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A bstract

The thesis focuses on estimation of dynamic structural equation models in which 
some or all variables might be unobservable (latent) or measured with error. More
over, we consider the situation where latent variables can be measured with multiple 
observable indicators and where lagged values of latent variables might be included 
in the model. This situation leads to a dynamic structural equation model (DSEM), 
which can be viewed as dynamic generalisation of the structural equation model 
(SEM). Taking the mismeasurement problem into account aims at reducing or elim
inating the errors-in-variables bias and hence at minimising the chance of obtaining 
incorrect coefficient estimates. Furthermore, such methods can be used to improve 
measurement of latent variables and to obtain more accurate forecasts. The thesis 
aims to make a contribution to the literature in four areas. Firstly, we propose a 
unifying theoretical framework for the analysis of dynamic structural equation mod
els. Secondly, we provide analytical results for both panel and time series DSEM 
models along with the software implementation suggestions. Thirdly, we propose 
non-parametric estimation methods that can also be used for obtaining starting 
values in maximum likelihood estimation. Finally, we illustrate these methods on 
several real data examples demonstrating the capabilities of the currently available 
software as well as importance of good starting values.
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Chapter 1

Background

1.1 Introduction

There is nothing like a latent 
variable to stimulate the imagination.1

Arthur S. Goldberger

Latent or unobserved variables have the role of reducing dimensionality in multi
variate analysis or representing quantities of substantive interest that are themselves 
not directly measurable.2 Our focus here is on structural models with latent variables 
where term “structural” implies specific, theoretically implied relationships among 
observable (manifest) and latent variables. A similar definition of structural equation 
models, due to A.S. Goldberger, refers to “stochastic models in which each equation 
represents a causal link, rather then mere empirical association” (Goldberger 1972a, 
p. 979).

Structural equation latent variable models (SEM) emerged from an increasingly 
popular but never entirely completed merger of econometric and psychometric meth
ods, namely structural or simultaneous equation models and factor analysis. The 
specifics and common aspects of these two traditions are reviewed in historical 
context by Goldberger (1972a). Psychometrics contributed factor-analytic mea
surement models hence enabling empirical measurement of latent variables, while 
econometrics developed structural equation models that incorporate causal, possi
bly simultaneous relationships among the modelled variables. Combined, these two 
approaches yield methods for modelling causal relationships among latent variables.

Joint estimation of a classical simultaneous equations system where all mod
elled variables are latent (unobserved), but measured by factor-analytic measure

1 Cited from Chamberlain (1990), p. 126.
Bartholomew and Knott (1999) clarify this by making a distinction between a ‘ realist’ and 

an ‘ instrumentalist’ view of latent variables depending on whether latent variables are regarded 
as existing in the real (but possibly unmeasurable) world or as merely means of reducing complex 
multivariate data to smaller number of more easily interpretable dimensions.
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ment models, was proposed by Keesling (1972), Wiley (1973), and Joreskog (1973). 
Joreskog (1973) furthermore gave a full theoretical analysis of this (general) model 
and pioneered its computer implementation in the still leading structural equation 
programme “LISREL” .

The “Joreskog-Keesling-Wiley model” (commonly known as SEM  or LISREL) 
can be feasibly estimated in the full-information Gaussian maximum likelihood 
framework by minimising the distance between the model-implied (theoretical) and 
the empirical covariance matrices. Joreskog has shown that with independent, iden
tically distributed (i.i.d.) Gaussian data the covariance matrix has Wishart distribu
tion with the known theoretical covariance structure. Hence, given the parameters 
of interests are identified, their maximum likelihood estimates can be obtained using 
iterative optimisation techniques such as quasi Newton or scoring algorithms. This 
does not necessarily holds for dynamic models and time series or panel data, which 
is likely the main reason why SEM models found considerably more applications in 
the psychometric and social science literature then in econometrics where dynamic 
models and time series data are standard.

Latent variables in econometrics first appeared in the “errors-in-variable” models 
and were broadly divided into models with truly latent variables and those with 
observable variables that are measured with error (Ainger et al. 1984, Wansbeek 
and Meijer 2000).

The gap between econometrics and psychometrics was partially bridged by the 
development of the general structural equation model with latent variables due to 
Joreskog (1973). However, dynamic structural equation models with latent variables 
are rarely used in the empirical literature, in contrast to the static models. This is 
largely due to estimation problems and lack of appropriate statistical software.

The existing methods for estimation of dynamic models in econometrics mainly 
focus on errors-in-variable models (Ghosh 1989, Tercerio Lomba 1990). These mod
els are characterized by the assumption of unobservability due to errors in measure
ment, hence the observable variables are considered as proxies containing measure
ment error. This is a different and less general assumption from the one in the factor 
analytic tradition where the observable variables are assumed to be generated by 
the latent variables and thus multiple observable indicators are considered.

There is a large literature on static SEM models with multiple indicators for 
independent (cross-section) data (Bartholomew and Knott 1999, Skrondal and Rabe- 
Hesketh 2004). The extension of these methods to longitudinal data (i.e. repeated 
measurement on the same cross-section) was suggested by Joreskog and Sorbom 
(1977). However, longitudinal models were not used as widely in the empirical 
literature and the majority of the exiting applications are limited on static models 
using data with very small time dimension (see e.g. Jansen and Oud (1995).

7



More complex dynamic SEM models (DSEM) using time series and panel data3 

were not extensively researched or applied in the literature despite their considerable 
applicability.

In the most general framework, DSEM model encompass most dynamic linear 
models including dynamic simultaneous equations models, where all variables might 
be unobservable but measured by multiple observable indicators. Such general set
ting turns out to be tedious from both theoretical and empirical side. Consequently, 
the literature on dynamic models with latent variables focuses on various special 
cases of the most general model. However, numerous substantive applications call 
for more general framework. The most common case that motivates a general DSEM 
model is when the relationship among the modelled variables is dynamic and simul
taneous while at the same time the error of measurement (or unobservability) is 
present in all variables. If multiple observable indicators axe available for each un
observable variable, this situation naturally leads to a dynamic SEM specification 
we consider here.

DSEM modelling can be used to address the problems caused by simultaneity 
and measurement errors in multivariate models by making use of the information 
contained in the observable indicators of latent, or erroneously measured variables.

In particular, we are concerned with time series and panel models that are char
acterised by the following three points.

(i) All variables in the structural (simultaneous) model may be unobservable (la
tent);

(ii) Each latent variable is measured by one or more observable indicators;

(ii) Structural relationship can be simultaneous and dynamic, thus lags of both 
endogenous and exogenous latent variables are possible.

In the next section (§1.2) we review the contemporary literature on structural and 
dynamic latent variable models and suggest that general DSEM models satisfying 
the criteria (i)—(iii) above have not been fully treated.

3We distinguish “panel” from “longitudinal” data insofar the former comprises multiple obser
vations on a time series process of length T that is observed N  times, while the later is made of T 
repeated observations on the cross-section of size N. In practice, typical econometric panel data 
might have larger T in comparison to N  then typical longitudinal data sets used in social sciences, 
but the true distinction is in the stochastic properties of the process that generated the data, which 
tends to have pronounced dynamic properties in econometric panels.



1.2 Literature review

1.2.1 Structural equation m odel (SEM)

The general structural equation model with latent variables (SEM) has its roots 
in the regression models with unobservable independent variables considered by 
Zellner (1970) and models discussed in Goldberger (1972b). Pagan (1973) proposed 
a estimation procedure for the models with composite disturbance terms while the 
general structural equation model with latent variables, though still without multiple 
indicators of the latent variables was introduced by Joreskog (1973). Joreskog and 
Goldberger (1975) analysed a special case of the SEM model known as MIMIC 
(multiple-indicators-multiple-causes) which is a latent variable model with perfectly 
observed exogenous variables (“causes”). Wansbeek and Meijer (2000) currently 
gives the most comprehensive review of the static structural equation models with 
the focus on the models for independent data.

The SEM model was introduced in the literature by Keesling (1972), Wiley 
(1973), and Joreskog (1973) and is thus also known as the Joreskog-Keesling- Wiley 
model The first computer implementation is due to Joreskog and Sorbom (1996b) 
who developed the LISREL4 computer programme (see Cziraky (2004) for a review). 
The basic SEM model is specified by three matrix equations as

where 77 = (771, 772, • • • , 77m) and £ =  (£1, 62, • • • ,£g) are vectors of latent variables, 
y  — (3/1»2/2, • • •, Vi) and x  =  (a?i, a?2, • • ■, £fc) are vectors of observable variables, and 
B (m x m), r  (m  x g), A x (k x g), and A y (I x m ) axe coefficient matrices. The 
vectors of errors in measurement in y  and x  are denoted by e and 5 and assumed 
to be uncorrelated with 77, £, and £.

W ithout loss of generality we assume that variables axe measured in deviation 
from their mean. Note that (1.1) is a structural equation with latent variables and 
(1.2) and (1.3) are measurement models for the endogenous (77) and exogenous latent 
variables (£), respectively.

The specification (1.1)—(1.3), however, is not the only one and several alternatives 
have been suggested in the literature. The “Bentler-Weeks” and “reticular action 
model” specifications are the best known equivalent alternatives and both have 
covariance structure identical to that of the specification (1.1)—(1.3). Wansbeek and

4The abbreviation stands for Linear STructural RELations.

77 =  B 77 +  T£ +  C 

y =  Ay77 +  e 

x  =  A x(  +  6

(1.1)

( 1.2)

(1.3)

9



Meijer (2000) give a more detail discussion on these alternative specifications from 
a comparative angle. We will use the specification (1.1)—(1.3).

Historically, the SEM model (1.1)—(1.3) emerged partly from the econometrics 
tradition and it is easy to see the resemblance between (1.1) and the classical econo
metric simultaneous equation models. The other part came from psychometrics 
(factor analysis) tradition thus the measurement models (1.2 ) and (1.3) have a clas
sical factor analytic form.

The key characteristic of the SEM model is the joint estimation of both the struc
tural and the measurement models, which is most commonly done in the covariance 
structure analysis (CSA) framework. There is some discussion in the literature of 
whether CSA should be considered as the umbrella family of methods that include 
SEM as a special case or vice versa. Originally, the method for the analysis of co- 
variance structures based on maximum likelihood was suggested as a fairly general 
approach encompassing factor analytic and related models by Joreskog (1970).

The CSA approach is based on fitting a discrepancy function that minimises the 
difference between the model-implied (theoretical) and data-implied (empirical) co- 
variance matrices. The SEM model (1.1)—(1.3) has a theoretical covariance structure 
£ ( 0 ), expressed in terms of the model parameters, of the form

= (  Ayii ( r $ r  + *) n'A', + 0 e Ayn r * A fx + ©e5
V A ^ rn 'A 'y  + 0£S A sia 's + e s 1 ’

where II  =  ( I - B ) " 1, £[££'] =  $ ,  F[C<'] =  E[eef] = ©e, F[<5<5'] =  0<j, and 
E[ed'] = 0 £<j. Letting z =  (y' : x')' where Z =  (z i,z2, . . .  , z^r) is a sample with
N  observations on z, and z =  A. Zi is the sample mean vector, we can further
define the sample covariance matrix as

N

S =  j - ^ ( z i - z ) ( z i - z ) '  (t 5 )
i—1

Let F (£ (0 ) , S) be a fitting function. While the ACS method is generally appli
cable to any form of £ (0 ), the SEM covariance structure (1.4) encompasses many 
common static linear models as special cases.

Most commonly used CSA fitting function used to obtain coefficient estimates 
that minimise the discrepancy between (1.4) and (1.5) is the W ishart maximum 
likelihood function Joreskog (1981). It is given by

F ( £ ( 0 ), S ) m l  = In |£ (0 ) | +  tr  S £ _1(0 ) -  In |S| -  I -  k.  (1.6)

In addition to the maximum likelihood discrepancy function, there are several non- 
parametric alternatives. The most frequently used are the generalised least squares
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(GLS) and unweighted least squares (ULS) criterion (Joreskog and Goldberger 1972, 
Anderson 1973). The GLS discrepancy function is given by

F W P ) ) o l s  =  (S -  S (0 )) 'W -1(S -  E(0)), (1.7)

where W -1  is a general matrix of weights. It is commonly taken tha t W -1 =  S -1 

in which case (1.7) simplifies to

F (E (e))OM =  l t r ( I - S - 1E (e))2,

or if no weights are used, i.e., W -1  =  I, we obtain unweighted least squares (ULS) 
criterion

F (E (0 ))c i s  =  i  t r ( S - £ ( 0 ) ) 2. (1.8)

However, unlike ML and GLS the ULS criterion does not posses scale-invariance 
property.5 On the other hand while ML and GLS methods require positive definite 
covariance matrix the ULS has no such requirement (Joreskog 1981). Note that 
under some simple assumptions when plimS =  £ ( 0 o) then plim # =  Oq where 0  =  

a rg m in F (£ (0 ), S) (Anderson 1989). The same results holds for 0 tha t minimises 
F ( ' E ( 0 ) ) g l s  or F ( ' E ( 0 ) ) u l s • In general, 0 = a rg m in F (£ (0 )) will be a consistent 
estimator of Oq if F (£ ,  S) —► 0 => £ * £ -1  —► I (Shapiro 1983, Shapiro 1984, Kano 
1986, Anderson 1989).

1.2.2 Dynam ic latent variable models

Latent variable models specifically designed for dependent data (i.e. time series) 
were introduced in the econometric literature in the eighties and could be divided 
into various extensions of the classical factor analysis model and dynamic extensions 
of certain special cases of the static SEM model. Unlike in psychometrics, where 
the development of the SEM model followed an elegant path of merging the already 
existing simultaneous equation models with the factor analysis, the development 
of dynamic latent variable models did not follow such path. The SEM model has 
not been directly generalised to dynamic cases in its full generality and the factor 
analytic model was reoccurring in the literature often in less general settings then 
previously considered. In this section we give a brief overview of the main develop
ments in the literature on dynamic latent variable models and show that most of 
these approaches stream from different traditions and thus fail to provide a unified 
treatment of the topic.

5 Scale invariance implies that the value of the fit function remains unchanged regardless of the 
changes in the measurement scale.
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D ynam ic  fac to r analysis  m odels

Geweke (1977), Geweke and Singleton (1981) and Singleton (1980) proposed frequency- 
domain methods for estimation of a dynamic confirmatory factor model (DCFM). 
The DCFM model relates an observed vector x t = (xti , x t2 , .. • , x tn)' to a linear 
distributed lag function of a latent vector of common factors =  (fti, . . . ,  £tk)', 
and a vector of specific factors 8t = (8ti, St2, •• •, 8tn), where n > k. The model is 
specified as

00

* t  =  Y  A * £ t - k  +  s t ,  (1 -9 )
k=—oo

and it is assumed that E[x\ = 0, =  0, Cov (8it, 5jt) = 0 for i /  y, Cov (<5t, £*_.,■) =
0 Vj, Cov (8 t~i, 8 t- j)  is diagonal for i = j , and Cov(£u,€jt) =  0 Vz ^  j .  Both 
and St are allowed to be serially correlated, and in addition can be mutually 
correlated.

Denoting the autocovariance function of x t by R xM  =  F'(xtxJ+r), for t =
. . . ,  — 1,0,1, . . . ,  the autocovariance function of the DCFM model (1.9) is given by

00 00

R*(r) =  Y  A* Y ,  R «(r +  k  ~  0 A'i +  «*(»•).
k=—oo l= —00

and thus the spectral density function Sx(u) can be obtained by taking the Fourier 

transform of H x(r), be., Sx(u;) =  J2^=-oo R iW e_M ) f°r M  ^  7r- This gives

00 00

S*(w) =  Y Y Â Y  R?(r + fc-/)A 'Ie-î +  Y
r = —00 k= —00 l= —00 r= —00

00 00 00

= Y  A*e~“  Y  **.(«)«>“*“  Y A'*e~"z +
k=—00

The DCFM model can be estimated in frequency domain by firstly computing 
the finite Fourier transform of the vector x

x (^ (T ))  =  (2irT)-1' 2Y x teitUiiT),
t= 1

for j  — 1, 2 , . . . ,  T  and ujj(T) = 2irj/T. The likelihood is given by

L (Z (u * ) ,S x(w'lj) = (2n) ni«|Sx(w, )| '«exp ( - ^ x ( a ; £ ) 'S x(u>5) j ,
h= 1 J

12



where u qh, h =  1, . . . ,  lq is the q-th band with lq adjacent harmonic frequencies that 
splits the interval [0, ir\ into Q disjoint intervals. An unconstrained quasi-maximum 
likelihood estimator of the spectral density matrix is given by

lq

s x(uq) =
h =  1

Geweke and Singleton (1981) suggest a goodness-of-fit statistic based on the 
likelihood ratio principle as

Sx(^ )a

Sx(o;) g— X)i=l X̂ C-1Xi

where Sx (uj) a  and Sx(a;) are unconstrained and constrained ML estimators of Sx(<u), 
respectively. Asymptotically, 2 In A ~  Xd f°r d the number of distinct elements in 
Sx(<j) less the number of free parameters.

Note that Geweke and Singleton (1981) methods for estimating DCFM models 
are in fact based on classical Wishart-likelihood CSA approach where time series 
data is initially spectrally decomposed and “prewhitened” to eliminate seasonality 
and serial autocorrelation. To see the similarity with the CSA approach described 
in section §1.2, note that for a finite Fourier transform of x  at the m  harmonic 
frequencies (xi,X2, . . .  % )  the (complex) likelihood is of the form

x 'S x(cj)_1x ^  , 

thus the log of the likelihood is

InLi (Sx(o;),xi , . . .  ,5 ^ )  =  —n m ln(27r) — rain  |Sx(o;)| — tr CSx(o;)_1, (1-11)

where C =  ^  XI™ i Geweke and Singleton (1981) re-scale (1.11) by multiplying 
it by — m~l and add terms that do not include any unknown parameters to obtain

lnL 2 (Sx(o;),xi, . . .  , x m) =  In |Sx(o;)| + t r C S x(o; )_1 — In |C | - n .  (1.12)

Hence (1.12) is of the same form as the W ishart maximum likelihood fitting func
tion (1.6). The main difference between the procedure for estimation of DCFM 
models (Geweke 1977, Singleton 1980, Geweke and Singleton 1981) and the Wishart- 
likelihood approach (Joreskog 1970, Joreskog 1981, Anderson 1989) is in initial trans
formation of the data with spectral methods that aims at rendering data serially

/  m
L (S x( o ; ) , x i , . . . , xm) =  (2tt)~nm|Sx(cj)|~mexp f - ^

13



uncorrelated and seasonality-free, thus satisfying the i.i.d. assumptions required 
for the CSA method. Similarly, the likelihood-ratio goodness-of-fit statistic (1.10) 
resembles the usual x 2 test used in the CSA framework with a transformed data 
matrix.

An additional complication due to the use of spectral methods is that the Fourier 
transform x* generally includes complex values, hence Geweke and Singleton (1981) 
additionally transform the data vector to make it real, and similarly define real- 
transform of the parameter vector.

D ynam ic  m u ltip le  in d ica to r m u ltip le  causes m odel

Engle and Watson (1981) proposed a dynamic version of the MIMIC model (Zellner 
1970, Goldberger 1972a, Goldberger 1972b, Joreskog and Goldberger 1975) and 
suggested a maximum-likelihood procedure for estimation of a dynamic MIMIC 
model (DYMIMIC) .6 The model they consider is written in the state-space form to 
facilitate application of the Kalman filer algorithm and is specified by a state and a 
measurement equation, respectively as

x t =  (j>xt- 1 +  7 zt +  v t

y t = a x f +  (3zt +  et (1.13)

where x t (J  x 1) is unobservable and y t (P  x 1), and z t (K  x 1) are observable
vectors. The error vectors wt and et are assumed to be normally distributed and
mutually independent, i.e.,

N (1.14)
0

R t

The DYMIMIC model (1.13) is more general then the Geweke and Singleton 
(1981)’s dynamic factor analysis model insofar it allows for the effects of the exoge
nous variables measured without error (z t). However, (1.13) does not allow for simul
taneous relationships among latent variables (xt) and also assumes that exogenous 
variables (z t) are perfectly observed. Nevertheless, the DYMIMIC model includes 
as special cases several important time series models and it can be easily shown 
that models such as ARIMA, time-varying regression models, multivariate ARIMA, 
and dynamic factor analysis are all special cases of DYMIMIC model (Watson and 
Engle 1983).

Engle and Watson (1981) and Watson and Engle (1983) propose an estimation 
approach based on the scoring algorithm and the Kalman filter. The key statisti-

5See also Watson and Kraft (1984) and Engle et al. (1985).
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cal assumption required is multivariate normality and mutual independence of the 
measurement and state error vectors (1.14). Note that (1.13) can be re-written as

Yt = ol (</>xt_i +  7 zt +  v t) +  f3zt +  et 

=  a 0 x t_i +  (c*7  +  (3) z t +  ( a v t +  et) ,

which now has composite error structure. If we furthermore let a v t +  et =  u t the 
model can be written in terms of innovations as

u* =  —a</>xt_! -  (cry +  (3) z t (1.15)

Denoting the contemporaneous covariance matrix of the innovations E[utu't] =  
H t , it follows that the log-likelihood function of the DYMIMIC model is of the form

InL t {0) =  - | l n | H t | -  i ^ u ' f H r V  (1.16)
t= 1

The model parameters (0) can be estimated recursively, using the Kalman filter, 
where the recursion is given by

0k+1 =  0 k + 0k (1.17)
otf

Engle and Watson (1981) show that Kahnannilerjalgorithm can be applied to 
the DYMIMIC model when the initial state xo ls^reated as either an unknown 
constant (fixed) or a random variable. The former assumption allows estimation of 
the models containing non-stationary variables.

While relatively simple to implement, the scoring algorithm might be slow to 
converge thus Watson and Engle (1983) propose an additional estimation proce
dure based on the expectation maximisation (EM) algorithm. The EM algorithm 
is particularly convenient for estimation of latent variable models because the un
known values of the latent variables can be treated as missing observations. In the 
DYMIMIC context, Watson and Engle (1983) implement the two steps of the EM 
algorithm through a multivariate regression (maximisation step) and by calculation 
of sample moments of the smoothed values of x t (estimation step). However, un
like the scoring algorithm, the EM algorithm does not produce an estimate of the 
information matrix. Another problem with the EM algorithm is in its insensitivity 
to underidentification, thus Watson and Engle (1983) suggest that EM and scoring 
algorithms should be combined.

7Hence we have H t = E [(-a</>xt_i -  (cry + (3) z t) ( - a 0 x t_i -  (ay  + j3) zt)'].
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D ynam ic shock-error m odel

Dynamic shock-error (DSE) model is a single equation version of an autoregressive 
distributed lag model with latent variables (Aigner et al. 1984, Ghosh 1989, Ter- 
ceiro Lomba 1990). In the DSE model both endogenous and exogenous variables 
are measured with error thus a static version of the DSE model is a special case of 
the SEM model with only one structural equation. Furthermore, the DSE’s mea
surement model for the latent variables allows one observable indicator per latent 
variable with unit loadings. The DSE model is specified with a single structural 
equation and two measurement equations as

Vt — ^
i=1 i=l

yt = Vt + et 

%t — +  St

(1.18)

(1.19)

( 1.20)

where r)t and are scalars. Therefore, (1.18) is a single equation autoregressive 
distributed lag model in latent variables. The variables rjt and are not observed, 
instead yt and x t are observed with error in the form of (1.19) and (1 .20).

Ghosh (1989) proposed an estimation procedure for the DSE model (1.18) based 
on the state-space approach of Engle and Watson (1981) and Watson and Engle 
(1983). Ghosh (1989) and Terceiro Lomba (1990) suggest a maximum likelihood 
approach to estimation of the DSE model, which would be possible if the the model 
could be written in the state-space form (SSF).

Similarly to the assumptions required for estimation of the DYMIMIC models, 
Ghosh (1989) assumes normal and mutually independent errors in the DSE model, 
i.e.,

i
 ̂to Ct£t

i

/ 0 0 \
E £tCt £2 £tSt = 0 0

SfEt . V 0 0 °8 J
The DSE model thus allows for the measurement error in the exogenous variables, 

hence latent exogenous variables are permitted in the model unlike in the DYMIMIC 
model of Engle and Watson (1981). However, the Ghosh (1989) model is univariate 
and each latent variable is measured by a single observable indicator.

Nonparam etric principal com ponents

Bai and Ng (2002) consider estimation of the number of the unobserved factors with 
dependent data with a focus on applications in finance, which extends the methods 
introduced by Stock and Watson (1998) and Forni et al. (2000). They analyse a
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simple linear factor model using principal components estimator in a “ panel” with 
% =  1 ,2 , . . . ,  N  cross-section units (or variables) observed over t = 1 , 2 , . . . ,  T  time 
periods. The model is given as

(  X i t  ^ (  A n  A12 • A ir ^ ( i u \ ( 6U \
X2t

—
A21 A22 • A2r &  t

+
t

\  X Nt \  Ajvi AjV2 • ' A Nr  / \  €rt  ) ^ $Nt  )
where x ^ s  are observed while Aij ,  £it and 5it are unobserved. In full-sample notation 
(1.21 ) can be written as

X  =  SA  +  E, (1.22)

where X  and E  are T  x TV, E  is T  x r , and A is r  x TV. This notation and terminology is 
somewhat unorthodox since TV denotes either the number of variables or the number 
of cross-section units. However, the confusion between cross-sections and variables 
lessens in the typical finance applications where e.g. asset returns of individual firms 
might be considered either as observations on individuals (e.g. different firms each 
with specific asset return) or as variables (e.g. different asset returns coming from 
specific firms), and the stock market as a whole can be seen as driven by a smaller 
number of unobserved factors that account for much of the variability in numerous 
observed asset returns. This nevertheless does not cover the classical panel case with 
both multiple individuals and multiple variables observed over a given time period.

The methods proposed by Bai and Ng (2002) typically cover multivariate time 
series models where TV denotes the number of variables, while both multiple indi
viduals and multiple variables across time are not allowed, thus the model (1.21) 
cannot be considered a classical panel model. Note, however that multiple variables 
and multiple individuals can considered if the time dimension is absent in which 
case TV would denote the number of variables (e.g. types of goods) and T  would 
denote the number of individuals (e.g. households).

Nevertheless, an important distinction can be drawn between classical factor 
analysis where either TV or T  must be fixed and the model (1.21) which allows both 
TV and T  —► oo.

The assumption in (1.21) is that the dimension r of the latent vector £ =  
(£it, £21> • • • > fri) does not depend on TV or T . There is no restriction regarding serial 
and cross-sectional dependence and homoscedasticity of the errors is not assumed. 
The degree dependence in the errors (idiosyncratic component) is however limited 
and in its presence the model will have an ‘ approximate factor structure’.

The key contribution of these methods relates to the situation when both TV and 
T  are allowed to go to infinity in which case the classical eigenvalue and maximum

17



likelihood estimation methods tend to produce an estimate of r  that increases with 
N j  while the true r might be fixed in the population.

Bai and Ng (2002) estimate the model (1.21) using the asymptotic principal 
component method, which minimises the criterion function

V(k,  A, F*) =  £  £  ( X« -  A? ' ^ ) 2 . (L23)
i—1 t= 1

subject to the constraint l /N A k'Ak =  Ik or the constraint l/T E ^ E ^ T  =  Ik, where 
k < min{N, T }  is an arbitrary integer. Bai and Ng (2002) proposed several non- 
parametric information criteria for estimating k on the basis of the principal com
ponents solution.

Bai (2003) developed an inferential framework for the asymptotic analysis of 
the factor model (1.21) suitable for the cases when both N  and T  are large and 
when nether N  nor T  are fixed. In addition, Bai (2003) allows non-diagonal error 
covariance matrix and serial dependence in the latent variables, which can be treated 
as either fixed or random, thus extending the work of Chamberlain and Rothschild 
(1983), Connor and Korajzcyk (1993), and Forni et al. (2000).

The contribution of the Bai (2003) is the asymptotic distribution of both the fac
tors and the factor loadings. In both cases it turns out that the asymptotic distribu
tion is normal, and to obtain this result a specific linear transformation of factors and 
factor loadings was applied. In particular if we let H =  (A'A /N ) ^E 'S  j T^j V nt , 
where E  denotes an estimate of the factor matrix given by the y/T  times the eigen
vectors corresponding to the r largest eigenvalues of the matrix X X 7, it follows that 
plim ( S ' E / T )  =  Q for an invertible matrix Q. Subsequently, the asymptotic

T,N—yoo V /  /

distribution of the linear functions y/T  ( s t — H 7E ^  and y/T  ^A t — H 7At  ̂ will be 
multivariate normal.

The methods suggested by Bai and Ng (2002) and Bai (2003) follow a recent 
tend in the financial econometrics literature on latent variable models for dependent 
data, however they are limited to static factor analytic models and non-parametric 
principal components estimation methods. Thus, the applicability of these methods 
to more complex dynamic models is only possibly by using the estimated factor 
scores. This approach can extended to models for the non-stationary data (Bai 
2004), though the same limitations regarding more complex dynamic models still 
apply.

SEM  m odels for tim e series

Structural equation models with latent variables are widely used in longitudinal 
analysis with repeated-measurement data and standard structural equation soft
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ware for covariance structure analysis can be used to fit such models (Joreskog and 
Sorbom 1977, Jansen and Oud 1995). Longitudinal studies usually do not treat 
repeated measurement as stochastic processes (i.e. time series) and commonly focus 
on static models thereby avoiding statistical complications arising from modelling 
dynamic structure of the data. A as an example of a typical longitudinal model 
consider a sample of i =  1 , . . . ,  N  individuals observed at two time points. Suppose 
yit is brand preference and x it is personal income where we wish to estimate a simple 
model of product-brand loyalty of the form

Vi2 = Oi +  (3yn +  72*2, (1.24)

where current brand preference {yi2) is affected by personal income and previous 
brand preference. This model does not treat brand preference as a stochastic process 
having specific statistical properties, rather it hypothesises that current preference 
toward a particular product brand might depend on the personal income but also it 
can be affected by person’s past brand preference.

In the simplest case with no measurement error and y and x  being metrical 
variables we would typically estimate the coefficient vector 0 — (a, /?,7 ) by ordinary 
least squares as 0 =  (X ' X ) ~ 1X ' y 2, where X  =  ( y 1 : ®2), Vi =  (Vn, • •. ,VniY, 
x 2 = {x\2 , . . . ,  x n 2)', and Y 2 = {y 12, • • •, yw)'-  When T  > 2 repeated measurements 
are available on the same N  individuals, the usual way to arrange the data would be 
into an N  x T  matrix X  = (y 1 : • • • : x t ), thus X ' X  ~ T  x T .  On the other hand, 
in econometric literature on panel data analysis it is common to stack all individuals 
into an N  x T  vector Z  = {yx : • • • : x t )', which gives Z ' Z  ~  1 x 1, a scalar. The 
usual approach in econometrics literature is to use p  repeated, lagged, values of Z  
arranged as

 ̂ yn — -  \

Vi2 yn —

Vis y%2 Vi 1
Ui4 Vi3 Vi 2
Vji — —

Vj2 Vji —

Vj 3 Vj2 Vji
\  2/?4 Vjs to

where i and j  are two different individuals (we assume N  > T  individuals are in 
the sample, but show matrices for N  = 2 to simplify the exposition). Hence, for 
p = 2 it follows that W ' W  ~  2 x 2 .  Note that ( W 'W ) ~ 1W 'w ,  where w  is the first 
column of W ,  is the vector of OLS coefficients /3i, /32, and /% from the autoregression
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Vit = PiVit +  PiVit-i +  A  2/it-2 +  sit. On the contrary, if we arranged the data (for 
individuals i and j )  as

then computing ( W  ' W  ) 1W  'w* will not produce OLS estimates of the autore-

W *  matrix can be termed as “un-stacked” or “wide format” , hence W  would be 
the matrix with “stacked” or “long format” data.

The “wide format” is a natural way to arrange independent data where each 
column corresponds to different variable, as it would be the case with cross-section 
data. Once the time dimension is introduced, the “wide format” is still a natural 
if temporal dynamics are ignored and hence if the observations taken on the same 
variable in different points in time are treated as different (independent) variables. 
Structural equation models such as those considered by Joreskog and Sorbom (1977) 
require an empirical estimate of the covariance matrix such as (N  — l ) -1^  fW  , 
when N  > T,  though the empirical literature is inconclusive regarding SEM esti
mation when N  = 1. In such case we can still compute (T — 1 but as
remarked above, generally this will not lead to identical estimates.

Nevertheless, a number of empirical papers attempted to use the covariance 
structure analysis as implemented in standard SEM software packages such as LIS
REL to model pure time series data (N  =  1) using (T — 1 )~l W ' W  in place of the 
empirical covariance matrix and using a fitting function such as Wishart likelihood. 
MacCallum and Ashby (1986) suggested using the SEM approach to fit time series 
models to cross-lagged (quasi) covariance matrix with data matrix arranged as

W * Vil Vi2 Vi3
Vji Uj2 Vj3

gressive coefficients computed above by (W ' W ) 1W fw. The data structure of the

\
V2 y i
2/3 2/2 2/1

\  2/t 2/t-i VT-2 

which after deleting rows with missing values becomes

 ̂ 2/3 2/2 2/i ^
2/4 2/3 2/2

Y =  2/5 2/4 2/3 (1.25)

\  2/r 2/t- i 2/T—2
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Multiple time series and lags >  2 can be arranged as a straightforward extension of 
(1.25). Using (1.25) to compute an empirical covariance matrix gives

/  T
f E r f

t= 3

T
E  y t y t - i
t = 3

T
E  y t V t - 2
t= 3

T
E  y t y t - i
t= 3

T - l

E  r f
t = 2

T - l
E  y t y t - i
t = 2

T
i E  y t U t - 2
\  t = 3

T - l
E  y t y t - i
t = 2

T —2

E j ?
t= 1

which will converge to a Toeplitz matrix as T  —► oo for stationary time series 
yt , f =  1, . . . , T .

Molenaar (1985) and Molenaar et al. (1992) considered estimation of dynamic 
factor models using empirical matrices such as j ^ Y ' Y .  Hamaker et al. (2002) and 
Hamaker et al. (2003) investigated this approach to fitting univariate ARMA models 
and reported simulation results which implies SEM estimates differs from maximum 
likelihood estimates for ARMA(p,q) models with q > 0. These approaches are 
similar to the frequency-domain methods of Geweke (1977), Geweke and Singleton 
(1981), and Singleton (1980) and differ in terms of whether the data is pre-whitened 
using Fourier transform or not before the covariance matrix is computed. Further 
review of these and similar approaches is given in Oud (2001) and Oud (2004).

1.3 Conclusion and aims for further research

The literature on dynamic latent variable models so far considered several spe
cial cases of what could be seen as a dynamic generalisation of the static SEM 
model. Simple static factor analysis models can be estimated under certain re
strictive assumptions about the errors using static SEM methods (Amemiya and 
Anderson 1990, Anderson and Amemiya 1988, Browne 1984, Shapiro 1983, Shapiro 
1984, Shapiro and Brown 1987).

Dynamic models in the empirical literature are primarily limited to dynamic 
factor analysis models (Chamberlain and Rothschild 1983, Connor and Korajzcyk 
1993, Dhrymes et al. 1984, Donald 1997, Forni et al. 2000, Forni and Reichlin 1998, 
Geweke 1977, Geweke and Singleton 1981, Singleton 1980), or simple static factor 
analysis models estimated by principal components methods (Bai and Ng 2002, Bai 
2003, Bai 2004).

Generalisations of the SEM models to dynamic structural models are gener
ally limited to dynamic version of the Joreskog and Goldberger (1975) MIMIC 
model. The dynamic MIMIC model (DYMIMIC) is a structural equation model 
with exogenous variables, however the dynamics and measurement errors are lim
ited to the endogenous variables (Engle et al. 1985, Engle and Watson 1981, Stock
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and Watson 1989, Stock and Watson 1998, Watson and Engle 1983, Watson and 
Kraft 1984).

Longitudinal models or models for repeated measurement were considered in the 
dynamic SEM context by McArdle (1988) and McArdle (2001). A similar model was 
proposed by Dunson (2003) for categorical variables. These models are, however, 
quasi-dynamic since they treat repeated measures on the same variable as distinct 
variables and thus formulate standard SEM models with repeatedly measured vari
ables.

The extensions that consider lagged exogenous latent variables or exogenous vari
able measured with errors along with the lagged endogenous latent variables were 
focused on “dynamic shock-error” models and dynamic errors-in-variables models, 
which are essentially single equation (univariate) models with univariate measure
ment models, i.e. the unobserved variables are proxied by a single indicator variable 
(Bloch 1989, Deistler and Anderson 1989, Ghosh 1989, Terceiro Lomba 1990). The 
approach taken by Ghosh (1989) and Terceiro Lomba (1990) to estimation of the 
dynamic shock-error models is based on their re-writing in the state-space form. 
However, even with the simplest univariate models the state-space form is difficult 
to obtain. Ghosh (1989) solves this problem by introducing an additional autore
gressive equation for the exogenous latent variable. On the other hand, Terceiro 
Lomba (1990) considers models with contemporaneous exogenous latent variables 
hence avoiding the problem with lagged exogenous variables which cannot be easily 
written in the state-space form.

The existing literature is scarce in respect to dynamic structural equation model 
with latent endogenous and latent exogenous variables, multiple simultaneous equa
tions, and measurement models for the latent variables with multiple indicators. 
Such models would present a dynamic generalisation of the static multi-indicator 
SEM model, hence, theoretical and practical consideration of dynamic SEM models 
would be an important extension of the literature.

In summary, we can identify three main problem areas where further research is 
needed.
Unifying theoretical framework Different traditions in the literature deal with vari
ous special cases of dynamic structural equation models, such as errors-in-variables, 
state-space, and latent variable models. There is a notable divergence in the liter
ature and lack of cross-referencing. Consequently, methods that focus on errors-in- 
variables, latent variable models, or state-space models appear to be concerned with 
different models rather then special cases of dynamic structural equation models. 
Feasible theoretical analysis Standard theoretical and asymptotic analysis is virtually 
intractable using classical approaches and methods; Consequently, basic results such 
as the analytic derivatives, the Hessian matrix, or the Cramer-Rao lower bound are
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difficult or impossible to obtain for complex multivariate models such as DSEM 
using standard methods.
Software implementation The currently available SEM software packages such as 
LISREL, AMOS, M-Plus, Mx, and EQS were designed for cross-sectional models 
and independent data. While specification of dynamic models in these packages is 
possible, it typically requires specifying the modelled relationship for each time point 
and subsequently imposing equality restrictions across all time points. Moreover, 
with the exception of one package (Mx), dynamic models can be estimated only 
with panel data (time series cross-section) but not with pure time series data. In 
addition, the Mx package also requires equality restrictions and does not make use 
of analytical derivatives in the estimation. These packages also require very good 
starting values for estimation; there are currently no specific methods for obtaining 
starting values in dynamic models, which is an additional obstacle for empirical 
implementation.
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1.4 Outline of the thesis

The thesis focuses on estimation of dynamic structural (i.e. simultaneous) equation 
models in which some or all variables might be unobservable (latent) or measured 
with error. Moreover, we consider the situation where latent variables can be mea
sured with multiple observable indicators and where lagged values of latent variables 
might be included in the model. This situation leads to a dynamic structural equa
tion model (DSEM), which can be viewed as dynamic version of the structural 
equation model (SEM). Our focus is on obtaining coefficient estimates using both 
parametric and non-parametric methods. Post-estimation diagnostics and measures 
of overall fit are beyond the scope of the present work and are thus left for further 
research.

Taking the mismeasurement problem into account aims at reducing or elimi
nating the errors-in-variables bias and hence at minimising the chance of obtaining 
incorrect coefficient estimates. Furthermore, such methods can be used to improve 
measurement of latent variables and to obtain more accurate forecasts.

The literature on dynamic latent variable models can be divided into several 
different traditions emerging from fields such as econometrics, psychometrics, and 
engineering. Certain special cases of dynamic structural equation models, such as 
dynamic factor model, have been extensively analysed in the time series literature. 
There is a close link between these methods and the unobservable states models 
estimated in the state-space form. In chapter §1 we give an overview of the literature 
by addressing the key developments and pointing out to the areas requiring further 
research.

Latent variable models have been traditionally analysed as errors-in-variable 
models using instrumental variables methods in the mainstream econometrics liter
ature, as covariance structure models in the psychometrics literature, and as state 
space models in both engineering and econometrics literature. Chapter §2 addresses 
the a lack of a unifying theoretical framework for dynamic models with latent vari
ables and suggests such framework based on DSEM model, which can be shown 
to encompass numerous specific models considered in the literature. The approach 
taken here uses the idea of a Gaussian vector likelihood and specifies the theoreti
cal covariance structure implied by the DSEM model for a multivariate time series 
process that started at t =  1 and was observed till t  = T. It is shown that differ
ent approaches to errors-in-variables and latent variables can be viewed as different 
forms of the DSEM model, hence giving rise to specific multivariate likelihoods, 
whose parametrisations can be compared within a unifying statistical framework.

Chapter §3 considers maximum likelihood estimation of DSEM models in mul
tivariate Gaussian context for the N  > T  (panel) case and gives the analytical ex
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pressions for the score and the Hessian matrix along with a closed-form (theoretical) 
covariance matrix. The closed-form covariance matrix is obtained by making cer
tain assumptions about the pre-sample values, which requires large-T asymptotics. 
Some of the existing theoretical results for the SEM model, namely the analyti
cal first derivatives, were implemented in SEM software packages such as LISREL, 
which can be used to estimate certain DSEM models for panel data with relatively 
small T.

The analytical results obtained in chapter §3 differ from the existing results in 
two respects. Firstly, the model is formulated for the time series process, which 
eliminates the necessity to specify a separate SEM model for each time point and 
then impose cross-equation restrictions across all time points, as it is necessary in 
LISREL and similar SEM software packages. Secondly, the analytical results are 
obtained using modern matrix calculus methods based on zero-one matrices that 
enable derivation of fully vectorised expressions for the first and second derivatives. 
Moreover, the obtained score vectors contain derivatives for individual DSEM coef
ficients thus no equality or symmetry restrictions need to be imposed on the score 
vector. Fully vectorised expressions make standard asymptotic analysis straightfor
ward and facilitate computer implementation in modern matrix languages such as 
S, R, or Ox.

Chapter §4 considers maximum likelihood estimation of DSEM models with pure 
time series data using a “raw data” maximum likelihood (RD-ML). In this chapter 
we obtain the closed-form expressions for the likelihood and analytical derivatives 
of the pure time series DSEM model thus providing the analytical inputs for the 
RD-ML estimation. Moreover, we outline some S code for estimation of such models 
using quasi-Newton optimisers in S-Plus and R environments.

In chapter §5 we propose non-parametric methods for estimation of DSEM mod
els suitable for both pure time series and panel data. Generalised instrumental 
variables (GIVE) and full information instrumental variable (FIVE) methods are 
considered for the estimation of DSEM models in the “observed form” , i.e., as errors- 
in-variable models with composite error terms.

These methods are specific in terms of model specification and choice of instru
ments, which are here interdependent. Namely, we specify the latent variable model 
as a DSEM model in which measurement errors need to satisfy certain statistical 
criteria. These criteria are similar to those in the classical factor analysis and are 
based on the validity of observable indicators as measures of the unobservable (la
tent) variables. Valid measurement models should have uncorrelated measurement 
errors, which can be generalised to the time series context by further requiring zero 
lagged covariances of the measurement errors. We show that basic specification of 
the DSEM model implies lags of the observable indicators as potentially valid instru
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ments. Empirical validity of such instruments can be tested using standard validity 
of instruments tests. Instrumental variables methods have a well known advantage 
of not imposing any distributional assumptions on the data. They also provide non
iterative estimators that are very easy to compute using standard general purpose 
statistical software. An additional purpose of these methods is in obtaining good 
starting values for maximum likelihood estimation using standard SEM software 
packages such as LISREL.

In chapter §6 the above methods are applied to real-data empirical examples with 
two main aims. The first aim is to demonstrate how DSEM models can be estimated 
using standard econometric and SEM software packages when starting values are 
obtained using the methods suggested in chapter §5. Both fixed and random effects 
dynamic panel models are considered in the context of specific empirical applications: 
a model of financial development and economic growth and a micro-consumption 
model. The second aim is to investigate the limits of the existing SEM software on 
data size and model complexity in estimation of empirical DSEM models.

DSEM models can be easily estimated using GIVE/FIVE methods with stan
dard econometric software packages, which holds for both pure time series and panel 
models and for very large data sets. Moreover, these methods provide estimates that 
can be used as starting values in standard SEM software packages. Using the LIS
REL package, we show that even for relatively simple DSEM models convergence 
cannot be achieved without starting values that are very close to the maximum 
likelihood estimates. Nevertheless, we show that the starting values obtained with 
GIVE/FIVE methods can be successfully used as starting values in LISREL esti
mation.

The ability of SEM software to handle panels with large T  is, however, very 
limited. Along with the need to specify the model for each time point and subse
quently impose equality constraints on all parameters across T  time points, we also 
report computing difficulties associated even with relatively small T. The largest 
model we estimate using LISREL in combination with GIVE/FIVE starting values 
uses a panel data set with N  =  5152 and T  — 13. Using these data, we estimate 
a DSEM model with three structural equations including dynamics of up to five 
lags, with 37 coefficients, estimated as 13 x 37 coefficients with equality constraints 
across T  = 13 time periods, which might be one of the largest models estimated with 
LISREL. It seems unlikely that similar models could be estimated for much larger 
T  using standard SEM software such as LISREL. This suggests two limitations of 
the currently available SEM software for estimation of panel DSEM models. First 
is dependence on externally provided starting values. The second is the “small T  
problem”, namely, values of T  in the vicinity of 13 (our largest estimated model) are 
too small to satisfy the large-T asymptotics we needed to obtain the close-form the-
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oretical covariance matrix. While it is plausible that somewhat larger panels might 
still be estimated using the available software, this will be unlikely with sufficiently 
large T  needed to justify the asymptotic assumptions.
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Chapter 2 

Statistical framework

2.1 Introduction

The literature on dynamic latent variable models can be broadly classified into three 
traditions. The first tradition emerged from econometrics literature on the errors-in- 
variable models and regression with measurement error (Cheng and Van Ness 1999, 
Wansbeek and Meijer 2000). The second one is closely linked to covariance structure 
methods and generalised method of moments, streaming from the psychometrics and 
multivariate statistics (Joreskog 1981, Bartholomew and Knott 1999, Skrondal and 
Rabe-Hesketh 2004). Finally, the third tradition based on estimation of the models 
written in “state-space form” emerged from control engineering and was adopted in 
econometrics owing to the suitability of the Kalman filter algorithm for estimation of 
various econometric models written in the “ state space form” (Harvey 1989, Durbin 
and Koopman 2001).

This threefold and apparently diverging developments did not facilitate advance 
of dynamic latent variable models matching the expanding literature on static latent 
variable models (see e.g. Skrondal and Rabe-Hesketh (2004) for a comprehensive 
review). Consequently, specific empirical applications became linked with particular 
estimation methods and a lack of a more general framework hindered estimation of 
more elaborate empirical models. For example, the DYMIMIC model of Engle et 
al. (1985) permits dynamics in the endogenous latent variables but does not allow 
exogenous latent variables, which facilitated a number of empirical applications in 
which substantive problems had to be limited to static, perfectly observable exoge
nous variables.

Aside of seemingly diverging and specific directions in the development of partic
ular estimation methods, a notable lack of cross-referencing among the three main 
traditions can be observed in different streams of literature. In summary, an en
compassing statistical framework that unifies different traditions in development of 
estimation methods would facilitate both developments of estimation methods and 
implementation of more general empirical models.
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We suggest a unifying statistical framework for dynamic latent variable models 
based on the general dynamic structural or simultaneous equation model (DSEM). 
DSEM model is general in the sense it subsumes many dynamic (and static) linear 
models under a common parametric form.

We develop a statistical framework by making distributional assumptions about 
the exogenous components and the measurement errors in the general DSEM model. 
We then show how the general model can be formulated following the three main 
traditions and compare the models resulting from such formulations by referring to 
their stochastic properties. In particular, we show that different approaches do not 
necessarily result in identical reparametrisation of the general model, rather some 
additional or different statistical assumptions need to be made to make different 
models equivalent. Finally, we suggest that some forms are suitable for particular 
estimation methods and briefly discuss the implications for the development of such 
methods.

2.2 General dynamic structural equation m odel 
(DSEM )

In this section we consider a dynamic simultaneous equation model with latent 
variables (DSEM). A DSEM(p, q) model at any time period t using the “ t-notation” 
as

r,t =  ^  r £ t - j  +  <t (2-1)
3 = 0  j = 0

V t  — AyTIt  +  £ t  (2 -2 )

Xt =  Ax£t +  &t (2*3)

where r)t =  (^(1), r ) f \  . . . ,  ?yt(m))' and £t =  (ft(1),&(2), . . . ,  &(9))' are vectors of possibly 
unobserved (latent) variables, y t = . • •, y\n^Y and x t = (x x f \ . . . ,  x[k^)'
are vectors of observable variables, and B j  (m x m ), r j  (m x g ), Ax (k x g ), and Ay 
(n x m) are coefficient matrices. The contemporaneous and simultaneous coefficients 
are in B 0, and jTo, while B x, B 2, . . . ,  B p, and JTi, r 2, . . . ,  F q contain coefficients 
of the lagged variables.

The DSEM model (2.1)-(2.3) can be viewed either as a dynamic generalisation 
of the static structural equation model with latent variables (SEM) or a generalised 
dynamic simultaneous equation model with unobservable variables. The static SEM 
(LISREL) model (Joreskog 1970, Joreskog 1981) is thus a special case of (2.1)- 
(2.3) with B j = T j  =  0, for j  > 0. Moreover, the general DSEM encompasses 
virtually all static or dynamic linear models, which can be specified by imposing zero
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restrictions on its parameter matrices. Table 2.1 lists the most common multivariate 
models and shows how they can be specified as special (restricted) cases of the 
general DSEM model (2.1)-(2.3).

________________ Table 2.1: Special cases of the DSEM model________________
Model Restrictions
Multivariate regression0

VAR(p)°
VMA(g)°
VARMA (p, q)a 
Factor analysis6 
Dynamic factor analysis0 
SEM (LISREL)0 
DYMIMICd
Dynamic shock-error model6

B j =  0  (Vj), = 0 {j > 0), A y = A x = 7,
0 £ = 0 s =  0

A y = 7, A x = 71,- = 0 £ = 0 5 = 0  (Vj)
B j  = 0  Vj, A y = 7, A x = & = 0 £ = 0 5 = 0  
To =  A y = 7, Bo =  A x = 0 £ =  0 s  = & = 0 
B j = 0  (Vj), T j = 0  (Vj), A x =  0 s  = V  = 0  
r j  = 0  (Vi), A x =  0 s  = 0 
B j = 0  ( j>  0 ), = 0 ( j>  0)
A x =  7, 0 s  — 0
B j  (3j, T'j Ay 1, A x 1, “0, 
e £ = 9 ,0 8  = 5

a Hamilton (1994), Giannini (1992).
6 Bartholomew and Knott (1999), Skrondal and Rabe-Hesketh (2004). 
c Geweke (1977), Geweke and Singleton (1981), Engle and Watson (1981). 
d Engle et al. (1985), Watson and Engle (1983). 
e Ghosh (1989), Terceiro Lomba (1990).

The idea behind the SEM model was to combine multiple-indicator factor-analytic 
measurement model for the latent variables with a structural equation model thus al
lowing for the measurement error in all variables in the structural model (Joreskog 
1970, Joreskog 1981, Bartholomew and Knott 1999, Skrondal and Rabe-Hesketh 
2004). The static SEM model can be written as a special case of (2.1)—(2.3), i.e.,

Vt — B 0rjt +  To£t +  Ct (2-4)

Vt =  AyVt + et (2.5)

x t =  +  (2 .6)

Since both rjt and £t are unobservable some reduction or elimination of the unob
servables would be necessary. An econometric interpretation would consider (2.4) a 
simultaneous equation model in the structural form (see e.g. Judge et al. (1988)).
Here, by “ structural” we refer to the model with endogenous variables on both sides
of the equation as opposite to the “ reduced” model, which has endogenous vari
ables only on the left-hand side. We can easily obtain the reduced form of (2.4) as1 

rjt = ( I  — B 0) -1 ( r 0£t +  £t), which can be further substituted into (2.5) to obtain 
the “ reduced ” form of the model

xWe assume that I  — B o is of full rank, hence (I  — B o)-1 exists.
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Vt — Ay (I  — Bo) 1 (ro£t +  £f) +  et 

=  A x£t +  St,

(2.7)

(2 .8)

with has only observable variables on the left-hand side. This enables derivation of 
the closed-form covariance matrix of W{ =  (y't : x [)' in terms of the model param
eters. For instance, if Wi ~  N  (fjt, 27), it follows that (T — 1 )S  ~  W (T  — 1,17), 
where S  =  5Z*=i w iw i *s the empirical covariance matrix, and W  denotes the
W ishart distribution .2

However, the same approach cannot be straightforwardly applied to the DSEM 
model (2.1)-(2.3), which contains lagged latent variables. Namely, the reduction 
from (2.4)-(2.6) to (2.7)-(2.8) would not eliminate the lagged values of rjt .

The likelihood function for a sample of T  observations generated by a dynamic 
model specified for a typical time point t (i.e. in “ ^-notation), such as (2.1)—(2.3), 
can be obtained recursively by sequential conditioning (Hamilton 1994, p. 118). 
In this approach we would write down the probability density function of the first 
sample observation (t = 1) conditional on the initial r = max(p,q) observations 
and then obtain the density for the second sample observation (t — 2 ), conditional 
on the the first, etc. until the last observation (t = T). The likelihood function 
would then be obtained as a product of the T  sequentially derived conditional den
sities, assuming conditional independence of the successive observations. However, 
this approach is not feasible for complex multivariate dynamic models with latent 
variables as sequential conditioning soon becomes intractable.

An alternative approach leading to an equivalent expression for the likelihood 
function would be to assume that the observed sample came from a T-variate (e.g. 
Gaussian) distribution, having multivariate density function, from which the sample 
likelihood immediately follows (Hamilton 1994, p. 119). This approach might not 
be easily applicable to dynamic latent variable models for which we generally wish 
to obtain the likelihood in separated form, i.e., with all unknown parameters placed 
in the covariance matrix, separated from the observed data vectors. W ithout such

2 The Wishart distribution has the likelihood function of the form

JW ) p

7 r i r ( r - i ) 2 i ( T ( n + f e ) )  | 2 7 | i ( " + f e )  f ]  p  ( T + i ~ j )
j=i V 7

where T is the sample size; see e.g. Anderson (1984). When a closed form of the model-implied 
covariance matrix £  is available, assuming the model is identified or overidentified and the data is 
multinormal, it is straightforward to obtain the maximum likelihood estimates of the parameters 
by maximising the logarithm of the Wishart likelihood. In the later case, a measure of the overall 
fit can be obtained as -2 times the Wishart log likelihood, which is asymptotically x 2 distributed; 
see e.g. Amemiya and Anderson (1990).
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separation we would be left with T  “missing” observations on the latent vectors rjt 
and £t instead of only their unknown second moment matrices.

We can solve this problem by specifying a DSEM model (2.1)-(2.3) for the time 
series process that started at time t = 1 and was observed till time t  = T  using a 
“ T-notation” defined in Table 2.2. The vector {*}^ can then be taken as a single 
realization from a T-variate distribution.

Table 2.2: T-notation
Symbol Definition Dimension

H t v e c f a j 'f  = (*?!> • • ? Vt ) m T  x 1
Z t vec{Ct}[ = (Cl,-- ,C r)# m T  x 1

/ji v e c { £ j[  = (Cl), • • g T x  1

Y t vec {ytYi — (2/1, - * , Vt ) n T  x 1
E t vec {et}i = fal,-- , e't) n T  x 1
X t vec { x t}i = (* ! , . . , x'T) kT  x 1
A t vec {<5t}^ = ((51,.. ,# t )' kT  x 1

Working with the model in T-notation will enable us to “ reduce” the model 
(2.1)-(2.3) and obtain a closed form covariance structure and hence a closed form 
likelihood of the general DSEM model.

We make the following simplifying assumption about the pre-sample (initial) 
observations.

A ssum ption 2.2.0.1 (Initial observations) We assume that r =  max(p, q) pre
sample observations are equal to their expectation, i.e., =  77j(_r+1) =  ••• =

Vio 0  and 0 .

Anderson (1971) suggested that such treatment of the pre-sample (initial) values 
allows considerable simplification of the covariance structure and gradients of the 
Gaussian log-likelihood. More recently, Turkington (2002) showed that making such 
assumption allows more tractable mathematical treatment of complex multivariate 
models by using the shifting and zero-one matrices. In addition, we require covari
ance stationarity as follows.

A ssum ption 2.2.0.2 (Covariance stationarity) The observable and latent vari
ables are mean (or trend) stationary and covariance stationary.

Letting s =  . . . ,  — 1,0,1, . . . ,  we require the following

1. E  [„t] =  E  KJ =  0  =► E  [yt] =  E  [xt] =  0 ?

3 The cases with deterministic trend can be incorporated in the present framework by considering 
detrended variables, e.g. if z t contains deterministic trend, we can define z t = z t — t, which is 
trend-stationary.
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2. The structural equation (2.1) is stable, and the roots of the equations

I - X B r -  A2 B 2 ---------- ApjBp| =  0 and \I  -  A A  -  A2T 2 ---------- \ « r q\ = 0

By Assumption 2 .2 .0.2 it follows that the observable variables generated by the latent 
variables are also covariance stationary, i.e., Vs, k G Z, E  [yty !t_s ] =  E  [yty't_k] , 
E  =  E  , and E  [ytx't_g] =  E  • Next> by Assumption
2 .2 .0.1 the pre-sample (initial) observations are zero thus we can ignore them and 
write the DSEM model (2.1)-(2.3) for the time series process that started at time 
t = 1 and was observed until t = T  in the “ T-notation” as {q t}^  =  (rj1, . . .  ,?7T), 
or

and similarly, =  (£1?. . . ,  £T) and {Ct\i = (Ci> • • •»Cr)- The structural equa
tion (2 .1) can thus be written for the time series process as

using the vec operator that stacks the e x /  matrix Q into a n e / x  1 vector vec Q,

are greater then one in absolute value.

3. E  [& £_,] =  $s, so that $ - s = &s.

(2.9)

V Q
{»»«}[ =  Y s B i fottf S 't + E  r > S 't + {<*}T  

1 ’ (2.10)

where we made use of a T  x T  shifting matrix S t  given by

/  0 0 

1 0 

S t  = 0 1

0 o \  
0 0

0 0 (2 .11)

\  0 ••• 0 1 0 /

By definition, we take =  I t - The structural equation (2.10) can be vectorised

i.e., vecQ  =  . . . ,  q 'f) ' where Q = (qq, . . . ,  q^j. Therefore, from (2.10) we can
obtain the structural equation in the reduced form as



where

E  S3t®B. 
3=0

and hence

(S?. «8> Bo) +  ( S lT ® B t) +  .

(  B„ 0 0 0 0 ■

B \  Bq 0

0  0  ■

B\  Bo 0

.. +  {SPT <g> B p) 

0  \

0  

0  

00 B p • • • B \ B q 

 ̂ 0 ■ • • 0  B p • • • I?i j

(  Borjn ^
X ^ = 0  B 3 Tl ( 2 - j )

X ]j= 0  B  f f l i p + l - j )

2 2  j =O B j 7l ( p + 2 - j )

\  T!j=oB jV(T-j) )

SJT<S>Bj j vec {»7jr 
d=o /

(2.13)

(2.14)

Similarly, note that

E
kj =0

which implies that

(s? . ® r 0) +  (5J. ® A )  +  . . .  +  (S qT ® r „ )

\(  r Q 0 0 0 0 . . .  o

A r 0 0

0 0 . . .  0
A r 0 0 . . .  0

0 r P A r 0 0

{  0 0 A A  To

(2.15)
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^ S ^ r A  vec{&}[ =
, 3 = 0

F a ta  \
E j =0 r j€(2 -j)

E ’-O r ]€(q+l-})
E U  r,e(9+2—j)

(2.16)

\  E ’=o r iZ(T-j) J
Now let Lr be an r x 1 vector of ones, i.e., i r =  (1 ,1 , . . . ,  1)', so that we can write 
the m T  x m  block-vector of identity matrices of order m  as ( I m , Jm, . . . ,  I m )' = 

{t'T 0  Im )• Note that (iT 0  I m) ( i t  0  Im )' = ^  ( w ' t  0> Im) and (lt  0  Im )' (*r 0  Im)
T I m-

Writing the measurement equations (2.2) and (2.3) for the process vectors { y t}x 
and { x t}r  we have the equations { y t}\> — A y {r/t}^ +  {et}i and similarly {x t}?  = 
a x { « j r + which after applying the vec operator become

vec{2/ d r  =  CTr®-<lj,)vec{»jt}J’ +  vec{et}f 

vec { x tYT =  ( I t  ® A x) vec +  vec {<5(} [ .
(2.17)

(2.18)

Finally, using the notation from Table 2.2, the DSEM model DSEM model (2.1)- 
(2.3) can now be written as

- l
H r , = i l n T - ^ S f a B ;

m T x 1 V J=0

m T xm T

Y j £  =  ( I t  0  Ay) Hj^  +  E t,
nTx  1 n Txm T  m T x  1 nTx  1

Xjr, — ( I t  ® A x) JEt^
k T x l

s ^ + ^ Z r ,
<j=0 I  j gT x  1 m T x  1

v
g T xg T

(2.19)

(2 .20) 

(2 .21)

k T x g T  9T x 1 k T x l

It follows that (2.19) can be substituted into (2.20) to obtain a system of equa
tions with observable variables on the left-hand side

- l
Y t  = ( I T ® A y ) l l m T- j 2 sir ® B.

V 3 =  o
+ E t

X t =  ( I t  0  A x) S t  +  A t -

Y , s iT®rj ) s T + z T
J =0

(2.22)

(2.23)

We will refer to (2.22) and (2.23) as the reduced form  specification.
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2.3 Statistical framework

The DSEM model (2.1)-(2.3) specifies a dynamic relationship among latent and 
observable variables. Furthermore, we can view the reduced form model (2.22)-
(2.23) as a mechanism that generated the observed data V'T =  ( Y'T : X 'T) \  whose 
distribution will be our main focus.

Derivation of the density function of V j  can be approached in several ways. 
Bartholomew and Knott (1999) describe a general theoretical framework for describ
ing the density of the observables given latent variables. Skrondal and Rabe-Hesketh 
(2004) term this conditional distribution reduced form distribution and point out to 
two general ways of deriving it. In the first approach, the observable variables are 
assumed to be conditionally independent given latent variables. The second ap
proach specifies multivariate joint density for the observables given latent variables 
(Skrondal and Rabe-Hesketh 2004, 127).

We take an approach to formal derivation of the joint density of the observable 
variables using the results from the multinormal theory on distribution of linear 
forms (Mardia et al. 1979). By considering (2.22)-(2.23) as the mechanism that 
generates the observable data, we will be able to fully characterize the distribution of 
V t by making distributional assumptions only about the unobservable components 
in (2.22)-(2.23). We firstly make the following assumption.

A ssu m p tio n  2 .3 .0 .1 (E rro rs) The vectors o f measurement errors et and 8 t are 
homoscedastic Gaussian white noise stochastic processes, uncorrelated with (er
rors in the structural equation). For I =  . . . ,  —1,0,1, . . .  and s = . . . ,  —1,0,1, . . .  we 
require that

ElCiC} = \  *0 1 8
{ 0 , l ±  s

E [6M =

where (m  x m), 0 £ (n x n), and 0 $ (k x k) are symmetric positive definite 

matrices. We also require that E = E [e*€t-s] =  E  =  E  [Ct^t-a] =
E [Ct* U ] =  E [8 te't_s] = 0, Vs.

The joint distribution of the observable vector W  (reduced form distribution) 
can be easily obtained if the observable variables are expressed as a linear func
tion of the Gaussian unobservable random vectors E t , A t , S t  and Z t - By As
sumption 3.2.0.1 these vectors are mutually independent, hence we will refer to 
them as to independent latent components. The first two latent components of 
L t  =  (E't  : A!t  : S 'T : Z'T) \  i.e., E t  and A t , are the measurement errors, while

E  [eie'3] =

36



S t  contains independent or exogenous and conditioning variables. The status of 
Z t , the error vector in the structural equation, is less clear-cut. It is not uncommon 
to specify the structural equation without the error term specially if all variables 
in the equation are latent. Namely, if the structural equation is a theoretical re
lationship among unobservable variables, hence something that is assumed to be 
true in population but is not directly observable, then it might be dubious what 
is the source of such error. A reasonable explanation would be that Z t  contains 
all other un-modelled variables, hence it is itself a latent variable. Clearly, to jus
tify the omission of such other variables we need to make very strict assumptions 
about Z t  requiring it to be a homoscedastic white noise process uncorrelated with 
independent variables and measurement errors. Thus, statistical properties of Z t 
should be the same as those of a classical stochastic error term, though Z t  might 
be interpreted as a composite of “ irrelevant” latent variables.

To fully characterize the distribution of the observable variables we only need 
to make additional assumptions about the marginal multinormal densities for the 
independent latent components.

A ssu m p tio n  2 .3 .0 . 2 (D is tr ib u tio n ) Let S t  ~  N9t  (0 , H e), Z t  ~  NmT (0, I t  0> &),
E t  ~  -Nn7i ( O , / 7i 0  ®e), and A t  ^  ^ kT {0 ,lT ^>  ©s)- Since E t , A t , H>t , and 
Z t  are mutually independent, E [ S t Z't \, E [ S t E't ], E [ Z t E't ], E [ S t A't ], and 
E  [Z t A't \ are all zero with joint density

(  E t  \  
A t

Immt r£l

\  Z T j

L t

N,(n+ k + g +m )T o,

0  & e 0 0 0

0 I t  0 > ©5 0 0

0 0 H e 0

0 0 0 I T 0  &

Hr

. (2.24)

Given Assumptions 3.2.0.1 and 2 .3.0.2 we can infer the distribution of any linear 
form in L t  using the following result from the multinormal theory.

P ro p o sitio n  2.3.0.3 I f  x  ~  Np (/x, H) and if  y  — A x  4- c, where A  is any q x p  
matrix and c is any q-vector, then y  N q (A /i  +  c, AH A !).

P ro o f  See Theorem 3.1.1. and Theorem 3.2.1 of Mardia et al. (1979, pg. 61-62).

Q.E.D.

Using the above result, and defining the following notation makes possible to 
obtain different versions of the general DSEM model as simple linear forms in L t .
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D efin ition  2.3.0.4 (P a ra m e te rs )  Using the simplifying notation

- l
A ^  =  ( I T C85 A y) ( I mT ~  s r® B j  and A f  =  S 3T® r 3 =* A l 'U i2’,

n T x m T  (nT xmT )  v m T x g T  ^ n T x g T
m T x m T  m T x g T

we define the following matrices of parameters

P  = a s >a <? „ « ’ V  t w  p  \  I l i ( ,
I T ® A X 0 J ’ \  0 I lg+m)T J v <"+t)T )

Denote a linear form by and consider the following two forms

F lP  =  K s L r  (2.25)

F (R} =  K r Lt . (2.26)

It is easy to see that (2.26) corresponds to the reduced model (2.22)-(2.23) hence 
F jP  = V t  can be interpreted as the observable data generated by the linear form 
K r L t . On the other hand, F rp  includes the latent variables S t and Z t  as en
dogenous or dependent. Models with both observable and latent variables treated 
as endogenous are commonly termed “ structural” (Aigner et al. 1984, Cheng and 
Van Ness 1999, Wansbeek and Meijer 2000), though this can be easily confused with 
the structural form of the simultaneous equation system we referred to previously. 
To avoid confusion with terminology, we will refer to (2.26) as the reduced structural 
latent form  (RSLF) model while we will term (2.25) structural latent form  (SLF) 
model. The emphases on both models being “ latent” will distinguish these forms 
from the errors-in-variables models that we will analyse in section §5.

We treat all variables except S t as random, while we will consider both cases 
with random and fixed S t . The later case requires special consideration as it is
obviously not encompassed by the Assumptions 3.2.0.1 and 2 .3.0 .2 , which assume
random S t. The model with fixed S t is generally known as the functional model 
(Wansbeek and Meijer 2000, p. 11) in which no explicit assumptions regarding the 
distribution of S 't  are made and its elements are considered to be unknown fixed 
parameters or “ incidental parameters” (Cheng and Van Ness 1999, p. 3).

Since we can assume that the observable data V t  were generated by linear 
forms (2.25) and (2.26), or equivalently by the reduced-form equations (2.22) and
(2.23), we can let =  ( Y'T : X 'T : S'T : Z'T) and F f 3 = (Y 'T : X 'T). Hence the 
distribution of the observable variables will be the same as the distribution of the 
linear form form F jP . Now, by Proposition (2.3.0.3) it follows that
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( 0 , K s S l K 's )  (2.27)

F j ^  ~  N{n+k)T ( 0 , K r E l K 'r )  (2.28)

The difference between the structural (2.25) and the reduced (2.26) form is im
portant insofar (2.26) does not model latent variables, i.e., it takes all latent compo
nents as independent or exogenous. It might be appealing to think of the reduced 
model (2.26) as conditional (on latent variables), however, this turns out to be a 
marginal model with S t  and Z t  marginalized or integrated out of the likelihood, 
as we will show in section §2.3.1.

A common argument in the literature (Aigner et al. 1984, Wansbeek and Meijer 
2000) used to justify this marginalization is unobservability of the latent variables 
that necessitates their removal from the model and focusing on (2.26) rather then 
on (2.25). This justification is apparently motivated by the choice of the estimation 
methods (e.g. Wishart maximum likelihood), which can handle only the reduced 
form model (2.26). However, recursive estimation methods using the Kalman filter 
(Kalman 1960) and the expectation maximisation (EM) algorithm (?) are poten
tially capable of handling models such as (2.25) and estimating the values of the 
unobservable variables (Harvey 1989, Durbin and Koopman 2001).

Therefore, marginalization of this kind might not be justified in general, and this 
matter requires a more formal approach. To tackle this issue, we firstly define the 
notion of weak exogeneity on the lines of Engle et al. (1983) as follows.

D efin ition  2.3.0.5 (W eak exogeneity) Let x  and z  be random vectors with joint 
density function f xz ( x ,z ; u ) ,  which can be factorised as the product of the condi
tional density junction of x  given z  and the marginal density junction of z ,

f xz (x, z\u>) =  f x\ z ( x \z ; w i) fz (z ;w 2 ), (2.29)

where u  =  (u/j : w'2)' is the parameter vector and f t \  and f l 2 are parameter spaces 
of w i andu>2 , respectively, with product parameter space

f l i X f22 = {(̂ ljk̂ ) • <jJ2 € ^2}
such that u>i and l j 2 have no elements in common, i.e., u>i n u >2 = (f). Then, z  is 
weakly exogenous for u>i.

The practical implication of Definition 2.3.0.5 is that if z  is weakly exogenous for 
lj 1, the joint density f x\z (x \z ;uji) contains all information about uq and thus the 
marginal density of z  f z (z; u>2) is uninformative about aq. The following definition 
partitions the parameters of the DSEM model (2.1)-(2.3) into non-overlapping sub
vectors.
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D efin ition  2.3.0.6 P a ra m e te rs  Let the vector 0 include all unknown parameters 
of the DSEM model (2.1)-(2.3). We define the following partition

6  =  [$dBi) ; 0 '(r j) ; 0 7(Ay) ; 0 '(A*) . • fl'W . 0 '(©d ; (2.30)

where 6 ^  =  vec B i} 0^Vj>) = vec T j,  =  vecAy, =  vecAx, 0 ^  =
vech 0 ^  =  vech S', 0 ^  =  vech0 e, and 0 ^  =  vech0 ,s; i = 0 , . . .  ,p, j  =
0 ,...<?.4

2.3.1 Structural latent form (SLF)

Given the linear form (2.25) or the SLF model, we are now interested whether 
the conditional model for the observable variables ( VY) given the latent variables 
contains sufficient information to identify and estimate the model parameters.

By Assumption 2.3.0.2 and Proposition 2.3.0.3 the log-likelihood function of the 
SLF model is of the form

e.s =  O ~ ^ \ n \ K s Z LK 's \ -  ( K s S LK 's ) - 1 F (* \  (2.31)

where a  = — (n + k + g + m )^  ln(27r). The following proposition shows that the log- 
likelihood (2.31) can be decomposed into conditional and marginal log-likelihoods 
hence the likelihood can be expressed as the product of the form given in Definition
2.3.0.5.

P ro p o sitio n  2.3.1.1 (L ikelihood decom position) Let (2.31) be the log-likelihood 
of the structural model (2.25), i.e., the joint log-likelihood of the random vector . 
Denote the conditional log-likelihood o f V r  given S t  and Z t  by £v \e,z ( V t \E t , %t ] 0 i ), 
and the marginal log-likelihoods of S t  and Z t  by ( S t \0 2) and t z  (Z t ',03); re
spectively. Then (2.31) can be factorised as

i s  ( f ^ o)  = tv \s,z  ( V t \ S t , Z t - 0 ,) +  £s  ( S T; 02) + t z  (Z T; 0 3) , (2.32)

where =  (0 '<Bi> : 0 '<r^  : 0 : 0 '<A*> : 0'<e *> : 0 /(e5)) ', 0 2 =  0 (%), and 0 3 =  0W . 

Therefore, S t  and Z t  are weakly exogenous for 6 \.

P ro o f  See Appendix §2A.

The Proposition 2.32 has interesting implications. Firstly, if all variables were ob
servable, a conditional model with the log-likelihood £v \e,z ( V t \E t , %t \ #i) would

4We make use of the vech operator for the symmetric matrices, which stacks the columns on 
and below the diagonal.
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provide all information about the the parameters of interest. As remarked above, 
some recursive algorithms might handle certain special cases with S t  and Z t  un
observable, hence by Proposition 2.32 methods based on the conditional likelihood 
might be justified.

However, larger models might contain too many unknowns which renders the 
conditional model unfeasible. The commonly used covariance structure and GMM 
estimators (Hall 2005) require a likelihood in the separated form since these methods 
aim at minimising the distance between the theoretical and empirical moments. 
Naturally, to make GMM-type of methods feasible, full separation of the latent 
and observable variables is necessary. This means the “ modelled” variables must 
be observable and expressible as functions of unobservable variables and unknown 
parameters.

2.3.2 Reduced structural latent form (RSLF)

The log-likelihood of the RSLF model (2.26) is (n +  fc)T-dimensional Gaussian, thus 
of the same form as (2.31), though of a lower dimension. The other difference is that 
F j? \  unlike F ^  in (2.31) does not contain any unobservables. Since = V t , 
the log-likelihood of the RSLF model is the log-likelihood of the observable data. It 
is given by

l R =  - ("  +2k)T  ln(27T)-l In \K RS LK 'R\ - ^ t r  F ’f '1 ( K r E l K ' r T 1 F™ .
(2.33)

It follows that (2.33) will be a closed-form log-likelihood of the RSLF model if a 
closed-form expression for K r E rK ' r can be obtained. This would make the RSLF 
model suitable for GMM-type of estimation.

The following proposition gives a closed form K r E rK 'r , which in turn makes 
(2.33) a closed-form log-likelihood.

P ro p o sitio n  2 .3 .2 .1  Let the covariance structure implied by the DSEM model (2.19)- 
(2 .2 0 ) be partitioned as

K r S l K 'r  = E{6) =  (  5 1 J 12 ) , (2.34)
Y 2j 12 2j 22 J

where E n  =  E [ Y t Y ' t ], E \ 2  =  E [ Y  t X' t \, and E 2 2 =  E [ X tX 't \, which is a 
function of the parameter vector

0 = : 0'(ri) • 0'(Av) . 0'(Ax) . • 0'W • 0f(&e) . 0'(&s)y ̂

where Q ^  =  vec B i} 0 ^  =  vec T j, 0 ^  =  vec A y, 0 ^  =  vecA x, 0 ^  =  
vech 0 ^  =  vech , 0 ê ^  =  vech0 e, and 0 ê ^  =  vech© 5; i — 0 , . . .  ,p, j  =
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0, . . .  q .5 Then the closed form of the block elements E  (6 ), expressed in terms of 
the model parameters is given by

- l

^11  =  ( I t  0  A y) ( I mT — 0  B :

x

j=0

E ^ ® ^ )  + E  ( S T ® + 5't ®
j=o /  V j=i

(  q \  ] /  P x - 1
X ( E S'r®ri ) + I t ® *  I 7mr - E  S 't ® B 'i

\ j =o /  _ V j=o
x ( I t  0  ^ly) +  i r  ® ©e, (2.35)

and

- l

S12 = (/T 0 A„) ( /mT - E ® Bi ) ( E ® r;
j=o 0=0

X ( I T ® ( s jr  0  ^  +  S"Jr  0  $ ')  j ( I t  <0 A'x) , (2.36)
j=i

£ 2 2  =  { I t ® A x) ( i t ® ^o  +  E ( 5 t ® ^  +  ^ ' t ® ^ )

x ( i r  0  A 'x) +  ( J t  0  0 , j ) , (2.37)

w/iere I t 0 #0 + 5Z (̂ r ® ® ?̂) = ^
j= 1

P ro o f  See Appendix §2B.

By Proposition 2.32 we have seen that the likelihood of the SLF model (2.25) 
can be factorised into conditional and marginal likelihoods rendering the latent 
components S t  and Z  weakly exogenous for the parameter sub-vector 6 \. Hence, 
if and Z  were observable we would be able to ignore their marginal distributions 
without losing any information about 0\. However, if S t  and Z  are not observed, 
the conditional log-likelihood £v\z,z ( V t \ E t ,  % t\ # i) would not be feasible.

We have obtained the feasible likelihood by using the linear form (2.26) leading 
to the RSLF model with the log-likelihood (2.33), however, it is easy to see that this 
comes down to replacing the missing values of S t  and Z  with their second moment

5We make use of the vech operator for the symmetric matrices, which stacks the columns on 
and below the diagonal.
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matrices, which involve the parameter sub-vectors 0 2 and #3. Thus, obviously the 
likelihood of the RSLF model will depend on these two parameter sub-vectors. We 
can still invoke Proposition 2.32 noting that RSLF model (2.26) is a simple reducing 
linear transformation of the SLF model (2.25) to justify estimation of 0\ using the 
RSLF likelihood. However, in this case we will also need to estimate 0 2 and 03. In 
conclusion, while weak exogeneity in the sense of Definition 2.3.0.5 holds, we still 
need to estimate 0 2 and 0 s along 0 \ , which will require additional knowledge about 
0  in the form of parametric restrictions, which cannot be inferred from data alone.

We can easily show that the likelihood of the RSLF model can be obtained 
by marginalizing the likelihood of the SLF model in respect to the unobservable 
variables. This can be seen by looking at the relationship between the covariance 
structures implied by these two models, which is sufficient for the purpose given the 
shape of their likelihoods is the the same (Gaussian). Thus we have

|  I ( n + k ) T  0 \  p ( s )  _  f (R)

\  0  0  )  T T

and

K s 2 LK 'q =

11

\  ( I T ® # )  A%

thus it follows that

£ 1 2

S 2i E 22  ( I t  ® A x) U E
E eA 'i2) A 'i1} E e ( I t  ® A 'x) E e

0  0

A^)a S)E e A ^ I t ® If \

/ ( I )

0

0

I T ® & J

K rE lK ’r = I ( n + k ) T
0

1 (n+fc)T 
0

I ( n + k ) T
0

2 n
S 21

S \2  

£22

K s Z lK 's 

(

I ( n + k ) T
0

Eli 
£21 

UeA '^ A '  i1} 
^  ( I t  ®  * )  A

E 12 
E 22 

E e  ( I t ® A ' x )  

0

A ^ A ^ E e
( I t  <8> A x )  E e  

Ee 
0

A ^ I t ®
0

0

I t ® If

& \

The advantage of having the RSLF model with a closed-form covariance structure 
is in the potential to estimate its parameters by minimising some distance between 
the theoretical and empirical covariance matrices. On the other hand, the treatment 
of latent variables as exogenous and observable variables as multinormal, which 
justified this model in the first place, creates conceptual difficulties in special cases 
with perfectly observable variables or fixed £t . Then, the endogenous observable
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variables become identical to the exogenous latent variables, which contradicts the 
statistical assumptions behind the RSLF model. It is thus appealing to entertain 
the idea behind the errors-in-variables or measurement-errors models (Cheng and 
Van Ness 1999) where different approach is taken. We will consider this approach 
in the following section by firstly placing it in the same framework with the models 
discussed so far.

The approach taken in the errors-in-variables literature is to estimate the structural 
model (2 .1) by replacing each latent variable by a single noisy indicator or a “ 
proxy” variable. Usually, some form of instrumental variables (e.g. other noisy

the resulting errors-in-variables bias, and the focus is on evaluating and correcting 
the bias induced by the measurement error (Cheng and Van Ness 1999).

We will refer to the transformed model in which latent variables are replaced 
by observable but noisy indicators as the observed form  (OF) model. To study 
the OF model we will firstly place it into the general DSEM framework, where 
each latent variable is measured by multiple indicators. Choosing one indicator per 
latent variable and normalizing its coefficient (loading) to unity leads to a restricted 
covariance structure and is thus a special case of the (unrestricted) DSEM covariance 
structure (2.34) considered above. Clearly, the unit-loading constrains can be used 
to fix the metric of the latent variable, which has only a re-scaling effect, without 
affecting the value of the likelihood function.

Imposing unit-loading (UL) restrictions thus leads to a UL-restricted covariance 
structure. The UL-restrictions are hence parametric restrictions that result in a 
special case of the general DSEM and so do not invoke a different model or assump
tions. The UL-restriction rescales the measurement model for the exogenous latent 
variables whose indicators can be partitioned as

2.3.3 A restricted RSLF

indicators of the latent variables) are used in estimation with the aim of correcting

X T =  ( X f >  : X 'tP ) ' (2.38)
k T x l  (k—g )T x l  gTx  1

while the parametric restrictions are imposed as

(2.39)

thus resulting in the UL-restricted measurement model

(2.40)
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Therefore, the UL-restricted DSEM model can be written in the reduced form as

- l
Y t  =

v (A) _UM, rp  ----

y M  -- / i -  rp  ----

( I t  ® A y) I I mT -  ^  S ]t ® B.
\  3 = 0

+ E t

( I t  ® A x) S T + A ^
57 _i_ A&)

E
J =0

s JT® r j S t  +  Z n

(2.41)

(2.42)

(2.43)

where we partitioned X t  into a j T x l  vector X and a (k — g)T  x 1 vector 
X i ^ \  Correspondingly, we have partitioned A t  into sub-vectors A and A (A)

We partition the measurement error covariance matrix I t  0  as

I t  0  =
I T ® e (if>  I t ® 9 ^  

I t ® 9 ™  I T ® 9 ^
so E l is partitioned as

(  I t  0 
0

Er.  =  0

0

\  o

Now, if we define

® 9 ™  
I r ® e r  

0  

o

I T
T

0  0

I t ®  9 ^  0

I t ® 9 ? ^  0

0  27=

0  0

0  \  
0  

0  

0

I t  0  & )

(2.44)

(2.45)

K r = [ (n+k)T ) ■

it follows that

P  =
(  A ^ A ^  4 « \  

I t  0  A x 0

JgT 0  J
(2.46)

F (tR) =  K r L t , (2.47)

thus the density of the restricted RSLF model is the same as of the unrestricted 
model but with different parametrisation, i.e.,

F f>  ~  N (n+k)T (o ,  K r E l K 'r )  , (2.48)

hence we have the log-likelihood of the form

Zr  [ e {t]] 0 s)  =  - ( n + k ) ^  ln (2 7 r ) - i  In K rE t.K 'r - I t r  F%r) ( K RE LK 'H)
-1

F f ).
(2.49)
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Next, we partition the covariance matrix (2.34) corresponding to the partition 
of the data vector (^Yt  : : X ^ ^ j  as

K ' bE tK b =
/ 17 yy 5 1 (A)

^ Y X
«(C0^ y x \

jp(A) y,(A,A)
^ X X

fi(A t/)
^ X X (2.50)

V
yi(U)
^ X Y

yi(UA)
^XX

fi(tw)A x x

The block-elements in (2.50) axe as follows,

r y y =  a $ ( A ^ E s A f  + h

YX =  A ^ A ^ £ s ( I t ® A ' x)r>(A)   a 0) a (2)

^ ( ^ 0    \  (1) A (2)

')A'\9 1 A'W + I,

j-,(AA) 
^  XX = (IT®Ax)EE(lT®A'x')+ITi8 0 (mA) 

= (It ® Ax) S5 + IT® &§u)
= £ s + It ®&¥sU)- 

Note that the upper left block element remains the same, i.e.,

«(ae/)
^  XX 
f , (UU) 
^  XX

Zyy = s n = A'y’ (A^SsA’g  + It ® if) A’g  +IT® &c,=  s12 -

while the (1, 2 ) block is

12
  (  yi(A) . yi(U)
— y ^ Y X  • ^ Y X ) ■

-  (
A ^ A ^ E

(1) A  (2)

s  ( T t ® A x : I 9t )

■ A ^ A ^ S

To derive the (2 , 2) block partition the covariance matrix of the measurement 
errors as

E[A<A>2l'<A)l
e [a ! P a «P\

so we have:

(A)y|/(t0l
rjy  L A  r r

E [A ™ A « P '
E[A

= I t 0  0<5 =
/ t ® @ < a a )  i T® e {i f ) 
IT ® ©mA) IT®efsu)

y^(AA) y, (AU)  \
^XX \ _js(tfA) pCC/t/) I -
^XX ^ x x  /

J r  <8> Ax 
JgT

^ 17s (-Tr ® A;x : +  (Tr ® 0<j)

(7  ̂® ilx) 17s ( i r  ® A7̂  (7r <g> Ax) 17s \  /  / T <g> I t

27= ( l T ® A'x)  27= )  \  I r ®  I t  «

( I t  ® Ax) 27= ( / t  ® A'x) +  I t  ® (2 r  ® Ax) 27= +  I t  ® © iA[/)

27= ( i t  ® A'x) +  I t  ® ©£? A) 27= +  / r  ® © ^

(AC/)
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Finally, note that the marginal covariance structure of Y t  and x i ^ \  i.e.,

Z>YY z ,y x  

Zj X y  ^  X X  

is given by

A g  ( a ^ E s A ' ^  + I t ® * )  A ,(£ ] +  I t ®&e A ^  A™ E e ( l T ® ;i'*)
(It ® Ax) E - A ' ^ A ' ^  (IT ® Ax) E e ( l T <8> A '^  + I T ®@ (AA)

85

2.3.4 Observed form (OF)

Suppose we wish to estimate the DSEM model with the unobservable S t  but instead 
specify the model by replacing S t  with its noisy indicators X ^ \  This would lead to 
the model with errors in the variables (EIV). Such model can be interpreted in two 
ways. Firstly, we can arrive at such model if instead of the true S t  we mistakenly 
include in the model its noisy indicators, thus introducing the additional error due 
to mis-measurement (noise), which gives

Y T = A?>

•(A) _

Ai2) ( X +  ZT] +  E t

*3 t

=  ( I T ® A x) ( x p  -  A tp }  + A (A)
T

SiT
m

(2.51)

(2.52)

(2.53)

Alternatively, we can specify the model in its latent form, and use a trivial identity 
and re-write it as an EIV model, i.e.,

Y t  = A ^ A ^  ( B t  + A ^P  -  A ^ + A ^ Z t  + E t  (2.54)

ViU) A(U)
rp  A A p

X {t } =  ( I T ® A x) ( e t + A ^  -  A £ ° )  + 4 ^ A) (2.55)

i f  =  ( E t  + A ^ - A ^ ) + a P .  (2.56)

X (U) A (U)
r p  —

In either case, we obtain a DSEM model in the observed form  (OF), which can be 
seen as a linear transform
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K r L t  =
(  InT  

0

\  o

0

1 (k - g ) T  

0

0

0

I gT

41}42)
I t 0  A x

I 9T

f  E t  \
a P  \ A P Y t

a ™ =
y(A)

0  1
^  r p

w  J 1 X ™
\  Z T )

(2.57)
We will inspect the OF model (2.57) by comparing its likelihood function to that 

of the UL-restricted latent form model considered in previous section. In order to 
do so we will need a simple result on the variance decomposition summarised in the 
following lemma.

L em m a 2.3.4.1 (V ariance decom position ) Let X jP  be a g x  1 vector containing 
observable indicators o fa g x  1 vector of latent variables S t , such that each indicator 
relates to a single latent variable. We consider the measurement model

x p  = S T + 4 ° .  (2-58)

where S t  can be either random or fixed, while X P  and A P  are both random hav
ing some probability distributions X t  ~  ^ 0 , and A P  ~  ^ 0 , I t  0
respectively. We make two different sets o f assumptions depending on whether S t 
is random or fixed as follows.

R an d o m  S t  Suppose S t  has a multivariate probability distribution with zero 
mean and covariance matrix i.e., S t  ~  (0 , 17s). We assume that

E

E

B t A ' F

(U) A t {U jX%>A

= 0 , (2.59)

(2.60)

Note that Assumption (2.60) implies a classical rather than Berkson measurement 
model (Berkson 1950)

F ixed  S t  For non-random S t  we state the Assumption (2.59) in terms of 
probability limits by treating S t  as a vector of fixed but unobservable constants 
(incidental parameters). Thus we require that

p l i m ^ 3 TA'$P = 0 ,
T—KX) 1

(2.61)

6In some cases an additional Assumption that E =  0 can be made, which imposes
weaker conditions on the measurement error covariance matrix than classical factor analysis by 
requiring block-diagonal rather then diagonal 0$.
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In addition, we assume that p l i m ^ S t S 'T = X s ,  hence in the fixed case we con-
T —>00

sider the unobservable sum of squares S t E't , which is required to converge in prob
ability to some positive definite matrix 27s .7 For the random variables X a n d  
A ^  it trivially follows that p\im  =  X ^ p  and p Y i m k A ^ A r̂  =

T—too T —*oo

I t  ® @ssU\  respectively. Also note that assumptions (2.59) and (2.60) imply that 
p X i m ^ A j ^ A '^  = 0  and p l i m ^ X ^  A ' ^  ^  0 .
T—*oo T—kx>

Then the covariance matrix 27s (when S t  is random), or equivalently, the prob
ability limit of the sum of squares S t 3 't  (when S t  is fixed) can be expressed as

27= =  - I t ® 0 ? V)65

P ro o f  From (2.58), using assumptions (2.59) and (2.60), we have

(2.62)

E jriU) y'(U) _/V p .A p ( S t  + A ^ )  { S t  + A ^ )

XU) A'(U)

= E

= E  [S t ^ ' t ] “I- E  ^A  

and for the fixed case, using Assumption (2.61), equivalently

(2.63)

plim  —X jf^ X 'jP  = p l i m -  ( s T + A^) ( s T + A^A
T —>oo 1 T -+00 1 V '  V '

= p Y im ^-S TS 'T  + p \ im ^ - A {̂ ] A '{t ]
T—voo J T —*oo 1

= X E + I T ® e f 5U) (2.64)

hence X-= =  X ^ p  — I t  ® @5s U\  as required.

Q.E.D.

A simple corollary of Lemma (2.3.4.1), i.e., Assumption (2.60), is that

E v(U )A r(U)A p JmA p = E  

= E

XU)
T( s T + A ^  A'!

'B t A V ]  + E  [ A ^ A ' p

=  i T ® e f s v \ (2.65)

7Clearly, the probability limit becomes the simple limit for non-random E t , thus by using the 
probability limit we cover both cases.
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and similarly that E A Ji ^  r p =  I which would not be the case if
(2.58) was a Berkson measurement model. In a Berkson model we would have
E y (U)a /(U)

A r p  ^  Ji

We have seen that by Proposition 2.3.1.1 S t  can be treated as weakly exoge
nous, but we also needed to integrate it out of the likelihood because we could not 
observe it. On the other hand the OF model, by decomposing S t  into an observable 
part and the measurement error, potentially makes the conditional model feasible, 
hence it would be of particular interest to investigate under which conditions is such 
conditioning valid.

To this end, we firstly define an OF counterpart to the structural form model 
considered previously. The relationship between the SLF model and a structural 
observed form (SOF) model can be seen as a linear transform of the form L j?f  ̂ = 
D qfL t  for some zero-one transformation matrix D qf- It can be verified that

f  E x \ /  I 0 0 0 0  > ( E t

A P 0 I 0 0 0 4 A)
A ™ = 0 0 I 0 0 A ™
y (t0 0 0 I I 0 kmml ̂

{ Z t ) \  o 0 0 0 I )  ̂ Z t )
rOF D (

(2 .66)

We can now write the OF-transformed DSEM model as a linear form in as

/ Y t \ /  I 0 -4X)42) 41)4) 41}\ ( E t \
Y WA p 0 I —I t  0  A x I t  0  A x 0 a P
a P = 0 0 I 0 0 a P
r (8 ) A p 0 0 0 I 0

y(U)
A p

V Z t / \  0 0 0 0 I ) \ Z x J

F ? f) K of l ? f)

Thus we have defined the OF vector as a transformation of the independent 
latent components vector. Also we defined the transformation that gives the OF- 
transformed DSEM model. Now note that since =  K ofI+t ^  we have

• (OF) K qfD qfL t  -

(  I 0 0 41}42) 41}\ / E t \
0 I 0 I t  0  A x 0 a P
0 0 I 0 0 a P
0 0 I I 0 W / B }u  p

\ 0 0 0 0 I / Z t )
KofD of L t

(2 .68)
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which has the effect of trivially decomposing S t  into the observable and unobserv
able part.

We can obtain the covariance matrix of the OF model as follows, firstly observe 
we can re-arrange L t  by using a zero-one shifting matrix

and hence obtain

Do =

/ I 0 0 0
0  \0 I 0 0 0

0 0 0 I 0
0 0 I 0 0

V 0 0 0 0 IJ

(2.69)

( I 0 41}42) 0 41}
0 I I t  0 A x 0 0
0 0 I I 0
0 0 0 I 0
0 0 0 0 I

M

\ (  E t  \ /  A ^ A ^ S t  + A ^ Z t  + E t  \ y t  \
I t  ® A :rS 1 -(- y(A)

yi r p

S t = S T + & P = X<U)
r p

A™
/ Z T  / Z T J \  Z T /

DsLi M D s L t d sf ? f)
(2.70)

Before proceeding further we will need to make an additional assumption about 
the measurement errors.

A ssu m p tio n  2 .3.4.2 (B lock-diagonal 0 s )  The measurement errors in X ^  are 
uncorrelated with the measurement errors in X j ) \  hence 0 s is block-diagonal with
6 C  = 0 .

Now, by making use of the shifting matrix (2.69) and invoking the Assumption 
2.3.4.2, we obtain a re-arranged density of L t ,

(  E T \
4 A> 

V_ Z r_  )
D.qLq

^T(n+k+g+m)T 0 ,

I t  0 0 £ 0 0 0 0
0 I T <® 0$ A) 0 0 0
0 0 Z z 0 0
0 0 0 I T  ® e % u) 0
0 0 0 0 I t  0

D s E l D s

(2.71)

Therefore it follows that

D s F {° f)  ~  N (n+k+9+m)T {0 ,M D s E l D's M ') (2.72)
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Note that without the Assumption 2 .3.4.2 we wold have

D  gX  T.D'q =

\

(8> & £ 0 0 0

0 I t  0 0 I t ®
0 0 0

0 i T ® e T 0 I t ® & T
0 0 0 0

0  \  
0  

0  

0

(2.73)

We will see that the block-diagonality Assumption 2 .3.4.2 has no effect on the 
marginal covariance structure (reduced OF model) of Y t , X jP, and X ^ \  but it 
does have an effect on the conditional distribution of Y t  and X j ^  given X ^ \  
Moreover, the following proposition establishes the validity of the conditional OF 
model given Assumption 2 .3.4.2 holds.

P ro p o s itio n  2.3.4.3 (O F likelihood decom position ) Suppose the Assumption 
2.3.4.2 holds. L e tD s F (° F) =  F*T, hence from  (2.72) it follows that the log-likelihood 
of F*t  is

6 0 I  (FJ.; 0) =  a  -  i  In \ME*LM ’\ -  i t r  F*T (M i7 £ M ' ) _1 F'*T, (2.74)

where = D $ E iD 's . Let (-y,x ^\x u a u ,z ( Y t , a P , Z r ,0 l j  denote

the conditional log-likelihood of Y t  a,nd X ^  given X j ! \  A j ( \  and Z t -
Similarly, let £x u- a u ( X j^  ~  denote the marginal log-likelihood of

X — A a n d  denote the marginal log-likelihood of Z t  by t&u +
£z (Z t ; # 4). Then the OF log-likelihood (2.74) can be factorised as

4 f ( ^ t 0F);» )  =  eY,x , lxuAVtZ^ Y T, X ^ \ X ^ , A ^ \ Z r , 0 ^  (2.75)

+  i x v _ Av ( x P  -  a P ;  $ ; )  +  [ a P - ,  01) +  Lz  ( Z T - 0 J ) ,

where 0 \ =  (o '™  : 0 '<r *> : 0 '<A»> : 0 '<A*> : 0 '<e«> : 0*2  =  0 ^ \  0 \  =

and 0 \ =  Thus, X ^ \  A ^ \  and Z t  a,re weakly exogenous for 0 \.

P ro o f  See Appendix §2C.

A potentially useful implication of Proposition 2.3.4.3 is the validity of the con
ditional model for Y t  and X j ) A  ̂ given X j ( \  A jP ,  and Z t - Unlike the conditional 
model in latent form considered in Proposition 2.3.1.1, the conditional OF model is
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feasible since it was formulated by decomposing S t into an observable and unobserv
able part. The observable part, X ^  can be taken as given, while the unobservable 
part, A t  needs to be summarised in terms of its second moment matrix.

However, while the likelihood decomposition stated in Proposition 2.3.4.3 en
ables separation of the conditional model, it does not include a separate expression 
for the marginal likelihood of X t - Instead, (2.75) includes marginal likelihood of 
the decomposed S t  into the observable and unobservable parts, i.e., the marginal 
likelihood of X ^  — A ^ \  It thus follows that conditioning on in the OF model 
would be valid in the sense of Definition 2.3.0.5 if the Assumption 2 .3.4.2 holds, and 
if A ^  is known or observable (the same goes for Z t , which is always unobservable 
but can be taken as zero). Not knowing A ^  necessitates estimation of its covari
ance matrix as an additional matrix of parameters 0 ^ u\  For random X ^  this 
leads us back to the reduced-type of a model and we next show the OF model in 
the reduced form has the same likelihood (in expectation or in probability limit) as 
the RSLF model.

R educed observed form (ROF)

Consider the OF model (2.51)-(2.53). If all variables in the OF model are random 
with zero mean, it follows that

E  [ Y T = A i 'U i2* ( e - E A ^ ] )  + a{s E  [Zt] +  E  [Et ] = 0

E r r (A)iA r p =  I t ® A x ( e \x ¥ )' - E

1 
1

1 
1

+ fcq =  0

E y(U)'-/V p =  0 .

Being a linear combination of normally distributed quantities,

-  ( v  . x-'(A) . y'(E0V
J 7  p  =  I I J1 * A p  . A r p  I

will have (n -I- fc)T-variate multinormal distribution

p(R)jf rp  ~ N t(n+k)T

where X  is defined as

(2.76)

X  =
< x

\  ^ X Y

f,(A )
^ Y X r iu) \YY ^>YX 2 , YX

A(A) *(A A ) ~ (At/)
^ X Y  ^ X X  ^  XX
~(U) g(UA) ~(UU)

'XX 'XX /

(2.77)

Therefore, the likelihood of the OF model (2.51)-(2.53) and the likelihood of the 
UL-restricted RSLF model will differ only in their covariance matrices X  and X .

53



The following proposition establishes the equivalence of these two matrices either in 
expectation or in probability limit for the random and fixed cases, respectively.

P ro p o s itio n  2 .3.4.4 (O F equivalence) Let X ^  = S t  + A j? \  where S t  can 
be either random or fixed. Let S  and S  be defined by (2.77) and (2.50), re
spectively. For random S t  suppose S t  has a multivariate probability distribution 

('0 , 27s ). Then E[S] = E[E\. In the case when S t  is fixed (non-random) 
we treat it as a vector of fixed but possibly unobservable constants (incidental param
eters), in which case p lim b E  =  plim

T —*oo T —yoo

P ro o f  See Appendix §2D.

Note that that Proposition 2.3.4.4 did not require the Assumption 2.3.4.2. There
fore, the OF transform of the model with all variables random does not offer any 
obvious advantage over the RSLF model. The advantage of the OF formulation 
becomes apparent in the fixed case. Before moving to such model, we briefly make 
few additional remarks about the random OF model.

The marginal distribution of ( Y ' t  : is T(n-\-k—^-dimensional Gaussian

T(n+k~g)

with X integrated out. The conditional expectation is

E
■(A)

X ( U )
T ( U )  
^ Y X  

y ( A  ,UL) 
^  X X

Y X

i(A U) 
' X X

(2.78)

(2.79)

and the conditional variance is

Var
X (A)

<U) \ _

X YY -  E ? x
p (A ) r i  
^ X Y  ^  X X

,(AU)

( U )  
Y X  
(A CO 
X X ) ( « ’)" (  

(J&T)

y ( U )  .  y ( U A )  

^ X Y  ' ^ X X

"(P)
' Y X

i(AU)
' X X

y{UA)
t'XX

y ( U A )  
^  X X

Thus it is obvious that conditioning on X ^  will be the same as conditioning on 
S t  in the special case with no measurement error ( A ^  = 0 ).
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We now turn to the model with fixed S t . Firstly, consider the standard “ 
functional” model (Wansbeek and Meijer 2000, Cheng and Van Ness 1999), given 

by

Y t  = A ^ A ^  S T + A <£ )Z t  + E t  (2.80)
"V 1 11

fixed part residual

X t =  ( It ® Ax) ’ (2.81)
fixed part residual

which has residual covariance matrix

0 ^  (282) 
1 0 I t ® &5

and hence the density function

(  X t  )  ~  JV(«+*-»)T 

The log-likelihood of the functional model is then

A ^ A ^ S t A (  Aix) (IT ® !P) + I T ® &£ 0
( I t  ® Ax) S t  / I  0 I t ®

eY,x\s ( Y t , X T\Sr,  9) =  - (” +2fc)r ln(27r) -  ~ In | « f |

_ !  (  Y t - A ^ A ^ S t  \ ' n - i (  Y t - A P a ^ S t

2 y X t - ( I t ® A x) S t  j  F  \  X t  — ( I t  ®  A x) S t

Note that the log-likelihood (2.83) includes S t , which is unobservable. 
Next, consider the OF-transformed model

Y t = A ^ A ^  ( x P  -  A {t }) + A ^ Z t  +  E t

a P a ^ x P  + ( a P Z t  -  a P a ^ a P  + E t )  (2.83)
■V—(V)

.(A)x {v  =  (i t ® a x) [ x {P - a {̂  +  a [

=  ( I t  <g> Ax) X ^  +  ( a {V -  ( I t  ® Ax) A ! (2.84)

U (AT)
T r i m  _  y (UL) a (UL) a (UL)
A p    u \ -  p

(UL)
X Kt  (2.85)
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and denote the covariance matrix of the residuals U P  and U P  in (2.83) and 
(2.84) by

I2yy f^ y x
o(A) q (AA)
i eXy  i£x x

Therefore, the distribution of the OF functional model is given by

(2 .86)

X (A) Nt(n + k - g ) T
( I T ® A x) o (AA)

i £ X Y  i £ X X

12 yy
► (A)

and the log-likelihood

W,x»\xv (  Y t , X $ > \x !P i 0) = ln(2*) -  J In (
\  l £ X Y  i£x x

/  / i \  /o\ /rn  \  / /  /AN \  - 1  /

~ i tr
Y t  -  A ^ A ^ x P

X (P  -  ( IT ® Ax) X $( U )

I2yy f t

(2.87)

«<&  n ' x x
i(AA)

Y t  -  A ^ A ^ x P
X (P  ~ ( I t  ® i )  x P  

(2 .88)

The structure of (2.86) for the special case with iV  ® =  0 (i.e. under
Assumption 2.3.4.2) is given by the following proposition.

P ro p o sitio n  2.3.4.5 Assume I t  <8> @ s P  = 0. Then the block-elements of (2.86) 
are given by

( 2 y y  = A ^  ( A f  ( l T ® & f s U))  A'i2) +  I T ® S>) A 'i11 +  I T ® ©E(2.89)

=  A g U ®  ( * r  ® © i* ^ )  ( * r  ® X'x)

® * , )  ( I t ® © r ° )  ( j t ® ^ 'x )  +  ® ©

and S i^y  ~  ^ ’y x  ■ Furthermore, it follows that

(AA) 
55 ’

(A) 
Y X

0 (AA) xy

S2yy 12
r t (A>

=  k r d s e l d ’sk 'r ,

where

Da =

( I 0 0 0 0 \
0 I 0 0 0
0 0 I 0 0

0 0 0 1 )

(2.90)

(2.91)

(2.92)

(2.93)
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P ro o f  See Appendix §2E.

Using the above result, we can thus simplify the log-likelihood of the functional OF 
model as

\x” { r T, x P \ x P - , e )  = in(2T) - \ \ n \ K RD s X LD's K'R

Yt -  a £)A§)X (t ) \
X̂ A) -  ( I t  ® 1*) X $ >  )  ' 

(2 .94)

Therefore, the log-likelihood (2.94) of the functional OF model has gT  unknowns 
less then the log-likelihood of the functional model in latent form as a consequence 
of not having to estimate S t -

2 .3 .5  State-space form (SSF)

Various special cases of the general DSEM model have been analysed in the “ 
state-space” form including dynamic factor model and DYMIMIC model (Engle 
and Watson 1981, Watson and Engle 1983) and the shock-error model (Aigner et 
al. 1984, Ghosh 1989, Terceiro Lomba 1990). The motivation behind casting partic
ular dynamic models in state-space form is primarily in the possibility of using the 
Kalman filter algorithm (Kalman 1960) for estimation of the unknown parameters.8 

The state-space model can be specified in its basic form as

0 t = H 0 t_i +  w u (2.95)

W t = F 0 t + u t , (2.96)

where (2.95) is the state equation, (2.96) is the measurement equation, 19t is the pos
sibly unobservable state vector, and H  is the transition matrix (Harvey 1989, Durbin 
and Koopman 2001).9 The specification (2.95)-(2.96) is particularly appealing for 
dynamic models involving unobservable variables since the state equation can con
tain dynamic unobservable variables and the measurement equation can link them 
with the observable indicators. These attractive properties of the Kalman filter 
resulted in numerous empirical papers in the applied statistics and econometric

8The Kalman filter was developed by Rudolph E. Kalman as a solution to discrete data linear 
filtering problem in control engineering. The filter is based on a set of recursive equations, which 
allow efficient estimation of the state of the process by minimising the mean of the squared er
ror. The Kalman filter recursive algorithm proved to be considerably simpler then the previously 
available (non-recursive) filters such as the Winer filter, see Brown (1992) for a review.

9A simple generalisation of the measurement equation is to include a vector of observable 
regressors.

- A (1)A {2)X (u) \  f -  - /  , \ - i

J - i i U h k ' )  (KrDsSlD8**)
, I Y T -  A 'i’A 'i’X

r I X (A>
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literature. Harvey (1989, p. 100), for example, calls the state-space form “ an enor
mously powerful tool which opens the way to handling a wide range of time series 
models” .

To enable estimation of a statistical model by Kalman filter, it is necessary to 
formulate it in the state-space. We will show that a state-space representation of 
the general DSEM model (2.1)-(2.3) and hence of all its special cases listed in Table 
2.1 exists. In addition, it can be verified that for the transition matrix H  to be 
non-singular we will need to make the following assumption.10

A ssu m p tio n  2.3.5.1 Let follow a VAR(q) process with q >  1

£( =  E  r A - s + (2-97)
3= 1

with the roots of \ I  — XR\ — X2R 2 — • • • — A9i29| =  0 greater then one in abso
lute value and v t is a Gaussian zero-mean homoscedastic white noise process with 
E [vtv't] =  S v.

D efinition 2.3.5.2 Let I I j  =  ( I  — B q)~ 1B j , Gj = ( I  — J3o)-1(Tj +  ToR j) ,  and 
K t = ( I  — B 0)-1(Ct +  roVt), where B j ,  T j ,  and £t are defined as in (2.1)-(2.3).

The following result establishes the existence of the state-space form of the gen
eral DSEM model given Assumption 2.97.

P ro p o sitio n  2.3.5.3 Let £t be generated by a VAR (q) process as in (2.97). Then 
the general DSEM model (2.1)-(2.3) can be written in the state-space form  (2.95)- 
(2.96) as

(  7)1 \ / i l l G?i I I  r—1 Gr-l n r Gr \ Vt-i \ f  K t \
i t 0 0 R r~ i 0 R r i t -1 vt

m-i I o .. 0 0 0 0 Vt-2 0
i t -1 = 0 I 0 0 0 0 i t - 2 + 0

Vt-r+l 0 0 •• I 0 0 0 “Ht—r 0
\  i t —r+1 ) \ 0 0 0 I 0 0 J \  i t —r J \  o /

(2.98)

and
10Since the state-space representation is achieved by dynamically linking the current state with 

the past-period state via a first-order Markov process, the first equation (for time t) is the actual 
model, while the rest of the stacked elements (for time t — 1, t — 2, . . . ,  t — q) of tit are set trivially 
equal to themselves as they appear in both *dt and &t-i- Hence, if any of the elements of 
cannot be related to an element of #*_i (such as in the case of white unobservable regressors) the 
transition matrix H  will contain a row of zeros and thus it will be singular.
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V £t-r )

where r = max(p,q), with notation defined in 2.3.5.2.

P ro o f  See Appendix §2F.

While Proposition 2.3.5.3 gives the state-space form of the general DSEM model, 
it is not immediately clear how the state-space form compares with the forms con-

Kalman filter, hence it is specified in t-notation. On the other hand the T-notation 
(Table 2.2) we used to analyse the statistical properties of other DSEM forms leads 
to a closed-form rather then a recursive form of the model. Nevertheless, we can 
write the SSF model (2.98) for the process (t = 1 , 2 . . . , T )  and compare its like
lihood with those of the other forms of the model. In the context of the RSLF 
model, for example, this would call for additional modelling of the VAR(q) process 
for E t , thereby increasing the dimensionality of the multivariate density function 
from (n  +  k)T  to (n +  k +  g)T. However, we will show that such extended model 
can still be reduced to the (n +  fc)T-dimensional model.

Given the VAR(q) process for E t  (Assumption 2.97), the SLF model will have 
to include an additional equation for E t  . The structural equation remains as before 
and it can be reduce as

sidered earlier. Namely, the SSF model (2.98) is in a recursive form required for the

H t

(2 .100)

A T-notation equivalent of the VAR(q) model (2.97) can be written as



Finally, the measurement equations as as before

Y t  — ( I t  ® A y) H t  +  E t  

X t  =  ( I t  ® A x) S t  +  A t -

(2 .102)

(2.103)

Substituting (2.100) and (2.101) in (2.102) and (2.103), respectively, we obtan 
the reduced SSF model

H t
W rj~i

/  p 
(  I

3=0

V
0

3= 0  
QY Ŝp<S>Rj

3= 1

H t \  (  Z T
S t  \  T t

(  i m T - Y  s jT®Bj -  y  s jT® rj ^
- i

3 = 0

0
3 = 0

I g T  Y j
3= 1  /

Zt
Y t

(2.104)

where the inverse of the matrix of parameters in (2.104) is given byli

(  (  v .

I ImT ^Y S?p(S>Bj
\  i=°

0

-l - l -l
imT -  Y  s 3T® B j) f Y  s jT® r j ) f i 9t - Y  s jT® Rj) ^

3=0 J \ j =0 J 3 = 1 J

( i st -  f

(2 .105)

therefore the reduced SSF model becomes

- l
Y t  =  ( I t  0  A y) ( I mT -  E  S 3T (d B .

3 = 0

X E  S T ® r i  I ST  — S JT <g)Rj j Y t  +  Zy
j =o 3= 1

-1

X t  = ( I t  ® A x) | I 9t  — S 3T<g>Rj J Y t  + A t -
3=1

+ E t  (2.106)

(2.107)

Using the simplifying notation from Definition 2.3.0.4 we can write (2.106) and 
(2.107) as

11 We make use of the result

'11 ■L'12 
0 D 22

-1D^  ̂ Dw \  A — D ^D i2D 22
0 D -1

22
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Y t  =  A ^ T t + A ^ Z t  + E t  (2.108)

a  x

X T =  (l T ® A x) A (S r T + A T (2.109)' v '
U x

Next, we consider the covariance structure of S t , which can be easily obtained 
from the reduced form T-notation expression (2.101). The following lemma gives 
the required expression.

L em m a 2.3.5.4 Consider the VAR process (2.101). By Assumption 2.3.5.1, E [v tv't] = 
E v =» E[rTr'T] = I t ®  E v . Then E s  = A ^  (IT ® E v) A 1̂ , where ^ 3) =

( V  -  £  S ^ R i ) - 1.
j = 1

P ro o f  Since S T =  Y T and E  [S TS ' T] = 27s , we have 27s =  A ^ E  [ Y T T t \ A ,(§  = 
A ^ E  [Y t Y 't ] A/j? =  A ^  ( I t  0  E v) A /j?, as required.

Q.E.D

To examine the likelihood of the SSF model firstly note that the reduced SSF 
model (2.104) is (n  +  fc)T-dimensional, thus the SSF likelihood will be (n  +  k)T- 
variate Gaussian, thus of the same form and dimension as the likelihood of the RSLF 
model given by (2.33). Recall that by Assumption (2.97) as shown in (2.101), the 
S t  process can be expressed as a linear function of the residual vector Y t -  Defining 
L j-sf = (E 't  : A 't  • Y 't  : Z ' t / ,  assuming T t  is Gaussian and independent of other 
latent components it follows that

(  E t \  
A t  
Y t  

Zt  )
t S S F

N ( n+ k + g + m ) T 0 ,

0  & e 0 0 0
0 I t  0 0 0
0 0 I t  0  E v 0
0 0 0 I T 0  #

(2 .110)

Now, by letting

K  SS F  =

, (1)

L(3)l£ 0
4 (1)4 (2)4 (3)

( I t  0  A x) A

the reduced SSF model (2.106)-(2.107) can be written as a linear form in 
as K ssfL tSF- Therefore, by Proposition 2.3.0.3 it follows that

(2 .111)

SSF , i.e.,

61



L j,sf  ~  N(n+k+g+m)T (0 , S ssf ) => K  ssf  I*tSF ~  N(n+k)T ( 0 , K  s s f E  s s f K ' s s f ) ■

Finally, since S t  is a VAR(q) process by Assumption 2.3.5.1 whose covariance 
structure, by Lemma 2.3.5.4, is 27s = A j? ( I t  0  E v) we can parametrise 27l  
as

(  I t  0  @e 0 0  0

0 I t  0  @5 0  0

S L = 0 0 A {*] ( I T 0  27„) A '^  0

27=
I 0 0 0  I T 0  &

(2 .112)

Therefore, modelling the S t  process as a VAR(^) imposes the parametrisation 
27s — A 5?  ( I t  0  27v) A '^  on 2 7 Hence with such structure imposed on 27^ it 
can be easily verified that K s s f ^ s s f K ' s s f  = K r ^ l K ' r ,  thus the likelihood of 
the reduced SSF model (2.106)-(2.107) is equal to the likelihood of the RSLF model 
(2.26) with the covariance matrix of S t  parametrised as A ^  ( I t  0  F*v) A'y?.

2.4 Comparison of different forms

There are several possible criteria on which to compare different forms of the general 
DSEM model. We have seen that different forms of the general model discussed in 
this section are not identical re-arrangements of the same model in the statistical 
sense. Rather different assumptions about the modelled variables had to be made as 
well as some specific parametrisations needed to be considered. In this respect, while 
substantively we are dealing with the same model, its different forms might favour 
certain estimation methods and applications over the others. In particular, we would 
be interested in the criteria such as 1) choice of estimation method, 2) identification 
of the parameters, and 3) statistical assumptions about modelled variables. We 
will look into some of these criteria, in turn, by focusing on particular forms of the 
general model.

R S L F  m odel. The RSLF model (section §2.3.2) has appealing implications when 
repeated observations on the time series process are available. Consider N  
independent realizations of F ff i  are being observed. Then the log-likelihood (2.33) 
can be written for a single realization as

t R ( F ' f f - e )  =  - (n +2k)T  ln (2 7 r)~  In \K  RS  LK ' R\ - ± t r  ( K r E l K ' r ) - 1
(2.113)
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thus for N  independent realizations, the log-likelihood becomes

t R ( F % e )  = - {̂ - ^ ^ h i { 2 ^ ) - ^ ] n \ K RS LK lR\ - ^ t r F l(§ l  (K RE LK 'h) " 1 F ™ ,
(2.114)

where F =  (F[^!, . . . ,  F ^ ) .  Now, ignoring the constant term and rearranging 
the matrices under the trace, and multiplying by —2 /N  yields

In \K r E l K ' r \ +  i t r  (K RE LK 'R)~1 ^ F ($ . F ,($ . ,  (2.115)

which can be minimised to obtain the maximum likelihood estimates of the model 
parameters. Inspecting (2.115), we can observe that that N ~ * F ^ F ' ^ l  is the empir
ical covariance matrix of the observable data, hence making (2.115) is a closed form 
likelihood. The log-likelihood (2.115) is asymptotically equivalent to the Wishart 
log-likelihood of (N  — the empirical covariance matrix of the observ
able data.

Alternatively, an assumption that the observable variables are multivariate Gaus
sian along with the independence of the N  realizations (hence independence of the 
columns of F ^ F ' ^ l  would imply a Wishart distribution of (N  — 
hence a log-likelihood different from (2.115) only in a scaling constant.

The availability of the closed-form covariance structure 2.3.2.1 implied by the 
RSLF model also motivates generalised methods of moments or weighted least 
squares type of estimators. Consider a quadratic form in a positive definite ma
trix W ,

( v e c h -  vech K RE LK 'R \ W ' 1 (vech -  vechK RE LK 'R) .

(2.116)

Clearly, (2.116) is a fairly general fitting function not depending on any distributional 
assumptions. Various different choices of W  might be considered.

The RSLF model summarises the information about the latent variables in terms 
of their population moments and hence does not require estimation of the unobserv
able vectors S t  and H t - Table 2.3 lists the matrices of parameters in the RSLF 
model.
O F m odel. In section §2.3.4 the reduced structural OF model was shown to be 
equivalent to the UL-restricted random-case RSLF model, obviously the number of 
parameters to be estimated will be the same hence we do not need to consider the 
random-case OF model. It is thus more interesting to compare the fixed OF model 
with the RSLF model. The OF model has an immediate advantage of encompassing
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Table 2.3: Matrices of parameters in different model forms

Vector/matrix Dimension Number of parameters RSLF OF SSF
H t m T  x 1 m T - - /
pmW fa fW J/ gT  x  l gT - - /
& m x  m m (m  + 1)/2 / / /

&e n  x n n(n  + 1)/2 / / /
06 k x k k(k + 1)/2 / / /

/q (AA)
65 1X1 ( k - g ) k - g  + l) /2 / / /

LJS6 9 * 9 9(9 -  l ) / 2 / / /

0 (ssU) (.k - g ) x g g(k -  g) / - /
n T  x nT m ( n + p m  — 1) / / /

A™ m T  x gT qmg / / /
A L3> gT  x gT 992 - - /
27= gT  x gT g \ q  +  1/2 +  1/s) / - -

y t {UU)
^XX gT  x gT S2( s + 1/2 +  1/s) - / -

27„ 9 * 9 \9(9  + !) - - /
A ^ ( I T ® S v) A f gT  x gT S2( s + l / 2  +  l /s ) - /

the cases with fixed observables or perfectly observable indicators of fixed latent 
variables. The OF model can be estimated with maximum likelihood, but it also 
facilitates instrumental variables estimators, hence the assumption of multivariate 
normality can be relaxed easily in the context of the OF model.

Another interesting feature of the OF model is its suitability for estimation of 
DSEM models with pure time series. We have pointed out to a straightforward 
estimation method for the RSLF model when a cross-section time series data is 
available. While maximisation of (2.33) for a single realization of F ^ )  might be 
considered, the OF model suggests a more feasible approach. Namely, the log- 
likelihood (2.88) is of a standard multivariate Gaussian form but with parametrised 
residual covariance matrix, hence it would be straightforward to maximise it in 
respect to the model parameters.

SSF m odel. In section §2.3.5 we have shown that a state-space form of the gen
eral DSEM model requires modelling S t  as a VAR(g) process. This imposes a 
parametric structure on the covariance matrix of S t given by Lemma 2.3.5.1. 
Specifically, estimating coefficients of a VAR(g) process for S t  has the effect of 
imposing parametric structure AjP ( I t  ® 27v) A ' ^  on 27=. W ithout modelling 
the S j  as a VAR(g) we defined 27= unconstrained with bound-Toeplitz structure 
owing to covariance stationarity of S t  (see Appendix B). By Proposition 2.3.2.1 

we had 27= =  I t  ® +  J2j=i (&t  ® &j +  S 't  ® ^j)> where #o is symmetric
g x g matrix with g(g +  l) /2  distinct elements. Similarly, for j  = 1 ,2 , . . . ,  q, $ j  is
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g x g with g2 distinct elements. Thus I t  <8> #o +  J2j= 1 (&T® &j +  S%  ® &j) ^as 
qg2 +  g {g + 1)/2 =  g2( g + 1/2 +  1/g) distinct elements. On the other hand, imposing 
a VAR(q) structure on X+ results in parametrisation of the covariance matrix of 
S t  given by A ^ \ I t  <8> £ v)Af(£ \  where =  (I 9t  — Y%=i S ^ R j ) -1. Hence we 
have q g x g  matrices Rj,  each having g2 elements, and a symmetric g x g  matrix E v 
with g(g +  l) /2  distinct elements. Thus, the VAR(g) parametrisation of X+ results 
in the same number of distinct elements of 27g, namely g2(q +  1/2 +  l/<?).

However, when the aim of the SSF specification is the application of the Kalman 
filter, then the model needs to be in its recursive form (i.e., ^-notation) given by
(2.98), therefore, the state vector that includes S t  and H t  will be treated as a 
vector of missing values, thus requiring estimation of additional (n + k )T  parameters. 
Recall this was not the case in the RSLF model which used the summary information 
about these vectors in the form of their second moment matrices.
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Chapter 3

M axim um  likelihood estim ation  
w ith panel data

3.1 Introduction

The methods for estimating static simultaneous equation models (SEM) containing 
unobservable (latent) variables or variables measured with error are widely available 
and frequently used in the applied literature. Bartholomew and Knott (1999) and 
Wansbeek and Meijer (2000) provide a comprehensive review of these methods. 
Panel data methods for models with latent variables or with errors-in-variables have 
been considered in the literature in the context of the instrumental variables (IV) 
and the generalised method of moments (GMM) estimation (Arellano and Bover 
1995, Wansbeek 2001, Arellano 2003, Hsiao 2003). Moreover, static panel random 
effects models with latent variables can be estimated in the standard SEM modelling 
framework using the covariance structure analysis methods of Joreskog (1981) and 
Joreskog and Sorbom (1996a); see e.g. Aasness et al. (1993) and Aasness et al. 
(1995) for empirical applications.

On the other hand, dynamic panel models with latent variables have not been 
extensively analysed and there is a lack of suitable estimation methods for dynamic 
simultaneous equation models with latent variables or with all variables measured 
with error. Single equation and systems IV estimators were suggested by Cziraky 
(2004d) for time series and random effects panel models.

We consider estimation of dynamic simultaneous equation panel models with 
latent variables and fixed effects. Such models include unobservable variables that 
are measurable by multiple observable indicators. We consider full information 
maximum likelihood estimation, which has the potential advantages over the non- 
parametric IV and GMM methods in respect to modelling and testing the implied 
(latent) structure rather then merely providing consistent estimates of the structural 
parameters. This is an important aspect in the economic applications where the sub
stantive theory is formulated in terms of the latent variables where the measurement
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of these variables as well as the structural relationships are tested.

3.2 Dynam ic panel structural equation model

In this section we consider a dynamic panel simultaneous equation model with latent 
variables and fixed effects (DPSEM(p, q)). A DPSEM(p, q) model for the individual 
i =  1 , . . . ,  N  at time t = 1 , . . . ,  T  can be written for the generic individual at any 
time period t  using the “ t-notation” as

p Q
Va =  r & t - i  +  <u (3-1)

jr =0 j =0
Vit =  Ayriit +  n yi +  s it (3.2)

— Ax£it +  (3-3)

where r)it — , ■ ■ • ,»7«n))  and =  ( 4 l\ 4 2>> • • • >49>)  are vectors of latent

variables, y it =  •. • .J/&0)  and x it = ( x ^ \ x ^ \ . . .  , x ^  are vectors of
observable variables, and B j  (m  x ra), r$  (m x g), A x (k x  g), and A y (n  x m) 
are coefficient matrices. The contemporaneous and simultaneous coefficients are in 
B q, and JToj while B i, B 2, . . . ,  B p, and P i,  P 2, • ••, B q contain coefficients of 
the lagged endogenous and exogenous latent variables. Finally, fj,yi and fJLxi are the
n x l  and fc x 1 vectors of individual means, respectively. We treat pbyi and \xxi as
vectors of coincidental (fixed) parameters, which makes the DPSEM model (3.1)-
(3.3) a “ fixed-effects” panel model. The statistical assumptions about the variables 
in (3.1)-(3.3) are as follows.

A ssu m p tio n  3.2.0.1 The vectors of measurement errors e it and Sit are homoscedas- 
tic Gaussian white noise stochastic processes, uncorrelated with the errors in the 
structural model {Co)- We require for  / =  . . . ,  —1,0 ,1 , . . .  and s = . . . ,  —1,0 ,1 , . . .  
that

F \ f  t '  1 =  /  I ~  ~  3 j? r / I _  /  &e, I ~  s , i  — j
M  { 0, ’ [ f i  * ] {  0, ’

p  r t  cm j  I = s ,i  — j
i + . , i + r

ere ( m x m ) ,  &e ( n x n ) ,  and (k x k ) are symmetric positive definite matri-
. We also require that E  =  E  = E  =  E  [Sus 'jt-s] =
Vs.
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Finally, using the notation from Table 2.2, the DPSEM model DPSEM model (3.1)-
(3.3) can now be written for the individual i as

YiT =  ( It ® Ay) HiT + (it ® In) L*>yi + E& 

XiT =  (It ® Ax) E it +  (lt ® Ik) Hxi + A w ,

(3.4)

(3.5)

(3.6)

using the notation defined in Table 2.2.

It follows that (3.4) can be substituted into (3.5) to obtain a system of equations 
with observable variables on the left-hand side

By Assumption 3.2.0.1 the unobservable variables in (3.1)-(3.3) have expectation 

zero, thus it is easy to see that E[YiT] = (it <8> In) Hyi and E  [Xjr] =  (^r ® I  g) Hxi- 
Therefore, the expectations of the observable variables are the individual fixed-effects 
so we can define

3.2.1 M aximum likelihood estim ation of the parameters

The maximum likelihood estimation proceeds in two steps. Firstly, since we treat 
the vectors of fixed effects pLyi and n xi as incidental parameters of no substantive 
interest, we concentrate them out of the log-likelihood. Secondly, we maximise the 
concentrated log-likelihood to obtain the estimates of the parameter vector 0. We 
will assume that sufficient restrictions (e.g. zero restrictions) are placed on the model 
parameters so that the model is identified. The following assumption outlines the 
basic regularity conditions.

A ssu m p tio n  3.2.1.1 Let 2 ( 0 )  be a function of the parameters vecB \,  vec/1',  
vecA y, vecA x,vech vech , vech 0'5, and vech &'£; i =  0 , . . .  ,p, j  = 0 , . . . ,  q,

+ (lT ® In) Hyi + EiT 

HiT = ( I t  ® Ax) E it + (it ® Ik) V>xi + At-
(3.7)

(3.8)

y  _  I Y i T  — E  [ Y i t ] Y i T — ( i t  ®  I n )  Hy i

i T ~ \ X iT - E  [Xtr] X iT -  ( i t  ® I k) n xi

Since E  [V it} = 0 we have Var ( V it) = E  [ V it V'iT\.

(3.9)

68



where 0 is an open set in the parameter space T .  We assume that E (0 )  is positive 
definite and continuous in 0 at every point in T .  We also require that d E  (0) jd0 '  
and d2E  (0) /d0d0 ' are continuous in the neighborhood o f0o, and that d  vec E  (0 ) /d0 '  
has full column rank at 0 =  0q. Finally, Ve >  0,36 > 0 : 1117(9) -  27(0o)|| <  8 =* 

||0 - 0O| |<£.

We firstly consider estimation of the fixed effects parameters n y and i±x . Let

M i  = t^yi
F'xi

F  = It ® In  0  
0 lt ® Ik

(3.10)

so we can write

E | = FMi.
l^xi

^ iT j _ (  LT ® In  0
X i T  )  \  0  Lt ®  Ik

Therefore, by letting W \t  =  {Y'a  : X 'a )‘ , the multivariate Gaussian likelihood of 
the DPSEM model for the individual i is given by

L  ( W tr ,  M i)  =  (2tt)t/2 |27 (0)r'/2 exp ( W iT -  F M i) '  (<?) ( W tT -  F M i ) )  , 

and thus the log-likelihood is

\n L (W iT ,  M i)  =  - | l n ( 2 7 r ) - i l n | 1 7 ( 0 ) |

-  \ { W iT -  F M i) '  Z - 1 (0) ( W iT -  F M i)  ■ (3.11)

The maximum likelihood estimate of M i  can be obtained by solving the first-order 
condition

d in  L { W iT, M i)  
d M i

which gives the ML solution

=  F 'E  {0) ( W iT -  F M i)  = 0 (3.12)

M i  = ( F 'F ) -1 F ' W iT. (3.13)

Substituting (3.13) into (3.11) yields the concentrated log-likelihood of the form

InL ^ W ( r ,M i j  = 111(2*)- i I n | £ W I

-  i  [ ( /  -  F  ( F 'F ) -1 F ')  W a ^ Z ~ l (0) [ ( /  -  F  (F 'F ) -1 F ')  W iT
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which, by letting W^t  = ^1 — F  (F 'F )  1 F'^j W w ,  simplifies to

~  ln(27r) -  \  In \ S  (0)| -  \  w ' lT£ - '  (0 ) W iT. (3.14)

The concentrated log-likelihood (3.14) is the log-likelihood for the within-group 
(WG) transformed data. To see this, note that (^1 — F  (F 'F ) -1 F f>j  is the WG 
transformation matrix, i.e.,

' I ,  (3.15)

which follows from the fact that

jp, jp   | ^T ® In  0  j | ^T ® In  0
0 l't <S> Ik  J  \  0  l t ® Ik

_  (  ( l t  0  In)' (t 'T ® In) 0
\  0 (lT ® Ik)' (t'T ® Ik)

- A ' o  ".)■
and thus (F ’F )_1 =  T ~l I{n+k). Therefore,

F  ( F ' F y 1 F
 ̂ 1 0 lt ® Ik J \ 0

which yields (3.15). It now follows that the Gaussian log-likelihood for the sample 
of N  mutually independent time series process W \ t  =  (Y 'iT : X 'iT)' is the concen
trated likelihood given by

/ j-,\ —1 j-,/ 1 ( I'T ® In  0 \  (  T ^  In  @

N  N

L ( w iT, M ^  = - I ^ - l n ( 2 w ) - ^ l n \ S ( e ) \ - ^ J 2 w ' {rS - 1( 0 ) W iT
i= 1 i= 1

=  In (2tt) -  j  In \ S  (0)| -  I t r  27"1 (9 ) W NT w 'NT

(3.16)

where W n t  = ("W ît? • • • W NT) and W n t  = ( i  -  F  (F 'F )_1 F'^j W NT is the 
within-group transformed data matrix. It thus follows that the maximum likelihood 
estimator of 0 solves



Equivalently, the maximisation problem (3.17) can be turned into an equivalent 
minimisation problem

0 m l  = arg min 2 £;( w iT,
N

(3.18)

ignoring the constant term. Optimisation of (3.17) or (3.18) requires numerical 
methods such as the method of scoring or the Newton-Raphson algorithm. We will 
derive the closed form expressions for the analytical first and second derivatives in

matrix (or its probability limit) turns out to be notably simpler then the Hessian 
itself. Therefore, the method of scoring, which requires only the expectation of the 
Hessian matrix, is simpler to implement. The parameters’ estimates can hence be 
obtained by iterating

which can be implemented by using the closed form analytical expressions for the 
score vector and the information matrix provided in §3.2 and §3.3. The method of 
scoring generally requires good starting values, which can be provided using the IV 
methods suggested by ?.

At this point construction of the empirical covariance matrix merits few remarks. 
The 1 /N  times W n t W n t  is the empirical covariance matrix of the within-group 
transformed data on N  individual time series vectors W ^ .  To show this, we point 
out that the within-group transformed data for the individual i for T  time periods 
can be stacked into the (n + k )T  x 1 vector

§3.2, which facilitates both methods. As we will show, the expectation of the Hessian

<91nL
(3.19)

ViT

•Kil
(3.20)

y XiT y

where
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Y i =

V(T -  ? E j=l ViT

K y W - t Z U y i T  )

and X i  =

/  «.(!) _  i  y T XW \
T *-'j=1 ij

(k) _  i_ v^T (A:) 
■̂ il T ^ j —1 ij

x {1) -  -  > -x iT T £ ^ j=1 “'ij*<«

v r(*) _ i r J rw\  x iT T ^ j =1 ij /(*)

(3.21)

are nT  x 1 and k T  x 1 vectors, respectively. We now define an (n +  fc)T x N  matrix 
whose columns are data vectors on N  individuals as

W  NT =
yi y 2

X i x 2
y *
x N

' V u  V n

VlT  2/2 T 

X \ \  #21

£Cit *2T

• 2/m

• V n t

• ®/vi

• * att

(3.22)

/
hence W i s  the empirical data matrix for the entire sample (panel) of N  individ
uals observed over T  time periods. The (n + k )N T  x (n + k )N T  empirical covariance 
matrix can be computed by noting that

W N T W ' NT =

2/n 2/21 *' ' J/ati ^
 ̂ S?ii *'' 2/lr JCjl . . .  2 j ^

2/i t  2/2t  ’ ' ' Vn t 2?21 * * * 2/2T
-/ - /  
*21 ’ ’ * ®2T

X u  ®21 ' * ’ X N l j | j j

V 2/jVl ' •' x 'n i  • • • *5vT /

®1T *2T • ' * & N T  j

N N N JV \
Y v n V a  ■ H v n V i T V i l ^ i T
i—1 i=l i=1 i—1

N N N N

] C  V i l T V i l  '
«_1

* ' S  V i T V iT  S  V i T ^ i l  * ' *
«•_1 V__1

J2  ViT&'iT
A_1z— 1 

N
t — J.
N

I--X
N

z— 1 
N

E  ••• Y t & u y ' i T  ” •i=l i=l i = 1 i=l

N N N N
E  *tTj?« •
i=l •• Y £ iTV (T  E * < t* «  ■■■

i = 1 i=l *iT*iT , i=l /
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which can be written more concisely as

W ntW'nt =

/  N  „  N  „  \
E Y i Y ,  E  Y i X { '
*=1 i=l
N  „ N  „

v H X i Y i Y . X i X ,
\  i=1 i=1

(3.23)

Letting = T  1 ElJ=i Vi? aRd ^  =  T 1 ElJ=i xi f  ^  follows that the typical

elements of ^ i  Y u  E  and E  X i X t are of the form
i—1 i=1

2

i=l

(
N

5 3  yijVif
i=1

• • •

Ef=i («g} -  yf ]) ( v $  -  sj1}) • • • Ef=i (v$  -  y f ]) 2

N

53*o4/5
i=1

and

N

E  x ijx if —
i=l

E " ,  ( 4 } - a i 1*)2

E£i(*g)-*f))2

(x (k) - x ik))  ( x {1) - x {k))  y ij y \  */ * y

E*Li ( x ii1> - x i1))  ( ari l > -  x ^ )  ^

E £ . ( * M > ) a

respectively. By assumption (2.2.0.2) the time means converge in probability to the 
population individual means

an d

which implies that

X ? ) = u ik>H'xi

p lim W i = W i -  M i.
T —k x >

(3.24)

Therefore, the covariances of the within-group transformed data converge in proba
bility limit to

EZi { **  ~ ( y *  ~  y*k)) = E L  _ *$) { y ^  -  $ )
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Hence, the within group estimator requires that T  —*■ oo. Sequentially, if we let 
N  —> oo, we obtain the convergence in probability of the the empirical covariance 
matrix as

p  lim ^-  W NT W'NT =  27 (0O) . (3.25)
T ,N —>oo IV

3.2.2 A nalytical derivatives and the score vector

We derive the closed form analytical expressions for the first and second derivatives 
of the DPSEM model, thus enabling the construction of the score vector and the 
information matrix.

Derivation of the analytical derivatives and components of the information ma
trix is a difficult problem for complex multivariate models, nevertheless, the modern 
matrix calculus methods (e.g. Magnus and Neudecker (1988), Turkington (2002)) 
make possible to obtain these results. However, detailed derivations of the score 
vector and the information matrix for multivariate models is not frequently under
taken and the theoretical literature is rather scarce in this area. Turkington (1998), 
for example, derives the score vector and the information matrix in the closed ana
lytical form for the simultaneous equation model with vector autoregressive errors, 
which is so far the most complex linear model for which full analytical results were 
obtained.

While the main motivation behind the studies such as Turkington (1998) was to 
obtain the basic analytical results needed for the classical statistical inference and 
derivation of the Cramer-Rao lower bound, which can in turn be used for bench
marking the efficiency of various estimators, the motivation here is additionally in 
providing analytical inputs for implementation of efficient estimation algorithms. 
The computational efficiency is a major issue with complex multivariate models, 
specially dynamic models with unobservable variables, hence the availability of the 
analytical results might greatly facilitate practical implementation of the various 
special cases of the general model considered here. In particular, we give fully vec
torised expressions for analytical derivatives and the Hessian matrix, which can be 
easily programmed in modern object oriented languages such as S or R.

The maximum likelihood estimator (3.17) can be interpreted as a covariance 
estimator, where all the unknown parameters are contained in the model-implied 
covariance matrix 27(0). To obtain the closed-form analytical derivatives of the 
log-likelihood (3.16) it is necessary to obtain the derivatives of 27 (0) in respect to 
particular elements of the parameter vector 0 given in (2.3.0.6). We achieve this by 
firstly expressing the 27 (0) as a linear function of its block elements 27ij, and then 
trivially by expressing its derivatives as linear functions of the derivatives of the 27y
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blocks.

L em m a 3.2.2.1 Let E  (0) have the partition into (n +  k)T  columns as

27(0) = 11

'21

12

'22

m
m

( i i )
i
(21)

m
m

( i i )
nT
(21)
nT

771

m

(12)
1
(22)

, (ij) so thatthus each block is partitioned into columns as E ij = (jn^-

vec E ^  = • • • , . Then vec E  (0) can be expressed as a linear combi
nation of its vectorised columns as

vec E  (0) = H u v e c E n  +  H 21 v e d 7 2i +  H i 2v e c E i2 +  H 22v e c E 22, (3.27) 

where the T 2(n-\-k)2 x n T  zero-one matrices H u ,  and the T 2(n + k)2 x n kT  zero-one

H  ii =

ff<2, ^ =  1,2 are specified as

InT 0 0 ••• 0  \ ( 0 0 0 . . .  0

0 0 0 . . .  0 I  kT 0 0 . . .  0

0 InT 0 . . .  0 0 0 0 . . .  0

0 0 0 . . .  0 0 I  kT 0 . . .  0

0 0 InT . . .  0 0 0 0 . . .  0

0 0 0 . . .  0 0 0 I  kT . . .  0
: h 21 =

0 0 0 . . .  0

0 0 0 • • '  InT \ I :

0 0 0 . . .  0 >
0 0 0 * * • IkT
0 0 0 . . .  0

.
> a :

0 0 0 0  0  J J { 0 0 0 0  0

and

75



( 0 0 0 ••  0  > y '  0 0 0  •• 0

• ; >b • •

0 0 0  • 0 j * * • *

InT 0 0 0 0 0 0  •• 0
0 0 0 0 I  kT 0 0  •• 0
0 InT 0 0

H 22 =
0 0 0  •• 0

0 0 0 0 0 I  kT 0  •• 0
0 0 InT ’ 0 0 0 0  •• • 0
0 0 0 0 0 0 IkT ’ ’ • 0

I • 0 0 0  • • 0

0 0 0 ' ' InT : I ;

0 0 0 .. 0  ) 0 0 •• • IkT

where a

o*E-hII n +  k) — k T , b =  T 2k(n  +  k), and c = T 2k(n + k) -  nT.

P ro o f  See Appendix §3 A.

C o ro lla ry  3.2.2.2 The first derivative of the vec of a 2 x 2 block matrix E  (0) is 
a linear function of the derivatives of its vectorised block elements of the form

<9 vec E  ($) _  d H n v e c E n  d H 2iv e c E 2i d H ^ v e c  E \ 2 d H 22v e c E 22
d O  = ~d0 + do + do + do 

-  <328>
i =  1 j  =  1 \  /

P ro o f  By the chain rule for matrix calculus (see Magnus and Neudecker (1988, 
pg. 96) and Turkington (2002, pg. 71)) we have

d H k  ?vec E i j  _  ( d vec E i j \  f  d H i j v e c E i j \  ( d vec E i j \  xs,
~ d d  =  V d e  J  V d vec E i j  )  =  V d e  J  i j ’

Therefore,

(  d  H i j  vec E ^  \  s v /  d  vec E  ̂  \  ,
E  E [  s e  J  = 2 ^ 2 ^ { - J o ~ ) h » ’4=1 j= 1 \  /  4=1 j =l \  /

as required.

Q.E.D.
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The following proposition gives the general expression for the analytical deriva
tives of the log-likelihood, d In L   ̂W n t )  / d  0.

P ro p o sitio n  3.2.2.3 The score vector d In L (^W n t ^ / d 0  of the log likelihood (3.16) 
has the j  th component of the form

1 (  d  vec E  (0)
2 dO (*)

^  vec E  1 (0) W NTW'NTS - 1 (0) -  iV vecl?-1 (0)] . (3.29)

P ro o f  See Appendix §3 B.

To obtain analytical expressions for the partial derivatives d vec E  (0 ) / d d ^  in re-
/S|C\

spect to particular elements 0j 1 of the parameter vector 0, we firstly introduce some 
new notation. We will make use of two special types of zero-one matrices, K ab and 
D a. We define the commutation matrix Kab as an orthogonal ab x ab zero-one 
permutation matrix

K ab =  ( /„  ® e5 : l a  ® e \  : • • • : I a ®  ej) (3.30)

such that K o(, vec X  =  vec X ' , where e* is the j th  column of a 6 x b identity matrix, 
i.e., Ib =  (e , : eij : ■ ■ • : e b) . Additionally, let

s  devecbK ai = [J„ ® ( e ? ) ' : ® ( e f ) ' : • • • : I b ® (e“) '] . (3.31)

The a2 x o(o + 1 )/2  duplication matrix D a is defined as a zero-one matrix such that 
for an a x a matrix X , D a vech X  = vec X . To further simplify the exposition, we 
define some abbreviating notation as follows.

Y  =

-l
x  = I i mT- j 2 s 3T®B3) 1^ 4 0 r,

j=0 J =0
9

I t ® #o + X) ®
j=1

( imT- y 5 ,;r a b ;
J = 0

J=0
0 + E  {s t ® + S 'r  ® *i)

i=i
+ ( / r ®  *) ( E s ' r ® r i

J=0
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A  =  ( IT ® Ay) |  ImT — ^  Sip <8> B

-l  

3 I ’
3 = 0

F = I T ® $ 0 + J 2  ( S T ®  * 3  +  S 't  ®  * j )
j=1

-1

3 = 0

V
J=o

-l
D  =  (IT ® A y) \ l mT- Y i S iT ® B j \ .

3 = 0 J=o
-1

j=0 J=o

F =
q

I T ®$O+Y^  (ST ® *j + S 't ® &3)
3 = 1

P ro p o s itio n  3.2.2.4 The the partial derivatives of d vec E  (0 ) / d 0 ^  in respect to 
the elements of the parameter vector 0 are of the form

^ vec ^ i j  XT 
2 ^ 2 ^  «„(*) 
i=1 7 = 1 O 77=1 j = l ^ " j

w/iere the analytical expressions for the matrices d vec E ^ j d O ^  are as follows. The 
derivatives of the block elements of E n ,  E 12, and E 22 in respect to 0 ^  for any 
i =  0 , . . . ,  p are1

d vec 
d vec

+

-1 - 1 '

ImT ^  ̂Sip (8) Bj
j=0

I mT- j 2 S % ® B ,j
j =o

-1

Y  J I mT ~
3 = 0

P -1

Y ’ ( / . T - ^ S OT 0 S ;  ]
3 = 0

\
K  mT,mT x (JT (8) Ay) (8) (Jt ® ilj,)

/

1Since B 12 =  E'2\ we do not need to give a separate expression for B 2 1 .
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d vec E 12  

dvecBi

-1 -1'

ImT  ̂S’t1 ® BJ
3 = 0

£ s i . ® r , - j  j (i t ® 4 ,)
J= 0

(8) ( /t ®

dvec 1722 
dvecBi

j= 0

=  0 .

In respect to 0^Vi\  for any i =  0 , . . . ,  q, the derivatives of the individual blocks are

dvec E u  
dvecTi

dvec E 12  

d vec r*

dvec <£22
d vec P,-

= [K^g ( iTg ® s'ip) ® j ro] [ y  ( s ‘T ® r<)' ® i mT + r ' (si- ® r,)' ® j mT)]

X HmT,mT {A  <8> -A )

X ^ [ F ( J r ® i t y ]  

=  0.

-1

3 = 0

In respect to 0^Ay\  the derivatives are

r\

=  (■K’r.m ®  In)  ( [ X  ( I t  ® A'y) ®  / nT] +  [ -T  ( I T ®  A'y) ® I nT] F„r,nT )
(7 VGC / l y

^ V6C^ 12 =  [ / „ ® ( v e c I T) ' ] (A - n,r ® I r ) ( [ Q F ( J r ® i i ; ) ] ® / nr)
(7 VGC / i y

dvec 1722  ̂
d vec A y

In respect to 0^Ax\  the derivatives are

dvec E n
a IT = 0o  vec 2l x

^ VeC^ U =  [ /„  ® (vecI T )'] ( K kiT ® J T) (J9t  ® FQ' [ ( / T ® 4 ,)])
O  VGC /Lj;

^ V6C^ 22 =  (K*Ttg ® /* )  ([F ( I T  ® A i) ® /„ -] +  [F' (J r  ® ® I kT] K k<T) .
O  VGC

The contemporaneous covariance matrix # 0  of the exogenous latent variables appears 
on the diagonal of the block Toeplitz matrix (8.12), while for any other j  ^  0, both 
<Pj and appear off-diagonally. Hence we differentiate each E ^  separately for  # 0  

and $ j  (j ^  0) in respect to 0 ^ \  which yields
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<9 vec E  n  
<9 vech $o 
<9 vec £ n

D'g [Ig ® (vec I T)'] ( K 9,t  ® I t ) (Z '  ® Z')

D'g [K-T:g ( l gT ® S%) ® Ig) {IgT +  KgT,9t ) (Zf ® Z')
<9 vech

= D 'g I1 9  ® (vecI t ) ' ]  ( K 9,t  ® I T) [ ( I t  ® 4 )  ® Q ' (* r  ® 4 ) ]

<9 vec 1712 
5 vech 
<9 vec 1722 
<9 vec o 
<9 vec 1722 
5 vech

d ;  ( V  ® S"T) ® I , ]  ( V  +  J W )  [ ( /t ® 4 )  ® Q' ( I t  ® 4 ) ]

D'g [I9 ® (vec J r )'] (JST9,t  ® I T) [ ( /r  ® 4 , )  0  ( I T ® 4 ,)]

r»; [JTJ. ( l 9r ® ® I , ]  (V  +  i W )  [(Jr ® i l i )  ® (Jr ® K ) \  ■

Finally, the derivatives in respect to the error covariance matrices are as follows. 
For 0 W  we have

dvec E n
5 vech S' 
dvec E 12

5 vech 
dvec E 2 2

5 vech & 

For e(B‘ ̂ we have

= D'm [Im 0  (vec I T)'\ ( K m,T 0  I t ) (D f 0  D')  

= 0 

= 0.

dvec E ii 
d vech G e 
dvec E 12  

d vech 0 e 
d vec E 2 2 

d vech 0 P

— D'n [in 0  (vec I t )'] (K n,T 0  I t ) 

= 0

= 0 ,

and for 0^Qs\

dvec E ii 
d  vech @s 
dvec E 12 
d vech @s 
d vec E 22 

5 vech &s

P ro o f  See Appendix §3 C.

=  0 

= 0

— D'k {Ik 0  (vec I t )') {KkT 0  I t ) •

The score vector can now be constructed by substituting the partial derivatives 
given in proposition 3.2.2.4 into the general expression for the components of the 
score vector given by the expression (3.29).
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3.2.3 A sym ptotic inference

The basic inferential properties of the multivariate Gaussian models whose likelihood 
can be written by separating the unknown parameters from the observable variables, 
e.g. the likelihood of the DPSEM model (3.16), are asymptotically equivalent to the 
properties of the Wishart estimators analysed by Anderson and Amemiya (1988), 
Anderson (1989), and Amemiya and Anderson (1990). In addition to these known 
results, we give the analytical expressions in the closed form of the Hessian and 
information matrices.

We make the standard assumption that S  (0) is twice continuously differentiable 
in a neighborhood of 0q, and that d vec S  (0 ) / d 0 ^  has full column rank at 0 = 0q.

P ro p o sitio n  3.2.3.1 Let 0 ^  denote any component of the parameter vector 0, as 
defined in (2.3.0.6). Then the Hessian matrix is of the form

P ro o f  See Appendix §3 D.

P ro p o sitio n  3.2.3.2 The information matrix is of the form  S? (0$) =  — H  (0q) 
with typical block elements given by

(  9 In L W  n t  d h i L  W n t  ^

d0{Bo)a e '^ s)
H ( e ) (3.32)

d  In L W  n t  d  In L W  n t

d 0 (&s)d 0 KGs) /\  d 0 {&s)d 0 ' {BQ)

where the typical element is given by

d2] n L ( w NT)
S - 1 (Oo) ® S ' 1<M ( ^ i )  .tSTToo a t f w w  ,  „

j  1 0 = 0 {

(3.34)

where 0q is the population value of 0.

81



P ro o f  See Appendix §3 E.

The information matrix (3.34) can be constructed by using the analytical expres
sions given in the proposition 3.2.2.4 for the partial derivatives of the log-likelihood 
in respect to the particular elements of the parameter vector 0. Note that the 
asymptotics in the temporal dimension (i.e., T  —» oo) are required only for the 
consistent estimation of the time-means (fixed effects).

The asymptotic normality of the maximum likelihood estimator of 0 can be 
established in the standard way by using the Taylor series expansion of the log- 
likelihood

a i n i f W O T ) d \n L ( w V r) a2lnL (TVjvr)
ae

which implies

0=0
dO

=VML 0=00
dOdO’

0=00

( O m l  -  Oo) = 0 ,

0ML
j  / d 2 l n Z , ( w ^ T ) \  1 d i n L  n t )

~  ° °  =  2 I dOodO'0 j dW a

d v e c  S m \

x

dOo J

vec 2 T 1 (6»0) W NT (0O) -  N  vec E ' 1 (0O)] +  ov ( - ^ )  .

(3.35)

From (8.45) now have that

V N  ( 0 m l  - 0 o ) J * N [ 0 , 2 H - \ 0 o ) \ . (3.36)

W  N T  W  N TSubsequently, hypotheses of the goodness of fit of the form H0 : E

E  (0 ) can be tested using the statistic T  = N  In L W n t  ( Oml) ,  which is asymptot
ically x 2 distributed with degrees of freedom d  (for the proof see Anderson (1989)’s, 
theorem 2.3; see also Browne (1984)). The degrees of freedom parameter d  is the 
difference between the number of distinct elements in the data covariance matrix 
( 1 / N ) W W '  and the number of elements in 0, i.e., the number of parameters to 
be estimated. This x 2-distributed fit statistic can be used for testing the null hy
pothesis corresponding to a particular model-implied covariance structure against 
the alternative of a completely unconstrained covariance matrix.

In practice, the reliance on this statistic must be taken with caution as it is 
known to be sensitive to departures from normality. While here we have assumed
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normality, Amemiya and Anderson (1990) have shown that this statistic will be 
still asymptotically valid for the non-normal data as well as for certain classes of 
dependent data, though the model they considered is somewhat less general then 
the one we are analysing in here.2

3.3 Conclusion

We considered maximum likelihood estimation of dynamic panel structural equation 
models with latent variables and fixed effects (DPSEM). The methods considered 
in this chapter derive from the structural equation modelling tradition where latent 
variables are measured by multiple observable indicators and where the structural 
equations are estimated jointly with the measurement model. Here, these methods 
are generalised to dynamic panel models with fixed effects. The DPSEM model 
encompasses virtually any dynamic or static linear model, and it can be trivially 
shown that classical dynamic simultaneous equation models, vector autoregressive 
moving average models, seemingly unrelated regression models with autoregressive 
disturbances, as well as factor analysis models and static structural equation models 
can all be specified by imposing zero restrictions on the parameter matrices of the 
general DPSEM model.

We derived analytical expressions for the covariance structure of the DPSEM 
model as well as the score vector and the Hessian matrix, in a closed form, and 
suggested a scoring method approach to the estimation of the unknown parameters. 
The closed form covariance structure allowed us to write the likelihood function of 
the DPSEM model by separating the observable covariance matrix from the model- 
implied covariance matrix in the likelihood function, which enabled application of 
the existing asymptotic results for the general class of Wishart estimators.

Further research should consider small-sample properties of these estimators as 
well as their properties when the observable variables are not normally distributed. 
Another extension of the present research framework would be to obtain an analyti
cal expression for the Cramer-Rao lower bound, which would provide a general lower 
bound for virtually any linear model and thus enable benchmarking of asymptotic 
efficiency of alternative estimators. This would require analytical inversion of a the 
information matrix derived here.

2The asymptotic results of Amemiya and Anderson (1990) strictly apply to models without the 
stochastic error term in the structural equation; the extension of these results to the non-zero error 
case is not straightforward and it requires a more general framework.
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Chapter 4

M axim um  likelihood estim ation  
w ith pure tim e series data

4.1 Introduction

In this chapter we consider estimation of DSEM models with pure time series data, 
i.e., the case with N  = 1. There appears to be a growing interest in SEM models 
for such data in the literature (Oud 2001, Oud 2002, Hamaker et al. 2002, Hamaker 
et al. 2003, Oud 2004). W ith pure time series data it is not possible to compute a 
sufficient statistic in the form of an empirical estimate of the covariance matrix, S , 
which was needed for the methods considered in chapter §3. Namely, with N  = 1 
manipulation of the log-likelihood (3.16) that allowed us to replace the raw data 
with the empirical covariance matrix is not possible. Thus in such case we need to 
consider estimation using raw data. To see this, note that the log-likelihood for a 
sample of N  independent Gaussian observations zi ~  i.i.d. N(jt,  £ ) ,

L(0)  =  (27r)“ i^ | S ( 0 ) r ^ e x p (4.1)

can be rewritten as

(4.2)

by noting that we rewrite the term in the trace as

i=  1

(4.3)
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where S  is the empirical covariance matrix that can be calculated separately and 
used as a “sufficient statistic” in the maximisation/minimisation of the (log)likelihood 
function. Joreskog (1981) and Anderson (1989) pointed out that maximising (4.2) is 
equivalent to minimising the Wishart log-likelihood In L(0)* = In |£ (0 ) |+ tr  S £ -1(0) — 
l n |S |- l - k ,  therefore, the use of S  in the numerical optimisation of the likelihood 
function has firm theoretical grounds and leads to the “standard” SEM estimation 
approach based on covariance structure analysis.1

This problem lead some authors to consider computing an artificial covariance 
matrix where lagged values of the time series vectors are treated as additional vari
ables. This allows computation of a k x k matrix of variances and lagged covariances, 
where k denotes the number of observable variables in the model including lagged 
ones (Hershberger et al. 1994, Hershberger et al. 1994, Molenaar 1985, Molenaar 
1999, Van Buuren 1997). This approach, however, does not yield maximum likeli
hood estimates, rather it results in the method of moments estimates.

In chapter §2 we showed that the general DSEM model can be written in the 
state space form. Hence, we might consider using the Kalman filter to recursively 
evaluate the likelihood of the model, where at each step new parameters estimates 
are obtained until convergence Terceiro Lomba (1990).

This approach was shown to be feasible for simple univariate dynamic models 
(Engle and Watson 1981, Engle et al. 1985, Ghosh 1989).

Engle et al. (1985) and Ghosh (1989) estimated similar univariate models using 
an expectation-maximisation (EM) algorithm to update the likelihood, which was 
calculated using Kalman-filtered estimates of the unobservable state variables.

However, these methods have not been widely applied to estimation of multi
variate dynamic models such as DSEM, although some simple special cases of the 
general DSEM model (i.e. univariate models) can estimated in the state-space form 
using the Ssf Pack in Ox (Koopman et al. 1999) or in the S+FinMetrics module of 
S-Plus (Zivot et al. 2002).2 Maximum likelihood estimation of the unknown param
eters for certain univariate models is straightforward and Ssf Pack provides built-in 
functions for placing these models in the state-space form. Kalman filtering and 
smoothing can be applied efficiently for such models, however, estimation is difficult 
if gradient and good starting values are not provided.

One reason is the difficulty in providing analytical derivatives for such models, 
without which minimisation using e.g. quasi-Newton methods in combination with

xNote that by ignoring the constant term (—N(l  + k)/2) ln(27r) in (4.2), and noting that since 
lim z izi =  lim ~k S i l i  ziz'ii the unbiased covariance matrix can be replaced

by the asymptotically equivalent S. Multiplying (4.2) throughout by —2/N and replacing the 
constant term by — In |S| — I — k yields the Wishart log-likelihood.

2The SsfPack is a suit of routines for state space modelling, which implements the Kalman 
filter and smoother.
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the Kalman filter is likely to fail in multivariate models.3 Another reason is the 
recursive nature of such estimation, which contributes to slow convergence problems 
with large models due to the necessity of using the Kalman filter recursions at each 
evaluation step.

An alternative to fitting the theoretical covariance structure to an empirical 
covariance matrix, or to using recursive estimation, is the raw-data maximum likeli
hood (RD-ML), where the likelihood function is written for the entire sample. Such 
an approach was considered by Neale et al. (2004) who implemented an actveset 
QP optimisation algorithm NPSOL for the estimation of standard SEM models in 
the software package Mx (Gill et al. 1998). However, the use of purely numerical 
methods to optimise the likelihood proved to be feasible only for low-dimensional 
problems and small data sets. In a recent paper, Hamaker et al. (2003) report 
difficulties in estimating even simple univariate ARMA(1,1) models with T  > 50 
using Mx. An additional problem with the full-sample ML implementation in Mx 
is the necessity to specify the time-series relationship among variables for each time 
point and subsequently impose a series of equality constrains to obtain the required 
stationary dynamic structure.

Note that in the context of dynamic SEM models, the derivation of the theoretical 
covariance structure in chapter §2 did not assume that N  > T  nor did require 
computation of a sufficient statistic (i.e. empirical covariance matrix). Thus, the 
closed-form covariance structure derived in §2 remains valid for the case when N  < T  
including the case with N  = 1 (pure time series data). W hat differs is the log- 
likelihood, which can no longer be simplified by replacing the data with the sufficient 
statistic S , and the analytical derivatives are consequently different.

In the next section we provide a suitable parametrisation for the full-sample 
likelihood of the DSEM model and obtain analytical expressions for the gradient 
using the matrix calculus methods based on zero-one matrices (Turkington 1998, 
Turkington 2002). This aims to make a contribution to the literature by provid
ing general and programmable closed-form expressions for both the likelihood and 
the score. We aim to obtain expressions that can be written in terms of param
eter matrices/vectors and zero-one matrices, and are hence easily implementable 
in modern object-oriented programming languages such as S or R (Venables and 
Ripley 2000, Venables and Ripley 2002).

In addition to providing the analytical results needed for full-sample maximum 
likelihood estimation of DSEM models, we suggest a simple approach to program
ming the estimation algorithms.

In the next section we specify the DSEM model in the form that enables us

3The gradient (analytic derivatives) are not provided in the S-Plus version of SsfPack, while 
the Ox version provides the gradient only for certain parameters of the model.
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to obtain a closed form likelihood and covariance structure for pure time series 
data. Third section derives the analytical derivatives and develops functions that 
implement the likelihood and score formulae in the S language. The fourth sec
tion outlines an approach to estimation of the parameters by using the suggested 
functions in combination with the existing optimisation routines in S-Plus and R 
environments.

4.2 The likelihood function

Consider the DSEM(p, q) model suggested in section §2. The model can be written 
in the recursive form (i.e. for a typical time t) as

Vt =  + (4-4)
j = o j=0

Vt = AyVt + et (4.5)

x t =  A x£t + 8t (4.6)

where rjt = . . . ,  rfp) '  and =  (&(1), f t(2), . . . ,  ( jg))' are vectors of possibly
unobserved (latent) variables, y t = (s/*1̂ , , y i^Y  and x t = ( x ^ ,  x f \ . . . ,  x[k )̂'
are vectors of observable variables, and B j  ( /  x / ) ,  ( f  x g), A y ( n x  / ) ,  and A x 
(k x g) are coefficient matrices. The contemporaneous and simultaneous coefficients 
are in B 0, and To, while B 1 , 2?2, • • •, B p, and T 1 , T 2, . . . ,  r q contain coefficients 
of the lagged variables.

The structural part of the model (4.4) is a standard dynamic simultaneous equa
tion system, but with measurement error in all variables or with all variables un
observable (latent). Therefore, the unobservable variables need to be measured by 
observable indicators. This is achieved by the equations (4.5) and (4.6), which are 
specified as factor analysis models.

By making an additional assumption that £t follows a vector autoregressive pro
cess of order s, i.e., VAR(s) process with s =  max(p, q) we can append the model
(4.4)-(4.6) with

s

at = Y , R & - i + v "  (4-7)
3=1

which allows us to write (4.4)-(4.7) in a simplified form as
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where R q =  0, m  =  /  +  </, and r = n + k. We will hereafter work with the simplified 
notation writing the DSEM model (4.4)-(4.7) as

h t =  Y , C j h t  + Zt (4.8)
3 = 0

w t = A h t + e t. (4.9)

Note that (4.8)-(4.9) can be interpreted as a state-space form of the model (4.4)- 
(4.7).

The formulation (4.8)-(4.9), however, contains too many unknowns and we need 
to factor out the latent variables, for which purpose we will revert to the vectorised 
version of the model. Hence, by vectorising (4.8)-(4.9), we obtain

v e c { h jf  

H t  (m T x l )

vec{wt}is ... v ✓
W T ( r T x l )

C j  ) vec{ht}J  +  vec{ z t}J
J ' V '  N v '

H  T (m T x  1) Z t  (m T x l )

( I T ® A) vec{ht}i + v e c { e j^ ,
Vi. . v — „✓ ' v '
H t  ( mTxl )  E t  ( r T x l )

(4.10)

(4.11)

which now enables us to re-write the model with only observable variables on the 
left-hand side and latent vector H t  factored out

- l

W T = ( I t ®A.) ( I m T - J 2 S T ® C j )  Z t  + E T.
3 = 0

Let

(4.12)

’ CtC’t Ctv ’t ' III t etS't '

_ VtC't v tv 't _ . Ste’t

---1•40

EE E

It follows that the model-implied covariance matrix is of the form £  (0) = E  [W t W't  ], 
which can be evaluated as



E  (0 ) =  E  [ ( ( I T ® A) X _1Z r  +  E T ) ( ( I T ® A) X ~ l Z T +  E T) '

=  (IT ® A) X " 1 E  [Zt Z't ] X '-1 ( I T ® A') +  E  [ E TE'T]

J T®# J T®©
=  (JT 0  A) X " 1 (JT 0  X '" 1 (J r  0  A') +  J r  0  © (4.13)

where X  =  J mr  — ]C ^ t  0  an<̂  ^  =  [(vecC,j ) /, (vec A)', (vech’F)', (vech©)'],
j=o

where for simplicity, we write only the j- th  (generic) lag-coefficient matrix C j . By 
introducing further simplifying notation A  =  J t  0  A, and B  = I t  <S> ^  we obtain 
a more compact expression for £ (0 ),

£  (0) =  A X _1jB X /_1A ' +  I T 0  © (4.14)

The £  (0 ) matrix (4.14) can be easily programmed using object-constructor func-
s

tions as follows. Firstly, we define the S function that constructs X  =  I mT — &t  0
j =  o

as

"Xsum" <- fu n c t io n (x ,m ,ss ,t t )
■C

Cm=array(dim=c(m,m,(ss+1))) 
f o r ( i  in  0 :s s )
{

Cm[, ,i+ l]= m a tr ix (x [(i* (n r 2 )+ l)  : ((i+ l)*n T 2)] ,m,m)
>

Xm=kronecker(power. s h i f t ( t t , 0 ) , Cm[ , ,1 ] )  
i f ( s s > = l)

{
f o r ( i  in  l : s s )

Xm =Xm +kronecker(power.shift(tt,i),Cm [,, ( i+ 1 )] )
>

retu rn (solve(diag(m *tt)-X m ))
>

e ls e

return(solve(d iag(m *tt)-X m ))
>

Similarly, the constructor function for A  =  J t  0  A can be written as 

"makeA" <- fu n c t io n (x ,m ,r ,s s ,t t )
■C

Ad=(ss+l)*nT2
k ro n eck er(d ia g (tt) ,m atrix (x[(A d +l): (Ad+r*m)],r,m))

>
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Next, the B  =  I t  ® ^  matrix can be built with the following function,

"makeB" <- fu n c t io n (x ,m ,r ,s s ,t t )

Pd= (ss+1)*nT2+r*m
k ro n eck er(d ia g (tt) , SymMat(m,x[(Pd+l): (Pd+m*(m+l)/2)]))

>

Finally, the last component we need is I t  <8> which can be constructed simply
as

"makeT" <- fu n c t io n (x ,m ,r ,s s ,t t )

Td=(ss+1)*m~2+r*m+m*(m+1)/2
kronecker(d iag(tt),Sym M at(r,x[(T d+ l): (T d+r*(r+l)/2)] ))

>

where we made use of a function that constructs a symmetric matrix, SymMat,4 by 
taking a vector argument, i.e.,

"SymMat" <- fu n ction (k ,x )

M = as.m atrix(bdsm atrix(k , x ))  
return(M)

>

W ith these functions at hand, we can programme an expression for DSEM co- 
variance matrix £ (0 ), namely,

"mSigma" <- fu n c t io n (x ,m ,r ,s s ,t t )

Xm=Xsum(x,m,ss,tt)
Am=makeA(x,m,r,ss,tt)
Bm=makeB(x,m,r,ss,tt)
Tm=makeT(x,m, r , s s , t t )
SM <- Am0/, * °/0Xm7, * 0/,Bm°/0 * % t  (Xm) °/,*°/,t (Am) °/,*°/,Tm

>

Note that (4.14) gives the expression for the theoretical covariance matrix of the 
DSEM model in a closed form as a function of model parameters only. Therefore, 
the closed-form log-likelihood of the DSEM model is

In L ( W T ) = - 1  In (2tt) -  i  In |£  (0)| -  i t r W 'T 'S r 1 (6) W T . (4.15)
z z z

To obtain the maximum likelihood estimates of 0 note that maximising the log-
likelihood (4.15) is equivalent to minimising5

4Note that our SymMat function makes use of the bdsmatrix, which is included in S-Plus, but 
not in R.

5Note that trW^E-1 (9) W T = W'TS ”1 (0 ) W T since VF^ST1 (9) W T is a scalar.
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max (In L ( W t )) = argmin (in |E  (0)| +  W 'yE 1 (0) W t ) ,
0

thus our objective function is

FMl  =  In |E  (0)| +  W ' j S T 1 (0) W T. (4.16)

The log-likelihood (4.16) is a  function of the E  (0) covariance matrix, hence it 
can be easily programmed using the mSigma function, thus we can construct F m l  as

"makeFML" <- fu n c t io n (x ,d a ta ,m ,r ,s s ,t t )
{

Xm=mSigma(x,m, r , s s , t t ) 
vecWm=vec(as.m atrix(data))
LnS=log(abs(det(solve(Xm )) ) )
trWm=as. numeric (crossprod (vecWm, Xm) */,*#/,vecWm)
return(LnS+trWm)

>

Table 4.1: S+ functions for likelihood evaluation

Matrix/vector Dimension S+ function Arguments

(.I mT - ' t s 3T ® C j ) - '
3 = 0

A  = I t  ® A

m T  x m T Xsum makeC, / ,  g, s , T

rT  x m T makeA Ay, Aj;
B  = I t  <8> ^ rT  x rT makeB T

I t  <8> © rT  x rT makeT 0 ,  T
E - 1 (0) 

ln |E (0 ) | +  W i.E - 1 ( 0 ) W T
rT  x rT mSigma makeA, makeB, Xsum, makeT

1 x 1 makeFML mSigma, 
m  x m  data matrix X

DSEMobj .Bl, . . . , B g , Tl, . . . ,  rs,
-Rl, . . .  5 -Rsj Ay,

Ax, ©

In the next section we will derive the analytical expressions for the derivatives of
(4.16) and thus obtain the score vector.

4.3 The score

We make use of several useful zero-one matrices, S j , K ab and D a. The is the 
general (integer) power of the shifting matrix 5 , defined in (2.11), which can be 
constructed as
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"power.shift" <- function(x,p)
{

if(p==0) {diag(x)> 
else if(p==l) {shift.mat(x)} 
else {

si=diag(nrow(shift.mat(x))) 
s2=shift.mat(x) 
while(p>0)

{
if(p%%2)
sl=sl*/,*'/,s2
P=p7./*/.2
s2=s2#/.*7.s2

>
return(si)

>

where the shifting matrix S  can be obtained with a simple function

"shift.m at" <- fun ction (x)
{

51 <- d iag(x  -  1)
52 <- cb in d (S l, rep (0 , x -  1))
53 <- rb ind(rep(0, x ) , S2)
S3

>

We define the commutation matrix K ab as an orthogonal ab x ab zero-one per
mutation matrix

Kab ebb) (4.17)

such that Kab vec X  = vec X \  where eb is the yth column of a 6 x 6  identity matrix, 
i.e., Ib =  (e{ : eh2 : • • • : e j). The S+ function that constructs Kab matrix is given

by

"K.mn" <- fu n ctio n (x ,y )
{

K = kronecker(d iag(x), e .v e c ( y , l ) )  
f o r ( i  in  2:y)
{

K = cbind(K, k r o n e c k e r (d ia g (x ) ,e .v e c (y ,i) ) )
K

>
return(K)

Additionally, let
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K*̂  =  deveCb-K'at =  [Ib <g> (e?)' : / 6 ® (eg)' : • • • : I 6 <8> (e j) '] , (4.18)

which can be constructed as a simple zero-one matrix using the following S+ function 

"K.s.mn" <- fu n ctio n (y ,x )
■C

K = kronecker(d iag(x), t ( e .v e c ( y , l ) ) )  
f o r ( i  in  2:y)

K = cbind(K, k r o n e c k e r (d ia g (x ) ,t (e .v e c (y ,i ) ) ) )
K

>
return(K)

The a2 x a(a +  l) /2  duplication matrix D a is defined as a zero-one matrix such 
that for an a x a matrix X , D av e c h X  = v e c X .  Computer implementation of the 
duplication matrix is somewhat more involved and it can be written as

"D.n" <- fu n ction (x)
{
"make.D" <- fu n c tio n (j ,x )

•C
r = ( j - l ) * x  -  su m (l:j-2 )  
v = r + x -j  
m = x * (x + l)/2  
D = d iag(x'‘2) [r :v, l:m] 
return(D)
>

"mc ike .block.D" <- fu n c t io n ( i,x )
■C
m = x * (x + l)/2  
D.d = m ake.D(i,x)
D.e = matrix(NA,i,m) 

fo r ( j  in  1 :i )
■C
D .e f j ,]  = e .v e c (m ,( i+ l)+ ( j - l )* x  -  su m (0 :(j-1 )))
>

D = rbind(D .d,D .e) 
return(D)
>

if (x = = l)  re tu r n (m a tr ix (l,1 ,1 ))
e ls e  if(x==2) r e tu rn (m a tr ix (c (l,0 ,0 ,

0 , 1 , 0 , 
0 , 1 , 0 ,
0 ,0 ,1 ) ,4,3,byrow=T))

e ls e  if(x > 2 )
■C

D.mat = make.block.D(1 ,x)
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f o r ( i  in  2 : ( x - l ) )
■C
D.mat = rbind(D.mat, m ak e.b lock .D (i,x ))
>

D = rbind(D.m at,m ake.D(x,x)) 
return(D)
>

>

Note that the generalised inverse of D n can be obtained simply as 

"D.rev" <- fun ction (x)
■C

so lv e  (t  (D. n (x) ) ®/.*®/.D. n (x) ) ®/.*®/.t (D. n (x) )
>

This matrix is important since for a symmetric m x  m  matrix X

dvecX  _  
dvechX =  m’

where D*m is the generalised inverse of D m, i.e., hence
vechX =  D ^ v e c X .  Note that unlike D m, D*m is not a ‘zero-one’ matrix. Turking
ton (2002) (p. 112) gives an incorrect expression — D'm. To see this consider
a simple numerical example,

> cbind (vech (SymMat (3, 1 :6 ) ) ,  D .rev (3) vec (SymMat (3, 1 :6 )))

[1 ,]
[,1 ]

1
C,2]

1
[2 ,] 2 2
[3 ,] 3 3
[4 ,] 4 4
[5 ,] 5 5
[6 ,] 6 6

hence vechX =  D ^ v e c X .  On the other hand,

> cbind (vech (SymMat (3, 1 :6 ) ) ,  t (D .n (3 ))  7,*®/, vec (SymMat (3 , 1 :6 )))

[1 ,]
C,l]

1
[,2 ]

1
[2 ,] 2 4
[3 ,] 3 6
[4 ,] 4 4
[5 ,] 5 10
[6 ,] 6 6

thus vechX ^  D ^ v e c X .
In addition, we will need convenient constructor functions for vec and vech op

erators, we use the following:
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"vec" <- fu n ction (x)
■C

i f ( ! is .m a tr ix (x ))
■C
stop("The argument must be a matrix") 
>
n=dim (x)[1] 
m=dim(x)[2] 
d=n*m
vecM=as.numeric(x) 
re tu rn (a s .matrix(vecM, d ))

and

"vech" <- fu n ction (x)
■C

i f ( ! is .m a tr ix (x ) & dim (x)[l]==dim (x) [2])

stop("The argument must be a square matrix")
>

vechM = x [ , l ]
f o r ( i  in  1 : (d im (x)[1 ]—1))

vechM = c(vechM, x [ - c ( l : i ) , ( i+ 1 )])  
vechM

>
r e tu rn (a s .matrix(vechM))

>

Finally, we will make use of a simple function that builds columns of an identity 
matrix,

"e.vec" <- fu n ctio n (x ,y )

e = a s .m a tr ix (rep (0 ,x ))  
e [ y , l ]  <- 1 
retu rn (e)

>

P re lim in arie s . Note that from (4.14) it follows that the derivative vector of E  (0) 
in respect to any coefficient vector contained in 0, i.e., 0* is of the form

dveeS (0 ) _  dvec ( A X ^ B X ' - ' A '  +  I T ® 0 )  

d $ i  dO i
dvec  ( A X - ' B X ' - ' A ' )  dvec  (I T  ® O)

d e t  +  d d i  ■ ( }

Additionally, by the chain rule of matrix calculus we have
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din 
96,
£ ( 0 ) | /S v e c £ ( 0 ) \  / « n | £ ( 0 ) | \  /0 v e c £ ( 0 ) \  ,
W ~  -  \ ~ l M ~ )  U v e c S (0) )  -  \ ~ ^ 0 ~ )  VecE {0) (420)

We can now derive the components of the score vector for the likelihood function
(4.16). We shall do so by obtaining the expressions for partial derivatives of (4.16) 
in respect to the components of the parameters vector 0, namely (vec C j ) ,  (vec A), 
(vechT'), and (vech©). The score vector is then constructed from these individual 
vectors of partial derivatives (see e.g. Turkington (2002))

(i) P a r tia l  d eriva tive  in resp ec t to  C*, dFML/dvecCi

The first component of the score vector is the derivative of log-likelihood (4.16) given 

by

dFML _ 0 1 n |£ ( 0 ) |  , d t i W ' r X - 1 (0) W T
+  a__dvecCi d  vec Ci dvecCi

We will evaluate the two components of (4.21) in turn. Firstly, we have

dvecCi  \  dvecCi J
dvec ( A X - ' B X ' - ' A ’ +  I T ® 0 )  _ dvecA X ^ B X ' ^ A '  

dvecCi dvecCi
( d v e c X \  ( d v e c X - l \  / d v e c X - ^ B X ’~l \  / d v e c A X ~ 1B X ' ~ l A '  
\ d v e c C i )  V d v e c X  )  V. d v e c X ~ x )  \  d v e c X ^ B X ’- 1 

= [K*Tm ( l mT ® S%)  ® I m] ( X - 1 ® X '- 1)

x [ B X 1- 1 ® I mT +  (B X ' - 1 ® I mT) K mT,mT] ( A '  ® A ' )  vecE”1 (0 ) (4.22) 

where we made use of the following results

s
dvec I m T  -  Yl  S JT ® C j  

dve c X  \  3 = 0

dvecCi dvecCi
dvec (S lT <S> Ci)

= - K ' Tm ( l mT® S ' iT) ® I t e .  23)

dve  c X - l
dvecCi

vB f  1 =  B X ’ 1 X / mr  + { B ’x : 1 O I„.r) K ,nT„.T (4.25)
d v e c X

d v e c A X - ' B X ’- 'A !  
dvec X ~ lB X ' - 1

The second part of (4.21) is

=  A!  ® A'.  (4.26)
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d t r W ' r S ' 1 (0) W T 
dvecCi

noting that

<9vecE (0 ) \  ( <9vecE 1 ( 0 ) \  ( d trW ' t 'E 1 { 0 ) W ti - i

dvecCi )  \  <9vecE (6) J  \  <9vec£ 1 (0 )
=  -[K*Tm( l mT® S nT) ® I m] { X - 1 ® X ' - 1)

x [ B X ’- 1 0  I mT + ( B ’X ' - 1 g> I mT) KjnT,mT ]

x (A 1 gi A')  [X-1 (0) ® E _1 (0)] W r  ® W t ,  (4-27)

gvecS"1 (fl) 
SvecS (0)

3 trW 'TS _1 (0) W T

=  - E _1 (0) ® E -1 (0) 

dvec W 'TS _1 (0) W T

(4.28)

=  W T ® W T. (4.29)
0vec£ 1 (0) SvecE 1 (0)

Therefore, it follows that the first component of the score vector is given by

= [JfJ.m(7mr® S '9 ® /m ](A :-1® X '-1)[B X '-1® JmT + (B'A:'-1® /mr)Ji-mT,TOT] 

x (A ' ® A') [vecS-1 (6) -  (S-1 (0) ® IT 1 (0)) WT ® W r] . (4.30)

The above expression can be easily programmed in an object-oriented language 
such as S. Namely, we can define functions that construct components of the score 
vector using zero-one matrices such as K ^ m and S ' lT . The general structure of 
these functions relies on a list object ”x” constructed with the DSEMobj function,

"DSEMobj" <- fu n c t io n (x ,m ,r ,s s ,t t )
■C
list(X .su m = X su m (x ,m ,ss,tt),

A .m at=m akeA (x,m ,r,ss,tt),
B .m at=m akeB (x,m ,r,ss,tt),
T .m at=m akeT (x,m ,r,ss,tt),
S .mat=mSigma(x,m, r , s s , t t ))

>

which computes and collects necessary matrices needed for constructing the deriva
tive vectors. The following function constructs the partial derivative O F m l/d v e c C i  

as a single object by taking as arguments a DSEMobj list object (x), an r x T  data 
matrix d a ta  where each row represents a single variable, and model parameters m, 
T, and j , denoted by m, t t ,  and j ,  respectively.6 The following function constructs 
the required derivative equation for the j th coefficient matrix C j ,

6Note we need to avoid using characters such as T, which are reserved characters in the S.
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"dFmlCj" <- function(x,data,
-C

VCl=kronecker (K. s . mn ( t t ,m) ,/,*'/,kronecker (diag (m*tt) , t  (power. sh ift  (t t , j ) ) ) ,  diag (m) ) 
VC2=kronecker(x$X. sum,t(x$X. sum))
VC3=kronecker(x$B.mat7,*7,t(x$X.sum) ,diag(m*tt))
VC4=kronecker(t (x$B,mat)7.*7.t (x$X.sum) ,diag(m*tt))7.*7oK.mn(m*tt,m*tt)
VC5=kronecker(t(x$A.mat),t(x$A.mat))
VC6=ve c(x$S.mat)
VC7=kronecker (x$S. mat, x$S. mat) 7.*7.kronecker (vec (Wm) , vec (Wm) ) 
return (VC17.*7.VC27.*7. (VC3+VC4) 7.*7.V C57.*7. (VC6-VC7))

>

Putting a simple loop around j  it easy to build a vector that contains all s derivatives 
(where s is the lag length),7 namely we can write 
"dFmlC" <- fu n c tio n (x ,d a ta ,m ,s s ,t t )
-C

if ( s s > 0 )
{
DC <- dFm lC j(x ,data,m ,tt, j=0) 

for(k  in  l : s s )

DC = rbind(DC, dF m lC j(x ,data ,m ,tt,k ))
>
return(DC)

>
e ls e

retu rn (dF m lC j(x ,data ,m ,tt,j= 0))
>

(ii) P a r tia l  d eriva tive  in  re sp ec t to  A, dFML/dvecA  

The second component of the score vector is given by

where

It follows that

d vecS (0) 
d vec A

7We use ss rather then s for the lag arugment.

8Fml =  a in |E (0 ) | 9 t r W ^ T 1 {6) W T 
d  vec A d  vec A d  vecA ’

d in  |E  (0)| / dvecE  (0) > _,_j
d vec A \  d vecA

vecE-1. (4.32)

0 vec { A X - ' B X ' - ' A '  +  I T ® ©)
9 vec A 

d vec ( A X ~ 1B X ' - 1A ’)
a  vec A

/  a  vec A  \  /  dvec (A X ~ 1n X '~ 1A ') \
\  a  vec A /  I a  vec A  J
{K*Tm ® I r) [ { X - ' B X ' - xA  ® I rT) + (.X '  lB X  lA '  ® I rT) K ^ t],
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where we made use of the following results

9  vec A  d vec ( I T ® A)
■ =  \ K T m  ®  I r )d vec A  d vec A

d vec
<9 vec A  

It now follows that

=  ( X - ' B X ' - ' A '  <0 I rT) +  (X m B X _1A ' ® I rT) K r7>T.

=  ^ T m ^ r T )  [ ( X - 'B X '- 1 A' ® / r r )  +  ® / rT)] JfrT.rTVecS"1 (0) ,

and

d tr W ^ S -1 (0 )W T /d v e c E ( 0 ) \  / dyecS"1 (fl)\  / d trW ^ S r1 (a)VTt \
avecA \  avecA J \  0vec£ (0) )  \  dvecE-1 (0) J

-  ( K ^ m (8 I r) [ ( X - ' B X ' - ' A '  0  I rT) +  (X ,_1B X _1A/ 0  / rT)] XrT.rT
x [E_1 (a) 0  5T1 (a)] WV 0  VFr ,

where we made use of the results (4.28) and (4.29). Finally, by combining the above 
derived terms we obtain

=  ( K ’Tm ® J r ) [ ( X ^ B X '- 'A ' ® / rT) +  ( X '^ B X ^ A ' ® J rT)] K tT, t  

x [vecS -1 (0) -  (E _1 (0) ® E - 1 (0)) W T ® W t] (4.33)

An S function that constructs this derivative is given by 

"dFmlL" <- fu n c tio n (x ,d a ta ,m ,r ,tt)
■C

VCl=kronecker(K. s .m n (tt,m), d ia g (r ))
VC2=kronecker ( (x$X. sum#/,*#/*x$B.mat#/.*%t (x$X. sum) %*7.t (x$A.mat) ) , d iag (r  * t t ) ) 
VC3=kronecker ( ( t  (x$X. sum)#/0*'/0x$B.mat'/0*#/,x$X. sum*/,*'/,t (x$A.mat) ) , d ia g (r * tt ) ) 
VC4=vec(x$S.mat)
VC5=kronecker (x$S. mat, x$S. mat) #/»*7,kronecker (vec (data) , vec (data) ) 
return (VCl°/,*7. (VC2+VC3) #/.*#/.K. m n(r*tt, r * t t ) */,*% (VC4-VC5 ) )

>

(iii) P a r tia l  d eriv a tiv e  in  re sp ec t to  \F, dFML/dvec#

The third component of the score vector is the partial derivative

dFML _  g in |E (0 ) | g trW ^ S -1 (0) W T 
gvech’J' gvecM? gvech^1 ’

where the first part can be evaluated as
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d in  |S  (0)1 =  /  dvecty \  /  d v e e S (0 ) \  s - i  (f),
dvech\Ir \dvech\F )  \  <9vec\F J

= D*m(K'Tm ® I m) ( X ' - ' A '  ® X '- 1 A ’) vecE "1 (0), (4.35)

where we used the following results

dvec\F 
dvechty 

dvecX (0) 
dvec&

T>*

=  r
d v e c A X ^ B X '- 1̂ '

dvecit
d v ecB \ / d v e c A X ^ B X '^ A '

dvecB  _  
dvec*!/

d v e c A X - ^ X '^ A '
dvecB

The second part of (4.34) yields

\dvec\F 
dvec ( I t  <8>

dvec'f*

X ' - 1 A '  ® X '" 1 A'.

dvecB  

=  (X J m ® 7 m)

(4.36)

(4.37)

(4.38)

(4.39)

d ttW ’T'S -1 (8) f f r  
dvech1®'

/  dvec^ 
Vdvech\l> 

= -D*m(K*Tr

dvecE (0)\ fdvecE  1 (0) dixW ^E"1 (0) W T\  
dvecE"1 (0) Jdvec4> J \  dvecE(0)

I m) (X'~lA! <g> X'~l A!) (E*1 (0) 0  E"1 (0)) W T ® W T,

using the results (4.28), (4.29), and (4.36)-(4.39). Finally, we can obtain the required 

result as

=  D ^ K ^ I r J i X ' - ' A '  ® X ' - 'A ' )  [vecS-1 (0) -  (S " 1 (0) ® E~* (0)) W T ® W T], 
6C (4.40)

which can be implemented as an S function as follows,

"dFmlP" <- fu n c tio n (x ,d a ta ,m ,tt)
•C

VC 1=D. rev(m)*/,*'/,kronecker (K. s .mn(t t ,m) , diag(m) )
VC2=kronecker ( t  (x$X. sum) #/0*'/,t (x$A. mat) , t  (x$X. sum) 7,*'/,t (x$A. mat) ) 
VC3=vec(x$S.mat)
VC4=kronecker (x$S .mat, x$S .mat) 7.*'/#kronecker (vec (data) , vec (data) ) 
return (VCl#/.*#/.VC2#/.**/. (VC3-VC4) )

>

(vi) P a r tia l  d eriv a tiv e  in  re sp ec t to  0 ,  dFMh/dve c 0  

The final, fourth, component of the score vector is
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where

9FML _ 0 1 n |E ( 0 ) |  &tiW'T? r l {6) W t
"1” Q--- UQ ’dvech© dvech© dvech©

=  Dl(K*Tr ® Zr)vecE_1 (0 ), (4.42)

which is obtained by noting that

d vecE (0) _  d  vec ( I t  0  ©) _  /  d vec© \  /  d  vec ( I t  0  ©) \  ^
<9vech@ <9vech@ \  Ovech© /  \  5vec©

d vec©
<9vech© 

dvec ( I t  0  ©)
dvec©

The second part of (4.41) yields 

d trW ^ S -1 (6) W T _  d v e c W ^ r 1 (d)WT
dvech© <9vech©

=  D * (4.44)

=  (K*TT® I r). (4.45)

(  dvec© \  / dvecS (0)\  (  dyec?-1 (0)\  ( dvecW't T .'1 (0) W T 
\d v ec h © / \  dvec© )  \  dvecE (0) J \  dvecE-1 (0)

where we made use of (4.28), (4.44), (4.45). It follows that

=  D*r (.K*Tr ® I T) [vecE"1 (0) -  [E -1 (0) ® E _1 (0)] ( W T <2> W t)]
(4.46)

which completes the derivation of the score vector. The required S function can be 
written using similar approach as before, i.e.,

"dFmlT" <- fu n c t io n (x ,d a ta ,r ,t t )
{

VCl=D.rev(r)y,*% kronecker(K.s.mn(tt,r) ,d ia g (r ))
VC2=vec(x$S.mat)
VC3=kronecker (x$S. mat, x$S. mat) y,*'/.kronecker (vec (data) , vec (data) ) 
return (VCiy,*y.(VC2-VC3) )

>

Note that we might wish impose diagonal structure on the © matrix (as in the 
classical factor analysis model, for example). This can be accomplished by modifying 
the above derivative as follows. It is easy to see that
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(

dvec©
ddiag©

\ 0 0
which can be implemented simply as

e \  0

0 e\

"D.diag" <- fu n ction (x )
•C

D=inatrix (0 ,x,x~2)
D [1 ,1 ] =1
f o r ( i  in  2:x) D [ i , ( i + ( i - l ) * x ) ] = l  
return(D)

>

0

0
= D diagj

which leads to the modified derivative expression

9Fml
dvech©

=  D diag (K'Tt ® I r) [vecE-1 (0) -  [E -1 (0 ) ® E _1 (0)] ( W T ® W T)]
(4.47)

Should we need to impose diagonal structure on ©, matrix, we can use the following 
modified function,

"dFmlTdiag" <- fu n c t io n (x ,d a ta ,r ,t t )
<

VC1=D. diagCr) ,/,*'/.kronecker (K. s .m n (tt, r) , d iag (r) )
VC2=vec(x$S.mat)
VC3=kronecker (x$S. mat, x$S. mat) %**/#kronecker (vec (data) , vec (data) ) 
return (VC17.*7. (VC2-VC3) )

>

Collecting the terms, the score vector is therefore given by

A F ml =

(  QFml \  
dvecC i

dFML
dvecCs s 
9FMl  
dvecA.

dvechW
\ 9Fml
\  dvech©  /

which can be straightforwardly translated into an S function as 

"ScoreFml" <- fu n c tio n (w ,d a ta ,m ,r ,s s ,t t )
■C

DSEM=DSEMobj(w,m, r , s s , t t )
VCl=dFmlC(DSEM, d ata ,m, s s , t t )

(4.48)
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VC2=dFmlL(DSEM, d ata ,m, r , t t )
VC3=dFmlP(DSEM, d ata ,m, t t )
VC4=dFmlT(DSEM, d ata , r , t t ) 
return(rbind(VC1 ,VC2,VC3,VC4))

>

Therefore, we have a single function that constructs the entire score vector in 
a single call. Along with the likelihood evaluation function makeFML, the score 
(analytic derivative) function ScoreFml provide the necessary inputs for standard 
optimisation routines.

Table 4.2: S+ functions for score evaluation

Matrix/vector Dimension/type S+ function Arguments
S T T  x T  matrix shift.mat T
S JT T  x T  matrix power.shift T J

vec(X) a b x  1 vector vec X  { a x  b)
vech(X) a(a +  l) /2  x 1 vector vech X  {a x  a)

Cj (jth column of I a) a x 1 vector e. vec a, j
D n n 2 x n(n  +  l) /2  matrix D.n n  (dim.)
D*n n(n  +  l) /2  x n2 matrix D.rev n  (dim.)

Ddtiag n x  n2/ 2 matrix D.diag n  (dim.)
X  mn m x n  matrix K.mn n, m  (dim.)
TC*mn m x n  matrix K.s.mn n, m  (dim.)
dFMLi
fo frcC  dr ml
dvec A
9Fml.

dvech}±f 
. dFML 
dvech®

A F ml

ra2 x 1 vector 
rm  x  1 vector 

x i  vector 
x 1 vector 

m ( j m +  r) +  m(m+1)+r(r+1)

dFmlC
dFmlL
dFmlP
dFmlT

ScoreFml

DSEMobj, W T 
DSEMobj, W T 
DSEMobj, W T 
DSEMobj, W T 
DSEMobj, W T

4.3.1 Estim ation of parameters

In the previous sections we gave the S /R  functions for the likelihood (objective) 
function and analytic derivatives of the DSEM model, which take data argument 
and model specification arguments and are the functions of the parameter vector 0 
only. This enables us to use the native S or R optimisation routines such as nlminb 
and optim.8 The nlminb function allows box constrains on the parameters, which 
facilitates convergence and allows restrictions on the parameters. The function call 
has the form

nlminb(start=wO,makeFML,data,m ,r,ss,tt,
8See Venables and Ripley (2002) for discussion of the alternative optimisers in the S-Plus and 

R environments.
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gradient=ScoreFml,lower=-Inf,upper=Inf)

While nlminb does not compute the Hessian matrix, this can be done with the 
vcov.nlm inb function provided by Venables and Ripley (2002) in the MASS library. 
An alternative that is available both in S-Plus and R is optim, which allows a choice 
of several optimisation algorithms and computes numerical Hessian matrix.9 The 
optim has several different optimisation algorithms, out of which the ’’L-BFGS-B” 
algorithm allows box constraints. Hence optim with L-BFGS-B algorithm is similar 
to the nlminb algorithm. The advantage of the optim is in computing Hessian 
along with the parameter estimates in a single call. The application to DSEM 
models requires the following form

opt im(par=w0,fn=makeFML,data,m ,r,ss,tt, 
gr=ScoreTest,method = c("L-BFGS-B"), hessian=T, 
lower=-Inf,upper=Inf)

Note that both optimisers have infinite box constraints as default. It is simple to 
change them by specifying lower and upper bounds as numerical vectors of length 
equal to the number of elements in 0.

We can illustrate the specification of particular DSEM models using the above 
optimisation routines on the following example. Consider the a DSEM model for a 
time series data with T  = 50 where the structural part given by

Vi( i )

m
(2)

+

with

* _ „ ( ! ) *  . „(2) t  ,„(1)— +  vt .
R i  R 2

Therefore the coefficient matrices C 1 and C 2 are

( 3 {l) P12 7n \ d i P12 7n \
Cx = $ 8{1)P22 7g> , c 2 = q( 2)P22 72?

\ 0 0 Pi? ) 0 0 Pi? J

9Note that optim is part of the MASS library.

104



Suppose the measurement model is specified as

&(1) ^ f  1 0 0  ^

s
u to \(y)

A21 0 0
(3)

Vt \(y)
A31 0 0

(4)
Vt

\(y)
41 0 0

(5)
Vt 0 1 0

(6)
Vt 0 \(y)

a 62 0
(7)

Vt 0 \(v )
a 72 0

(8)
Vt 0 \(y)

a 82 0

r (l) 0 0 1

r (2)x t 0 0 a (z)
a 10,3

r (3)x t 0 0 \(z)
A ll ,3

(4)
Xt I 0 0 \ (x)

A 12,3 /

A
with the residual covariance matrices

Vt2)
v d 1})

+

e?
£ {S£ t

£(4
£{55 t

£(66 t,
£(7

48
41
s?

4s

(  ‘’Pn0  i 'v ?  V'i3t’)
ip.(CO

21

v 4 i ° /

© =

(

o

0 0

”88

0

0
0(5)^ll
0

0 \

<f844 /

The above model has a 72-dimensional parameter vector $ = (01, 02, # 3) where there 
are 26 free and 46 zero-restricted parameters. Thus we have

=

04

05

(vecC i,vecC 2) =  (/3n , Aii*. > °> Tu*, I n  , Pn .

(vecA) =  ( l ,A ^ ,A ^ ,A ^ \o ,0, 0, 0,0, 0, 0, 0,

0 ,0 ,0 ,0 ,1 , A ^ , A ^ , Agl*, 0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 , A $ 3, A ^3, A g3)

(v ec* ) =  (^ n Ĉ ^ 2f ^ ^ 31Ĉ ^ 22Ĉ ^ 32C).V’3̂ ))

(vec©) =  ( ^ 1), 4 )> 4 ).^ 4 ),^ 5 )> 4 ).^7 ), 4 ),

M  d>) M  M \
a l l  > a 22 5 P33 5 ” 44 J
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We can initialise the parameters by generating a random (e.g. uniform) 72- 
dimensional vector. The restricted parameters can be bound using equal upper and 
lower box constraints (e.g. 0 or 1). Suppose we wish to impose —1 and 2 as upper 
and lower constraints on the free parameters, respectively. Note we have 2 latent 
endogenous and 1 latent exogenous variables, hence we have m=3 and also we have 
r=12 since there are 8 +  4 observable variables in the model. Maximum lag is ss=2 
and the length of time series is tt=50. Hence, the nlminb call to estimate such 
model would be

wO=runif(72)
nlminb(start=wO,makeFML,data=data,m=3,r=12,ss=2,tt=50,gradient=ScoreFml, 

lower=c(-l,-l, 0,-l,-l, 0,-1,-1,-1,-1,-1,0,-1,-1,0,-1,-1,-1,
1 , - 1 , - 1 , - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 ,0 ,0 ,0 , 1,-1,-1,-1, 0 , 0 , 0 , 0 ,
0 ,0 ,0 ,0 , 0 , 0 , 0 , 0 , 1,-1,-1,-1,
0 ,0 ,0 ,0 ,  0, 0,
0 ,0 ,0 ,0 ,  0, 0, 0, 0, 0, 0, 0, 0 )

upper=c( 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2,0, 2, 2,0, 2, 2, 2,
1, 2 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 ,0 ,0 ,0 ,1 ,2 ,2 ,2 ,0 ,0 ,0 ,0 ,
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,2 ,2 ,2 ,
0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,0  )

Aside of using full-sample ML approach for estimation, the suggested approach is 
considerably simpler in specification of multivariate DSEM models then the alterna
tive approaches. For instance, the use of Ssf Pack to specify the above DSEM model 
would require programming a particular function that will cast the model into the 
state-spaCe form and derivation of the analytical derivatives (should we wish to use 
them) for each specific model. On the other hand, the above considered approach 
uses the general expressions for the likelihood and derivatives of the DSEM models, 
which allows simple specification of specific models by only defining the model di
mensions (i.e., number of observable and unobservable variables and lag length) and 
specifying upper and lower bounds (including fixing constraints) on the coefficient 
vector.

4.3.2 A numerical exam ple

As a simple numerical illustration, consider estimation of a bivariate DSEM asset 
price model where each of the two market factors is modelled with three different 
observable asset returns. Such model can be specified as
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f  p<X> ^

^  =

Estimation of this model using daily data from 22 October 2001 to 30 November 
2001 (T  =  30) on the Dow Jones asset returns (in this example we use tickers MMM, 
AA, MO, AXP, AIG,and BA), took 43 iterations with the nlminb call

n lm in b (s ta r t= re p (0 ,4 4 ) ,makeFML,data=Wm,m=2, r= 6 , s s = l , t t= 3 0 , 
gradient=ScoreFm l,
low er=c( 0 ,0 ,0 ,0 , - 1 ,0 , - 1 , - 1 ,  1 , - 1 , - 1 ,0 ,0 ,0 ,0 ,0 ,0 ,1 , - 1 , - 1 ,  

r e p (0 ,3 ) , r e p (0 ,2 1 ) ) , 
u p p e r= c (0 ,0 ,0 ,0 ,2 ,0 , 2, 2, 3, 2, 2 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,  2, 2, 

r e p ( 5 ,3 ) ,5 , r e p ( 0 ,5 ) ,1 , r e p ( 0 ,4 ) ,5 , r e p (0 ,3 ) ,5 ,  
r e p ( 0 ,2 ) ,5 ,0 ,5 ) )

producing the following coefficient estimates

0 $

(  1 0 
0

A§5> 0 
0 1 

o A&>
0 /

0.70 -0.21
0 0.03

1 0 >
0.66 0
0.86 0

0 1
0 0.71
0

i—iCOo

1.64 0.61
, © =  diag(0.53,1.56,0.40,1.69,1.82,1.37).

0.61 1.27

The above estimation took approximately 5 minutes on a 2GHz machine, while 
a similar call to optim took over 20 minutes. A gain in efficiency could be achieved
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by re-writing the pure S code in C + +  or Fortran and wrap it into a .Call or .For
tran interfaces as e.g. S.dll compiled code. In addition, the nlminb and optim 
routines are fairly modest in terms of optimisation capabilities and would need to 
be replaced by more powerful optimisers. A possible approach would be to use the 
S+NuOpt optimiser, which is a special optimisation module for S-Plus, though a 
similar industrial-strength routine is currently not available in the R environment.

W ith these modifications it might be possible to move closer to a commercial- 
capacity package for estimation of DSEM models. It is unlikely that further theoret
ical development, e.g., derivation of the Hessian matrix, would improve the efficiency 
of the software implementation, leaving the feasibility issues largely in the domain 
of using compiled vs. run-time code and more powerful optimisation algorithms.

4.3.3 Conclusion

We have considered a DSEM model for pure time series data and proposed esti
mation methods based on the closed form likelihood function for the entire sample 
and the analytical derivatives. Our approach was to obtain the required analytical 
formulae and demonstrate how these can be programmed in the S language. W ith 
S /R  functions that compute the likelihood and analytical derivatives we can use 
the readily available optimisation routines in the S-Plus and R environments for 
estimation of the unknown coefficients.

We provided S /R  functions written in pure S code that can be used for evalua
tion of the likelihood and the score vector. The likelihood evaluation can be done in 
a single step, i.e., non-recursively, which can be contrasted with the recursive evalu
ation using the Kalman filter. In additional we outline an approach giving a simple 
numerical example of how DSEM models can be estimated using such functions. 
However, our aims were to suggest an approach that can be used in programming 
estimation algorithms noting that development of a commercial-strength software 
package is well beyond the scope of the present work.
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Chapter 5 

Instrum ental variables estim ation

5.1 Introduction

In this chapter we propose non-parametric instrumental variables (IV) methods 
for estimation of DSEM models suitable for both pure time series and panel data. 
There is no requirement that N  > T. We consider generalised instrumental variables 
(GIVE) and full information instrumental variable (FIVE) methods for estimation 
of DSEM models in the “observed form”, i.e., as errors-in-variable models with 
composite error terms.

These methods are specific in terms of model specification and choice of instru
ments, which are here interdependent. Namely, we specify the latent variable model 
as a DSEM model in which measurement errors need to satisfy certain statistical 
criteria. These criteria are similar to those in the classical factor analysis and are 
based on the validity of observable indicators as measures of the unobservable (la
tent) variables. Valid measurement models should have uncorrelated measurement 
errors, which can be generalised to the time series context by further requiring zero 
lagged covariances of the measurement errors. We show that basic specification 
of the DSEM model implies lags of the observable indicators as potentially valid 
instruments. Empirical validity of such instruments can be tested using standard 
validity of instruments tests.

Instrumental variables methods have a well known advantage of not imposing 
any distributional assumptions on the data. The IV methods also provide non
iterative estimators that are very easy to compute using standard general purpose 
statistical software.

An additional important purpose of these methods is in obtaining good starting 
values for maximum likelihood estimation using standard SEM software such as 
LISREL.
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5.2 Generalised instrumental variables (GIVE)

Consider the DSEM model (2.1)-(2.3) in t-notation, with added intercept terms,

p Q
ri t = a ’i + J 2  + J 2  Ti t t - 3 + <t, (5-i)

j=0 j=0

x t — olx +  A x£t +  St, (5*2)

y t = a v + A„ijt +  et- (5.3)

Since instrumental variables methods can easily estimate intercepts we include them 
in the measurement and structural equations (5.1)-(5.3). Equivalently, we can con
sider zero-intercept models with variables measured in mean-deviation form.

We can re-write the measurement models for x t and y t as

* =  =  rx> +  K t  +  I “  (8.4)

y * = (  y “  =  .?,) +  . (y) U  +  *“  (8.5)

and

Y2t /  \  a 2 J  \  A-2 /  V £2t ,
Note that the observed indicators with unit loadings were placed in the top part 

of the vectors for xt and y t and thus the upper part of the lambda matrix is an 
identity matrix. Having divided xt into xti and x*2, note that for xti it holds that

x it =  i t  +  Sit => =  x it -  Sit (5.6)

and, similarly, for y ti we can replace the latent variable with its unit-loading indi
cators

yii =  Vt +  Sit =^Vt =  y It -  Sit (5.7)

It is now possible to use the relations in (5.6) and (5.7) to re-write the measurement
model for xt as

x 2i — +  A ^  (xlt — S i t )  +  $ 2t

=  OL{2 ] +  A^Xit +  -  A ^ S i t ^ j

and for y t as

Y21 =  « 2y) +  A ^  (yit — £it)  +  £ 2 1 . .
=  a4y) +  A ^ y i t +  ( e2t -  A ^ e i t )

Following the same principle it is possible to re-write the structural part of the 
model using definitions (5.6) and (5.7) as follows
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P Q

y u  — £it =  &r) +  ^ 2 ~  £it-j)  +  ^ 2 — +  Ct- (5.10)
j= o j=0

Separating the observed part of the model from the latent errors we obtain 

p q (  p q \
y u  =  a v +  B jy it - j  +  ijx it- j -  +  I Ct +  £ i t — J , (5 .ii )

j= o j =0 y j= o j=0 J

with the measurement model for the latent endogenous variables

Y2t — o i ^  +  A ^ y i t  +  ( £2t — > (5-12)

and for the latent exogenous variables

x 2* =  <4 x) +  A ^ x u  +  ( s 2t -  A c t i n ' )  • (5 -13)

Aside of the specific structure of the latent error terms, (5.11)-(5.13) present a 
classical structural equation system with observed variables. However, the OF form 
of the DSEM model differs from the standard econometric simultaneous equation 
system in respect to the exogeneity status of the OF variables, which are generally 
observable indicators of the latent variables.

It can be shown that estimation of the OF equations might be possible by the 
use of the instrumental variable (IV) methods. Furthermore, it can be shown that 
IV estimation might be based on model-implied instruments in the form of various 
lags of the OF variables.

We propose a limited information generalised IV (GIVE) technique for consistent 
estimation of the OF equations by using the model-implied instruments in the form 
of the lagged indicators of the latent variables.

5.2.1 Full-sample specification

Estimation of the OF equations aims at consistent and, possibly, efficient estimation 
of the structural and measurement-model parameters. However, the structural (la
tent) errors cannot be directly estimated. Therefore, ignoring the specific structure 
of the measurement error terms, let u it =  Ct +  £it — o&j£it-j — Tj&it-ji 
u 2t =  e2t — A ^ e it ,  and 1131 = S2t — A ^^ i*  the structural OF equations can be 
written as

p Q

y  it =  ocv +  ^ 2  B t f u - j  +  ^ 2  r j x it-j +  u ii j (5.14)
j=0 j=0

with the measurement models
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and

Y21 = ol$] +  A^y)yit +  u2t, (5.15)

X2 1 =  « 2X) +  A2X)xi t +  u 3t. (5.16)

For notational convenience, we switch to full-sample notation, assuming that 
a max(p, q) pre-sample observations are available for estimation. Define y kj =  

( yo 3\  y[k3\  •••> 2/t5))> and x 2j =  ( 4 2J)> 4 2j)> •••> ^ r J))> for A; =  i , 2 where 
the “ j  ” subscript refers to the j th equation where there are m individual y i equa
tions, n  individual y 2 equations, and h individual x 2 equations. Further define 
Y ij =  (Yjjj, Yijf_fc), and X jj =  (X ijt,X ijt_^), where

Y y t

< yin) 
i T
J/2n>

v^n) sT

(lm) \
Vo )
y?m)
y?m) , X ijt =

< X(o 0
Xj11̂
*(11)

r (12) .

r (12) . Xi
r (12) . X2

. r (lm ) \

. T(lm)X1

. T(lm)

y (T m ) , 1 x (11) \  XT
t (12) . O/y • r (lm) i xT y

and

< y ? ?

Von)
i T

(11)
v 2/t- i

(12)
2/i

Vt—1

£\m)
i4lm)

(lm)
2/i

w(lm) Vt -  i j/(ii> «(i2)Vt —p  Vt —p

(1.771) \  
y-p
2/1— p
2/2 —p

2/t- p /

 ̂ xL \1} r (12) . X - l . r (!ff) . X - l . r (n ) q
r (12)
J/— q

* ( i i ) r (12) • . r (J5) . Xo . r* 11) x l -9 *(12)
1—q

T(n )x 2 r (12) - x l . J lg) •x i . r (n > 
x 2 - q

*(12)
X 2-9

\  XT -'l
(11) ~(12)xT - l x (iff) 

T—1 X(11) r (12) 
T - q  T —q

T(lff) >\
^  —q
r (i 9)x l-9

(Iff)X2-9

x(l9)^T-9  /

In addition, we define the following notation for the parameter vectors

\(v) =  f \(21) \(22) \(2n)V
3 ~  v vi ’ vo ’ " • ’ yj y A(x)

* ( ■
\ (21) \ (22) ,(2/i)V
^xj » *xj ’ • • • > Axj y

^  =  (/S'11*, /J<12), . . . ,  /3<lra), /3<u ), /?<12), . . . ,  , 0(u \  0 ^ \  ,
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and

-v =  W n) 4 12) ^ lg) -v(11) V 12) -v(l9) V 11) -v<12> - v ^ VI j  — I / O ’ <0 j • • • j /O 5 7l 5 / 1  5 • • • 5 7i 5 • • • 5 7q 5 iq 5 • • • 5 iq J •

Using the above notation, we can now write the (5.14)-(5.16) as

Yij =  o $  + Y lj0 j +  Xij-7^ +  u ljt (5.17)

Y2j = oc(2j +  Y i j t ^  +  u  2j, (5.18)

x 2j = «2j} +  X 1 jt>^x) +  u 3j- (5.19)

Note tha t the individual OF equations are specified as

m p g q

t o = <
fc=l i =0  k=l i =0

for the structural part of the model, and as

m g

t o  =  a 2i  +  A2jl%(lfc) +  “2jt ,  x 2j =  +  u3jt,
k=1 k=1

for the measurement models. This completes the specification of the DSEM model.
It remains to show that the available instruments in the form of lags of the 

observed variables can enable consistent estimation. The issue of the choice of
instruments is also discussed in Bollen (1996; 2001), however he does not discuss
this issue in the context of dynamic models. The following discussion takes into 
account the specific structure of the OF system and the implications derived from 
the composition of the latent errors. This (known) composition of the latent error 
terms and their implied relation with the observed components of the model, as a 
consequence of the latent structure, presents the major difference between the DSEM 
OF equations and classical econometric models. Specifically, it is not possible to 
simply assume the availability of external instrumental variables that satisfy some 
general conditions such as being uncorrelated with the errors and correlated with 
the regressors. Rather, it will be necessary to show under which conditions the 
lagged modelled variables can serve as valid instruments in the estimation of the OF 
equations.
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5.2.2 Consistency conditions and instrum ental variables

The standard consistency conditions needed for the validity of instrumental variables 
(see e.g. Judge et a l , 1985) and Davidson and MacKinnon, 1993) can be stated in 
terms of the data matrix X  defined as X  =  (t, Y X j)  where Y ij = (Y ij t,Y i j t-k) 
and X ij =  (Xij^Xijf-fc), as defined above. Let Z be a matrix of valid instru
ments defined as Z =  (YJ, Y 2, XJ, XJ) where YJ =  (YJ1} Y*2, . . . ,  YJa), Y 2 =  
(YJij Y 22, . . . ,  Y 2&), X i =  ( x ; lf x ; 2, . . . ,  X JJ , X^ =  (X ^, X J ,, . . . ,  X*2d\  and

v* —* lk ~

(  v(u) r/12)y-p-k  y-p -k
7<(11) ,.(12)v i -p -k  y i -p -k
t/ 11' W(1J0i/2— p—k #2 —p—k

(11) (12)V VT-p-k Vr-p-k

y-p -k
«(lm)Vi-p-k

( lm )
V2-p-k

( lm )
V T - p - k  f

Y 5,=

( 21)V-1
7y(21)s/-z+i
?y(21)
V - l + 2

(22 )

«(22)y-H-iw(22)y-z+2

t/ 22)2/t- z

(2 n)
yii
w(2n)y-z+i
w(2n)y -z + 2

(  Z(11).
T(H) 

r ( l l )
*t/2—q—i

JU)

r (12)—q—i 
.(121 'I— o—* 
.( 12) '2—q—i

( 12)\  Xr-q-i T—q—i

r(lm)- \^ —q—i
.(im)
'1 —q—i 
.(!”»)■'2—q—i

( lm )  
XT-g-i /

r (21) 
x - i + i  
r (21)

, (21)

X

x™
(22 )
—i+i 

, ( 22) 
' - 3+ 2

(22)
\  XT-j XT—j

r(2n) \  
—j  

.(2 n) 
'-J+1 
,(2n) 
' - i + 2

z(2n)

where =  1 ,2 , . . . ,  a; I = 1 ,2 , . . . ,  6; z =  1 ,2 , . . . ,  c; and j  =  1 ,2 , . . . ,  d.
We state the general conditions for these instruments in terms of the joint ma

trices X  and Z though, in practice, only subsets of these matrices will be used in 
estimated models. It is generally necessary that

plim (T-1Z'Z) =  lim ( r _1Z'Z) =  £ z z ,
T —>oo

and also that

plim ( r 'Z 'X )  =  Tlim (T "1 Z'X) =  S z x ,

where H zz  and Y>zx are positive definite matrices. These conditions will generally 
hold for the case of lagged instruments given they satisfy certain stochastic condi
tions. In addition, we assume homoscedastic residuals, i.e., E  [u<u'j] =  o y l and, 
specially, E  [Z'uJ =  0.

To assure the consistency of the IV estimator we will need to make the following 
assumption about the stochastic properties of the observed variables.

A ssu m p tio n  5.2.2.1 For stochastic processes {yt} and {x t} suppose that:

Al. E  [yijt] = / 4 f ,  Vt 

A2. E [x ijt] =  a4x), Vt
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A3. E  

A4. E  

A5. E

(Vijyt-r ~  -  » e f )  =  l \r-w\i  V*

(Xiu - r -  d f ) { x eU- w -  ll{$ )

(:Vij,t-r -  d f ) { X e f , t - w  -  /4 / )

— ° \r -w \  > VC

|r —iu|

A6. £  <  oo, E  4 °  <  °°> E ^ < o c
k=0 fc=0 fc=0

We will also need the following two lemmas.

L em m a 5.2.2.2 Let wt be a covariance-stationary process with finite fourth mo
ments and absolutely summable autocovariances. Then the sample mean satisfies
T _1 E t= i wt ^  where m.s. denotes convergence in mean square.

P ro o f. Omitted. See Hamilton (1994: 188), Proposition 7.5.

L em m a 5.2.2.3 Letyt andxt be stochastic processes satisfying Assumption (5.2.2.2). 
Then the following convergence results hold:

( 0 * E  =t=0 
T

(«) ?  E  V%,t-s [v2ijt] =  7o5> +  ( ^ f ) 2t=0

(iii) i  E  Vijf-rVeft-v  [ j =  7 |r - i | +  /4 f t4 /
t=0 1 1

(vi) X X) Xij,t-S yE  [Xijt] =  p>ij ̂
t=0

t=0
T

(yi) f  X] x ij,t-rx ef,t-w ~~>E [Xijf-rx ij,t-w\ = ^\r-w\ ^ i j ^ e f  t=0
T

(vii) x  E  yij,t—rxef,t—w > E  [yij,t—rxef,t—w] = P̂\r—w\ T'ef
t=0

P ro o f  See Appendix §5A.

P ro p o sitio n  5.2.2.4 Let X  =  (i , Y j, X j) where Y i j = (Y ij t ,Y i j t-k) and X i j = 
(Xijt ,Xijt_fe). Let Z be a matrix of valid instruments defined as Z =  (YJ, Y 2, XJ, X£). 
Assuming that E  [iiju'j] — aifl, the following result holds

(i) plim (±Z 'Z) =  S zz

(ii) plim (±Z 'X ) -

(iii) E  [Z'uJ = 0
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P ro o f  See Appendix §5B.

However, using lagged instruments reduces the effective sample size available for 
estimation, thus we might consider filling the missing observations with the leads 
(future values) of the observable indicators. The use of leads along with lags in the 
instrumental variables estimation was suggested by Griliches and Hausman (1986), 
see also (Wansbeek and Meijer 2000, Wansbeek 2001, Arellano 2003).

In particular, for a DSEM(p, q) model lagged observable indicators x t- s, x t- s- i }. . .  
and yt- s,y t- s - i, • • • for s =  max(p, q) +  1 will be valid instruments. Assuming a 
causal process, leads or future values of x t and yt will also be valid instruments. Gen
erally, the set of valid instruments might include xo, x i , . . . ,  x t- 3- i ,  x t+i, x t+2 , • . . ,  x t
and y0, yu  . . . ,  yt-a-uVt+u Vt+2 , ■. •, 2/r- 

Using the operator

(5.20)

the instrumental variables can be constructed as combinations of lags and leads 
stacked together into vectors of instruments x^y  using the S \ v  operator as

(  0 I j 0  >
S \ y  — I]\f 0 0 0 0 +  S*T

\  0 0 0  )

X<IV =  s i y x t - (5.21)

This has the effect of replacing the missing values of the lag-only instruments with 
the future values (leads) as

(

\

II 
II NA NA

xt=2 --1
Xt= l NA

rpi'—1
x t=  3

—1 
x t= 2

SY»i> — 1
x t= 1
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«s».

II 
II rp%—1

x t=3 r>n%— 1
x t= 2

~i= 2  
x t=  1 NA NA
™i= 2
x t = 2

rpi- 2
x t= 1 NA

rtni—2
x t=3 ~.i=2

x t= 2
rni= 2
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cs co
II 

II ~.i=2 
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\

/

/v.i=lxt=l xt= 2 ~i= 1 xt=2 \

C-K II 
II [OH rp%—1Xt= 1 xt=3

npA— 1xt=3 /y»Z-1xt=2 rJ.— 1

H II 
II rp%—1

x t = 3
/v»i—1 xt=2

r f i — 2xt=\ ~i=2 xt=2 Ti=2xt~2
~i=2 xt=2 xt= 1 Ti=2 xt=3

e*.
II 

II co to r p i = 2xt=2
î=2  xt=1

Ti=2 xt=A /y.i=2
X t= 3

Ti=2 xt=2 /
The above results allow consistent GIVE estimation of the OF equations using 

the available, model-implied (lagged) instruments contained in Z, which includes all 
available eligible instruments that do not come from outside the modelled data. It 
must be mentioned that nothing precludes availability of valid instruments that are 
not merely lags of the modelled variables. However, the nature of structural equation 
models with latent variables casts doubt that such variables will be available. In 
any case, valid variables will satisfy the same conditions, but we have shown that
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available instruments already might exist in the used data in forms of lagged values 
not already included in the model.

5.2.3 Consistent generalised instrum ental variable estim a
tion of the OF equations

Formulation and estimation of the OF equations requires reliance on specific struc
ture and status of the modelled variables. This structure is determined by the 
latent-form specification and makes specification of the OF equations rather com
plex. In order to derive generalised instrumental variable estimators (GIVE) for the 
OF equations, we start from the system of equations given in (5.17), (5.18), and 
(5.19) and write it by positioning its matrix and vector elements in the way that 
will facilitate the use of more concise notation, i.e.,

y ij = Q y + Y lj/3j +  X ij7 ;- +  uij
y 2j = a%> + Y ljt\ (f ) +  u 2j- (5.22)

x 2 j  =  O t2 j  +  +  U 3 j

We are now able to simplify our notation by stacking all of the right-hand-side 
variables of each of the three parts of the system (5.22) by making the follow
ing definitions: =  (t, Y ^ , X ^) ,  W 2j =  (t, Y ljt), W 3j = (i, X ljt), 4 ?  =

( a (if ,  /3', 7 ' )  , 4 f  =  ( a 2j \  4 ?  )  > and 4 ?  =  • It; is now possible
to re-write the system (5.22) in a simpler, more concise notation as

y i j  =  +  U y

Y 2 j  =  +  U y

x 2j =  ’W 3j6 y l +  u 3j (5.23)

An appropriate matrix of instruments Z need not contain all available eligible
instruments, but it needs to have at least as many of them as there are endogenous 
variables in each equation. The matrix of instruments Z can differ across different 
(individual) equations of the system (5.23). For simplicity we assume that Z is 
correctly specified.

We proceed in defining the GIVE estimator. First, by premultiplying each part 
of the system by Z we obtain matrix equations Z 'y ^  = Z 'W i jS ^  +  Z'uij, Z 'y 2j — 
z 'W 2j$2j +  Z 'uy, and Z'x2j =  Z 'W y ^ 1 +  Z 'uy. We now define usual GIVE 

estimators for coefficient vectors > and 4 ?  as

s(y)
<>i j = W'ljZ(Z'Zr1Z'W1, W'yZ(Z'Z)-‘ Z'ylj, (5.24)-1
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M  _°2j ~ W '2jZ  (Z 'Z)-1 Z 'W 2j W '2jZ  (Z 'Z)-1 Z 'y2,,, - 1  ry/_ (5.25)

and

=  [ w '3jZ  (Z 'Z)-1 Z 'W sjl W '3jZ  (Z'Z)-1 Z 'x2j. (5.26)

It is easy to show that the GIVE estimators given in (5.24), (5.25), and (5.26) 
are consistent estimators of the unknown coefficient vectors <5^, and 6 ^  • To 
show this note that

a? W 'y Z  (Z 'Z)-1 Z'W.J W 'y Z  (Z'Z)-1 Z'ujj 

Taking probability limits we obtain

plim f S y )  =  tiff +  [plim ( i W '8 Z) • plim (± (Z 'Z)-1) plim (£ Z 'W 4i)] 1

xplim (^W 'ij Z) • plim (^  (Z 'Z)-1) plim (TZ 'uy)

=  ^  +  ( : 
=  $ >

V '‘WaZ^ZZ •0

The above results holds for each of the vectors <5^\ S ^ j , and <5^, where super
scripts (2/, x) were replaced by asterisks, and subscripts (1,2) by i. For computational 
purposes, the GIVE estimators using the OF notation defined above can be written 
in more detail as follows. Firstly, the three sets of coefficient vectors in the structural 
part of the model are estimated by

(  Ctrjj \ /  t'Z (Z 'Z)-1ZT ^ ( Z 'Z ^ Z 'Y i j  £/Z(Z'Z )-1Z 'Xlj
Pj =  Y ,ii Z(Z/Z)"1Z/t  Y ’^ Z i Z ’Z y 'Z 'Y x j  Y 'y Z(Z/Z)"1Z,X li 

\  J  \  X ' i jZ iZ 'Z y 'Z ' i  X!Xj Z { 7 I Z y xZ lY Xi X 'ljZ(Z,Z)"1Z/Xii
/  t'Z (Z 'Z  )“ 1z ,y lj ^ 

X Y /ljZ(Z/Z)-1Z/y lj- 
V X /ljZ(Z/Z)-1Z/y lj- y

Secondly, the GIVE estimators of the measurement model are given by

-1

and

t'Z (Z 'Z )-1Z'<. i'Z (Z 'Z )-1Z 'Y-1,
1 jt

Y '1rtZ(Z'Z)-1Z 't Y 'HtZ(Z 'Z)-1Z 'Y- 1.
-1

t'Z (Z 'Z )-1Z 'y2j 
Y 'y(Z (Z 'Z )-1Z 'y2,

i/Z (Z 'Z )-1ZV t'Z (Z 'Z )-1Z 'Y i jt
Y 'y tZ(Z 'Z)-1Z 't Y '1JtZ(Z 'Z)-1Z 'Y lj(

-1
t'Z (Z 'Z )-1Z 'y2j

Y 'ij(Z(Z 'Z)-1Z 'y2
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Asymptotic distribution of these estimators does not depend on the assumption 
that the modelled data is multivariate normal and, thus, GIVE estimators of the 
DSEM model are asymptotically distribution free. This is an advantage over the 
maximum likelihood estimator of the static structural equation model, and therefore, 
GIVE estimator can prove to be more robust to both misspecification of certain parts 
of the model and to departure from normality.1

The asymptotic distribution of the GIVE estimators is normal and it can be 
derived by noting that

V T  ( $ >  -  <5j;>) =  [ (* W „ Z )  ( i  (Z 'Z )-1) ( iZ 'W y ) ] " 1 

x ( iW 'y Z )  ( i  (Z 'Z )-1) ( jp Z 'u y )  .

If we assume that T _1/2Z/u^ - i  N  [0,<7yEzz]> we can conclude that the asymptotic 
distribution of the DSEM coefficient estimates is

- l
( * ?  -  Si f )  A n  [°> (S w „zS 5zS zw y )

The asymptotic covariance matrix [W 'ijZ (Z 'Z)-1 Z 'W y] 1 can be estimated 

£with % *) =  dij [W 'y Z (Z 'Z)-1 Z 'W y ] 1 where'tj

= T -% ^  = T - 1 (yj,  -  (y «  -  W jtf )  .
The empirical validity of instrumental variables, as opposite to their model- 

implied eligibility, is empirically testable. The validity of the choice of the instru
mental variables can be tested by the Sargan (1988) %2 test. Applied to the OF 
equations, the Sargan test can be calculated as

y '«Z  (Z 'Z )-1 Z %  -  [W 'yZ (Z 'Z )-1 z 'W y ] s y  2
— ------------------- ----- r p - ~ ~  X(d)> (5.27)T LU.'ijUij app y >

where d is the number of over-identifying instruments, assumed to be independent of 
the equation error. It is important to note that selection of the IV’s on the basis of 
the model-implied eligibility without testing for their empirical validity can result in 
considerable bias in the estimated coefficients. As the choice of instruments affects 
consistency of GIVE estimates, inappropriate IV selection might result in estimates 
that will not be robust to misspecification. Therefore, testing for the validity of IV’s 
should be an important part in empirical estimation of DSEM models.

1 Misspecification of one OF equation will not necessarily affect coefficients of other equations
since these are estimated separately using a limited information estimator
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5.3 Full information estim ation (FIVE)

While consistent and possibly robust to certain forms of mis-specification, the GIVE 
estimator is not necessarily asymptotically efficient. A full-information instrumental 
variables (FIVE) efficient estimator for classical simultaneous equation systems is 
developed by Zellner and Theil (1962). The requirement for the use of the FIVE 
estimator we propose for the DSEM model is to have a common matrix of instru
ments (Z) that can be applied to all equations in the OF system. Such matrix of 
instruments for dynamic models might be made out of lagged modelled variables 
that are eligible for all equations in the system.

FIVE is a systems estimator and can be obtained by staking all equations (pre
multiplied by the common IV matrix Z) in a single matrix equation

z'yn ) (Z 'W „ ) ' \
/

f  *11 ) Z 'u ff  \

ZVlm (Z 'W lm)' Sj(y )
° lm z 'u S i

ZV 21
— diag

(Z 'W 21)'

+
Z 'u

z'y2„ (Z 'W  2n)' L  2n

Z 'x21 (Z 'W si)' 4 ? Z 'u '?

V Z 'x2h ) (z'w3hy  J y. s% ) V Z 'u g  )

The matrix equation (5.28) can be simplified in the following way. Define

X  =

w llt \

W lm
W 21

W 2n
W si

V W3h J

y =

(  y u  N

yim
y2i

Y2n 
X2 1

X2 h J

, S =

x ( y )
° l m
x ( y )
° 2 1

x ( y )
° 2 n

° 2 1

U  =

(y)u im
(y)u 21

u(y)u 2n 
(;x)U21

V u 2h /

. (5.29)

Using definitions (5.29) we can re-write (5.28) as (I ® Z') y  =  (I (g> Z') X ^ + (I  ® Z') u. 
Note that dim (X) =  (p -\-l)m + (q+ l)g+ n+ h. It is also possible to write a compact 
expression for the asymptotic covariance matrix as
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E  [(I ® 11) uu' (I <g> Z')'] =  E  [(I ® 11) (E ® I) (I ® Z')'] 

=  E ® £ [Z 'Z ].

We can now define the FIVE estimator for the OF equations as

5 =  | x '  (I ® Z')' [X"1 ® (Z'Z)-1] (I ® Z') x } " 1 X  (I ® Z')'

X [E"1 ® (Z'Z)-1] (I ® 11) y (5.30)

=  j x '  [E"1 ® Z (Z'Z)"111] X } ”1 X' [E"1 ® Z (Z'Z)"111] y.

The matrix equation (5.30) enables non-iterative estimation of all structural 
parameters and measurement model coefficients, jointly. This procedure, given the 
Z matrix is valid for all equations in the system, yields consistent and efficient 
estimates of the parameters of a dynamic SEM model.

Finally we briefly discuss computation of the residual covariance matrix £ . First 
note that

£  =  E  (uiui)  =  E
U i U ' i  U i U ' 2  U i U ' 3  

u 2u 'i u 2u '2 u 2u '3 
u 3u 'i u 3u '2 u 3u '3

G R(m+n+/l)x (m +n+h) (5.31)

The individual scalar elements of the block elements of £  are calculated as 
follows. We have u iu 'i  =  )  } € RmXTn with typical element

(yy)
11 i j = T ~ l (y y  -  W „«i5>)' (y y  -  Wy<5“ )  .

Similarly, we have uiu'2 =  € Rmxn, and symmetrically u2u'i =

|  E  |  € Rnxm with typical elements of the form

=  T - 1 (y y  -  W ^ > ) '  (y y  -  Wy<5<*>)

and

= T ~ l (y y  -  W y fiM ) '  (y y  -  W u «g») ,

respectively.
Note that the (1,3) block element of (5.31) is merely a transpose of the block 

(3,1), thus the individual elements can be estimated in the same way, namely 
uiu '3 =  ^ E  ^  R mxh and u3u'i =  j E  ^ R /lxm, which has a
typical element of the form
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m] =  T-1 ( y y  -  Wy<5<?)' ( x y  -  W ^ > )  .

Finally, for the remaining two blocks we have =  {e (v̂ u G Rnxn, 
where scalar elements can be estimated by

*1%} =  T-1 ( y y  -  W y«§> )' (y y  -  W y«g> ) , 

and u3u'3 =  ( #  ( 4 ? “ 2? )  }  G R hxh with typical element estimated by

*2»j = r_1 (x2j - W3j4?) (x2ji - W8i4?)
Consistency of the FIVE estimator of the OF model can be shown in a similar 

way as is usually shown for classical simultaneous equation systems.2 Consistency 
of this estimator can be shown by noting that

I = jx' [xr1 ® Z (Z'Z)-1 Z' x} 1X' [s-1 ® Z (Z'Z)-1 Z'l y

= <5 + {x' S -1 ® Z (Z'Z)-1 Z'l X  j  1X'

Proposition (5.2.2.4)-(i) implies that

i-i Z (Z'Z)-1 Z' U .

plim (T -1Z'Z) =  E z z ,

therefore it follows that plim ( s -1 ® T (Z 'Z)-11 =  X!-1 ® ! ! ^ ,  and by (5.2.2.4)-(ii) 
it follows that

p l i m ^ Z 'X * )  =  phm ^ ( Z ' t , Z ' Y y , Z ' X y ) )

=  plim ( ±  {Z'l, Z 'Y y , Z 'Y W . U Z 'X y t) Z 'X y,,.*))

=  ^ZYt, EzYt-i, E z x t > ^ZX t-i) — %zx* (5.32)

Using Proposition (5.2.2.4)-(iv) and expanding the Kronecker products we get the 
following convergence results

2 However, in the OF case, similarly to the GIVE case, consistency will depend on the assumed 
properties of the model-implied (lagged) instruments.
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(I <2> Z ')u plim-—

(  p l i m ^  N

rjii-Xv)
plim 21

Z'uplim 

plim T

(v)
2ra

\  plim Z'u(*)3h

=  0

From (5.32) it follows that

plim if' — diag

(p U n E S * ) ' \ '

z;Wiroy  

(plim2 y 21)7
(plim~ y 1” ’

(plim 2' ^ 221)' 
(plim2 y 31)7

Therefore, we have specifically

and

plim
( V W ij
V T

pl|m ( Z '( . .Y , J ’ X ,J)

/ yO') y  0) yO ) yC?) yC?)
ZYt-i ’ ^ZXv^ZXt- »(i)'ZW'j)

Finally, it follows that

i(j)
'ZW 2 '

plim ( ^ y 5*) =  plim ( Z' ( t’TX ljt))  =  ( S « ,  E « )  =  S (ji 

We can now derive the probability limits for the matrix (5.33) as

zw r

(5.33)
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plimM 5  =  diag

(4y   ̂

( 4 & ) '
( yjU) V y2jzw2)

( E (n) V\ 2j z w 2 )

( 4 & i j

( 4 t a ) '  I

Using the above results, it follows that

=  E zx-

plim(J) = 5  +  plim j x '  S " 1 ® Z (Z 'Z)-1 Z'l x }

x X ' ' - 1 Z (Z 'Z )-1 Z' u

xX'  ( I 0 Z ' )

=  6  + plim j x '  (I ® Z')' E -1 ® (Z 'Z)-1 (1 0  Z') x j
>-1 (Z 'Z)-1 (1 0  Z') u

=  s  + { [ p l i m i M '  

plim

plim x (g>r(Z'Z)-1 p l i m i ^ l ^ ] }  *

plim '-1 T(Z 'Z) - 1

— <5 +  { E x Z ( E 1 0  E ) E Zx }  E x z  1 0  E • 0
= 8

Therefore, the FIVE estimates are consistent if applied to the OF model. It 
is also possible to show that FIVE is asymptotically more efficient then the GIVE 
estimator.3

The FIVE estimator, just like the GIVE estimator, is distribution-free in the 
sense that it is asymptotically normally distributed, with the assumption of Gaussian 
disturbances and no distributional assumptions about the modelled variables.4 To 
see this, note that

plimiKfOH

V T (S  - 6 )  = | t -1X ' (I <S> z ')' [ e -1 ® T  (Z 'Z)-1] T -1 (I ® Z') x }  

x T - 'X '  (I ® Z' ) ' [ s -1 ® T  (Z 'Z)-1] r-1/2 (I ® Z') u

Assuming Gaussian disturbances,

3Such proof is similar to the one for the ordinary simultaneous equation systems (see e.g. Judge 
et al., 1985.

4This is unlike to the Gaussian covariance structure based static SEM method which generally 
requires the modelled variables to be multivariate Gaussian.
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u ~  N  [0, E  ® I] =*• T ~ 1/2 (I <g> Z') u  ~  N  [0, E  ® T ~X7IZ] , 

therefore asymptotic normality immediately follows, i.e.,

V f ( S  - 6 ) ~ N  [o, (E*z (E-1 ® Eii) E^)-1] ,

where [E *z (E -1 ® E ~z lz ) E zjf] 1 «  X ' ( e -1 ® Z (Z'Z)-1 Z '\  xl 1 and Y! z z  = 

^ x z •
It is worth emphasizing that the above results apply only if the IV matrix Z 

is valid for all equations of the system. Practically, this means that for estimation 
of the j th equation there might be eligible instruments that are not eligible for 
estimation of the ith equation for j  ^  i. Formally, Z that is eligible for the entire 
OF system contains the intersection of the rows of Zj, i.e., instruments for each 
j th equation in the system. If there is enough instruments5 such matrix Z can be 
constructed so to enable identification of each equation in the system and consistent 
FIVE estimation.

However, as already mentioned, model-implied validity might by misleading if 
the model itself is mis-specified, thus empirical testing of IV’s validity is essential.

5.4 Identification

Identification of the static structural equation models with latent variables is gen
erally problematic. An early discussion of this topic can be found already in Wiley 
(1973), but a simple and straightforward procedure still does not exist. On the other 
hand, identification is well defined and straightforward in classical econometric si
multaneous equation systems, and a similar approach can be developed for the OF 
equations.

We propose a simple procedure that uses only the coefficient matrices from the 
latent specification for identifying the OF estimation equations. The following tech
nique provides sufficient conditions for identification of all equations in the systems.

P ro p o sitio n  5.4.0.1 Given a DSEM model with the structural equation of the form  

rjt = a v +  +  2 j= o  ^ j£ t- j  +  Ct and the measurement model given by
x t = a x + A x£t +  St and y t = a.y + A yrjt +  et define

5Given sufficiently long time span of data, there will always be enough lagged variables to satisfy 
this requirement
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- a ,  - a ^  - a 4 x) \
—B'j 0 0
—B '2 0 0

-r'x o o

-r ,  o o /
Then, the j th equation of the system will be identified iff

rank R ; > m + n + h —1 (5.34)

where R j is a zero-one selection matrix having one’s in places of omitted variables 
and one row for each omission. Note that i f  the equality holds the equation is exactly 
identified, otherwise it is overidentified.

C oro lla ry  5.4.0.2 A corollary to Proposition (5.4-0.1) states that unless

the j th equation is not identified. The condition (5.35) is necessary for identification, 
while condition (5.34) is sufficient.

P ro o f  See Appendix §5C.

It is therefore possible to use these rules to check for identification of each in
dividual equation. The relevance of this approach lies in its ability to check for 
identification of the model that is specified in latent form and thus it avoids the 
need to derive the OF equations. In addition, this method is equally applicable for 
both static and dynamic structural equation models with latent variables.

rank(Rj)  > m + n + h — l (5.35)
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Chapter 6 

Empirical applications

6.1 Introduction

This section applies DSEM/PDSEM models to empirical data, focusing on fixed 
and random effects dynamic panel models, using the available SEM/econometric 
software packages.

This application has two main aims. First is to demonstrate the effect of using 
the starting values obtained by the methods proposed in chapter §5. Second aim is to 
test the capabilities of the existing commercial software packages, such as LISREL, 
in estimation of DSEM models for panel data.

Firstly, we will estimate a fixed-effects DPSEM model using a cross-country panel 
data set, where the sample size is moderate and time dimension is small. This is an 
example of a dynamic panel model with fixed effects, T  < N,  and both T  and N  
relatively small.

The second application is to a micro (household) panel data using 13 available 
years of the British Household Panel Study (BHPS) to estimate a random effects 
dynamic micro consumption model. The BHPS data span over 13 years and include 
over 5,000 individuals, which are traced over time. This is, hence, an application to 
a very large data set with more pronounced temporal dynamics.

We will use the LISREL package (Joreskog and Sorbom 1996b) for maximum 
likelihood estimation of the SEM models, and obtain starting values using instru
mental variables methods and other software packages.

LISREL has its roots in a software package for estimation of structural equa
tion models using ACS methods developed by Gruvaeus and Joreskog (1970) as 
a Fortran-IV programme. Its predecessors were the ACOVS programme (for the 
analysis of covariance structures), and the FIELES programme (for the classical 
simultaneous equation models without measurement error) both due to Joreskog et 
al. (1970). These programmes played a seminal role as ancestors of the LISREL 
package (Joreskog and Sorbom 1996b), the programme that became synonymous 
with structural equation modelling. We will briefly describe this packages.
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Model specification in LISREL is designed in a very general way, and in princi
ple most linear models can be formulated and estimated with the LISREL syntax 
language. This syntax language is, however, designed primarily for cross-section

programme refer those of a static model. Estimation of simple models for panel data 
is nevertheless possible by forcing the programme into estimating multiple equations 
with cross-equation equality constraints-a trick that specifies a dynamic covariance 
structure by treating the lagged endogenous variables as distinct exogenous vari
ables. In summary, the specification of DPSEM models is not simple in the LISREL 
syntax, which is best suited for estimation of static SEM models (2.4)-(2.6), as 
the syntax refers only to the elements of the general B  and r  matrices. Though 
not easily, DPSEM models can be formulated in the LISREL syntax by treating 
all parameter matrices as belonging to a single matrix and then imposing various 
restrictions on the parameters to obtain the required DPSEM structure.

However, as the time dimension of the panel data increases, the number of equa
tions with equality constraints also increases making the syntax very difficult to 
build and manipulate. In addition, dynamic panel models with pronounced time 
series dimension present a considerable optimisation challenge in practice.

LISREL uses numerical optimisation based on a modified Davidon-Fletcher- 
Powel (DFP) quasi-Newton algorithm (Joreskog 1973, Joreskog et al. 1970, Gru- 
vaeus and Joreskog 1970, Joreskog 1977, Lee and Jennrich 1979). The modification 
due to Karl Joreskog adds several iterations of the steepest decent preceding the 
DFP iterations, which lead to more rapid convergence.

The analytical first derivatives d in L /d O  are obtained without taking into ac
count equal elements in the symmetrical coefficient matrices, which are in turn 
handled by the equality constraints on the off-diagonal elements (Joreskog 1977). 
Letting the unconstrained parameter vector is 0 = (0i, . . . ,  0ri), suppose r\ — r2 
elements of 0 are known constants (e.g. fixed to zero), with r2 <  r\ free param
eters 0* =  (0 f , . . . ,  0r2). Further, suppose that out of r2 free parameters 7*2 — r3 

are equal and r 3 <  r 2 are distinct, with free distinct parameters now assembled in 
0** = (0f D, . . .  , 0 2̂°). If we let R  (r\ x r 2) be a zero-one selection matrix that 
deletes the elements of the score vector corresponding to the fixed parameter such 
that RO =  9* the constant restrictions can be imposed by solving the restricted 
score equation R [d\nL /d6] = 0, where L  denotes the likelihood function. The 
equality restrictions can be imposed similarly by defining another zero-one matrix 
K  (r2 x r3) with elements {/c^} such that

Therefore, the constant and equality restrictions can be imposed directly on the

(independent) data and hence the matrices that need to be specified as input to the
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score vector as K 'R [d \n L /d O \ = 0.
Numerical optimisation algorithm implemented in LISREL uses an initial esti

mate E q = K 'R E [ (d InL /3 6 ){d InL/dO)']RrK ,  which is updated by five iterations 
of the steepest decent algorithm (a modification due to K am  Joreskog), followed by 
DFP iterations until convergence to the estimate E .1 \ ]

1 While leading to faster convergence then the basic DFP algorithm, the modified-DFP is found 
to be inferior to Gauss-Newton algorithm and also it is known to produce incorrect standard errors 
(Lee and Jennrich 1979).
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6.2 Application I: M odelling finance and growth

Panel models with simultaneity, dynamics, and latent variables are common place 
in empirical econometrics. A widely researched example is the relationship be
tween financial development (FD) and growth. This is a theoretically ambiguous 
relationship since economic models indicating both positive and negative relation
ship exist in the literature. King and Levine (1993a), for example, suggest a pos
itive FD-growth effect, while Bencivenga and Smith (1991) and Bencivenga et al. 
(1995) indicate a possibility of both positive and negative effects. Lucas (1988), on 
the other hand, dismisses the FD-growth effect altogether. Levine (2003) gives a 
detailed review of this literature. W ithout unambiguous theoretical implications, 
the finance-growth relationship thus remains an empirical issue. Nevertheless, the 
empirical literature failed to give a conclusive answer although preponderance of 
the empirical studies claim a positive FD-growth effect (Levine 1997, Levine and 
Zervos 1996, Demetriades and Hussein 1996, Levine and Zervos 1998, Neuser and 
Kugler 1998, Levine 1999, Rousseau and Wachtel 2000, Levine et al. 2000, Hali et 
al. 2002, Levine 2003).

The key statistical issues in the FD-growth research relate to the modelling and 
testing of the substantively implied latent structure of the unobservable (latent) 
financial development. While the mainstream FD-growth literature based on the 
IV/GMM methods does not explicitly test for the measurement errors by estimating 
formal statistical measurement models for the latent variable, it does suggest various 
observable FD indicators on the substantive grounds. Naturally, this introduces the 
problem of whether and how well the available indicators measure a single latent 
construct and how much error is contained in such indicators. In addition, the FD- 
growth simultaneity is held to be an important consideration and the dynamics and 
lagged feedback effects are both implied by the substantive theory.

Earlier studies (Levine 1997, Levine and Zervos 1998) used simple cross-country 
OLS regressions of GDP growth on the separate FD indicators without accounting 
for the cross-country heterogeneity or simultaneity problems. Separate growth re
gressions with individual observable indicators containing measurement error might 
result in the errors-in-variables problem and thus produce biased or inconsistent coef
ficient estimates. The inconsistency of the regression coefficients due to the measure
ment error is potentially considerable, which most profoundly concerns the actual 
relationship between the financial development and economic growth. In homoge
neous random samples the measurement error biases regression coefficients towards 
zero, however, with heterogeneous cross-country data with fixed country-specific ef
fects, the bias can go either way and the problem can be further magnified by the 
inclusion of other variables in a multiple regression setup (see e.g. Wansbeek and
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Meijer (2000)). A major complication arises with heterogeneous samples (such as 
cross-sections of countries) where individual (fixed) effects might be correlated with 
the measurement-error components resulting from using noisy indicators in place of 
the (unobservable) latent variables (Griliches and Hausman 1986, Wansbeek 2001). 
Consequently, the more recent empirical literature uses panel data and instrumental 
variable methods (Rousseau and Wachtel 2000, Neusser and Kugler 1998, Levine 
1999, Levine et al. 2000, Hali et al. 2002). While the panel studies suggested a 
similar positive finance-growth relationship, it was shown that even with similar 
methods and data different conclusions can be reached (Favara 2003). The most 
likely source of the problem is the failure to model the measurement structure of 
the latent financial development along with modelling the simultaneous and dy
namic effects. Consequently, on the basis of such results we cannot assess validity 
of the substantively suggested FD indicators even if the errors-in-variables problem 
is corrected by using the IV methods.

The measurement error problem

There is a large body of empirical literature that investigates the FD-growth rela
tionship using multiple observable indicators of the latent (unobservable) financial 
development. Commonly used indicators include various measures of the bank
ing sector such as liabilities of commercial and central banks, domestic credit, and 
credit to the private sector (King and Levine 1993a, King and Levine 1993b, Levine 
1997, Levine and Zervos 1998, Neusser and Kugler 1998, Levine 1999, Rousseau 
and Wachtel 2000, Levine et al. 2000, Hali et al. 2002, Levine 2003, Rousseau and 
Wachtel 2000, Neusser and Kugler 1998, Levine 1999, Levine et al. 2000, Hali et 
al. 2002, Favara 2003).

The observable indicators are generally identified on substantive grounds and 
used as individual regressors in separate growth regressions. The measurement issue 
is not addressed in this literature through statistical testing, which might have 
resulted in the collection of inappropriate indicators or produced wrong conclusions 
about the FD-growth relationship. This constitutes a major omission since the 
availability of multiple indicators allows identification of the measurement error 
components and statistical evaluation of the FD measurement models.

The errors-in-variables problem arising from the latent nature of the financial 
development can be generalised to the case of multiple observable indicators by 
a factor-analytic model. Suppose we can observe rrij noisy indicators of the 
unobservable variable ^  . Then we can specify a factor model

%ij — ^ij^j T 2 =  1, . . . , fc, j ' =  1, . . . , Qf (b-1)
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where Xij is the 2th  observable indicator of the j th  latent variable and 6^ is 
the measurement error. The error covariance matrix is required to be diagonal, 
E[SS'] =  diag (cr^,. . .  Though implicitly, a factor model for the latent FD
variable is implied by the substantive theory which suggests multiple indicators 
and linear relationships between the indicators and the unobservable components. 
Obviously the classical errors-in-variables model x  =  £ +  5 is a special case of the 
general factor model with one observable indicator and A fixed to 1.

Once the latent structure is explicitly recognized and modelled the main issue 
becomes whether and how well the observable indicators measure the postulated 
latent construct (s), which can be easily tested by simple confirmatory factor analysis. 
To illustrate these issues, we will give some new empirical results using the same 
data as in the existing literature.

For the first empirical illustration, consider the FD measurement models implied 
by Levine and Zervos (1998) who investigate the relationship between economic 
growth and various stock market development indicators. In addition, they also 
consider multiple indicators of economic development using the following observable 
variables in their analysis GDP growth, capital stock growth, productivity growth, 
savings, capitalization, value traded, turnover, CAPM integration, ATP  integration. 
Using data from a cross-section of 47 countries, time-averaged over the 1976-1993 
period, Levine and Zervos (1998) estimated a series of separate growth regressions of 
the particular economic growth indicators on the various stock market development 
indicators without testing the measurement models for the two latent concepts. The 
key underlying assumption was that these indicators indeed measure the economic 
growth and the stock market development, respectively. This implies a two-factor 
model with GDP growth, capital stock growth, and productivity growth measuring 
the latent economic growth and with savings, capitalization, value traded, turnover, 
CAPM integration, and ATP integration measuring stock market development. Us
ing the same data as Levine and Zervos (1998), we fitted the two-factor model with 
maximum likelihood, which produced a x 2 fit statistic of 125.81 with 26 degrees of 
freedom. This strongly rejects the model. Furthermore, the estimated error vari
ance of the GDP growth is2 —0.11 (0.09) while the correlation between the two latent 
variables is 0.33 (0.13). Individual (cross-sectional) correlations between growth in
dicators and FD indicators are all positive but the mis-fit of the measurement model 
is problematic. Namely, the postulated indicators of the financial development and 
the economic growth do not seem to measure the hypothesized latent variables well, 
which brings in question the conclusions about the FD-growth relationship made by 
Levine and Zervos (1998).

As a second example we take the Hali et al. (2002) study of the international

2Standard error is in the parentheses.
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financial integration and economic growth, where the latent international financial 
integration is measured by several observable indicators. Hali et al. (2002) use 
panel data from 57 countries over five 5-year periods (1976-1980, 1981-1985, 1986- 
1990, 1991-1995, 1996-2000) and investigate the effect of the international financial 
integration on the GDP growth. The observable indicators are capital account re
striction measure, stock of accumulated capital flows divided by GDP, capital inflows 
and outflows divided by GDP, stock of accumulated capital inflows divided by GDP, 
capital inflows. We fitted a single factor model to these indicators obtaining a x 2 
goodness-of-fit statistic of 725.793 (d.f. =  5), which strongly rejects the hypothe
sis th a t these five indicators measure a single latent variable. A trivial modelling 
exercise easily identifies the source of the problem which turns out to be associ
ated with the capital inflows indicator. Re-estimating the model without capital 
inflows produced an insignificant y 2 of 5.879 (d.f. =  2). These results suggests that 
capital inflows does not measure the same latent variable as the other indicators. 
Interestingly, the growth regressions estimated by Hali et al. (2002) using individual 
indicators in separate regressions find significant effect of financial integration on 
GDP growth across various specifications mainly when capital inflows is used the 
financial integration indicator.

The above two examples illustrate the likely drawback of not estimating the 
measurement errors and of selecting noisy indicators of latent variables without 
empirically testing the implied measurement models.

Our final example considers the possible bias of the regression coefficients due 
to the measurement error. It is known that measurement error in the regressors can 
bias the regression coefficients downwards (Aigner et al. 1984, Wansbeek and Meijer 
2000). However, in heterogenous samples such as cross sections of countries, due to 
the possible correlation between the fixed effects and the measurement error, the 
direction of the bias cannot be easily determined. We will illustrate this problem in 
the context of the FD-growth models when financial development is unobservable but 
measured by various noisy indicators. We use the same data as Demirgiig-Knut and 
Levine (2001a), on 84 countries averaged from 1969 to 1995 where the variables are 
several indicators of the financial development, GDP growth (AGDPf), logarithm 
of the initial GDP (z*), government expenditure {govi), change in consumer prices 
(Ap ^  and a sum of exports plus imports divided by GDP (tradei). We estimate a 
simple FD-growth model

A GDPi = 71 FDi +  t 2z* +  73 govi +  74 Ap{ +  trader (6.2)

as commonly done in the literature (e.g. Demirgiig-Knut and Levine (2001b)). Es
timating the regression equation (6 .2) by using individual noisy indicators such as 
liquid liabilities of the banks (U), share of domestic credit from deposit banks (&*),
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or credit to private sector (jpi) produced three separate regression equations with 71 

coefficients 1.92 (0.84), 3.767 (1.31), and 1.34 (0.765), with li} bi, and pi as regres
sors, respectively. When (6.2) is estimated as a SEM model with the latent financial 
development measured with all three observable indicators, the 7 1  coefficient is 1.21 

(0.45). The coefficient estimates of 7 2 , 7 3 , and 7 4  were very similar across all four 
equations. It is immediately noticeable that 7 1  differs considerably in magnitude 
across different models, which is indicative of the measurement error bias. In this 
case the bias from using individual noisy indicators seems to be upward. However, 
it is difficult to make valid conclusions without modelling the possible feedback from 
growth to financial development with a temporal lag and without accounting for the 
country effects.

D ata  and variables

We will estimate an empirical DPSEM FD-growth model to illustrate the above 
discussed methods using panel data on 45 countries observed over 25 years, running 
from 1970 till 1995, and averaged over 5-year periods.3 Our data come from the 
same sources as the data used by Demirgiig-Knut and Levine (2001b) and Levine 
et al. (2001), thereby avoiding possible data-induced effects in the empirical results. 
The empirical studies such as Beck et al. (2000) and Beck and Levine (2003) use 
data averaged over the five years periods in order to abstract from the business cycle 
effects and we follow the same approach here.

While a criticism that business cycle dynamics should be better modelled by 
using temporally less aggregated data (e.g. quarterly or annual series), the use of 
a relatively small number of time averages does not itself cause asymptotic difficul
ties for our purposes. While the maximum likelihood estimator of the fixed effects 
requires the UT  —► 00” asymptotics for the consistent estimation of the time means, 
this primarily concerns the time span of the data rather then how the series were 
aggregated.4

We estimate a simple FD-growth model that accounts for the dynamics and the

3For 25 years of annual data the use of the 5-year averages requires computing w\ =   ̂£ f = 1  wii
u>2 =  5  £i=i W 5+ h W3 =  5  £ - =i Wio+i, ^4 =  i  £ j =i Wi5+i, and w5 =  I £ i= i W2 0 +*•

4 Generally, for the /-period time averages, the overall time mean can be written as

1 v— 1 v;— /I \  -d
f  ̂ t-i Wt = T  ̂ = 1  ̂ <=1 Wjl+i’

which implies that

Therefore, the use of time-averaged data does not introduce the “ short T” problem in respect 
to the maximum likelihood estimator of the individual fixed effects since the consistency of this 
estimator will still depend on the length of the original (un-averaged) time series of length T.

134



measurement error. Formulating such model as a DPSEM model enables us to si
multaneously model the measurement structure of the latent financial development 
and its possible effects on the economic growth. Since DPSEM is a multi-equation 
model, it is straightforward to include the second equation in which financial de
velopment is endogenous, possibly affected by the lagged economic growth. The 
variable definitions are given in Table 6.1.

Table 6.1: Observable and latent variables
Observable variables

Symbol Definition of variable
bt Deposit bank domestic credit divided by the sum of deposit

bank domestic credit and central bank domestic credit
Pt Currency plus demand and interest-bearing liabilities of

banks and nonbank financial intermediaries divided by GDP
It Value of credits by financial intermediaries to the

private sector divided by GDP
9t Rate of real per capita GDP growth
U Log of real GDP per capita in beginning of the period

Latent variables
Gt Economic growth
Ft Financial system development
It Initial economic development

The indicators of the financial system development are constructed in the same 
way as the indicators in the mainstream empirical FD-growth literature to avoid 
introduction of data-specific differences in the results (see e.g. Back et al. (2000) 
and Demirgiig-Knut and Levine (2001b)). The empirical density plots (Figure 6.1) 
suggest the observable indicators have reasonably symmetric bell-shaped distribu
tions, thus can be treated as approximately normally distributed, which might be 
of concern in maximum likelihood estimation given the modest sample size.

A naive finance-growth model

We will illustrate this important difference in the approach by considering a simple 
“naive” finance-growth model

GDPt = a  + fabt + fait +  7iG D Pt_i (6.3)

that uses a single financial development indicator (e.g. bt) and ignores the possible 
measurement error problem.

Consider first the panel data set consisting of N  observations on each each of 
the variables from (6.3), observed at T  time points and placed in the “wide” panel 
matrix X w  of the form
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x w  =

/ GDP.K 1 • • g d p ^ m 1 ■ m lt= 1 <s>. 11 l
l

g d p ?=.[2 • • g d p ; ^ m 2 ■ m lt=1 AU=2lt=5 (6.4)

V G D P fs f ■ ■ GD Pfj m N II ,-n=iVH=i . jn=N . lt=5 /

which allows computation of the covariance matrix

=  N (6.5)

The standard approach to estimate the parameters of model (6.3) with standard 
SEM software package such as LISREL is to specify a multi-equation model and 
impose cross-equation equality constraints. In LISREL notation this model can be 
specified as

GDP30

20

10

-.05 0 .05
Liabilities of banks and non-banks as share of GDP7.5

2.5

-.2 0 .2 .4

j Share of deposit bank domestic credit

10

ii--?
1.2 0 .2 3

Credits to private sector as share of GDP

4

2

-.25 0 .255 .5
Log of real GDP per capita in the beginning of period

10

5

0 ,21

Figure 6.1: Empirical density of the observable variables
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/ GDPt=2 \ (  0 0 0 0  \ ( GDPt=2

GDPt=3 $21 0 0 0 GDPt=3
GDPt=4 0 $32 0 0 GDPt=4

V GDPt=5 ) ^ 0 0 $43 0 /  ̂GDPt=5
■v*"
V B

■*V“
f]

+
( 7n 712 713 0 0 0 0 0 0  \

0 0 0 724 725 0 0 0 0

0 0 0 0 0 736 737 0 0

0 0 0 0 0 0 0 748 759 /

( GDPt=\ \  
bt=2 
H=2 
h=3 
it=3 
bt=4 
H=4 
bt=5 
k =5

+

^ Ct=2 \
Ct—3 

0=4 
V 0=5 /

(6.6)

subject to equality constraints

$21 =  $ 3 2  =  $43  =  7 n  =  $ i

712 =  724 =  736 =  748 =  7 l

713 =  725 =  737 =  759 =  7 2  =  72  

^22 =  ^33 =  ^44 = ^55

A path diagram corresponding to specification (6.6) is given in Figure (6.2).
The LISREL syntax needed to estimate this model can be written as

TI
DA NI=35 N0=225 NG=1 MA=CM 
CM=widepanel.CM
SE 8 15 22 29 1 10 14 17 21 24 28 31 35 /
MO NX=9 NY=4 BE=FU,FI GA=FU,FI PH=SY,FR PS=DI,FR 
FR BE(2,1) BE(3,2) BE(4,3) GA(1,1) GA(1,2) GA(1,3)
FR GA(2,4) GA(2,5) GA(3,6) GA(3,7) GA(4,8) GA(4,9)
EQ BE(2,1) BE(3,2) BE(4,3) GA(1,1)
EQ GA(1,2) GA(2,4) GA(3,6) GA(4,8)
EQ GA(1,3) GA(2,5) GA(3,7) GA(4,9)
EQ PS(1,1) PS(2 ,2 ) PS(3 ,3 ) PS(4,4)
0U ME=ML ND=5

where the ”EQ” lines serve the purpose of imposing the cross-equation equality 
constraints on coefficients and error variances. We obtain the following empirical 
estimates

GDPt =  0.1126* -  0.043 it -  0.133 GDPt. v
(0.012) (0.016) (0.037)

(6.7)
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Similar results could be obtained by using standard econometric software such as 
PcGive or Ox and estimate a system of equations with cross-equation restrictions 
such as

GDPt=2 = /?<1)6(=2 + &  'y[l^GDPt=i
GDPt=3 =  p [ \ = 3 + + 
GDPt=i =  /?f >&(=4 + M3)*t=4 + 7P G D P U  
GDPt=$ =  ̂ 4)6e=5 + 4 4>*<=s + 

with cross-equation equality constraints

/ f>  =  /?<2>=/?P>=/? '4)=/3i 
7« = 7?> =  7f  = 7<4 ,S 7 l

In PcGive batch language, for example, this model can be estimated by running the 
following code, where letters “A”, denote different time periods,

module("PcFiml");

GDP

GDP

BTOT,

BTOT,

GDP,

GDP

Figure 6.2: Single equation model
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usedataO 'w idepanel.x ls"); 
system
■C

Y = BGDP, CGDP, DGDP, EGDP;
Z = AGDP, BBTOT, BINI, CBTOT,

CINI, DBTOT, DINI, EBTOT, EINI,
Constant;

>
estsystem("OLS", 1, 1, 45, 1); 
model

BGDP = BBTOT, BINI, AGDP, Constant;
CGDP = CBTOT, CINI, BGDP, Constant;
DGDP = DBTOT, DINI, CGDP, Constant;
EGDP = EBTOT, EINI, DGDP, Constant;

>
estm odel( "FIML");
co n stra in ts
{
&0=&12; &4=&12; &8=&12;
&1=&13; &5=&13; &9=&13;
&2=&14; &6=&14; &10=&14;
&3=&12; &7=&12; &11=&12;
>
estmodel("CFIML");

which computes constrained full-information maximum likelihood (CFIML) esti
mates, but does not impose equality constraints on the error variance across all
time periods, hence the empirical estimates would be numerically slightly different 
from those obtained by LISREL. However, standard econometric packages such as 
PcGive are generally not used for estimation of “wide-panel” models, rather the com
mon approach is to estimate the “long-panel” models. We consider this approach 
next.

The approach taken in the panel-econometrics literature is based on what might 
be called the “long panel” format. Let Y $ T denote a cross-section time series data 
on N  individuals observed over T  time periods for variable . Also let IP be a lag 
operator resulting in j th  lag of Y $ T. For a simple case with N  = 2, T  = 3 we have

\ r ( l )  __
1 23 —

f y n \
2/12 

2/13 

2/21 

2/22 

V 2/23 /

\ r ( l )  —  T 1 \ r ( l )  __
1 2 (3 -1 ) ~  1 23 —

(  0

2/n 
2/12 

0

2/21 

V  2/22 )

\ r ( l )  —  r 2 - y ( l )  __
1 2 (3 -2 ) — 1 23 ~

(  0 ^ 
0

2/n 
0 
0

V 2/21 )
Since by assumption the pre-sample observations are zero, applying the j t h  lag
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operator will have the effect of shifting the values in the variable vector down j  
places and replacing first j  places with zeros for each i = 1 , . . . ,  N.  This operation 
can be concisely written in matrix notation as

(6.8)

where © denotes the Hadamard product. For the special case with N  =  2, T  = 3, 
we have

c l  \ r ( 0  __
^ 2 3  1 23 —

and

t2 © ^3^3 —

therefore,

f  0 0 0 0 0 0 ^  ̂ 2/11 ^
(  ° ^1 0 0 0 0 0 2/12 2/n

0 1 0 0 0 0 2/13 2/12
0 0 1 0 0 0 2/21 2/13
0 0 0 1 0 0 2/22 2/21

0 0 0 1 °J  ̂ 2/23 ) V 2/22 )

(  0 0 0

V o i o

( 1 
1

v  i  y

/ 0 \ 
1

V i /

( oV 
i  
i  
0 
1

V 1 /

( ^ 3 r g j)  0  (ta ® S ^ 3) =

Note that

I 2 © S 3

(  0 

2/n 
2/12 
2/13

2/21 
V 2/22 j

©

1 
1 
0 
1

V 1 /

(  0 \

2/11 
2/12
0

2/21 
V 2/22 /

0 0 0
0 1 0

(  0 ^

2/n 
2/12 
0

2/21 
\  2/22 y
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hence we can alternatively write

( s i T Y%T) o ( i N ® S 3TtT) = I n  0  S°t
0  0

S x t  (6.9)
0  I T- j

which gives us a concise full-sample matrix formula for the j th  panel lag operator

V  =  ( I N 0  S jt D j) S jNT, (6 .10)

where

L
0 0
0  I T- j

Note we can write an S/R  function that will compute panel lags as 

lag .p an e l <- fu n ction (x , p, n, t )
-C

d l <- p ow er.sh ift(n  * t ,  p) % * '/. x
d2 <- kronecker(rep(l, n ) , c(rep(NA, p ) , r e p ( l ,  t - p ) ) )  
dl * d2

>

We can now construct a “long” panel data set as

X l =  [vecXGDP i ( iv  StD i ) S^yivecX^r^p i vecX^ i vecX^j . (6.11)

Note we used the panel lag operator (In  <8> Sj-Dj) S3NT only to lag G D P  variable 
once as this is the only lagged variable we use in the model. Our data matrix for 
the special case with T  = 5 is thus given by

X r  =

G D P p? 0 h n = l 
° t = 1 An=l

l t = 1
G D P p } G D P pi u n =1 

° t - 2
AU= 1
l t = 2

G D P S,f G D P p 1 u n =1 
° t= T

An= 1
l t= T

G D P p f 0 un=N  ut= 1
a u = N  
Lt =  1

G D P p p G D P p f 11n = N  
° t = 2 a u = N  

l t = 2

G D P p ,f G D P p f u n ^ N
° t= T

a u = N
H = T

(6 .12)

Thus, the model (6.3) can be written in full-sample notation as
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vec X 'GDP = a  + f t  vec X[,+ftvec X [  +  7 iv ecX ^DP +  £

= zo + c

where Z  =  (l : vec X 'b : vec X 'GDP) and 0 =  (a, f t ,  f t ,  71)'. A standard econometric 
approach to estimate 0 would be by OLS using the formula

Ools = ( Z ’Z )~ l Z'vec X 'GDP. (6.13)

Estimating the single equation model (6.3) with OLS using PcGive, with data 
in the “long panel” format, gives the following estimates

GDPt = a + 0.121 bt -  0.032 it -  0.122 GDPt-  1
(0.025) (0.0136) (0.077)

Such model can, of course, be estimated using LISREL language using the following 
simple programme

TI
DA NI=4 N0=225 NG=1 MA=CM 
CM=longpanel. CM 
LA
g b i  g_l 
SE
1 2 3 4 /
M0 NX=2 NY=2 BE=FU,FI GA=FU,FI PH=SY,FR PS=DI,FR 
FR BE(1,2) GA(1,1) GA(1,2) GA(2,1) GA(2,2)
0U ME=ML ND=5

where the maximum likelihood would give the OLS estimates. Estimates obtained 
from LISREL are virtually identical, namely

GDPt = -0.001 +  0.121 bt +  0.032 it -  0.122 GDPt- 1
(0.001) (0.025) (0.0317) (0.077)

We can note that the simple naive model using a single mis-measured financial 
development indicator leads to the conclusion that financial development (proxied by 
bt) has a positive and significant effect on economic growth. We will reconsider this 
conclusion later one after estimating the model with multiple indicators of financial 
development explicitly treated as a latent variable.

To conclude the comparison of the two approaches to the analysis of panel data 
we can point out that the use of standard SEM software such as LISREL for the 
estimation of simple single-equation models, such as (6.3), has no advantage over 
the classical econometric approach and software. Namely, such model can be easily
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estimated with OLS (or IV if desired) using the “long panel” data vector of length 
N T . However, the comparison is a useful exercise that illuminates the specifics of 
each approach. It is easy to see that the reason why SEM software packages, such 
as LISREL, need the “wide” approach is because a sufficient statistic in form of 
the covariance matrix is needed for discrepancy function estimation implemented in 
LISREL (minimising distance between theoretical and empirical covariances), which 
cannot be be computed from data matrices made out of “long panel” A/T-vectors.

We will now compare these two approaches in the case when more then two 
equations are estimated simultaneously using full-information methods. While we 
showed that single equations without measurement errors can be equivalently esti
mated in both “long” and “wide” approaches, where the “long” approach leads to 
the simple OLS estimator, the two approaches might lead to different results when 
systems estimators are used.

Estimation of simultaneous equations with cross-equation restrictions is the area 
where SEM software has a strong advantage even for models without latent vari
ables (or measurement error) when the “wide panel” approach is taken. This is 
simply because standard SEM software packages allow cross-equation restrictions in 
respect to all components of the model, including error variances, and not only the 
regression coefficients. On the other hand, pooling the data into the “long panel”
format and estimating a model that does not need to impose any cross-equation
restrictions might be simpler to implement, but it could lead to different results. 
We will illustrate these issues on a real-data example.

Consider a simple two-equation simultaneous equation model

GDPt =  qlq T  OL\bt — OL̂ it ~  ot,%GDPt-\ (6-14)

bt — +  OL̂ it — OisGDPt-i, (6.15)

which simply adds to (6.3) the equation for financial development as a function 
of the initial growth and lagged economic development. The “wide panel” SEM 
approach can be illustrated by specifying (6.14)-(6.15) as a LISREL model
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/  GDPt=2 \ (  0 (3\2 0 0 0 0 0 0 ^ (  G D P t=2 \
h = 2 0 0 0 0 0 0 0 0 h = 2

G D P t= 3 @31 0 0 /?34 0 0 0 0 G D P t= 3

h = 3 (3ai 0 0 0 0 0 0 0 h = 3
G D P t=4 0 0 @53 0 0 (356 0 0 G D P t=A

b t= 4 0 0 @63 0 0 0 0 0 bt=A
G D P t= 5 0 0 0 0 (375 0 0 p78 G D P t= s

V bt=A \  o 0 0 0 (3&5 0 0 0 \  bt=5 J
■v*-

B

+

f  7ii 712 0 0 0 \

721 722 0 0 0

0 0 733 0 0
0 0 743 0 0

0 0 0 754 0
0 0 0 764 0
0 0 0 0 778

 ̂ o 0 0 0 785 )

(  GDPt=\ \  
it=2
H = 3 

*t=4 

H=5

+

( C lt=2 \

bt=2
C lt—3

&t=3 
C lt=4  

C2t=4 
C lt=5  

\  C2t=5 /

(6.16)

and impose cross-equation equality constraints on regression coefficients and error 
variances as follows

(3(31) =  (3( 53) =  (3(75) =  7(11)

/?(41) =  /?(63) =  /?(85) — 7(21)

(3(12) =  (3(34) =  (3(56) =  /5(78)

7(12) =  7(33) =  7(54) =  7(75)

7(22) =  7(43) =  7(64) =  7(85)

(̂11) =  (̂33) =  (̂55) =  >̂(77)
1p( 22) = (̂44) =  (̂66) =  (̂88)

Estimation in LISREL using maximum likelihood yields the following results

GDPt = 0.122 b t -  0.043 tt -  0.133 GDPt- i
(0.012) (0.015) (0.039)

bt = -  0.275 it -1 .1 5 2  GDPt- U
(0.047) (0.112)

which is obtained by running the LISREL syntax that imposes cross-equation re
strictions by specifying an equation for each time point, namely

TI
DA NI=35 N0=225 NG=1 MA=CM 
CM=widepanel.CM 
SE
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8 10 15 17 22 24 29 31 1 14 21 28 35 /
MO NX=5 NY=8 BE=FU,FI GA=FU,FI PH=SY,FR PS=DI,FR
FR BE(1,2) BE(3,1) BE(3,4) BE(4,1) BE(5,3) BE(5,6) BE(6,3)
FR BE(7 ,5)  BE(7,8) BE(8,5) GA(1,1) GA(1,2) GA(2,1) GA(2,2)
FR GA(3,3) GA(4,3) GA(5,4) GA(6,4) GA(7,5) GA(8,5)
EQ GA(1,2) GA(3,3) GA(5,4) GA(7,5)
EQ BE(3,1) BE(5 ,3) BE(7,5) GA(1,1)
EQ BE(4,1) BE(6,3) BE(8,5) GA(2,1)
EQ BE(1,2) BE(3,4) BE(5,6) BE(7,8)
EQ GA(2,2) GA(4,3) GA(6,4) GA(8,5)
EQ PS(1,1) PS(3 ,3 )  PS(5,5) PS(7,7) PH(1,1)
EQ PS(2 ,2) PS(4 ,4) PS(6,6) PS(8,8)
EQ PH(2 ,2)  PH(3,3) PH(4,4) PH(5,5)
OU ME=ML ND=5

noting that we specified N T  = 225 as the sample size instead of TV =  45 to make it 
comparable with the the sample size used in the “long panel” estimation.

The same model can be estimated using the “long panel” approach by computing

S L = (N  — 1 Y ' X lX ' l

as an input matrix for LISREL. Estimating (6.16) by LISREL using maximum 
likelihood yields the estimates

GDPt =  0.122 6* -  0.032 it -  0.122 GDPt- i
(0.012) (0.032) (0.077)

bt = -  0.299 it -  1.053 GDPt. u
(0.093) (0.219)

which was produced by running a considerably simpler LISREL syntax that does not 
specify the model for each time point and hence does no impose any cross-equation 
restrictions, i.e.,

TI
DA NI=4 N0=225 NG=1 MA=CM 
CM=longpanel.CM 
LA
g b i  g_l  
SE
1 2 3 4 /
M0 NX=2 NY=2 BE=FU,FI GA=FU,FI PH=SY,FR PS=DI,FR 
FR BE(1,2) GA(1,1) GA(1,2) GA(2,1) GA(2,2)
0U ME=ML ND=5

Here we have used the 4 x 4 S l as an input covariance matrix “longpanel.CM”, 
letting LISREL treat it as a ’sufficient statistic’ covariance matrix. The results are 
similar to those obtained before by using the 15 x 15 S l matrix (“widepanel.CM”).
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Similar results can be obtained using PcFiml or any other package for systems 
estimation that uses full-sample maximum likelihood rather then sufficient statistics 
such as S l or Sw - This conclusion changes when latent variables are present, as we 
will show next. Before proceeding, we should additionally note that we encountered 
no convergence problems while estimating the above simple models. It turns out 
that this also will change with inclusion of latent variables and complication of the 
model, which calls for starting values different from those automatically generated 
by LISREL.

Empirical m odelling

We consider the the measurement model for the latent financial development by us
ing the observable indicators bt ,p u and lt . Beck et al. (2000), for example, run three 
different sets of growth regressions using bt , Pt, and lt , which importantly assumes 
that these three indicators indeed measure financial development. A factor-analytic 
interpretation of the first assumption is that these indicators measure a single latent 
variable (factor) or that a single latent variable accounts for the observed correlations 
among bt , Pt, and lt . To this end we specify the following measurement model

Ft +

\ e

Xv)■t
(«)

(6.17)

where the measurement error covariance matrix is of the form

/ M
u u 0 0 \

& e  = 0 M
a 22 0

\ 0 0 6 {l)”33 /

(6.18)

We allow a third-order autocorrelation process in I t , which can be specified as'

/  1 0 0 0 0  >

3 <t>l 1 0 0 0

£  ( S i  ® * i )  = <t>2 01 1 0 0
j = 0

0 3 02 01 1 0

^  0 03 02 01 1 1

(6.19)

This specification implies that the observable indicators measure a single latent vari
able over the entire sample period. Correlated measurement errors are not permitted 
but (6.19) allows fairly general dynamics in the exogenous latent variable process.

As the first step, we estimate only the measurement model (6.17) obtaining 
the maximum likelihood estimates reported in table 6.2. This was achieved using

5We only specify the lower triangular of this autocorrelation matrix due to symmetry.
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LISREL 8.54 with default starting values (i.e. computed by the programme), which 
encountered no convergence problems.

The estimated coefficients (table 6.2) are all of the same sign and statistically 
significant. The overall fit of the model, however, is rather poor with the \ 2 fit 
statistic nearly five times greater than its degrees of freedom parameter. This brings 
in question the empirical results based on the separate growth regressions, but it also 
calls for considerable extension of the FD-growth research framework in the direction 
of searching for additional or better FD indicators. Recalling the example of the Hali 
et al. (2002) study where we showed how dropping a single indicator can considerably 
improve the fit of the model, the search for better indicators might be awarding in 
this case too. Another immediate implication for the empirical literature would be 
in using formal statistical procedures for the assessment of the measurement models 
as tools for selecting the observable indicators rather then guiding the selection only 
on the substantive grounds.

Table 6.2: FD measurement model estimates
All countries Developed countries Developing countries

Oi Estimate (SE) Estimate (SE) Estimate (SE)
An 0.018 0.003) 0.007 (0.002) 0.026 (0.005)
A21 0.063 0.005) 0.077 (0.009) 0.053 (0.006)
A31 0.096 0.007) 0.106 (0.012) 0.076 (0.008)
< 0.004 0.000) 0.001 (0.000) 0.006 (0.001)

0.003 0.000) 0.003 (0.000) 0.002 (0.000)

< 0.006 0.001) 0.007 (0.001) 0.004 (0.001)
<t> 1 0.023 0.012) 0.023 (0.018) 0.022 (0.017)
02 -0.682 0.031) -0.662 (0.041) -0.691 (0.044)
03 -0.671 0.031) -0.652 (0.042) -0.678 (0.045)
x 1 543.489 266.492 333.820
d.f. 111 111 111

Next we divided the countries into developed and developing (Table 6.3), con
sidering the possibility that these two groups of possibly quite different countries 
might have differently measured financial development.
The estimates in Table 6.2 indeed suggest that separate models fit better. The error 
variances and autocovariances of the latent variable Ft are fairly close between the 
two groups, though some differences can be observed in the factor loadings, which 
might be one of the sources of the improved fit. Namely, it seems tha t lt (value 
of credits by financial intermediaries to the private sector) has greater weight in 
measuring financial development for developed countries, while the opposite holds 
for bt (ratio of domestic and domestic plus central bank credit).

Finally, we aim to estimate the full DPSEM model including economic growth
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Table 6.3: Country groups
Developed countries Developing countries
Australia UK Cameroon Kenya Syria
Austria Greece Colombia Korea Thailand
Belgium Ireland Costa Rica Sri Lanka Trinidad & T.
Canada Italy Ecuador Malaysia Venezuela
Switzerland Japan Egypt Pakistan South Africa
Germany Netherlands Ghana Philippines -
Denmark Norway Guatemala Papua N.G. -
Spain New Zealand Honduras Rwanda -
Finland Sweden India Senegal -
France USA Jamaica El Salvador -

and an additional exogenous control variable, the initial GDP per capita. The 
first equation is a dynamic FD-growth relationship, which includes lagged economic 
growth, while the second equation accounts for the possible feedback from the lagged 
growth back to the current financial development. The DSEM specification is of the 
model is as follows. Structural model is given by

while the measurement model assumes that economic growth (Gt) and initial GDP 
(It) are measured without error, while the financial development is measured by the 
same three observable indicators as before,

9 t  ^ 0  ^

bt 0 A22

Vt 0 A32

h ) 1° A42 J
—v*
Vt

( 0 \
(6 .21)

x t
(6 .22)

This specification postulates a possible FD-growth effect, while in the same time it 
considers the alternative explanation, namely that higher levels of financial develop
ment occur in those countries which had higher economic growth in the recent past 
(i.e. over the past five years period). The parameter matrices to be estimated are 
specified as follows
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B  0 = B 1 = =
(0)

7 n
(o)

721
& = 4?

4 ?

j = 0
*j) =

^ 00 0 0 0 0 \
0o 0 0 0

02 01 0o 0 0
03 02 01 00 0

\  0 03 02 01 00 /

0 
0

?(p)
h i

0

The above specification utilised the DSEM parameter matrices which require 
recursive specification of the relationship using the “t-notation” . Estimation in 
LISREL requires re-casting of the DSEM model in the form of a LISREL model, 
which can be best illustrated in the standard LISREL path diagram. Using LISREL- 
style notation (bt = y ^ \  pt = y f \  lt = y f \  gt =  zt, it = x u Gt = r{?\ Ft =  r ) f \  
I t = £t) the above model can be represented with the path diagram shown in Figure 
6.3.

The LISREL syntax corresponding to the path diagram in Figure 6.3 is given in 
Appendix §6B. However, running this syntax with the default starting values gen
erated by LISREL does not lead to convergence, which appears to be the case even 
after several thousand iterations. Some experimentation with random or arbitrary 
starting values equally lead to convergence failure.

The starting values that enable fast convergence of the LISREL’s algorithm can, 
nevertheless, be obtained by using the instrumental variables estimates obtained by 
estimating the model in its OF form using the methods outlined in chapter §5. To 
obtain the OF-IV estimates we need to re-write the DSEM model (6.20)-(6.21) in 
the observed form. Using lt as a unit-loading indicator (proxy) for Ft, the structural 
equation model can be written as

9t 
It — £(0 =

o $ “> 
0 0

9t
k~ e \<0 +

9t-1
k-i ~ £f_i

which can be re-written as

9t
k

= ( 0 
I 0 0

9t
k

+ $  0 
0

9 t - 1
h -i

+
'v(0)i l l
~ ( 0)
721

H+
AG)  A0)  (i) 
t P 12 £ t

Collecting the measurement errors that appear in each equation, we can deter
mine which lagged errors are uncorrelated, i.e.,
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Figure 6.3: FD path diagram 
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which implies that, e.g., eP  appears in the first structural equation, and it is uncor
related with e flp  and e l- i- j  for j  = 1 ,2 ,___ We can use similar notation to
identify the model-implied valid instruments as

J I V )  (IV)  j ( I V ) 
Ut—j  ’ r t —j 1 t—l —j
j m  nm  A m  
Ut ~ j  > P t ~ j  > H - l - j

j  > o,

which indicates that, e.g., and Ip^Lj for j  > 0 are valid instruments in
the equation for lt . It is easy to see that in the case of the two variables that are 
assumed to be measured without error, gt~j and it~j are valid instruments for all j .

The measurement model (6.21) can be written in the observed form by substi
tuting lt for Ft as

(  gt \  
bt

\Pt  /

( 1 o \
0 A22

V 0 ^32 )

( 0
.(&) XI)£'t' ~  ^22 St

V £t̂  ~ ^32eP )
Lagged errors that should be uncorrelated with the measurement errors appearing 
in the equations are

( 0 \

— ^22 £t( l )

V 4P) -  A32e\l) )( i )

/  Jg) Jb) (p) (i)
t t-j  > t t-j  > bt-j  > bt-j

Jd) Jb) Jp) (I)
t,t—j ’> 1—j ’ t—j"> t—l—j
Jg) Jb) > )  Ji)\  ^t—jit-t—j i i_jj 1—j

3 >  0 ,

which implies the following lagged indicators as valid instruments

J iv )  J iv) J iv )  j(iv) \
y t - j  > u t - j  5 P t - j  > l t - j  1

Jiv ) J i y ) J iv )  Xiv)
y t - j  > u t - i - j i P t - j  J t - i - j

Jiv ) JIV) J iy )  f
y t - j  ’ t —j  5 P t —i —j  ’ t —i —j  /

j  > 0 . (6.23)
(  9t ^

bt *=

\ P t  J
Of course, instrument validity is an empirical issue and we should proceed by 

testing it by considering different sets of the model-implied instruments. We con
struct the instruments for an indicator x t by applying the instrument generating 
operator S 3IV defined in (5.20) thus constructing the instruments as S 3I v x t for j  > i  
where i is the minimum lag length implied by (6.23). The panel lags are computed 
with the S t  function p a n e l . la g (), and the panel instruments are computed with 
the ST function instrum ent (), both defined in Appendix §6A.

Selection of instruments in practice is often a subjective process based on trial 
and error, where an instrumental validity statistic, such as the Sargan (1988) test 
(5.27), is used to asses empirical validity of a particular instrument set. However, 
given our intention to use the OF-IV estimates as starting values for the maximum 
likelihood estimation we need simple rules for testing alternative sets of instruments. 
If the instrument-selection rules can be made automatic, there would be a potential
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for programming an algorithm that can generate OF-IV starting values automati
cally.

We suggest the following simple method for grouping the potential instruments. 
First, divide all eligible instruments into groups of instruments lagged once, twice, 
and three times. We restrict the maximum lag length to three here given T  = 5. For 
example, using only the indicators of the latent financial development as potential 
instruments, we can define the j -th lagged set of instruments as

IVj =  (S jIv bt : S { vPt : S {yh ) . (6.24)

It is possible to consider sets of instruments at given lag lengths combined together, 
which aids the simplicity and automatisation of the selection procedure. We will 
consider a minor complication in adding instruments based on gt and it necessary 
to decrease the Sargan test statistic. As a simple decision rule for selection of the 
“best” set of instruments we suggest using a tradeoff of the minimised Sargan’s x 2 
test criterion and the minimum regression standard error (<r). The results of the 
IV tests shown in Tables 6.4 and 6.5 were obtained by the GiveWin 1.30 using the 
batch code given in Appendix §6B

Table 6.4: IV validity tests: Structural equations
Structural equation gt
Instruments sets IV validity x 2 d.f. a
IV U IV2, IV3 20.805 8 0.02054
IV U IV2 15.748 5 0.02070
IV u IVs 13.794 5 0.02047
IV2, IV3 14.140 5 0.02047
IVi 9.388 2 0.02066
IV2 / 2.176 2 0.02772
IV :3 5.161 2 0.02060
Structural equation lt
Instruments sets IV validity x 2 d.f. a
IV U IV2, IV3 86.678 12 0.144074
IV U IV2 69.606 7 0.149933
IV u IV 3 67.744 7 0.151216
IV 2 , IV :3 39.697 8 0.15143
m 39.628 2 0.175956
IV2* / 3.834 3 0.141764
IV3 27.407 3 0.167316

Using the selected instrument sets (marked with /  in Tables 6.4, 6.5) we obtain 
the GIVE and FIVE (3SLS) estimates reported in Table 6.6. Using the GIVE 
estimates as starting values in LISREL enabled convergence in only 22 iterations, 
with the resulting ML estimates given in Table 6.6. Using FIVE estimates as starting
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Table 6.5: IV validity tests: Measurement equations
Measurement equation for bt
Instruments sets IV validity x 2 d.f. a
IV u IV.2, IVs 42.246 8 0.06326
IV U IV 2 40.753 5 0.06335
IV u IVs 9.328 5 0.06347
IV2, IVs 36.393 5 0.06323
IVr 6.578 2 0.06402
IV2 28.398 2 0.06998
IVs / 5.690 2 0.06289
Measurement equation for pt
Instruments sets IV validity x 2 d.f. a
IVu IV 2, IVs 76.452 8 0.061783
IVu IV2 64.454 5 0.062349
IV u IVs 54.493 5 0.061419
IV2, IVs 59.895 5 0.061671
I V 34.122 2 0.062206
IV2 / 12.946 2 0.073943
IVs 44.668 2 0.061336
* and i^iV* included in the instruments set.

to set 
FIVE 
along

with the syntax that specifies starting values that use FIVE estimates is given in 
Appendix §6B.

Estimation of the DPSEM model (6.20)-(6.21) by maximum likelihood produces 
the estimates reported in table 6.6, which also reports the GIVE and FIVE estimates. 
It is notable that GIVE estimates have larger standard errors then either ML or 
FIVE estimates.

In addition to the full-sample estimates, we estimated two separate models for 
the sub-samples of developed and developing countries, with the results shown in 
Table 6.7.

Similarly to the results obtained above for the measurement model alone, the 
full model (6.20)-(6.21) fits considerably better in the two sub-samples than in the 
overall sample. The apparent lack of the close fit might be due to departures from 
normality, which is not an ignorable issue with small samples such as this. Thus, 
we test the normality of the model residuals (see figures 6.4 and 6.5).6 Using the 
Doornik and Hansen (1994) normality test we obtain the normality x 2 statistics with

6The residuals here refer to the differences between the corresponding elements of the fitted 
and observed covariance matrix.

values enabled LISREL to converge in 18 iterations, however it was necessary 
the coefficient to zero, as the programme failed to converge using the 
estimate = —0.1270, which is of the wrong sign. The LISREL syntax
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Table 6.6: FD model estimates
FIML GIVE FIVE (3SLS)

Parameter Estimate (SE) Estimate (SE) Estimate (SE)
-0.0077 (0.0114) -0.0068 (0.0210) -0.0089 (0.0185)

A \] 0.0035 (0.0747) 0.0063 (0.0769) -0.1270 (0.0706)
0.9841 (0.4560) -0.5262 (2.0922) 0.4001 (0.5054)

-0.0800 (0.0267) -0.0742 (0.0370) -0.0560 (0.0333)
72?
A22**

-0.7402
0.1569

(0.1564)
(0.0429)

-0.2413
0.0754

(0.8133)
(0.0620)

-0.8658
0.1818

(0.2148)
(0.0541)

A32 0.4349 (0.0808) 0.7326 (0.2672) 0.5246 (0.0536)
A42* 1.0000 - 1.0000 - 1.0000 -
nib)Vl\ 0.0039 (0.0004) 0.0040 - 0.0041 -
q(p)22 0.0042 (0.0004) 0.0055 - 0.0039 -
nil)V33 0.0005 (0.0006) - - - -

4 ? 0.0138 (0.0029) 0.0201 - 0.0189 -

4 ? 0.0004 (0.0000) 0.0004 - 0.0004 -
4> 0** 0.0026 (0.0003) - - - -
0i** -0.0004 (0.0001) - - - -
()> 2** -0.0015 (0.0002) - - - -
* Fixed parameter.
** Sample (auto)covariance for GIVE and FIVE.

2 d.f. of 30.584, 2.840, and 49.816 for the full sample, developed, and developing 
countries’ models, respectively. Clearly, we cannot reject the normality only for the 
model estimated with the sample of developed countries, hence caution is needed in 
interpreting the x 2 fit statistics reported in table 6.7.

Residual density

 Residuals  Nls=l 98).225

.175

.15

.125

.075

.05

.025

-10 -8 ■2 0 2 8-6 -4 4 6

Figure 6.4: Density plot of the standardised residuals: Overall sample
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Table 6.7: Sub-sample estimates
Developed countries Developing countries

Parameter Estimate (SE) Estimate (SE)

/ $ 0.0020 (0.0057) -0.0044 (0.0253)
A ? -0.2229 (0.1012) 0.0383 (0.1011)
4!> 5.0018 (1.7091) 0.4468 (0.4007)

-0.2275 (0.0402) -0.0742 (0.0392)
72?
2̂2

-0.3048
0.0387

(0.7068)
(0.0277)

-0.5530
0.2901

(0.1465)
(0.0898)

3̂2 0.4634 (0.1673) 0.4660 (0.1052)
4̂2 1.0000 - 1.0000 -

*8> 0.0011 (0.0001) 0.0056 (0.0008)
0.0057 (0.0011) 0.0029 (0.0006)

/)(b
^33 -0.0006 (0.0044) 0.0010 (0.0020)

0.0181 (0.0072) 0.0087 (0.0023)

00

01 
02

0.0001
0.0004

-0.0001
-0.0002

(0.0000)
(0.0001)
(0.0000)
(0.0000)

0.0006
0.0038

-0.0007
-0.0020

(0.0001)
(0.0005)
(0.0001)
(0.0003)

310 310
d.f. 622.6845 620.1287

Residual density
|  Developed
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Figure 6.5: Density plot of the standardised residuals: Sub-samples 

C onclusion

Despite the normality issues, the results contrast the mainstream empirical FD- 
growth literature. The first is a clear difference between the models for the two 
groups of countries, which suggest a more elaborative substantive theory should be 
developed to explain the FD-growth relationship relative to the level of development
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of the analysed countries. The second finding is that financial development has no 
significant impact on growth (/?£?), while lagged growth has strong positive impact 
on the current financial development (P n ), which equally holds in the full sample 
as well as in the two sub-samples, separately. We also find that initial capital 
significantly affects both growth and financial development in the overall sample, 
but its effect on growth diminishes for the developed countries, while its effect on 
financial development is insignificant for the developing countries. The coefficients 
of the measurement model are similar to those estimated before, with generally 
significant loadings and error variances. We note that the smallest error variance 
belongs to 7/3 (credit to private sector), which suggests that this indicator might be 
somewhat better then the other two.
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6.3 Application II: UK micro consum ption model

The relationship between consumption expenditure and personal disposable income 
is a widely researched topic in the empirical economics literature. The cornerstone 
of most of the debates has been the relationship between consumption and income in 
relation to the permanent income hypothesis (Friedman, 1957) and the life-cycle hy
pothesis (for a review see Deaton (1992)). This theoretical framework predicts a rela
tionship between permanent income (annuity of the life-cycle income) and consump
tion, but does not predict strong relationship between current income and consump
tion. In theory, rational consumers should not respond to windfall gains and tempo
rary income increase in increased consumption, rather their consumption should be 
smooth across the life-cycle, which is achieved by borrowing when income is low and 
repaying the debts when income increases (e.g., later in life). However, preponder
ance of the empirical studies using either micro or macro data reject the permanent 
income hypothesis insofar they find strong and statistically significant relationship 
between current income and consumption. Such empirical finding is known as ex
cess sensitivity of consumption (Hayashi 1982, Campbell and Mankiw 1989, Camp
bell and Mankiw 1990, Campbell and Mankiw 1991, Deaton 1992, Browning and 
Lusardi 1996, Madsen and McAleer 2000, Madsen and McAleer 2001).

There are several theoretical explanations for the excess sensitivity of consump
tion in the literature. These explanations can be classified into three main groups, 
the liquidity constraint approach (Flavin 1981, Hubbard and Judd 1986, Jappelli and 
Pagano 1989, Scheinkman and Weiss 1986), the uncertainty hypothesis (Blanchard 
and Fischer 1989, Zeldes 1989, Deaton 1991, Aiyagari 1994, Muellbauer and Lattimore 
1995, Carroll 1997, Ludvigson and Paxson 2001, Hahm and Steigerwarld 1999, Gour- 
inchas and Parker 2002) and the behavioural life-cycle hypothesis (Madsen and 
McAleer 2001).

An important question is what happens to income elasticity (i.e. coefficient of 
income in the regression of consumption on income) if the consumption function is 
estimated as a latent-variable model.

The statistical explanation of excess sensitivity finding might rest in the effect 
of contemporaneous correlations among income and consumption indicators on the 
relationship between income and consumption itself. Larsenl, (2002) suggested to 
estimate the latent total consumption in a household aiming W  improving the ac
curacy of permanent income studies. He noted that, while the sum of individual 
expenditures (in a household) is an unbiased estimator of latent total household 
consumption, it is alsoNin-dptimal as such sum is an unweighted sum of components 
that contain measurement error. It can be added that not all expenditures are 
always reported, thus even if we accept to operate with an unweighted sum, such
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variable might still not resemble total household consumption expenditure, and a 
similar thing holds for income (where non-reporting of some types of incomes is a 
well known problem in household surveys). Larsen (2002) derived an alternative 
estimator of total household consumption, based on latent variable methods, that 
is unbiased and variance minimising. Essentially, by estimating a latent-type of 
model for household consumption, Larsen (2002) derived weights for various con
sidered types of consumption expenditures (including also non-expenditure indica
tors). This line of research extended the previous efforts of estimating household 
consumption more precisely though still relying on total purchase expenditure (Kay 
et al. 1984, Aasness et al. 1993, Aasness et al. 1995).

Empirical studies that attem pt to model the income-consumption relationship 
using latent variable techniques are scarce in the literature. There were few attempts 
to use the latent variable methods for this problem, primarily due to dynamic na
ture of the income-consumption relationship and inability of the typical covariance 
structure based models to handle data  with pronounced dynamic component. For 
example, Ventura and Satorra (1998) use Spanish household data to estimate life
cycle effects on some product expenditures with only two years of data.

We will estimate a latent consumption function model that incorporates possible 
liquidity constraints effects using micro data from the British Household Panel Study 
survey and incorporating data for the 13 currently available waves (years).

D ata and variables

The data for this empirical analysis comes from the British Household Panel Sur
vey (Taylor 2005), which has 13 waves (years) of data available. For a number of 
variables all 13 years can be merged into a joint panel. The available variables on 
consumption expenditure and types of income, as well as potential liquidity con
straints indicators vary across waves, and as our primary purpose is to illustrate 
dynamic latent variable modelling using data with pronounced time-series dimen
sion we make a compromise by using only variables that were available across all 13 
waves.

Specifically, we are forced to give up otherwise relevant durable expenditure 
data that are available only for the last six waves. The variables that we use in the 
model (with original BHPS codes) are shown in Table 6.8. By a BHPS convention, 
the variable codes are prefixed by wave identifiers a, 5 , . . . ,  m. Household data 
(expenditures) were first spread onto individual level, and subsequently combined 
with the individual level income data, thus creating all-individual data files for all 
waves. Finally, wave-specific files were merged into a joint panel for all individuals 
across all waves in the both ’’long panel” and “wide panel” formats.

The data is a panel of 5,152 individuals observed over 13 years, hence N T  =
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Table 6.8: BHPS variables used in the model
BHPS code Description
HSIZE Number of persons in household
XPHSD1 Housing payments required borrowing
XPHSD2 Housing payments required cutbacks
XPHSDB Been 2+ months late with housing payment
XPHSDF Problems paying four housing over the year
XPF00D Total weekly food and grocery bill
XPHSG Gross monthly housing costs
QFACHI Highest academic qualification
HGEMP Employment status
FYRL Annual labour income
FIYRNL Annual non-labour income
FIYRI Annual investment income
SAVED Amount saved each month

Table 6.9: Data transformation and variable names

Symbol Description Transformation
/* Annual personal food expenditure 52* (XPF00D/HSIZE)
fh Annual personal housing costs 12 * (XPHSG/HSIZE)
it Annual labour income FYRL
it Annual investment income FIYR
St Annual personal savings (FYRL +  FIYRNL +  FIYRI 

- XPF00D - XPHSG)
rt Cumulative credit repayment problem (YPHSD1 +  XPHSD2 

+  XPHSDB +  XPHSDF +  HGEMPa)
et Highest level of academic education GFACHI
a HGEMP was recoded so that 1 =  working; 0 =  not working

66,976. Data transformations used to create substantively relevant quantities are 
specified in Table 6.9. We create observable indicators for three latent variables: con
sumption, income, and liquidity constraints. The variable transformations allowed 
us to compute all quantities on annual, individual level. The variable cumulative 
credit repayment problem (rt) was created in an attem pt to extract the informa
tion on possible credit constraints; it sums indicators (0 and 1) of several types of 
credit repayment problems, thus cumulating to total number of credit difficulties 
(see Table 6.9). Personal savings is another variable frequently used in liquidity 
constraints modelling (Hayashi 1982) where individuals (or households) with posi
tive saving rates are assumed to be liquidity un-constrained. Note that values for 
all variables were created on the same (annual) level thus the monthly (XPHSG) was 
multiplied by 12, and the weekly food expenditure variable (XPF00D) was multiplied
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by 52. The expenditures were further divided by household size (HSIZE) to obtain 
an approximate estimate for individual household members.

Empirical modelling

We consider a dynamic structural equation model that relates current consumption, 
modelled as a latent variable, to current (latent) income, past consumption, past 
income, and current and past liquidity constraints. The model also relates current 
income to past income and education, which is assumed to be time-invariant and 
measured without error. Finally, the (latent) liquidity constraints are also modelled, 
and are assumed to depend on its own past as well as on the past consumption. Table 
6.10 lists latent variables and their observable indicators.

Table 6.10: Latent and observable variables 
Latent variable Symbol Observable indicators
Consumption Ct / t , ht
Income I t It, it
Liquidity constraints L t st , rt

We suppose that excessive spending in one year causes greater degree of liquidity 
constraints in the following year(s). This model can be specified as a special case of 
the PDSEM model

Vt =  J 2 B i rft-j + r 0$t + Ct (6.25)
J=0

Vt =  AyT}t + £t (6.26)

x t =  £t +  *t (6.27)

The measurement model(s) for the latent variables Ct, L t , and It are specified as

( f t ) / 1 0 0 \

ht a21 0 0

k 0 1 0

it 0 \(0
a 42 0

St 0 0 1

\ n  ) V 0 0 \(r)
a 63 /

c , )  

It
Lt )

Vt

+

Vt

(  e<P ^
Jh)

s(l)
£{j)
£{S)

( r )

v i - y
St

(6.28)

while the single-indicator education variable Et has the measurement model

(6.29)
x t
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The structural part of the model describes the relationships among the latent 
variables and is specified as

I  0 A(0) (M

+

4~

w  p& 
0 0

f I®  /sg> /3g> > (  C<-2 V

V h- 2  J

Vo o /&'/ V h- 5  /

+
(  0 V

Et +

73?  /

r„

S '
V £ /

cT

(6.30)

The covariance matrix of the measurement errors does not permit correlation 
(and autocorrelation) among measurement errors and is thus specified as

M )
U11 0 0 0 0 0 \

0 e (h)
°22 0 0 0 0

0 0 nd)
V33 0 0 0

0 0 0 °44 0 0

0 0 0 0 $ 0

0 0 0 0 0 ^66 J

(6.31)

Finally, the covariance matrix of the errors in the structural equations is specified 
as diagonal, i.e.,

<F =
(  i>i0)

\

'11

0
0

0
XL)

0

1̂ 22̂  0 
4?

v

/

(6.32)
0

While the above (DPSEM) specification is relatively simple, specifying the same 
model in LISREL syntax is exceptionally tedious due to the necessity to specify 
all relations for each of the 13 time periods separately and impose cross-equation
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equality restrictions. To illustrate the drawbacks of LISREL specification consider 
the path diagram of the above model specified as LISREL path diagram. Figure 6.6 
shows only one half of the full path diagram for the this model, i.e., for the first 7 
time periods only, whereas the specification for the remaining periods remains the 
same.

Evidently, the descriptive clarity of SEM models’ graphical representation by the 
means of path diagrams is largely lost for dynamic SEM models specified as LISREL 
path diagrams. Moreover, the LISREL package fails to generate or interactively 
build path diagrams beyond certain size and complexity, the diagram in figure 6.6 
is an example of a path diagram that cannot be handles by LISREL, though the 
programme was capable of estimating the coefficients when good starting values 
were provided.

As in the previous section, we firstly estimate the OF model. The observed form 
of the structural part of the model is

(  h - # M,</>£t
k  ~  £ t

\ st - 4 B) J
+

+

+

f t - e P  }

( s )
\  St - 2 ~ £l - 2

( 8 )
\  S t - 4  -  e ; _ 4  )

0 0
0 Pi? p
0 0 p
0 0 0
0 0 0
0 0

h -  ^
*t-i -  4 - i
st-i - 4 -i)
/  f t- 3 -  £^3 

/ ok - 3  — £ t - 3 
(*)

\  S t - 3  -  e i - 3

(6.33)

hence by collecting the terms, we can see tha t the composite additional error terms 
due to measurement error is given by

+ t ® #  + f ® &  + 1&&1 + + f & &  + jsg»«Sa + !& •&  + ( T O  + 4 "
flgM0+e $ 4 ’\ +/«»«£,+4 S & +/ £ > « & + + 4 ?  4 %++. {*>

o( l ) - ( s )  , /o(2) (s) , 0 (3 ) (s) , o(4) A s )  o(5) (s) , («)
P 3 3  1 ' ^ 3 3  t —2  ' P 3 3  t — 3  ' P 3 3  t — 4  " r  P 3 3  fct - 5  ■

thus (6.33) can be rewritten by separating and collecting the errors as
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hence the uncorrelated error components are
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which implies the following valid instruments for the structural equations
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The observed form of the measurement model is
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We estimate the OF model (6.34) using the GIVE and FIVE methods suggested 
in chapter §5, using the instruments listed in table 6.11. As in the previous section, 
we use symbols for instruments such as f - Iv  ̂ to denote f t lagged 4 periods. The 
particular choices of instruments in table 6.11 are made by considering various com
binations of eligible instruments and choosing the instruments sets that minimise 
the Sargan’s validity of instruments x 2 test. These instruments are selected for each 
equation separately, estimated with the limited-information GIVE methods. Hence, 
particular instruments sets are chosen for equations where ht , it, etc. axe endogenous 
variables.
The same approach to selection of instruments cannot be taken on the equation-by- 
equation basis when FIVE methods are used to estimate multiple equations jointly. 
Therefore, we chose the union of instruments sets to estimate multiple equations, 
where instruments used in GIVE estimation for each individual equation are used 
together in FIVE estimation.

However, the instruments sets used for estimation of measurement and struc
tural equations are notably different thus we estimate these two sets of equations 
separately using the FIVE methods. While the entire model including both mea
surement and structural equations could be estimated jointly, we chose to estimate 
the two sets of equations separately aiming to improve the validity of instruments. 
The estimation code, with the instruments used in both GIVE and FIVE estimation 
is given in Appendix §6.
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Figure 6.6: BHPS model path diagram

GIVE and FIVE estimates of the model (6.34) are reported in tables 6.12 and 
6.13. Both sets of estimates can be used as starting values in LISREL maximum

165



Table 6.11: IV tests: BHPS model
Equation Instruments d.f. a

h t
A I V )  A I V )  
J 4 j J 5 0.4597 1 0.9989
AIV)  AIV)  
l 5 j l 6 0.0609 1 0.9932

n
M V )  (IV)  
b 5 > *6 0.0058 1 0.9902

f t
A I V )  A I V )  A I V )
J 5 ) J6 i J 7  
AIV)  AI V)  AIV)  A i v )  
l 4 5 fc5 j 16 j *7 

( IV)  ( IV)  (IV)  (IV)  
b4 5 b 5 »6 6 > b 7

0.1923 2 0.9986

St
A I V )  A I V )  A I V )
J 5 •> J 6 i J  7 
AIV)  AI V)  AIV)
‘5 1 6̂ j l 7 

(IV)  ( IV)  (IV)  (IV)  
b4 J b 5 > 6 5 b 7

0.7159 1 0.74969

It
A I V )  A I V )  A I V )  A I V )  
J 5 > J6 1J 7 J 8 
. ( IV) , ( I V)  , ( I V)  
l 6 i L7 ’ 48

4.7685 2 0.9287

likelihood estimation. We can observe some differences between GIVE and FIVE 
estimates, mainly in the precision of the estimated coefficients, where FIVE coeffi
cients have generally smaller standard errors. For example, the GIVE estimates of 
0 2 2  and P22 (lagged autoregressive coefficients in the equation for income) are not 
significant and in fact are of the wrong sign, which is not the case with their FIVE 
estimates.

Maximum likelihood estimation using LISREL fails using the default starting 
values generated by LISREL, and this holds too when various arbitrary starting 
values such as setting all starting values to 0.5 or choosing randomly generated 
starting values are used. We also tried to estimate a “shorter” version of this model 
using only first several years of data thereby having to estimate a considerably 
smaller and simpler model. This also failed using the default starting values. On 
the other hand, the GIVE/FIVE estimates proved to be fairly successful as starting 
values when instruments are carefully chosen. The minimum Sargan x 2 criterion 
appears to be sufficient for selecting the suitable instruments sets for this purpose.

The convergence of the LISREL’s ML algorithm proved to be exceptionally sen
sitive to how close the starting values are to the maximum likelihood estimates. 
While we did not encounter multiple optima problems (all converged ML solutions 
converged to the same estimates), we found that even minimal alterations to the 
“working” starting values lead to non-convergence. In such cases, LISREL stops 
responding or crashes eventually if we specify a very high number of iterations.

The full information maximum likelihood (FIML) estimates reported in table 
6.12 were obtained by LISREL with the FIVE estimates used as starting values. 
The use of GIVE estimates lead to the same solution, but some of the insignificant 
coefficients had to be set to zero to achieve convergence. We also set to zero error
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Table 6.12: Coefficient estimates
FIML GIVE FIVE (3SLS)

Parameter Estimate (SE) Estimate (SE) Estimate (SE)
\(h)
A21 0.1433 (0.0052) 0.2524 (0.0867) 0.1395 (0.0037)
\(0
A42 0.0573 (0.0047) 0.1738 (0.0058) 0.0835 (0.0038)
\(r)
A63 -0.1469 (0.0047) -0.2254 (0.0062) -0.1503 (0.0036)

A S 0.5377 (0.0093) 0.6776 (3.2684) 0.4181 (0.0039)

A S 0.2217 (0.0059) 0.2830 (2.6170) 0.1230 (0.0039)

A S 0.0838 (0.0063) 0.0110 (0.0392) 0.0025 (0.0039)

A S 0.0999 (0.0130) 0.0322 (0.5893) 0.0225 (0.0431)

P is -0.0977 (0.0147) -0.0575 (0.8276) -0.0682 (0.0291)

A S -0.0606 (0.0139) -0.0366 (0.5221) -0.0121 (0.0205)

P S -0.0647 (0.0140) -0.0088 (0.8990) -0.0377 (0.0413)

P S 0.0974 (0.0161) 0.0441 (0.2354) 0.0573 (0.0248)

Pl2 0.0449 (0.0149) 0.0670 (0.2592) -0.0061 (0.0194)

P S 0.4935 (0.0121) 0.7095 (1.9488) 0.4510 (0.0041)

A f 0.2280 (0.0069) 0.5721 (1.2515) 0.2405 (0.0046)
Q(V
P 22 0.1382 (0.0075) -0.1853 (1.0921) 0.1790 (0.0045)

A S 0.0212 (0.0028) -0.0396 (0.0687) 0.0390 (0.0024)

A  ? 0.0098 (0.0020) 0.0529 (5.2649) 0.0047 (0.0012)

p S 0.0096 (0.0021) 0.0973 (4.1640) 0.0033 (0.0012)
M
P 23 0.9067 (0.0045) 0.1672 (0.6912) 0.8707 (0.0059)

4 ? -0.4326 (0.0116) -0.7318 (2.4364) -0.3816 (0.0067)

P 'S -0.2187 (0.0062) -0.2021 (1.3866) -0.2271 (0.0054)

p S -0.1372 (0.0069) -0.2884 (1.0763) -0.1779 (0.0052)
M
P 33 0.5132 (0.0055) 0.7609 (0.4588) 0.6955 (0.0041)
o(2)
P33 -0.0313 (0.0053) -0.0184 (0.5904) -0.0168 (0.0054)
«(3)
P33 0.0386 (0.0052) 0.0778 (0.5799) 0.0534 (0.0061)
M
P 33 -0.0181 (0.0054) -0.1931 (0.3195) -0.0273 (0.0065)

p S -0.0528 (0.0050) -0.0423 (0.3310) -0.0491 (0.0057)

7 s ? 0.4507 (0.0081) 0.0253 (0.0223) 0.4879 (0.0024)

variances that were not estimated by the IV methods. Convergence with FIVE 
estimates used as starting values was achieved in 37 iterations, which took 56.131 
seconds on a Pentium(R) 4, 2.00 GHz CPU machine.

The reported model specification (6.30), path diagram (figure 6.6) and estimates 
in tables 6.12 and 6.13 resulted from a general-to-specific modelling approach we 
took initially by estimating model (6.30) without dynamic restrictions for up to 6 
lags in each variable, and subsequently dropping the insignificant coefficients. Thus 
the reported model and estimates refer to a parsimonious specification arrived at
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Table 6.13: Variance estimates
FIML GIVE FIVE (3SLS)

Parameter Estimate (SE) Estimate (SE) Estimate (SE)
- - p e r  - 0.4708 (0.0133) 0.5971 0.5243 -

0.0692 (0.0028) 0.5620 0.0901

V’m 0.2890 (0.0026) 0.8624 0.3263 -
n(f)
vn 0.0064 (0.0100) -  - -
a(h)
v22 0.9817 (0.0067) 0.9998 0.9991
n(l) 0.0109 (0.0012) - -  -

0.9978 (0.0068) 0.9864 0.9938
0.0255 (0.0024) -  - -
0.9800 (0.0066) 0.9806 0.9781

empirically. We can note that our basic approach of estimating OF equations with 
IV methods and subsequently using the IV estimates as starting values in maximum 
likelihood estimation worked well for sequential reduction of the model, i.e., we did 
not encounter non-convergence difficulties as a consequence of changes in retained 
coefficients estimates after dropping insignificant coefficients. This should be ex
pected if the dropped coefficients were numerically close to zero and uncorrelated 
with the retained coefficients. Thus, there would be no need to provide new or 
different starting values for the retained coefficients and hence a general-to-specific 
model reduction strategy, common in dynamic econometric modelling, proved to be 
feasible in this case.

Table 6.14 summarises the significant contemporaneous and lagged effects in all 
equations, where symbols © and © indicate significant positive and negative effects, 
respectively (lack of any indicator implies insignificant or zero effect). The results 
suggest that current income has positive effect on current consumption, however, 
one- and two-year lagged income has negative effect. It thus seems plausible that 
increase in current consumption due to higher current income might be offset by 
higher past income, which could have raised past consumptions above its long- 
run value. This negative feedback could be interpreted as a form of correction of 
overspending induced by windfall gains in income, which might be consistent with 
the permanent income hypothesis.

In conclusion, by a combination of IV and ML methods we were able to estimate 
a dynamic structural equation model with latent variables using 13 waves of the 
British Household Panel Study. If estimated as a single equation, ignorant of mea
surement error, the income-consumption relationship would be a trivial estimation 
task, even if dynamics are included. However, possible simultaneity and feedback ef
fects in the consumption equation calls for simultaneous estimation of equations for
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Table 6.14: Significant contemporaneous and dynamic effects
Lag length (t —j) ,  j =  0, 1 ,. . .  ,5

Dynamic effect Coefficient 0 1 2 3 4 5
Income >—► Consumption 0 % © © ©
Income >—► Liquidity 0 © © ©
Income >—► Income 0 $ © © © © ©
Consumption >—► Liquidity 0% © ©
Consumption >—► Consumption © © ©
Liquidity >—► Consumption 0 $ © © ©
Liquidity >—> Liquidity 0 $ © © © ©
Education >—► Income 7m ©

income and liquidity. Furthermore, consumption, income, and liquidity constraints 
are all classical examples of latent variables, hence any of their proxy measures such 
as various types of expenditures and personal income most likely will confound con
siderable measurement error. Dynamic effects in the form of lagged values of both 
endogenous and exogenous variables are essential in this type of models and hence 
undoubtedly need to be modelled.

DSEM model that meets all these requirements, as we have shown, can be esti
mated, yet we believe that capabilities of the currently available software packages 
most likely would not suffice for estimation of any more complex models, particulary 
with larger time series dimension. A major difference is made by using the starting 
values obtained with the OF-IV methods, without which successful estimation of 
PDSEM models with LISREL would be very difficult or impossible.
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Chapter 7 

Conclusion

We have shown that dynamic structural equation models with latent variables can 
be formulated and theoretically analysed in a unified statistical framework that can 
encompass different traditions arising from errors-in-variables, covariance structure 
analysis, and state-space form modelling literatures.

Using modern matrix algebra methods we have derived closed form of the likeli
hood and covariance structure of the general DSEM model and gave the vectorised 
analytical derivatives for this model. The practical utility of this approach is in that 
it allows maximum likelihood estimation of DSEM models without imposing cross
equation equality constraints over all T  time points and provides analytical first and 
second derivatives that can be easily implemented in modern matrix languages such 
as S and R.

These methods were used to propose a new maximum likelihood estimator that 
uses raw-data rather then sufficient statistics based on closed form likelihood and 
analytical derivatives. A suggestion to programming the estimation functions in 
S/R  language along with some simple practical examples were also given.

Non-parametric estimation methods based on limited and full information in
strumental variables estimation were proposed and applied as both a stand-alone 
estimation approach and as an auxiliary method for obtaining suitable starting val
ues for the maximum likelihood estimation using software packages such as LISREL.

Using empirical data, we have shown that certain DSEM models, namely with 
N  > T  and T  relatively small, can be estimated using the already existing analytical 
results implemented in SEM software packages such as LISREL. In general, we found 
the starting values based on the suggested IV methods make considerable difference 
in LISREL estimation thereby enabling estimation of more complex dynamic models.

170



Chapter 8 

Technical A ppendices

8.1 Chapter §2 appendices
Appendix §2A
Proof of Proposition 2.3.1.1 We will show that the log-likelihood (2.31) can be written as a 
sum of the conditional log-likelihood of of V t given S t and the marginal log-likelihoods of S t 
and Z t • By Definition 2.3.0.4 the matrix K s  is upper triangular with identity matrices on the 
diagonal and from (2.24) E l is block diagonal. It follows that the determinant of the product 
K s E lK's is equal to the product of the determinants of the block-diagonal elements of E l ,

\ K s S l K ' s \ =  l-STs! \ Z l \ | * s |

= mi^ t i i / i
=  |I t  ® & e \ |I t  <8> &s\ | - ^ e | |I t  ® ,

which further simplifies to T3 \ &e \ I @s\ \ |T=|. Note that

(8.1)

and

K~sl =

/ 1 0 4 } 4 2) 4 1} \ -1
( I 0 - 4 1 ) 4 2) - 4 ) \

0 I I t  ® A x 0 0 I — I t  <8> A x 0

0 0 I 0 0 0 I 0

V  o 0 0 I \  0 0 0 I /

(8.2)

2 ?  =
/ I t  ® &e 0 0 0 \ / I t ®  G e 1 0 0 0 \

0 I t  ® &s 0 0 0 I t  ® 1 0 0
0 0 0 0 0 E Z l 0

V 0 0 0 IT ® & J V 0 0 0 I t  ® & ~ l /

Since (K s E l K 's ) 1 =  K g 1' E l 1 K g 1 we can re-arrange the trace of the product

tr ( Y ' t  : X ' T : S ' T : Z'T) ( K SE LK'S) - l
Y t  \  
X T
2*/J!

v Z T J

=  tr ( Y ' t  : X ' t  : S ' T : Z'T) K ^ ' E ^ K g 1

f  Y t  \  
X T 
E t 

\  Z T )

, (8.3)
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and multiply

K

/ Y t  \ ( I 0 - 4 > 4 2) - 4 1} \ / Y t \
X T 0 1 —I t  ®  A x °~ X t

0 0 I 0 S t

V Z t  j \ 0 0 0 I  1 V Z t J

Y t - A {S> A ^ B t  + Z t  
X t  — ( I t  ® A x ) S t

hS'JP
Zt

Thus (8.3) can be re-arranged as

tr ( y t  -  A {~] ( a ^ S t + Z t ) ) '  (I t ® 0 J 1) ( y t -  (j4L2)S t  + Z T) )

+ tr ( X t  — ( I t  <8> Ax) S t ) '  ( I t  ® 1) (-^t — ( I t  ® Ax) S t )

+ tr ( S t S ' t X î .1) + tr ( Z t Z 1 t  ( I t  ® H  *)) • (8-4)

Therefore, the joint log-likelihood (2.31) can be written using (8.1) and (8.4 as

l s ( F f > - , e )  =  a - i l n | I r ® 6 > e| - l l n | / T ® » i | - l l n | . £ 2 | - l l n | / T ®  ^1

-  - tr  | V T - P
rji I t  0  &- l 0

Z t  J  J  V 0  I t  ® ® 6 1
-  h r  ( S t S ’t S ^ 1) -  h r  ( Z TZ'T ( I T ® ip -1) ) .

V T - P S t
Z t

(8.5)

Note that the conditional log-likelihood of V t given S t and Z t is

t v \ B,z ( V t \ S t ,  Z t \  Oi) =  J n  +  k)T  ln(27T) -  i  In I t  ® ® e 1 0
0 I t  ®

I t  ® @£ 1
o iT®°e7' ) ( vT -A( z TT

while the marginal log-likelihoods of S t  and Z t are

Is ( S t - M  =  -^ ln (2 ,r )  -  |ln |^ 73 | -  h r  ( S r S ' r E 1) ,

and

(8.7)

l z  (Zt ; Os) =  ln(2rr) -  \  In |I T ® <P| -  itr  (ZTZ'T (It ® IP-1 ) ) , (8 .8 )

respectively. It follows that i s  =  ^v|s,z ( V t \ S t ,  Zt ]  Oi) +  i s  (S t ]  O2 ) + ^z (Zt ]  O3 ),
as required.

Q.E.D.

Appendix §2B
Proof of Proposition 2 .3.2.1 Firstly note that by Assumption 3.2.0.1 implies we have the 
following results for the time series processes (C}f > {e } f , and {<$}f,
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£[C«-tCU = \ o ’ kk / a =>£[«'i,...,CT)'(Ci,---.CT)]=Jr®«>

E [8 , -k6't_,] =  =>■ £ [ ( « ! , . . . ,  « r ) '(« i - - - -A ) ]  = I t ® 0 s,

therefore, in T-notation (Table 2.2) we have

E [ Z t Z't ] =  £  [(vec{C jf) (vec { £ } [ ) ]  = ( J T ®«>) (8.9)

B [ £ r £i-] =  £ [ (v e C{et} [ )  (vec{£;} [)]  = ( J r ® © e) (8 .10)

E [ A t A!t] =  £  [(vec {<5,}[) (vec { « ! } [ ) ] =  (JT® 6 >{). (8.11)

By the reduced-form equations (2.22) and (2.23) for Y t and X t the block-elements of (2.34) 
can be derived as

E n  = E [ Y t Y't ]
s

=  E (It ® Ay) I mr - £ s r ® Bd  S r  +  Zr  + %

x f ( / T ® Ay) S t ® ^ ^  S3t ® T, j  S T +  + E T

E h  =  E [ Y t X't \

I=  E ( I t  ® A y )  | l mT -  J 2  s t  j  ^ ^  S3T ® j  S T + Z T j  +  E T

x ((It ® Ax) S t + A t )'] ,

and

E 22 = £ [X t X't ]
=  E  [ ( ( I t  <8> Ax) “ t  +  ^ t )  ( ( I t  ® A x) +  ^ t / ]  ,

which by using (8.9)-(8.11) evaluate to (2.35), (2.36), and (2.37), respectively. Note that by 
covariance stationarity (Assumptions 3.2.0.1 and 2.2.0.2) has block-Toeplitz structure
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27- =

( !?0 * 2 ^ T - l  ^

<^0

^ 2 * ' l * 2

# 1 * ' l

\ $ T - 1 $ 2 # 1 # 0  ^

T —l T —l

=  E  ( 4  +  £ ( « ' *
j =o

T —l
3=1

T  ^

=  I T ®  $ 0  +  ^ 2  ( s JT ®  $ j  +  S ' jT ®  # ' ) ,  
i=i

(8.12)

and also note that E [Zt Z't ] =  I t {%> &, E [Et E t \ — I t ® and E — I t ® &s-
Typically, most of the block-elements $>j of the second-moment matrix E [ E t^ ' t ]  will be zero, 
depending on the length of the memory in the process generating £t, which for the reason of 
simplicity we take to be q. Thus, for j  > q, 4>j =  0. It follows that (8.12) can be simplified to

/

\  0

o o \

0

•

0 <P£

9 / v

=  S°T ® [ S T ® *3  +  S 't  ® * 'j)  > (8 -13)
j = 1

which consists of only q + 1 symmetric matrices #o> • • • > &q- Finally, note that 2712 — 272i.

Q.E.D.

Appendix §2C
Proof of Proposition 2.3.4.2 The proof proceeds similarly to the proof of Proposition 2.3.1.1. 
Firstly note that (2.74) can be written as

£O F  ( 4 ° F)-0) = (n + k + 9  + m)T i-zo-x 1 w /ln(27r) -  -ln|M 27£M '

- i t r  ( y 't  : X '̂ A) : : Z 'r ) (M E \ M ') 1

y T ^
y(A)_/Y rp 

Y (U)
A<P
Z T  J

, (8.14)

which can be rearranged by following the same procedure we used to derive (8.5) as
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(n-ffe+g+ro)T

-Ain I T ® e f s U) -  Aln|27s |- i l n | / r ®  *\68

I T ®
0 It

0
« (A A )_ X66

- I t r  ( / :  - I )  ^ X'J'l : 4'<?> J ,  r ; A

— i t r  I t <S)0(u u ) - 1 _ i t r  Z r Z /T I t ® & -

where

A W i«  - A « 4 2) 
I t ®  A x  0

4 1}
0

-A

Note that A ^ A ^ S t =  — A ^  A ^  A j?K Finally, we can observe that

(8.15)

(8.16)

*Y,x*lx'',A‘',z ( r T,x!rA)lx ! p ,A ! p ,Z T ; 0 ; )  =  - tn+*-g>T ln(2?r)

- J i n

— i t r

I t

F t
t (A)

ji

x

0
0 I t ® ^

- A

ss
I  r ™  ^-/V  r p

a ™
\  Z T )  

0 Y ty (A)
JI

(  x p
A ™

V
(8.17)

is the conditional log-likelihood of Y t̂ and X j^  given X j ! \  A j! \  and Zt- The marginal 
log-likelihoods of — A j! \  £a u> and Z t are given by

Im {x ^  -  A ^ - , 0 ^

T (t0
J 1

*(£0 ' x f  > i 1 .

/ M( 4 t,);95) = - ^ l n (27 r)-iln / r ® e < r

and

^M(ZT;e:) = - ^ l n ( 2 j r ) - i l n |J T® <P| -  Itr (ZTZ'r  (JT ® tf’ 1) ) , (8.19)2 ' ' 2 ’ '  ' 2 
respectively. Hence (2.74) factorise into (2.75), as required.

Q.E.D.
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A ppendix §2D
Proof of Proposition 2.3.4.4 We will compare (2.77) and (2.50) by comparing their correspond
ing block-elements in expectation and probability limit. Recall that by Lemma (2.3.4.1) we have 
JCh =  ~ I t ® 0 ^ U\  Therefore, we can evaluate the block elements of (2.77) as follows.

E y y  = E  [ ( a I ^ a L ^ X ^ 0  -  A ^ A ^ A ^  + A ^ Z t  + E x ' )

x ( x '^ U ' i 2)A'i1) -  A ’P A ' f  A '{£  + Z 't A '£1} + E 'r )]

=  A ^ A ^ E Y (U) x i{U)
A r p  A p -  A ^ A i^  E X ^ A ' ^ }  A f A f

" V -
, ( U U ) I T® 0 ? U)66

0 0
-  4 1)A® E [a <Px ’W]  A f A f  +  A ^ A ^  E  [a M a ’P \  A '® A'g(i)

I T® 0 ? U)
-  A {} )A (i ) E \ A ) r >Z

66
[a ^ Z ' t A'i1} -  4 1}4 2)^

I T® 0 f U)’66

0
+ A ^ J Z tX [ Z t A ' ^ I  A'L2) A'i1* +  A^1} £  [ Z t Z ' t ] A'i1} L J. “ “ “ v > l~l

o
+ Ai1} E  [Zt E' t \ +  E ^Et X ’P

0
4 2) A 'i1} -  E

I T® ^

E t A'!P A'i2)A' «

0 0 
+  E  [Et Z 't] A'i11 +  E  [ETE 'r ]

0 I T<S)0e

0

= J4 1) ( A E} ( s x P  - I t ® e r )  4 b2) + I t ® & )  A'iJ) +  I t ® 8 £ (8.20)

By (2.63) for the random case or by (2.64) for the fixed case (8.20) becomes

4 1} ( 4 2 ) 2 7 h A 'L 2) +  JT (8) A'i1* +  I T ® 6 > e = Tyy.

For Zyj[; we have
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f . w^Y X = £  [ ( a ^ A ^ X ^ 0 -  + A ^ Z t  + E t )

x (x ' t jP  ( I t  ® A *) -  A ' P  ( I T ® A'x) +  A'^a))] 

=  A ^ a I ^  £  [x £ ° X '£ ° ]  ( l T ® A *) -  Ai:)x i2) E [ x t ^ A ' t p ]  ( l T ® A'*)

y{U U )
-' X X

,(tOX '£°] ( / T ® A'x)

I r ® e f A)r<55 I T® 0 \UU)66
+ a I x)a12) E  ( l T <g> A *) -  a11} a12) E A ^ P A ^ ]

I t® G ? u)’66 I T®0iu/i)'66
+ Al1* E  [ z T-X’' t 7)] (-Tr ® A'*) -  A ^  E  [ .Z r^ 'r0] ( I t  ® A'x)

+ Ai1} £  [ z T A'^a)1 +  E  [ £ rX '^ ,,l ( l T ® A'x)
 ̂ v i  ̂ N v ^

0 0
-  E  [ B rA 'P ]  ( / T ® A'x) +  £  [£ tA '^a)]

= A«A<2> ( £ ^ >  -  7T ® 0 ™ )  ( l T 9  A'x) (8.21)

Similarly, (8.21) evaluates to ' E s  {^T ® A'x) =  e 'yx - Next, for E y x  we have

f,(U)^ Y X = E  [ ( aL1} a £ } x P  -  A i1} aL2) A ^ ] +  Ai1} Z T +  E t ) X

—aL^aL2̂ [a ^ X 'W ]

+ a !1̂ [Zt X '

yi(UU) 
^  X X

(UL)
T

I t®0TsU)
E t X ' P

~v“
o

(8.22)

which can be evaluated as A ^  A~^ E^ = Ey/l. For E^xx we have
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2  X X  =  e [ ( ( I t ® A x) x W ' I - ( I t ® A x ) a W  +  a £ )')

x (x ' t jP  ( j t  ® A'*) -  A ' P  ( I t  ® A'XJ +  4'^A))]

= ( I T ® Ax) E  [ x ^ X '^ 0] ( l r ® A'x) -  ( I T ® A x) E  [x<,c/)4'<,(/)] ( l T ® A'x)

wi(UU) 
Zj  -' X X i T * e r >

+ ( I t Q A ^ E ^ X ^ ’A ' t■m a >w -  ( I t  ® ^*) E  [ ^ X ' ^ j  ( l T ® il'*)

I r® © fA)F<5<5 i T® e f u)ss

+  ( I T ® Ax) E  [a $ P a ' !P}  ( i t  ® A'x) -  (IT ® A*) E A ^ A f ]

i r e e ' S P i T® e r '’ss

+ E ( l T 0 it7.) -  [ ^ } A'^] ( /T 0 ii;x) + £  A Kt JA ' tk(A)yt/( A)

I T® 0 i AU)ss SS I T®©SiA)

= (I t  ® Ax) ( ^ x } -  ® t° )  (JT ® ^'*) + *T  ® (8.23)

which becomes (J t 0  Ax) (-Tr 0  A ^  + Ft 0  =  i?xx • Similarly, for &xx  ^ follows
that

f , ( A  U) 
^ X X = £  [ ( ( /T 0  ii*) x p  -  ( I T 0  Ax) a P  + Â a)) X '^ }]

= ( I t  0  Ac) F7 [ ( I t  ® Ax) E  [ A ^ X ' P ]  + E  [
y ( U U )  Zj yy I t ® 0 T s U)

= (I t  ® 2 .)  ( z % J P  -  I t  ® 0 ^ 0  + I t  ® © if0 -
I r ® © ^ ’

(8.24)

which evaluates to ( I t  0  -Ax) 27= + J t  0  @ 55^ = 27^^. Finally,

_  p f y(£7L) y/(t/L)] _  r (i/ir) 
_ J i [ A T  T  \ ~  ^ X X  } (8.25)

thus trivially we have f̂ xjc =  Therefore, E[E] = E[27] or plim 1/T27 =  plim 1/T27, as
T~* 00 T —*oo

required.

Q.E.D.

A ppendix §2E
Proof of Proposition 2.3.4.5 We firstly derive (2.89)-(2.91) from (2.83)-(2.85) using Assumption 
3.2.0.1. For f l y y  we have
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Q y y  =  E  [ ( a L 1}Z t  -  +  E T )  -  A ' ^ A ' ^ A ' l x) +  E ' t ) ]

=  A ^  E  [ Z t A ’^ A  A 'i 2) A ' i 1* +  A (̂  E  [ Z t Z ' t ] A '£1} +  a L 1} E  [ Z t E ' t \
^ *■  I  “  “    V-----------'  “  “  ' -----------V------------

I t® & 00
+  E  [ E t A ' ^ ]  A 'l2) A'L1) +  A (J } A (s2) E  [ A ^ A ' P '

0 I T®0fsU)

A <̂ ) a S ) E  Ia ^ Z ' t ] A ' l 1} -  A (~ )A (~ ) E  [ a ^ E ' t ]  + E  [ E t Z ' t ] A ' ^  +  E  [ E t E ' t ]
 ̂ L _l  “ “ v L ____l  "----- v----- ' “ '---------- V-'

0 I T®&€

(8.26)
0 0

A (z  ( A ^  ( / t  ® 0 f s U))  A ! i2) +  I T  0  * )  +  J T ® 6>e,

which gives (2.89). Next, for f i y x  we ^ave

12(A) _
Y X  ~ E  [(a£1}Z t  -  A ^ A ^ A ^  +  E t )  (a '^ a) -  A'$P ( l T 0  A'x) ) ]

a11} E  [ z t A'^a) - A ^  E  [ Z t A '^ ]  ( l T ® A x ) -  aL1}aL2) E  [ a ^ 0  A'^A)]

i T * e $ A)
+

0 0

Ai1} Ai2) E  [a ^ ] A  [ l T 0  A'x) +  E  [Er A'^A)] -  E  [ E t A '^ ]  ( l T ® A'*)

=  A^1} A<? ( j T ® 0 ^ ^ )  ( JT ® A i)  -  A ^ A ™  ( l T 0  <9^A))  , (8.27)

which, since I t 0  <9̂ At/̂  = 0, yields (2.90). Finally, fi^xx can evaluated as

n x x  =  E  [ ( 4 r  * -  ( J T  ®  4 r )  ^ T ° )  ( 4 ' r '’ -  '  ( * r  ®  A ' x ) ) ]

£  [ . d ^ . d ' ^ 1  -  E  [ 4 ^ A )4 ' ^ ,)1 ( / r  ® A '*) -  ( J T  ® A x ) E  \ a ^ > A t

^ C 1
+  { I t  ® A x { E

SS - L T W K S s s

(U)
I r ® 0 f A)66

( I T ® A ',)

I T ® 0 f v)’ SS

=  I t ®  <9<a a )  +  ( J r  ®  ( J r  ®  ^ ' x )  “  ( f r  ®  A x )  ( l r  ®  & ¥ 5 A) )

+  ( I T ® Ax) ( l r  ® e f 6U)) ( l T  ® A'*) , (8.28)

yielding (2.91) again by noting that I t  0  =  0 .  Secondly, we derive (2.92) as follows. By
Definition 2.3.0.4,

K r = I  0  a I^ a L 20 A i1} 
0  I  I t  0  A x  0

(8.29)

hence
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D s S l D s  =

(  I t ®  O e

0 Iq 
0

0  0

> ©&A) 0
0 I t ® 6

\

Xuu)
ss

(8.30)

0 
0 
0

I t ® S'
where U l is defined as in (2.24). Finally, premultiplying and postmultiplying (8.30) by (8.29) 
yields (2.92), as required.

V 0 0 0

Q.E.D.

A ppendix §2F
Proof of Proposition 2.3.5.3 We will show that the general DSEM model (2.1)-(2.2) can be 
written in the state-space form (2.95)-(2.96). Firstly, the structural part of the general DSEM 
model (2.1) and the VAR(^) process for £t (2.97) can be written as a system

Vt
Zt

+

B  o -Fo 
0 0

B 1 A
0 Hi

t )
Vt-i
Z t -1

B r r r
0 Rr

Vt-r
Zt—r

+

or equivalently as

( I - B o )  - r 0 
0 I

Vt
Zt

Bi r i 
0 Ri

Vt-i
Z t - 1

B r r r
0 Rr

Vt-,
Zt-r

+

Therefore, the reduced form of (8.31) is

Ct
v t

,(8.31)

c*
v t

(8.32)

Note that

Vt
Zt

( i -B o )  - r 0 
0 I

-1
B\ r i
0 R\

( I - B o )  —To 
0 I

B r
0

-l

r r
Rr

Vt-r 
Z t —r

+ Ct
V t

Vt-1
Z t -1

(I — B0)-1 ( J - B o p  To 
0 I

V-1

(8.33)

hence

(J -  B q)

( I - B o )

R-i

( i  -  Bo)-1 r ,  + ( i  -  B0)_1 r 0Rj
Ri ,(8.34)

and
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^ (I — Bo) '1 (I -  Bo) '1 fo j / { ,  j  =  Bo)'1 Ct + ( I -  Bo) '1 r 0v t ^ (g^

Therefore, using (8.34) and (8.35), the reduced form of the system (8.31) can be written as

U M ' - S K e M *  £) (£)♦(?)■ l“ >
making use of the notation from Definition 2.3.5.2. Finally, we stack the current and lagged rjt and 
£t into a single column vector, collect all coefficient matrices in a single block matrix, and stack 
the residuals into a single as

=

and

/  Vt \ (  Ux Gx n  r_i Gr~ i n r Gr \ (  K t
\

Zt 0 Ri 0 Rr— 1 0 R r Vt
Vt-i I 0 • 0 0 0 0 0
Zt-1 ,JH = 0 I 0 0 0 0 , Wt = 0

Vt-r+l 0 0 • I 0 0 0 0
V Zt—r+1 ) \  0 0 0 I 0 0 J \  0 /

W t = ' Vt , F  = 0
Ax ut =

 ̂ x t J \  0

therefore, (8.36) can be written in the state space form (2.95)-(2.96), as required.

(8.37)

Q.E.D.
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8.2 Chapter §3 appendices 

A ppendix §3A
Proof of Lemma 3.2 .2 .1  Firstly, let G \ , . . . ,  G± be some zero-one matrices such that

( J =  G\ <8> 27n +  Gi 0  2721 +  G3 0  S \ 2  + G± 0y 2/21 2/22 J
which, by applying the vec operator yields

vec =  vec(Gb 0  27n) + vec(C?2 ® ^ 21)

+vec((?3  0  27i2) + vec (GU 0  E 2 2)
= Hivec27n + iT2vec272i + H3vec27i2 + H  4vec2722,

for some zero-one matrices H i , . . . ,  H 4 . Note that for any Gk (a x b) and 27̂ - (c x d) it holds that 
vec Gk®Eij =  [(I*, 0  Kda) (vec Gk 0 > Id) ® Ic] vec 27 ,̂ therefore H*, = [(/6  0  Kda) (vec G* 0  Id) 
Now, to show that vec 27 (0) can be expressed as a linear function of the vectors vec 27 ij =
( j n ^ '  ■ ■ ■ , i , j  = 1,2 we will show that H i , . . . ,  H 4 are of the required form. Note
that the dimensions of the blocks of 27 (6) and their columns are

(  27, ^12
n T x n T  n T x k T
2/21̂  E 22

\  k T x n T  k T x k T  J \

( 11)m
n T x l

( 21)m\
k T x  1

m ( i i )
n T m ( 12) m ( 12)

k T

n T x l
( 21 )
n Tm

k T x  1

n T x l  
(22)m

k T x  1

n T x l  
(22) 
k Tm

k T x  1

Applying the vec operator to the columns-partition (3.26) of 27 (0) produces a T2(n + k)2 vector

/  ml11) \

vec 27 (0) =  vec m
m

( i i )

(21)

„(H)
n T
( 2 1 )

m n T

m
m

( 12)

(22)
m
m

(12) \  
k T  \ _
(22) I -
k T  }

m (21)

m (11)n T
™(21)
m n T
m ( 12)

(22)m

™(12)
171 k T
m(22)\  k T  )

Now we have
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(  I

H 11 vec 27n =

nT 0 0 0
0 0 0 0
0 InT 0 0
0 0 0 0
0 0 InT • 0
0 0 0 • 0

0 0 0 ’ Ini
0 0 0 • 0

\  0

jFT21 veci72i =

H 12 vec S 12 =

0

0 0 0

I k T 0 0

0 0 0

0 I k T 0

0 0 0

0 0 I k T
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

I n T 0 0

0 0 0

0 I n T 0

0 0 0

0 0 I n T

0 0 0

0 0 0

0 0 0

0 0 0

0 \  
0 
0 
0 
0 
0 
0

I k T  

0

0 } 

0 \

I n T

0 I

(  m<n ) \
m (2n)
mi11̂

m(11)\  n T  J

I  m<n> \

m
0
( i i )

m(ii)
3

0

m (ii)
n T
0

( m  i21̂ \

,(21) 
l 3mi

\  m n T  )

\  0 
0

m(21) m\
0

0
»«(21) 
m 3

0

m (21)
n T

\  0 

(  0 \

0
0 (  ™ ' m
0 m
0 m
0
0
0 V m

n
.(12)l2
,(12)
"3

.(12)

m
0
(12)
0
(12)m\
0

»v,(l2)
0

Jr__ (i2) 
k T
0

and
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H  22 vec £ 2 2  —

(  0
0 0  ■ 0

0 0 0  • 0

I k T 0 0  ■ 0
0 0 0 • 0
0 I k T 0  • 0
0 0 0  • 0
0 0 I k T  ' 0
0 0 0 0

V 0 0 0 • I k T

ro<22> \'1 ,(22) l2
m f>
m

(22)
\  /

/  0 \

0
*»(22)

0
m ?2)

0
( 2 2 )

m 3
0

(22)\  m kT )
therefore, it is easy to see that

H n  vec £ u  +  H 21 vec £ 2\ + H i2 vec 27i2 + # 2 2  vec 1722 =  vec £  (0)

as required.

Q.E.D.

Appendix §3B
Proof of Proposition 3.2.2.3 Firstly note that differentiating the log-likelihood (??) is equivalent 
to differentiating

d I n L ^ W n t )  a t  1 v  r m i  1 / ifr- v - 1
~ /

JVdln|I7(0)| 10tr27_1(0) W n t W nt

d0{*] 2 d0{*] 2 5 0 ^

where, by the chain rule for matrix calculus, the first term evaluates to

din\£ (0)| / W r ( 0 ) \  / 'dln|.E(<>)|\ / 0 TOc 2 7 (0 ) \  x
[ ~ J ^ ) veci: {6)’

and for the second term we obtain

0 t r S ~ 1(0) W NTW NT ( d v e c S { 0 ) \  / d v e c £ - 1(0)\  ( d t r H ^ i e )  W NTW NT

where we used the results

and

dOj*  ̂ \  dOj*  ̂ J V  d vec 27(0) J y 0 vec 27 1 (0)

fd vec  £  (0 ) \  ^  ^  s _! ^  yec
903(*)

31n|J7(0)|____
d vec £  (6) vec 27 (0),
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Differentiating the log-likelihood now yields

d ln tfw O v r)  N  ( d v e c 2 ( 0 ) \  _  ,
v '  -  1 w  vec S  (0)

d e f f  2 \  9 0 <f )

+ \  (27_1 <e> ® 27-1W ) vec

=  \  ( t 27" 1 (°)  ® 27-1 W ]  vec ^  -  JVvec i T 1 (0 ))

=  \  [vec2T1 (0) W j v t W  -  N vec27_1 (0)]O-38)

which is equivalent to (3.29), as required.

Q.E.D.

A ppendix §3C
Proof of Proposition 3.2.2.4 We derive the components dvecEi j /d$  * for each Eij  block, 
in turn. The derivatives for vec 27n are obtained as follows. For 27n we obtain the derivative in 
respect to particular components of 0 as follows. Using the result that

dvec I ImT ~ X) SjT 0  Bj  J .
_ L «  L  „  - » ~ l S - | £ ! l ,  (w s  s ’i ) »  u .ovecBi ovecBi  ’ v '

we obtain the partial derivative in respect to vec Bi  as
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d vec E 11
d vec Bi

d vec (IT ® A y) ( l mT -  £  ® Y  ^JmT -  E  S %  ® B A  ( l T ® A ’y)'

I  v ■ Wdvec ( ImT - E  SJT ® Bj

dvecBi
V

dvecBi
(  (  p  .

d vec  ImT -  E  S3t  <8> B j
\  3 = 0

J
-1

-x\

dvec ( I mT -  E  SjT 0  B j  
\

/ \ -1(  (  v \  1 /  p .  \
dvec JmT -  E  ^  y  ImT -  E  

V 3 = 0  /  V J = 0

-1
dvec ( ImT — E  

V j=0

9  vec  (J j-  ® ^„) f j mT -  E  S’T ® B , \  Y  ^ImT -  E  S '3T ® B ' j  ( J r  ® A'y)

9  vec  f  J mT -  E  S T  ® B i j  Y  ( l mT -  E  S% ® B ' \

-1
i mT~ Y ; s 3T ® B1

3=0 j=o
-l

y  ( W - ^ S ' Jj.® B ' ] ® I mT
\  J= 0

x (Jr  (8) jl'tf) (8) (JT <8 i l ;v) .

+
-l

Y' ( I mT — ^ 2  S ' t ®  Bj  I ®JmT 
V J=0

m T ,m T

Next, we obtain

dvec E n  _  d v e c A (S tT ® r i) F ( S tT ® r i ) ' A f 
d vec .T* d vec I1*

/ dvec (SiT ® r i) \  / dvec (fifr 8  A )  F  (5^ 0  A ) ' \
 ̂ dvec Ti dvec (SiT ® r i) y

/ dvec A (S*T ® i \ )  F (gfr <8> !%)'
V  5  vec (SiT ® r i) F ( S iT ® r i)' J 

= [K*Ttg{ l Tg® S nT) ® I m]

X [ y  (S'T ®  T i ) ’ ®  I m T  +  y' ( 5 ^  <8> J\)' ®  JmT)] *  m T ,m T (A' ® A ' ) ,

where we used the result that

dvec ( E  &t ® -Tj I , . .
V = o  V  9  vec ( S T  ®  T j) n 5 -M n j
9 ^ 7 %  _ 9 ^ 7 \  _  * T’« (/sT ® S T> ®17

The derivative in respect to vec is obtained as
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d \e c E \ i  d vec (It ® Ay) X  ( It ® Ay)
d vec At d vec A t

_  / dvec (It ® Ay) \  f  dvec (It ® Ay) X  (It ® Ay) \
\  dvecily /  I dvec (It ® Ay) J

=  (K * T  m  <8> J n) ( [X  ( I T  ®  ii'v) <8> InT] +  [X ' (J T ® ii'y) <8> I n t ]  K n T ,n T ) ,

vec E \ \  =  vec L  ^JmT — J 2 S T ®  y  |/mT -  S ®  -Bjj J'+vec (JT® 6>£)

(8.39)

To obtain the derivatives in respect to vech and vech <&i firstly note that for a symmetrical 
a x  a matrix X , d vec X / d  vech X  =  D'a. Hence we have

dvec27n _  /  dvec S*o \  /dvec Z (It ® #o) Z '\
d vech <?o \  d vech /  \  d vec #o /

_  , f  dvec ( I t  ® f  dvec Z ( I t  ® # o) Z '\
9 \  dvec&o J \  dvec ( I t ®  #o) /

=  D'g [I,  ® (vec Jr)'] (K„,T <& I t ) (Z’ G> Z ' ) ,

and

dvec I?ii
dvecZ

(  d vec \
£  (8) +  S %  ® S^')
jf=i ' '

Z'

d vech \  d vech #  i ) dvec ^

/

D'

9 /  \dvec Z £  K ® * * )
i= i v y

Z ‘

d vec S>

dvec Z
+ d vec

\

Ly I dvecZ ( S T ® **) Z ' dvec Z (ST ® ®i)' z
9 • d vec $>i d vec $>i

dvec f  dvecZ ( s jT ® £<) Z ')

dvec$ i  J   ̂  ̂vec ^S?p <8> # i) J

/d vec  (S ^ < 8 >  S^'N f  dvec Z (S^ <8> $<)' Z 
y dvec $i J y  dvec {S*T ® $i) )  \  dvec (SlT ® #*)'

=  D'g [K ^ g ( l gT <8> SnT) ® I 9) ( I g T  +  K g T ,g T ) (Z' ®  Z')

while for vech S',

dvec 17ii /  dvec S' \  / dvec D ( I t  ® S')
dvec S'

/  dvec S' \  /  
\dvech S'/  \ dvec S'

_  j y  f  dvec ( I t  ® & ) \  ( dvecD ( I t  ® &) D'
\  dvec S' /  \  dvec ( I t ®  S')

=  D'm [Jm ® (vec Jr)'] (U m,r ® J r ) (O' ® J?') •
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Finally, we have

dvec 27n (  dvec&e \  (dvec  (IT ® 0 £) \  , rr (C>/ r ^ f t r  ** t \
J ( avecs, J = D"11-®(vecIt) 1 <*-r®Ir)'

The derivatives of vec E \ 2  are similarly obtained as

d vec S \2  

dvecB i

dvec ( I t  ® -Ay) ImT — X  &t  ® Bj  ) S  &t  ® -T7 ) (It  ® -Â )
__________________________________ 3 = 0 ____________ /  3 = 0 _____________ J _________________

d  vec I mT — X  ® B 
____________________ 3 = 0

dvecB i
')

dvecB i

dvec I mT — X  ® B j  
3 = 0 )

dvec I mT ~ 52 S3t ® B
3 =  0 ')

dvec (IT ®-Ay) I m T - X 5 r ® B3)  X  5 t  ® r 3 ) ^ (F r  ®-A*)
j = o  /  3 = 0 _____________ / __________________

d vec I mr  — X  ® -®3 
3 = 0

— ImT® S'T ®-̂ mJ ImT ^   ̂^ t  ® Bj  
3 = 0

- l  / \ —in
/  P

ImT -  ^  5 T ® B 'j
3 = 0

53 ^  ® Tj ) J- IT ® yi;
3 = 0

® (I t ® -Ay)7 I ,

-1

dvec 171 2

d vec (JT ® Ay) ^ /mT ~ Y , S jT ® B j j  (S'T ® A )  -F (JT <g> il's)

dvec Ti dvec Ti
( l  p . Y 1 . \

dvec (IT ® Av) I I mT -  £  S3T ® B j J (S'T ® i \ )  J- (Jr  ® A’z)

dvec (S t ® r i )

= [ j c ^ ( / 9T® s^ )®  I m] /  ” \  1
[F (JrO ^L )]® [ l mT- Y , S ' 1T®B'j  1 (IT 0  A'y)

\  i=° J

dvec!7i2 dvec ( I t  ® Ay) QF ( I t  ® Ax)
d vec A, d vec -A,

/ dvec (It ® -̂ j/)A ( dvec (7 t <8> Ay) QF (I t ® A'x) \
\  dvecyly )  ^ dvec ( I t  ® Ay) J

= [In ® (vec Jr )'] ( K u,t ® I t ) ([QF (It ® 4c)] ® /» t )  ,

dvec!7ii dvec ( I t  ® Ay) QF ( I t  ® Ax) 
d vec Ax d vec Ax

f  dvec ( I t  ® -^x)\ / dvec ( I t  ® - 4 ) \  ( dvec ( I t  <8> Ay) QF ( I t  <8> A'x) 
V dvecAx )  ydvec ( I t  ®  Ax) J y dvec ( I t  ®  Ax)

= [In ® (vec It)'] ( K k>T ® I T) K k,T ( l gT ® FQ' [(It ® 4 , ) ] ) ,
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d v e c S \2 f  dvec $o \  f  dvec ( I t  ® Ay) Q ( I t  ® #o) (I t  ®  Ax)^
d vech $ o \  d vech #o /  I d vec $  o

and

=  D
, /dvec ( I t  ®  ( dvec ( I t  ®  Ay) Q ( I t  ®  #o) ( I t  ® Ax )

9 V dvec <P0 /  y dvec (It® #o)

D' g [ I g 8 (vec JT)'] ( JCp,t  ® I t )  [ ( I t  ®  ii7,) ® Q' (J t  ® ii7y)] ,

dvec £ 12 /  9 vec 
\  d vech

5 vec (J t <8 -Ay) Q £  (S ST ® ^  + S#£ 8  #$)
7 =  1

( lT ® Ax)^

dvec

( dvec &i\ (dyec (It ® ^  ^  {St ® $ i )  (/ t  0  ^  
V ^ v e c h ^ i /  I dvec$i

+
dvec (IT ® Ay) Q (SlT 8  $ ,)' (JT ® A'x) ^

d vec

D'
dvec Ŝ3T 8  \  / dvec ( I t  ® Ay) Q Ŝ3T (8) ( I t  ® Ax)

d vec $ i I \ q vec ĝ3  ̂^

+
/9vec /9vec ( d  vec (IT ® /1„) Q ® #<) ( J r ® ^ )

(  9v e c )  (d v ec  (Sj.®*,)) ^ dvec (s*.®#,)'

X>; ( i >  ® Sht ) ® J„] (IsT +  K gTt9T) [(Jr  ® A',) ® Q' (It  ® 4 ,)]  •

Lastly, the derivatives of vec £ 2 2  are obtained as follows

dvec £22 dvec ( I t  ® Ax) F ( I t  ® A'x)
d vec Ax d vec Ax

/ dvec (It ® ^ x )\ ( dvec (It ® Ax) F (It ® Ax) \
V 9vecilx J I dvec ( I t  ® Ax) J

=  (K*T>g <8 I k) ( [F ( I T ® A'x) 8  I kT] + [F' ( l T ® K )  8  I kT\ K k>T) ,

dvec £22 f  dvec # 0  \  f  dvec ( I t  ® Ax) ( I t  ® # 0 ) ( I t  ®  AXY \
d vech # 0

/  d vec $ 0  \  /  
\  d vech # 0  /  V d vec $  0 J

D , ( dvec ( I t  ® $o ) \  ( dvec ( I t  ® Ax) ( I t  ®  # 0 ) ( I t  ® Ax)'
9 \  dvec$o J \  dvec (J t <8 # 0)

=  D'g [Ig 8  (vec Jt)'] ( K 9>t ® I t ) [(Jt ® K )  8  ( l T ® K ) ] ,
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d vec S22 
d vech $i

+

d vec 
d vech 4>i

(

dvec ( I t  ® Ax ) ( I t ®A'x)^

dvec

D'
dvec (It ® Ax) E sip ® 4>j (It ® Ax)'

[i=i J
dvec $i

\

+
dvec (It ® Ax) E  S'ip ®#' (It ® Ax)'

Li=i J
dvec #t

/
/ / a  vec (It ®Ax) S 3T ® $ i  (I T ® A xy  Qvec (IT ® Ax) S*T ® $i  ' (IT ® Ax)'\ 
9 I 9 vec 9 vec )

"/<%  rvi ^  .z  \  /  r\ /*• r*i ^  -  / x  4 \ /  \dvec S^® $i \  / dvec (It ® -Ai) S'y ® (-Tr ® -Ae)* 
d vec $i dvec  S3t  ® $i

dvec Sn 2) \  dvec dvec (It ® Ax) SXT ® $i ' (It ® Ax)'\
dvec $i J dvec SlT®$i J dvec SxT ®$i '  J/ J. / J v t>

= D'g |^T,0 IgT ® S't ® J9] IgT + KgT,gT I t  ® Ax ® I t  ® Ax ,

and

5 vec £ 2 2  (  dvec 0 6 \  (dvec (IT ® ® s) \  n , (T T \ ' \ tz r  t  \
a ^ e l  = J V ~ 9 ^ e r ~)  = ° k {Ik ® (veclT)} (KkT ® I t )  ■

The remaining derivatives are zero trivially in all cases where particular component of the param
eter vector 0 is not contained in E ij .

Q.E.D.

Appendix §3D
Proof of Proposition 3.2.3.1 We obtain the general form of the second partial derivative (3.33) 
by differentiating the typical element of the score vector

dlnL ( W n t )

ae)(*)
1 / d  vec E  (0)

d 9 (*) vec E - 1 (6) W NT w 'nt E - 1 (6) -  N vec  E ~ x (0 )]

(8.40)

in respect to the component 0 ^  of the parameter vector 0. Note that (8.40) is the partial derivative 
of the log-likelihood (3.16) in respect to the component 0 ^  of the parameter vector 0. We make 
use of the generalised product rule for matrix calculus

dG(z)h(z) dvecG(z)  . . . .  . dh(z) . (8.41)d z  d z  ■ d z
where G(z) is a matrix function of the vector z, h(z) is a vector function of z, and d is the 
dimension of the vector z. Letting dvec E  (0) /d0^  =  G(z) and
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vec S ~ l (0) W NT w 'n t E~1 (0) -  N  vec 27"1 (0) =  /i(z),

we firstly differentiate the two additive components of dh(z)/dz.  Differentiating the first compo
nent of h(z) in respect to 0 ^  we obtain

9 vec (l7 _1 (0) W NT w ' NTE ~ l (0))

90 (*)

9 vec 17 (0) \ ( d v e c E - l {0)\  ( 9vec 27"1 (0) W NTW NTE ~ L{e)
90 (*) 9 vec 17 (0)

- l i-i

(IT* W  * 2 T ' W )

9 vec 17-1 (0) y

9 vec 17_1 (0) WrNrW’,Arr17-1(0)'
9 vec 17 1 (0)

X ( [ W ®  *™t] +  [/™r ® W NTw'NTZ - 1 (A)]) ,

where we used the result

(8.42)

9vecl7~ 1 (0) W NTW NTE ~ l (0) 
9 vec 17 (0)

For the second component we have

=  [  W N T  W ' n T S ~ X <fi)  ®  - f m r ]  

+  [fm T  ® W n t W ' n t * 7 " 1 (0)]

(8.43)

(8.44)

9 vec 17-1 (0)
90 (*)

9vec l7 (0 )\ /  9 vec 17 1 (0)
90 (*) 9 vec E  (0)

( a 7 < y ) (s_ i w  ®17-1 <e))

Substituting (8.42) and (8.44) into (8.41) yields

a 2 In L W  n t  

d m̂)d
3 *

1 ( d2vec .57 ( ) \  r „  1 , x 
-  — r i  V t  vec 17 ( )2 ya w8 f  >y L ) - N v e c E ~ 1 ( ) ] ® I Pi

+ -1 dvec  II 1 ( ) W n t W n t E  *( ) RT^vec-^ *( M  I dvec  I  ( )
2 q (*) a (*) / I « (*)a a

j * -

WrJVTW’/jv T ^ " 1 ( ) - N v e c S ~ 1 ( )] <8> I Pi

dve c27( ) ( )

X [ W n t W ' ^ S - 1 ( ) ® I mT] -  [.I m T  ®  W n t W ' ^ E - 1 ( )]

f \  1 
dvec  I  ( ) \

(*>

which gives the expression (3.33), as required.

Q.E.D.
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Appendix §3E
Proof of Proposition 3.2.3.2 We will show that the probability limit of the typical element of 
the Hessian matrix (3.33) is given by (3.34). By (3.24) and (3.25) it follows that

plim
T , N —*oo

vec S ' 1 (0 ) i  W NT w 'n t S ' 1 (0 ) = vec-JT1 (0),

and hence

plim
T,N->oo

vec E ~ l (0) j j W NT W ^ E - 1 (0) -  vec 27"1 (0) = 0.

Therefore, the first term converges in probability to zero,

(8.45)

I  ( 92vec S  (0) vec S ~ l (0) j z  W n t  w 'nt E - 1 (0) -  vec J7_1 (0) I Pi I — 0.

Next, note that

and

thus we have

plim 
T,7V-> oo

plim ( — W n t  W  n t E  1 (0 ) ® ImT) =  ImT ® ImT,
r,N->oo j

plim ( ImT® W  n t W n t^  1 (0)1 = ImT ® ImT,
T , N —*oo \  Jv

± W n t W'n tI 7 '1 (0)® JmT (0) = 0.

This implies that the second term converges in probability to zero,

Plim U  9 ™ f, ) (0))  [ ^ _1 («) ® -S '1 («)]r,N—oo 2 y y

( [W n t W'n tZ - 1 (0)® J mT] -  [ /mr®  H’r a l V w r 1 (0)]) = 0

This leaves us with the remaining term as required by (3.34).

Q.E.D
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8.3 Chapter §5 appendices

A ppendix §5A
Proof of Lemma 5.2 .2 .3 Results (i) and (iv) follow directly from assumption Al and Lemma 
(5.2.2.2). To prove (ii) note that the convergence in mean square in Lemma (5.2.2.2) implies that

E
t=i

= E

= E

r p

f  \ fv~ lyat-rVif + (Af) )

where for r =  w, this is equal to 70 , thus

T
E = lo J) + (d ? )  >

t= 1 J
and similarly for (v),

E f  X  {Xijt~r ~ 4f)  = E f  X  (Xijt~r ~ 2xijt-r/J,\f + )
t= 1 J L t=i  ̂ ' .

= E f - ( $ )t=1

E
1 J
l r , ? .rp /  J *tjt-r 

t=l
establishing (v).

To show (iii), the above is easily generalised for higher moments by noting that

E
1 “I r 1

(Vij.t—r ~  ^jj^){yef,t—w ~  l^ef) =  E ^ ] Vij,t—rVef,t—
1

u (y)n (3/) H'ij H'ef

A i j e f )  _  n (v).Av)I\r-w\ Vij Vef >

and similarly for (vi)

£ ,(xb
t=l

=  E 1 T
^ ] 3'ij,t—r3'ef,t—i 
t—l

(x) (x)
^  Ve/

r ( i j e f )  (®) (®)

Finally, for (vii) we have

£7
1 T 1 Ti T

"ip ^  v ( U ij , t—r  ~  $ ^ ' ) { . x e f , t —w  ~  ^ e f )  =  ^  ' y i j , t —r % e f , t—
t= 1 t=l

r\r-w\ rij H'ef '

u (y)n (x) rij ref

Q.E.D.
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A ppendix §5B
Proof of Proposition 5.2.2.4 To show that plim (T 1Z/Z) =  where £ z z  ^  0> define a 
general matrix of eligible instruments Z =  (YJ, Y£, X*, Xjj;). First, we have

Z'Z =

(  y j 'y j  y i 'y $ y j 'x ;  y j'x^  ^
Y*/-V* V^V* V^Y*2*1 x 2 * 2 *2 ■'M * 2 2

Y */-V* Y  + /Y* Y *7Y* 1*1 -'M * 2 -"-1 ■‘M -**-1 -̂ -2v X̂'YJ X5V5 x̂'xj X2 X2 )
The upper-left block of Z'Z is given by

Yi* Y]

( y ^ \
yp-2

( y?5 y  p— 2
vw>

/  v ( i i ) #v ( y )  v ( i i ) ' ( i i )  . . .  v (w )#v ( y )  \  yp-i yp-i yP-i yP-2 yP- i yP-a 1
v(uyv(ii) v(ij)/v(u) yP-2 yP-i yP-2 yP-2

v v ( u r v ( y )  v (v> 'v (i;> ••
\  J p - a  J p - 1  J  p —a * /p —2\  y ^ r  )

Note that, e.g., the upper-left block element of the Y^Y* matrix is of the form

v<y>yy >
J  p —1 J  p —a

v<y>yu> /
•/ p—a •/ p —a /

(yy (y)yp- i yp-i

w(11)y - p - i  y \ - p  
(12' ' 1~'y~p.

/(11) 77(11)’1—p—l  c/2—p—1^  V - P - *  y  *  y

f(12) ?/12) ?.(12)1 i  2/ i - p - i  y2-P-
«y(11) \
V r - p - l

yr-p- i

dt-p-iVt-p-

yr-p-

, ( 12)
’t—p —1

(lm) (lm) (lm)\  yip-! y\-p-i y\-p-

< E (C_i)2 E^I,

E v (t - } - iv ? - U  Et= 1 t= l v 7

E C C i  E & ^ - i  • • •  E  (vt-p-i)
\  t = 1 t = 1 t= l  K '

(lm)
f r n  _ j

(  ry(n )  -»i(12)y_p_i y -p - i

2/ i - p - i 2/ i - p - i
77(11) 7#(12)c/2—p—1 c/2—p—1

\  2/r-p-
T

ry(12) i/T -p - 1

1
\

4=1

, / lm) , 
Vt - p - i /

Taking probability limits gives

M-Ty*-0 =
T

plim

plim ^  £  (% -p-i) )  

plim ^ plim ^

• plim ^   ̂ ^

• plim I J. *— '\  t= 1

v P lim  ( t  E  i / t - 7 - i ^ - P - i )  P lim  ( t  E  ^ - p l i ^ t - p - i )  • • • P lim  £  ( y J I p l j )  )

We can now apply the convergence results implied by Lemma (5.2.2.3) to obtain
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which gives the required results for the upper-left block element of Yj'YJ. However, note that all 
other block elements of this matrix can be written in the general form

v ( u r v ( y )J p—r Jp—vj

/  «<“ > «<n) «(n)y—p—r y 1—p—r ”2— p—r
w(i2)y—p—r yi—p—r y2—p—r

\ 17(lm) i / lm)\  y—p—r y\—p—r 2—p—r

u(11) \y T —p —r
„(»*>yT—p—r

W(lm)yT—p—r

( 12) 
>/> 'E % - p - r ! / t (- p - ro E j £ 2 - r l £ * .

E y f - l - d t - l v ,  E  y (t - l r V ? - } -t= 1 * t= 1

(lm ) (11) V'' (m l)  (^2)

-W

■W

(  y My—p—w „d2)- lj uj y—p—w 
w(11) J12)
«/i—p—w y i—p—w
.J 10 „(12)
y 2 —p — w  e/2—p —u;

( i i )
\  VT—p—w 

T  ,

J 12)
y T —p —w

E s l %  

E
t = l

(lm )  ̂
h—p—w
(lm )

■w

S '  ?/lm; 7/ii; V  7 /^  ...  V  7/(lm) 7/lm^l Z-/ yt—p—ryt—p—w i s  yt—p—ryt—p—w z-> yt—p—ryt—p—w i\  t=i t=i t=i /

and thus, from Lemma (5.2.2.3), it follows that each block element of Y^Y* converges to

\y—p—w
«(lm)“ 1— p—W
7y(lm) e/2— p—W

u(lm) yT—p—w /

plim (TYp-rVp-l) =

( E  

E

t/(11) iy(11)yt—p—ryt—p—w
V(U) W(H) yt—p—ryt—p—w

E

E

L(U) J 12) 1yt—p—ryt—p—w ta ---
-i

'  (12) u<12)yt—p—ryt—p—w

■ 
•

/  +  (4 > )2 7 ^  +  / # / $
7 ^ + mM  7 ^  + 04S,)S

^(lm.n ) , (y) (y) (lm ,12) (y) (y)
\  '|r—tu| ^ l m r l l  <|r—w\ rJ/lmrJ,12

(11) (lm ) 
yt—p—ryt—p—w
..(12) „(!"•)yt—p—ryt—p—w

|̂ /t—p—r2/i—p—iu
(11,1m)

'|r-tu| +  ^11 Plm
/|7._y;| 1 r" 12 “ lm

(y) \

~(lm) 4-ruVtf;v2T|r-w| ^  vMlm) /
(y) \2

Therefore, a typical scalar element of Y*’Y* has a non-zero probability limit of the general form 
plim ( T - 1 E f=1 =  7|r-’i f  +  MhVi?-

Now, the second block element of Z'Z is given by



(  y js ;  ^
yp-2

V yp - a  J

( y ^ (2 j)y_2

VW) ' W)
J  p — 1 J  — 1

yJM>

yP-i y-2
v(y>'v(2i) • •yp-2 y-2

• yp-i y-p-b
■ Yp-lV-p-6

v(lj)/v(2?  ••p—a —2 .. v(lj)V 2j\j  p—a J —p—o

Similar to the above derivation, we can write the typical scalar element of Y  ̂Y  ̂as Ylt=i Vt-p-rVi-w
and therefore plim (V" 1 Y^=i V t- i -rv l- l)  = l \p -r lw\ +

Following the same principle and applying again Lemma (5.2.2.3), we can write typical elements 
of each of the blocks of the matrix Z'Z as

YJ Y* : 

Y;'Y2*&Y2*'YI

ys 'ys •

Yf'XI &Xt'YI 

Yt 'X lkX l 'YZ

Y*2 X 2 :

XI X I:

XI X*2kX*2 XI

X£ X 2 :

plim ( r - 1 Z l ,  v i - l -rVt- l-v )  =  i\\r-w\ +  Mi V y

phm (t ~1 Vt-l-rVt-l)  =  7|(p- l -w\ +  V u V y

plim (T - 1 E f=1 v i - l v t - l )  =  7|\r-w\ + ^2̂ 2?  

plim (V- 1 J2j=i V t - l - M - l - w )  =  ^\p-l-q- w\ + M iVy  

plim (I?-1 YZ= 1 y i -r4-g-w)  =  i ’lr-l-w] + /4< Vtf 

plim ( t - 1 = <P\r-w\ + *4yi $ j

phm (r -1 ELi + /4iVi?
p lim  ( t - 1 Y ,T = i +  / 4 ? / 4 ?

P lim  ( T - 1 £ f =1 s ™ * ™  )  =  , ( » * >  +  ^

This proves (i) by showing that E zz ^ 0.
To show that (ii) holds, define X =  (*., Y y , X y) where Y y  = (Yy*, Y ijt_fc) and X y  =  

(Xijt ,Xijt-k)- Let Z be defined as above. Therefore, the matrix Z'X is given by

Z'X = (8.46)

(  YJ\  Y*'Yij t Yl 'Y i j t~k Y fX y t Y l'X ijt- k \
Y i i  Y*2 Y ljt Y 2 Yij t-k Y 2 Xijt Y 2 X i j t - k
Xl'fc X l'Y yt Xl'Yyt-fc Xj'Xy* XI ’Xtj t-k

\  X j'i X 2 Y i j t X 2 Y ij t-k Xj'Xy* X 2 X\j t- k

Using the same technique and applying Lemma (5.2.2.3) we derive typical elements of the 
blocks of specified in (8.46) and show that they have non-zero probability limits. Namely, we have

Z U d - l - r )  

E L y S )  = 4 ?

e L xS ) = 4 ?

E L  Vt-l-rVt1̂ )  = + I # / ®

EjLi Vt-lvt1**) = 7r2l,y> + PttVy

E ll
T

Y l't: phm

Y 2 i : phm (t ~

Xj't: plim (t ~

X ^t: phm (t ~

YJ#Y yt : phm (t ~

Y$'Yyt : plim (r~

Xj'Yy* : phm (t ~

X 2 Y ijt : plim (t ~ Etei 4 - l v i v ) )  =
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li) + ,> )..(p)
- p - r U t - w J  ~  l \ p - r - w\ ^  P li  P i j

2 0 7 ( U ) \  _  (2i, ij)  J y ) A v )
—rVt—wJ — l \ r -w \  ^  P2i P l j

10 w(ii) ̂  _  ^(lOii)
- q -r i J t -w  J ~  HJ\q-r - W\ ^  P i i P i j

20^(00 A _  W,(2*,lj) , J X)JV)—rVt—wJ W\r—w\ i H*2i r*lj

M w ) = W  +

*>*<«>) = 4 2W)+ 4 ? /4 ?
iO _(ij) A _  ,/,(i*.ij) + n(y)„(y)- p - r x t - w J  — lP \p - r -w\ ^  P li  P l j

20r(U)\ _  7//2i>lj) , n(v),Av)- r x t - w J  — V\r - W\ t  P2i P l j  

10 ^(ij)^ _  x(i*.ii) _|_ ,Xx).Xx)- q - r x t - w J  ~  °\q- r—w\ "T H'U H>\j

2 0™(lj) A _  x(2*»lj) , (*) (*)
—rx t —wJ — \r—w\ “l" P2i P l j

This proves (ii) by showing that 'Ezx 7̂  0, as required.
Finally, to prove (iii), let uj — (111, 112, 113), using the notation from (5.14)-(5.16). We require 

that E  [Z'ui] =  E  [Z'ty] =  E  [Z'ty] =  0. From (5.11), (5.12), and (5.13) this implies that

Y *  Y l j t _fc : plim ( t ~ E h v
YS'Yyt-fc : plim ( t ~ J 2 h v
X f Y 1;| t _fc : plim ( t ~ Et=i*
X j ' Y i j t - k  : plim ( t ~ Et=i*
Y l ' X y t  : plim ( t ~ E L v

Y '̂Xyt : plim ( t ~ T Z . i V

X f X l j t  : plim ( t ~ T l . 1 *

X j ' X y *  : plim ( t ~ 5 ^ . ! *

Y f ' X y t - f c  : plim ( t ~ Ei=i»
Y ^ X y t —fc : plim ( t ~ Ef=i»
X l ' X y t - k  : plim ( t ~ EL,x
X5#Xyt_fc : plim ( t ~ e L ^

j=0
£ [ Z ' i n ]  =  E

B[ Z'u2] = £ [ z ' ( £2t -A<y)elt)] 

El  Z'ua] =

Using the definition of Z we have

jf=0

=  E

Y?

X*•*■2

Ct + s i t  E  E
j = 0  i = o

= £

Y f o  +  Yi'eu ~ E  Y j ' B ^ u - , -  -  £  Y l ' l ^ , - . ,
J=0 j=o

Y f o  +  Y $ #e l t  -  E  Y ^ B j C i t - j  -  £  ^ 2 ^ i t - j
j= 0 j=0

x;'c, + x;'slt -  t  xi'B^w-i -  E  x;'r3<su_3
j=0 j=0

X5'C, + X5'elt -  E  3^'Bjeu-i -  E  xi'r^i,,-,
j= 0 j —0

P 9
Y  I t —p —r  Ct +  Y '  l t —p—rS l t  E y ' I t — p — j  E  Y  i t —p —r-F j  6 i t - j

j= 0 j= 0

Y'2t-rCt + Y^t-rSlt — E  Y^t-rBjSit-j — E  Y^t-rFj^lt-j
j= 0 i= o

p q
X lt —q—rCt  "F X it_q_r£if E  X it—qr—r-BjCit—j E  X I t —g—rFj l̂f—j

j=0 j=0
X;2t-rCt + X;2t-r£lt ~ E  X^t-rBjSit-j — E  X^t-r-Fj^U-j

j=0 j= 0

=  0.
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Similarly, it easily seen that E [Z'u ]̂ =  E [Z'ua] =  0, as the lagged variables are uncorrelated 
with the contemporaneous latent errors.

Q.E.D.

Appendix §5C
Proof of Proposition 5.4.0.1 We show that a general DSEM model can be written in the form 
VK + WG = u. Then the result follows since rank [Rj (K' : G '/j > M — l ,1 where M is the 
number of the left-hand side variables, i.e., number of the equations in the system and where R j 
is the selection matrix for the j th equation, therefore M = m + n +  h.

Note that the DSEM model (5.14)-(5.16) can be written as

y i t  — ocrj +  B 0y i t  +  +  . . .  +  B p y i t - P +  T o X i t

+ TiXu-i + ... + r gxit_9 + tin 
y2t = 0‘[y> + A ^y it + «2t

(8.47)
(x) . A (x) .

X21 =  0(2 +  A 2 X11 +  U3t

By rearranging by moving the endogenous variables on the left hand side (8.47) can be written as

/  (I -  Bo) 0 0 \
-A (y) In  0

0 Ih )

( y 'u -i y 'u -2

Transposing the entire system we get

—B p - r 0 _ r i -rg\
0 0 0 0
0 \(x)

2 0 0  J
\  / I Ult

■v'x  It-- 1  • • • x ' l t - q  ) =  U 2t

V u 3t

/ ( I  — B 70) _ A (y)/ 0 ^(yit : y2t : x2t) 0 In 0  +

\ 0 0 I h  J

(*-? yit-i, yit-2,--., yit-p, x i t, x i*—1 > * - * > xit-g)

^ OItj _ (S y)a 2 CX2
—B ' i 0 0

- B ' 2 0 0

—B ' p 0 0

- r ; 0 0 - A (x) '

- r ' i 0 0

V - r / 9 0 0

= (uit : u2t : u3t) , 

which can be written in full-sample notation
(8.48)

^ee e.g. Judge et al. (1985)
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(yij, y2j, x2j)
( I -B 'o ) - A (yY 0

0 In 0

0 0 Ih

(if 'Yijt—k) Xijt,  X ijt—k)

O L-q - a 2y) -«2

—B'i 0 0
-B '2 0 0

—B 'p 0 0
- r ' 0 0 - a ?
- r ' i 0 0

0 0

=  U,

0 J

where u = (ult, u2t, u34). Now define V =  (yy , y2j-, x2j) and W  = (t, Y lju X iJt, X ljt-k),

(

f ^
— B 'o )

<!1 0  ^

K  = 0 In 0

\ 0 0 I h )

and G =

Ctq a!? \
—B'i 0 0

- b ' 2 0 0

- B ' P 0 0

- r ' 0 0 A 2

- r ' i 0 0

~T'q 0 0  /
therefore the system (8.48) can be written as VK + WG = u, as required.

Q.E.D.
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8.4 Chapter §6 appendices: Estim ation code
A ppendix §6A: S m atrix functions
Lag operator

Note that for pure time series data (N =  1) the pow er.shift() function can be used in its own 
right for computing lags. For example,

> x_l <- power, s h i f t  (120,1) 7,*7,x

computes the first lag of variable x , thus having the effect of a simple lag operator. The p-period lag 
for data in the “long panel” format can be computed using the vectorised S+ function lag.panel() 
defined as

"lag.panel" <- fu n c t io n (x ,p ,n ,t )
{

lag  <- power. s h i f t  (n*t ,p)7,*7»x
elim inator <- k ro n eck er(rep (l ,n ) , c(rep(NA,p), r e p ( l , t - p ) ) )  
lag*elim inator

>

where p denotes the lag, n is the cross-section sample size and t is the time-dimension of the panel 
and x which needs to be lagged. Thus, if x is a vector of N  =  200 individuals observed over T =  10 
time periods, stacked in the “long panel” format, the first lag can be computed by executing the 
command

> x_l <- la g .p a n e l (x ,1,200,10)

For very large panels, the vectorised function panel.lag() might require large RAM memory 
and tends to be very slow if virtual memory is used via paging files. Therefore, with large panels 
it might be necessary to use a looping version lag .lpO  defined as

"lagp.lp" <- fu nction (x , p, n, t )

m <- n-1 
v <- la g .d f (x ,p )

f o r d  in  0:m)

fo r ( j  in  l:p )
■C

v [ t  * i  + j ]  < - 0  
>

>
v

>

which makes use of the function lag.df () that returns the lagged vector of the same length as 
the original vector,
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"lag.df" <- function (x , p)
■C

g <- length(x)  
v <- x
fo r ( j  in  l:p )

■C
v [ j ]  <- 0 
>

v
q <- p+1 
f o r ( i  in  q:g)
■C

v [ i ]  <- x [i-p ]
>

v
>

Instrum ental variable operator S 3IV

We define an S function that has the effect of applying the operator SJIV, defined in (5.20), on the 
variable x, where j  denotes the lag, n is the cross-section sample size and t is the time-dimension 
of the panel,

"instrument" <- function(x , j ,  n, t )

d l <- power. s h i f t ( t , j )  + rbind(cbind(0, d ia g ( j ) ,
+ m atrix(0, j ,  t  -  j -  1 ) ) ,  m atrix(0, t  -  j ,  t ) )  
d2 <- kronecker(diag(n), d l)  
d2 '/, * '/. x

>

The instrument() function makes use of the pow er.shift() function defined above. As an 
illustration, suppose we wish to create a 2-period lagged instrument for the variable “income” and 
name it as “IVincome2” in a panel with N  =  200, T = 10. This can be achieved by writing

> IVincome2 <- instrument(income,2,200,10)

from the command line in S-PLUS. The above function uses matrix operators, namely shifting 
matrices and is hence a fully vectorised function. For very large panels, it might be necessary to 
use loops and apply the following S+ function

"instrument.lp" <- fun ction (x , p, n, t )
■C

m <- n-1 
v <- la g .d f (x ,p )  

f o r d  in  0:m)
■C

fo r ( j  in  l:p )  

v [t* i+ j ]  <- 0
}

>
v

>
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Note that the functions instrument () and instrument . lp() have the same arguments and will 
return the same result.

A ppendix §6B: Estim ation code 
G iveW in batch syntax for FD  m odel

The GIVE estimation code for the two structural equations of the FD model (in GiveWin batch 
syntax), which can be run with GiveWin 1.30 or later. The equation for gt using the IV 2  set can 
be estimated with

module("PcGive"); 
usedata("FDpanel.xls"); 
system

Y = g ( t )  , l ( t )  ;
Z = Constant, g ( t - l ) ,  i ( t ) ;
A = IVb_2, IV1_2, IVp_2;

>
estsystem("IVE", 1, 1, 180, 1);

while the code for the second structural equation (lt) using IV 2 that includes lags of gt and it is
given by

module("PcGive"); 
usedata("FDpanel.xls"); 
system

Y = l ( t ) , g ( t - l ) , i ( t ) ;
Z = Constant;
A = IVb_2, IV1_2, IVp_2, IVg_2, IVi_2;

>
estsystem("IVE", 1, 1, 180, 1);

The measurement model (equations for bt and pt), using lt as the unit-loading proxy for latent
financial development, can be estimated with the following code

module("PcGive"); 
usedata("FDpanel.xls"); 
system 
{

Y = b ( t ) ,  l ( t ) ;
Z = Constant;
A = IVb_3, IV1_3, IVp_3;

>
estsystem("IVE", 1, 1, 180, 1);

where IV 3  is used as the set of instruments. The second measurement equation uses IV 2 set of 
instruments and the code is

module("PcGive"); 
usedataCFDpanel.xls") ; 
system
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- c
Y = p ( t ) , l ( t ) ;
Z = Constant;
A = IVb_2, IV1_2, IVp_2;

>
estsystem("IVE", 1, 1, 180, 1);

The FIVE (3SLS) estimation code that estimates the structural model jointly with the mea
surement model is given by

module("PcFiml"); 
usedata("FDpanel.xls"); 
system
■C

Y = g ( t ) ,  b ( t ) ,  l ( t ) ,  p ( t )  ;
Z = i ( t ) ,  g ( t - l ) ,  Constant,

IVb_2, IV1_2, IVp_2, IVg_2, IVi_2,
IVb_3, IV1_3, IVp_3;

>
estsystem("0LS", 1, 1, 180, 1); 
model
-C

g ( t )  = l ( t ) ,  i ( t ) ,  g ( t - l ) ;
l ( t )  = i ( t ) ,  g ( t - l ) ,  Constant;
b ( t )  = l ( t ) ,  Constant;
p (t )  = l ( t ) ,  Constant;

>
estmodel("3SLS", 0);

where IV2 and IV3 are used as instrument sets.

LISREL estim ation  syntax for the FD  m odel

The following LISREL syntax uses the covariance matrix saved in the file wgpanel.CM and does 
not specify user-defined starting values,

TI
DA NI=40 N0=20 NG=1 MA=CM 
CM=wgpanel. CM 
SE
6 7 8 9 10 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 36 37 38 39 40 /
M0 NX=5 NY=20 NK=5 NE=10 LY=FU,FI LX=FU,FI
M0 BE=FU,FI GA=FU,FI PH=SY,FR PS=DI,FR TE=DI, FR TD=DI,FI
FR LY(6,1) LY(7,2) LY(8,3) LY(9,4) LY(10,5)
EQ LY(6,1) LY(7 ,2 )  LY(8,3) LY(9,4) LY(10,5)
FR LY(11,1) LY(12,2) LY(13,3) LY(14,4) LY(15,5)
EQ LY(11,1) LY(12,2) LY(13,3) LY(14,4) LY(15,5)
VA 1.00 LY(16,1) LY(17,2) LY(18,3) LY(19,4) LY(20,5)
VA 1.00 LY(1,6) LY(2,7) LY(3,8) LY(4,9) LY(5,10)
VA 1.00 LX(1,1) LX(2,2) LX(3,3) LX(4,4) LX(5,5)
FR BE(6,1) BE(7 ,2)  BE(8,3) BE(9,4) BE(10,5)
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EQ BE(6,1 BE(7,2) BE(8,3) BE(9,4) BE(10,5)
FR BE(2,6 BE(3,7) BE(4,8) BE(5,9)
EQ BE(2,6 BE(3,7) BE(4,8) BE(5,9)
FR BE(7,6 BE(8,7) BE(9,8) BE(10,9)
EQ BE(7,6 BE(8,7) BE(9,8) BE(10,9)
FR GA (1,1 GA(2,2) GA(3,3) GA(4,4) GA(5,5)
EQ GA (1,1 GA(2,2) GAO, 3) GA(4,4) GA(5,5)
FR GA(6,1 GA(7,2) GA(8,3) GA(9,4) GA(10,5)
EQ GA(6,1 GA(7,2) GA(8,3) GA(9,4) GA(10,5)
FI PH(5,1
FI PH(5 ,2 PH(4,1)
EQ PH (1,1 PH(2,2) PH(3,3) PH(4,4) PH(5,5)
EQ PH(2,1 PH(3,2) PH(4,3) PH(5,4)
EQ PH(3,1 PH(4,2) PH(5,3)
EQ PSCl.l PS(2 ,2) PS(3,3) PS(4 ,4) PS(5 ,5)
EQ PS(6,6 PS(7 ,7) PS(8 ,8) PS(9 ,9) PS(10,10)
FI TE(1,1 TE(2,2) TE(3,3) TE(4,4) TE(5,5)
EQ TE(6,6 TE(7,7) TE(8,8) TE(9,9) TE(10,10)
EQ TE(11, 1) TE(12 ,12) TE(13,13) TE(14,14) T
EQ TE(16, 6) TE(17 ,17) TE(18,18) TE(19,19) T
OU ME=ML ND=5

Starting values based on the FIVE (3SLS) estimates are given below. The ST command lines 
should be include anywhere before the OU command in the above LISREL syntax.

ST 0.1818 LY(6 ,1) LY(7 ,2) LY(8,3) LY(9,4) LY(10,5)
ST 0.5246 LY(11,1) LY(12,2) LY(13,3) LY(14,4) LY(15,5)
ST -0.0089 BE(6,1) BE(7,2) BE(8 ,3) BE(9,4) BE(10,5)
ST 0.4001 BE(2,6) BE(3,7) BE(4 ,8) BE(5,9)
ST 0.0000 BE(7 ,6) BE(8,7) BE(9 ,8) BE(10,9)
ST -0.8658 GA(1,1) GA(2,2) GA(3,3) GA(4,4) GA(5,5)
ST -0.0560 GA(6,1) GA(7,2) GA(8,3) GA(9,4) GA(10,5)
ST 0.0000 PH(1,1) PH(2 ,2) PH(3 ,3) PH (4 ,4) PH(5,5)
ST 0.0000 PH(2,1) PH(3,2) PH(4,3) PH(5,4)
ST 0.0000 PH(3,1) PH(4,2) PH(5 ,3)
ST 0.0189 PS(1,1) PS(2 ,2 ) PS (3 ,3 ) PS(4,4) PS(5 ,5 )
ST 0.0004 PS(6 ,6 ) PS(7 ,7) PS (8 ,8 ) PS(9,9) PS(10,10)
ST 0.0000 TE(6,6) TE(7,7) TE(8,8) TE(9,9) TE(10,10)
ST 0.0000 T E ( l l . l l ) TE(12,12) TE(13,13) TE(14,14) TE(15,15)
ST 0.0000 TE(16,16) TE(17,17) TE(18,18) TE(19,19) TE(20,20)

IV  G iveW in batch code for the B H PS m odel

Measurement equations:

module("PcGive"); 
usedataC'bhps.long"); 
system

Y = h ,  f;
A = fiv4 ,f iv5;

>

204



estsystemC'IVE", i, 1, 66976, 1);

module("PcGive"); 
usedataC'bhps.long"); 
system

Y = i ,  1;
Z = Constant;
A = Iiv5 ,liv6;

>

estsystemC'IVE1', 1, 1, 66976, 1);

module("PcGive"); 
usedata("bhps. long"); 
system

Y = r, s;
Z = Constant;
A = siv5,siv6;

>
estsystemC'IVE", 1, i ,  66976, 1);

\noindent Structural equations:

module("PcGive"); 
usedataC'bhps.long"); 
system
-C

Y = f , f l , f 2 , f 4 , l , l l , 1 2 , s , s l , s 2 ;
Z = Constant;
A = f iv 5 ,f iv 6 ,f iv 7 , l iv 4 , l iv 5 , l iv 6 , l iv 7 ,s iv 4 ,s iv 5 ,s iv 6 ,s iv 7 ;

>

estsystemC'IVE", 1, 1, 66976, 1);

module("PcGive"); 
usedataC'bhps.long"); 
system

Y = s , s i , s2 , s3 , s4 , f 1 ,f 2,1,11,12,13;
Z = Constant;
A = f iv 5 ,f iv 6 ,f iv 7 , l iv 4 , l iv 5 , l iv 6 , l iv 7 ,s iv 4 ,s iv 5 ,s iv 6 ,s iv 7 ;

>

estsystemC'IVE", 1, 1, 66976, 1);

module("PcGive"); 
usedataC'bhps.long") ; 
system 
{

Y = 1,11,12,13,14,15;
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Z = Constant, e ;
A = f iv 5 ,f iv 6 ,f iv 7 ,f iv 8 , i iv 6 , i iv 7 , i iv 8 ;

>

estsystemC'IVE", 1, 1, 66976, 1);

FIML code:

module("PcFiml"); 
usedata("bhps. long"); 
system 
•C

Y = h , i ,r ;
Z = C o n sta n t ,f , l ,s , f iv 4 ,f iv 5 ,l iv 5 ,f iv 6 ,s iv 5 ,s iv 6 ;

>
estsystemC'OLS", 1, 1, 66976, 1);
model
-C

h = f,Constant; 
i  = 1 ,Constant; 
r = s,Constant;

>

estmodel("3SLS", 0);

module("PcFiml"); 
usedataC'bhps.long"); 
system
-C

Y = f , s , l ;
Z = C o n s ta n t ,f l ,f2 ,f4 , l l ,1 2 ,1 3 ,1 4 ,1 5 ,s i ,s2 ,s3 ,s4 ,e ,

f iv 5 ,f iv 6 ,f iv 7 ,f iv 8 ,  
l i v 4 , l iv 5 , l i v 6 , l iv 7 , 
s iv4 , s iv5 , s iv 6 , s iv7 ,

i iv 6 ,i iv 7 ,i iv 8 ;
>

estsystemC'OLS", 1, 1, 66976, 1); 
model

f = f i , f 2 , f 4 , l , l i , 1 2 , s , s l , s 2 ;  
s = s i , s 2 , s 3 , s 4 , f l , f 2 ,1 ,11,12,13,Constant;
1 = 11,12,13,14,15,e,Constant;

>

estmodel("3SLS", 0);

module("PcFiml"); 
usedataC'bhps.long"); 
system 
-C

Y = h , i , r , f , s , l ;
Z = C o n s ta n t ,e ,f l , f2 ,f4 , l l ,1 2 ,1 3 ,1 4 ,1 5 ,s l ,s2 ,s3 ,s4 ,  

f iv 4 ,f iv 5 ,f iv 6 ,f iv 7 ,f iv 8 ,  
l iv 4 , l i v 5 , l i v 6 , l iv 7 ,
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siv4,siv5,siv6,siv7,
iiv6,iiv7,iiv8;

>

estsystemC'OLS", 1, 1, 66976, 1); 
model
-C

h = f; 
i  = 1; 
r = s;
f = f l , f 2 , f 4 , l , l l , 1 2 , s , s l , s 2 ;  
s = s i , s 2 , s 3 , s 4 , f l , f 2 , l , l l ,12,13;
1 = 11,12,13,14,15,e;

>

estmodel("3SLS", 0);

LISREL s y n ta x  for t h e  B H PS m o d e l  

TI
DA NI=104 N0=3347 NG=1 MA=CM 
KM=bhps.KC 
LA
AFOOD AHOUSING ALABOUR ANLABOUR AINVEST ASAVINGS AED ACREDIT
BFOOD BHOUSING BLABOUR BNLABOUR BINVEST BSAVINGS BED BCREDIT
CFOOD CHOUSING CLABOUR CNLABOUR CINVEST CSAVINGS CED CCREDIT
DFOOD DHOUSING DLABOUR DNLABOUR DINVEST DSAVINGS DED DCREDIT
EFOOD EHOUSING ELABOUR ENLABOUR ElNVEST ESAVINGS EED ECREDIT
FFOOD FHOUSING FLABOUR FNLABOUR FINVEST FSAVINGS FED FCREDIT
GFOOD GHOUSING GLABOUR GNLABOUR GINVEST GSAVINGS GED GCREDIT
HFOOD HHOUSING HLABOUR HNLABOUR HINVEST HSAVINGS HED HCREDIT
IFOOD IHOUSING ILABOUR INLABOUR IINVEST ISAVINGS IED ICREDIT
JFOOD JHOUSING JLABOUR JNLABOUR JINVEST JSAVINGS JED JCREDIT
KFOOD KHOUSING KLABOUR KNLABOUR KINVEST KSAVINGS KED KCREDIT
LFOOD LHOUSING LLABOUR LNLABOUR LINVEST LSAVINGS LED LCREDIT
MFOOD MHOUSING MLABOUR MNLABOUR MINVEST MSAVINGS MED MCREDIT
SE
1 9 17 25 33 41 49 57 65 73 81 89 97
2 10 18 26 34 42 50 58 66 74 82 90 98
3 11 19 27 35 43 51 59 67 75 83 91 99
4 12 20 28 36 44 52 60 68 76 84 92 100
5 13 21 29 37 45 53 61 69 77 85 93 101
6 14 22 30 38 46 54 62 70 78 86 94 102
8 16 24 32 40 48 56 64 72 80 88 96 104
7 15 23 31 39 47 55 63 71 79 87 95 103/
M0 NX=13 NY=78 NK=13 NE=39 LY=FU,FI LX=FU,FI BE=FU,FI GA=FU,FI PH=SY,FI PS=DI,FR 
MO TE=SY, FI TD=DI, FR 
LE
aCons bCons cCons dCons eCons fCons gCons hCons iCons jCons kCons ICons mCons 
alncome blncome clncome dlncome elncome fIncome glncome hlncome ilncome jIncome 
klncome 1Income mlncome
aLQ bLQ cLQ dLQ eLQ fLQ gLQ hLQ iLQ jLQ kLQ 1LQ mLQ 
LK
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aEd bEd cEd dEd eEd fEd gEd hEd iEd jEd kEd lEd mEd
VA 1 LY(1 ,1)  LY(2 ,2)  LY(3,3) LY(4,4) LY(5,5) LY(6,6) LY(7,7) LY(8,8) LY(9,9)
VA 1 LY(10,10) LY(11,11) LY(12,12) LY(13,13)
FR LY(14,1) LY(15,2) LY(16,3) LY(17,4) LY(18,5) LY(19,6) LY(20,7) LY(21,8)
FR LY(22,9) LY(23,10) LY(24,11) LY(25,12) LY(26,13)
EQ LY(14,1) LY(15,2) LY(16,3) LY(17,4) LY(18,5) LY(19,6) LY(20,7) LY(21,8)
EQ LY(21,8) LY(22,9) LY(23,10) LY(24,11) LY(25,12) LY(26,13)
VA 1 LY(27,14) LY(28,15) LY(29,16) LY(30,17) LY(31,18) LY(32,19) LY(33,20)
VA 1 LY(34,21) LY(35,22) LY(36,23) LY(37,24) LY(38,25) LY(39,26)
FR LY(40,14) LY(4i,15) LY(42,16) LY(43,17) LY(44,18) LY(45,19) LY(46,20)
FR LY(47,21) LY(48,22) LY(49,23) LY(50,24) LY(51,25) LY(52,26)
EQ LY(40,14) LY(41,15) LY(42,16) LY(43,17) LY(44,18) LY(45,19) LY(46,20)
EQ LY(46,20) LY(47,21) LY(48,22) LY(49,23) LY(50,24) LY(51,25) LY(52,26)
VA 1 LY(53,27) LY(54,28) LY(55,29) LY(56,30) LY(57,31) LY(58,32) LY(59,33)
VA 1 LY(60,34) LY(61,35) LY(62,36) LY(63,37) LY(64,38) LY(65,39)
FR LY(66,27) LY(67,28) LY(68,29) LY(69,30) LY(70,31) LY(7i,32) LY(72,33)
FR LY(73,34) LY(74,35) LY(75,36) LY(76,37) LY(77,38) LY(78,39)
EQ LY(66,27) LY(67,28) LY(68,29) LY(69,30) LY(70,31) LY(71,32) LY(72,33)
EQ LY(72,33) LY(73,34) LY(74,35) LY(75,36) LY(76,37) LY(77,38) LY(78,39)
FR BE(2,1) BE(3,2) BE(4,3) BE(5,4) BE(6,5) BE(7,6) BE(8,7) BE(9,8) BE(10,9)
FR BE(11,10) BE(12,11) BE(13,12)
EQ BE(2,1) BE(3,2) BE(4,3) BE(5,4) BE(6,5) BE(7,6) BE(8,7) BE(9,8) BE(10,9)
EQ BE(10,9) BE(11,10) BE(12,11) BE(13,12)
FR BE(3,1) BE(4 ,2 )  BE(5,3) BE(6,4) BE(7,5) BE(8,6) BE(9,7) BE(10,8) BE(11,9) 
FR BE(12,10) BE(13,11)
EQ BE(3,1) BE(4 ,2 )  BE(5,3) BE(6,4) BE(7,5) BE(8,6) BE(9,7) BE(10,8) BE(11,9)
EQ BE(11,9) BE(12,10) BE(13,11)
FR BE(4,1) BE(5,2) BE(6,3) BE(7,4) BE(8,5) BE(9,6) BE(10,7) BE(11,8) BE(12,9) 
FR BE(13,10)
EQ BE(4,1) BE(5 ,2 )  BE(6,3) BE(7,4) BE(8,5) BE(9,6) BE(10,7) BE(11,8) BE(12,9) 
EQ BE(12,9) BE(13,10)
FR BE(5,1) BE(6 ,2)  BE(7,3) BE(8,4) BE(9,5) BE(10,6) BE(11,7) BE(12,8) BE(13,9)
EQ BE(5,1) BE(6 ,2)  BE(7,3) BE(8,4) BE(9,5) BE(10,6) BE(11,7) BE(12,8) BE(13,9)
FR BE(6,1) BE(7 ,2)  BE(8,3) BE(9,4) BE(10,5) BE(11,6) BE(12,7) BE(13,8)
EQ BE(6,1) BE(7 ,2)  BE(8,3) BE(9,4) BE(10,5) BE(11,6) BE(12,7) BE(13,8)
FR BE(1,14) BE(2,15) BE(3,16) BE(4,17) BE(5,18) BE(6,19) BE(7,20) BE(8,21)
FR BE(9,22) BE(10,23) BE(11,24) BE(12,25) BE(13,26)
EQ BE(1,14) BE(2,15) BE(3,16) BE(4,17) BE(5,18) BE(6,19) BE(7,20) BE(8,21)
EQ BE(8,21) BE(9,22) BE(10,23) BE(11,24) BE(12,25) BE(13,26)
FR BE(2,14) BE(3,15) BE(4,16) BE(5,17) BE(6,18) BE(7,19) BE(8,20) BE(9,21)
FR BE(10,22) BE(11,23) BE(12,24) BE(13,25)
EQ BE(2,14) BE(3,15) BE(4,16) BE(5,17) BE(6,18) BE(7,19) BE(8,20) BE(9,21)
EQ BE(9,21) BE(10,22) BE(11,23) BE(12,24) BE(13,25)
FR BE(3,14) BE(4,15) BE(5,16) BE(6,17) BE(7,18) BE(8,19) BE(9,20) BE(10,21)
FR BE(11,22) BE(12,23) BE(13,24)
EQ BE(3,14) BE(4,15) BE(5,16) BE(6,17) BE(7,18) BE(8,19) BE(9,20) BE(10,21)
EQ BE(10,21) BE(11,22) BE(12,23) BE(13,24)
FR BE(1,27) BE(2,28) BE(3,29) BE(4,30) BE(5,31) BE(6,32) BE(7,33) BE(8,34)
FR BE(9,35) BE(10,36) BE(11,37) BE(12,38) BE(13,39)
EQ BE(1,27) BE(2,28) BE(3,29) BE(4,30) BE(5,31) BE(6,32) BE(7,33) BE(8,34)
EQ BE(8,34) BE(9,35) BE(10,36) BE(11,37) BE(12,38) BE(13,39)
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FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR GA 
FR GA 
EQ GA 
EQ GA 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE 
EQ BE 
FR BE 
FR BE 
EQ BE

2.27) BE(3,28) BE(4,29) BE(5,30) BE(6,31) BE(7,32) BE(8,33) BE(9,34) 
10,35) BE(11,36) BE(12,37) BE(13,38)
2.27) BE(3,28) BE(4,29) BE(5,30) BE(6,31) BE(7,32) BE(8,33) BE(9,34) 
9,34) BE(10,35) BE(11,36) BE(12,37) BE(13,38)
3.27) BE(4,28) BE(5,29) BE(6,30) BE(7,31) BE(8,32) BE(9,33) BE(10,34)
11 35) BE (12 36) BE(13,37)
3,27) BE(4,28) BE(5,29) BE(6,30) BE(7,31) BE(8,32) BE(9,33) BE(10,34)
10 34) BE (11 35) BE(12,36) BE(13,37)
4,27) BE(5,28) BE(6,29) BE(7,30) BE(8,31) BE(9 ,32) BE(10,33) BE(11,34
12 35) BE (13 36)
4,27) BE(5,28) BE(6,29) BE(7,30) BE(8,31) BE(9,32) BE(10,33) BE(11,34
11 34) BE (12 35) BE(13,36)
15 14) BE (16 15) BE(17,16) BE(18,17) BE(19,18) BE(20,19) BE(21,20)
22 21) BE (23 22) BE(24,23) BE(25,24) BE(26,25)
15 14) BE (16 15) BE(17,16) BE(18,17) BE(19,18) BE(20,19) BE(21,20)
21 20) BE (22 21) BE(23,22) BE(24,23) BE(25,24) BE(26,25)
16 14) BE (17 15) BE(18,16) BE(19,17) BE(20,18) BE(21,19) BE(22,20)
23 21) BE (24 22) BE(25,23) BE(26,24)
16 14) BE (17 15) BE(18,16) BE(19,17) BE(20,18) BE(21,19) BE(22,20)
22 20) BE (23 21) BE(24,22) BE(25,23) BE(26,24)
17 14) BE (18 15) BE(19,16) BE(20,17) BE(21,18) BE(22,19) BE(23,20)
24 21) BE (25 22) BE(26,23)
17 14) BE (18 15) BE(19,16) BE(20,17) BE(21,18) BE(22,19) BE(23,20)
23 20) BE (24 21) BE(25,22) BE(26,23)
18 14) BE (19 15) BE(20,16) BE(21,17) BE(22,18) BE(23,19) BE(24,20)
25 21) BE (26 22)
18 14) BE (19 15) BE(20,16) BE(21,17) BE(22,18) BE(23,19) BE(24,20)
24 20) BE (25 21) BE(26,22)
19 14) BE (20 15) BE(21,16) BE(22,17) BE(23,18) BE(24,19) BE(25,20)
26 21)
19 14) BE (20 15) BE(21,16) BE(22,17) BE(23,18) BE(24,19) BE(25,20)
25 20) BE (26 21)
14 1) GA(15,2) GA(16,3) GA(17,4) GA(18,5) GA(19,6) GA(20,7) GA(21,8)
22 9) GA(23,10) aA(24,11) GA(25,12) GA(26,13)
14 1) GA(15,2) GA(16,3) GA(17,4) GA(18,5) GA(19,6) GA(20,7) GA(21,8)
21 8) GA(22,9) GA(23,10) GA(24,11) GA(25,12) GA(26,13)
28 27) BE(29,28) BE(30,29) BE(31,30) BE(32,31) BE(33,32) BE(34,33)
35 34) BE(36,35) BE(37,36) BE(38,37) BE(39,38)
28 27) BE(29,28) BE(30,29) BE(31,30) BE(32,31) BE(33,32) BE(34,33)
34 33) BE(35,34) BE(36,35) BE(37,36) BE(38,37) BE(39,38)
29 27) BE(30,28) BE(31,29) BE(32,30) BE(33,31) BE(34,32) BE(35,33)
36 34) BE(37,35) BE(38,36) BE(39,37)
29 27) BE(30,28) BE(31,29) BE(32,30) BE(33,31) BE(34,32) BE(35,33)
35 33) BE(36,34) BE(37,35) BE(38,36) BE(39,37)
30 27) BE(31,28) BE(32,29) BE(33,30) BE(34,31) BE(35,32) BE(36,33)
37 34) BE(38,35) BE(39,36)
30 27) BE(31,28) BE(32,29) BE(33,30) BE(34,31) BE(35,32) BE(36,33)
36 33) BE(37,34) BE(38,35) BE(39,36)
31 27) BE(32,28) BE(33,29) BE(34,30) BE(35,31) BE(36,32) BE(37,33)
38 34) BE(39,35)
31 27) BE(32,28) BE(33,29) BE(34,30) BE(35,31) BE(36,32) BE(37,33)
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EQ BE(37 
FR BE(28 
FR BE(36 
EQ BE(28 
EQ BE(35 
FR BE(29 
FR BE(37 
EQ BE(29 
EQ BE(36 
FR BE(30 
FR BE(38 
EQ BE(30 
EQ BE(37 
FR BE(27 
FR BE(34 
EQ BE(27 
EQ BE(33 
FR BE(28 
FR BE(35 
EQ BE(28 
EQ BE(34 
FR BE(29 
FR BE(36 
EQ BE(29 
EQ BE(35 
FR BE(30 
FR BE(37 
EQ BE(30 
EQ BE(36 
FR BE(31 
FR BE(38 
EQ BE(31 
EQ BE(37

33) BE(38,34) BE(39,35)
1) BE(29,2) BE(30,3) BE(31,4) BE(32,5) BE(33,6) BE(34,7) BE(35,8) 
9) BE(37,10) BE(38,11) BE(39,12)
1) BE(29,2) BE(30,3) BE(31,4) BE(32,5) BE(33,6) BE(34,7) BE(35,8)
8)
1)
9)
1)
8)
1)
9)
1)
8)
14
21
14
20
14
21
14
20
14
21
14
20
14
21
14
20
14
21
14
20

VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA
VA

PH(1,1 
PH(9,9  
PH(2,1

PH(3,1

PH(4,1

BE(36,9) BE(37,10) BE(38,11) BE(39,12)
BE(30,2) BE(31,3) BE(32,4) BE(33,5) BE(34,6) BE(35,7) BE(36,8) 
BE(38,10) BE(39,11)
BE(30,2) BE(31,3) BE(32,4) BE(33,5) BE(34,6) BE(35,7) BE(36,8) 
BE(37,9) BE(38,10) BE(39,11)
BE(31,2) BE(32,3) BE(33,4) BE(34,5) BE(35,6) BE(36,7) BE(37,8) 
BE(39,10)
BE(31,2) BE(32,3) BE(33,4) BE(34,5) BE(35,6) BE(36,7) BE(37,8) 
BE(38,9) BE(39,10)

BE(37,24) BE(38,25) BE(39,26)
BE (28 15) BE (29 16)
BE (35 22) BE (36 23)
BE (28 15) BE (29 16)
BE (34 21) BE (35 22)
BE (29 15) BE (30 16)
BE (36 22) BE (37 23)
BE (29 15) BE (30 16)
BE (35 21) BE(36 22)
BE (30 15) BE(31 16)
BE (37 22) BE (38 23)
BE (30 15) BE(3i 16)
BE (36 21) BE (37 22)
BE (31 15) BE (32 16)
BE (38 22) BE (39 23)
BE (31 15) BE (32 16)
BE (37 21) BE (38 22)
BE (32 15) BE (33 16)
BE (39 22)
BE (32 15) BE (33 16)
BE (38 21) BE (39 22)

BE(31,17) BE(32,18) BE(33,19) BE(34,20) 
BE(38,24) BE(39,25)
BE(31,17) BE(32,18) BE(33,19) BE(34,20) 
BE(37,23) BE(38,24) BE(39,25)

BE(38,23) BE(39,24)
BE(36,20)

BE(36,20)

BE(34,17) BE(35,18) BE(36,19) BE(37,20)

BE(34,17) BE(35,18) BE(36,19) BE(37,20)

PH(2 ,2)  PH(3,3) PH(4,4) PH(5,5) PH(6,6) PH(7,7) PH(8,8) 
PH(10,10) PH(11,11) PH(12,12) PH(13,13)

PH(3 ,2 )  PH(4,3) PH(5,4) PH(6,5) PH(7,6) PH(8,7) PH(9,8)
PH(10,9) PH(11,10) PH(12,11) PH(13,12)

PH(4 ,2 )  PH(5 ,3)  PH(6,4) PH(7,5) PH(8,6) PH(9,7) PH(10,8)
PH(11,9) PH(12,10) PH(13,11)

PH(5,2) PH(6 ,3)  PH(7 ,4)  PH(8,5) PH(9,6) PH(10,7) PH(11,8)
PH(12,9) PH(13,10)
PH(5,1) PH(6 ,2)  PH(7 ,3)  PH(8,4) PH(9,5) PH(10,6) PH(11,7) PH(12,8) 
PH(13,9)
PH(6,1) PH(7 ,2)  PH(8 ,3)  PH(9,4) PH(10,5) PH(11,6) PH(12,7) PH(13,8) 
PH(7,1) PH(8,2) PH(9 ,3)  PH(10,4) PH(11,5) PH(12,6) PH(13,7)
PH(8 ,1)  PH(9 ,2 )  PH(10,3) PH(11,4) PH(12,5) PH(13,6)
PH(9,1) PH(10,2) PH(11,3) PH(12,4) PH(13,5)
PH(10,1) PH(11,2) PH(12,3) PH(13,4)
PH(11,1) PH(12,2) PH(13,3)
PH(12,1) PH(13,2)
PH(13,1)
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FR PS(1,1) PS(2 ,2 )  PS 
FR PS(10,10) PS(11,11 
EQ PS(1,1) PS(2 ,2 )  PS
EQ PS(9 ,9 )  PS(10,10) PS(11,11) PS(12 ,12) PS(13,13)
FR PS(14,14) PS(15,15  
FR PS(21,21) PS(22,22  
EQ PS(14,14) PS(15,15  
EQ PS(20,20) PS(21,21  
FR PS(27,27) PS(28,28  
FR PS(34,34) PS(35,35  
EQ PS(27,27) PS(28,28  
EQ PS(33,33) PS(34,34  
FR TE(1,1) TE(2,2) TE 
FR TE(10,10) TE(11,11  
EQ TE(1,1) TE(2,2) TE
EQ TE(9,9) TE(10,10) TE(11,11) TE(12,12) TE(13,13)
FR TE(14,14) TE(15,15 
FR TE(21,21) TE(22,22 
EQ TE(14,14) TE(15,15 
EQ TE(20,20) TE(21,21 
FR TE(27,27) TE(28,28 
FR TE(34,34) TE(35,35 
EQ TE(27,27) TE(28,28 
EQ TE(33,33) TE(34,34 
FR TE(40,40) TE(41,41 
FR TE(47,47) TE(48,48 
EQ TE(40,40) TE(41,41 
EQ TE(46,46) TE(47,47 
FR TE(53,53) TE(54,54 
FR TE(60,60) TE(61,61 
EQ TE(53,53) TE(54,54 
EQ TE(59,59) TE(60,60 
FR TE(66,66) TE(67,67 
FR TE(73,73) TE(74,74 
EQ TE(66,66) TE(67,67 
EQ TE(72,72) TE(73,73 
FR TD(1,1) TD(2,2) TD 
FR TD(10,10) TD(11,11  
EQ TD(1,1) TD(2,2) TD

3.3) PS(4 ,4 )  PS(5 ,5  
PS(12,12) PS(13,13

3.3) PS(4 ,4 )  PS(5 ,5

PS(16,16) PS(17,17  
PS(23,23) PS(24,24  
PS(16,16) PS(17,17 
PS(22,22) PS(23,23  
PS(29,29) PS(30,30  
PS(36,36) PS(37,37  
PS(29,29) PS(30,30  
PS(35,35) PS(36,36

3 .3 )  TE(4,4) TE(5,5 
TE(12,12) TE(13,13

3 .3 )  TE(4,4) TE(5,5

TE(16,16) TE(17,17 
TE(23,23) TE(24,24 
TE(16,16) TE(17,17 
TE(22,22) TE(23,23 
TE(29,29) TE(30,30 
TE(36,36) TE(37,37 
TE(29,29) TE(30,30 
TE(35,35) TE(36,36 
TE(42,42) TE(43,43  
TE(49,49) TE(50,50 
TE(42,42) TE(43,43  
TE(48,48) TE(49,49 
TE(55,55) TE(56,56 
TE(62,62) TE(63,63 
TE(55,55) TE(56,56 
TE(61,61) TE(62,62 
TE(68,68) TE(69,69 
TE(75,75) TE(76,76 
TE(68,68) TE(69,69 
TE(74,74) TE(75,75

3 ,3 )  TD(4,4) TD(5 ,5  
TD(12,12) TD(13,13 

:3,3) TD(4,4) TD(5,5  
EQ TD(9,9) TD(10,10) TD(11,11) TD(12,12) TD(13,13) 
OU ME=ML IT=55 ND=4

PS(6,6)  PS(7,7)  PS(8,8)  PS(9,9)

PS(6 ,6)  PS(7,7) PS(8,8) PS(9,9)

PS(18,18) PS(19 
PS(25,25) PS(26 
PS(18,18) PS(19 
PS(24,24) PS(25 
PS(31,31) PS(32 
PS(38,38)  
PS(31,31)
PS(37,37)

PS (39 
PS (32 
PS (38

TE(6,6) TE(7,7)

,19) PS(20,20)  
,26)
,19) PS(20,20)  
,25) PS(26,26)  
,32) PS(33,33)  
,39)
,32) PS(33,33)  
,38) PS(39,39)  
TE(8,8) TE(9,9)

TE(6,6) TE(7,7) TE(8,8) TE(9,9)

TE(18,18) TE(19 
TE(25,25) TE(26 
TE(18,18) TE(19 
TE(24,24) TE(25 
TE(31,31) TE(32 
TE(38,38) TE(39 
TE(31,31)
TE(37,37)
TE(44,44) TE(45 
TE(51,51) TE(52 
TE(44,44) TE(45 
TE(50,50) 
TE(57,57) 
TE(64,64) 
TE(57,57) 
TE(63,63) TE(64 
TE(70,70) TE(71 
TE(77,77) TE(78 
TE(70,70) TE(71 
TE(76,76) TE(77 
TD(6,6) TD(7,7)

TE(32
TE(38

TE(51
TE(58
TE(65
TE(58

,19) TE(20,20) 
,26)
,19) TE(20,20) 
,25) TE(26,26) 
,32) TE(33,33) 
,39)
,32) TE(33,33) 
,38) TE(39,39) 
,45) TE(46,46) 
,52)
,45) TE(46,46) 
,51) TE(52,52) 
,58) TE(59,59) 
,65)
,58) TE(59,59) 
,64) TE(65,65) 
,71) TE(72,72) 
,78)
,71) TE(72,72) 
,77) TE(78,78) 
TD(8,8) TD(9,9)

TD(6,6) TD(7,7) TD(8,8) TD(9,9)
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