
 1

The London School of Economics and Political Scienc e

Authoring Collaborative Projects: A Study of Intellectual
Property and Free and Open Source Software (FOSS)
Licensing Schemes from a Relational Contract Perspective

Chenwei Zhu

Submitted to the London School of Economics and Political

Science for the degree of Doctor of Philosophy

London, October 2011

 2

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the

London School of Economics and Political Science is solely my own work.

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced

without the prior written consent of the author.

I warrant that this authorisation does not, to the best of my belief, infringe the

rights of any third party.

 3

Abstract

The emergence of free and open source software (FOSS) has posed many challenges to the

mainstream proprietary software production model. This dissertation endeavours to address

these challenges through tackling the following legal problem: how does FOSS licensing

articulate a legal language of software freedom in support of large-scale collaboration among

FOSS programmers who have to face a rather hostile legal environment underlined by a

dominant ideology of possessive individualism? I approach this problem from three aspects.

The first aspect examines the unique historical context from which FOSS licensing has

emerged. It focuses on the most prominent “copyleft” licence—GNU General Public

Licence—which has been shaped by the tension between the MIT-style hacker custom and

intellectual property law since the 1980s. The second aspect tackles the legal mechanism of

FOSS licences, which seems not dissimilar from other non-negotiated standard-form

contracts. My analysis shows that FOSS licences do not fit well with the neoclassical

contract model that has dominated software licensing jurisprudence so far. I therefore call for

replacing the neoclassical approach with Ian Macneil’s Relational Contract Theory, which

has remained conspicuously absent in the software licensing literature. The third aspect

explores FOSS programmers’ authorship as manifested in FOSS licensing. It argues that the

success of a FOSS project does not merely depend on the virtuosity of individual

programmers in isolation. More importantly, a core team of lead programmers’ efforts are

essential to channel individual authors’ virtuosity into a coherent work of collective

authorship, which can deserve credit for the project as a whole. The study of these three

aspects together aims to create a synergy to show that it is possible to graft a few

collaborative elements onto the existing legal system—underpinned by a neoliberal ideology

assuming that human beings are selfish utility-maximising agents—through carefully crafted

licensing schemes.

 4

Acknowledgements

I am deeply grateful to be given the opportunity to study at the LSE, where I have spent a

few most memorable years focusing on a subject that I am fascinated about.

I am most thankful to my lead supervisor Ms. Anne Barron who has been tremendously

supportive and patient in shepherding my academic project over these years. It is under

Anne’s careful guidance that I am able to channel my initial curiosity into this final doctoral

work.

I express my heart-felt gratitude to Professor Linda Mulcahy who helped me enormously on

Relational Contract Theory, which turned out to be such a crucial component of the whole

dissertation. Linda’s encouragement and kindness greatly helped me to finish this

dissertation during my final year of study.

I am also very thankful to Dr. Edgar Whitley who has given much support during my early

years at the LSE and I have benefited considerably from his advice.

A large part of this dissertation was written during my residency at the Lilian Knowles

House (a student hall in East London), where I spent significant amounts of time studying

and writing in its basement computer room. While there, I also made a few good friends

whose presence made my many long writing sessions less lonely. My final two chapters

were finished when I was lodging with two families at two different times (first with

Gwenda and Dafydd’s and then Yin and Bob’s). Both families have warmly treated me like a

family member and made great efforts to provide a quiet place for me to concentrate and

study during the final lap of my PhD journey. I also want to thank Carol Capel-Bradford, Bal

Khela, Sebastian Szuhay, David Possee and Joanna Sedillo, each of whom has spared some

time to read parts of this dissertation and I certainly benefit a lot from their helpful

comments and feedback.

Finally, I do not know how to thank enough my parents, who have made many sacrifices for

my education from my beginning stage until now. This dissertation is dedicated to them.

C.W.

 5

CONTENTS

DECLARATION .. 2

ABSTRACT .. 3

ACKNOWLEDGEMENTS ... 4

LIST OF CASES .. 8

CHAPTER 1 OVERVIEW: PROBLEMATISING FOSS LICENSING 10

1.1 INTRODUCTION ... 10

1.1.1 Two Conflicting Traditions: Where Do FOSS Licences Come From? 11

1.1.2 Three Aspects of FOSS Licensing: Framing the Questions ... 13

1.2 KEY CONCEPTS IN FOSS L ICENSING ... 15

1.2.1 Source Code and FOSS .. 16

1.2.2 “Free Software” and “Open Source” .. 17

1.2.3 FOSS Stewardship and the Hacker Ethic .. 19

1.2.4 FOSS Licence and “Copyleft” .. 21

1.3 STEWARDING FOSS PROJECTS: WHAT L ICENCES CAN AND CANNOT DO 24

1.3.1 Collaboration in FOSS Projects ... 24

1.3.2 The Role of FOSS Licensing .. 31

1.4 STRUCTURE OF THE DISSERTATION ... 40

CHAPTER 2 FROM THE HACKER ETHIC TO “OPEN SOURCE”: A BRIEF HISTORY . 42

2.1 INTRODUCTION : THREE HISTORICAL STAGES .. 42

2.2 FROM THE 1950S TO THE EARLY 1980S: THE PRE-L ICENSING ERA 44

2.2.1 Beginning of the Hacker Ethic ... 44

2.2.2 Decline of the Hacker Ethic ... 50

 6

2.3 FROM THE EARLY 1980S TO 1998: CLASH BETWEEN THE TWO TRADITIONS 54

2.3.1 Changes in Market and Law .. 54

2.3.2 The Birth of Copyleft .. 58

2.4 FROM 1998 ONWARDS: CHALLENGE FROM “O PEN SOURCE” .. 68

2.5 CONCLUSION ... 80

CHAPTER 3 INTELLECTUAL PROPERTY AND SOFTWARE FRE EDOM 82

3.1 INTRODUCTION ... 82

3.2 “I NTELLECTUAL PROPERTY” AND FOSS .. 83

3.3 COPYRIGHT AND FOSS .. 86

3.3.1 The Originality Threshold .. 87

3.3.2 Software as Expression and Function ... 92

3.3.3 Scope of Exclusivity: Restricted and Permitted Acts ... 98

3.4 PATENT AND FOSS ... 102

3.4.1 Patentability of Software-Related Inventions .. 103

3.4.2 Perceived Threat of Patents to Software Innovation ... 112

3.5 GPL AND SOFTWARE FREEDOM .. 117

3.5.1 GPL as a Copyright and “Copyleft” Licence ... 117

3.5.2 GPL as a Patent Licence and its Limit ... 126

3.6 CONCLUSION ... 128

CHAPTER 4 UNDERSTANDING FOSS LICENCES AS STANDARD FORMS—A

RELATIONAL CONTRACT PERSPECTIVE .. 130

4.1 INTRODUCTION ... 130

4.2 FOSS COLLABORATION : DISCRETE TRANSACTION OR RELATIONAL CONTRACT ? 132

4.2.1 Discretist Approach: “Presentiation” of Total Obligation .. 133

4.2.2 Relational Approach: Projecting Exchange into the Future .. 138

4.3 THREE DOCTRINAL ROUTES TO ENFORCING A FOSS L ICENCE .. 146

4.3.1 First Route: Contractual Licence ... 147

4.3.2 Second Route: Bare Licence .. 159

4.3.3 Third Route: Promissory Estoppel ... 164

 7

4.4 CONCEPTUALISING THE GPL AS A RELATIONAL CONTRACT ... 166

4.4.1 Two Obstacles: Classical and Neoclassical Laws .. 166

4.4.2 GPL as an Umbrella Agreement: Balancing Flexibility with Certainty 173

4.5 CONCLUSION ... 178

CHAPTER 5 THE IDEA OF AUTHORSHIP IN FOSS LICENSING 180

5.1 INTRODUCTION ... 180

5.2 INDIVIDUAL AND COLLECTIVE “A UTHORS” IN FOSS PROGRAMMING 183

5.2.1 Debating the Legacy of Romantic Aesthetics ... 183

5.2.2 Programming as an Engineering Discipline: Questioning “Originality” 187

5.2.3 Stewarding a FOSS Project: Questioning “Individuality” .. 189

5.3 DEVELOPMENT OF THE LEGAL PERSONA OF FOSS PROGRAMMERS 200

5.3.1 Claiming FOSS Authorship under Law (I): Copyright ... 202

5.3.2 Claiming FOSS Authorship under Law (II): Trademark ... 214

5.3.3 Legal Persona of Author-Stewardship ... 220

5.4 CONCLUSION ... 227

CHAPTER 6 CONCLUSION .. 228

6.1 CONTRIBUTIONS TO THE SCHOLARLY L ITERATURE ... 228

6.2 AVENUES FOR FUTURE RESEARCH .. 237

6.3 CONCLUDING REMARKS ... 244

BIBLIOGRAPHY .. 245

APPENDIX (A): DEVELOPMENT OF “INTELLECTUAL PROPERTY ” AND FOSS: A

TIMELINE ... 258

APPENDIX (B): GNU EMACS GENERAL PUBLIC LICENSE (198 5) 260

 8

List of Cases

Aerotel Ltd. v. Telco Holdings Ltd. [2007] 7 RPC 117

Apple Computer, Inc. v. Microsoft Corporation, 35 F.3d 1435 (9th Cir. 1994)

Arizona Retail v. Software Link, 831 F. Supp. 759 (D.Ariz. 1993)

Baird Textile Holding Ltd. v. Marks & Spencer plc. [2001] EWCA Civ 274

Beta Computers (Europe) v. Adobe Systems (Europe) (1996) SLT 604

Bilski v. Kappos, 130 S. Ct. 3218 (2010)

British Leyland Motor Corpn v. Armstrong Patents Co Ltd. [1986] AC 577

Cantor Fitzgerald International v. Tradition (UK) Ltd. [2000] RPC 95

Computer Associates International, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir.1992)

Currie v. Misa (1975) L.R. 10 Ex. 153

Diamond v. Diehr, 450 U.S. 175 (1981)

Feist Publication Inc. v. Rural Telephone Service Inc., 499 U.S. 340 (1991)

Follett v. New American Library 497 F. Supp. 304 (SDNY, 1980)

Gates Rubber v. Bando Chemical Ltd., 9 F.3d 823 (10th Cir. 1993)

Gilliam v. ABC, 538 F.2d 14 (2d Cir.1976)

Gottschalk v. Benson, 409 U.S. 63 (1972)

Ibcos Computers Ltd. v. Barclays Mercantile Highland Finance [1994] FSR 275

Jacobsen v. Katzer, 535 F.3d 1373 (Fed. Cir. 2008)

Lotus Development Corp. v. Paperback Software International, 740 F Supp 37 (D Mass,

1990)

 9

Lotus Development Corp. v. Borland International, 49 F.3d 807 (1st Cir. 1992); 516 US

233(1996)

Microsystems Software, Inc. v. Scandinavia Online AB, 98 F. Supp. 2d 74 (D.Masss., 2000),

aff’d, 226F. 3d 35(1st Cir., 2000)

Planetary Motion v. Techsplosion, 261 F.3d 1188 (11th Cir.2001)

Pollstar v. Gigmania, Ltd., 170 F.Supp. 2d 974 (E.D. Cal. 2000)

ProCD v. Zeidenberg, 86 F.3d 1447 (7th Cir.1996)

Richardson v. Flanders [1993] FSR 497

Saphena v. Allied Collection [1995] FSR 616

Specht v. Netscape Communications Corp., 306 F.3d 17 (2d Cir. 2002)

State Street Bank v. Signature Financial Group, 149 F. 3d 1368 (Fed. Cir. 1998)

Step-Saver Data Sys. Inc. v. Wyse Tech, 939 F.2d 91 (3rd Cir. 1991)

Symbian Ltd. v. Comptroller-General of Patents [2008] Bus. L.R. 607

Ticketmaster Corp. v. Tickets.com, Inc., U.S. Dist. LEXIS 6483 (C.D. Cal. 2003)

University of London Press Ltd. v. University Tutorial Press Ltd. [1916] 2 Ch 601

Vicom/Computer-related Invention, T208/84 [1987] EPOR 74; [1987] OJ EPO 14

Whelan Associates Inc. v. Jaslow Dental Laboratory Inc., 797 F.2d 1222 (3d Cir. 1986)

 10

Chapter 1 Overview: Problematising FOSS Licensing

1.1 Introduction

The emergence of free and open source software (FOSS) development as a method

for producing highly robust information products, such as the Linux operating

system or the Apache web server, has challenged many conventional ideas that

underpin the business model of proprietary software.1 What is truly remarkable about

these FOSS projects is their ability to attract a wide-range of voluntary contributors

across the globe, whose contributions are produced largely without immediate

monetary incentives.2 Benkler calls this phenomenon networked “peer production”,

where innovation is decentralised to its maximum and creative individuals follow

neither price signals under the market mechanism nor managerial commands within a

hierarchical corporate structure.3 In fact, the “peer production” model goes beyond

FOSS and it has already inspired many non-programming creative activities to be

conducted on the mass collaborative level in a similar way.4

Most significantly, each FOSS project can be seen as generating a software commons,

in which source code is freely accessed, used, modified and redistributed under

1 Eric Raymond, The Cathedral and the Bazaar, 2000, Version 3.0 at
<http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/> (hereafter Cathedral)
2 For a survey of the motivational forces behind FOSS contribution, see Karim R. Lakhani and Robert
G. Wolf, “Why Hackers Do What They Do: Understanding Motivation and Effort in Free/Open
Source Software Projects”, in Perspective on Free and Open Source Software, eds. by Feller,
Fitzgerald, Hissam & Lakhani (Cambridge, Mass.: MIT Press, 2005)
3 Benkler finds that the production model of FOSS operate largely outside the firm-based or market-
based structure: “Free software projects do not rely either on markets or on managerial hierarchies to
organize production. Programmers do not generally participate in a project because someone who is
their boss instructed them, though some do. They do not generally participate in a project because
someone offers them a price, though some participants do focus on long-term appropriation through
money-oriented activities, like consulting or service contracts. But the critical mass of participation in
projects cannot be explained by the direct presence of a command, a price, or even a future monetary
return particularly in the all-important microlevel decisions regarding selection of projects to which
participants contribute.” See Yochai Benkler, “Coase's Penguin, or, Linux and ‘The Nature of the
Firm’” (2002) 112, (3) Yale Law Journal 369, at 372-3
4 Wikipedia is a glaring example here. Richard Stallman sees Wikipedia as a natural extension of
FOSS collaboration into the area of encyclopaedias. See Stallman, “The Free Universal Encyclopedia
and Learning Resource” at <http://www.gnu.org/encyclopedia/free-encyclopedia.html>; see also Don
Tapscott, and Anthony D. Williams, Wikinomics (London: Portfolio, 2006); Charles Leadbeater, We-
Think (London: Profile Books, 2008)

 11

certain rules specified in a corresponding FOSS licence5. It is important to note that a

FOSS licence does not make programmers entirely abandon their intellectual

property rights altogether into the public domain, but it carefully retains some private

ownership rights for the purpose of preserving and nurturing the software commons.6

1.1.1 Two Conflicting Traditions: Where Do FOSS Licences Come From?

One of the most interesting but also puzzling issues that concern this dissertation is a

paradox as manifested in the software commons created by collaborative FOSS

projects. There seem to be two conflicting notions that are welded together in these

commons-oriented regimes: 1) programmers’ “stewardship” responsibility to share

software with the public, and to develop it collaboratively and 2) their individual

“private property” rights in the software code that is produced. These two notions

stem respectively from the two almost diametrically opposed traditions of producing

and circulating software. In this dissertation, I call the first one the “stewardship”

tradition, where software is widely shared in the community7, and the second one the

“private property” tradition, where exclusive property rights in software are held by

its authors. The two traditions have different pedigrees. The first tradition of software

stewardship is derived from the computer hacker culture originated in the 1950s and

1960s in some leading US computer research labs such as the MIT Artificial

Intelligence (AI) Lab, while the second tradition is institutionalised in intellectual

property law (especially copyright) that started to cover software as a subject matter

in the early 1980s.8

5 A FOSS licence is sometimes seen as the constitution of the corresponding software-sharing
community. Weber comments that FOSS licences can be read as the statement giving “constitutional
message” to a community and it should reassure that all programmers “will be treated fairly if they
join the community.” Steven Weber, The Success of Open Source (Cambridge, Mass.: Harvard Uni.
Press, 2004) Success, p.179 (Hereafter Success)
6 FOSS projects are not embodiment of anarchy, but there is organisation and governance. It is argued
that stewardship is an important mode of governing the software commons enabled by FOSS licences.
See Chris DiBona, Danese Cooper, and Mark Stone, “Introduction”, in Open Sources 2.0,edited by
Chris DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly, 2006) p. xxxvii
7 A few leading FOSS programmers calls for adopting the term “stewardship”, which is believed to be
a more accurate term in describing FOSS practice in managing software commons. See, for example,
Chris DiBona, Danese Cooper, and Mark Stone, “Introduction” to Open Sources 2.0,edited by Chris
DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly, 2006) p. xxxvii
8 The US Congress amended their 1976 Copyright Act in 1980 and put “software” under the
protection the same way that “literary works” are protected. The similar thing happened in the UK in
the early 1980s as well.

 12

The hacker’s stewardship tradition follows the so-called “Hacker Ethic”, which was

first documented in the form of six tenets by Steven Levy in his famous book—

Hackers: Heroes of the Computer Revolution—published in 1984.9 From the 1950s

to the early 1970s, software was shared among computer hackers and it was

impossible for anyone to claim exclusive ownership rights in software because

copyright was not established enough to include software as a subject matter. This

Hacker Ethic is important because it is said to have a lasting impact on the “shared

identity and belief system” of today’s FOSS programmers.10 It has also seeded an

important norm of collaboration for any sustainable FOSS project, where software

code should be shared as widely as possible and there should be no barrier to

artificially block the flow of information11.

However, in the late 1970s, this hackers’ stewardship tradition of information sharing

began to be eroded by the rise of proprietary software. There were two developments

that contributed to this erosion. First, software came under trade secrecy protection.

Many hackers were required to sign non-disclosure agreements when they were lured

away to write code for proprietary software companies. Secondly, legislation was

changed to make copyright subsist in software. In 1980, the US Congress extended

its copyright law to explicitly cover software programs12. Copyright later became a

main mode of IP that grants programmers’ exclusive ownership in software.13

The FOSS licences came into existence exactly during this historical context where

the old Hacker Ethic came into intense conflict with the new trend of owning

proprietary rights in software. In response to the ascendancy of proprietary software,

some hackers began to experiment with the idea of crafting copyright licences to

specify the programmers’ stewardship responsibility of software sharing. The most

prominent example is the GNU General Public License (GPL), which was designed

9 Hereafter Levy, Hackers (London: Penguin Books, 1984,1994)
10 Steven Weber, Success, supra note 5, p.144
11 For example, the second tenet of the Levy’s ethic says that “all information should be free”, which
later becomes an important, though not entirely uncontroversial, norm in the internet age.
12 17 U.S.C. s.101
13 Specifically, the US Copyright Act gives copyright owners including software programmers the
“exclusive right” to do certain activities, and it would be illegal for non-owners to do these activities
without permission.17 USC s. 106; However, it should not be forgotten that the copyright owners’
“exclusive right” have two exceptions in software: First, in order to run the software program, it
should be allowed to copied to hard disk and computer’s memory; second, users are allowed to make
back-up copies. 17 U.S.C. s.117

 13

and has been perfected by an ex-MIT hacker Richard Stallman since the 1980s.14 The

GPL is the first and most widely adopted licence among FOSS developers. It

contains an innovative feature known as a “copyleft” clause that enjoins the

downstream developers to share their modifications and improvements of the GPL

covered code.15 Copyleft is especially useful for those community-based projects

such as the Linux kernel to grow and expand outside the market mechanism and the

hierarchical corporate structure. It is interesting to note that copyleft licences,

including the GPL, do not dispense with copyright. The paradox is that their

imposition of the “share-alike” responsibility in copyleft is dependent upon the broad

property rights granted by the copyright regime in the first place. In order to make

sense of this paradox, it should be borne in mind that the GPL (and other FOSS

licences) is an attempt to reconcile two antagonistic traditions battling to gain

influence over the way that software is produced and distributed. In other words,

copyleft is the computer hackers’ legal experiment to graft the old hacker culture

onto the IP law system through the device of FOSS licensing. Given the hugely

complex and paradoxical nature of the subject, I need to further narrow the

dissertation down to three more specific aspects of FOSS licensing and its role in

FOSS collaboration in the following sub-section.

1.1.2 Three Aspects of FOSS Licensing: Framing the Questions

The main thrust of this dissertation is to study collaborative relations through the lens

of FOSS licensing, which is shaped by the tension between the tradition of

stewardship and that of private ownership. With this tension firmly in the

background, I frame the research questions under three interrelated aspects of FOSS

licensing:

� Historical Aspect The first aspect tackles the question as to the origin the

FOSS stewardship tradition and how it has managed to coordinate large-scale

14 Stallman wrote the very first copyleft licence known as the Emacs General Public Licence (EGPL)
in 1985. It was a licence specifically designed for the Emacs programming editor. It was been
amended a couple times before it finally was turned into the generic GPL 1.0 in 1989. The 1985
EGPL licence was the solo work of Stallman intended to retain the Emacs culture of software sharing,
which nonetheless became increasingly vulnerable facing the rise of proprietary software. I will give a
more detailed account of the birth of copyleft in Chapter 2.
15 s. 2(b) GPL v2.0; s. 5(c) GPL v.3.0

 14

collaboration among programmers. I will show the historical context where

computer hackers’ collaborative ethos was first gestated and later concretised

into software stewardship responsibility as detailed by FOSS licences. I define

“stewardship” as FOSS programmers’ responsibility to preserve and protect the

commons where software is freely accessible, modifiable and redistributable. I

further narrow down stewardship responsibility in this dissertation to the

software developers’ specific duty to share software pursuant to 1) the Hacker

Ethic (documented by Steven Levy in 1984) 2) Free Software Definition (by

Stallman) and 3) Open Source Definition (by Raymond and Perens). I will show,

through the lens of FOSS licensing, why the “commons” held in stewardship is

critical to the success of any large-scale “peer produced” collaborative software

project.

� Legal Aspect (Intellectual Property and Contract) The second aspect

explores the jurisprudence of FOSS licensing schemes which covers both

(intellectual) property and contract laws. It tries to tackle the question as to how

FOSS licensing has attempted to graft FOSS stewardship responsibility (to secure

software freedom) onto the IP system. I find that the existing doctrinal rules from

IP and contract laws, which assume that economically minded individuals

compete against each other in zero-sum games, do not satisfactorily explain the

highly collaborative relation that FOSS licences intend to support. Instead, I will

employ Ian Macneil’s Relational Contract Theory (RCT)16 to shed some new

light on the issue. I argue that licences used by any successful FOSS projects are

actually a kind of relational contract involving a high degree of cooperation over

a long period of time, rather than a series of one-shot discrete transactions.

� Authorial Aspect The third aspect asks: who are the “authors” of FOSS?

How is programmers’ authorship manifested in FOSS licences? What motivates

authors to contribute to software commons in a seemingly altruistic manner? I

will show that the highly collaborative nature of FOSS authorship hardly

conforms to the Romantic vision of the authors as solitary individual geniuses

that are assumed by the orthodox IP legal institution. The practice of FOSS

licensing reflects FOSS programmers’ desire to be credited as authors of their

16 I.R. Macneil, The New Social Contract—An Inquiry into Modern Contractual Relations (New
Haven and London: Yale University Press, 1980)

 15

contributions. Most importantly, FOSS authors are not just individual creators of

code in isolation. When individually created contributions are pieced together

into a whole, the coordinating efforts behind the project would give birth to a

collective authorship that can be held responsible and deserve credit for the

production of the FOSS project as a whole. This collective authorship is closely

related to the lead programmers’ stewardship responsibility to forge collaboration

among individual programmers driven by a multiplicity of motivational forces. It

is exactly this alignment of authorship with stewardship that has fundamentally

challenged the author-ownership model that dominates the conventional IP

jurisprudence.

The study of these three aspects together will create a synergy to show that FOSS

programmers’ struggle to rebuild some elements of a collaborative ethos that

originated from the old hacker ethic but has been eclipsed by the rise of intellectual

property (especially copyright) regulation of software innovation. This struggle runs

against a dominant neo-liberal understanding of modern property and contract

institutions as mainly furthering the economic interests of atomised individuals in

isolation. It results in programmers’ minimum stewardship responsibility being

verbalised into FOSS licensing terms, which becomes the legal infrastructure that

large-scale collaboration can rely upon. Although the role of FOSS licensing in

facilitating collaboration is important, my thesis by no means intends to exaggerate

this role. FOSS licensing alone does not make collaboration happen, but it must be

combined with other non-legal decisions made by programmers’ one integrated

project in a radically decentralised environment17. I will start by clarifying a few

basic key concepts that will help to understand FOSS programmers’ licensing

schemes in relation to their collaborative efforts.

1.2 Key Concepts in FOSS Licensing

This section is written to clarify a few of the most basic concepts that are of great

importance to this dissertation. I will divide them into four groups, each of which

deals with two closely related concepts in pair. I will give each concept a concise

17 One of these non-legal factors is the technical decision made by lead programmers to create a
modular architecture, where software can be modified by many collaborating programmers. See
Section 1.3.1 of this chapter for more detail.

 16

definition and then explain briefly their importance in the context of FOSS licensing.

I believe these explanations will facilitate the understanding of the subject when the

dissertation progresses into a more detailed and technical discussion.

1.2.1 Source Code and FOSS

Source code is the technical term used to describe the human-readable code that is

written by programmers. Not unlike other human language, source code is written in

the alphanumeric form, which can be understood or possibly altered by other

programmers. Source code needs to be turned into machine-readable object code

through a complier program before it can be run by a computer. This process is

known as “compilation”.18

The significance of source code is threefold. First, because source code can be

written and read by human beings, it is not drastically dissimilar from literary text.

For this reason, most countries make software eligible for copyright protection under

the category of literary work by analogy19. Second, software can be easily modified

through changing the source code and thus opens up the possibility for other

programmers to make adaptations to their own needs or improve the software

collaboratively. Thirdly, because the source code can be read by human beings, it

makes software not only a technological artifact but also a communicative process.

That’s why software can also be seen as a kind of “discourse”.20 This

“communicative” or “discursive” feature has a broader social consequence. It leads

the anthropologist Christopher Kelty to believe that FOSS is a kind of public sphere

where FOSS programmers argue not only “about” technology but also “through”

technology (as if the source code is their human language).21 So by hiding the source

code, software will be effectively deprived of its communicative potential, which

goes against the original design of this technology.

18 David Bainbridge, Legal Protection of Computer Software (Heywards Heath, West Sussex: Tottel
Publishing, 2008, 5th Ed.) p.57
19 For example, s.3(1), UK CDPA 1988
20 Fitzgerald points out that software is kind of discourse due to its communicative nature: “Software
in the information society is discourse. It is not simply a literary text (a copyright law categorisation)
it is fundamental to communicative architecture.” Brian Fitzgerald, “Software as Discourse? The
Challenge for Information Law” (2000) 22 (2) E.I.P.R. 47
21 Kelty, Two Bits—The Cultural Significance of Free Software, (Durham: Duke University Press,
2008), p.29 (Hereafter Two Bits)

 17

FOSS can be defined as the kind of software whose source code is publicly available

with no restriction on modification and redistribution of it. In contrast, proprietary

“closed-source” software developers release software only with non-human readable

object code without disclosing the corresponding source code. Stallman points out:

Source code is useful (at least potentially) to every user of a program. But most

users are not allowed to have copies of the source code. Usually the source code

for a proprietary program is kept secret by the owner, lest anybody else learn

something from it. Users receive only the files of incomprehensible numbers

that the computer will execute. This means that only the program’s owner can

change the program.22

It is important to know that disclosure of the source code by itself is not enough to

qualify software as FOSS. We must look at the definitions of “free software” and

“open source” for more detailed guide in the following sub-section.

1.2.2 “Free Software” and “Open Source”

Free software is more than just publicly disclosed source code. The Free Software

Foundation (founded by Richard Stallman) publishes The Free Software Definition

(FSD), defining free software as the type of software that gives its users four kinds

of freedom:

� The freedom to run the program, for any purpose (freedom 0).

� The freedom to study how the program works, and adapt it to your needs

(freedom 1). Access to the source code is a precondition for this.

� The freedom to redistribute copies so you can help your neighbor (freedom 2).

� The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits (freedom 3). Access to the

source code is a precondition for this.23

22 Richard Stallman, “Why Software Should Be Free”, 1991, at
<http://www.gnu.org/philosophy/shouldbefree.html>
23 Richard Stallman, “The Free Software Definition” at <http://www.gnu.org/philosophy/free-
sw.html>

 18

Along the same line, Open Source Initiative (co-founded by Eric Raymond and

Bruce Perens) publishes the Open Source Definition (OSD) including a long and

detailed list comprising ten criteria. Perens distils the ten criteria into the three

principles. It defines open source software as giving software users three kinds of

rights:

� The right to make copies of the program, and distribute those copies.

� The right to have access to the software’s source code, a necessary

preliminary before you can change it

� The right to make improvements to the program.

Except that the wording is slightly different, the FSD and the OSD means almost the

same thing in terms of the duty that programmers should bear: FOSS programmers

should give users the “freedoms” (as in the FSD) or the “rights” (as in the OSD) to

access, copy, modify and redistribute the software. Based on this reason, some

scholars think that there is no pronounced difference between “free software” and

“open source” because both labels describe the same type of technological artifact or

the same type of programming practice.24

Unfortunately, this view is not held by the people who have respectively authored the

FSD and the OSD. There has been a long-standing schism between the two camps.

Stallman on the side of the FSD, believes that free software campaigners and open

source advocates hold different visions about the future of non-proprietary software.

According to him, free software is a “social movement” to enlarge users’ software

freedom, while open source is merely a software “development methodology” that

claims itself to be superior to proprietary software.25 Raymond, from the camp of

“open source”, distances himself from Stallman’s deep scepticism about

commercialisation of non-proprietary software. He criticises free software movement

for being “very zealous and very anticommercial”.26 For Raymond and his followers,

“open source” should break into the mainstream software market and its success

24 For example, Kelty is the champion of this view. See Kelty, Two Bits, p.100
25 Stallman, “Why Open Source Misses the Point of Free Software” at
<http://www.gnu.org/philosophy/open-source-misses-the-point.html>
26 Raymond, Section 2 “The Varieties of Hacker Ideology” in Homesteading the Noosphere, 2002, at
<http://www.catb.org/~esr/writings/homesteading/homesteading/>

 19

depends upon the pragmatic approach rather than the closed ideology of “software

freedom”.27

1.2.3 FOSS Stewardship and the Hacker Ethic

FOSS stewardship means programmers’ duty or responsibility to preserve and

protect the commons where software is freely accessible, modifiable and

redistributable. FOSS stewardship must be pursuant to the software developers’ duty

listed in Free Software Definition and/or the Open Source Definition.

The Hacker Ethic is historically the main source of FOSS stewardship duty to share

software, and it later evolves into the FSD and the OSD. It first developed in the

computer hacker community such as the MIT AI Lab since the 1950s and the 1960s.

It originally means the hackers’ duty to share any information concerning computer

technology and this happens in an era when IP law had not yet been used to cover

software. In the beginning, the Hacker Ethic was largely a body of unwritten rules,

and it was “an ethic seldom codified, but embodied instead in the behaviour of

hackers themselves.”28 In 1984, Steven Levy, in his highly regarded pioneering study

of the hacker culture, identifies six widely recognised tenets of the Hacker Ethic. The

first three tenets are the most relevant to the software stewardship obligation in this

dissertation:

� Tenet 1: Access to computers—and anything which might teach you
something about the way the world works—should be unlimited and
total. Always yield to the Hands-on Imperative!

� Tenet 2: All information should be free.
� Tenet 3: Mistrust Authority—Promote Decentralisation.

27 My position on this issue is that there is both consensus and division between the two camps and it
would be wrong to see only one side of the story. The consensus and the division happen on two
different levels. First, on the technical level, the two camps agree on the technical definition of non-
proprietary software (in the FSD and OSD) and there is a consensus that software developers should
have the same set of stewardship obligations to share software as listed in both the FSD and the OSD.
Secondly, on the ideological level, free software campaigners and open source advocates disagree on
the ideology behind their respective causes. Stallman’s “free software” is a belief in the intrinsic value
of “freedom” as the ultimate driving force of the movement. Raymond’s “open source” does not wish
to engage with the philosophical discourse of “freedom”, but it adopts a more pragmatic market-
friendly approach. For more detail about difference between the two camps in a historical context, see
Section 2.4, Chapter 2 of this dissertation for more detail.
28 Levy, Hackers, p.7

 20

The first two tenets calling for “unlimited and total” access to computers (Tenet 1)

and “all information should be free” (Tenet 2) lays the ethical foundation for the FSD

and the OSD, while Tenet 3 of “Mistrust Authority—Promote Decentralisation”

anticipates the decentralised “peer production” model that marks the success of

FOSS projects. Furthermore, there is also a difference between Levy’s ethic and the

later FSD and OSD. The unlimited and total access to “computers” in the first tenet

of the Hacker Ethic covers both hardware and software in its early days, whilst the

FSD and the OSD is focused only on software, because the latter is intended to be the

guideline for writing software licences.

Alternatively, the definition of the Hacker Ethic can also be found in the definitive

The New Hacker's Dictionary (also known the “Jargon File” edited by Raymond).

The dictionary defines the Hacker Ethic as the “belief that information-sharing is a

powerful positive good, and that it is an ethical duty of hackers to share their

expertise by writing open-source code and facilitating access to information and to

computing resources wherever possible.”29 (added emphasis) This is a good and

succinct definition that encapsulated the core meaning of FOSS programmers’

stewardship duty which is adopted by this dissertation.

The old Hacker Ethic was later challenged and eroded by the rise of proprietary

software in the late 1970s, but it was never fully defeated. A more recent study

shows that the Hacker Ethic after the 1980s and until the beginning of the twenty-

first century is still alive and well amongst FOSS programmers,30 thanks to the

advent of FOSS licences in the mid-1980s. These licences are written in the form of

intellectual property licences to guard programmers’ core stewardship responsibility

of software sharing against encroachment of proprietary software. This leads me to

explain exactly what the FOSS licences are.

29 According to the Jargon File, the Hacker Ethic has also a second meaning: “The belief that system-
cracking for fun and exploration is ethically OK as long as the cracker commits no theft, vandalism, or
breach of confidentiality.” This is not the ethic that is dealt with in this dissertation. “The Hacker
Ethic” in Jargon File, compiled by Raymond, at <http://www.catb.org/jargon/html/H/hacker-
ethic.html>
30 Himanen’ study demonstrates the robustness of the Hacker Ethic in the information society. See
Pekka Himanen, The Hacker Ethic and the Spirit of the Information Age, (NY: Random House, 2001)

 21

1.2.4 FOSS Licence and “Copyleft”

A FOSS licence is defined as an “intellectual property” licence that gives software

users the rights to access, copy, modify and redistribute the source code.31 The

clauses in a FOSS licence should not impose any restriction that contradicts FOSS

stewardship responsibility as detailed in the FSD and the OSD32. There are two types

of FOSS licences. One is called copyleft licences and the other is known as

permissive (non-copyleft) licence.

Copyleft Licences

A copyleft licence contains an anti-privatisation clause that enjoins downstream

developer-users to share their publicly released modifications or improvements of the

original software. In other words, any derivative works based on the original

copylefted code, when publicly distributed, must be released under the same copyleft

licence. In the mid-1980s Richard Stallman designed the first copyleft licence for his

GNU Emacs programming editor. Later he turned this Emacs-specific licence into a

generic template licence—GNU General Public License (GPL)—that can be used by

any software.33 The GPL is not only important to Stallman’s own GNU software

project, but it is also crucial to the success of many other FOSS projects. The most

31 It is important to be aware that the umbrella term “intellectual property” (IP) normally comprises at
least three main sub-areas: copyright, patent and trademark. Stallman points out that three sub-areas of
are rather different and the term should be avoided whenever possible: “Copyright law was designed
to promote authorship and art, and covers the details of expression of a work. Patent law was intended
to promote the publication of useful ideas, at the price of giving the one who publishes an idea a
temporary monopoly over it—a price that may be worth paying in some fields and not in others.
Trademark law, by contrast, was not intended to promote any particular way of acting, but simply to
enable buyers to know what they are buying. Legislators under the influence of the term “intellectual
property”, however, have turned it into a scheme that provides incentives for advertising. ” Stallman,
“Did You Say ‘Intellectual Property’? It’s a Seductive Mirage” at
<http://www.gnu.org/philosophy/not-ipr.html>
32 Larry Rosen distinguishes open source licences from proprietary licences against the criteria as to
whether “software freedom” is protected or not. His definition is also helpful to illustrate the nature of
a FOSS licence:
� “An open source license is the way a copyright and patent owner grants permission to others to

use his intellectual property in such a way that software freedom is protected.”
� “A proprietary licence is the way a copyright and patent owner grants permission to others to use

his intellectual property in a restricted way, through secrecy or other limitations, so that software
freedom is not protected.”

Lawrence Rosen, Open Source Licensing—Software Freedom and Intellectual Property Law (Upper
Saddle River, NJ: Prentice Hall PTR, 2005) p. 52
33 For the historical context in which the GPL came out of the GNU Emacs dispute from 1983 to
1985, see Chapter 2 of this thesis and also Kelty, Chapter 6 “Writing Copyright Licences”, Two Bits,
pp.179-209

 22

successful one of them is no doubt the Linux kernel program that has been licensed

under the GPL since its inception.

It is important to note that copyleft does not straightforwardly reverse or oppose

copyright, but its legal mechanism relies on copyright. The preamble of the current

version of the GPL (version 3.0) makes it clear that software developers use the GPL

to protect users’ rights with two steps: “(1) assert copyright on the software, and (2)

offer [users] this License giving [users] legal permission to copy, distribute and/or

modify it.” 34 So copyright provides the basic legal framework for the software

developers to enable software freedom in the first place. What is really innovative

and central to copyleft is its “share-alike” clause, which is sometimes also known as

the “viral” clause.35 Section 5(c) of the GPL requires that the “modified source

version” based upon the original GPL covered code must be licensed under the same

GPL when publicly released:

You must license the entire work, as a whole, under this [GNU General Public]

License to anyone who comes into possession of a copy. […] This License

gives no permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.36 (added emphasis)

Under this clause, if a follow-up programmer makes some changes to a piece of GPL

covered code, then the modified source version as a whole (i.e. the “entire work” as

in the clause), when publicly re-distributed, must be released under the same GPL.

Copyleft is essentially an anti-privatisation device meticulously designed to prevent

software programmers from hiding modifications of the GPLed code. It reconfigures

the central function of copyright—which intends to give copyright owners exclusive

control over their work—into an anti-exclusionary institution, where everything must

be shared. In this way, GPLed software is made into an evolving object more than a

static non-modifiable end-product and it is said to give its users an unbroken chain of

34 Preamble, GNU GPL 3.0
35 Andres Guadamuz, “Viral contracts or unenforceable documents? Contractual Validity of Copyleft
Licenses", (2004) 26 (8) European Intellectual Property Review 331-339.
36 Historically, the previous version of the GPL (v2.0) has been critical in the success of projects like
the Linux project. Since the GPL v2.0 continues to be used until today, it is worth quoting its copyleft
clause as well. Section 2(b) of the GPL v2.0 says: “You must cause any work that you distribute or
publish, that in whole or in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this License.”

 23

software freedom.37 It is worth noting that the whole GPL licence is a much longer

and more complicated document than this anti-privatisation copyleft clause. I will go

back to discuss the GPL and its relation with intellectual property law in more detail

in Chapter 3.

Permissive Licences (BSD-style Licences)

Not all FOSS licences are copylefted. There are non-copyleft licences as well. They

are known as the “permissive licences”, which are sometimes also called BSD-style

licences or “academic licence”38 in the literature. Because permissive licences do not

have copyleft’s anti-privatisation clause that forces the downstream developers to

contribute modifications back to the community, it is more “permissive” than the

GPL in this sense. Historically, permissive licences are associated with software

distribution by academic institutions such as the University of California, Berkeley.

For example, UC Berkeley publishes its own permissive licence called BSD

(Berkeley Software Distribution) License, which is also widely adopted in the FOSS

world. The BSD License is occasionally called “copycenter”, which indicates that it

sits somewhere between copyright and copyleft.39

Apart from the requirement of retaining the original copyright notice40, the BSD

licence allows the downstream users to do almost whatever they want in

redistributing the source and object code. This means that in future distributions, the

BSD licensed software is not obliged to be re-licensed under the same BSD licence.

So it is possible for the original BSD licensed software to be released under other

licences including proprietary licences. The direct upshot is that the initially freely

available source code has the possibility to be privatised in future distributions. A

notable example is Mac OS—Apple’s operating system—which contains a

37 Free Software Foundation, “Rationale Document”, at <http://gplv3.fsf.org/rationale>
38 Rosen, supra note 31, pp.73-74
39 Eric Raymond et. al., “Copycenter”, The Jargon File at
<http://catb.org/~esr/jargon/html/C/copycenter.html>; Kirk McKusick, a computer scientist and a
major contributor to the BSD system writes: “[…] Berkeley had what we called "copycenter," which
is "take it down to the copy center and make as many copies as you want." You want to go off and do
proprietary things with it? Fine, you can do that. You want to keep it out in the Open Source domain?
You're welcome to do that as well.” BSD Newsletter, “What is the BSD License?” at
<http://www.bsdnewsletter.com/bsd/license.html>
40 The BSD licence requires that redistribution of the source code and binary code “must retain the
above copyright notice”. See “BSD License Template” at <http://www.opensource.org/licenses/bsd-
license.php>

 24

significant amount of FreeBSD code originally released under the BSD License.

Apple modifies FreeBSD’s code and then turns the modified version into proprietary

software. Apple is allowed to do so because the BSD License, unlike the GPL, does

not require downstream developers to disclose the source code of their modified

versions.

1.3 Stewarding FOSS Projects: What Licences Can and Cannot Do

To steward a FOSS project is more than just to choose and use a plausible licensing

scheme.41 A licence does not exist for its own sake, but its importance is realised

through its being the legal expression of programmers’ real collaborative experience

that actually builds the FOSS project. In this dissertation, I argue that there are at

least two elements that make a FOSS project sustainable for a lasting period of time:

i) programmers’ collaboration to integrate peer-produced contributions into a single

coherent artefact and ii) a corresponding FOSS licence that is employed to facilitate

this collaboration. The combination of the two elements makes the licence not

merely a paper or electronic document on its own, but this licence is underpinned by

a kind of “relational contract” with real lived collaborative experience among FOSS

programmers. In particular, I will show that Ian Macneil’s Relational Contact Theory

(RCT) is helpful in analysing the FOSS projects’ ability to engage long-term

collaborative relations, which are sharply distinguished from the discrete commodity

transaction model as assumed by proprietary software licensing practice. I will now

explain the two elements.

1.3.1 Collaboration in FOSS Projects

The norm to “collaborate radically”, according to Larry Sanger, is “one of the great

innovations of the open source software movement.”42 Here collaboration happens in

41 Tim O’Reilly, a prominent pro-FOSS entrepreneur, observes: “But open source is more than just a
matter of licenses. Some of the most significant advances in computing, advances that are
significantly shaping our economy and our future, are the product of a little-understood ‘hacker
culture.’ It is essential to understand this culture and how it produces such innovative, high-quality
software. What’s more, companies large and small are struggling to understand how the ethic of free
source code distribution affects the economic models underlying their present businesses.” O’Reilly,
“Lessons from Open-Source Software Development”, (1999) 42 (4) Communications of the ACM 33
at 34
42 Sanger (the ex-chief architect of Wikipedia) means “radical collaboration” by the norm that
“anyone can edit any part of anyone else’s work”. Radical collaboration is crucial to the success of

 25

a radically decentralised environment and it is deeply rooted in the FOSS

programmers’ stewardship tradition where computers hackers address and solve

almost all their technical problems collaboratively through information sharing since

the 1950s and the 1960s.43 Many later long-lasting FOSS projects owe exactly their

success to this tradition of radical collaboration inherited from the older hacker

community.

Radical collaboration may appear to be self-organised or spontaneous cooperative

behaviour among FOSS contributors, but in fact it is coordinated by a small team of

lead developers to make it happen.44 In this light, I offer a refined definition of

“radical collaboration” as identified by Sanger. I argue that “collaboration” in any

successful FOSS project has two defining aspects: it is not only 1) radically

decentralised but also 2) coordinated among a large number of contributors. First,

what makes FOSS collaboration stand out is its radically decentralised structure

capable of harnessing knowledge, intelligence and skills from potentially everyone

with a minimum level of programming literacy connected by the internet. This

radical openness allows individual innovators to delve into the tasks that truly pique

their interest. It restores software programming activities as intellectual endeavours

that are worth pursuing for their own sake.45 Programmers satisfy their own curiosity

in the process of exploring and solving technical problems instead of just following

managerial commands in a firm, or monetary incentives on the market.46 In short, a

peer-production environment allows individuals to have a large degree of autonomy

to follow their own intellectual pursuits under its radically decentralised and

Wikipedia, because it was “made possible for work to move forward on all fronts at the same time, to
avoid the big bottleneck that is the individual authors, and to burnish articles on popular topics to a
fine luster.” Larry Sanger, “The Early History of Nupedia and Wikipedia: A Memoir”, in Open
Sources 2.0,edited by Chris DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly,
2006) p.322
43 See Section 2.2 of Chapter 2. See especially, Tenet 3 (“Mistrust Authority and Promote
Decentralisation” of the Hacker Ethic documented by Levy.
44 Although the vast number of non-core “peripheral” contributors’ behaviours are rather more like
self-organised spontaneous cooperation, these behaviours should not prevent us from seeing core
developers’ efforts to organise and coordinate collaboration among all contributors. For a detailed
analysis of the “myth” of “self-organisation” in FOSS, see Weber, Success, supra note 5, pp.131-132;
see also Marrella, Fabrizio & Yoo, Christopher S. “Is Open Source Software the New Lex
Mercatoria? (2007) 47 (4) Virginia Journal of International Law
45 See Richard Sennett, The Craftsman (New Haven & London: Yale University Press, 2008) p.9,
pp.24-25
46 Raymond’s famous aphorism that “every good work of software starts by scratching a developer’s
personal itch” captures this situation. Raymond, Cathedral, supra note 1

 26

curiosity-driven structure.47 Furthermore, it is also worth noting that collaboration is

not unique to FOSS, and many corporate proprietary software projects also require

some degree of collaboration. However, corporate collaboration happens on a much

smaller scale and it is by no means radically decentralised, because innovation tends

to be strictly restricted among the employed programmers and non-programming

administrative staff within the compound of a particular company.48

The second aspect of FOSS collaboration addresses an important weakness of radical

decentralisation. No matter how innovative each individual programmer is, peer-

produced contributions by themselves do not automatically integrate into one big

piece of coherently functional software. The radical scale of decentralisation only

adds tremendous difficulty to the task of integrating a heterogeneous amount of

contributions into a whole. According to Surowicki, in a highly decentralised system,

innovation becomes inevitably fragmentary and unsystematic because “there’s no

guarantee that valuable information which is uncovered in one part of the

[decentralised] system will find its way through the rest of the system” and

[s]ometimes valuable information never gets disseminated, making it less useful than

it otherwise would be.”49

In order to compensate for this weakness of radical decentralisation, it is

tremendously important for leaders of FOSS projects to coordinate many and varied

peer-produced innovations. Or in Surowicki’s words, decentralised creations must be

“aggregated” into a coherently functional whole. He is aware that “[a]ggregation—

which could be seen as a curious form of centralization—is therefore paradoxically

important to the success of decentralization.”50 In fact, the more decentralised a

system is, the more efforts are needed to aggregate peer-produced contributions

47 See Benkler, Chapter 5 “Individual Freedom—Autonomy, Information, and Law” in Wealth of
Networks: How Social Production Transforms Markets and Freedom (New Haven: Yale University
Press, 2006) (Hereafter Wealth)
48 Stallman points out that corporate proprietary software does not have radical openness as in FOSS
collaboration. It strictly limits innovation within a closed corporate structure: “In any intellectual field,
one can reach greater heights by standing on the shoulders of others. But that is no longer generally
allowed in the [proprietary] software field—you can only stand on the shoulders of the other people in
your own company.” (original emphasis) Stallman, “Why Software Should Be Free”, supra note 21
49 James Surowicki, The Wisdom of Crowds—Why the Many are Smarter than the Few and How
Collective Wisdom Shapes Business, Economies, Societies and Nations, (London: Little Brown, 2004)
p.71
50 ibid., p75

 27

together. Leaders of a FOSS project need to decide on (or sometimes speculate about)

the level of decentralisation that they are willing and capable to cope with. In order

to make a project both peer-productive and manageably aggregateable, a delicate

balance must be drawn between decentralisation and aggregation. However, there is

no fast and fixed rule about how this balance between the two should be kept.

Situations vary from project to project. In order to find out how to make this balance,

Raymond’s essay The Cathedral and the Bazaar seems to give a clue to start with.

Though an unflinching champion of decentralisation, Raymond recognises the

importance of a “strong, attractive basic design” that is necessary to make a project

aggreateable into one. This design is based on the two general pre-conditions that are

needed for a decentralised Bazaar-style project to take off: “Your program doesn’t

have to work particularly well. It can be crude, buggy, incomplete, and poorly

documented. What it must not fail to do is (a) run, and (b) convince potential co-

developers that it can be evolved into something really neat in the foreseeable

time.”51 In other words, a small group of core lead developers must go beyond the

level of scratching their own programming itch, but they must also work hard to

convince potential co-developers that their efforts are highly likely to be successfully

aggregated “into something really neat in the foreseeable time.” With these two pre-

conditions in mind, I now need to delve a little deeper into the “strong, attractive

basic design” mentioned by Raymond above, because it is crucial to the success of

any collaborative FOSS project.

Designing a Collaborative Project

Not every kind of creative task is conducive to collaboration, let alone radically

decentralised collaboration.52 A task that is radically collaborateable must have a

modular architecture, which means it is capable of being divided into a lot of smaller

improvable units and later pieced together into one coherent project. There are two

parameters that matter here. One is the “modularity” and the other “granularity” of

the task. Modularity concerns the extent to which a task “can be broken down into

smaller components, or modules, that can be independently produced before they are

51 Raymond, Cathedral, supra note 1
52 For example, many traditional non-software creations, such as writing a novel or a academic paper,
are done by a solo author or a very small number of collaborators, because these creative tasks are
hard to be broken down into improvable fine-grained modules.

 28

assembled into a whole,” while “granularity” concerns “the size of the modules, in

terms of the time and effort that an individual must invest in producing them.”53

Benkler observes that any “successful large-scale peer-production project must

therefore have a predominate portion of its modules be relatively fine-grained.”54

The fine-grained modularity that is conducive to peer-production collaboration is

also often known as the “extensibility” of software among programmers.55

Software projects are not by nature “extensible” with the right level of fine

granularity, but they are designed to be so.56 There are two types of design decision

that leaders of FOSS projects have to make: one is the modular “architectural design”

in software engineering terms and the other is the “legal design” for FOSS

collaboration through FOSS licensing. The second type is exactly the main focus of

this dissertation.

First, the architectural design concerns the software engineering problem of how to

make a project “extensible” or modular at a manageable level. The GNU Emacs

programming editor led by Stallman is a good example here. Stallman designs Emacs

to be “extensible” in the sense that everyone can easily “go beyond simple

customization and create entirely new commands” and these newly created

commands “are simply programs written in the Lisp language, which are run by

Emacs’s own Lisp interpreter.”57 The Linux kernel project is another example of

designed extensibility. Linus Torvalds, as the leader of the project, “followed good

design principles, which allowed [Linux] to be extended in ways that he didn’t

envision when he started work on the kernel.”58 The modular architecture allows

53 Benkler, Wealth, supra note 47, p.100
54 Ibid., p.101
55 See Tim O’Reilly, “Lessons from Open-Source Software Development”, (1999) 42 (4)
Communications of the ACM 33 at 37
56 The “design” for FOSS projects is only for the purpose of aggregating peer-produced contributions
together. It is not intended to micromanage contributors’ behaviour. In other words, the “design”
should not undermine the flexible and improvisatorial nature of peer production.
57 Richard Stallman, GNU Emacs Manual (Boston, MA: Free Software Foundation, 2010, 16th
Edition)
58 On top of this example of Linux, O’Reilly gives one example of the Perl programming language of
extensibility: “Larry Wall “created Perl in such a way that its feature-set could evolve naturally, as
human languages evolve, in response to the needs of its users.” Tim O’Reilly, “Lessons from Open-
Source Software Development”, (1999) 42 (4) Communications of the ACM 33 at 37

 29

Linux to be broken down into many “subsystems”.59 All subsystems are stewarded

by lead developers known as “maintainers” who have the responsibility to select, test

and assemble contributions (known as “patches) into a planned release. (A report

published by the Linux Foundation in 2009 revealed that Linus Torvalds ranked

number 9 among all subsystem maintainers in terms of his work of reviewing peer-

produced code into the kernel.60) Submitted patches must be reviewed and approved

by the subsystem maintainers before they can be integrated into the Linux kernel.

This means patches that fail to meet the expected standard may well be filtered out

by the maintainers. Normally, maintainers need to give good reasons why some

patches cannot be integrated into the project. The rejected programmers should be

given the opportunity to appeal the decisions made against them. The rejection of

patches would understandably cause much tension between the subsystem

maintainers and the rejected programmers. So it is necessary to have “laws” and

“courts” to efficiently solve disputes just like what is needed in the off-line real

world.61 In the worst-case scenario, rejected programmers may “fork” or break away

from the main project by starting up a new project in competition with the original

one. In summary, the modular architecture in Linux does not just aggregate whatever

contribution that is peer-produced, but it picks and chooses the most suitable ones

that can be integrated into a coherent whole.

The second type of design decision that lead developers have to make for their

collaborative project is a legal one: how to design a legal structure that makes a

project “legally” extensible? The exiting copyright regime seems to be rather

59 Weber observes that a modular architecture is “the key characteristic of technical design for
managing complexity” for the Linux system: “Source code modularization obliviously reduces the
complexity of the system overall because it limits the reverberations that might spread out from a code
change in a highly interdependent and tightly coupled system. Clearly it is a powerful way to facilitate
working in parallel on many different parts of the software at once. In fact parallel distributed
innovation is nearly dependent on this kind of design because a programmer needs to be able to
experiment with a specific module of code without continually creating problems for (or having
always to anticipate the innovations of) other programmers working on other modules.” Weber,
Success, supra note 5, pp.172-5
60 Greg Kroah-Hartman, Jonathan Corbet, Amanda McPherson, Linux Kernel Development: How Fast
it is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It: An August 2009 Update
at <http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf>
61 The FOSS world is by no means anarchy, but it is governed almost as if it is an offline polity.
Sanger observes: “In short, a collaborative community would do well to think of itself as a polity with
everything that that entails: a representative legislative, a competent and fair judiciary, and an
effective executive, all defined in advance by a charter. There are special requirements of nearly every
serious community, however, best served by relevant experts; and so I think a prominent role for the
relevant experts should be written into the charter.” Sanger, supra note 42, p.329

 30

unfriendly to, if not militate emphatically against, collaboration on a radical level.

Copyright permits authors to exclusively copy, modify and distribute the original

software, and these permissions do not automatically extend to non-copyright holders.

In an extensible FOSS project, a large number of participants are expected to

frequently modify each other’s works, and it is a hugely cumbersome job for each

participant to clear the right each time a contribution is made however small it is.

Even if people do tirelessly give some kind of permission when releasing their

contributions, it is not guaranteed that all contributed modules are legally compatible

with each other. For example, participant A allows his module X to be freely

modifiable but not redistributable. Participant B allows his module Y to be both

modifiable and re-distributable but at the same time he requires attribution to him in

each of the downstream redistribution. So are X and Y legally compatible modules

even though they can be technically welded into one piece of software? There is an

even trickier situation: what if A or B changes his mind and decides to pull his

contribution out of the project? Will he be allowed to go back on his commitment?

Short of a formal and written agreement, these issues may well bog down the

development of a collaborative project.

In order to avoid the above problems, standard form FOSS licences are designed to

give some level of legal certainty. These licences are attempts to configure a legal

structure (based on copyright law) to standardise the legal commitments of individual

collaborators. They are designed to clear the legal hurdle for radical collaboration in

FOSS projects. As has been shown in Section 1.2, a lead developer or a team of core

developers need to choose between two types of licensing schemes, which are

effectively two major legal designs for a given project: the copyleft design and the

permissive BSD-style design. Copyleft is designed to make all downstream

developers share their publicly released improvements of the original software in

collaborative projects. It is an approach that suits well the community-based projects

consisting mainly of voluntary contributors (such as GNU software and Linux

projects), as it provides a guarantee that no contribution will be made proprietary in

future distributions. In contrast, the permissive licensing design does not provide an

anti-privatisation guarantee. Developers who choose this legal design are normally

backed by well-funded established institutions including universities and software

companies. Especially for those corporations writing software for consumer products

 31

(e.g. operating systems for smartphones62), they nowadays tend to license their

products under a permissive licensing scheme. Their targeted users are normally non-

sophisticated end-users who do not read or write code and they are not expected to

make modification of the software. The non-copyleft design imposes virtually no

restriction on redistribution of the software63, which may help the software to spread

quickly far and wide. For example, Google’s release of the “Chrome” web browser

in 2008 is a case in point. Chrome was licensed under the BSD License64 clearly in

an attempt to compete against the market incumbents like Microsoft’s Internet

Explorer and Mozilla’s Firefox. This move is based on the speculation that the non-

copyleft design can help Google’s new software to break into the market rapidly and

establish a big user-base in a relatively short space of time.

It is not difficult to see that between the two legal designs, copyleft dovetails better

with the volunteer-driven peer-production model, while the permissive non-copyleft

design nowadays tends to be adopted by for-profit corporations with a clear aim to

expand their market. Both designs need a great deal of coordination in order to

channel collaborative efforts into certain useful and coherent products. Coordination

under copyleft tends to be led by volunteer developers who are rightly the members

from the “peers”. In contrast, the non-copyleft design relies less on peer-produced

contributions, and its coordination may well be led by corporations that are keen to

break their products into the market. This dissertation focuses itself mainly on the

legal mechanism of the copyleft design (especially the GPL) for peer-produced

FOSS projects, but the corporate strategic use of the non-copyleft scheme to build up

a user base should not go unnoticed.

1.3.2 The Role of FOSS Licensing

A FOSS licence plays an important role in facilitating collaboration under the

modular architecture of a corresponding project. It makes sure that peer produced

contributions are legally compatible with each other and they can be safely pieced

together into one integrated artifact. In other words, a FOSS licence is designed with

62 It is interesting to see that almost all mainstream smart phones (except Apple’s iPhone) have
adopted FOSS operating systems. Google’s open-source Android system is a prominent example.
63 However, it is also important to note many permissive licences still require retaining the copyright
notice and correcting attribution in downstream distribution.
64 <http://www.google.com/chrome>

 32

an attempt to give some degree of legal certainty to collaboration in a FOSS project.

When a collaborative project grows in size, the importance of a licence will

accordingly increase, because the licence stabilises the programmers’ expectation by

spelling out what responsibility they should bear and what benefit they may also gain

from the project. Furthermore, it is also worth noting that a licence by itself does not

kick-start or constitute any collaborative relation. A licensing scheme is only the

legal expression supporting the collaborative efforts that have already been going on

or are expected to take place among all contributors.65 The purpose of a FOSS

licence is to verbalise and standardise the minimum legal commitments of a large

number of existing and potential contributors. The expected legal commitments are

rightly embodied in the form of FOSS stewardship responsibility pursuant to the Free

Software Definition or Open Source Definition.

“Death of Assent” after the ProCD ruling

Almost all FOSS licences are non-negotiated standard form licences. They are

mostly either in the form of clickwrap or browsewrap. The former requires users to

manifest their assent by clicking button “Yes, I Agree” and the latter is just a

webpage displaying the licensing terms and conditions. In terms of users’

manifestation of assents, there seems to be no pronounced difference between FOSS

and proprietary software that also uses mass-market off-the-shelf licensing schemes.

In both cases, their respective standard form licensing schemes suffer from a similar

problem, which is the lack of adequate assents from users.66 In 1996, the US Seventh

Circuit ruled that a shrink-wrap licence (as the precursor of clickwrap and

browsewrap) was contractually enforceable in ProCD v. Zeidenberg67, which then

caused much heated debate.68 This ruling signals what Lemley calls “death of assent”

65 In fact, many collaborative activities may well precede the decision to formally adopting a licensing
scheme.
66 Clickwrap licences require higher level of manifested assent from users than browsewrap, but they
may well still result in inadequate assents from users, who are unlikely to read and fully digest the
content of the concerned licences before clicking through. Also, the FOSS world does not prefer
clickwrap to browsewrap. The Criterion 10 of the Open Source Definition makes it clear that an open
source licence cannot mandate the use of clickwrap in future redistribution of the software.
67 86 F.3d 1447 (7th Cir.1996)
68 Scholars are divided on this case. For those who defend the court ruling, see, for example, Randy
Barnett, “Consenting to Form Contracts” (2002) 71 Fordham Law Review 627 or Eric Posner,
“ProCD v Zeidenberg and Cognitive Overload in Contractual Bargaining” (2010) 77 The University
of Chicago Law Review 1181. For those who disagree with the ruling, see, for example, Stewart

 33

in the digital environment where online standard form licensing becomes so

ubiquitous:

Assent by both parties to the terms of a contract has long been the fundamental

principle animating contract law. Indeed, it is the concept of assent that gives

contracts legitimacy and distinguishes them from private legislation. But in

today’s electronic environment, the requirement of assent has withered away to

the point where a majority of courts now reject any requirement that a party take

any action at all demonstrating agreement to or even awareness of terms in

order to be bound by those terms.69

No doubt the death of assent in standard form poses a great challenge to the consent-

driven classical contract law that enforces bilateral bargained exchanges. Neither is it

good news to software users who are likely to be on the receiving end of this

challenge. If assents cease to be the reason to legitimate non-negotiated obligations

against licensees, then is there a new ground for enforcing these standard form FOSS

licences? If there is one, what is it? The current dominant but not uncontroversial

theory is based on a neoclassical economic justification that is articulated by the

ProCD court. It goes that if a standard form licence makes an information product

available to consumers at the lowest possible economic cost, then it should be

justified and enforced.70 However, the situation in a FOSS project is a bit more

complicated than just a matter of maximising the economic utility for FOSS users but

there is also considerable non-economically measurable social benefit that should not

be ignored in a collaborative FOSS project. In Chapter 4, I will show that

justifications other than material wealth maximisation (such as “software freedom”

for its own sake) should also be considered in examining FOSS licensing terms in

more detail.

Macaulay, “Freedom from Contract: Solutions in Search of a Problem?” (2004) Wisconsin Law
Review 777 or Deborah W. Post, “Dismantling Democracy: Common Sense and the Contract
Jurisprudence of Frank Easterbrook”, (2000) 16 Touro Law Review 1205. For Easterbrook’s own
explanation of the ruling, see Frank Easterbrook, “Contract and Copyright” (2005) 42 (4) Houston
Law Review 953
69 Mark Lemley, “Terms of Use” (2006) 91 Minnesota Law Review 459, at 464-5
70 Whitford argues this rationale of wealth maximisation should not be the only yardstick against
which the legitimacy of standard forms should be assessed. Other values (such as the norm of
“participation” as proposed by Whitford) should also be considered under a relational contract
perspective. See William C. Whitford, “Ian Macneil’s Contribution to Contracts Scholarship”, (1985)
Wisconsin Law Review 545 at 553-4

 34

Collaboration and Relational Contract

In order to tackle the conundrum arising from the death of assent, I propose to

examine FOSS licensing with an alternative approach—Relational Contract Theory

(RCT)—which has remained conspicuously absent in the literature of FOSS

licensing. RCT is a reaction to the classical view of contract as “abstract statements

of the total obligation” leading to one-shot discrete transactions where the “parties

may not have dealt before, and there is no assurance that they will deal again”71. In

contrast, a relational contract is underpinned by pre-existing and ongoing relations

where parties agree “to cooperate to achieve mutually desired goals.”72 My basic

point here is that licences for collaborative FOSS projects cannot be discrete

transactional contracts, but they need to be relational contracts that are supported by

the pre-existing or ongoing collaborative relations experienced among participating

contributors.

There are two important reasons why FOSS licensing should be closely scrutinised

under RCT.73 First, RCT posits that human beings have “dual motives” when

engaged in a contractual exchange: they do not merely 1) seek to maximise their

individual utility but 2) they also want to build “social solidarity” with other

members of the society. In a relational contract, the second motive for social

solidarity is especially important, because it reins in the otherwise unbridled first

motive for utility maximisation.74 Note that the first motive for utility is not

eliminated altogether but it is only restricted by the second motive for solidarity. The

double motives were well present in the collaborative ethos since the early computer

hacker community. On the one hand, hackers enhanced their utility when each of

them could have total and unlimited access to the continuous improvements of the

software by other fellow-hackers. On the other hand, hackers bonded with each other

through the practice of software sharing, which enhanced the solidarity within the

community. However, the advent of proprietary software started a new trend where

71 Stewart Macaulay, “The Real and Paper Deal: Empirical Pictures of Relationships, Complexity and
the Urge for Transparent Simple Rules” (2003) 66 Modern Law Review 44 at 65
72 ibid.
73 In this introductory chapter, I only highlight these reasons for the relevance of RCT. This is
intended to set the scene for a more detailed RCT analysis in Chapter 4.
74 Ian R. Macneil, “Exchange Revisited: Individual Utility and Social Solidarity”, (1986) 96 (3) Ethics
567

 35

the second motive for solidarity was gradually being swallowed into the first motive

for utility. Proprietary software developers do not intend to establish collaborative

relations with outsiders, but they are only interested in maximising their utility

through selling as many as possible closed-source software products as if they were

discrete commodities. Friends become strangers after a commodity transaction is

consummated. Stallman observes that many programmers feel disheartened when

their programming activities are reduced to a single motive for making money, while

the motive for solidarity (or “friendship among programmers” in Stallman’s

language) is jettisoned. In The GNU Manifesto, Stallman briefly analyses the

consequence of loss of solidarity after the operating system software is close-sourced

and commercialised:

Many programmers are unhappy about the commercialization of [operating]

system software. It may enable them to make more money, but it requires them

to feel in conflict with other programmers in general rather than feel as

comrades. The fundamental act of friendship among programmers is the sharing

of programs; marketing arrangements now typically used essentially forbid

programmers to treat others as friends.75

The introduction of FOSS licensing is exactly an attempt to restore the balance

between the dual motives for enhancing both utility and solidity, which is lost in

commercial proprietary software. In this sense, FOSS licensing schemes are also an

effort to rebuild the relational contract among programmers under the software

stewardship tradition. Furthermore, I need to caution my readers that the dual

motives in a relational contract are not necessarily mutually exclusive. I do not wish,

by quoting the above paragraph from Stallman, to give a misimpression: one has to

sacrifice one motive for the other. In fact, the two motives in FOSS collaboration are

often closely connected and mutually reinforcing. For example, the reputational

gains play a hugely important role in incentivising production of FOSS in a

collaborative manner. Satisfaction from one’s enhanced reputation as a kind of non-

monetary reward is an interesting and somewhat ambivalent motive. On the one hand,

the reputation of one’s virtuosity in programming and generosity in sharing

75 Stallman, The GNU Manifesto, 1985, at <http://www.gnu.org/gnu/manifesto.html>

 36

contributions results from the recognition from other community members, and it is

essentially a product of enhanced solidarity. On the other hand, this good reputation

may also increase one’s material utility in the real world. For example, it is likely to

increase a programmer’s employability to get a permanent salaried job.76 In this

sense, the reputational reward for writing FOSS is the site where the boundary

between the two motives is blurred in a relational contract.

The second reason for RCT’s relevance to FOSS licensing lies in its position on the

role of consent (or assent) in contractual exchange. In a classical contract, obligation

is presumed to arise in a single moment where there is a meeting of the minds

between parties. Macneil finds this consent-centred view is not helpful in leading to a

more realistic understanding of contractual exchanges: “The dominant role of

consent in the jurisprudence of classical contract law has put intellectual barriers in

the way of communicating a broader analysis of the subject that appears in that

jurisprudence.”77 In contrast, RCT has a more nuanced position on this issue. A

relational contract is less driven by explicit consents (or assents to standard form

licence in particular), but obligation may also come out of parties’ experience from

the pre-existing and ongoing relations.78 So in a FOSS project, the pre-existing and

ongoing collaborative relations become highly important in the sense that they will

alleviate the burden on discrete explicit consents as the sole device to effectuate the

obligations in a corresponding licence. In other words, it should not be ignored that

relations can also give rise to obligations when explicit consents are weak or non-

existent in standard form licences.

It is also important to be aware that assents in FOSS licensing are not irreversibly

“dead” but they are just being relationalised. (Gudel similarly observes that there is

no “decline of assent,” but there is only “a decline of assent discretely understood” in

76 It is not rare that many lead FOSS programmers are later hired by software companies in
recognition of their exceptional programming talent and leadership quality. See Eric Raymond,
Homesteading the Noosphere, supra note 26
77 Macneil, The New Social Contract—An Inquiry into Modern Contractual Relations (New Haven
and London: Yale University Press, 1980), pp.47-48 (Hereafter NSC)
78 It is observed that Macneil’s message that “there is no single moment at which the parties confirm a
meeting of the minds respecting the important terms of the contract” has been relatively well accepted
by contract scholarship. William Whitford, “Ian Macneil’s Contribution to Contracts Scholarship”,
supra note 69, at 546

 37

a more general context.79) At its worst, consents, as Macneil claims, still function as

“a vital triggering mechanism” in contractual exchanges.80 As there are a growing

number of FOSS projects that are nowadays targeted at non-programming end-users

rather than sophisticated co-developers, manifested assents through clickwrap

licences do not become entirely unnecessary. Because these end-users do not directly

participate in the collaborative relation of co-developing a certain FOSS product,

they should be given a good chance to know what kind of licensing scheme they will

enter into and there is no harm in doing so.

Collaboration and Intellectual Property

The relational contract perspective offers important insights into the role of

collaborative relations in FOSS licensing. However, FOSS collaborative relations do

not merely come out of the pristine software stewardship tradition originated from

the hacker custom, but they have also been deeply affected (both positively and

negatively) by the institution of intellectual property in software since the 1980s.

(Recall that FOSS licensing is a compromise between these two conflicting traditions

of stewardship and private property.) Barnett argues that “property” is also “a highly

relational concept that performs its own vital social functions”81, but Macneil’s RCT

has never adequately developed a line of theoretical inquiry into the role of

“property” in relational contract:

I maintain that although [Macneil’s] observation [“standing behind all relational

exchange or contracts is a socially-enforced system of property socially-

enforced system of property”] is largely true, somewhat surprisingly [property]

is never properly integrated into Macneil's social analysis. Consequently his

social theory of contract is virtually, if not entirely, uninfluenced by any

comparable social theory of property. Related to this is the near complete

79 Paul J. Gudel, “Relational Contract Theory and the Concept of Exchange”, (1998) 46 Buffalo Law
Review 763 at 773
80 Macneil, NSC, supra note 77, p.50
81 Randy Barnett, “Conflicting Visions: A Critique of Ian Macneil's Relational Theory of Contract”,
(1992) 78 (5) Virginia Law Review 1175
at 1181

 38

absence in his theory of background rights that can be used to evaluate

normatively the legal rights actually recognized by a legal system.82

Contractual exchanges are not made in vacuum, but they are profoundly shaped by

“background rights” as delineated by “property”, which is allegedly neglected by

Macneil. In other words, property precedes and continues through contractual

exchanges. Even if these contractual relations come to an end, the property relation

will keep living on. Benkler’s definition of “property” serves as a good example of

the relational aspect of “property” that provides the background rules for defining

relations between property owners and the non-owning public:

Property is a cluster of background rules that determine what resources each of

us has when we come into relations with others, and, no less important ‘having’

or ‘lack’ a resource entails in our relations with these others. These rules

impose constraints on who can do what in the domain of actions that require

access to resources that are the subject of property law.83 (added emphasis)

Note that property posits an asymmetrical relation between owners and the non-

owning public in Benkler’s definition. The asymmetry is due to the exclusive rights

given to property owners, who are then entitled to exercise unilateral power over

non-owners in terms of utilising the owned resources. Benkler makes it clear that

property rules “are aimed to crystallize asymmetries of power over resources, which

then form the basis for exchanges.”84 (added emphasis)

Compared with the asymmetrical “property” relation, “commons” is intended to be a

symmetrical arrangement. The symmetry in the relation under a commons has

twofold meanings. First, all participating members have equal non-exclusive rights to

the resources within a particular commons. Secondly, all participants have the same

obligations to other members of the commons. The purpose of FOSS licensing is

exactly to re-configure the asymmetries posited by intellectual property with an

attempt to create a symmetrical relation among all members of software commons. In

this software commons, all software developers have the same set of rights (or

82 ibid., 1180-1
83 Yochai Benkler, Wealth, supra note 47, p.143
84 ibid.

 39

software freedoms) to access, use, modify and redistribute software. At the same

time, all of them are bound by the same set of duties, i.e. the stewardship

responsibility, to refrain from exercising some of their exclusive rights given by

intellectual property. In a nutshell, FOSS licensing is based upon the institution of

“property”, but it reconfigures the asymmetric property relation into a symmetrical

one under a software commons where property owners and the non-owning public

share the same set of rights and duties.

The radically decentralised collaboration of any FOSS project is impossible without

the symmetrical relation under a software commons, where everyone can legally

make and share improvements of the original software. This symmetrical

arrangement under software commons has two perceived advantages. On the one

hand, individual programmers enhance their utility by being able to use a rapidly

improved software program. On the other hand, they also enhance the solidarity with

other members of the commons through sharing contributions to a FOSS project.

These two advantages are not readily available from the asymmetrical relation within

a proprietary software project.

Finally, it is worth knowing that total and despotic ownership does not actually exist

in software copyright. Copyright does make some effort to keep a level of symmetry

between software authors and their users. There are numerous occasions where

software can be utilised without the copyright holders’ permission.85 It is a balance

that is needed to rein in the unilateral power that may be exercised by copyright

holders to unfairly restrict non-owning public’s rights. For example, under the UK

copyright law, “reverse engineering” or “decompilation” to achieve interoperability

between programs is a permitted act by any lawful software user.86 So in this

particular respect, copyright creates a symmetrical relation between copyright

holders and lawful users. However, it is not rare for a proprietary software licence to

include a clause forbidding reverse engineering or decompilation for any purpose.87

85 Lemley’s points out that copyright makes “a number of compromises between the desires of authors
and those of the consuming public”. Mark Lemley, “Beyond Preemption: The Law and Policy of
Intellectual Property Licensing” (1999) 87 (1) California Law Review 111 at 128
86 In the UK, there is a statutory right for a lawful user to “decompile the program to obtain the
information necessary to create an independent program which can be operated with the program
decompiled or with another program”. This right cannot be contracted out. s.50 B, CDPA 1988
87 Lemley, “Beyond Preemption”, supra note 85 at 128

 40

By doing so, they destroy the symmetrical relation by shrinking the commons and

expanding their private ownership interests in software beyond copyright. Benkler

calls this kind of behaviour “contractual enclosure” of the software commons.88 In

contrast, FOSS licensing schemes go down the opposite direction of “contractual

enclosure” by enlarging software commons through shrinking software copyright

holders’ exclusive rights.

1.4 Structure of the Dissertation

This opening chapter has set the scene for the exploration of the three aspects of

FOSS licensing that is used in support of radically decentralised FOSS collaboration.

The rest of the dissertation will continue this exploration of the historical aspect (in

Chapter 2), legal aspect (in Chapters 3 and 4) and authorial aspect (in Chapter 5) of

FOSS licensing and its role in collaboration in more detail and depth.

Chapter 2 traces the historical development of FOSS licensing. It identifies three

historical stages during which the early computer Hacker Ethic begun, evolved, and

matured into software stewardship obligations detailed by FOSS licences. Chapter 3

examines how FOSS programmers struggle to articulate a legal expression of

software freedom through the device of software licensing. It focuses on two areas of

“intellectual property”—copyright and patent—and their respective threat to

software freedom. It uses the GPL as an example to show how FOSS programmers

assess possible threats to software freedom respectively from copyright and patent

and how they attempt to contain these threats through many generations of the GPL

since its inception until the latest 2007 version. Chapter 4 tackles some difficult

issues concerning the FOSS licences as non-negotiated standard from contracts from

a Relational Contract Theory (RCT) perspective. It attacks the neoclassical contract

approach (as represented in the ProCD ruling) that has been dominant in the

mainstream software licensing jurisprudence. It tries to demonstrate that RCT is a

more suitable theoretical tool to analyse FOSS licensing schemes as a legal means to

support relation-rich FOSS projects. Chapter 5 examines FOSS authorship at both

individual and collective (project) levels. It shows how FOSS programmers manifest

their authorial consciousness through their licensing scheme. The focus will be on

88 Benkler, Wealth, supra note 47, p.444

 41

project leaders’ legal persona as author-stewards for their collaborative projects.

Chapter 6 summarises three aspects of FOSS licensing in relation to this

dissertation’s contribution to the scholarly literature and it also points out two

avenues to future research.

 42

Chapter 2 From the Hacker Ethic to “Open Source”: A Brief

History

2.1 Introduction: Three Historical Stages

FOSS licences that are used by programmers in collaboration do not appear suddenly

in a historical vacuum. The idea of radically decentralised collaboration was

fermented at the very beginning of computer hacker culture, and it took decades for

its unique Hacker Ethic to evolve into today’s FOSS licences in their fully-fledged

form. The evolution from the Hacker Ethic to FOSS licensing schemes is by no

means a smooth succession of discrete events, but it is complicated and contentious.

In order to do full justice to the complexity of the topic, this chapter sketches out

three historical stages during which the early computer Hacker Ethic begun, evolved,

and matured into software stewardship obligations detailed by FOSS licences. The

first stage starting in the 1950s till the early 1980s is the pre-licensing period when

collaboration among programmers was based on the Hacker Ethic. This Hacker Ethic

was challenged by the rise of proprietary software and then the early hacker

community underwent gradual disintegration when many computer hackers were

hired away to write proprietary software. The second stage spanning a period from

early 1980s to 1998 witnessed the birth and growth of a most influential copyleft

licence—GNU General Public Licence (GPL)—which tried to translate some

elements of the lost Hacker Ethic into a legally binding document. The ingenuity of

the GPL lies in its copyleft mechanism which is an anti-privatisation device to ensure

publicly distributed code to always remain in software commons. The third stage

started with 1998 when the movement of “open source” was officially launched by

Eric Raymond and his colleagues, who intended to integrate non-proprietary

software into the commercial mainstream. This period witnesses the growing

commercial and legal strength of open source that can compete with proprietary

software products.

It is also an important task of this chapter to show the subtly different characteristics

of collaborative relations in building FOSS projects at the three historical stages.

Very briefly, in the first stage, collaboration was largely forged by the non-binding

 43

Hacker Ethic that took place in a relatively organic and spontaneous fashion from the

old hacker community. In the second stage, the old collaborative efforts were largely

disrupted by the rise of proprietary software. The disruption prompted free software

programmers to craft their own licensing schemes in order to repair the damaged

community-based collaborative relations. In the third stage, the prospect of making

money out of “open source” software attracted an increasing number of corporate

collaborators to join various projects. Although it was impossible to restore the

hacker custom to its original purity, FOSS licences would at least play a role in

preventing for-profit companies from entirely dictating or “recentralising” the

production and circulation of FOSS in what was meant to be a radically decentralised

collaborative environment.

There are two caveats about historicising the development of FOSS collaboration and

licensing in this chapter. First, my account of the three historical stages cannot be a

chronicle of every single factual event, but concentrates only on the conceptual

trajectory along which stewardship and private ownership in software have co-

evolved to have an impact on FOSS licensing. Secondly, the three stages are not

necessarily discretely separated from each other but they can also be seen as a

continuum where one stage shades into the next. For example, Linux is exactly a

cross-stage project, which had its pre-life as the pedagogical Minix system derived

from the UNIX operating system in the first stage, and it took off as a viable GPLed

product in the second stage, and then was showcased as a continuously successful

“open source” product in the third stage. Again, there is no natural clear-cut

demarcation line in history, but I do wish to highlight some of the most critical

events (such as the Emacs dispute that prompted Stallman to write the GPL) in order

to bookmark the changes that are critical in the development of FOSS licensing. To

appreciate three stages as a continuous whole would lead to a rounded understanding

of FOSS licensing as a legal phenomenon in its historical context. This

understanding will form the foundation for the analysis of the legal mechanism of

FOSS licensing that leverages intellectual property law to preserve software

commons in the following chapters.

 44

2.2 From the 1950s to the Early 1980s: The Pre-Licensing Era

The first historical stage can be roughly subdivided into two halves. The first half

witnesses the formation and growth of the Hacker Ethic from the 1950s to the mid-

1970s. This ethic was a moral code stipulating hackers’ duty to share information for

the sake of solving technical problems collaboratively. The second half of this stage

covers a period from the mid-1970s to the early 1980s, when the Hacker Ethic was

challenged and eclipsed by an emerging new norm of “owning” software as private

intellectual property. Collaboration in this stage does not depend on any licensing

scheme that could restrict privatisation of software, but it only resorted to the non-

legally binding moral force of the Hacker Ethic, which was becoming nonetheless

increasingly vulnerable to the encroachment of proprietary software.

2.2.1 Beginning of the Hacker Ethic

The software stewardship tradition began in the computer hacker community which

was mostly based in a few US academic institutions such as the Massachusetts

Institute of Technology (MIT) in the 1950s and 1960s. This tradition is embodied in

the Hacker Ethic, which was dutifully observed and carried out in full measure by

programmers well into the early 1970s. Richard Stallman recalls that when he first

joined the MIT Artificial Intelligence (AI) Lab in 1971, he naturally “became part of

a software-sharing community that had existed for many years.” The software-

sharing ethic, according to him, is “as old as computers, just as sharing of recipes is

as old as cooking.”1 Though the norm of software-sharing was ubiquitous during that

period, the term “free software” did not exist and there was no need for one. This is

because intellectual property law such as copyright had not yet been extended to

software and there was no need to differentiate “free” from “proprietary” software.

Stallman explains:

We did not call our software ‘free software,’ because that term did not exist, but

that is what it was. Whenever people from another university or a company

wanted to port and use a program, we gladly let them. If you saw someone using

1 Stallman, “The GNU Operating System and the Free Software Movement” in Open Sources: Voices
from the Open Source Revolution eds. by Chris DiBona, Sam Ockman & Mark Stone (Sebastopol,
O'Reilly & Associates, 1999) p.53

 45

an unfamiliar and interesting program, you could always ask to see the source

code, so that you could read it, change it, or cannibalize parts of it to make a new

program.2

The Hacker Ethic of software sharing that Stallman witnessed and experienced in the

AI Lab since 1971 is important in two senses. First, it provides a shared body of rules

that define who the hackers are and what they should do. Second, it forms the ethical

foundation of the stewardship obligations that will later make their way into

Stallman’s copyleft licensing scheme. However, for a long time, the Hacker Ethic

remained largely unwritten and it is said to be “an ethic seldom codified, but

embodied instead in the behaviour of hackers themselves.” 3 The difficulty of

studying this ethic exactly lies in the difficulty of pinning down a rather fluid body of

unwritten norms which are only known by hackers themselves and are much less

visible and obvious to outsiders. (The later FOSS licences mitigate this problem by

writing down what exactly are the core sets of obligations that hackers should bear.)

With the benefit of hindsight, Steven Levy’s 1984 book Hackers—Heroes of the

Computer Revolution (hereafter Hackers) was the first attempt to systemically

document the Hack Ethic that was originally formulated in the 1950s and the 1960s.

Levy identifies six tenets of the Hacker Ethic and they are organised around the first

tenet known as the “Hands-on Imperative”, which encourages hackers to share

information by allowing “unlimited and total” access to computers. The six tenets are:

� Access to computers—and anything which might teach you something
about the way the world works—should be unlimited and total. Always
yield to the Hands-on Imperative!

� All information should be free.
� Mistrust Authority—Promote Decentralisation.
� Hackers should be judged by their hacking, not bogus criteria such as

degrees, age, race or position.
� You can create art and beauty on a computer.
� Computers can change your life for the better.

The first tenet, which is often shortened to “Hands-on Imperative”, is a sine qua non

for computer hackers to solve engineering problems and then share solutions in a

most effective and collaborative way. It is based on the fact that hackers are first and

2 ibid.
3 Levy, Hackers, p.7

 46

foremost “engineers” who make computer machines work4, and computer hacking

(as well as the later “open source” programming) starts exactly in “an engineering

culture” that is “grounded heavily in experience rather than theory.”5 Hackers’

“thinking” is not merely conducted through pure theoretical speculation, but it is

more closely derived from their engineers’ instinct to fix or tweak defective

machines. The sociologist Richard Sennett, based on his observation of Linux

developers, argues that FOSS programmers are not unlike traditional “craftsmen”

who engage in practical manual work: they are craftsman-like technicians who

conduct “a dialogue between concrete practice and thinking” and “this dialogue

evolves into sustaining habits, and these habits establish a rhythm between problem

solving and problem finding.”6 Suppose that the “unlimited and total access” to

computers was obstructed, this dialogue between “concrete practice and thinking”

would be severely disrupted. Levy also explains the importance of this first tenet that

comes out of programmer-engineers’ practical need to experiment with things

including computers: “Hackers believe that essential lessons can be learned about the

systems—about the world—from taking things apart, seeing how they work, and

using this knowledge to create new and even more interesting things. They resent

any person, physical barrier, or law that tries to keep them from doing this.”7

The rest of the five tenets are essentially under the umbrella of the first tenet. The

second tenet that mandates an unobstructed free flow of information (“all

information should be free”) is clearly a corollary of the Hands-on Imperative.

Levy’s commentary on this tenet is in the form of a rhetorical question: “If you do

not have access to the information you need to improve things, how can you fix

them?” The answer is that “[a] free exchange of information, particularly when the

information was in the form of a computer program, allowed for greater overall

creativity.”8 Weber observes that Stallman later became one of the most ardent

4 Copyright analogises programmers to literary writers, because they write human-readable source
code. This preoccupation sometimes obscures the fact that computer hackers are also primarily
problem-solving engineers whose code can be executed by machines. see Pamela Samuelson, Randall
Davis, Mitchell D. Kapor, J. H. Reichman, A Manifesto Concerning the Legal Protection of Computer
Programs (1994) 94 (8) Columbia Law Review 2308 (Hereafter Manifesto)
5 Steven Weber, The Success of Open Source (Cambridge, Mass.: Harvard Uni. Press, 2004) p.164
(Hereafter Success)
6 Richard Sennett, The Craftsman (New Haven & London: Yale University Press, 2008) p.9
7 Levy, Hackers, p.40
8 ibid.

 47

supporters of this tenet, which would have huge consequence on the free software

movement.9 However, it is also important to know that the later development of

FOSS licensing shows that the informational freedom is not an absolute freedom, but

it can be circumscribed in an environment affected by intellectual property (IP).

Wagner argues information freedom in “open source” is achieved through the

controlled use of IP: “the ‘open’ in open source is actually rather tightly controlled,

albeit in the name of generally greater access along certain philosophically favored

dimension. And it is fundamentally the control of intellectual property rights that

allows such arrangements to be struck.”10 Furthermore, Raymond also warns that not

all information should necessarily be free, especially that which is related to

individuals’ privacy.11 In this light, my thesis is built upon a nuanced understanding

of the second tenet, which means that all information should be free to the extent that

programmers can freely collaborate to build a common project.

The third tenet registers hackers’ great dislike of centralised authority and their

advocacy for decentralisation. It is squarely targeted at centralised bureaucratic

systems, including corporations, government and universities, because they are

believed to be “dangerous” and “cannot accommodate the exploratory impulse of

true hackers.”12 (Ironically, in the 1960s, IBM was seen by hackers as an epitome of

this danger of centralisation,13 though it later turned out to be an important corporate

participant in the open source movement in the third historical stage.) This anti-

centralisation tenet also anticipates the radically decentralised Bazaar-type open-

source production as opposed to the centralised Cathedral-type software

9 Weber’s commentary of Tenet 2 specifically mentions Stallman’s role in promoting the second tenet:
“Richard Stallman would later become the most vocal champion of the principle that software, as an
information tool that is used to create new things of value, should flow as freely through social
systems as data flows through a microprocessor.” Weber, Success, supra note 5, p.144
10 Note what Wagner discusses here is a slight variation of the second tenet: “information wants to be
free” See Polk Wagner, “Information Wants to Be Free—Intellectual Property and the Mythologies of
Control” (2003) 102 Columbia Law Review 995 in Intellectual Property: Critical Concepts in Law,
edited by David Vaver (Oxford: Routledge, 2006) p.351
11 Raymond points out that “[s] ome kinds of information really do want to be free, in the weak sense
that their value goes up as more people have access to them—a technical standards document is a
good example. but the myth that all[] information wants to be free is readily exploded by considering
the value of information that constitutes a privileged pointer to a rivalrous good—a treasure map, say,
or a Swiss bank account number, or a claim on services such as a computer account password. Even
though the claiming information can be duplicated at zero cost, the item being claimed cannot be.
Hence, the non-zero marginal cost for the item can be inherited by the claiming information.” Eric
Raymond, Magic Cauldron, at <http://www.catb.org/~esr/writings/magic-cauldron/>
12 Levy, Hackers, p.41
13 ibid, pp.41-3

 48

manufacturing, which is a distinction drawn by Raymond many years later.14 It also

has its reincarnations in later academic discussions such as those about “peer

production”15 or “Wikinomics”16 in terms of the radically decentralised way of

creating information enabled by networked computer technology.

The fourth tenet envisions that the hackerdom should be strictly built upon a

meritocracy where hackers “should be judged by their hacking not bogus criteria

such as degrees, age, race, or position.” It is made clear that conventional non-

hacking related credentials are superficial and irrelevant, and that what hackers can

contribute to the community matters the most. “This meritocratic trait was not

necessarily rooted in the inherent goodness of hacker hearts—it was mainly that

hackers cared less about someone’s superficial characteristics than they did about his

potential to advance the general state of hacking, to create new programs to admire,

to talk about that new feature in the system.”17 This tenet shows hackers’ longing for

their hackerdom to be an autonomous sphere independent from the “real” non-

hacking world. It also tallies with Raymond’s observation that the most able and

devoted hackers tend to get more reputational reward than others in a collaborative

project.18

The fifth tenet concerns the aesthetic of programming. It says that hacking is not just

a mindless technical job but it can also involve “art and beauty on a computer”.

Recall that in the first tenet, hackers are first and foremost craftsmen or technicians.

However, there can be a very thin line between craftsmanship and art. Hackers can

move beyond coding as craftsmanship and they become programming artists by

writing code ‘elegantly’. The aesthetic dimension of coding makes programmers

14 Raymond, The Cathedral and the Bazaar (hereafter Cathedral) version 3.0 at
<http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/>
15 Benkler, Wealth of Networks: How Social Production Transforms Markets and Freedom, (New
Haven: Yale University Press, 2006)
16 Don Tapscott and Anthony D. Williams, Wikinomics (London: Portfolio, 2006)
17 Levy, Hackers, p.43
18 Eric Raymond, “Homesteading the Noosphere”, 2002 at
<http://www.catb.org/~esr/writings/homesteading/homesteading/>

 49

appear rather like literary authors, who may imprint their creative personality into

their works.19

The sixth tenet believes that computers “can change your life for the better.” It sends

an evangelical message that computer technologies would not only benefit computer

hackers but also more broadly the whole of humanity. The Hacker Ethic should

spread outside “the monastic confines of the Massachusetts Institutes of Technology”

and reach the non-programming part of the society. “If everyone could interact with

computers with the same innocent, productive, creative impulse that hackers did, the

Hacker Ethic might spread through society like a benevolent ripple, and computers

would indeed change the world for the better.”20 (original emphasis) This tenet is

corroborated by the later development of “free culture” 21 and “cultural

environmentalism”22, where the Hacker Ethic of information sharing spills over into

non-programming creative spheres enabled by networked computer technology. For

example, projects such as Wikipedia are among the most successful applications of

this tenet beyond software.

In summary, the Hacker Ethic identified by Levy portrays a picture of what computer

programmers in the 1950s and the 1960s thought about themselves. The six tenets

form the “shared identity and belief system” that would underpin hackers’ core set of

common commitments to building software projects collaboratively.23 Though they

were not legally binding but only voluntarily observed by computer hackers

themselves at this stage, they started the hacker stewardship tradition which would

form the ethical foundation for the later FOSS licensing schemes.

19 For the discussion of the analogy of computer programmers and literary authors, see Clapes, Lynch,
and Steinberg, “Silicon Epics and Binary Bards: Determining the Proper Scope of Copyright
Protection for Computer Programs” (1987) 34 UCLA Law Review 1493
20 Levy, Hackers, p.49
21 Lessig, Lawrence, Free Culture: How Big Media Uses Technology and the Law to Lock Down
Culture and Control Creativity (New York: The Penguin Press, 2004)
22 James Boyle, “Cultural Environmentalism and Beyond” (2007) 70 Law and Contemporary
Problems 5; Molly Shaffer Houweling, “Cultural Environmentalism and the Constructed Commons”,
(2007) 70 Law and Contemporary Problems 23
23 The Hacker Ethic as a belief system is also thought to be one of the many motivational factors that
drive FOSS programmers to write software. The six tenets of the Hacker Ethic, according to Weber,
would have huge impact on the later “open source” movement as they “continue to characterize the
open source community to a surprising degree.” Weber, Success, supra note 5, p.144

 50

2.2.2 Decline of the Hacker Ethic

In the mid-1970s the Hacker Ethic began to be eroded by a new norm of owning

software as private property. Software programmers started to feel proprietorial

about software that was written and many of them stopped sharing code with other

programmers. In 1976, the then young Bill Gates24, in the capacity of General

Partner of Microsoft, authored an open letter, accusing other computer hackers of

being property-stealing hobbyists. Gates’s letter can be boiled down to an argument

that writing software was not a matter of indulging one’s curiosity, but it involves

professional programmers’ hard labour that should be economically rewarded. It

openly challenged the Hacker Ethic of information sharing: “As the majority of

hobbyists must be aware, most of you steal your software. Hardware must be paid for,

but software is something to share. Who cares if the people who worked on it get

paid?”25 In short, the production of software for Gates is a serious business that

requires economic incentives. The letter was, during his time, considered to be

tactless,26 and it was littered with blunt accusatory words such as “stealing” and

“theft”:

One thing [hobbyists] do do is prevent good software from being written. Who

can afford to do professional work for nothing? What hobbyist can put 3-man

years into programming, finding all bugs, documenting his product and

distribute for free? The fact is, no one besides us has invested a lot of money in

hobby software. We have written 6800 BASIC, and are writing 8080 APL and

6800 APL, but there is very little incentive to make this software available to

hobbyists. Most directly, the thing you do is theft.27 (added emphasis)

It is important to learn that this open letter was not produced ex nihilo, but it was an

outlet of his anger after a specific incident that Gates encountered. Before the letter

was published, Microsoft, under the partnership of Gates and Paul Allen, produced a

24 Gates was also a featured computer hacker in Steven Levy’s study of the hacking community in the
1970s. Gates was described as “Cocky wizard, Harvard dropout who wrote Altair BASIC, and
complained when hackers copied it.” Steven Levy, Hackers, p.10
25 Bill Gates, “An Open Letter to Hobbyists”, 3 February 1976 at
<http://www.digibarn.com/collections/newsletters/homebrew/V2_01/gatesletter.html>
26 The letter was written and published without first consulting Ed Roberts who actually employed
Gates to write the Altair BASIC. See Levy, Hackers, pp.229-230
27 Bill Gates, “An Open Letter to Hobbyists”, supra note 24

 51

popular version of the BASIC computer language. It ran on the microcomputer

known as Altair, which was a precursor to mass-manufactured personal computers

(PC) for less sophisticated end-users. Countering the Hacker Ethic, Gates insisted on

a new norm that the Microsoft version of Altair BASIC should be paid for instead of

being shared and copied free of charge. This suggestion did not go down well with

the hackers who were still in their old sharing habit at that time. For example, those

hackers who were members of the Homebrew Computer Club were among the most

enthusiastic sharers of Altair BASIC.28 Gates felt extremely frustrated when very few

people actually sent payment to him after using the software:

The feedback we have gotten from the hundreds of people who say they are

using BASIC has all been positive. Two surprising things are apparent,

however, 1) Most of these ‘users’ never bought BASIC (less than 10% of all

Altair owners have bought BASIC), and 2) The amount of royalties we have

received from sales to hobbyists makes the time spent on Altair BASIC worth

less than $2 an hour.29

Given the later extraordinary commercial success of Microsoft’s proprietary software,

Gates’ letter is often retrospectively singled out as a notable bookmark signaling the

future sea-change of the old Hacker Ethic giving way to the norm of proprietary

software.30 This letter is significant also in the sense that for the first time a new

norm against the Hacker Ethic was emphatically verbalised in a widely circulated

written document.31 To be more precise, the significance has twofold meaning. First,

28 Homebrew Computer Club, founded in the mid-1970s, was active in sharing software among its
members. The club incubated important hackers such as Steve Wozniad, who later made huge
contribution to the development of affordable domestic microcomputers. The club members were
enthusiastic in “sharing” Altair BASIC and they were exactly the kind of “hobbyists” that Gates’ 1976
open letter criticised. Levy observes: “People around the Homebrew Computer Club tried to ease into
this new era, in which software had commercial value, without losing the hacker ideal. One way to do
that was by writing programs with the specific idea of distributing them in the informal, though quasi-
legal, manner by which Altair BASIC was distributed—through a branching, give-it-to-your-friends
scheme. So software could continue being an organic process, with the original author launching the
program code on a journey that would see an endless round of improvements”. Levy, Hackers,
pp.230-1
29 Gates, supra note 24
30 For example, Steven Levy devotes half a chapter to discussing Gates’ letter, which is used as a
piece of written evidence showing the “the new fragility of the Hacker Ethic”. Levy, Hackers, pp.224-
237; Steven Weber also quotes the letter as the “alternative tracks” to the Hacker Ethic in the mid-
1970s, see Weber, Success, supra note 5, pp.35-37
31 David Bunnell, the then editor of Altair Users’ Newsletter, managed to circulate the letter in many
places including Homebrew Computer Club’s newsletter. Levy, Hackers, p.229

 52

Gates envisioned that software could be neatly separated from hardware and be sold

on its own as commodity. This is different from the world of the old Hacker Ethic

where there was “no meaningful distinction between hardware and software” and

“code was the machine”.32 (Recall that “computers” in the Hands-on Imperative

calling for the unlimited and total access refers to both hardware and software

programs.) In order to pave the way for full commodification of software, Gates’

letter challenges the norm that “Hardware must be paid for, but software is

something to share”. He wished to elevate software to the status of being fully

alienable commodity in its own right. Secondly, the open letter’s repeated use of

words like “steal” and “theft” indicates that Microsoft BASIC started to be

interpreted as a kind of private property exclusively belonging to its authors. Gates

here clearly was advocating a new norm of private ownership in software, which was

radically new and disturbing in 1976. Boyle sees Gates’s open letter as an attempt to

drive home a basic point that “software needs to be protected by (enforceable)

property rights if we expect it to be effectively and sustainably produced”33. This

new norm is at least four years ahead of its time because US Congress would not

amend its copyright legislation to cover software until 1980. The letter also raised the

issue of economic “incentive” for producing software, which was closely related to

the orthodox understanding of the function of private property as the reward of

authors’ labour. Following Gates’s logic, short of a system that could exclude

members of the public from copying Microsoft BASIC, the incentive for

programmers to write this software cannot be really guaranteed. In short, the open

letter contains the seminal idea that software should become fully fledged private

property, which would pave the way for the full commodification of software in the

future.

Gates’ open letter no doubt dropped a bombshell on the hackerdom, but it would be

an exaggeration to say that it directly led to the demise of the MIT-style hacker

32 “As in the early days of computing, the code was the machine in a real sense. And code was
something you naturally collaborated on and shared. This was natural because everyone was just
trying to get their boxes to do new and interesting things, reasonably quickly, and without reinventing
the wheel.” Weber, Success, supra note 5, p.36
33 James Boyle, The Public Domain—Enclosing the Commons of the Mind (New Haven& London:
Yale University Press, 2008) p.164

 53

community.34 Hackers’ reaction to Gates’ letter was extremely negative. Only five or

six people were persuaded to send Gates the payment that was insisted in the open

letter.35 The Hacker Ethic was not immediately defeated but it would take another

half of a decade for its fragility to be fully exposed.36 However, it would be safe to

say that after 1976 there started to emerge two camps of software programmers. One

includes the old “ethical” MIT-style computer hackers who shared everything with

their fellow-hackers and the other attracts the more business-minded programmers

who wanted to sell software to make profit. It also creates a schism where two

competing norms that would eventually run into intense clash. The former claims

that it is programmers’ stewardship duty to share software and the latter insists that

there are private property subsisting in software from which programmers should be

economically rewarded. This is a tension suggesting that neither stewardship nor

private property is natural to software. Software as “property” has always been a

hotly contested social construct and it cannot be impervious to the changing social

milieu. Weber observes the camp sticking to the old Hacker Ethic and the camp

following the new norm of software ownership would battle for supremacy endlessly

from then on: “Both sides claimed (and continue to claim) that their worldview was

self-evident, obvious, and an inevitable consequence of the material forces and

constraints that exist in computing. But neither proprietary nor free software is ‘blind

destiny.’ Both continue to coexist, in a kind of software industry ‘dualism’ […].

Neither is a technological necessity, and neither can claim to have ‘won out’ in any

meaningful sense.”37

34 The MIT hacking environment collapsed largely due to a company called Symbolics, which hired
away many of its hacker. I will discuss the incident in more detail in sub-Section 2.3.2
35 Levy quotes Hal Singer as a representative voice against Gate’s letter: “the most logical action was
to tear the letter up and forget about it.” Levy, Hackers, p.230
36 Levy observes that the Hacker Ethic still lingered on after the 1976 open letter: “When MIT hackers
were writing software and leaving it in the drawer for others to work on, they did not have the
temptation of royalties. […] With the growing number of computers in use (not only Altairs but others
as well), a good piece of software became something which could make a lot of money—if hackers
did not consider it well within their province to pirate the software. No one seemed to object to a
software author getting something for his work—but neither did the hacker want to let go of the idea
that computer programs belonged to everybody. It was too much a part of the hacker dream to
abandon.” ibid.
37 Steven Weber, Success, supra note 5, p.37

 54

2.3 From the Early 1980s to 1998: Clash between the Two Traditions

The second stage started in the 1980s when the Hacker Ethic was further weakened

by the rising norm of proprietary software. The schism between the two camps of old

MIT-style hackers and Microsoft-type proprietary programmers was further enlarged

by the new legislation of US copyright law to include software. The ascendancy of

private ownership in software effortlessly eclipsed the old software stewardship

tradition. In response to this change, Richard Stallman almost singlehandedly started

the “free software” campaign in order to regain some lost ground of the Hacker Ethic.

Apart from continuing to writing non-proprietary software, Stallman also crafted the

very first “copyleft” software licence as an anti-privatisation device to ensure that

modified versions of free software cannot be subjected to a proprietary regime.

Copyleft must be used in conformity with Free Software Definition, whose spirit is

derived largely from the first two tenets of the Hacker Ethic.

In the following subsection, I will show two contexts in which a selected few

important changes have affected hackers’ collaborative relations in the second

historical stage. The first is a broad context in which the new norm of private

ownership in software gradually gained ascendency. It concerns the changing

economic situation and legal environment that became more conducive to

commoditisation of software since the 1980s. The second is the narrow and specific

context situated in the MIT AI Lab where Richard Stallman as an individual reacted

to the trend of privatisation of software by devising a copyleft licence in order to

repair the broken collaborative relations among hackers. I will explain both contexts

in turn.

2.3.1 Changes in Market and Law

The broad context contains two elements, of which one is about market and the other

about law. The new market situation, combined with the new legal environment,

helped software to metamorphose into a kind of exclusive and fully alienable

“property” in its most orthodox sense.38 Firstly, there emerged a reasonably big

38 Conventionally, a thing becomes private property if it has two attributes: 1) “alienability” and 2)
“exclusivity”. To put it crudely, if a thing is allowed to be bought and sold, it is alienable; if it can
exclude others from accessing or using it, it is exclusively owned. See Roger Smith, Property Law

 55

market for software products (especially operating systems for microcomputers) to

be traded as commodities in large quantities. This was the kind of market that did not

exist in the first historical stage where software was shared within the hacker

community. Most significantly, thanks to the plummeting cost of hardware

components, the advent of affordable personal computers (PC) for domestic use

substantially increased the number of computer users with varied levels of computing

literacy. Many of these new users possessed little or no programming knowledge at

all and they did not have to. For these non-sophisticated users, what they need was

workable software more than modifiable software and they were properly end-users.

This is a crucial shift because in the older hacking community there was no clear

distinction between programmers and users, i.e., everyone is actually or potentially a

co-developer. In the new situation, a new group of end-users was created and they

only consume software. Proprietary software thrives on the “dumbing down” of

computer culture, because it creates a market where there are consumers more

willing to pay for readymade software but less curious and inquisitive about the

technology beneath it.

Secondly, the legal environment in the 1980s also changed dramatically in favour of

programmers who wanted to exert exclusive control of their software over users.

This was the beginning of an era when a body of law known as “intellectual

property” was developed to take software under protection. Most significantly,

software, across the Atlantic, was made eligible for copyright protection. In 1980, the

US Congress amended the 1976 Copyright Act to include software as a subject

matter.39 In the UK, the 1985 Copyright (Computer Software) Amendment

analogised software to the literary works protected by the 1956 Copyright Act. Three

years later, software unequivocally became a protectable subject matter as a species

of “literary work” in under the Copyright, Designs and Patents Act 1988.40

The introduction of software copyright appeared upsetting to Richard Stallman who

was steeped in the Hacker Ethic. Though Stallman later changed his view about

(Essex, England: Pearson Education Limited, 2003, 4th Edition) p.3 Thanks to the economic and
legal changes in the 1980s, it was possible for commercial proprietary software acquired both
attributes.
39 17 U.S.C. s.101
40 Section 3(1), CDPA 1988

 56

copyright, his then knee-jerk reaction was viscerally negative. When he first

encountered programs displaying “copyright notices” on the screen, he thought that

they were “blasphemy”41 to the Hacker Ethic. Stallman was against treating software

programs as literary works because he thought they were fundamentally different. In

1985, he pointed out that software (containing both human-readable source code and

executable object code) and literary works (i.e. books) were different in the sense

that the former could instruct computer to perform certain functions and the latter

were merely literary text to be read. There was little harm to copyright literary works

as such, but to copyright software programs would lead to the result of “harming

society as a whole”:

The idea of copyright did not exist in ancient times, when authors frequently

copied other authors at length in works of non-fiction. This practice was useful,

and is the only way many authors’ works have survived even in part. The

copyright was created expressly for the purpose of encouraging authorship. In

the domain for which it was invented—books, which could be copied

economically only on a printing press—it did little harm, and did not obstruct

most of the individuals who read the books. […] The case of programs is very

different from that of books a hundred years ago. The fact that the easiest way

to copy a program is from one neighbor to another, the fact that a program has

both source code and object which are distinct, and the fact that the a program

is used rather read and enjoyed, combine to create a situation in which a person

who enforces a copyright is harming society as a whole both materially and

spiritually; in which a person should not do so regardless of whether the

[copyright] law enables him to.42 (added emphasis)

Stallman’s argument that copyright is not an ideal legal form that should regulate

software on the ground that “a program is used rather than read and enjoyed” is not

entirely unfamiliar to legal scholars, some of whom suggest replacing copyright with

sui generis software protection for very similar reasons.43 We will soon find that

41 Levy, Hackers, p.419
42 Stallman “The GNU Manifesto”, 1985, at <http://www.gnu.org/gnu/manifesto.html>
43 For example, Samuelson and her co-authors hold a similar view that programs are not merely
literary text but more importantly they are instructions for machines. Pamela Samuelson et. al.,
Manifesto, supra note 4

 57

Stallman later became less hostile to copyright, after he discovered that the broad

exclusive rights granted to software authors could actually be leveraged to deter

privatisation of software in a “copyleft” licensing arrangement.44

Another legal development is to protect software under trade secrecy, which became

an increasingly common practice after the 1970s45. This development affects two

groups of people: the first group includes programmers and the second includes users.

First, in order to get software under trade secrecy protection, proprietary software

companies needed to make sure that their own employees do not leak and spread the

source code outside. So programmers-employees were asked to sign non-disclosure

agreement on the software they developed. Second, proprietary developers no longer

release software with the source code available to users. The executable code-only

software usually came with a proprietary software licence forbidding reverse

engineering altogether. However, non-sophisticated end-users tended to accept this

change, because they did not really care much about whether the source code was

kept secret or not. Recall that widespread PCs had a “dumbing down” effect in the

computer world where a lot of PC users did not read, let alone modify, source code

of software. Feller and Fitzgerald find that the move of distributing only non-human

readable object code brought a convenient result to both non-programming end-users

and commercial software developers. For end-users, when millions-of-line source

code is compiled into object code, it saved a lot of storage space, which was still very

precious on 1980s’ microcomputers; for software developers, source code, when kept

secret, became a valuable asset in its own right, and it effectively prevent competitors

from knowing how their software was actually coded.46

Looking back, Gates’ norm, that payment must be made for software for its own sake,

sounded radical and unfamiliar in 1976, but it became commonplace in the 1980s.

The new market situation and legal environment combine to create an atmosphere

conducive to the production of more profitable proprietary software. Software was

effectively unbundled from hardware, and it can be traded in its own right. Copyright

44 See for detail in sub-Section 2.3.2
45 Mark Lemley, “Convergence in the Law of Software Copyright”, (1995) 10 High Technology Law
Journal 1 at 4
46 Joseph Feller and Brian Fitzgerald, Understanding Open Source Software Development, (London:
Addison-Wesley, 2002) pp.11-12

 58

and trade secrecy gave software a legal basis to exclude non-paying users. Moglen

observes that the changes clearly gave rise to the “right to exclude” that was desired

by proprietary software developers.

After 1980, everything was different. The world of mainframe hardware gave

way within ten years to the world of the commodity PC. And, as a contingency

of the industry’s development, the single most important element of the

software running on that commodity PC, the operating system, became the sole

significant product of a company that made no hardware. High-quality basic

software ceased to be part of the product-differentiation strategy of hardware

manufacturers. Instead, a firm with an overwhelming share of the market, and

with the near-monopolist’s ordinary absence of interest in fostering diversity,

set the practices for the software industry. In such a context, the right to exclude

others from participation in the product’s formation became profoundly

important. Microsoft’s power in the market rested entirely on its ownership of

the Windows source code.47 (added emphasis)

The changes in market and law give the broad context of the rise of exclusive private

property in software and the decline of the Hacker Ethic. It explains how software

programmers gradually became the exclusive owners of the software that was

produced. However, this broad context does not explain much how the very first

“copyleft” free software licence known as the GNU General Public Licence was

produced and how it was employed to save the declining Hacker Ethic. I now need to

move to the more specific context based at the MIT AI Lab where Richard Stallman

would react by inventing copyleft as an anti-privatisation device to rebuild

collaborative relations among programmers.

2.3.2 The Birth of Copyleft

It is difficult to identify one single moment when Stallman conceived the idea of

copyleft. However, I endeavour to highlight, with the benefit of hindsight, three

crucial incidents that precipitated the invention of copyleft. The significance of these

incidents might not have been fully apparent at the time when they took place, but

47 Eben Moglen, “Anarchism Triumphant: Free software and the Death of Copyright”, (1999) 4 (8)
First Monday at <http://www.firstmonday.org/issues/issue4_8/moglen/>

 59

retrospectively they were so frequently told that they became an indelible part of free

software developers’ collective memory. The three stories share a common theme

that runs through a narrative explaining the birth of copyleft: Copyleft is a hacker’s

reaction to the rise of proprietary software and it is an attempt to rebuild the

collaborative ethos under the Hacker Ethic by means of software licensing.

The Xerox Printer Incident

The first incident is a much repeated story involving a Xerox paper-jammed printer.48

In around 1980, Stallman at the MIT AI Lab was using a cutting edge laser printer

donated by Xerox.49 He encountered a glitch which failed to allow him to print out a

50-page file. With the hacker’s typical “Hands-on Imperative”, Stallman felt

compelled to identify and fix the problem immediately. “As a person who spent the

bulk of his days and nights improving the efficiency of machines and the software

programs that controlled them, Stallman felt a natural urge to open up the machine,

look at the guts, and seek out the root of the problem.”50 Stallman’s “natural urge” is

emblematic of the first tenet of the Hacker Ethic identified by Levy: “Always yield

to the Hands-on Imperative”, which spurs a hacker “to fix something that […] is

broken or needs improvement.”51 Unfortunately, Stallman was not able to track down

the source-code file because Xerox this time did not provide it to the AI Lab as was

the case before. Stallman vividly recalls his frustration when he could not access and

modify the source code many years later:

Later Xerox gave the AI Lab a newer, faster printer, one of the first laser

printers. It was driven by proprietary software that ran in a separate dedicated

computer, so we couldn't add any of our favorite features. We could arrange to

48 Stallman repeated the story in many places and he used this personal experience as an example of
deterioration of the Hacker Ethic that he could feel at the MIT AL Lab. Sam Williams wrote the first
book-length biography of Stallman. William dedicated the whole opening chapter to only to the Xerox
printer incident in great detail and shows its significance on the Stallman’s cause. See Williams,
Chapter 1, Stallman's Crusade, Free as in Freedom--Richard Stallman's Crusade for Free Software,
O’Reily 2002 at <http://www.oreilly.com/openbook/freedom/> (hereafter Stallman's Crusade)
49 The older Xerox graphics printer was initially donated to the AI Lab in around 1977. The printer
“was run by free software to which we added many convenient features. For example, the software
would notify a user immediately on completion of a print job. Whenever the printer had trouble, such
as a paper jam or running out of paper, the software would immediately notify all users who had print
jobs queued. These features facilitated smooth operation.” Stallman, “Why Software Should be Free”
at <http://www.gnu.org/philosophy/shouldbefree.html>
50 Sam Williams, Stallman’s Crusade, supra note 47, para. 29
51 See Levy, Hackers, p.40

 60

send a notification when a print job was sent to the dedicated computer, but not

when the job was actually printed (and the delay was usually considerable).

There was no way to find out when the job was actually printed; you could only

guess. And no one was informed when there was a paper jam, so the printer

often went for an hour without being fixed.

The system programmers at the AI Lab were capable of fixing such problems,

probably as capable as the original authors of the program. Xerox was uninterested in

fixing them, and chose to prevent us, so we were forced to accept the problems. They

were never fixed.52

Stallman later learned that a leading computer scientist just left Xerox and was hired

by Carnegie Mellon University’s computer science department. He made a journey

to Carnegie Mellon and made a request in person for the source-code file that ran the

printer. Much to Stallman’s disappointment, the request was turned down to his face.

This is because the ex-Xerox employee had already signed a non-disclosure

agreement with Xerox and the source code must be kept as the trade secret of the

company.53 Stallman felt emotionally scarred by the refusal to provide source code

by another programmer. From this experience, he finds that unmodifiable proprietary

software would cause a “psychosocial harm” to software users just like a resident is

not allowed to make any changes to a house where lives: “It is demoralizing to live

in a house that you cannot rearrange to suit your needs. It leads to resignation and

discouragement, which can spread to affect other aspects of one's life. People who

feel this way are unhappy and do not do good work.”54

The Symbolics Incident

Although the Xerox incident has been repeatedly singled out as “a major turning

point” when proprietary software started to hurt the collaborative relations under the

Hacker Ethic, it is nothing more than a wake-up call about the creeping influence of

52 Stallman, “Why Software Should be Free” at <http://www.gnu.org/philosophy/shouldbefree.html>
53 It is suspected that Robert Sproull was the one who rejected Stallman’s request of source code, but
Sproull himself had no recollection of the incident. Williams, Stallman’s Crusade, supra note 47, para.
58.
54 supra note 52

 61

proprietary software on the MIT Lab.55 The real “fatal blow” that destroyed the

Stallman’s hacker community came from the second incident about “Symbolics”,

which was a spin-off company from the MIT AI Lab. In the early 1980s, Russell

Noftsker, a former AI Lab administrator, formed Symbolics to commercialise an AI

Lab project on the LISP programming language. Its business competitor was the

hacker-friendly company called LISP Machine Incorporation (LMI) led by the MIT

hacker Richard Greenblatt, who stuck to the Hacker Ethic and disclosed their source

code dutifully as usual. In a nutshell, there were three parties in this incident:

Symbolics, LMI and the AI Lab. The first two parties were in business competition

and the last was in a neutral position. Stallman’s job at the AI Lab was to keep the

lab’s version of the LISP operating system abreast with the two companies’

improvements. The three parties shared improvements of LISP OS for over a year. In

March 1982, Symbolics stopped sharing source code with the AI Lab and LMI in

order to protect their software as trade secret. This was a move that was intended to

undermine its competitor LMI, but the person who felt most betrayed and hurt was

Stallman at the AI Lab. Stallman’s personal revenge was to reverse engineer

Symbolics’ now “closed-source” software by studying their newly added features,

whose source code would then be completely rewritten from scratch by Stallman.56

He then shared his code with Symbolics’ competitor the LMI. Angered by Stallman’s

retaliation, the President of Symbolics Noftsker accused Stallman of “stealing” the

company’s trade secrets:

We developed a program or an advancement to our operating system and make

it work, and that may take three months, and then under our agreement with

MIT, we give that to them. And then [Stallman] compares it with the old ones

and looks at that and see how it works and reimplements [for the LMI

55 Williams observes that the incident at its most is a “wake-up call” alarming that software “had
become such a valuable asset that companies no longer felt the need to publicize source code” Sam
Williams, supra note 47, para. 62 & para. 65,
56 Retrospectively, Stallman’s method of simulating functions of the original software by rewriting
source code was later called “non-literal copying” of software. Stallman thought his behaviour was
perfectly legal because he did not literally copy source code. However, non-literal copying was held to
be infringing a software owner’s copyright in 1986 Whelan Associates Inc. v. Jaslow Dental
Laboratory Inc. 797 F.2d 1222 (3d Cir. 1986); The Whelan decision was criticised by a later decision
for giving an overbroad protection of software, Computer Associates Int’l, Inc. v. Altai, Inc.,928 F.2d
693 (2d Cir.1992)

 62

machines]. He calls it reverse engineering. We call it theft of trade secrets.57

(added emphasis)

Stallman’s revenge did not go very far. Many fellow-hackers at the MIT Lab had

already disagreed with him and they were gradually hired away to write more

lucrative proprietary software for Symbolics.58 They saw Stallman’s reaction as a

“troubling anachronism” which was blind to the irreversible trend of software

commercialisation: “In commercializing the Lisp Machine, the company pushed

hacker principles of engineer-driven software design out of the ivory-tower confines

of the AI Lab and into the corporate marketplace where manager-driven design

principles held sway.”59 The upshot of the Symbolics incident is the full decline of

the Hacker Ethic at the AI Lab. For Stallman, the hacker-led AI Lab in the early

1970s was not only his workplace, but also his spiritual home. Stallman held

Symbolics responsible for destroying this “home”. Just as Williams observes that

“the Symbolics controversy dredged up a new kind of anger, the anger of a person

about to lose his home.”60 As a “homeless” hacker, Stallman felt that there was no

point in continuing to work at the AI Lab where the hackers’ collaborative ethos no

longer existed. He resigned his job and became a full-time campaigner for “software

freedom”.

The Emacs Programming Editor Dispute

The third and final incident concerns Stallman’s dispute with James Gosling over the

GNU Emacs software, which eventually led to the creation of the first copyleft

licence in the period between 1983 and 1985. After Stallman left the AI Lab, he

embarked on the ambitious GNU project in order to create a complete non-

proprietary operating system to replace the proprietary UNIX system. In an initial

announcement dated 27 September 1983, Stallman planned to “write a complete

Unix-compatible software system called GNU (for Gnu’s Not Unix), and give it

57 Quoted by Levy, Hackers, p.426-7
58 Even before the Symbolics incidents, Stallman was already shunned by many hackers who later
joined Symbolics. In around 1981 and 1982, MIT hackers stopped inviting Stallman to go out for
dinners together and some of them confessed that they had to lie to Stallman in order to avoid
embarrassment. Sam Williams, supra note 47, para. 455
59 ibid., para. 454
60 Williams observes that Stallman felt strongly that MIT AI Lab in the early 1970s was his “home”:
Williams, ibid., para. 456

 63

away free to everyone who can use it.”61 In the same announcement, Stallman

stressed a “golden rule” of software sharing that he himself must stick to: “I consider

that the golden rule requires that if I like a program I must share it with other people

who like it. I cannot in good conscience sign a nondisclosure agreement or a software

license agreement.” More significantly, in the following paragraph, the word “free

software” was mentioned: “So that I can continue to use computers without violating

my principles, I have decided to put together a sufficient body of free software so

that I will be able to get along without any software that is not free.”62 (added

emphasis) Although it would take a few more years for “free software” to be clearly

defined (as in the FSD), the announcement shows Stallman was contemplating the

idea of “free software” as early as in 1983.

One of the flagship sub-projects of GNU is the Emacs programming editor, which

was initially developed by Stallman (in collaboration with many of his colleagues at

the AI Lab) in the mid-1970s. Emacs embodied a then radically new idea of

displaying and editing text on computer screens (replacing the old method of

scrutinising printed-out code on paper). It was a pioneer of “the real-time display

editor” and it was “customizable” by its users. The customizability of Emacs was the

most outstanding feature intended by Stallman to facilitate radical collaboration

between developers and users. According to Levy, Stallman “used the Hacker Ethic

as a guiding principle for his best-known work, an editing program called EMACS

which allowed users to limitlessly customize it—its wide open architecture

encouraged people to add to it, improve it endlessly.”63 Very importantly, users are

given a tool known as the Emacs Lisp (Elisp) programming language to make any

adaptation that they need. The official website of GNU Emacs explains:

If Emacs doesn’t work the way you’d like, you can use the Emacs Lisp (Elisp)

language to customize Emacs, automate common tasks, or add new features.

Elisp is very easy to get started with and yet remarkably powerful: you can use

61 The project was slightly delayed, and it did not make a start until January 1984. Stallman, GNU
Initial Announcement, 1983 at <http://www.gnu.org/gnu/initial-announcement.html>
62 Stallman, GNU Initial Announcement, 1983 at <http://www.gnu.org/gnu/initial-
announcement.html>
63 Levy, Hackers, p.416

 64

it to alter and extend almost any feature of Emacs. You can make Emacs

whatever you want it to be by writing Elisp code […]64

Because of its radial openness and customizability, Emacs became so popular among

programmers that it was widely copied and modified in various forms. Stallman

suggested that anyone who made improvements of the Emacs editor should

contribute modifications back to the so-called “EMACS software-sharing commune”.

In a 1981 Emacs user manual, it became clear that Stallman had by then conceived a

prototypical “share-alike” condition for using Emacs, though it was not intended to

be legally binding:

[…] you are joining the EMACS software-sharing commune. The conditions of

membership of [the EMACS commune] are that you must send back any

improvements you make to EMACS, including any libraries you write, and that

you must not redistribute the system except exactly as you got it, complete. […]

All sources [i.e. source code] are distributed, and should be on line at every site

so that users can read them and copy code from them. […]65

The Emacs commune “share-alike” condition66 stipulating that “you must send back

any improvements you make to EMACS” is significant. The Emacs commune,

according to Kelty, is “designed to keep EMACS alive and growing as well as to

provide it for free” and it indicates a kind of “community stewardship”67, which is

different from private ownership of software. It fleshed out the first two tenets of the

Hacker Ethic documented by Levy.68 It would take another four years before

Stallman actually wrote a fully-fledged copyleft licence—GNU Emacs General

Licence—in 1985, but the idea of “copyleft” was clearly being fermented as early as

64 A Guided Tour of Emacs, <http://www.gnu.org/software/emacs/tour/>
65 Stallman, “EMACS Manual for ITS Users,” 22 October 1981, quoted in Kelty, Two Bits, Note 13,
p.333
66 Elsewhere, Stallman addresses this Emacs commune condition in a less formal way: the condition is
“that [users] give back all extension they made, so as to help EMACS to improve. I called this
arrangement ‘the EMACS commune’ ”. Stallman continues that “[a]s I shared, it was their [i.e. users’]
duty to share; to work with each other rather than against.” quoted in Levy, Hackers, p.416
67 Kelty, Two Bits, p.191
68 Recall that the first two tenets are the “hands-on Imperative” (i.e., unlimited and total access to
computers) and “all information should be free”. Stallman’s verbalisation of the commune conditions
in 1981 gives the Hacker Ethic a more concrete textual existence.

 65

in 1981 when copyright was about to become an established legal form of software

protection.

Unfortunately, not everyone shared Stallman’s ideal of “community stewardship” of

the Emacs editor. Since 1981, James Gosling started to work on a variant of Emacs

running under the UNIX operating system. Gosling’s version (sometimes also known

as “Gosmacs”) was initially shared with the community and Stallman incorporated

some of Gosling’s code into his GNU Emacs. In 1983, Gosling decided not to share

his software any more, on the ground that the increasing popularity of Gosmacs

made him unable to keep up with the growing administrative side of the job.69 He

eventually sold Gosmacs to a proprietary software company called Unipress, which

was believed to be more suitable for the future development of Gosmacs. Stallman

was saddened by Gosling’s decision and felt that his communal ideal was seriously

eroded.

Furthermore, also around this period of time copyright gradually overtook trade

secrecy as the main form of legal protection of software,70 and the threat of copyright

infringement became increasingly real rather than merely hypothetical to software

developers. In order to avoid being bogged down by the copyright ownership dispute

with Gosling, Stallman did two things. First, he removed Gosling’s code completely

from GNU Emacs and issued a “Gosling-free” version with his own replacement.

Second, he produced the first free software licence that specified the conditions of

using, modifying and redistributing GNU Emacs. The new licence was called GNU

Emacs General Public License (EGPL), which was first published in 1985 and

revised twice respectively in 1987 and in 1988. The licence opened with a preamble

marking the difference between GNU Emacs and software produced by proprietary

“software companies” (with Unipress clearly being one of them in Stallman’s mind):

“The license agreements of most software companies keep you at the mercy of those

companies. By contrast, our general public license is intended to give everyone the

right to share GNU Emacs. To make sure that you get the rights we want you to have,

69 Gosling made this announcement on 12 April 1983: “This is a hard step to take, but I feel that it is
necessary. I can no longer look after [Gosmacs] properly, there are too many demands on my time.
EMACS has grown to be completely unmanageable. Its popularity has made it impossible to distribute
free: just the task of writing tapes and stuffing them into envelopes is more than I can handle.” quoted
in Kelty, Two Bits, p.190
70 See Kelty, Two Bits, pp.199-206

 66

we need to make restrictions that forbid anyone to deny you these rights or to ask

you to surrender the rights.”71 Note that the “share-alike” clause of the EGPL is not

qualitatively different from the content of the Emacs commune condition mentioned

above. The EGPL’s “copying policies” stipulate that Emacs users must

cause the whole of any work that you distribute or publish, that in whole or in

part contains or is a derivative of GNU Emacs or any part thereof, to be

licensed at no charge to all third parties on terms identical to those contained in

this License Agreement (except that you may choose to grant more extensive

warranty protection to some or all third parties, at your option).72

This clause would be later famously (or notoriously) known as the “viral” clause,

which constitutes the defining feature of copyleft. It enjoined GNU Emacs users to

contribute back any publicly released modification, i.e. any work that “in whole or in

part contains or is a derivative of GNU Emacs”, under the same GNU EGPL. This

was clearly designed to prevent programmers like Gosling from withdrawing their

contributions from the Emacs commune.

Most significantly, in the course of the Emacs dispute from 1983 to 1985, Stallman’s

attitude towards copyright underwent an important but sometimes unnoticeable

change: he became less cynical about copyright in software and found that he could

leverage copyright law to further his cause of free software.73 It is important to

remember that this happened in a historical context where an increasing number of

software developers began to rely on copyright to protect their software.74 The

dispute with Gosling caused Stallman to gradually familiarise himself with the US

copyright law. He discovered that the very broad right granted to copyright owners

could actually be inflected for the “share-alike” purpose intended by the Emacs

“commune”. He used copyright as the basis for imposing the “copyleft”75

71 GNU EGPL
72 Section 2 (b), GNU EGPL, 1985, 1987, 1988 at <http://www.cogsci.indiana.edu/pub/COPYING>
73 From 1983 when Gosling made Gosmacs proprietary to 1985 when Stallman published the first
copyleft licence, the change took place in a short space of less than two years.
74 For example, Kelty observes that both Gosling and Stallman registered their respective versions of
Emacs with the US Library of Congress after the dispute. Kelty, Two Bits, Note 43, p.335
75 In 1985, Stallman received a letter from Don Hopkins who wrote playfully on the envelope the
phrase: “Copyleft—all right reversed”. Stallman liked the clever wordplay “copyleft” and later used it
to name the anti-privatisation feature of the GNU EGPL-like software licences, which are known as

 67

requirement—which is effectively a variant of the Emacs commune condition—on

downstream users and deterred them from privatising source code of released

modifications and improvements. In the same year when the 1985 GNU Emacs

licence was published, Stallman also founded the Free Software Foundation (FSF),

which later becomes an important powerbase for the free software movement.

In 1989, Stallman finally turned the Emacs-specific GNU EGPL into a generic

template licence, which could be used for any free software. It became the very first

version of GNU General Public Licence (GPL). Stallman made it clear that the GPL

v1.0 relied upon copyright: “We protect your rights with two steps: (1) copyright the

software, and (2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.”76 This text would remain unchanged in all the

later versions of the GPL. Legally speaking, the GPL is a kind of standard form

licence that lacks explicit bargained-for exchanges. It is important to note that,

despite its venerable ideal of protecting software freedom, the legal form of GPL is

not drastically dissimilar from other conventional off-the-shelf standard form

software licences, which are also used by proprietary software developers. In Chapter

4, I will try to tackle this issue in more depth by examining the doctrinal rules

governing the enforcement of FOSS licences and I will also propose to analyse the

issue by harnessing the insights from relational contract theory, which has been

largely neglected in the literature of FOSS licensing.

To summarise the whole second historical period of FOSS licensing, the three

incidents of the Xerox printer at the AI Lab, Stallman’s confrontation with

Symbolics and the Emacs dispute travelled down a trajectory where Stallman

formulated a narrative about the birth of the free software movement as an attempt to

repair the collaborative ethos damaged by the rise of proprietary software. The

narrative is closely linked with the development of intellectual property law in the

US from the mid-1970s onward: the first two incidents are mainly concerned with

protecting software by trade secrecy (through non-disclosure agreements), while the

last one shifts to copyright protection. This shift signals a trend where copyright

the copyleft licences. Richard Stallman, “The GNU Project”, at
<http://www.gnu.org/gnu/thegnuproject.html>
76 Preamble, GPL v1.0; the quoted sentence remains unchanged in the second and third versions of
GPL.

 68

became a more convenient and accepted form of software protection than trade

secrecy after 1980. It is not a surprise that Stallman’s many versions of GPL licences

are actually copyright licences because they are essentially the product of this trend.

The next historical stage will reveal how the free software movement took another

critical turn after 1998 and its social and political influence started to spill over into

the non-hacking world as anticipated by the sixth tent of the Hacker Ethic.

2.4 From 1998 Onwards: Challenge from “Open Source”

The year 1998 marks the beginning of the third stage in the history of FOSS

collaboration. In early February of that year, Eric Raymond, an ex-Emacs contributor,

openly broke away from Stallman’s free software movement. Raymond’s agenda is

to redirect the energy of free software developers to a more business-friendly

approach under a new label called “open source”. The term was deliberately coined

by Raymond on 3 February 1998 during a meeting with some entrepreneurially

minded programmers in California. It was hoped that this “rebranding” of the

movement as “open source” would tone down the anti-commercialism associated

with the Stallman-led free software movement and get “open source” software

accepted in the business world.77

Deviating from Stallman’s position, Raymond’s neologism is not intended to hold

the moral high ground over proprietary software, but it is keen to propagate a vision

that the decentralised bazaar-style “open source” is capable of producing better-

quality software than the hierarchically organised Cathedral-like structure. This

vision was actually first gestated, one year before the coinage of the term, in the

much-cited essay The Cathedral and the Bazaar first written in 1997 and later

revised numerous times by Raymond. This essay is significant in the sense that it

opened up an alternative line of narrative, deviating from Stallman’s narrative of

“software freedom” as a matter of regaining the lost ground of the MIT-style Hacker

Ethic. The new narrative contains a series of carefully chosen stories, which would

later become part of open source’s own “folklore”. There are two oft-told stories that

77 On that day, Raymond met Todd Anderson, Chris Peterson, John “maddog’ Hall and Larry
Augustin, Sam Ockman, Michael Tiemann in Palo Alto. The meeting was held after Netscape’s
announcement (in January) of its plan to release its source code to the public. Open Source Initiative,
“History of the OSI”, at <http://www.opensource.org/history>

 69

tellingly illustrate how Raymond takes trouble to introduce the new twist of “open

source” to the “free software” world. The first is about the Linux kernel system as an

epitome of the Bazaar model and the second is about the Netscape web browser as an

example of corporations’ embrace of the idea of “open source”.

First, Raymond capitalises on the runaway success of the Linux kernel project, which

already took off in the early 1990s.78 One of the main goals that The Cathedral and

the Bazaar wants to achieve is to further catapult Linus Torvalds, the initiator of

Linux, to the centre-stage of the “open source” movement. Raymond opens his essay

with a verdict that “Linux is subversive”, followed immediately by a thought-

provoking question: “Who would have thought [in 1991] that a world-class operating

system could coalesce as if by magic out of part-time hacking by several thousand

developers scattered all over the planet, connected only by the tenuous strands of the

Internet?”79 Raymond admitted that he himself, before the mid-1996, failed to

appreciate the strength of decentralised production of software until the success of

Linux awakened him to the tremendous advantage brought by the open-source bazaar.

He explains why the “subversive” Linux is crucial to the understanding of the

“bazaar” model as opposed to the hierarchical “cathedral” structure.

Linux overturned much of what I thought I knew. I had been preaching the Unix

gospel of small tools, rapid prototyping and evolutionary programming for years.

But I also believed there was a certain critical complexity above which a more

centralized a priori approach was required. I believed that the most important

software (operating systems and really large tools like the Emacs programming

editor) needed to be built like cathedrals, carefully crafted by individual wizards

or small bands of mages working in a splendid isolation, with no beta to be

released before its time.80

Note that the above paragraph obliquely criticises programmers like Stallman for

behaving like “individual wizards or small bands of mages working in splendid

78 The Linux project took off well before the Cathedral and the Bazaar was written. So Linux
inspires, but is not inspired by, the Bazaar model that Raymond attempt to advocate.
79 Raymond, Cathedral, supra note 14
80 ibid.

 70

isolation”81 and it attacks Stallman’s Emacs as an example of “really large tools” that

“needed to be built like cathedrals”.82 In contrast, Linus Torvalds does not work in

“splendid isolation,” but his style of development—“release early and often, delegate

everything you can, be open to the point of promiscuity”—resembles “a great

babbling bazaar of differing agendas and approaches”. 83 Far from working alone,

Torvalds, since he was a college student in Helsinki, did not hesitate to enlist the help

of thousands of volunteer programmers to contribute to the Linux project. Raymond

wants to emphasise that the success of Linux is a result of mass collaboration on the

global scale. It does not matter much how talented each of the individual

programmers is, but it does matter a lot how collaborative all contributors are.

It is worth noting that the way that programmers are portrayed in Raymond’s writing

is markedly different from Levy’s journalism on hackers. Levy’s 1984 book Hackers

is a collection of larger-than-life programming geniuses and its subtitle revealingly

hailed them as the “Heroes of Computer Revolution”. In contrast, the younger

generation of Linux programmers including Torvalds do not enjoy the “heroic” status

that their predecessors have, but they are ordinary people who are just willing to

work collaboratively “to the point of promiscuity” as is recorded in The Cathedral

and the Bazaar. Again, a brief comparison of Levy’s portrait of Stallman and

Raymond’s writing about Torvalds is illustrative of the more “democratic” and less

elitist characteristic of the new “open source” movement. In Levy’s book, Stallman

is portrayed as “the last of true hackers” whose heroism includes almost

singlehandedly fighting for the lost Hacker Ethic. Recall that when Stallman joined

the MIT AI Lab in 1971, he was still an undergraduate studying at an elitist Ivy

League university.84 The then AI Lab was likened by Levy to a “monastery”, where

81 Torvalds also voices his dislike of GNU Emacs and he openly says that “the Emacs editor is
horrible”. Also, Torvalds’ adoption of GNU software tools for the Linux project is purely for practical
reason and it is not a matter of buying into Stallman’s “philosophy”. See Torvalds, “The Linux Edge”,
in Open Sources: Voices from the Open Source Revolution (O'Reilly & Associates, 1999) p.107
82 It is not the first time that Stallman was found to be an extremely capable but lonely hacker who
often works in the solitarily environment. Bill Gosper, was aware of, and also admired, Stallman’s
ability to work efficiently on his own. Stallman single-handedly rewrote the new features of the LISP
operating system during his personal battle with the software company Symbolics. Gosper comments:
“I can see something Stallman wrote, and I might decide it was bad (probably not, but someone could
convince me it was bad), and I would still say, ‘But wait a minute—Stallman doesn’t have anybody to
argue with all night over there. He’s working alone! It’s incredible anyone could do this alone.”
quoted in Levy, Hackers, p.426
83 Raymond, Cathedral, supra note 14
84 He was earning a magna cum laude degree in physics at Harvard at the same time.

 71

Stallman “had experienced the epiphany” of “pure hacker paradise” and thus

developed “a deep affinity for the Hacker Ethic, and was militant in his execution of

its principle.”85 In contrast to the rarefied monastic atmosphere at MIT, Torvalds is

said to write Linux in a more “promiscuous” and democratic environment, which is

more conducive to mass collaboration from almost all walks of life. According to

Raymond, most Emacs tools (with a couple of exceptions) are built by elitist

cathedral-builders like Stallman, while Linux is a promiscuously open bazaar where

individual programmers like Torvalds are “lazy as a fox.”86 In particular, Raymond

points out that Torvalds is not an exceptionally original programmer. The Linux

system is heavily derivative from the pre-existing Minix system and there involves

no “conceptual leap forward” from Minix to Linux as something radically novel.

Compared with the older-generation hackers like Stallman, Torvalds is by no means

an “innovative genius” of programming (and he does not have to be one), but his

main contribution lies in his ability to select, implement and reuse and piece together

other people’s code. Though not a programming genius, Torvalds is recognised as a

kind of lesser “genius” who is exceptionally good at more mundane tasks of

“engineering and implementation” of other contributors’ ideas. This is a recognition

of the importance of Torvalds’s role as coordinator of a large-scale radically

decentralised collaborative project:

[...] Linux didn’t represent any awesome conceptual leap forward. Linus

[Torvalds] is not (at least, not yet) an innovative genius of design in the way

that, say, Richard Stallman or James Gosling […] are. Rather, Linus seems to

me to be a genius of engineering and implementation, with a sixth sense for

avoiding bugs and development dead-ends and a true knack for finding the

minimum-effort path from point A to point B. indeed, the whole design of

Linux breathes this quality and mirrors Linus’s essentially conservative and

simplifying design approach.87

Although Raymond’s comparisons between the Cathedral and the Bazaar, between

Linux and Emacs, and between Torvalds and Stallman, are not universally accepted

85 Levy, Hackers, pp.415-6
86 Raymond, The Cathedral, supra note 14
87 ibid.

 72

among critics88, Raymond largely succeeded in achieving what he wanted to achieve:

to promote an easy-to-grasp image of what “open source” is for the general public

(especially the non-programming business world) by showing how the decentralised

Bazaar model works and how it might be applied to collaborative projects like Linux.

The second important story in Raymond’s narrative of “open source” is about

Netscape, a software company that was keen to apply the Linux model. It is an

example of a high-profile corporation abandoning the Cathedral model for the new

Bazaar model. On 23 January 1998, the Netscape management team took a brave

decision to release the source code of their flagship product—the web browser

known as Navigator—to the public and became an “open source” company.89 This

move was taken in reaction to a dire prospect that was faced by Netscape when their

browser was rapidly losing market share to Microsoft, which bundled its Internet

Explorer browser to its Windows operating system. Before decision was made, Frank

Hecker wrote a whitepaper, citing Raymond’s The Cathedral and the Bazaar in an

attempt to persuade Netscape executives to “open source” their web browser.90 On 4

February 1998, Raymond was invited by Netscape for a strategy conference at

Silicon Valley. Six days after the conference (on 10 February), Raymond revised The

Cathedral and the Bazaar again by adding an “Epilogue” (in Revision 1.31) that

88 Bezroukov points out that the level of decentralisation in the Bazaar model may have been
exaggerated by Raymond. Especially, the core team of Linux have quite more power than the
peripheral contributions: “The black and white picture painted in CatB (monolithic, authoritarian
Cathedral model vs. democratic, distributed Bazaar model) is too simplistic. These metaphors for high
centralization (Cathedral) and no centralization (Bazaar) do not account for the size of a given project;
its complexity, timeframe and time pressures; its access to resources and tools; and, whether we are
talking about core functionally (like Linux kernel) or peripheral parts of the system. For large projects
like operating systems it is especially important that the core of the system is developed in a highly
centralized fashion with a small core team. Peripheral parts of the system can benefit from a more
relaxed, more decentralized approach”. See Nikolai Bezroukov, “A Second Look at the Cathedral and
the Bazaar”, (1999) 4 First Monday 12, at
<http://firstmonday.org/issues/issue4_12/bezroukov/index.html>
Bezroukov, “Open Source Software Development as a Special Type of Academic Research (Critique
of Vulgar Raymondism),” (1999) 4 (10) First Monday at
<http://www.firstmonday.org/issues/issue4_10/bezroukov/index.html#b4>;
89 “Netscape Announces Plans to Make Next-Generation Communicator Source Code Available Free
on the Net” at <http://wp.netscape.com/newsref/pr/newsrelease558.html>
90 Raymond’s paper was actually written seven months before Netscape’s announcement to go “open
source” in January 1998. Before that point, Raymond was not personally involved with Netscape’s
decision to be an “open source” company. See Jim Hamerly and Tom Paquin with Susan Walton,
“Freeing the Source—The Story of Mozilla”, Open Sources: Voices from the Open Source Revolution
eds. by Chris DiBona, Sam Ockman & Mark Stone (Sebastopol, O'Reilly & Associates, 1999) pp.197-
8

 73

fanfared Netscape’s shift as “a large-scale, real-world test of the bazaar model in the

commercial world”:

The open-source culture now faces a danger; if Netscape’s execution doesn’t

work, the open-source concept may be so discredited that the commercial world

won’t touch it again for anther decade. On the other hand, this is also a

spectacular opportunity. Initial reaction to the move on Wall Street and

elsewhere has been cautiously positive. We’re being given a chance to prove

ourselves, too. If Netscape regains substantial market share through this move,

it just may set off a long-overdue revolution in the software industry.91

In late February, Raymond, along with Bruce Perens (the then-leader of the Debian

project92), co-founded the Open Source Initiative (OSI) and produced the Open

Source Definition (OSD). The purpose of the OSI is to monitor and facilitate the use

of the OSD by software projects. The OSD was not written from scratch. Earlier in

1997, the Debian Community produced the Debian Free Software Guideline and

Perens rehashed this guideline into the OSD by just leaving out the Debian-specific

references in it.93 The OSD itself is not a license but a list of common elements that

could be adopted by any collaborative “open source” project and its corresponding

licence. It specifies ten common criteria against which a software project can be

found to be “open source” or not. According to these ten criteria, an open “source

project” must 1) allow free distribution of software, 2) make source code publicly

available, 3) allow modifications and derived works, 4) ensure integrity of the

author’s source code, 5) allow no discrimination against persons or groups, 6) allow

no discrimination against fields of endeavour, 7) require no signature to accept the

licence, 8) be not specific to a certain product, 9) allows no “contamination” of other

software distributed on the same medium and 10) be technology-neutral in licensing

software.94 Compared with Stallman’s Free Software Definition (FSD)95, the OSD

obviously contains a more detailed and specific list about what an “open source”

91 Raymond, The Cathedral, supra note 14
92 The Debian project was managed by a global team of volunteers aiming to produce an operating
system distribution that was “composed entirely of free software.” See Debian, A Brief History of
Debian at <http://www.debian.org/doc/manuals/project-history/ch-intro.en.html >
93 The Debian guideline is available at <http://www.debian.org/social_contract#guidelines>
94 The last criterion was later amended in 2004 in response to the increasing popular use of click-wrap
licences. See the OSD at <http://opensource.org/docs/definition.php>
95 Stallman, “The Free Software Definition”, at <http://www.gnu.org/philosophy/free-sw.html>

 74

project and its corresponding licence scheme should be. However, the basic licensing

principles of the OSD do not drastically deviate from the spirit of the FSD.

Especially, the first three criterions of the OSD, which list some defining features of

open source software, are not drastically dissimilar from the requirements specified

in FSD.

-OSD Criterion (1) Free Redistribution
The license shall not restrict any party from selling or giving away the software
as a component of an aggregate software distribution containing programs from
several different sources. The license shall not require a royalty or other fee for
such sale.
-OSD Criterion (2) Source Code
The program must include source code, and must allow distribution in source
code as well as compiled form. Where some form of a product is not distributed
with source code, there must be a well-publicized means of obtaining the
source code for no more than a reasonable reproduction cost preferably,
downloading via the Internet without charge. The source code must be the
preferred form in which a programmer would modify the program. Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output of
a preprocessor or translator are not allowed.
-OSD Criterion (3) Derived Works
The license must allow modifications and derived works, and must allow them
to be distributed under the same terms as the license of the original software.96

Perens hails the OSD as the “bill of rights for the computer users” because it defines

“certain rights that a software license must grant [users] to be certified as Open

Source.”97 He distils these rights under the OSD into three principles:

� The right to make copies of the program, and distribute those copies.

� The right to have access to the software’s source code, a necessary

preliminary before you can change it

� The right to make improvements to the program.98

The above open source principles are almost identical with the FSD (except that the

wording is slightly different). Stallman also observes that the OSD is only “derived

96 The rest of seven criterions are: “4. Integrity of The Author's Source Code; 5. No Discrimination
Against Persons or Groups; 6. No Discrimination Against Fields of Endeavor; 7. Distribution of
License; 8. License Must Not Be Specific to a Product; 9. License Must Not Restrict Other Software;
10. License Must Be Technology-Neutral.”OSI, Open Source Definition, at
<http://www.opensource.org/docs/osd>
97 Perens, “The Open Source Definition”, Chris DiBona, Sam Ockman & Mark Stone (Sebastopol,
O'Reilly & Associates, 1999) p.171
98 ibid., p.172

 75

indirectly from” the rules set by the FSD, because FSD is also focused on the

protection of software users’ “rights” (though in the FSD they are called “freedoms”)

in these respects.

It is interesting to note there are two “labels” that can be applied to the same type of

non-proprietary software after 1998—“free software” and “open source”—both of

which allow free access, modification and redistribution. The Linux project would

continue to be “free software” since its inception, but it could also be called “open

source” software after 1998. More importantly, Linux used the same licence—the

GNU GPL—before and after 1998. Kelty points out an irony that the advocates of

“free software” and proponents of “open source” seem to enter into a debate over

something upon which they practically agree: “the creation of two names allowed

people to identify one thing, for these two names referred to identical practices,

licenses, tools, and organizations”:

Free Software and Open Source shared everything “material,” but differed

vocally and at great length with respect to ideology. Stallman was denounced as

a kook, a communist, an idealist, and a dogmatic holding back the successful

adoption of Open Source by business; Raymond and users of “open source”

were charged with selling out the ideals of freedom and autonomy, with the

dilution of the principles and the promise of Free Software, as well as with

being stooges of capitalist domination. Meanwhile, both groups proceeded to

create objects—principally software—using tools that they agreed on, concepts

of openness that they agreed on, licenses that they agreed on, and

organizational schemes that they agreed on. Yet never was there fiercer debate

about the definition of Free Software.99

So if the two labels refer to the same kind of software (and the same type of software

licences as well), what is the real consequence of Raymond’s “open source”

movement? Does it only introduce a distinction without a difference? Does the

invention of “open source” really alter the course where “free software” would have

gone after 1998?

99 Kelty, Two Bits, p.117

 76

My answer is that “open source” movement is more than a matter of changing label,

but there have been at least two real impacts on the “free software” movement. The

twofold impacts operate mutually on both movements: “open source” expands the

influence of “free software” beyond the computer hacker community, while “free

software” puts an “ethical” limit on how far this expansion can go. Firstly, the “open

source” campaign significantly expands the reach of the “free software” and puts it

firmly into the consciousness of the general public. Especially, it raises substantial

awareness about the commercial potential of “free software” in the business world. It

convinces quite a significant part of the conventional non-hacking world that the

decentralised Bazaar model of mass collaboration “to the point of promiscuity” can

be employed to produce high-quality software. The post-1998 “free software”, after

being rebranded as “open source”, was no longer a monastic hacker subculture

subsisting on the lingering Hacker Ethic, but it became increasingly in vogue among

corporate executives and salespeople. Of course, this newly acquired popularity is

achieved by toning down Stallman’s strong political language about the full

commitment to “software freedom”.

The second impact of “open source” is that it challenges Stallman to further defend

the ultimate value of “free software” more rigorously in order to put an “ethical”

limit on the otherwise unbridled commercialism of open source. Different from

merely having a few knee-jerk reactions to some specific incidents in the 1980s (such

as in Xerox and Symbolics incidents in the early 1980s100), Stallman after 1998

needed to make conscious effort to clarify the “ethical” underpinning for the latter-

day Hacker Ethic. The most obvious example of these efforts is embodied in

Stallman’s article—“Why Open Source Misses the Point of Free Software”—which

is written as a direct response to the challenge posed by “open source”. In this article,

he stresses that there is a pronounced difference between “free software” and “open

source” in terms of the message about “freedom” that was intended to be sent or kept

quiet about:

Nearly all open source software is free software. The two terms describe almost

the same category of software, but they stand for views based on fundamentally

100 See Section 2.3.2 of this chapter.

 77

different values. Open source is a development methodology; free software is a

social movement. For the free software movement, free software is an ethical

imperative, because only free software respects the users' freedom. By contrast,

the philosophy of open source considers issues in terms of how to make

software “better”—in a practical sense only. It says that nonfree software is an

inferior solution to the practical problem at hand. For the free software

movement, however, nonfree software is a social problem, and the solution is to

stop using it and move to free software.101 (added emphasis)

In the same article, Stallman further clarifies that software freedom needs to be

guarded as an intrinsic value for its own sake. The measurement resides solely in the

four kinds of software freedom given to software users, but not the performance of

software. “Open source” is not necessarily a superior “development methodology”

and it may well produce lower-quality software than the “closed source” software

model. Open source advocates miss this point by wrongly believing that “open

source” software is guaranteed to be more “powerful” and “reliable” than any

proprietary one.102 The reality is that it is possible for proprietary software to

outperform non-proprietary software. Without a strong belief in the intrinsic value of

“software freedom”, users can easily be lured away by some practical advantages

offered by proprietary software.

Sooner or later these users will be invited to switch back to proprietary software

for some practical advantage. Countless companies seek to offer such

temptation, some even offering copies gratis. Why would users decline? Only if

they have learned to value the freedom free software gives them, to value

freedom in and of itself rather than the technical and practical convenience of

specific free software. To spread this idea, we have to talk about freedom. A

certain amount of the “keep quiet” approach to business can be useful for the

101 Stallman, “Why Open Source Misses the Point of Free Software” at
<http://www.gnu.org/philosophy/open-source-misses-the-point.html>
102 Stallman argues: “The idea of open source is that allowing users to change and redistribute the
software will make it more powerful and reliable. But this is not guaranteed. Developers of
proprietary software are not necessarily incompetent. Sometimes they produce a program that is
powerful and reliable, even though it does not respect the users' freedom.” ibid.

 78

community, but it is dangerous if it becomes so common that the love of

freedom comes to seem like an eccentricity.103

However, Stallman’s insistence that “open source is a development methodology;

free software is a social movement” is not universally accepted. His argument tends

to attract two kinds of objection. The first kind argues that “open source” is more

qualified as a consciously organised “social movement” than “free software” is.

Stallman’s free software campaign before 1998 could be seen as no more than an

outlet of a lonely hacker’s frustration in reaction to a series of unhappy incidents.104

In contrast, “open source” was consciously started as a movement in 1998 and it

immediately attracted a lot of supporters who had already been working on leading

“open source” projects such as Linux, Sendmail, Perl, Python, Apache. The official

history of the Open Source Initiative documents that after the meeting organised by

Tim O’Reilly on 8 April 1998, all the above participating “open source”

programmers “voted to promote the use of the term ‘open source’, and agreed to

adopt with it the new rhetoric of pragmatism and market-friendliness that Raymond

had been developing.”105

The second objection argues that it is futile to find whether “open source” or “free

software” is a “movement” (or two “movements”). What really matters is the fact

that “open source” and “free software” programmers share the same “platform”,

which invites and encourages debate and discussion over issues pertinent to software

development. This is the view held by Kelty, who calls this “platform” a “recursive

public”. In this public, unmediated discourses are freely exchanged among

programmers through their human language as well as their technological language

in source code. This public is also said to be a “recursive” one, because Kelty

believes that it dissolves the traditional distinction of software being a technical

system and the organisation of software programmers being a social system. In this

sense, FOSS “recurses” through the technical and social dimensions into one single

“self-grounding” public sphere, which operates independently from other established

103 ibid.
104 The term “free software” was used in the GNU Initial Announcement as early as in 1983 when the
FSD did not exist. It would take some more years before Stallman had a clearer view about free
software as defined in the FSD. See for more detail in Section 2.3.2 of this chapter.
105 See OSI, “History of the OSI”, at <http://www.opensource.org/history>

 79

social structures such as the price mechanism of the market and the for-profit agenda

under a corporate structure.106 (In contrast, most commercial proprietary software

developers tend not to have such free-following “discourses” in a self-grounding

public, because their technical output is mostly likely to be dictated or incentivised

by either market or firms.) It is also important to note that the recursive public is

neither a formal organisation nor an aimless crowd, but it sits somewhere between.

Kelty believes that “recursive public” is a better term than “movement” to describe

the unique phenomenon of “free software” and “open source” as sharing one and the

same “public” platform:

Free Software and Open Source are neither corporations nor organizations nor

consortia (for there are no organizations to consort); they are neither national,

subnational, nor international; they are not “collectives” because no

membership is required or assumed—indeed to hear someone assert ‘I belong’

to Free Software or Open Source would sound absurd to anyone who does.

Neither are they shady bands of hackers, crackers, or thieves meeting in the

dead of night, which is to say that they are not an “informal” organization,

because there is no formal equivalent to mimic or annul. Nor are they quite a

crowd, for a crowd can attract participants who have no idea what the goal of

the crowd is; also, crowds are temporary, while movements extend over time. It

may be that movement is the best term of the lot, but unlike social movements,

whose organization and momentum are fueled by shared causes or broken by

ideological dispute, Free Software and Open Source share practices first, and

ideologies second. It is this fact that is the strongest confirmation that they are a

recursive public, a form of public that is as concerned with the material

practical means of becoming public as it is with any given public debate.107

In other words, it does not matter whether “free software” and “open source” is one

or two “social movements” or none at all, but what is most significant is that they

share the same debating platform, which is the same “recursive public”. I largely

agree with Kelty that the debates between “open source” and “free software” are

essential to create one shared “recursive public” between the two camps. However, I

106 Kelty, Two Bits, pp.10-11
107 Kelty, Two Bits, p.113

 80

am also afraid that Kelty does not pay enough attention to the fact that it was the

“Hacker Ethic” (and its latter-day versions, i.e., FSD and OSD) that tied this public

together in the first place. One should not take for granted the happening of the

recursive public, and this public can never dispense with a minimum consensus as

agreed by “open source” and “free software” partisans on basic tenets in the Hacker

Ethic. Unfortunately, Kelty is rather dismissive of the Hacker Ethic’s role in guiding

programmers’ behaviour and its relevance in the recursive public: “While hackers

themselves might understand the hacker ethic as an unchanging set of moral norms,

their practices belie this belief and demonstrate how ethics and norms can emerge

suddenly and sharply, undergo repeated transformations, and bifurcate into

ideologically distinct camps (Free Software vs. Open Source), even as the practices

remain stable relative to them.”108 As has been shown above, from the Hacker Ethic

to “free software” to “open source”, the core stewardship obligations to protect

software freedom as indicated in Tenets (1) and (2) of Levy’s Hacker Ethic have

largely reincarnated in Stallman’s FSD and Raymond’s OSD. The Hacker Ethic, as

well as its spirit in various FOSS licences, provides a minimum consensus between

“open source” and “free software” programmers. It glues programmers from both

camps together to collaborate towards common projects. In other words, the Hacker

Ethic is the common ground that underpins the collaborative practice of open source

and free software. Without this minimum consensus, Kelty’s “recursive public”

would not exist in the first place let alone survive the ever-changing socio-legal

environment of software production. In short, although “open source” adds a

commercial twist to the non-proprietary software movement in the third historical

stage, it does not fundamentally change the “glue”, i.e. the Hacker Ethic, which

brings together the collaborative efforts that build common software projects.

2.5 Conclusion

This chapter has surveyed a brief history of the Hacker Ethic since its inception in

the relatively close-knit computer hacker community in the 1950s and 1960s,

followed by the decline of the Hacker Ethic in the late 1970s and then the non-

proprietary software movement in an attempt to revive the lost Hacker Ethic from the

108 ibid., p.180

 81

late 1980s onwards. In particular, Stallman invented a copyleft licensing scheme that

for the first time verbalised programmers’ minimum commitment that is intended to

support large-scale radically decentralised collaborative software projects. In 1998,

the “open source” campaign led by Raymond openly broke away from Stallman’s

“free software” movement to form a business-friendly group that has the ambition to

succeed on the mainstream commercial software market, but the underlying Hacker

Ethic of the movement has remained largely unchanged. In the next chapter, I will

examine how the FOSS programmers find their legal expression of software freedom

through “intellectual property” licensing schemes in some detail.

 82

Chapter 3 Intellectual Property and Software Freedom

3.1 Introduction

After the 1980s it gradually transpired that the rise of intellectual property (IP),

especially copyright and patent, in software became an increasingly influential factor

affecting FOSS communities. The impact of IP was twofold. Firstly, it weakened

hacker custom as a great number of computer hackers were lured away to write the

more lucrative proprietary software. However, secondly, a small number of stalwart

software freedom fighters puzzled out that copyright licences could be drafted in a

way to continue the threatened custom. The first impact has mainly been covered in

the previous chapter. It is the job of this chapter to explore how computer hackers

attempt to reconfigure the IP system through their licensing schemes (e.g. GPL) in

order to reinstate the principles of software freedom for their community.

The chapter is divided into five parts. The first part (Section 3.2) explores Richard

Stallman’s argument against using the umbrella term “intellectual property” that

conventionally lumps together a set of disparate bodies of law, mainly including

copyright and patent laws. As FOSS licences are attentive to the subtle differences

between copyright and patent as well as their respective impact on FOSS

collaboration, it is necessary for this chapter to examine these two areas separately.

The second part (Section 3.3) is a general introduction to software copyright law as

the background against which FOSS licensing schemes are crafted. It discusses some

major developments in Anglo-American copyright law that have positively or

negatively affected software freedom. The third part (Section 3.4) explores the rise of

“software patents” as a response to the IP expansionists’ failure to stretch copyright

further to cover the non-expressive elements, i.e. functionality of software since the

1990s. It canvasses the debate about the patentability of computer programs in both

EPC countries (especially UK) and the US. I will show how FOSS programmers

perceive patents as a threat to software freedom. The fourth part (Section 3.5) uses

the GPL as an example to show how principles of software freedom are articulated

mainly through the language of copyright law. It also examines how the GPL

partially contains the perceived threat to the hacker ethic from patents. The fifth part

 83

(Section 3.6) concludes that FOSS programmers do not endorse “IP” as a unified

body of law but they selectively leverage two different branches of “IP” (i.e.

copyright and patent) to protect software freedom in a non-exclusive commons

regime.

3.2 “Intellectual Property” and FOSS

An exploration of “software freedom”, which is a necessary condition of commons-

based decentralised collaborative programming, ironically has to “start[] with the

other side of the coin, property rights”.1 This is largely because the idea of “software

freedom” in FOSS licensing was first triggered as the computer hackers’ response to

the rise of intellectual property in software programs.2 It reflects what Houweling

calls the “property turn” in the FOSS movement that has run concurrently with a

broader movement known as “cultural environmentalism”. 3 The employment of

FOSS licences is not drastically dissimilar to environmentalists’ efforts to enlist the

property regime to impose land obligations such as the much used “conservation

easement”.4 The “property turn” embodied in FOSS licensing indicates that a FOSS

commons is different from the public domain that is a property-free zone. FOSS

programmers do not relinquish their IP rights altogether, but they rearrange the initial

entitlements as conferred by IP law. Along this line, Boyle differentiates two kinds of

freedom as institutionalised respectively in the public domain and the licensing

commons (the commons produced as a result of FOSS licensing): “In the public

domain, freedom is based on the absence of property rights. In the licensing

commons, freedom is based on the preemptive exercise of the property rights by the

rights holder in order to grant use privileges to users of the commons, and sometimes

1 Lawrence Rosen, Open Source Licensing—Software Freedom and Intellectual Property Law, (Upper
Saddle River, NJ: Prentice Hall PTR, 2005) p.13
2 See Chapter 2 for detail.
3 See Molly Shaffer Van Houweling, “Cultural Environmentalism and the Constructed Commons”,
(2007) 70 Law and Contemporary Problems 23 at 29-33
4 For “conservation easement” in the context of environmental protection, see, for example, Nancy A.
McLaughlin, “Rethinking the Perpetual Nature of Conservation Easements”, (2005) 29 Harvard
Environmental Law Review 421

 84

to bind those future users to add their own improvements back to the common

pool.”5 (original emphasis)

Although a licensed FOSS commons is built upon the institution of IP, it would be

inappropriate to leap to the conclusion that FOSS programmers embrace

wholeheartedly the idea of “property” in general and that of “IP” in particular. The

reality is a bit more complex than that in two respects. First, the use of licensing

schemes mainly reflects the pragmatic side of the FOSS movement. Licensing is not

intended to, and cannot be, a complete overhaul of the existing IP system, but they

are workarounds or makeshift solutions to particular defects of the legal system as

identified by FOSS programmers.6 Not unlike computer hackers’ “patches” or “bug

fixes” that are designed to fix some particular problems in a software program, FOSS

licences are the equivalent of “computing hacks” in the legal world. They are

privately made legal “patches” submitted to plug holes in publicly made IP law based

on FOSS programmers’ diagnoses. For example, Kelty believes that GPL is exactly

Stallman’s “hack” into the US IP regime.7 However, this legal pragmatism of

“patching” and “hacking” should not obscure the idealistic side of the FOSS

movement, which attempts to reverse the programming environment back to a

situation similar to the pre-1980s IP-free hacker community.8 Although it is

uncertain whether this ideal of creating an IP-free zone can be realised in the near

future, it at least reminds us that the current arrangements under various FOSS

licensing schemes are largely a compromise between private property and the hacker

ethic.

Secondly, FOSS programmers are aware that the so-called “intellectual property

law” is not a unified body of law, but conventionally has at least three major sub-sets,

5See James Boyle, “Cultural Environmentalism and Beyond” (2007) 70 Law and Contemporary
Problems 5 at 10
6 There is no shortage of suggestion that more changes should be done through legislative route by
amending IP laws rather than private ordering though licensing schemes. See for example, Severine
Dusollier, “Sharing Access to Intellectual Property Through Private Ordering”, (2007) 82 Chicago-
Kent Law Review 1391 at 1435
7 Kelty write: “The GNU General Public License (GPL), written initially by Richard Stallman, is often
referred to a beautiful, clever, powerful ‘hack’ of intellectual-property law—when it isn’t being
denounced as a viral, infectious object threatening the very fabric of economy and society.” Kelty,
Two Bits, p.179
8 Bear in mind the top commandment on the agenda of the free software movement is the “[a]bolition
of all forms of private property in ideas.” See Moglen, The dotCommunist Manifesto, January 2003,
<http://emoglen.law.columbia.edu/publications/dcm.html>

 85

comprising copyright, patent and trademark.9 Stallman is famous for his persistent

refusal to use the umbrella term “intellectual property”, and he argues that “IP” is

merely a “seductive mirage” that does not exist in reality.10 It would be misleading to

lump these three disparate categories together as if they are a unified whole, because

each of them respectively plays quite a different role in FOSS licensing: Very briefly,

FOSS licences rely primarily on copyright, which protects software programs as if

they are literary works. To patent software is hugely controversial in the Anglo-

American world and hard-core free software programmers are normally against the

use of patents. In order to protect their goodwill and reputation, it is not unusual

nowadays for FOSS programmers to seek trademark protection for indicators of the

origin of their projects and associated products or services. In short, it would be an

inappropriate question to ask whether FOSS programmers are for or against “IP”, but

it is necessary to have a more nuanced approach by examining separately the roles of

copyright, patent and trademark in FOSS licensing.

Furthermore, it is also important to note that Stallman’s rejection is closely linked

with his criticism of mainstream economic (or in Stallman’s parlance, simplistic

“economistic”) thinking behind the term “IP”:

The term “intellectual property” also leads to simplistic thinking. It leads

people to focus on the meager commonality in form that these disparate laws

have—that they create artificial privileges for certain parties—and to disregard

the details which form their substance: the specific restrictions each law places

9 Apart from these three sub-areas of IP, software is also commonly protected as trade secrets through
non-disclosure agreements. However, FOSS by definition has its source code freely available to the
public, so trade secrecy is not an issue here and thus is not discussed in this chapter. For the use of
confidentiality rules to protect software programs in the UK context, see David Bainbridge, Chapter
11, Legal Protection of Computer Software (Heywards Heath, West Sussex: Tottel Publishing, 2008,
5th Ed.) pp.321-339; For a US perspective on this issue, see for example, Gregory J. Maier, “Software
Protection—Integrating Patent, Copyright and Trade Secret Law”, (1987) 69 Journal of Patent and
Trademark Office Society 151 at 162-5
10 Stallman, “Did You Say ‘Intellectual Property’? It’s a Seductive Mirage” at
<http://www.gnu.org/philosophy/not-ipr.html>; Stallman’s view can be contrasted with the lawyers’
convention of taking for granted the term “IP” in the context of software licensing. For example,
Rosen argues that software is “a product of human intellect, and therefore it is a kind of intellectual
property. Intellectual property is a valuable property interest, and the law allows its owner to possess
and control it. The programmer who writes software—or the company that hires that person to write
software—is deemed to be the first owner of intellectual property embodies in that software. That
owner may exercise dominion over that intellectual property”. (original emphasis) See Rosen, Open
Source Licensing, supra note 1, p.14

 86

on the public, and the consequences that result. This simplistic focus on the

form encourages an “economistic” approach to all these issues.11

Economistic thinking, he goes on, serves as “a vehicle for unexamined assumptions”

where only the quantity of software production matters, but “freedom and way of life

do not.” With this in mind, I will now examine copyright and patent in turn to see

how they are respectively viewed by FOSS programmers. As trademarks have more

to do with the FOSS programmers’ manifestation of their collective authorship in

collaborative projects, they are not dealt with in this chapter but will be analysed

later in Chapter 5 which is dedicated to the issue of FOSS authorship.

3.3 Copyright and FOSS

From the late 1970s onwards, developments in statutory and case laws in the Anglo-

American world gradually established copyright as the main mode of legal protection

for computer programs. In the US, the 1978 final report prepared by the National

Commission on New Technological Uses of Copyrighted Works (CONTU)

recommended that copyright should be extended to software. This recommendation

was enacted by the 1980 amendment of the US 1976 Copyright Act that expressly

included “computer program” as a subject matter. In this amended Act, a computer

program is defined as “a set of statements or instructions to be used directly or

indirectly in a computer in order to bring about a certain result” and is protected as a

kind of literary work.12 The copyright scholar Melville Nimmer, in his capacity as

Vice Chairman of the CONTU, clarified that the existing general copyright

principles should in a wholesale fashion be applied to software programs just like

any other copyright subject matter:

CONTU did not recommend, and did not intend, any change in the continuing

applicability to programs of general copyright principles—e.g., as to the

copyrightability and infringement—in effect following the enactment of the

general revision of the Copyright Act in 1976. The general copyright principles

applicable to programs have been, and remain, those which are applicable to

11 Stallman, “Did You Say ‘Intellectual Property’? It’s a Seductive Mirage”, ibid.
12 17 U.S.C. 101

 87

novels, plays, directories, dictionaries, textbooks, musical works, maps,

motions pictures, sound recordings, and other categories of works.13

In the UK, the Copyright (Computer Software) Amendment Act 1985 for the first

time specifically included software programs in the “literary work” category under

the 1956 Copyright Act. The subsequent 1988 Copyright Design Patent Act (CDPA)

also provides that copyrights subsist in software programs as “literary works”.

Section 3 (1b), defines “literary work” as “any work, other than a dramatic or

musical work, which is written, spoken or sung, and accordingly includes […] a

computer program […].”14 Unlike the US copyright law, the CDPA does not have a

definition for “computer program”, which arguably has the advantage of being

flexible to include new technologies such as HTML programs.15

3.3.1 The Originality Threshold

Copyright law requires that programs be original to merit protection. Anglo-

American copyright law does not set a very high threshold for “originality”, but it is

not always an easy task to ascertain the degree of “originality” that qualifies a piece

of code for copyright subsistence. In the US copyright subsists in “original works of

authorship”16 and a work is “original” in the sense that it is “independently created

by the author (as opposed to copied from other works), and that it possesses at least

some minimal degree of creativity”.17 (added emphasis) In the UK the threshold is

arguably even lower, with no explicit requirement of a work to be minimally creative.

Copyright may subsist in a work as long as it is not copied from other human-made

sources and is a result of the author’s own skill, judgment or labour.18 In contrast, the

European continental legal tradition tends to have a more demanding requirement of

13 Melville Nimmer, “Declaration” in Appendix to “Silicon Epics and Binary Bards: Determining the
Proper Scope of Copyright Protection for Computer Programs” by Anthony L. Clapes, Patrick Lynch
and Mark R. Steinberg (1987) 34 UCLA Law Review 1493
14 UK CDPA, 1998; According to Section 3 (1c), “preparatory design material for a computer
program” is also protected as “literary work”.
15 See Stanley Lai, The Copyright Protection of Computer Software in the United Kingdom (Oxford
and Portland, Oregon: Hart Publishing, 2000) p.14
16 17 U.S.C. 102
17 Feist Publication Inc. v. Rural Telephone Service Inc. (1991) 499 US 340, 345
18 University of London Press Ltd. v University Tutorial Press Ltd. [1916] 2 Ch 601

 88

originality for works including computer programs.19 In an attempt to harmonise

national differences among countries in Europe, Article 1(3) of 1991 EU Software

Directive gives a definition of “originality” as follows:

A computer program shall be protected if it is original in the sense that it is the

author’s own intellectual creation.20 (added emphasis)

The Directive further makes it clear that the author’s “intellectual creation” is the

sole criterion of copyright subsistence and “[n]o other criteria shall be applied to

determine its eligibility for protection.”21 Unfortunately, the UK draftsman

responsible for preparing the implementing regulations assumes that the existing UK

copyright originality standard has already been practically compatible with the

Directive’s definition of originality as the “author’s own intellectual creation” and

there was no need to change the wording in the corresponding section of UK

copyright law. Lai suspects that this assumption may well not be true.22 In case of

conflict, Bainbridge argues, the Directive’s requirement of originality for computer

programs should prevail over the English one: “It is beyond doubt that a judge in the

United Kingdom would apply [Directive’s] test rather than the traditional view of

judges of what originality meant, even if a common thread could be determined.”23

There can be three types of “original” copyrightable contributions arising from a

FOSS project. First, if the code is completely written from scratch by contributors for

the project, it is highly likely to pass any of the three aforementioned tests of

originality for having a “minimal degree of creativity” (US), or using programmers’

“skill, judgement and labour” (UK), or being authors’ “own intellectual creation”

(EU). Secondly, copyright may also subsist in modifications of preexisting code if

19 Lai observes that, for example, German courts “did not only require individuality as compared with
pre-existing programs, but also that the ability shown in the engineering process considerably
surpassed average programming ability”. Stanley Lai, supra note 15, p.17
20 Council Directive 91/250, 1991 O.J. (L122)
21 ibid.
22 For example, “many modern computer programs are effectively compilations of standard modules”.
So by the UK standard, they are original but by the Directive’s standard they may well not be so. See
Lai, supra note 15, FN 38, p.17
23 Bainbridge has a slightly different view from Lai’s as shown above, and he believes programs that
pass the UK test would be unlikely to fail to pass the Directive’s test: “[…] most computer programs,
unless trivial or made up of a selection of commonly known or public domain elements requiring no
skill or judgement in their selection or arrangement, will be considered to be intellectual creations.”
See David Bainbridge, Legal Protection of Computer Software (Heywards Heath, West Sussex: Tottel
Publishing, 2008, 5th Ed.), p.64

 89

these modifications are “original” enough to be recognised by copyright law. In the

US, a copyrightable modification can be a “derivative work” which means the work

“based upon one or more preexisting works […] or any other form in which a work

may be recast, transformed, or adapted.”24 Similarly in the UK, the modified code

may give rise to a fresh copyright if it passes the minimum threshold of originality.25

As software is also a functional artifact, there is a domino effect, where one tiny

modification may lead to a series of follow-up changes in order to make the whole

program operate properly. Bainbridge observes that even if a single modification is

too trivial to be original, the many modifications together may cumulate to qualify

for a fresh copyright:

Where the modifications represent the author’s own intellectual creation, a

fresh copyright will be created in the new version of the program. It may be that

this applies to an accumulation of numerous modifications, each of which in

themselves might not reach the standard for originality. However, even making

a small modification to a computer may require the exercise of a great deal of

skill as the programmer has to check that the modification works correctly and

that the effect it has on the existing and retained parts of the program is as

intended. This can call for a significant amount of testing and further

modification. Even a small modification can have unpredictable consequences

and end up involving far more work than originally envisaged.26

That a fresh copyright is recognised as subsisting in modifications or derivative

works is crucial to peer-produced FOSS projects. This is because FOSS collaboration

is built upon incremental creativity by many collaborative programmers rather than a

single breakthrough invention by the initial creators. Rosen points out that copyright

ownership in FOSS can be seen as a chain of title, where “[a]n original work of

authorship is the first link in the chain” and this “chain is elongated during the

collaborative open source development process.”27 The strength of this chain of title

in many follow-up modifications can be a measure of the robustness of the

collaborative relations in a collaborative FOSS project. In other words, the maturity

24 17 U.S.C. ss.101 & 103
25 See Ibcos Computers Ltd. v. Barclays Mercantile Highland Finance [1994] FSR 275
26 Bainbridge, supra note 23, pp. 65-66
27 Rosen, Open Source Licensing, supra note 1, p.28

 90

of a FOSS project can be roughly shown by the length of the chain of title: “Mature

open source projects often consist of software passed through many such stages of

aggregation and modification, their original works of authorship proudly displaying a

long chain of title including the names of many individuals and organizations that

preceded them.”28 I will show later that GPL is important exactly because it makes

sure the “chain of title” in a FOSS project is unbroken by imposing the copyleft

condition on distributing the GPL covered code.

Thirdly, there can be a “compilation” copyright that subsists in the aggregated work

comprising all submitted contributions to a FOSS project as a collective whole. The

UK copyright protects “compilation” as a kind of “literary work”,29 which is

different from the term “database” as defined in the CDPA30. Bainbridge argues that

a software program can be a “compilation” but not a “database”, because the former

is an undivided collective whole while the latter comprises separable independent

works: “Where a computer program is made up of individual modules, those

modules cannot be described as independent. They work together as a whole

application. Therefore, the whole may have a separate copyright as compilation

independent of any copyright in the modules as programs in their own right.”31 In the

US context, the term “compilation” has a slightly different meaning than that in the

UK. The US “compilation” copyright covers “collective works” where “a number of

contributions, constituting separate and independent works in themselves, are

assembled into a collective whole.”32 (Note that the US “collective works” cover

“separate and independent” works, which are different from Bainbridge’s

understanding of software as “compilation” comprising inseparable interdependent

modules in the UK context.33) The copyright in software as a “collective work”,

28 ibid., p.29
29 s. 3 (1) (a) CDPA 1988
30 Note that the CDPA has explicitly incorporated the European standard of originality for “database”
copyright: a database is “original” if it constitutes “the author’s own intellectual creation.” s.3 A,
CDPA 1988
31 Bainbridge, supra note 23, p.67
32 17 U.S.C. 101
33 In fact, Bainbridge’s understanding of software as “compilation” works under the CDPA is
probably closer to the meaning of “joint work” in the US context. The US copyright law defines “joint
work” as “a work prepared by two tor more authors with the intention that their contributions be
merged into inseparable or interdependent parts of a unitary whole.” (added emphasis) 17 U.S.C.
101; For the difference between “collective works” and “joint works” for software, see Rosen, supra
note 1, pp. 32-33

 91

according to Rosen, is “a reflection of the originality of the collection and its

organizational structure rather than of the individual components. Most software is a

copyrightable collection of modules. The arrangement and organization of the

collection of individual modules are often the most original aspects of a software

program.”34 The recognition of originality in “compilation” or “collective works” has

a largely positive impact on FOSS projects, whose design of the modular

“architecture”35 prizes the lead developers’ creative efforts in aggregating individual

contributions into a coherent collective whole. These efforts of aggregation are not

necessarily mindless mechanical work but they involve selecting, testing, and

approving (and sometimes declining) code sent by contributors,36 and they are highly

likely to be beyond the threshold of originality. This is especially true for the Linux

kernel project, where Torvalds and his fellow subsystem maintainers have devoted

themselves to aggregating a huge amount of peer-produced contributions into a

coherent whole. In this light, Eric Raymond and Catherine Raymond strongly advise

that it would be beneficial for FOSS project leaders to always register copyright in

their project as original “collective works” with the copyright registration authority

in the US.37

In summary, although the threshold of originality to qualify for copyright subsistence

is low, it does exist for computer programs. All sustained FOSS projects would

contain a huge number of contributions with various degree of originality. The

biggest problem that FOSS projects face is not about whether contributed code is

“original” enough to attract copyright protection. Most contributions will easily pass

the originality threshold individually on their own merit. On top of this, these

contributions together will also cumulatively give rise to copyright in “compilations”

or “collective works”. The really difficult problem that needs to be tackled is that

34 Rosen, supra note 1, p.27
35 Pumfrey J suggests that there could be originality in the software “architecture” itself, which was
likened to the plot of a play: “It seems to be generally accepted that the ‘architecture’ of a computer
program is capable of protection if a substantial part of the programmer’s skill, labour and judgement
went into it. In this context ‘architecture’ is a vague and ambiguous term. It may be used to refer to
the overall structure of the system at a vey high level of abstraction.” Cantor Fitzgerald International
v Tradition (UK) Ltd. [2000] RPC 95 at 134
36 Greg Kroah-Hartman, Jonathan Corbet, Amanda McPherson, Linux Kernel Development: How Fast
it is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It: An August 2009 Update
at <http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf>
37 Eric Raymond, Catherine Olanich Raymond, Licensing HOWTO (9 November 2002) at
<http://catb.org/~esr/Licensing-HOWTO.html>

 92

many original contributions will form a huge network of ownership interests by many

copyright holders. It is not always an easy task to coordinate these many ownership

interests for the purpose of building one coherent project and the copyright system

will not automatically splice them together. In this scenario, FOSS licences step in to

solve the problem of coordination by standardising the legal commitments of many

copyright holding contributors. These licences make peer-produced contributions

legally compatible with each other in a decentralised environment.

3.3.2 Software as Expression and Function

It is understandable that to analogise a computer program to a literary work38 has the

advantage of fitting software as a new technological form into an existing

copyrightable subject matter, but this is not an entirely accurate analogy. Software is

not ordinary literary text written and read by human beings, but, more importantly, it

contains instructions that operate computerised functions. In short, software has a

dual nature of being both expressive like literal texts and functional like machines.39

Recall that software is written in source code by programmers and it can be compiled

into object code that can be executed by computers. On the one hand, the human-

readable source code is just like any other form of human expression such as novels,

speech scripts or sheet music scores. On the other hand, the machine-readable object

code turns software into functional artifacts that instruct computers to “manipulate

symbols leading to virtual or physical effects, such as making calculations,

displaying information on a screen, controlling the path of a cutting device or an

industrial process.”40 This dual nature of software as expression and function is well

reflected in Laddie et. al.’s definition of software “program” in the UK context

(while the CDPA does not define what is software): a software program is “a series

of instructions capable of being fed to a computer system, by typing in at a keyboard

38 Internationally, it has also become settled that software—including both source code and object
code—are subject to copyright protection as “literary works”. According to the 1994 Agreement on
Trade Related-Aspect of Intellectual Property Rights (TRIPS), “[c]omputer programs, whether in
source or object code, shall be protected as literary works under the Berne Convention (1971)”.
Article 10 (1), TRIPS Agreement 1994
39 Martin Kretschmer “Software as Text and Machine: The Legal Capture of Digital Innovation”,
2003 (1) The Journal of Information, Law and Technology (JILT) at
<http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/>
40 David Bainbridge, Legal Protection of Computer Software (Haywards Heath, West Sussex: Tottel
Publishing, 2008) p.53

 93

or in any other way, and, when so entered, of controlling its operation in a desired

manner.”41

As a general rule, copyright protects expressions, but not functions, of software: “it is

a programmer’s expression of some functionality that may be protected by copyright,

and not the functionality itself.”42 (original emphasis) Unfortunately the water has

already been muddied in reality, partially because it is not always easy to separate

functionality neatly from expression in computer programs.43 There is no shortage of

attempts by proprietary software developers to broaden copyright protection to cover

functionality of software. Since the mid-1980s, there has been a series of cases

concerning whether or not copyright protection could be stretched to give protection

to the “non-literal” or “non-textual” (i.e. functional) elements in software on both

side of the Atlantic. In the US, the Court of Appeal for Third Circuit, in the 1986

landmark case Whelan Associates v. Jaslow Dental Laboratory, ruled that “even

absent copying the literal elements of the program” the defendant infringed the

copyright in the non-textual “structure” of a record-keeping program by the

plaintiff. 44 This ruling effectively stretched copyright protection to the non-

expressive part of the software program. The Whelan decision was much criticised

for giving the overbroad protection to software45 but it is welcomed, mainly by IP

expansionist commentators, as a way of compensating for the lack of clear patent

protection of the functionality of software programs in the mid-1980s. For example,

Maier argues that the Whelan court reached an equitable result during a time when

the US legal system was extremely uncertain about whether software-related

inventions could get patent protection:

In effect, copyright protection has been stretched in Whelan to fill the gap left

when the courts denied software inventions patent protection. Stretching

41 Hugh Laddie, Peter Prescott, Mary Vitoria, Adrian Speck, and Lindsay Lane, The Modern Law of
Copyright and Designs (London, Edinburgh & Dublin: Butterworth, 2000, 3rd edition) Vol. 2, p.1610
42 Software Freedom Law Center, “Originality Requirements under U.S. and E.U. Copyright Law”, 27
September 2007, at <http://www.softwarefreedom.org/resources/2007/originality-requirements.html>
43 Dan Burk, “Copyrightable Function and Patentable Speech” (2001) 44 (2) Communications of the
ACM 69
44 797 F.2d 1222 (3d Cir. 1986) at 1234
45 For example, Lemley criticised the Whelan decision for sacrificing “accuracy in separating
protectable from unprotectable material in order to achieve a workable rule that is easy to apply.”
Mark Lemley, “Convergence in the Law of Software Copyright”, (1995) 10 High Technology Law
Journal 1, at 12

 94

copyright protection is understandable, from an equitable point of view, to

protect software authors/inventors who were discouraged from seeking patent

protection due to the changing status of the law regarding the patentability of

software inventions. The equities are particularly important in cases involving

misconduct. Prospectively, however, as the intellectual property community

accepts the notion that software is patentable, there may ultimately be little

need to so stretch the bounds of copyright protection.46

The expansionist rationale in Whelan made its way into a few subsequent cases

including the highly controversial Lotus Development Corporation v. Paperback

Software International, where Judge Keeton decided that the menu command

hierarchy in the Lotus 1-2-3 spreadsheet program was protected by copyright.47 It is

important to know that although Lotus Development Corporation won this case, it

failed, two years later, to secure copyright protection for the same non-literal menu

system in a second Lotus case against another company. 48 The first Lotus ruling is

generally regarded as the high-water mark of copyright protection of the “look and

feel” or the user interfaces in software.49 Free software programmers reacted strongly

against this expansionist tendency. Shortly after Lotus filed the first lawsuit against

Paperback, Richard Stallman and his followers organised a mass picket outside the

Lotus headquarters to publicise the danger of giving software companies overbroad

protection of their software products.50

The Whelan and the first Lotus decisions follow the so-called “broad constructionist”

approach of software copyright, because they have broadened the reach of copyright

to cover the non-expressive part of software. This “broad constructionism” is

contended by the “narrow constructionism” that believes copyright should be limited

to textual copying of software:

46 Gregory Maier, supra note 9, at 161
47 740 F. Supp. 37 (D Mass, 1990).
48 This second Lotus case went further to the US Supreme Court. As Justice Stevens did not vote, the
rest of the eight justices reached a 4:4 decision, leaving the First Circuit decision unchanged. Lotus v.
Borland, 49 F.3d 807 (1st Cir. 1992); 516 US 233 (1996)
49 For the significance of Lotus v. Paperback, see Lai, supra note 15, pp.68-70
50 See the infra text accompanying the notes 57-62

 95

On one side, ‘broad constructionists’ have emphasized the need to compare the

copyrighted and accused works as a whole, in order to give protection to the

‘total concept and feel’ of the works. On the other side, ‘narrow

constructionists’ have urged the methodical dissection of copyrighted works

into their component parts in order to determine what exactly qualifies for

copyright protection.51

In 1992, things started to change when the Second Circuit made a landmark “narrow

constructionist” ruling in Computer Associates v. Altai, which greatly reined in the

“broad constructionist” tendency in US software copyright. In this case, Judge

Walker devised a much more nuanced three-step test by 1) dissecting software into

different levels of abstraction, 2) filtering out non-protectable elements and 3)

comparing the remaining core expressive parts to see if there is a substantial

similarity between the program alleged to have been infringed and the allegedly

infringing program.52 This abstraction-filtration-comparison Altai test has been

followed in later US cases and it has also spread to non-US jurisdictions.53 For

example, in the UK context, the use of Altai test was endorsed by Ferris J. in

Richardson v. Flanders54 but was later rejected by Jacob J., who in Ibcos v. Barclays

favoured using the indigenous English test of the “overborrowing of skill, labour and

judgement which went into the copyright work”.55 Lai worries that the English test

lacks prescriptive precision to guide future cases involving non-literal copying of

software. Jacob’s rejection of the Altai test, which could have usefully filtered out

non-protectable elements, might lead to a Whelan-type overprotection of software in

the UK: “Due to the absence of a prescriptive test/criterion [similar to the Altai test],

UK software copyright law will be placed in a more invidious position than the US,

if Ibcos is followed. Arguably, the scope of software copyright protection is

51 Lemley, “Convergence in the Law of Software Copyright”, supra note 45 at 2
52 982 F.2d 693 (2d Cir.1992) at 707-712
53 In the US, the test is further refined in a Tenth Circuit’s decision, which divides a program into six
levels of declining abstraction comprising 1) the general purpose 2) structure or architecture 3)
modules 4) algorithms and data structures, 5) the source code, 6) the object code. The last two levels
are the most detailed and least abstract expressions of a program. Gates Rubber Co. v. Bando
Chemical Industries, 9 f.3d 823 (10th Cir. 1995) at 835; For the spread of Altai test outside US, see
Lai, supra note 15, FN 137, p.30
54 [1993] FSR 497
55 [1994] FSR 275 at 302

 96

presently greater in the United Kingdom than in the USA. Whelan-type fears of

broad protection are there to be realised for the future.”56

Campaign against Copyright Protection of Non-literal Element of Software

After the 1980s, FOSS programmers generally accepted copyright subsistence in the

expressive part of software. However, they reacted strongly against extending

copyright protection further to the non-literal part, especially the “look and feel”, of

computer programs. When Lotus Development Corporation brought its first

copyright lawsuit to protect the menu system of their Lotus 1-2-3 spreadsheet

program, the free software community were deeply worried that this move would

jeopardise the creative freedom that software programmers would be allowed to have

in the future.57 On 24 May 1989, Stallman and two other prominent computer

scientists (including Marvin Minsky, the founder of the MIT Artificial Intelligence

Lab58) orchestrated a large-scale demonstration against the Lotus’s “look and feel”

copyright litigation. Over two hundred people, most of whom were MIT professors

and students, marched from the MIT campus to join a rally outside the Lotus

headquarters based at Cambridge, Massachusetts. They carried placards bearing

signs such as “Creative companies don’t need to sue” and “Oh no! Look and feel

copyright!” and chanted a hexadecimal protest slogan:

Hey, hey, ho, ho, software tyranny has got to go
1-2-3-4, toss the lawyers out the door
5-6-7-8, innovate don’t litigate
9-A-B-C, 1-2-3 is not for me
D-E-F-O, look and feel have got to go59

It is important to know that the protest was not just targeted at Lotus, but more

broadly it registered the computer hackers’ growing unease about the copyright

56 Lai, supra note 15, p.49
57 The then vice president and general counsel of Lotus, Tom Lemberg argued that “[t]he copyright
law we believe is absolutely essential to the health of this entire industry” and “[i]t is the means for
several centuries now to reward creations.” See Jane FitzSimon, “MIT Software Developers Field
'Freedom' Campaign: Apple, Lotus 'Look-and-Feel' Suits Targeted In Ad”, The Boston Globe
available at <http://www.skytel.co.cr/advocacy/research/1989/0424.html>
58 Minsky is also a featured hacker in Steven Levy’s book. He was said to be a “[p]layful and brilliant
MIT prof who headed AI lab and allowed the hackers to run free.” Levy, Hackers, p.11
59 League for Programming Freedom, “Programmers and Users Picket Lotus, Protesting User-
Interface Copyright Litigation” 24 May 1989, at
<http://www.skytel.co.cr/advocacy/research/1989/0524-b.html>

 97

expansionist trend as represented by a series of similar undergoing copyright disputes

over the non-literal copying of graphic user interfaces.60 It is feared that by giving

protection to the “look and feel” of software, other programmers would be

effectively stopped from independently writing their own code to achieve identical

functions. Stallman likens the consequence to that of giving monopoly over steering

a car: “If there were copyrights like this on cars, then every manufacturer would have

to give you a different way to steer […] If you learned to drive a Ford, you wouldn't

know how to drive Chevrolets. Some cars would have throttles, others would have

joysticks, and each manufacturer would have to find a new way of doing it”.61 With

the introduction of the “look and feel” copyright, it is a slippery slope where software

programmers would be deprived of the freedom to mimic the non-literal aspect of

other programmers’ software even though they do not involve the act of literal

copying.

The high turnout at the Lotus protest is a sign of the lingering impact of the old

Hacker Ethic that originated from the MIT AI lab but was challenged by proprietary

software in the late 1970s. It shows that the Hacker Ethic was not quite dead in the

late 1980s and the early 1990s, and it still played a role in forging solidarity among

programmers who are against copyright expansion. The most enthusiastic anti-Lotus

protestors, in late 1989, formed the League for Programming Freedom (LPF), also

under the leadership of Stallman, with an aim “to prevent monopolies on software

development”.62 As the second Lotus case closed the door to the “look and feel”

copyright completely (i.e., graphic user interface copyright could no longer pose any

further threat to programming freedom)63, the LPF shifted to another battlefield,

60 For example, Stallman’s protest was also prompted by an earlier lawsuit brought by Apple against
Microsoft. Stallman commissioned a designed badge showing a fanged Apple logo with a serpent
body, indicating Apple’s aggressiveness in getting copyright protection of its user interface. LPF,

“The History of the LPF” at <http://www.progfree.org/History/history.html>
61 Alan Cooperman, “Scientists Challenge Companies’ Lock on Software Programs” 25 May 1989 at
<http://groups.csail.mit.edu/mac/projects/lpf/Links/prep.ai.mit.edu/demo.ap-wire>
62 LPF, “History of the LPF”, supra note 60
63 Lotus v. Borland 49 F.3d 807 (1st Cir. 1992); 516 US 233(1996)

 98

where they campaigned hard against the growing monopolistic effect of software

patents.64

3.3.3 Scope of Exclusivity: Restricted and Permitted Acts

Software programmers, as the original authors of their works, have some exclusive

rights to do certain restricted acts in relation to their programs. However, these

exclusive rights do not amount to the software authors’ total and absolute ownership

of their works, and they are normally subjected to various exceptions mandated by

copyright law. These exceptions in effect narrow the scope of exclusivity by

allowing non-owners to do certain acts without the original programmers’ permission.

In the US, the Copyright Act 1976 gives copyright holders five exclusive rights 1) to

make copies, 2) to prepare derivative works, 3) to distribute copies of the original

work or derivative works, 4) to perform certain kinds of works publicly and 5) to

display certain kinds of works.65. Specific to software, there are two important

limitations on these exclusive rights. Firstly, users are allowed to make a copy or

adaptation of the computer program “as an essential step in the utilization” of it.66

Secondly, users are also allowed to make back-up copies of the program for archival

purposes.67 In other words, lawful computer users can do these two acts without

permission from software authors.

In the UK, the copyright holders have a slightly different list of exclusive rights to do

the certain acts “restricted” by copyright. They are the exclusive rights (a) to copy

the work; (b) to issue copies of the work to the public; (ba) to rent or lend the work to

the public; (c) to perform, show or play the work to the public; (d) to communicate

the work to the public; (e) to make an adaptation of the work or do any of the above

in relation to an adaptation.68 Outside the purview of these exclusive rights, there is

also a host of general “permitted acts” that can be done without a copyright holder’s

permission.69 Specific to computer programs, there are four important “permitted

64 See infra Section 3.4 for detail.
65 17 USC 106
66 For example, a lawful user can copy a program to a disk or memory when this is essential to run the
program on a computer. 17 U.S.C. 117 (a) (1)
67 However, all archival copies need to be destroyed “in the event that continued possession of the
computer program should cease to be rightful”. 17 U.S.C. s.117 (a) (2)
68 s.16 (1), CDPA 1988
69 ss. 29-31 CDPA 1988

 99

acts” that further narrow the scope of programmers’ exclusive rights. It is not an

infringement of copyright for a lawful user to 1) make back up copies of a program70;

2) to decompile the program to achieve interoperability71; 3) to observe, study and

test the functioning of the program72; 4) to copy or adapt the program necessary for

his lawful use especially for the purpose of correcting errors in the program.73 It is

important to note that it is not possible to contract out of the first three exceptions by

means of licensing agreements. Under s. 294A(1) CDPA, licensing terms that forbid

lawful users from doing these three permitted acts are unenforceable:

Where a person has the use of a computer program under an agreement, any
term or condition in the agreement shall be void in so far as it purports to
prohibit or restrict–
(a) the making of any back up copy of the program which it is necessary for
him to have for the purposes of the agreed use;
(b) where the conditions in section 50B(2) are met, the decompiling of the
program; or
(c) the observing, studying or testing of the functioning of the program in
accordance with section 50BA.74

However, it is possible to contract out of the fourth exception, which allows copying

or adaptation of a program when necessary for the purpose of its “lawful use”.75 This

permitted act is sometimes seen as an equivalent of the “non-derogation from grant”

doctrine making its way into UK software copyright law.76 According to Lord

Temple, this doctrine means “that a grantor will not be allowed to derogate from his

grant by using property retained by him in such a way as to render property granted

by him unfit or materially unfit for the purpose for which the grant was made […]”.77

Section 50C of the CDPA codifies this doctrine by preventing software copyright

70 s.50A, CDPA
71 s.50B CDPA (implementing EU Software Directive Article 6 on decompilation for the purpose of
achieving “interoperability” between programs)
72 s.50 BA, CDPA 1988
73 s.50C(1) (2) CDPA
74 296A, CDPA
75 “It is not an infringement of copyright for a lawful user of a copy of a computer program to copy or
adapt it, provided that the copying or adapting - (a) is necessary for his lawful use; and (b) is not
prohibited under any term or condition of an agreement regulating the circumstances in which his use
is lawful.” s. 50C (1) CDPA
76 Bainbridge, supra note 23, p.94
77 British Leyland Motor Corpn v. Armstrong Patents Co Ltd [1986] AC 577 at 641. For this doctrine
applied in copyright in general, see also, Andrew Shindler, “Derogation from Grant in Copyright
Law” (1986) 49 (4) Modern Law Review 513

 100

holders from imposing unnecessary restrictions that would otherwise defeat the

purpose of the lawful use of the software in the absence of a contrary agreement.

In the spirit of Section 50C, it is worth noting that the CDPA does give lawful

software users a highly circumscribed right to debug software. Section 50C(2)

stipulates that it may “be necessary for the lawful use of a computer program to copy

it or adapt it for the purpose of correcting errors in it” provided that there is no

agreement to the contrary. It is understandable that most proprietary software

companies would contract out of this permitted act by not giving users the right to

correct errors by themselves in the licensing schemes. This is because these

companies have “a vested interest in providing on-going maintenance, including

error correction, to their licensees”.78 However, independent from this circumscribed

right to debug, it is sometimes speculated that software users may resort to the “right

to repair” (or the “spare parts” exception) created in British Leyland v. Armstrong as

an analogous device to achieve the identical purpose of correcting errors. In British

Leyland, the majority opinion of the House of Lords decided that customers had a

“right to repair” that overrode car manufacturers’ copyright in the drawings of its car

exhaust system.79 This “right to repair” was later confirmed in the software case

Saphena v. Allied Collection, where the defendant was held to be entitled to modify

the provided source code in order to debug the software.80 Unfortunately, despite the

Saphena decision, it is highly uncertain whether British Leyland could always be

cited as a firm authority for software users to claim their right to debug software.

This is because the “right to repair” as invented in British Leyland is a doctrinally

unsound policy decision, and it has been criticised for being an unsatisfactory

product of “a blatant piece of judicial legislation” that overrode the statutory

exclusive right of a copyright owner.81 Bainbridge argues that this “right to repair” is

unlikely to play an important role in limiting software owners’ exclusive rights:

On balance, it is difficult to say with any certainty that the British Leyland right

to repair can apply to error correction of computer programs. There will usually

78 See Bainbridge, supra note 23, pp.95-6
79 [1986] AC 577
80 It is worth noting that although the court recognised that that the defendant had a “right to repair”
but it did not have the right to improve the software beyond fixing the bugs. [1995] FSR 616
81 See Laddie et. al., The Modern Law of Copyright and Designs, Vol. 2 pp.2254-5

 101

be an expectation that the software company will correct errors and, in the vast

majority of cases, a maintenance agreement will be entered into by the parties.

It is often part and parcel of the original agreement. The right to repair may be

available in limited cases such as where the software company is no longer

willing or able to correct errors but its wider application is doubtful.82

It is not difficult to find that a wide scope of exclusive rights that have been given to

software authors by copyright is not really conducive to FOSS collaboration based

on the peer-production model. In order to build up a large-scale FOSS project,

“peers” must work in an environment where each other’s code can be readily

reproduced, modified, debugged and redistributed on a frequent basis. The copyright

regime, by default, seems disproportionately skewed towards the economic interests

of proprietary software developers who have little intention to collaborate with

software users. It assumes that software programs are discrete products that are

mainly developed by software programmers in isolation from the outside world and

at the same time these programmers’ efforts must be rewarded by exclusive property

rights. This assumption is too simplistic to account for many collaborative non-

proprietary software programming activities that do not rely on exclusive property

rights. In this light, FOSS licences are designed to squeeze the broad scope of

exclusive rights by copyright owners in order to create a software commons suitable

for decentralised collaborative programming. Under these licences, programmers

voluntarily relinquish almost all of their exclusive rights and everyone is invited to

freely “copy” or “adapt” each other’s code. Perens’s three principles distilled from

the Open Source Definitions illustrate how software users are empowered by having

three “rights” to software under FOSS licensing schemes: they have “1) The right to

make copies of the program, and distribute those copies. 2) The right to have access

to the software’s source code, a necessary preliminary before you can change it. 3)

The right to make improvements to the program.” 83 These three rights substantially

expand the scope of software users’ “permitted acts” than are initially allowed by

82 Bainbridge, supra note 23, p.97
83 Bruce Perens, “The Open Source Definition” in Open Sources: Voices from the Open Source
Revolution eds. by Chris DiBona, Sam Ockman & Mark Stone (Sebastopol, O'Reilly & Associates,
1999) p.172

 102

copyright. I will come back to this issue through an examination of GPL in some

detail in infra Section 3.5.1.

3.4 Patent and FOSS

There are two possible routes to get legal protection for the functions of software by

intellectual property law.84 The first route is to stretch copyright to cover the non-

literal elements of software as what was achieved in early software copyright cases

such as Whelan85 , while the second route is to patent software as computer-

implemented inventions. As is discussed above, the first route now has been blocked

in the US since the Altai decision introduced the abstraction-filtration-comparison

test to disqualify the non-expressive part of software for copyright protection.86

Software developers who are keen to offset the effect of the Altai decision now have

to go down the second route by patenting their works. This second route is favoured

by IP expansionists who are interested in creating a seamless protection spectrum

where the post-Altai copyright regime is supplemented by the patent system. Maier’s

argument for “a unique continuum of intellectual property protection” of software is

representative of this view:

One must not suppose that copyright and patent protection are in any way at

odds. Copyright protection can mesh very neatly with patent protection to

provide a unique continuum of intellectual property protection in the software

environment. Copyright protects against literal copying and against slavish

imitation of code or mode of expression. Patent protects against infringing use,

whether through derivation or independent development, of the broader

functional aspects of software thus the combination of available copyright and

patent protection would appear to make software the most protectable of all

technology […].87

It is not difficult to see that Maier’s argument in favour of a maximalist protection

under the copyright-patent continuum is one-sidedly presented from a profit-

84 As is discussed in the preceding sub-section, after the Altai ruling, it has been largely settled that
copyright only protects the expression, but not the function, of software.
85 Whelan v. Jaslow 797 F.2d 1222 (3d Cir. 1986)
86 928 F.2d 693 (2d Cir.1992)
87 Maier, supra note 9 at 161

 103

maximising perspective held by some, if not all, commercial proprietary software

developers.88 In contrast to Maier’s view, many FOSS developers, especially those

hard-core free software proponents, are vehemently against software patents, which

are believed to be the potential and actual threat to FOSS projects. Free Software

Foundation (FSF) and League for Programming Freedom (LPF), both of which are

under the leadership of Stallman, are among the most vocal voices calling for

abolishing “software patents”.89 However, it would be wrong to make a sweeping

statement that FOSS is an antithesis to software patents. Not all FOSS developers

wish to abolish software patents, but some of them take a more reconciliatory

position that the patent system could be reformed. This reformist view is mainly held

by corporate open-source participants, who are financially better-resourced, to defuse

patent infringement allegations and even to build their own defensive portfolios of

patents. This bifurcation of patent abolitionism and reformism is indicative of a

growing schism between the camp of “pure” volunteer contributors and that of

corporate contributors. Although Stallman has never been against corporate

participation of FOSS projects, he draws the line at the issue of software patents. The

following two subsections will delve into the impact of patents on software freedom

by examining 1) the legal meaning of “software patents” and 2) the considerable

controversy caused by these patents in relation to FOSS.

3.4.1 Patentability of Software-Related Inventions

Strictly speaking, there is no such thing as “software patent”, because software or

computer programs standing alone or “as such” are normally excluded from being a

patentable subject matter under the Anglo-American patent law. In fact, the term

“software patent” is often merely used in a loose sense and it does not really have an

agreed-upon legal meaning. Software Freedom Law Centre’s (SFLC), in their

official guide advising patent defences for FOSS developers, deliberately choose to

avoid this term:

88 Not all software businesses are pro-patent, but the reality is a bit more complex than what has been
suggested by Maier. It is observed that, unlike the pharmaceutical industry that tends to have a
dominant consensus that “vigorous patent enforcement is the best policy”, the software industry
simply lacks such a consensus. See John R. Allison, Abe Dunn and Ronald J. Mann, “Software
Patents, Incumbents, and Entry”, (2007) 85 Texas Law Review 1579
89 Preamble, GPL 3.0; LPF (Gordon Irlam and Ross William), Software Patents: An Industry at Risk,
1994, at <http://www.progfree.org/Patents/industry-at-risk.html>

 104

[…] we avoid use of the term ‘software patent,’ which has no generally agreed-

upon definition. Under current U.S. law, software per se is (probably) not

patentable, but it is generally a simple exercise in artful legal drafting to

represent a software-related invention as a claim covering patentable subject

matter (generally by reciting generic, well-known hardware features). Although

the details differ, the basic situation is much the same in many other countries,

despite a widely-held misconception in the FOSS community that the

patentability of software-related inventions is peculiar to U.S. law.90

This thesis prefers to use the term “software-related invention” (or simply “software

invention”)91 or “computer-implemented invention” (CII)92 , either of which is

slightly more accurate in reflecting the actual state of affairs. The reason behind this

preference is as follows: what is under the heated “software patent” debate concerns

not the easy case of clearly unpatentable software as such, but the more complicated

case of the alleged “inventions” employing “software” as a component. Because the

legal boundary of these software inventions is not always clear-cut, its wide reach

may well profoundly affect FOSS collaborative projects. However, this

terminological preference for “software-related invention” should not be read as a

call for categorically banning the use of “software patents” in the literature. To the

contrary, it is intended to give a clearer picture of what much-discussed “software

patent” as a legal phenomenon is really about and why it is so strongly opposed to by

hard-core abolitionist free software campaigners. As patent laws about software-

related inventions are not exactly the same in the UK (and within the bigger context

of European Patent Convention) and the US, I will explain the two patent regimes

separately. This explanation will set the scene for a critical understanding of the

90 SFLC (Richard Fontana et. al.), A Legal Issues Primer for Open Source and Free Software Projects,
3 March 2008, at <http://www.softwarefreedom.org/resources/2008/foss-primer.html> FN3, p.21
91 Bainbridge defined “software invention” as “an invention within a range of inventions which are
implemented by means involving or including a programmed computer.” See Bainbridge, supra note
23, p.284
92 This term is used by the proposed Directive on patentability of CII, which is defined as “any
invention the performance of which involves the use of a computer, computer network or other
programmable apparatus and having one or more prima facie novel features which are realised wholly
or partly by means of a computer program or computer programs.” In 2002, this Directive, as an
attempt to codify the case law of the EPO, was proposed but it was rejected by the European
Parliament in 2005 due to the lack of consensus among member countries. However, the term CII is
still used in the scholarly literature. For example, Bainbridge believes that “CII” is synonymous with
the term “software invention” as is defined by himself. ibid.

 105

debate between the “software patent” abolitionists and reformists within the FOSS

community.

UK and the EPC Regime: Interpreting “Technical Character”

In the UK, the statutory language makes it a clear rule that a computer program “as

such”, however innovative it may be, cannot be a patentable “invention” as defined

by the Patents Act (PA) 197793. This rule is the localisation of the Article 52 of the

European Patent Convention (EPC), though its wording fails to adopt the official

English text of the EPC.94 Under the EPC, whether a subject matter is patentable

depends upon the definition of “invention” provided by the EPC: “European patents

shall be granted for any inventions, in all fields of technology, provided that they are

new, involve an inventive step and are susceptible of industrial application.” (added

emphasis)95 It is noteworthy that the text “in all fields of technology” was later

inserted to the original wording of the EPC 1973, in order to synchronise the

European patent system with the requirement in Art. 27 (1) TRIPS Agreement 199496.

Very importantly, Art 52 (2) EPC narrows the meaning of “invention” as in Art. 52(1)

by making a list of unpatentable subject matters including “programs for computers”.

So far the rule seems to be reasonably clear that computer programs are excluded

from the meaning of “invention” and are thus unpatentable, but the third paragraph in

the Art 52 would cause much confusion and eventually lead to a divergence of

opinion on software-related “inventions” between the UK Court of Appeals and that

of the European Patent Office (EPO). This Art 52 (3) is often known as the “as such”

proviso and it reads:

[The EPC] excludes the patentability of the subject-matter or activities referred

to therein only to the extent to which a European patent application or

European patent relates to such subject-matter or activities as such. (added

emphasis)

93 ss.1 (1) & (2), UK Patents Act 1977
94 In particular, the EPC was amended in 2000 to synchronise with Art. 27 of the TRIPS Agreement
by adding patents should be allowed in “all fields of technology”. This change has not been reflected
in the PA either.
95 Art 52 (1)
96 Art. 27 (1) reads: “[…] patents shall be available for any inventions, whether products or processes,
in all fields of technology, provided that they are new, involve an inventive step and are capable of
industrial application.” (added emphasis) The UK PA has not incorporated this phrase so far.

 106

Far from spelling an end to the debate over the patentability of software, this “as

such” proviso simply invites more confusion and demands further interpretation of

its meaning. It is believed that the text of Art. 52 turns out to be the source of “the

ongoing uncertainty of the scope of the exclusion form patentability of computer

programmers” and the meaning of “as such” is “anyone’s guess during the past two

decades”.97 After the mid-1980s, in an attempt to give some level of certainty to the

meaning of “invention” in relation to software under the EPC, the Technical Boards

of Appeal (TBA) of the EPO made a series of decisions focusing on whether a

subject matter has the necessary “technical character” to be a patentable

“invention”. 98 Among these cases, TBA’s 1987 landmark decision on

Vicom/Computer-related invention, where a method of processing digital images was

examined, stands out as the one of most significance. In Vicom, TBA established the

famous “technical contribution” test: “Decisive is what technical contribution the

invention as defined in the claim when considered as a whole makes to the known

art”.99 In other words, a claimed subject matter would not be patentable if it fails to

make a non-obvious “technical contribution” to the known art. This Vicom test is

important because it sets the scene for the TBA to interpret the “technical character”

that qualifies the subject matter to fall under the meaning of “invention” under Art.

52, and it was also later adopted by the UK Court of Appeal in Merrill Lynch’s

Application100 and Gale’s Application101. A variant of the Vicom test later made its

way into the final text of the abortive EU Directive on Computer-Implemented

Inventions, where the “technical contribution” was expressly required for

patentability: “Member States shall ensure that it is a condition of involving an

inventive step that a computer-implemented invention must make a technical

contribution.”102 (added emphasis)

97 Noam Shemtov, “Software Patents and Open Source Models in Europe: Does the FOSS
Community Need to Worry about Current Attitudes at the EPO?” (2010) 2 (2) International Free and
Open Source Software Law Review 151 at 156
98 For the chequered history of EPO’s decisions on the meaning of “invention” and the patentability of
CII in the 1980s, see Justine Pila, “Dispute over the Meaning of ‘Invention’ in Art. 52(2) EPC—The
Patentability of Computer-Implemented Inventions in Europe” (2005) 36 IIC (2) 173 at 174-6
99 EPO Board of Appeal, T208/84 (1987)
100 [1989] RPC 561
101 [1991] RPC 305
102 Art. 4 EU Directive on CII

 107

Unfortunately, the TBA, in the following years, gradually drifted away from its own

technical contribution test used in Vicom, towards a more expansive interpretation of

“technical character”. The abandonment of the “technical contribution” test did not

happen at one stroke but it started almost imperceptibly and then unfolded through “a

series of incremental changes without express disapproval of Vicom” by the TBA.103

Three cases, i.e. PBS Partnership/Pension Benefits System104 , Hitachi/Auction

Method105 and Microsoft/Clipboard Format I&II106, are often singled out to show a

trajectory of TBA’s gradual deviation from Vicom to embrace the new “any

hardware” test. Note that the old Vicom test is actually an “inventive step” test in

disguise because a patentable subject matter must make a non-obvious technical

contribution to the known art in the first place. In contrast, the new “any hardware”

test eliminates this built-in “inventive step” requirement. If the claim is made to a

physical apparatus, it will be considered to be a patentable subject matter, regardless

of whether this “invention” makes “technical contribution” to the known art. The

“any hardware” test substantially expands the meaning of “technical character” and

thus lowers the patentability threshold, which moves ever-closer to the removal of

the statutory prohibition of patenting software as such under Art. 52 (2) and (3).107

The EPO’s embrace of the “any hardware” approach has caused both confusion and

frustration to the UK Court of Appeal, which struggles to stick to the “technical

contribution” approach adopted by the its own binding precedents such as Merrill

Lynch’s Application108 and Gale’s Application109. In Aerotel Ltd. v. Telco Holdings

Ltd, Jacob L.J. argues that it becomes very difficult for the English court to be

perfectly in keeping with the recent development of EPO’s ever-changing

jurisprudence on patentability of software-related inventions. He finds that the TBA

does not follow its own precedents rigorously but it has come up with six different

interpretations of “technical character” of a patentable “invention” (including three

variants of the “any hardware” test), none of them are consistent with each other

among themselves. The UK court has no choice but to follow its own precedents by

103 Bainbridge, supra note 23, p.295
104 Case T931/95 [2002] EPOR 522
105 Case T258/03 [2004] EPOR 548
106 Case T424/03 [2006] EPOR 39; Case T411[2006] EPOR 40
107 Bainbridge, supra note 23, p.295
108 [1989] RPC 561
109 [1991] RPC 305

 108

using the more onerous technical contribution test due to the doctrine of stare

decisis.110 The upshot of the Aerotel decision is that the UK insists on a higher

patentability threshold than the current standard used by the EPO.111

To summarise, there has been great definitional uncertainty surrounding the meaning

of patentable “invention” as defined by the Art. 52 of the EPC. The EPO has tried to

reduce the uncertainty by pegging the issue to the meaning of “technical character”,

which turns out to be equally difficult to pin down. Although the EPO has failed to

produce a consistently used test to determine the “technical character” of a claimed

subject matter, it has the tendency to gradually stretch the elastic reach of “technical

character” and thus lower the patentability threshold over the years. It has also led to

an unfortunate divergence between the EPO and the UK Court of Appeal on this

issue.

United States: From Benson (1972) to Bilski (2010)

On the other side of the Atlantic, the US law governing the patentability of software-

related inventions has no less a chequered history than its European counterpart.

Section 101 of the US Patent Act 1952 defines patent-eligible subject matters as “any

new and useful process, machine, manufacture, or composition of matter, or any new

and useful improvement thereof”.112 However, unlike the EPC, this Act does not

contain a statutory list of non-“inventions” that are unpatentable. So what is actually

excluded from patent-eligible subject matter relies on the US case law to fill the gap.

A well-accepted list of exceptions to patentable matters can be found in a leading

Supreme Court decision including “laws of nature, natural phenomenon, and abstract

ideas”, which can be roughly seen as an equivalent of Art 52 (2) of the EPC in the

US context.113

110 [2007] 7 RPC 117; In a more recent UK case Symbian Ltd. v Comptroller-General of Patents, the
Court of Appeal, though using a less hostile tone to the EPO’s case law, confirms that technical
contribution test should be retained in the UK. [2008] Bus. L.R. 607
111 Bainbridge finds that this is “regrettable” result , because the more onerous UK test would drive
inventors to apply for software-related invention patents in the EPO rather than the UK IPO.
Bainbridge, supra note 23, pp.315-6
112 35 U.S. 101
113 Diamond v. Diehr 450 U.S. 175, 185 (1981)

 109

Neither “software” nor “computer program” is explicitly mentioned in the statutory

text of Section 101 of the Patent Act. It has remained extremely uncertain as to

whether “software” or “computer program” falls under any of the four categories of

“process, machine, manufacture, or composition of matter” defined by Section 101,

until three leading cases were decided by the Supreme Court between the early 1970s

to the early 1980. The first of them is Gottschalk v. Benson in 1972. The Supreme

Court ruled that a computer program using a mathematical algorithm to convert

binary-coded decimal numbers into pure binary numerals was not a patentable

subject matter under Section 101.114 The Benson approach was confirmed by the

1978 decision in Parker v. Flook, where a computer program using another

algorithm to control alarm limits in catalytic conversions of petrochemicals was

again ruled to be unpatentable.115 The final case, arguably the most significant of the

three, is Diamond v. Diehr decided in 1981. In Diehr, the court had to tackle the

question as to whether a computerised process of curing raw synthetic rubber that

employed a well-known mathematical formula known as “Arrhenius Equation” was

a patentable subject matter under Section 101. The court ruled a “mathematical

formula as such is not accorded the protection of patent laws, and this principle

cannot be circumvented by attempting to limit the use of the formula to a particular

technological environment.” 116 (added emphasis) However, although a mathematic

formula “as such” is not patentable, when it is tied to a special-purpose computer, the

claimed subject matter “as a whole” will pass the patentability threshold according to

the Diehr court.117 In other words, the Diehr decision is a refinement of the previous

court rulings. It has the effect of making computer program “as such” unpatentable,

which makes the US law start to bear some resemblance to the law under Art 52 (2)

& (3) EPC.118

In the next thirty years after Diehr the US Supreme Court did not again hear any case

on the patentability issue until the 2010 Bilski decision.119 This unfortunately has

114 409 U.S. 63, 71-2 (1972)
115 437 U.S. 584 (1978)
116 450 U.S. 175 at 191
117 ibid., at 188
118 Furthermore, it is also thought that Diehr in the US and Vicom in Europe play similar historical
role in making software-related inventions patentable. See Martin Kretschmer, “Software as Text and
Machine: The Legal Capture of Digital Innovation”, supra note 39
119 Bilski v. Kappos 130 S. Ct. 3218 (2010)

 110

created an opportunity for a lower patent court and the US patent office to gradually

drift away from the holding in Diehr. During the intervening period between Diehr

and Bilski, the task of adjudicating on the patentability disputes moved from the

Supreme Court completely to a lower-level specialist patent court—Court of Appeals

of Federal Court (CAFC)—which was established one year after Diehr in 1982 with

an attempt to achieve some level of uniformity in enforcing US patent law at the

federal appellate level. In 1998 the CAFC ruled that a computerised business method

could be patented in State Street Bank & Trust v. Signature Financial Group.

Disregarding previous Supreme Court’s rulings on the patentability requirement, the

CAFC created its own test that a claimed subject matter, with no need to have any

particular physical embodiment, would be patentable so long as it produced a “useful,

concrete and tangible result”.120 Some commentators believe that the State Street

ruling effectively removes the threshold of patentability in the US between 1998 and

2008, during which Section 101 of US Patent Act became “a dead letter”.121 During

these ten years, US became a place that was very generous to issue patents to

software-related inventions.122

However, in 2008, the CAFC thought it was a time to rein in the proliferation of

patents as a result of the State Street decision. In Bilski v. Kappos, where a business

method of hedging financial risk were examined, the CAFC discontinued its own

“useful, concrete and tangible result” test used in State Street. Resuming the line of

jurisprudence developed by the Supreme Court in Benson, Flook and Diehr, the

CAFC decided to go back to Section 101 and rebuild the patentability threshold.

Replacing the old State Street test, CAFC devised the so-called “Machine or

Transformation” (MOT) test: a claimed subject matter is eligible under Section 101

if “(1) it is tied to a particular machine or apparatus, or (2) it transforms a particular

article into a different state or thing.”123 Unfortunately, CAFC’s MOT test did not go

down well with judges at the Supreme Court, which nevertheless also ruled Bilski’s

claims unpatentable by applying a different test later in 2010. In the Supreme Court’s

120 149 F. 3d 1368 at 1373 (Fed. Cir. 1998)
121 Mark Lemley, Michael Risch, Ted Sichelman, R. Polk Wagner, “Life after Bilski” (2011) Stanford
Law Review 101 at 103
122 It is observed that there was immediately a surge of “software patents” after the State Street ruling.
See Kretschmer, Section 2.5, supra note 39
123 545 F.3d 943, at 954 (Fed. Cir. 2008)

 111

Bilski decision, the majority opinion by Justice Kennedy points out that the MOT is a

flawed test and it should not be relied upon as the sole test for deciding patent

eligibility but it is merely “a useful and important clue.”124 Also based on a review of

three earlier cases Benson, Flook and Diehr, Kennedy argues that the correct ground

for refusing Bilski’s claims is that the claimed subject matter is an “abstract idea”,

which is a well-established excluded subject matter in US case law.125 However, this

“abstract idea” test is not uncontroversial either. Lemley et. al. argue that the

Supreme Court’s exclusion of “abstract idea” from being a patentable subject matter

is unsatisfactory, because “[n]o class of invention is inherently too abstract for

patenting.”126 The true reason has to do with the negative impact of a broad patent

claim that may have on downstream innovation: “Rather, the rule against patenting

abstract ideas is best understood as an effort to prevent inventors from claiming their

ideas too broadly.” 127 It is also interesting to note that the MOT test, far from being

reduced to merely “a useful and important clue” by the Supreme Court, continues to

be frequently used by the USPTO and some district courts after Bilski, partly because

of the practical difficulty of applying Supreme Court’s “abstract idea” test to

determine patent eligibility.128

In summary, the history from Benson to Bilski shows that the conceptual reach of

“software patent” in the US context is also difficult to pin down. Although the US

patent system has gone out of its most generous period of granting “software patents”

ten years after the CAFC’s State Street decision, the Supreme Court Bilski decision

does not really bring more certainty to the issue. In this sense, the US shares the

same type of struggle with Europe, which has been unable to find one single

consistently applied test of “technical character” to qualify patentable software-

related “inventions”. Just as Pila observes that the US Supreme Court Bilski ruling

only “has left the scope of US law substantially uncertain, and underlined the

124 130 S.Ct. 3218 at 3227 (2010)
125 ibid.
126 Lemley et. al., “Life after Bilski”, supra note 121, at 102
127 ibid., at 132
128 ibid.

 112

difficulties of attempting to interpret the EPC in a manner that tracks US

jurisprudence.”129

3.4.2 Perceived Threat of Patents to Software Innovation

The above sub-section shows that although computer programs per se are not

patentable, patents of software-related inventions have been in existence in both US

and Europe since the 1980s. So how do FOSS programmers react to these patents?

To which extent are patents perceived to be a threat to software freedom? Is it

possible for the perceived threat to be contained? Again it would be wrong to make a

sweeping statement that all FOSS developers are categorically against patents as a

threat. In order to appreciate the complexity of this issue, I identify two historical

stages to account for FOSS programmers’ evolving reaction to the growing influence

of patents on their community. The first stage covers roughly the first decade after

1981 when the US Supreme Court issued Diehr decision. During this period of time,

FOSS programmers were not very much aware of the actual existence of software-

related invention patents, let alone their possible impact on decentralised

collaborative FOSS projects. This situation is very unlike the advent of software

copyright, whose impact was immediately felt and heatedly debated in the 1980s.130

Stallman recalls that when the Diehr decision came out in 1981, this milestone in the

history of software-related invention patents simply passed unnoticed by most

programmers: “When the US started having software patents, there was no political

debate. In fact, nobody noticed. The software field, for the most part, didn’t even

notice.”131 This lack of awareness in part explains why early versions of GNU

copyleft licences (i.e., Emacs GNU Public License in 1985 and GNU GPL v1.0 in

129 Justine Pila, “Software Patents, Separation of Powers, and Failed Syllogisms: A Cornucopia from
the Enlarged Board of Appeal of the European Patent Office, (2010) Oxford Legal Research Paper
Series, Paper No 48/2010, p.7
130 Recall that Stallman’s knee-jerk reaction to copyright was that it was “blasphemous” to hackers’
world in the early 1980s. See Section 2.3.1, Chapter 2 and Steven Levy, Hackers, p.419
131 Stallman, “Software Patents—Obstacles to Software Development”, script of a speech delivered at
the University of Cambridge Computer Lab, 25 March 2002 at
<http://www.cl.cam.ac.uk/~mgk25/stallman-patents.html>

 113

1989) are merely copyright licences that did not mention the threat of patents to free

software at all.132 This situation would change later in the 1990s.

The problem of software patents to software freedom was largely hidden in the 1980s,

but it gradually surfaced when it reached its second stage since the early 1990s. In

June 1991, when Stallman upgraded GNU GPL to Version 2.0, he added a

preambular text alerting that “any free program is threatened constantly by software

patents”:

We wish to avoid the danger that redistributors of a free program will

individually obtain patent licenses, in effect making the program proprietary.

To prevent this, we have made it clear that any patent must be licensed for

everyone's free use or not licensed at all.133

Around the same period of time, there has also been no shortage of anecdotal stories

vindicating GPL’s warning of the disruptive effect of patents to software projects.

For example, in September 1991, Stallman himself was forced to abandon a data

compression program contributed by a volunteer programmer. This is because, just

about one week before a release of GNU software, Stallman accidentally found a

newly issued patent that might “read on” this contributed compression program.134

Note that the risk of this patent as assessed by Stallman is merely potential but not

actual. Lemley and Shapiro point out that a patent is not an absolute right to exclude

but merely a “probabilistic” one if it is not litigated in court.135 It is not rare that risk-

averse FOSS project leaders like Stallman would choose to be on the safe side by

declining contributions that are probable to infringe, because these volunteer-driven

FOSS projects cannot afford to be bogged down by a hugely costly litigation in the

first place, even though the patent involved might be proved legally invalid when

litigated in court.

132 In the 1980s there was hardly any patent dispute that affected the FOSS community, though
software copyright disputes were already not uncommon among programmers. The dispute between
Stallman and Gosling over Emacs copyright is an obvious example. See Chapter 2 for detail.
It was not until 2007 that GPL 3.0 for the first time introduced a clause specific to patent issues.
133 Preamble, GPL v2.0
134 See Stallman, “Patent Reform Is Not Enough” at <http://www.gnu.org/philosophy/patent-reform-
is-not-enough.html>
135 Mark Lemley and Carl Shapiro, “Probabilistic Patents”, (2005)19 (2) Journal of Economic
Perspectives 75

 114

Although anecdotal evidence like the above abounded, a comprehensive and

systematic assessment of the threat of patents was not available until the League for

Programming Freedom published a report entitled Software Patents: An Industry at

Risk in 1994. The title of this report is self-explanatory enough to show LPF’s anti-

patent position, which openly advocates to “abolish software patents completely” and

that “software be made explicitly non-patentable.”136 More specifically, the report

identifies six important reasons to support their patent-abolitionist policy. First,

software is a highly complicated and sophisticated artifact which aggregates a huge

number of technical components. Any of these components may unintentionally

infringe upon patented technologies, which “make the legal risks and expenses

associated with developing even well understood software frightening.”137 Secondly,

apart from being a complex artifact, “the nature of software means that much of it is

also very abstract”. The highly abstract nature makes many complex components of

software unable to be neatly separated and analysed. This abstractness of software

will lead to the abstractness of “software patents” that may potentially give its owner

a broad range of monopoly. In short, “software’s abstraction makes it difficult to

partition these technologies” and exactly for this reason software patents are very

expensive to search, analyse and litigate in court.138 Retrospectively, LPF’s second

argument, that software is too “abstract” to be patentable to some extent is not

qualitatively different from the US Supreme Court’s 2010 Bilski majority opinion

that a claimed subject matter cannot be patentable if it is an “abstract idea”.139

Thirdly, the duration of patents is too long to suit software technologies that grow at

a rapid rate. “This rapid rate of evolution means that those who are investing time

creating and lodging patents are vastly outpacing those who are investing effort

bringing such ideas to market. By the time an immature technology develops to the

point where it can be incorporated into products, it has a dozen or more patents on it

that render it commercially intractable.”140 Fourthly, software is not like other

physical consumer goods that can wear out. “A computer program that is fully

debugged will perform its function forever without requiring maintenance or

136 Original texts are in all in capital letter. Gordon Irlam and Ross William, Software Patents: An
Industry at Risk, 1994, at <http://www.progfree.org/Patents/industry-at-risk.html>
137 ibid., Section 2.1
138 ibid., Section 2.2
139 130 S. Ct. 3218 (2010)
140 ibid., Section 2.3

 115

modification”. So, in order not to lose customers, software companies have to keep

updating and adding new features to their products and “the industry will remain

innovative whether or not software patents exists”.141 Fifthly, software patents add

huge legal costs to software development and would eat into the resources that

should have gone into software innovation itself. Very often patents are employed as

a strategic weapon to lock out competitors. Especially for those individual

programmers and small companies who lack a legal infrastructure to defend

themselves, “the prospect of being sued over a patent infringement even if the case is

ungrounded and would ultimately fail is so terrifying, that many companies choose to

give all patents they know about a wide berth rather than risk the possibility of any

kind of patent challenge.”142 Finally, software’s commercial success relies on their

“market-driven properties” more than their being given a monopoly protection for

being absolutely “novel” as defined by the patent system.143 Software companies

become market leaders not because they are the very first to invent a particular

“new” technology, but because they are more attentive and adaptive to the

consumers’ need for high-quality software products. In summary, the six arguments

above show that the complex and abstract nature make software ill-suited to the

patent system, and thus a “vision of patents entrenched in the software industry is a

vision of stagnation.”144

The LPF Report has presented an abolitionist argument tour de force by painting a

dark and gloomy prospect of the software industry being plagued by the patent

system.145 However, this prospect may well be exaggerated according to some

academic commentators. For example, with the benefit of hindsight, software-related

141 ibid., Section 2.4
142 ibid., Section 2.5
143 The report’s examples are illustrative of the point: “Borland didn't invent compilers. Microsoft
didn't invent operating systems. Novell didn't invent networking. Sun didn’t invent Unix. Apple didn't
invent the graphical user interface. Oracle didn't invent the database. It turns out that nearly all
successful software companies have concentrated on constructing better implementations of already
existing technologies.” ibid., Section 2.5
144 ibid.
145 It is important to note that what is meant by “software industry” in the LPF Report includes both
FOSS and proprietary software sectors, to which “software patents” are arguably a threat. In fact, the
LPF Report does propose some options to reform the US patent system, though these options are not
favoured over total abolition. The proposed changes include: “1) Tighten up the requirements for
awarding software patents. 2) Reduce the duration of software patents from 17 years to, say, 3 years. 3)
Significantly reduce the period of pendency. 4) Find a simpler way to determine if a piece of code is
affected by a patent. 5) Improve patent indexing so that software patents can be more easily searched.
6) Publish patent applications as soon as they are received.” See Section 5.1, ibid.

 116

invention patents, as Merges observes, have not been able to entirely stifle

innovation in the software industry after 1994. Patents have posed certain a risk to

software innovation, but this risk is by no means a devastating one. Merges argues

that the LPF, among other early patent abolitionists, is mostly wrong: “Patents have

not killed the software industry, they have not led to a slowdown in entry, and they

do not appear to have assisted in the entrenchment of large companies at the expense

of smaller and newer ones. Despite the predictions of the League for Programming

Freedom, the industry has not stagnated.”146

Not all those who participate in, or sympathise with, the FOSS movement, share

LPF’s abolitionist position. Some of them are less keen to abolish than to reform the

patent system. The emergence of patent reformism within the FOSS community

roughly coincides with the spin-off of the pragmatist “open source” approach from

the purist “free software” approach. The “open source” campaign has made non-

proprietary software programming friendlier and more attractive to commercial

software companies, many of which can afford to defend themselves against patent

infringement allegations, or even build their own defensive patent portfolios. This

has given rise to an interesting phenomenon of “open source patents” named by

Leveque and Ménière, to account for those patents owned by corporate open source

developers.147 For example, IBM is probably the most well-known “open source

patents” owners. In 2005, IBM decided to “donate” 500 patents to the FOSS

community. This “donation” was in the form of a pledge not to assert the 500 named

patents against any FOSS project under a licence approved by the Open Source

Initiative as of 1 November 2005.148 It is worth noting that these 500 patents only

form a very small part of IBM’s whole patent portfolio. IBM’s pledge is not an

ideological commitment to the “free software” ideal but largely a strategic move.

Haas points out that profits can still be extracted from IBM’s non-pledged patents,

which simply become more important assets to the company: “IBM may actually be

giving up very little in its pledges, since the patents in the pledge may or may not

146 See Robert P. Merges, “Software and Patent Scope: A Report from the Middle Innings” (2007) 85
Texas Law Review 1627 at 1632
147 Francois Leveque and Yann Ménière, “Copyright Versus Patents: The Open Source Software
Legal Battle” (2007) 4(1) Review of Economic Research on Copyright Issues 27 at 42
148 See IBM, “IBM Statement of Non-Assertion of Name Patents against OSS” at
<http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf>

 117

have value as revenue generators. IBM does not provide non-assertion guarantees for

its ostensibly profitable closed source products or patent holdings.”149 It is important

to know that IBM is not the only company that has “open source patents”. Another

interesting example is the Open Invention Network (OIN), which is a consortium

initially formed by five companies, including Red Hat, IBM, Sony, Novell and

Philips in November 2005. It has acquired hundreds of “open source patents”, which

are then made “available royalty-free to any company, institution or individual that

agrees not to assert its patents against the Linux System” under an OIN licence,

which is not hugely dissimilar from agreements used by conventional cross-licensing

patent pools.150 In short, corporate FOSS developers perceive the threat of software

invention patents differently from non-corporate volunteer FOSS programmers. The

former believe that the abolition of patents is unnecessary largely because they have

the resources to defend themselves, whilst the latter perceive patent infringement

allegations are devastating to software freedom within community-led projects. I will

show in infra Section 3.5.2 how Stallman, from the non-corporate FOSS developers’

perspective, insists on patent abolitionism and at the same time uses the GPL to

minimise the patents’ threat to software freedom.

3.5 GPL and Software Freedom

Based on the legal background concerning copyright and patent as introduced by

previous sections, this section further examines the first and most prominent FOSS

licence—GNU Public Licence (GPL)—and its struggle to find an accurate legal

expression of software freedom since the mid-1980s. It shows that the drafters of the

GPL are attentive to the subtle differences between copyright and patent, which will

be discussed separately below.

3.5.1 GPL as a Copyright and “Copyleft” Licence

It has been shown in Chapter 2 that the GPL came out of a unique period when the

old hackers’ stewardship duty to preserve software commons clashed intensely with

149 See Douglas A. Haas, “A Gentlemen’s Agreement—Assessing the GNU General Public License
and Its Adaptation to Linux” (2007) 6 Chicago-Kent Journal of Intellectual Property 213 at 276
150 For a list of OIN-owned patents, see OIN, “Open Invention Network’s Currently Owned Patents”,
last accessed 28 May 2011, at <http://www.openinventionnetwork.com/pat_owned.php>

 118

the rising proprietary right to own software privately allowed by copyright in the

1980s. From 1983 to 1985, Richard Stallman was embroiled in a copyright dispute

with James Gosling over a version of the Emacs programming editor, which was

initially developed collaboratively by computer hackers since the 1970s. Gosling’s

decision to withdraw and privatise his contribution caused great tension in the Emacs

community. During this dispute, Stallman gradually familiarised himself with US

software copyright law, which eventually led him to produce the Emacs GPL in

1985.151 This Emacs-specific GPL, which is the predecessor of three later versions of

the general-purpose GNU GPL, makes it clear that no Emacs user should be deprived

of the rights to freely use, copy, change and redistribute the program in any future

distribution:

Specifically, we [i.e., Emacs programmers] want to make sure that you [i.e.,

users] have the right to give away copies of Emacs, that you receive source

code or else can get it if you want it, that you can change Emacs or use pieces

of it in new free programs, and that you know you can do these things. To make

sure that everyone has such rights, we have to forbid you to deprive anyone else

of these rights. For example, if you distribute copies of Emacs, you must give

the recipients all the rights that you have. You must make sure that they, too,

receive or can get the source code. And you must tell them their rights.152

The actual terms and conditions of the Emacs GPL licence are specified in the five

“Copying Policies” drafted by Stallman. Among these five, the most important one is

no doubt the second “Copying Policy” that innovatively devises a “copyleft”

provision, obligating downstream programmers to share their publicly released

contributions of Emacs under the same licence: “You may modify your copy or

copies of GNU Emacs source code or any portion of it, and copy and distribute such

modifications […], provided that you […] cause the whole of any work that you

distribute or publish, that in whole or in part contains or is a derivative of GNU

Emacs or any part thereof, to be licensed at no charge to all third parties on terms

identical to those contained in this License Agreement […].”153 This is the situation

151 For the history of the Emacs dispute, see Section 2.3.2 in Chapter 2 for more detail.
152 See Emacs GPL (first published in 1985 and later clarified 11 Feb 1988)
153 ibid.

 119

where a “copyleft” clause is used for the first time in the software licensing history

and it remains a defining feature of all later GPL licences.

It is not difficult to find that the invention of “copyleft” in the Emacs GPL is to

mimic the pre-copyright environment where software is not exclusively owned by

any single programmer but it is collaboratively created and preserved in a

commons.154 Paradoxically, copyleft’s attempt to secure software freedom is mainly

couched in the legal language of copyright, which has given a wide scope of

exclusive rights to software authors. This paradox of using a copyright licence to

create a non-exclusive property regime is pointed out by Steven Weber: “property in

open source is configured fundamentally around the right to distribute, not the right

to exclude.”155 The 1985 Emacs GPL is no doubt a first step of an intrepid long

journey of experimenting with a licensed non-exclusive software commons.

Although this licence later has been replaced by the three generations of the general-

purpose GNU GPL respectively published in 1989, 1991, 2007, the initial design of a

copylefted commons has remained largely unchanged. I will use the latest GPL 3.0

as an example to show how the initial legal scaffolding is preserved more than two

decades after the first Emacs GPL was created.

Although GPL 3.0 is a much longer and more detailed document than the original

Emacs GPL, the former does not deviate wildly from the latter when dealing with

software copyright. There is a common licensing structure that can be broken down

into three basic licensing components respectively dealing with 1) permissions, 2)

conditions and 3) termination. The first component concerns clauses that give

“permissions” to use, copy, modify and redistribute software in line with the Free

Software Definition.156 Without these permissions, these acts would otherwise be

restricted by copyright law. It is worth noting that the root meaning of “licence”

begins merely as “permission”: Just as Laddie et. al. points out “[i]n the strict sense a

licence is a mere permission to do that which would otherwise be unlawful and it

154 Note that Benkler’s peer-production model is exactly built in a non-proprietary environment:
“individuals produce on a non-proprietary basis and contribute their product to a knowledge
‘commons’ that no one is understood as ‘owning,’ and that anyone can, indeed is required by
professional norms to, take and extend.” Yochai Benkler, “Coase's Penguin, or, Linux and ‘The
Nature of the Firm’” (2002) 112, (3) Yale Law Journal 369 at 381-2
155 Steven Weber, Success, p.1
156 Richard Stallman, “The Free Software Definition” at <http://www.gnu.org/philosophy/free-
sw.html>

 120

confers no proprietary rights on the licensee.”157 Along the same line, Bently and

Sherman point out:

At a basic level a licence is merely a permission to do an act that would

otherwise be prohibited without the consent of the proprietor of the copyright.

A licence enables the licensee to use the work without infringing. So long as

the use falls within the terms of the licence, it gives the licensee an immunity

from action by the copyright owner.158

The GPL 3.0 makes it clear that it is a copyright licence that gives permission:

“nothing other than this License grants you permission to propagate or modify any

covered work. These actions infringe copyright if you do not accept this License”159

(added emphasis). Apart from giving normal copyright permission, it is interesting to

note that GPL 3.0 makes a new special permission that does not exist in earlier

versions in the GPL family. It permits users to circumvent Digital Right Management

(DRM) technologies if DRM is used in GPL covered works. This permission is

drafted in response to the rise of the anti-circumvention law introduced by 1996

WIPO Copyright Treaty (WCT) that forbids “the circumvention of effective

technological measures that are used by authors in connection with the exercise to

their rights under this Treaty or the Berne Convention and that restrict acts, in respect

of their works, which are not authorised by the authors concerned or permitted by

law.” 160 This WCT anti-circumvention clause and its progeny161 are sometimes

known as “para-copyright”, because the protected technological measures are not

copyright measures themselves but they have the effect of expanding the scope of

authors’ exclusive rights and potentially upsetting the balance intended by copyright

law.162 The drafter of the GPL 3.0 believes that DRM is “fundamentally in conflict

157 It is also pointed out that there is no reason why a licence should not be given “to the world at large
or to a specified section of community”. See Hugh Laddie, et al., Modern Law of Copyright and
Designs, p. 903-4;
158 Although a licence begins with “merely a permission”, the copyright system has nurtured “a
sophisticated repertoire of ways whereby a work might be licensed”. Lionel Bently and Brad Sherman,
Intellectual Property Law (Oxford: OUP, 2009, 3rd Ed.) p.264
159 Section 9, GPL 3.0
160 Art. 11, WCT
161 Equivalents of Art. 11, WCT can be found in the US Digital Millennium Copyright Act, 17 U.S.C
1201 and Art. 6, European Copyright Directive.
162 For a critique of the anti-circumvention law, see, for example, Dan Burk, “Anticircumvention
Misuse” (2003) 50 UCLA Law Review 1095

 121

with the freedoms of users that the GPL is designed to safeguard”.163 So in order to

counter this, GPL 3.0 states that “[n]o covered work shall be deemed part of an

effective technological measure under any applicable law fulfilling obligations under

article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar

laws prohibiting or restricting circumvention of such measures.” As a consequence,

programmers of GPL covered software waive their anti-circumvention right:

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention is

effected by exercising rights under this License with respect to the covered

work, and you disclaim any intention to limit operation or modification of the

work as a means of enforcing, against the work's users, your or third parties'

legal rights to forbid circumvention of technological measures.164

In short, under the above anti-anti-circumvention clause, GPL 3.0 effectively extends

permission to acts that would otherwise be restricted by the para-copyright created

by technological measures.

The second component of the GPL is its “conditions”. GPL is a often known as a

“conditional licence”, because it sets up a series of carefully crafted “conditions” to

safeguard software freedom, under which users are permitted to use, copy, modify

and distribute GPL covered works. Largely inheriting a structure used by the Emacs

GPL, GPL 3.0 divides itself into three categories—including “conveying verbatim

copies”, “conveying modified source versions” and “conveying non-source forms”—

all of which will trigger the “conditions” attached to the “permissions”. (See Table

3.1)

It is important to know that not all acts of running, copying or modification of GPL

covered software will trigger the conditions stated in GPL. Doing these acts privately

is permitted unconditionally. Conditions apply only when “verbatim copies” or

“modified source versions” or “non-source forms” are conveyed to the public. Note

that GPL 3.0 deliberately avoids the familiar term “distribute”, which is used in US

163 FSF, GPLv3 First Discussion Draft Rationale, 16 January 2006, Section 2.4, at
<http://gplv3.fsf.org/gpl-rationale-2006-01-16.html>
164 Section 3, GPL 3.0

 122

copyright law165 and all previous versions of GPL, but it adopts two unfamiliar terms

“conveying” and “propagation”. The reason behind this is that GPL 3.0 is intended to

be globally applicable and the term “distribution” in different jurisdictions may have

different meanings. The drafter of GPL 3.0 explains: “The scope of ‘distribution’ in

the copyright context can differ from country to country. We do not wish to force on

the GPL the specific meaning of ‘distribution’ that exists under United States

copyright law or any other country’s copyright law.” 166 For example, in a non-US

jurisdiction such as UK, “distribution” does not cover the copyright holders’

exclusive right to “communicate the work to the public” 167 which is not explicitly

mentioned in the US statutory language. This right was harmonised by the EU

Copyright Directive, which provides that authors must have, as part of their right to

control public communication, the “exclusive right to authorise or prohibit any

communication to the public of their works in such a way that members of the public

may access them from a place and at a time individually chosen by them.”168 This

right is tailored to Internet transmissions such as the making available of copyright

materials to the public (for example, via a P2P file-sharing network).169 Clearly, the

GPL would be failing in its purpose if it did not cover transmissions of this nature. In

this light, Stallman, as the main drafter of GPL 3.0, chose the term “propagation”,

which is not used by any particular legal system.170 Here is a definition of

“propagation” offered by GPL 3.0:

To “propagate” a work means to do anything with it that, without permission,

would make you directly or secondarily liable for infringement under

165 17 USC 106
166 FSF, GPLv3 First Discussion Draft Rationale, supra note 163, p.8
167 s.20 CDPA
168 Art. 3(1) Directive 2001/29/ EC of the European Parliament and of the Council of 22 May 2001 on
the Harmonisation of Certain Aspects of Copyright and Related Rights in the Information Society (EU
Information Society Directive)
169 Bainbridge observes: “A great deal of software, including computer programs and associated
works, is now available for downloading online. Much is free to download but, of course, still
protected by copyright and further copying and distribution over and above that allowed by the licence
agreement, or other terms under which it is made available, will infringe copyright. Some of the
software available on websites of dubious pedigree may be infringing software.” Bainbridge, supra
note 23, p.82
170 Propagation “is a term not tied to any statutory language. Propagation that does not enable other
parties to make or receives copies—for example, making private copies or privately viewing the
program—is permitted unconditionally, propagation that does not enable other parties to make or
receive copies is permitted ‘distribution,’[…]” FSF, GPLv3 First Discussion Draft Rationale, supra
note 163, p.11

 123

applicable copyright law, except executing it on a computer or modifying a

private copy. Propagation includes copying, distribution (with or without

modification), making available to the public, and in some countries other

activities as well. 171

Not all acts of “propagation” will trigger the conditions in GPL 3.0, but only a sub-

set of it known as “conveying” will: “To “convey” a work means any kind of

propagation that enables other parties to make or receive copies. Mere interaction

with a user through a computer network, with no transfer of a copy, is not

conveying.”172 To put it another way, a user can privately “propagate” the GPL

covered software unconditionally, but “conditions” will apply only when copies of

the software are “conveyed” to other parties. The second paragraph in Section 3,

GPL 3.0 clarifies this point: “You may make, run and propagate covered works that

you do not convey, without conditions so long as your license otherwise remains in

force.”

There is no doubt that the most famous and important “condition” in GPL is its

“copyleft” requirement. Most basically, copyleft mandates using the same licence

when conveying to the public a “modified source version” of the original GPL

covered software. Section 5(c) stipulates:

You must license the entire work, as a whole, under this License to anyone

who comes into possession of a copy. This License will therefore apply […] to

the whole of the work, and all its parts, regardless of how they are packaged.173

This above quoted copyleft requirement is also known as the “viral” clause, because

it seems able to “contaminate” any work that has established some level of

connection with GPLed code.174 However, the virality of copyleft is sometimes

171 Section 0, “Definition”, GPL 3.0
172 Para. 7, Section 2, GPL 3.0
173 Section 5 (c), GPL 3.0
174 However, it has never been clear about the exact extent to which a GPL program is closely
connected enough to “contaminate” a non-GPL program. The issue has never been tested in court.
Raymond and Raymond find there are at least four competing theories on the issue. See Eric
Raymond and Catherine Olanich Raymond, Licensing HOWTO, 9 November 2002, at
<http://catb.org/~esr/Licensing-HOWTO.html>
Also it seems very difficult to come up with a general theory about the issue, which is always quite
project-specific. Lead programmers may have their own interpretation according to the nature of their

 124

unduly exaggerated.175 It is often overlooked that there are at least three limiting

factors that would circumscribe the reach of copyleft. First, GPL does not

“contaminate” privately made modifications. So long as a modification is not

publicly conveyed, no condition applies. Secondly, GPL does not contaminate so-

called “compilations” in which a GPL covered work and other programs with which

it is aggregated are separate and independent from each other, even though they are

stored on the same distribution medium. So long as these programs are not combined

into one larger integrated program, the “compilation” remains an “aggregate”, which

is outside the reach of copyleft.176 Thirdly, GPL does not seem to be able to

“contaminate” a program that only unwittingly incorporates GPL covered code. For

example, Epstein conceives a “nightmare scenario” where a Microsoft employee-

programmer incorporates a piece of GPLed program into Microsoft’s proprietary

operating system without the company’s knowledge.177 So should Microsoft worry

that its whole operating system is now irreversibly “contaminated” and thus fall

under the reach of GPL? Kumar argues that this worry is unfounded. Because the

company has no knowledge of the licence and it does not really “accept” the

condition and thus “there is no meeting of the minds”. In other words, the copyleft

provision is not contractually binding on the company.178 However, this view is not

uncontroversial. The FSF’s official jurisprudence is that the GPL is not a contractual

licence but a pure copyright licence. So the validity of copyleft does not depend on

own projects. For example, Linus Torvalds argues that the Linux kernel does not contaminate the user
programs that run on it: “This copyright does not cover user programs that use kernel services by
normal system calls—this is merely considered normal use of the kernel, and does not fall under the
heading ‘derived works.’” quoted in Robert W. Gomulkiewicz, “A First Look at General Public
License 3.0”, (2007) 24 Computer and Internet Lawyer 15 at 15
175 For example, there has been no shortage of smear campaigns by some proprietary companies to
exaggerate the danger of the viral nature of copyleft. See Andres Guadamuz, “Viral Contracts or
Unenforceable Documents?” Contractual Validity of Copyleft Licences” (2004) 26 (8) EIPR 331;
Guadamuz, "Legal Challenges to Open Source Licences" (2005) 2 (2) SCRIPT-ed 163
176 The last paragraph in Section 5, GPL 3.0 makes this point clear: “A compilation of a covered work
with other separate and independent works, which are not by their nature extensions of the covered
work, and which are not combined with it such as to form a larger program, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright
are not used to limit the access or legal rights of the compilation's users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the
other parts of the aggregate.”
177 Richard Epstein, “Why Open Source is Unsustainable”, Financial Times, 21 Oct 2004 at
<http://www.ft.com/cms/s/2/78d9812a-2386-11d9-aee5-00000e2511c8.html>
178 Sapna Kumar, “Enforcing the GNU GPL” 2006 University of Illinois Journal of Law, Technology
and Policy 1 at 18

 125

whether there is a valid contract or not.179 To fully assess the legal validity of GPL is

beyond the purpose of this chapter but it will be scrutinised in detail in Chapter 4.

The third component of the GPL is its clause on when and how to “terminate” the

licence when the second component, i.e., “condition”, is breached. It is interesting to

note that the termination clause in GPL is based on software authors’ property “right

to exclude” and it has a role to play in securing software freedom. McGowan

famously argues that “[o]pen-source production rests ultimately on the right to

exclude” on the ground that this exclusionary right can be employed to discipline or

deter violation of FOSS licences.180 Stallman has long been aware of this disciplinary

and deterrent function and he did write a termination clause into the Emacs GPL in

1985:

You may not copy, sub license, distribute or transfer GNU Emacs except as

expressly provided under this License Agreement. Any attempt otherwise to

copy, sub license, distribute or transfer GNU Emacs is void and your rights to

use GNU Emacs under this License agreement shall be automatically

terminated.181

This text remains largely unchanged in the versions 1.0 and 2.0 of the later general-

purpose GPL. GPL 3.0 amends the termination clause to make it more lenient to

violators of the licence. It allows grace time for violators to cure the violation

themselves and then provisionally or permanently reinstate the licence.182 This

change is intended to alleviate the harshness of the automatic termination of the

licence and incentivise violators to correct their own mistakes as soon as possible.

179 “You are not required to accept this License in order to receive or run a copy of the Program.”
Section 9, GPL 3.0
180 See David McGowan, “Legal Impactions of Open-Source Software” (2001) University Illinois Law
Review 241 at 303; However, Benkler does not agree with McGowan’s view. He suggests that there
can be alternative institutional arrangements to replace the exclusionary property system: “The same
protection from defection might be provided by other means as well, such as creating simple public
mechanisms for contributing one’s work in a way that makes it unsusceptible to downstream
appropriation—a conservancy of sorts.” Benkler, “Coase’s Penguin”, supra note 154 at 446
181 Copying Policy 4, Emacs GPL, 1985
182 Paras. 2&3, Section 8, GPL 3.0

 126

Table 3.1 Copyright: Conveying GPL Covered Works
 Emacs GPL

(1985)
GPL1.0
(1989)

GPL2.0
(1991)

GPL3.0
(2007)

Conveying Verbatim
Copies (Permission &
Condition)

Copying Policy
1

Section 1 Section 1 Section 4

Conveying Modified
Source Versions
(Permission & Condition)

Copying Policy
2

Section 2 Section 2 Section 5

Copyleft Section 2
(b)

Section 2
(b)

Section 5 (c)

Conveying Non -Source
Forms (Permission &
Condition)

Copying Policy
3

Section 3 Section 3 Section 6

Termination (Violation of
Condition)

Copying Policy
4

Section 4 Section 4 Section 8

3.5.2 GPL as a Patent Licence and its Limit

In the first decade after the 1981 Diehr decision, software-related invention patents

were not immediately perceived as a palpable threat to software freedom.183 It is not

surprising that 1985 Emacs GPL and 1989 GNU GPL 1.0 did not mention patents at

all. However, awareness of the negative impact of patents on software freedom was

gradually built up from the early 1990s. In 1991, the text of GPL 2.0 for the first time

condemned “software patents” as a threat, but it still did not give an explicit patent

licence. In 2007, FSF substantially amended the licensing terms concerning patents

in GPL 3.0 in order to partially contain the growing threat from patents. (See Table

3.2)

More specifically, there are four places where patents are explicitly dealt with in

GPL 3.0. Firstly, the preamble reiterates FSF’s traditional anti-patent position, and it

also signals that some changes have to be made in GPL 3.0: “[…] every program is

threatened constantly by software patents. States should not allow patents to restrict

development and use of software on general-purpose computers, but in those that do,

we wish to avoid the special danger that patents applied to a free program could

make it effectively proprietary. To prevent this, the GPL assures that patents cannot

be used to render the program non-free.”184

183 See above Section 3.4.2 of this chapter.
184 Para. 9, Preamble, GPL 3.0

 127

Secondly, Section 11 is a newly added clause explicitly granting a patent licence

from GPL software contributors to users: “Each contributor grants you a non-

exclusive, worldwide, royalty-free patent license under the contributor's essential

patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.” It is noteworthy that a patent

licence like this is not the invention of GPL 3.0, but the FSF has largely borrowed

the idea from the Apache License, which is a pioneer in dealing with patents in

relation to FOSS contribution.185

Thirdly, a licensee should not initiate patent litigation in respect of a GPL covered

work. The consequence of asserting patent rights will trigger the termination clause

in Section 8, which would stop the patentee-licensee from using the licensed work

any further. This is because the condition in Section 10 stipulates that a licensee

“may not initiate litigation (including a cross-claim or counterclaim in a lawsuit)

alleging that any patent claim is infringed by making, using, selling, offering for sale,

or importing the Program or any portion of it”. The combination of Sections 8 and 10

effectively functions as a patent-retaliation clause, which has already been used by

some other FOSS licences before.186

Finally, GPL 3.0 contains a so-called “liberty-or-death” clause: a programmer should

not convey a piece of code to a GPL project, if he is encumbered with an external

obligation (for example, to collect a patent royalty) that is in contradiction with the

conditions of the GPL. Section 12 reads: “If you cannot convey a covered work so as

to satisfy simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not convey it at all.” Note that this

185 The patent licence granted by Apache reads: “Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s) was submitted.”
Section 3, Apache Licence 2.0
186 To use Apache as an example again, the retaliation clause of the Apache Licence says: “If You
institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit)
alleging that the Work or a Contribution incorporated within the Work constitutes direct or
contributory patent infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.” ibid.

 128

clause in GPL 3.0 is not entirely new either, but it is a slight revision of Section 7 of

GPL 2.0.

The above four amended parts do not intend to fully, but only partially, contain the

threat from patents. There is a limit to what a licence can achieve. Stallman believes

that the root of the whole problem lies in the legal system issuing “software patents”

in the first place.187 The changes made in GPL 3.0 only reflect a pragmatic move to

work with rather against the existing patent regime in order to minimise the threat

from patents to software freedom. GPL, however more legally sophisticated it may

be, is simply not able to eliminate the root problem of “software patents” altogether.

Table 3.2 Patent: Partially Containing Patent Threa ts Through GPL
 Emacs GPL

(1985)
GPL1.0
(1989)

GPL2.0
(1991)

GPL 3.0 (2007)

Preambular text
condemning “software
patents”

N/A N/A Preamble Preamble

Liberty-or-Death Clause N/A N/A Section 7 Section 12
Patent Licence N/A N/A Implicit Section 11
Patent Retaliation N/A N/A N/A Sections 8&10

3.6 Conclusion

This chapter is a survey of two types of “intellectual property”—copyright and

patent—and their respective impact on software freedom. FOSS programmers do not

endorse “intellectual property” as a unified body of law, but argue that a more subtle

understanding is required. There are three observations coming out of a scrutiny of

the subtleties of this issue. Firstly, FOSS programmers generally endorse copyright,

which is the main legal basis for them to license their software in a non-exclusive

fashion. However, they are against some companies’ efforts to stretch copyright

further to cover the non-expressive part of software. Secondly, standalone software is

normally not a patentable subject matter in either EPC countries or the US. Under the

EPC jurisprudence, the patentability of a software-related invention depends on

whether the claimed subject matter has the right kind of “technical character”. Since

the 1987 Vicom decision until now, the EPO has failed to apply a single consistently

used interpretation about the meaning of “technical character”, a fact that has led to

187 Stallman, Richard, “Fighting Software Patents—Singly and Together”, 2004, at
<http://www.gnu.org/philosophy/fighting-software-patents.html>

 129

great uncertainty over this issue. In the US, from the 1972 Benson case to 2010 Bilski

case (via the 1998 State Street case), its legal system has also been struggling to

produce a suitable test to assess the patentability of software-related inventions.

Among FOSS programmers, patents have remained a divisive issue. Non-corporate

volunteer FOSS programmers tend to have an anti-patent position because they are

more vulnerable to patent infringement allegations, while corporate open source

participants tend to be more interested in reforming the patent system than abolishing

it altogether. Thirdly, the gradual maturing of GPL from 1985 to 2007 reflects a

continuous struggle to find a way to protect software freedom in an ever-changing

legal climate. GPL is primarily a copyright licence that creates a unique copyleft

mechanism to build an unbroken chain of software freedom. It also responds to

programmers’ growing concern about patents by substantially amending its latest

version of GPL in order to partially contain the threat from patents. The next chapter

will discuss the legal validity of the GPL and some other licences.

 130

Chapter 4 Understanding FOSS Licences as Standard Forms—A

Relational Contract Perspective

4.1 Introduction

As has been discussed in previous chapters, the main goal of FOSS licensing is to

securing software freedom in radically decentralised FOSS projects. As programmers

may well have different and evolving expectations about the outcomes of their

collaborative efforts, it is important for a licence to standardise the minimum legal

commitments for all contributors in order to prevent a given FOSS project from

freewheeling into a Babel of legally incompatible fragments. These legal

commitments, when verbalised by the licences, must be pursuant to the FOSS

stewardship responsibility under the Free Software Definition and the Open Source

Definition.

Although the goal that FOSS licences intend to achieve is undoubtedly important, the

legal basis on which these licences are made enforceable is not always clear. This is

largely due to the fact that FOSS licences are mainly take-it-or-leave-it standard

forms, which are electronically disseminated alongside software through the internet

on a mass scale. These licences do not seek affirmative assents from licensees or

adhering parties through traditional bargained-for exchanges, but they are most likely

to be given in either of the two types of electronic standard forms, i.e. clickwrap and

browsewrap. The clickwrap requires users to click through the “Yes, I Agree” button

before downloading or installing a particular piece of software, while the

browsewrap is merely an electronic notice containing licensing terms and conditions.

As most users do not read, let alone fully digest, all information contained in

clickwrap or browsewrap licences, their assents are said to be “presumed” rather than

“actual”.1 The upshot is that there seems to be no obvious moment when the meeting

of minds between licensors and licensees unequivocally happens in a non-bargained-

for process like this. When put under the strict scrutiny of classical contract law, the

1 Nancy Kim, “Clicking and Cringing”, (2007) 86 Oregon Law Review 797; Nancy Kim, “The
Software Licensing Dilemma” (2008) Brigham Young University Law Review 1103

 131

absence of “actual” assents or that of the meeting of minds poses a serious challenge

to the legal validity of all sorts of non-negotiated standard forms2, and FOSS licences

are no exception.

In this chapter, I attempt to show that standard form FOSS licences are better

understood through the lens of Relational Contract Theory (RCT) than they are

through the lens of the classical contract model. There are two equally important

reasons for software licensing jurisprudence to incorporate insights from the RCT.

First, proponents of RCT believe that the total obligation does not merely arise from

a single moment when parties’ minds are supposed to meet, but more realistically the

obligation may also be shaped by ongoing relations among parties. In FOSS projects,

contributors’ consent to their obligation of making contribution takes place in a more

incremental way and are often derived from rich collaborative relations among

contributors. It is worth noting that RCT does not make “consent” completely

irrelevant in a standard form. To the contrary, RCT only alleviates the heavy burden

on explicit “consent” as the sole legitimating mechanism of imposing obligations

against the adhering parties. Macneil, as the main exponent of this approach to

contracts, includes “effectuation of consent” as one of the common contract norms

and he believes that consent still plays an important triggering mechanism in

consensual relations.3

Secondly, a sustaining FOSS project relies on rich and dynamic collaborative

relations among contributors in a community, but it is not a product from a single or

even multiple discrete transactions between utility-maximising strangers as

understood by classical contract theory. For this reason, RCT is an appropriate

theoretical tool, which helps us to imagine how the collaborative relations in FOSS

could be recognised and managed. In particular, the RCT approach differentiates

itself from the influential (but not uncontroversial) jurisprudence developed from the

landmark Seventh Circuit case ProCD v. Zeidenberg, where Justice Easterbrook

made a mass-market standard form licence contractually enforceable.4 In this chapter

2 David W. Slawson, “Standard Form Contracts and Democratic Control of Lawmaking Power”
(1971) 84 (3) Harvard Law Review 529
3 Ian Macneil,The New Social Contract—An Inquiry into Modern Contractual Relations (New Haven
and London: Yale University Press, 1980), pp.49-50 (hereafter NSC)
4 86 F.3d 1447 (7th Cir.1996)

 132

I aim to show that the justification of FOSS licensing does not have to be built upon

the controversial ProCD ruling which assumes that parties merely as utility-

maximising agents. Instead, RCT provides a different ground to understand standard-

form FOSS licensing, where a variety of non-utility-maximisation motivations need

also to be taken seriously in understanding their aim to create software commons.

The rest of the chapter is divided into four parts. The first part (Section 4.2) briefly

exposes the two contrasting perspectives of seeing software licensing as “relational

contract” and “discrete transaction” respectively. It shows that the difference

between the two is again rooted in the early conflict between the tradition of

“stewarding” software as commons and “owning” software as private property since

the inception of FOSS licensing. The second part (Section 4.3) identifies three

possible doctrinal routes to enforcing a given FOSS licence via “contractual licence”,

“bare licence” and “promissory estoppel”. It demonstrates that some difficulties of

applying these existing doctrinal rules to address the legal validity of FOSS licensing

warrants an exploration of the more suitable framework offered by RCT. The third

part (Section 4.4) re-examines GPL by applying some insights from the relational

approach. It shows that GPL as a relational “umbrella agreement” does not prescribe

any substantive obligation concerning actual contributions from individual

programmers, but it only specifies a few minimum obligations to ensure all peer-

produced contributions are free software components that can be later aggregated

together into one project. The fourth part (Section 4.5) concludes the chapter.

4.2 FOSS Collaboration: Discrete Transaction or Relational Contract?

A collaborative relation in a FOSS project is very different from the sum total of a

host of one-shot discrete transactions of software code. Instead, the relation belongs

to a continuum where peer-produced contributions are pieced together in a long

timeline. In order to render the distinction clear, I need to spell out the difference

between two approaches to software licensing. One is the “discretist” approach that

treats software as stand-alone finished products developed by professional

programmers for end-users, while the other is the relational approach that views

software as an indefinitely long communicative process with no clear boundary

between individual exchanges.

 133

4.2.1 Discretist Approach: “Presentiation” of Total Obligation

Truly discrete transactions are very rare in the real world. They are largely idealised

situations assumed by classical contract law, which can be seen as a potent

embodiment of “methodological individualism” in legal scholarship. This discretist

view of contract artificially atomises social relations into isolated transactional

segments, where parties are assumed to be complete strangers solely interested in

maximising individual utility.5 The discretist view of contract can be traced back to

Henry Maine, whose methodological individualist thinking has great influence in

shaping the ideology of classical contract law. To put it bluntly, his famous

observation about modern society’s transition from “status to contract” can be seen

as no more than a movement of “from status to discrete transaction”.6

Although completely discrete transactions are a legal fiction, there may be instances

fairly close to them. Macneil’s famous example of an almost discrete transaction is

“a cash purchase of gasoline at a station on the New Jersey Turnpike by someone

rarely travelling the road”.7 This purchase happens between complete strangers who

are very unlikely to meet again and repeat the same transaction. However, situations

like this example are extremely rare, and even doing grocery shopping in a

supermarket does not fit into this kind of discrete transactional model. Supermarkets

do want to establish some kind of relationship beyond simple one-shot transactions.

For instance, they may well have schemes to make customers collect loyalty points.

Some of them may even encourage customers to reuse plastic bags by giving “green”

points. A truly discretist supermarket do not care about how “loyal” or “green” their

customers are.

5 Campbell and Collins point out that classical contract law denies the “social character” of contract
exchanges: “the classical law of contract reproduces the principal structural contradiction of bourgeois
society—a society which has at its heart a denial of its social character.” David Campbell and Hugh
Collins, “Discovering the Implicit Dimensions of Contracts”, in Implicit Dimensions of Contract—
Discrete, Relational, and Network Contracts, eds. by David Campbell, Hugh Collins and John
Wightman (Oxford and Portland, Oregon: Hart Publishing, 2003) p.26
6 For Maine’s methodological individualist view of society, see Edward Shils, “Henry Sumner Maine
in the Tradition of the Analysis of Society”, in The Victorian Achievement of Sir Henry Maine: A
Centennial Reappraisal, ed. By Alan Diamond (Cambridge: CUP, 2001) pp.144-5
7 Macneil, “Contracts: Adjustment of Long-Term Economic Relations Under Classical, Neoclassical,
and Relational Contract”, (1978) 72 (6) Northwestern University Law Review 854 at 857

 134

There are two salient characteristics of the discretist thinking. First, discrete

transactions are treated as though they happen in a social vacuum and do not bond

parties into long and sustaining relationships. They are deemed to happen among

“total strangers” who are “brought together by chance” rather than “any common

social structure”.8 In other words, parties in discrete exchanges are atomised

individuals and each of them “would have to be completely sure of never again

seeing or having anything else to do with the other”.9 Secondly, discrete transactions

are transient and short-lived. They do not last beyond the point when they are

consummated. The very brief life-span of transactions is essential to transactional

discreetness: “everything must happen quickly lest the parties should develop some

kind of a relation impacting on the transaction so as to deprive it of discreteness.”10

It is important to note that too much bargain would expand the lifespan of a

transaction and thus risk the loss of discreteness in exchanges. Macneil observes that

“bargaining about quantities or other aspects of the transaction can erode discreteness,

as certainly does any effort to project the transaction into the future through

promises.”11 For this reason, discretists do not welcome lengthy and elaborate

bargained-for exchanges leading to contract formation, because bargains may well

blur the discreteness of transactions and at the same time raise the transaction cost.

Interestingly, this discretists’ hostility to bargaining reveals a built-in paradox of

classical contract model. An unrelenting pursuit of transactional discreetness would

inevitably erode the importance of bargained-for exchanges, which are ostensibly at

the heart of a binding classic contract. The sacrifice of “bargaining” for

“discreteness” is a departure point where classical contract law starts to relax its

requirement about “meeting of the minds” in contract formation. This relaxation

results in the classical contract law rapidly (and somewhat imperceptibly) mutating

into the “neo-classical” law of contract, which attempts to soften the classicist

8 Macneil further points out that the discretists prefer “only a barter of goods, since even money
available to one and acceptable to the other postulates some kind of common social structure.” ibid., at
856
9 ibid.
10 ibid.
11 ibid.

 135

doctrinal rigidity to some extent.12 Throughout this chapter, I argue that the real

hurdle to a relational understanding of FOSS licensing is not the unadulterated

classical model itself but its neoclassical mutant. This neoclassical rationale in

enforcing mass-market software licences is presumed in Easterbrook’s ProCD

ruling13, which will be shown to be fundamentally different from the Macneil’s

relational approach in sub-Section 4.2.3 in some more detail.

Turning Software Development into Discrete Products/Commodities

As has been discussed in Chapter 2, software development, under its early hacker

custom, is by no means the production and circulation of many discrete products, but

it is always a work in progress or an indefinitely long collaborative process. (The

over two-decade long Linux kernel project in progress is a case in point here.) When

the publicly available source code was allowed to be modified by the public under

the hacker custom, it was relatively difficult for individual programmers to privatise

their intellectual inputs into alienable end-products.

However, since the mid-1970s, some commercially minded programmers gradually

figured out how to turn the non-discrete software development process into discrete

end-products, which were a necessary prelude to selling software like any other

“physical” commodity.14 In order to artificially create discreteness for software, they

needed to go through two crucial steps. First, software developers needed to

distribute only the object code of software without revealing the corresponding

source code. Without seeing the hidden source code, it is made difficult for users to

customise the software to their needs when necessary. The closed-source software

thus loses its “extensibility”15, but at the same time it acquires quasi-physical

“thingness” with a much more clearly defined boundary.

12 Feinman observes that “[n]eoclassical method is a mix of rules and standards. This is still doctrine,
by and large, but it is doctrine of a much softer sort than in classical law. See Jay M. Feinman,
“Relational Contract Theory in Context”, (2000) 94 Northwestern University Law Review 737 at 739
13 86 F.3d 1447 (7th Cir.1996)
14 Macneil points out that discretisation and commoditisation go hand in hand under classical contract
law, which “transactionizes or commodifies as much as possible the subject matter of contracts”. See
Macneil, supra note 7 at 863
15 For the discussion of “extensibility” of software, see Section 1.3.1 Chapter 1

 136

If the first step is about acquiring quasi-physical discreteness for the closed source

software, the second step can be seen as an attempt to define the legal discreteness

through using proprietary software licensing schemes. Because the first step itself

cannot prevent the hidden object code from being reverse engineered back into a

source code version by its users, programmers thus design an extra layer of

protection by using proprietary software licences. These licences are usually drafted

in a way that a broad, and often overbroad, range of activities by users—including

reverse engineering, copying, modifying, redistributing—are strictly prohibited.16 In

short, the purpose of these proprietary licences is to make the software as tightly

discrete a product as possible in legal terms, though some of the prohibitions may

risk upsetting the balance preset by copyright law.17 Furthermore, software as

discrete product is often released via a legal vehicle of standard-form contracts on a

take-it-or-leave-it basis. In this way, the traditional manifestation of consent through

bargained-for exchanges is minimised to a level where the non-negotiable licensing

terms start to resemble those unmodifiable physical features imbedded in the

software products. Radin incisively observes that these standard form licences

undermine traditional consent as the centrepiece of contracts. She points that the

“contract-as-consent” model is being replaced with the “contract-as-product” model,

where licensing terms are an inseparable part of the discrete product.

In this [contract-as-product] model, the terms are part of the product, not a

conceptually separate bargain; physical product plus terms are a package deal.

The fact that a chip inside an electronics item will wear out after a year is no

less and no more a feature of the item and its quality than the fact the terms that

come with the item specify that all disputes must be resolved in California

under California law. In this model, unseen contract terms are no more and no

less significant than unseen internal design features; and it is not remarkable

16 Mark Lemley, “Terms of Use” (2006) 91 Minnesota Law Review 459
17 For example, UK copyright law does allow reverse engineering or “decompilation” for the purpose
of achieving interoperability by lawful users without copyright holders’ permission. Any licensing
term that attempt to contract out this permitted act would be illegal. See Section 50B, CDPA 1988;
See also Section 3.3.3, Chapter 3 of this dissertation for more detail.

 137

that there is no choice other than the take-it-or-leave-it choice not to buy the

package.18 (added emphasis)

In the US, the contract-as-product model becomes the dominant approach to software

licensing after the US Seventh Circuit’s case ProCD v. Zeidenberg.19 It is explicitly

endorsed by Easterbrook who argues that “[c]ontractual terms are product

attributes—no different functionally from the quality of a car’s tires, a TV’s

capacitors, or a software package’s features […]”.20 Contrary to this view, I will later

show, in Section 4.4, that licences that felicitates FOSS collaboration need to keep a

critical distance from the “contract-as-product” model, but a vision of “contract as

relation” is more appropriate to account for the real lived cooperative experience

among FOSS programmers.

Presentiation and Proprietary Software Licensing

Closely related to proprietary software licences’ attempt to discretise software

development process into separate non-extensible end-products is what Macneil calls

the “presentiation” of total obligation into these licensing documents. “Presentiation”,

in short, is a technique used by classical contract law to bring the future into the

present.21 It is “a way of looking at things in which a person perceives the effect of

the future on the present”.22 Classical contracts use this technique to reduce the

uncertainty of contractual exchanges that may last for a period of time into the future.

Recall that ideally discrete transactions are assumed to be transient and short-lived as

if they almost have no duration. However, this view of zero-duration transactions

does not always tally well with reality, where most contractual exchanges do not

consummate at one single moment, but last into the future. In order to cope with this

problem, classical contract law has to employ the technique of presentiation by

compressing the future relation into a single point as if it had no duration at all.

Macneil describes how presentiation takes place:

18 Margaret Jane Radin, “Humans, Computers, and Binding Commitment” (1999) 75 Indiana Law
Journal 1125 at1126
19 See Michael J. Madison, “Legal-ware: Contract and Copyright in the Digital Age” (1998) 67 (3)
Fordham Law Review 1025
20 Frank Easterbrook, “Contract and Copyright” (2005) 42 (4) Houston Law Review 953 at 968
21 Macneil, NSC, p.60
22 Macneil, supra note 7 at 863

 138

[Presentiation] is a recognition that the course of the future is so unalterably

bound by present conditions that the future has been brought effectively into the

present so that it may be dealt with just as if it were in fact the present. Thus,

the presentiation of transaction involves restricting its expected future effects to

those defined in the present, i.e., at the inception of the transaction.23

From proprietary software developers’ point of view, the very indefinitely long-term

collaborative relations under the hacker customs are indeed too open-ended to be

predicable. Proprietary software developers have to use classical contract law’s

technique to presentiate total obligation into a licensing document. In this light,

users’ activities that may prolong the lifespan of transactions (e.g. through reverse

engineering, user customisation, error corrections, redistribution etc.) are all deemed

to be undesirable and they should be minimised under licensing terms in order to

reduce future uncertainties.

4.2.2 Relational Approach: Projecting Exchange into the Future

The radically decentralised FOSS production and its licensing schemes defy classical

contract law in two senses: they are neither discrete, nor can they be presentiated.

First, FOSS is designed to be extensible and customisable, and it invites users to

become co-developers to modify and improve the software wherever they see

appropriate. Stallman observes that FOSS development is like “an evolutionary

process, where a person would take an existing program and rewrite parts of it for

one new feature, and then another person would rewrite parts to add another

feature”.24 From proprietary software developers’ viewpoint, the indefinitely long

“evolutionary process” is unwieldy and unmanageable, because it threatens the

transactional discreteness that is more conducive to commercialisation of the

software products. In contrast, FOSS developers see the long “evolutionary process”

exactly as a strength that should be celebrated. Unlike short-lived discrete

transactions, the non-discrete collaborative relations make FOSS projects capable of

growing and perfecting for a considerable period of time. FOSS licences here play an

23 ibid.
24 Stallman, “Why Software Should Be Free” at <http://www.gnu.org/philosophy/shouldbefree.html>

 139

important role in facilitating the collaborative efforts among programmers, though

they are not collaborative relation itself.

Secondly, total presentiation is very unlikely to take place in a radically decentralised

environment where FOSS is produced. This is because the collaborative relations in

FOSS projects are rather open-ended and improvisatory and it is impossible to

presentiate future creative efforts onto one present paper or electronic document that

is intended to binding. To some extent, a FOSS project can be likened to a marriage

or a family business where “the participants never intend or expect to see the whole

future of the relation as presentiated at any single time, but view the relation as an

ongoing integration of behavior which will grow and vary with events in a largely

unforeseeable future.”25 Although there is no presentiation of total obligations for

FOSS contributors, this does not mean that there is no planning whatsoever at all

within FOSS projects. Instead, a modicum of preliminary planning by a few lead

programmers is always necessary to make sure that all contributions can later be

safely and effectively pieced together into one coherent artefact under a modular

architecture.26 In other words, these projects do involve some level of planning,

which prevents them from freewheeling into complete anarchy. However, this

planning in FOSS projects is incremental and tentative, and it is not anywhere close

to presentiation.27 It is up to a small group of lead developers to find out the right

balance where partially presentiated obligations do not hurt the flexible and

serendipitous nature of FOSS projects.28

Relational Exchange and FOSS Collaboration

Classical contract law is centred around the problem of enforcing promises in

discrete transactions. It asks whether a promise or a set of promises made by a party

25 Macneil, “Restatement (Second) of Contracts and Presentiation”, (1974) 60 (4) Virginia Law
Review 589 at 595
26 See Section 1.3.1, Chapter 1
27 On top of the preliminary design for FOSS projects, participants often involve in what Macneil calls
“post-commencement planning”, where “planning continues after formation of the relation and after
entry of a new person into the relation.” Macneil, NSC, p.27
28 Kelty argues that coordination in FOSS project means privileging “adaptability” over “planning”:
“This involves more than simply allowing any kind of modification; the structure of Free Software
coordination actually gives precedence to a generalized openness to change, rather than to the
following of shared plans, goals, or ideals dictated or controlled by a hierarchy of individuals.” Kelty,
Two Bits, p.211

 140

should be enforced or not in a discrete and presentiated exchange.29 In contrast,

relational contracts are anchored in the more flexible and less presentiated exchanges

and they are of great importance to sustain long-term FOSS collaboration.

Macneil defines his conception of “contract” as “no more and no less than the

relations among parties to the process of projecting exchange into the future”,30 or

more succinctly, “the projection of exchange into the future”31. This definition

reveals a crucial distinction between the relational approach and the classical

approach in terms of their respective attitudes towards the element of “futurity” in

contract: A classical contract sees future as the source of uncertainty and

unpredictability, which must be tamed by the classicist technique of total

presentiation at the time when the contract is made. In other words, the total legal

obligation of the classic contract is set at the beginning of the exchange when an

offer meets its acceptance. In contrast, a relational contract is more flexible and

adaptable to the future. Far from abhorring the element of futurity in exchange,

relationalists regard future as a source of serendipity that could be celebrated. To put

the contrast fully in another way: a classical contract presentiates the future into the

present, while a relational contract projects the current exchange into the future. This

contrast is also readily applicable to the difference between proprietary software

developers and FOSS programmers. The former equate future with uncertainty that

must be minimised at all cost, while the latter celebrate the serendipitous element of

future that may unfold gradually in a radically decentralised creative environment.

Promissory and Nonpromissory Projectors

For Macneil, a relational contract is more than merely a matter of enforcing promises.

It covers a broader scope than an explicitly bargained-for promissory exchange under

a classical bilateral executory contract.32 A valid relational contract can have both

29 For example, this promise-centred view of contract can be found in the US Restatement (Second) of
Contract, which explicitly defines “contract” as “a promise or set of promises for the breach of which
the law gives remedy, or the performance of which the law in some way recognizes as a duty.”
American Law Institute, Section 1, Restatement (Second) of the Law of Contracts
30 Macneil, NSC, p.4
31 Macneil, “The Many Futures of Contracts”, (1973-74) 47 South California Law Review 692 at 712-
3
32 Whitford points out that Macneil’s works on RCT are more than a theory of contract, but they are
very close to a general theory of social order. “The reader should be aware that Macneil himself

 141

promissory and non-promissory aspects, both of which generate expectations for

parties to project exchange into the future. To begin with, a “promise” is a most

straightforward projector that parties use to make explicit verbalised agreement with

others. Macneil defines “promise” as the “[p]resent communication of a commitment

to engage in a reciprocal measured exchange” and it is an “extraordinarily powerful

mechanism for projecting exchange into the future”33 . However, promissory

projectors do not form the whole picture of contractual exchanges. From a

relationalist perspective, there are also nonpromissory projectors that play an equally

important role in shaping parties’ expectations.34 For example, the previous course of

repeated dealings unsupported by verbalised agreements can be important

nonpromissory projectors from a relational perspective. 35 Macneil argues that

nonpromissory projectors are important in shaping relational exchanges in both

primitive and modern societies:

Nonpromissory exchange-projectors […] come in a great many forms. In all

societies, custom, status, habit, and other internalizations project exchange into

the future. In some primitive societies these may be the primary projectors, with

promise relating to exchange playing only a very minor role, if that. Moreover

we err if we fail to recognize that such nonpromissory mechanisms continue to

conceives of his work as much broader than anything most other contract scholars recognized as
contract law. His relational contract theory encompasses all exchange, and because Macneil sees
exchange occurring almost everywhere, his theory becomes in effect a general theory of the social
order.” William C. Whitford, “Ian Macneil’s Contribution to Contracts Scholarship”, (1985)
Wisconsin Law Review 545 (hereafter “Macneil’s Contribution”)
33 Macneil, NSC, 7
34 In the academic literature, these nonpromissory projects are also known as the “implicit dimension”
of contractual exchanges. For more detail about classical contract law’s limited efforts to
accommodate the implicit dimension, see David Campbell and Hugh Collins, “Discovering the
Implicit Dimensions of Contracts”, in Implicit Dimensions of Contract—Discrete, Relational, and
Network Contracts, eds. By David Campbell, Hugh Collins and John Wightman (Oxford and Portland,
Oregon: Hart Publishing, 2003)
35 The English case Baird v. Marks & Spencer highlights the divide between the classical and
relational approaches to the previous course of dealings as a nonpromissory projector. In this case, the
claimant Baird had been a garment supplier to the defendant Marks & Spencer for the past thirty years
without a written agreement. The latter suddenly stopped placing order from the former, which
believed that they deserved reasonable notice before the proper termination of the relation. The UK
Court of Appeal, from a classical perspective, disregarded the previous relation and refused to imply a
contract between the two parties. Baird Textile Holding Ltd. v. Marks & Spencer plc. [2001] EWCA
Civ 274.
In contrast, Mulcahy and Andrews, employing a relational analysis, finds that the non-verbalised
agreement manifested in long-term relation should be enforceable. Linda Mulcahy and Cathy
Andrews, “Baird Textile Holdings v Marks & Spencer Plc” in Feminist Judgements—From Theory to
Practice (Oxford and Portland, Oregon: Hart, 2010)

 142

play vital parts in the most modern and developed of societies. Even kinship, a

form of status which plays major roles in so many societies, is by no means

absent as an exchange-projector in [modern society], although it may now be

overshadowed by class or other structures with partially related roles.36

In the history of FOSS collaboration, the early hacker custom has long functioned as

a nonpromissory projector influencing computer hackers’ “relational” exchanges

since the 1950s and 1960s. This hacker custom, which was only retrospectively

documented by Steven Levy in 1984, was initially only “an ethic seldom codified,

but embodied instead in the behavior of hackers themselves”.37 The advent of FOSS

licences like GNU GPL largely verbalise the some of the previously uncodified

programmers’ stewardship responsibilities into express promissory projectors. Note

that express licensing terms in FOSS licences only codify a minimum set of legal

responsibility necessary for the preservation of software commons, but it by no

means spells out every single detail in FOSS collaboration.38 In short, non-verbalised

commitments play an important role in the day-to-day operation of FOSS

collaboration and their importance cannot be eclipsed by the verbalised licensing

terms.

RCT’s Two Implications for FOSS Licensing

Given the subject of this dissertation, it is impossible to give a comprehensive survey

of Macneil’s RCT and its great influence on contemporary contracts scholarship.39 I

narrow my research down to two implications that are most crucial to a relational

analysis of FOSS licensing. These two implications are based on a general survey of

Macneil’s theoretical contributions to contracts scholarship by Whitford, who

concludes that Macneil has two important “messages” to lawyers. The first message

is relatively well received and the second is still largely underappreciated by lawyers.

36 Macneil, NSC, p.7
37 Levy, Hackers, p.7
38 In fact, it is impossible for general-purpose FOSS licences like the GPL to go beyond specifying the
minimum responsibilities. For example, important issues concerning when, what, by whom and how
those many contributions are made often remain unspecified in these FOSS licences.
39 For a recent research on Macneil’s great contribution to contract scholarship, see Cathy Joanne
Andrews, Bridging the Divide—An Exploration of Ian Macneil’s Relational Contract Theory and Its
Significance for Contract Scholarship and the Lived World of Commercial Contract, PhD Thesis,
(London: Birkbeck College, University of London, 2010)

 143

Macneil’s first message is that “there is no single moment at which the parties

confirm a meeting of the minds respecting the important terms of the contract.”40

This is clearly an attack on classical contract law’s insistence that there should be a

single grand moment where parties’ minds meet and all their obligations would be

fully presentiated from that moment on. In a more realistic fashion, RCT suggests

that parties’ consent to an agreement may well be reached incrementally through a

period of time. Whitford finds that this insight has been “generally accepted”: in this

sense, RCT has superseded classical contract law and becomes the “now mainstream

contract theory.” 41 In the US context, the recent judicial development in the more

specific area of information product licensing has largely proved Whitford’s

observation correct. The line of jurisprudence spearheaded by the 1996 landmark

ProCD ruling again serves as an important example for the purpose of this chapter.

In ProCD, Easterbrook challenged the classicist model by suggesting that a licensing

contract was not formed at the single point when the software was purchased. Instead

a user’s consent to the licence can be constructed in a period of time between the

point of purchase and the actual use of the licensed product. In this period, the user

arguably had ample opportunity to read and digest the content of the licence and

there was no excuse for him to say no consent was formed. Barnett, in approving this

logic behind ProCD, comments that “[t]here is no reason in principle why contracts

cannot be formed in stages, provided the circumstances or prior practice makes this

clear or adequate notice is provided. This insight is neither revolutionary nor

reactionary.”42 From a pure classicist point of view, ProCD and its progeny represent

a “neoclassical” turn43 that started to erode the traditional mechanism of consenting

where minds only meet at single one point. This move is sometimes lamented as the

40 The single moment of the meeting of minds is exactly what is required by the classicists’ technique
of presentiation: “Before this grand meeting of minds, there was no contractual liability. And after this
point, all important decisions—particularly the determination of the terms governing the relationship
and the measurement of expectation damages—could be reached only by referring to that all
encompassing agreement.” Whitford, “Macneil’s Contribution” supra note 32, at 546
41 ibid., at 548
42 Randy E. Barnett, “Consenting to Form Contracts”, (2002) 71 Fordham Law Review 627 at 644;
Macaulay looks at the same issue from a slightly different angle. He points out that Barnett’s proviso
(i.e. “provided the circumstances or prior practice makes this clear or adequate notice is provided”) in
the above quoted sentence matters should be given more weight in reality: “The essential part of
Barnett’s observation is in his proviso. Those who slip terms into the fine print almost never make
anything clear or give notice adequate enough to serve the legitimating idea of actual or manifest
choice.” Stewart Macaulay, “Freedom from Contract: Solutions in Search of a Problem?” (2004)
Wisconsin Law Review 777, FN 94 at 804 (hereafter “Freedom from Contract”)
43 See infra Section 4.4.1

 144

cause leading to “waning of consent”44 or even “death of assent”45 in the neoclassical

standard-form licensing jurisprudence, which is much less strict about the affirmative

manifestation of licensees’ explicit assents. Although the neoclassical law seems to

take on board Macneil’s first message, I call for a more careful and nuanced reading

of RCT, which will reveal that “assent” or “consent” is not irreversibly “dead”, but

they still play “a vital triggering mechanism” of relational exchanges46 and it is

important to understand “consent” in relational terms. Just as Gudel observes there

has never been a real “decline of assent,” but there is only “a decline of assent

discretely understood” in contract jurisprudence.47

Macneil’s second message is a cautionary one: when contracts scholarship moves

away from the consent-driven classical model, it is in danger of recalibrating contract

law as a neoclassical apparatus solely for the purpose of promoting parties’ “desire to

maximize wealth”.48 This is not what a true relational approach should embrace, but

in fact “parties in relational contracts frequently temper wealth maximization goals

with other objectives.”49 In fact, Macneil himself makes it clear that people joining in

relational exchange are by no means solely motivated by maximising their individual

utility, but they are also driven by their desire for enhancing social solidarity.50

Going back to the discussion of standard-form software licensing, the neoclassical

ProCD ruling again is exactly an exemplary occasion, against which Macneil’s

second message warns. Sidelining the role of classicist “consent”, Judge Easterbrook

reoriented the ground for enforcing standard-form licences towards the need of

44 Margaret Jane Radin, “Boilerplate Today, The Rise of Modularity and the Waning of Consent”,
(2006)104 Michigan Law Review 1223
45 Mark Lemley, “Terms of Use” (2006) 91 Minnesota Law Review 459 at 464
46 Macneil, NSC, p.50; I will also show later that, for those FOSS products targeted at non-
sophisticated end users (rather than professional co-developers), a higher requirement of affirmative
manifestations of users’ assents (e.g. through the clickwrap technology) is not completely unnecessary.
47 Paul J. Gudel, “Relational Contract Theory and the Concept of Exchange”, (1998) 46 Buffalo Law
Review 763 at 773
48 Whitford , “Macneil’s Contribution” supra note 32 at 549; For more detail about the this wealth
maximisation view of relational contract, see for example, Charles Goetz and Robert E. Scott,
“Principles of Relational Contracts” (1981) 67 (6) Virginia Law Review 1089
49 Whitford, supra note 32 at 550
50 Ian R. Macneil, “Exchange Revisited: Individual Utility and Social Solidarity”, (1986) 96 (3) Ethics
567; Robert W. Gordon, “Macaulay, Macneil, and the Discovery of Solidarity and Power in Contract
Law” (1985) Wisconsin Law Review 565

 145

reduction of transaction costs.51 It is necessary to enforce the license in this case,

because it would “make information more readily available, by reducing the price

ProCD charges to consumer buyers.”52 The kind of consent obtained through

traditional ways of bargaining would only make transactions too costly to benefit

information product suppliers and consumers economically.53 It is important to know

that an economic justification of standard forms like this was not first invented by

Easterbrook, nor is it unique to mass software licensing, but it is preceded by many

non-software cases long time ago before the ProCD. Whitford nicely summarises

this general shift from obtaining classicist consent to guaranteeing wealth-

maximisation as the basis of legitimating Standard-From Contracts [SFK]:

It is now generally recognized that true consent to all aspects of the SFK is

usually lacking. From a wealth maximisation perspective, this is as it should be.

Individual negotiation of every contractual detail would take too much time.

Because of the absence of true consent, a majority of commentators no longer

regard agreement to a SFK as sufficient to validate its content. Rather, judicial

and legislative oversight of some terms is deemed both appropriate and

desirable. In suggesting ways to exercise that oversight, however,

commentators very often look just to wealth maximization values. The question

they frame is what terms the parties would have agreed to if they had negotiated

the contract, were well informed, and were concerned solely with wealth

maximization.54 (internal citations omitted)

With this background in mind, I argue that any serious attempt to justify FOSS

licensing must cautiously distance itself from the wealth-maximisation oriented

jurisprudence developed in ProCD. Instead, it needs to take on board Macneil’s

second message that relational contract promotes a multiplicity of values but the

51 According to Macneil, neo-classical contract law is built on the foundation of microeconomics. The
Coasean transaction cost analysis may subtly vary this neoclassical model, though the presupposition
that human beings are utility-maximisers does not change. See Macneil, I.R., “Economic Analysis of
Contractual Relations: Its Shortfalls and the Need for a Rich ‘Classificatory Apparatus’ ”, (1981) 75
Northwestern University Law Review 1018
52 ProCD v. Zeidenberg, 86 F.3d 1447 at 1455
53 In Easterbrook’s own words, this would “drive prices through the ceiling or return transaction to the
horse-and-buggy age.” 86 F.3d 1447 at 1452
54 Whitford, supra note 32 at 553,

 146

wealth-maximisation objective is only one of them.55 The reduction of RCT to the

neoclassical model would only risk impoverishing the Macneilian relational contract.

A radically decentralised FOSS project attracts a large number of volunteer

contributors rightly because utility maximisation is not the only predominant

motivational force, but programmers are motivated by a variety of reasons. A 2005

empirical survey shows that the top three motivations behind volunteer FOSS

contribution are intrinsic intellectual enjoyment of coding, the prospect of improving

programming skills and the belief that FOSS is a worthy cause for its own sake.

None of them is directly about the increase of contributors’ material utility or

wealth.56 It can be argued that relational contracts in FOSS projects are intended to

create a kind “relational wealth” 57, which splices together a variety of motivational

values, which can be either utilitarian or non-utilitarian. It is a kind of non-monetary

wealth that is absent in ProCD, where the plaintiff and the defendant are in

antagonistic competition and have no intention of collaborating to build a common

project. Macneil’s contract norm of “preservation of the relation” therefore is of

critical importance in maintaining the relational wealth in FOSS projects and it could

be a new basis for evaluating the legal strength of FOSS licensing.58 With Macneil’s

two messages in mind, I will move on to explore how FOSS licences are understood

by existing doctrinal rules as a contrast to the relational perspective in the following

section.

4.3 Three Doctrinal Routes to Enforcing a FOSS Licence

Are FOSS licences contracts? If so, are they enforceable contracts? If not, according

to what other possible legal doctrines might they be enforced? Should the application

of a chosen doctrine take into account of the relational aspect of FOSS licensing

55 Whitford believes that “Macneil’s many descriptions of relational contracting illustrate that parties
to such contracts commonly pursue a number of objectives, only one of which is wealth
maximization.” Whitford, supra note 32 at 560
56 I will discuss the three motivations in more detail in Chapter 5 on FOSS authorship. See Karim R.
Lakhani and Robert G. Wolf, “Why Hackers Do What They Do: Understanding Motivation and Effort
in Free/Open Source Software Projects”, in Perspective on Free and Open Source Software, eds. by
Feller, Fitzgerald, Hissam & Lakhani (Cambridge, Mass.: MIT Press, 2005)
57 For a general account of relational wealth, see Romesh Diwan, “Relational Wealth and the Quality
of Life” (2000) 29 Journal of Socio-Economics 305; in the specific context of this chapter, I wish to
show that FOSS projects’ “relational wealth” is the kind of peer-produced “wealth” as indicated in
Benkler’s book title The “Wealth” of the Network. Although “relational wealth” may indirectly bring
material wealth for FOSS programmers, the former cannot be entirely reduced to the latter.
58 For the norm of “preservation of the relation” in contractual exchanges, see Macneil, NSC, p.66

 147

practice? As FOSS licences are designed to facilitate decentralised collaboration,

there is no doubt that it is important to find answers to these questions. However,

given the complex nature of the issue, there is little consensus on the enforceability

of these licences among scholars.59 There are at least three different theories, or three

doctrinal routes, under which that a FOSS licence may be enforced. The first theory

suggests that a FOSS licence can be enforced if it is a valid contract. The second

theory argues that a FOSS licence may well lack a contractual status due to problems

such as the lack of bargained-for exchanges. Instead, it should be enforced as a bare

licence (or pure property licence) regardless of the licence being contractual or not.

The third theory finds that the second theory has a weakness: a bare licence is

revocable by the licensor. So in order to prevent a FOSS licensor from going back on

his promise, the equitable doctrine of estoppel might be evoked when necessary.

4.3.1 First Route: Contractual Licence

The first route argues that a FOSS licence such as GNU GPL can be enforced as a

contractual licence. One of most enthusiastic champions of this argument is

Gomulkiewicz, who believes that the GPL fulfils all the requirements under a US

model code known as the Uniform Computer Information Transaction Act (UCITA)

to be a contract.60 The UCITA explicitly recognises a “license” as having a

contractual status because here “licence” is defined as “a contract that authorizes

access to, or use, distribution, performance, modification, or reproduction of,

informational rights, but expressly limits the access or uses authorized or expressly

grants fewer than all rights in the information, whether or not the transferee has title

to a licensed copy.”61 However, this resort to the UCITA is problematic because the

59 Nimmer even suggests that to ask whether a FOSS a licence is a contract or not is a wrongly framed
question in the first place. It simplifies the issue too much. The right way of approaching the issue is
to look into how these FOSS licences are actually used or intended to be used. Raymond Nimmer, “Is
the GPL license a Contract? The Wrong Question” 5 September 2005 at
<http://www.ipinfoblog.com/archives/licensing-law-issues-is-the-gpl-license-a-contract-the-wrong-
question.html>
60 Robert W. Gomulkiewicz, “How Copyleft Uses License Rights to Succeed in the Open source
Software Revolution and the Implications for the Implications for Article 2B” (1999) 36 Houston Law
Review 179
61 Section 102 (a) (41), UCITA

 148

spirit of this Act has its provenance in the hugely controversial ProCD ruling62. In

the FOSS community, Richard Stallman is openly against the UCITA, which is

believed to suit proprietary software developers’ interests but not FOSS

programmers.63 Largely for this reason, the Free Software Foundation has refused to

categorise the GPL as a UCTIA-type contract.64 However, in order to do some justice

to FSF’s argument later, I first need to give the licence-as-contract argument some

benefit of the doubt at the moment by examining how a “contract” may be formed in

a “licence”.

Formation of Contract

Anglo-American contract law insists on three main components being present to

form a contract: offer, acceptance and consideration. If a FOSS licence has to be

recognised as having a contractual status, then it must have all these three

components.

(A) “Offer” in FOSS Licensing

It is a relatively straightforward issue to find an “offer” 65 in a FOSS licence. An

offer is a licensor’s manifested willingness to give users permissions to access, use,

modify or redistribute a piece of FOSS and these permissions are usually

accompanied by some restrictions pursuant to Free Software Definition and Open

Source Definition. Rosen points out that the willingness to offer can be manifested

by posting the software to a publicly accessible FOSS repository website on the

62 UCITA is said to be the “bad fruit” from the ProCD jurisprudence. Roger C. Bern, “ ‘Terms Later’
Contracting: Bad Economics, Bad Morals, and a Bad Idea for a Uniform Law, Judge Easterbrook
Notwithstanding”, (2003-2004) 12 Journal of Law and Policy 641 at 772
63 Stallman points out that the UCITA is a product of proprietary software developers’ lobbying
efforts and it run against the spirit of free software movement. See Stallman, “Why We Must Fight
UCITA”, 31 January 2000 at
<http://w2.eff.org/IP/UCITA_UCC2B/20000131_fight_ucita_stallman_paper.html>
64 See infra subsection 4.3.2
65 In an US context, an offer is defined as the “manifestation of willingness to enter into a bargain so
made as to justify another person in understanding that his assent to that bargain is invited and will
conclude it.” American Law Institute, S.24. Restatement (Second) of Contracts

 149

internet (e.g. SourceForge) so that “all prospective licensees will be able to retrieve

the software under the terms of the license”.66

(B) “Acceptance” in FOSS Licensing

According to the classical contract model, an acceptance should be the “mirror

image” of the offer, that is, it must be “absolute” and must “correspond with the

terms of the offer”.67 The offeree needs to unequivocally convey his intention to

accept “without leaving room for doubt as to the fact of acceptance, or as to the

coincidence of terms of the acceptance with those of the offer”.68 An offeree may

accept an offer through verbalised agreements, but he may also manifest his

acceptance through non-verbal forms of conduct, which is not unusual in the mass-

market off-the-shelf software world.69 There are three main ways that software

licensing terms may be offered to potential licensees for acceptance—shrinkwrap,

clickwrap and browsewrap—each of which will be discussed in turn.

Shrinkwrap and the ProCD case Early mass-market software products are often

sold in boxes wrapped with shrinkable clear plastic under the so-called shrinkwrap or

box-top licences. When the purchasers pierce the plastic open, it is normally assumed

that they assent to the licensing terms attached to the software within the boxes.

Before 1996, shrinkwrap licences were routinely found to be unenforceable at the

federal appellate level across the US. 70 However, in 1996, the situation was changed

by the US Seventh Circuit’s landmark decision in ProCD v Zeidenberg, where Judge

Easterbrook ruled that a shrinkwrap license was enforceable as a contract.71 In this

case, the plaintiff ProCD sells a database product called SelectPhone(TM),

comprising a national telephone directory and a software program for searching the

66 Lawrence Rosen, Open Source Licensing—Software Freedom and Intellectual Property Law,
(Upper Saddle River, NJ: Prentice Hall PTR, 2005) p.60
67 J. Beatson, Anson’s Law of Contract (Oxford: OUP, 2002, 28th Edition) p. 37
68 ibid.
69 Of course, the offeree may also choose not accept the offer. For instance, in a Scottish case, a
customer refused to accept the offer by returning the software to the seller without opening the shrink-
wrapped box. See Beta Computers (Europe) v Adobe Systems (Europe) (1996) SLT 604
70 See Vault Corp. v Quaid Software Ltd., 847 F.2d 255 (5th Cir. 1988); Step-Saver Data Sys. Inc. v
Wyse Tech, 939 F.2d 91 (3rd Cir. 1991); Arizona retail v. Software Link, 831 F. Supp. 759 (D. Ariz.
1993)
71 Scholars normally divide the ProCD ruling into two portions: one on contract formation and the
other on copyright. In this subsection I only focus on the former but I will go back to the latter in
Section 4.4 of this chapter.

 150

data. The product is delivered on CD-ROM disks shrinkwrapped by a notice: “Both

the software and the data listings are subject to the terms and conditions of the

enclosed license agreement which is part of this product and printed in full on the

enclosed envelope. Please read fully the license agreement.”72 Note that this notice

itself is not the actual licence containing the terms and conditions, but the former is

merely an alert to the latter. It is impossible for the defendant-purchaser Matthew

Zeidenberg to know, let alone consent to, the content of the licence when he

purchased the boxed ProCD product.

Since Zeidenberg did not make any explicitly verbalised assent to the licence that he

was only able to view later after the purchase, the court faced a difficult question as

to whether the licence was actually “accepted” by, and then binding on, the

purchaser.73 Judge Easterbrook ruled that Zeidenberg did “accept” the licence and he

was thus bound by it. The reason is that although Zeidenberg did not make a verbal

assent to the licence in the classical sense, his “acceptance” of the licence can be

inferred from his failure to return the ProCD product to the vendor after reading the

licence. Easterbrook bases this judgment primarily on Section 2-204(1) of the

Uniform Commercial Code (UCC) that relaxes the classicist offer-acceptance

doctrine by allowing assents to be manifested “in any manner sufficient to show

agreement”.74 In this sense, a buyer’s acceptance does not have to be obtained after a

conventional bargaining process, but it can be indicated by any conduct of

“performing the acts the vendor proposes to treat as acceptance.”75 Because the

ProCD vendor “proposed a contract that a buyer would accept by using the software

after having an opportunity to read the license at leisure” (original emphasis),

Zeidenberg’s actual use of the software should be construed as his assent to the

72 According to Macaulay, this notice “was printed in six-point type in the middle of a long paragraph
on the bottom flap of the software box.” Stewart Macaulay, “Freedom from Contract”, supra note 42
at 805
73 This problem is not a peculiar only to this case, but it is generic to all shrinkwrap licences: “Unlike
a typical unilateral contract, in which one party accepts an offer by engaging in conduct that
unmistakably indicates assent—say, painting my house—the conduct used as evident of a shrinkwrap
contract is hardly unambiguous evidence of assent.” Lemley, “Terms of Use”, supra note 16, at 468
74 The whole clause of S2-204 reads: “A contract for sale of goods may be made in any manner
sufficient to show agreement, including conduct by both parties which recognizes the existence of
such a contract.” However, Macaulay finds that Easterbrook’s use of S2-204 does not really “follow
the definitional cross reference to Section 1-201 (b)(3), which says that an ‘agreement’ is ‘the bargain
of the parties in fact […]’ ” (added emphasis) Macaulay, “Freedom from Contract”, supra note 42, FN
103 at 806
75 86 F.3d 1447 at 1452

 151

licence and he had “no choice, because the software splashed the licence on the

screen and would not let him proceed without indicating acceptance.”76

The ProCD ruling has provoked tremendous controversy in the academic world. Eric

Posner observes that the decision has “precipitated a typhoon of academic hostility”

and remains “probably the most criticized case in modern history of American

contract law”.77 What is most disturbing to contract scholarship is that ProCD overtly

challenges the consent-driven classical contract model, which relies on bargained-for

exchanges to generate full and unambiguous meeting of the minds. Post finds it is

hugely problematic for Easterbrook to use Section 2-204 of the UCC to construct

Zeidenberg’s inactivity as the “tacit assent” to the ProCD licence:

Even if we were to use the ‘gestalt’ approach to contract formation in S. 2-204

[of UCC] which would look at all the communications between the parties

without an attempt to isolate a particular document or communication that was

the offer or the acceptance, there is still the problem of finding assent in the

passivity of the buyers unless we are willing to assume ‘tacit assent’ from their

silence or inaction. That too flies in the face of traditional contract doctrine.78

Concurring with Post’s critique, Macaulay also finds Easterbrook’s interpretation has

stretched a little too much the concept of “assent” (as “in any manner sufficient to

show agreement” under S.2-204) to possibly cover unbargained or under-bargained

non-consensual relations. This would allow manufacturers of consumer goods such

as the ProCD supplier to gain unilaterally a wide range of “freedom from contract”

by “packing inside the box contract clauses that attempt to repeal various laws that

business dislike.”79 From the viewpoint of a classical “contract purist”, it is just “very

76 Note also that Zeidenberg was given the opportunity to return the product if he found the licensing
terms were unsatisfactory to him. ibid., 1452
77 Eric Posner, “ProCD v Zeidenberg and Cognitive Overload in Contractual Bargaining” (2010) 77
The University of Chicago Law Review 1181 at 1193
78 Deborah W. Post, “Dismantling Democracy: Common Sense and the Contract Jurisprudence of
Frank Easterbrook”, (2000) 16 Touro Law Review 1205, FN64 at 1226
79 Steward Macaulay further comments that to assume consumers’ assents to licensing terms from
their failure not return the products is only “a bad joke”. See Macaulay, “Freedom from Contract”,
supra note 42 at 805

 152

difficult to offer a convincing argument that these hidden clauses work to create a

contract with the desired effect”.80

The ProCD decision is important in the sense that it forcefully kick-starts a

neoclassical reengineering of the classical contract law in software licensing

jurisprudence. By sidelining the strictly bargain-oriented classical doctrine,

Easterbrook shifts to an economical justification of standard-form licensing couched

in Coasean language of transaction cost.81 From a neoclassical point of view, the

traditional fully-dickered bargaining is not a viable option in the mass-market

software world because it would only slow down the transactional speed and blur the

discreteness of transactions.82 In the ProCD case, without enforcing the attached

standard-form licence, it would otherwise “drive prices through the ceiling or return

transaction to the horse-and-buggy age” even the terms could only be viewed after

the purchase.83 In summary, the great significance of ProCD lies in the fact that

Easterbrook articulates a dominant neo-classical rationale for software licensing

jurisprudence despite the incessant academic resistance to it. The rationale mandates

that routine enforcements of standard-form information product licences is a

predominant economic necessity for increasing market efficiency and decreasing

transaction cost in the mass-market software world, while customers’ manifestation

of assents to these licences is demoted to be a secondary issue, which should be as

flexible as possible. This rationale by Easterbrook has twofold consequences. On the

one hand, it clears the classicist hurdle to enforcing standard-form licences under

contract law. On the other hand, the dominance of the ProCD rationale also

impoverishes the software licensing jurisprudence where the possibility of non-

80 ibid., at 805-6
81 For a detailed Coasean explanation of the main rationale behind ProCD ruling, see Frank
Easterbrook, “Contract and Copyright” (2005) 42 (4) Houston Law Review 953
82 For example, Raymond Nimmer is an important champion of this view. He argues that fully
dickered agreement is a romantic view about contract formation and it does not apply to mass-market
software licensing. “Under contract law, formation of a contract and definition of its terms do not
require sophisticated or equally leveraged parties, nor parties with incentive to devote time, effort, and
cost to negotiate. Standard terms, leverage, and adherence to pre-set terms characterize all commerce.
Most importantly, it has never been considered to be the role of contract law to generally reshape the
balance created by market conditions. […] The ability of parties to standardize and control the terms
under which a product or information is marketed gives an important element of efficiency in
transactional environment.” See Raymond T. Nimmer, “Breaking Barrier: The Relationship between
Contract and Intellectual Property Law” (1998) 13 Berkeley Technology Law Journal 827 at 847
83 86 F.3d 1447 at 1452

 153

neoclassical alternatives risks being ignored and underdeveloped. To fill this gap, I

will analyse a relational rationale for FOSS licensing in Section 4.4.

Clickwrap and Browsewrap Given the high penetration of fast broadband

Internet connection among the population worldwide, FOSS nowadays is more likely

to be downloaded directly from a repository website to the local computers rather

than being delivered on the physical medium of CD-ROMs using a shrinkwrap.84 In

fact, clickwrap and browsewrap licences are more frequently used by FOSS and they

raise slightly different concerns in terms of contract formation. Clickwrap licences

require affirmative actions from licensees to manifest their acceptance: they are

asked to press the button “Yes, I Agree” as a way of assenting to the licensing terms

and conditions before they actual download or install the software. Kim has observed

that click-wrap licences “do not raise the same contract formation concerns as

shrinkwrap agreements because the user typically has notice of the terms and has an

opportunity to read them prior to engaging in the contractual relationship.” (original

emphasis)85 The clickwrap technology employs a slightly more licensee-friendly

measure by using an interactive interface, which usually is a pop-up dialogue box

displaying the licensing terms. Software users are thus notified of the existence of the

licence, though they may not actually read or understand everything in it. FOSS

projects, especially those are keen to rapidly build a non-sophisticated end-user base,

often employ clickwrap as its licensing interface.

Although clickwrap is a slightly more user-friendly technology than shrinkwrap, this

does not mean the problem of assumed “assents” to licensing term is completely

gone. In fact, FOSS software developers often make users to manifest “acceptance”

in two ways: “acceptance” can be manifested not only through clicking the

“Acceptance” button but also through the actual conduct of installing and using the

software. For example, when Google released its FOSS browser “Chrome” in

84 A FOSS project is often a work in progress and it may distribute many beta versions in a very short
space of time before releasing a stable deliverable version. This process requires frequent bug-fixing
and rewriting the code. So it is not always necessary to transfer the ever-changing code onto a CD,
when it can be easily downloaded from a repository website such as Freshmeat.net and
SourceForge.net.
85 Nancy S. Kim, “Clicking and Cringing”, (2007) 86 Oregon Law Review 797 at 842-843

 154

September 200886, Google Chrome Terms of Service assumed users to accept the

licence through either of the two ways:

2.2 You can accept the Terms by:

(A) clicking to accept or agree to the Terms, where this option is made

available to you by Google in the user interface for any Service; or

(B) by actually using the Services. In this case, you understand and agree that

Google will treat your use of the Services as acceptance of the Terms from that

point onwards.87 (see Figure 4.1 Screenshot of Google Chrome Terms of

Service)

Note that the clickwrap here is lumped together with actual use of software as

assumed manifestation of assents88. In this light, a user may give his assumed assent

to the licence even though he fails to click the “Accept” button, which means the

clickwrap mechanism may be bypassed completely.89

86 Chrome is released under two twined licences: one is the BSD licence for the source code release
and the other is the Terms of Service for consumer executive code release. The latter uses the
clickwrap technology and makes reference to the former.
87 Section 2, Google Chrome Terms of Service
88 c.f. The ProCD vendor also assumes actual use of the product as assent to the licensing terms.
89 For a hypothetical example, a university student is using a Chrome browser to surf internet in a
computer lab. Because the software has already been installed by the university IT staff, this student
does not have to manifest his assent by clicking any button and he thus does not know the licensing
terms. However, he would still be assumed to assent the Chrome licence because of his conduct of
using the software. In this sense, it is possible for the clickwrap mechanism to be completely bypassed
for this reason.

 155

Figure 4.1 Click-wrap: Screenshot of Google Chrome Terms of Service

Note: This is a licence is for distributing the executable code version of Chrome and it should
be used together with BSD License for distributing the source code version of the software.

Compared with shrinkwrap and clickwrap licences, browsewrap licences are the

most problematic of the three types. It assumes that by using or installing the

software, “licensees” automatically “agree” to the terms and conditions that can be

viewed somewhere as a webpage or merely an electric notice. Not all browsewrap

licences had been enforced by courts after ProCD90. As a rule of thumb, in order to

decide whether a browsewrap licence is valid or not, it is important to know if the

browsewrapped software carries prominent notices for a user to be aware of the

licensing terms. In other words, “a user is not bound by a [browsewrap] contract of

which he is not made aware.”91 This means that the licensing terms should be

reasonably easy and straightforward to be located and read by users. For example, in

the case Ticketmaster Corp. v. Tickets.com, Inc. the court ruled that the “terms of

use” on the plaintiff’s webpage was enforceable, because there was evidence

90 Lemley observes that courts tend to enforce browsewrap against businesses but not against
individuals. See Lemley, “Terms of Use” (2006) 91 Minnesota Law Review 459 at 476
91 Christian H Nadan, “Open Source Licensing: Virus or Virtue?” [2002] Texas Intellectual Property
Law Journal 349 at 364

 156

showing that the defendant had actual knowledge of it.92 In contrast, in Specht v.

Netscape Communications Corp., a disputed arbitration clause in a browsewrap

licence was ruled to be unenforceable, because users was not given a prominent

notice about the existence of the licensing terms on the defendant’s webpage.93

FOSS developers must put a lot of emphasis on notifying their licensees about the

licensing terms when the browsewrap is used. For instance, Section 5 of the GPL v.3

makes it clear that all downstream distributors of modified source versions have the

responsibility of giving “prominent notices” about the licensing status of the code

involved:

[…]
b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies
the requirement in section 4 to ‘keep intact all notices’.
[….]
d) If the work has interactive user interfaces, each must display Appropriate
Legal Notices; however, if the Program has interactive interfaces that do not
display Appropriate Legal notices, your work need not make them do so.94
(added emphasis)

Note that Section 5 (d) contains a proviso that GPL programmers are not required to

use “interactive interfaces” to display appropriate legal notices. The consequence is

that GPLed works are allowed to be conveyed without using the clickwrap

technology. This is in line with the “technology-neutral requirement” stipulated in

the Open Source Definition (OSD). In 1998, Open Source Initiative amended the

OSD by adding a tenth criterion making sure that non-clickwrap technologies

(including those with no graphic interface at all) should not be discriminated against

in distributing FOSS. The official Rationale attached to Criterion 10 “License Must

Be Technology-Neutral” in the OSD explains:

Rationale: This provision is aimed specifically at licenses which require an

explicit gesture of assent in order to establish a contract between licensor and

licensee. Provisions mandating so-called “click-wrap” may conflict with

92 2003 U.S. Dist. LEXIS 6483 (C.D. Cal. 2003)
93 306 F.3d 17 (2d Cir. 2002)
94 Section 5. “Conveying Modified Source Versions”, GPL v.3; similarly, Section 4 of the GPL
requires to carry an “appropriate copyright notice” conveying a verbatim copy of the covered work.

 157

important methods of software distribution such as FTP download, CD-ROM

anthologies, and web mirroring; such provisions may also hinder code re-use.

Conformant licenses must allow for the possibility that (a) redistribution of the

software will take place over non-Web channels that do not support click-

wrapping of the download, and that (b) the covered code (or re-used portions of

covered code) may run in a non-GUI environment that cannot support popup

dialogues.95

(C) Consideration

The last leg of contract formation—consideration—seems to be an even more

unsettled issue in FOSS licensing. Under the doctrine of consideration, common law

courts do not generally enforce a simple donative promise,96 but only enforce one

party’s promise that is reciprocated with another party’ promise or performance. In

Currie v. Misa, Lush J. points out that a “valuable consideration, in the sense of the

law, may consist in some right, interest, profit, or benefit accruing to the one party,

or some forbearance, detriment, loss, or responsibility given, suffered, or undertaken

by the other.”97 In short, a consideration must confer some benefits and detriments to

the promisee and promisor.98

A consideration must have some value, though common law cares very little about

how valuable it needs to be. Treitel points out that “an act, forbearance or promise

will amount to consideration only if the law recognises that it has some economic

values” and it “may have such value even though the value cannot be precisely

quantified.”99 So when it comes to “non-monetary performance of doubtful economic

value to the promisor”, it becomes a difficult issue to decide whether it can be

95 OSI, “The Open Source Definition (Annotated)”, Version 1.9
<http://www.opensource.org/docs/definition.php>
96 Melvin Eisenberg, “Donative Promises” (1979) 47 (1) The University of Chicago Law Review 1
97 Currie v. Misa (1975) L.R. 10 Ex. 153 at 162
98 Atiyah finds that the doctrine of consideration contains “two legs” 1) “the idea that a promise is
legally binding if it is given in return for some benefit which is rendered, or to be rendered, to the
promisor”; and 2) “a promise becomes binding if the promisee incurs a detriment by reliance upon it,
that is, if he changes his position in reliance on the promise in such a way that he would be worse off
if the promise were broken than he would have been if the promise had never been made before.” He
also points out that the second leg as detrimental reliance has “close connections with other branches
of the law, such as the law of tort, and also various equitable doctrines, as well as the doctrine of
‘estoppel’ in its various forms”. Atiyah, An Introduction to the Law of Contract, pp,118-119
99 Guenter Treitel, The Law of Contact, (London: Sweet and Maxwell, 2003, 11th Edition) p.83

 158

qualified as the right kind of consideration recognised by law100. In most FOSS

projects, volunteer licensees’ contributions are mostly non-monetary performances

(e.g. reporting bugs or testing submitted patches etc.) and it is not always clear

whether these performances can have the right “economic values” to qualify as

consideration as defined by Treitel above.

In this scenario, now I try to explore a question that is often asked: does the GNU

GPL involve a valid consideration with the right economic value to form a binding

contract? The scholarly community again fails to reach a consensus and is divided

into two camps on the issue. The first camp believes there is consideration in the

GPL. This view is championed by Wacha who believes that there are reciprocal

“mutual promises” between licensors and licensees. The licensors offer the software

under certain conditions, while the licensees, “as consideration, agree[] to keep all

copyright notices intact, to insert certain required notices, and to redistribute code

only under certain conditions.”101 The second camp believes that the GPL fails to be

a contract for a lack of consideration. This view is held by Kumar, who looks at the

same set of restrictions that was examined by Wacha in the GPL, but she reaches a

diametrically opposite conclusion. According to Kumar, consideration is exactly

GPL’s “Achilles heel”. The licensors’ offer of software is a kind of conditional

donative promise and the licensees’ adhering to the attached conditions is not a

consideration to this offer: “The GPL places a number of restrictions on the user of

GPL-licensed software […] However, adhering to restrictions on the use of a

licensor’s copyrighted software is not consideration because the restrictions do not

directly benefit the licensor.”102 In other words, there is no reciprocal exchange

between the licensors and licensees, because the former do not get any a clear benefit

in return. Kumar then argues that the GPL is “based on real property licenses”, which

concurs with the FSF’s official explanation of the GPL as a bare licence. “Suppose

that a landowner grants a revocable license to the public to cross through a strip of

the landowner’s property to access a public beach. The landowner does not explicitly

receive anything in return from the public. Though the landowner may limit the

100 Mindy Chen-Wishart, Contract Law (Oxford: OUP, 2008, 2nd Edition) p.134
101 Jason B. Wacha, “Taking the Case: Is the GPL Enforceable” (2005) 21 Santa Clara Computer and
High Technology Law Journal 451 at 474 (internal citations omitted)
102 See Sapna Kumar, “Enforcing the GNU GPL” 2006 University of Illinois Journal of Law,
Technology and Policy 1 at 19-21

 159

public’s access to certain times of day, these ‘burdens’ on the public do not serve as

consideration for using the landowner’s property. They are merely limitations on the

access that the public is receiving.”103

Following Kumar’s argument, the debate between the two camps can be also framed

as the one about whether licensees’ obeying the conditional restrictions under the

copyleft is a benefit to the licensors or not. Or to put it another way, is the relation

between the licensors and licensees under the copyleft a reciprocal one? It could be

argued that Kumar slightly over-simplifies the issues. In fact there are two groups of

GPL licensees. The first group simply uses the software and makes no publicly

released contributions back to the community. These licensees do not benefit the

licensors.104 In contrast, the second group do not only modify software and but they

also choose to share the source code of these modifications with the community. This

use of the GPLed software is different from the situation of “real property licences”

to give public access as discussed by Kumar above. The second group of licensees is

not merely passively allowed public access to the GPLed code, but they also

proactively make improvements to the code. The improved code will thus bring some

benefit to the whole community including the original licensors, though this benefit

may not be the type that can be immediately converted into monetary wealth. Of

course, these two groups of licensees may not remain mutually exclusive and things

can change. Some licensees in the first group may choose to join the second group

and become proactive contributors over the time and vice versa.

4.3.2 Second Route: Bare Licence

As has been discussed above, the attempt to use the first route to enforce FOSS

licences as contract are likely to encounter two uncertainties: 1) lack of explicitly

verbalised assents from users and 2) lack of consideration understood by classical

contract law. The second route attempts to bypass these two difficult issues by

treating a FOSS licence as a bare licence, which is a unilateral permission given by

the property owner to enable the licensees to use the work in a way which would

103 Kumar, ibid., at 20-21
104 GPL allows private modifications that are not conveyed to the public. See Section 3.5.1 Chapter 3

 160

otherwise be infringing.105 The idea of “bare licence” is a relatively unfamiliar

concept to software licensing jurisprudence, because it is usually discussed in the

land or real property context.106 It is interesting to see that the old doctrine of “bare

licence” initially used in land law is now being revived in the FOSS world. This

attempt is championed by Free Software Foundation (FSF), which interprets that the

GPL is a bare licence but not a contract.107 According to them, the permission under

the GPL is unilaterally granted to licensees, which seems to be a one-way operation.

Unlike a classical contract where an offeree needs to unequivocally “accept” an

“offer”, licensees of the GPL as a bare licence are not required to verbally “accept”

the licence. Because all GPLed software is copyrighted in the first place, one would

have infringed the copyright without the permission from its owner. In other words,

to obey the terms of the GPL is the condition of using the GPL covered work.

Section (9) of the GPL v3.0 makes it clear that the “acceptance” in a classical

contract is not required in the GPL as a bare licence:

You are not required to accept this License in order to receive or run a copy of

the Program. […] However, nothing other than this License grants you

permission to propagate or modify any covered work. These actions infringe

copyright if you do not accept this License. Therefore, by modifying or

propagating a covered work, you indicate your acceptance of this License to do

so.108

Eben Moglen, in the first International Conference on the GPL v3.0 (intending to

clarifying FSF’s jurisprudence behind this new version of the GPL to the

community), reiterates two points supporting FSF’s official position that the GPL is

not a contract. First, bargained-for exchanges do not exist in the GPL. Second, the

105 According to Rosen, if there is a failure of offer, acceptance or consideration to form a contract, a
FOSS licence may fall back on copyright for being a bare property licence. See Rosen, Open Source
Licensing, pp. 65-66
106 The “bare licence” in land law is an old institution, which dates back to a seventeenth-century
English case, where Vaughan C.J. defined a property licence simply as a permission that “only makes
an action lawful, without which it had been unlawful.” Thomas v. Sorrell, (1673) Vaugh 330 at 351;
see also I.J. Dawson and Robert A. Pearce, Licences Relating to the Occupation or Use of Land
(London: Butterworths, 1979) p.1
107 Moglen and Stallman, “Transcript of Opening session of first international GPLv3 conference”,
transcribed by Ciaran O'Riordan, 16 January 2006 at <http://www.ifso.ie/documents/gplv3-launch-
2006-01-16.html>
108 Section 9, GPL 3.0

 161

GPL is a copyright licence, without which one’s use of the GPLed software would

lead to copyright infringement.

We [on behalf of the FSF] have not argued now, nor will we, nor can anyone

argue, who reads the text of the language, that the receipt of the code is some

quid-pro-quo for the acceptance of some terms. […] arguments based on the

contractual exchange of the code for promises of compliance have nothing to do

with us. We give permissions here and the enforcement weight of our license

lies in the fact that you have no permission to propagate, that is, you have no

permission to do what copyright law requires permission to do, but through this

license. That's our legal theory and we are sticking to it.109

Furthermore, there are also two policy reasons why the FSF insists that the GPL is

not a contract but a bare licence. First, FSF’s position has to do with its attempt to

avoid the unpopular model contract code UCITA, which derives its jurisprudence

from the controversial ProCD ruling.110 The UCITA that treats software licences as

contracts, according to Stallman, is essentially a product of proprietary software

lobbying efforts.111 By arguing the GPL is a bare licence, the free software

movement keeps a critical distance from the legal theory behind the UCITA-type

contract law. Second, Moglen argues that contract laws in different countries around

the world are by no means uniform, and it would be difficult for the new globally

applicable GPL v3.0 to handle the diversity within the world contract regimes.112

When the GPL is a bare licence, it will base its validity solely on software copyright.

Because most countries’ copyright laws are modelled upon the same set of

international agreements such as the Berne Convention, it is more conceivable to

reconcile approaches than when dealing with world contract laws. Even with a single

country like the US where different states have their own contract laws (while the

109 Moglen and Stallman, “Transcript of Opening Session of First International GPLv3 Conference”,
supra note 107
110 Note Easterbrook treats “licences” are “ordinary contracts accompanying the sale of products” but
he deliberately leave the question “why licences are contracts” unanswered: “[w]hether there are legal
difference between ‘contracts’ and ‘licenses’ […] is a subject for another day.” ProCD v. Zeidenberg,
86 F.3d 1447 (7th Cir.1996) at 1450
111 Stallman, “Why We Must Fight UCITA”, supra note 63
112 GPL 2.0, when it was first written, was only intended to be used within the US. The popularity of
this licence around the world makes the FSF decide that the new GPL 3.0 should be globally
applicable.

 162

Copyright Act is federal), the many state contract regimes can be unwieldy for

individual licensors and licensees alike in the US to handle.113 For this reason, the

enforcement of the GPL would be better off when treated as a non-contractual bare

licence:

The reason that’s our legal theory and [we] are sticking to it remains the one we

gave before. There are [too many] contract law schemes in the world and the

more you depend upon them, the more variability you will have. Berne

[Convention] is good, the harmonisation of copyright is good, for us. Our rules

will use a toolset that is as close to global standard as we can get.114

Moglen’s concern is understandable that a big diversity of contract regimes around

the world would Babelise the jurisprudence behind the GPL and reduce the legal

certainty for enforcing the licence in a global context. However, this point is not

universally accepted. The fragmentary contract regimes may have been exaggerated.

Rosen points out that today’s globalised economy has required a high level of

“consistency of commercial transactions” and “contracts are interpreted in much the

same way around the world.”115 At the same time one should not underestimate

inconsistency of the copyright regimes around the world. Again, Rosen argues, for

example, that there is no agreed definition of “derivative work” in global copyright

law, and its meaning vary from country to country. So it would be better to have the

licence drafters to clarify its meaning through the vehicle of contract rather than

merely relying on copyright.116

It is also important to note that FSF’s reliance on Berne-type copyright law is mainly

a pragmatic choice and it is just for the convenience of licence enforcement. The

hacker custom is still against any private property regime including copyright.

(Recall that Moglen’s call for “[a]bolition of all forms of private property in ideas” in

the dotCommunist Manifesto.117) Stallman followed up Moglen’s above quoted

113 Although there is a uniform model contract law concerning computer information transactions, i.e.
UCITA, its impact is very limited. Only two states—Maryland and Virginia—have ratified UCITA so
far.
114 See “Transcript of Opening Session of First International GPLv3 Conference”, supra note 107
115 Rosen, Open Source Licensing, p.58
116 ibid, p.58
117 Moglen, The dotCommunist Manifesto, January 2003,
<http://emoglen.law.columbia.edu/publications/dcm.html>

 163

speech by making their hackers’ ideological leaning clear that they are not

uncritically endorsing the global copyright regime:

That [‘Bern is good, the harmonisation of copyright is good, for us’] doesn’t

mean that we are in favour of copyright law as a general matter. […] We're not

totally against copyright law, in a simple or blanket sense either, but we're not

defending the global copyright system that has mostly been imposed on the

world merely because we use it because it's there. […] We are not endorsing the

Berne plus WTO system of copyright law as it stands as a good thing, but it

exists and whatever harm it may do in other areas, we're trying to do some good

with it when we can.118

Revocability of Bare Licences

One of the most obvious weaknesses of a bare licence is that it is only binding on the

licensee but not on the licensor. A bare licence can be unilaterally terminated or

revoked at the pleasure of the licensor. In other words, a FOSS licence as a bare

licence is not mutually binding. This problem might lead to unfairness when the

licensee has contributed modified source code back to the project or merely formed

reliance by using the licensed software. The US case Microsystems Software, Inc. v.

Scandinavia Online has exposed this problem.119 In this case, two computer hackers,

Eddy Jansson and Matthew Skala, developed a program called CPHack which was

released under the GNU GPL. CPHack was designed to disable Microsystems’s

censorware known as “Cyber Patrol 4”. The two hackers were then sued by

Microsystems for their anti-censorware. In order to settle the dispute, the two hackers

agreed to revoke the GPL and assign the copyright of CPHack to Microsystems. So

the copylefted software thus became proprietary.120 The GPL, when it is a bare

licence, cannot prevent the licensors from going back on their promised permissions

118 Supra note 107. Stallman’s explanation also echoes the main argument of 2 Chapter that free
software programmers endorse “IP” law only to the extent it can be leveraged to facilitate FOSS
collaboration.
119 Microsystems Software, Inc. v. Scandinavia Online AB, 98 F. Supp. 2d 74 (D. Mass., 2000), aff’d,
226F. 3d 35(1st Cir., 2000)
120 “The Story of CPHack”, at <http://cphack.robinlionheart.com/#slapp>(Last updated: 21 June 2002)

 164

made in the licence. The unilateral withdrawal of the GPLed code understandably

would pose another layer of uncertainty to any FOSS project.121

4.3.3 Third Route: Promissory Estoppel

The second route does not make obligations in a FOSS licence mutually binding. In

other words, a bare licence can be enforced only against the licensee but not the

licensor. In order to compensate this weakness, a third route via an equitable doctrine

of “estoppel” is suggested to prevent FOSS licensors from revoking or terminating

the licence at will when the licensee has clearly developed a detrimental reliance

upon it.122 Unlike the doctrine of consideration in contract law that enforces

bargained-for exchanges, estoppel can be used to enforce reliance-based liability

arising from unreciprocated promises.123 Some scholars have already proposed this

third route to enforce FOSS licences (including the GPL) in the US context,124 where

the doctrine of “promissory estoppel” is codified in Section 90, Restatement (Second)

of Contracts:

A promise which the promisor should reasonably expect to induce action or

forbearance on the part of the promisee or a third person and which does induce

such action or forbearance is binding if injustice can be avoided only by

121 McGowan observes that the revocability of the GPL makes FOSS programmers inclined to make
compromise with proprietary software companies in a dispute like this one. See David McGowan,
“Legal Implications of Open-Source Software”, (2001) University of Illinois Law Review 241, FN 283
at 302
122 In general, Denning finds that the equitable doctrine of estoppel “is a principle of justice and of
equity” and it deals with a situation like this: “when a man, by his words or conduct, has led another
to believe in a particular state of affairs, he will not be allowed to go back on it when it would be
unjust or inequitable for him to do so.” Denning MR in Moorgate Mercantile Co. Ltd. v. Twitchings
[1976] 1 QB 225, CA, at 241
123 It is important to know that estoppel is often said to be “suspensive” rather than “extinctive”. This
means that the promisor can be allowed to go back on their promise if the promisee has not yet
developed reliance. See Beatson, supra note 67, p.117
124 For example, Madison argues that “[i]f the author attempted to take the improved version of the
code private, equitable theories such as estoppel might provide a useful backstop in cases where the
facts could not support a formal contract theory.” Michael Madison, “Legal Implications of Open-
Source Software” (2001) University of Illinois Law Review 241 at 297; Other scholars champion this
approach includes Kumar, “Enforcing the GNU GPL”, supra note 102; Rosen, Open Source Licensing,
pp.64-65; Chip Patterson, “Copyright Misuse and Modified Copyleft: New Solutions to the
Challenges of Internet Standardization”, (2000) 98 Michigan law Review 1351, at 1379;

 165

enforcement of the promises. The remedy granted for breach may be limited as

justice requires.125

As promissory estoppel protects software users’ detrimental “reliance”, so it is

necessary to ask what constitutes “reliance” in the FOSS context.126 As a rule of

thumb, users’ conduct of modifying the original FOSS would suffice to constitute

reliance. Kumar argues that the mere use of the software will be difficult to prove

reliance. However, if users make derivative works based on the FOSS licensed

software, it is a strong sign that reliance has been established and his “reliance”

should be protected against original software developers’ attempt to terminate the

GPL.127

Although the promissory estoppel in the FOSS context has never been actually tested

in court, the danger of software developers’ termination of a FOSS licence is not

entirely hypothetical. There is good strategic reason for a commercial company to

make their software released under a FOSS licence in the beginning and later

terminate it to back-claim royalties when they see appropriate. To spell it out, a

company may strategically adopt a FOSS licence and then let its user-base grow

because of the generous grants in this licence. When this FOSS licensed software

becomes so popular that it turns out to be the de facto standard, it will be too costly

for its users to switch to other software. At this point, the company may threaten to

terminate the FOSS licence and start to collect royalties from users. If users refuse to

pay back royalties, they can then choose to terminate the licence and then sue for

copyright infringement.128 In this scenario, promissory estoppel can be a useful

doctrinal tool to be evoked to prevent users against this kind of strategic use of FOSS

licences.129

125 ALI, Section 90, Restatement (Second) of the Law of Contracts
126 Cooke observes that “reliance” is at the heart of estoppel, but it is also fundamentally a matter of
“causation”, which is very difficult to be proved. So there “is a generous helping of common sense”
involved to decide what is reliance and causation. Elizabeth Cooke, The Modern Law of Estoppel
(Oxford: OUP, 2000) p.105
127 Kumar, supra note 102 at 25
128 This worry has been raised by Chip Patterson, “Copyright Misuse and Modified Copyleft: New
Solutions to the Challenges of Internet Standardization”, (2000) 98 Michigan law Review 1351
129 However, it is worth noting that promissory estoppel cannot be used as a cause of action but it can
only be used as a defense as if it a “shield” under English law. see Central London Property Trust Ltd.
v High Trees House Ltd., [1947] KB 130

 166

4.4 Conceptualising the GPL as a Relational Contract

Having canvassed the difficulties of applying existing doctrinal rules to FOSS

licensing above, I will now try to re-examine the GPL from a relational

perspective.130 The re-examination is divided into two subparts. Firstly, in Section

4.4.1, I identify two obstacles to re-conceptualise GPL as a true Macneilian relational

contract. One can straightforwardly be derived from the consent-driven classical

contract law, whilst the other comes from the more insidious neoclassical ProCD-

type law. Secondly, in Section 4.4.2, I propose that GPL is better understood as a

relational “umbrella agreement”, which is designed to harness the serendipitous

nature of the peer production of FOSS and at the same time stabilise the long-term

collaborative relation.

Before I start, a caveat is worth making at the start. A paper document on which the

GPL is written cannot be a relational contract. The GPL may become relational only

when it is adopted and used by certain a FOSS project (e.g. the Emacs project or the

Linux project) where there is an ongoing collaborative relation. To make it clear, my

focus of this section is not about the GPL being merely as a textual document as such,

but it concerns how the GPL is relationally understood in the context of the real lived

collaborative experience as in peer-produced FOSS projects.

4.4.1 Two Obstacles: Classical and Neoclassical Laws

There are two conceptual obstacles to developing a new line of enquiry about the

GPL in relational terms. A relationally understood GPL needs to overcome each of

them before it can potently account for the collaborative relations in a decentralised

and coordinated FOSS project. The first obstacle lies in the inconvenient fact that the

GPL is a standard-form licence, which often does not require unequivocally

verbalised manifestation of consent from the licensees. This is at odds with classical

contract law that is anchored in explicitly bargained-for exchanges. Under the

classical model (also known as the contract-as-consent model), a thoroughly dickered

bargain gives rise to a meeting of the minds at a single moment when the offeree

130 This enquiry continues and deepens the discussion of “GPL and FOSS Collaboration” as in Section
3.5 of Chapter 3.

 167

accepts the offer. Only at that single point the total legal obligation is presentiated

and becomes fully binding on the parties.

In order to negotiate this first obstacle posed by classical contract-as-consent law,

RCT provides a more realistic and sophisticated understanding of the role of explicit

“consent” in contract formation. From a relational perspective, consent does not

simply take place at one stroke, and nor does it always have to be fully verbalised.

Instead, consent often happens incrementally over a period of time, and it may well

come out of a mix of verbalised and non-verbalised commitments. Macneil points

out that the exercise of choice in a consensual relation is “an incremental process in

which parties gather increasing information and gradually agree to more and more as

they proceed.”131 The incremental process of consent can hardly come out of an

isolated discrete transaction but it has to be through a series of repeated dealings

between parties in a timeline. As the gradual formation of consent through repeated

dealings clearly does not fit into the discrete transactional model, a more nuanced

understanding of the “bargaining” mechanism is warranted. Lon Fuller famously

observes that either full bargain or zero-bargain is very rare in real contractual

exchanges. Between these two extremes, people often reach agreement through

“half-bargaining”: “where men cannot bargain with words, they can often half-

bargain with deeds; tacit understandings arising out of reciprocally oriented actions

will take the place of verbalized commitments.”132 In a long-term FOSS project,

there are plenty of chances to “half-bargain with deeds” in a rich collaborative

relation, which can often alleviate the heavy burden on the one-shot explicit consent

as the sole device to effectuate the obligations in a licence like the GPL. In contrast,

a consumer of proprietary software is much less likely to develop an incremental

consent, because a proprietary software developer normally has no intention to enter

into a collaborative relation with his consumer and he would thus tries to make a

software transaction as discrete as possible. As there is no future relation beyond this

particular discrete transaction, it is impossible for the user of the proprietary product

to incrementally assent to the licensing terms over a period of time.

131 Macneil, “Economic Analysis of Contractual Relations: Its Shortfalls and the Need for a Rich
‘Classificatory Apparatus’ ”, (1981) 75 Northwestern University Law Review 1018 at 1041
132 Lon Fuller, “The Role of Contract in the Ordering Processes of Society Generally” (originally
written for the third edition of Basic Contract Law) in The Principles of Social Order, edited by
Kenneth I. Winston (Durham, N.C.: Duke University Press, 1981) p.185

 168

The second obstacle to conceptualising the GPL as a relational contract does not

come directly from the classical model, but from the more elusive neoclassical

contract law, which assumes the supremacy of market efficiency in maximising

individuals’ material utility. It is not uncommon to confuse the neoclassical model

with Macneil’s relational contract model, though the two models may bear certain

surface resemblance in terms of their tinkering with the classic model.133 However,

the neoclassical model does not substantially deviate from the classical law’s

ideology which assumes the supremacy of the goal of maximising individual utility.

In fact, neoclassicism is even more decisive and ruthless in pursuing and executing

the discreteness of transactions than classical contract law. Macneil observes that the

extreme pursuit of transactional discreteness makes the neoclassicism unsuited to

deal with the relational aspect of contracting:

Neoclassical contract law is founded in theory and organization on the discrete

transaction, but with many a relational concession. It can often deal adequately

with the more discrete issues in contractual relations. But when discrete and

relational principles conflict, neoclassical law lacks any overriding relational

foundation, and thus lacks a resource often needed in relational law.134

In the software licensing context, the neoclassical approach is probably good enough

to supply an economic justification of proprietary software licensing that promotes

discrete transactions, but it is rather incompetent in explaining non-market-based

relational exchange in FOSS collaboration. There is a conspicuous “relational” gap

to be filled by a true Macneilian understanding of relational contract, where

exchanges are not solely conducted under the goal of maximising individual utility.

As it is impossible to canvass the whole picture of neoclassical contract law in this

chapter,135 I only limit my discussion to the neoclassicist strategy to replace

133 For example, both neoclassical law and RCT would relax the classicist offer-acceptance doctrine in
contract formation.
134 See Macneil, NSC, p.72
135 For a detailed account of the subject, see Macneil, I.R., “Economic Analysis of Contractual
Relations: Its Shortfalls and the Need for a Rich ‘Classificatory Apparatus’ ”, (1981) 75 Northwestern
University Law Review 1018. Also, Macneil indicates that the neoclassical law is based on
neoclassical economics. Campbell observes: “Macneil somewhat confusingly uses the term ‘neo-
classical’ to capture both the neo-classical economics that are the foundation of the classical law of
contract and the neo-classical law that he believes is an improvement on that law (i.e. it is a distinct

 169

“consent” with “market efficiency” as the main rationale in legitimating standard

form contracts. This strategy is achieved by two steps: first, it dismisses thoroughly

negotiated “consent” as unrealistic and unnecessary. The second step then

recalibrates the legitimation mechanism against a new benchmark of market

efficiency, which becomes the most salient feature of neoclassical contract law.

Raymond Nimmer succinctly records this two-step shift from classicism to

neoclassicism as follows:

[…] the [classical contract’s] ideas of choice and agreement convey[] a

romantic view of contracts, i.e., that the choices must follow actual negotiation

between parties of equal bargaining power. Negotiation over terms seldom

occurs in either a mass market or a commercial marketplace. Our economy, and

the mass market in particular, is not, and never was, a bazaar economy

characterized by recurrently dickered terms shaped to each transaction. Nor can

it ever be so. Economics and efficiency concerns preclude it.136

From a neoclassical point of view, it is clear that fully-dickered negotiations are

unnecessarily costly, but they must give way to the goal of maximising parties’

individual utilities in the most calculably efficient fashion. Easterbrook’s ProCD

ruling epitomises this neoclassical view where the enforcement of the standard-form

licence in dispute is based on the ground of economic efficiency in promoting

discrete transactions of the ProCD product. As has already been shown in above

Section 4.3.1, Easterbrook disregards the classicist offer-acceptance doctrine but

favours the neoclassical UCC’s approach137 that allows consent to be assumed “in

form of traditional contract law from the classical law […]. The classical law is, of course, typically
expressed in formal doctrinal terms to which, as has been said, Macneil does not pay particular
attention. However, he describes writing on contract by law and economics scholars as the elaboration
of the economic foundation of the classical law. ” David Campbell, “Ian Macneil and the Relational
Theory of Contract” in Ian Macneil, The Relational Theory of Contract: Selected Works of Ian
Macneil, ed. by David Campbell, (London: Sweet & Maxwell, 2001) p.29
136 Raymond T. Nimmer, “Breaking Barrier: The Relationship between Contract and Intellectual
Property Law” (1998) 13 Berkeley Technology Law Journal 827 at 846
137 It is important know that UCC is exactly a neoclassical legislation that deviates from classical law
to reflect complex mass-market transactions in American society. Post comments: “The U.C.C. was
drafted and adopted in the post World War II era as the United States became a ‘consumer economy
characterized by mass consumption, modern consumption and mass culture.” Deborah W. Post,
“Dismantling Democracy: Common Sense and the Contract Jurisprudence of Frank Easterbrook”,
(2000) 16 Touro Law Review 1205 at 1214

 170

any manner sufficient to show agreement”.138 Precluding time-consuming

negotiations that traditionally legitimates consensual relations, he reduces the

practice of standard-form licensing to an efficient money-saving device that is

believed to be economically beneficial to consumers.139 Post finds Easterbrook’s

neoclassic strategy to trade consumers’ consent for market efficiency is a “ruthless”

one. Easterbrook assumes that “reduced cost is what all consumers want”, but fails to

appreciate “the values and desires (not translatable into dollars and cents) that

animate human beings”.140 The ProCD-type law is a slippery slope that may

eventually lead to an undemocratic assent-destroying result: “Constructive assent,

manufactured through the manipulation of the rules of contract formation and the

interpretation of silence as assent (because it is read by the light of judge’s belief that

he knows what is best for the consumer or for the economy), is inappropriate and

undemocratic.”141 Post’s view is endorsed by Macaulay142 , who in his own

examination of ProCD case, openly favours Macneil’s approach over Easterbrook’s:

“I like Ian Macneil’s approach much better than Easterbrook’s. Macneil concedes

that [standard form contracts] are not real contracts, but he would enforce many of

them. He argues that we enter many relationships where we do not know all the

terms—marriage, the military, and jobs at university law schools. Our relationship

with our computer or software supplier is just one more.”143

Here Macaulay means “Ian Macneil’s approach” by the one advocated in the essay

“Bureaucracy and Contracts of Adhesion”, where Macneil proposes a relationally

understood “consent” to standard forms.144 Unlike Easterbrook who ostensibly bases

his judgement on a constructive “consent” (assumed from a consumer’s inactivity,

i.e., his failure to return the product before use), Macneil is candid that the classical

contractual consent, which is “individual manifestation of a willingness to be bound

in relatively specific ways”, cannot work well in legitimating standard from

138 S2-204, UCC.
139 Easterbrook, in concluding his ruling, argues that “[e] nforcement of the shrinkwrap license may
even make information more readily available, by reducing the price ProCD charges to consumer
buyers.” 86 F.3d 1447 at 1455
140 Deborah W. Post, “Dismantling Democracy: Common Sense and the Contract Jurisprudence of
Frank Easterbrook”, (2000) 16 Touro Law Review 1205 at 1230-1
141 ibid., at 1238
142 For Macaulay’s endorsement of Post’s essay on Easterbrook’s jurisprudence as just quoted above,
see Stewart Macaulay, “Freedom from Contract”, supra note 42 at FN 86 at 802
143 ibid. at 807
144 Macneil, “Bureaucracy and Contracts of Adhesion”(1984) 22 Osgoode Hall Law Journal 5

 171

contracts.145 Scholars have to face the fact that it is impossible for adhering parties to

comprehend every single detail in a standard form contract at the outset of a

contractual relation. For Macneil, a consent to a standard form has to be understood

as a consent to join an unfolding relation that is projected into the future.

Liberal society has always recognized numerous legitimate relations into which

entry is by consent, but the content of which is largely unknown at the time the

consent was given. This is the idea of joining a relation. We can join a law firm

or a university faculty or any other employment relation; we can join the army;

we can join a corporation by buying its shares; we can join in holy matrimony.

In each instance we can do so in spite of large-scale ignorance about the

restraints we are accepting. In spite of our ignorance liberal society will bind us

to those unknown restraints.146

Macneil finds that the “consent to join an approved relation”, though ubiquitous in

liberal society, lacks open recognition by liberalist thinking and is largely “hidden in

the liberal intellectual closet”.147 In fact, any FOSS licence like the GPL deliberately

does not presentiate the total legal obligation concerning making contribution to the

project. So the consent to the GPL is largely a Macneilian consent to join a relation,

which is gradually unfolding through ongoing collaborative efforts. This FOSS

relation is not dissimilar from a marriage relation, which also normally avoids

presentiation of the total obligation but is more based mutual trust to carry on the

relationship among the couple. I will soon show that GPL is in fact a constituion-like

umbrella agreement that only promulgates general rules for those who are willing to

join the collaborative relation148 and its legitimacy is supported by Benkler’s peer

production model.149

145 ibid., at 5
146 ibid., at 20-21
147 Macneil observes: “mainstream liberal thinking avoids the existence of relations like the plague,
because the concept of relation, particularly when it is given the common label of status, is anathema
to the individualism upon which liberalism is based.[…] Legitimation by consent to relations
approved by society is, whenever possible, hidden in the liberal intellectual closet.” ibid., at 21
148 This view is corroborated by Weber’s observation: “The core constitutional message of an open
source license is fashioned as a statement to the developers. And the foremost statement is that they
will be treated fairly if they join the community.” (added emphasis) Weber, Success, p. 179
149 See for detail infra subsection 4.4.2

 172

Although the neoclassical model (unsatisfactorily) removes the classicist hurdle in

contract formation, its own rationale to promote market efficiency in furthering

individual utility maximisation becomes a new hurdle to a relational understanding

of FOSS licences. The economic rationale behind ProCD is probably good enough to

justify a proprietary software licence that is used for a one-shot discrete transaction,

but it is hugely inadequate in coping with the more complex relational exchange in

FOSS collaboration, where contributors are not single-mindedly motivated by the

sole desire to maximise their individual material wealth. Whitford worries that

Macneil’s message of respecting a multiplicity of values held by participants in a

relational contract would be unfairly overridden by the neoclassicist’s sole agenda

for wealth maximisation. He urges that “the law, and the legal academics, should

more fully recognize the place of other values, especially participation, where a

[standard form contract] is used in a relational setting. While individual negotiation

of each contract may be just too inefficient, there may be other ways to provide

adhering parties a sense of participation in framing the contents of their agreements”

(added emphasis).150 Note that Whitford here highlights “participation” as one of the

values that can not be managed well in discrete transactions, but I think that this is

exactly the value that should be taken seriously in FOSS collaboration. Whitford

summarises the difference between discrete transaction and relational contract in

terms of “participation”:

Participation is another value commonly reflected in the behavior of parties to

relational contracts. Participation, as I use the term, means that the parties seek

influence in formulating the substantive content of a transaction. […] In discrete

transactions, take-it-or-leave-it bargains seem quite satisfactory because the

party not drafting the terms can exercise effective control over its own well-

being and, indirectly, over the terms of the standard form contract simply by

declining to enter the transaction or refusing to enter another one. As

transactions become relational, however, withdrawal becomes a less viable

150 See Whitford, “Macneil’s Contribution”, supra note 32 at 553-4

 173

means of control, and the parties seek direct participation the formulation of the

rules of the relationship.151

“Participation” is an important site where a relational FOSS licence is distinguished

from discrete transactional proprietary software licence. In a discrete transactional

proprietary licence, not all parties can equally “participate” to decide the substantive

content of a contract. The parties with stronger bargaining power often proffer the

total legal obligation for the weaker parties, who may only choose to take it or leave

it. In contrast, a relational FOSS licence does not presentiate total obligation for the

adhering parties, but it requires all parties to constantly and proactively “participate”

to shape their own obligation in terms of making actual contribution to a project in an

ongoing cooperative relation. I will use the GPL to substantiate this argument in

more detail below.

4.4.2 GPL as an Umbrella Agreement: Balancing Flexibility with Certainty

Though the value of “participation” is an important one, it is not a straightforward

task to apply it to GPL as a relational contract. The main difficulty lies in the fact

that many standard-form contracts “involving consumers are used in transactions that

are not highly relational.”152 So how does GPL as a standard form become a

relational contract and how do users of GPLed software to “participate” to shape

their own obligation in a collaborative relation? In order to answer this question, I

propose to examine the issue at two levels. The first level is the GPL as an umbrella

agreement, which specifies the participants’ minimum legal commitments to

guarantee software freedom but leaves open the substantive contents of actual

contributions. The second level contains a myriad of sub-agreements about

151 Whitford observes that although the value of participation does not exclude material wealth
maximisation, it can be pursued for its own sake. “Though often participation serves the wealth
maximization objectives of the parties seeking it, it can be and often is an objective independent of its
wealth maximizing effects. People want some control over their own destiny, even if sheer obedience
to the dictates of another would be more efficient.” Whitford, ibid., at 552
152 Whitford observes that most standard form contracts are not relational, but there are exceptions:
“An outstanding example of the use of a SFK in a relational setting is the real estate lease. The
contract for a new car is also quite relational. The parties are committed to a long term relationship
because of the extensive warranties in use today, particularly since it usually is not practical for the
buyer to simply sell the car and buy another when confronted with a problem. In these contexts, I
believe that concern for participation and other values different from wealth maximization should be
reflected in the content of regulation.” Whitford, “Macneil’s Contribution”, supra note 32, FN30 at
553-4

 174

programmers’ actual volunteer contributions, which are impossible without these

contributors’ direct participation. These second-level obligations are not, and cannot

be, fully presentiated in the umbrella GPL, whose main purpose is to make sure that

all contributions can be later legally pieced together into one sustaining free software

project. In short, the GPL as an umbrella at the first level is merely to facilitate the

real lived collaborative experience happening at the second level. It makes sure all

contributions are not merely isolated transactions, but they can be considered under

the same relational umbrella. In contrast, a proprietary software licence like the

ProCD user licence is more likely to be employed only for a few isolated

transactions, and users are not expected to develop a long-term collaborative relation

with the original product supplier to substantially improve the product. In other

words, a transactional software licence is not underpinned by a long-term

collaborative relation between the original software developers and its users, but it is

only a device to regulate some one-shot transactions of software as discrete

commodities.

In the business sector, the use of umbrella agreements is by no means rare, because

they are very useful to stabilise lasting commercial relations under which a series of

interrelated transactions may take place.153 Mouzas and Furmston point out that

umbrella agreements are generally “not concerned with immediate contractual

decisions but rather they explicitly spell out the principles that guide future

contractual decision.”154 The main reason for employing umbrella contracts is largely

due to the tremendous difficulty of presentiating the total obligation for parties at the

outset of a long-term cooperative relation. As it is impossible iron out every single

detail for an unfolding relation, an umbrella document is needed to specify some

general principles that prevent that relation meandering into nowhere. In this sense,

153 Mulcahy and Andrews summarise the useful role of the umbrella contract in long-term business
cooperation: “[…] the umbrella contract performs an extremely useful function in long-term business
relations. It provides a framework of clauses or ‘constituion’ which sets out the arrangements and
norms which will govern the parties’ commercial relationship. It provides certainty regarding the
conditions under which particular exchanges may take place and a platform for ongoing negotiation.
The umbrella contract articulates what have been called a high order of shared conventions which
comprise customary expected, legal and non-legal rules and principles.” Linda Mulcahy and Cathy
Andrews, “Baird Textile Holdings v Marks & Spencer Plc” in Feminist Judgements—From Theory to
Practice (Oxford and Portland, Oregon: Hart, 2010) p.200
154 They define “umbrella contracts” as “private arrangements that provide a framework of clauses
which regulate future contracts.” Stefanos Mouzas, and Michael Furmston, “From Contract to
Umbrella Agreement” (2008) 67(1) Cambridge Law Journal 37 at 38

 175

an umbrella contract is very close to a kind of “constitution”, which provides

“certainty regarding the conditions under which exchanges may take place” and also

“a platform for an on-going negotiation”:

In this way, umbrella agreements take the form of ‘constitutions’ of contracts.

To view an umbrella agreement as a constitution may be relevant to problems of

interpretation remembering Marshall C.J.’s famous injunction that ‘we must

never forget that it is a constitution we are expounding.’ The validity and

legitimacy of constitutions is based upon the evolution of consent among related

actors over time. This consent articulates a high order of shared conventions

which comprise customary, expected, legal, and often non-legal rules and

principles.155 (internal citation omitted)

In the academic literature, it is not uncommon that the GPL is also often seen as a

community’s “constitution”, which echoes nicely the above view that an umbrella

contract is a “constitution” for participating parties in a relation. In his study of open

source software, Weber repeatedly mentions that an open source licence is not

narrowly a legal document for a particular transaction, but it is “a de facto

constitution” that determines the governance structure of a project. Weber argues:

Yet there is another way to see the license, as a de facto constitution. In the

absence of hierarchical authority, the license becomes the core statement of the

social structure that defines the community of open source developers who

participate in a project. One way to manage complexity is to state explicitly (in

a license or constitution) the norms and standards of behavior that hold the

community together.156 (added emphasis)

No secondary commentary can be more revealing than the text in the GPL itself,

which indicates that the licence is a constitutional umbrella specifying “the norms

and standards of behavior that hold the community together”. The preambular text of

the GPL makes it clear that the licence is no more than codifying general rules for

155 Mouzas and Furmston, ibid., at 38-9
156 Weber, Success, p.179; Weber reiterates the same idea later in the same chapter: “[…] the licence
represents foundational beliefs about the constitutional principles of a community and evolving
knowledge about how to make it work.” Weber, Success, p.185

 176

guaranteeing software freedom in all publicly conveyed contributions in a

collaborative relation. It reads:

The licenses for most software and other practical works are designed to take

away your freedom to share and change the works. By contrast, the GNU

General Public License is intended to guarantee your freedom to share and

change all versions of a program—to make sure it remains free software for all

its users. We, the Free Software Foundation, use the GNU General Public

License for most of our software; it applies also to any other work released this

way by its authors. You can apply it to your programs, too.157 (added emphasis)

Not unlike all other umbrella agreements, the GPL is also designed to achieve a

balance between two interrelated needs, which are 1) “the need to remain flexible”

and 2) “the need for certainty and calculability” in an ongoing cooperative relation

among parties.158 Recall that in Chapter 1, I argue that “collaboration” in any

successful FOSS project has two defining aspects: it is not only 1) radically

decentralised but also 2) coordinated among a large number of contributors.159 The

first aspect concerning decentralisation corresponds to the need for flexibility, while

the second aspect concerning coordination corresponds to the need of certainty and

calculability. Now I will explain both aspects/needs in turn.

Firstly, GPL does not, and cannot, presentiate the total obligation that licensees

should bear in a radically decentralised collaborative environment,160 but the need for

flexibility or serendipity precludes presentiation. The substantive decisions to

contribute (e.g. what, when and how to contribute) are completely left to individual

volunteers themselves.161 In this light, the GPL as a relational umbrella contract

157 Para. 2, Preamble, GPL v3.0; It is although worth noting that the FSF claims that the GPL is a
constitution for the whole free software community: GPL “is the Constitution of the Free Software
Movement” as “its goals are primarily social and political, not technical or economic.” See FSF,
“GPL Version 3: Background to Adoption”, <http://www.fsf.org/news/gpl3.html>
158 These two needs are identified by Stefanos Mouzas, and Michael Furmston, “From Contract to
Umbrella Agreement”, supra note 154 at 49
159 Section 1.3.1, Chapter 1
160 Note that the concept of relational “contract” is very different from UCITA’s definition of
“contract” as “the total legal obligation resulting from the parties’ agreement as affected by this [Act]
and other applicable law”. Section 102 (a) (17), UCITA
161 Kelty observes that project leaders like Linus Torvalds do not directly assign or solicit
contributions. Programmers make contribution entirely of their own volition: “At no point were the

 177

dovetails well with Benkler’s peer production system, which refuses to specify the

creative tasks for “peer” programmers. The peer production thus distinguishes itself

from market and firms, both of which struggle to specify or presentiate as much as

possible the objects to be produced via the price mechanism or managerial

commands.162 It encourages individual programmers to pursue their own intellectual

interests during the evolution of a project. This is based on the belief that human

creativity is a highly individuated enterprise and only individuals themselves can best

identify what they are most capable of doing. For this reason, Benkler argues that

creative tasks cannot be fully specified or presentiated by classical contract:

[…] human intellectual effort is highly variable and individuated. People have

different innate capabilities, personal, social, and educational histories,

emotional frameworks, and ongoing lived experiences. These characteristics

make for immensely diverse associations with, idiosyncratic insights into, and

divergent utilization of, existing information and cultural inputs at different

times and in different contexts. Human creativity is therefore very difficult to

standardize and specify in the contracts necessary for either market-cleared or

hierarchically organized production.163 (added emphasis)

Secondly, those “highly variable and individuated” contributions by peers also pose

some uncertainties when they are needed to be pieced together into a coherent free

software project. Without an explicitly agreed commitment, it is not automatically

clear whether all individual programmers are willing to share their contributions

permanently and irrevocably as free software. If some programmers are allowed to

withdraw their contributions from the project at their will, it would cause great

uncertainty to the project. For example, the legal uncertainty caused by the

patches assigned or solicited, although Torvalds is justly famous for encouraging people to work on
particular problems, but only if they wanted to.” Kelty, Two Bits, p.220
162 Benkler observes: “Collaborative production systems pose an information problem. The question
that individual agents in such a system need to solve in order to be productive is what they should do.
Markets solve this problem by attaching price signals to alternative courses of action. Firms solve this
problem by assigning different signals from different agents different weights. To wit, what a manager
says matters. In order to perform these functions, both markets and firms need to specify the object of
the signal sufficiently so that property, contract, and managerial instructions can be used to
differentiate between agents, efforts, resources, and potential combinations thereof.” Benkler,
“Coase's Penguin, or, Linux and ‘The Nature of the Firm’” (2002) 112, (3) Yale Law Journal 369, at
375
163 Benkler, Wealth of Networks: How Social Production Transforms Markets and Freedom (New
Haven: Yale University Press, 2006), p. 414

 178

withdrawal of Gosling’s code from “Emacs commune” in the pre-GPL era was real

and tremendous.164 So the GPL as an umbrella agreement reduces this uncertainty by

standardising a few minimum legal commitments that are necessary to prevent a

project from disintegrating, although it never presentiates any detailed obligations

concerning substantive contributions. These minimum obligations mainly concern

the availability of source code when a contribution is conveyed to the public. In other

words, the GPL makes sure all publicly conveyed code, verbatim or modified, must

be made available for the public to freely copy, use, modify and redistribute.165 In

this light, the GPL as an umbrella adds a level of certainty by making sure that it

would provide a legal infrastructure where all unpresentiated peer-produced

contributions can be legally compatible free software to stay in the same

collaborative project.

In summary, the GPL as an umbrella agreement addresses the need for flexibility by

not presentiating the substantive content of peer production in a continuing relation,

and at the same time it addresses the need for certainty by standardising the

minimum legal commitment to make these peer-produced contributions legally

compatible. Again it is worth reemphasising that although the GPL is an important

umbrella agreement that balances these two needs in a collaborative relation, it does

not equal, but only facilitate, this whole relation. Just as Macneil reminds: “Under

the relational approach, express terms in contracts are no more than an extremely

important part of a dense web of relations.”166 The next chapter will address the issue

concerning FOSS authorship, which is another important part of the relational web

but is too complex to be fully explained by the express text of the GPL.

4.5 Conclusion

This chapter examines some difficult issues concerning the FOSS licences as non-

negotiated standard from contracts. From a strictly classical contractual view, most

FOSS licensing schemes would lack affirmatively expressed consent from licensees

164 See Section 2.3.2, Chapter 2
165 See Section 3.5, Chapter 3
166 Ian R. Macneil, “Reflection on Relational Contract Theory after a Neo-classical Seminar”, in
Implicit Dimensions of Contract—Discrete, Relational, and Network Contracts, eds. By David
Campbell, Hugh Collins and John Wightman (Oxford and Portland, Oregon: Hart Publishing, 2003)
p.208

 179

to make themselves binding. There are two alternatives to this classical approach.

One is the neoclassical contract law as represented by the ProCD ruling, which

reorients the legitimation of standard forms towards the goal of maximising

individual utility gains. The other alternative is the Macneilian relational contract

approach, which is endorsed by this chapter. I argue that the relational approach is

more appropriate to deal with a relation-rich FOSS collaborative experience than the

classical or neoclassical contract model. My examination of the GPL as a relational

umbrella agreement shows its role in maintaining a balance between the need for

flexibility in identifying the creative tasks by programmers themselves and need for

legal certainty in producing legally compatible contributions to stay in one project

irrevocably as free software. Based on this relational insight, the next chapter will

explore the diverse motivational forces behind FOSS authorship in relation to FOSS

licensing.

 180

Chapter 5 The Idea of Authorship in FOSS Licensing

5.1 Introduction

Who are the “authors” of free and open source software? How do programmers claim

their “authorship” in collaboratively created FOSS projects? To which extent does

this FOSS “authorship” deviate from the eighteenth-century Romantic author vision

that has purportedly shored up the modern copyright law1? Do FOSS licensing

schemes correspondingly carve out a unique legal persona for programmers working

in collaboration that is detached from Romantic aesthetics? Compared with many

scholarly writings on legal enforcement of FOSS licences including copyleft licences,

the size of the legal literature tackling above questions about FOSS authorship is

considerably small2. Dusollier observes that “[t]he author is barely mentioned in

copyleft, despite playing a prominent role in the system” and this marked absence

“unfortunately conceals the importance of the author figure in the philosophical

model of copyleft.”3 As all copyleft licences are copyright licences in the first place,

Dusollier’s observation tallies with Ginsburg’s worry that “the figure of the author is

too-often absent” in “contemporary debates over copyright” and this absence may

only lead to an incomplete understanding of “copyright’s role in fostering

creativity.”4 Similarly, the lack of discussion of authorship in FOSS licensing

schemes can also risk losing sight of the whole picture of the role of FOSS licensing

1 For a definitive account of the Romantic author vision and modern copyright, see Martha
Woodmansee, “The Genius and Copyright” in The Author, Art, and the Market—Reading the History
of Aesthetics (NY: Columbia University Press, 1994) originally published in (1984) 17 Eighteenth-
Century Studies 425, titled “The Genius and Copyright: Economic and Legal Conditions of the
Emergence of the ‘Author’” (Hereafter “The Genius and Copyright”)
See also James Boyle, Shamans, Software, and Spleens—Law and the Construction of the Information
Society , (Cambridge, Mass.: Harvard University Press, 1996); for two important critiques of Boyle’s
treatment of Romantic authorship and law, see Mark Lemley, “Romantic Authorship and the Rhetoric
of Property”, (1997)75 Texas Law Review 873 (hereafter “Romantic Authorship”) and Pamela
Samuelson, “The Quest for Enabling Metaphors for Law and Lawyering in the Information Age”
(1996) 94 (6) Michigan Law Review 2029 (Hereafter “Enabling Metaphors”)
2 For example, Dusollier’s attempt to link FOSS authorship with postmodern aesthetics in a 2003 law
journal article still remains arguably the most important contribution in the legal literature. See
Severine Dusollier, “Open Source and Copyleft: Authorship Reconsidered?” (2003) 26 Columbia
Journal of Law and the Arts 283
3 ibid., p.288
4 Jane C. Ginsburg, “The Concept of Authorship in Comparative Copyright Law” (2003) 52 DePaul
Law Review 1063 at 1063

 181

in coordinating FOSS collaboration. As the last lap of my journey of exploring

FOSS licensing, my task in this chapter is exactly to map out the complex idea of

collaborative authorship as manifested by FOSS licensing schemes.

The main thrust of this chapter is that “authors” do exist in FOSS projects and they

exist not only at the individual level, but more importantly, also at the collective

(project) level. At the individual level, Dusollier suggests that authors are the

“initiators” of each individually created piece of code,5 but she does not go further to

elaborate in detail how these individual contributions are later integrated into a

collective work, which can be attributed to a project as a whole.6 What is ignored

here is exactly FOSS authorship at the collective level, which is an equally important

but poorly understood matter. An “authorless” project at the collective level would

simply be a failed project where individually created contributions do not aggregate

into a coherent whole. An “authored” FOSS project is not content oriented towards

producing a Babel of unrelated software fragments in a radically decentralised

environment, but it also wants every contributor to coordinate with one another.7 It is

exactly these coordinating efforts that give birth to the collective authorship, which

can be held responsible and deserve credit for the production of an integrated FOSS

5 Dusollier seems to think that these individual authors then fully withdraw their authorial control over
their creation once and for all under FOSS licences. In this scenario, the software becomes a kind of
constantly reformulateable free-flowing postmodern “work”, whose link with its initial individual
authors is irreversibly lost: “Once the work is made available to the public, the formerly unwavering
link to the author becomes blurred. The author is no longer considered ‘the initiator of the collective
work.’ Furthermore, the integrity of the work—that element which reflects authorial personality and
justifies an extensive moral right in Continental doctrine—no longer means much. In this sense, the
author resembles the figure of postmodern literary aesthetics of Foucault’s ‘founder of discursivity.”
As the initiator of an open discourse—of an ever-evolving work—the author of an element of a
collective creation in copyleft finds her particular contribution diluted by the whole of successive
contribution. The ‘work’ in the copyleft regime is software in constant (re)-formation; it is the
production of meaning from different convergent or successive artistic practices.” Dusollier, supra
note 2, pp. 294-5
6 Dusollier only mentions collective authorship in passing at the end of the concluding part of her
essay. She seems to argue that the collective work is made possible with the help of copyleft, but she
does not explain how the legal mechanism of copyleft exactly helps to coordinate individual authors’
interests in more detail: “The author is not only the initial founder of a discourse and instigator of a
creation of which her contribution is only the first stage. She is also the figure by whom the whole of
the collective creation finds itself marked by the stamp of freedom. In the chain of contributions, of
works which will come to add incrementally to the first act, none will be able to escape the refusal of
intellectual property rights exerted in a proprietary and exclusive manner. Foucault’s desire for greater
cultural freedom is brought to life in copyleft.”(added emphasise) ibid., at 295
7 See also Section 1.3.1, Chapter 1, where I argue that “collaboration” in any successful FOSS project
has two defining aspects: it is not only 1) radically decentralised but also 2) coordinated among a
large number of contributors. This chapter elaborates the second aspect of collaboration in terms of
FOSS licences’ role in coordinating contributors’ legal commitment.

 182

project. Of course, this collective authorship in the whole project should not be

conflated with the individual authorship in each individual contribution. The former

by no means compromises the latter, which is also respected within the FOSS

community. A full evaluation of FOSS authorship in relation to FOSS licensing

should be scrutinised at both collaborative and individual levels, though the existing

literature does not tend to be discerning enough to differentiate the two. In particular,

I will highlight the pivotal role of a small core group of lead authors—who are the

lead programmers or coordinators in a FOSS project—to integrate individual

authors’ creation into a collective work. I call them “stewards”, whose coordinating

efforts make their authorship quite different from the conventional author-owners

claiming exclusive rights under the intellectual property regime.8

The chapter is divided into three parts. In the first part (Section 5.2), I examine

whether the Romantic genius vision fits with FOSS authorship at both individual and

collective levels. At the individual level, there is no shortage of extremely talented

FOSS programming “geniuses” in the community. However, the making of a

collaborative FOSS project always goes beyond celebrating the virtuosity of these

individual “geniuses”. Individually created contributions must be aggregated into a

workable coherent whole, which can then be collectively held responsible and

deserve credit for an integrated project as a whole. Most interestingly, individual

author-geniuses do not simply disappear under the shadow the collective FOSS

authorship, but a few most active and enthusiastic ones, who usually become project-

leaders/coordinators, stand out as the author-stewards for certain projects for a

sustaining period of time. I point out that, although these coordinators play a

tremendously important role in channelling individual authorship into collaborative

authorship, their author-stewardship is an understudied phenomenon by legal

scholarship. In the second part (Section 5.3), I explore the FOSS programmers’ legal

persona, which has developed to a large extent independently of the Romantic author

vision. I try to demonstrate how FOSS programmers use their licensing schemes to

claim their authorship at both individual and collective levels, despite the fact that

8 The alignment of authorship with stewardship in FOSS projects is in counterpoint to Mark Rose’s
famous observation that modern authorship is distinguished by its link with ownership: “the author is
conceived as the originator and therefore the owner of a special kind of commodity, the work.” Rose,
Authors and Owners—The Invention of Copyright, (Cambridge, Mass. & London: Harvard University
Press, 1993) p.1

 183

Anglo-American law does not statutorily give software programmes a standalone

attribution right. In particular, I will tackle the problem as to how project-leaders, in

the capacity of author-stewards, enlist trademark law to protect the reputation or

goodwill for their project as a whole. The third part (Section 5.4) concludes.

5.2 Individual and Collective “Authors” in FOSS Programming

This section discusses the authorial consciousness of FOSS programmers at both

individual and collective levels. It examines the extent to which Romantic aesthetics

is still viable in explaining the actual practice of FOSS programming. It shows that

the individualistic Romantic author vision may still be applied to individual

authorship of contributed code, but it is too inadequate to account for FOSS

authorship at the collective level. In particular, the Romantic vision seems to suffer

from a blind spot by failing to recognise project-leaders’ unique authorial role as

“stewards”, who are instrumental in channelling individual authors’ efforts into one

collective authorship that can be held responsible and deserve credit for a FOSS

project as a whole.

5.2.1 Debating the Legacy of Romantic Aesthetics

The individualised “author”, who is credited as the sole origin of a creative work, is a

construct of relatively recent pedigree. Woodmansee, in her 1984 essay, has provided

a definitive account of the rise of the self-inspired “genius” and its repercussion in

modern copyright law since the Western Romantic Movement beginning in the

second part of the eighteenth century. Literary creators, equipped with the

ammunition from Romantic aesthetics, lifted themselves out of the unimaginative

rank of craftsmen, and they become author-geniuses capable of making totally

original contributions derived from their unique creative personality. The oft-quoted

Wordsworth’s testimony made in 1815 is an exemplary statement asserting the

literary author-genius to be the sole fountain of his original creation:

Of genius the only proof is, the act of doing well what is worthy to be done, and

what was never done before: Of genius in the fine arts, the only infallible sign is

the widening the sphere of human sensibility, for the delight, honor, and benefit

of human nature. Genius is the introduction of a new element into the

 184

intellectual universe: or, if that be not allowed, it is the application of powers to

objects on which they had not before been exercised, or the employment of

them in such a manner as to produce effects hitherto unknown.9 (added

emphasis)

The Romantic vision of author as a Wordsworthian genius capable of introducing “a

new element into the intellectual universe” has arguably exerted an indelible and

tremendous influence in shaping the contour of modern copyright law in the western

world. Woodmansee points out that modern copyright is exactly built upon this cult

of the author-genius:

Our laws of intellectual property are rooted in the century-long

reconceptualization of the creative process which culminated in high Romantic

pronouncements like Wordsworth’s to the effect that this process ought to be

solitary, or individual, and introduce ‘a new element into the intellectual

universe.’ Both Anglo-American ‘copyright’ and Continental ‘authors’ rights’

achieve their modern form in this critical ferment, and today a piece of writing

or other creative product may claim legal protection only insofar as it is

determined to be a unique, original product of the intellection of a unique

individual (or identifiable individuals).10 (original emphasis)

In the more specific area of software copyright, there is no shortage of academic

works that bear out Woodmansee’s worry about law’s uncritical acceptance of the

Romantic mode of solitary and individualised authorship. Jaszi, an ardent champion

of Woodmansee’s thesis, observes that “lawyers and judges have invoked the vision

of the Romantic ‘author-genius’ in rationalizing the extension of copyright protection

to computer software”, because software programs are “no less inspired than

traditional literal works, and that the imaginative process of the programmer are

analogous to those of the literary ‘author’.”11 It is worth noting that the main source

that Jaszi relies upon to make his observation is another influential article titled

9 William Wordsworth, “Essay, Supplementary to the Preface”, quoted in Woodmansee, “On the
Author Effect: Recovering Collectivity” (1992) 10 Cardozo Arts and Entertainment Law Journal 279
at 280 (Hereafter “On the Author Effect”)
10 Martha Woodmansee, “On the Author Effect”, ibid., at 291-2
11 Peter Jaszi, “On the Author Effect: Contemporary Copyright and Collective Creativity”, (1992) 10
Cardozo Arts and Entertainment Law Journal 293 at 297-8

 185

“Silicon Epics and Binary Bards” (hereafter “Silicon Epics”) written by Anthony

Clapes and his colleagues in 198712 (three years after Woodmansee’s essay on “the

Genius and Copyright” was first published). In “Silicon Epics”, Clapes et. al.

straightforwardly liken software to “the arcane epic poetry of the Information Age”13

and a programmer is correspondingly the ‘poet’ of his poetic creation. It is

emphasised that software should not be treated differently from literary works,

because they are also “works of authorship in which the range and variety of

expression are broad and deep” and software as “works of authorship exhibit all the

attributes of literary works of a kind with which the general public and copyright

laws are already quite conversant.”14 Note that the programmer-as-poet vision is not

preached by “Silicon Epics” for the first time, but it comes from Frederick Brooks’

1975 classical work on software design, which is often credited as an earlier source

equating programmer with poet:

The programmer, like the poet, works only slightly removed from pure thought-

stuff. He builds his castles in the air, from air, creating by exertion of the

imagination. Few media of creation are so flexible, so easy to polish and rework,

so readily capable of realizing grand conceptual structures[…]15 (added

emphasis)

From Brooks’ point of view, programming is by no means a mindless job but it

involves author’s “exertion of the imagination” upon his creation, and it is also

enjoyable and fun. The programmer-author has the “sheer joy of making things” that

is new and original: “As the child delights in his mud pie, so the adult enjoys

building things, especially things of his own design. I think this delight [in

programming] must be an image of God’s delight in making things, a delight shown

in the distinctness of newness of each leaf and each snowflake.”16 The authors of

“Silicon Epics” seem content to use Brooks’s author-as-god metaphor to defend the

extension of US copyright law to software as previously recommended by the Mel

12 Anthony Clapes, Patrick Lynch, and Mark R. Steinberg, “Silicon Epics and Binary Bards:
Determining the Proper Scope of Copyright Protection for Computer Programs” (1987) 34 UCLA Law
Review 1493
13 ibid., at 1584
14 ibid.
15 Brooks, Mythical Man-Month, pp.7-8, quoted by Clapes et. al., “Silicon Epics”, ibid., at 1497
16 ibid., at 1496-7

 186

Nimmer and National Commission on New Technological Uses of Copyrighted

Works (CONTU).17 Note that this 1987 “Silicon Epics” essay is not a single isolated

effort to invoke Romantic authorship to justify copyright protection for software, but

it has a sustained appeal. For example, Miller, in a later Harvard Law Review article,

makes a similar authorship argument that “imagination, originality, and creativity

involved in writing a program is comparable to that involved in more time-honored

literary works and far exceeds various mundane efforts that have long enjoyed

protection under the copyright rubric”18 . For this reason, he also reaches the

conclusion that the unique creative expression from individual software programmers

deserves copyright protection:

[…] the communicative precision required of a computer programmer is not

unlike the discipline that a poet must achieve to convey a complex message

within the confines of a tightly constrained meter or that of a composer who

must work within the limited ranges of musical instruments or of the human

voice. In each case, the copyright law rewards the author's imagination and

originality of expression in the hope of encouraging further creative

productivity.19 (added emphasis)

Both Clapes and Miller’s articles have vindicated Woodmansee’s observation that

“creative product may claim legal protection only insofar as it is determined to be a

unique, original product of the intellection of a unique individual (or identifiable

individuals)” 20 (added emphasis). It is not difficult to find the Romantic creative

mode, which is arguably the aesthetical mooring of modern copyright law, is based a

presumption that the “original” contribution must come from a unique identifiable

“individual”. I argue that this Romantic conception of “originality” and

“individuality” fails to account for the complex phenomenon FOSS programming on

two grounds. Firstly, the Romantic view of “originality” ignores the fact that

17 “It is this factual underpinning that was persuasive to Mel Nimmer and the majority of CONTU
members in recommending only modest changes in the Copyright Act so that the full body of
copyright law would apply to computer programs.” Clapes, “Silicon Epics”, at 1583; For CONTU’s
report that analogises software to literary work, see also the discussion in Section 3.3, Chapter 3 of
this dissertation.
18 Arthur R. Miller, “Copyright Protection for Computer Programs, Databases, and Computer-
Generated Works: Is Anything New Since CONTU” (1993) 106 Harvard Law Review 977 at 983-4
19 ibid., at 984
20 Woodmansee, “On the Author Effect”, supra note 9

 187

programming is also an engineering discipline that has always prized intelligently

reusing old elements in solving practical problems since its early hacker culture.

Secondly, the Romantic conception of “individuality” (i.e., author as solitary and

self-inspired genius) makes itself difficult to explain the practice of collaborative

FOSS programming in a radically decentralised environment. I will explain both

grounds in turn now.

5.2.2 Programming as an Engineering Discipline: Questioning “Originality”

The first ground calls into question the Romantic analogy of software programmers

to Wordsworthian literary geniuses, whose unique “original” creative expression

must introduce “a new element into the intellectual universe”. In fact, FOSS

programming is not always about creating new things out of nothing in a rarefied

atmosphere, but it is also an engineering discipline seeking to solve practical

problems by using old and pre-existing technical solutions.21 Samuelson et. al. find

Clapes or Miller’s attempt to treat programmers as literary author-geniuses

ultimately fails 22, but argue that a “well-designed program is thus akin to the work of

a talented engineer whose skilled efforts in applying know-how, accumulated from

years of experience and training, yields a successful design for a bridge or other

useful product.”23 There are two characteristics to this programmer-as-engineer view.

First, programmers do not merely compose code as literary text, but more

importantly they produce utilitarian artifacts that perform certain functions, from

which the primary value of the program is derived.24 Secondly, programming as an

21 The development of US software case law, especially after the 1992 Altai case where software was
treated partially as a functional object and its non-expressive elements were accordingly excluded
from copyright protection, seems to fly in the face of the Romantic argument that programmers are
“original” literary writers. In other words, software copyright law after Altai seems not go down the
exact trajectory as laid down by Romantic aesthetics, but it seems to veer onto a non-aesthetical
course where programmers are recognised as “engineers”. See Computer Associates International, Inc.
v. Altai, Inc., 982 F.2d 693 (2d Cir.1992)
22 Pamela Samuelson, “Enabling Metaphors” supra note 1 at 2038-9; See also Lemley, “Romantic
Authorship”, supra note 1 at 894
23 Pamela Samuelson, Randall Davis, Mitchell D. Kapor, and J. H. Reichman, A Manifesto
Concerning the Legal Protection of Computer Programs, (1994) 94 (8) Columbia Law Review 2308 at
2332 (hereafter Manifesto)
24 “While conceiving of programs as texts is not incorrect, it is seriously incomplete. A crucially
important characteristic of programs is that they behave; programs exist to make computers perform
tasks. Program behavior consists of all the actions that a computer can perform by executing program
instructions. […] Behavior is not a secondary by-product of a program, but rather an essential part of
what programs are. To put the point starkly: No one would want to buy a program that did not behave,

 188

engineering discipline is not just about bringing “a new element into the intellectual

universe”, but it is also about intelligently reusing and combining old elements that

have been “accumulated from years of experience and training”. The second

characteristic directly challenges the “originality” of Romantic authors and calls for

recognising the incremental and accumulative mode of creativity in software

engineering:

The products of software engineering almost invariably contain admixtures of

old and new elements. Some consist almost entirely of old elements. The

innovation in such programs may lie in the manner in which the known

elements have been combined in a new and efficient manner. Or it may come

from combining some new elements with well- known elements in order to

achieve the same result in a new way. When we speak of programs as

"industrial compilations of applied know-how," it is in recognition of the

frequency with which software engineering involves the reuse of known

elements. Use of skilled efforts to construct programs brings about cumulative,

incremental innovation characteristic of engineering disciplines.25 (added

emphasis)

Samuelson’s depiction of software programmers as engineers, whose innovation is

incremental and cumulative and involves skilled reusing of old elements, shows that

software programmers’ authorial consciousness cannot be solely determined by

Romantic aesthetic thoughts but there is also a strong technical dimension to the

issue. The awareness that programmers are engineers or technicians is critical to

understand the non-Romantic (incremental and cumulative) mode of practical

creativity in collaborative FOSS programming. Weber observes: “Open source is

first and foremost an engineering culture—bottom up, pragmatic, and grounded

heavily in experience rather than theory.”26 In fact, this engineering culture can be

exactly stretched back to the early MIT-style hacker culture, where the ethos of

sharing and reusing of existing solutions to technical problems was strong and robust

i.e., that did nothing, no matter how elegant the source code "prose" expressing that nothing.” ibid.,
pp. 2316-7
25 Samuelson et. al. Manifesto, supra note 23 at 2332
26 Weber, Success, p.164

 189

among computer hackers27 . For hackers and later FOSS programmers, it is

unnecessarily wasteful to reinvent the wheel from scratch, however original this

reinvention may be without copying from other sources. It is argued that there is “an

ethical duty of hackers to share their expertise by writing open-source code and

facilitating access to information and to computing resources wherever possible.”28

However, the rise of private intellectual property in software and its accompanied

pursuit for “originality” significantly diminished this sharing and reusing ethos since

the late 1970s. It pushed the common activities of sharing and reusing under the

hacker culture into a newly created category known as software “piracy” or “theft”,

which was exactly the kind of “crime” that Stallman was accused of during his

conflict with the proprietary software company Symbolics over the Lisp

programming language initially co-developed at the MIT AI Lab.29 In this sense, the

hacker culture grounded in engineers’ practical intelligence is to a large extent a

victim of software copyright law’s obsession with Romantic mode of “originality”,

which refuses to see the more incremental and cumulative type of creativity.

5.2.3 Stewarding a FOSS Project: Questioning “Individuality”

The second ground questions authors’ “individuality” as assumed by Romantic

aesthetics. As a general matter, this individualistic vision tends to attract two types of

criticism. First, literary theorists blame it for neglecting the prevalent collective

creative processes in the contemporary time.30 Secondly, legal scholars are not

satisfied with the lack of precise guide that Romantic aesthetics is able to provide for

the actual development of legal doctrines of intellectual property. In particular, the

Romantic individualistic vision is least competent in telling what law can do when

there is a dispute between upstream and downstream authors. In this light, Lemley

points out that Romantic authorship ultimately fails to inform how to balance the

interests among what he calls “first and second generations” of authors:

27 See Section 2.2.1, Chapter 2 of this dissertation for more detail.
28 “The Hacker Ethic” in Jargon File, compiled by Raymond, at
<http://www.catb.org/jargon/html/H/hacker-ethic.html>
29 For more detail of Symbolics incident, see Section 2.3.2 Chapter 2
30 For example, Woodmansee observes that “electronic technology is hastening the demise of the
illusion that writing is solitary and originary” and the “writing” practice has become frequently
collective in the electronic age. See Martha Woodmansee, “On the Author Effect: Recovering
Collectivity” (1992) 10 Cardozo Arts and Entertainment Law Journal 279 at 289

 190

The problem is that the idea of Romantic authorship does not necessarily lead

one to favor one side or the other in a dispute between two types of authors—

the first and second generations. One could invoke the language of romantic

authorship either to demand strong copyright protection for a first-generation

author or to demand an expansive interpretation of fair use for a second-

generation author who has “transformed” a first-generation work.31

In the case of large-scale decentralised FOSS programming, this inter-generational

authorial conflict can be exacerbated because there can be unlimited numbers of

generations of programmers who work on the same piece of software. What

complicates things further is that even founding members (i.e. the first generation of

contributors) of a FOSS project do not always stay upstream in a project. They can

rapidly move downstream when they use and modify contributions from later-

generation programmers. FOSS licensing schemes to some extent pre-empt this

problem by standardising all individual authors’ legal commitments when making a

collaborative project.32 Having said this, I do not mean to give an impression that the

collaborative efforts of a FOSS project can be reduced to its legal form as forged by

these licensing schemes. Instead, I try to show that FOSS collaboration requires one

lead programmer or a core team of programmers to make both legal and extra-legal

arrangements to coordinate peer-produced contributions into a whole. I call these

coordinators the “stewards” of FOSS projects. These stewards occupy a critically

important “authorial” role in splicing individual authorial interests into a collective

one.

Project-Leader/Coordinator as Author-Stewards

To understand FOSS project-leader/coordinators’ authorial persona as “steward” is

not based on a false belief that FOSS programmers are incapable of making original

contribution as individuals. There is no need to overcompensate for the weakness of

Romantic aesthetics by denying the existence of programming “genius” in the FOSS

community. In fact, many lead FOSS programmers are first known to the public for

31 See Lemley, “Romantic Authorship”, supra note 1 at 885
32 It is worth emphasising again the difference between copyleft and non-copyleft schemes. Copyleft
licences makes all generations of authors have the same set of responsibility to commit their
contributions to the commons, while non-copyleft licences schemes only limit this responsibility to
the first generation of authors.

 191

their virtuoso hacking skills rather than the relatively unsung role as project

coordinators. Recall that Levy’s 1984 hagiography of computer hackers, as its

subtitle “Heroes of the Computer Revolution” suggests, is exactly a book full of

larger-than-life programming geniuses in the pioneering days of hacking. One of the

most notable of them is no doubt Richard Stallman, who is depicted by Levy much

like a typical solitary Romantic genius. For example, during Stallman’s personal

struggle against the proprietary software company Symbolics which refused to share

improvements of the Lisp language, Stallman’s individual virtuosity in programming

even won the admiration from a Symbolics employed programmer who commented:

“[…] Stallman doesn’t have anybody to argue with all night over there. He’s

working alone! It is incredible anyone could do this alone.”33 (original emphasis)

Levy’s writing is one of the earliest sources where Stallman gains this lonely (and

sometimes unsociable) “genius” image. In 1990, this image is further reinforced by

the prestigious MacArthur fellowship (also known as the “genius grant”) given to

Stallman literally in recognition of his “genius” status in the hacking world.34 Nine

years later, Michael Gross conducted an important interview further revealing that

Stallman has exhibited all kinds of attributes normally associated with a solitary

genius since his childhood as a lonely prodigy who was precociously talented and

curious in many intellectual subjects.35

However, Stallman’s image as hacking genius sometimes overshadows his arguably

more mundane administrative role as the coordinator-steward behind the GNU

33 Levy, Hackers, p.426
34 It is interesting to note that the very generous “genius grant” ($240,000 in value including health
insurance to Stallman) allows to Stallman to fully dedicate himself to the cause of free software
without taking another full time job. Lerner explains what kind of people can be the awardees of the
“genius grants”: “The MacArthur fellowships, known as "genius grants," are awarded annually to
exceptionally talented and creative people. This year's recipients include artists, human rights
activists, mathematicians, and astronomers.” Reuven M. Lerner, “Stallman wins $ 240,000 in
MacArthur Award”, 18 July 1990 at < http://tech.mit.edu/V110/N30/rms.30n.html>
35 In this interview, Stallman recalled that he was a very lonely child who had few friends, but he took
an avid interest in many subjects: “I learned calculus when I was something like 7 or 8. So it wasn't
hard for anyone to tell that I was interested in learning as much math and science as possible. For a
couple of years when I was 14 to 16, I would go to the library and get two or three books a week
about various subjects, like History, Math and Science. And I would read them all. At one point, I
decided to learn Latin, so I got a first-year Latin textbook and went through it in a month, and then I
got the second-year book and went through that in the next month”. See Michael Gross, “Richard
Stallman: High School Misfit, Symbol of Free Software, MacArthur-certified Genius”, 2000,
<http://www.mgross.com/MoreThgsChng/interviews/stallman1.html>; this interview about Stallman
as a genius is important because it lays the foundation for a later book-length biography of Stallman
by Sam Williams. Sam Williams, Free as in Freedom—Richard Stallman's Crusade for Free
Software, O’Reily 2002 at <http://www.oreilly.com/openbook/freedom/>

 192

project. From the whole project’s point of view, Stallman’s persevering stewardship

can be much more important than his personal geniushood. This is because

Stallman’s individual ingenuity, however great it is, would only be diluted in a robust

project that can continue to attract a burgeoning number of contributors. At the same

time, Stallman’s role as coordinator would only be gradually accentuated over the

time because a growing pool of programming talents needs more and more of his

stewardship to channel their peer-produced contributions into a coherently integrated

project. To put it succinctly, it is a lead programmer’s tenacity rather than his

ingenuity that gives him the stewardship, which matters most to the sustainability

and longevity of a project.

The above point becomes even clearer when it is applied to the Linux project under

the stewardship of Linus Torvalds. Raymond observes that Torvalds fails to be an

individually “original” computing genius like Stallman in the first place, but he

stands out as an engineer who is extremely good at implementing and integrating

other people’s contributions into the project. In this sense, Torvalds is considered to

be a kind of lesser “genius of engineering and implementation”, but he knows how to

harness the collective intelligence from other hackers despite his lack of personal

ingenuity:

But Linux didn’t represent any awesome conceptual leap forward. Linus is not

(or at least, not yet) an innovative genius of designing in the way that, say,

Richard Stallman [… is]. Rather, Linus seems to me to be a genius of

engineering and implementation, with a sixth sense for avoiding bugs and

development dead-ends and a true knack for finding the minimum-effort path

from point A to point B. Indeed, the whole design of Linux breathes this quality

and mirrors Linus’ essentially conservative and simplifying design approach.36

It is not difficult to find that Raymond’s argument has subtly widened the meaning of

“genius”, which has been conventionally pegged to the individualistic mode of

“originality” under Romantic aesthetics. For Raymond, the “genius” may mean not

only the self-inspired creator in the Romantic sense, but it may also include the more

36 Eric Raymond, The Cathedral and the Bazaar, version 3.0 at
<http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/> (hereafter Cathedral)

 193

mundane but less individualistically “original” type of “genius of engineering and

implementation” as epitomised by Torvalds who is good at using and reusing other

people’s innovation. In fact, Torvalds is not alone for being this kind of lesser

“genius”, but he belongs to a core stewardship team of subsystem maintainers for the

Linux project. This team of maintainers are Linux’s “gatekeepers”, because they are

responsible for reviewing all contributed patches, which can only be integrated into

the mainline kernel with its approval.37 Kelty illustrates how these gatekeepers do

their daily job of reviewing and merging code submitted from other contributors:

Almost all of the decisions made by Torvalds and lieutenants were of a single

kind: whether or not to incorporate a piece of code submitted by a volunteer.

Each such decision was technically complex: insert the code, recompile the

kernel, test to see if it works or if it produces any bugs, decide whether it is

worth keeping, issue a new version with a log of the changes that were made.

Although the various official leaders were given the authority to make such

changes, coordination was still technically informal. Since they were all

working on the same complex technical object, one person (Torvalds) ultimately

needed to verify a final version, containing all the subparts, in order to make

sure that it worked without breaking.38

Furthermore, when a project-leader keeps coordinating or stewarding a project for a

continuingly long time, he would not only be credited for his individual contribution,

but more significantly, he would also get credit for his stewardship work that

integrates other contributors’ efforts into a collective whole. To illustrate, Torvalds

may claim two types of authorship for his work. On the one hand, he is the individual

author of the code written by him; on the other hand, he is also the stewardship

37 A 2009 Linux Foundation’s report shows briefly how patches are reviewed and approved by the
subsystem maintainer term and it also shows that the code that Torvalds has merged under that release
was slightly under 3%. “Patches do not normally pass directly into the mainline kernel; instead, they
pass through one of one-hundred or so subsystem trees. Each subsystem tree is dedicated to a specific
part of the kernel […] and is under the control of the specific maintainer. When a subsystem
maintainer accepts a patch into a subsystem tree, he or she will attach a “Sign-off-by” line to it. This
line is a statement that the patch can be legally incorporated into the kernel; the sequence of signoff
lines can be used to establish the path by which each change got into the kernel.” See Greg Kroah-
Hartman, Jonathan Corbet, Amanda McPherson, Linux Kernel Development: How Fast it is Going,
Who is Doing It, What They are Doing, and Who is Sponsoring It: An August 2009 Update at
<http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf>, p.13
38 Kelty, Two Bits, p.220

 194

author who reviews, approves and integrates other people’s contribution into the

mainline Linux kernel. The former is familiar to the Romantic mode of individuated

authorship, while the latter is a less familiar one but is crucial to the success of a

large-scale collaborative FOSS project.

These two types of authorship may substantially overlap in a small budding project

in its early formative stage, when a main programmer’s individual contributions

account for the most part of the program. At this stage, his significant individual

authorship can easily give rise to project leadership, which is “essentially the same as

ownership” as observed by Weber.39 However, when the project scales up into a

huge one, the lead programmer’ individual authorship can be rapidly diluted to the

extent that he can no longer justify his ownership/leadership of the whole program.

Suppose that this programmer continues to be enthusiastic about leading the project

ahead, the basis of his leadership practice must shift from the ever-dwindling

ownership of the software to the ever-increasing stewardship responsibility in

coordinating other people’s contributions for the project.40

This shift from ownership to stewardship is significant to a rounded understanding of

project-leaders’ unique authorial role in taking stewardship responsibility to forge

collaboration in a FOSS project. Most importantly, countering the Romantic

assumption of self-inspired authorship, FOSS leaders’ author-stewardship seems to

flesh out the two most important components of the author-as-steward thesis argued

by Kwall. The first component comes from an awareness that an author himself is

not the sole source of his own creation. Instead, inspiration is externally endowed as

a gift that enables the author to make his own creation.41 In other words, the author

is not entirely self-inspired, but he receives external inspiration as a gift that contains

39 Weber, Success, p.166
40 According to Lucy and Mitchell, the hallmark of stewardship is one’s “responsibilities of careful
use, rather than the extensive rights to exclude, control and alienate that are characteristic of private
property” (added emphasis) and in a nutshell they are “duty-bearers” rather than “right-holders.”
William N.R. Lucy and Catherine Mitchell, “Replacing Private Property: The Case for Stewardship”
(1996) 55 Cambridge Law Journal 566 at 584
41 Roberta Rosenthal Kwall, “The Author as Steward ‘For Limited Times’”, (2008) Boston University
Law Review 685 at 703
Hyde vividly portrays how externally endowed inspiration work for creative artists: “We also rightly
speak of intuition or inspiration as a gift. As the artist works, some portion of his creation is bestowed
upon him. An idea pops into his head, a tune begins to play, a phrase comes to mind, a color falls in
place on the canvas.” Lewis Hyde, The Gift: Imagination and the Erotic Life of Property (New York:
Vintage Books,1983) p.xii

 195

“unearned value”42 bestowed upon him. In a large-scale FOSS project, it is clear that

every programmer benefits from other people’s contributions, and no one can claim

to be the sole source of the whole program. Even for those founding members of

projects, many of them try hard to avoid reinventing the wheel if there are existing

technologies available for reuse. For example, Linus Torvalds did not start the Linux

kernel from scratch in 1992, but his inspiration comes from the pedagogical Minix

system initially developed by the Amsterdam-based computer scientist Andrew

Tanenbaum in the late 1970s. Similarly, Stallman did not start the Emacs editor in

the early 1980s from nothing, but the program was co-developed by a few

programmers at the MIT Lab since the 1970s.

The second component of author-stewardship goes against rewarding creators with

exclusive ownership right. Instead it evokes a sense of responsibility to offer an

author’ work as a return gift back to the community where the author gets his

externally endowed inspiration in the first place. Or to put it in Kwall’s words, this is

the author’s stewardship responsibility to participate in “the cyclical dimension of

creative enterprise”.43 Lewis Hyde thinks that this responsibility actually comes from

creators’ “labour of gratitude” which spurs creators to do something reciprocal for

the external inspiration that is bestowed upon them early on.44 In the history of FOSS

development, Richard Stallman is exactly a programmer with a strong sense of

stewardship responsibility to offer his software back to the community, though his

view has lost much support facing the rise of commercial proprietary software. When

Stallman started his GNU project in 1983 (two years before his first copyleft licence

in 1985), his initial announcement of the project clearly indicates that he was driven

by an ethical responsibility to share his software with the community: “I consider

that the golden rule requires that if I like a program I must share it with other people

42 Schwarzenbach argues that a gift contains “unearned value” and the gift-receiver thus holds the gift
with “unearned value” in stewardship. See Sibyl, Schwarzenbach, “Locke’s Two Conceptions of
Property” (1988) 14 (2) Social Theory and Practice 141 at 146
43 Roberta Rosenthal Kwall, “The Author as Steward ‘For Limited Times’”, (2008) Boston University
Law Review 685 at 703
44 “Between the time a gift comes to us and the time we pass it along, we suffer gratitude. Moreover,
with gifts that are agents of change, it is only when the gift has worked in us, only when we have
come up to its level, as it were, that we can give it away again. Passing the gift along is the act of
gratitude that finished the labor. The transformation is not accomplished until we have the power to
give the gift on our own terms. Therefore, the end of the labor of gratitude is similarity with the gift or
with its donor.” (added emphasis) Lewis Hyde, supra note 41, p.47

 196

who like it.” 45 His later experiment with copyleft, which makes programmers

contribute (publicly released) modifications or improvements back to the community,

further bears out his belief in “the cyclical dimension of creative enterprise” that is

articulated in the legal language through software licensing.46 To summarise, fusing

the aforementioned two components together, author-stewardship manages to

“blend[] an awareness of both externally endowed inspiration and the cyclical

dimension of creative enterprise”47, and it is very different from the conventional

author-ownership model, which argues that the solitary self-inspired Romantic

genius needs to be rewarded with private ownership to protect their creative works.

Reputational Incentive in the FOSS Community

It would be unrealistic to expect all FOSS programmers to harbour the same

irresistibly strong and noble sense of stewardship responsibility to share software as

Stallman does. FOSS licensing only prescribe a minimum set of stewardship

responsibilities that secure software freedom, but they do not and cannot translate the

entire MIT-style stewardship tradition in legal forms. In fact, individual

programmers are often driven by a diversity of motivational forces ranging from a

high sense of stewardship to highly self-interested motives. This is in line with

Macneil’s general thesis (as discussed in Chapter 4) that participants to a long-term

cooperative relation can be driven by a spectrum covering both individual utility-

enhancement and non-utility-maximisation motives. Most interestingly, if Stallman’s

high sense of stewardship represents the selfless non-utilitarian end of the spectrum,

Eric Raymond’s argument in favour of reputational reward marks the individualistic

utility end of the spectrum of FOSS programmers’ motivations. As I will soon show

that, in the following Section 5.3, US case law (represented by the Jacobsen case)

seems to be primarily based on a Raymondian individualistic understanding of FOSS

45 Stallman further explains his ideal of sharing software with community: “By working on and using
GNU rather than proprietary programs, we can be hospitable to everyone and obey the law. In
addition, GNU serves as an example to inspire and a banner to rally others to join us in sharing. This
can give us a feeling of harmony which is impossible if we use software that is not free. For about half
the programmers I talk to, this is an important happiness that money cannot replace.” Stallman, GNU
Initial Announcement, 1983 at <http://www.gnu.org/gnu/initial-announcement.html>
46 For the legal mechanism of copyleft in institutionalising the sharing norm, see for detail Section
3.5.1 Chapter 3
47 Roberta Rosenthal Kwall, “The Author as Steward ‘For Limited Times’”, (2008) Boston University
Law Review 685 at 703

 197

programmers’ motivation and leaves little room for a Stallmanian one, it is

worthwhile explaining Raymond’s approach in some detail now.

From a Raymondian point of view, it is futile to find whether it is morally right or

wrong for programmers to share software with the community or “hoard” software

privately. 48 It is more important to know that FOSS programmers are not

fundamentally different from other self-interested rational human beings who seek to

maximise their individual utility. A FOSS bazaar functions just like a free market

and it is made of “a collection of selfish agents attempting to maximize utility which

in the process produces a self-correcting spontaneous order more elaborate and

efficient than any amount of central planning could have achieved.”49 (added

emphasis) However, what really makes FOSS bazaar unique is the fact that money is

not primarily used as a measure of programmers’ utility.50 In this scenario, FOSS

programmers use “reputational reward” as an alternative kind of utility that they

intend to maximise. Or in Raymond’s words, reputation simply has the “utility

function” that satisfies FOSS programmers’ egos.51 More specifically, there are three

kinds of “utility” from reputation gains that may drive a programmer to participate in

a FOSS project. Firstly, Raymond does not doubt that “good reputation among one’s

peers is a primary reward”, i.e., it gives intrinsic satisfaction to a programmer.

Secondly, one programmers’ good reputation also tends “to attract attention and

cooperation from others.”52 In this sense, reputation is not a matter of individual

motivation, but it also leads to collaboration. “If one is well known for generosity,

intelligence, fair dealing, leadership ability, or other good qualities, it becomes much

easier to persuade other people that they will gain by association with you.”53 Thirdly,

“reputation may spill over and earn you higher status” in the world outside the FOSS

48 “Perhaps in the end the open-source culture will triumph not because cooperation is morally right or
software “hoarding” is morally wrong (assuming you believe the latter, which neither Linus nor I do),
but simply because the closed-source world cannot win an evolutionary arms race with open-source
communities that can put orders of magnitude more skilled time into a problem.” Raymond,
Cathedral, supra note 36
49 ibid.
50 Raymond argues that “the open-source culture doesn’t have anything much resembling money or an
internal scarcity economy, so hackers cannot be pursuing anything very closely analogous to material
wealth (e.g. the accumulation of scarcity tokens).” Raymond, Section 5, “Locke and Land Title” in
Homesteading the Noosphere, 2002, at
<http://www.catb.org/~esr/writings/homesteading/homesteading/> (hereafter Noosphere)
51 Raymond, Cathedral, supra note 36
52 Eric Raymond, Noosphere, supra note 50
53 ibid.

 198

community.54 Note all the three reasons given by Raymond is not qualitatively

different from lawyers’ understanding of highly skilled individuals’ attributional

right to secure reputational gains as a kind of “human capital”. For example, the legal

scholar Catherine Fisk is one of the most notable champions of the view that the

“reputation we develop for the work we do proves to the world the nature of our

human capital.”55 In fact, reputation is believed to be a kind of “property” owned by

individuals. “If professional reputation were property, it would be the most valuable

property that most people own.”56 This reputational “property” is especially

important to those highly skilled and highly educated workers, the value of whose

work is otherwise difficult to be accurately assessed:

Particularly in the case of highly-educated or highly-skilled employees or

people who possess a great deal of tacit knowledge, assessing the nature and

value of human capital is difficult. The abilities of a software designer or music

producer cannot be measured the way the speed of a typist or the competence of

a machine operator can. When the cost of errors in assessment is great, or when

assessments about human capital need to be made frequently or rapidly, easily,

interpretable information about human capital is valuable because it reduces

search costs. Thus, credit becomes a form of human capital itself because it

translates and signals the existence of a deeper layer of human capital.57

Although Raymond’s reputation theory seems highly plausible to explain individual

programmers’ incentive to participate in FOSS programming, it suffers from at least

two weaknesses that need to be addressed. First, Raymond’s theory by no means

gives the whole picture of multiple motivational forces behind FOSS programmers’

efforts. An important empirical survey conducted by Lakhani and Wolf shows that

reputation ranks rather low (11%) among all motivational forces that are most

commonly recognised by programmers themselves. In particular, it shows that

incentives such as programmers’ intrinsic pleasure from FOSS programming for its

own sake (“Code for project is intellectually stimulating to write”, 44.9%; “Improve

54 ibid.
55 Catherine L. Fisk, “Credit Where It’s Due: The law and Norms of Attribution” (2006) 95
Georgetown Law Journal 49 at 50
56 ibid., at 50
57 ibid., at 54

 199

programming skills”, 41.3%)58 and their desire to contribute software back to the

community (“Believe that source code should be open”, 33.1%; “Feel personal

obligation to contribute because use F/OSS”, 28.6%)59 are regarded as more

important than the reputational gains. (See Table 5.1) The second weakness of

Raymond’s theory comes from its individualistic assumption. It does not really

explain why programmers as selfish agents, who keen to maximise their individual

reputational gain, would collaborate to create an integrated project. Weber finds that

uncoordinated individual reputation competition might only introduce conflict

among individual programmers, or even lead to disintegration of a project.60

Furthermore, Raymond does not really delve into the important issue where FOSS

programmers are also keen to protect the collective reputation of a whole project. For

example, Stallman has campaigned very hard to make sure that the “GNU” project’s

always get credit when it is used in juxtaposition with the Linux kernel.61 Most

interestingly, FOSS project-leaders may not only resort to copyright to protect FOSS

programmers’ attribution right (as the legal carrier of FOSS programmers’

reputation), but they may also evoke trademark law to protect a certain project’s

name as the repository of the collective reputation or goodwill, which will be dealt

with in the following section in some detail.

58 These top two motivations (i.e. “Code for project is intellectually stimulating to write” and
“Improve programming skills”) from the survey largely bear out Richard Sennett’s research on FOSS
programmers’ obsession with the quality of their work for its own sake and their perfectionist
tendency to improve their technical skills. (He uses Linux programmers as an example) See Richard
Sennett, Craftsman, Richard Sennett, The Craftsman (New Haven & London: Yale University Press,
2008) pp.24-27
59 These two obligations under the heading “obligation/community-based intrinsic motivations” seem
to be very close to Lewis Hyde’s “labour of gratitude” argument as mentioned above in Stallman’s
case, where Stallman feels obligated to share software with the community. See Hyde, supra note 41,
p.47
60 Weber lists many possibilities where programmers’ reputational incentives can fragment a project:
“You might try to enhance your reputation by gravitating toward a project with the largest number of
other programmers (because this choice increases the size of your audience, the number of people
who would actively see your work). This would be inefficient on aggregate: Open source projects
would then attract motivated people in proportion to their existing visibility and size, with a winner-
take-all outcome. Or you might migrate toward projects that have the most difficult problems to solve,
believing that you cannot make a reputation working on merely average problems (even for a big
audience). But this choice would progressively raise the barriers to entry and make it difficult for new
programmers to do anything valuable. Or you could engage in strategic forking—creating a new
project for the purposes of becoming a leader and competing for the work of other programmers by
distributing out the positive reputation returns more broadly within the community.” Weber, Success,
pp.148-9
61 Stallman, “What’s in a Name?” at <http://www.gnu.org/gnu/why-gnu-linux.html>

 200

Table 5.1 Lakhani and Wolf’s Survey of Motivations t o Contribute to FOSS Projects 62

Motivation

Percentage of respondents
indicating up to three
statements that best reflect
their reasons to contribute

Percentage of
volunteer
contributors

Percentage
of paid
contributors

Enjoyment -based
intrinsic
motivation

Code for project is
intellectually stimulating
to write

44.9 46.1 43.1

Economic/extrins
ic-based
motivation

Improve programming
skills

41.3 45.8 33.2

Code needed for user
need (Work need only)

33.8 19.3 55.7

Code needed for user
need (Nonwork need)

29.7 37.0 18.9

Enhance professional
status

17.5 13.9 22.8

Obligation/comm
unity-based
intrinsic
motivations

Believe that source
code should be open

33.1 34.8 30.6

Feel personal obligation
to contribute because
use F/OSS

28.6 29.6 26.9

Like working with this
development team

20.3 21.5 18.5

Dislike proprietary
software and want to
defeat them

11.3 11.5 11.1

Enhance reputation in
F/OSS community

11.0 12.0 9.5

Note: This survey is also relevant to my argument about relational contract as discussed in
Chapter 4. It shows that FOSS collaboration is not motivated solely by individuals’ desire to
maximise their material wealth, but it is driven by a diversity of values ranging from intrinsic
satisfaction of code writing to reputational enhancement. This defeats the Easterbrookian
assumption that all that licensees want is the lowest price, but it is in line with Macneil’s
viewpoint that participants are driven by both economic and non-economic motivational
forces to collaborate under a long-term relational contract.

5.3 Development of the Legal Persona of FOSS Programmers

Although FOSS collaboration is largely based on the nonexclusive use and reuse of

software components, this does not mean that FOSS programmers wish to give up

the paternity right in their contributions. Instead, they are keen to claim credit where

it is due and an efficient attribution system is necessary for that purpose. Almost all

FOSS licences, regardless of being copyleft or non-copyleft, require downstream

distributors to retain copyright notices including attribution information about the

concerned projects and contributing programmers in all future public redistributions.

62 Reproduced from Karim R. Lakhani and Robert G. Wolf, “Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software Projects”, in Perspective on Free
and Open Source Software, eds. by Feller, Fitzgerald, Hissam & Lakhani (Cambridge, Mass.: MIT
Press, 2005) pp.13-14

 201

Legal scholars has been well aware that there is a strong norm of retaining correct

attribution information in the FOSS community, where licences are used to make

sure that credit as well as blame goes to the right projects and contributors. For

example, Fisk observes that “[a]ttribution is important to many participants in the

open source movement, even though exclusivity is shunned.”63 She further points out

that because FOSS programs are publicly modifiable, both upstream contributors and

downstream modifiers should be correctly attributed for their respective

contributions:

Open source licenses are an example of explicit effort to allocate credit and

blame in attribution. All open source licenses seek to prevent bad modifications

of the software from being attributed to the original authors. Although the

explanation of the attribution requirements contained in the licenses are more

focused on preventing wrongful attributions of blame than credit, presumably if

a modification proves to be wonderful, the original authors will not get credit

either.64 (added emphasis)

In the same vein, the Free Software Act (FSA), which has been proposed by Free

Software Consortium, nicely summarises the licensing norm of correct attribution in

three points. “Authors’ rights shall be protected in the following way […]: (a) The

author of any free software program retains the right of attribution to his/her work. (b)

Any modifier must acknowledge the authorship of the original program and the

authorship of the modification. (c) All authorship must always be correctly

attributed.”65 This explanation and Fisk’s have something important in common.

Both acknowledge the importance of a proper attribution system that should be even-

handed on the authorial interests of both upstream authors and downstream

modifying authors. It is worth noting that FOSS attribution is not merely about

crediting these individual authors, but it is also about acknowledging the collective

authorship that can be credited as the source of an integrated software artifact. Very

often this integrated collective authorship is known to the general public through the

63 Fisk, supra note 55 at 89
64 ibid., p.90
65 Jaco Aizenman, Maureen O’Sullivan, Martin Pedersen, Pedro Rezende, Shilu Shah, Pia Smith,
Jorge Villa, Free Software Act (Draft) (2004) 1 (4) SCRIPT-ed at
<http://www.law.ed.ac.uk/ahrc/script-ed/issue4/FS-Act.pdf>

 202

name of the corresponding project (e.g. “Linux”, “Apache”, “GNU”, etc.). Some

projects would become brand names if they continue to provide products or services

with certain a level of consistent quality for a sustaining period of time.

 Although there is clearly a need to attribute FOSS authors at both individual and

collective levels, Anglo-American legal system does not straightforwardly have a

statutory attribution right for computer programmers. This has posed two difficult

problems for the jurisprudence of FOSS licensing to tackle. First, how do FOSS

programmers write their attribution requirement into the licensing condition of

copyright licences? Secondly, how do FOSS programmers use the trademark as a

proxy attribution right system to protect the reputation or goodwill of the collective

authorship of the whole project? My analysis below finds that FOSS programmers, in

order to compensate for the lack of statutory attribution right under copyright, have

no choice but to assume the legal persona as the “owner” of intellectual property

(either copyright or trademark, or both) of their contributions in the first place, which

will then allow them to indirectly claim authorship legally. The situation is far from

ideal and certain, but it partially works without changing the existing legislative

structure about programmers’ attribution right. As copyright and trademark are

different legal regimes in relation to authorial attribution, I will deal with “copyright”

(in Section 5.3.1) and “trademark” (in Section 5.3.2) separately. The discussion will

be followed by a further examination of how FOSS project leaders find the legal

form of their stewardship in trademark in comparison with copyright (in Section

5.3.3).

5.3.1 Claiming FOSS Authorship under Law (I): Copyright

Strictly speaking, authors’ right to claim attribution of their creation, also known as

the right of paternity, is not a proprietary right. Instead, it belongs to the “moral

right” regime independent from a copyright owner’s economic right. Article 6bis of

the Berne Convention makes this clear: “Independently of the author’s economic

 203

rights, and even after transfer of the said rights, the author shall have the right to

claim authorship of the work […].66

Unfortunately, the Berne-type attribution right is not directly applicable to software

programmers under Anglo-American copyright law. In the US, only visual artists but

not computer programmers are entitled to the moral right of attribution.67 In the UK,

computer programmers are expressly excluded from having the right to be identified

as author68, and this attribution right is only conferred to a few non-programming

creators who affirmatively assert their attributional interest.69 However, the British

copyright law traditionally gives authors a right against “false attribution”, which

may still be applicable to computer programmers. This British indigenous moral

right is not derived from the Berne Convention, but it harks back to the UK Fine Arts

Copyright Act 1862, and has its reincarnations in respectively in s.43 of the

Copyright Act 1956 and s.84 of CDPA 1988.70 Lai finds this right against false

attribution is an historical “anomaly” and it makes little sense for computer

programmers to have it without having the right of attribution in the first place.71 In

comparison, US programmers do not readily have a category against false attribution

under their copyright law, but they may have an analogue protection under s.43(a) of

66 The other moral right that is under same clause is known as authors’ right of integrity, which is the
right to “object to any distortion, mutilation or other modification of, or other derogatory action in
relation to, the said work, which would be prejudicial to his honour or reputation.” Berne Convention
the Berne Convention for the Protection of Literary and Artistic Works (1971 revision with 1979
amendments)
However, some countries, such as the UK, have not adequately localised Berne’s moral rights regime
into their national legislation. See Laddie et. al. Modern Law of Copyright and Design, p.586
67 Visual Artists Right Act , 17 U.S.C s.106A ,
68 S.79 (2) (a) CDPA
69 s. 77. However, even for those non-programming creators, s.77(1) ends with a proviso saying that
the right of attribution “is not infringed unless it has been asserted”. This requirement of assertion
makes the CDPA out of line with Berne Convention no-formality requirement. Ginsburg believes that
the CDPA’s text is a mistranslation of 6bis of Berne’s Convention, as “the drafters of the CDPA
fashioned an obligation to assert authorship before the right to be recognized can take effect.” Jane C.
Ginsburg, “The Right to Claim Authorship in U.S. Copyright and Trademarks Law”, (2004) 41 (2)
Houston Law Review 263, p.291
70 For a brief statutory history of this right, see Laddie et. al. supra note 66, pp.585-6
71 “If it is important to the author of a computer program not to have his work falsely attributed, it is
difficulty to see why it is not important for him to be attributed as the author in the first place.” Lai,
The Copyright Protection of Computer Software in the United Kingdom (Oxford and Portland,
Oregon: Hart Publishing, 2000), p.20

 204

the Lanham Act that codifies the common law action of passing off, which I will

come back to in Section 5.3.3 in some detail.72

Although Anglo-American copyright has largely failed to reproduce a Berne-type

attribution regime to protect their programmers, this lacuna may be filled by private

licensing schemes made by programmers in their capacity of copyright owners. This

means these copyright licences make attribution ride on the proprietary right owned

by FOSS developers. For this reason, Lastowka argues that Anglo-American

copyright only protects attribution half-heartedly “in a collateral fashion”, where the

attribution requirement needs to be “contracted in”:

It might be argued that copyright protects attribution in a collateral fashion .By

protecting works of creative authorship as property, copyright enables the

contractual protection of attribution. If an author can control the dissemination

and reproduction of her work pursuant to copyright law, copyright law will

grant her the contractual leverage to protect her attribution interests. (added

emphasis)73

So FOSS developers, in order to have their moral right of attribution enforceable

under law, must take on the legal persona first as the copyright owners. The

possibility of collateral protection of attribution via a copyright licence has been

subject to a 2008 landmark ruling made by the US Court of Appeals for the Federal

Circuit (CAFC) in Jacobsen v. Katzer, where the FOSS code in dispute was

reproduced, modified and distributed without attributing to the original FOSS

contributors.74

“Collateral” Protection of Attribution in Jacobsen v. Katzer

72 See, for example, Gilliam v ABC 538 F.2d 14 (2d Cir.1976); Follett v New American Library 497 F.
Supp. 304 (SDNY, 1980)
73 Lastowka, “The Trademark Function of Authorship”, (2005) 85 Boston University Law Review
1172 at 1214 (here after “Trademark Function”)
Although I follow Lastowka to use the term “collateral” protection of attribution under copyright, my
following discussion of the Jacobsen case shows that FOSS licences are not necessarily “contractual”,
but they can be conditional licences where attribution is made the pre-condition to use copyrighted
FOSS programs.
74 535 F.3d 1373 (Fed. Cir. 2008)

 205

The Jacobsen case concerns a dispute over a FOSS project known as “Java Model

Railroad Interface” (JMRI) that develops software controlling model railroads. JMRI

is led by Professor Robert Jacobsen, who is a Berkeley physicist by profession and a

model train hobbyist in his spare time. The JMRI code under dispute was then

released under Artistic License (AL)1.0.75 It is generally believed that this licence

has explicitly created a private regime of moral rights enabling JMRI developers to

have wider authorial control than allowed under the statutory language of the US

copyright law. The Preamble of AL1.0 makes no effort to conceal this intent: “The

intent of [AL] is to state the conditions under which a Package may be copied, such

that the Copyright Holder maintains some semblance of artistic control over the

development of the package […]”.76 (added emphasis) Fabricius comments that “the

essential novelty” of AL lies exactly in its “granting the author more attribution and

creative control than would be granted in the ordinary case of a copyright license to

copy, distribute, and prepare derivative works”.77 In this way, JMRI programmers are

given “a private moral right” that is akin to the Section 106A of the U.S. Visual

Artists Right Act providing attribution right only to certain visual artists.78

The actual dispute revolves around a program called DecoderPro®, which is a sub-

project of the JMRI.79 In September 2006, the JMRI developers discovered that

Matthew Katzer had copied and modified some DecoderPro files into his own

75 JMRI now changes their licence to the GPL 2.0.
AL1.0 is not drafted by a lawyer but it is written by Larry Wall, a linguist by training and a reputable
hacker who has invented the widely used open source Perl programming language. Wall, though not a
lawyer, was convinced that copyright law was crucial to any open source project. A short extract
below from Wall’s writing reflects his awareness of the importance of copyright: “A circle with a ‘c’
in it [i.e. ©]. Open Source lives or dies on copyright law. Our fond hope is that it lives. Please, let’s all
do our part to keep it that way. If you have a chance to plug copyrights over patents, please do so. I
know many of you are already plugging copyright over trade secrets. Let’s also uphold copyright law
by respecting the wishes copyright holders, whether or not they are spelled out to the satisfaction of
everyone’s lawyer.” See Larry Wall, “Diligence, Patience, and Humility”, in Open Sources—Voices
from the Opens Revolution, DiBona, Ockman & Stone (eds.), (Sebastopol: O’Reilly, 1999) p.142
76 Preamble, Artistic License 1.0
77 Erich M. Fabricius, “Jacobsen v. Katzer: Failure of the Artistic License and Repercussions for Open
Source” (2008) North Carolina Journal of Law & Technology 65, at 85
78 ibid., at 85
79 “DecoderPro is able to easily configure more than 300 types of devices because hobbyists have
contributed more than 100 decoder definition files. These definitions, produced by lots of separate
contributors, are what makes the program so useful, since they express a model railroader’s view of
how best to configure a particular device. DecoderPro first started using this approach in September
2001” JMRI, “JMRI Defense: Our Story So Far”, at <http://www.decoderpro.com/k/History.shtml>,
last retrieved on 15 April 2010

 206

proprietary product. At the same time Katzer deliberately removed the following

information that would have identified JMRI contributors as authors of their code:

1) the authors’ names,
2) JMRI copyright notices
3) references to the COPYING file
4) and identification of SourceForge or JMRI as the original source of the

definition files, and
5) a description of how the files or computer code had been changed from the

original source code.80

Katzer did not dispute that his act of copying, but he contended that AL as a public

licence had permitted him to copy the code and non-attribution of JMRI authors was

not a cause of action itself under the US copyright law.81 So the difficult question is

whether Katzer’s act of deleting attribution information would lead to the

infringement of the copyright of DecoderPro software.82 The trial court (District

Court for the Northern District of California) took the view that the attribution

requirement was merely a contractual covenant, the breach of which would only

entitle JMRI developers to contractual damages but not an injunctive relief: “The

condition that the user insert a prominent notice of attribution does not limit the

scope of the license. Rather, Defendants’ alleged violation of the conditions of the

80 535 F.3d 1373 at 1376
To illustrate, a typical JMRI file contain a piece of XML code showing who the author is. Here is an
example from JMRI’s webpage about the dispute:
 <version author="Phil Grainger (phil.grainger@ca.com)"
 version="1" lastUpdated="20030805" />
The above XML code identifies three items of author-related information: 1) the author’s name is
“Phil Grainger” followed by his email address; 2) the version number is "1"; 3) it was last updated by
the author on the date of 5 August 2003. However, when Katzer copied of JMRI files, he only retains
the last two items, but he deliberately left out the first item about JMRI authors. JMRI developers
further observes: “Original JMRI definition files contain the version, the date modified, the author’s
name, and a copyright notice. These have free-form content, so there are many formats. The version
strings and the modification date strings in the KAM files are EXACTLY the same as those in the
original JMRI files they were copied from. The author’s name, however, was not copied into the
KAM file, nor was the JMRI copyright information.” JMRI, “JMRI Defense: Our Story So Far”, at
<http://www.decoderpro.com/k/History.shtml>; For more evidential information, see JMRI, “Copying
Evidence: JMRI Defense: Evidence KAM Copied From JMRI”, at
<http://jmri.sourceforge.net/k/copycomparison.shtml>
81 The CAFC finds that the parties “do not dispute that Jacobsen is the holder of a copyright for
certain materials distributed through his website. Katzer/Kamind also admits that portions of the
DecoderPro software were copied, modified, and distributed as part of the Decoder Commander
software. Accordingly, Jacobsen has made out a prima facie case of copyright infringement.
Katzer/Kamind argues that they cannot be liable for copyright infringement because they had a license
to use the material.” 535 F.3d 1373 at 1379
82 It is noticed that the “heart of the argument on appeal concern whether the terms of the AL are
conditions of, or merely covenants to, the copyright license.” Ibid., at 1380

 207

license may have constituted a breach of the nonexclusive license, but does not

create liability for copyright infringement where it would not otherwise exist.”83

Failing to get an injunction, Jacobsen appealed the case to the CAFC, which reversed

the district court ruling by arguing that attribution of JMRI developers is a necessary

condition for the public to use their copyright material.84 The failure to fulfil this

condition would lead to infringement of copyright, which may give rise to the

remedy of injunctive relief. Note that the CAFC does not straightforwardly enforce

JMRI authors’ attribution as such: “Open source licensing restrictions are easily

distinguished from mere ‘author attribution’ cases. Copyright law does not

automatically protect the rights of authors to credit for copyrighted materials.”85

Instead, FOSS developers’ attribution interest is only collaterally protected when

they are the condition of a copyright licence that is intended to fulfil certain

economic goals:

The clear language of the Artistic License creates conditions to protect the

economic rights at issue in the granting of a public license. These conditions

govern the rights to modify and distribute the computer programs and files

included in the downloadable software package. The attribution and

modification transparency requirements directly serve to drive traffic to the

open source incubation page and to inform downstream users of the project,

which is a significant economic goal of the copyright holder that the law will

enforce.86 (added emphasis)

This interpretation seems largely, if not entirely, to vindicate Lastowka’s view that

copyright only gives collateral protection to author’s attribution.87 In other words, the

83 The District Court’s decision was quoted by CAFC, ibid.
84 The appellate court made two observations to support its argument. First, AL states “on its face”
that it creates “conditions”: “The intent of this document is to state the conditions under which a
Package may be copied [...]” (added emphasis). Secondly, the US case law shows that the phrase
“provided that” is typically employed to indicate that a certain condition has to be met. For example,
the clause that Katzer was alleged to breach is Section 3 of AL stipulating that licensees, among other
conditions, “may otherwise modify [their] copy of this Package in any way, provided that [they] insert
a prominent notice in each changed file stating how and when [they] changed that file […]” (added
emphasis). AL 1.0.
85 535 F.3d 1373, FN5 at 1382
86 535 F.3d 1373 at 1382
87 Lastowka argues that copyright give collateral protection of “creative authorship as property”
through contractual arrangements. See Lastowka, “Trademark Function”, supra note 73

 208

CAFC ruling interprets that FOSS authors need to claim their attributional interest as

a matter of licensing condition in furtherance of the economic goal of copyright and

thus wear the legal persona as copyright owner in the first place. The licensing

“conditions” including the attribution requirement help to get upstream authors as

“copyright holders” of their contributions always credited in downstream

distributions:

The conditions set forth in the Artistic License are vital to enable the copyright

holder to retain the ability to benefit from the work of downstream users. By

requiring that users who modify or distribute the copyrighted material retain the

reference to the original source files, downstream users are directed to

Jacobsen's website. Thus, downstream users know about the collaborative effort

to improve and expand the SourceForge project once they learn of the

“upstream” project from a “downstream” distribution, and they may join in that

effort.88 (added emphasis)

Although the Jacobsen ruling is widely welcomed among FOSS developers and

supporters of their cause89, it is not entirely free from problems. There are at least

two problems that are worth further scrutiny. The first one concerns an unintended

consequence that FOSS author-owners may freely (mis)use Jacobsen-like licensing

conditions to expand control over their works. It has been worried that Jacobsen can

be an open-source version of the unpopular Seventh Circuit’s ProCD decision90.

Narodick points out that Jacobsen “does not represent a fundamental shift in judicial

policy, but the Federal Circuit's rationale in Jacobsen may justly concern the very

open source software engineers who want to produce more programs in the future.

This expansion of intellectual property rights effectively stacks the deck in favor of

any software producer already in the market.”91 If Narodick is right, Jacobsen is just

88 535 F.3d 1373 (Fed. Cir. 2008) at 1381
89 For example, Lessig wrote a blog entry celebrating the Jacobsen decision: “So for non-lawgeeks,
[the Jacobsen case] won’t seem important. But trust me, this is huge.”, see Lessig, “Huge and
Important News: Free Licenses Upheld”, 13 August 13 2008, at
<http://lessig.org/blog/2008/08/huge_and_important_news_free_l.html>
90 For the discussion of ProCD and its influence in software licensing jurisprudence, see Chapter 4
91 It is observed that “ProCD has been gradually accepted by the federal judiciary up through and
including the decision in Jacobsen.” Benjamin I. Narodick, “Smothered by Judicial Love: How
Jacobsen v. Katzer Could Bring Open Source Software Development to a Standstill” (2010) 16 Boston
University Journal of Science and Technology Law 264 at 279-281

 209

another case where copyright owners expand their proprietary right through a private

licensing scheme regardless of the software being FOSS or proprietary: in this case,

the expansion yielded an author’s attribution right; in another case, it could diminish

or eliminate a user exception or effectively (as in ProCD) extend copyright

protection to non-copyrightable materials. Gomulkiewicz is aware of a view that not

all restrictions in a software licence will qualify as a non-contractual licensing

“condition”, but they should be limited to certain acts that directly concern or “touch

upon” copyright. In this scenario, in order to decide whether a clause is too

expansive to qualify as a copyright “condition” proper, questions must be asked how

far or remotely this condition “touches on”, or is related to, the right to copy,

distribute or make derivative works under copyright. “The farther a purported

condition strays from touching on an exclusive copyright, the less compelling the

case that a licensee infringed a copyright by failing to abide by the condition.”92

Unfortunately, in the case of moral rights, Gomulkiewicz himself is not sure whether

attribution “touches upon” copyright, because it is an extremely uncertain “gray

area” that is not related “directly to copying, distribution, or derivative works”.93

This uncertainty leads to a second problem: if CAFC’s interpretation gives an

impression of AL being a device to privately organise copyright holders’ “economic”

interests, does it really fall under the Easterbrookian neoclassical agenda to establish

economic efficiency as the best justification for standard-form software licences?

This is not entirely clear. CAFC’s underlying philosophy seems to be only slightly

more eclectic than the economic reductionist approach apparent in the ProCD

rationale, which assumes that all software consumers or end-users need is the

cheapest price with transaction cost saved from the unbargained standard-form

92 Gomulkiewicz gives some sample criteria about “touching upon” copyrights: “To qualify as a
condition on the right to copy, for instance, the condition should relate to issues such as: Copying onto
what? Using what to make copies? How many copies? What type of copies? Who can make copies?
For a condition on the right to distribute, the condition should relate to issues such as: Where (and
where not)? When? To whom? By whom? For how long? For a condition on the right to make
derivative works, the condition should relate to: What type of works? Who can make derivatives?
Analytically, this approach seems to make sense—copyright violations triggered by breach of a
license condition should actually invoke copyrights.” Robert Gomulkiewicz, “Conditions and
Covenants in License Contracts: Tales from a Test of the Artistic License” (2009) 17 Texas IP Law
Journal 335 at 354
93 He also feels uncertain about the situation of copyleft. For example, GPL’s share-alike provision
“might not qualify” as a “condition” in this sense either, because it does not directly “touch upon”
copyrights. ibid., 355

 210

licence.94 The Jacobsen court is aware that FOSS is different from other traditional

commercial copyright materials that are mainly sold for money, but the lack of

monetary exchange with FOSS does not mean it cannot bring economic benefit to the

FOSS author as the copyright holder:

Traditionally, copyright owners sold their copyrighted material in exchange for

money. The lack of money changing hands in open source licensing should not

be presumed to mean that there is no economic consideration, however. There

are substantial benefits, including economic benefits, to the creation and

distribution of copyrighted works under public licenses that range far beyond

traditional license royalties. For example, program creators may generate

market share for their programs by providing certain components free of charge.

Similarly, a programmer or company may increase its national or international

reputation by incubating open source projects. Improvement to a product can

come rapidly and free of charge from an expert not even known to the copyright

holder.95

The above paragraph shows that CAFC has noticed at least two types of non-

monetary “economic” gains, the first being market share growth a certain FOSS

product and the second being FOSS programmers’ boosted reputation that may

attract a diversity of expertise needed to improve software itself. Note the second

benefit from a good reputation (as italicised above in the CAFC’s decision) is not

qualitatively dissimilar from a Raymondian economic understanding of the

reputational incentive in FOSS production, where good reputation will attract

cooperation from other experts: FOSS programmers’ “prestige is a good way […] to

attract attention and cooperation from others. If one is well known for generosity,

intelligence, fair dealing, leadership ability, or other good qualities, it becomes much

easier to persuade other people that they will gain by association with you.”96 This is

exactly a kind of non-monetary benefit that proprietary software owners would not

have, because their users are merely consumers who are not allowed to modify or

94 For ProCD’s economic reductionist approach, see Deborah Post,“Dismantling Democracy:
Common Sense and the Contract Jurisprudence of Frank Easterbrook”, (2000) 16 Touro Law Review
1205; see also Section 4.4.1 Chapter 4 of this dissertation for more detail.
95 535 F.3d 1373, 1379
96Eric Raymond, Noosphere, supra note 50

 211

improve the proprietary products. In this sense, the Jacobsen court seems to agree

that reputation is a special human capital, which resembles but is not exactly the

same as money. This view has been articulated by Rishab Ghosh who likens FOSS

programmers’ reputation to “a currency, i.e. a proxy, which greases the wheels of the

economy”, but it is subtly different from the monetary currency:

Unlike money, reputation is not fixed, nor does it come in the form of single

numerical values. It may not even be cardinal. Moreover, while a monetary

value in the form of price is the result of matching demand and supply over time,

reputation is more hazy. In the common English sense, it is equivalent to price,

having come about through the combination of multiple personal attestations

(the equivalent of single money transactions). 97

Apart from being a non-monetary “hazy” currency, reputation also functions as a

proxy-measure of quality of one’s work as assessed by peer programmers. Weber

finds that a FOSS “author is too close to the work and needs external measures of

quality in order to know whether the work is good and how to improve it” 98 and

that’s why external assessment of reputation by peers is needed:

As is true of many technical and artistic disciplines, the quality of a

programmer’s mind and work is not easy for others to judge in standardized

metrics. To know what is really good code and thus to assess the talent of a

particular programmer takes a reasonable investment of time. The best

programmers, then, have a clear incentive to reduce the energy that it takes for

others to see and understand just how good they are. […] The programmer

participates in an open source project as a demonstrative act to show the quality

of her work. Reputation within a well-informed and self-critical community

becomes the most efficient proxy measure for that quality.99

97 Rishab Ayer Ghosh, “Cooking Pot Markets: An Economic Model for the Trade in Free Goods and
Services on the Internet” (1998) 3 (3) First Monday at
<http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/580/501>
98 Weber, Success, p.141
99 Weber, Success, p.142
Fisk is also aware that reputation as a quality measure is not just in software area. In most cases of
“highly-educated or highly-skilled employees or people who possess a great deal of tacit knowledge,
assessing the nature and value of human capital is difficult”: “The abilities of a software designer or

 212

In short, the double function of reputation as both an incentive and a proxy-measure

of quality largely bears out CAFC’s analysis that the “lack of money changing hands

in open source licensing should not be presumed to mean that there is no economic

consideration”100, but the licensing condition requiring attribution can help to fulfil

copyright owners’ “economic” goal of organising FOSS production and circulation.

However, the Jacobsen court’s economic approach, which makes attribution ride on

the economic interest of the copyright holder, has to pay a price. It unfortunately

screens out some “softer” non-economic values (e.g. “software freedom”) that a true

Macneilian relational licence would embody.101 For example, Stallman has insisted

that the licensing conditions of the GPL are intended to advance “software freedom”,

which is an intrinsic value independent of programmers’ economic interests.102 He

further argues that accurate attribution to the names of “free software” projects is

absolutely necessary to spread the ideal of “software freedom” behind their efforts.

For example, as the “GNU” software is a significant integral component in the whole

Linux operating system, Stallman is afraid that a common non-attribution to “GNU”

would only leave people oblivious to the “software freedom” value that GNU

programmers are keen to spread. For this reason, he is emphatic that the right way of

attribution of the operating system is “GNU/Linux” rather than “Linux”. He is even

prompted to write an essay—“What’s in a Name”—to stress the importance of

attribution to GNU and the underpinning software freedom ideal, without which their

efforts may be gradually watered down by the encroachment of proprietary software:

music producer cannot be measured the way the speed of a typist or the competence of a machine
operator can. When the cost of errors in assessment is great, or when assessments about human capital
need to be made frequently or rapidly, easily, interpretable information about human capital is
valuable because it reduces search costs. Thus, credit becomes a form of human capital itself because
it translates and signals the existence of a deeper layer of human capital.” Fisk, supra note 55, p.54
100 535 F.3d 1373, 1379; supra note 95
101 Recall that, in Chapter 4, I argue that a Macneilian relational licence is very different from a
neoclassical contract (as exemplified by Easterbrook’s ProCD ruling) but it embodies a multiplicity of
values including those non-economic values. See also William Whitford, “Ian Macneil’s Contribution
to Contracts Scholarship”, (1985) Wisconsin Law Review 545
102 The Jacobsen court seems to be skewed towards the business-friendly “open source” approach
advocated by Raymond, in order to argue that FOSS licensing conditions have the effect of furthering
the economic goal of copyright holders. However, it seems difficult to square the more purist “free
software” values with the Jacobsen ruling. Stallman argues that “free software is an ethical
imperative, because only free software respects the users' freedom. By contrast, the philosophy of
open source considers issues in terms of how to make software “better”—in a practical sense only.”
See Stallman, “Why Open Source Misses the Point of Free Software” at
<http://www.gnu.org/philosophy/open-source-misses-the-point.html>

 213

Names convey meanings; our choice of names determines the meaning of what

we say. An inappropriate name gives people the wrong idea. […] Is it important

whether people know the system's origin, history, and purpose? Yes—because

people who forget history are often condemned to repeat it. The Free World that

has developed around GNU/Linux is not guaranteed to survive; the problems

that led us to develop GNU are not completely eradicated, and they threaten to

come back. 103

According to Stallman, the GNU project desperately needs credit because their cause

of fighting for software freedom is far from successful and the correct attribution to

the project would constantly remind people of this cause: “If ‘the job’ [of the free

software movement] really were done, if there were nothing at stake except credit,

perhaps it would be wiser to let the matter drop. But we are not in that position. To

inspire people to do the work that needs to be done, we need to be recognized for

what we have already done. Please help us, by calling the operating system

GNU/Linux.” 104 Interestingly, the Jacobsen ruling did mention the (GNU/) “Linux”

system twice in passing, referring to “GNU” on the first occasion 105 but not the

second one106. It is worth noting that on the second occasion, the “Linux” system

(without attributing to GNU) is quoted as an example to show why FOSS licensing is

essential to fulfil the economic goal of “creative collaborative projects” in a most

efficient way:

Open Source software projects invite computer programmers from around the

world to view software code and make changes and improvements to it.

Through such collaboration, software programs can often be written and

debugged faster and at lower cost than if the copyright holder were required to

do all of the work independently. In exchange and in consideration for this

103 Stallman, “What’s in a Name?” at <http://www.gnu.org/gnu/why-gnu-linux.html>
104 ibid.
105 “Open source licensing has become a widely used method of creative collaboration that serves to
advance the arts and sciences in a manner and at a pace that few could have imagined just a few
decades ago. […] Other public licenses support the GNU/Linux operating system […].” 535 F.3d 1373
at 1378 (added emphasis)
106 This time the court only mentions the “GNU” in juxtaposition with the “GPL”, but not with
“Linux”, i.e., it does not use the term “GNU/Linux” as insisted by Stallman. The court writes that “the
GNU General Public License, which is used for the Linux operating system, prohibits downstream
users from charging for a license to the software.” ibid., FN 2 at 1379

 214

collaborative work, the copyright holder permits users to copy, modify and

distribute the software code subject to conditions that serve to protect

downstream users and to keep the code accessible.107

Note that CAFC interprets FOSS licensing exactly as a cost-efficient way of

manufacturing and improving software thanks to the collaborative intelligence that

can be attracted to the job: because “software programs can often be written and

debugged faster and at lower cost than if the copyright holder were required to do all

of the work independently,” this is certainly in the economic interests of the

copyright holders. “Software freedom” is not mentioned as one of most important

non-economic values behind the GNU/Linux.108 In this light, I think that the

Jacobsen ruling, though hailed as a long waited victory for FOSS authors, does not

go far enough to embrace the Macneilian message to respect non-economic values in

building a relational contract. It merely substantiates Lastowka’s worry about the

persistent influence of “utilitarian and property-centric view of copyright”109 in

software licensing jurisprudence. It also illuminates how the programmer’s

attributional interest is “collaterally” protected under their legal persona as a utility-

maximising property “owner”, who uses licensing conditions to advance their

economic interest.110 Having said that, the situation is not entirely CAFC’s fault,

because the court is restrained by the existing legislative framework where there is

no stand-alone attribution right.

5.3.2 Claiming FOSS Authorship under Law (II): Trademark

Apart from relying on copyright for collateral protection of attribution, FOSS

projects nowadays are also actively seeking trademark protection of their

attributional interests. This is because trademarks designating the origin of goods or

107 The paragraph is from the main text accompanying the FN2 of the ruling. ibid.
108 Here my observation is not a critique of the CAFC’s failure to mention “software freedom”,
because the court is constrained by previous case law and the copyright legislation where attribution
on its own is not recognised. What I want do is only draw a Macneilian perspective that may shed
some light on some non-economic factors that may also essential to FOSS collaboration.
109 Lastowka, “Trademark Function”, supra note 73 at 1217
110 Lastowka comments: “If we see authorship simply as a system for efficiently parcelling out
proprietary ownership rights, the law should grant ownership (denoting it as ‘authorship’) to the most
efficient distributors and exploiters of works. Again, the problem with this model—from the
standpoint of attribution—is that the non-statutory, non-dominant author lacks the control to secure
attribution”. ibid.

 215

services are not dissimilar from an authorial attribution system ascertaining the origin

of creative works111, though I will show soon the two systems are not exactly

identical.

When a FOSS project has been able to provide a software product or service, whose

quality can be consistently experienced by the public, then the name of this project

may well accumulate enough reputation or goodwill to become a brand over the

years.112 Examples of brand-name projects are profuse and many of them already

have had registered trademarks such as Linux®, Apache®, or DecoderPro®, just to

name a limited few. The official guide provided by Software Freedom Legal Centre

(SFLC) fully recognises the necessity of protecting a “brand”-name FOSS project

through the trademark regime: “Like other products, FOSS applications develop

reputations over time as users come to associate an application’s name with a

particular standard of quality or set of features. Trade mark law can help protect this

relationship of trust and reliance that a project develops with its users; it allows the

project to maintain a certain amount of control over the use of its brand”.113 The

Apache Software Foundation’s (ASF) is an outstanding example which has been

serious about protecting the “Apache” brand by working out a trademark policy

making clear what kind of marks and graphic signs that are intended to be protected:

“‘Apache’, ‘Apache Software Foundation’, the multicoloured feather, and the

various Apache project names and logos are trademarks of The Apache Software

Foundation, and are usable by others only with express permission from the ASF.”114

Moreover, the ASF is also a pioneer that explicitly incorporates a trademark clause

111 Lastowka proposes to do a thought experiment to see the connection: “If one were […] to equate
authorial attributions with trademarks and works of authorship with all other goods, misattributions
would capture a situation that seems generally analogous to trademark infringement.” Furthermore, if
misattribution is analogous to trademark infringement, plagiarism can be said to be “reverse passing
off”. Greg Lastowka, “Trademark Function” supra note 73, at 1193
112 Similarly, Rose observes that an author’s name can be a brand name: “the name of the author—or
artist, conductor, director, or , sometimes, start, for in mass culture the authorial function is often
filled by the star—becomes a kind of brand name, a recognizable sign that the cultural commodity
will be of a certain kind and quality.” See Mark Rose, Author and Owners—The Invention of
Copyright, (Cambridge, Mass. & London: Harvard University Press, 1993) pp.1-2
113 See Software Freedom Law Center, “Chapter 5: Common Trademark Issues” in A Legal Issues
Primer for Open Source and Free Software Projects, 3 March 2008, p.31

114 Apache’s graphic mark of multi-colour feather looks like this: see Apache Software
Foundation, “FAQ—Is Apache a Trademark”, at <http://www.apache.org/foundation/licence-
FAQ.html#Marks>

 216

into its licensing scheme, which is designed to prevent unauthorised use of the marks

that it owns:

This [Apache] License does not grant permission to use the trade names,

trademarks, service marks, or product names of the Licensor, except as required

for reasonable and customary use in describing the origin of the Work and

reproducing the content of the NOTICE file.115

The Apache-style trademark clause is widely used in the FOSS community. Artistic

License 1.0 (as the one used by JMRI in the Jacobsen case) is another prominent

example: “The name of the Copyright Holder may not be used to endorse or promote

products derived from this software without specific prior written permission.”116

Interestingly, early versions of the GPL do not have a trademark clause and Stallman

was not aware that it could have been an issue. It was not until the latest version 3.0

when Stallman decided to follow ASF’s footstep by adding an option to decline “to

grant rights under trademark law for use of some trade names, trademarks, or service

marks”.117

FOSS trademarks can be either registered marks or unregistered marks, the former of

which gives stronger and more certain protection. SFLC strongly recommends that

FOSS projects to register marks with trademark authorities: “Registration grants

much stronger protections for your trademark if someone else uses the mark in

connection with goods similar to the ones described in your registration

application.”118 For example, “Linux®” is a registered marks owned by Linus

Torvalds119 and administered by the Linux Mark Institute (LMI)120. It is worth noting

115 Section 6, Apache License 2.0
116 Section 8, AL 1.0
117 Section 7 (e), GPL 3.0
118 SFLC (Richard Fontana et. al.), A Legal Issues Primer for Open Source and Free Software
Projects, 3 March 2008, at <http://www.softwarefreedom.org/resources/2008/foss-primer.html>
119 A search of “Linux” from the online USPTO Trademark Application and Registration Retrieval
system (TARR) shows following information:
Mark (words only): LINUX
Standard Character claim: No
Current Status: This registration has been renewed.
Date of Status: 2005-11-29
Filing Date: 1994-08-15
Transformed into a National Application: No
Registration Date: 1995-09-05

 217

that Torvalds and his fellow programmers were initially not aware of the need to

register the “Linux” mark when the project started to take off in the early 1990s and

the GPL 2.0 adopted by Linux has not yet had an explicit trademark clause. However,

in 1994, William R. Della Croce, Jr., a person unrelated to the development of the

Linux kernel, first registered the “Linux” mark in an attempt to collect licensing fee

from various Linux distributors. In 1996, Linus Torvalds on behalf the Linux

community filed a lawsuit against Croce’s bad-faith registration. The case was

settled and it led Croce to transfer the ownership of the mark back to Torvalds, who

then delegated his right to the LMI for the use of the mark. A similar dispute over a

registered FOSS mark also took place in the aforementioned Jacobsen case. The

JMRI project has registered mark “DecoderPro®”, but the domain name

decoderpro.com was first registered by Matthew Katzer, who had never involved in

the development of the DecoderPro product. According to Katzer, the reason for his

registration was as follows: “If I decide that to released (sic) a licensed version of an

open source development effort, what better place to have it [than] the name of the

development effort?”121 Katzer’s reason, though hardly justifying his cyber-squatting

behaviour, usefully indicates that the name of a FOSS project can be a valuable asset

as it points towards to the “development effort” behind the project. Independent of

his copyright claim, Jacobsen filed a Uniform Domain Name Dispute Resolution

Policy (UDRP) complaint with the World Intellectual Property Organisation (WIPO)

in Switzerland in order to regain the domain name for the DecoderPro project. The

WIPO panel ruled that Katzer’s registration was in bad faith and “there is essentially

a purpose on the part of Katzer to disrupt the business of a competitor by interfering

with [JMRI team’s] exercise of [their] trademark rights”. The panel ruling led

DecoderPro.com to be transferred. 122 In summary, the above two disputes give an

glimpse into the world where the registered marks (or domain names) may play a

function of crediting FOSS projects because they can be extremely useful to

ascertain their origin as well the development efforts behind.

(last retrieved 26 April 2009; the result is followed by a more detailed registration history which is not
included here)
120 See Linux Mark Institute at <http://www.linuxmark.org/>
121 See JMRI Defense: Regaining DecoderPro.com at <http://jmri.org/k/UDRP/index.shtml>
122 WIPO Arbitration and Mediation Center (Adminstrative Panel Decision), "WIPO finding on
Robert G. Jacobsen v. Jerry R. Britton”, Case No. D2007-0763, July, 2007 at
<http://www.wipo.int/amc/en/domains/decisions/html/2007/d2007-0763.html>

 218

Apart from registered marks, it is also possible for the trademark regime to protect

unregistered marks through the common law action of “passing off”. In the US

context, it was not uncommon for US authors to invoke Section 43(a) of the Lanham

Act, which has codified the “passing off” law, to protect authorial attribution to

creative works123 and even the artistic integrity of the authors.124 In 2001, the US

Court of Appeals for the Eleventh Circuit, in Planetary Motion v. Techsplosion, ruled

in favour of an attempt to resort to Section 43(a) for the unregistered trademark

protection of a FOSS product. In this case, Byron Darrah has written an email service

program for UNIX users and he released it under GNU GPL 2.0 free of charge since

1994. He named this software “Coolmail”, which appeared with the announcement

sent to the users and the user manual for each release. Darrah later transfers all

intellectual property rights in this software to a company known as Planetary Motion,

who then became the proprietor of “Coolmail” software. Techsplosion was another

company, which in 1998 offered a similar email service program also bearing the

mark “Coolmail” (four years after Darrah’s use of “Coolmail”). Planetary Motion

sued Techsplosion for infringement of the unregistered mark that was purchased

from Darrah under the Section 43 (a). The assignment of Darrah’s rights to Planetary

Motion was not disputed, but Techsplosion contended that Darrah’s “Coolmail”

software was merely a hobby unworthy of common law trademark protection in the

first place.125 The Eleventh Circuit found that Darrah did not “warehouse” or squat

on the mark, but his continuous distribution of the software under this mark gave him

the prior right to the “Coolmail” mark and his effort deserved to be identified as the

source of the product. In particular, the distribution of the software under GPL 2.0,

which lacks an explicit trademark clause, did not undermine Darrah’s IP rights in his

software including the trademark. The court pointed out:

That the Software had been distributed pursuant to a GNU General Public

License does not defeat trademark ownership, nor does this in any way compel

a finding that Darrah abandoned his rights in trademark. Appellants [i.e.,

123 e.g, Follett v. New American Library 497 F. Supp. 304 (SDNY, 1980) ; For a detailed critique of
using Section 43 (a) to prevent misattribution or “reverse passing off”, see Roberta Rosenthal Kwall,
“The Attribution Right in the United States: Caught in the Crossfire Between Copyright and Section
43(A)” (2002) Washington Law Review 985
124 e.g., Gilliam v ABC, 538 F.2d 14 (1976)
125 261 F.3d 1188 at 1198

 219

Techsplosion] misconstrue the function of a GNU General Public License.

Software distributed pursuant to such a license is not necessarily ceded to the

public domain and the licensor purports to retain ownership rights, which may

or may not include the rights to a mark.126

In fact, the GPL is more than just showing Darrah’s non-abandonment of proprietary

rights to the public domain, but it is evidence that positively affirms the intention to

control the “Coolmail” mark. “Because a GNU General Public License requires

licensees who wish to copy, distribute, or modify the software to include a copyright

notice, the license itself is evidence of Darrah’s efforts to control the use of the

‘Coolmail’ mark in connection with the Software”.127 Most relevant to our discussion,

the court is also aware that the “Coolmail” mark is extremely useful for users to

identify Darrah as the source, as well as the lead “Author/Maintainer”, of the

software:

[…] the mark served to identify the source of the Software. The ‘Coolmail’

mark appeared in the subject field and in the text of the announcement

accompanying each release of the Software, thereby distinguishing the Software

from the other programs that might perform similar functions available on the

Internet or sold in software compilations. The announcements also apparently

indicated that Darrah was the ‘Author/Maintainer of Coolmail’ and included his

e-mail address.128

This source/author identification function of the mark will become ever more

important for identifying the origin of a FOSS project, because it may be subject to

unlimited numbers of downstream redistributions. For example, when SuSE—a

famous distributor of the Linux system in Germany—attempts to incorporate

Darrah’s software into its own product, it can easily locate Darrah as the

“author/maintainer” of the software in the US and request permission to use the

“Coolmail” mark. This will in turn help SuSE’s users or even competitors to easily

trace the origin of the “Coolmail” software in SuSE’s redistribution. The appellate

court observes: “Any individual using the SuSE product, or competitor of SuSE, that

126 ibid.
127 ibid., FN 16 at 1198
128 ibid., at 1197

 220

wanted to know the source of the [Coolmail] program that performed the e-mail

notification function, could do so by referring to the user manual accompanying the

product.”129

It is not difficult to find that in a small project like “Coolmail”, Darrah is the author

as well as the owner of the program. This author-ownership makes him the

undisputable project leader who dictates the direction in which the program will

go.130 In this sense, Coolmail is a typical case of Weber’s “small project” where

leadership is “essentially the same as ownership”.131 However, as has already been

mentioned in Section 5.2.3, the basis of leadership in a much bigger project like the

Linux kernel is very different from a small project like Coolmail, but it shifts from

lead programmers’ ever-dwindling ownership of the program to their ever-growing

stewardship responsibility in shepherding the project. It is worth noting that project

leaders’ stewardship by no means entirely extinguishes their own, let alone ordinary

contributors’, “IP” rights. Instead, one of their most important stewardship

responsibilities is to coordinate programmers’ authorial interests in order to make a

legally coherent project that can be attributed as a collective project-level “author”. I

will now explain project leaders’ author-stewardship as a way to summarise FOSS

programmers’ legal persona that has been affected by both copyright and trademark

laws.

5.3.3 Legal Persona of Author-Stewardship

The legal persona of the FOSS authors is no doubt a complex and puzzling

phenomenon. It is an extremely grey intersectional area where it is not always clear

whether copyright or trademark laws should be invoked to regulate the designation

of the authorial origin of FOSS programs. For example, in Jacobsen, FOSS

attribution is protected through the copyright route, whilst, in Planetary Motion,

129 The court notes that in the user manual for SuSE Linux 4.3 contains attributional information like
this:
 “Copyright (c) 1994 Byron C. Darrah
 Author: Byron C. Darrah <darrah@kaiwan.com> , Randall K. Sharpe <rsharpe@ncsa.uiuc.edu>
 Version 1.3”
See ibid., FN 15 at 1197

130 Darrah’s author-owner-leadership even gives him the authority to assign the whole program to the
company Planetary Motion later.
131 Weber, Success, p.166

 221

trademark law is used to do the similar job. In fact, it is important to see that FOSS

authorship has both copyright and trademark elements, which play slightly different

roles in FOSS projects and are worth explaining separately. To begin with, copyright

is a legal institution that traditionally regulates the activities such as reproduction,

modification and distribution of works of authorship. An author, from a traditional

copyright’s point of view, is an individual who impresses his creative personality

onto his work. Ginsburg’s definition of “author” nicely captures the essence of

conventional copyright law’s understanding of authorship:

[…] an author is (or should be) a human creator who, notwithstanding the

constraints of her task, succeeds in exercising minimal personal autonomy in

her fashioning of the work. Because, and to the extent that, she moulds the work

to her vision (be it even a myopic one), she is entitled not only to recognition

and payment, but to exert some artistic control over it .132 (added emphasis)

From the above definition, we see that one of the most important aspects of copyright

is to reward an individual author with certain exclusive control over his creation (be

it “recognition and payment” or “some artistic control over it”). Under Anglo-

American copyright law, this exclusive control is mainly interpreted as the protection

of authors’ economic interests rather than that of their attributional interests. (To put

it succinctly, it puts “payment and recognition” before “artistic control”.) So FOSS

authors have to write copyright licences to collaterally protect their authorial

attribution as if it is of great economic consequence. The most prominent example in

the FOSS world is the aforementioned Jacobsen case, where the appellate court

argues that attribution as the licensing condition is to fulfil the economic goal of

FOSS programmers as copyright holders.133 In short, following the Jacobsen

rationale, it is essential for FOSS programmers to wear their legal persona as

copyright owners, who are assumed to be the economic utility maximisers, in order

to directly claim authorship under a FOSS licence.

However, it would be much harder to employ the same Jacobsen rationale to further

satisfactorily explain lead programmers’ stewardship to coordinate or organise peer-

132 Jane C. Ginsburg, “The Concept of Authorship in Comparative Copyright Law”, supra note 4, at
1064
133 Jacobsen v. Katzer, 535 F.3d 1373 (Fed. Cir. 2008); see also supra sub-section 5.3.1

 222

produced contributions into a project as a whole. In fact, many lead programmers

work hard to play down their own individual importance in the project and

emphasise their non-economic motives to lead the project. For example, Linus

Torvalds has been famous for his self-deprecating manner through belittling himself

as “basically a very lazy person who likes to get credit for things other people

actually do”.134 Also he refrains from expressly admitting that his devotion to the

project is motivated by mainly maximising his individual economic utility or

reputational incentive, but he regards the intrinsic pleasure to solve programming

problems in a community as the primary motive.135 In Torvalds’s own parlance, this

intrinsic pleasure in coding is the “Entertainment with the capital E”, which is “the

kind that gives your life meaning” among FOSS programmers.136 Of course, it is

FOSS project leaders’ stewardship responsibility to channel his and other

programmers’ “Entertainment” into a meaningful collaborative effort. In short, lead

programmers, as the anchorage of a project, need to build their credibility and

trustworthiness from their relatively selfless commitment. Weber observes that

Torvalds and leader programmers of other large projects must share this good

stewardship quality of being humble and at the same time capable of motivating

other programmers:

While leaders of other large projects have different personality traits, they do

tend to share an attitude that underemphasizes their own individual importance

in the process. And they share, more importantly, a commitment to invest

meaningful effort over time in justifying decisions, documenting the reasons for

design choices and code changes in the language of technical rationality that is

the currency for this community.137

134 For example, Torvalds is honest about his ever diluted individual contribution in the Linux kernel
and he makes this famous statement in his usual self-deprecating manner: Raymond, Cathedral, supra
note 36
135 Weber observes: “While [Torvalds] is not shy and does not deny his status as leader, he does make
a compelling case that he was not and is not motivated by fame and reputation. The documented
history, particularly the archived email lists, support him on this point. He continue to emphasize the
fun of programming and opportunities for self-expression and claims ‘the feeling of belonging to a
group that does something interesting’ as his principal motivation.” Weber, Success, p.167
136 Linus Torvalds, “What Make Hackers Tick? a.k.a. Linus’s Law” as the prologue to The Hacker
Ethic and the Spirit of the Information Age, by Pekka Himanen, (NY: Random House, 2001) p. xvi
137 Weber, Success, p.167

 223

Of course, FOSS leaders have an important stewardship responsibility to make sure

that the collective authorship of the whole project is always correctly attributed.

There are two routes to achieve this goal. The first route is to unify copyright

ownership of individual programmers’ code into the hand of lead programmer on

behalf of the project. This would give the project leader undisputable power to

enforce FOSS licensing conditions including its attribution requirement. For this

reason, Software Freedom Law Centre (SFLC) believes “[c]entralizing copyrights

via direct copyright assignment provides some compelling advantages if developers

are willing to do so”.138

However, it is not always an easy task to persuade every programmer to assign their

copyright to the project despite some perceived advantages of doing so. So project

leaders may seek to protect the collective authorship of a project via the trademark

route, which seems to be a more convenient legal form that FOSS leaders’

stewardship can fit into. There are two distinct features of this trademark-protected

stewardship. On the one hand, trademark protects collective authorship of a whole

project but not directly individual authorship; on the other hand, trademark does not

only protect authors, but it also protects the public from being confused about the

authorial origin of the software. First, almost all individual authors would get

copyright over their individual contribution, but most of them are unlikely to have

their names protected as trademarks. Only the names of the whole projects such as

“Linux”, “JMRI” or “Apache” would be the depository of collective reputation or

goodwill that merits trademark protection. Here the collective authorship of a project

deviates from Ginsburg’s definition of “author” as an individual “human creator”,

but it is largely an organisational fiction that integrates countless individual

authorship under a collective persona bearing the project’s name. This fictional

collective persona is necessary, because it is much easier for the public to identify

138 “In general, the most important reason to contribute copyrights to the project is to enable the
project to enforce the license. Unifying ownership of the copyrights gives the project indisputable
enforcement power that is both simple and clear. If copyright ownership is scattered throughout a
developer community spanning many countries and years, enforcement efforts face additional
barriers. With a diluted base of copyright holders, enforcement efforts are hindered by figuring out
which pieces were copied, tracking down the developers who contributed those pieces, and then
getting them involved in the enforcement action. Especially in cases where it is unclear how much or
which code has been copied, the project needs to avoid quibbling about whose copyrights are at
stake.” SFLC, Chapter 2, SFLC (Richard Fontana et. al.), A Legal Issues Primer for Open Source and
Free Software Projects, supra note 118

 224

one FOSS product with one collective “author” rather than countless individual

authors. The collective FOSS authorship bears out Heymann’s “authornym” theory

that separates “the fact of authorship” and “the statement of authorship”, the latter of

which is rightly called “authornym” by her.139 So in a FOSS project, each individual

authors would be the Ginsburgian “human creator” (i.e., the fact of authorship) while

the collective author bearing the project’s name would be the Heymannian

“authornym” (i.e., the statement of authorship), which is mainly used to give a

unified persona that can be easily recognised by the public. For this reason, Heymann

argues that “authornymic attribution is not a matter of authorial justice, but rather a

matter of organizational integrity. It preserves the organizational framework that

authornyms create such that reader responses will be informed and minimizes the

likelihood of confusion a consumer of creative commodities might otherwise

experience.”140

Secondly, to get a FOSS project’ name correctly attributed is not merely a matter of

garnering credit for this project, but it also protect users from the public from being

confused about the authorial origin of the program. It is in these users’ interest to

make them always go to the software bearing the name that can correctly identify the

authorial origin of the project. Just as Heymann observes, when a work is

misattributed, it does not only cause a copyright harm to the author but also a

trademark harm to the public, who may well be confused about the origin of the

creative work.141 In this sense, trademark law can be employed not just to give credit

to the collective authors but it also prevents public confusion, because it is exactly a

legal institution that regulates the designation of the sources of products or services.

For example, the public deserve to know that the “DecoderPro” product is produced

by Jacobsen’s team rather than Katzer’s company, or the open source “Coolmail” is

originated from Byron Darrah rather than Techsplosion, or the Linux kernel product

is maintained by Linus Torvalds and his colleagues rather than Mr. Croce. Based on

the correct attribution, members of the public will be protected from using a “wrong”

FOSS product bearing the same or similar marks.

139 Laura A. Heymann, “The Birth of the Authornym: Authorship, Pseudonymity, and Trademark
Law” (2005) 80 Notre Dame Law Review 1377 at 1446
140 ibid.
141 ibid., at 1383

 225

Moreover, I should also warn that the legal form of FOSS author-stewardship

through trademark does not necessarily reproduce the whole hacker stewardship

tradition. Nor do the FOSS licences that prescribe the minimum stewardship

responsibility to secure software freedom (which has been discussed in Chapter 3). In

fact, it is very difficult to translate a full sense of stewardship obligation, which

“blends an awareness of both externally endowed inspiration and the cyclical

dimension of creative enterprise” summarised by Kwall 142, into one single legal form

(be it trademark or copyright). A high sense of stewardship has more to do with what

the sociologist Richard Sennett calls the “craftsmanship” instinct, which is hard-

wired to FOSS programmers’ fundamental motivational make-up. According to

Sennett, the “desire to do a job well for its own sake” is a common hallmark of to all

types of craftsmanship143 and FOSS programmers are an exemplary type of these

craftspeople144. Just as a computer hacker in Levy’s book says: “Hackers can do

almost anything and be a hacker. It’s not necessarily high tech. I think it has to do

with craftsmanship and caring about what you’re doing.” 145 (added emphasis) It is

exactly this high sense of stewardship/craftsmanship to do a job well for its own sake

(or simply the feeling of “caring about what you’re doing”) that motivates many

FOSS programmers, especially those long-term project leaders, to work for a certain

project for a sustaining period of time. In this light, it is understandable for a few

FOSS developers to call for replacing ownership with stewardship in understanding

FOSS: “we must make a distinction between ‘ownership ‘and ‘stewardship.’

Ownership is something that is fully transferable from one owner to another without

loss of values. [….] Stewardship, on the other hand, applies when something

undergoes change, when it evolves, or when it has some kind of life cycle.”146 In this

sense, stewardship is a better way of realising the full value of an evolving object

that has a life cycle (e.g. animals or software that needs to be “herded”) than private

142 Roberta Rosenthal Kwall, “The Author as Steward ‘For Limited Times’”, (2008) Boston University
Law Review 685 at 703
143 Sennett, The Craftsman, supra note 58, p.9
144 Sennett, in his study of craftsmanship in the western civilisation, finds that Linux programmers are
not dissimilar from other traditional craftsmen such as carpenters since the time when the Homeric
hymn to Hephaestus (i.e. master god of craftsmen) was written. He observes that people “who
participate in ‘open source’ computer software, particularly in the Linux operating system, are
craftsmen who embody some of the elements first celebrated in the hymn to Hephaestus” and “Linux
draws on craftsmen in an electronic bazaar.” Sennett, ibid., pp.24-25
145 Levy, Hackers, p.434
146 Chris DiBona, Danese Cooper, and Mark Stone, “Introduction” to Open Sources 2.0,edited by
Chris DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly, 2006) p. xxxvii

 226

ownership, which might be only good at dealing with discrete static non-evolving

objects. To assume steward’s responsibility is not an easy job but it requires a lot of

skills and competence and “only a good steward can realize the full value of that

which is stewarded”.147 Most importantly, a carefully stewarded project tends to be

nurtured by a long-term collaborative relation among programmers, and it is mostly

likely coordinated by a highly capable long-term project leader, who would then

always be associated with this project. This long-term stewardship would sometimes

outcompete many commercial proprietary software projects, which are not

“stewarded” but commercially “managed” by company executives:

The proof is in the longevity of open source software projects and the stewards

who tend them. Linus Torvalds is still at the head of the Linux kernel ‘tribe’

more than a decade after the first public release of Linux. Eric Allman has

guided Sendmail for more than 20 yeas. Larry Wall is still the guiding vision

behind Perl, gain after more than 20 years. In these and many more cases, a

common core group stood behind the software for far longer than most

proprietary software enjoys the benefits of a common development team. It is

this—the dynamics of stewardship—far more than the ‘legions of programmers’

that accounts for the success of open source software.148 (added emphasis)

Raymond makes a similar observation about Stallman’s long-term stewardship that

gives the GNU Emacs project a “unified architectural vision”, and most interestingly,

it makes Stallman stewardship-“author” of the project:

In fact, there have been open-source projects that maintained a coherent

direction and an effective maintainer community over quite long periods of time

without the kinds of incentive structures or institutional controls that

conventional management finds essential. The development of the GNU Emacs

editor is an extreme and instructive example; it has absorbed the efforts of

hundreds of contributors over 15 years into a unified architectural vision,

despite high turnover and the fact that only one person (its author) has been

147 ibid.
148 ibid., p. xxxviii

 227

continuously active during all that time. No closed-source editor has ever

matched this longevity record.149 (added emphasis)

To summarise, the success of a collaborative FOSS project does not only depend on

a good number of individual programmers, but lead programmers’ good

stewardship—which makes individually contributed code into a collective one—is an

equally important matter. This stewardship mainly finds its legal form in trademark,

which is most helpful to protect the collective authorship of the project as whole.

However, trademark law does not translate the whole stewardship obligation into a

particular legal form, but FOSS project leaders need to make additional efforts to

coordinate the long-term collaboration under their stewardship.

5.4 Conclusion

This chapter has examined FOSS programmers’ authorial persona in both aesthetical

and legal senses. Aesthetically I find that the Romantic author vision of author-

genius does not tally well with programmers’ collaborative attempt to “author” a

FOSS project. Instead, I find that FOSS programmers’ desire to be identified as the

authorial origin of their creation happens at both individual and collective levels. It is

very important to recognise the role of project leaders/stewards who are crucial to

channel individual contributions into a collective work of authorship, which can be

held responsible and deserve credit for this FOSS project as a whole. Legally, the

Anglo-American system does not readily recognise programmers’ non-economic

authorial interests including their right to be attributed as the origin of their creation.

So FOSS developers have to wear the legal persona of copyright/trademark owners

to indirectly claim their authorship. The situation is further complicated by the need

to claim FOSS authorship at both individual and collective levels. I find that

copyright licences can largely satisfy the need to recognise individual authorship,

whilst trademark gives a more suitable legal form to reflect lead programmers’

stewardship responsibility to defend FOSS projects’ collective reputation and

goodwill.

149 Raymond, Cathedral, supra note 36

 228

Chapter 6 Conclusion

6.1 Contributions to the Scholarly Literature

The emergence of free and open source software (FOSS) has posed many challenges

to mainstream ways of producing and circulating software as proprietary products.

This dissertation has been written in an attempt to make sense of only one dimension

of these challenges: i.e. FOSS programmers’ use of intellectual property licensing

schemes in support of large-scale decentralised collaboration. On the surface, these

FOSS licences may look quite similar to other mass-market standard-form contracts

including proprietary software licences, where software users are given the licensing

terms on a take-it-or-leave-it basis. However, my scrutiny of these licences in this

dissertation shows that FOSS licences are different from their proprietary cousins in

three aspects, the identification of which is intended to be my three modest

contributions to the legal scholarship of software licensing jurisprudence. These three

distinctions respectively cover the historical (Chapter 2), legal (Chapters 3 and 4) and

authorial (Chapter 5) aspects of FOSS licensing. My study of these three aspects

aims to create a synergy to show FOSS programmers’ struggles against a dominant

assumption—which has underpinned both intellectual property and contract laws—

that human beings are fundamentally self-constituting individuals and they work

mostly in a possessively individualistic and competitive environment. I will now

briefly review each of the aspects that are essential to a sound understanding of the

collaborative ethos in relation to FOSS licensing.

Firstly, FOSS licensing does not come into existence in a historical vacuum, but it is

a unique product from a historical period when the MIT-style hacker custom was

eclipsed by the rise of intellectual property regulation (especially copyright) over

software in the early 1980s. The GNU General Public License (GPL) is often

believed to be the very first conscious attempt to graft the hacker custom on the IP

institution through a licensing scheme crafted by Richard Stallman. However, it is

relatively a difficult task to gauge the exact influence of the lingering influence of the

hacker custom in the GPL, which has also been criticised for overly relying on

software copyright and its underlying proprietary ideology. In order to avoid

 229

exaggerating the emergence of FOSS licensing either as a historical inevitability or

merely the consequence of a few isolated one-off accidents, my assessment of the

historical context is based on a few general prescriptive tenets of the Hacker Ethic1

but it is also balanced out by some historically specific events including the Emacs

dispute, which directly led to the creation of the first copyleft licence in 19852. I

highlight three important controversies (i.e. the Xerox printer incident, the Symbolics

incident and the Emacs incident) to show that FOSS licensing comes out of a mix of

idealism and pragmatism. All of them share a common theme in that Stallman, as a

dedicated hacker, has campaigned hard to rescue the Hacker Ethic rooted in its

original MIT-based setting, where programmers are guided by their “Hands-on

Imperative” to indulge their curiosity about computer technology.3 In 1998, this free

software movement led by Stallman was further complicated by a spin-off campaign

under the banner of “open-source” led by Eric Raymond to integrate non-proprietary

software into the commercial mainstream. I argue that the “open source” twist both

benefits and challenges Stallman’s cause. As a benefit, the “open source” agenda

functions much like a business plan for “free software” to be marketed to a much

wider constituency beyond the close-knit MIT-style hackerdom. As a challenge, it

also forces Stallman to clarify his “free software” philosophy to put an ethical limit

on the commercialism of “open source” movement by emphasising the intrinsic

value of “software freedom”.4 My analysis also shows that the two definitional

baseline documents—Free Software Definition (FSD) and Open Source Definition

(OSD)—respectively championed by Stallman and Raymond are compatible with

each other as both stipulate similar minimum stewardship responsibility for FOSS

programmers to preserve software commons. In contrast, proprietary software

developers mainly use their licence to maximise their revenue streams and there is no

1 Levy has provided a definitive account of the Hacker Ethic containing six tenets. Steven Levy,
Hackers—Heroes of the Computer Revolution (London: Penguin Books, 1984,1994)
2 The Emacs dispute has been carefully detailed by Christopher Kelty, whose account of the story
calls into question the real influence of so-called Hacker Ethic as identified by Levy. Kelty does not
believe that the birth of the GPL is a purely ideologically driven product from the Hacker Ethic, but it
largely a knee-jerk response to the specific dispute between Stallman and Gosling over the Emacs
program from 1983 to 1985. In this sense, the Hacker Ethic, according to Kelty, may be an
exaggerated influence, because this “vaunted” ethic only reveals itself in its “native practical setting,
rather than as a rarefied list of rules”. See Kelty, Two Bits--The Cultural Significance of Free
Software, (Durham: Duke University Press, 2008), p.15
3 This “Hands-on Imperative” is Tenet 1 of the Hacker Ethic documented by Levy.
4 Stallman, “Why Open Source Misses the Point of Free Software” at
<http://www.gnu.org/philosophy/open-source-misses-the-point.html>

 230

ethical limit to rein in that motive. They do not have a responsibility to make

software reproducible, modifiable and redistributable for downstream users or

developers. In other words, proprietary licences create an “asymmetrical relation”

where there is an unbridgeable gap between software owners and the non-owning

public. On the other hand, FOSS licences create a “symmetrical relation” where

upstream and downstream developers have exactly the same sets of rights (i.e.

software freedom) and obligations (i.e. the minimum stewardship responsibility as

specified in FSD and OSD) to co-develop software.5

Secondly, the symmetrical relations intended by FOSS licensing do not mean

anarchy but are organised around two legal institutions covering both “IP” and

contract. As these two institutions provide different mechanisms to structure a

licence, I need to deal with them separately, which will eventually lead to my

proposal to tackle the issue from a relational contract perspective. First, FOSS

programmers are not simplistically for or against “IP”, but they have much more

nuanced understanding of the issue. They are aware that “IP” is not a unified body of

law but that software freedom is affected by its two important components—

copyright and patent—in subtly different ways.

Copyright: When copyright was first extended to software as though it were a kind

of literary work, FOSS programmers’ initial knee-jerk reaction was very negative.6

However, they soon discovered that copyright’s threat to software freedom could

be contained by appropriately crafted licensing terms. In particular, after his

dispute with Gosling over Emacs, Stallman wrote the “copyleft” condition into his

copyright licence, which allowed publicly released modifications and

improvements of the original code to be shared with the community in order to

mimic the hackers’ old share-alike tradition. However, FOSS programmers’ use of

copyright does not mean that they embrace copyright without reservation, because

most of them are still against stretching copyright to further cover non-literal (i.e.,

functional) elements of software. This is exemplified by the campaign led by

5 The distinction between “symmetrical relation” (in commons) and “asymmetrical relation” (in
private property) is detailed by Benkler, Wealth of Networks: How Social Production Transforms
Markets and Freedom, (New Haven: Yale University Press, 2006) p.143
6 For example, Stallman thought it was “blasphemous” to the Hacker Ethic by copyrighting software
programs in the early 1980s. See Weber, Hackers, p.419

 231

Stallman and his MIT colleagues to protest against Lotus’s lawsuit to bring its

non-literal user interface under copyright law.

Patent: Unlike software copyright, FOSS programmers were not immediately

aware, let alone able to make an assessment, of the threat from patent to software

freedom. In 1981 when the US Supreme Court allowed a software-related

invention to be patentable in Diamond v. Diehr, the issue simply passed unnoticed

by most FOSS programmers.7 However, the hidden threat from patent only

gradually revealed itself in the early 1990s (almost ten years after Diehr).8 FOSS

programmers find patent threat much more difficult to handle and it can be only

partially contained by licensing schemes. This is because the patent system is

much less intuitive than copyright and at the same time it is prohibitively

expensive for most individual programmers who pursue FOSS merely as a hobby

to get patents. Despite this difficulty, the latest revision of the GPL (v3.0) does

make some efforts to deal with various patent issues but this would not change

Stallman and his followers’ patent abolitionist position.9

Apart from “IP” law, the second legal institution that heavily affects FOSS licensing

is contract. However, it is not always clear whether a FOSS licence, or more

specifically some of its conditions, have a contractual status. The heated debate about

whether a FOSS licence is a pure property licence or a contractual licence is

emblematic of this puzzling issue.10 One of the most vocal oppositions against

7 450 U.S. 175 (1981)
The European equivalent of Diehr is EPO’s ruling on Vicom in 1987 and it similarly had little
publicity when the decision was made. See Vicom/Computer-related invention, T208/84 [1987]
EPOR 74
8 For example, in September 1991, Stallman himself was forced to abandon a data compression
program contributed by a volunteer programmer. This is because just about one week before a release
of GNU software, Stallman accidentally found a newly issued patent that might “read on” this
contributed compression program. See Stallman, “Patent Reform Is Not Enough” at
<http://www.gnu.org/philosophy/patent-reform-is-not-enough.html>
9 For Stallman, software invention patents are landmines which are impossible to avoid unless they are
stopped being produced. See Stallman, “The Dangers of Software Patents”, 24 May 2004, a talk
delivered at the University of Dublin, Trinity College, organised by Irish Free Software Organisation,
transcript by Glenn Strong, Malcolm Tyrrell, Aidan Delaney and Ciaran O'Riordan at <
http://www.ifso.ie/documents/rms-2004-05-24.html>
10 The difficulty to draw the line between property and contract is not unique to FOSS licensing, but it
has been a persistent problem to a wider range of legal phenomena. As Merrill and Smith observe that
property (in general) and contract are both “bedrock institutions of the legal system” but “it is often
difficult to say where the one starts and the other leaves off.” Thomas W. Merrill and Henry E. Smith,
“The Property/Contract Interface”, (2001) 101 (4) Columbia Law Review 773 at 774

 232

treating FOSS licence as contract comes from the Free Software Foundation, which

insists that the GPL is a pure property licence and not a contract. The reason behind

this opposition stems from the need to distance the GPL from the kind of software

licensing jurisprudence used by Easterbrook in ProCD v. Zeidenberg, where a

standard-form licence was ruled contractually binding on an end user.11 The ProCD

decision and its model law progeny (i.e. Uniform Computer Information Transaction

Act or UCITA) is based on a law-and-economics presumption that all that a licensee

needs is to maximise his material wealth through non-negotiated standard-form

licensing contract, which is achieved by reducing transaction cost. I argue that this

ProCD jurisprudence has largely inhibited the further development of FOSS

licensing jurisprudence from being in keeping with a few new theoretical

breakthroughs in contract scholarship. Most significantly, I propose that FOSS

licensing jurisprudence, if scrutinised in a contractual framework, needs to

incorporate Macneil’s relational contract theory (RCT), which is conspicuously

absent in the legal literature about FOSS licensing. For the sake of completeness, I

list all the three contractual approaches to show how RCT stands out from the

classical and neoclassical approaches to software licensing.

Contract as consent (classical approach): The classical contract model bases its

legitimacy on the idea that consent is obtained through a fully bargained process

between parties. It assumes that there is a single moment when the minds of

negotiators unequivocally meet and the total contractual obligation is thus

“presentiated” into a present paper document that is fully binding on parties after

that moment. Neither proprietary software licensing nor FOSS licensing fits neatly

into this classical model, whose rigidity may limit this approach to be only

heuristically useful in explaining contractual exchanges in an idealised textbook

setting.

Contract as discrete product (neoclassical approach): The neoclassical model

deviates from the classical model by marginalising the role of fully verbalised

“consent” in contract formation. Instead, it takes a self-claimed “realist” position

to recalibrate contractual exchanges against the neoclassical rationale of material

11 86 F.3d 1447 (7th Cir.1996)

 233

wealth maximisation for individuals. The ProCD decision epitomises this

neoclassical approach by pretending that end users’ silence is an acceptance of the

standard-form licensing terms, which are actually justified on the basis that they

provide lowest price for consumers with reduced transaction cost. By doing so, the

ProCD jurisprudence effectively creates a kind of discrete “contract-as-product”12

or “legal-ware”13 as if the licensing terms are an integral “physical” feature of the

licensed product. This dissertation argues that it is exactly this neoclassical variant

(rather than the classical law) that has posed the greatest conceptual obstacle to

understanding FOSS licensing contractually. The neoclassical view may reflect

well what proprietary software licensors intend to achieve, but it hardly explains

the highly collaborative relations that are essential to the success of FOSS projects.

Contract as relation (RCT approach): Both classical and neoclassical approaches

conceive of contractual exchanges as discrete transactions, where a sustaining

relation developed between exchangers is not essential. (The only difference

between the two is that the neoclassicist is willing to sacrifice the classicist

consent for thorough transactional discreteness.) In contrast to contract-as-consent

classicism and contract-as-product neoclassicism, I suggest that FOSS licensing

should be understood as a relational contract where the software code is not traded

merely as commodity but a kind of “relation-ware” to sustain long-term

collaboration where participants are motivated by a multiplicity of values. The

rationale behind this “relation-ware” is different from the current dominant ProCD

law in software licensing jurisprudence in two senses. First, FOSS “relation-ware”

still respects contract as a consensual relation, but parties’ consent is now

relationally understood in a longer-term context, where no total obligation is

formed at one particular single moment. Instead, parties’ consent is allowed to

evolve when the project move on to reflect the highly serendipitous and flexible

nature of FOSS contributions. In other words, no total obligation can be

presentiated in the beginning of a FOSS project, but only a minimum set of

responsibilities of programmers is written down in the text of a FOSS licence and

12 Margaret Jane Radin, “Humans, Computers, and Binding Commitment” (1999) 75 Indiana Law
Journal 1125 at 1126
13 See Michael J. Madison, “Legal-ware: Contract and Copyright in the Digital Age” (1998) 67 (3)
Fordham Law Review 1025

 234

they are mainly about how to keep software freedom rather than the actual content

of contributions. Secondly, to make FOSS “relation-ware” is driven by a

multiplicity of motivational forces ranging from the hard-core monetary motive to

the more ambivalent reputational incentive to the “soft” values such as “software

freedom” to the intrinsic satisfaction from coding, while the ProCD ruling tends to

reduce this multiplicity to a single individualistic utility-maximising rationale.

This second argument reflects what relational contract scholars are keen to

achieve14, and is deserving of more attention from the academia, and FOSS

licensing provides an excellent opportunity to prosecute such an endeavor. Based

on the above two insights, I then propose to examine the GPL as an “umbrella

relational contract”15, which coordinates many contributors’ legal commitments to

a project. The GPL as an umbrella “relation-ware” is a compromise between two

needs. On the one hand it tries to satisfy the need for serendipity and flexibility in

terms of the actual content of contribution, which is not presentiated at all in the

beginning. On the other hand, it also tries to cater to the need for limited certainty

to make sure all generations of contributions would be legally compatible with

each other in any downstream distribution. Furthermore, to analyse GPL as a

relational umbrella contract also gives a chance to see how far RCT can be applied

to a real-world collaborative situation. It hopes to show that RCT is not merely a

scholarly thought experiment, but it may also provide judiciaries with some

insights into some highly relational cases, where classical and neoclassical law

designed for discrete transactions clearly cannot cope well.

The third contribution that I try to make is about FOSS programmers’ authorial

consciousness as manifested respectively in their aesthetical and legal personas. In

terms of FOSS authors’ aesthetical persona, there is little doubt that the Romantic

aesthetical vision of author as solitary “genius” does not suit the highly collaborative

nature of FOSS programming. It is inadequate in the sense that it shares the exactly

the same individualistic presumption adopted by the discrete transactional view from

the classical contract model as discussed above. In fact, in a FOSS project, there are

14 William C. Whitford, “Ian Macneil’s Contribution to Contracts Scholarship”, (1985) Wisconsin
Law Review 545
15 For the phenomenon of “umbrella relational contract” in a general context, see Stefanos Mouzas,
and Michael Furmston, “From Contract to Umbrella Agreement” (2008) 67(1) Cambridge Law
Journal 37

 235

not merely individual programmers who can be identified as the individual authors

of their contributions, but more importantly, there is also a collective author that can

be held responsible and deserve credit for the production of an integrated FOSS

project as a whole. I thus argue that a full evaluation of FOSS authorship in relation

to FOSS licensing should be scrutinised at both individual and collective levels,

though the existing literature does not tend to be discerning enough to differentiate

the two. In particular, I analyse the pivotal role of lead programmers in “stewarding”

FOSS projects for a sustaining long period of time. These project-leaders’ author-

stewardship does not replace the individual programmers’ efforts in actually

producing code, but it only channels individual authorship into collective authorship

of a certain project.

My enquiry of FOSS programmers’ legal persona tackles the following question:

How do FOSS programmers claim credit through law? In short, FOSS programmers

need to wear the legal persona as the “IP” owners of their contributions in the first

place and then indirectly claims their authorship in order to compensate for the lack

of statutory attribution right under the Anglo-American system. This may be

achieved either via copyright or trademark for different situations.

Copyright: Unlike the continental European legal system, Anglo-American

copyright does not readily recognise a standalone paternity right for software

programmers to be attributed to their works. As a makeshift solution, copyright

licences need to be crafted to make the attributional interests ride on the

proprietary rights owned by FOSS developers. Just as Lastowka observes that

copyright protects attribution only “in a collateral fashion” by using the device of

its licensing schemes.16 So FOSS developers, in order to have their attribution

right enforceable under law, must take on the legal persona as the copyright

owners to begin with. This observation has been corroborated in a 2008 landmark

ruling in Jacobsen v. Katzer, where the US Court of Appeals for the Federal

Circuit (CAFC) enforced the condition in a FOSS licence that requires correct

attribution to the original FOSS contributors.17 Although Jacobsen is widely hailed

16 Greg Lastowka, “The Trademark Function of Authorship”, (2005) 85 Boston University Law
Review 1172 at 1214
17 535 F.3d 1373 (Fed. Cir. 2008)

 236

as a long-waited triumph within the FOSS community, it is far from unproblematic.

It is worried that the Jacobsen ruling only strengthens copyright owners’

proprietary interest that becomes an unavoidable prelude to enforcing

programmers’ attribution right collaterally through a copyright licence.

Furthermore, the licensing condition made by copyright owners can effectively

allows a privately legislated moral right regime that upsets the initial balance

intended by the copyright legislation. I think that the only permanent solution to

solve this problem is a legislative change that separates out programmers’

paternity right from their economic right and as a result FOSS programmers would

no longer pretend that attribution furthers the economic goal of copyright holders

under a copyright licence but it could be enforced in its own right.

Trademark: Apart from relying on copyright for collateral protection of attribution,

many FOSS developers also actively seek trademark protection of their projects’

names. This is because trademarks designating the origin of goods or services are

not dissimilar from an attribution system ascertaining the authorial origin of

creative works. The name of a project is worth protecting when it accumulates

enough reputation or goodwill to become a brand name. Projects do not have to

register their names with trademark authorities, though registration would give

them stronger and more certain protection. The Anglo-American system brings

unregistered marks under protection through the common law action of “passing

off”. In the US, it is not unusual to invoke Section 43(a) of Lanham Act, which

codifies the “passing off” action, as a proxy paternity right to get authorial

attribution. The 2001 US case Planetary Motion v. Techsplosion is exactly a

successful example where a FOSS project had its unregistered mark (i.e. its project

name “Coolmail”) protected under the Lanham Act.18 Furthermore, I argue that, in

a large-scale FOSS project, lead programmers have the stewardship responsibility

to defend the collective reputation or goodwill of a project as a whole, and

trademark lends itself to be suitable legal form to manifest this stewardship. There

are two features of trademark protection of the name a FOSS project under

stewardship. Firstly, trademark protects the collective authorship of a whole

project but not directly individual authorship. Secondly, when a FOSS project is

18 261 F.3d 1188

 237

misattributed, it does not only cause a copyright harm to its author but also a

trademark harm to the public, who can be confused about the authorial origin. In

this sense, trademark law can be employed not just for the purpose of allocating

credit (and possibly reputational incentives) to authors of their works, but it may

also help the public to find a FOSS product with the right origin.

In summary, both copyright and trademark may be employed to protect FOSS

programmers’ attributional interests. Neither of the two regimes is entirely

satisfactory because they make attribution heavily dependent on the strong

proprietary right afforded by law in the first place. In particular, trademark gives a

legal form to FOSS project-leaders’ stewardship, which is responsible to defend the

collective reputation or goodwill of the project as a whole, though it does not

translate the whole hacker tradition to coordinate the collaborative efforts among

FOSS programmers.

6.2 Avenues for Future Research

This dissertation is a study of some key legal issues concerning FOSS licensing

jurisprudence, which is largely informed by Steven Levy’s pioneering work on the

Hacker Ethic as published in 1984 (one year before the “copyleft” licence was first

invented by Stallman). In following decades, this Hacker Ethic has undergone a

chequered development largely due to the changing legal environment concerning

intellectual property regulation over software innovation. However, two more recent

developments, which may have a continuous impact on the Hacker Ethic as well the

FOSS movement, should not go unnoticed. One is the increasing corporate

participation in FOSS projects and the other is the spilling over of the Hacker Ethic

into non-programming or mixed innovations. I will now explain briefly why these

two developments can be two avenues leading to worthwhile research in the future.

The first avenue concerns a revaluation of Tenet 3 of the Hacker Ethic—“Mistrust

Authority—Promote Decentralisation”—which was interpreted by Levy as hackers’

mistrust of any type of centralised bureaucratic system19 epitomised by software

19 “Bureaucrats hide behind arbitrary rules (as opposed to the logical algorithms by which machines
and computer programs operate): they invoke those rules to consolidate power, and perceive the
constructive impulse of hackers as a threat.” Levy, Hackers, p.41

 238

companies like the IBM.20 Levy argues that IBM programmers are “priests and sub-

priests” and they “could never understand the obvious superiority of decentralized

system, with no one giving orders.”21 Ironically, over two decades later after this

observation was first made, IBM today becomes one of the most active companies

contributing to FOSS projects including Linux and Apache.22 Apart from IBM, other

corporate giants such as Google, Intel, HP, Novell, Red Hat, which would no doubt

be classed as “bureaucracies” by Levy’s 1984 standard, are also important FOSS

contributors.23 Lerner and Schankerman, in a recent book-length research, further

demonstrate that many companies in fact produce both proprietary code and FOSS

code, the two of which can be closely “comingled” in a corporate environment.24

In this light, it is important for scholars to examine the extent to which this corporate

foray into FOSS would challenge Benkler’s peer-production model where code is

produced independent from a hierarchical corporate structure oriented towards

making economic profits.25 In other words, it is worth finding out the degree of

compromise that those employed FOSS programmers can afford to make without

losing their independent status to the corporate culture. 26 Chapter 3 of this

dissertation has provided a glimpse of this issue through the lens of “open source

20 “The epitome of the bureaucratic world was to be found at a very large company called
International Business Machines—IBM.” ibid.
21 Levy, Hackers, p.42
22 IBM, “Open Source at IBM” at <http://www-03.ibm.com/linux/ossstds/oss/ossindex.html>
23 A survey conducted by the Linux Foundation shows that Linux contributors are not simply
individual hobbyists, but a significant number of them have corporate affiliations. Greg Kroah-
Hartman, Jonathan Corbet, Amanda McPherson, Linux Kernel Development: How Fast it is Going,
Who is Doing It, What They are Doing, and Who is Sponsoring It: An August 2009 Update at
<http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf>
24 Josh Lerner and Mark Schankerman, The Comingled Code: Open Source and Economic
Development (Cambridge, Mass.: MIT Press, 2010)
Although Lerner and Schankerman’s research has been praised for its unprecedentedly wide scope
(surveying about 2300 companies and nearly 2000 programmers), it only represents a starting point of
the still poorly understood corporate FOSS phenomenon and “the literature of this important
development in recent economic history is still far from complete.” See The Economist, “Untangling
Code”, reviewing Lerner and Schankerman’s book, 15th January 2011 at 79
25 Yochai Benkler, “Coase's Penguin, or, Linux and ‘The Nature of the Firm’” (2002) 112, (3) Yale
Law Journal 369
26 Raymond observes that some “star” FOSS programmers are likely to attract corporate “patronage”
to support themselves financially. For example, the Linux Foundation (comprising mostly corporate
developers and distributors of the Linux kernel) is able to pay Linus Torvalds a full salary and health
insurance and thus saves him from having another day job. See Eric Raymond, “Open R&D and the
Reinvention of Patronage” in The Magic Cauldron, 1999 at
<http://www.catb.org/~esr/writings/magic-cauldron/>

 239

patents”27, though it is not intended to be a full account of the still emerging

corporate FOSS phenomenon. It observes that some corporate FOSS developers are

keen to build patent portfolios to defend themselves against potential patent litigation,

whilst individual FOSS hobbyists are unlikely to do so given the sheer cost of getting

and maintaining patents. Again IBM is a most conspicuous example of a corporation

both developing FOSS and owning a large number of “software patents.”28 Another

interesting example is a FOSS patent consortium known as Open Invention Network

(OIN) formed by corporate FOSS developers to defend Linux from patent

litigation.29 To acquire defensive patents for FOSS projects is far from a satisfactory

solution because it does not eradicate the threat to software freedom from its root, i.e.

the legal system that produces software invention patents in the first place. It also

unfortunately creates a schism within the FOSS community into two divisions: one

belongs to the well-financed corporate developers who are less interested in changing

the patent system and the other belongs to hobbyist-developers with no direct

corporate affiliation who are keener to defend software freedom in its own right. I

think that FOSS licensing schemes would play a very limited role in eliminating this

schism by reining in corporate penetration into FOSS. My speculation is that how far

this corporate foray into FOSS will go would largely be dependent on the scope of

the commercial success that these companies can achieve by selling their FOSS

products on the market. Corporate FOSS is likely to flourish mainly in the consumer-

goods area where products are mainly used by non-sophisticated end-users who are

not expected to make modification or improvement to the software. Corporate FOSS

would thus understandably be less able to harness large-scale decentralised

collaboration under the peer-production model.30 In this light, I argue that legal

scholarship needs to be more attentive to this new development of corporate

27 Leveque and Ménière call this phenomenon “open source patents” to account for patents owned by
corporate FOSS developers. See Francois Leveque and Yann Ménière, “Copyright Versus Patents:
The Open Source Software Legal Battle” (2007) 4(1) Review of Economic Research on Copyright
Issues 27 at 42
See also Section 3.4, Chapter 3 of this dissertation for a more detailed analysis.
28 In 2005, the IBM signalled its commitment to the FOSS cause by its pledge not to assert its 500
patents to the FOSS community. See IBM, “IBM Statement of Non-Assertion of Name Patents
against OSS” at <http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf>
29 See OIN’s website at <http://www.openinventionnetwork.com/>
30 In particular, established companies may well use FOSS as a marketing gimmick to get quick
publicity for their new products in a short space of time, rather than attracting large-scale
collaboration with hobbyist developers. Google’s open-source Chrome browser and its Android smart
phone platform are both good examples of this kind of corporate FOSS strategy.

 240

participation in FOSS, which would be significant in changing the landscape of

FOSS collaboration.

Apart from calling for more research into corporate FOSS, I also need to highlight

another avenue that merits further research. This second avenue concerns the last

tenet (i.e., Tenet 6) of the Hacker Ethic—“Computers can change your life for the

better”—under which Levy predicts that the Hacker Ethic would spill over into and

eventually benefit the non-programming world enabled by computer technologies:

“Surely everyone could benefit from a world based on the Hacker Ethic. This was the

implicit belief of the hackers irreverently extended the conventional point of view of

what computers could and should do—leading the world to a new way of looking

and interacting with computers.”31 Following this tenet, there seems no significant

conceptual barrier preventing FOSS programmers from bringing their software

freedom to other creative spheres such as music.32 A most glaring success story of

this kind of endeavour is the attempt to build a collaborative online encyclopedia

universally accessible to and modifiable by every internet user. Stallman, in an essay

titled “The Free Universal Encyclopaedia and Learning Resource”, calls for “a

universal encyclopedia covering all areas of knowledge, and a complete library of

instructional courses” and “a conscious effort to prevent deliberate sequestration of

the encyclopaedic and educational information on the net.”33 This vision indeed led

to the creation of Wikipedia under the efforts of Jimmy Wales and his collaborators,

who use the wiki technology to enable users all over the world to create a universally

free encyclopedia.34 The Wikipedia phenomenon, clearly a product of the last tenet of

the Hacker Ethic, also reflects a widespread optimism about “collective creativity”

enabled by networked computer technologies (e.g. wiki), which are sometimes

romanticised as the “weapons of mass collaboration” in the “age of participation”.35

31 Levy, Hackers, p.46
32 Moglen argues that “music, and movies, and train schedules, and all other useful forms of
information in the twenty-first century” are no more than “other types of software”. Eben Moglen,
“Freeing the Mind: Free Software and The Death of Proprietary Culture”, 29 June 2003,
<http://moglen.law.columbia.edu/publications/maine-speech.html>
33 Richard Stallman, “The Free Universal Encyclopedia and Learning Resource”, at
<http://www.gnu.org/encyclopedia/free-encyclopedia.html>
34 See Larry Sanger, “The Early History of Nupedia and Wikipedia: A Memoir”, in Open Sources 2.0,
edited by Chris DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly, 2006)
35 The terms are used by Tapscott and Williams who argue: “New low-cost collaborative
infrastructures—from free Internet telephony to open source software to global outsourcing
platforms—allow thousands upon thousands of individuals and small producers to cocreate products,

 241

Most significantly, this optimism has also led some lawyers to experiment with new

licensing schemes to facilitate the Wikipedia-type collective creativity. The most

well-known example is no doubt a set of creative commons licences that aim to

“build a layer of content, governed by a layer of reasonable copyright law, that others

can build upon” in a free and re-mixable culture.36 However, some other lawyers are

not entirely convinced by this trend. For instance, Merges, who is keen to defend

private property in the digital era, is vehemently against over-romanticising

“collective creativity” enabled by networked computer technologies. For Merges, the

“weapon of mass innovation” would defeat neither individual creativity37 nor private

property.38 I think that Merges is mostly right in the sense that creativity in the real

world does not have one single particular mode but it can run the whole gamut from

being very solitary to highly collaborative, though most contributions to a FOSS-

inspired collective work are most likely to be closer to the collaborative end of the

spectrum.

However, in order to further test Merges’ thesis that private property is still relevant

to collective creation in the digital age, I think that more study needs to be done

because the property system, on which FOSS licensing schemes are based, is by no

means the only parameter that makes collaboration take place.39 For this reason, I

wish to narrow this enquiry down to a case study of a collaborative project known as

PureData—which is a widely used computer music language—to see how far the

Hacker Ethic (as well as Merges’ thesis about property) can stand in an intersectional

area of programming and non-programming (i.e. musical) creativities. There are two

access markets, and delight customers in ways that only large corporations could manage in the past.
This is giving rise to new collaborative capabilities and business models that will empower the
prepared firm and destroy those that fail to adjust.” Tapscott and Williams, Wikinomics (London:
Portfolio, 2006) p.11
36 Lessig explains: by using creative commons licences, “[v]oluntary choice of individuals and
creators will make this content available. And that content will in turn enable us to rebuild a public
domain.” Lessig, Free Culture: How Big Media Uses Technology and the Law to Lock Down Culture
and Control Creativity (New York: The Penguin Press, 2004) p.283
37 Merges does not believe that “collective works will and should systematically replace individual
works in the digital era.” Robert Merges, “The Concept of Property in the Digital Era” [2008] 45 (4)
Houston Law Review 1239 at 1249
38 Merges argues that “property rights still make sense as a legal and social institution. […] continuing
to grant and enforce property rights does not threaten the viability of collective creativity, but […]
seriously curtailing property rights so as to further promote collective creativity would significantly
undermine the conditions for individual creativity.” (original emphasis) ibid.
39 Again, it would be inappropriate to solely credit private property for the making of collective works
while ignoring other parameters contributing to the real lived experience of collaboration.

 242

reasons why PureData is a promising candidate for this kind of research in the future.

First, PureData sits astride two creative fields covering both software and music. On

the one hand, it is a visual programming language with a modular and extensible

architecture, whose lead developer/coordinator—Miller Puckette—is deeply

sympathetic with the original MIT-type hacker ethic since he was an undergraduate

student at MIT. In fact, the proprietary predecessor to PureData called Max, which

was also initially developed by Puckette in 1988 when he was affiliated with Institut

de Recherche et Coordination Acoustique/Musique (IRCAM) in Paris, has drawn

many ideas directly from researchers and developers based at MIT.40 Puckette later

felt deeply disaffected by IRCAM’s decision to strengthen intellectual property

control over Max as a proprietary product because this created a lot more difficulties

for Puckette and his colleagues to disseminate Max-related works to the world

outside IRCAM.41 As a result, Puckette left IRCAM and started the spin-off

PureData project licensed under a FOSS licence.42 On the other hand, PureData is not

merely for software programmers but it also used by musicians dedicated to making

electronic arts. It follows a long line of pursuit to build a kind of “composition

machine”, which can be stretched back to the early modern time of Leibnitz (1646-

1716) and Marin Mersenne (1588-1646).43 Note that PureData as a versatile

programming tool does not only facilitate electronic music making, but it also deals

with other forms of electronic arts such as video and still images with its Graphics

Environment for Multimedia (GEM) external, which also effectively bears out Tenet

4 of the Hacker Ethic: “You can create art and beauty on a computer”. In short,

PureData users/co-developers are two categories of creators—programmers and

sound artists—rolled into one. The second reason why PureData is worth further

researching is that its community members are well aware of the ongoing debate

about IP and creativity and consciously pursue their electronic arts in the spirit of the

FOSS movement. Within the PureData community, there has been a palpable anti-

40 Miller Puckette, “Who Owns Our Software—A First-person Case Study”, 2004 ISEA Online
Proceedings, available at <http://crca.ucsd.edu/~msp/Publications/isea-reprint.pdf>
41 Puckette’s situation at IRCM at this point is not dissimilar from Stallman’s at MIT AL Lab in the
early 1980s.
42 This licence is called Standard Improved BSD License (SIBSD), which is a variant of the original
BSD License.
43 For the intellectual and historical background of PureData, See Winfried Ritsch, “Does Pure Data
Dream of Electric Violins?—PD Introduction and Overview” (Wolke Verlag, Hofheim, 2006) from
the edited book based on the First International Pd-Convention 2004, Graz/Austria, p. 11

 243

property sentiment akin to early computer hackers’ dislike of private ownership of

software44. For example, Puckette himself argues that electronic arts (such as the

PureData project) are not privately “ownable” when detached from physical

embodiments:

Artifacts of art may be owned, but ‘digital art’ itself is not intrinsically ownable

by anybody. This is bad news to composers, for instance, who obviously would

like to own their scores. They do indeed own the paper and ink on top of it, but

the work exists only as a way of arranging things, not in the things themselves,

and therefore can’t be owned. Composers and other digital artists must survive

by the mechanism of attribution. This is indeed how J.S. Bach operated; the

intervening years, dominated by physical printing presses and their output, can

be seen as an aberration, now coming to an end.45 (added emphasis)

I think that Puckette’s above argument indicates at least two directions in which the

so-called “digital art” may go under the impact of the MIT-style Hacker Ethic.

Firstly, it can be read as a challenge to Merges’ defence of private ownership in the

digital age. Largely due to the nature of digital art “as a way of arranging things, not

in the things themselves”, this art form cannot be owned like physical objects.

Puckette further suggests that the material gain from private ownership would distort

the creators’ (including both researchers and artists) self-motivation to indulge their

academic or artistic passion: “It is now ironic that researchers and artists now find

themselves trapped by their own efforts to make their creations have monetary value

in the form of IP. Researchers […] are too easily seduced by the promise of material

gains to be reaped from our work. Artists […] fall into the same trap. Both eventually

lose control over their own work.”46 This argument bears strong resemblance to

Stallman’s polemic where he argues why software should not be owned.47 Secondly,

Puckette envisions a mechanism that protects digital artists’ attributional interest to

sustain their creation in the digital era just like in J.S. Bach’s time. This argument is

largely in line with my observation made in Chapter 5, where I find FOSS

44 This dislike is strongly registered by Stallman in his essay “Why Software Should Not Have
Owners”, 1994, at <http://www.gnu.org/philosophy/why-free.html>
45 Miller Puckette, “Who Owns Our Software—A First-person Case Study”, supra note 40
46 ibid.
47 Richard, Stallman, “Why Software Should Not Have Owners”, 1994, at
<http://www.gnu.org/philosophy/why-free.html>

 244

programmers are keen to claim the attribution right independent from the economic

right of their works. It also converges with a growing legal literature calling for

separating non-economic authorial right from private ownership right in creative

works. For example, the legal scholar Zimmerman argues that it is possible to protect

and encourage “authorship without ownership” in the current digital age.48 I believe

that more empirical research is necessary to examine the extent to which PureData

artists’ practice can flesh out Zimmerman’s thesis (as opposed to Merges’s thesis) in

a mixed creative environment of programming and arts.

6.3 Concluding Remarks

This chapter summarises three modest contributions that I intend to make to the

existing literature of FOSS licensing jurisprudence. Firstly, it shows the historical

context from which FOSS licensing emerged as a response to the rise of intellectual

property regulation over software innovation. Secondly, it deals with the legal aspect

of FOSS licences, which are proposed to be scrutinised under a relational contract

perspective. The third contribution concerns the authorial aspect of FOSS licensing,

which is shown to have developed independently from Romantic aesthetics. It

explains the FOSS authors’ attributional right—in the legal form of copyright and

trademark—at both individual and collective levels. Furthermore, I suggest that there

are two possible avenues for future research. Firstly, more research needs to be done

to assess the impact of the increasing corporate penetration in FOSS, which may

gradually erode Benkler’s peer-production model of FOSS production. Secondly, I

call for further research into the impact of the Hacker Ethic and IP law on the

intersectional areas of programming and non-programming creativities and I suggest

that an electronic arts project known as PureData is a promising candidate for

continuing the line of inquiry of the FOSS movement in a broader context.

48 Based on her observation that the Victoria literary publishing in 19-century England depended
much more on authors’ relation with editors and publishers than the private property system,
Zimmermann proposes that internet publishing can similarly take off without private copyright
ownership. Diane Leenheer Zimmerman, “Authorship without Ownership: Reconsideration Incentives
in a Digital Age” (2003) 52 DePaul Law Review 1121

 245

Bibliography

Andrews, Cathy Joanne, Bridging the Divide—An Exploration of Ian Macneil’s Relational
Contract Theory and Its Significance for Contract Scholarship and the Lived World of
Commercial Contract, PhD Thesis, (London: Birkbeck College, University of London, 2010)

Bainbridge, David, Legal Protection of Computer Software (Heywards Heath, West Sussex:
Tottel Publishing, 2008, 5th Ed.)

Barnett, Randy E., “Conflicting Visions: A Critique of Ian Macneil's Relational Theory of
Contract”, (1992) 78 (5) Virginia Law Review 1175

Barnett, Randy E., “Consenting to Form Contracts” (2002) 71 Fordham Law Review 627

Beatson, J., Anson’s Law of Contract (Oxford: OUP, 2002, 28th Edition)

Benkler, Yochai “Coase's Penguin, or, Linux and ‘The Nature of the Firm’” (2002) 112, (3)
Yale Law Journal 369

Benkler, Yochai, Wealth of Networks: How Social Production Transforms Markets and
Freedom (New Haven: Yale University Press, 2006)

Bently, Lionel and Sherman, Brad, Intellectual Property Law (Oxford: OUP, 2009, 3rd Ed.)

Bergquist, Magnus and Ljungberg, Jan, “The Power of Gifts: Organizing Social
Relationships in Open Source Communities”, (2001) 11 Information Systems Journal 305

Bern, Roger C., “ ‘Terms Later’ Contracting: Bad Economics, Bad Morals, and a Bad Idea
for a Uniform Law, Judge Easterbrook Notwithstanding”, (2003-2004) 12 Journal of Law
and Policy at 772

Biancuzzi, Federico, “A Look Back at 10 years of OSI”, 12 February 2008, at
<http://www.onlamp.com/pub/a/onlamp/2008/02/12/a-look-back-at-10-years-of-osi.html>

Boyle, James, Shamans, Software, and Spleens—Law and the Construction of the
Information Society (Cambridge, Mass.: Harvard University Press, 1996)

Boyle, James, “The Second Enclosure Movement and the Construction of the Public
Domain”, (2003) 66 Law and Contemporary Problems 33

Boyle, James, “Cultural Environmentalism and Beyond” (2007) 70 Law and Contemporary
Problems 5

Boyle, James, The Public Domain—Enclosing the Commons of the Mind (New Haven&
London: Yale University Press, 2008)

Burk, Dan, “Copyrightable Function and Patentable Speech” (2001) 44 (2) Communications
of the ACM 69

 246

Burk, Dan, “Anticircumvention Misuse” (2003) 50 UCLA Law Review 1095

Campbell, David, and Harris, Donald, “Flexibility in Long-Term Contractual Relationships:
The Role of Co-operation”, (1993) 20 (2) Journal of Law and Society 166

Campbell, David, “Ian Macneil and the Relational Theory of Contract” in Ian Macneil, The
Relational Theory of Contract: Selected Works of Ian Macneil, ed. by David Campbell,
(London: Sweet & Maxwell, 2001)

Campbell, David and Collins, Hugh, “Discovering the Implicit Dimensions of Contracts”, in
Implicit Dimensions of Contract—Discrete, Relational, and Network Contracts, eds. by
David Campbell, Hugh Collins and John Wightman (Oxford and Portland, Oregon: Hart
Publishing, 2003)

Canfield, Kenneth, “The Disclosure of Source Code in Software Patents: Should Software
Patents be Open Source?” (2006) VII The Columbia Science and Technology Law Review

Chen-Wishart, Mindy, Contract Law (Oxford: OUP, 2008, 2nd Edition)

Clapes, Anthony L., Lynch, Patrick and Steinberg, Mark R., “Silicon Epics and Binary Bards:
Determining the Proper Scope of Copyright Protection for Computer Programs” (1987) 34
UCLA Law Review 1493

Collins, Hugh, “Introduction: The Research Agenda of Implicit Dimensions of Contracts”, in
Implicit Dimensions of Contract—Discrete, Relational, and Network Contracts, eds. By
David Campbell, Hugh Collins and John Wightman (Oxford and Portland, Oregon: Hart
Publishing, 2003)

Cooke, Elizabeth, The Modern Law of Estoppel (Oxford: OUP, 2000)

Covotta, Brian and Sergeeff, Pamela, “ProCD, Inc. v. Zeidenberg” (1998) 13 Berkeley
Technology Law Journal 35

Dempsey, Bert J., Weiss, Debra, Jones, Paul and Greenberg, Jane, “Who Is an Open Source
Software Developer?—Profiling a Community of Linux Developers”, (2002) 45 (2)
Communications of the ACM 67

DiBona, Chris, Cooper, Danese, and Stone, Mark, “Introduction”, in Open Sources 2.0,
edited by Chris DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly, 2006)

Diwan, Romesh, “Relational Wealth and the Quality of Life” (2000) 29 Journal of Socio-
Economics 305

Dawson, I.J., and Pearce, Robert A., Licences Relating to the Occupation or Use of Land
(London: Butterworths, 1979)

Dusollier, Severine, “Open source and Copyleft: Authorship reconsidered?” (2003) 26
Columbian Journal of Law and the Arts 283

Dusollier, Severine, “Sharing Access to Intellectual Property Through Private Ordering”,
(2007) 82 Chicago-Kent Law Review 1391 at 1435

Easterbrook, Frank, “Contract and Copyright” (2005) 42 (4) Houston Law Review 953

 247

Eisenberg, Melvin A., “Why There is No Law of Relational Contracts” (2000) 94
Northwestern University Law Review 805

Elkin-Koren, Niva, “What Contracts Cannot Do: The Limits of Private Ordering in
Facilitating a Creative Commons” [2005] 74 Fordham Law Review 375

Evans, David S. and Layne-Farrar, Anne, “Software Patents and Open Source: The Battle
Over Intellectual Property Rights” (2004) 9 (10) Virginia Journal of Law and Technology

Fabricius, Erich M., “Jacobsen v. Katzer: Failure of the Artistic License and Repercussions
for Open Source” (2008) North Carolina Journal of Law and Technology 65

Feinman, Jay M., “Relational Contract Theory in Context”, (2000) 94 Northwestern
University Law Review 737

Feller, Joseph and Fitzgerald, Brian, Understanding Open Source Software Development,
(London: Addison-Wesley, 2002)

Fisk, Catherine L., “Credit Where It’s Due: The law and Norms of Attribution”, (2006) 95
Georgetown Law Journal 49

Fuller, Lon, “The Role of Contract in the Ordering Processes of Society Generally” in The
Principles of Social Order, edited by Kenneth I. Winston (Durham, N.C.: Duke University
Press, 1981)

Free Software Consortium (Jaco Aizenman, Maureen O’Sullivan, Martin Pedersen, Pedro
Rezende, Shilu Shah, Pia Smith, Jorge Villa), Free Software Act (Draft) (2004) 1 (4)
SCRIPT-ed at <http://www.law.ed.ac.uk/ahrc/script-ed/issue4/FS-Act.pdf>

Free Software Foundation, “Overview of the GNU System” 1996 (last update 2008) at
<http://www.gnu.org/gnu/gnu-history.html>

Free Software Foundation, “GPL Version 3: Background to Adoption”, 9 June 2005
<http://www.fsf.org/news/gpl3.html>

Free Software Foundation, “GPL v3 Final Discussion Draft Rationale”, at
<http://gplv3.fsf.org/rationale>

Galli, Peter, “Rewriting GPL No Easy Task” eSeminars, 2 February 2005, eWeek,
<http://www.eweek.com/c/a/Linux-and-Open-Source/Rewriting-GPL-No-Easy-Task/>

Garnett, Kevin, Davies, Gillian and Harbottle, Gwilym, Copinger and Skone James on
Copyright (London: Sweet & Maxwell, 2005, 15th Edition)

Gates, Bill, “An Open Letter to Hobbyists”, 3 February 1976 at
<http://www.digibarn.com/collections/newsletters/homebrew/V2_01/gatesletter.html>

Ghosh, Rishab Ayer, “Cooking Pot Markets: An Economic Model for the Trade in Free
Goods and Services on the Internet” (1998) 3 (3) First Monday at
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/580/501>

Ginsburg, Jane C., “The Concept of Authorship in Comparative Copyright Law” (2003) 52
DePaul Law Review 1063

 248

Ginsburg, Jane C., “The Right to Claim Authorship in U.S. Copyright and Trademarks Law”,
(2004) 41 (2) Houston Law Review 263

Gomulkiewicz, Robert W., “How Copyleft Uses License Rights to Succeed in the Open
source Software Revolution and the Implications for the Implications for Article 2B” (1999)
36 Houston Law Review 179

Gomulkiewicz, Robert W., “A First Look at General Public License 3.0”, (2007) 24
Computer and Internet Lawyer 15

Gomulkiewicz, Robert W., “Conditions and Covenants in License Contracts: Tales from a
Test of the Artistic License” (2009) 17 Texas IP Law Journal 335

Gordon, Robert W., “Macaulay, Macneil, and the Discovery of Solidarity and Power in
Contract Law” (1985) Wisconsin Law Review 565

Griffiths, Jonathan, “Misattribution and Misrepresentation—the Claim for Reverse Passing
Off as ‘Paternity’ Right” [2006] 1 I.P.Q. 34

Gross, Michael, “Richard Stallman: High School Misfit, Symbol of Free Software,
MacArthur-certified Genius”, 1999, at
<http://www.mgross.com/MoreThgsChng/interviews/stallman1.html>

Guadamuz, Andres, “Viral Contracts or Unenforceable Documents? Contractual Validity of
Copyleft Licences” (2004) 26 (8) E.I.P.R. 331

Guadamuz, Andres, “Legal Challenges to Open Source Licences” (2005) 2 (2) SCRIPT-ed
163

Gudel, Paul J., “Relational Contract Theory and the Concept of Exchange”, (1998) 46
Buffalo Law Review 763

Hass, Douglas A., “A Gentlemen's Agreement: Assessing the GNU General Public License
and its Adaptation to Linux” (2007) 6 Chicago-Kent Journal of Intellectual Property 213

Henley, Mark, “Jacobsen v. Katzer and Kamind Associates—An English Legal Perspective”
(2009) 1 (1) International Free and Open Source Software Law Review

Heymann, Laura A., “The Birth of the Authornym: Authorship, Pseudonymity, and
Trademark Law” (2005) 80 Notre Dame Law Review 1377

Himanen, Pekka, The Hacker Ethic and the Spirit of the Information Age (NY: Random
House, 2001)

Houweling, Molly Shaffer Van, “Cultural Environmentalism and the Constructed
Commons”, (2007) 70 Law and Contemporary Problems 23

Hyde, Lewis, The Gift: Imagination and the Erotic Life of Property (New York: Vintage
Books,1983)

Irlam, Gordon and William, Ross, Software Patents: An Industry at Risk, 1994, at
<http://www.progfree.org/Patents/industry-at-risk.html>

 249

Jaszi, Peter, “Toward a Theory of Copyright: The Metamorphoses of ‘Authorship’ ” (1991) 2
Duke Law Journal 455

Jaszi, Peter, “On the Author Effect: Contemporary Copyright and Collective Creativity”
(1992) 10 Cardozo Arts and Entertainment Law Journal 293

Jones, Pamela, “The GPL is a License, Not a Contract, Which is Why the Sky Isn't Falling”,
14 December 2003 at
<http://www.groklaw.net/articlebasic.php?story=20031214210634851>

Karjala, Dennis S., “Federal Preemption of Shrinkwrap and Online Licenses” 22 (3)
University of Dayton Law Review 511

Karp, James P., “A Private Property Duty of Stewardship: Changing our Land Ethic” (1993)
23 Environmental Law 735

Kelty, Christopher M., Two Bits--The Cultural Significance of Free Software, (Durham:
Duke University Press, 2008)

Kim, Nancy S., “Clicking and Cringing”, (2007) 86 Oregon Law Review 797

Kretschmer, Martin, “Software as Text and Machine: The Legal Capture of Digital
Innovation”, 2003 (1) The Journal of Information, Law and Technology (JILT) at
<http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/>

Kroah-Hartman, Greg, Corbet, Jonathan and McPherson, Amanda, Linux Kernel
Development: How Fast it is Going, Who is Doing It, What They are Doing, and Who is
Sponsoring It: An August 2009 Update at
<http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf>

Kumar, Sapna, “Enforcing the GNU GPL” 2006 University of Illinois Journal of Law,
Technology and Policy 1

Kwall, Roberta Rosenthal, “The Attribution Right in the United States: Caught in the
Crossfire Between Copyright and Section 43(A)” (2002) Washington Law Review 985

Kwall, Roberta Rosenthal, “The Author as Steward ‘For Limited Times’”, (2008) Boston
University Law Review 685

Laddie, Hugh, Prescott, Peter, Vitoria, Mary, Speck, Adrian and Lane, Lindsay, The Modern
Law of Copyright and Designs (London, Edinburgh & Dublin: Butterworth, 2000, 3rd
edition) Vols. One & Two

Lai, Stanley, The Copyright Protection of Computer Software in the United Kingdom
(Oxford and Portland, Oregon: Hart Publishing, 2000)

Lakhani, Karim R. and Wolf, Robert G., “Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects”, in Perspective on Free and
Open Source Software, eds. by Feller, Fitzgerald, Hissam and Lakhani (Cambridge, Mass.:
MIT Press, 2005)

Lastowka, Greg, “The Trademark Function of Authorship”, (2005) 85 Boston University
Law Review 1172

 250

Leadbeater, Charles, We-Think (London: Profile Books, 2008)

Leff, Arthur Allen, “Contract as Thing”, (1970) 19 (2) American University Law Review 131

Lemley, Mark, “Convergence in the Law of Software Copyright”, (1995) 10 High
Technology Law Journal 1

Lemley, Mark, “Romantic Authorship and the Rhetoric of Property”, (1997)75 Texas Law
Review 873

Lemley, Mark, “Beyond Preemption: The Law and Policy of Intellectual Property
Licensing” (1999) 87 (1) California Law Review 111

Lemley, Mark and Shapiro, Carl, “Probabilistic Patents”, (2005) 19 (2) Journal of Economic
Perspectives 75

Lemley, Mark, “Terms of Use” (2006) 91 Minnesota Law Review 459

Lemley, Mark, Risch, Michael, Sichelman, Ted R. and Wagner, Polk, “Life after Bilski”
(2011) Stanford Law Review 101

Lerner, Josh and Schankerman, Mark, The Comingled Code: Open Source and Economic
Development (Cambridge, Mass.: MIT Press, 2010)

Lessig, Lawrence, “Open Code and Open Societies: Values of Internet Governance” (1999)
74 Chicago-Kent Law Review 1405

Lessig, Lawrence, Free Culture: How Big Media Uses Technology and the Law to Lock
Down Culture and Control Creativity (New York: The Penguin Press, 2004)

Leveque, Francois and Ménière, Yann, “Copyright Versus Patents: The Open Source
Software Legal Battle” (2007) 4(1) Review of Economic Research on Copyright Issues

Levy, Steven, Hackers—Heroes of the Computer Revolution (London: Penguin Books,
1984,1994)

Lucy, William N.R. and Mitchell, Catherine, “Replacing Private Property: The Case for
Stewardship” (1996) 55 Cambridge Law Journal 566

Macaulay, Stewart, “Non-Contractual Relations in Business’ (1963) 28 American
Sociological Review 55

Macaulay, Stewart, “The Reliance Interest and the World Outside the Law Schools’ Door”,
(1991) Wisconsin Law Review 247

Macaulay, Stewart, “The Real and Paper Deal: Empirical Pictures of Relationships,
Complexity and the Urge for Transparent Simple Rules” (2003) 66 Modern Law Review 44

Macaulay, Stewart, “Freedom from Contract: Solutions in Search of a Problem?” (2004)
Wisconsin Law Review 777

MacQueen, Hector, Waelde, Charlotte and Laurie, Graeme, Contemporary Intellectual
Property—Law and Policy (Oxford: OUP, 2008)

 251

Madison, Michael J., “Legal-ware: Contract and Copyright in the Digital Age” (1998) 67 (3)
Fordham Law Review 1025

Madison, Michael J., “Legal Implications of Open-Source Software” (2001) University of
Illinois Law Review 241

Madison, Michael J., “Reconstructing the Software License” (2003) 35 Loyola University
Chicago Law Journal 275

Maier, Gregory J., “Software Protection—Integrating Patent, Copyright and Trade Secret
Law” (1987) 69 Journal of Patent and Trademark Office Society 151

Ronald J. Mann, “Do Patents Facilitate Financing in the Software Industry?” (2005) 83 (4)
Texas Law Review 961

Macneil, I.R., “The Many Futures of Contracts” (1973-74) 47 South California Law Review
692

Macneil, I.R., “Restatement (Second) of Contracts and Presentiation” (1974) 60 (4) Virginia
Law Review 589

Macneil, I.R., “Contracts: Adjustment of Long-Term Economic Relations under Classical,
Neoclassical and Relational Contract Law” (1978) 72 Northwestern University Law Review
854

Macneil, I.R., The New Social Contract—An Inquiry into Modern Contractual Relations
(New Haven and London: Yale University Press, 1980)

Macneil, I.R., “Economic Analysis of Contractual Relations: Its Shortfalls and the Need for a
Rich ‘Classificatory Apparatus’ ”, (1981) 75 Northwestern University Law Review 1018

Macneil, I.R., “Bureaucracy and Contracts of Adhesion” (1984) 22 Osgoode Hall Law
Journal 5

Macneil, I.R., “Relational Contract: What We Do and Do not Know” (1985) 3 Wisconsin
Law Review 483

Macneil, I.R., “Exchange Revisited: Individual Utility and Social Solidarity” (1986) 96 (3)
Ethics 567

Macneil, I.R., “Contracting Worlds and Essential Contract Theory” (2000) 9 Social and
Legal Studies 431

Macneil, I.R., “Reflection on Relational Contract Theory after a Neo-classical Seminar”, in
Implicit Dimensions of Contract—Discrete, Relational, and Network Contracts, eds. By
David Campbell, Hugh Collins and John Wightman (Oxford and Portland, Oregon: Hart
Publishing, 2003)

Marrella, Fabrizio & Yoo, Christopher S., “Is Open Source Software the New Lex
Mercatoria?” (2007) 47 (4) Virginia Journal of International Law

McGowan, David, “Legal Implications of Open-Source Software” (2001) University of
Illinois Law Review 241

 252

McLaughlin, Nancy A., “Rethinking the Perpetual Nature of Conservation Easements”,
(2005) 29 Harvard Environmental Law Review 421

Merges, Robert, “The End of Friction? Property Rights and Contract in the ‘Newtonian’
World of On-line Commerce (1997) 12 Berkeley Technology Law Journal 115

Merges, Robert, “Software and Patent Scope: A Report from the Middle Innings” (2007) 85
Texas Law Review 1627

Merges, Robert, “The Concept of Property in the Digital Era” [2008] 45 (4) Houston Law
Review 1239

Merrill, Thomas W. and Smith, Henry E., “The Property/Contract Interface”, (2001) 101 (4)
Columbia Law Review 773

Miller, Arthur, “Copyright Protection for Computer Programs, Databases, and Computer-
Generated Works: Is Anything New Since CONTU” (1993) 106 Harvard Law Review 977

Moglen, Eben, “Anarchism Triumphant: Free Software and the Death of Copyright”, (1999)
4 (8) First Monday, at <http://www.firstmonday.org/issues/issue4_8/moglen/>

Moglen, Eben, The dotCommunist Manifesto, January 2003,
<http://emoglen.law.columbia.edu/publications/dcm.html>

Moglen, Eben, “Freeing the Mind: Free Software and The Death of Proprietary Culture”, 29
June 2003, <http://moglen.law.columbia.edu/publications/maine-speech.html>

Mouzas, Stefanos and Furmston, Michael “From Contract to Umbrella Agreement” (2008)
67(1) Cambridge Law Journal 37

Mulcahy, Linda, and Andrews, Cathy, “Baird Textile Holdings v Marks & Spencer Plc” in
Feminist Judgements—From Theory to Practice (Oxford and Portland, Oregon: Hart, 2010)

Nadan, Christian H., “Open Source Licensing: Virus or Virtue?” [2002] Texas Intellectual
Property Law Journal 349

Narodick, Benjamin I., “Smothered by Judicial Love: How Jacobsen v. Katzer Could Bring
Open Source Software Development to a Standstill” (2010) 16 Boston University Journal of
Science and Technology Law 264

Netscape, “Netscape Announces Plans to Make Next-Generation Communicator Source
Code Available Free on the Net” 1998 at
<http://wp.netscape.com/newsref/pr/newsrelease558.html>

Nimmer, Raymond T., “Breaking Barrier: The Relationship between Contract and
Intellectual Property Law”, (1998) 13 Berkeley Technology Law Journal 827

Nimmer, David, Brown, Elliot and Frischling, Gary N., “The Metamorphosis of Contract
into Expand”, (1999) 87 (1) California Law Review 17

O’Reilly, Tim, “Lessons from Open-Source Software Development”, (1999) 42 (4)
Communications of the ACM 33

 253

O’Reilly, Tim, “The Open Source Paradigm Shift”, in Open Sources 2.0,edited by Chris
DiBona, Danese Cooper, and Mark Stone (Sebastopol, CA: O’Reilly, 2006)

Passmore, John, Man’s Responsibility for Nature—Ecological Problems and Western
Traditions (London: Duckworth, 1974)

Patterson, Chip, “Copyright Misuse and Modified Copyleft: New Solutions to the Challenges
of Internet Standardization”, (2000) 98 Michigan Law Review 1351

Perens, Bruce, “Open Source Definition” in Open Sources: Voices from the Open Source
Revolution eds. by Chris DiBona, Sam Ockman & Mark Stone (Sebastopol, O'Reilly &
Associates, 1999)

Pila, Justine, “Dispute over the Meaning of ‘Invention’ in Art. 52(2) EPC—The Patentability
of Computer-Implemented Inventions in Europe” (2005) 36 IIC (2) 173

Pila, Justine, “Software Patents, Separation of Powers, and Failed Syllogisms: A Cornucopia
from the Enlarged Board of Appeal of the European Patent Office, (2010) Oxford Legal
Research Paper Series, Paper No 48/2010

Posner, Eric, “ProCD v Zeidenberg and Cognitive Overload in Contractual Bargaining”
(2010) 77 The University of Chicago Law Review 1181

Post, Deborah W., “Dismantling Democracy: Common Sense and the Contract Jurisprudence
of Frank Easterbrook”, (2000) 16 Touro Law Review 1205

Puckette, Miller, “Who Owns Our Software—A First-person Case Study”, 2004 ISEA
Online Proceedings, available at <http://crca.ucsd.edu/~msp/Publications/isea-reprint.pdf>

Radin, Margaret Jane, “Humans, Computers, and Binding Commitment” (1999) 75 Indiana
Law Journal 1125

Radin, Margaret Jane, “Boilerplate Today, The Rise of Modularity and the Waning of
Consent” (2006)104 Michigan Law Review 1223

Raymond, Eric (editor), The New Hacker's Dictionary (or “Jargon File”) at
<http://www.catb.org/~esr/jargon/html/H/hacker.html>

Raymond, Eric, The Magic Cauldron, 1999 at <http://www.catb.org/~esr/writings/magic-
cauldron/>

Raymond, Eric, The Cathedral and the Bazaar, 2000, version 3.0 at
<http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/>

Raymond, Eric, How to Become a Hacker, 2001, at <http://www.catb.org/~esr/faqs/hacker-
howto.html>

Raymond, Eric, Homesteading the Noosphere, 2002 at
<http://www.catb.org/~esr/writings/homesteading/homesteading/>

Raymond, Eric and Raymond, Catherine Olanich, Licensing HOWTO, 9 November 2002, at
<http://catb.org/~esr/Licensing-HOWTO.html>

 254

Rose, Mark, Authors and Owners—The Invention of Copyright, (Cambridge, Mass. &
London: Harvard University Press, 1993)

Rosen, Lawrence, Open Source Licensing—Software Freedom and Intellectual Property
Law, (Upper Saddle River, NJ: Prentice Hall PTR, 2005)

Rowland, Dane and Campbell, Andrew, “Supply of Software: Copyright and Contract
Issues” (2002) 10 (1) International Journal of law and Information Technology 23

Rychlicki, Tomasz, “GPLv3: New Software Licence and New Axiology of Intellectual
Property Law” (2008) 30 (6) European Intellectual Property Review 232

Samuelson, Pamela, Davis, Randall, Kapor, Mitchell D., Reichman, J. H., “A Manifesto
concerning the Legal Protection of Computer Programs”, (1994) 94 (8) Columbia Law
Review 2308

Samuelson, Pamela, “The Quest for Enabling Metaphors for Law and Lawyering in the
Information Age” (1996) 94 (6) Michigan Law Review 2029

Saunders, David, Authorship and Copyright, (London: Routledge, 1992)

Schwarzenbach, Sibyl, “Locke’s Two Conceptions of Property” (1988) 14 (2) Social Theory
and Practice 141

Sennett, Richard, The Craftsman (New Haven & London: Yale University Press, 2008)

Shankland, Stephen, “Defender of the GPL”, CNET News.com, 19 January 2006 at
<http://news.cnet.com/Defender-of-the-GPL/2008-1082_3-6028495.html>

Shemtov, Noam, “The Characteristics of Technical Character and the Ongoing Saga in the
EPO and the English Courts” (2009) 4(7) Journal of Intellectual Property Law & Practice
506

Shemtov, Noam, “Software Patents and Open Source Models in Europe: Does the FOSS
Community Need to Worry about Current Attitudes at the EPO?” (2010) 2 (2) International
Free and Open Source Software Law Review 151

Shils, Edward, “Henry Sumner Maine in the Tradition of the Analysis of Society”, in The
Victorian Achievement of Sir Henry Maine: A Centennial Reappraisal, ed. By Alan
Diamond (Cambridge: CUP, 2001)

Shindler, Andrew, “Derogation from Grant in Copyright Law” (1986) 49 (4) Modern Law
Review 513

Slawson, David, W., “Standard Form Contracts and Democratic Control of Lawmaking
Power” (1971) 84 (3) Harvard Law Review 529

Smith, Roger, Property Law (Essex, England: Pearson Education Limited, 2003, 4th Edition)

Software Freedom Law Center, “Originality Requirements under U.S. and E.U. Copyright
Law”, 27 September 2007, at <http://www.softwarefreedom.org/resources/2007/originality-
requirements.html>

 255

Software Freedom Law Center (Richard Fontana et. al.), A Legal Issues Primer for Open
Source and Free Software Projects, 3 March 2008, at
<http://www.softwarefreedom.org/resources/2008/foss-primer.html>

Stallman, Richard, “Initial Announcement”, 1983, at <http://www.gnu.org/gnu/initial-
announcement.html>

Stallman, Richard, The GNU Manifesto, 1985, at <http://www.gnu.org/gnu/manifesto.html>

Stallman, Richard, “GNU Emacs availability information”, 3 July 1985 at
<http://mirror.libre.fm/MIT/gnu/emacs-16.56/etc/DISTRIB>

Stallman, Richard, “Why Software Should Be Free”, 1991, at
<http://www.gnu.org/philosophy/shouldbefree.html>

Stallman, Richard, “Why Software Should Not Have Owners”, 1994, at
<http://www.gnu.org/philosophy/why-free.html>

Stallman, Richard, “The Free Software Definition”, 1996, at
<http://www.gnu.org/philosophy/free-sw.html>

Stallman, Richard, “Patent Reform Is Not Enough”, 1996, at
<http://www.gnu.org/philosophy/patent-reform-is-not-enough.html>

Stallman, Richard, “The GNU Operating System and the Free Software Movement” in Open
Sources: Voices from the Open Source Revolution eds. by Chris DiBona, Sam Ockman &
Mark Stone (Sebastopol, O'Reilly & Associates, 1999)

Stallman, Richard, “Why We Must Fight UCITA”, 31 January 2000 at
<http://w2.eff.org/IP/UCITA_UCC2B/20000131_fight_ucita_stallman_paper.html>

Stallman, Richard, “Software Patents—Obstacles to Software Development”, script of a
speech delivered at the University of Cambridge Computer Lab, 25 March 2002, at
<http://www.cl.cam.ac.uk/~mgk25/stallman-patents.html>

Stallman, Richard, “On Hacking”, 2002, at <http://stallman.org/articles/on-hacking.html>

Stallman, Richard, “Fighting Software Patents—Singly and Together”, 2004, at
<http://www.gnu.org/philosophy/fighting-software-patents.html>

Stallman, Richard, “The Dangers of Software Patents”, 24 May 2004, a talk delivered at the
University of Dublin, Trinity College, organised by Irish Free Software Organisation,
transcript by Glenn Strong, Malcolm Tyrrell, Aidan Delaney and Ciaran O'Riordan at
<http://www.ifso.ie/documents/rms-2004-05-24.html>

Stallman, Richard, “Did You Say ‘Intellectual Property’? It’s a Seductive Mirage”, 2004 at
<http://www.gnu.org/philosophy/not-ipr.html>

Stallman, Richard, “Why ‘Free Software’ is Better than ‘Open Source’?” 2005 at
<http://www.gnu.org/philosophy/free-software-for-freedom.html>

Stallman, Richard, GNU Emacs Manual (Boston, MA: Free Software Foundation, 2010, 16th
Edition)

 256

Stallman, Richard, “What’s in a Name?” at <http://www.gnu.org/gnu/why-gnu-linux.html>

Stokes, Simon, “The Development of UK Software Copyright Law: from John Richardson
Computers to Navitaire” (2005) 11 (4) Computer and Telecommunications Law Review 129

Tapscott, Don and Williams, Anthony D., Wikinomics (London: Portfolio, 2006)

Titmuss, Richard M., The Gift Relationship—From Human Blood to Social Policy, eds. by
Ann Oakley and John Ashton, (NY: The New Press, 1997; Originally published in 1970)

Torvalds, Linus, “What Make Hackers Tick? a.k.a. Linus’s Law” as the prologue to The
Hacker Ethic and the Spirit of the Information Age, by Pekka Himanen, (NY: Random
House, 2001)

Treitel, Guenter, The Law of Contact, (London: Sweet and Maxwell, 2003, 11th Edition)

Tushnet, Rebecca, “Naming Rights: Attribution and Law” (2007) 3 Utah Law Review 781

Vaidhyanathan, Siva, “The Anarchist in the Coffee House: A Brief Consideration of Local
Culture, The Free Culture Movement, and Prospects for a Global Public Sphere”, (2007) 70
(2) Law and Contemporary Problems 205

Wacha, Jason B., “Taking the Case: Is the GPL Enforceable” (2005) 21 Santa Clara
Computer and High Technology Law Journal 451

Wagner, R. Polk “Information Wants to Be Free—Intellectual Property and the Mythologies
of Control, (2003) 102 Columbia Law Review 995, in Intellectual Property: Critical
Concepts in Law, edited by David Vaver (Oxford: Routledge, 2006)

Wayner, Peter, Free for All—How Linux and the Free Software Movement Undercut the
High-Tech Titans (HarperBusiness, 2000) also available at
<http://www.jus.uio.no/sisu/free_for_all.peter_wayner/>

Weber, Steven, The Success of Open Source (Cambridge, Mass.: Harvard Uni. Press, 2004)

Williams, Sam, Free as in Freedom--Richard Stallman's Crusade for Free Software,
O’Reily, 2002 at <http://www.oreilly.com/openbook/freedom/>

Wightman, John, “Beyond Custom: Contract, Contexts, and the Recognition of Implicit
Understandings”, in Implicit Dimensions of Contract—Discrete, Relational, and Network
Contracts, eds. By David Campbell, Hugh Collins and John Wightman (Oxford and Portland,
Oregon: Hart Publishing, 2003)

Whitford, William C., “Ian Macneil’s Contribution to Contracts Scholarship”, (1985)
Wisconsin Law Review 545

Woodmansee, Martha, “The Genius and Copyright” in The Author, Art, and the Market—
Reading the History of Aesthetics (NY: Columbia University Press, 1994) originally
published in (1984)17 Eighteenth-Century Studies 425, titled “The Genius and Copyright:
Economic and Legal Conditions of the Emergence of the ‘Author’”

Woodmansee, Martha, “On the Author Effect: Recovering Collectivity” (1992) 10 Cardozo
Arts and Entertainment Law Journal 279

 257

Zimmerman, Diane Leenheer, “Authorship without Ownership: Reconsideration Incentives
in a Digital Age” (2003) 52 DePaul Law Review 1121

 258

Appendix (A): Development of “Intellectual Property” and FOSS: A Timeline

 Copyright Patent Trademark Miscellaneous
1972 Gottschalk v. Benson

(US SC)

1973 European Patent
Convention

1978 US CONTU
recommendation

1980 US Congress
amended its
Copyright Act to
expressly cover
software

1981 Diamond v. Diehr
(US SC)

1983 Emacs dispute
between Stallman
and Gosling

1984 Steven Levy
documented the
Hacker Ethic

1985 Emacs GPL (first
copyleft licence)

1986 Whelan v. Jaslow
(3rd Cir.)

1987 Vicom/Computer-
related invention
(EPO)

1988 UK CDPA
(expressly
recognising
copyright
subsistence in
“software”)

1989 -Stallman’s Anti-
Lotus Litigation
Protest

-GPL 1.0
1990 Lotus v. Paperback

(first Lotus case)

1991 EU Software
Directive

1992 Computer
Associates v. Altai
(2nd Cir.)

 GPL 2.0

1996 * ProCD v.
Zeidenberg (7th Cir.)

1998 State Street Bank v.
Signature Financial
Group (CAFC)

 Open Source
Initiative (OSI)
founded

 259

2001 Planetary
Motion v.
Techsplosion

2002 PBS
Partnership/Pension
Benefit System (EPO)

2004 Hitachi/Auction
Method (EPO)

2006 Microsoft/Clipboard
Form I&II (EPO)

 Open Source As
Prior Art (OSAPA)
launched

2007 Aerotel Ltd. v. Telco
Holdings Ltd. (UK
CA)

 GPL 3.0

2008 Jacobsen v. Katzer
(CAFC)

Bilski v. Kappor
(CAFC)

2010 Bilski v. Kappor (US
SC)

(*Author’s Note: The ProCD case is not purely a copyright case. More importantly, it deals
with an intersectional area covering both copyright and contract. See Chapter 4 of this
dissertation for a more detailed analysis.)

 260

Appendix (B): GNU Emacs General Public License (1985)

originally published in 1985,clarified 11 February 1988**

The license agreements of most software companies keep you at the mercy of those
companies. By contrast, our general public license is intended to give everyone the right to
share GNU Emacs. To make sure that you get the rights we want you to have, we need to
make restrictions that forbid anyone to deny you these rights or to ask you to surrender the
rights. Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of Emacs,
that you receive source code or else can get it if you want it, that you can change Emacs or
use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of Emacs, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for GNU Emacs. If Emacs is modified by someone else and passed on, we want its
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.): make the
following terms which say what you must do to be allowed to distribute or change GNU
Emacs.

Copying Policies 1. You may copy and distribute verbatim copies of GNU Emacs source
code as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each file a valid copyright notice "Copyright 1988 Free Software Foundation,
Inc.'' (or with whatever year is appropriate); keep intact the notices on all files that refer to
this License Agreement and to the absence of any warranty; and give any other recipients of
the GNU Emacs program a copy of this License Agreement along with the program. You
may charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GNU Emacs source code or any portion of it, and
copy and distribute such modifications under the terms of Paragraph 1 above, provided that
you also do the following:

- cause the modified files to carry prominent notices stating who last changed such files and
the date of any change; and

- cause the whole of any work that you distribute or publish, that in whole or in part contains
or is a derivative of GNU Emacs or any part thereof, to be licensed at no charge to all third
parties on terms identical to those contained in this License Agreement (except that you may
choose to grant more extensive warranty protection to some or all third parties, at your
option).

- if the modified program serves as a text editor, cause it, when started running in the
simplest and usual way, to print an announcement including a valid copyright notice
"Copyright 1988 Free Software Foundation, Inc.'' (or with the year that is appropriate),
saying that there is no warranty (or else, saying that you provide a warranty) and that users

 261

may redistribute the program under these conditions, and telling the user how to view a copy
of this License Agreement.

- You may charge a distribution fee for the physical act of transfer ring a copy, and you may
at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative) on a
volume of a storage or distribution medium does not bring the other program under the scope
of these terms.

3. You may copy and distribute GNU Emacs (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and 2 above
provided that you also do one of the following:

- accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Paragraphs 1 and 2 above; or,

- accompany it with a written offer, valid for at least three years, to give any third party free
(except for a nominal shipping charge) a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Paragraphs 1 and 2 above; or,

- accompany it with the information you received as to where the corresponding source code
may be obtained. (This alternative is allowed only for non commercial distribution and only
if you received the program in object code or executable form alone.)

For an executable file, complete source code means all the source code for all modules it
contains; but, as a special exception, it need not include source code for modules which are
standard libraries that accompany the operating system on which the executable file runs.

4. You may not copy, sub license, distribute or transfer GNU Emacs except as expressly
provided under this License Agreement. Any attempt otherwise to copy, sub license,
distribute or transfer GNU Emacs is void and your rights to use GNU Emacs under this
License agreement shall be automatically terminated. However, parties who have received
computer software programs from you with this License Agreement will not have their
licenses terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GNU Emacs into other free programs whose
distribution conditions are different, write to the Free Software Foundation. We have not yet
worked out a simple rule that can be stated here, but we will often permit this. We will be
guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software.

Your comments and suggestions about our licensing policies and our software are welcome!
Please contact the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139.

NO WARRANTY

BECAUSE GNU EMACS IS LICENSED FREE OF CHARGE, WE PROVIDE
ABSOLUTELY NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE
STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE
SOFTWARE FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER
PARTIES PROVIDE GNU EMACS "AS IS'' WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

 262

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE GNU EMACS
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL FREE SOFTWARE
FOUNDATION, INC., RICHARD M. STALLMAN, AND/OR ANY OTHER PARTY
WHO MAY MODIFY AND REDISTRIBUTE GNU EMACS AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST
MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH PROGRAMS NOT DISTRIBUTED BY FREE SOFTWARE
FOUNDATION, INC.) THE PROGRAM, EVEN IF YOU HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

(**Author’s Note: This is the very first copyleft licence written by Stallman as his response
to the dispute with Gosling over a version of Emacs editor from 1983 to 1985. It is followed
by the three generic versions of GNU General Public License respectively published in 1989,
1992 and 2007. For the history of the GPL, see Chapters 2 and 3 of this dissertation for more
detail.)

