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Abstract

Seasonality is an important part of many real time series. While issues of
seasonal heteroscedasticity and aggregation have been a cause of concern for
data users, there has not been a great deal of theoretical research in this
area. This thesis concentrates on these two issues.

We consider seasonal time series with single season heteroscedasticity. We
show that when only one month has different variability from others there
are constraints on the seasonal models that can be used. We show that both
the dummy and the trigonometric models are not effective in modelling sea-
sonal series with this type of variability. We suggest two models that permit
single season heteroscedasticity as a special case. We show that seasonal het-
eroscedasticity gives rise to periodic autocorrelation function. We propose a
new class, called periodic structural time series models (PSTSM) to deal with
such periodicities. We show that PSTSM have correlation structure equiva-
lent to that of a periodic integrated moving average (PIMA) process. In a
comparison of forecast performance for a set of quarterly macroeconomic se-
ries, PSTSM outperform periodic autoregressive (PAR) models both within
and out of sample.

We also consider the problem of contemporaneous aggregation of time series
using the structural time series framework. We consider the conditions of
identifiability for the aggregate series. We show that the identifiability of the
models for the component series is not sufficient for the identifiability of the
model for the aggregate series. We also consider the case where there is no
estimation error as well as the case of modeling an unknown process. For
the case of the unknown process we provide recursions based on the Kalman
filter that give the asymptotic variance of the estimated parameters.
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To my Grandfather



Ithaca

When you set out on your journey to Ithaca,
pray that the road is long,

full of adventure, full of knowledge.

The Lestrygonians and the Cyclops,

the angry Poseidon — do not fear them:

You will never find such as these on your path,
if your thoughts remain lofty, if a fine
emotion touches your spirit and your body.
The Lestrygonians and the Cyclops,

the fierce Poseidon you will never encounter,
if you do not carry them within your soul,

if your soul does not set them up before you.

Pray that the road is long.

That the summer mornings are many, when,

with such pleasure, with such joy you will enter ports seen for the first time;
stop at Phoenician markets,

and purchase fine merchandise,

mother-of-pearl and coral, amber and ebony,

and sensual perfumes of all kinds,

as many sensual perfumes as you can;

visit many Egyptian cities,

to learn and learn from scholars.

Always keep Ithaca in your mind.

10



To arrive there is your ultimate goal.

But do not hurry the voyage at all.

It is better to let it last for many years;

and to anchor at the island when you are old,
rich with all you have gained on the way,

not expecting that Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.
Without her you would have never set out on the road.
She has nothing more to give you.

And if you find her poor, Ithaca has not deceived you.
Wise as you have become, with so much experience,
you must already have understood what Ithacas mean.

Constantine P. Cavafy (1911)
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Chapter 1

Introduction and summary

Seasonality is an important part of many real time series. From births and
deaths to the Gross deéétic Product of any country, seasonal effects are
prominent. Analysts attempt to understand and estimate seasonal effects in
order to either remove them through seasonal adjustment or forecast them.
In the last 10 years, there has been considerable progress in research on sea-
sonal time series. This is partly a result of growing interest from national
statistical institutes that publish most series in a seasonally adjusted form.
The US Bureau of Census has developed X-12-ARIMA (Findley, Monsell,
Otto, Bell, and Pugh 1998) based on the well known X-11 method. On the
other hand, Eurostat has concentrated research on TRAMO-SEATS (Gomez
and Maravall 1996), which is based on an ARIMA model decomposition. Re-
cently the two methods have been brought together within the same platform
called X-13A-S (Findley 2005). Both these lines of research concentrate on
identifying a relatively stable seasonal component and finding the best way

to remove it. While issues of seasonal heteroscedasticity and aggregation
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have been a cause of concern for practitioners in these institutes as well as
data users, there has not been a great deal of theoretical research in this

area. This thesis concentrates on these two issues.

Seasonal heteroscedasticity is evident in many economic time series. The ex-
istence of seasonal heteroscedasticity can be attributed to a combination of
economic behaviour and administrative practices. For example, the Average
Earning Index for United Kingdom shows a higher volatility in the months
of March and December. This is a result of the so-called “bonus effect”; the
big financial corporations of the City of London give large bonuses to some
of their employees at the end of the financial year and to a lesser extent at
the end of the calendar year. This brings up the total index for the average
earnings for the whole of UK in these two months. The size of the bonuses
are directly linked with the state of the economy since a better economic out-
look will bring higher profits and therefore higher bonuses. In this example,
the seasonal component is linked with the business cycle, creating seasonal

heteroscedasticity.

The second issue we consider is that of aggregated time series. This is an
important issue in many practical applications of national statistics. For
example, motor vehicle production index in the UK is broken down into
production for home and export markets. Until recently, all three series have
been seasonally adjusted separately, but following a methodological review
(Tripodis 2005) the export series is derived from the total series and the home
market series. The problem is related to whether it is better to forecast the

components of a dataset and add up the forecasts (indirect method), or to
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forecast the aggregate series separately (direct method).

Chapter 2 provides the reader with the necessary background on Structural
Time Series Models (STSM). Popularised by Harvey (1989), this family of
models provides clear advantages over the autoregressive integrated moving
averages (ARIMA) class of models, particularly in the analysis of economic
time series. We use STSM as the main tool for analysing time series. STSM
allow us to model directly the salient features of a dataset as simple stochastic
processes. This chapter introduces the state space form, in which structural
time series models are generally written. Once written in a state space form,
estimation of the structural models is straight-forward. The Kalman filter
provides one-step ahead prediction errors along with their associated vari-
ances which can then be plugged into the prediction error decomposition of
the likelihood function. The likelihood function is then maximised with any

of the widely used maximisation methods, such as Newton’s method.

Chapter 3 introduces the problem of seasonal heteroscedasticity. We begin
by looking at the simple case where a single season has different volatility
compared to all other seasons. This behaviour is a feature of many economic
time series. For example in monthly production series, the variability is
higher for the month with the lowest level of production. We show that
modeling of this single seasonal heteroscedasticity is more complicated than
originally thought and only few seasonal models can be used to model this
behaviour. We look at the power of a likelihood ratio test for identifying
single season heteroscedasticity. We also look at some real life seasonal time

series, showing the relative merits of some seasonal models with seasonal

16



heteroscedasticity for different applications.

Chapter 4 generalises the concept of seasonal heteroscedasticity to many
periods and to different components. We show that seasonal heteroscedas-
ticity can be identified by periodicity in the autocorrelation function. We
define the periodic structural time series models which can be used to model
periodic autocorrelation. We show that the periodic structural time series
models are equivalent to periodic moving average models. The advantage of
the structural approach is the ease of identifying the appropriate model. We
compare the periodic structural models with periodic autoregressive models
which have been used extensively in economic time series (Franses 1996).
We show that in most cases, the periodic structural models provide better
forecasts than the periodic autoregressions for a set of macroeconomic time

series.

Chapter 5 looks at the problem of contemporaneous aggregation of time se-
ries. Extensive work has been done in this area for ARIMA models. In this
thesis, we consider the structural time series framework. We show different
ways of aggregating time series models and consider the conditions of iden-
tifiability for the aggregate series. We show that the identifiability of the
models for the component series is not sufficient for the identifiability of the
model for the aggregate series. We also consider the case where there is no
estimation error as well as the case of modeling an unknown process. For
the case of the unknown process we provide recursions based on the Kalman

filter that give the asymptotic variance of the estimated parameters.
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Finally chapter 6 provides the conclusions and some ideas for further research.
The Appendix includes some subroutines written in Ox (Doornik 1998) that

were used in the estimation of the models described in this thesis.
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Chapter 2

Basic Concepts

2.1 Introduction

In this chapter we provide theoretical background to the thesis. Our focus is
on unobserved component models and in particular on structural time series
models (STSMs). Popularized by Harvey (1989), STSM provides clear ad-
vantages over the autoregressive integrated moving averages (ARIMA) class
of models, particularly in the analysis of economic time series. STSMs are
readily identified and their parameters provide information about salient fea-
tures such as trend and seasonality. In §2.3, the structural time series models
used in the applications of this thesis are defined. The state space form is
defined in §2.2 where some examples are also given. Since this thesis con-
centrates on the seasonal behaviour of a time series, we define and sketch in
§2.3.1 to §2.3.3 the main characteristics of widely used seasonal models. The

Kalman filter provides the basis for inference in any model that is cast in
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state-space form. Filtering and smoothing algorithms are introduced in §2.4;
filtering provides the best linear estimates of a system given the previous ob-
servations, while smoothing provides the best linear estimates of the system
given the entire sample. Rounding errors and matrices close to singularity
may cause the Kalman filter to break down. Under these circumstances a
transformed version, known as the square root filter ensures that the state
covariance matrix is always positive definite; details are given in §2.5 and in
the appendix we provide a set of subroutines written in Ox (Doornik 1998)
used in conjunction with Ssfpack (Koopman, Shephard, and Doornik 1998)
implementing the square root filter. Ssfpack is a suite of C routines used for
the statistical analysis of univariate and multivariate models which are cast
in the state-space form. §2.6 discusses how the Kalman filter is initialised
when the starting values for the state are unknown. §2.7 discusses how the
structural models are estimated via the prediction error decomposition of the
likelihood function. Parameter estimation requires numerical maximisation
algorithms which are presented in §2.7.1. The final section presents the main

diagnostic tools used for checking and model selection throughout this thesis.

2.2 State space methods

A structural time series model can be estimated once it is represented in state
space form. Applying the Kalman filter and smoother to the state space form
gives minimum mean square linear estimators of the components. Assume we

have p time series, we denote by ¥; ; the observation of the " series at time ¢.
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Then let Y;; = [yi,la e 7yi,t]’7 yi = [yl,ta ‘e ayp,t], and Y; = [Yl,t, . e 7Yp,t]-
A convenient representation of the linear state space model is (Durbin and

Koopman 2001):

yi = Zioy+e observation equation

. 2.2.1
o = Ty +Rym, measurement equation ( )

where €; ~ NID(0,H,;), n, ~ NID(0,Q;), and NID denotes normally and
independently distributed. Furthermore, y; is a p X 1 vector of observations
and «; is an unobserved m x 1 vector called the state vector. The first
equation can be seen as linear regression with time varying coefficients. The
second equation assumes that the time-varying coefficients follow a Markov
process. For the purpose of this thesis, we assume that {€;}, and {n,} are
uncorrelated. This assumption can be relaxed for general models. The ma-
trices Z;, Ty, Q:, R, and H; are deterministic and depend on elements of an
unknown parameter vector v, estimated by maximum likelihood. The state

space form can be used to represent a wide range of time series models.

2.3 Structural time series models

In an unobserved component model all components are modelled explicitly
as stochastic processes. A key distinction for the structural time series model
is that all components represent salient features of the data, such as trend.
A detailed discussion of the structural time series models is found in Harvey
(1989). In the structural model paradigm, a time series can be decomposed

into its salient features such as trend, seasonal and business cycle component.
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This decomposition can also be seen within the framework of factor analy-
sis. Standard factor analysis, tries to determine m uncorrelated unobservable
common factors which are linear combinations of the of n (m < n) observable
correlated variables and explain the mutual correlation of the system. The
aim of a univariate structural time series model is to determine m unobserved
components of an observed time series {y; : t =1,... n} with correlated ob-
servations. The components are associated with the salient features of the
time series and each observation of {y.;} is the sum of the m unobserved
components measured at time t. Each component at time ¢ is a linear com-
bination of future and past observations. In general we may assume that
the components are mutually uncorrelated. Nevertheless, as in standard fac-
tor analysis, this can be extended to the case where some components are

mutually correlated.

The simplest structural time series model is the local level model (LLM) in

which the level of the series follows a random walk.

v = pm+e  {e} ~NID(0,0?)
perr = m+n {n} ~NID(0,07)

where {¢:}, and {n;} are mutually uncorrelated. By adding a slope term {£;},

which also follows a random walk, we obtain the local linear trend model:

Yo = He + € {e:} ~ NID(0, 0?)
Pev1 = M+ Be+m {n} ~ NID(0, Us)
Biy1 = B+ G {¢e} ~ NID(0, 07)

where {4} is the trend. The matrices of the state-space form are:

ay = (p’hﬂt)’ Zt = (]-aO)
H, = o? R, = 1,

€
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Tt=
01
Q- ("7
2
0 o;

We are particularly interested in seasonal series. A standard decomposition

that we will use in this chapter is:
y=p+v+e  {&} ~ NID0,0?) (2.3.1)

where {7} is the seasonal component. The model given by (2.3.1) is re-
ferred to as the basic structural model (BSM). Descriptions of commonly

used models for seasonality are given below.

2.3.1 Dummy seasonality model (DS)

A simple way to guarantee a deterministic seasonal pattern is to assume
s—1

that the seasonal effects sum to zero, that is, v, = — > 1—;. We allow
. o}

seasonality to evolve over time by adding a white noise term {w;}. This

gives the relationship (Harvey 1989):

s—1
M= Z’}’t—j + Wy {w:} ~ NID(0, ‘73) (2.3.2)
j=1

or equivalently:

S(L)'Yt = W

23



s—1
where S(L) is the seasonal summation operator, S(L) = > L*.
i=0

Subtracting ;s from both sides of (2.3.2), we get:

s
Yt — Yt-s = — Z7t—j + wy = As')’t = W — Wi—1 (233)
j=1

since S(L)y—1 = wy—1. Thus {7y} follows a seasonal ARIMA (0,0,1) X
(0,1,0)s.

For the case of a local level and a dummy seasonal component, we have:

Yo = e + 7+ € (2.3.4)

e = 1 + My

{7} follows (2.3.2), while {e;} ~ NID(0?), {w;} ~ NID(0,02), {m} ~
NID(0, ag) and {e:},{m}, {w:} are mutually uncorrelated. The stationary
form of (2.3.4) is:

Asyt = S(L)nt + Asr)/t + Asft

Let a matrix with subscript [y] denote the part of the state-space system

matrices (2.2.1), which corresponds to the seasonal component. Then for the

dummy seasonality model Zj, = [1,0,...,0] is an 1 x (s — 1) vector and,
-1 -1 ... -1
0o 1 ... 0
Ty = . . .
0 1

is an(s — 1) X (s — 1) matrix.

24



2.3.2 Trigonometric seasonal model (TS)

In the trigonometric case, the seasonal effect is the combination of [s/2] cycles
[s/2]
(Harvey 1989; Priestley 1981) that is v = 7;,+ Where:
-1

J

Vit | _ cosA;  sinl; Vi1 + Wit
% 3 * *
Vit —sin); cosA; Vii-1 Wy,

(2.3.5)

where j = 1,...,[s/2], t = 1,...,n and A\; = 27j/s is the frequency, in
radians. The component 7}, appear as a matter of construction. The noise
terms {w;;} ~ NID(0, o) and {w},} ~ NID(0, 0%) are mutually uncorrelated

and [s/2] denotes the integer part of s/2

For illustration consider the quarterly case where we have 2 seasonal frequen-

cies 7/2 and 7. Then (2.3.5) becomes:

Tt = Vg1 twie (2.3.6)
e = —Me-1F Wi . , (2.3.7)
Yot = —VYoru-1 Wt = Yor + Vo-1 = War (2.3.8)

From the first two equations we get:
Vit = —Mp—2 F Wit Wi = Mgt Y2 = Wi F Wi (2.3.9)
From (2.3.8) and (2.3.9) we get:

S(L)ve = wipgtwier +wi, Wi (2.3.10)

S(L)ver = wortwars (2.3.11)

25



Thus,

2

S(L)ye = Z S(L)vje = wig +wi -1+ Wiy 1t Wi otwartwas o (2.3.12)
j=1

From (2.3.12) we can see that {S(L)v.} follows and MA(2) process in the
quarterly case. Harvey (1989, Ch.2) says that the trigonometric seasonal
model is a MA(s-2) process, without giving a proof. In the next theorem we

give a complete proof.

Theorem 2.3.1. {S(L)v;} with v; following a trigonometric seasonal model
defined in (2.8.16) follows a MA(s-2) process.

Proof. From (2.3.5) we have:

: -1

Yie | 1 —(cosA;)L —(sinAj)L Wit

Vi (sinA\;)L 1 —(cosA;)L Wiy

Yit 1 1-— (COS )\J)L (sin )\J)L Wyt

Vi 6;(L) —(sinA\;)L 1 —(cosA;)L Wy,

= 5j(L)7j,t = Wjt — Wjt—1 COS )‘j,t + w;f,,,_l sin )‘j
where
1—2cos\L+L% 7 = 1,...,[s/2] -1
§;(L) = ’ ’ [5/2] (2.3.13)

1+ L j o= [s/2]
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is the trigonometric operator (Harvey 1989, p.21). We put the right hand

side of (2.3.13) in MA(1) form by re-writing the error terms and we get:
6;(L)v;z = (1 — 0;L)e;y, {e;1} ~ NID(0,03) (2.3.14)

Using (2.3.14) we can easily see that:

[s/2]
S(L)y, = Z fj ((?) (1—6;L)e;,

Forj =1,...,[s/2]—1 the nominator in the right hand side has a lag operator
polynomial of order s, while the denominator is of order 2. For j = [s/2] the
nominator is of order s—1 and the denominator is of order 1. Thus, the right
hand side is a sum of [s/2] independent MA(s-2) processes and consequently

S(L)~, is itself an MA(s-2) process. O

Following the same notation as in §2.3.1, the relevant parts of the system
matrices for the trigonometric seasonality model are: Z,; = [1,1,...,1] isan

1 x (s — 1) vector and,

cosA; sinX; ... O
—sinA; cosA; ... O

Ty = :
0 -1

is an(s — 1) x (s — 1) matrix.

Alternatively we can formulate the seasonal model in terms of s — 1 effects
associated with the amplitude of deterministic sine and cosine waves defined

in the seasonal frequencies \; = 27j/s for j = 1,...,[s/2] (Hannan, Terrell,
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and Tuckwell 1970). If these effects are collected in the (s —1) x 1 vector 7,
we write (Proietti 2000):

Y = ZiTe | (2.3.15)
!

z, = [cosAit,sinAit,. .., cos\j/qt]

Tt = T + Ky, Ky ~ NID(OS_I, K)

where K is a diagonal matrix, such that the diagonal elements vary with the

frequency. In the common variance case K = ¢21,_,;

2.3.3 Harrison and Stevens seasonal model (HS)

An alternative seasonal specification is the Harrison and Stevens (1976) sea-
sonal model. This representation has a time-varying observation equation, in
which the seasonal factors are explicitly modelled as a multivariate random
walk. For the Harrison-Stevens model, Zj,) is time-varying and ensures that
the correct seasonal factor is related to time ¢ and T,; = Is. The state space

model for the seasonal factors is :

5t = (5t_1—|—wt, thNID(O,Q)

11 _1 _1
8 8 S
2 1. . 2 _'1 1_‘l "l
Q=0][I, - ~is1,] =0, s s s (2.3.17)
s
1 1
—5 1=



where d; is an s X 1 vector containing the seasonal effects, «} = [Dyy, ..., Dsl,
with Dj; = 1 in season j and 0 otherwise, and i, = [1,1,...,1] isan s x 1
vector. From (2.3.16) and (2.3.17) we get:

Var(t,w;) = 1, Var(w;)i; = 0
E(i’swt) = ilsE(wt) =0

since %, Var(w;) = 0 and E(w;) = 0 by construction of w;. Then from (2.3.16)
we have that E(i';6;) = E(i's6;-1), which for 1,60 = 0 gives i;6; = 0. Hence

}:iswt:O

seasonal components sum to zero over seasonal periods.

Following Proietti (1998), we get by repeated substitution in (2.3.16):

Y = ®bisy1  + TiWi—g42 + ...+ Twier T
Yi-1 = Tg-10t-s+1 + Ty 1Wisy2 + ...+ Tpoiwpg
Yt—s+2 = $t~s+25t—s+1 + TpstoWi-st2
Yt—-s+1 = wt—s+15t—s+1
Then:
s—1
!
S(L)y: = wt—j‘st—j
5=0
s—1 s-2 s—1
/ 7
= E mt_jwt-j_k'i‘ E a:t_j 6t_3+1 (2318)
J=0 k=j Jj=0

= Tywi+ (T + X)) weor + . (B Besye) Wimsyo
s—1
since 1’40y 511 =1{ Y. x;_; |6i-s41 =0.
=0
We then prove the following:

Theorem 2.3.2. {S(L)v;} with v, following a Harrison and Stevens seasonal
model defined in (2.3.16) follows a MA(s-2) process.
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Proof. From (2.3.18), we see that:

Var(S(L)y,) = xVar(w)xs+ ...+ (xs+ ...+ @s_sy0) Var(ws)(xs + ... + a_ct_3+2)
s—2 k

k
!
= E A,

k=0 j=0 ¢=0

In general the autocovariance function of S(L)~; is:

s—2 k k
Z Z Z m:‘,—jﬂxt—[ forr <s—2
C(T) = k=71 j=04=1
0 forT>s—2
which shows that S(L)y, ~ MA(s — 2). 0

2.4 Kalman filter and smoother

This section gives the Kalman filter (Kalman 1960) and smoother equations
for the case where the initial state a; ~ N(a;,P;) where a; and P, are
known. The Kalman filter and smoother can be modified for the case where
some of the elements of @; and P; are unknown. Filtering updates the system
each time a new observation comes in. There are several way to derive
the Kalman filter, see Anderson and Moore (1979) and references therein;
we derive it for the Gaussian case following Durbin and Koopman (2001).
The two following simple lemmas from multivariate normal regression theory
provide the basis for the treatment of the Kalman filter and smoother in this

thesis.
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Lemma 2.4.1. Let (x,y) ~ N(u, X), where:

. Yo O
o= 2 and 3 = Tx xy

Hy Yye gy

then the distribution of X conditional on 'y is also multivariate normal with

mean:
Pzly = Mo — Ewa;yl (Y — py)

and covariance matrix:

me]y = Za::z: - zwa;;Eyw
Proof. A proof can be found in Anderson (1984) O

Replacing y with ( )z’ > in Lemma 2.4.1 we get the following result.

Lemma 2.4.2. Let x, y, and z be jointly multivariate normal with p, = 0
and Xy, = 0, then the distribution of x conditional on y and z is also

multivariate normal with mean

— —1
Haxly,z = Hely — Emzzzz z
and covariance matril'

Ewwly,z = Ew:cly - Emzzz—zlzmz
Proof. A proof can be found in Durbin and Koopman (2001) O
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2.4.1 Derivation of Kalman filter

The Kalman filter obtains the conditional distribution of a1, given Y, for
t=1,...,n. Assuming all observations are normally distributed, conditional
distributions of any subset are also normal and are completely defined by the
first two moments. We use the notation E(a|Y;—1) = a; and Var(oy|Y;—;) =

P;. The following derivation is based on Durbin and Koopman (2001):
a1 = E(own|Yy)
= E(Ttat + Rt"let)
and:
PH—I = var(at+1 |Yt)

= Var(Tioq + Remy| YY)

= Ttva,r(atlYt)T;' + RtQtR; (24.2)
The one-step ahead prediction error of y; given Y;_; is:

v = yi— E(ye|Ye1)
= yi — E(Zioy + €| Y1)
= yi— L&y

When Y; is fixed, Y;_; and y; are fixed, so Y;_; and v, are fixed. Conse-
quently:

E(at|Yt) = E(atlYt_l,'Ut)
Var(oy|Y:) = Var(oy|Yi1,v:)
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Using Lemma 2.4.1 and 2.4.2 and the fact that E(v) = 0 and E(v| Y1) =
E(Ztat + € — Ztat|Yt_1) = 0 we have:

E(atIYt) = E(at|Yz~1,Ut)
= E(aY;:_1) + Cov(ay, v;)Var(v,) ™ vy

= a; + Cov(ay, v;)Var(v;) v, (2.4.3)
We have:

Cov(ay,v;) = E{E(awv|Y:-1)}
= EBE{a(Zio + e — Zia;) | Y 1}]
= E{E(a:c|Y:-1)}2; — B{E(cx|Y¢-1)}aiZ,
= (P;+ a;a})Z; — aya;Z;

since E(a;a;|Y—1) = P; + a;a} and E(aye;) = 0. We also have:

Ft = Var('vt|Yt_1) = Var(Ztat + € — Ztat[Yt_l)

Substituting (2.4.3), (2.4.4), and (2.4.5), in (2.4.1) gives:

ayy = Tias+ TtPtZQFt_l'Ut

= Tta,t + KtUt (246)

where:

K, = T.P,Z,F;* (2.4.7)
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We also have:
Var(o|Y;) = Var(ay|Yi-1,v:)
= Var(a|Y;_ 1) — Cov(ay, v;)Var(vy|Y;_1)Cov(ay, v;)’
= P,-P,ZF;'ZP, (2.4.8)
Substituting (2.4.8) in (2.4.2) we get:
Py = T.P.T,— T,P,ZK, + R.Q:R!
- T,PL +R,QR, (2.4.9)

where:

Lt = Tt - KtZt (2410)

Collecting equations (2.4.7)-(2.4.10) we have the Kalman filter equations:
vy, = Yy — Zia
F, = Z,PZ,+H,
K, = T.P,Z,F*
L, = T,-K,Z (2.4.11)
a; = Tia+ Kyvy
Py, = T.PL;+ R.QR;

fort =1,...,n. v, with variance F; is the one-step forecast error of y; given

Y. ;.

The Kalman filter is said to be in a steady state if the recursion for Py, is

time invariant (Harvey 1989), that is, if:

Pt+1 =P;=P
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The Kalman filter has a steady state if there exists a time-invariant error
covariance matrix P which is the solution to the matrix equation, known

also as the Ricatti equations:
P - TPT + TPZ (ZPZ + H)'ZPT —RQR =0

The solution is referred as the steady state solution of the Kalman filter. Use
of the steady state' after convergence leads to considerable computational

savings since the inversion of F; at each point in time is no longer required.

2.4.2 Fixed interval smoother

The estimation of a; given all the available observations y;,..., ¥y, is done
through smoothing. Using a similar argument as in the filtering, the vector
Y, is fixed when Y,_; and vy,...,v, are fixed. The following derivation is
based on de Jong (1989) and Durbin and Koopman (2001). Using lemma

2.4.2 and since vy, ..., v, are mutually uncorrelated we have:

&t = E(at|Yn) = E(at[Yt_l, Uity .- ,’Un)

n
= a,+ Y _Cov(ay,v;)F; v, (2.4.12)

j=t
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Since E(v;|Y;-1) = 0 then Cov(a, v;) = E{E(a;v}|Y;_1)} and as before
E(oa}) = P, + a:a;. We then have:

E{E(av}|Y:-1)} = PiZ;

E{E(owvyyq[Yi-1)} = E[E{(culZeyiows + €1 — Zi1@et1)')[ Yeor }]

= EB[E{(a¢(Zi11Tits + Ziy 1 Remy + €41
~Zi1Tiay — 21 Kyvy)') Y1}
= PT,Z;, +aa; T2y, — aa; T\ 7 — PLZKZ,
= Py(T: - ZK.)'Zy4
= P,LZ,, (2.4.13)

E{E(atv£+2|Yt_1)} = PtL;L;+1Z£+2

E{E(qv,|Y:1)} = PiLi---L, ,Z,

Substituting (2.4.13) in (2.4.12) we have:

a,+P,Z F'=a,+P,r,
any+Pn1Z_Flv, +P, L, | Z Flu,

ap-) + Pn—lrn——Z
a; + PtZ;Ft_l’Ut + PtL£Z£+1F;_*}1Ut+1

+---+PL}---L,_,Z F v,

a; + Ptrt._l (2414)
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where:

-1

rn_1 = ZnFn Un

/ -1 l ' -1
In2 = Zn—an—lvn—l+Ln—1ZnFn Un

/ -1 ’

= Zn—an—lvn—l + Ln—-lr‘n—l

-1 1zl -1

ri = ZF v+ LiZ Friven

+---+ L} L, ZLF v,

= ZF;'v,+Lir, (2.4.15)
The variance of the smoothed estimates is (de Jong 1991):

V; = Var(a|Y,) = Var(oy|Yi1,v...,00)

= P, - Z Cov(ay, vj)Fj“lCov(at, v;)

j=t

Using (2.4.13) we have:

vV, = P,-P,Z F,'Z2,P, =P, -P,N, P,
V.., = P, —P,,Z, F 17 P, |
-P,,L, \Z'F,'Z,L, P, |

= Pp1— P'n—an—2P;l~1

V, = P,—P,ZF;'Z,P, - PtLQZQHF;}thHLtPQ
- —P,L,---L,_|Z'F'Z,L,_,---LP}
= Pt - PtNt_]_P; (2416)

37



where:
N,.; = Z;LF;IZTL
N, = 2, F 272, ,+L _Z F'Z,L, ,

= Z _F. 17, +L,_ N, L,

Ny = ZF;'Z+LZ,, F; .\ Zy 1Ly
+---+L,---L,_Z'F'Z, Ly - Ly
= Z,F7'Z,+LN,L, (2.4.17)
Collecting (2.4.14), (2.4.15), (2.4.16), and (2.4.17) we have the smoothing

recursions which represent the fized interval smoother as proposed by de Jong

(1988), de Jong (1989), and Kohn and Ansley (1989):

~

a; = a;+ Pir,
r,_, = ZF7'v,+Lir
vV, = P;—-P:N, P,
N, = Z,F7'Z,+LN,L, (2.4.18)

for t = mn,...,1. r,_; is a weighted sum of innovations w; occurring after

time t — 1.

The algorithm proposed above provides an alternative to the classical fized
interval smoother (Anderson and Moore 1979) . This is:

& = ay+Py TP (& — o)

atlt = E(at|Yt) = Qy + PtZQFt_l'Ut (2419)

Pt|t = Va’r(atlYt) - Pt - PtZ;Ft_thPt
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fort =n,...,1. As pointed by Koopman (1993), (2.4.19) requires the inver-
sion of Py, while (2.4.18) requires only the inversion of F;. The advantages

are:

1. F; has usually smaller dimension than P; and;

2. F; has already been inverted during the filtering process

2.4.3 Disturbance smoother

We also derive recursions for computing the smoothed estimates €;: = E(e;|Y,)

and 7, = E(n,[Y,). Following the same approach as before we have:
& =E(e|Yi1, v, ...,0,) = Z E{E(ev}[Y;-1) }F; v, (2.4.20)
j=t

We have (Koopman 1993):

E{E(ev}|Y:-1)} = E{e(Ziow+ € — Ziar)|Ye1} =H,
E{E(etv;+1|Yt_1)} = E[E{et(zt+1at+1 + €141 — Zt+lat+1),|Yt—1}]
= E[E{et(ZtHTtat +Zi 1 Rym, + €441
~Z11 T, 21 Kevy) [ Y1 ]
= -HKiZ,,
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E{E(ev};5|Yi-1)} = E[E{€&(Zio0tio+ €142 — Zi2as2) [Yi1}]

= E[E{Et(zt+2Tt+1at+1 + ZiaRipimy g + €40
—Z412 T 11011 — Zt+2Kt+1vt+1),|Yt—l}]

= E[E{Et(zt+2Tt+1at+1 +ZioRip 1My + €42
24 2T Tiay — 2 2T 1 Koy —
Zt+2Kt+1Ut+1)llYt—1}]

= —HKiTi 1124 — HtK£Z;+1K;+1ZQ+2

= —HtK;L£+1Z2+2

E{E(ev,|Y,1)} = -HKL;,,---L,_,Z] (2.4.21)

As in de Jong (1988) and Kohn and Ansley (1989), substituting (2.4.21) into
(2.4.20) we get

~ -1 Irpt —1 A -1
& = Hy(F; v — KiZ Frve — Kby ZeoF 00 — -
/ / -1
KtLH-l e Ln—IZnFn ’Un)
-1 /
= Ht(Ft Uy — Ktrt)

The smoothed estimate of 7, is:

= EmlY—, v, 00) = Y B{Em0} Y1) }F; v, (2.4.23)

Jj=t
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We have:

E{E(mvilYt_l)}

E{E(thé+1|Yt-1)}

E{E(ntvg+2|Yt-l)}

E{E(m’v

Y1)}

E{n,(Zio; + € — Ztat)’|Yt‘_1}

E[E{n(Z:Ti-10-1 + ZRe—1my_y + € — Z1ay) | Y1 }]

0

E[E{n,(Zet10te41 + €141 — Zey1a041) | Vi1 }]
E[E{n,(Z¢11Tio + Ze1Remy + €041 — Zyy1Ge41)' | Vi1 }]
QR{Z;,,

E[E{n/(Z¢r20tes2 + €42 — Zig2aii2) | Y1 }]
E[E{n,(Z4+2Tt11 T + Zipo T Rim,

+ZoRen17y0 + €41 — Ze2Tiaii)' | Yio1

2o Ki1ve4) (2.4.24)
QRIT;\Z;,, — QRZ; K17,

QtR’L’ t+2

QtR, t+1° L;_IZ{Q (2425)

As in Koopman (1993), substituting (2.4.24) into (2.4.23) we get

A

_ /; ! -1 / -1
M, = QRY(Zi 1 Frnver + Ly ZeoFypvee — -
Lijt -

L1 ZF  vn)

- QR (2.4.26)

We also derive the variances of the smoothed disturbances. Using lemmas

(2.4.1) and (2.4.2) and equations (2.4.21) we get (de Jong 1988; Kohn and
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Ansley 1989)

Var(e;|Y,)

Va‘r(etIYt—ly Uy, - - ,'Un)

n
Var(€;|Yi1 — Z Cov(e;, v;)Var(v;| Y -1) " Cov(e, v;)

n -
H, - ) E{E(ew;|Y;-1) }F; ' E{E(ev;|Y:-1)}
j=t
H, - H(F;' + K|Z; . F; L Z, 1 K,
KL Zt o F i Zegolio Ky — -
~K/L,, - L ZF; 2Ly - L Ko H,
H,; - H,(F;' + K,N,K,)H;

H, — H,D,H, (2.4.27)

In a similar way, using equations (2.4.24) we get: (Koopman 1993)

Var(n,|Yy)

Var(n,|Yi—1, 04, - .., Un)

Var(n,|Yi-1 — Z Cov(n,, v;)Var(v;|Y;_1) " 'Cov(n,t, v;)’

j=t
n
H, - Y B{E(ev;[Yi1) }F; 'E{E(erv;)}
=t
Q: — QRYZen Fr Zogr + Loy Z o F o 2oL + -
+L’t_|_1 e L;_IZ;LFglann_l - Ly RQ;

Q: — Q:R{N:R;Q; (2.4.28)
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Collecting (2.4.22), (2.4.26), (2.4.27), and (2.4.28) we have the disturbance
smoothing recursions (de Jong 1988; Koopman 1993):

é& = H;u
w, = F'v,—Kir,
Var(e;|Y,) = HH;DH,
D, = F;'+K|NK,
N, = QRir
Var(n,|Yn) = Q:— QR;N:R.Q; (2.4.29)

where r; and N, are derived from recursions (2.4.18)

2.5 Square root filter

In this section, we present the equations for the square root filter (Morf
and Kailath 1975). Seasonal models are particularly susceptible to round-off
errors that may result in a negative definite value for the conditional state
covariance matrix P;. The problem is avoided by using the square root filter.
This filter is based on orthogonal lower triangular transformations for which

we use Givens rotation techniques (Golum and van Loan 1996).
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2.5.1 Givens rotations

Let U be a m x n matrix with m > n. We would like to transform U to an
upper triangular matrix U* using orthogonal matrix G, such that GG’ = 1,,.
We define the Givens matrix G(z —1, ¢, #) as the identity matrix I,,, with four

elements replaced by:

Gi,i = Gi—l,i—l = C
Gis1i = s
Gii-1 = —s

where ¢ = cos(f) and s = sin(#) for some §. Premultiplication of U by
G(i — 1,4,0) is the same as a counterclockwise rotation of # radians in the
(i — 1,7) plane. The element of U* in the k** row and I** column is then:

CUi—l,k - SUi,k k=i1—1
Ui, =< cUinip+sUpe k=i
Ui k#i—1,i

It is clear we can force U}, to be zero by setting:

I

2, 2
VT + T3

T2

V2 + 13

s = —
where:

ry = Ui—l,l

T = Uy

for which ¢ 4+ s? = 1 and sz; + szo = 0. Since GG’ = I,,,, Givens rotations

can be applied repeatedly to create zero blocks in a matrix with the overall
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transformation being orthogonal. It follows that, if m < n, U can be trans-
formed to a lower triangular matrix by applying the previous transformations
to the transpose U’. In §A.1 we provide a code written in Ox (Doornik 1998)

that applies repeated Givens rotation to create a lower triangular matrix

2.5.2 Square root form

Following the notation of (Durbin and Koopman 2001), we define the parti-
tioned matrix Uy by:

U (%P H 0
TP, 0 RQ

where f’t, ﬁt and Qt are lower triangular matrices so that :

Pt == f)tf);
Ht = I:ItI:I;
Q = QQ

In Harrison and Stevens seasonal model 2.3.16 Q; is not of full rank and
the Choleski decomposition cannot be used. Since Q; is square, it can be
decomposed as:

Qt = CtAtC;:

where C; is a matrix of eigenvectors and A; is a diagonal matrix with the
eigenvalues in the diagonal. Then we apply the Givens rotations to the matrix
QY2 = CA}? to get Q. It follows that:

U U/ — Ft ZtPtTt
et T.P;Z; T.P,T;+ R, Q:R;
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Applying Givens rotations to U, to get a lower triangular matrix Uj:

Ul 0 O
U= (o v o)
¢ ( UZ,t U3,t 0

It follows that (Morf and Kailath 1975):

'} ’
U*U*' U;{,tU;;t IJIT,t E,t ,
t ™t - * * * * *
U, Ui, U3, U5, +Us, U3,

_ ( F, Z.P,T, )
T,P.Z, T,P.T,+R,Q:R/
so that:
1. = F,
U;, = T.PZF'=KF,
Ug,t = lE)t+1

f’t+1 is then used to give an update for U,. The update for the state vector

a; is (Durbin and Koopman 2001):

iy = Ttat + Ktvt
= Ttat + TtPtZQF;_lvt

* *—1
= Ttat 2,tU1,t Uy

where v; = y; — Z;a;.

2.6 Initialisation

In order to start the filtering and smoothing operations, we need to make

certain assumption for the distribution of e;. The variance matrix P; of
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the initial vector a; contains diffuse elements when some components of the
state are non-stationary, see Ansley and Kohn (1985), de Jong (1991), and
Koopman (1997):

P, =P,1+KkPux,

This formulation implies that some Kalman filter quantities are also diffuse.

The exact initial Kalman filter is then (Koopman 1997):

a1 = Tias+ K, v,
P.iy1 = T.P,,T,—C,,+RQR;
Poiti = TiPoo;T; — Cooy
K.: = M.;F , + My F_,
F., = Z.P..Z +H,
Foou = ZPoo,Z, (2.6.1)
M., = T.P..Z,
M., = TiPe.Z,
C.i = M K,;+MyF  (M.; — Mg F_ F.;)
Coo,t = Moo,tF r;o,tM:x;,t

F,.and F_, , are calculated by the diagonalising F ; and F o in the following
way:

, I. O , V. 0
(J1,t, JQ,t) Foo,t(']l,t7 -]2,t) = (Jl,t, J2,t) F*,t(']l,tv J2,t) = ot
0 0 0 Iyn_,

where J; = (J14, J2,¢) is a nonsingular matrix, r = rank(Fu ;) and rank(V, ;) <
r. Then F_,, = J;,J7, and F; = J;J5,. The exact initial Kalman filter
starts off with @; =0, P,; =0and P, =1,
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2.7 Estimation

We use Gaussian maximum likelihood for estimation and inference. When
the initial conditions are known, so that a; has density N(a;, P;) where a,

and P; are known then the log-likelihood is (Harvey 1993):
log L(%; Yp) = > _log f(ye[Ye-1) (2.7.1)
t=1

where 1 is the vector of parameters, f(y:|Y:-1) is the conditional density
function of y; and f(y1[Yo) = f(y1). For the structural models, % is usu-
ally a vector of the variance parameters that need to be estimated. Since
E(y:|Y:-1) = Zias, vy =y — Zia; and Fy = Var(y;|Y¢-1), equation (2.7.1)
becomes:

n

1
log L(t; Yn) = —%Z-’ log 2 — = 3 (log [Fi| + v{F; 'vy) (2.7.2)

t=1
Given the parameter values, the likelihood can be evaluated using a single
run of the Kalman filter. The representation in (2.7.2) is often referred to as

the prediction error decomposition of the likelihood function (Harvey 1989).

2.7.1 Numerical optimisation algorithms

As we saw in, the likelihood function (2.7.2) is a function of a vector 1 of
unknown parameters. We estimate 1) by maximising the likelihood function
by iterative numerical procedures. The most widely used numerical proce-

dure for optimising a function is Newton’s method. The basis for Newton’s
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method is a linear Taylor series approximation. It solves the following equa-

tion (Durbin and Koopman 2001):

Olog L(; Y5,)
o

Using the first-order Taylor series around an arbitrary point 17; yields:

o(y) = =0 (2.7.3)

Oi(¢) = 81(’/’>|¢=d) + 32(¢)|¢={p(1/’ — ) (2.7.4)

where:
0%log L(v; Y,
ou(y) - L)

Using (2.7.3) and (2.7.4) and then equating 1) to ¥, and 1) to 1, we obtain

the following iteration:

Y =V; — () 101 (%)) (2.7.5)

The iteration is repeated until it converges or until a switch is made to
another optimisation method. Newton’s method will converge very rapidly
in many situations. If the Hessian matrix 0o(%)) is negative definite for all 9
then a unique maximum exists for the likelihood function. The first derivative
01 (1) gives the direction of the step taken to the optimum and 9(1)) modifies
the size of the step. We can modify (2.7.5):

Vi1 =¥, + s0x(,) 01 (2;) (2.7.6)

by including a line search within the optimisation process for s. The optimal

value for s is usually found to be between 0 and 1.

In practice it is often difficult to compute 0;(¢) and 02(1p) analytically.
The programming language Ox (Doornik 1998) implements the quasi-Newton

49



method developed by Broyden, Fletcher, Golfarb, and Shanno (BFGS) (Fletcher
1987). This method uses supplied analytical or numerical first derivatives. If
analytical derivatives are not provided, then at each iteration for 1), a value

for 95(1p)~! is obtained by the following recursion:

-1 _ -1 9i9; \m(a)w() (gt + gim ()’
=™+ (o4 ) ST o

where:

gi = 51(¢i) - 31(’1%‘-1)
9 = o) g
m(¢;) = “32(¢i)_151(1/’i)

For details and derivations of the Newton’s method and the BFGS methods
see Fletcher (1987).

2.7.2 The score vector

The procedures described in §2.7.1 usually update the parameters at each

run by using the gradient or score vector:

Olog L("»b; Yn)
oY

Following Koopman and Shephard (1992) we derive a general expression for

o1 (’(,b) =

the score vectors of structural time series models. We assume that the system
matrices Z; and T; have no unknown parameters and only H; and Q; have
unknown parameters. This is the case for all the applications we use in

this thesis. Let f(a, Yn;%) be the joint density of @ and Y, where a =
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(ay,...,a,), and ¥ is the vector of unknown parameters. Let f(a|Y,; )
be the conditional density of a given Y, f(Y,; 1) be the marginal density
of Y,, and f(a;1) be the marginal density of . Using know results for

conditional densities, we have:

log f(Yn;9) = log f(Yn, ;%) —log f(a|Yy;v)
= log f(Yn|a; %) + log f(a; 1) — log f(a|Yyp; )
= Z [log fyelo—1;9) + logf(at|at-1;1/’)]
t=1

+ log f(ao; P) —log f(a|Ynp1)

= —= Z (log [H(2p)| + tr[Hy(v0) ' (3 — Zeow)(ye — Zecwr)'])

——Z (1og |Q()] + tr[Qu(w) ™ (et — Teew1)(w — Tee1)'])

1 1 e
3 log |P0| — §(a0 - ao) Pol(ao — ag) — log f(a|Yn; 'J’)

In order to derive the score at a point v*, we first integrate both sides with

respect to f(a|Y,;%") and then differentiate with respect to :

dlog f(Yn; ) 198
o vt 23¢Z[10g|Ht|+longt|

tr[( Até\t + Var(et|Yn))Ht_l]

e[ + Var<m|Yn>>Q;1]} Lp _

Using simple rules of matrix calculus (for more details see Magnus and

Neudecker (1988)) and the results from the disturbance smother (2.4.29)
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we have,

Olog f(Yn;v) 1> . | ,
oY L/;:q]; 2 = [H —— — tr[H; ! (Hy(uu; — D)H;)H

_ _,0H
e[ HLHL 1%]]

-5 _ [ ;Ig—i— — tr[Qy (Qu(rer) Nt)Qt)Q;lg—ﬁ
~uler e 5]
= % t; tre (uguy Dt)%}
+% t; tr{(rt—lr’t_l = Nt—l)QR%tRé}ld)fJ) (2.7.7)

The quantities u;, D;, r;_;, and N;_; are calculated during a run of the
Kalman filter and smoother. The quantities ‘;—1:/;, and 31&;_3;11; are usually
easily calculated. In §3.2.4, we derive these quantities for periodic models we
use in this thesis. We see then that calculating the score vector in state-space

models is a straightforward process.

2.8 Diagnostic checking and model selection

If our model is well specified then, given the parameter values are known, the

residuals are normally distributed and serially independent. Our main diag-
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nostic tool is the one-step ahead prediction error which is obtained by a run
of the Kalman filter. We define the standardised one-step ahead prediction
error:
e = Ft% U

which will follow a standard normal distribution. In the multivariate case it
is preferred to perform the following tests for each series separately, using the
standardised residual sequence of each series. Thus, without loss of generality
we take e; to be a single element of ;. We then test the normality assumption
by using tests defined by Bowman and Shenton (1975). We first define the

sample moments of the standardised prediction error:

1
m; = - €t
t=1
m, = 1 y (e —mq)"
n

We also define the measures for skewness and kurtosis as:

ms
S = =
my
my
K = ——3
m3

Then under the null hypothesis of normality S ~ N(0,2) and K ~ N(3, Z).

n

We can also combine S and K in one statistic:

which has a x? distribution with 2 degrees of freedom.

The main tool to check the assumption of uncorrelated residuals is the sample

autocorrelation function. The sample autocorrelation function at lag j, 75,

53



is defined as:

1
P S, e; — i -
T .. t=§j+:1( ¢ — ma)(e—j —m1)

Under the null hypothesis that e; is a white noise process, the approximate
standard error for r; is 71-5 A standard test statistic for serial correlation

developed by (Ljung and Box 1978) is:

2
Ty

Q(k) = n(n +2) Z

n—J

When dealing with competing models, we may want to measure the fit of the
model under consideration. Goodness of fit measures for time series models
are associated with the log-likelihood, log L(Y,;%). The larger the number
of parameters that a model contains the larger the log-likelihood. The Akaike
Information Criterion (AIC) (Akaike 1974) gives a fair comparison between
models with different number of parameters by including a penalty for model
order:

AIC = %[—2log L(; Yn) + 2(q + w)]

where ¢ is the dimension of the state vector a;, and w is the number of
estimated hyper-parameters. For a structural time series it is often the case
that w = dim Q + dim H. In general, a model with a smaller value of AIC is

preferred.
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Chapter 3

Periodic variance in one season

3.1 Introduction

Series with autocovariance structure that varies with season arise in hydrol-
ogy, see for example, Hipel and McLeod (1994), Troutman (1979), Pagano
(1978) and Jones and Brelsford (1967). The fact that many economic times
series have one season that exhibits a higher volatility than other seasons
is often overlooked (Osborn and Smith 1989). This behaviour is found in
monthly production series; the variability of the index of production is higher
for the month with the lowest level of production. For example, the seasonal
component for August in most European countries has the lowest level within
a year due to summer holiday factory shut-downs. August also shows higher
variability than other months. Miron (2001) shows that this is consistent
with backward L-shaped marginal cost curves. Modelling this type of be-

haviour correctly is of importance for forecasting and seasonal adjustment.
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We show that, when one month only has different variability from others

there are constraints on the seasonal models we can use.

The two most common methods for seasonal adjustment, X-12-ARIMA (Find-
ley, Monsell, Otto, Bell, and Pugh 1998) and TRAMO-SEATS (Gomez and
Maravall 1996), have substantial restrictions in modelling periodic variances.
In the case of X-12-ARIMA, periodic variance is dealt by applying different
seasonal moving averages to each season. This ad-hoc method has proved
flexible in fitting models but provides little help in detecting seasonal het-
eroscedasticity. There is no attempt to understand the structure and the
relationship between different seasons, a common criticism for the overall
philosophy of the Census X-11 and X-12 methods. TRAMO-SEATS uses an
ARIMA model based decomposition of the time series and does not include

modelling periodic variances.

In this chapter we develop structural models for time series in which the
variance of one season differs from the others. Burridge and Wallis (1988)
include periodic Varianées in a structural model using dummy seasonality,
as in (2.3.1). However, as we show in §3.2, neither dummy seasonality nor
trigonometric seasonality (Harvey 1989) are effective in modelling seasonal
series with single season heteroscedasticity. We suggest two models that
permit single season heteroscedasticity as a special case. In §3.2.4 and §3.2.5,
some estimation and initialisation issues for these heteroscedastic models are
discussed. A likelihood ratio test for seasonal heteroscedasticity is given
in §3.3, while section §3.4 provides real data examples. The final section

presents conclusions. Parts of this chapter are based on Tripodis and Penzer
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(2006).

3.2 Models for single season heteroscedastic-
ity

Consider a univariate seasonal time series {y; : t = 1,...,n} with seasonal
period s. A structural model for {y;} consists of a sum of components each
representing a salient feature of the series (Harvey 1989). For example, the
basic structural model is:
Ye=pet+ Y+ €&

where u; is the trend, < is the seasonal component and ¢; is the irregular
(white noise) component. In the non-periodic variance case, the seasonal
difference, {Asv:} = {v — 715}, is a stationary process. Periodic variances
can be represented by allowing Var(Asy:) to depend on season. Another
approach is to allow the variance of the irregular term to be periodic. The
autocorrelation structure of periodic seasonal variance and periodic irregular
variance models differ considerably. Below we compare the autocorrelation
functions and consider the implications for single season heteroscedasticity.

Throughout we use 7, to denote the season of the t* observation,

- S t=s,2s,...
*7 1 t (mod s) otherwise

We use k; to denote the seasonal difference of the seasonal component, k; =
Ay, For notational simplicity we drop the ¢ index on r; and x; when this

can be done without ambiguity.
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3.2.1 Periodic variance in the seasonal component

Proietti (1998) proposes a general class of models for seasonal heteroscedas-
ticity based on the Harrison and Stevens (1976) framework described in
§2.3.3. Proietti replaces the homoscedastic variance-covariance matrix of
(2.3.17) with the following:
Var(wg) =V = [D- ;Disi;D] =
Di!

s s

S
( 2,2 2 2 2 2\
> ojo? —oic: ... —ojo?
i#1
2.2 N\ ;2.2 2,2
1 —oj0f > os0! ... —o0%07

= 0 i#£2 ' (321)

\ —ot? . g:safa?)
where D = diag{o?,...,0%} and i, = (1,1,...,1) is an s x 1 vector. The
multivariate variance-covariance matrix enforces the constraint that S(L)y;
is stationary. (3.2.1) implies that Cov(ws,w;—;) = 0 for ¢ > s. Note also,

that o2 is not the variance of the seasonal difference for season 7. In fact

(Tripodis and Penzer 2006),

Var(r) = Var(Agy,) = sVpp = s—20— (3.2.2)

where V;,. is the 7** diagonal element of V.

We now consider single season heteroscedasticity. Suppose, without loss of

generality, that the first season has a different variance from all the others.
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From (3.2.2) it is clear that single season heteroscedasticity is introduced by
taking D = diag{c?,02,...,03}; setting 0? # 02 and 02 = --- = 02 yields:

sVi1 = s(s — 1)o203 /(0% + (s — 1)a2) re =1
sVay = 502(0% + (s — 2)02) /(02 + (s — 1)02) otherwise

Var(k,) = {

sVi1 = s(s — 1)oios /(0% + (s — 1)o2) =1
EsVpy = so2(0? + (s — 2)03) /(02 + (s — 1)a?) otherwise
arises in this case. Comparing the first with any of the other seasons gives

us (Tripodis and Penzer 2006):

An interestin

% _ (s—(_sﬁqll—l (3.2.3)
where ¢ = 02/02 > 0. 1t is clear that the ratio of variances is a decreasing
function with respect to ¢ with a maximum of s — 1 when ¢ goes to zero. We
conclude that, for the model defined by (2.3.16) and (3.2.1), the variance of
the seasonal difference in season 1 (the distinct season) is always less than

s — 1 times higher than that of the other seasons.

The introduction of seasonal heteroscedasticity results in periodic autocor-

relation in the seasonal differences. By definition, x; = x;_g, so:

S
/
ke = Dgyy = T, E Wi—k
k=1

From (3.2.1), and for h = 1,...,s, we get:

ce(ryh) = Cov(ky, ki—p) = —(s — h)

where we define o,_p, = 0y4s_p when h > r. For h > s, we have ¢,(r,h) =0,
for all . Thus, in the homoscedastic case, {Asy:} is a moving average

of order s — 1. In the single season heteroscedastic case, the nature of
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the periodicity in the relationship between seasons is of interest. Defining
px(r, h) = Corr(ky, ki_p) we have, for the season with the variance that differs

from the others,

pn(l,h):—%\/ﬂ forh=1,...,s—1

and p(1,h) = 0 for h > s. Here u = V41/V,,, the ratio of variances defined

by (3.2.3). For the remaining seasons, that is for r =2,...,s,
| pe(1,h) ifh=r—-1
pr(rih) = { qv/u px(1,h) otherwise

Thus, the lag h correlation between two standard seasons (r # 1) is a con-
stant multiple of lag h correlation with the first season; the value of the

multiplicative factor is determined by the ratios 02/0? and Var(x,)/Var(ks).

3.2.2 A comparison of periodic seasonal and periodic

irregular models

An alternative approach to model seasonal heteroscedasticity is to superim-
pose periodic heteroscedastic measurement noise on homoscedastic season-
ality. This is similar to the deseasonalised model (Hipel and McLeod 1994)
used in hydrological time series where the seasonal component +; is deter-
ministic and the irregular component ¢, has variance af,r that depends on
the season r. In our model, v, is allowed to be stochastic with the seasonal

differences having constant variance.

In order to illustrate the differences between the periodic seasonal variance
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model of §3.2.1 and the periodic irregular variance model, consider a struc-
tural model with seasonal and irregular components. Define the seasonal

differences as,
tural model with seasonal and irregular components. Define the seasonal

differences as,

Tt 2y = Asyt = Kkt + Asft
zer 2006):
¢e(r,0) + 202, h=0
c.(r,h) = Cov(z, zi-p) = § cx(T, h) h=1,...,s—1 (3.2.4)

2 —
—0Z, h=s

with ¢,(r,h) = 0 for h > s. For the periodic seasonal variance model, azr =
o2 for all 7, so the autocovariance function is different for each season at lags
h =0,...,s—1. For the periodic irregular variance model, c.(r, h) = c.(1,h)

for all h, so periodicity is restricted to the variance and the lag s covariance.

The periodic behaviour of the autocovariance function indicates that the
relation between the unusual season and all other seasons in the periodic
irregular variance model differs from that for the periodic seasonal variance
model. In the periodic irregular variance model the relation between seasons

is the same within each year.

In the periodic seasonal variance model, the relation between the unusual
season and all other seasons differs from the relation between any two other
seasons. If increased variability in a particular season is superimposed on
the series, the periodic irregular model is more appropriate. This is common
in hydrological series where high variability in a particular month is usually

caused by extreme weather conditions; for example, floods usually occur in
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the same month but do not necessarily happen every year. On the other hand,
in many economic time series high variability in one season is endogenous to
the seasonal process; for example, factory owners react to lower production
in one month by adapting the production in subsequent months to bring the

overall output to the desired level.

By comparing the fit of the periodic irregular variance model and the pe-
riodic seasonal variance models for a given data set, we can infer whether
heteroscedasticity is endogenous or superimposed on the seasonal process. In
theory it is possible to identify the appropriate model for a particular series
by comparing the periodicity of the sample autocovariance with the theoret-
ical autocovariance. There are several.methods for testing for periodicities
in the autocorrelation function, see for example (Vecchia and Ballerini 1991)
and (Hurd and Gerr 1991). However, the power of these tests is very small
for samples less than 30 years so they are impractical for many economic
time series. Rather than attempt to differentiate between seasonal models
using the periodicities in autocovariance, we recommend post-fit diagnostics

as a means of choosing an appropriate model; see practical illustrations of

§3.4.

Now consider the case where the model for our series contains a trend y;. In

this instance, the seasonal difference is given by:
2 = Agys = Agpiy + K¢ + Aséy
Suppose that p; follows a local level model,

He+1 = e + 7y, {n:} ~ NID(0, 072,)
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then, using (3.2.4), we get the autocovariance function of the seasonal differ-

ences is:
502 + ce(r,0) + 202, h=0
co(r,h) = Cov(zy, i) = § (s —h)oi+ce(r,h) h=1,...,s—1
—0?, h=s

with ¢,(r,h) = 0 for h > s. The difference in the two models is that the
autocovariance function of the periodic seasonal variance model is periodic
in all lags up to s — 1 while the periodic irregular has periodic autocovariance

at lags 0 and s only.

If p; follows a local linear trend model,

Per1 = M+ B+ n, {ne} ~ NID(0, 072,)
Beri = Bi+G,  {G} ~NID(0,0?)

then, using (3.2.4), we get the autocovariance function of the stationary form
Az

(507 + 202 4 2¢4(r,0) — 2¢4(r, 1) + 402,

(8 = 1)0f — cu(r,0) + 2¢,(r, 1) = c(r,2) — 202,
(s = h)oi — cu(r,h — 1) + 2¢4(r, k) — c(r, h + 1)
0f — cu(r, 8 — 2) + 2¢4(r, 5~ 1) — 02,

—cx(r,s — 1) + 02,

| —o2, h=s+1

with c,(r,h) = 0 for h > s + 1. The difference in the two models is that the

yee, 8 — 2

eaz(r h) = < 1

>
t
w » N = O

autocovariance function of the periodic seasonal variance model is periodic
in all lags up to s while the periodic irregular has periodic autocovariance at
lags 0,1, s — 1, s, and s + 1 only. In Table (3.1) we show the lags for which
the autocovariance function of the stationary form for the local level and the
local linear trend is periodic for the periodic seasonal model and the periodic

irregular model.
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Table 3.1: Lags with periodic autocorrelation in stationary form

Model for trend Local trend  Local linear trend
Stationary form JAWTA ANy,

Per. seasonal variance 0,1,...,5s—1 0,1,...,s
Per. irregular variance 0,s 0,1,s—1,s,s+1

3.2.3 Other seasonal models

We show that dummy and trigonometric seasonal representations are not
appropriate for modelling single seasonal heteroscedasticity. Consider first
the dummy seasonal case. The dummy seasonality model was used by Bur-
ridge and Wallis (1988) to account for periodic variances. They propose this
framework to model cases where the final estimates of the seasonal com-
ponent exhibit seasonal variation. For a deterministic seasonal model, we
impose the constraint that the seasonal effects sum to zero over the seasonal
period. By adding a noise term {w;}, we allow seasonality to evolve over
time; the resulting model is referred to as the dummy seasonal representa-

tion, which was introduced in §2.3.1,

s—1
SLYe = Y-j=we (3.2.5)
=0
The seasonal difference is:
Ay = AS(L)y = wy — wy—g (3.2.6)

Thus , follows a seasonal ARIMA (0,0,1) x (0,1,0)s, where the moving

average part is non-invertible.
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In order to model seasonal heteroscedasticity we take w, ~ NID(0,¢?2). Using

(3.2.6),

02+0%_, for h=0
(T, h) = Cov(ky, Kt_p) = —02_; for h=1 (3.2.7)
0 otherwise

2

where, as before, 02 = o2

2. Now consider attempting to represent single

season heteroscedasticity. Suppose, without loss of generality, that Var(k,) =

v; and Var(ky) = - - - = Var(k;) = vo. From (3.2.7), vy = 02 +0? =02 +02 =

2

o= 02+0¢2 | implying that 02 = 02_, and so v; = 02 +02% = 02 | +02 = vs.

In summary, if s—1 seasons have the same variance, then all seasons have the
same variance. We conclude that the dummy seasonal representation cannot

be used to model single season heteroscedasticity.

In the trigonometric case, introduced in §2.3.2, the seasonal effect is the
[s/2]

combination of [s/2] cycles that is 1 = Y «y;: where [s/2] is the integer part
=1

j
of s/2. The j* cycle has frequency A\; = 27j/s and is generated by:

Yie | _ cos\;  sinA; Y1 | [ Wit
* 4 X *
Vit —sin)\; cos); V-1 Wy

(3.2.8)

where {w;;} and {w},} are mutually independent NID(0, 07) processes. The

component ’y]’-"t appear as a matter of construction.

Consider the j* cycle. If we denote (3.2.8) by v;, = TjY;, ; +wj;, then the
matrix T; has the properties T¢ = I and T%(T%)’' = I where k is a positive
integer. To model seasonal heteroscedasticity we allow 0]2- to vary with season,

that is, take Var(w;;) = Var(w;,) = 02,. The seasonal differences are given
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Kjt = DsYjt = s’)’]t |:Z T% §45,t— k}

where [...]; denotes the first element. The variance of the seasonal difference
is then,

s—1
Var(k;;) [z TH(TS) o2, _ k] = Zafr_k
k=0

1,1

where [...];,1 denotes the first diagonal element. Thus despite the fact that
Var(w;.) depends on season, the variance of the seasonal differences is con-
stant for the j** cycle. The overall seasonal difference, A,¥;, as a sum of

[s/2] homoscedastic seasonal differences, is also homoscedastic.

Using the trigonometric model, we can assign different variances to different
frequencies. Modelling this type of heteroscedasticity is more appropriate in
business cycle analysis rather than in seasonal analysis. Our interests in this
thesis lies on whether a particular month has a different variance rather than
whether a cycle with a certain periodicity has different variance to cycles in

other frequencies.

We show that there is a linear relationship between the trigonometric sea-
sonality formulated in (2.3.15), and the periodic seasonal variance model.
We first show that there is a linear relationship between this trigonometric

model (2.3.15) and the Harrison and Stevens model (2.3.16). As a reminder,
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we rewrite these seasonal models. The trigonometric model is:

Ye = Z;Tt (329)
!

z; = [cosAt,sin At ..., cos A qt]

Ty = Ti-1 + K¢, Ky ~ NID(Os_l, K)
and the Harrison and Stevens (2.3.16) seasonal model is:

6t = 6t_.1+wt, thNID(O,Q)

We note that there is a linear relationship between z; in (3.2.9) and x; in
(3.2.10) so that,
Zy = H,wt (3211)

where H' = [24,25,...,2] is an (s — 1) X s matrix. Using (3.2.11) we can
rewrite (3.2.9) as:

v =z, = T, HTe
which implies that we can rewrite the seasonal effects in (3.2.10) as 0y = HT

which are generated as a multivariate random walk with innovation covari-

ance,
Q=HKH' (3.2.12)
s—1
We can verify using trigonometric identities that ) z;,_; = 0 which means
5=0

that i{H = 0,_; so that i,Var(w;) = 0 is enforced. In the case of the
periodic seasonal model, the relationship between V' (3.2.1) and K (3.2.12)
is established by replacing 2 with V" and pre and post-multiplying both sides
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of (3.2.12) by H’ and H respectively and solving for K :

K = (HH)'H'VHHH)
= (HH)'(H'DH - - ! ~H'Di . DH)(HH) ™!

1, D1

S

We can then model single season heteroscedasticity using the trigonometric
seasonality formulated in(2.3.15). In this case the trigonometric seasonality
is equivalent to Harrison and Stevens seasonal model and therefore we will

ignore it from the following analysis.

3.2.4 Score vectors for seasonal models

In this section we derive analytic derivatives for seasonal models with het-
eroscedasticity, which, as we saw in §2.7, are used in the estimation process.
Without loss of generality we consider the following transformation of the

parameters:

1
Y, = 2 log 01'2

The purpose of the transformation is to ensure that o? > 0. We first consider

the case of the periodic irregular variance model. As before, variances of the

measurement equation error differ with season. Using the same notation as
in §2.7.1 we have:

Olog L(¢); Yn

2.,

’

= o’ (uEu' — Pe))

where u and ® are 1 X n vectors containing u,...,u, and Dy,...,D,

calculated by (2.4.29) while e, is a 1 X n vector with 1 in elements 7,7 +
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8,7+ 2s,... and 0 otherwise, and E, is a n x n diagonal matrix with e, in

its diagonal.

For the periodic seasonal variance model, we need to estimate the matrix of

partial derivatives,

oV OV,
oV do; te do;
-——2— = M t. . . (3.2.13)
Jo; :
aVy OVis
do; Tt do;
where V = [D — —L--Di,i,D] is the variance-covariance matrix of the peri-
s Dig

odic seasonal model (3.2.1). Let the function (i) equal the 5" element of
the diagonal of D, that is 0?(i) = Dy;. Let D have j different elements on
the diagonal. Each o? is repeated r; times, that is if all elements of D are
equal except for rows k and k-1 where 0%(k) = 0?(k — 1) = o7, then r; = 2.

Without loss of generality we assume that o%(k) = oZ. From (3.2.1) we get:

J
(re — Dog + 02 > rio?

Vi = : iZk
> rio}
i=1
ol
Vim = —= k if %(k) = o*(m)
> Tio}
i=1
oio?
Vin = —Tn i 62(k) £ 0%m)
> Tio}
i=1
fork,m=1,...,s.

Using this representation and applying simple calculus we get the following
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partial derivatives:

j J
Ti(re — Vog + > rio?[(rk, — 2)ai + >_ ri0?)
7k i=1

azd ,- (3.2.14)
(X rio})?
i=1
v 1
0 Tk 10 for *(1) # o*(k) (3.2.15)
oo°(l) (EJ: rio})?
i=1
J
v k0% + 207 3 1i0}
km — . - 1'76,0 for 0‘2(k) = 0‘2(m) (3216)
0o (k) (XJ: 2)2
i=1
Om T,0;
3\;km = —— 7 for 0¥(k) # o%(m) (3.2.17)
9o*(k) (i ri07)?
i=1 '
4
a\gkm _ % for o2(k) = o*(m) # o*(I) (3.2.18)
9o(1) (5: rio;)?
i=1 ’
2 2
a\gkm — _T%Im for o?(k) # o?(m), l #k or m (3.2.19)
00%(1) (i rio})?
i=1 '

for k,l,m=1,...,s.

Using (3.2.15-3.2.19), we can calculate the set of analytic derivatives in
(3.2.13). This is a sub-matrix of 8—%%“/—, which is used to calculate the

score vector in (2.7.7), as shown in §2.7.2.
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For the case of single season heteroscedasticity we have

2 2 2 2 2.2
_ 1 —oio2 (s —2)a2 + 0202 ... —o4
0?4+ (s —1)o3
—o?02 —03 .. (s—=2)02+ d202

We use (3.2.14) to calculate avu’ and ke av"’“ for k£ > 2, (3.2.15) to calculate

%—Vhl and %&—k for k > 2, (3.2.16) to calculate ﬂ%m for k, m > 2, (3.2.17) to

calculate Q%zm, and a—gﬁgm for m > 2, (3.2.18) to calculate ——(,),—U%m for k, m > 2.
1

We then have

(s—1)2 —(s—1) —(s—1)
ov oy —(s—1) 1 1
0of  (of + (s —1)o3)?
—(s—1) 1 1
and
(s—1)g™* —q! —q
ov _ oio? —q! 33(’7";2 oo —(s=1)g—2
903 (0} + (s —1)03)? :
—q! —(s—1)g—2 ... 8{};222

with % =(s—1)(s—2)g+2(s—2)+q ! and ¢ = 03/0?
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3.2.5 Initialisation of HS

For HS seasonality we need to ensure that the block in Py ;, from (2.6.1),
that relates to the seasonal component, which we denote P}, is a symmetric

matrix of the form (2.3.17). For example:

RIS SR
1. -1 1-1 —1

Py =L —id)= | K
1 1

R -

This ensures that the state variance Py, of the multivariate random walk in

the seasonal component is not of full rank, as required by (3.2.1).

3.3 Test for seasonal heteroscedasticity

Despite the fact that seasonal heteroscedasticity is relatively common, there
are few methods to test for its presence. Existing tests are based on the
likelihood ratio, Wald or Lagrange multiplier principles (Engle 1984). In
practice, some version of Goldfeld and Quandt (1965) or White (1980) test
for heteroscedasticity, adjusted for seasonal series is used; these are mispec-
ification tests rather than tests of a specific hypothesis. Useful information
about seasonal heteroscedasticity can also be obtained graphically from in-
spection of time series plots, correlograms, periodograms of the squared data

and seasonal sub-plots. In figure (3.1), we show all different types of graphs
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for the index of production for Italy. We see from the periodogram of the
squared data that there is a significant peak at the seasonal frequency which
indicates seasonal heteroscedasticity. From the plot of the original series and
the seasonal subplot, we see that this is concentrated in the month of Au-
gust for reasons we examine in the next section. In this section we suggest
a likelihood ratio test for testing the hypothesis that one month exhibits a
different variance than the others, under the null hypothesis that all seasons
have the same variance. With a parameter vector 1, we denote the likeli-
hood function of the null model as L, while the likelihood function of the
alternative model that one month has a differe