23873 30074 24650 371 236680
1983 22915 30096 25064 406 321644
1985 38079 49061 45958 801 776900
1986 36817 48460 45284 939 532463
1987 36455 47589 44833 230 660692
1988 36920 48883 45554 461 513408
1989 37351 50494 49049 1524 856798

Real Expenditures on Clothing (1983 pesetas)

year Median Mean St. Dev. Minimum Maximum
1978 22721 28702 23276 16 192953
1979 21024 26782 32850 59 1198863
1980 19335 24629 21768 26 282816
1981 17377 22691 20493 67 271292
1982 17676 22531 19474 40 204691
1983 16877 21638 19798 100 301717
1985 28884 40953 43027 59 645991
1986 29142 43062 51106 58 1579519
1987 29323 42113 45059 42 532827
1988 28091 41723 44990 85 491009
1989 29260 43165 46318 213 639557

Real Income (1983 pesetas)

year Median Mean St. Dev. Minimum Maximum
1985 267653 304181 180087 20487 2332197
1986 265720 307253 174370 23247 2297062
1987 282074 319876 180439 30420 4043017
1988 295250 331436 172158 31121 1961325
1989 309161 355995 194707 34725 2237499
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Table A2

Descriptive Statistics for Demographic characteristics

year babies child elder famsize hage hemp hunemp
1978 0.152 1.504 0.125 4.346 45.96 0.938 0.021

(0.404) (1.280) (0.374) (1.409) (8.819) (0.242) (0.142)
1979 0.128 1.504 0.132 4.370 46.58 0.936 0.019

(0.365) (1.297) (0.391) (1.472) (8.866) (0.244) (0.136)
1980 0.093 1.493 0.150 4.363 46.86 0.926 0.023

(0.307) (1.279) (0.408) (1.395) (8.646) (0.262) (0.150)
1981 0.100 1.479 0.139 4.378 47.03 0.903 0.038

(0.325) (1.283) (0.393) (1.419) (8.529) (0.296) (0.192)
1982 0.092 1.423 0.129 4.317 47.52 0.903 0.039

(0.320) (1.288) (0.379) (1.422) (8.624) (0.296) (0.193)
1983 0.078 1.350 0.115 4.229 48.19 0.877 0.056

(0.289) (1.243) (0.358) (1.394) (8.787) (0.328) (0.230)
1985 0.145 1.458 0.130 4.441 45.52 0.806 0.080

(0.376) (1.293) (0.379) (1.477) (9.991) (0.395) (0.271)
1986 0.144 1.395 0.113 4.366 45.44 0.818 0.074

(0.371) (1.228) (0.359) (1.438) (10.23) (0.386) (0.261)
1987 0.157 1.351 0.105 4.331 45.53 0.828 0.078

(0.393) (1.202) (0.344) (1.390) (10.09) (0.377) (0.268)
1988 0.147 1.282 0.113 4.298 45.73 0.832 0.067

(0.393) (1.150) (0.357) (1.358) (10.19) (0.374) (0.250)
1989 0.146 1.261 0.120 4.283 45.99 0.839 0.051

(0.379) (1.119) (0.364) (1.345) (10.24) (0.367) (0.219)

Sample means. Sample Standard deviations in parenthesis.
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CHAPTER 4. INTERTEMPORAL DEMANDS: SOME PANEL DATA

ESTIMATES

1. INTRODUCTION

In this chapter we develop a system of demand equations for the 

simultaneous determination of the inter-temporal and intra-temporal 

allocation of expenditure - that is, a system of Frisch demands. We then go 

on to estimate the parameters of this system using a panel data set that 

has full consumption information. The advantage of having such estimates 

is that we can predict the responses to price changes that allow for 

changes in within period allocation (traditional uncompensated or 

Marshallian responses) and for changes in allocation between periods. Thus 

a tax change by the government that changes prices will typically lead 

agents to adjust how much they spend in any period and how that amount 

is allocated amongst different goods. Estimates of Marshallian systems are 

necessarily silent on the first adjustment.

Although the ideas behind the estimation of Frisch demand systems 

have been understood for some time (see, for example, MaCurdy (1983) 

and Browning, Deaton and Irish (1985)) there have been very few attempts 

to implement this on consumption data. Indeed, the only other example we 

know that uses micro data is Blundell, Browning and Meghir (1994). Partly 

the relative paucity of estimates of Frisch demand systems seems to be
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because of data problems - we need panel data on individual demands19. 

The other reason is that there is a wide-spread feeling that when we 

consider inter-temporal allocation we can treat total expenditure within any 

period as a composite commodity ('consumption'). Whilst this is true under 

restrictions that are not too onerous (see Gorman (1959)) it seems 

worthwhile exploring the more general case.

Apart from its congruence with theory, there are also other potential 

advantages from estimating a Frisch system. First, in neo-classical models 

of demand the equation governing inter-temporal allocation (the 

'consumption function') shares parameters with the system governing the 

spending of total expenditure (the (Marshallian) 'demand system'). There 

is thus a potential gain in efficiency in estimating the two together. Second, 

the specification and estimation of a Frisch system brings a coherence to 

any discussion of the response to price and income changes. We can take 

account of the full response rather than the usual 'holding total expenditure 

constant' response. Finally, from the estimates of a Frisch system we can 

recover all of the parameters of interest for both inter-temporal and 

intra-temporal allocation. Thus we can estimate both the inter-temporal 

substitution elasticity (ISE) and the usual uncompensated own-price and 

cross-price effects.

In sections 2 and 3 we discuss the different ways that have been 

suggested to estimate models of the intra-temporal and inter-temporal

19 Blundell e ta !overcome this by using a quasi-panel data set constructed from a long 
time series of Family Expenditure Surveys.
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allocation of expenditures. We establish a set of criteria which should 

ideally be satisfied by a Frisch demand system in terms of consistency with 

the theory, flexibility and econometric tractability. Guided by these criteria 

we choose a functional form for the Frisch system that allows us to 

estimate a set of exact Euler equations. That is, we first difference the 

marginal utility of moneys and not some function of A (as in Blundell et at 

(1994) and Browning et aI (1985), for example). Since it is A that follows 

a random walk according to the traditional life cycle theory this exactness 

property gives a closer fit between theory and practice. Furthermore, as we 

document below, our specification is more flexible than others that have 

been suggested in the literature in that it does not restrict either the ISE or 

within period cross price effects.

In the empirical section of the chapter we use a panel data set that 

has detailed information on individual demands; family income and family 

characteristics. As far as we are aware this the first time such a data set 

has been used in this context. Based on our estimates we calculate the ISE 

for different family compositions and different levels of expenditure. We 

find that both have an important effect on inter-temporal allocation.

2. ESTIMATING FRISCH DEMAND SYSTEMS

We start with a system of Frisch demands (see appendix A):

Aw = f'(PhAt) i = 1,2,..,n (2-1)

where qiht is the quantity of good i consumed in period t by household h;
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pht is a vector of discounted prices for household h in period t and Aht is the 

(unobservable) marginal utility of money for household h in time t. The 

prices differ across households since they are discounted by nominal rates 

and different households may face different interest rates (either because 

there are different nominal rates for different households or because of 

taxes). In the next section we shall discuss at length how to choose a 

parameterization for the f'(.)'s; in this section we concentrate on estimating 

the parameters of f(.) in (2.1). We are aware of four methods of 

estimation.

The usual way to estimate the parameters of (2.1) is to use the Euler 

equation:

^h(t-l) "  ^h(t-1)(^ht) ( 2 . 2 )

where E^.^t.) is the expectations operator conditional on information 

available to household h in time (t-1). One particularly attractive way to use 

this condition is to parameterize (2.1) so that some known function of the 

Frisch demands and prices (^(q^), say) is additive in the marginal utility of 

money and then first difference:

= P i^ h t ( 2 3 )

Some forms that satisfy this condition and are consistent with a utility 

maximising assumption are given in Browning, Deaton and Irish (1985). 

The parameters of (2.3) can be estimated using the condition that aAht 

should be orthogonal to all information dated (t-1) or earlier for household 

h. We shall call this the conventional Euler equation approach. As far as we
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know, the only papers that estimate an exact Euler equation based on (2.3) 

are the macro papers that use quadratic preferences (see Hall (1978)). The 

papers that use micro data estimate approximate Euler equations based on 

first differences of some known function of A.

Very often the conventional Euler equation approach is used with 

supplementary preference structure restrictions. For example, if good 1 is 

leisure it is often assumed that this is additively separable form other goods 

so that only the discounted price of good 1 (that is, the discounted wage) 

enters (2.3) for good 1.

A second way to estimate the parameters of (2.1) is to recognise 

that this Frisch system combines both the inter-temporal allocation problem 

and the intra-temporal allocation problem (loosely, the consumption 

function and the demand system respectively). To see that all of the 

parameters of the two 'stages' of allocation can be recovered from (2.1) 

note first that we can multiply both sides by the price of good i and add 

over goods to derive total expenditure in period t:

Xht -  E l  PitAt “ E l  Pihtfl(Pht.*ht) -  9(Pht.*ht) (2 4)

This expression allows us to model the inter-temporal allocation of total 

expenditure (or consumption if we divide both sides by a price index) using 

conventional Euler equation techniques. Thus (2.4) is a Frisch consumption 

function. Indeed, this is the function that is implicitly estimated in the 

majority of Euler equation studies that assume just one good. In these 

studies the prices are restricted to enter only through a (linear 

homogeneous) price index h(.):
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xht = S(h(PJ^ht)

To recover the parameters of intra-temporal demand note that we 

can invert on the unobservable A in (2.4)20 and derive an expression for 

this variable in terms of observables:

*ht ” %(Pht’Xht) ^-5)

Substituting this into (2.1) gives a conventional (Marshallian or 

uncompensated) demand system:

qw = f'(PhPx(Pht.Xht)) =g'(Pht.xJ (2-6)

The important thing to note here is that knowledge of the Frisch demands 

f'(.) allows us construct the Marshallian demands g®(.). The converse is not, 

of course, true. Also, note that the g'(.)'s in (2.6) and the g(.) in (2.4) share 

parameters so there are obvious gains in efficiency from estimating them 

together.

We can also turn this procedure on its head and derive the 

parameters of (2.1) in two stages. First we estimate a conventional demand 

system. When doing this we need to take into account the possible 

endogeneity of total expenditure in (2.6). Given these estimates we can 

define the marginal utility of money in any period up to the parameters of 

the normalisation of the utility function (the latter can never, of course, be 

derived from the demand system alone). Given this we can then estimate 

the parameters of the normalisation from a single Euler equation approach

on
A sufficient condition for this is that the cardinalisation of the utility function for 

the intertemporally additive representation is strictly concave.
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on (2.4); see MaCurdy (1981) or Blundell, Browning and Meghir (1994). 

We shall call this approach the two stage budgeting approach since it takes 

its inspiration from the two stage procedure analyzed by Gorman (1959).

A third way to estimate the parameters of (2.1) was suggested by 

Altonji (1986). It is similar to the last procedure except that rather than 

inverting on total expenditure we invert on one demand function (good 1, 

say):

ĥt = (̂Pht l̂ht) (2.7)

and then substitute in for this in the other equations:

Aw = f ‘(Ph..S(Ph,.<1iht)) = h'(ph,,q1M) i=2,3,..,n (2.8)

This allows one to estimate the demands for the last (n-1) goods

conditional on the demand for good 1. We term this the conditional 

approach. Since the demand for good 1 is likely to be endogenous for the 

other demands we need to find instruments to consistently estimate the 

parameters of these conditional demands21. Even then this does not give 

all of the parameters of (2.1); just as in the previous case we cannot 

identify the normalisation of the utility function (unless we impose some 

constraint like additivity between good 1 and all other goods). To do that 

we need to estimate the Frisch demand for good 1. This can be done using 

conventional Euler equation techniques.

The final way to estimate the parameters of (2.1) is rather different

21 These instruments may differ from those for total expenditure in the two stage 
budgeting approach.
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from the three outlined above; it was first used in Attfield and Browning 

(1985)22. It starts from the fact that A in (2.1) is unobservable and then 

uses latent variable techniques to allow for this. The identification comes 

from imposing some of the conditions derived form the maximisation 

problem 'behind' (2.1). Amongst the integrability conditions that the 

demands in (2.1) have to satisfy if they are to be consistent with utility 

maximisation are:

Homogeneity: f(.) is zero homogeneous in p and A ' ,

Symmetry: 1 = df j for a|| j ancj j
apj api

It turns out that with three goods the system is just identified and with four 

or more goods the system is over-identified (see Attfield and Browning 

(1985) for details). We term this the latent variable approach.

The principal advantage of the latent variable approach is that in 

estimation we do not need to assume anything about the orthogonality of 

to past information. Thus these latter conditions, which are maintained 

in the first three approaches above, need not be imposed and are thus 

testable.

3. CHOOSING A FRISCH DEMAND SYSTEM

We wish to estimate the parameters of a system of Frisch demands 

where each demand q; is defined implicitly by:

22 In fact, that is the only place it has ever been used to the best of our knowledge.
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Fl(q|ip1,..,pn,r;9) = F'(q|lpfn0) -  0 (3.1)

where r is the inverse of the marginal utility of expenditure23, the Pj's are 

prices and 0 is a vector of unknown parameters.

In this system each good has its own Frisch elasticity, defined in the 

usual way:

If there is only one good (n = 1) then this is usually known as the 

intertemporal substitution elasticity (ISE) 0. In Appendix B, we show that 

for a system of Frisch demands the ISE can be derived from the individual 

demands by first defining total expenditure x as the sum of individual 

expenditures (=  £p kqk) and then using:

This elasticity occupies a central position in the analysis of intertemporal 

allocation.

How should we choose a functional form for the F(.)'s? The usual 

procedure is to specify a utility function and then to derive (3.1) as the 

solutions to the system of first order conditions for a constrained 

optimisation problem. We adopted an alternative approach. We first set 

down a list of seven criteria for Frisch demands. We conjecture that there 

is no Frisch system that satisfies all seven of these criteria

dlogq, 
dlogpi

(3.2)

23 For reasons that will became clear below it is easier to work with the inverse rather 
than the level of the marginal utility of money.
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simultaneously24. If this conjecture is true then we necessarily have to 

trade off amongst our criteria and search for a good Frisch system rather 

than a best one.

In practice we spent many, many hours trying different functional 

forms. We ended up choosing the following system:

q, = d'(p;P) + p. where £(p) = Y+ M>k (3'3)

where and /? are vectors of parameters. Note that for this to be

defined for all 6 we require that fx (p) > r, and therefore all the jjk's have 

to be positive. We now list the seven criteria that guided our choice of

(3.3). We shall illustrate the criteria with this system as we go along. The 

first of our criteria is motivated by a concern for ensuring that the resulting 

demands can be consistent with an underlying utility framework. Criteria 

2 to 4 are more concerned with flexibility whilst the final three criteria are 

concerned with econometric tractability.

1. Consistency with theory. As noted in the last section, to be 

consistent with utility maximisation the demands should be zero 

homogeneous in (p,r) and symmetric in p25:

—  = for all i , j 
apj dp,

24 We have been unable to show this formally.

25 We discuss the negativity conditions on the Frisch demand under the next criterion.
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For the system given in (3.3), these conditions are equivalent to each d‘(p) 

being zero homogeneous and satisfying 6-=6}  for i ^  j, where d/ is the 

partial of d' with respect to Pj. This in turn implies that for each i, d'(p) is 

the partial with respect to Pj of some linear homogeneous function d(p). We 

postpone the choice of d(p) until the empirical section, but we impose this 

condition in the rest of this section.

2. Flexible inter-temporal preferences. It will be desirable to have 

each demand increasing in r; this corresponds to each good being normal 

with respect to lifetime wealth. This seems a reasonable requirement for 

the broad commodity groupings we shall be using. For the system given in

(3.3) we have:

Given that all the /j 's have to be positive, if 0 is negative each demand will 

be increasing in r.

We also require that the Frisch own price response be negative

If 0<O  then a sufficient condition for this is that dj'<0.

As we noted above an important parameter connected with 

intertemporal allocation is the ISE. This determines how willing households 

are to substitute across time. It is entirely reasonable that this should be 

dependent on lifetime wealth. Thus the functional forms in (3.1) should be

(3.4)
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flexible enough to allow the ISE to be increasing or decreasing in r since the 

latter is increasing in lifetime wealth. Our own prior is that wealthy 

households are more likely to be willing to substitute across time so that 

we certainly would not wish to use functional forms that restrict 0  to be 

decreasing in r.

To derive the intertemporal substitution elasticity for our system we 

first multiply each side of (3.3) by Pj and sum over i.

where Ip jd^dlp) by linear homogeneity. This gives total expenditure in 

each period in terms of the marginal cost of utility and prices; it can be 

thought of as a Frisch consumption function. Using the definition of the ISE 

given in (3.2) we have:

If all the //;'s are positive and 0 is negative (normal goods) then 0  is positive 

and increasing in r. Thus our system restricts the intertemporal substitution 

elasticity to be increasing in lifetime wealth; for the reasons given in the 

last paragraph we do not regard this as being too restrictive.

x ■ E i Pfli = d(p) * -jp-i (3.5)

*  = -
Oji

(3.6)

3. Flexible intra-temporal preferences As noted in the last section, 

associated with any Frisch demand system there is a (unique) conventional 

Marshallian demand system. We require that the Marshallian demand
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system associated with our Frisch system not be too restrictive. Thus we 

would not want use a functional form that imposes, say, homotheticity or 

additive separability across goods or that implies a diagonal Slutsky matrix 

(that is, zero Hicksian substitution).

For the system given in (3.3) we can use (3.5) to substitute for r to 

give the Marshallian system:

q = d'(p) + -^(x-3) (3.7)
I*

Thus Engel curves are linear in total expenditure - our system implies 

quasi-homothetic preferences. We regard this as being the most restrictive 

aspect of our specification. On the other hand, in the data we use we have 

limited price variability so that we have to use very broad aggregates of 

goods. The assumption of quasi-homotheticity for such broad aggregates 

may be more acceptable than for finer categories of goods. Note that if the 

d‘(.)'s are chosen to be flexible then price responses are not restricted. Thus 

this form is less restrictive than that given in Browning et al (1985); the 

latter was criticised for its lack of price flexibility by (amongst others) 

Blundell et a! (1986) and Nickell (1985).

From (3.5) and (3.7) we could use a two-stage budgeting approach 

to estimation. Alternatively, we could use a conditional approach by 

inverting (3.3) on good 1 and substituting in the other demands:

q, = (d '(p )--!V (p )h -% , (3.8)
1*1 1*1

This gives a particularly simple form for conditional demands that can then
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be estimated with (3.3) for good 1 to derive the parameters of the Frisch 

system.

4. Intertemporal preferences not identified from cross-section. The 

Marshallian system associated with any Frisch system is independent of the 

normalisation of the within period utility function (that is, the mapping from 

Frisch to Marshallian is many-one). In general the ISE should not be 

independent of this normalisation. Hence we shall require that there are 

some parameters in (3.1) that are not identified from the Marshallian 

demand system.

From the Marshallian system given in (3.7) we see that only the ratio 

of the individual /j 's are identified and that the parameter 0 does not appear 

in the Marshallian system. Thus the system given in (3.3) satisfies this 

criterion since the identification of the ISE requires identification of the jj's 

and 6 (see (3.6)). Thus this form is also less restrictive that the second 

specification proposed in Browning et al (1985) (expenditures linear in r 

form), given that in their model the ISE is identified from the. Marshallian 

system.

5. Additivity in the marginal utility of money. The variable r is not 

observed. To take care of this it will be convenient to have the F(.)'s in

(3.1) additive in some function of r. In particular the Euler equation for 

intertemporal allocation under uncertainty has that the inverse of r follows 

a random walk; hence it would be very convenient for estimation to have
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each P(.) additive in r \

Re-arranging (3.3) we have:

1
k - d ' ?+1
1 1*1

Thus we can find some non-linear function of (q^p) that is equal to the 

inverse of r. This means that we can use an exact Euler equation approach 

in estimation. Very often other investigators have first differenced other 

functions of r than the inverse (in particular, the log form has been much 

used). This requires auxiliary assumptions on the distributions of future 

prices and other variables that are used as instruments. We regard this 

exactness property of our specification as being one of its principal 

strengths.

6. Linearity in parameters. As usual it would facilitate estimation to 

have the demands linear in parameters. Indeed, this is necessary for some 

ways of estimating Frisch demands (for the latent variable approach). It will 

be clear that the specification given in (3.3) or (3.9) is non-linear.

7. Allowing for measurement error. We require a form for (3.1) that 

allows us to take into account the fact that the reported expenditure on 

good i (=  p^) is very likely measured with error. On the other hand we are
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willing to assume that the prices are not measured with error26. Clearly, 

multiplying each side of (3.3) by pj gives a form that allows for 

measurement error in the usual way. Unfortunately the 'exact' form given 

in (3.9) does not lend itself to accounting for measurement error in a simple 

way. In practice, we are forced to make the artificial assumption that

a 1 1
q,-d'

¥+1 _1_ (3.10)

1 •*' i*

is measured with an additive error that is uncorrelated with all other 

variables.

4. THE DATA

The data set used is the Spanish Family Expenditure Survey 

(Encuesta Continua de Presupuestos Familiares) conducted by the National 

Statistics Office (Instituto Nacional de Estadfstica). This survey is carried 

out by personal interview on a quarterly basis, from the first quarter of 

1985. Each family is visited four times in a week. During this week all 

members of the household have to note down their expenditures on a diary. 

On the intermediate visits, a very detailed information on family 

characteristics, income and expenditures on goods with a reference period 

longer than a week is recorded. On the last visit, the agent checks all the

26 This is not strictly defensible since agents face different prices in different areas 
and over the quarter of observation but taking account of measurement errors seems 
infeasible at present.
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information and collects the diary.

The data set is a rotating panel: in each quarter about 3000 families 

are interviewed, and 1/8 of the household are replaced by a new random 

sample. We observe families for at most eight consecutive quarters. 

However, there is an important percentage of attrition in earlier quarters, 

mainly during the first two years of the survey. The replacement procedure 

was very irregular during those two years and households were replaced 

before they complete their eighth interview. It was only in the fourth 

quarter of 1986 that the sample started to be stable and a group of 

households who complete their eighth interview were observed for the first 

time (in the third quarter of 1988). For this research we have considered 

families reporting full information for eight quarters and hence we only use 

thirteen waves of the survey (from fourth quarter 1986 to fourth quarter 

1989).

As we explained in Chapter 3, the data set we use has important 

advantages over other data sets that have expenditure information. The 

obvious advantage with respect to the U.K. Family Expenditure Survey and 

the Canadian FAMEX is that we observe households more than once. The 

U.S. Consumer Expenditure Survey (CEX) does follow households over 

time, but only for four quarters; thus we cannot observe annual changes. 

Given the likely importance of annual re-planning in the determination of 

saving and expenditure this makes the CEX less useful than the longer 

panel we have. Moreover the CEX has poor income information. Finally, the 

data set to hand has much fuller information on expenditures than other
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panel data sets; in particular, the PSID.

In this chapter we are dealing with the estimation of a flexible 

specification of a Frisch demand system. There is no doubt that 

preferences are not homogeneous among consumers; they depend on 

observed and unobserved family characteristics. In applied work we usually 

take into account the observable heterogeneity by assuming that certain 

parameters of the model depend on family characteristics (i.e. we assume 

we know how preferences depend on households characteristics). 

However, if the sample used is very heterogeneous we will have a very 

large number of parameters to estimate. This problem is specially serious 

in non-linear models which are computationally expensive. Our empirical 

model is quite complex and therefore the estimation procedure is very slow. 

For this reason we decided to consider a subsample of homogeneous 

households. We keep in our sample married couples such that the husband 

was full time employed in a non-agricultural activity and coded head of the 

household, and the wife was not working in the labour market during the 

sample period. In all we end up with 215 households.

For the purpose of this research we have used only expenditure in 

non-durables and services which we have aggregated in two groups of 

commodities: the first one includes food, alcoholic and non-alcoholic drinks 

and tobacco; the second other non-durables and services. The latter group 

comprises expenditure in transport, energy, leisure and non-durable house 

related expenditures (not including rent). The reason why we have used 

only two broad groups of commodities is the limited price variability during
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the sample period.

The price index for each group of commodities is derived from the 

disaggregated consumer retail price index for Spain published by the 

National Statistics Office, using the same weights that are used to 

construct the general index. The nominal interest rate used to deflate prices 

is an interest rate on deposits provided by Cuenca (1991).

5. THE EMPIRICAL MODEL AND ECONOMETRIC ISSUES

In section 2, we outlined some different methods that have been 

used in the literature to estimate Frisch demand systems. Unfortunately, 

the Frisch system in (3.3) is non-linear in parameters, and therefore we can 

not use the latent variable approach. However, the functional form that we 

have chosen allows us to estimate a system of two exact Euler equations, 

and therefore, as we explained above, we do not need to make any of the 

unpleasant assumptions underlying the empirical studies based on 

approximate Euler equations (see Altug and Miller (1990) for details).

The d‘ functions have to be homogeneous in prices. We use the same 

flexible form as in Browning et a/ (1985)

(5.1)

Notice that dj is symmetric in prices if Refering back to (3.4), we see 

that negativity holds if Kij^O-
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The Euler equation for inter-temporal allocation under uncertainty 

implies that

where is the rational expectation operator conditional on information at 

t-1. Using the Frisch system in (3.3) and the specification for the d‘'s in

(5.1), we obtain the following system of Euler equations

where e1t and £* are rational expectation errors orthogonal to information 

available at time t-1, and it is the nominal interest rate. Good 1 is food, 

alcohol and tobacco (FAT) and good 2 is other non-durables (OND). We 

have eliminated the household specific index to simplify notation. We allow 

that and y22 are linear functions of the number of children (nch), a

(5.2)

(5.3)
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dummy for families with at least one child (cdch), the number of adults 

(nad), a dummy for households with more than two adults (cdad), and 

seasonal dummies. Unfortunately we could not construct a family specific 

interest rate given that we do not have information on taxes paid by the 

household. Our data set does not have information on the region of 

residence of the family and therefore we have had to use national wide 

price indexes.

We estimate the system in (5.2) and (5.3) by the Generalized 

Method of Moments (GMM)27, using a set of orthogonality conditions 

based on the lack of correlation between the disturbances and past 

information available to the household. We tried to estimate all the 

parameters of the model, however, when we minimized the objective 

function associated to the set of orthogonality conditions, either 

convergence was not achieved, or else we obtained very large values for 

the Sargan test of overidentifiying restrictions. The problem of our 

specification is the non-linearity which probably implies, in this case, 

several local minima for the objective function. In order to avoid this 

problem, we decided to use a grid in 1/0, i.e. minimize the objective 

function holding 0 fixed, and repeat the optimization for several values of 

0. We use the grid 1/0 = -2.O,-1.9,-1.8,..,2.0 and for the different sets of 

instrument that we used, the minimum was clearly achieved between -1.1

27 We have used the "Gauss GMM Package” by Hansen, Ogaki and Heaton (1992).
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and -0.8. Then we use a thicker grid between these limits28.

As we mention above, If the error terms in equation (5.2) and (5.3) 

were pure conditional expectations errors, they should be orthogonal to all 

information dated (t-1) or earlier. However, when we include in the 

instrument set consumption of FAT and OND in period t-1, the Sargan test 

of overidentifying restrictions rejects the instrument set. This problem 

disappears when we consider consumption at t-2 or t-3. We know that for 

the non-linear specification that we are using, we cannot rely on 

measurement errors on expenditures to explain this fact. However, it seems 

to be the case that consumption lagged one period is correlated with the 

error terms in equations (5.2) and (5.3), but consumption lagged two 

periods is orthogonal to the disturbances.

The results are presented in table 129. In columns (1) and (2), we 

present the estimates of the model for different sets of instruments, and 

the results are quite robust to the instrument set specification. The signs 

of the estimated coefficients are consistent with the theory. The 

coefficients of the price ratios are positive which implies that the negativity 

conditions (dc\Jdp,<0) are satisfied. We have also tested the symmetry 

condition Ky = Kji and we could not reject the null hypothesis. However, due 

to the lack of price variability in our sample period, these coefficients are 

not very well determined. The parameter 0 is negative and therefore both

28 We do not present the results for the different values of 1IB, they are available on 
request.

29 The results correspond to the value of 1/0 for which the minimum was achieved.
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aggregate commodities (FAT and OND) are normal with respect to life-time 

wealth30. Family characteristics seem to play an important role explaining 

intertemporal allocation of consumption. This is consistent with the 

evidence found for some other countries (see for example Blundell et a/ 

(1994)).

Many applied papers dealing with the intertemporal allocation of 

expenditures use a functional form for household preferences which restrict 

the ISE to be constant (see Zeldes (1989) and Runkle (1991) among 

others). Some other authors restrict the ISE to be deceasing in life-time 

wealth (see Browning et a/ (1985)) which seems to be also quite 

unrealistic. Our prior is that wealthy people are more willing to substitute 

consumption over time (see Blundell et all (1994) for some evidence), and 

we use a functional form for the Frisch demand system which implies that 

the ISE is increasing in life-time wealth.

We can rewrite (3.6) in terms of total expenditure.

and use this expression to calculate the intertemporal substitution 

elasticity. In table 2 we present the ISE for different household 

compositions and for the 25th, 50th and 75th percentiles of total 

expenditure in our sample. The ISE has been calculated using the estimated 

values of the parameters presented in table 1 column (1). As we comment

30 The j j ' s  were constrained to be positive, otherwise (3.3) is not defined for all 
values of 6.
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above, the ISE is increasing in total expenditure and depends also on family 

characteristics.



1 0 9

Table 1

FAT and other non-durables

(1) (2)
1/0 = -0.85 1/0 =  -0 .99

FAT OND FAT OND

const -0 .4068
(7.1245)

-1 .5796
(0.0890)

-1 .0479  
(0 .7236)

-0 .4779
(1.7265)

nch ,0 .0711  
(0.0115)

0 .0406
(0.0005)

0 .0663
(0.0044)

0 .0369
(0.0107)

cdch -0 .0376
(0.0992)

0 .0156
(0.0026)

-0 .0135
(0.0193)

0 .0232
(0.0203)

nad 0 .1037
(0.0148)

0 .1387
(0.0022)

0 .1045
(0.0088)

0 .1399
(0.0025)

cdad 0 .0732
(0.0686)

0 .0948
(0.0050)

0.0781
(0.0119)

0 .0919
(0.0339)

price
ratio

0 .4620
(7.5513)

1.2869
(0.0828)

1.1309
(0.7705)

0 .2465
(1.6325)

P1 0.4717
(0.6384)

0 .3148
(0.1892)

0 .0004
(0.0024)

0 .0049
(0.0061)

Sargan Test 
df

3.5109
4

15.6929
10

Numbers in parenthesis are standard errors. Standard errors robust to  
heteroscedasticity and tim e series correlation.

n ch  is the number of children, cd ch  is a dummy for households w ith  a t least one 
child, n a d  is the number of adults and c d a d  is a dum m y for households w ith  more 
than tw o  adults. Price ra tio  is (p2/p i)1/2 in the FAT equation and (P i/p2)1/2 'n the  
OND equation.

Instruments:

column (1): consumption of FAT and OND in t-2  and t-3 ; nch, cdch, nad, cdad in 
t-1 ; a constant and three seasonal dummies.

column (2): income and consumption of FAT and OND in t-2  and t-3 ; nch, cdch, 
nad, cdad, and (p2/p! )1/2 in t-1 ; a constant and three seasonal dummies.
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Table 2
Estimated Intertemporal Substitution Elasticity

(1) (2) (3)
Number of Number of ISE ISE ISE

children adults

0 2 2.31 3.07 3.99
0 3 0.89 1.66 2.61
0 4 0.36 1.01 1.92
1 2 1.94 2.71 3.66

1 3 0.66 1.40 2.35
1 4 0.25 0.80 1.69
2 2 1.53 2.31 3.27
2 3 0.44 1.10 2.03
2 4 0.07 0.58 1.42
3 2 1.16 1.94 2.89
3 3 0.26 0.87 1.76
3 4 0.01 0.37 1.16

The ISE has been obtained using the estimated values of the parameters in column 
(1) table 1.

In column (1) the ISE has been calculated for the 25th percentile of total 
expenditure.
In column (2) the ISE has been calculated for the 50th percentile of total 
expenditure.
In column (3) the ISE has been calculated for the 75th percentile of total expenditure.



6. CONCLUSIONS

This chapter analyzes the different approaches that have been used 

in the literature to estimate models of inter-temporal and intra-temporal 

allocation of consumption. We discuss a set of criteria that Frisch demands 

should ideally verify and we use them as a guide to chose a functional form 

which is consistent with the theory, rather flexible and tractable from the 

econometric point of view. Our specification turns to be less restrictive 

than others in terms of the criteria mentioned above.

In the empirical section we estimate the exact Euler equations 

associated to the Frisch demand system using panel data and we calculate 

the ISE for different family composition and different levels of expenditure. 

Household characteristics seem to play an important role in the allocation 

of consumption over time.
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According to the life-cycle model of consumption, consumers 

allocate consumption over time to maximize the expected value of the sum 

of present and future utilities. The maximization problem to be solved is

max Et E  v ,(x j
*=t

subject to (A.1)

A,.i=(1+U(A,+y,-)g s=t,..,T-1

V O

Where x8 is total expenditure in period s, y. is income, i, is the nominal 

interest rate, A. are assets at the beginning of period s and V. is the 

indirect utility function. Et is the conditional expectation operator, 

conditional on information known by the consumer in period t.

If At = 0, we can rewrite the constraints as

T-1 T-1

V y .+ E  R.y.=x*+E  R«x«
•«t+1 t+1

where

*"1 1 
R=TT —

J-M+ij

We define lifetime wealth as

wrV y,+ E  R.y.
8-t+1

then

wM-(i+wwt-jg
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We can write the value function for the optimization problem (A.1)

as

v r W  =max[Vt(xt) +Et(V;+1(Wt+1))] 

s.t. Ww -(1+«(W rJg
(A.2)

Taking derivatives with respect to lifetime wealth, we obtain the Euler 

equation

aw, -E,
av,*.i(wu1)

aw,t+1

(A.3)

Xt =8Vt/3wt is the marginal utility of wealth. We can define the price of 

utility r t =l/A,t / and we can write the Euler equation (A.3) as

E,
■t+1

From (A.2) we obtain

0 av,(xt) 3Vm (Wm)
aw,t*1

and therefore

1 _ a f lw j  _ av,(xj 
r, aw, ax,

Where plt,..,pkt are the prices. Then we can write total expenditure as a 

function of the prices and the price of utility

x t = ^(rfPlt«-»Pkt)

Taking derivatives with respect to prices, we obtain the Frisch demand 

system
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dPit

APPENDIX B. The Intertemporal Substitution Elasticity

Let V(p,x) be the indirect utility function. The inverse of the marginal 

utility of money (r) is defined as (Vx(p,x))*\ where Vx denotes the partial 

derivative of the indirect utility function with respect to total expenditure. 

If V(p,x) is strictly concave in x then we can invert on x, and write x as a 

function of p and r

x = x(P.O

by definition we have

fVx(p,x(P.r)) ■ 1 (B.1)

In a multigood setting the ISE is defined by

(see Browning (1989)). Taking partial derivatives with respect to r in (B.1)

rV„—  + V„ = 0 
"a r x

and hence

. _ Vx _ dxj_ _ dlnx 
xV^ dr x dlnr
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CONCLUSIONS

In the first part of the thesis (Chapter 2), we deal with the estimation 

of dynamic models using time series of cross-sections. We propose 

different types of measurement error corrected estimators and we analyze 

their asymptotic properties. We calculate the asymptotic biases of the non­

corrected estimators for the AR(1) model. The size of the biases depends 

on the parameters of the model, and the measurement error correction 

appears to be sometimes crucial to obtain valid estimates. We have also 

carried out Monte Carlo experiments and we have obtained similar results 

in small samples.

In Chapter 3, we estimate a set of Euler equations derived from the 

life-cycle model of consumption. Using a specification that allows for non­

separabilities in the Euler equations among consumption goods, we do not 

find evidence of excess sensitivity of consumption growth to income. We 

have used two data sets for Spain for two different periods of time (1978- 

83 and 1985-89), and we have tested the stability of our results. Once we 

include time dummies in the model we cannot reject the stability of the 

coefficients over the two periods. However, some of the parameters are 

not very well determined, and therefore, our results are not very 

conclusive.

In the last chapter, we discuss the properties that a Frisch demand 

system should ideally verify. On the basis of these criteria, the data 

available and econometric tractability, we chose a nonlinear functional form



for our system. Our specification allows us to estimate a set of exact Euler 

equations, contrary to the usual practice in the literature. We estimate the 

model using a rotating panel for Spain, and we calculate the elasticity of 

intertemporal substitution for different levels of expenditures and different 

household compositions. We can conclude that the decisions on 

consumption allocation over time are partly determined by the particular 

demographic characteristics of the family.
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