The London School of Economics and Political Scienc e

Authoring Collaborative Projects: A Study of Intellectual
Property and Free and Open Source Software (FOSS)
Licensing Schemes from a Relational Contract Perspective

Chenwel Zhu

Submitted to the London School of Economics and Political
Science for the degree of Doctor of Philosophy

London, October 2011

Declaration

| certify that the thesis | have presented for exation for the PhD degree of the

London School of Economics and Political Sciencgoigly my own work.

The copyright of this thesis rests with the autl@uotation from it is permitted,
provided that full acknowledgement is made. Thissts may not be reproduced

without the prior written consent of the author.

| warrant that this authorisation does not, to ltest of my belief, infringe the

rights of any third party.

Abstract

The emergence of free and open source software{f0& posed many challenges to the
mainstream proprietary software production modaisissertation endeavours to address
these challenges through tackling the followingalegroblem: how does FOSS licensing
articulate a legal language of software freedosuipport of large-scale collaboration among
FOSS programmers who have to face a rather hdetild environment underlined by a
dominant ideology of possessive individualism? pra@ach this problem from three aspects.
The first aspect examines the uniduistorical context from which FOSS licensing has
emerged. It focuses on the most prominent “copylefience—GNU General Public
Licence—which has been shaped by the tension batéeeMIT-style hacker custom and
intellectual property law since the 1980s. The sdcaspect tackles thegal mechanism of
FOSS licences, which seems not dissimilar from rothen-negotiated standard-form
contracts. My analysis shows that FOSS licencesmalofit well with the neoclassical
contract model that has dominated software licgnginsprudence so far. | therefore call for
replacing the neoclassical approach with lan MdsnBielational Contract Theory, which
has remained conspicuously absent in the softweemding literature. The third aspect
explores FOSS programmeegithorshipas manifested in FOSS licensing. It argues that th
success of a FOSS project does not merely dependhenvirtuosity of individual
programmers in isolation. More importantly, a ctgam of lead programmers’ efforts are
essential to channel individual authors’ virtuosityo a coherent work of collective
authorship, which can deserve credit for the ptofeca whole. The study of these three
aspects together aims to create a synergy to shaivit is possible to graft a few
collaborative elements onto the existing legaleyst-underpinned by a neoliberal ideology
assuming that human beings are selfish utility-mmésing agents—through carefully crafted

licensing schemes.

Acknowledgements

| am deeply grateful to be given the opportunitystody at the LSE, where | have spent a

few most memorable years focusing on a subject thait fascinated about.

| am most thankful to my lead supervisor Ms. AnrarrBn who has been tremendously
supportive and patient in shepherding my academofeqt over these years. It is under
Anne’s careful guidance that | am able to channginitial curiosity into this final doctoral

work.

| express my heart-felt gratitude to Professor hittlilcahy who helped me enormously on
Relational Contract Theory, which turned out tosieh a crucial component of the whole
dissertation. Linda’s encouragement and kindnessatiyr helped me to finish this

dissertation during my final year of study.

| am also very thankful to Dr. Edgar Whitley whoshgiven much support during my early

years at the LSE and | have benefited considefady his advice.

A large part of this dissertation was written dgrimy residency at the Lilian Knowles
House (a student hall in East London), where | spanificant amounts of time studying
and writing in its basement computer room. Whileréh | also made a few good friends
whose presence made my many long writing sessess Ibnely. My final two chapters
were finished when | was lodging with two families two different times (first with
Gwenda and Dafydd’'s and then Yin and Bob’s). Bathifies have warmly treated me like a
family member and made great efforts to provideugetgplace for me to concentrate and
study during the final lap of my PhD journey. Iaisant to thank Carol Capel-Bradford, Bal
Khela, Sebastian Szuhay, David Possee and Joaulilbo Seach of whom has spared some
time to read parts of this dissertation and | delabenefit a lot from their helpful

comments and feedback.

Finally, I do not know how to thank enough my pasewho have made many sacrifices for

my education from my beginning stage until now.sTdlissertation is dedicated to them.

C.W.

CONTENTS

DECLARATION ...ttt e ekttt e e+ e ekttt e e e e e sttt e e e e e sabaeee e e e ansbbe e e e e e s anbbbeeeeeeannenes 2
AB ST RACT ..ttt ettt et ee e e ettt e e e etk bt e e e e o b bttt e e e e bt e e e e e e b b et et ee e e et beeeeeeeaanbareeeaeeares 3
ACKNOWLEDGEMENTSciiiiiiiiiiiiiite et te e sttt e e e s st e e e e e s astbaeeeaesssbeeeeessassseeeaessassrneeaaesanes 4
LIST OF CASES ...ttt ettt ettt ettt e e e ekttt e e e s e et b e et e e e sastaaeeesassbaeeeeesasstaaeaessnnsnseeeens 8
CHAPTER 1 OVERVIEW: PROBLEMATISING FOSS LICENSINGccccocveeeeiiiieee e 10
L L INTRODUCTION ..ettieeiiutttetteesaittteeeaesasteeeeaessausaeeeessanssseeeaesasssseeaessansssseeeessanneneeesaanssseeeeens 10
1.1.1 Two Conflicting Traditions: Where Do FOSS laaces Come From?.........ccccccvvvvvnnen. 11
1.1.2 Three Aspects of FOSS Licensing: Framing tReIestionsccccccvveeeeeeieeeeeees o 13
1.2KEY CONCEPTS INFOSSLICENSINGuuuiiieiaaeieieeiiiititae e e e e e e e e e eeeeeeeessasbins e e e e e aaaaeeeeasnnes 15
1.2.1 Source Code and FOSS ... e e e e e 16
1.2.2 “Free Software” and “OpEN SOUICE”oo it e e e e e e e e 17
1.2.3 FOSS Stewardship and the Hacker EthiC ..ccceeevvvvveeeieoiiiieeeee e, 19
1.2.4 FOSS Licence and “Copyleft”..........cooeeeieiiiiiiiiiiiiiieie e e ee e e e e e e sssssnesnaeneaeeeeeees 21
1.3STEWARDING FOSSPROJECTS: WHAT LICENCES CAN AND CANNOT DO ...covveviiiiiiieeeeee 24
1.3.1 Collaboration in FOSS PrOJECLSuuceeeiieiiiaiiitieiie ettt a e e 24
1.3.2 The Role Of FOSS LICENSING ...ceetiiiii ettt a e e e e e e e e e e e e e ananes 31
1.4ASTRUCTURE OF THE DISSERTATIONcititiititttutuinaaaaaeaeateeeessstsnnnaaaaaaaeaaeaaeeeessssssannnnaeaeeas 40

CHAPTER 2 FROM THE HACKER ETHIC TO “OPEN SOURCE”: A BRIEF HISTORY. 42

2.1INTRODUCTION : THREE HISTORICAL STAGES ...ccuttiiiiianiiiatieaniieesieeatee e seessieeeree e 42

2.2FROM THE 19505 TO THE EARLY 19805: THE PRE-LICENSING ERAooviiiiiiiiiiiiiic e 44
2.2.1 Beginning of the Hacker EthiC...........ccccuiiiiiiii e 44
2.2.2 Decline of the Hacker ELNICiviieiieeiiiece e 50

2.3FROM THE EARLY 19805 TO 1998:CLASH BETWEEN THE TWO TRADITIONSccvvvivniinniinneen. 54

2.3.1 Changes in Market and LaWooiecccceeeeeeeee e e e e e e e 54
2.3.2 The Birth Of COPYIETteeiiiiiee e a e e e e 58
2.4FROM 19980NWARDS: CHALLENGE FROM “O PEN SOURCE"cciutiriiiniiireieeaieennneesneed 68
2.5 CONCLUSION ...ttt bttt ettt e e e e e e e e s e et e e e e et ettt et e e e e e e e e s e e sa s s nbraar e e e e e e taaeeeeeeens 80
CHAPTER 3 INTELLECTUAL PROPERTY AND SOFTWARE FRE EDOM ... 82
. LINTRODUCTION .uiiiiiiitiitretreeet ettt e ete e e e e e e e e e s e s e et e e e et e e e aeeeeee e s s s sa et an e e e et e e e aeeeeeeenans 82
3.2 NTELLECTUAL PROPERTY” AND FOSS .. .oiiiiiiiiiiiiiiiie ittt 83
3.3COPYRIGHT AND FOSS ...tttk bttt ettt nneesane e 86
3.3.1 The Originality TAresholdcccoieeiiiiiie e 87
3.3.2 Software as EXpression and FUNCHON ... eeeiiiiiiiiieiiieeieeeee e 92
3.3.3 Scope of Exclusivity: Restricted and Permiti&Ctseeeeieeiiiiiiiiiieaniiiiicce 98
SAPATENT AND FOSS ..o ettt e et e e e e e e e e s e s 102
3.4.1 Patentability of Software-Related INVENtiONS..............coooeeiiciviiiiiieee e 103
3.4.2 Perceived Threat of Patents to Software INABONcccccovveeiiieeninieeseeee 112
3.5GPL AND SOFTWARE FREEDOMcecitttitieiietatetasteeateesiaeesieeesseesbeesneesineesineesineesineennnes 117
3.5.1 GPL as a Copyright and “Copyleft” LICENCE cae....uttiiiiiiieiiieiiiiieeeee e 117
3.5.2 GPL as a Patent Licence and itS LiMit.....c.....veeeeiiiiiiiieeeiiiiieeee e 126
BB CONCLUSION ..ttt ettt e e et et e e e e e e ettt et e e te e e e e e e e e e s aasr e nr e nneeeeeees 128
CHAPTER 4 UNDERSTANDING FOSS LICENCES AS STANDARD FORMS—A
RELATIONAL CONTRACT PERSPECTIVE ..o et 130
A LINTRODUCTION iiieieieiiieiaeeiitttres ettt e et et e e e e e et e s esae e et e e et e e teeeeeeesee s annnnerrnneeees 130
4.2FOSSCOLLABORATION : DISCRETE TRANSACTION OR RELATIONAL CONTRACT ?............ 132
4.2.1 Discretist Approach: “Presentiation” of TotaDbligationcccuvvviiiiiieieiers o 133
4.2.2 Relational Approach: Projecting Exchange inthe Futureccccccvvvveeiieneencem 138
4.3THREE DOCTRINAL ROUTES TO ENFORCING A FOSSLICENCEcccvvviiiiiiiiiiiiieciie e 146
4.3.1 First Route: Contractual LICENCEcecvriiiiieieniie e 147
4.3.2 Second ROULE: BAre LICENCEciimmeeeieiee ettt e sttt 159
4.3.3 Third Route: Promissory EStOPPel ... 164

4.4 CONCEPTUALISING THE GPL AS ARELATIONAL CONTRACT ..tivtiiiniiiieeeeieeeeete e ea e eans 616

4.4.1 Two Obstacles: Classical and Neoclassical BaW............ooovvvvvviiiiiiiiie v e 166
4.4.2 GPL as an Umbrella Agreement: Balancing FléXity with Certainty 173
Y O] N0 I =) S 178
CHAPTER 5 THE IDEA OF AUTHORSHIP IN FOSS LICENSINGcoovviiiiiiiiieeieeeeeeeeeee, 180
LSRR N E N 200 016 Lok 1T] N T 180
5.2INDIVIDUAL AND COLLECTIVE “A UTHORS” IN FOSSPROGRAMMINGcuvvviiniiinienniennenn. 183
5.2.1 Debating the Legacy of Romantic A@SthetiCS.........cccvvvviiiiiiiiiieiieeeee e, 183
5.2.2 Programming as an Engineering Discipline: Qstgoning “Originality” 187
5.2.3 Stewarding a FOSS Project: Questioning “Indiality”...........cccccoeeeeiiiiiiiieicii 189
5.3DEVELOPMENT OF THE LEGAL PERSONA OF FOSSPROGRAMMERSucivviiiiiiiiiiceineiins 200
5.3.1 Claiming FOSS Authorship under Law (1): Copightccuvviiiiiiiiiiiiiiiaaaaaenee 202
5.3.2 Claiming FOSS Authorship under Law (11): Tra@markooooiiiiiiiiiiiieeee. 214
5.3.3 Legal Persona of Author-StewardShip ...coee..ceeviiiiiiiiiiiiiiiieeeeeeee e 220
LSRN @] Nl I 1] o] N 227
CHAPTER 6 CONCLUSION ...cutuiiiiiite ettt e et e e e et s e e st s e e s ee b s e s ee s b e e e eeaana s 228
6.1 CONTRIBUTIONS TO THE SCHOLARLY LITERATURE ...ouiitiiitiiiiiiiciteiiee it e e et e et eeaes s 228
6.2 AVENUES FORFUTURE RESEARCHuuiitiiiiiiiiii ittt e et e et s s st e e s e s s e s enes 237
6.3 CONCLUDING REMARKS ...uuittiiiiii ittt et et e e b e et e s e et e e e st e et e s s ea e et e eanssbaens 244
BIBLIOGRAPHY ...ttt eee et e e e et e e e e et e e e s e et e e e s e abb e e e s eaba e e e s esban e eseebansans 245

APPENDIX (A): DEVELOPMENT OF “INTELLECTUAL PROPERTY ” AND FOSS: A

TIMELINE ..ottt e e e e e e s e e et e et neeaeeeeeeas 258

APPENDIX (B): GNU EMACS GENERAL PUBLIC LICENSE (198 5)......ccvvveeiiiiiiiieeeeeiiee, 260

List of Cases

Aerotel Ltd. v. Telco Holdings Lt{2007] 7 RPC 117

Apple Computer, Inc. v. Microsoft Corporatid@b F.3d 1435 (9th Cir. 1994)

Arizona Retail v. Software LinB31 F. Supp. 759 (D.Ariz. 1993)

Baird Textile Holding Ltd. v. Marks & Spencer pgl2001] EWCA Civ 274

Beta Computers (Europe) v. Adobe Systems (Euf@pep) SLT 604

Bilski v. Kappos130 S. Ct. 3218 (2010)

British Leyland Motor Corpn v. Armstrong Patents IGd. [1986] AC 577

Cantor Fitzgerald International v. Tradition (UK)}d. [2000] RPC 95

Computer Associates International, Inc. v. Altai.) 982 F.2d 693 (2d Cir.1992)

Currie v. Misa(1975) L.R. 10 Ex. 153

Diamond v. Diehr450 U.S. 175 (1981)

Feist Publication Inc. v. Rural Telephone Serviee, 1499 U.S. 340 (1991)

Follett v. New American Librar¢97 F. Supp. 304 (SDNY, 1980)

Gates Rubber v. Bando Chemical |- & F.3d 823 (10th Cir. 1993)

Gilliam v. ABC 538 F.2d 14 (2d Cir.1976)

Gottschalk v. Bensgd09 U.S. 63 (1972)

Ibcos Computers Ltd. v. Barclays Mercantile Higlddfinance[1994] FSR 275

Jacobsen v. Katzeb35 F.3d 1373 (Fed. Cir. 2008)

Lotus Development Corp. v. Paperback Software matibonal 740 F Supp 37 (D Mass,
1990)

Lotus Development Corp. v. Borland Internatiognd® F.3d 807 (1 Cir. 1992); 516 US
233(1996)

Microsystems Software, Inc. v. Scandinavia OnliBe98 F. Supp. 2d 74 (D.Masss., 2000),
aff'd, 226F. 3d 35(1st Cir., 2000)

Planetary Motion v. Techsplosip261 F.3d 1188 (11th Cir.2001)

Pollstar v. Gigmania, Ltd 170 F.Supp. 2d 974 (E.D. Cal. 2000)

ProCD v. Zeidenberg86 F.3d 1447 (7th Cir.1996)

Richardson v. Flanderd 993] FSR 497

Saphena v. Allied Collectidi995] FSR 616

Specht v. Netscape Communications CBP6 F.3d 17 (2d Cir. 2002)

State Street Bank v. Signature Financial Grol4® F. 3d 1368 (Fed. Cir. 1998)
Step-Saver Data Sys. Inc. v. Wyse T688 F.2d 91 (3 Cir. 1991)

Symbian Ltd. v. Comptroller-General of Patej2808] Bus. L.R. 607
Ticketmaster Corp. v. Tickets.com, |nig.S. Dist. LEXIS 6483 (C.D. Cal. 2003)
University of London Press Ltd. v. University TisabPress Ltd[1916] 2 Ch 601
Vicom/Computer-related Inventipm208/84 [1987] EPOR 74; [1987] OJ EPO 14

Whelan Associates Inc. v. Jaslow Dental Laboratocy, 797 F.2d 1222 (3d Cir. 1986)

Chapter 1 Overview: Problematising FOSS Licensing

1.1 Introduction

The emergence of free and open source software F@8selopment as a method
for producing highly robust information productsjck as the Linux operating
system or the Apache web server, has challenged/ rmanventional ideas that
underpin the business model of proprietary softwakéhat is truly remarkable about
these FOSS projects is their ability to attractidearange of voluntary contributors
across the globe, whose contributions are produaegkly without immediate
monetary incentive$Benkler calls this phenomenon networked “peer petidn”,
where innovation is decentralised to its maximurd areative individuals follow
neither price signals under the market mechanisnmamagerial commands within a
hierarchical corporate structutén fact, the “peer production” model goes beyond
FOSS and it has already inspired many non-prograigproreative activities to be

conducted on the mass collaborative level in alaimiay?

Most significantly, each FOSS project can be seegeaerating a software commons,

in which source code is freely accessed, used, flraddand redistributed under

! Eric Raymond, The Cathedral and the Bazaar 2000, Version 3.0 at
<http://www.cath.org/~esr/writings/cathedral-bazeathedral-bazaar/> (hereafteathedra)

2 For a survey of the motivational forces behind B@®ntribution, see Karim R. Lakhani and Robert
G. Wolf, “Why Hackers Do What They Do: UnderstargliMotivation and Effort in Free/Open
Source Software Projects”, iRerspective on Free and Open Source Softwads. by Feller,
Fitzgerald, Hissam & Lakhani (Cambridge, Mass.: NPifess, 2005)

% Benkler finds that the production model of FOS®rape largely outside the firm-based or market-
based structure: “Free software projects do ngtegher on markets or on managerial hierarchies to
organize production. Programmers do not generaljigipate in a project because someone who is
their boss instructed them, though some do. Theynatogenerally participate in a project because
someone offers them a price, though some partitspadm focus on long-term appropriation through
money-oriented activities, like consulting or seevcontracts. But the critical mass of participafio
projects cannot be explained by the direct preseheecommand, a price, or even a future monetary
return particularly in the all-important microlevel de@sis regarding selection of projects to which
participants contribute.” See Yochai Benkler, “G&asPenguin, or, Linux and ‘The Nature of the
Firm™ (2002) 112, (3)Yale Law JournaB69, at 372-3

4 Wikipedia is a glaring example here. Richard 8tah sees Wikipedia as a natural extension of
FOSS collaboration into the area of encyclopaed@as. Stallman, “The Free Universal Encyclopedia
and Learning Resource” ah#tp://www.gnu.org/encyclopedia/free-encyclopedialh; see also Don
Tapscott, and Anthony D. William¥Vikinomics(London: Portfolio, 2006); Charles Leadbeai&fe-
Think(London: Profile Books, 2008)

10

certain rules specified in a corresponding FOS&hkie. It is important to note that a
FOSS licence does not make programmers entirelyhdaa their intellectual
property rights altogether into the public domdiut it carefully retains some private

ownership rights for the purpose of preserving mmduring the software commofs.
1.1.1 Two Conflicting Traditions: Where Do FOSS Liences Come From?

One of the most interesting but also puzzling isghat concern this dissertation is a
paradox as manifested in the software commons exteby collaborative FOSS
projects. There seem to be two conflicting notitrs are welded together in these

commons-oriented regimes: 1) programmers’ “stewapdsresponsibility to share
software with the public, and to develop it colledtovely and 2) their individual
“private property” rights in the software code thatproduced. These two notions
stem respectively from the two almost diametricalbpposed traditions of producing
and circulating software. In this dissertation,all dhe first one the “stewardship”
tradition, where software is widely shared in tbenenunity, and the second one the
“private property” tradition, where exclusive profyerights in software are held by
its authors. The two traditions have different geeles. The first tradition of software
stewardship is derived from the computer hackeuogiloriginated in the 1950s and
1960s in some leading US computer research labs ascthe MIT Artificial
Intelligence (Al) Lab, while the second traditiom institutionalised in intellectual
property law (especially copyright) that startecctwver software as a subject matter

in the early 19808.

> A FOSS licence is sometimes seen as the conetituti the corresponding software-sharing
community. Weber comments that FOSS licences caedmt as the statement giving “constitutional
message” to a community and it should reassureathg@rogrammers “will be treated fairly if they
join the community.” Steven WebeFhe Success of Open Sou(@Gambridge, Mass.: Harvard Uni.
Press, 2004%uccessp.179 (HereafteBuccess

® FOSS projects are not embodiment of anarchy,Haretis organisation and governance. It is argued
that stewardship is an important mode of goverttirgsoftware commons enabled by FOSS licences.
See Chris DiBona, Danese Cooper, and Mark Stomgrotuction”, inOpen Sources 2,&dited by
Chris DiBona, Danese Cooper, and Mark Stone (SepaktCA: O'Reilly, 2006) p. xxxvii

" A few leading FOSS programmers calls for adoptivggterm “stewardship”, which is believed to be
a more accurate term in describing FOSS practiceanaging software commons. See, for example,
Chris DiBona, Danese Cooper, and Mark Stone, “thintion” to Open Sources 2,&dited by Chris
DiBona, Danese Cooper, and Mark Stone (SebastGgolQO’Reilly, 2006) p. Xxxvii

8 The US Congress amended their 1976 Copyright Acti980 and put “software” under the
protection the same way that “literary works” aretpcted. The similar thing happened in the UK in
the early 1980s as well.

11

The hacker’s stewardship tradition follows the atlexl “Hacker Ethic”, which was

first documented in the form of six tenets by Stew®vy in his famous book—

Hackers: Heroes of the Computer Revolutigublished in 1984.From the 1950s

to the early 1970s, software was shared among camphackers and it was
impossible for anyone to claim exclusive ownershights in software because
copyright was not established enough to includéwsoké as a subject matter. This
Hacker Ethic is important because it is said toehavasting impact on the “shared
identity and belief system” of today’s FOSS prognaens™ It has also seeded an
important norm of collaboration for any sustainabl@SS project, where software
code should be shared as widely as possible arré gfeuld be no barrier to

artificially block the flow of informatiofr-

However, in the late 1970s, this hackers’ stewapdhdition of information sharing
began to be eroded by the rise of proprietary soffwThere were two developments
that contributed to this erosion. First, softwaaene under trade secrecy protection.
Many hackers were required to sign non-disclosgreeaments when they were lured
away to write code for proprietary software companiSecondly, legislation was
changed to make copyright subsist in software.9801 the US Congress extended
its copyright law to explicitly cover software pragns?. Copyright later became a

main mode of IP that grants programmers’ exclusivaership in softwar&®

The FOSS licences came into existence exactly duhis historical context where
the old Hacker Ethic came into intense conflicthwihe new trend of owning
proprietary rights in software. In response todseendancy of proprietary software,
some hackers began to experiment with the idearadfing copyright licences to
specify the programmers’ stewardship responsibditysoftware sharing. The most

prominent example is the GNU General Public Licef@3EL), which was designed

° Hereafter LevyHackers(London: Penguin Books, 1984,1994)

1% Steven WebetSuccesssupra note 5, p.144

! For example, the second tenet of the Levy’s ethigs that “all information should be free”, which
later becomes an important, though not entirelyoatroversial, norm in the internet age.
?17U.s.C.s.101

13 Specifically, the US Copyright Act gives copyrigbivners including software programmers the
“exclusive right” to do certain activities, andwbuld be illegal for non-owners to do these adtegit
without permission.17 USC s. 106; However, it shonbt be forgotten that the copyright owners’
“exclusive right” have two exceptions in softwalérst, in order to run the software program, it
should be allowed to copied to hard disk and coeymrimemory; second, users are allowed to make
back-up copies. 17 U.S.C. s.117

12

and has been perfected by an ex-MIT hacker RicBtatiman since the 198&$The
GPL is the first and most widely adopted licenceoagh FOSS developers. It
contains an innovative feature known as a “copylefause that enjoins the
downstream developers to share their modificatems improvements of the GPL
covered code’ Copyleft is especially useful for those commuriigsed projects
such as the Linux kernel to grow and expand outifideanarket mechanism and the
hierarchical corporate structure. It is interestitay note that copyleft licences,
including the GPL, do not dispense with copyriglihe paradox is that their
imposition of the “share-alike” responsibility iogyleft is dependent upon the broad
property rights granted by the copyright regimeha first place. In order to make
sense of this paradox, it should be borne in mivat the GPL (and other FOSS
licences) is an attempt to reconcile two antaganistditions battling to gain
influence over the way that software is produced distributed. In other words,
copyleft is the computer hackers’ legal experimengraft the old hacker culture
onto the IP law system through the device of FOiS&nsing. Given the hugely
complex and paradoxical nature of the subject, ¢dnéo further narrow the
dissertation down to three more specific aspectB@8$S licensing and its role in
FOSS collaboration in the following sub-section.

1.1.2 Three Aspects of FOSS Licensing: Framing th@uestions

The main thrust of this dissertation is to studiatmmrative relations through the lens
of FOSS licensing, which is shaped by the tensietwéen the tradition of
stewardship and that of private ownership. Withs thension firmly in the
background, | frame the research questions undee tinterrelated aspects of FOSS

licensing:

® Historical Aspect The first aspect tackles the question as tootigen the

FOSS stewardship tradition and how it has managecbordinate large-scale

14 Stallman wrote the very first copyleft licence knoas the Emacs General Public Licence (EGPL)
in 1985. It was a licence specifically designed foe Emacs programming editor. It was been
amended a couple times before it finally was turired the generic GPL 1.0 in 1989. The 1985
EGPL licence was the solo work of Stallman intenttecetain the Emacs culture of software sharing,
which nonetheless became increasingly vulneralsiadathe rise of proprietary software. | will giee
more detailed account of the birth of copyleft inapter 2.

155, 2(b) GPL v2.0; s. 5(c) GPL v.3.0

13

collaboration among programmers. | will show thetdrical context where
computer hackers’ collaborative ethos was firsttagjed and later concretised
into software stewardship responsibility as detaiy FOSS licences. | define
“stewardship” as FOSS programmers’ responsibibityteserve and protect the
commonswhere software is freely accessible, modifiabld aadistributable. |
further narrow down stewardship responsibility inist dissertation to the
software developers’ specific duty to share sofemanrsuant to 1) the Hacker
Ethic (documented by Steven Levy in 1984) 2) Fre&vi&are Definition (by
Stallman) and 3) Open Source Definition (by Raymand Perens). | will show,
through the lens of FOSS licensing, why the “comsidreld in stewardship is
critical to the success of any large-scale “peedpced” collaborative software
project.

® |egal Aspect (Intellectual Property and Contract) The second aspect
explores the jurisprudence of FOSS licensing sckemvhich covers both
(intellectual) property and contract laws. It triestackle the question as to how
FOSS licensing has attempted to graft FOSS stewigrdssponsibility (to secure
software freedom) onto the IP system. | find that éxisting doctrinal rules from
IP and contract laws, which assume that econorgicalinded individuals
compete against each other in zero-sum games, tdsatisfactorily explain the
highly collaborative relation that FOSS licenceteind to support. Instead, | will
employ lan Macneil'sRelational Contract Theory (RC*¥)to shed some new
light on the issue. | argue that licences usedryysaiccessful FOSS projects are
actually a kind of relational contract involvinchagh degree of cooperation over
a long period of time, rather than a series of simat-discrete transactions.

® Authorial Aspect The third aspect asks: who are the “authorsF@5S?
How is programmers’ authorship manifested in FO8&ntes? What motivates
authors to contribute to software commons in a seglgn altruistic manner? |
will show that the highly collaborative nature of08S authorship hardly
conforms to the Romantic vision of the authors @éasy individual geniuses
that are assumed by the orthodox IP legal institutiThe practice of FOSS
licensing reflects FOSS programmers’ desire to fleelited as authors of their

'8].R. Macneil, The New Social Contract—An Inquiry into Modern Qaciual Relations(New
Haven and London: Yale University Press, 1980)

14

contributions. Most importantly, FOSS authors avéjast individual creators of
code in isolation. When individually created cdmitions are pieced together
into a whole, the coordinating efforts behind thejgct would give birth to a
collective authorship that can be held responsirid deserve credit for the
production of the FOSS project as a whole. Thisective authorship is closely
related to the lead programmers’ stewardship respiity to forge collaboration
among individual programmers driven by a multipliadf motivational forces. It
is exactly this alignment of authorship with stedlsnip that has fundamentally
challenged the author-ownership model that dom@dbe conventional IP

jurisprudence.

The study of these three aspects together willteraasynergy to show that FOSS
programmers’ struggle to rebuild some elements ofoHaborative ethos that
originated from the old hacker ethic but has bedipged by the rise of intellectual
property (especially copyright) regulation of sadte innovation. This struggle runs
against a dominant neo-liberal understanding of enodproperty and contract
institutions as mainly furthering the economic retgs of atomised individuals in
isolation. It results in programmers’ minimum stesiship responsibility being
verbalised into FOSS licensing terms, which becotheslegal infrastructure that
large-scale collaboration can rely upon. Althougle tole of FOSS licensing in
facilitating collaboration is important, my thedig no means intends to exaggerate
this role. FOSS licensing alone does not make lootktion happen, but it must be
combined with other non-legal decisions made byg@mmmers’ one integrated
project in a radically decentralised environntént will start by clarifying a few
basic key concepts that will help to understand $Q8ogrammers’ licensing
schemes in relation to their collaborative efforts.

1.2 Key Concepts in FOSS Licensing

This section is written to clarify a few of the mdmasic concepts that are of great
importance to this dissertation. | will divide thanto four groups, each of which

deals with two closely related concepts in pawill give each concept a concise

" One of these non-legal factors is the technicaisittn made by lead programmers to create a
modular architecture, where software can be matlifiyg many collaborating programmers. See
Section 1.3.1 of this chapter for more detalil.

15

definition and then explain briefly their importanim the context of FOSS licensing.
| believe these explanations will facilitate thedarstanding of the subject when the

dissertation progresses into a more detailed astthieal discussion.
1.2.1 Source Code and FOSS

Source codeis the technical term used to describe the hureadable code that is
written by programmers. Not unlike other human leage, source code is written in
the alphanumeric form, which can be understood assiply altered by other
programmers. Source code needs to be turned inthinereadablebject code
through a complier program before it can be runabgomputer. This process is
known as “compilation™®

The significance of source code is threefold. Filscause source code can be
written and read by human beings, it is not drafifiacdissimilar from literary text.
For this reason, most countries make softwareldédor copyright protection under
the category of literary work by analddySecond, software can be easily modified
through changing the source code and thus opensheippossibility for other
programmers to make adaptations to their own needsnprove the software
collaboratively. Thirdly, because the source code be read by human beings, it
makes software not only a technological artifadt &lso acommunicative process
That's why software can also be seen as a kind discburse”.?® This
“communicative” or “discursive” feature has a breadocial consequence. It leads
the anthropologist Christopher Kelty to believetth®SS is a kind of public sphere
where FOSS programmers argue not only “about” teldgy but also “through”
technology (as if the source code is their humaguageY* So by hiding the source
code, software will be effectively deprived of #emmunicative potential, which

goes against the original design of this technalogy

'8 David BainbridgelLegal Protection of Computer Softwafideywards Heath, West Sussex: Tottel
Publishing, 2008, 5th Ed.) p.57

9 For example, s.3(1), UK CDPA 1988

? Fitzgerald points out that software is kind ofadisrse due to its communicative nature: “Software
in the information society is discourse. It is sohply a literary text (a copyright law categorisa)

it is fundamental to communicative architecturefiaB Fitzgerald, “Software as Discourse? The
Challenge for Information Law” (2000) 22 (2) E.R 47

2L Kelty, Two Bits—The Cultural Significance of Free Softwa@®urham: Duke University Press,
2008), p.29 (Hereafterwo Bit9g

16

FOSScan be defined as the kind of software whose gotwde is publicly available
with no restriction on modification and redistrilmut of it. In contrast, proprietary
“closed-source” software developers release soéwaty with non-human readable

object code without disclosing the correspondingrs® code. Stallman points out:

Source code is useful (at least potentially) torgwser of a program. But most
users are not allowed to have copies of the saxode. Usually the source code
for a proprietary program is kept secret by the envitest anybody else learn
something from it. Users receive only the filesiméomprehensible numbers
that the computer will execute. This means thay ¢iné program’s owner can
change the prografi.

It is important to know that disclosure of the smicode by itself is not enough to
qualify software as FOSS. We must look at the dafims of “free software” and

“open source” for more detailed guide in the foliogvsub-section.
1.2.2 “Free Software” and “Open Source”

Free software is more than just publicly disclosedrce code. The Free Software
Foundation (founded by Richard Stallman) publishibe Free Software Definition
(FSD), definingfree software as the type of software that gives its users kooas

of freedom:

® The freedom to run the program, for any purposse(fom 0).
The freedom to study how the program works, angtadato your needs
(freedom 1). Access to the source code is a pretondor this.
The freedom to redistribute copies so you can help neighbor (freedom 2).
The freedom to improve the program, and release yoprovements to the
public, so that the whole community benefits (fe®d3). Access to the

source code is a precondition for tfis.

2 Richard Stallman, “Why Software Should Be Freé91, at
<http://www.gnu.org/philosophy/shouldbefree.html>

% Richard Stallman, “The Free Software Definitiont shttp://www.gnu.org/philosophy/free-
sw.html>

17

Along the same line, Open Source Initiative (cordded by Eric Raymond and
Bruce Perens) publishes tiipen Source DefinitiofOSD) including a long and
detailed list comprising ten criteria. Perens Histhe ten criteria into the three
principles. It defineopen sourcesoftware as giving software users three kinds of

rights:

® The right to make copies of the program, and diistd those copies.

® The right to have access to the software’s sourode,c a necessary
preliminary before you can change it

® The right to make improvements to the program.

Except that the wording is slightly different, tR8D and the OSD means almost the
same thing in terms of thauty that programmers should bear: FOSS programmers
should give users the “freedoms” (as in the FSDbher“rights” (as in the OSD) to
access, copy, modify and redistribute the softw&a&sed on this reasomspme
scholars think that there is no pronounced diffeeehetween “free software” and
“open source” because both labels describe the sgmeeof technological artifact or

the same type of programming practite.

Unfortunately, this view isot held by the people who have respectively authtred
FSD and the OSD. There has been a long-standingnsdfetween the two camps.
Stallman on the side of the FSD, believes that $aféwvare campaigners and open
source advocates hold different visions about theré of non-proprietary software.
According to him, free software is a “social movenigo enlarge users’ software
freedom, while open source is merely a softwarevéttgpment methodology” that
claims itself to be superior to proprietary softe&Raymond, from the camp of
“open source”, distances himself from Stallman’sepmlescepticism about
commercialisation of non-proprietary software. Higases free software movement
for being “very zealous and very anticommercfalFor Raymond and his followers,
“‘open source” should break into the mainstreamwso® market and its success

24 For example, Kelty is the champion of this viewe3elty, Two Bits p.100

% Stallman, “Why Open Source Misses the Point of eFreSoftware” at
<http://www.gnu.org/philosophy/open-source-misgespoint. html>

%6 Raymond, Section 2 “The Varieties of Hacker Idggloin Homesteading the Noosphe&902, at
<http://www.catb.org/~esr/writings/homesteading/lesteading/>

18

depends upon the pragmatic approach rather thanldked ideology of “software

freedom”?’

1.2.3 FOSS Stewardship and the Hacker Ethic

FOSS stewardshipmeans programmers’ duty or responsibility to preseand
protect the commons where software is freely accessible, modifiabled an
redistributable. FOSS stewardship must be purdgathie software developers’ duty
listed inFree Software Definitioand/or theéDpen Source Definition

The Hacker Ethic is historically the main source of FOSS stewarnaishity to share
software, and it later evolves into the FSD and @&D. It first developed in the
computer hacker community such as the MIT Al Lairsithe 1950s and the 1960s.
It originally means the hackers’ duty to share arfgrmation concerning computer
technology and this happens in an era when IP kagvriot yet been used to cover
software. In the beginning, the Hacker Ethic wagdly a body of unwritten rules,
and it was “an ethic seldom codified, but embodiestead in the behaviour of
hackers themselve$d®In 1984, Steven Levy, in his highly regarded pinireg study
of the hacker culture, identifies six widely rectg tenets of the Hacker Ethic. The
first three tenets are the most relevant to thenswé stewardship obligation in this
dissertation:

® Tenet 1: Access to computers—and anything whichhtrigach you
something about the way the world works—should bémited and
total. Always yield to the Hands-on Imperative!

® Tenet 2: All information should be free.

® Tenet 3: Mistrust Authority—Promote Decentralisatio

" My position on this issue is that therebisth consensuand division between the two camps and it
would be wrong to see only one side of the stotye Tonsensus and the division happen on two
different levels. First, on the technical levelg ttwo camps agree on the technical definition of-no
proprietary software (in the FSD and OSD) and ther@ consensus that software developers should
have the same set of stewardship obligations testwftware as listed in both the FSD and the OSD.
Secondly, on the ideological level, free softwaaenpaigners and open source advocates disagree on
the ideology behind their respective causes. Stalle‘free software” is a belief in the intrinsialue

of “freedom” as the ultimate driving force of thewement. Raymond’s “open source” does not wish
to engage with the philosophical discourse of ‘fi@®”, but it adopts a more pragmatic market-
friendly approach. For more detail about differebetween the two camps in a historical context, see
Section 2.4, Chapter 2 of this dissertation for endetail.

%8 |_evy, Hackers p.7

19

The first two tenets calling for “unlimited and &bt access to computers (Tenet 1)
and “all information should be free” (Tenet 2) ldle ethical foundation for the FSD
and the OSD, while Tenet 3 of “Mistrust Authority-reihote Decentralisation”
anticipates the decentralised “peer production” ehatiat marks the success of
FOSS projects. Furthermore, there is also a diffe¥detween Levy’s ethic and the
later FSD and OSD. The unlimited and total accessamputers” in the first tenet
of the Hacker Ethic covers both hardware and soévim its early days, whilst the
FSD and the OSD is focused only on software, bectheslatter is intended to be the

guideline for writingsoftwarelicences.

Alternatively, the definition of the Hacker Ethiart also be found in the definitive
The New Hacker's Dictionargalso known the “Jargon File” edited by Raymond).
The dictionary defines the Hacker Ethic as theidéaghatinformation-sharingis a
powerful positive good, and that it en ethical dutyof hackers to share their
expertise by writing open-source code and fadifitaiccess to information and to
computing resources wherever possibfe(added emphasis) This is a good and
succinct definition that encapsulated the core nmgamf FOSS programmers’
stewardship duty which is adopted by this dissiernat

The old Hacker Ethic was later challenged and etdale the rise of proprietary
software in the late 1970s, but it was never fulbfeated. A more recent study
shows that the Hacker Ethic after the 1980s and tn& beginning of the twenty-
first century is still alive and well amongst FO®8grammers? thanks to the
advent of FOSS licences in the mid-1980s. Thesmdies are written in the form of
intellectual property licences to guard programmeose stewardship responsibility
of software sharing against encroachment of prtawesoftware. This leads me to

explain exactly what the FOSS licences are.

29 According to the Jargon File, the Hacker Ethic &ls® a second meaning: “The belief that system-
cracking for fun and exploration is ethically OKlaag as the cracker commits no theft, vandalism, o
breach of confidentiality.” This is not the ethitat is dealt with in this dissertation. “The Hacker
Ethic” in Jargon File, compiled by Raymond, at ghftvww.catb.org/jargon/html/H/hacker-
ethic.html>

% Himanen’ study demonstrates the robustness oftieker Ethic in the information society. See
Pekka HimanernThe Hacker Ethic and the Spirit of the Informatibge (NY: Random House, 2001)

20

1.2.4 FOSS Licence and “Copyleft”

A FOSS licence is defined as an “intellectual progeicence that gives software
users the rights to access, copy, modify and méolise the source cod@.The

clauses in a FOSS licence should not impose artsictes that contradicts FOSS
stewardship responsibility as detailed in the F&B the OSE. There are two types
of FOSS licences. One is called copyleft licenced #e other is known as

permissive (non-copyleft) licence.
Copyleft Licences

A copyleft licence contains an anti-privatisatiolause that enjoins downstream
developer-users to share their publicly releasedifications or improvements of the
original software. In other words, any derivativeoriis based on the original
copylefted code, when publicly distributed, mustréleased under the same copyleft
licence. In the mid-1980s Richard Stallman desighedirst copyleft licence for his
GNU Emacs programming editor. Later he turned Ewnsacs-specific licence into a
generic template licence—GNU General Public Licei@&eL)—that can be used by
any software® The GPL is not only important to Stallman’s own GNoftware

project, but it is also crucial to the success ahgnother FOSS projects. The most

%1\t is important to be aware that the umbrella t&mtellectual property” (IP) normally comprises at
least three main sub-areas: copyright, patent g mark. Stallman points out that three sub-avéas
are rather different and the term should be avoidkdnever possible: “Copyright law was designed
to promote authorship and art, and covers theldethexpression of a work. Patent law was intended
to promote the publication of useful ideas, at phiee of giving the one who publishes an idea a
temporary monopoly over it—a price that may be twagraying in some fields and not in others.
Trademark law, by contrast, was not intended tonote any particular way of acting, but simply to
enable buyers to know what they are buying. Letstaunder the influence of the term “intellectual
property”, however, have turned it into a schena titovides incentives for advertising. ” Stallman,
“Did You Say ‘Intellectual Property’? It's a Sedivet Mirage” at
<http://www.gnu.org/philosophy/not-ipr.html>
%2 Larry Rosen distinguishes open source licencas focoprietary licences against the criteria as to
whether “software freedom” is protected or not. Higdinition is also helpful to illustrate the naguof
a FOSS licence:
® “An open source licends the way a copyright and patent owner grantajgsion to others to
use his intellectual property in such a way saftware freedors protected.”
® “A proprietary licenceis the way a copyright and patent owner grantmssion to others to use
his intellectual property in a restricted way, tingh secrecy or other limitations, so teaftware
freedomis not protected.”
Lawrence RoserDpen Source Licensing—Software Freedom and lotalé Property Law(Upper
Saddle River, NJ: Prentice Hall PTR, 2005) p. 52
% For the historical context in which the GPL came of the GNU Emacs dispute from 1983 to
1985, see Chapter 2 of this thesis and also KElyapter 6 “Writing Copyright Licences”, Two Bits,
pp.179-209

21

successful one of them is no doubt the Linux kepnegram that has been licensed
under the GPL since its inception.

It is important to note that copyleft does not igin&forwardly reverse or oppose
copyright, but its legal mechanism relies on cogyri The preamble of the current
version of the GPL (version 3.0) makes it cleat Hudtware developers use the GPL
to protect users’ rights with two steps: “(1) ass@pyright on the software, and (2)
offer [users] this License giving [users] legal pe&sion to copy, distribute and/or
modify it.”** So copyright provides the basic legal framework floe software
developers to enable software freedom in the filate. What is really innovative
and central to copyleft is its “share-alike” clausdich is sometimes also known as
the “viral” clause® Section 5(c) of the GPL requires that the “modifigource
version” based upon the original GPL covered codstrbe licensed under the same
GPL when publicly released:

You must licensehe entire workas a whole, under this [GNU General Public]
License to anyone who comes into possession ofpg.do..] This License
gives no permission to license the work in any otway, but it does not

invalidate such permission if you have separatetgived it° (added emphasis)

Under this clause, if a follow-up programmer magesie changes to a piece of GPL
covered code, then the modified source versionwkae (i.e. the “entire work” as

in the clause), when publicly re-distributedust be released under the same GPL.
Copyleft is essentially an anti-privatisation devimeticulously designed to prevent
software programmers from hiding modifications o tGPLed code. It reconfigures
the central function of copyright—which intendsdiwe copyright ownergxclusive
control over their work—into aanti-exclusionarynstitution, where everything must
be shared. In this way, GPLed software is madeantevolving object more than a

static non-modifiable end-product and it is saidjitee its users an unbroken chain of

* Preamble, GNU GPL 3.0

% Andres Guadamuz, “Viral contracts or unenforceatsleuments? Contractual Validity of Copyleft
Licenses", (2004) 26 (&uropean Intellectual Property Revied81-339.

% Historically, the previous version of the GPL @Rhas been critical in the success of projects lik
the Linux project. Since the GPL v2.0 continuebdoused until today, it is worth quoting its coffiyle
clause as well. Section 2(b) of the GPL v2.0 saysu must cause any work that you distribute or
publish, that in whole or in part contains or igided from the Program or any part thereof, to be
licensed as a whole at no charge to all third pantinder the terms of this License.”

22

software freedoni’ It is worth noting that the whole GPL licence isnach longer
and more complicated document than this anti-pga#bn copyleft clause. | will go
back to discuss the GPL and its relation with letglial property law in more detalil

in Chapter 3.
Permissive Licences (BSD-style Licences)

Not all FOSS licences are copylefted. There areaopyleft licences as well. They
are known as the “permissive licences”, which ammetimes also called BSD-style
licences or “academic licenc&in the literature. Because permissive licenceaato
have copyleft's anti-privatisation clause that Bwdhe downstream developers to
contribute modifications back to the communityjsitmore “permissive” than the
GPL in this sense. Historically, permissive liceha@e associated with software
distribution by academic institutions such as theversity of California, Berkeley.
For example, UC Berkeley publishes its own permessiicence called BSD
(Berkeley Software Distribution) License, whichaiso widely adopted in the FOSS
world. The BSD License is occasionally called “copyter”, which indicates that it
sits somewhere between copyright and copyfeft.

Apart from the requirement of retaining the oridicapyright noticé’, the BSD
licence allows the downstream users to do almosttevier they want in
redistributing the source and object code. Thismedhat in future distributions, the
BSD licensed software is not obliged to be re-lgmhunder the same BSD licence.
So it is possible for the original BSD licensedtaaire to be released under other
licences including proprietary licences. The direpshot is that the initially freely
available source code has the possibility to beatiged in future distributions. A

notable example is Mac OS—Apple’s operating systemmieh contains a

%" Free Software Foundation, “Rationale Documentkhtp:/gplv3.fsf.org/rationale>

% Rosen, supra note 31, pp.73-74

% Eric Raymonckt. al, “Copycenter”The Jargon Fileat
<http://catb.org/~esr/jargon/html/C/copycenter.tniirk McKusick, a computer scientist and a
major contributor to the BSD system writes: “[...]lReley had what we called "copycenter," which

is "take it down to the copy center and make asynsapies as you want." You want to go off and do
proprietary things with it? Fine, you can do thau want to keep it out in the Open Source domain?
You're welcome to do that as well.” BSD Newslettévhat is the BSD License?” at
<http://www.bsdnewsletter.com/bsd/license.htm|>

“°The BSD licence requires that redistribution af #ource code and binary code “must retain the
above copyright notice”. See “BSD License Templae'<http://www.opensource.org/licenses/bsd-
license.php>

23

significant amount of FreeBSD code originally raled under the BSD License.
Apple modifies FreeBSD’s code and then turns thdifieal version into proprietary
software. Apple is allowed to do so because the BEBPnse, unlike the GPL, does
not require downstream developers to disclose thece code of their modified

versions.
1.3 Stewarding FOSS Projects: What Licences Can ardannot Do

To steward a FOSS project is more than just to sh@md use a plausible licensing
schemé? A licence does not exist for its own sake, butiitortance is realised
through its being the legal expression of programsinmeal collaborative experience
that actually builds the FOSS project. In this disgtion, | argue that there are at
least two elements that make a FOSS project sadiaior a lasting period of time:
I) programmerstcollaborationto integrate peer-produced contributions intorglei
coherent artefact and ii) a corresponding FOQ&3cethat is employed to facilitate
this collaboration. The combination of the two ed#ts makes the licence not
merely a paper or electronic document on its ow this licence is underpinned by
a kind of “relational contract” with real lived daborative experience among FOSS
programmers. In particular, 1 will show that lan éfeil’'s Relational Contact Theory
(RCT) is helpful in analysing the FOSS projectsiliab to engage long-term
collaborative relations, which are sharply distiisged from the discrete commodity
transaction model as assumed by proprietary saftWweensing practice. | will now

explain the two elements.
1.3.1 Collaboration in FOSS Projects

The norm to “collaborate radically”, according tarky Sanger, is “one of the great
innovations of the open source software movem&ritére collaboration happens in

“1 Tim O'Reilly, a prominent pro-FOSS entreprenewserves: “But open source is more than just a
matter of licenses. Some of the most significanvaades in computing, advances that are
significantly shaping our economy and our futures ¢he product of a little-understood ‘hacker
culture.’ It is essential to understand this cw@tand how it produces such innovative, high-quality
software. What's more, companies large and smallauggling to understand how the ethic of free
source code distribution affects the economic n®delderlying their present businesses.” O'Reilly,
“Lessons from Open-Source Software Developmen899) 42 (4) Communications of the ACM 33
at 34

2 sanger (the ex-chief architect of Wikipedia) med4reical collaboration” by the norm that
“anyone can edit any part of anyone else’s worlddiRal collaboration is crucial to the success of

24

a radically decentralised environment and it is ptieerooted in the FOSS
programmers’ stewardship tradition where computemskers address and solve
almost all their technical problems collaborativityough information sharing since
the 1950s and the 196¢aMany later long-lasting FOSS projects owe exatttBir
success to this tradition of radical collaboratioherited from the older hacker

community.

Radical collaboration may appear to be self-orgahisr spontaneous cooperative
behaviour among FOSS contributors, but in fact doordinatedby a small team of
lead developers to make it hapgénn this light, | offer a refined definition of
“radical collaboration” as identified by Sangerargue that “collaboration” in any
successful FOSS project has two defining aspettss inot only 1)radically
decentralisedbut also 2)coordinatedamong a large number of contributors. First,
what makes FOSS collaboration stand out is itscedigi decentralised structure
capable of harnessing knowledge, intelligence &iltk Srom potentially everyone
with a minimum level of programming literacy context by the internet. This
radical openness allows individual innovators ttvelénto the tasks that truly pique
their interest. It restores software programmingvdies as intellectual endeavours
that are worth pursuing for their own sdR&@rogrammers satisfy their own curiosity
in the process of exploring and solving technigalbpems instead of just following
managerial commands in a firm, or monetary incestion the markéf.In short, a
peer-production environment allows individuals evé a large degree of autonomy

to follow their own intellectual pursuits under itadically decentralised and

Wikipedia, because it was “made possible for worknbve forward on all fronts at the same tirtae,
avoid the big bottleneck that is the individualkars, and to burnish articles on popular topica to
fine luster.” Larry Sanger, “The Early History ofupedia and Wikipedia: A Memoir”, it©Open
Sources 2.@dited by Chris DiBona, Danese Cooper, and Madn&t(Sebastopol, CA: O'Reilly,
2006) p.322

“3 See Section 2.2 of Chapter 2. See especially, tT8ng“Mistrust Authority and Promote
Decentralisation” of the Hacker Ethic documented_byy.

“4 Although the vast number of non-core “periphelhtributors’ behaviours are rather more like
self-organised spontaneous cooperation, these loeinashould not prevent us from seeing core
developers’ efforts to organise and coordinateabaltation among all contributors. For a detailed
analysis of the “myth” of “self-organisation” in B3, see Webe§uccesssupra note 5, pp.131-132;
see also Marrella, Fabrizio & Yoo, Christopher 5.0pen Source Software the New Lex
Mercatoria? (2007) 47 (4jirginia Journal of International Law

4> See Richard Sennefthe CraftsmanNew Haven & London: Yale University Press, 20@89,
pp.24-25

¢ Raymond’s famous aphorism that “every good worlsaftware starts by scratching a developer's
personal itch” captures this situation. Raymdddthedral supra note 1

25

curiosity-driven structuré’ Furthermore, it is also worth noting that colladtn is
not unique to FOSS, and many corporate proprietaffware projects also require
some degree of collaboration. However, corporatoration happens on a much
smaller scale and it is by no means radically dieabsed, because innovation tends
to be strictly restricted among the employed progreers and non-programming
administrative staff within the compound of a pautar company?®

The second aspect of FOSS collaboration addressespartant weakness of radical
decentralisation. No matter how innovative eachviddal programmer is, peer-
produced contributions by themselves do not autimadgt integrate into one big
piece of coherently functional software. The rad&eale of decentralisation only
adds tremendous difficulty to the task of integrgtia heterogeneous amount of
contributions into a whole. According to Surowiciki,a highly decentralised system,
innovation becomes inevitably fragmentary and utesyatic because “there’s no
guarantee that valuable information which is uncesglein one part of the
[decentralised] system will find its way throughethest of the system” and
[s]Jometimes valuable information never gets dissameid, making it less useful than

it otherwise would be®

In order to compensate for this weakness of radidatentralisation, it is
tremendously important for leaders of FOSS projeztoordinatemany and varied
peer-produced innovations. Or in Surowicki’'s wordiscentralised creations must be
“aggregated” into a coherently functional whole. ideaware that “[a]ggregation—
which could be seen as a curious form of centrddina—is therefore paradoxically
important to the success of decentralizatidhlit fact, the more decentralised a
system is, the more efforts are needed to aggreuzee-produced contributions

4" See Benkler, Chapter 5 “Individual Freedom—Autogormformation, and Law” inWealth of
Networks: How Social Production Transforms Markatsl Freedom(New Haven: Yale University
Press, 2006) (Hereaft@vealth
“8 Stallman points out that corporate proprietaryvsafe does not have radical openness as in FOSS
collaboration. It strictly limits innovation withia closed corporate structure: “In any intellecfielt,
one can reach greater heights by standing on thalddrs of others. But that is no longer generally
allowed in the [proprietary] software field—you canly stand on the shoulders of the other pewple
your own company (original emphasis) Stallman, “Why Software ShibBe Free”, supra note 21
49 James SurowickiThe Wisdom of Crowds—Why the Many are Smarter tharFew and How
Collective Wisdom Shapes Business, Economies,tiée@ad Nationg(London: Little Brown, 2004)
p.71
*ibid., p75

26

together. Leaders of a FOSS project need to decider sometimes speculate about)
the level of decentralisation that they are willewgd capable to cope with. In order
to make a project both peer-productive and manadgesigregateable, a delicate
balance must be drawn between decentralisatioraggregation. However, there is
no fast and fixed rule about how this balance betwthe two should be kept.
Situations vary from project to project. In orderfind out how to make this balance,
Raymond’s essayhe Cathedral and the Bazaseems to give a clue to start with.
Though an unflinching champion of decentralisatidédaymond recognises the
importance of a “strong, attractive basic desidrdttis necessary to make a project
aggreateable into one. This design is based otwihgeneral pre-conditions that are
needed for a decentralised Bazaar-style projetake off: “Your program doesn’t
have to work particularly well. 1t can be crude,gby, incomplete, and poorly
documented. What it must not fail to do is (a) rand (b) convince potential co-
developers that it can be evolved into somethirgjlyeneat in the foreseeable
time.”* In other words, a small group of core lead develspnust go beyond the
level of scratching their own programming itch, hibey must also work hard to
convince potential co-developers that their effares highly likely to be successfully
aggregated “into something really neat in the feeable time.” With these two pre-
conditions in mind, | now need to delve a littleeder into the “strong, attractive
basic design” mentioned by Raymond above, becdusectucial to the success of

any collaborative FOSS project.
Designing a Collaborative Project

Not every kind of creative task is conducive tolawobration, let alone radically
decentralisectollaboration®® A task that is radically collaborateable must have
modular architecture, which means it is capableedig divided into a lot of smaller
improvable units and later pieced together into coleerent project. There are two
parameters that matter here. One is the “modulaaityl the other “granularity” of

the task. Modularity concerns the extent to whidask “can be broken down into

smaller components, or modules, that can be indkgpetly produced before they are

°1 RaymondCathedra) supra note 1

2 For example, many traditional non-software cre®jsuch as writing a novel or a academic paper,
are done by a solo author or a very small numberotidborators, because these creative tasks are
hard to be broken down into improvable fine-graingatiules.

27

assembled into a whole,” while “granularity” coneer‘the size of the modules, in
terms of the time and effort that an individual mimvest in producing thent®
Benkler observes that any “successful large-scaer-production project must
therefore have a predominate portion of its modilesrelatively fine-grained®*
The fine-grained modularity that is conducive tcempproduction collaboration is
also often known as the “extensibility” of softwanmong programmers.

Software projects are not by nature “extensiblethwihe right level of fine
granularity, but they ardesignedo be sa® There are two types of design decision
that leaders of FOSS projects have to make: otieismodular “architectural design”
in software engineering terms and the other is ‘flegal design” for FOSS
collaboration through FOSS licensing. The secompe ig exactly the main focus of

this dissertation.

First, the architectural design concerns the safivemgineering problem of how to
make a project “extensible” or modular at a manbedéevel. The GNU Emacs
programming editor led by Stallman is a good exanmgre. Stallman designs Emacs
to be “extensible” in the sense that everyone casilye “go beyond simple
customization and create entirely new commands” #mese newly created
commands “are simply programs written in the Lisapduage, which are run by
Emacs’s own Lisp interpreter” The Linux kernel project is another example of
designed extensibility. Linus Torvalds, as the &ranf the project, “followed good
design principles, which allowed [Linux] to be exted in ways that he didn’t

envision when he started work on the kernéThe modular architecture allows

*3 Benkler,Wealth supra note 47, p.100

*bid., p.101

% See Tim O'Reilly, “Lessons from Open-Source SofavaDevelopment”, (1999) 42 (4)
Communications of the ACM 33 at 37

* The “design” for FOSS projects is only for the pose of aggregating peer-produced contributions
together. It is not intended to micromanage countdls’ behaviour. In other words, the “design”
should not undermine the flexible and improvisatbmnature of peer production.

" Richard StallmanGNU Emacs Manua(Boston, MA: Free Software Foundation, 2010"16
Edition)

8 On top of this example of Linux, O'Reilly gives@example of the Perl programming language of
extensibility: “Larry Wall “created Perl in suchveay that its feature-set could evolve naturally, as
human languages evolve, in response to the neeitls wders.” Tim O’Reilly, “Lessons from Open-
Source Software Development”, (1999) 42 ¢&mmunications of the ACBB at 37

28

Linux to be broken down into many “subsystemisAll subsystems are stewarded
by lead developers known as “maintainers” who haeeresponsibility to select, test
and assemble contributions (known as “patches) anfwanned release. (A report
published by the Linux Foundation in 2009 revedledt Linus Torvalds ranked
number 9 among all subsystem maintainers in ternissowork of reviewing peer-
produced code into the kerrf8). Submitted patches must be reviewed and approved
by the subsystem maintainers before they can legratied into the Linux kernel.
This means patches that fail to meet the expedtaaiard may well be filtered out
by the maintainers. Normally, maintainers need ite ggood reasons why some
patches cannot be integrated into the project. rEfected programmers should be
given the opportunity to appeal the decisions magignst them. The rejection of
patches would understandably cause much tensiomwebpt the subsystem
maintainers and the rejected programmers. So fieessary to have “laws” and
“courts” to efficiently solve disputes just like ahis needed in the off-line real
world ®* In the worst-case scenario, rejected programmess‘“fork” or break away
from the main project by starting up a new projactompetition with the original
one. In summary, the modular architecture in Lidoes not just aggregate whatever
contribution that is peer-produced, but it picksl amooses the most suitable ones

that can be integrated into a coherent whole.

The second type of design decision that lead dpeetohave to make for their
collaborative project is a legal one: how to desigihegal structure that makes a

project “legally” extensible? The exiting copyrighégime seems to be rather

¥ Weber observes that a modular architecture is ke characteristic of technical design for
managing complexity” for the Linux system: “Sourcede modularization obliviously reduces the
complexity of the system overall because it lintits reverberations that might spread out from a&cod
change in a highly interdependent and tightly cedystem. Clearly it is a powerful way to factita
working in parallel on many different parts of tkeftware at once. In fact parallel distributed
innovation is nearly dependent on this kind of gesbecause a programmer needs to be able to
experiment with a specific module of code withoontinually creating problems for (or having
always to anticipate the innovations of) other papgmers working on other modules.” Weber,
Successsupra note 5, pp.172-5

% Greg Kroah-Hartman, Jonathan Corbet, Amanda Ma®hekrinux Kernel Development: How Fast
it is Going, Who is Doing It, What They are Doiagd Who is Sponsoring It: An August 2009 Update
at <http://www.linuxfoundation.org/sites/main/filesiblications/whowriteslinux.pdf>

®1 The FOSS world is by no means anarchy, but itogegned almost as if it is an offline polity.
Sanger observes: “In short, a collaborative comtgumould do well to think of itself as a polity kit
everything that that entails: a representativeslagive, a competent and fair judiciary, and an
effective executive, all defined in advance by artdr. There are special requirements of nearlyyeve
serious community, however, best served by relegapérts; and so | think a prominent role for the
relevant experts should be written into the chdr@anger, supra note 42, p.329

29

unfriendly to, if not militate emphatically againsllaboration on a radical level.
Copyright permits authors to exclusively copy, nfipdind distribute the original
software, and these permissionsnddautomatically extend to non-copyright holders.
In an extensible FOSS project, a large number ofigig@ants are expected to
frequently modify each other’s works, and it is wgély cumbersome job for each
participant to clear the right each time a contiidou is made however small it is.
Even if people do tirelessly give some kind of pesion when releasing their
contributions, it is not guaranteed that all cdnited modules are legally compatible
with each other. For example, participaitallows his moduleX to be freely
modifiable but not redistributable. Participadtallows his moduleY to be both
modifiable and re-distributable but at the sameetime requires attribution to him in
each of the downstream redistribution. So drandY legally compatible modules
even though they can lbechnicallywelded into one piece of software? There is an
even trickier situation: what iA or B changes his mind and decides to pull his
contribution out of the project? Will he be allowsdgo back on his commitment?
Short of a formal and written agreement, theseessmay well bog down the

development of a collaborative project.

In order to avoid the above problems, standard lB@®$S licences are designed to
give some level of legal certainty. These licenaes attempts to configure a legal
structure (based on copyright law) to standardisdé¢gal commitments of individual
collaborators. They are designed to clear the lbgadle for radical collaboration in
FOSS projects. As has been shown in Section 1€gdadeveloper or a team of core
developers need to choose between two types ofisiitg schemes, which are
effectively two major legal designs for a given jpat: the copyleft design and the
permissive BSD-style design. Copyleft is designed nhake all downstream
developers share their publicly released improvemen the original software in
collaborative projects. It is an approach thatsswiell the community-based projects
consisting mainly of voluntary contributors (such &NU software and Linux
projects), as it provides a guarantee that no iriton will be made proprietary in
future distributions. In contrast, the permissivemsing design does not provide an
anti-privatisation guarantee. Developers who chdbselegal design are normally
backed by well-funded established institutions udahg universities and software
companies. Especially for those corporations wgigoftware for consumer products

30

(e.g. operating systems for smartphdfigsthey nowadays tend to license their
products under a permissive licensing scheme. Tagjeted users are normally non-
sophisticated end-users who do not read or writke @nd they are not expected to
make modification of the software. The non-copylkdisign imposes virtually no
restriction on redistribution of the softw&tewhich may help the software to spread
quickly far and wide. For example, Google’s releakéhe “Chrome” web browser
in 2008 is a case in point. Chrome was licensedeutite BSD Licené clearly in
an attempt to compete against the market incumblgesMicrosoft's Internet
Explorer and Mozilla’s Firefox. This move is basau the speculation that the non-
copyleft design can help Google’s new softwarertak into the market rapidly and

establish a big user-base in a relatively shortesd time.

It is not difficult to see that between the twodédesigns, copyleft dovetails better
with the volunteer-driven peer-production model,le/the permissive non-copyleft
design nowadays tends to be adopted by for-profpparations with a clear aim to
expand their market. Both designs need a great afeebordinationin order to

channel collaborative efforts into certain usefidl &oherent products. Coordination
under copyleft tends to be led by volunteer deveispvho are rightly the members
from the “peers”. In contrast, the non-copyleftidasrelies less on peer-produced
contributions, and its coordination may well be l3dcorporations that are keen to
break their products into the market. This dissiemafocuses itself mainly on the
legal mechanism of the copyleft design (especidtly GPL) for peer-produced
FOSS projects, but the corporate strategic uskeohbn-copyleft scheme to build up

a user base should not go unnoticed.
1.3.2 The Role of FOSS Licensing

A FOSS licence plays an important role in facilitgt collaboration under the
modular architecture of a corresponding projecinéikes sure that peer produced
contributions are legally compatible with each othed they can be safely pieced

together into one integrated artifact. In otherdgyra FOSS licence is designed with

%2t is interesting to see that almost all mainstresmart phones (except Apple’s iPhone) have
adopted FOSS operating systems. Google’s opene&a@urdroid system is a prominent example.

% However, it is also important to note many periassicences still require retaining the copyright
notice and correcting attribution in downstreantrdisition.

84 <http://www.google.com/chrome>

31

an attempt to give some degree of legal certamtyotlaboration in a FOSS project.
When a collaborative project grows in size, the onmignce of a licence will
accordingly increase, because the licence stabitts® programmers’ expectation by
spelling out what responsibility they should bead avhat benefit they may also gain
from the project. Furthermore, it is also worthingtthat a licence by itself does not
kick-start or constitute any collaborative relatigh licensing scheme is only the
legal expression supporting the collaborative éffthat have already been going on
or are expected to take place among all contrisifofhe purpose of a FOSS
licence is to verbalise and standardise the mininhegal commitments of a large
number of existing and potential contributors. Bxpected legal commitments are
rightly embodied in the form of FOSS stewardshgponsibility pursuant to the Free

Software Definition or Open Source Definition.
“Death of Assent” after the ProCD ruling

Almost all FOSS licences are non-negotiated stahdarm licences. They are
mostly either in the form of clickwrap or browseywrda he former requires users to
manifest their assent by clicking button “Yes, IrAg’ and the latter is just a
webpage displaying the licensing terms and condtioln terms of users’
manifestation of assents, there seems to be nmpnoed difference between FOSS
and proprietary software that also uses mass-mafkéte-shelf licensing schemes.
In both cases, their respective standard form sicenschemes suffer from a similar
problem, which is the lack of adequate assents frsens’® In 1996, the US Seventh
Circuit ruled that a shrink-wrap licence (as thesqursor of clickwrap and
browsewrap) was contractually enforceablePimCD v. Zeidenbefl, which then
caused much heated debt&his ruling signals what Lemley calls “death o$est”

% |n fact, many collaborative activities may welkepede the decision to formally adopting a licensing
scheme.

% Clickwrap licences require higher level of mariiéesassent from users than browsewrap, but they
may well still result in inadequate assents frorarsiswho are unlikely to read and fully digest the
content of the concerned licences before clickimpugh. Also, the FOSS world does not prefer
clickwrap to browsewrap. The Criterion 10 of thee@Bource Definition makes it clear that an open
source licence cannot mandate the use of clickiwrfyture redistribution of the software.

6786 F.3d 1447 (7th Cir.1996)

% Scholars are divided on this case. For those vdfend the court ruling, see, for example, Randy
Barnett, “Consenting to Form Contracts” (2002) Fardham Law Reviews27 or Eric Posner,
“ProCD v Zeidenber@nd Cognitive Overload in Contractual Bargainitig010) 77The University

of Chicago Law Revie#181. For those who disagree with the ruling, $ee,example, Stewart

32

in the digital environment where online standardnfolicensing becomes so

ubiquitous:

Assent by both parties to the terms of a contrastlong been the fundamental
principle animating contract law. Indeed, it is tt@ncept of assent that gives
contracts legitimacy and distinguishes them fronvate legislation. But in

today’s electronic environment, the requiremenasdgent has withered away to
the point where a majority of courts now reject aeguirement that a party take
any action at all demonstrating agreement to oneawareness of terms in

order to be bound by those terfiis.

No doubt the death of assent in standard form paggeat challenge to the consent-
driven classical contract law that enforces bikdteargained exchanges. Neither is it
good news to software users who are likely to betlan receiving end of this
challenge. If assents cease to be the reason itoriate non-negotiated obligations
against licensees, then is there a new groundnfor@ng these standard form FOSS
licences? If there is one, what is it? The cur@mminant but not uncontroversial
theory is based on a neoclassical economic justifio that is articulated by the
ProCD court. It goes that if a standard form licence esakn information product
available to consumers at the lowest possible enan@ost, then it should be
justified and enforced? However, the situation in a FOSS project is arbire
complicated than just a matter of maximising theneenic utility for FOSS users but
there is also considerable non-economically measisocial benefit that should not
be ignored in a collaborative FOSS project. In Gaapd, | will show that
justifications other than material wealth maximisat(such as “software freedom”
for its own sake) should also be considered in éxizgn FOSS licensing terms in

more detail.

Macaulay, “Freedom from Contract: Solutions in $baof a Problem?” (2004Wisconsin Law
Review 777 or Deborah W. Post, “Dismantling Democracy:nfdmn Sense and the Contract
Jurisprudence of Frank Easterbrook”, (2000) Tkiiro Law Reviewl205. For Easterbrook’s own
explanation of the ruling, see Frank Easterbro@gritract and Copyright” (2005) 42 (#ouston
Law Reviewd53

%9 Mark Lemley, “Terms of Use” (2006) Qlinnesota Law Revie®59, at 464-5

O Wwhitford argues this rationale of wealth maximisatshould not be the only yardstick against
which the legitimacy of standard forms should bseased. Other values (such as the norm of
“participation” as proposed by Whitford) should @lbe considered under a relational contract
perspective. See William C. Whitford, “lan MacneilContribution to Contracts Scholarship”, (1985)
Wisconsin Law Revie®45 at 553-4

33

Collaboration and Relational Contract

In order to tackle the conundrum arising from treatth of assent, | propose to
examine FOSS licensing with an alternative appreaRblational Contract Theory
(RCT)—which has remained conspicuously absent ia likerature of FOSS
licensing. RCT is a reaction to the classical vidvecontract as “abstract statements
of the total obligation” leading to one-shot digeré¢ransactions where the “parties
may not have dealt before, and there is no asseridnat they will deal agaifi®. In
contrast, a relational contract is underpinned ®tgxisting and ongoing relations
where parties agree “to cooperate to achieve mytaasired goals® My basic
point here is that licences for collaborative FOB®jects cannot be discrete
transactional contracts, but they need to be olaticontracts that are supported by
the pre-existing or ongoing collaborative relatiegperienced among participating
contributors.

There are two important reasons why FOSS licensirayld be closely scrutinised
under RCT’® First, RCT posits that human beings have “dualivest when
engaged in a contractual exchange: they do notlynéjeseek to maximise their
individual utility but 2) they also want to builds6cial solidarity” with other
members of the society. In a relational contrabe second motive for social
solidarity is especially important, because it sein the otherwise unbridled first
motive for utility maximisation’* Note that the first motive for utility is not
eliminated altogether but it is only restrictedthg second motive for solidarity. The
double motives were well present in the collabemsthos since the early computer
hacker community. On the one hand, hackers enhathedutility when each of
them could have total and unlimited access to thituous improvements of the
software by other fellow-hackers. On the other hdwadkers bonded with each other
through the practice of software sharing, whichased thesolidarity within the

community. However, the advent of proprietary saf@vstarted a new trend where

"t Stewart Macaulay, “The Real and Paper Deal: Exglifictures of Relationships, Complexity and
the Urge for Transparent Simple Rules” (2003Mi&dern Law Review4 at 65
72 i1

ibid.
3 In this introductory chapter, | only highlight #& reasons for the relevance of RCT. This is
intended to set the scene for a more detailed R@lysis in Chapter 4.
™ an R. Macneil, “Exchange Revisited: Individuailltf and Social Solidarity”, (1986) 96 (Fthics
567

34

the second motive for solidarity was gradually gesmvallowed into the first motive
for utility. Proprietary software developers do motend to establish collaborative
relations with outsiders, but they are only integdsin maximising their utility
through selling as many as possible closed-sowfteare products as if they were
discrete commodities. Friends become strangers afteommodity transaction is
consummated. Stallman observes that many prograsnfeel disheartened when
their programming activities are reduced to a singbtive for making money, while
the motive for solidarity (or “friendship among grammers” in Stallman’s
language) is jettisoned. IThe GNU Manifesto Stallman briefly analyses the
consequence of loss of solidarity after the opegaslystem software is close-sourced

and commercialised:

Many programmers are unhappy about the commeratadiz of [operating]
system software. It may enable them to make momemdut it requires them
to feel in conflict with other programmers in geslerather than feel as
comrades. The fundamental act of friendship ama@ogrammers is the sharing
of programs; marketing arrangements now typicalbgedi essentially forbid
programmers to treat others as friefitls.

The introduction of FOSS licensing is exactly atempt to restore the balance
between the dual motives for enhancing both utéitd solidity, which is lost in
commercial proprietary software. In this sense, 5Ai€ensing schemes are also an
effort to rebuild the relational contract among greammers under the software
stewardship tradition. Furthermore, | need to autmy readers that the dual
motives in a relational contract are not necessarilitually exclusive. | do not wish,
by quoting the above paragraph from Stallman, ¥@ @ misimpression: one has to
sacrifice one motive for the other. In fact, th@tmotives in FOSS collaboration are
often closely connected and mutually reinforcingr Eexample, the reputational
gains play a hugely important role in incentivisipgoduction of FOSS in a
collaborative manner. Satisfaction from one’s emlednreputation as a kind of non-
monetary reward is an interesting and somewhat\atdsit motive. On the one hand,

the reputation of one’s virtuosity in programmingdagenerosity in sharing

'S Stallman;The GNU Manifestol985, at kttp://www.gnu.org/gnu/manifesto.html
35

contributions results from the recognition fromatltommunity members, and it is
essentially a product of enhanced solidarity. Gndther hand, this good reputation
may also increase one’s material utility in thel kgarld. For example, it is likely to
increase a programmer’s employability to get a perent salaried jof In this
sense, the reputational reward for writing FOSShis site where the boundary

between the two motives is blurred in a relaticrmadtract.

The second reason for RCT’s relevance to FOSSdiogrlies in its position on the
role of consent (or assent) in contractual exchalmga classical contract, obligation
is presumed to arise in a single moment where tier@ meeting of the minds
between parties. Macneil finds this consent-centred is not helpful in leading to a
more realistic understanding of contractual exckandgThe dominant role of
consent in the jurisprudence of classical contl@aethas put intellectual barriers in
the way of communicating a broader analysis of gbbject that appears in that
jurisprudence.” In contrast, RCT has a more nuanced position @ ifisue. A
relational contract is less driven by explicit cents (or assents to standard form
licence in particular), but obligation may also @wut of parties’ experience from
the pre-existing and ongoing relaticfisSo in a FOSS project, the pre-existing and
ongoing collaborative relations become highly intpot in the sense that they will
alleviate the burden on discrete explicit consastshe sole device to effectuate the
obligations in a corresponding licence. In otherdgo it should not be ignored that
relations can also give rise to obligations wheplieit consents are weak or non-

existent in standard form licences.

It is also important to be aware that assents iI8&Ucensing are not irreversibly
“dead” but they are just being relationalised. (Blusimilarly observes that there is

no “decline of assent,” but there is only “a deelof assendiscretelyunderstood” in

"8t is not rare that many lead FOSS programmersasee hired by software companies in
recognition of their exceptional programming talantl leadership quality. See Eric Raymond,
Homesteading the Noospheseipra note 26

""Macneil, The New Social Contract—An Inquiry into Modern Gaciual Relations(New Haven
and London: Yale University Press, 1980), pp.4{H&reafteNSQ

8t is observed that Macneil's message that “ther® single moment at which the parties confirm
meeting of the minds respecting the important tesfrthe contract” has been relatively well accepted
by contract scholarship. William Whitford, “lan Maeil's Contribution to Contracts Scholarship”,
supra note 69, at 546

36

a more general conteXd. At its worst, consents, as Macneil claims, stitiction as
“a vital triggering mechanism” in contractual exngas®® As there are a growing
number of FOSS projects that are nowadays targgtadn-programming end-users
rather than sophisticated co-developers, manifestesents through clickwrap
licences do not become entirely unnecessary. Bedaese end-users do not directly
participate in the collaborative relation of co-dmping a certain FOSS product,
they should be given a good chance to know what &frlicensing scheme they will

enter into and there is no harm in doing so.
Collaboration and Intellectual Property

The relational contract perspective offers impdrtamsights into the role of
collaborative relations in FOSS licensing. HoweWDdSS collaborative relations do
not merely come out of the pristine software stelship tradition originated from
the hacker custom, but they have also been dedfdgted (both positively and
negatively) by the institution of intellectual pepy in software since the 1980s.
(Recall that FOSS licensing is a compromise betviieese two conflicting traditions
of stewardship and private property.) Barnett asghat “property” is also “a highly
relational concept that performs its own vital sbéiinctions®*, but Macneil’s RCT
has never adequately developed a line of theotetmmpuiry into the role of

“property” in relational contract:

| maintain that although [Macneil’s] observatiostidnding behind all relational
exchange or contracts is a socially-enforced systénproperty socially-
enforced system of property”] is largely true, sarhat surprisingly [property]
is never properly integrated into Macneil's so@ahlysis. Consequently his
social theory of contract is virtually, if not emy, uninfluenced by any

comparable social theory of property. Related tis iB the near complete

" Paul J. Gudel, “Relational Contract Theory and @eacept of Exchange”, (1998) #affalo Law
Review763 at 773
8 Macneil,NSG supra note 77, p.50
81 Randy Barnett, “Conflicting Visions: A Critique ¢&n Macneil's Relational Theory of Contract”,
(1992) 78 (5)irginia Law Reviewl 175
at 1181

37

absence in his theory of background rights that banused to evaluate
normatively the legal rights actually recognizedablggal systerff?

Contractual exchanges are not made in vacuum,hieytdre profoundly shaped by
“background rights” as delineated by “property”, ieth is allegedly neglected by
Macneil. In other words, property precedes and inoes through contractual
exchanges. Even if these contractual relations don@ end, the property relation
will keep living on. Benkler’'s definition of “propty/” serves as a good example of
the relational aspect of “property” that providée tackground rules for defining
relations between property owners and the non-ogvpublic:

Property is a cluster dfackground ruleshat determine what resources each of
us has when we come intelationswith others, and, no less important ‘having’
or ‘lack’ a resource entails in ouelations with these others. These rules
impose constraints on who can do what in the doroéiactions that require

access to resources that are the subject of pyolperf (added emphasis)

Note that property posits amsymmetricalrelation between owners and the non-
owning public in Benkler's definition. The asymmets due to the exclusive rights
given to property owners, who are then entitlecexercise unilateral power over
non-owners in terms of utilising the owned resosrd@enkler makes it clear that
property rules “are aimed to crystalliasymmetrie®f power over resources, which
then form the basis for exchang&8(added emphasis)

Compared with the asymmetrical “property” relaticpmmons” is intended to be a
symmetrical arrangement. The symmetry in the @hatinder a commons has
twofold meanings. First, all participating membkeasve equal non-exclusive rights to
the resources within a particular commons. Secoradlyparticipants have the same
obligations to other members of the commons. Thpgae of FOSS licensing is
exactly to re-configure the asymmetries positedirdgllectual property with an

attempt to create a symmetrical relation amongalnbers of software commons. In

this software commons, all software developers hiénee same set of rights (or

®?ibid., 1180-1
8 Yochai BenklerWealth supra note 47, p.143
*ibid.

38

software freedoms) to access, use, modify and trdalite software. At the same
time, all of them are bound by the same set ofeduti.e. the stewardship
responsibility, to refrain from exercising some tbeir exclusive rights given by
intellectual property. In a nutshell, FOSS licegsia based upon the institution of
“property”, but it reconfigures the asymmetric pedy relation into a symmetrical
one under a software commons where property owenaisthe non-owning public

share the same set of rights and duties.

The radically decentralised collaboration of anyS80project is impossible without
the symmetrical relation under a software commavisere everyone can legally
make and share improvements of the original so#wafrhis symmetrical

arrangement under software commons has two pectedgantages. On the one
hand, individual programmers enhance their utibity being able to use a rapidly
improved software program. On the other hand, #ley enhance the solidarity with
other members of the commons through sharing dmrions to a FOSS project.
These two advantages are not readily available fraasymmetrical relation within

a proprietary software project.

Finally, it is worth knowing that total and despotiwnership doesot actually exist
in software copyright. Copyright does make someretb keep a level of symmetry
between software authors and their users. Therenangerous occasions where
software can be utilised without the copyright leo&d permissiofi® It is a balance
that is needed to rein in the unilateral power timaly be exercised by copyright
holders to unfairly restrict non-owning public’ghits. For example, under the UK
copyright law, “reverse engineering” or “decompoat’ to achieve interoperability
between programs is a permitted act by any lawéftware usef® So in this
particular respect, copyright creates a symmetriedation between copyright
holders and lawful users. However, it is not ramed proprietary software licence to

include a clause forbidding reverse engineeringemompilation for any purpo$é.

8 Lemley’s points out that copyright makes “a numbicompromises between the desires of authors
and those of the consuming public’. Mark LemleBe{yond Preemption: The Law and Policy of
Intellectual Property Licensing” (1999) 87 @alifornia Law Reviewl11 at 128

% |n the UK, there is a statutory right for a lawiuser to “decompile the program to obtain the
information necessary to create an independentrgnogvhich can be operated with the program
decompiled or with another program”. This right canbe contracted out. s.50 B, CDPA 1988

8" Lemley, “Beyond Preemption”, supra note 85 at 128

39

By doing so, they destroy the symmetrical relatignshrinking the commons and
expanding their private ownership interests invgafe beyond copyright. Benkler
calls this kind of behaviour “contractual enclosuoé the software commori&.In
contrast, FOSS licensing schemes go down the depdsection of “contractual
enclosure” by enlarging software commons throughnkimg software copyright
holders’ exclusive rights.

1.4 Structure of the Dissertation

This opening chapter has set the scene for theoeatfn of the three aspects of
FOSS licensing that is used in support of radicddlgentralised FOSS collaboration.
The rest of the dissertation will continue this lexation of the historical aspect (in
Chapter 2), legal aspect (in Chapters 3 and 4)aanigorial aspect (in Chapter 5) of

FOSS licensing and its role in collaboration in endetail and depth.

Chapter 2 traces the historical development of FO&Ssing. It identifies three
historical stages during which the early computackeér Ethic begun, evolved, and
matured into software stewardship obligations tldaby FOSS licences. Chapter 3
examines how FOSS programmers struggle to arteudatlegal expression of
software freedom through the device of softwarerigng. It focuses on two areas of
“intellectual property"—copyright and patent—andeith respective threat to
software freedom. It uses the GPL as an exampshdav how FOSS programmers
assess possible threats to software freedom régggctrom copyright and patent
and how they attempt to contain these threats giranany generations of the GPL
since its inception until the latest 2007 versi@iapter 4 tackles some difficult
issues concerning the FOSS licences as non-neggbstdndard from contracts from
a Relational Contract Theory (RCT) perspectivatiacks the neoclassical contract
approach (as represented in tReoCD ruling) that has been dominant in the
mainstream software licensing jurisprudence. #strio demonstrate that RCT is a
more suitable theoretical tool to analyse FOSSh8o® schemes as a legal means to
support relation-rich FOSS projects. Chapter 5 emammFOSS authorship at both
individual and collective (project) levels. It shewow FOSS programmers manifest

their authorial consciousness through their licegmsscheme. The focus will be on

8 Benkler,Wealth supra note 47, p.444
40

project leaders’ legal persona as author-stewandsheir collaborative projects.
Chapter 6 summarises three aspects of FOSS liggensinrelation to this
dissertation’s contribution to the scholarly litene and it also points out two

avenues to future research.

41

Chapter 2 From the Hacker Ethic to “Open Source”: A Brief
History

2.1 Introduction: Three Historical Stages

FOSS licences that are used by programmers inbooliéion do not appear suddenly
in a historical vacuum. The idea of radically ddcalised collaboration was
fermented at the very beginning of computer hackéture, and it took decades for
its unique Hacker Ethic to evolve into today's FO&8nces in their fully-fledged
form. The evolution from the Hacker Ethic to FOS&msing schemes is by no
means a smooth succession of discrete eventst, isutomplicated and contentious.
In order to do full justice to the complexity ofethiopic, this chapter sketches out
three historical stages during which the early corapHacker Ethic begun, evolved,
and matured into software stewardship obligatioatsitkd by FOSS licences. The
first stage starting in the 1950s till the earl\8@8 is the pre-licensing period when
collaboration among programmers was based on tokdf&thic. This Hacker Ethic
was challenged by the rise of proprietary softwarel then the early hacker
community underwent gradual disintegration when ynaamputer hackers were
hired away to write proprietary software. The setstage spanning a period from
early 1980s to 1998 witnessed the birth and grosft most influential copyleft
licence—GNU General Public Licence (GPL)—which dri¢o translate some
elements of the lost Hacker Ethic into a legallgding document. The ingenuity of
the GPL lies in its copyleft mechanism which isaamti-privatisation device to ensure
publicly distributed code to always remain in sa&fter commons. The third stage
started with 1998 when the movement of “open sdun@es officially launched by
Eric Raymond and his colleagues, who intended tegnate non-proprietary
software into the commercial mainstream. This pEkrigitnesses the growing
commercial and legal strength of open source that @mpete with proprietary
software products.

It is also an important task of this chapter tovgltbe subtly different characteristics
of collaborative relations in building FOSS progeét the three historical stages.

Very briefly, in the first stage, collaboration wksgely forged by the non-binding
42

Hacker Ethic that took place in a relatively orgaand spontaneous fashion from the
old hacker community. In the second stage, thecoliborative efforts were largely

disrupted by the rise of proprietary software. Tsruption prompted free software
programmers to craft their own licensing schemesriter to repair the damaged
community-based collaborative relations. In thedstage, the prospect of making
money out of “open source” software attracted ameiasing number of corporate
collaborators to join various projects. Althoughwas impossible to restore the
hacker custom to its original purity, FOSS liceneasuld at least play a role in

preventing for-profit companies from entirely diotg or “recentralising” the

production and circulation of FOSS in what was méare a radically decentralised

collaborative environment.

There are two caveats about historicising the agweént of FOSS collaboration and
licensing in this chapter. First, my account of theee historical stages cannot be a
chronicle of every single factual event, but coniEes only on the conceptual
trajectory along which stewardship and private awhi in software have co-
evolved to have an impact on FOSS licensing. Sdgptite three stages are not
necessarily discretely separated from each othérthry can also be seen as a
continuum where one stage shades into the nextefample, Linux is exactly a
cross-stage project, which had its pre-life aspgbdagogical Minix system derived
from the UNIX operating system in the first stagad it took off as a viable GPLed
product in the second stage, and then was show@asseadcontinuously successful
“open source” product in the third stage. Againeréhis no natural clear-cut
demarcation line in history, but | do wish to hight some of the most critical
events (such as the Emacs dispute that promptdch&tato write the GPL) in order
to bookmark the changes that are critical in thestigment of FOSS licensing. To
appreciate three stages as a continuous whole ieadidto a rounded understanding
of FOSS licensing as a legal phenomenon in itsohestl context. This
understanding will form the foundation for the aiséd of the legal mechanism of
FOSS licensing that leverages intellectual propdew to preserve software

commons in the following chapters.

43

2.2 From the 1950s to the Early 1980s: The Pre-Linsing Era

The first historical stage can be roughly subdididieto two halves. The first half
witnesses the formation and growth of the Hackéidsrom the 1950s to the mid-
1970s. This ethic was a moral code stipulating aeglduty to share information for
the sake of solving technical problems collabosdyivThe second half of this stage
covers a period from the mid-1970s to the early0$98vhen the Hacker Ethic was
challenged and eclipsed by an emerging new norhfowiing” software as private
intellectual property. Collaboration in this stadees not depend on any licensing
scheme that could restrict privatisation of sofeyasut it only resorted to the non-
legally binding moral force of the Hacker Ethic, ialh was becoming nonetheless

increasingly vulnerable to the encroachment of pebary software.
2.2.1 Beginning of the Hacker Ethic

The software stewardship tradition began in themaer hacker community which
was mostly based in a few US academic institutisnsh as the Massachusetts
Institute of Technology (MIT) in the 1950s and 196Whis tradition is embodied in
the Hacker Ethic, which was dutifully observed amdried out in full measure by
programmers well into the early 1970s. Richard |®&@h recalls that when he first
joined the MIT Artificial Intelligence (Al) Lab ir1971, he naturally “became part of
a software-sharing community that had existed fanynyears."The software-
sharing ethic, according to him, is “as old as cotags, just as sharing of recipes is
as old as cooking'"Though the norm of software-sharing was ubiquitusng that
period, the term “free software” did not exist ahdre was no need for one. This is
because intellectual property law such as copyrigit not yet been extended to
software and there was no need to differentiatee™rfrom “proprietary” software.

Stallman explains:

We did not call our software ‘free software,” besaudhat term did not exist, but
that is what it was. Whenever people from anoth@wversity or a company

wanted to port and use a program, we gladly lahtHeéyou saw someone using

! Stallman, “The GNU Operating System and the Frefen&re Movement” irOpen Sources: Voices
from the Open Source Revolutieds. by Chris DiBona, Sam Ockman & Mark Stone &Sgipol,
O'Reilly & Associates, 1999) p.53

44

an unfamiliar and interesting program, you couldaals ask to see the source
code, so that you could read it, change it, or dxalize parts of it to make a new

program?

The Hacker Ethic of software sharing that Stallmaimessed and experienced in the
Al Lab since 1971 is important in two senses. Fitgirovides a shared body of rules
that define who the hackers are and what they dhamil Second, it forms the ethical
foundation of the stewardship obligations that wdter make their way into
Stallman’s copyleft licensing scheme. However, dolong time, the Hacker Ethic
remained largely unwritten and it is said to be ‘@ihic seldom codified, but
embodied instead in the behaviour of hackers theesé® The difficulty of
studying this ethic exactly lies in the difficuldy pinning down a rather fluid body of
unwritten norms which are only known by hackersntkelves and are much less
visible and obvious to outsiders. (The later FOB&nkes mitigate this problem by
writing down what exactly are the core sets of gdtions that hackers should bear.)
With the benefit of hindsight, Steven Levy's 198dok Hackers—Heroes of the
Computer RevolutionhereafterHackerg was the first attempt to systemically
document the Hack Ethic that was originally forntethin the 1950s and the 1960s.
Levy identifies six tenets of the Hacker Ethic ahdy are organised around the first
tenet known as the “Hands-on Imperative”, which cemages hackers to share

information by allowing “unlimited and total” acce® computers. The six tenets are:

® Access to computers—and anything which might tegoh something
about the way the world works—should be unlimitedl @otal. Always
yield to the Hands-on Imperative!

® All information should be free.

® Mistrust Authority—Promote Decentralisation.

® Hackers should be judged by their hacking, not boguteria such as
degrees, age, race or position.

® You can create art and beauty on a computer.

® Computers can change your life for the better.

The first tenet, which is often shortened to “Handsimperative”, is &ine qua non
for computer hackers to solve engineering problams then share solutions in a

most effective and collaborative way. It is basadle fact that hackers are first and

? ibid.
% Levy, Hackers p.7
45

foremost “engineers” who make computer machineskiyand computer hacking
(as well as the later “open source” programmingjtstexactly in “an engineering
culture” that is “grounded heavily in experiencehex than theory® Hackers’
“thinking” is not merely conducted through pure dhetical speculation, but it is
more closely derived from their engineers’ instirtot fix or tweak defective
machines. The sociologist Richard Sennett, basedisnobservation of Linux
developers, argues that FOSS programmers are ke uraditional “craftsmen”
who engage in practical manual work: they are snadin-like technicians who
conduct “a dialogue between concrete practice dmkihg” and “this dialogue
evolves into sustaining habits, and these habtebksh a rhythm between problem

solving and problem finding.” Suppose that the “unlimited and total access” to
computers was obstructed, this dialogue betweenctete practice and thinking”
would be severely disrupted. Levy also explainsitiqgortance of this first tenet that
comes out of programmer-engineers’ practical needexperiment with things
including computers: “Hackers believe that essétgssons can be learned about the
systems—about the world—from taking things apagkirsg how they work, and
using this knowledge to create new and even mdexdsting things. They resent

any person, physical barrier, or law that triekgep them from doing thi<.”

The rest of the five tenets are essentially underumbrella of the first tenet. The
second tenet that mandates an unobstructed freg @b information (“all

information should be free”) is clearly a corollaof the Hands-on Imperative.
Levy’s commentary on this tenet is in the form afhatorical question: “If you do
not have access to the information you need to orgoithings, how can you fix
them?” The answer is that “[a] free exchange obrimiation, particularly when the
information was in the form of a computer prograatipwed for greater overall

»n8

creativity.” Weber observes that Stallman later became onédefniost ardent

* Copyright analogises programmers to literary wsitdbecause they write human-readable source
code. This preoccupation sometimes obscures thetfia¢ computer hackers are also primarily
problem-solving engineers whose code can be exétytenachines. see Pamela Samuelson, Randall
Davis, Mitchell D. Kapor, J. H. Reichmaf,Manifesto Concerning the Legal Protection of Catep
Programs(1994) 94 (8Columbia Law Revie®308 (HereafteManifestQ
® Steven WeberThe Success of Open Souf@ambridge, Mass.: Harvard Uni. Press, 2004) p.164
(HereafterSuccess
® Richard Sennetfhe CraftsmarfNew Haven & London: Yale University Press, 20p%)
" Levy, Hackers p.40
® ibid.

46

supporters of this tenet, which would have hugeseqoence on the free software
movement However, it is also important to know that theetatlevelopment of
FOSS licensing shows that the informational freed®not an absolute freedom, but
it can be circumscribed in an environment affedbgdintellectual property (IP).
Wagner argues information freedom in “open sourte”achieved through the
controlled use of IP: “the ‘open’ in open sourcedually rather tightly controlled,
albeit in the name of generally greater accessgatamtain philosophically favored
dimension. And it is fundamentally the control otellectual property rights that
allows such arrangements to be strutiurthermore, Raymond also warns that not
all information should necessarily be free, esplcithat which is related to
individuals’ privacy™ In this light, my thesis is built upon a nuancedierstanding
of the second tenet, which means that all inforomashould be free to the extent that

programmers can freely collaborate to build a commmject.

The third tenet registers hackers’ great dislikecehtralised authority and their
advocacy for decentralisation. It is squarely teedeat centralised bureaucratic
systems, including corporations, government andvarsities, because they are
believed to be “dangerous” and “cannot accommotiaeexploratory impulse of
true hackers®? (Ironically, in the 1960s, IBM was seen by hack&ssan epitome of
this danger of centralisatidfithough it later turned out to be an important ocoape
participant in the open source movement in thedthiistorical stage.) This anti-
centralisation tenet also anticipates the radicdidgentralised Bazaar-type open-

source production as opposed to the centralisedhe@gtl-type software

° Weber’'s commentary of Tenet 2 specifically mergi&tallman’s role in promoting the second tenet:
“Richard Stallman would later become the most vatalmpion of the principle that software, as an
information tool that is used to create new thimdsvalue, should flow as freely through social
systems as data flows through a microprocessorljial8uccesssupra note 5, p.144
19 Note what Wagner discusses here is a slight vamiatf the second tenet: “information wants to be
free” See Polk Wagner, “Information Wants to Bed-rdntellectual Property and the Mythologies of
Control” (2003) 102Columbia Law RevieWw95 inIntellectual Property: Critical Concepts in Law
edited by David Vaver (Oxford: Routledge, 2006)51.3
! Raymond points out that “[s] ome kinds of inforinatreally do want to be free, in the weak sense
that their value goes up as more people have atoesem—a technical standards document is a
good example. but the myth that all[] informatioamnts to be free is readily exploded by considering
the value of information that constitutes a prigédd pointer to a rivalrous good—a treasure map, say
or a Swiss bank account number, or a claim on sesvsuch as a computer account password. Even
though the claiming information can be duplicatédero cost, the item being claimed cannot be.
Hence, the non-zero marginal cost for the item learinherited by the claiming information.” Eric
RaymondMagic Cauldron at <http://www.catb.org/~esr/writings/magic-canaid/>
12| evy, Hackers p.41
3ibid, pp.41-3

47

manufacturing, which is a distinction drawn by Raymd many years latéf.It also
has its reincarnations in later academic discussismch as those about “peer

15 »16

production™ or “Wikinomics”™ in terms of the radically decentralised way of

creating information enabled by networked compteéehnology.

The fourth tenet envisions that the hackerdom shdaé strictly built upon a
meritocracy where hackers “should be judged byrthacking not bogus criteria
such as degrees, age, race, or position.” It isemaddar that conventional non-
hacking related credentials are superficial anelesrant, and that what hackers can
contribute to the community matters the most. “Thigritocratic trait was not
necessarily rooted in the inherent goodness of drabkarts—it was mainly that
hackers cared less about someone’s superficiaactaistics than they did about his
potential to advance the general state of hackingreate new programs to admire,
to talk about that new feature in the systéhiThis tenet shows hackers’ longing for
their hackerdom to be an autonomous sphere indeperfdom the “real” non-
hacking world. It also tallies with Raymond’s obssion that the most able and
devoted hackers tend to get more reputational wean others in a collaborative
project’®

The fifth tenet concerns the aesthetic of programgmit says that hacking is not just
a mindless technical job but it can also involvet ‘ahnd beauty on a computer”.
Recall that in the first tenet, hackers are firsed foremost craftsmen or technicians.
However, there can be a very thin line betweentsmanship and art. Hackers can
move beyond coding as craftsmanship and they beqmogramming artists by

writing code ‘elegantly’. The aesthetic dimensiohooding makes programmers

4 Raymond, The Cathedral and the Bazaar(hereafter Cathedra) version 3.0 at
<http://www.cath.org/~esr/writings/cathedral-baZeathedral-bazaar/>
!5 Benkler, Wealth of Networks: How Social Production TransferMarkets and Freedon{New
Haven: Yale University Press, 2006)
'8 Don Tapscott and Anthony D. Williamg/ikinomics(London: Portfolio, 2006)
" Levy, Hackers p.43

Eric Raymond, “Homesteading the Noosphere”, 2002 t a
<http://www.catb.org/~esr/writings/homesteading/lesteading/>

48

appear rather like literary authors, who may imiptheir creative personality into

their works*®

The sixth tenet believes that computers “can chaoge life for the better.” It sends
an evangelical message that computer technologetiwot only benefit computer
hackers but also more broadly the whole of humanitye Hacker Ethic should
spread outside “the monastic confines of the Mdssseits Institutes of Technology”
and reach the non-programming part of the socf#tyeveryonecould interact with

computers with the same innocent, productive, oreatpulse that hackers did, the
Hacker Ethic might spread through society like adwelent ripple, and computers
would indeed change the world for the betfr(driginal emphasis) This tenet is
corroborated by the later development of “free umeft ? and “cultural

environmentalisnt?, where the Hacker Ethic of information sharinglspiver into

non-programming creative spheres enabled by netdockmputer technology. For
example, projects such as Wikipedia are among th&t successful applications of

this tenet beyond software.

In summary, the Hacker Ethic identified by Levy fpays a picture of what computer
programmers in the 1950s and the 1960s thoughttdhemselves. The six tenets
form the “shared identity and belief system” thatuhd underpin hackers’ core set of
common commitments to building software projectatoratively?® Though they
were not legally binding but only voluntarily obged by computer hackers
themselves at this stage, they started the hat&emasdship tradition which would

form the ethical foundation for the later FOSSrigiag schemes.

19 For the discussion of the analogy of computer @gners and literary authors, see Clapes, Lynch,
and Steinberg, “Silicon Epics and Binary Bards: dbgiining the Proper Scope of Copyright
Protection for Computer Programs” (1984 UCLA Law Review493

2 evy, Hackers p.49

2l Lessig, LawrenceFree Culture: How Big Media Uses Technology and lagv to Lock Down
Culture and Control CreativityfNew York: The Penguin Press, 2004)

22 James Boyle, “Cultural Environmentalism and Beyorf@007) 70 Law and Contemporary
Problems5; Molly Shaffer Houweling, “Cultural Environmenisin and the Constructed Commons”,
(2007) 70Law and Contemporary Problera8

% The Hacker Ethic as a belief system is also thotmbe one of the many motivational factors that
drive FOSS programmers to write software. The eshets of the Hacker Ethic, according to Weber,
would have huge impact on the later “open source’ement as they “continue to characterize the
open source community to a surprising degree.” Weheccesssupra note 5, p.144

49

2.2.2 Decline of the Hacker Ethic

In the mid-1970s the Hacker Ethic began to be erdidea new norm of owning
software as private property. Software programnstested to feel proprietorial
about software that was written and many of theopsd sharing code with other
programmers. In 1976, the then young Bill G&tesn the capacity of General
Partner of Microsoft, authored an open letter, atwy other computer hackers of
being property-stealing hobbyists. Gates’s letter be boiled down to an argument
that writing software was not a matter of indulgimge’s curiosity, but it involves
professional programmers’ hard labour that showddebonomically rewarded. It
openly challenged the Hacker Ethic of informatidraring: “As the majority of
hobbyists must be aware, most of you steal youwsoé. Hardware must be paid for,
but software is something to share. Who caresafpople who worked on it get
paid?® In short, the production of software for Gatesaiserious business that
requires economic incentives. The letter was, dutiis time, considered to be
tactless’® and it was littered with blunt accusatory wordstswas “stealing” and
“theft”:

One thing [hobbyists] do do is prevent good sofeMaom being written. Who
can afford to do professional work for nothing? Whabbyist can put 3-man
years into programming, finding all bugs, docummptihis product and
distribute for free? The fact is, no one besidebassinvested a lot of money in
hobby software. We have written 6800 BASIC, andvariéng 8080 APL and
6800 APL, but there is very littlsacentiveto make this software available to

hobbyists. Most directly, the thing you do is ttféftadded emphasis)

It is important to learn that this open letter was producedex nihilg but it was an
outlet of his anger after a specific incident t@ates encountered. Before the letter

was published, Microsoft, under the partnershiafes and Paul Allen, produced a

4 Gates was also a featured computer hacker in Stexey’s study of the hacking community in the
1970s. Gates was described as “Cocky wizard, Hdrdmopout who wrote Altair BASIC, and
complained when hackers copied it.” Steven Lévgckers p.10

% Bl Gates, “An Open Letter to Hobbyists", 3 Febry 1976 at
<http://www.digibarn.com/collections/newsletteratmebrew/V2_01/gatesletter.html>

% The letter was written and published without ficensulting Ed Roberts who actually employed
Gates to write the Altair BASIC. See Lewackers pp.229-230

' Bill Gates, “An Open Letter to Hobbyists”, suprate 24

50

popular version of the BASIC computer languageralt on the microcomputer
known as Altair, which was a precursor to mass-rfetured personal computers
(PC) for less sophisticated end-users. CountehiagHacker Ethic, Gates insisted on
a new norm that the Microsoft version of Altair BI€Sshould be paid for instead of
being shared and copied free of charge. This stiggedid not go down well with
the hackers who were still in their old sharingihab that time. For example, those
hackers who were members of the Homebrew Computdr Were among the most
enthusiastic sharers of Altair BASf€ Gates felt extremely frustrated when very few

people actually sent payment to him after usingstifevare:

The feedback we have gotten from the hundreds oplpewho say they are
using BASIC has all been positive. Two surprisifgngs are apparent,
however, 1) Most of these ‘users’ never bought BA@Ess than 10% of all
Altair owners have bought BASIC), and 2) The amoointoyalties we have
received from sales to hobbyists makes the timatspe Altair BASIC worth
less than $2 an hodt.

Given the later extraordinary commercial succeddiofosoft’'s proprietary software,
Gates’ letter is often retrospectively singled asta notable bookmark signaling the
future sea-change of the old Hacker Ethic givingyw@ the norm of proprietary
software® This letter is significant also in the sense tfmtthe first time a new
norm against the Hacker Ethic was emphatically aksbd in a widely circulated

written document® To be more precise, the significance has twofoédming. First,

% Homebrew Computer Club, founded in the mid-19%@ss active in sharing software among its
members. The club incubated important hackers agiSteve Wozniad, who later made huge
contribution to the development of affordable doticesicrocomputers. The club members were
enthusiastic in “sharing” Altair BASIC and they wegxactly the kind of “hobbyists” that Gates’ 1976
open letter criticised. Levy observes: “People atbthe Homebrew Computer Club tried to ease into
this new era, in which software had commercial ®aluithout losing the hacker ideal. One way to do
that was by writing programs with the specific idgalistributing them in the informal, though quasi
legal, manner by which Altair BASIC was distributethrough a branching, give-it-to-your-friends
scheme. So software could continue being an organoicess, with the original author launching the
program code on a journey that would see an endimssd of improvements”. LevyHackers
pp.230-1

*? Gates, supra note 24

% For example, Steven Levy devotes half a chaptatigoussing Gates’ letter, which is used as a
piece of written evidence showing the “the new ifiggof the Hacker Ethic”. LevyHackers pp.224-
237; Steven Weber also quotes the letter as therfiaitive tracks” to the Hacker Ethic in the mid-
1970s, see WebeBuccesssupra note 5, pp.35-37

%1 David Bunnell, the then editor @fitair Users’ Newslettermanaged to circulate the letter in many
places including Homebrew Computer Club’s newslettevy, Hackers p.229

51

Gates envisioned that software could be neatlyraggifrom hardware and be sold
on its own as commodity. This is different from therld of the old Hacker Ethic
where there was “no meaningful distinction betwéandware and softwareind
“code was the machin€® (Recall that “computers” in the Hands-on Impemtiv
calling for the unlimited and total access refessbboth hardware and software
programs.) In order to pave the way for full commfiodtion of software, Gates’
letter challenges the norm that “Hardware must la&d gfor, but software is
something to share”. He wished to elevate softwaréhe status of being fully
alienable commodity in its own right. Secondly, thygen letter’'s repeated use of
words like “steal” and “theft” indicates that Migoft BASIC started to be
interpreted as a kind of private property exclulsiveelonging to its authors. Gates
here clearly was advocating a new norm of privataership in software, which was
radically new and disturbing in 1976. Boyle see$eGa open letter as an attempt to
drive home a basic point that “software needs toplmected by (enforceable)
property rights if we expect it to be effectivelpdasustainably producetf’ This
new norm is at least four years ahead of its timeabse US Congress would not
amend its copyright legislation to cover softwangilul980. The letter also raised the
issue of economic “incentive” for producing softeawhich was closely related to
the orthodox understanding of the function of piev@roperty as the reward of
authors’ labour. Following Gates’s logic, short @fsystem that could exclude
members of the public from copying Microsoft BASIGhe incentive for
programmers to write this software cannot be regllgranteed. In short, the open
letter contains the seminal idea that software khbecome fully fledged private
property, which would pave the way for the full codification of software in the

future.

Gates’ open letter no doubt dropped a bombshetherhackerdom, but it would be

an exaggeration to say that it directly led to tmmise of the MIT-style hacker

%24As in the early days of computing, the code whas machine in a real sense. And code was
something you naturally collaborated on and shafdds was natural because everyone was just
trying to get their boxes to do new and interesthiggs, reasonably quickly, and without reinvegtin
the wheel.” WeberSuccesssupra note 5, p.36

% James BoyleThe Public Domain—Enclosing the Commons of the Nielv Haven& London:
Yale University Press, 2008) p.164

52

community®* Hackers’ reaction to Gates’ letter was extremelgative. Only five or
six people were persuaded to send Gates the payhenivas insisted in the open
letter®® The Hacker Ethic was not immediately defeatedibwtould take another
half of a decade for its fragility to be fully exgexn*® However, it would be safe to
say that after 1976 there started to emerge twgsarhsoftware programmers. One
includes the old “ethical” MIT-style computer hackavho shared everything with
their fellow-hackers and the other attracts the emmusiness-minded programmers
who wanted to sell software to make profit. It alseates a schism where two
competing norms that would eventually run into ms clash. The former claims
that it is programmers’ stewardship duty to sharféasre and the latter insists that
there are private property subsisting in softwaoenfwhich programmers should be
economically rewarded. This is a tension suggedtivag neither stewardship nor
private property is natural to software. Softwase“property” has always been a
hotly contested social construct and it cannotrbpervious to the changing social
milieu. Weber observes the camp sticking to the té&tker Ethic and the camp
following the new norm of software ownership woblattle for supremacy endlessly
from then on: “Both sides claimed (and continueleom) that their worldview was
self-evident, obvious, and an inevitable consegeeoic the material forces and
constraints that exist in computing. But neithesgsretary nor free software is ‘blind
destiny.” Both continue to coexist, in a kind offta@re industry ‘dualism’ [...].
Neither is a technological necessity, and neitlagr daim to have ‘won out’ in any

meaningful sense’”

% The MIT hacking environment collapsed largely daea company called Symbolics, which hired
away many of its hacker. | will discuss the incitdenmore detail in sub-Section 2.3.2

% Levy quotes Hal Singer as a representative vajegnat Gate’s letter: “the most logical action was
to tear the letter up and forget about it.” Lekgckers p.230

% Levy observes that the Hacker Ethic still lingeoedafter the 1976 open letter: “When MIT hackers
were writing software and leaving it in the drawer others to work on, they did not have the
temptation of royalties. [...] With the growing nunmla computers in use (not only Altairs but others
as well), a good piece of software became somethinigh could make a lot of money—if hackers
did not consider it well within their province tarate the software. No one seemed to object to a
software author getting something for his work—beither did the hacker want to let go of the idea
that computer programs belonged to everybody. I$ ve®@ much a part of the hacker dream to
abandon.’ibid.

37 Steven WebeiSuccesssupra note 5, p.37

53

2.3 From the Early 1980s to 1998: Clash between tf@vo Traditions

The second stage started in the 1980s when theeH&tkic was further weakened
by the rising norm of proprietary software. Theisohbetween the two camps of old
MIT-style hackers and Microsoft-type proprietarpgrammers was further enlarged
by the new legislation of US copyright law to ind&usoftware. The ascendancy of
private ownership in software effortlessly eclipsin old software stewardship
tradition. In response to this change, Richardli@ti almost singlehandedly started
the “free software” campaign in order to regain edost ground of the Hacker Ethic.
Apart from continuing to writing non-proprietaryfsgare, Stallman also crafted the
very first “copyleft” software licence as an antiyatisation device to ensure that
modified versions of free software cannot be subpdo a proprietary regime.
Copyleft must be used in conformity with Free Saitev Definition, whose spirit is
derived largely from the first two tenets of thedker Ethic.

In the following subsection, | will show two contexin which a selected few
important changes have affected hackers’ collaberatelations in the second
historical stage. The first is a broad context ihickh the new norm of private
ownership in software gradually gained ascendentyconcerns the changing
economic situation and legal environment that becamore conducive to
commoditisation of software since the 1980s. Themiseé is the narrow and specific
context situated in the MIT Al Lab where Richardl8han as an individual reacted
to the trend of privatisation of software by dewngsia copyleft licence in order to
repair the broken collaborative relations amongkbex | will explain both contexts

in turn.
2.3.1 Changes in Market and Law

The broad context contains two elements, of whiod is about market and the other
about law. The newnarket situation, combined with the new legal environment,
helped software to metamorphose into a kind of westee and fully alienable

“property” in its most orthodox sens&Firstly, there emerged a reasonably big

% Conventionally, a thing becomes private propeftiy has two attributes: 1) “alienability” and 2)
“exclusivity”. To put it crudely, if a thing is allved to be bought and sold, it is alienable; iah
exclude others from accessing or using it, it islesively owned. SeRoger Smith,Property Law

54

market for software products (especially operasggtems for microcomputers) to
be traded as commodities in large quantities. Wais the kind of market that did not
exist in the first historical stage where softwavas shared within the hacker
community. Most significantly, thanks to the plunting cost of hardware
components, the advent of affordable personal coenpuPC) for domestic use
substantially increased the number of computersuséh varied levels of computing
literacy. Many of these new users possessed tittleo programming knowledge at
all and they did not have to. For these non-sojghi®td users, what they need was
workablesoftware more thamodifiablesoftware and they were propedndusers.
This is a crucial shift because in the older hagktommunity there was no clear
distinction between programmers and users, i.eryewe is actually or potentially a
co-developer. In the new situation, a new grougrad-users was created and they
only consumesoftware. Proprietary software thrives on the “tumg down” of
computer culture, because it creates a market wtherme are consumers more
willing to pay for readymade software but less @usi and inquisitive about the

technology beneath it.

Secondly, the legal environment in the 1980s alsnged dramatically in favour of
programmers who wanted to exert exclusive contfatheir software over users.
This was the beginning of an era when a body of knewn as “intellectual
property” was developed to take software under gmtain. Most significantly,
software, across the Atlantic, was made eligiblectipyright protection. In 1980, the
US Congress amended the 1976 Copyright Act to declsoftware as a subject
matter.®® In the UK, the 1985 Copyright (Computer Softwar&mendment
analogised software to the literary works protedtgdhe 1956 Copyright Act. Three
years later, software unequivocally became a pralvde subject matter as a species
of “literary work” in under the Copyright, Desigasd Patents Act 1988.

The introduction of software copyright appearedetifisg to Richard Stallman who
was steeped in the Hacker Ethic. Though Stallméer lehanged his view about

(Essex, England: Pearson Education Limited, 20@3,Etlition) p.3 Thanks to the economic and
legal changes in the 1980s, it was possible for mergial proprietary software acquired both
attributes.

¥17U.S.C.s.101

“0 Section 3(1), CDPA 1988

55

copyright, his then knee-jerk reaction was visdgralegative. When he first
encountered programs displaying “copyright notices”the screen, he thought that
they were “blasphem$* to the Hacker Ethic. Stallman was against treasivfgware
programs as literary works because he thoughtwesg fundamentally different. In
1985, he pointed out that software (containing atiman-readable source code and
executable object code) and literary works (i.eols) were different in the sense
that the former could instruct computer to perfarertain functions and the latter
were merely literary text to be read. There wakeliarm to copyright literary works
as such, but to copyright software programs woahtlIto the result of “harming
society as a whole”:

The idea of copyright did not exist in ancient tsnavhen authors frequently
copied other authors at length in works of noniditt This practice was useful,
and is the only way many authors’ works have swadieven in part. The
copyright was created expressly for the purposenaburaging authorship. In
the domain for which it was invented—books, whichuld be copied
economically only on a printing press—it did lith@rm, and did not obstruct
most of the individuals who read the books. [...] Tase of programs is very
different from that of books a hundred years agee Tact that the easiest way
to copy a program is from one neighbor to anottier,fact that a program has
both source code and object which are distinct,thedact that tha program

is used rather read and enjoyemmbine to create a situation in which a person
who enforces a copyright is harming society as alevtboth materially and
spiritually; in which a person should not do soamlless of whether the

[copyright] law enables him t.(added emphasis)

Stallman’s argument that copyright is not an ideghl form that should regulate
software on the ground that “a program is usederaian read and enjoyed” is not
entirely unfamiliar to legal scholars, some of wheaggest replacing copyright with
sui generissoftware protection for very similar reasdfisVe will soon find that

“! Levy, Hackers p.419

“2 Stallman “The GNU Manifesto”, 1985, ah#p://www.gnu.org/gnu/manifesto.hteml

“3 For example, Samuelson and her co-authors holindas view that programs are not merely
literary text but more importantly they are instians for machines. Pamela Samuelszn al,
Manifestq supra note 4

56

Stallman later became less hostile to copyrighterdie discovered that the broad
exclusive rights granted to software authors caadtlally be leveraged to deter

privatisation of software in a “copyleft” licensirgrangemenit

Another legal development is to protect softwardaurtrade secrecy, which became
an increasingly common practice after the 19708his development affects two
groups of people: the first group includes prograarsrand the second includes users.
First, in order to get software under trade secngmtection, proprietary software
companies needed to make sure that their own emgdogo not leak and spread the
source code outside. So programmers-employees agkezl to sign non-disclosure
agreement on the software they developed. Secoogrigtary developers no longer
release software with the source code availablestys. The executable code-only
software usually came with a proprietary softwaieerice forbidding reverse
engineering altogether. However, non-sophisticaied-users tended to accept this
change, because they did not really care much albether the source code was
kept secret or not. Recall that widespread PCsahalimbing down” effect in the
computer world where a lot of PC users did not régidalone modify, source code
of software. Feller and Fitzgerald find that thewm®f distributing only non-human
readable object code brought a convenient restibtio non-programming end-users
and commercial software developers. For end-usengn millions-of-line source
code is compiled into object code, it saved a l@torage space, which was still very
precious on 1980s’ microcomputers; for softwareeligyers, source code, when kept
secret, became a valuable asset in its own righitjteeffectively prevent competitors

from knowing how their software was actually cod®d.

Looking back, Gates’ norm, that payment must bearfadsoftware for its own sake,
sounded radical and unfamiliar in 1976, but it Imeeacommonplace in the 1980s.
The new market situation and legal environment domlo create an atmosphere
conducive to the production of more profitable prejary software. Software was
effectively unbundled from hardware, and it cartraded in its own right. Copyright

** See for detail in sub-Section 2.3.2

4> Mark Lemley, “Convergence in the Law of Softwarep@right”, (1995) 10High Technology Law
Journall at 4

“8 Joseph Feller and Brian Fitzgeraldhderstanding Open Source Software Developpr&nndon:
Addison-Wesley, 2002) pp.11-12

57

and trade secrecy gave software a legal basisdloide non-paying users. Moglen
observes that the changes clearly gave rise ttritite to exclude” that was desired

by proprietary software developers.

After 1980, everything was different. The world mfinframe hardware gave
way within ten years to the world of the commod®§. And, as a contingency
of the industry’s development, the single most ingoat element of the
software running on that commodity PC, the opegasiystem, became the sole
significant product of a company that made no haréwHigh-quality basic
software ceased to be part of the product-diffeaénon strategy of hardware
manufacturers. Instead, a firm with an overwhelnmshgre of the market, and
with the near-monopolist’'s ordinary absence of rede in fostering diversity,
set the practices for the software industry. Irhsacontextthe right to exclude
others from participation in the product’'s formatiobecame profoundly
important Microsoft's power in the market rested entirelyits ownership of

the Windows source codé(added emphasis)

The changes in market and law give the broad cowofetke rise of exclusive private
property in software and the decline of the Hadk#ric. It explains how software
programmers gradually became the exclusive ownérthe software that was
produced. However, this broad context does notagxpnuch how the very first
“copyleft” free software licence known as the GNr@ral Public Licence was
produced and how it was employed to save the deglidacker Ethic. | now need to
move to the more specific context based at the MITab where Richard Stallman
would react by inventing copyleft as an anti-pnsation device to rebuild

collaborative relations among programmers.
2.3.2 The Birth of Copyleft

It is difficult to identify one single moment whe$tallman conceived the idea of
copyleft. However, | endeavour to highlight, withet benefit of hindsight, three
crucial incidents that precipitated the inventidrcopyleft. The significance of these
incidents might not have been fully apparent attthee when they took place, but

“"Eben Moglen, “Anarchism Triumphant: Free softwarel the Death of Copyright”, (1999) 4 (8)
First Mondayat <http://www.firstmonday.org/issues/issue4_8/mogien/

58

retrospectively they were so frequently told tlneyt became an indelible part of free
software developers’ collective memory. The threwies share a common theme
that runs through a narrative explaining the batttopyleft: Copyleft is a hacker’s
reaction to the rise of proprietary software andsitan attempt to rebuild the

collaborative ethos under the Hacker Ethic by mediseftware licensing.
The Xerox Printer Incident

The first incident is a much repeated story inuadva Xerox paper-jammed prinf&r.

In around 1980, Stallman at the MIT Al Lab was gsincutting edge laser printer
donated by Xero%® He encountered a glitch which failed to allow Hrprint out a
50-page file. With the hacker's typical “Hands-omplerative”, Stallman felt
compelled to identify and fix the problem immedigt¢As a person who spent the
bulk of his days and nights improving the efficigraf machines and the software
programs that controlled them, Stallman &ehatural urgeto open up the machine,
look at the guts, and seek out the root of the lpro5*° Stallman’s “natural urge” is
emblematic of the first tenet of the Hacker Etldentified by Levy: “Always vyield

to the Hands-on Imperative”, which spurs a hackerfix something that [...] is
broken or needs improvement.Unfortunately, Stallman was not able to track down
the source-code file because Xerox this time didpmovide it to the Al Lab as was
the case before. Stallman vividly recalls his fratsbn when he could not access and

modify the source code many years later:

Later Xerox gave the Al Lab a newer, faster printeme of the first laser
printers. It was driven by proprietary softwaretthen in a separate dedicated

computer, so we couldn't add any of our favoriegdees. We could arrange to

“8 Stallman repeated the story in many places anashd this personal experience as an example of
deterioration of the Hacker Ethic that he could f@ehe MIT AL Lab. Sam Williams wrote the first
book-length biography of Stallman. William dedichtbe whole opening chapter to only to the Xerox
printer incident in great detail and shows its Bigance on the Stallman’s cause. See Williams,
Chapter 1 Stallman's Crusadéd-ree as in Freedom--Richard Stallman's CrusadeHiae Softwarg
O’Reily 2002 at Http://www.oreilly.com/openbook/freedonihereafteiStallman's Crusade

“9The older Xerox graphics printer was initially @ed to the Al Lab in around 1977. The printer
“was run by free software to which we added mangveaient features. For example, the software
would notify a user immediately on completion gbrint job. Whenever the printer had trouble, such
as a paper jam or running out of paper, the soéiwauld immediately notify all users who had print
jobs queued. These features facilitated smoothatiper” Stallman, “Why Software Should be Free”
at <http://www.gnu.org/philosophy/shouldbefree.l#ml

*0 Sam Williams Stallman’s Crusadesupra note 47, para. 29

*1 See LevyHackers p.40

59

send a notification when a print job was sent ndbhdicated computer, but not
when the job was actually printed (and the delayg waually considerable).
There was no way to find out when the job was digtypainted; you could only
guess. And no one was informed when there was argam, so the printer

often went for an hour without being fixed.

The system programmers at the Al Lab were capabléximg such problems,
probably as capable as the original authors optbhgram. Xerox was uninterested in
fixing them, and chose to prevent us, so we wereefibto accept the problems. They

were never fixed?

Stallman later learned that a leading computemssigiust left Xerox and was hired
by Carnegie Mellon University’s computer scienc@atément. He made a journey
to Carnegie Mellon and made a request in persoth@ésource-code file that ran the
printer. Much to Stallman’s disappointment, theuesf was turned down to his face.
This is because the ex-Xerox employee had alreagyed a non-disclosure

agreement with Xerox and the source code must pe d®the trade secret of the
company’® Stallman felt emotionally scarred by the refusaptovide source code

by another programmer. From this experience, hasfthat unmodifiable proprietary
software would cause a “psychosocial harm” to safewsers just like a resident is
not allowed to make any changes to a house whegs: Iilt is demoralizing to live

in a house that you cannot rearrange to suit yeeds. It leads to resignation and
discouragement, which can spread to affect othgecs of one's life. People who

feel this way are unhappy and do not do good wdtk.”
The Symbolics Incident

Although the Xerox incident has been repeatedlgleoh out as “a major turning
point” when proprietary software started to hug tiollaborative relations under the

Hacker Ethic, it is nothing more than a wake-up abbut the creeping influence of

*2 Stallman, “Why Software Should be Free” at <htipnw.gnu.org/philosophy/shouldbefree.html>
%3t is suspected that Robert Sproull was the one refected Stallman’s request of source code, but
Sproull himself had no recollection of the incidentilliams, Stallman’s Crusadesupra note 47, para.
58.

* supra note 52

60

proprietary software on the MIT LaB.The real “fatal blow” that destroyed the
Stallman’s hacker community came from the secomident about “Symbolics”,
which was a spin-off company from the MIT Al Lalm the early 1980s, Russell
Noftsker, a former Al Lab administrator, formed Sywstics to commercialise an Al
Lab project on the LISP programming language. lisitess competitor was the
hacker-friendly company called LISP Machine Incogion (LMI) led by the MIT
hacker Richard Greenblatt, who stuck to the Ha&khkic and disclosed their source
code dutifully as usual. In a nutshell, there wéreee parties in this incident:
Symbolics, LMI and the Al Lab. The first two padigere in business competition
and the last was in a neutral position. Stallmgoisat the Al Lab was to keep the
lab’s version of the LISP operating system abreagh the two companies’
improvements. The three parties shared improvenwdntkSP OS for over a year. In
March 1982, Symbolics stopped sharing source catle ttwve Al Lab and LMI in
order to protect their software as trade secres Was a move that was intended to
undermine its competitor LMI, but the person whi fieost betrayed and hurt was
Stallman at the Al Lab. Stallman’s personal revengss to reverse engineer
Symbolics’ now “closed-source” software by studyitngir newly added features,
whose source code would then be completely rewriitem scratch by Stallmati.
He then shared his code with Symbolics’ competherLMI. Angered by Stallman’s
retaliation, the President of Symbolics Noftskecused Stallman of “stealing” the

company’s trade secrets:

We developed a program or an advancement to ouaipg system and make
it work, and that may take three months, and thethet our agreement with
MIT, we give that to them. And then [Stallman] caangs it with the old ones
and looks at that and see how it works and reimefdem [for the LMI

* Wwilliams observes that the incident at its moshiéwake-up call” alarming that software “had
become such a valuable asset that companies nerldelt) the need to publicize source code” Sam
Williams, supra note 47, para. 62 & para. 65,

*% Retrospectively, Stallman’s method of simulatinmdtions of the original software by rewriting
source code was later called “non-literal copYiofjsoftware. Stallman thought his behaviour was
perfectly legal because he did not literally copwrse code. However, non-literal copying was held t
be infringing a software owner’s copyright in 1988helan Associates Inc. v. Jaslow Dental
Laboratory Inc 797 F.2d 1222 (3d Cir. 1986); Thi¢helandecision was criticised by a later decision
for giving an overbroad protection of softwa@gymputer Associates Int'l, Inc. v. Altdnc.,928 F.2d
693 (2d Cir.1992)

61

machines]. He calls it reverse engineeriie call it theft of trade secrets
(added emphasis)

Stallman’s revenge did not go very far. Many fellbackers at the MIT Lab had
already disagreed with him and they were gradublled away to write more
lucrative proprietary software for SymbolitsThey saw Stallman’s reaction as a
“troubling anachronism” which was blind to the wegsible trend of software
commercialisation: “In commercializing the Lisp Mmege, the company pushed
hacker principles of engineer-driven software desigt of the ivory-tower confines
of the Al Lab and into the corporate marketplaceesghmanager-driven design
principles held sway> The upshot of the Symbolics incident is the fidtkhe of
the Hacker Ethic at the Al Lab. For Stallman, tleeker-led Al Lab in the early
1970s was not only his workplace, but also hisitsigr home. Stallman held
Symbolics responsible for destroying this “homelstlas Williams observehat
“the Symbolics controversy dredged up a new kinémger, the anger of a person
about to lose his hom&*As a “homeless” hacker, Stallman felt that theieswo
point in continuing to work at the Al Lab where thackers’ collaborative ethos no
longer existed. He resigned his job and becamd-tirhe campaigner for “software

freedom”.
The Emacs Programming Editor Dispute

The third and final incident concerns Stallman’spdite with James Gosling over the
GNU Emacs software, which eventually led to theatiom of the first copyleft
licence in the period between 1983 and 1985. AS&llman left the Al Lab, he
embarked on the ambitious GNU project in order teate a complete non-
proprietary operating system to replace the prégmyeUNIX system. In an initial
announcement dated 27 September 1983, Stallmameguato “write a complete

Unix-compatible software system called GNU (for Gniot Unix), and give it

" Quoted by LevyHackers p.426-7

8 Even before the Symbolics incidents, Stallman alasady shunned by many hackers who later
joined Symbolics. In around 1981 and 1982, MIT leskstopped inviting Stallman to go out for
dinners together and some of them confessed tlegt ltlad to lie to Stallman in order to avoid
embarrassment. Sam Williams, supra note 47, pa. 4

*ibid., para. 454

0 Wwilliams observes that Stallman felt strongly thMiT Al Lab in the early 1970s was his “home”:
Williams, ibid., para. 456

62

away free to everyone who can use°t.lh the same announcement, Stallman
stressed a “golden rule” of software sharing tleahimself must stick to: “I consider
that the golden rule requires that if | like a paog | must share it with other people
who like it. | cannot in good conscience sign adisclosure agreement or a software
license agreement.” More significantly, in the éoling paragraph, the word “free
software” was mentioned: “So that | can continuege computers without violating
my principles, | have decided to put together digaeht body offree softwareso
that | will be able to get along without any softeahat is not free®® (added
emphasis) Although it would take a few more years‘free software” to be clearly
defined (as in the FSD), the announcement showbr@ta was contemplating the

idea of “free software” as early as in 1983.

One of the flagship sub-projects of GNU is the Esnprogramming editor, which

was initially developed by Stallman (in collaboaatiwith many of his colleagues at
the Al Lab) in the mid-1970s. Emacs embodied a thadically new idea of

displaying and editing text on computer screengldng the old method of
scrutinising printed-out code on paper). It wasi@a@er of “the real-time display
editor” and it was “customizable” by its users. Tdustomizability of Emacs was the
most outstanding feature intended by Stallman tlitae radical collaboration

between developers and users. According to Lewiingn “used the Hacker Ethic
as a guiding principle for his best-known work, exditing program called EMACS
which allowed users to limitlessly customize it—itgide open architecture
encouraged people to add to it, improve it endje€sIVery importantly, users are
given a tool known as the Emacs Lisp (Elisp) prograng language to make any

adaptation that they need. The official websit&diU Emacs explains:

If Emacs doesn’t work the way you'd like, you caseuhe Emacs Lisp (Elisp)
language to customize Emacs, automate common tasksjd new features.

Elisp is very easy to get started with and yet msadaly powerful: you can use

. The project was slightly delayed, and it did naike a start until January 1984. Stallm&nU
Initial Announcementl983 at <http://www.gnu.org/gnu/initial-announaarhhtmi>

62 Stallman, GNU Initial Announcement 1983 at <http://www.gnu.org/gnu/initial-
announcement.html>

%3 Levy, Hackers, p.416

63

it to alter and extend almost any feature of Ematsu can make Emacs
whatever you want it to be by writing Elisp code]f?.

Because of its radial openness and customizalilityacs became so popular among
programmers that it was widely copied and modifiedvarious forms. Stallman
suggested that anyone who made improvements ofEimacs editor should
contribute modifications back to the so-called “EN3 software-sharing commune”.
In a 1981 Emacs user manual, it became clear talim@n had by then conceived a
prototypical “share-alike” condition for using Ensa¢hough it was not intended to
be legally binding:

[...] you are joining the EMACS software-sharing cooma. The conditions of
membership of [the EMACS commune] are that you maestd back any
improvements you make to EMACS, including any lites you write, and that
you must not redistribute the system except exaslyou got it, complete. [...]
All sources [i.e. source code] are distributed, shduld be on line at every site

so that users can read them and copy code from fheji?

The Emacs commune “share-alike” condiffostipulating that “you must send back
any improvements you make to EMACS” is significambhe Emacs commune,
according to Kelty, is “designed to keep EMACS aliand growing as well as to
provide it for free” and it indicates a kind of fmonunity stewardshi§’, which is

different from private ownership of software. k$hed out the first two tenets of the
Hacker Ethic documented by LeW¥.It would take another four years before
Stallman actually wrote a fully-fledged copyleftdnce—GNU Emacs General

Licence—in 1985, but the idea of “copyleft” wasanlky being fermented as early as

% A Guided Tour of Emagshttp://www.gnu.org/software/emacs/tour/>

% Stallman, “EMACS Manual for ITS Users,” 22 Octol&81, quoted in Kelty, Two Bits, Note 13,

p.333

% Elsewhere, Stallman addresses this Emacs comnaunmatition in a less formal way: the condition is
“that [users] give back all extension they made,asoto help EMACS to improve. | called this
arrangement ‘the EMACS commune’ ”. Stallman corgimthat “[a]s | shared, it was their [i.e. users’]
duty to share; to work with each other rather thgainst.” quoted in Levy, Hackers, p.416

67 Kelty, Two Bits, p.191

% Recall that the first two tenets are the “handshoperative” (i.e., unlimited and total access to
computers) and “all information should be free’al®han’s verbalisation of the commune conditions
in 1981 gives the Hacker Ethic a more concreteutdxxistence.

64

in 1981 when copyright was about to become an ksit@lol legal form of software
protection.

Unfortunately, not everyone shared Stallman’s igddgdcommunity stewardship” of
the Emacs editor. Since 1981, James Gosling steoteark on a variant of Emacs
running under the UNIX operating system. Goslinggssion (sometimes also known
as “Gosmacs”) was initially shared with the comntyigind Stallman incorporated
some of Gosling’s code into his GNU Emacs. In 1988sling decided not to share
his software any more, on the ground that the asirg popularity of Gosmacs
made him unable to keep up with the growing adrriatise side of the joB® He
eventually sold Gosmacs to a proprietary softwamapmany called Unipress, which
was believed to be more suitable for the futureetigpment of Gosmacs. Stallman
was saddened by Gosling’'s decision and felt thetcbhmmunal ideal was seriously
eroded.

Furthermore, also around this period of time cagyrigradually overtook trade
secrecy as the main form of legal protection ofvgafe/® and the threat of copyright
infringement became increasingly real rather thavehy hypothetical to software
developers. In order to avoid being bogged dowthkycopyright ownership dispute
with Gosling, Stallman did two things. First, hen@ved Gosling’s code completely
from GNU Emacs and issued a “Gosling-free” versmth his own replacement.
Second, he produced the first free software licaheg specified the conditions of
using, modifying and redistributing GNU Emacs. Tteav licence was called GNU
Emacs General Public License (EGPL), which wag figblished in 1985 and
revised twice respectively in 1987 and in 1988. Titence opened with a preamble
marking the difference between GNU Emacs and so&waoduced by proprietary
“software companies” (with Unipress clearly beimgeaf them in Stallman’s mind):
“The license agreements of most software compa@ep you at the mercy of those
companies. By contrast, our general public licessatended to give everyone the
right to share GNU Emacs. To make sure that youhgetights we want you to have,

% Gosling made this announcement on 12 April 19831i¢ is a hard step to take, but | feel that it is
necessary. | can no longer look after [Gosmacspenty, there are too many demands on my time.
EMACS has grown to be completely unmanageabl@dpailarity has made it impossible to distribute
free: just the task of writing tapes and stuffihgrh into envelopes is more than | can handle.” efliot
in Kelty, Two Bits p.190

0 See Kelty;Two Bits pp.199-206

65

we need to make restrictions that forbid anyonédny you these rights or to ask
you to surrender the righté""Note that the “share-alike” clause of the EGPhds
qualitatively different from the content of the BEzsacommune condition mentioned

above. The EGPL'’s “copying policies” stipulate tEabacs users must

cause the whole of any work that you distributgwblish, that in whole or in
part contains or is a derivative of GNU Emacs oy aart thereof, to be
licensed at no charge to all third parties on teigestical to those contained in
this License Agreement (except that you may chaosgrant more extensive

warranty protection to some or all third partiesy@ur option)’?

This clause would be later famously (or notorioydlgown as the “viral” clause,
which constitutes the defining feature of copyléftenjoined GNU Emacs users to
contribute back any publicly released modificatio@, any work that “in whole or in
part contains or is a derivative of GNU Emacs”, enthe same GNU EGPL. This
was clearly designed to prevent programmers liksli@g from withdrawing their

contributions from the Emacs commune.

Most significantly, in the course of the Emacs digpfrom 1983 to 1985, Stallman’s
attitude towards copyright underwent an importaot bometimes unnoticeable
change: he became less cynical about copyrightfimwvare and found that he could
leverage copyright law to further his cause of feedtware’® It is important to
remember that this happened in a historical contérdre an increasing number of
software developers began to rely on copyright totget their softwaré? The
dispute with Gosling caused Stallman to gradualiyifiarise himself with the US
copyright law. He discovered that the very broatrigranted to copyright owners
could actually be inflected for the “share-alikelirpose intended by the Emacs

“commune”. He used copyright as the basis for ifmmpsthe “copyleft”’®

""GNU EGPL

2 Section 2 (b), GNU EGPL, 1985, 1987, 1988 at <Httpvw.cogsci.indiana.edu/pub/COPYING>

3 From 1983 when Gosling made Gosmacs proprietary9&b6 when Stallman published the first

copyleft licence, the change took place in a shpaice of less than two years.

" For example, Kelty observes that both Gosling tallman registered their respective versions of
Emacs with the US Library of Congress after thgulis. Kelty, Two Bits, Note 43, p.335

SIn 1985, Stallman received a letter from Don Hagkivho wrote playfully on the envelope the

phrase: “Copyleft—all right reversed”. Stallmandikthe clever wordplay “copyleft” and later used it

to name the anti-privatisation feature of the GNGHE-like software licences, which are known as

66

requirement—which is effectively a variant of thené&cs commune condition—on
downstream users and deterred them from privatisogrce code of released
modifications and improvements. In the same yeaerwthe 1985 GNU Emacs
licence was published, Stallman also founded tlee Boftware Foundation (FSF),

which later becomes an important powerbase fofrdeesoftware movement.

In 1989, Stallman finally turned the Emacs-specl&lU EGPL into a generic
template licence, which could be used for any feftware. It became the very first
version of GNU General Public Licence (GPL). Stalimmade it clear that the GPL
v1.0 relied upon copyright: “We protect your righigh two steps: (1) copyright the
software, and (2) offer you this license which giweu legal permission to copy,
distribute and/or modify the softwaréThis text would remain unchanged in all the
later versions of the GPL. Legally speaking, theLG® a kind of standard form
licence that lacks explicit bargained-for exchangéss important to note that,
despite its venerable ideal of protecting softwiaeedom, the legal form of GPL is
not drastically dissimilar from other conventionaff-the-shelf standard form
software licences, which are also used by propsietaftware developers. In Chapter
4, | will try to tackle this issue in more depth kyamining the doctrinal rules
governing the enforcement of FOSS licences andllalgo propose to analyse the
issue by harnessing the insights from relationaltremt theory, which has been

largely neglected in the literature of FOSS licagsi

To summarise the whole second historical period=OISS licensing, the three
incidents of the Xerox printer at the Al Lab, Stadin’s confrontation with
Symbolics and the Emacs dispute travelled downagedirory where Stallman
formulated a narrative about the birth of the Beéware movement as an attempt to
repair the collaborative ethos damaged by the ois@roprietary software. The
narrative is closely linked with the developmentimkllectual property law in the
US from the mid-1970s onward: the first two incitleare mainly concerned with
protecting software by trade secrecy (through nisnlosure agreements), while the

last one shifts to copyright protection. This shsijnals a trend where copyright

the copyleft licences. Richard Stallman, “The GNU roject”, at
<http://www.gnu.org/gnu/thegnuproject.html

® Preamble, GPL v1.0; the quoted sentence remaiolsamged in the second and third versions of
GPL.

67

became a more convenient and accepted form of aadtywrotection than trade
secrecy after 1980. It is not a surprise that @i@i’'s many versions of GPL licences
are actuallycopyrightlicences because they are essentially the pradfubis trend.
The next historical stage will reveal how the feedtware movement took another
critical turn after 1998 and its social and poéticnfluence started to spill over into
the non-hacking world as anticipated by the sigtit bf the Hacker Ethic.

2.4 From 1998 Onwards: Challenge from “Open Source”

The year 1998 marks the beginning of the third estag the history of FOSS
collaboration. In early February of that year, ER@ymond, an ex-Emacs contributor,
openly broke away from Stallman’s free software srmaent. Raymond’s agenda is
to redirect the energy of free software developersa more business-friendly
approach under a new label called “open sourceé. fEhm was deliberately coined
by Raymond on 3 February 1998 during a meeting widme entrepreneurially
minded programmers in California. It was hoped ttlas “rebranding” of the
movement as “open source” would tone down the @mtimercialism associated
with the Stallman-led free software movement antl ‘open source” software

accepted in the business wof(d.

Deviating from Stallman’s position, Raymond’s nepsm is not intended to hold
the moral high ground over proprietary software, ibis keen to propagate a vision
that the decentralised bazaar-style “open soursetapable of producing better-
quality software than the hierarchically organis@dthedral-like structure. This
vision was actually first gestated, one year betbee coinage of the term, in the
much-cited essayhe Cathedral and the Bazadirst written in 1997 and later
revised numerous times by Raymond. This essaygisfisiant in the sense that it
opened up an alternative line of narrative, dewgatirom Stallman’s narrative of
“software freedom” as a matter of regaining the psund of the MIT-style Hacker
Ethic. The new narrative contains a series of adlgethosen stories, which would

later become part of open source’s own “folklofEfiere are two oft-told stories that

" 0On that day, Raymond met Todd Anderson, Chris rBete John “maddog’ Hall and Larry
Augustin, Sam Ockman, Michael Tiemann in Palo Afdie meeting was held after Netscape’s
announcement (in January) of its plan to releassdurce code to the public. Open Source Initiative
“History of the OSI”, at <http://www.opensource.frigtory>

68

tellingly illustrate how Raymond takes trouble tdroduce the new twist of “open
source” to the “free software” world. The firstabout the Linux kernel system as an
epitome of the Bazaar model and the second is dbeletscape web browser as an

example of corporations’ embrace of the idea oEfopource”.

First, Raymond capitalises on the runaway succesged.inux kernel project, which
already took off in the early 1990%0ne of the main goals th@ihe Cathedral and
the Bazaarwants to achieve is to further catapult Linus HBbidg, the initiator of
Linux, to the centre-stage of the “open source” emgnt. Raymond opens his essay
with a verdict that “Linux is subversive”, followeotmmediately by a thought-
provoking question: “Who would have thought [in 19¢hat a world-class operating
system could coalesce as if by magic out of parethacking by several thousand
developers scattered all over the planet, connemtgdby the tenuous strands of the
Internet?”® Raymond admitted that he himself, before the n@iflé] failed to
appreciate the strength of decentralised produatiosoftware until the success of
Linux awakened him to the tremendous advantageghitday the open-source bazaar.
He explains why the “subversive” Linux is crucia the understanding of the
“bazaar” model as opposed to the hierarchical ‘@a@tél” structure.

Linux overturned much of what | thought | knew.addhbeen preaching the Unix
gospel of small tools, rapid prototyping and eviolniary programming for years.
But | also believed there was a certain criticahptexity above which a more
centralized a priori approach was required. | lveliethat the most important
software (operating systems and really large tbkésthe Emacs programming
editor) needed to be built like cathedrals, cahefcilafted by individual wizards

or small bands of mages working in a splendid tsmia with no beta to be

released before its tint8.

Note that the above paragraph obliquely criticipesgrammers like Stallman for
behaving like “individual wizards or small bands wiages working in splendid

8 The Linux project took off well befor¢he Cathedral and the Bazaavas written. So Linux
inspires, but is not inspired by, the Bazaar mali@l Raymond attempt to advocate.
" Raymond, Cathedra) supra note 14
ibid.
69

isolation™!

and it attacks Stallman’s Emacs as an exampleeafly large tools” that
“needed to be built like cathedraf§’In contrast, Linus Torvalds does not work in
“splendid isolation,” but his style of developmeritelease early and often, delegate
everything you can, be open to the point of promtgt—resembles “a great
babbling bazaar of differing agendas and approdchidzar from working alone,
Torvalds, since he was a college student in Helsthét not hesitate to enlist the help
of thousands of volunteer programmers to contriboitdhe Linux project. Raymond
wants to emphasise that the success of Linux és@atrof mass collaboration on the
global scale. It does not matter much how talenézath of the individual

programmers is, but it does matter a lot how caoltative all contributors are.

It is worth noting that the way that programmers portrayed in Raymond’s writing
iIs markedly different from Levy’s journalism on tkacs. Levy's 1984 bookackers

is a collection of larger-than-life programming geses and its subtitle revealingly
hailed them as the “Heroes of Computer Revolutidn’.contrast, the younger
generation of Linux programmers including Torvatidsnot enjoy the “heroic” status
that their predecessors have, but they are ordipaople who are just willing to
work collaboratively “to the point of promiscuityds is recorded ifhe Cathedral

and the BazaarAgain, a brief comparison of Levy’s portrait otahman and

Raymond’s writing about Torvalds is illustrative thle more “democratic” and less
elitist characteristic of the new “open source” mment. In Levy’s book, Stallman
iIs portrayed as “the last of true hackers” whoseoisen includes almost
singlehandedly fighting for the lost Hacker Ethirecall that when Stallman joined
the MIT Al Lab in 1971, he was still an undergraiguatudying at an elitist vy

League universit§? The then Al Lab was likened by Levy to a “monagtewhere

8 Torvalds also voices his dislike of GNU Emacs dwedopenly says that “the Emacs editor is
horrible”. Also, Torvalds’ adoption of GNU softwateols for the Linux project is purely for practica
reason and it is not a matter of buying into Stalim “philosophy”. See Torvalds, “The Linux Edge”,
in Open Sources: Voices from the Open Source Rewoli@®eilly & Associates, 1999) p.107

8|t is not the first time that Stallman was foumdbe an extremely capable but lonely hacker who
often works in the solitarily environment. Bill Goer, was aware of, and also admired, Stallman’s
ability to work efficiently on his own. Stallmanngjle-handedly rewrote the new features of the LISP
operating system during his personal battle withgbftware company Symbolics. Gosper comments:
“I can see something Stallman wrote, and | migltidieit was bad (probably not, but someone could
convince me it was bad), and | would still say, tBuwit a minute—Stallman doesn't have anybody to
argue with all night over there. He’s working albrigs incredible anyone could do this alone.”
quoted in LevyHackers p.426

8 Raymond, Cathedra] supra note 14

8 He was earning a magna cum laude degree in phgsidarvard at the same time.

70

Stallman “had experienced the epiphany” of “purekiea paradise” and thus
developed “a deep affinity for the Hacker Ethicgd amas militant in his execution of
its principle.”®® In contrast to the rarefied monastic atmosphefdIat Torvalds is
said to write Linux in a more “promiscuous” and a&matic environment, which is
more conducive to mass collaboration from almokwalks of life. According to
Raymond, most Emacs tools (with a couple of exoeg)i are built by elitist
cathedral-builders like Stallman, while Linux igpeomiscuously open bazaar where
individual programmers like Torvalds are “lazy afoa.”®® In particular, Raymond
points out that Torvalds is not an exceptionallygioal programmer. The Linux
system is heavily derivative from the pre-existMix system and there involves
no “conceptual leap forward” from Minix to Linux amething radically novel.
Compared with the older-generation hackers likélrSten, Torvalds is by no means
an “innovative genius” of programming (and he does have to be one), but his
main contribution lies in his ability to select,plament and reuse and piece together
other people’s code. Though not a programming geriorvalds is recognised as a
kind of lesser “genius” who is exceptionally goot raore mundane tasks of
“engineering and implementation” of other contritrgt ideas. This is a recognition
of the importance of Torvalds’'s role as coordinatdr a large-scale radically

decentralised collaborative project:

[...] Linux didn’'t represent any awesome conceptlesdp forward. Linus

[Torvalds] is not (at least, not yet) an innovatyenius of design in the way
that, say, Richard Stallman or James Gosling [.e] Bather, Linus seems to
me to be a genius of engineering and implementatiothh a sixth sense for
avoiding bugs and development dead-ends and aktraek for finding the

minimume-effort path from point A to point B. indeethe whole design of
Linux breathes this quality and mirrors Linus’s esgtfally conservative and

simplifying design approacH.

Although Raymond’s comparisons between the Catheahéh the Bazaar, between

Linux and Emacs, and between Torvalds and Stallmannot universally accepted

8 Levy, Hackers pp.415-6
8 Raymond;The Cathedralsupra note 14
87 ith;
ibid.
71

among critic&®, Raymond largely succeeded in achieving what hetedsto achieve:
to promote an easy-to-grasp image of what “opemcgdus for the general public
(especially the non-programming business worldslgwing how the decentralised

Bazaar model works and how it might be appliedaitaborative projects like Linux.

The second important story in Raymond’s narratife‘apen source” is about
Netscape, a software company that was keen to applyLinux model. It is an
example of a high-profile corporation abandoning @athedral model for the new
Bazaar model. On 23 January 1998, the Netscapegearemt team took a brave
decision to release the source code of their fipggihoduct—the web browser
known as Navigator—to the public and became an riogmurce” company’ This
move was taken in reaction to a dire prospectwlzet faced by Netscape when their
browser was rapidly losing market share to Micrgsahich bundled its Internet
Explorer browser to its Windows operating systemfoBe decision was made, Frank
Hecker wrote a whitepaper, citing Raymondiise Cathedral and the Bazaar an
attempt to persuade Netscape executives to “opemebtheir web browsel On 4
February 1998, Raymond was invited by Netscapeafastrategy conference at
Silicon Valley. Six days after the conference (@ Fkbruary), Raymond revisdthe

Cathedral and the Bazaaagain by adding an “Epilogue” (in Revision 1.3hptt

8 Bezroukov points out that the level of decentedi in the Bazaar model may have been
exaggerated by Raymond. Especially, the core tddrimox have quite more power than the
peripheral contributions: “The black and white pret painted in CatB (monolithic, authoritarian
Cathedral model vs. democratic, distributed Banaadel) is too simplistic. These metaphors for high
centralization (Cathedral) and no centralizatioag&ar) do not account for the size of a given ptpje
its complexity, timeframe and time pressures; @seas to resources and tools; and, whether we are
talking about core functionally (like Linux kernaly peripheral parts of the system. For large mtsje
like operating systems it is especially importduatttthe core of the system is developed in a highly
centralized fashion with a small core team. Perighgarts of the system can benefit from a more
relaxed, more decentralized approach”. See Nil&dairoukov, “A Second Look at the Cathedral and
the Bazaar”, (1999) Eirst Monday12, at
<http://ffirstmonday.org/issues/issue4_12/bezroukalek.htrri

Bezroukov, “Open Source Software Development apexial Type of Academic Research (Critique
of Vulgar Raymondism),” (1999) 4 (10) First Monday at
<http://www.firstmonday.org/issues/issue4_10/bekowindex.html#b4>;

89 «“Netscape Announces Plans to Make Next-Generaimmmunicator Source Code Available Free
on the Net” at <http://wp.netscape.com/newsreffssrelease558.htmi>

% Raymond’s paper was actually written seven mohtfere Netscape’s announcement to go “open
source” in January 1998. Before that point, Raymwmad not personally involved with Netscape’s
decision to be an “open source” company. See Jimedly and Tom Paquin with Susan Walton,
“Freeing the Source—The Story of MozillaDpen Sources: Voices from the Open Source Rewvolutio
eds. by Chris DiBona, Sam Ockman & Mark Stone (Setpol, O'Reilly & Associates, 1999) pp.197-
8

72

fanfared Netscape’s shift as “a large-scale, realdutest of the bazaar model in the

commercial world™:

The open-source culture now faces a danger; ifddptss execution doesn’t
work, the open-source concept may be so discrethtgdhe commercial world
won't touch it again for anther decade. On the iothend, this is also a
spectacular opportunity. Initial reaction to the waoon Wall Street and
elsewhere has been cautiously positive. We're bgiagn a chance to prove
ourselves, too. If Netscape regains substantiaketahare through this move,
it just may set off a long-overdue revolution ie $oftware industry*

In late February, Raymond, along with Bruce Pei@ms then-leader of the Debian
project), co-founded the Open Source Initiative (OSI) gdduced the Open
Source Definition (OSD). The purpose of the OSbisnonitor and facilitate the use
of the OSD by software projects. The OSD was nattevr from scratch. Earlier in
1997, the Debian Community produced thebian Free Software Guidelinend
Perens rehashed this guideline into the OSD bylg@asting out the Debian-specific
references in it° The OSD itself is not a license but a list of coomelements that
could be adopted by any collaborative “open soume@ject and its corresponding
licence. It specifies ten common criteria against which &veare project can be
found to be “open source” or not. According to #hésn criteria, an open “source
project” must 1) allow free distribution of softvear2) make source code publicly
available, 3) allow modifications and derived wqrkhg ensure integrity of the
author’s source code, 5) allow no discriminatioaiagt persons or groups, 6) allow
no discrimination against fields of endeavour, @juire no signature to accept the
licence, 8) be not specific to a certain produtialbws no “contamination” of other
software distributed on the same medium and 1Gg&ienology-neutral in licensing
software?* Compared with Stallman’s Free Software DefinitiisD)°, the OSD

obviously contains a more detailed and specifit disout what an “open source”

1 Raymond;The Cathedralsupra note 14

%2 The Debian project was managed by a global teanohinteers aiming to produce an operating
system distribution that was “composed entirelyfree software.” See Debiary Brief History of
Debianat <http://www.debian.org/doc/manuals/project-histohsatro.en.htmb

% The Debian guideline is available atttp://www.debian.org/social_contract#guidelires

% The last criterion was later amended in 2004 spoese to the increasing popular use of click-wrap
licences. See the OSD dtttp://opensource.org/docs/definition.php

% Stallman, “The Free Software Definition”, at <httwww.gnu.org/philosophy/free-sw.html>

73

project and its corresponding licence scheme shoeldHowever, the basic licensing
principles of the OSD do not drastically deviatenfr the spirit of the FSD.

Especially, the first three criterions of the OSihich list some defining features of
open source software, are not drastically dissmiifflan the requirements specified

in FSD.

-OSD Criterion (1) Free Redistribution

The license shall not restrict any party from sgllor giving away the software
as a component of an aggregate software distribetmtaining programs from
several different sources. The license shall ngire a royalty or other fee for
such sale.

-OSD Criterion (2) Source Code

The program must include source code, and musialistribution in source
code as well as compiled form. Where some form mfoauct is not distributed
with source code, there must be a well-publicizeglans of obtaining the
source code for no more than a reasonable repioducbst preferably,
downloading via the Internet without charge. Thewrse code must be the
preferred form in which a programmer would modlg pprogram. Deliberately
obfuscated source code is not allowed. Intermediatas such as the output of
a preprocessor or translator are not allowed.

-OSD Criterion (3) Derived Works

The license must allow modifications and derivedkspand must allow them
to be distributed under the same terms as theséefthe original softwar®.

Perens hails the OSD as the “bill of rights for toenputer users” because it defines

“certain rights that a software license must grusters] to be certified as Open

Source.?” He distils these rights under the OSD into thnéecjples:

® The right to make copies of the program, and diste those copies.

® The right to have access to the software’s soumm#e,ca necessary
preliminary before you can change it

® The right to make improvements to the program.

The above open source principles are almost id@ntith the FSD (except that the
wording is slightly different). Stallman also obges that the OSD is only “derived

% The rest of seven criterions are: “4. IntegrityTéfe Author's Source Code; 5. No Discrimination
Against Persons or Groups; 6. No Discrimination iAga Fields of Endeavor; 7. Distribution of
License; 8. License Must Not Be Specific to a Paigf. License Must Not Restrict Other Software;
10. License Must Be Technology-Neutral."OSI, Open ourse Definition, at
<http://www.opensource.org/docs/osd>
" Perens, “The Open Source Definition”, Chris DiBpSam Ockman & Mark Stone (Sebastopol,
O'Reilly & Associates, 1999) p.171
%ibid., p.172

74

indirectly from” the rules set by the FSD, becad<®D is also focused on the
protection of software users’ “rights” (though lhmetFSD they are called “freedoms”)

in these respects.

It is interesting to note there are two “labelsdttican be applied to the same type of
non-proprietary software after 1998—"free softwaesid “open source”—both of
which allow free access, modification and redisttidn. The Linux project would
continue to be “free software” since its inceptibni it could also be called “open
source” software after 1998. More importantly, binused the same licence—the
GNU GPL—Dbefore and after 1998. Kelty points outimy that the advocates of
“free software” and proponents of “open source’nsde enter into a debate over
something upon which they practically agree: “theation of two names allowed
people to identifyone thing for these two names referred to identical prastic

licenses, tools, and organizations”:

Free Software and Open Source shared everythindetral’ but differed
vocally and at great length with respect to idegldgtallman was denounced as
a kook, a communist, an idealist, and a dogmatldihg back the successful
adoption of Open Source by business; Raymond aats ug “open source”
were charged with selling out the ideals of freedmmd autonomy, with the
dilution of the principles and the promise of Figeftware, as well as with
being stooges of capitalist domination. Meanwhileth groups proceeded to
create objects—principally software—using toolst tiey agreed on, concepts
of openness that they agreed on, licenses that tgeed on, and
organizational schemes that they agreed on. Yetrngas there fiercer debate

about the definition of Free Softwate.

So if the two labels refer to the same kind ofwafe (and the same type of software
licences as well), what is the real consequenceRaymond’'s “open source”
movement? Does it only introduce a distinction with a difference? Does the
invention of “open source” really alter the couvgieere “free software” would have
gone after 19987

% Kelty, Two Bits p.117
75

My answer is that “open source” movement is moenta matter of changing label,
but there have been at least two real impacts erifthe software” movement. The
twofold impacts operate mutually on both movemetdpen source” expands the
influence of “free software” beyond the computechker community, while “free
software” puts an “ethical” limit on how far thiggansion can go. Firstly, the “open
source” campaign significantly expands the reacthef“free software” and puts it
firmly into the consciousness of the general puldispecially, it raises substantial
awareness about the commercial potential of “fidavare” in the business world. It
convinces quite a significant part of the convemionon-hacking world that the
decentralised Bazaar model of mass collaboratiortiié point of promiscuity” can
be employed to produce high-quality software. Thet{1998 “free software”, after
being rebranded as “open source”, was no longeroaastic hacker subculture
subsisting on the lingering Hacker Ethic, but icd®e increasingly in vogue among
corporate executives and salespeople. Of coursendwly acquired popularity is
achieved by toning down Stallman’s strong politidahguage about the full

commitment to “software freedom”.

The second impact of “open source” is that it drades Stallman to further defend
the ultimate value of “free software” more rigorbug order to put an “ethical”
limit on the otherwise unbridled commercialism gfea source. Different from
merely having a few knee-jerk reactions to someifipencidents in the 1980s (such
as in Xerox and Symbolics incidents in the ear3d$”), Stallman after 1998
needed to make conscious effort to clarify the iteth underpinning for the latter-
day Hacker Ethic. The most obvious example of theBerts is embodied in
Stallman’s article—*Why Open Source Misses the PoinFree Software”—which
Is written as a direct response to the challengegdy “open source”. In this article,
he stresses that there is a pronounced differeetvecbn “free software” and “open
source” in terms of the message about “freedont’wze intended to be sent or kept

guiet about:

Nearly all open source software is free softwatee fwo terms describe almost

the same category of software, but they standiews based on fundamentally

190 5ee Section 2.3.2 of this chapter.
76

different valuesOpen source is a development methodology; freevaddtis a
social movement~or the free software movement, free softwaranigthical
imperative because only free software respects the useesildm. By contrast,
the philosophy of open source considers issueseims of how to make
software “better"—in a practical sense only. It sdélyat nonfree software is an
inferior solution to the practical problem at harféor the free software
movement, however, nonfree software is a sociddlpro, and the solution is to

stop using it and move to free softwale(added emphasis)

In the same article, Stallman further clarifiesttsaftware freedom needs to be
guarded as an intrinsic value for its own sake. Measurement resides solely in the
four kinds of software freedom given to softwarerss but not the performance of
software. “Open source” is not necessarily a sope€development methodology”
and it may well produce lower-quality software thhe “closed source” software
model. Open source advocates miss this point bynglyobelieving that “open
source” software is guaranteed to be more “powekrduid “reliable” than any
proprietary one'%? The reality is that it is possible for proprietaspftware to
outperform non-proprietary software. Without a sgdelief in the intrinsic value of
“software freedom”, users can easily be lured aWwgysome practical advantages

offered by proprietary software.

Sooner or later these users will be invited to chwliack to proprietary software
for some practical advantage. Countless companesk g0 offer such

temptation, some even offering copies gratis. Wiyl users decline? Only if
they have learned to value the freedom free softwgves them, to value
freedom in and of itself rather than the technarad practical convenience of
specific free software. To spread this idea, weehtavtalk about freedom. A

certain amount of the “keep quiet” approach to hess can be useful for the

191 Stallman, “Why Open Source Misses the Point of eFreSoftware” at
<http://www.gnu.org/philosophy/open-source-misgespoint. html>

192 stallman argues: “The idea of open source is aéllatving users to change and redistribute the
software will make it more powerful and reliableutBthis is not guaranteed. Developers of
proprietary software are not necessarily incompget8ometimes they produce a program that is
powerful and reliable, even though it does noteesthe users' freedoniljid.

77

community, but it is dangerous if it becomes so emn that the love of
freedom comes to seem like an eccentritity.

However, Stallman’s insistence that “open sourca development methodology;
free software is a social movement” is not univiysaccepted. His argument tends
to attract two kinds of objection. The first kindgaes that “open source” is more
qualified as a consciously organised “social movgthéhan “free software” is.
Stallman’s free software campaign before 1998 ctnddseen as no more than an
outlet of a lonely hacker’s frustration in reactimna series of unhappy incidents.
In contrast, “open source” was consciously stageda movement in 1998 and it
immediately attracted a lot of supporters who hiagady been working on leading
“open source” projects such as Linux, Sendmail|, Byithon, Apache. The official
history of the Open Source Initiative documentg #fter the meeting organised by
Tim O'Reilly on 8 April 1998, all the above parfeting “open source”
programmers “voted to promote the use of the tewpen source’, and agreed to
adopt with it the new rhetoric of pragmatism andketfriendliness that Raymond

had been developing®®

The second objection argues that it is futile tw fivhether “open source” or “free
software” is a “movement” (or two “movements”). Whaally matters is the fact
that “open source” and “free software” programmsihgare the same “platform”,
which invites and encourages debate and discuss@nissues pertinent to software
development. This is the view held by Kelty, whdi<this “platform” a “recursive
public”. In this public, unmediated discourses dreely exchanged among
programmers through their human language as weheis technological language
in source code. This public is also said to be ecursive” one, because Kelty
believes that it dissolves the traditional distioict of software being aechnical
system and the organisation of software programineirsg asocial system. In this
sense, FOSS *“recurses” through teehnicaland social dimensions into one single
“self-grounding” public sphere, which operates ipeledently from other established

193 ihid.

1% The term “free software” was used in B&U Initial Announcemerds early as in 1983 when the
FSD did not exist. It would take some more year®rgeStallman had a clearer view about free
software as defined in the FSD. See for more digt&kction 2.3.2 of this chapter.

105 5ee OSI, “History of the OSI”, at <http://www.oemirce.org/history>

78

social structures such as the price mechanismeafidrket and the for-profit agenda
under a corporate structul®.(In contrast, most commercial proprietary software
developers tend not to have such free-followings€¢durses” in a self-grounding
public, because thetechnicaloutput is mostly likely to be dictated or incensied

by either market or firms.) It is also important riote that the recursive public is
neither a formal organisation nor an aimless crowd, it sits somewhere between.
Kelty believes that “recursive public” is a betterm than “movement” to describe
the unique phenomenon of “free software” and “opeuarce” as sharingne and the

same‘public” platform:

Free Software and Open Source are neither corpogatior organizations nor
consortia (for there are no organizations to cdpstirey are neither national,
subnational, nor international; they are not “otties” because no
membership is required or assumed—indeed to heaeaoe assert ‘I belong’
to Free Software or Open Source would sound absum@hyone who does.
Neither are they shady bands of hackers, crackerthieves meeting in the
dead of night, which is to say that they are not‘iaformal” organization,
because there is no formal equivalent to mimicrotud Nor are they quite a
crowd, for a crowd can attract participants whoehao idea what the goal of
the crowd is; also, crowds are temporary, while emegnts extend over time. It
may be thamovemenis the best term of the lot, but unlike social moeats,
whose organization and momentum are fueled by dhemases or broken by
ideological dispute, Free Software and Open Soshege practices first, and
ideologies second. It is this fact that is thersgiest confirmation that they are a
recursive public, a form of public that is as caneel with the material
practical means of becoming public as it is witly given public debat®®’

In other words, it does not matter whether “freéivgare” and “open source” is one
or two “social movements” or none at all, but wisimost significant is that they
share the same debating platform, which is the saswirsive public”. | largely

agree with Kelty that the debates between “opencguand “free software” are

essential to create one shared “recursive pubktwéen the two camps. However, |

196 Kelty, Two Bits pp.10-11
107 Kelty, Two Bits p.113

79

am also afraid that Kelty does not pay enough atterto the fact that it was the
“Hacker Ethic” (and its latter-day versions, i.ESD and OSD) that tied this public
together in the first place. One should not take gmanted the happening of the
recursive public, and this public can never dispewgh a minimum consensus as
agreed by “open source” and “free software” pangsan basic tenets in the Hacker
Ethic. Unfortunately, Kelty is rather dismissivetbe Hacker Ethic’s role in guiding
programmers’ behaviour and its relevance in theirsdee public: “While hackers
themselves might understand the hacker ethic asamanging set of moral norms,
their practices belie this belief and demonstraies lethics and norms can emerge
suddenly and sharply, undergo repeated transfoongti and bifurcate into
ideologically distinct camps (Free Software vs. @@®urce), even as the practices
remain stable relative to ther’® As has been shown above, from the Hacker Ethic
to “free software” to “open source”, theore stewardship obligations to protect
software freedom as indicated in Tenets (1) ando{2)evy’'s Hacker Ethic have
largely reincarnated in Stallman’s FSD and RaymerdSD. The Hacker Ethic, as
well as its spirit in various FOSS licences, pregad minimum consensus between
“‘open source” and “free software” programmers. liteg programmers from both
camps together to collaborate towards common pojét other words, the Hacker
Ethic is the common ground that underpins the bolative practice of open source
and free software. Without this minimum consengdslty’s “recursive public”
would not exist in the first place let alone suevithe ever-changing socio-legal
environment of software production. In short, alth “open source” adds a
commercial twist to the non-proprietary softwareverment in the third historical
stage, it does not fundamentally change the “glue”, the Hacker Ethic, which

brings together the collaborative efforts that hwibmmon software projects.
2.5 Conclusion

This chapter has surveyed a brief history of thekda Ethic since its inception in
the relatively close-knit computer hacker communiy the 1950s and 1960s,
followed by the decline of the Hacker Ethic in tla¢e 1970s and then the non-

proprietary software movement in an attempt towevhe lost Hacker Ethic from the

1% ipid., p.180
80

late 1980s onwards. In particular, Stallman inveérgecopyleft licensing scheme that
for the first time verbalised programmers’ minim@gmmitment that is intended to
support large-scale radically decentralised collative software projects. In 1998,
the “open source” campaign led by Raymond openbkdéraway from Stallman’s
“free software” movement to form a business-frignglloup that has the ambition to
succeed on the mainstream commercial software mdkethe underlying Hacker
Ethic of the movement has remained largely unchénbjethe next chapter, | will
examine how the FOSS programmers find their legatession of software freedom

through “intellectual property” licensing schemasome detail.

81

Chapter 3 Intellectual Property and Software Fredom

3.1 Introduction

After the 1980s it gradually transpired that theeriof intellectual property (IP),
especially copyright and patent, in software becameicreasingly influential factor
affecting FOSS communities. The impact of IP wasfthd. Firstly, it weakened
hacker custom as a great number of computer haekenes lured away to write the
more lucrative proprietary software. However, seltpna small number of stalwart
software freedom fighters puzzled out that copyrigiences could be drafted in a
way to continue the threatened custom. The firgtaich has mainly been covered in
the previous chapter. It is the job of this chapteexplore how computer hackers
attempt to reconfigure the IP system through theemsing schemes (e.g. GPL) in
order to reinstate the principles of software farador their community.

The chapter is divided into five parts. The firsirpp(Section 3.2) explores Richard
Stallman’s argument against using the umbrella t&ntellectual property” that
conventionally lumps together a set of disparatdids of law, mainly including
copyright and patent laws. As FOSS licences aentie to the subtle differences
between copyright and patent as well as their e impact on FOSS
collaboration, it is necessary for this chapteexamine these two areas separately.
The second part (Section 3.3) is a general introoludo software copyright law as
the background against which FOSS licensing schemeesrafted. It discusses some
major developments in Anglo-American copyright ldhat have positively or
negatively affected software freedom. The third f&ection 3.4) explores the rise of
“software patents” as a response to the IP expais$sd failure to stretch copyright
further to cover the non-expressive elements furctionality of software since the
1990s. It canvasses the debate about the patetytalhicomputer programs in both
EPC countries (especially UK) and the US. | wiloehhow FOSS programmers
perceive patents as a threat to software freeddma.fdurth part (Section 3.5) uses
the GPL as an example to show how principles dfasot freedom are articulated
mainly through the language of copyright law. Isalexamines how the GPL
partially contains the perceived threat to the ka@khic from patents. The fifth part
82

(Section 3.6) concludes that FOSS programmers demdorse “IP” as a unified
body of law but they selectively leverage two diffiet branches of “IP” (i.e.
copyright and patent) to protect software freedemai non-exclusive commons

regime.
3.2 “Intellectual Property” and FOSS

An exploration of “software freedom”, which is acessary conditioof commons-
based decentralised collaborative programming,iagedly has to “start[] with the
other side of the coin, property rightsThis is largely because the idea of “software
freedom” in FOSS licensing was first triggered las ¢computer hackers’ response to
the rise of intellectual property in software prags? It reflects what Houweling
calls the “property turn” in the FOSS movement thas run concurrently with a
broader movement known as “cultural environmem@li§ The employment of
FOSS licences is not drastically dissimilar to emwinentalists’ efforts to enlist the
property regime to impose land obligations suchth&s much used “conservation
easement®. The “property turn” embodied in FOSS licensingidades that a FOSS
commonsis different from thepublic domainthat is a property-free zone. FOSS
programmers do not relinquish their IP rights attthgr, but they rearrange the initial
entittements as conferred by IP law. Along thig)iBoyle differentiates two kinds of
freedom as institutionalised respectively in theblpudomain and the licensing
commons (the commons produced as a result of F@88sing): “In the public
domain, freedom is based on the absence of propeghis. In the licensing
commons, freedom is based on the preempmkerciseof the property rights by the

rights holder in order to grant use privileges $ens of the commons, and sometimes

! Lawrence RoserQpen Source Licensing—Software Freedom and Intaié€roperty Law (Upper
Saddle River, NJ: Prentice Hall PTR, 2005) p.13

2 See Chapter 2 for detail.

% See Molly Shaffer Van Houweling, “Cultural Envinmentalism and the Constructed Commons?”,
(2007) 70Law and Contemporary Problend8 at 29-33

“ For “conservation easement” in the context of @miental protection, see, for example, Nancy A.
McLaughlin, “Rethinking the Perpetual Nature of Gervation Easements”, (2005) 2®arvard
Environmental Law Revied21

83

to bind those future users to add their own impnosets back to the common
pool.” (original emphasis)

Although a licensed FOSS commons is built uponitisétution of IP, it would be
inappropriate to leap to the conclusion that FOS®gnammers embrace
wholeheartedly the idea of “property” in generatldhat of “IP” in particular. The
reality is a bit more complex than that in two msg. First, the use of licensing
schemes mainly reflects the pragmatic side of B8% movement. Licensing is not
intended to, and cannot be, a complete overhatheokxisting IP system, but they
are workarounds or makeshift solutions to particdiefects of the legal system as
identified by FOSS programmet#lot unlike computer hackers’ “patches” or “bug
fixes” that are designed to fix some particularigpems in a software program, FOSS
licences are the equivalent of “computing hacks’tie legal world. They are
privately made legal “patches” submitted to pludeson publicly made IP law based
on FOSS programmers’ diagnoses. For example, Kelieves that GPL is exactly
Stallman’s “hack” into the US IP reginfeHowever, this legal pragmatism of
“patching” and “hacking” should not obscure the alitic side of the FOSS
movement, which attempts to reverse the programneingronment back to a
situation similar to the pre-1980s IP-free hackemmunity.® Although it is
uncertain whether this ideal of creating an IP-fzeee can be realised in the near
future, it at least reminds us that the currenaragements under various FOSS
licensing schemes are largely a compromise betywaeate property and the hacker

ethic.

Secondly, FOSS programmers are aware that the llgotcantellectual property
law” is not a unified body of law, but conventiolydhas at least three major sub-sets,

®See James Boyle, “Cultural Environmentalism and obefy (2007) 70Law and Contemporary
Problems5 at 10

® There is no shortage of suggestion that more awmsbould be done through legislative route by
amending IP laws rather than private ordering tholigensing schemes. See for example, Severine
Dusollier, “Sharing Access to Intellectual Propeftgrough Private Ordering”, (2007) &hicago-
Kent Law Review391 at 1435

" Kelty write: “The GNU General Public License (GPWyitten initially by Richard Stallman, is often
referred to a beautiful, clever, powerful ‘hack’ witellectual-property law—when it isn't being
denounced as a viral, infectious object threatemiregvery fabric of economy and society.” Kelty,
Two Bits, p.179

8 Bear in mind the top commandment on the agendheofree software movement is the “[a]bolition
of all forms of private property in ideas.” See NEg The dotCommunist Manifestdanuary 2003,
<http://emoglen.law.columbia.edu/publications/dcmmlxt

84

comprising copyright, patent and tradem@skallman is famous for his persistent
refusal to use the umbrella term “intellectual my’, and he argues that “IP” is
merely a “seductive mirage” that does not exiseality'° It would be misleading to
lump these three disparate categories togethétlasyi are a unified whole, because
each of them respectively plays quite a differetd in FOSS licensing: Very briefly,
FOSS licences rely primarily ocopyright which protects software programs as if
they are literary works. T@atent software is hugely controversial in the Anglo-
American world and hard-core free software programsnare normally against the
use of patents. In order to protect their goodarild reputation, it is not unusual
nowadays for FOSS programmers to seakemarkprotection for indicators of the
origin of their projects and associated productsaswices. In short, it would be an
inappropriate question to ask whether FOSS progrensiargor or against‘IP”, but

it is necessary to have a more nuanced approaelkdmining separately the roles of
copyright, patent and trademark in FOSS licensing.

Furthermore, it is also important to note that I8tah’s rejection is closely linked
with his criticism of mainstream economic (or inalBhan’s parlance, simplistic

“economistic”) thinking behind the term “IP”:

The term “intellectual property” also leads to slisfgic thinking. It leads
people to focus on the meager commonality in fdnat these disparate laws
have—that they create artificial privileges forte@r parties—and to disregard

the details which form their substance: the specéstrictions each law places

° Apart from these three sub-areas of IP, softwaiaso commonly protected as trade secrets through
non-disclosure agreements. However, FOSS by definitas its source code freely available to the
public, so trade secrecy is not an issue here laul is not discussed in this chapter. For the @ise o
confidentiality rules to protect software programghe UK context, see David Bainbridge, Chapter
11, Legal Protection of Computer Softwalideywards Heath, West Sussex: Tottel Publishin@820
5th Ed.) pp.321-339; For a US perspective on #s8e, see for example, Gregory J. Maier, “Software
Protection—Integrating Patent, Copyright and Tr&a&eret Law”, (1987) 69ournal of Patent and
Trademark Office Society51 at 162-5

9 Stallman, “Did You Say ‘Intellectual Property’? 'slt a Seductive Mirage” at
<http://www.gnu.org/philosophy/not-ipr.html Stallman’s view can be contrasted with the lansye
convention of taking for granted the term “IP” inetcontext of software licensing. For example,
Rosen argues that software is “a product of humgadléct, and therefore it is a kind witellectual
property. Intellectual property is a valuabpeopertyinterest, and the law allows its owner to possess
and control it. The programmer who writes softwamr-the company that hires that person to write
software—is deemed to be the first owner of inttllal property embodies in that software. That
owner may exercise dominion over that intellectuaperty”. (original emphasis) See Ros€pen
Source Licensingsupra note 1, p.14

85

on the public, and the consequences that resuis. Simplistic focus on the
form encourages an “economistic” approach to aséhissues:

Economistic thinking, he goes on, serves as “acketior unexamined assumptions”
where only the quantity of software production mef but “freedom and way of life
do not.” With this in mind, | will now examine copght and patent in turn to see
how they are respectively viewed by FOSS prograranfs trademarks have more
to do with the FOSS programmers’ manifestation hairt collective authorship in

collaborative projects, they are not dealt withtims chapter but will be analysed
later in Chapter 5 which is dedicated to the issUeOSS authorship.

3.3 Copyright and FOSS

From the late 1970s onwards, developments in sigtaind case laws in the Anglo-
American world gradually established copyrightlas iinain mode of legal protection
for computer programs. In the US, the 1978 finglore prepared by the National
Commission on New Technological Uses of Copyrightdtbrks (CONTU)
recommended that copyright should be extended ftva@. This recommendation
was enacted by the 1980 amendment of the US 19p§rigbt Act that expressly
included “computer program” as a subject matterthis amended Act, a computer
program is defined as “a set of statements oruoBtons to be used directly or
indirectly in a computer in order to bring abouteatain result” and is protected as a
kind of literary work*? The copyright scholar Melville Nimmer, in his cajig as
Vice Chairman of the CONTU, clarified that the dxig general copyright
principles should in a wholesale fashion be appt®doftware programs just like

any other copyright subject matter:

CONTU did not recommend, and did not intend, angngje in the continuing
applicability to programs of general copyright piples—e.g., as to the
copyrightability and infringement—in effect follong the enactment of the
general revision of the Copyright Act in 1976. Tdeneral copyright principles
applicable to programs have been, and remain, thdseh are applicable to

! Stallman, “Did You Say ‘Intellectual Property?sla Seductive Mirage'ibid.
217 U.s.C. 101

86

novels, plays, directories, dictionaries, textbgoksusical works, maps,
motions pictures, sound recordings, and other ocaiesof works:>

In the UK, the Copyright (Computer Software) AmermhinAct 1985 for the first
time specifically included software programs in theerary work” category under
the 1956 Copyright Act. The subsequent 1988 Copyizesign Patent Act (CDPA)
also provides that copyrights subsist in softwaregmms as “literary works”.
Section 3 (1b), defines “literary work” as “any Weprother than a dramatic or
musical work, which is written, spoken or sung, awtordingly includes [...] a
computer program [...]** Unlike the US copyright law, the CDPA does notdav
definition for “computer program”, which arguablyas the advantage of being

flexible to include new technologies such as HTMagrams:
3.3.1 The Originality Threshold

Copyright law requires that programs be original merit protection. Anglo-
American copyright law does not set a very higleshold for “originality”, but it is
not always an easy task to ascertain the degréerigfnality” that qualifies a piece

of code for copyright subsistence. In the US cagwisubsists in “original works of
authorship*® and a work is “original” in the sense that it isdependently created
by the author (as opposed to copied from other gjoknd that it possesses at least
some minimal degree of creativit}/ (added emphasis)n the UK the threshold is
arguably even lower, with no explicit requiremehtiavork to be minimally creative.
Copyright may subsist in a work as long as it is capied from other human-made
sources and is a result of the author’s own gkitigment or labout® In contrast, the

European continental legal tradition tends to haweore demanding requirement of

3 Melville Nimmer, “Declaration” inAppendixto “Silicon Epics and Binary Bards: Determining the
Proper Scope of Copyright Protection for ComputergPams” by Anthony L. Clapes, Patrick Lynch
and Mark R. Steinberg (1983% UCLA Law Reviewit493

14 UK CDPA, 1998; According to Section 3 (1c), “prep@ry design material for a computer
program” is also protected as “literary work”.

!> See Stanley LaiThe Copyright Protection of Computer Software ia thnited Kingdon{Oxford
and Portland, Oregon: Hart Publishing, 2000) p.14

17 U.s.C. 102

7 Feist Publication Inc. v. Rural Telephone Servite. (1991) 499 US 340, 345

'8 University of London Press Ltd. v University TuabiPress Ltd[1916] 2 Ch 601

87

originality for works including computer prograrfisin an attempt to harmonise
national differences among countries in Europejchrtl(3) of 1991 EU Software

Directive gives a definition of “originality” as flows:

A computer program shall be protected if it is ova in the sense that it is the
author’s own intellectual creatiof? (added emphasis)

The Directive further makes it clear that the atdth@intellectual creation” is the
sole criterion of copyright subsistence and “[nfbey criteria shall be applied to
determine its eligibility for protection.?> Unfortunately, the UK draftsman
responsible for preparing the implementing regafeiassumes that the existing UK
copyright originality standard has already beenctirally compatible with the
Directive’s definition of originality as the “authie own intellectual creation” and
there was no need to change the wording in theesponding section of UK
copyright law. Lai suspects that this assumptiory mvall not be trué? In case of
conflict, Bainbridge argues, the Directive’s regaient of originality for computer
programs should prevail over the English one:sIbeyond doubt that a judge in the
United Kingdom would apply [Directive’s] test raththan the traditional view of

judges of what originality meant, even if a comntioread could be determinetf”

There can be three types of “original” copyrigh&alsontributions arising from a
FOSS project. First, if the code is completely tentfrom scratch by contributors for
the project, it is highly likely to pass any of tlieree aforementioned tests of
originality for having a “minimal degree of creaty’ (US), or using programmers’
“skill, judgement and labour” (UK), or being autBbfown intellectual creation”

(EV). Secondly, copyright may also subsist in migdifons of preexisting code if

19| ai observes that, for example, German courts fditdonly require individuality as compared with
pre-existing programs, but also that the abilityowh in the engineering process considerably
surpassed average programming ability”. Stanley digra note 15, p.17
22 Council Directive 91/250, 1991 0.J. (L122)

ibid.
22 For example, “many modern computer programs deetisfely compilations of standard modules”.
So by the UK standard, they are original but byBlrective’s standard they may well not be so. See
Lai, supra note 15, FN 38, p.17
% Bainbridge has a slightly different view from Lsias shown above, and he believes programs that
pass the UK test would be unlikely to fail to p#ss Directive’s test: “[...] most computer programs,
unless trivial or made up of a selection of commidaown or public domain elements requiring no
skill or judgement in their selection or arrangeinevill be considered to be intellectual creatidns.
See David Bainbridgé,egal Protection of Computer Softwgideywards Heath, West Sussex: Tottel
Publishing, 2008, 5th Ed.), p.64

88

these modifications are “original’” enough to beogrused by copyright law. In the
US, a copyrightable modification can be a “derwvativork” which means the work
“based upon one or more preexisting works [...] or ather form in which a work
may be recast, transformed, or adap@®Similarly in the UK, the modified code
may give rise to a fresh copyright if it passesntirimum threshold of originality?
As software is also a functional artifact, thereaislomino effect, where one tiny
modification may lead to a series of follow-up ches in order to make the whole
program operate properly. Bainbridge observes eliah if a single modification is
too trivial to be original, the many modificatiotegether may cumulate to qualify
for a fresh copyright:

Where the modifications represent the author’s omiellectual creation, a
fresh copyright will be created in the new versidnhe program. It may be that
this applies to an accumulation of numerous madliins, each of which in
themselves might not reach the standard for oriiggndlowever, even making
a small modification to a computer may require éRercise of a great deal of
skill as the programmer has to check that the neadibn works correctly and
that the effect it has on the existing and retaipads of the program is as
intended. This can call for a significant amount testing and further
modification. Even a small modification can haveradictable consequences

and end up involving far more work than originayisaged?®

That a fresh copyright is recognised as subsistingnodifications or derivative
works is crucial to peer-produced FOSS projectss hbecause FOSS collaboration
is built upon incremental creativity by many cobaéitive programmers rather than a
single breakthrough invention by the initial creatdRosen points out that copyright
ownership iINFOSS can be seen aschain of title where “[a]n original work of
authorship is the first link in the chain” and thishain is elongated during the
collaborative open source development proc&s$tie strength of this chain of title
in many follow-up modifications can be a measure tlé robustness of the

collaborative relations in a collaborative FOSSjgrb In other words, the maturity

417 U.S.C. s5.101 & 103

% Seelbcos Computers Ltd. v. Barclays Mercantile Highildfinance[1994] FSR 275
%6 Bainbridge, supra note 23, pp. 65-66

2’ RosenOpen Source Licensingupra note 1, p.28

89

of a FOSS project can be roughly shown by the renfithe chain of title: “Mature
open source projects often consist of softwarequhfisrough many such stages of
aggregation and modification, their original wordsauthorship proudly displayina
long chainof title including the names of many individualsdanrganizations that
preceded then?® | will show later that GPL is important exactlydaeise it makes
sure the “chain of title” in a FOSS project is usken by imposing the copyleft

condition on distributing the GPL covered code.

Thirdly, there can be a “compilation” copyright treubsists in the aggregated work
comprising all submitted contributions to a FOSjgxt as a collective whole. The
UK copyright protects “compilation” as a kind ofitdrary work”,?°® which is
different from the term “database” as defined ia @DPA®. Bainbridge argues that
a software program can be a “compilation” but nétd@abase”, because the former
iIs an undivided collective whole while the lattemtorises separable independent
works: “Where a computer program is made up of viddial modules, those
modules cannot be described as independent. Thek tegether as a whole
application. Therefore, the whole may have a sépacapyright as compilation
independent of any copyright in the modules asnamg in their own right* In the
US context, the term “compilation” has a slightiffetent meaning than that in the
UK. The US “compilation” copyright covers “colleeg works” where “a number of
contributions, constituting separate and independeorks in themselves, are
assembled into a collective whol& (Note that the US “collective works” cover
“separate and independent” works, which are differdrom Bainbridge’s
understanding of software as “compilation” comprisinseparable interdependent

modules in the UK contexf) The copyright in software as a “collective work”,

“ibid., p.29

#5.3(1) (a) CDPA 1988

%0 Note that the CDPA has explicitly incorporated Eheopean standard of originality for “database”
copyright: a database is “original” if it constitst “the author’s own intellectual creation.” s.3 A,
CDPA 1988

31 Bainbridge, supra note 23, p.67

%217 U.S.C. 101

% |n fact, Bainbridge’s understanding of software “@asmpilation” works under the CDPA is
probably closer to the meaning of “joint work” imet US context. The US copyright law defines “joint
work” as “a work prepared by two tor more authorishvthe intention thatheir contributions be
merged into inseparable or interdependent parts afnitary whole’ (added emphasis) 17 U.S.C.
101; For the difference between “collective worlesid “joint works” for software, see Rosen, supra
note 1, pp. 32-33

90

according to Rosen, is “a reflection of the oridgtyaof the collection and its
organizational structure rather than of the indrldcomponents. Most software is a
copyrightable collection of modules. The arrangeimend organization of the
collection of individual modules are often the mosiginal aspects of a software
program.®® The recognition of originality in “compilation” dicollective works” has

a largely positive impact on FOSS projects, whossigh of the modular
“architecture® prizes the lead developers’ creative efforts igragating individual
contributions into a coherent collectivéhole These efforts of aggregation are not
necessarily mindless mechanical work but they wotelecting, testing, and
approving (and sometimes declining) code sent Inyritmutors®® and they are highly
likely to be beyond the threshold of originalityhi$ is especially true for the Linux
kernel project, where Torvalds and his fellow s@bssn maintainers have devoted
themselves to aggregating a huge amount of peelupeal contributions into a
coherent whole. In this light, Eric Raymond andh@aihe Raymond strongly advise
that it would be beneficial for FOSS project leadtr always register copyright in
their project as original “collective works” witliné copyright registration authority
in the USY’

In summary, although the threshold of originalayqualify for copyright subsistence
is low, it does exist for computer programs. Alls&ined FOSS projects would
contain a huge number of contributions with variaegree of originality. The

biggest problem that FOSS projects face is not abdwether contributed code is
“original” enough to attract copyright protectiddost contributions will easily pass
the originality threshold individually on their owmerit. On top of this, these
contributions together will also cumulatively gikise to copyright in “compilations”

or “collective works”. The really difficult problenthat needs to be tackled is that

% Rosen, supra note 1, p.27

% pumfrey J suggests that there could be originaiitihe software “architecture” itself, which was
likened to the plot of a play: “It seems to be geiig accepted that the ‘architecture’ of a compute
program is capable of protection if a substantsat pf the programmer’s skill, labour and judgement
went into it. In this context ‘architecture’ is ague and ambiguous term. It may be used to refer to
the overall structure of the system at a vey heytell of abstraction.Cantor Fitzgerald International

v Tradition (UK) Ltd.[2000] RPC 95 at 134

% Greg Kroah-Hartman, Jonathan Corbet, Amanda Ma®heinux Kernel Development: How Fast
it is Going, Who is Doing It, What They are Doiagd Who is Sponsoring It: An August 2009 Update
at <http://www.linuxfoundation.org/sites/main/filesiblications/whowriteslinux.pdf>

%" Eric Raymond, Catherine Olanich Raymondcensing HOWTO(9 November 2002) at
<http://catb.org/~esr/Licensing-HOWTO.html>

91

manyoriginal contributions will form a huge network @fvnership interests bhypany
copyright holders. It is not always an easy taskdordinate these many ownership
interests for the purpose of building one cohepnject and the copyright system
will not automatically splice them together. Inglsicenario, FOSS licences step in to
solve the problem of coordination by standardidimg legal commitments of many
copyright holding contributors. These licences maleer-produced contributions

legally compatible with each other in a decentealisnvironment.
3.3.2 Software as Expression and Function

It is understandable that to analogise a computegram to a literary work has the
advantage of fitting software as a new technoldgimam into an existing
copyrightable subject matter, but this is not atirely accurate analogy. Software is
not ordinary literary text written and read by humieeings, but, more importantly, it
contains instructions that operate computerisedtfons. In short, software has a
dual nature of being botéxpressivdike literal texts andunctionallike machines?
Recall that software is written in source code lygpammers and it can be compiled
into object code that can be executed by compu@nsthe one hand, the human-
readable source code is just like any other forrhurhanexpressiorsuch as novels,
speech scripts or sheet music scores. On the #imel, the machine-readable object
code turns software inttunctional artifacts that instruct computers to “manipulate
symbols leading to virtual or physical effects, Isuas making calculations,
displaying information on a screen, controlling f&th of a cutting device or an
industrial process* This dual nature of software as expression andtiom is well
reflected in Laddieet. al's definition of software “program” in the UK contie
(while the CDPA does not define what is softwaee¥oftware program is “a series

of instructions capable of being fed to a compatatem, by typing in at a keyboard

% Internationally, it has also become settled thuftweare—including both source code and object
code—are subject to copyright protection as “litgraorks”. According to the 1994 Agreement on
Trade Related-Aspect of Intellectual Property RigltRIPS), “[clomputer programs, whether in
source or object code, shall be protected as fitevarks under the Berne Convention (1971)".
Article 10 (1), TRIPS Agreement 1994

39 Martin Kretschmer “Software as Text and Machiné&eTLegal Capture of Digital Innovation”,
2003 (1) The Journal of Information, Law and Technology(JILT) at
<http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2@0 1/kretschmer/>

“0 David Bainbridgelegal Protection of Computer Softwafidaywards Heath, West Sussex: Tottel
Publishing, 2008) p.53

92

or in any other way, and, when so entered, of oflimtg its operation in a desired

manner.*!

As a general rule, copyright protects expressibasnot functions, of software: “it is
a programmer’gxpressiorof some functionality that may be protected byycmt,
and not the functionality itself® (original emphasis) Unfortunately the water has
already been muddied in reality, partially becaiige not always easy to separate
functionality neatly from expression in computeognams’® There is no shortage of
attempts by proprietary software developers to deoacopyright protection to cover
functionality of software. Since the mid-1980s, rthdnas been a series of cases
concerning whether or not copyright protection dooé stretched to give protection
to the “non-literal” or “non-textual” (i.e. functi@l) elements in software on both
side of the Atlantic. In the US, the Court of Appéa Third Circuit, in the 1986
landmark casé@Nhelan Associates v. Jaslow Dental Laboratanyed that “even
absent copying the literal elements of the progrdh® defendant infringed the
copyright in the non-textual “structure” of a redekeeping program by the
plaintiff. ** This ruling effectively stretched copyright prdiea to the non-
expressive part of the software program. Tileelandecision was much criticised
for giving the overbroad protection to softw&reut it is welcomed, mainly by IP
expansionist commentators, as a way of compensé&imthe lack of clear patent
protection of the functionality of software prograumn the mid-1980s. For example,
Maier argues that thé&/helancourt reached an equitable result during a timerwh
the US legal system was extremely uncertain abobeétler software-related

inventions could get patent protection:

In effect, copyright protection has been stretcime@whelanto fill the gap left

when the courts denied software inventions pateoteption. Stretching

“I Hugh Laddie, Peter Prescott, Mary Vitoria, Adri@peck, and Lindsay Lan&he Modern Law of
Copyright and Designfi_ondon, Edinburgh & Dublin: Butterworth, 2000d3gdition) Vol. 2, p.1610

2 Software Freedom Law Center, “Originality Requieetts under U.S. and E.U. Copyright Law”, 27
September 2007, at <http://www.softwarefreedomresgurces/2007/originality-requirements.html>
“3Dan Burk, “Copyrightable Function and Patentaljee®h” (2001) 44 (2fommunications of the
ACM69

44797 F.2d 1222 (3d Cir. 1986) at 1234

% For example, Lemley criticised the/helan decision for sacrificing “accuracy in separating
protectable from unprotectable material in ordeathieve a workable rule that is easy to apply.”
Mark Lemley, “Convergence in the Law of Softwarep@aght”, (1995) 10High Technology Law
Journall, at 12

93

copyright protection is understandable, from anitafjle point of view, to
protect software authors/inventors who were disaged from seeking patent
protection due to the changing status of the lagamding the patentability of
software inventions. The equities are particulamyortant in cases involving
misconduct. Prospectively, however, as the intallcproperty community
accepts the notion that software is patentableetineay ultimately be little

need to so stretch the bounds of copyright praiaéfi

The expansionist rationale Whelanmade its way into a few subsequent cases
including the highly controversidlotus Development Corporation v. Paperback
Software International where Judge Keeton decided that the menu command
hierarchy in the Lotus 1-2-3 spreadsheet program pratected by copyright.It is
important to know that although Lotus Developmewptrg@ration won this case, it
failed, two years later, to secure copyright priotecfor the same non-literal menu
system in a secondotus case against another compafiyThe firstLotus ruling is
generally regarded as the high-water mark of cgpyrprotection of the “look and
feel” or the user interfaces in softwérd=ree software programmers reacted strongly
against this expansionist tendency. Shortly afteus filed the first lawsuit against
Paperback, Richard Stallman and his followers deg@ha mass picket outside the
Lotus headquarters to publicise the danger of giwoftware companies overbroad

protection of their software products.

The Whelanand the first.otusdecisions follow the so-calléthroad constructionist”
approach of software copyright, because they havadened the reach of copyright
to cover the non-expressive part of software. THisoad constructionism” is
contended by the “narrow constructionism” that éeds copyright should be limited

to textual copying of software:

“% Gregory Maier, supra note 9, at 161

47740 F. Supp. 37 (D Mass, 1990).

“8 This second.otuscase went further to the US Supreme Court. AdciuSttevens did not vote, the
rest of the eight justices reached a 4:4 decideavjing the First Circuit decision unchangedtus v.
Borland, 49 F.3d 807 (LCir. 1992); 516 US 233 (1996)

“9 For the significance dfotus v. Paperbagclsee Lai, supra note 15, pp.68-70

*0 See the infra text accompanying the notes 57-62

94

On one side, ‘broad constructionists’ have empleaisthe need to compare the
copyrighted and accused works as a whole, in aaejive protection to the
‘total concept and feel’ of the works. On the otheide, ‘narrow
constructionists’ have urged the methodical dissecof copyrighted works
into their component parts in order to determineatvéxactly qualifies for
copyright protection’

In 1992, things started to change when the SecamdiCmade a landmark “narrow
constructionist” ruling inComputer Associates v. Altavhich greatly reined in the
“broad constructionist” tendency in US software yroght. In this case, Judge
Walker devised a much more nuanced three-stefbye$) dissecting software into
different levels of abstraction, 2) filtering oubmprotectable elements and 3)
comparing the remaining core expressive parts ® ighere is a substantial
similarity between the program alleged to have bedrnnged and the allegedly
infringing program®? This abstraction-filtration-comparisoAltai test has been
followed in later US cases and it has also spreadan-US jurisdictions? For
example, in the UK context, the use Altai test was endorsed by Ferris J. in
Richardson v. Flander$but was later rejected by Jacob J., whébitos v. Barclays
favoured using the indigenous English test of inefborrowing of skill, labour and
judgement which went into the copyright work’Lai worries that the English test
lacks prescriptive precision to guide future case®Ilving non-literal copying of
software. Jacob’s rejection of tidtai test, which could have usefully filtered out
non-protectable elements, might lead t&/helantype overprotection of software in
the UK: “Due to the absence of a prescriptive tegérion [similar to théAltai test],
UK software copyright law will be placed in a moneidious position than the US,
if Ibcos is followed. Arguably, the scope of software cogit protection is

*1 Lemley, “Convergence in the Law of Software Cogkitf, supra note 45 at 2

2982 F.2d 693 (2d Cir.1992) at 707-712

%3 In the US, the test is further refined in a TeBitcuit's decision which divides a program into six
levels of declining abstraction comprising 1) thengral purpose 2) structure or architecture 3)
modules 4) algorithms and data structures, 5) dluece code, 6) the object code. The last two levels
are the most detailed and least abstract expressibra programGates Rubber Co. v. Bando
Chemical Industries9 £.3d 823 (10th Cir. 1995) at 835; For the sprefdltai test outside US, see
Lai, supra note 15, FN 137, p.30

*411993] FSR 497

*5[1994] FSR 275 at 302

95

presently greater in the United Kingdom than in th8A. Whelantype fears of

broad protection are there to be realised for tieré.”®

Campaign against Copyright Protection of Non-literd Element of Software

After the 1980s, FOSS programmers generally acdeqipyright subsistence in the
expressive part of software. However, they read@dngly against extending
copyright protection further to the non-literal pagspecially the “look and feel”, of
computer programs. When Lotus Development Corpmratbrought its first
copyright lawsuit to protect the menu system ofirtHeotus 1-2-3 spreadsheet
program, the free software community were deeplyri@d that this move would
jeopardise the creative freedom that software @mogners would be allowed to have
in the future® On 24 May 1989, Stallman and two other promineminuter
scientists (including Marvin Minsky, the founder thie MIT Artificial Intelligence
Lab®®) orchestrated a large-scale demonstration agdiestotus’s “look and feel”
copyright litigation. Over two hundred people, mostwhom were MIT professors
and students, marched from the MIT campus to joiraly outside the Lotus
headquarters based at Cambridge, Massachusetty. Chneed placards bearing
signs such as “Creative companies don’t need td e “Oh no! Look and feel

copyright!” and chanted a hexadecimal protest sloga

Hey, hey, ho, ho, software tyranny has got to go
1-2-3-4, toss the lawyers out the door

5-6-7-8, innovate don't litigate

9-A-B-C, 1-2-3 is not for me

D-E-F-O, look and feel have got to*jo

It is important to know that the protest was nattjtargeted at Lotus, but more

broadly it registered the computer hackers’ growimgease about the copyright

*% ai, supra note 15, p.49

" The then vice president and general counsel afid,6fom Lemberg argued that “[t|he copyright
law we believe is absolutely essential to the heaftthis entire industry” and “[i]t is the meansr f
several centuries now to reward creations.” See FtzSimon, “MIT Software Developers Field
'Freedom' Campaign: Apple, Lotus 'Look-and-FeelltsSTargeted In Ad”, The Boston Globe
available at <http://www.skytel.co.cr/advocacy/east/1989/0424 .html>

8 Minsky is also a featured hacker in Steven Lewgsk. He was said to be a “[p]layful and brilliant
MIT prof who headed Al lab and allowed the hackersun free.” LevyHackers p.11

¥ League for Programming Freedom, “Programmers asdrd) Picket Lotus, Protesting User-
Interface Copyright Litigation” 24 May 1989, at
<http://www.skytel.co.cr/advocacy/research/1989/M5ztmI>

96

expansionist trend as represented by a seriesnddsiundergoing copyright disputes
over the non-literal copying of graphic user irgeds™ It is feared that by giving
protection to the “look and feel” of software, athprogrammers would be
effectively stopped from independently writing theivn code to achieve identical
functions. Stallman likens the consequence todhgiving monopoly over steering
a car: “If there were copyrights like this on cdhgen every manufacturer would have
to give you a different way to steer [...] If you tead to drive a Ford, you wouldn't
know how to drive Chevrolets. Some cars would hidwettles, others would have
joysticks, and each manufacturer would have to éintew way of doing it®> With
the introduction of the “look and feel” copyriglittjs a slippery slope where software
programmers would be deprived of the freedom to imitime non-literal aspect of

other programmers’ software even though they do ineblve the act of literal

copying.

The high turnout at the Lotus protest is a sigrthef lingering impact of the old
Hacker Ethic that originated from the MIT Al labtbwmas challenged by proprietary
software in the late 1970s. It shows that the Ha&itbic was not quite dead in the
late 1980s and the early 1990s, and it still plageadle in forging solidarity among
programmers who are against copyright expansior.niist enthusiastic anti-Lotus
protestors, in late 1989, formed the League foigRmmming Freedom (LPF), also
under the leadership of Stallman, with an aim “tevent monopolies on software
development®® As the second.otus case closed the door to the “look and feel”
copyright completely (i.e., graphic user interfacgyright could no longer pose any

further threat to programming freeddth)the LPF shifted to another battlefield,

% For example, Stallman’s protest was also promptedn earlier lawsuit brought by Apple against
Microsoft. Stallman commissioned a designed badgeving a fanged Apple logo with a serpent
body, indicating Apple’s aggressiveness in gettiogyright protection of its user interface. LPF,

“The History of the LPF” at kittp://www.progfree.org/History/history.html
61 Alan Cooperman, “Scientists Challenge Companiestk.on Software Programs” 25 May 1989 at
<http://groups.csail.mit.edu/mac/projects/Ipf/Linksp.ai.mit.edu/demo.ap-wire

2| PF, “History of the LPF”, supra note 60

%3 Lotus v. Borlandt9 F.3d 807 (1 Cir. 1992); 516 US 233(1996)

97

where they campaigned hard against the growing puistic effect of software
patents”

3.3.3 Scope of Exclusivity: Restricted and PermitttActs

Software programmers, as the original authors eir tworks, have some exclusive
rights to do certain restricted acts in relationtheir programs. However, these
exclusive rights do not amount to the software aghtotal and absolute ownership
of their works, and they are normally subjected/aoous exceptions mandated by
copyright law. These exceptions in effect narrove tbcope of exclusivity by
allowing non-owners to do certain acts withoutdniginal programmers’ permission.
In the US, the Copyright Act 1976 gives copyrigbtders five exclusive rights 1) to
make copies, 2) to prepare derivative works, 3dligdribute copies of the original
work or derivative works, 4) to perform certain dof works publicly and 5) to
display certain kinds of work®. Specific to software, there are two important
limitations on these exclusive rights. Firstly, tssare allowed to make a copy or
adaptation of the computer program “as an essestégl in the utilization” of it°
Secondly, users are also allowed to make back-pgsof the program for archival
purposes’ In other words, lawful computer users can do these acts without

permission from software authors.

In the UK, the copyright holders have a slightlffetient list of exclusive rights to do
the certain acts “restricted” by copyright. They &ne exclusive rights (a) to copy
the work; (b) to issue copies of the work to thelmy (ba) to rent or lend the work to
the public; (c) to perform, show or play the wookthe public; (d) to communicate
the work to the public; (e) to make an adaptatibthe work or do any of the above
in relation to an adaptatidA.Outside the purview of these exclusive rightsretie

also a host of general “permitted acts” that camnldr@e without a copyright holder’s

permission®® Specific to computer programs, there are four irga “permitted

% See infra Section 3.4 for detail.

%17 USC 106

% For example, a lawful user can copy a programdisk or memory when this is essential to run the
program on a computer. 17 U.S.C. 117 (a) (1)

" However, all archival copies need to be destrdfedhe event that continued possession of the
computer program should cease to be rightful”. 13.0. s.117 (a) (2)

%85.16 (1), CDPA 1988

%9 ss. 29-31 CDPA 1988

98

acts” that further narrow the scope of programmesglusive rights. It is not an
infringement of copyright for a lawful user to 1)pke back up copies of a program

2) to decompile the program to achieve interopéitgb’; 3) to observe, study and
test the functioning of the progrdm4) to copy or adapt the program necessary for
his lawful use especially for the purpose of cdirgcerrors in the prografi.lt is
important to note that it is not possible to coctti@ut of the first three exceptions by
means of licensing agreements. Under s. 294A(1) A/ DiBensing terms that forbid

lawful users from doing these three permitted aotsunenforceable:

Where a person has the use of a computer prograer am agreement, any

term or condition in the agreement shall be voidsinfar as it purports to

prohibit or restrict—

(a) the making of any back up copy of the prograhctv it is necessary for

him to have for the purposes of the agreed use;

(b) where the conditions in section 50B(2) are ntle¢, decompiling of the

program; or

(c) the observing, studying or testing of the fimuing of the program in

accordance with section 50B8A.
However, it is possible to contract out of the thugxception, which allows copying
or adaptation of a program when necessary for tinpgse of its “lawful use* This
permitted act is sometimes seen as an equivalehiedihon-derogation from grant”
doctrine making its way into UK software copyriglaw.’® According to Lord
Temple, this doctrine means “that a grantor will be allowed to derogate from his
grant by using property retained by him in suchay as to render property granted
by him unfit or materially unfit for the purposerfahich the grant was made [...f".

Section 50C of the CDPA codifies this doctrine bgyenting software copyright

°5.50A, CDPA

"'5.50B CDPA (implementing EU Software Directive idle 6 on decompilation for the purpose of
achieving “interoperability” between programs)

25,50 BA, CDPA 1988

35.50C(1) (2) CDPA

"4296A, CDPA

54t is not an infringement of copyright for a lawfuser of a copy of a computer program to copy or
adapt it, provided that the copying or adaptin@)- i6 necessary for his lawful use; and (b) is not
prohibited under any term or condition of an agreetmegulating the circumstances in which his use
is lawful.” s. 50C (1) CDPA

® Bainbridge, supra note 23, p.94

" British Leyland Motor Corpn v. Armstrong Patents 0d [1986] AC 577 at 641. For this doctrine
applied in copyright in general, see also, Andrewin8ler, “Derogation from Grant in Copyright
Law” (1986) 49 (4Modern Law Review13

99

holders from imposing unnecessary restrictions thatld otherwise defeat the
purpose of the lawful use of the software in theesizce of a contrary agreement.

In the spirit of Section 50C, it is worth notingaththe CDPA does give lawful
software users a highly circumscribed right to delmoftware. Section 50C(2)
stipulates that it may “be necessary for the lawfé of a computer program to copy
it or adapt it for the purpose of correcting errarsit” provided that there is no
agreement to the contrary. It is understandablé thast proprietary software
companies would contract out of this permitted lactot giving users the right to
correct errors by themselves in the licensing s&senThis is because these
companies have “a vested interest in providing oimg maintenance, including
error correction, to their licensee$’However, independent from this circumscribed
right to debug, it is sometimes speculated thatsot users may resort to the “right
to repair” (or the “spare parts” exception) createdritish Leyland v. Armstrongs
an analogous device to achieve the identical perpdsorrecting errors. IBritish
Leyland the majority opinion of the House of Lords deddbat customers had a
“right to repair” that overrode car manufacturerspyright in the drawings of its car
exhaust systerff. This “right to repair” was later confirmed in thftware case
Saphena v. Allied Collectipnvhere the defendant was held to be entitled tdityo
the provided source code in order to debug thevané® Unfortunately, despite the
Saphenadecision, it is highly uncertain whethBritish Leylandcould always be
cited as a firm authority for software users tormlaheir right to debug software.
This is because the “right to repair’ as inventediitish Leylandis a doctrinally
unsound policy decision, and it has been critici$ed being an unsatisfactory
product of “a blatant piece of judicial legislatiothat overrode the statutory
exclusive right of a copyright own&t Bainbridge argues that this “right to repair” is

unlikely to play an important role in limiting sefare owners’ exclusive rights:

On balance, it is difficult to say with any certgithat theBritish Leylandright
to repair can apply to error correction of compyergrams. There will usually

8 See Bainbridge, supra note 23, pp.95-6

911986] AC 577

8|t is worth noting that although the court recagui that that the defendant had a “right to repair”
but it did not have the right improvethe software beyond fixing the bugs. [1995] FSRB 61

81 See Laddiet. al, The Modern Law of Copyright and Desigh®l. 2 pp.2254-5

100

be an expectation that the software company willem errors and, in the vast
majority of cases, a maintenance agreement wiridered into by the parties.
It is often part and parcel of the original agreamdhe right to repair may be
available in limited cases such as where the soffveampany is no longer

willing or able to correct errors but its wider &pation is doubtfuf?

It is not difficult to find that a wide scope of@usive rights that have been given to
software authors by copyright is not really congtacio FOSS collaboration based
on the peer-production model. In order to build aigarge-scale FOSS project,
“peers” must work in an environment where each rdheode can be readily

reproduced, modified, debugged and redistributed @nrequent basis. The copyright
regime, by default, seems disproportionately sketeeards the economic interests
of proprietary software developers who have liftention to collaborate with

software users. It assumes that software programsdiacrete products that are
mainly developed by software programmers in isotafrom the outside world and

at the same time these programmers’ efforts mus¢warded by exclusive property
rights. This assumption is too simplistic to acdotor many collaborative non-

proprietary software programming activities that et rely on exclusive property

rights. In this light, FOSS licences are designedsqueeze the broad scope of
exclusive rights by copyright owners in order teate a software commons suitable
for decentralised collaborative programming. Untlese licences, programmers
voluntarily relinquish almost all of their exclusivights and everyone is invited to
freely “copy” or “adapt” each other’'s code. Perantfiree principles distilled from

the Open Source Definitions illustrate how softwasers are empowered by having
three “rights” to software under FOSS licensingesnbs: they have “1) The right to
make copies of the program, and distribute thogeeso 2) The right to have access
to the software’s source code, a necessary predmyibefore you can change it. 3)
The right to make improvements to the prograth.These three rights substantially

expand the scope of software users’ “permitted” abtsn are initially allowed by

82 Bainbridge, supra note 23, p.97

8 Bruce Perens, “The Open Source Definition” @pen Sources: Voices from the Open Source
Revolutioneds. by Chris DiBona, Sam Ockman & Mark Stone &Stdpol, O'Reilly & Associates,
1999) p.172

101

copyright. | will come back to this issue through examination of GPL in some

detall ininfra Section 3.5.1.
3.4 Patent and FOSS

There are two possible routes to get legal praiadr thefunctionsof software by
intellectual property la® The first route is to stretch copyright to covke hon-
literal elements of software as what was achievedairly software copyright cases
such asWhelarf®, while the second route is to patent software asputer-
implemented inventions. As is discussed abovefitsieroute now has been blocked
in the US since thdltai decision introduced the abstraction-filtration-quarison
test to disqualify the non-expressive part of safevfor copyright protectioff
Software developers who are keen to offset theeeffetheAltai decision now have
to go down the second route by patenting their woflis second route is favoured
by IP expansionists who are interested in creatirgpamless protection spectrum
where the pos#ltai copyright regime is supplemented by the patertesysMaier’s
argument for “a unique continuum of intellectuabyperty protection” of software is

representative of this view:

One must not suppose that copyright and pateneg@roh are in any way at
odds. Copyright protection can mesh very neatlyhwatent protection to
provide a unique continuum of intellectual propgtgtection in the software
environment. Copyright protects against literal ydog and against slavish
imitation of code or mode of expression. Patentgmts against infringing use,
whether through derivation or independent developmef the broader
functional aspects of software thus the combinatibavailable copyright and
patent protection would appear to make softwarentiost protectable of all

technology [...J¢"

It is not difficult to see that Maier's argumentfawvour of a maximalist protection

under the copyright-patent continuum is one-sidedigsented from a profit-

8 As is discussed in the preceding sub-sectionr #feAltai ruling, it has been largely settled that
copyright only protects thexpressionbut not thefunction of software.

8 Whelan v. Jaslow97 F.2d 1222 (3d Cir. 1986)

8928 F.2d 693 (2d Cir.1992)

8" Maier, supra note 9 at 161

102

maximising perspective held by some, if not allmooercial proprietary software
developer$® In contrast to Maier's view, many FOSS developespecially those
hard-core free software proponents, are vehemeagtiynst software patents, which
are believed to be the potential and actual thi@dOSS projects. Free Software
Foundation (FSF) and League for Programming Freefd?®), both of which are
under the leadership of Stallman, are among thet mosal voices calling for
abolishing “software patent§®.However, it would be wrong to make a sweeping
statement that FOSS is an antithesis to softwarentsa Not all FOSS developers
wish to abolish software patents, but some of theke a more reconciliatory
position that the patent system could be reforméds reformist view is mainly held
by corporate open-source participants, who aren@iiadly better-resourced, to defuse
patent infringement allegations and even to buiirtown defensive portfolios of
patents. This bifurcation of patent abolitionismdamformism is indicative of a
growing schism between the camp of “pure” volunteentributors and that of
corporate contributors. Although Stallman has nebeen against corporate
participation of FOSS projects, he draws the lintha issue of software patents. The
following two subsections will delve into the impaxf patents on software freedom
by examining 1) the legal meaning of “software p&té and 2) the considerable

controversy caused by these patents in relatiGiOi6sS.
3.4.1 Patentability of Software-Related Inventions

Strictly speaking, there is no such thing as “safevpatent”, because software or
computer programs standing alasre“as such” are normally excluded from being a
patentable subject matter under the Anglo-Ameripatent law. In fact, the term
“software patent” is often merely used in a loosese and it does not really have an
agreed-upon legal meaning. Software Freedom Lawtr€en(SFLC), in their
official guide advising patent defences for FOSSetigpers, deliberately choose to

avoid this term:

8 Not all software businesses are pro-patent, lutehlity is a bit more complex than what has been
suggested by Maier. It is observed that, unlike pharmaceutical industry that tends to have a
dominant consensus that “vigorous patent enforcéngethe best policy”, the software industry
simply lacks such a consensus. See John R. Allis®we, Dunn and Ronald J. Mann, “Software
Patents, Incumbents, and Entry”, (2007)T&xas Law Revieds579

8 Preamble, GPL 3.0; LPF (Gordon Irlam and Rossisiii), Software Patents: An Industry at Risk,
1994, at <http://www.progfree.org/Patents/industtyisk.htmI>

103

[...] we avoid use of the term ‘software patent,” efhhas no generally agreed-
upon definition. Under current U.S. law, softwarer se is (probably) not
patentable, but it is generally a simple exerciseaitful legal drafting to

represent a software-related invention as a clanering patentable subject
matter (generally by reciting generic, well-knowerdware features). Although
the details differ, the basic situation is much shene in many other countries,
despite a widely-held misconception in the FOSS roomity that the

patentability of software-related inventions is yer to U.S. law?®

This thesis prefers to use the term “software-eelahvention” (or simply “software
invention”)®* or “computer-implemented invention” (CHj, either of which is
slightly more accurate in reflecting the actuatesiaf affairs. The reason behind this
preference is as follows: what is under the he&eftware patent” debate concerns
not the easy case of clearly unpatentable softasguch but the more complicated
case of the alleged “inventions” employing “softe/aas a component. Because the
legal boundary of these software inventions is alatays clear-cut, its wide reach
may well profoundly affect FOSS collaborative potge However, this
terminological preference for “software-related ention” should not be read as a
call for categorically banning the use of “softwar@ents” in the literature. To the
contrary, it is intended to give a clearer pictofewhat much-discussed “software
patent” as a legal phenomenon is really about amgitns so strongly opposed to by
hard-core abolitionist free software campaigners. patent laws about software-
related inventions are not exactly the same inltkeg(and within the bigger context
of European Patent Convention) and the US, | wifil@n the two patent regimes

separately. This explanation will set the scenedarritical understanding of the

% SFLC (Richard Fontana et. al§)Legal Issues Primer for Open Source and Freen®odt Projects

3 March 2008, at <http://www.softwarefreedom.orgénerces/2008/foss-primer.html> FN3, p.21

°1 Bainbridge defined “software invention” as “an émtion within a range of inventions which are
implemented by means involving or including a pesgmed computer.” See Bainbridge, supra note
23, p.284

92 This term is used by the proposed Directive oremability of Cll, which is defined as “any
invention the performance of which involves the wgea computer, computer network or other
programmable apparatus and having one or more gaoi@ novel features which are realised wholly
or partly by means of a computer program or compptegrams.” In 2002, this Directive, as an
attempt to codify the case law of the EPO, was @sed but it was rejected by the European
Parliament in 2005 due to the lack of consensusngnmeember countries. However, the term Cll is
still used in the scholarly literature. For exam@ainbridge believes that “Cll” is synonymous with
the term “software invention” as is defined by hétfisibid.

104

debate between the “software patent” abolitiongstd reformists within the FOSS

community.
UK and the EPC Regime: Interpreting “Technical Character”

In the UK, the statutory language makes it a ctab that a computer program “as
such”, however innovative it may be, cannot be @mable “invention” as defined
by the Patents Act (PA) 19%7 This rule is the localisation of the Article 52the
European Patent Convention (EPC), though its wgrdiails to adopt the official
English text of the EP& Under the EPC, whether a subject matter is patenta
depends upon the definition of “invention” provided the EPC: “European patents
shall be granted for any inventioms,all fields of technologyprovided that they are
new, involve an inventive step and are susceptbladustrial application.” (added
emphasis¥ It is noteworthy that the text “in all fields oédhnology” was later
inserted to the original wording of the EPC 1978, arder to synchronise the
European patent system with the requirement in2¥t(1) TRIPS Agreement 1994
Very importantly, Art 52 (2) EPC narrows the meanaf “invention” as in Art. 52(1)
by making a list of unpatentable subject mattectuniing “programs for computers”.
So far the rule seems to be reasonably clear trapuoter programs are excluded
from the meaning of “invention” and are thus unpgédble, but the third paragraph in
the Art 52 would cause much confusion and eventuatd to a divergence of
opinion on software-related “inventions” between thK Court of Appeals and that
of the European Patent Office (EPO). This Art 5Rigften known as the “as such”

proviso and it reads:

[The EPC] excludes the patentability of the subjeatter or activities referred
to thereinonly to the extent to which a European patent ajapibn or
European patent relates to such subject-matter aivdies as such(added

emphasis)

%ss.1 (1) & (2), UK Patents Act 1977

*In particular, the EPC was amended in 2000 to leymise with Art. 27 of the TRIPS Agreement
by adding patents should be allowed in “all fietdd¢echnology”. This change has not been reflected
in the PA either.

S Art 52 (1)

% Art. 27 (1) reads: “[...] patents shall be availafle any inventions, whether products or processes,
in all fields of technologyprovided that they are new, involve an inventtep and are capable of
industrial application.” (added emphasis) The UK i not incorporated this phrase so far.

105

Far from spelling an end to the debate over thenpability of software, this “as
such” proviso simply invites more confusion and dens further interpretation of
its meaning. It is believed that the text of Ar2 &turns out to be the source of “the
ongoing uncertainty of the scope of the exclusiommf patentability of computer
programmers” and the meaning of “as such” is “amy®muess during the past two
decades®’ After the mid-1980s, in an attempt to give somesl®f certainty to the
meaning of “invention” in relation to software umdbe EPC, the Technical Boards
of Appeal (TBA) of the EPO made a series of deasidfocusing on whether a
subject matter has the necessary “technical clatadb be a patentable
“invention”. ® Among these cases, TBA’s 1987 landmark decision on
Vicom/Computer-related inventipwhere a method of processing digital images was
examined, stands out as the one of most signifecand/icom TBA established the
famous “technical contribution” test: “Decisive wghat technical contribution the
invention as defined in the claim when considerec avhole makes to the known
art”. In other words, a claimed subject matter would ®ipatentable if it fails to
make a non-obvious “technical contribution” to tkeown art. ThisVicom test is
important because it sets the scene for the TBistewpret the “technical character”
that qualifies the subject matter to fall under theaning of “invention” under Art.
52, and it was also later adopted by the UK CofirAppeal in Merrill Lynch’s
Applicatiort® and Gale’s Application®. A variant of theVicomtest later made its
way into the final text of the abortive EU Direaivon Computer-Implemented
Inventions, where the *“technical contribution” wasxpressly required for
patentability: “Member States shall ensure thaisita condition of involving an
inventive step that a computer-implemented inventrmust make atechnical

1102

contribution” " (added emphasis)

° Noam Shemtov, “Software Patents and Open SourceleMoin Europe: Does the FOSS
Community Need to Worry about Current Attitudeshet EPO?” (2010) 2 (2pternational Free and
Open Source Software Law Reviksi at 156

% For the chequered history of EPO’s decisions emtieaning of “invention” and the patentability of
Cll in the 1980s, see Justine Pila, “Dispute oher Meaning of ‘Invention’ in Art. 52(2) EPC—The
Patentability of Computer-Implemented Invention&irope” (2005) 36 IIC (2) 173 at 174-6

% EPO Board of Appeal, T208/84 (1987)

19011989] RPC 561

10111991] RPC 305

192 Art. 4 EU Directive on ClI

106

Unfortunately, the TBA, in the following years, drally drifted away from its own
technical contribution test usedWicom towards a more expansive interpretation of
“technical character”. The abandonment of the ‘“técdl contribution” test did not
happen at one stroke but it started almost impéidg@and then unfolded through “a
series of incremental changes without express pisapl of Vicont by the TBA®®
Three cases, i.e. PBS Partnership/Pension Bengfissem'®*, Hitachi/Auction
Method®® and Microsoft/Clipboard Format 1&}{® are often singled out to show a
trajectory of TBA’s gradual deviation fronVicom to embrace the new “any
hardware” test. Note that the oldcomtest is actually an “inventive step” test in
disguise because a patentable subject matter maké @ non-obvious technical
contribution to the known art in the first place.dontrast, the new “any hardware”
test eliminates this built-in “inventive step” raggment. If the claim is made to a
physical apparatus, it will be considered to begeptable subject matter, regardless
of whether this “invention” makes “technical cobtition” to the known art. The
“any hardware” test substantially expands the nreaoif “technical character” and
thus lowers the patentability threshold, which nmeeser-closer to the removal of

the statutory prohibition of patenting softwaresash under Art. 52 (2) and (5Y’

The EPO’s embrace of the “any hardware” approashchaised both confusion and
frustration to the UK Court of Appeal, which strlgg to stick to the “technical
contribution” approach adopted by the its own bmgdprecedents such a&errill
Lynch’s Applicatioh’® and Gale’s Application®. In Aerotel Ltd. v. Telco Holdings
Ltd, Jacob L.J. argues that it becomes very diffi¢ait the English court to be
perfectly in keeping with the recent development BPO’s ever-changing
jurisprudence on patentability of software-relategentions. He finds that the TBA
does not follow its own precedents rigorously dutas come up with six different
interpretations of “technical character” of a paddte “invention” (including three
variants of the “any hardware” test), none of thare consistent with each other

among themselves. The UK court has no choice bfdllmwv its own precedents by

193 Bainbridge, supra note 23, p.295

194 Case T931/95 [2002] EPOR 522

195 Case T258/03 [2004] EPOR 548

19 Case T424/03 [2006] EPOR 39; Case T411[2006] EROR
197 Bainbridge, supra note 23, p.295

19811989] RPC 561

10911991] RPC 305

107

using the more onerous technical contribution the¢ to the doctrine o$tare
decisis'*® The upshot of théerotel decision is that the UK insists on a higher
patentability threshold than the current standaetiby the EP&

To summarise, there has been great definitionagni@iaty surrounding the meaning
of patentable “invention” as defined by the Art. &2he EPC. The EPO has tried to
reduce the uncertainty by pegging the issue tartbaning of “technical character”,

which turns out to be equally difficult to pin dowAlthough the EPO has failed to
produce a consistently used test to determine té@hfiical character” of a claimed
subject matter, it has the tendency to graduatbtat the elastic reach of “technical
character” and thus lower the patentability thréslower the years. It has also led to
an unfortunate divergence between the EPO and #eCburt of Appeal on this

Issue.
United States: FromBenson(1972)to Bilski (2010)

On the other side of the Atlantic, the US law gowmeg the patentability of software-

related inventions has no less a chequered hishany its European counterpart.
Section 101 of the US Patent Act 1952 defines pakgible subject matters as “any
new and useful process, machine, manufacture,rapgsition of matter, or any new

and useful improvement theredf? However, unlike the EPC, this Act does not
contain a statutory list of non-“inventions” thatainpatentable. So what is actually
excluded from patent-eligible subject matter rebaghe US case law to fill the gap.
A well-accepted list of exceptions to patentablettara can be found in a leading
Supreme Court decision including “laws of naturaumnal phenomenon, and abstract
ideas”, which can be roughly seen as an equivakart 52 (2) of the EPC in the

US context®®

19[2007] 7 RPC 117; In a more recent UK c&senbian Ltd. v Comptroller-General of Pateritse
Court of Appeal, though using a less hostile tomehe EPQO’s case law, confirms that technical
contribution test should be retained in the UK.J8PBus. L.R. 607

111 Bainbridge finds that this is “regrettable” respbecause the more onerous UK test would drive
inventors to apply for software-related inventioatgnts in the EPO rather than the UK IPO.
Bainbridge, supra note 23, pp.315-6

11235 U.S. 101

113 Diamond v. Dieh#50 U.S. 175, 185 (1981)

108

Neither “software” nor “computer program” is explig mentioned in the statutory
text of Section 101 of the Patent Act. It has remadi extremely uncertain as to
whether “software” or “computer program” falls umdey of the four categories of
“process, machine, manufacture, or composition aften’ defined by Section 101,
until three leading cases were decided by the Supreourt between the early 1970s
to the early 1980. The first of them @ottschalk v. Bensom 1972. The Supreme
Court ruled that a computer program using a mathieadaalgorithm to convert
binary-coded decimal numbers into pure binary nafsewas not a patentable
subject matter under Section 184 The Bensonapproach was confirmed by the
1978 decision inParker v. Flook where a computer program using another
algorithm to control alarm limits in catalytic cargions of petrochemicals was
again ruled to be unpatentablé The final case, arguably the most significanthef t
three, isDiamond v. Diehrdecided in 1981. IDiehr, the court had to tackle the
guestion as to whether a computerised processrafgcuaw synthetic rubber that
employed a well-known mathematical formula knowrf'A&shenius Equation” was

a patentable subject matter under Section 101. cthet ruled a “mathematical
formula as suchis not accorded the protection of patent laws, #msl principle
cannot be circumvented by attempting to limit tise of the formula to a particular
technological environment™*® (added emphasis) However, although a mathematic
formula “as such” is not patentable, when it isl tie a special-purpose computer, the
claimed subject matter “as a whole” will pass thgeptability threshold according to
the Diehr court!*’ In other words, th®iehr decision is a refinement of the previous
court rulings. It has the effect of making compytesgram “as such” unpatentable,
which makes the US law start to bear some resemblamthe law under Art 52 (2)
& (3) EPCM®

In the next thirty years aft@iehr the US Supreme Court did not again hear any case

on the patentability issue until the 20Biski decision'*® This unfortunately has

114409 U.S. 63, 71-2 (1972)

115437 U.S. 584 (1978)

18450 U.S. 175 at 191

"ibid., at 188

118 Furthermore, it is also thought thatehr in the US andvicomin Europe play similar historical
role in making software-related inventions patel@#aee Martin Kretschmer, “Software as Text and
Machine: The Legal Capture of Digital Innovatiosljpra note 39

19Bijlski v. Kapposl30 S. Ct. 3218 (2010)

109

created an opportunity for a lower patent court gredUS patent office to gradually
drift away from the holding iDiehr. During the intervening period betweBmehr
and Bilski, the task of adjudicating on the patentabilitypdi®s moved from the
Supreme Court completely to a lower-level spediplient court—Court of Appeals
of Federal Court (CAFC)—which was established oear\afterDiehr in 1982 with
an attempt to achieve some level of uniformity mfoecing US patent law at the
federal appellate level. In 1998 the CAFC ruled thaomputerised business method
could be patented irbtate Street Bank & Trust v. Signature FinancialoGx
Disregarding previous Supreme Court’s rulings anphtentability requirement, the
CAFC created its own test that a claimed subjedtenawith no need to have any
particular physical embodiment, would be patentabléong as it produced a “useful,
concrete and tangibleesult”*?° Some commentators believe that Bimte Street
ruling effectively removes the threshold of patéility in the US between 1998 and
2008, during which Section 101 of US Patent Actdoee “a dead letter?* During
these ten years, US became a place that was vemsrays to issue patents to

software-related inventiortg?

However, in 2008, the CAFC thought it was a timerém in the proliferation of
patents as a result of tistate Streetlecision. InBilski v. Kapposwhere a business
method of hedging financial risk were examined, @&FC discontinued its own
“useful, concrete and tangibiesult” test used istate StreetResuming the line of
jurisprudence developed by the Supreme CourBenson Flook and Diehr, the
CAFC decided to go back to Section 101 and rebihi&l patentability threshold.
Replacing the oldState Streettest, CAFC devised the so-called “Machine or
Transformation” (MOT) test: a claimed subject matteeligible under Section 101
if “(1) it is tied to a particular machine or appturs, or (2) it transforms a particular
article into a different state or thing?® Unfortunately, CAFC’s MOT test did not go
down well with judges at the Supreme Court, whielrertheless also ruled Bilski’s

claims unpatentable by applying a different tetrlan 2010. In the Supreme Court’s

120149 F. 3d 1368 at 1373 (Fed. Cir. 1998)

121 Mark Lemley, Michael Risch, Ted Sichelman, R. Palgner, “Life after Bilski” (20115tanford
Law Reviewl01 at 103

1221t is observed that there was immediately a sofgsoftware patents” after the State Street ruling
See Kretschmer, Section 2.5, supra note 39

123545 F.3d 943, at 954 (Fed. Cir. 2008)

110

Bilski decision, the majority opinion by Justice Kennedings out that the MOT is a
flawed test and it should not be relied upon as dblke test for deciding patent
eligibility but it is merely “a useful and importaclue.”** Also based on a review of
three earlier caseBenson, Flook and DiehKennedy argues that the correct ground
for refusing Bilski's claims is that the claimedbgect matter is an “abstract idea”,
which is a well-established excluded subject mattéJS case law¥?> However, this
“abstract idea” test is not uncontroversial eitheemley et. al. argue that the
Supreme Court’s exclusion of “abstract idea” froeiniyg a patentable subject matter
is unsatisfactory, because “[n]Jo class of inventieninherently too abstract for
patenting.*?® The true reason has to do with the negative imphet broad patent
claim that may have on downstream innovation: “Batlthe rule against patenting
abstract ideas is best understood as an efforteteept inventors from claiming their
ideas too broadly.* It is also interesting to note that the MOT téat,from being
reduced to merely “a useful and important clue'tiy Supreme Court, continues to
be frequently used by the USPTO and some disioiatts afteBilski, partly because
of the practical difficulty of applying Supreme Qts “abstract idea” test to

determine patent eligibility?®

In summary, the history frorBensonto Bilski shows that the conceptual reach of
“software patent” in the US context is also difficto pin down. Although the US
patent system has gone out of its most generousdpef granting “software patents”
ten years after the CAFCState Streetlecision, the Supreme CowWiiski decision
does not really bring more certainty to the isduethis sense, the US shares the
same type of struggle with Europe, which has beeable¢ to find one single
consistently applied test of “technical characte” qualify patentable software-
related “inventions”. Just as Pila observes thatls Supreme CouRilski ruling

only “has left the scope of US law substantiallycenain, and underlined the

124130 S.Ct. 3218 at 3227 (2010)
125 ibid.
1261 emleyet. al, “Life after Bilski”, supra note 121, at 102
27ibid., at 132
128ibid.
111

difficulties of attempting to interpret the EPC @ manner that tracks US

jurisprudence **°
3.4.2 Perceived Threat of Patents to Software Innation

The above sub-section shows that although compuiegramsper se are not
patentable, patents of software-related inventltange been in existence in both US
and Europe since the 1980s. So how do FOSS progeesnmaact to these patents?
To which extent are patents perceived to be a ttheaoftware freedom? Is it
possible for the perceived threat to be contairggidn it would be wrong to make a
sweeping statement that all FOSS developers aegmatally against patents as a
threat. In order to appreciate the complexity o$ tlssue, | identify two historical
stages to account for FOSS programmers’ evolviagtien to the growing influence
of patents on their community. The first stage ceveughly the first decade after
1981 when the US Supreme Court issDéehr decision. During this period of time,
FOSS programmers were not very much aware of thelaexistence of software-
related invention patents, let alone their possilmepact on decentralised
collaborative FOSS projects. This situation is venfike the advent of software
copyright, whose impact was immediately felt andthdly debated in the 198%8.
Stallman recalls that when tiBehr decision came out in 1981, this milestone in the
history of software-related invention patents siynplassed unnoticed by most
programmers: “When the US started having softwatergds, there was no political
debate. In fact, nobody noticed. The software fiéal the most part, didn’t even
notice.”®! This lack of awareness in part explains why eamdysions of GNU
copyleft licences (i.e., Emacs GNU Public Licensel$85 and GNU GPL v1.0 in

129 Justine Pila, “Software Patents, Separation ofd?syand Failed Syllogisms: A Cornucopia from
the Enlarged Board of Appeal of the European Padfite, (2010)Oxford Legal Research Paper
Series Paper No 48/2010, p.7

130 Recall that Stallman’s knee-jerk reaction to caglyr was that it was “blasphemous” to hackers’
world in the early 1980s. See Section 2.3.1, Chiaptnd Steven Levyjackers p.419

131 Stallman, “Software Patents—Obstacles to Softieelopment”, script of a speech delivered at
the University of Cambridge Computer Lab, 25 March 2002 at
<http://www.cl.cam.ac.uk/~mgk25/stallman-patentslbt

112

1989) are merelgopyrightlicences that did not mention the threat of patémtsee
software at alf?? This situation would change later in the 1990s.

The problem of software patents to software freed@s largely hidden in the 1980s,
but it gradually surfaced when it reached its sdcstage since the early 1990s. In
June 1991, when Stallman upgraded GNU GPL to Versddd, he added a

preambular text alerting that “any free progranthi®atened constantly by software

patents”:

We wish to avoid the danger that redistributors aoffree program will
individually obtain patent licenses, in effect makithe program proprietary.
To prevent this, we have made it clear that angmgamust be licensed for

everyone's free use or not licensed at3ll.

Around the same period of time, there has also beeshortage of anecdotal stories
vindicating GPL’s warning of the disruptive effeat patents to software projects.
For example, in September 1991, Stallman himseH feaced to abandon a data
compression program contributed by a volunteer narmogner. This is because, just
about one week before a release of GNU softwaia|n@in accidentally found a
newly issued patent thatight “read on” this contributed compression program.
Note that the risk of this patent as assessed &linfin is merely potential but not
actual. Lemley and Shapiro point out that a patenbt an absolute right to exclude
but merely a “probabilistic” one if it is not litiged in court®® It is not rare that risk-
averse FOSS project leaders like Stallman wouldbshdo be on the safe side by
declining contributions that apgrobableto infringe, because these volunteer-driven
FOSS projects cannot afford to be bogged down bygely costly litigation in the
first place, even though the patent involved migatproved legally invalid when

litigated in court.

32 |n the 1980s there was hardly any patent dispode affected the FOSS community, though
software copyright disputes were already not uncomm@mmong programmers. The dispute between
Stallman and Gosling over Emacs copyright is arias/example. See Chapter 2 for detail.

It was not until 2007 that GPL 3.0 for the firsh# introduced a clause specific to patent issues.

133 preamble, GPL v2.0

134 See Stallman, “Patent Reform Is Not Enough” atpshtvww.gnu.org/philosophy/patent-reform-
is-not-enough.html>

%5 Mark Lemley and Carl Shapiro, “Probabilistic Pasn (2005)19 (2)Journal of Economic
Perspectived5s

113

Although anecdotal evidence like the above aboundedcomprehensive and
systematic assessment of the threat of patentetasvailable until the League for
Programming Freedom published a report enti8eftware Patents: An Industry at
Riskin 1994. The title of this report is self-explamgt enough to show LPF’s anti-
patent position, which openly advocates to “abosisfiware patents completely” and
that “software be made explicitly non-patentabf&.More specifically, the report
identifies six important reasons to support thetept-abolitionist policy. First,
software is a highly complicated and sophisticatgdact which aggregates a huge
number of technical components. Any of these coraptsn may unintentionally
infringe upon patented technologies, which “make tagal risks and expenses
associated with developing even well understoothsoé frightening.**” Secondly,
apart from being a complex artifact, “the naturesoftware means that much of it is
also very abstract”. The highly abstract nature @sakany complex components of
software unable to be neatly separated and analy$esl abstractness of software
will lead to the abstractness of “software patetitsit may potentially give its owner
a broad range of monopoly. In short, “software’stedction makes it difficult to
partition these technologies” and exactly for tteason software patents are very
expensive to search, analyse and litigate in cdtiRetrospectively, LPF's second
argument, that software is too “abstract” to beeptble to some extent is not
qualitatively different from the US Supreme Cour2810 Bilski majority opinion
that a claimed subject matter cannot be patentdhleis an “abstract idea***
Thirdly, the duration of patents is too long totsoftware technologies that grow at
a rapid rate. “This rapid rate of evolution mealat those who are investing time
creating and lodging patents are vastly outpachusd who are investing effort
bringing such ideas to market. By the time an inureatechnology develops to the
point where it can be incorporated into produdthas a dozen or more patents on it
that render it commercially intractablé® Fourthly, software is not like other
physical consumer goods that can wear out. “A cderpprogram that is fully

debugged will perform its function forever withouequiring maintenance or

13 Original texts are in all in capital letter. Gordérlam and Ross William, Software Patents: An
Industry at Risk, 1994, at <http://www.progfree />ents/industry-at-risk.htm|>

37ibid., Section 2.1

3 ibid., Section 2.2

139130 S. Ct. 3218 (2010)

“Oibid., Section 2.3

114

modification”. So, in order not to lose customessftware companies have to keep
updating and adding new features to their prodaaot$ “the industry will remain
innovative whether or not software patents exi&tsFifthly, software patents add
huge legal costs to software development and wealidinto the resources that
should have gone into software innovation itselrywoften patents are employed as
a strategic weapon to lock out competitors. Esfigcitor those individual
programmers and small companies who lack a legahstmucture to defend
themselves, “the prospect of being sued over anpatingement even if the case is
ungrounded and would ultimately fail is so ternifgj that many companies choose to
give all patents they know about a wide berth nathan risk the possibility of any
kind of patent challengé® Finally, software’s commercial success relies logirt
“market-driven properties” more than their beingegi a monopoly protection for
being absolutely “novel” as defined by the pateystam!*® Software companies
become market leaders not because they are thefivetryto invent a particular
“new” technology, but because they are more attentand adaptive to the
consumers’ need for high-quality software produbtssummary, the six arguments
above show that the complex and abstract naturee rsakware ill-suited to the
patent system, and thus a “vision of patents ealreah in the software industry is a

vision of stagnation**

The LPF Report has presented an abolitionist argtitoer de forceby painting a
dark and gloomy prospect of the software industeyndy plagued by the patent
system*® However, this prospect may well be exaggeratecbrdany to some

academic commentators. For example, with the bieokfiindsight, software-related

“Libid., Section 2.4

“2ihid., Section 2.5

%3 The report's examples are illustrative of the pofBorland didn't invent compilers. Microsoft
didn't invent operating systems. Novell didn't invaetworking. Sun didn’t invent Unix. Apple didn't
invent the graphical user interface. Oracle didmtent the database. It turns out that nearly all
successful software companies have concentraterbostructing better implementations of already
existing technologies.ibid., Section 2.5

“ipid.

151t is important to note that what is meant by teafre industry” in the LPF Report includes both
FOSS and proprietary software sectors, to whiclitsoe patents” are arguably a threat. In fact, the
LPF Report does propose some options to refornuigatent system, though these options are not
favoured over total abolition. The proposed changetude: “1) Tighten up the requirements for
awarding software patents. 2) Reduce the durati@ofbware patents from 17 years to, say, 3 yers.
Significantly reduce the period of pendency. 4)drinsimpler way to determine if a piece of code is
affected by a patent. 5) Improve patent indexinghsd software patents can be more easily searched.
6) Publish patent applications as soon as theyearived.” See Section 5.ibjd.

115

invention patents, as Merges observes, have noh ladxe to entirely stifle
innovation in the software industry after 1994.dp#& have posed certain a risk to
software innovation, but this risk is by no meandeaastating one. Merges argues
that the LPF, among other early patent abolitienist mostly wrong: “Patents have
not killed the software industry, they have not tech slowdown in entry, and they
do not appear to have assisted in the entrenchofiésatge companies at the expense
of smaller and newer ones. Despite the predictante League for Programming

Freedom, the industry has not stagnatéf.”

Not all those who participate in, or sympathisehwithe FOSS movement, share
LPF’s abolitionist position. Some of them are Ikeen to abolish than to reform the
patent system. The emergence of patent reformisthinvthe FOSS community
roughly coincides with the spin-off of the pragmsatiopen source” approach from
the purist “free software” approach. The “open selrcampaign has made non-
proprietary software programming friendlier and eattractive to commercial
software companies, many of which can afford teddfthemselves against patent
infringement allegations, or even build their owefehsive patent portfolios. This
has given rise to an interesting phenomenon of rfopeurce patents” named by
Leveque and Méniére, to account for those patemteed by corporate open source
developers®*’ For example, IBM is probably the most well-knowop&n source
patents” owners. In 2005, IBM decided to “donaté&)O5patents to the FOSS
community. This “donation” was in the form of a gdg not to assert the 500 named
patents against any FOSS project under a licenpeoa@d by the Open Source
Initiative as of 1 November 20048 It is worth noting that these 500 patents only
form a very small part of IBM’s whole patent potito IBM’s pledge is not an
ideological commitment to the “free software” iddalt largely a strategic move.
Haas points out that profits can still be extradiredn IBM’s non-pledged patents,
which simply become more important assets to tmepamy: “IBM may actually be

giving up very little in its pledges, since the gras in the pledge may or may not

190 See Robert P. Merges, “Software and Patent Séoeport from the Middle Innings” (2007) 85
Texas Law Revied627 at 1632

147 Francois Leveque and Yann Méniére, “Copyright Uer®atents: The Open Source Software
Legal Battle” (2007) 4(1Review of Economic Research on Copyright Is87est 42

198 See IBM, “IBM Statement of Non-Assertion of Nameatéhts against OSS” at
<http://www.ibm.com/ibm/licensing/patents/pledgetipdas. pdf>

116

have value as revenue generators. IBM does notdaaon-assertion guarantees for
its ostensibly profitable closed source productpatent holdings™° It is important

to know that IBM is not the only company that hapén source patents”. Another
interesting example is the Open Invention NetwdZkN), which is a consortium
initially formed by five companies, including Redatl IBM, Sony, Novell and
Philips in November 2005. It has acquired hundid®pen source patents”, which
are then made “available royalty-free to any conypamstitution or individual that
agrees not to assert its patents against the L8ystem” under an OIN licence,
which is not hugely dissimilar from agreements usgdonventional cross-licensing
patent pools> In short, corporate FOSS developers perceivehieat of software
invention patents differently from non-corporatdwieer FOSS programmers. The
former believe that the abolition of patents is esessary largely because they have
the resources to defend themselves, whilst therlgterceive patent infringement
allegations are devastating to software freedorhimtcommunity-led projects. | will
show ininfra Section 3.5.2 how Stallman, from the non-corpoR@SS developers’
perspective, insists on patent abolitionism andhat same time uses the GPL to

minimise the patents’ threat to software freedom.
3.5 GPL and Software Freedom

Based on the legal background concerning copyrgiit patent as introduced by
previous sections, this section further examinesfitist and most prominent FOSS
licence—GNU Public Licence (GPL)—and its struggte find an accurate legal
expression of software freedom since the mid-19B@hows that the drafters of the
GPL are attentive to the subtle differences betwssgryright and patent, which will

be discussed separately below.
3.5.1 GPL as a Copyright and “Copyleft” Licence

It has been shown in Chapter 2 that the GPL cam®foa unique period when the

old hackers’ stewardship duty to preserve softveamamons clashed intensely with

149See Douglas A. Haas, “A Gentlemen’s Agreement—ssisg the GNU General Public License
and Its Adaptation to Linux” (2007) ®hicago-Kent Journal of Intellectual Propei®i3 at 276

10 For a list of OIN-owned patents, see OIN, “Opeveltion Network’s Currently Owned Patents”,
last accessed 28 May 2011, at <http://www.openitiwanetwork.com/pat_owned.php>

117

the rising proprietary right to own software prieigt allowed by copyright in the
1980s. From 1983 to 1985, Richard Stallman was eiheldrin a copyright dispute
with James Gosling over a version of the Emacs raragiing editor, which was
initially developed collaboratively by computer kacs since the 1970s. Gosling’'s
decision to withdraw and privatise his contributzaused great tension in the Emacs
community. During this dispute, Stallman gradudHyniliarised himself with US
software copyright law, which eventually led him pooduce the Emacs GPL in
1985 This Emacs-specific GPL, which is the predeces$tinree later versions of
the general-purpose GNU GPL, makes it clear th&macs user should be deprived
of the rights to freely use, copy, change and tedige the program in any future

distribution:

Specifically, we [i.e., Emacs programmers] wantriake sure that you [i.e.,
users] have the right to give away copies of Em#t®, you receive source
code or else can get it if you want it, that yon change Emacs or use pieces
of it in new free programs, and that you know yaun do these things. To make
sure that everyone has such rights, we have tadfgdu to deprive anyone else
of these rights. For example, if you distribute iespof Emacs, you must give
the recipients all the rights that you have. Youstmmake sure that they, too,

receive or can get the source code. And you mlisheen their rights->?

The actual terms and conditions of the Emacs Gédnte are specified in the five
“Copying Policies” drafted by Stallman. Among thdise, the most important one is
no doubt the second “Copying Policy” that innovaly devises a “copyleft”
provision, obligating downstream programmers torehtheir publicly released
contributions of Emacs under the same licence: “Yioay modify your copy or
copies of GNU Emacs source code or any portion, @nd copy and distribute such
modifications [...], provided that you [...] cause thdole of any work that you
distribute or publish, that in whole or in part tains or is a derivative of GNU
Emacs or any part thereof, to be licensed at nogehto all third parties on terms

identical to those contained in this License Agreeni...].”*>* This is the situation

31 For the history of the Emacs dispute, see Sei8r2 in Chapter 2 for more detail.
%2 5ee Emacs GPL (first published in 1985 and ldseified 11 Feb 1988)
153+ 146
ibid.
118

where a “copyleft” clause is used for the first¢inm the software licensing history
and it remains a defining feature of all later Gieknces.

It is not difficult to find that the invention ofcbpyleft” in the Emacs GPL is to
mimic the pre-copyright environment where softwaenot exclusively owned by
any single programmer but it is collaboratively ategl and preserved in a
commons:>* Paradoxically, copyleft's attempt to secure sofevireedomis mainly
couched in the legal language of copyright, whias lgiven a wide scope of
exclusive rights to software authors. This paradbxusing a copyright licence to
create a non-exclusive property regime is pointgdby Steven Weber: “property in
open source is configured fundamentally aroundrigfie to distribute, not the right
to exclude.*® The 1985 Emacs GPL is no doubt a first step ofnarepid long
journey of experimenting with a licensed non-exisles software commons.
Although this licence later has been replaced bytlinee generations of the general-
purpose GNU GPL respectively published in 1989,112807, the initial design of a
copylefted commons has remained largely unchangedl use the latest GPL 3.0
as an example to show how the initial legal scdffi is preserved more than two
decades after the first Emacs GPL was created.

Although GPL 3.0 is a much longer and more detafledument than the original
Emacs GPL, the former does not deviate wildly fribra latter when dealing with
software copyright. There is a common licensingdtire that can be broken down
into three basic licensing components respectidelgling with 1) permissions, 2)
conditions and 3) termination. The first componeoncerns clauses that give
“permissions” to use, copy, modify and redistribstd@tware in line with the Free
Software Definition*>® Without these permissions, these acts would otisenlve

restricted by copyright law. It is worth noting thihe root meaning of “licence”

begins merely as “permission”: Just as Laddieal. points out “[i]n the strict sense a

licence is a mere permission to do that which wantlterwise be unlawful and it

134 Note that Benkler's peer-production model is eladtwilt in a non-proprietary environment:
“individuals produce on a non-proprietary basis aswhtribute their product to a knowledge
‘commons’ that no one is understood as ‘owning,d ahat anyone can, indeed is required by
professional norms to, take and extend.” Yochai KBan “Coase's Penguin, or, Linux and ‘The
Nature of the Firm™ (2002) 112, (3jale Law JournaB69 at 381-2

1% Steven WebeiSuccessp.1

1% Richard Stallman, “The Free Software Definitiont ahttp:/www.gnu.org/philosophyi/free-
sw.html>

119

confers no proprietary rights on the licensE8.Along the same line, Bently and
Sherman point out:

At a basic level a licence is merely a permissiondd an act that would
otherwise be prohibited without the consent of gheprietor of the copyright.
A licence enables the licensee to use the workowitlinfringing. So long as
the use falls within the terms of the licence,iiteg the licensee an immunity

from action by the copyright owné?®

The GPL 3.0 makes it clear that it is a copyrighernce that gives permission:
“nothing other than this License grants yoermissionto propagate or modify any
covered work. These actions infringe copyrightdfiydo not accept this License”
(added emphasis). Apart from giving normal copytrigérmission, it is interesting to
note that GPL 3.0 makes a new special permissiah dbes not exist in earlier
versions in the GPL family. It permits users t@womvent Digital Right Management
(DRM) technologies if DRM is used in GPL coveredrkg This permission is
drafted in response to the rise of the anti-circenton law introduced by 1996
WIPO Copyright Treaty (WCT) that forbids “the cirouwention of effective
technological measures that are used by authocsrinection with the exercise to
their rights under this Treaty or the Berne Coniemnéand that restrict acts, in respect
of their works, which are not authorised by thehats concerned or permitted by
law.” ¥ This WCT anti-circumvention clause and its prog€hyare sometimes
known as “para-copyrighthecause the protected technological measures are no
copyright measures themselves but they have tleetedf expanding the scope of
authors’ exclusive rights and potentially upsetting balance intended by copyright
law.*®* The drafter of the GPL 3.0 believes that DRM isriflamentally in conflict

37t is also pointed out that there is no reason aftigence should not be given “to the world agéar
or to a specified section of community”. See Hugiddlie,et al, Modern Law of Copyright and
Designs p. 903-4;

138 Although a licence begins with “merely a permisgjothe copyright system has nurtured “a
sophisticated repertoire of ways whereby a workhiige licensed”. Lionel Bently and Brad Sherman,
Intellectual Property LawOxford: OUP, 2009, 3rd Ed.) p.264

*9Section 9, GPL 3.0

YO Art. 11, WCT

181 Equivalents of Art. 11, WCT can be found in the Digital Millennium Copyright Act, 17 U.S.C
1201 and Art. 6, European Copyright Directive.

182 For a critique of the anti-circumvention law, sée;, example, Dan Burk, “Anticircumvention
Misuse” (2003) 50JCLA Law Revievt 095

120

with the freedoms of users that the GPL is designeshfeguard®®® So in order to
counter this, GPL 3.0 states that “[n]Jo covered kwshall be deemed part of an
effective technological measure under any apple#od fulfilling obligations under
article 11 of the WIPO copyright treaty adopted 2th December 1996, or similar
laws prohibiting or restricting circumvention ofcsumeasures.” As a consequence,

programmers of GPL covered software waive their@ntumvention right:

When you convey a covered work, you waive any lggalver to forbid
circumvention of technological measures to the mxgeich circumvention is
effected by exercising rights under this Licens¢hwespect to the covered
work, and you disclaim any intention to limit opgoa or modification of the
work as a means of enforcing, against the workéssysyour or third parties’

legal rights to forbid circumvention of technologlicneasure$®*

In short, under the above anti-anti-circumventitause, GPL 3.0 effectively extends
permission to acts that would otherwise be restlidiy the para-copyright created

by technological measures.

The second component of the GPL is its “conditiorBPL is a often known as a
“conditional licence”, because it sets up a seoiesarefully crafted “conditions” to
safeguard software freedom, under which users ammified to use, copy, modify
and distribute GPL covered works. Largely inhegta structure used by the Emacs
GPL, GPL 3.0 divides itself into three categoriegehiding ‘conveyingverbatim
copies”, ‘tonveyingmodified source versionsihd ‘conveyingnon-source forms”—
all of which will trigger the “conditions” attachet the “permissions”. (See Table
3.1)

It is important to know that not all acts of rungjrcopying or modification of GPL
covered software will trigger the conditions state@PL. Doing these actsivately
is permitted unconditionally. Conditions apply onlshen “verbatim copies” or
“modified source versions” or “non-source formséaonveyed to the publitNote
that GPL 3.0 deliberately avoids the familiar teidrstribute”, which is used in US

183 FSF, GPLv3 First Discussion Draft Rationale16 January 2006, Section 2.4, at
<http://gplv3.fsf.org/gpl-rationale-2006-01-16.html
164 Section 3, GPL 3.0

121

copyright law®® and all previous versions of GPL, but it adopte tmfamiliar terms
“conveying” and “propagation”. The reason behind th that GPL 3.0 is intended to
be globally applicable and the term “distributian”different jurisdictions may have
different meanings. The drafter of GPL 3.0 explaiife scope of ‘distribution’ in
the copyright context can differ from country tauatry. We do not wish to force on
the GPL the specific meaning of ‘distribution’ thakists under United States
copyright law or any other country’s copyright 1a%° For example, in a non-US
jurisdiction such as UK, “distribution” does not v&s the copyright holders’
exclusive right to “communicate the work to the ei®” which is not explicitly
mentioned in the US statutory language. This riglas harmonised by the EU
Copyright Directive, which provides that authorssinbave, as part of their right to
control public communication, the “exclusive rigtd authorise or prohibit any
communication to the public of their works in suclvay that members of the public
may access them from a place and at a time indiliglehosen by them®® This
right is tailored to Internet transmissions suchttes making available of copyright
materials to the public (for example, via a P2B-§iharing network)®® Clearly, the
GPL would be failing in its purpose if it did nadwer transmissions of this nature. In
this light, Stallman, as the main drafter of GPD,Xhose the term “propagation”,
which is not used by any particular legal systEthHere is a definition of

“propagation” offered by GPL 3.0:

To “propagate” a work means to do anything witkhat, without permission,

would make you directly or secondarily liable fonfringement under

16517 USC 106

1% ESF,GPLV3 First Discussion Draft Rationaleupra note 163, p.8

1975.20 CDPA

188 Art. 3(1) Directive 2001/29/ EC of the Europearlment and of the Council of 22 May 2001 on
the Harmonisation of Certain Aspects of Copyrighd &elated Rights in the Information Society (EU
Information Society Directive)

19 Bainbridge observes: “A great deal of softwareliding computer programs and associated
works, is now available for downloading online. Mucs free to download but, of course, still
protected by copyright and further copying andritistion over and above that allowed by the licence
agreement, or other terms under which it is madslable, will infringe copyright. Some of the
software available on websites of dubious pedigneg be infringing software.” Bainbridge, supra
note 23, p.82

170 propagation “is a term not tied to any statut@myguage. Propagation that does not enable other
parties to make or receives copies—for example,imgakrivate copies or privately viewing the
program—is permitted unconditionally, propagatitvattdoes not enable other parties to make or
receive copies is permitted ‘distribution,’[...]” FSEPLv3 First Discussion Draft Rationalsupra
note 163, p.11

122

applicable copyright law, except executing it orcanputer or modifying a
private copy. Propagation includes copying, distiitm (with or without
modification), making available to the public, aml some countries other
activities as well*"*

Not all acts of “propagation” will trigger the coitidns in GPL 3.0, but only a sub-
set of it known as “conveying” will: “To “convey” avork means any kind of
propagation that enables other parties to makeecgive copies. Mere interaction
with a user through a computer network, with nondgfar of a copy, is not
conveying.’? To put it another way, a user canivately “propagate” the GPL
covered software unconditionally, but “conditionsill apply only when copies of
the software are “conveyedd other parties The second paragraph in Section 3,
GPL 3.0 clarifies this point: “You may make, rundgoropagate covered works that
you do not convey, without conditions so long asnjicense otherwise remains in

force.”

There is no doubt that the most famous and impbfteondition” in GPL is its
“copyleft” requirement. Most basically, copyleft ndates using the same licence
when conveying to the publi@a “modified source version” of the original GPL

covered software. Section 5(c) stipulates:

You must license the entire work, as a whole, unitlex License to anyone
who comes into possession of a copy. This LicenBeherefore apply [...] to

the whole of the work, and all its parts, regarslleshow they are packagéd.

This above quoted copyleft requirement is also kmaw the “viral” clause, because
it seems able to “contaminate” any work that hataldished some level of

connection with GPLed codé? However, the virality of copyleft is sometimes

"1 Section 0, “Definition”, GPL 3.0

2 para. 7, Section 2, GPL 3.0

173 5ection 5 (c), GPL 3.0

" However, it has never been clear about the exstemeto which a GPL program is closely
connected enough to “contaminate” a non-GPL prograne issue has never been tested in court.
Raymond and Raymond find there are at least foumpeting theories on the issue. See Eric
Raymond and Catherine Olanich Raymontdicensing HOWTQ 9 November 2002, at
<http://catb.org/~esr/Licensing-HOWTO.html>

Also it seems very difficult to come up with a gealetheory about the issue, which is always quite
project-specific. Lead programmers may have thein mterpretation according to the nature of their

123

unduly exaggeratet® It is often overlooked that there are at leaseehlimiting
factors that would circumscribe the reach of cofpyléirst, GPL does not
“contaminate” privately made modifications. So loag a modification is not
publicly conveyed, no condition applies. Secon@gL does not contaminate so-
called “compilations” in which a GPL covered wonkdaother programs with which
it is aggregated are separate and independentdemim other, even though they are
stored on the same distribution medium. So lontp@se programs are not combined
into one larger integrated program, the “compilaticemains an “aggregate”, which
is outside the reach of copyléff® Thirdly, GPL does not seem to be able to
“contaminate” a program that onbynwittingly incorporates GPL covered code. For
example, Epstein conceives a “nightmare scenarioérer a Microsoft employee-
programmer incorporates a piece of GPLed prograim Microsoft’'s proprietary
operating system without the company’s knowletld&o should Microsoft worry
that its whole operating system is now irreversitidpntaminated” and thus fall
under the reach of GPL? Kumar argues that this yvsriunfounded. Because the
company has no knowledge of the licence and it dussreally “accept” the
condition and thus “there is no meeting of the mindn other words, the copyleft
provision is not contractually binding on the comp4’® However, this view is not
uncontroversial. The FSF’s official jurisprudensehat the GPL is not a contractual

licence but a pure copyright licence. So the validif copyleft does not depend on

own projects. For example, Linus Torvalds argues tie Linux kernel does not contaminate the user
programs that run on it: “This copyright does notver user programs that use kernel services by
normal system calls—this is merely considered nbwsa of the kernel, and does not fall under the
heading ‘derived works.” quoted in Robert W. Gokialvicz, “A First Look at General Public
License 3.0”, (2007) 24 Computer and Internet Laviyeat 15

1 For example, there has been no shortage of snaeapaigns by some proprietary companies to
exaggerate the danger of the viral nature of cdpy®ee Andres Guadamuz, “Viral Contracts or
Unenforceable Documents?” Contractual Validity adp@left Licences” (2004) 26 (8) EIPR 331;
Guadamuz, "Legal Challenges to Open Source Licér{2ée5) 2 (2)SCRIPT-edl63

78 The last paragraph in Section 5, GPL 3.0 makesptbint clear: “A compilation of a covered work
with other separate and independent works, whiehnat by their nature extensions of the covered
work, and which are not combined with it such afoton a larger program, in or on a volume of a
storage or distribution medium, is called an “agate” if the compilation and its resulting copyttigh
are not used to limit the access or legal rightthefcompilation's users beyond what the individual
works permit. Inclusion of a covered work in an @ggte does not cause this License to apply to the
other parts of the aggregate.”

17 Richard Epstein, “Why Open Source is Unsustaiffabknancial Times 21 Oct 2004 at
<http://www.ft.com/cms/s/2/78d9812a-2386-11d9-a88600e2511c8.html>

178 Sapna Kumar, “Enforcing the GNU GPL” 200iversity of lllinois Journal of Law, Technology
and Policyl at 18

124

whether there is a valid contract or A6tTo fully assess the legal validity of GPL is
beyond the purpose of this chapter but it will beugnised in detail in Chapter 4.

The third component of the GPL is its clause onmwhed how to “terminate” the
licence when the second component, i.e., “conditiisnbreached. It is interesting to
note that the termination clause in GPL is basedaftware authors’ property “right
to exclude” and it has a role to play in securimjtvgare freedom. McGowan
famously argues that “[o]pen-source production sragtimately on the right to
exclude” on the ground that this exclusionary rigah be employed to discipline or
deter violation of FOSS licencé® Stallman has long been aware of this disciplinary
and deterrent function and he did write a termoratlause into the Emacs GPL in
1985:

You may not copy, sub license, distribute or transsNU Emacs except as
expressly provided under this License Agreementy Atiempt otherwise to
copy, sub license, distribute or transfer GNU Emacgoid and your rights to
use GNU Emacs under this License agreement shallaltematically

terminated-3*

This text remains largely unchanged in the versibfsand 2.0 of the later general-
purpose GPL. GPL 3.0 amends the termination cléoismake it more lenient to
violators of the licence. It allows grace time faolators to cure the violation
themselves and then provisionally or permanentipstate the licencé®® This
change is intended to alleviate the harshness efatitomatic termination of the
licence and incentivise violators to correct tleim mistakes as soon as possible.

"9«you are not required to accept this License ideorto receive or run a copy of the Program.”
Section 9, GPL 3.0

180 See David McGowan, “Legal Impactions of Open-SeuBoftware” (2001niversity lllinois Law
Review241 at 303; However, Benkler does not agree witGbwan’s view. He suggests that there
can be alternative institutional arrangements fdaee the exclusionary property system: “The same
protection from defection might be provided by atheeans as well, such as creating simple public
mechanisms for contributing one’s work in a wayttimakes it unsusceptible to downstream
appropriation—a conservancy of sorts.” Benkler, 46&'s Penguin”, supra note 154 at 446

181 Copying Policy 4, Emacs GPL, 1985

182 paras. 2&3, Section 8, GPL 3.0

125

Table 3.1 Copyright: Conveying GPL Covered Works
Emacs GPL | GPL1.0 GPL2.0 GPL3.0
(1985) (1989) (1991) (2007)
Conveying Verbatim Copying Policy | Section 1 Section 1 Section 4
Copies (Permission & |1
Condition)
Conveying Modified Copying Policy | Section 2 Section 2 Section 5
Source Versions | 2
(Permission & Condition) Copyleft Section 2 | Section 2 | Section 5 (c)
(b) (b)
Conveying Non -Source | Copying Policy | Section 3 Section 3 Section 6
Forms (Permission &
Condition)
Termination (Violation of | Copying Policy | Section 4 Section 4 Section 8
Condition)

3.5.2 GPL as a Patent Licence and its Limit

In the first decade after the 198ilehr decision, software-related invention patents
were not immediately perceived as a palpable thiceaoftware freedortt: It is not
surprising that 1985 Emacs GPL and 1989 GNU GPLdidhot mention patents at
all. However, awareness of the negative impactabémts on software freedom was
gradually built up from the early 1990s. In 1991e text of GPL 2.0 for the first time
condemned “software patents” as a threat, buillitdstl not give an explicit patent
licence. In 2007, FSF substantially amended thenstg terms concerning patents
in GPL 3.0 in order to partially contain the grogithreat from patents. (See Table
3.2)

More specifically, there are four places where pateare explicitly dealt with in
GPL 3.0. Firstly, the preamble reiterates FSFditi@nal anti-patent position, and it
also signals that some changes have to be madlin3®: “[...] every program is
threatened constantly by software patents. Stéwesld not allow patents to restrict
development and use of software on general-purpasguters, but in those that do,
we wish to avoid the special danger that patendiegpto a free program could
make it effectively proprietary. To prevent thisetGPL assures that patents cannot

be used to render the program non-fré8.”

183 See above Section 3.4.2 of this chapter.
8 para. 9, Preamble, GPL 3.0

126

Secondly, Section 11 is a newly added clause attpligranting a patent licence
from GPL software contributors to users: “Each dbotor grants you a non-
exclusive, worldwide, royalty-free patent licensedar the contributor's essential
patent claims, to make, use, sell, offer for sabgport and otherwise run, modify and
propagate the contents of its contributor versidh.i's noteworthy that a patent
licence like this is not the invention of GPL 3yt the FSF has largely borrowed
the idea from the Apache License, which is a pioneedealing with patents in
relation to FOSS contributioff®

Thirdly, a licensee should not initiate patentgliiion in respect of a GPL covered
work. The consequence of asserting patent righltstiigiger the termination clause
in Section 8, which would stop the patentee-licensem using the licensed work
any further. This is because the condition in $ectlO stipulates that a licensee
“may not initiate litigation (including a cross-ala or counterclaim in a lawsuit)
alleging that any patent claim is infringed by nmakiusing, selling, offering for sale,
or importing the Program or any portion of it”. Teembination of Sections 8 and 10
effectively functions as a patent-retaliation cluwhich has already been used by
some other FOSS licences befbte.

Finally, GPL 3.0 contains a so-called “liberty-agadh” clause: a programmer should
not convey a piece of code to a GPL project, iicvencumbered with an external
obligation (for example, to collect a patent royphhat is in contradiction with the

conditions of the GPL. Section 12 reads: “If yommat convey a covered work so as
to satisfy simultaneously your obligations undas thicense and any other pertinent

obligations, then as a consequence you may notegoitvat all.” Note that this

%5 The patent licence granted by Apache reads: “Stiltjethe terms and conditions of this License,
each Contributor hereby grants to You a perpetvatldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section)midigense to make, have made, use, offer to selll,
import, and otherwise transfer the Work, where slicknse applies only to those patent claims
licensable by such Contributor that are necessanityjnged by their Contribution(s) alone or by
combination of their Contribution(s) with the Worl which such Contribution(s) was submitted.”
Section 3, Apache Licence 2.0

18 To use Apache as an example again, the retaliatarse of the Apache Licence says: “If You
institute patent litigation against any entity (uding a cross-claim or counterclaim in a lawsuit)
alleging that the Work or a Contribution incorpectwithin the Work constitutes direct or
contributory patent infringement, then any patérgrises granted to You under this License for that
Work shall terminate as of the date such litigat®filed.” ibid.

127

clause in GPL 3.0 is not entirely new either, us ia slight revision of Section 7 of
GPL 2.0.

The above four amended parts do not intend to,fblliy only partially, contain the
threat from patents. There is a limit to what &dice can achieve. Stallman believes
that the root of the whole problem lies in the legystem issuing “software patents”
in the first placé®’ The changes made in GPL 3.0 only reflect a praignmadve to
work with ratheragainstthe existing patent regime in order to minimise threat
from patents to software freedom. GPL, however niegally sophisticated it may

be, is simply not able to eliminate the root problef “software patents” altogether.

Table 3.2 Patent: Partially Containing Patent Threa ts Through GPL
Emacs GPL | GPL1.0 GPL2.0 GPL 3.0 (2007)
(1985) (1989) (1991)
Preambular text | N/A N/A Preamble Preamble
condemning “software
patents”
Liberty-or-Death Clause | N/A N/A Section 7 Section 12
Patent Licence N/A N/A Implicit Section 11
Patent Retaliation N/A N/A N/A Sections 8&10

3.6 Conclusion

This chapter is a survey of two types of “intelledt property’—copyright and
patent—and their respective impact on softwaredivee FOSS programmers do not
endorse “intellectual property” as a unified bodyaw, but argue that a more subtle
understanding is required. There are three obsensatoming out of a scrutiny of
the subtleties of this issue. Firstly, FOSS progrers generally endorse copyright,
which is the main legal basis for them to licenseirt software in a non-exclusive
fashion. However, they are against some compamfetts to stretch copyright
further to cover the non-expressive part of sofew&econdly, standalone softwése
normally not a patentable subject matter in eitfle€C countries or the US. Under the
EPC jurisprudence, the patentability of a softwalated invention depends on
whether the claimed subject matter has the righd kif “technical character”. Since
the 1987Vicomdecision until now, the EPO has failed to appbirgle consistently

used interpretation about the meaning of “technitaracter”, a fact that has led to

87 Stallman, Richard, “Fighting Software Patents—$ingand Together”, 2004, at

<http://www.gnu.org/philosophy/fighting-softwarepats.htmI>
128

great uncertainty over this issue. In the US, ftbm1972Bensoncase to 201@ilski
case (viathe 1998State Streetase), its legal system has also been struggling to
produce a suitable test to assess the patentabilitgoftware-related inventions.
Among FOSS programmers, patents have remainedisivéivissue. Non-corporate
volunteer FOSS programmers tend to have an arginpgbsition because they are
more vulnerable to patent infringement allegatiowbjle corporate open source
participants tend to be more interested in refogiine patent system than abolishing
it altogether. Thirdly, the gradual maturing of GBRbm 1985 to 2007 reflects a
continuous struggle to find a way to protect sofeviieedom in an ever-changing
legal climate. GPL is primarily a copyright licenteat creates a unique copyleft
mechanism to build an unbroken chain of softwaeedom. It also responds to
programmers’ growing concern about patents by smlisily amending its latest
version of GPL in order to partially contain thedat from patents. The next chapter

will discuss the legal validity of the GPL and soatker licences.

129

Chapter 4 Understanding FOSS Licences as Standargorms—A
Relational Contract Perspective

4.1 Introduction

As has been discussed in previous chapters, the gual of FOSS licensing is to
securing software freedom in radically decentrdliE®SS projects. As programmers
may well have different and evolving expectatiomow the outcomes of their
collaborative efforts, it is important for a licento standardise the minimum legal
commitments for all contributors in order to prevengiven FOSS project from
freewheeling into a Babel of legally incompatibleagments. These legal
commitments, when verbalised by the licences, niestpursuant to the FOSS
stewardship responsibility under the Free Softvi2eéinition and the Open Source

Definition.

Although the goal that FOSS licences intend toaaehis undoubtedly important, the
legal basis on which these licences are made ex#ble is not always clear. This is
largely due to the fact that FOSS licences are Ipdake-it-or-leave-it standard
forms, which are electronically disseminated alagsoftware through the internet
on a mass scale. These licences do not seek affranassents from licensees or
adhering parties through traditional bargainedefxchanges, but they are most likely
to be given in either of the two types of electoostiandard forms, i.e. clickwrap and
browsewrap. The clickwrap requires users to clichigh the “Yes, | Agree” button
before downloading or installing a particular piecé software, while the
browsewrap is merely an electronic notice contgticensing terms and conditions.
As most users do not read, let alone fully digedt,information contained in
clickwrap or browsewrap licences, their assentsai@ to be “presumed” rather than
“actual”.! The upshot is that there seems to be no obviousenbwhen the meeting
of minds between licensors and licensees unequlydtappens in a non-bargained-

for process like this. When put under the strictoy of classical contract law, the

! Nancy Kim, “Clicking and Cringing”, (2007) 8®regon Law Review97; Nancy Kim, “The
Software Licensing Dilemma” (2008righam Young University Law Revidd03

130

absence of “actual” assents or that of the meetinginds poses a serious challenge
to the legal validity of all sorts of non-negotiétetandard fornfs and FOSS licences

are no exception.

In this chapter, | attempt to show that standaninfd-OSS licences are better
understood through the lens of Relational Contiotory (RCT) than they are
through the lens of the classical contract modéker& are two equally important
reasons for software licensing jurisprudence tmiporate insights from the RCT.
First, proponents of RCT believe that the totalgdilon does not merely arise from
a single moment when parties’ minds are supposetktt, but more realistically the
obligation may also be shaped by ongoing relataoneng parties. In FOSS projects,
contributors’ consent to their obligation of makicwntribution takes place in a more
incremental way and are often derived from richlatmrative relations among
contributors. It is worth noting that RCT does muoake “consent” completely

irrelevant in a standard form. To the contrary, R&ily alleviates the heavy burden
on explicit “consent” as the sole legitimating maism of imposing obligations

against the adhering parties. Macneil, as the neaponent of this approach to
contracts, includes “effectuation of consent” ag @h the common contract norms
and he believes that consent still plays an impbortaiggering mechanism in

consensual relatiors.

Secondly, a sustaining FOSS project relies on aadd dynamiccollaborative
relationsamong contributors in a community, but it is ngiraduct from a single or
even multiple discrete transactionsbetween utility-maximising strangers as
understood by classical contract theory. For tleigson, RCT is an appropriate
theoretical tool, which helps us to imagine how tléaborative relations in FOSS
could be recognised and managed. In particular,RB& approach differentiates
itself from the influential (but not uncontroveipurisprudence developed from the
landmark Seventh Circuit cageroCD v. Zeidenbergwhere Justice Easterbrook
made a mass-market standard form licence conticerforceablé' In this chapter

2 David W. Slawson, “Standard Form Contracts and &matic Control of Lawmaking Power”
(1971) 84 (3Harvard Law Revievb29

% lan MacneilThe New Social Contract—An Inquiry into Modern Gactual RelationgNew Haven
and London: Yale University Press, 1980), pp.49fseafteNSQ

86 F.3d 1447 (7th Cir.1996)

131

I aim to show that the justification of FOSS licemgsdoes not have to be built upon
the controversialProCD ruling which assumes that parties merely as uwWility
maximising agents. Instead, RCT provides a diffegeaund to understand standard-
form FOSS licensing, where a variety of non-utiitsaximisation motivations need

also to be taken seriously in understanding thieirto create software commons.

The rest of the chapter is divided into four pafise first part (Section 4.2) briefly
exposes the two contrasting perspectives of sesftgvare licensing as “relational
contract” and *“discrete transaction” respectively. shows that the difference
between the two is again rooted in the early confbetween the tradition of
“stewarding” software as commons and “owning” saitevas private property since
the inception of FOSS licensing. The second paectiSn 4.3) identifies three
possible doctrinal routes to enforcing a given FQ&Shce via “contractual licence”,
“bare licence” and “promissory estoppel”. It demwates that some difficulties of
applying these existing doctrinal rules to addtessegal validity of FOSS licensing
warrants an exploration of the more suitable fraorkvwoffered by RCT. The third
part (Section 4.4) re-examines GPL by applying sanseghts from the relational
approach. It shows that GPL as a relational “untd@jjreement” does not prescribe
any substantive obligation concerning actual cbotrons from individual
programmers, but it only specifies a few minimunigdiions to ensure all peer-
produced contributions are free software compond#rds can be later aggregated
together into one project. The fourth part (Sectds) concludes the chapter.

4.2 FOSS Collaboration: Discrete Transaction or Reltional Contract?

A collaborativerelation in a FOSS project is very different from the swotak of a
host of one-shot discreteansactionsof software code. Instead, the relation belongs
to a continuum where peer-produced contributiores @eced together in a long
timeline. In order to render the distinction cleneed to spell out the difference
between two approaches to software licensing. Griba “discretist” approach that
treats software as stand-alone finished productseldped by professional
programmers for end-users, while the other is #lational approach that views
software as an indefinitely long communicative s with no clear boundary

between individual exchanges.

132

4.2.1 Discretist Approach: “Presentiation” of Total Obligation

Truly discrete transactions are very rare in tta weorld. They are largely idealised
situations assumed by classical contract law, wlian be seen as a potent
embodiment of “methodological individualism” in Egscholarship. This discretist
view of contract artificially atomisesocial relations into isolated transactional
segments, where parties are assumed to be congdtategers solely interested in
maximising individual utility’ The discretist view of contract can be traced hack
Henry Maine, whose methodological individualistniting has great influence in
shaping the ideology of classical contract law. piat it bluntly, his famous
observation about modern society’s transition fr@tatus to contract” can be seen

as no more than a movement of “from status to diedransaction®.

Although completely discrete transactions are allégtion, there may be instances
fairly closeto them. Macneil's famous example of almostdiscrete transaction is
“a cash purchase of gasoline at a station on the Mgsey Turnpike by someone
rarely travelling the road”This purchase happens between complete stranders w
are very unlikely to meet again and repeat the saamsaction. However, situations
like this example are extremely rare, and even glognocery shopping in a
supermarket does not fit into this kind of discretasactional model. Supermarkets
do want to establish some kind of relationship Inelysimple one-shot transactions.
For instance, they may well have schemes to mak®eers collect loyalty points.
Some of them may even encourage customers to péastec bags by giving “green”
points. A truly discretist supermarket do not cabeut how “loyal” or “green” their

customers are.

® Campbell and Collins point out that classical cacitlaw denies the “social character” of contract
exchanges: “the classical law of contract reprodube principal structural contradiction of bourigeo
society—a society which has at its heart a derfidisosocial character.” David Campbell and Hugh
Collins, “Discovering the Implicit Dimensions of @wacts”, inIlmplicit Dimensions of Contract—
Discrete, Relational, and Network Contracesds. by David Campbell, Hugh Collins and John
Wightman (Oxford and Portland, Oregon: Hart Pulitigh2003) p.26

® For Maine’s methodological individualist view adcety, see Edward Shils, “Henry Sumner Maine
in the Tradition of the Analysis of Society”, ithe Victorian Achievement of Sir Henry Maine: A
Centennial Reappraisakd. By Alan Diamond (Cambridge: CUP, 2001) pp-544

" Macneil, “Contracts: Adjustment of Long-Term Ecamio Relations Under Classical, Neoclassical,
and Relational Contract”, (1978) 72 (@prthwestern University Law Revi€s4 at 857

133

There are two salient characteristics of the dimtrehinking. First, discrete
transactions are treated as though they happersatial vacuum and do not bond
parties into long and sustaining relationships. yraee deemed to happen among
“total strangers” who are “brought together by atefnrather than “any common
social structure” In other words, parties in discrete exchanges ammised
individuals and each of them “would have to be cletgby sure of never again
seeing or having anything else to do with the dti&@econdly, discrete transactions
are transient and short-lived. They do not lastobdythe point when they are
consummated. The very brief life-span of transasticc essential to transactional
discreetness: “everything must happen quickly tlestparties should develop some

kind of a relation impacting on the transactiorasdo deprive it of discreteness.”

It is important to note thatoo much bargain would expand the lifespan of a
transaction and thus risk the loss of discretemesgchanges. Macneil observes that
“bargaining about quantities or other aspects eftthnsaction can erode discreteness,
as certainly does any effort to project the tratisacinto the future through
promises.** For this reason, discretists do not welcome lengihd elaborate
bargained-for exchanges leading to contract folmnatbecause bargains may well
blur the discreteness of transactions and at three dane raise the transaction cost.
Interestingly, this discretists’ hostility to bargeng reveals a built-in paradox of
classical contract model. An unrelenting pursuitrahsactional discreetness would
inevitably erode the importance of bargained-foch@nges, which are ostensibly at
the heart of a binding classic contract. The saerifof “bargaining” for
“discreteness” is a departure point where classcaltract law starts to relax its
requirement about “meeting of the minds” in contrarmation. This relaxation
results in the classical contract law rapidly (a@mewhat imperceptibly) mutating

into the “neo-classical” law of contract, which emtipts to soften the classicist

8 Macneil further points out that the discretistgfpr “only a barter of goods, since even money
available to one and acceptable to the other mastisome kind of common social structuiieid., at
856
% ibid.
ibid.
ibid.

134

doctrinal rigidity to some exterif. Throughout this chapter, | argue that the real
hurdle to a relational understanding of FOSS lioepss not the unadulterated
classical model itself but itsneoclassicalmutant. This neoclassical rationale in
enforcing mass-market software licences is presumedtasterbrook’sProCD
ruling®™®, which will be shown to be fundamentally differeinom the Macneil’s
relational approach in sub-Section 4.2.3 in somesndetail.

Turning Software Development into Discrete Product&Commaodities

As has been discussed in Chapter 2, software dawelot, under its early hacker
custom, is by no means the production and ciranadf many discrete products, but
it is always a work in progress or an indefinitébyng collaborative process. (The
over two-decade long Linux kernel project in pr@grés a case in point here.) When
the publicly available source code was allowed é¢ariodified by the public under
the hacker custom, it was relatively difficult fimdividual programmers to privatise

their intellectual inputs into alienable end-proisuc

However, since the mid-1970s, some commerciallydedhprogrammers gradually
figured out how to turn the non-discrete softwaegedopment process into discrete
end-products, which were a necessary prelude tmgeaoftware like any other
“physical” commodity** In order to artificially create discreteness foftware, they
needed to go through two crucial steps. First,wso# developers needed to
distribute only the object code of software withaetealing the corresponding
source code. Without seeing the hidden source débemade difficult for users to
customise the software to their needs when negesthe closed-source software
thus loses its “extensibility®, but at the same time it acquires quasi-physical

“thingness” with a much more clearly defined bouryda

2 Feinman observes that “[n]eoclassical methodrisxaof rules and standards. This is still doctrine,
by and large, but it is doctrine of a much softert shan in classical law. See Jay M. Feinman,
“Relational Contract Theory in Context”, (2000) Rdrthwestern University Law Reviéi87 at 739

1386 F.3d 1447 (7th Cir.1996)

4 Macneil points out that discretisation and comrtisdiion go hand in hand under classical contract
law, which “transactionizes or commodifies as masthpossible the subject matter of contracts”. See
Macneil, supra note 7 at 863

'3 For the discussion of “extensibility” of softwasee Section 1.3.1 Chapter 1

135

If the first step is about acquiring quaiysical discreteness for the closed source
software, the second step can be seen as an atterdefine thdegal discreteness
through using proprietary software licensing scheniecause the first step itself
cannot prevent the hidden object code from beimgree engineered back into a
source code version by its users, programmers tlasggsgn an extra layer of
protection by using proprietary software licencBsese licences are usually drafted
in a way that a broad, and often overbroad, rarigectivities by users—including
reverse engineering, copying, modifying, redistiihg—are strictly prohibited® In
short, the purpose of these proprietary licence® imake the software as tightly
discrete a product as possible in legal terms,ghaome of the prohibitions may
risk upsetting the balance preset by copyright fAwurthermore, software as
discrete product is often released via a legaloletof standard-form contracts on a
take-it-or-leave-it basis. In this way, the traglital manifestation ofonsenthrough
bargained-for exchanges is minimised to a levelrevliee non-negotiable licensing
terms start to resemble those unmodifiable physfeatures imbedded in the
software products. Radin incisively observes thasé standard form licences
undermine traditional consent as the centrepieceootracts. She points that the
“contract-as-consent” model is being replaced whih “contract-as-product” model,

where licensing terms are an inseparable parteofiibcrete product.

In this [contract-as-product] model, the terms pagt of the product, not a
conceptually separate bargain; physical produd pduns are a package deal.
The fact that a chip inside an electronics item wiar out after a year is no
less and no more a feature of the item and itstgubbn the fact the terms that
come with the item specify that all disputes mustrbsolved in California
under California law. In this model, unseen corittaoms are no more and no

less significant than unseen internal design featuand it is not remarkable

8 Mark Lemley, “Terms of Use” (2006) 9flinnesota Law Revied59

" For example, UK copyright law does allow reversgieeering or “decompilation” for the purpose
of achieving interoperability by lawful users witltocopyright holders’ permission. Any licensing
term that attempt to contract out this permittetivaculd be illegal. See Section 50B, CDPA 1988;
See also Section 3.3.3, Chapter 3 of this dissent&r more detail.

136

that there is no choice other than the take-itear-it choice not to buy the

packagée? (added emphasis)

In the US, the contract-as-product model becomesliéiminant approach to software
licensing after the US Seventh Circuit's c&eCD v. Zeidenberd It is explicitly
endorsed by Easterbrook who argues that “[c]loniedctterms are product
attributes—no different functionally from the qugliof a car’'s tires, a TV'’s
capacitors, or a software package’s features [2°.Fontrary to this view, | will later
show, in Section 4.4, that licences that felicaa®SS collaboration need to keep a
critical distance from the “contract-as-product” aef but a vision of “contract as
relation” is more appropriate to account for thal iived cooperative experience

among FOSS programmers.
Presentiation and Proprietary Software Licensing

Closely related to proprietary software licencefempt to discretise software
development process into separate non-extensiblgerducts is what Macneil calls
the “presentiation” of total obligation into thelgmensing documents. “Presentiation”,
in short, is a technique used by classical conti@gtto bring the future into the
present! It is “a way of looking at things in which a persperceives the effect of
the future on the present®.Classical contracts use this technique to redbee t

uncertainty of contractual exchanges that mayftasa period of time into the future.

Recall that ideally discrete transactions are assuto be transient and short-lived as
if they almost have no duration. However, this viefvzero-duration transactions
does not always tally well with reality, where masintractual exchanges do not
consummate at one single moment, but last intdutuge. In order to cope with this
problem, classical contract law has to employ thehnique of presentiation by
compressing the future relation into a single pa@istif it had no duration at all.

Macneil describes how presentiation takes place:

8 Margaret Jane Radin, “Humans, Computers, and Bin@ommitment” (1999) 75%ndiana Law
Journal1125 at1126

9 See Michael J. Madison, “Legal-ware: Contract @umpyright in the Digital Age” (1998) 67 (3)
Fordham Law Review025

% Frank Easterbrook, “Contract and Copyright” (2088)(4)Houston Law Revie@53 at 968

I Macneil,NSG p.60

22 Macneil,supranote 7 at 863

137

[Presentiation] is a recognition that the coursehaf future is so unalterably
bound by present conditions that the future has beaught effectively into the

present so that it may be dealt with just as viiére in fact the present. Thus,
the presentiation of transaction involves resmigtits expected future effects to

those defined in the preseng,, at the inception of the transactioh.

From proprietary software developers’ point of vjagle very indefinitely long-term
collaborative relations under the hacker custonesiadeed too open-ended to be
predicable. Proprietary software developers havaide classical contract law’s
technique to presentiate total obligation into @erising document. In this light,
users’ activities that may prolong the lifespantraihsactions (e.g. through reverse
engineering, user customisation, error correctioegistribution etc.) are all deemed
to be undesirable and they should be minimised uhdensing terms in order to

reduce future uncertainties.
4.2.2 Relational Approach: Projecting Exchange intdhe Future

The radically decentralised FOSS production anticemsing schemes defy classical
contract law in two senses: they are neither discmeor can they be presentiated.
First, FOSS is designed to be extensible and custdme, and it invites users to
become co-developers to modify and improve thewso# wherever they see
appropriate. Stallman observes that FOSS develdpisefike “an evolutionary
process, where a person would take an existingrano@nd rewrite parts of it for
one new feature, and then another person woulditeeyiarts to add another
feature”?* From proprietary software developers’ viewpoirte tindefinitely long
“evolutionary process” is unwieldy and unmanagealblecause it threatens the
transactional discreteness that is more conducivecdmmercialisation of the
software products. In contrast, FOSS developersheeng “evolutionary process”
exactly as a strength that should be celebratedikéJrshort-lived discrete
transactions, the non-discrete collaborative retestimake FOSS projects capable of

growing and perfecting for a considerable periotime. FOSS licences here play an

ibid.
%4 Stallman, “Why Software Should Be Free” at <hftpaiw.gnu.org/philosophy/shouldbefree.html>
138

important role in facilitating the collaborativefatts among programmers, though

they are not collaborative relation itself.

Secondly, total presentiation is very unlikely atx¢ place in a radically decentralised
environment where FOSS is produced. This is bectiigseollaborative relations in
FOSS projects are rather open-ended and improwsatod it is impossible to
presentiate future creative efforts onto one pregaper or electronic document that
is intended to binding. To some extent, a FOSSeptajan be likened to a marriage
or a family business where “the participants nextend or expect to see the whole
future of the relation as presentiated at any sitighe, but view the relation as an
ongoing integration of behavior which will grow amdry with events in a largely
unforeseeable futuré>Although there is no presentiation of total obiigas for
FOSS contributors, this does not mean that ther@iplanning whatsoever at all
within FOSS projects. Instead, a modicum of preliany planning by a few lead
programmers is always necessary to make sure Bhabrdributions can later be
safely and effectively pieced together into oneereht artefact under a modular
architecture’® In other words, these projects do involve someellef planning,
which prevents them from freewheeling into completgarchy. However, this
planning in FOSS projects is incremental and tergaand it is not anywhere close
to presentiatiofd’ It is up to a small group of lead developers talfout the right
balance where partially presentiated obligations rdd hurt the flexible and
serendipitous nature of FOSS projetts.

Relational Exchange and FOSS Collaboration

Classical contract law is centred around the problE enforcing promises in

discrete transactions. It asks whether a promisesat of promises made by a party

> Macneil, “Restatement (Second) of Contracts anesdMtiation”, (1974) 60 (4Yirginia Law
Reviewb89 at 595

6 See Section 1.3.1, Chapter 1

27 0On top of the preliminary design for FOSS projepticipants often involve in what Macneil calls
“post-commencement planning”, where “planning awnis after formation of the relation and after
entry of a new person into the relation.” Macn®i§G p.27

%8 Kelty argues that coordination in FOSS project mseprivileging “adaptability” over “planning”:
“This involves more than simply allowing any kindl modification; the structure of Free Software
coordination actually gives precedence to a genzexhlopenness to change, rather than to the
following of shared plans, goals, or ideals diadabe controlled by a hierarchy of individuals.” kel
Two Bits p.211

139

should be enforced or not in a discrete and prigedt exchangé’ In contrast,
relational contracts are anchored in the morelflexand less presentiated exchanges

and they are of great importance to sustain long-t0SS collaboration.

Macneil defines his conception of “contract” as “nwre and no less than the
relations among parties to the procespmiecting exchange into the futuré®pr
more succinctly, “the projection of exchange inte tfuture™®!. This definition
reveals a crucial distinction between the relatioapproach and the classical
approach in terms of their respective attitudesarol the element of “futurity” in
contract: A classical contract sees future as tharce of uncertainty and
unpredictability, which must be tamed by the clissi technique of total
presentiation at the time when the contract is madether words, the total legal
obligation of the classic contract is set at thgitn@ng of the exchange when an
offer meets its acceptance. In contrast, a relati@ontract is more flexible and
adaptable to the future. Far from abhorring themelet of futurity in exchange,
relationalists regard future as a source of sepétydihat could be celebrated. To put
the contrast fully in another way: a classical cactt presentiates the future into the
present, while a relational contract projects theent exchange into the future. This
contrast is also readily applicable to the diffeerbetween proprietary software
developers and FOSS programmers. The former eduiate with uncertainty that
must be minimised at all cost, while the latterebehte the serendipitous element of

future that may unfold gradually in a radically detralised creative environment.
Promissory and Nonpromissory Projectors

For Macneil, a relational contract is more thanehea matter of enforcing promises.
It covers a broader scope than an explicitly bawggifor promissory exchange under

a classical bilateral executory contricA valid relational contract can have both

29 For example, this promise-centred view of contcaat be found in the US Restatement (Second) of
Contract, which explicitly defines “contract” as paomise or set of promises for the breach of which
the law gives remedy, or the performance of whioh law in some way recognizes as a duty.”

American Law Institute, Section 1, Restatement ¢8dy of the Law of Contracts

% Macneil,NSG p.4

31 Macneil, “The Many Futures of Contracts”, (1973-Z South California Law Revie®92 at 712-

3

32 Whitford points out that Macneil’s works on RCTeanore than a theory of contract, but they are
very close to a general theory of social order.&Teader should be aware that Macneil himself

140

promissory and non-promissory aspects, both of hwilgenerate expectations for
parties to project exchange into the future. Toibegth, a “promise” is a most
straightforward projector that parties use to mexkglicit verbalised agreement with
others. Macneil defines “promise” as the “[p]reseminmunication of a commitment
to engage in a reciprocal measured exchange” asdait “extraordinarily powerful
mechanism for projecting exchange into the futdfe” However, promissory
projectors do not form the whole picture of contwat exchanges. From a
relationalist perspective, there are also nonprsonysprojectors that play an equally
important role in shaping parties’ expectatidhBor example, the previous course of
repeated dealings unsupported by verbalised agrdemean be important
nonpromissory projectors from a relational perspect® Macneil argues that
nonpromissory projectors are important in shapie@tional exchanges in both

primitive and modern societies:

Nonpromissory exchange-projectors [...] come in aagreany forms. In all
societies, custom, status, habit, and other inlieateons project exchange into
the future. In some primitive societies these mayhe primary projectors, with
promise relating to exchange playing only a verpanirole, if that. Moreover

we err if we fail to recognize that such nonpromigsmechanisms continue to

conceives of his work as much broader than anythiogt other contract scholars recognized as
contract law. His relational contract theory encesges all exchange, and because Macneil sees
exchange occurring almost everywhere, his theoppimes in effect a general theory of the social
order.” William C. Whitford, “lan Macneil's Contrition to Contracts Scholarship”, (1985)
Wisconsin Law Revie®45 (hereafter “Macneil’s Contribution”)

% Macneil, NSG 7

% In the academic literature, these nonpromissoojepts are also known as the “implicit dimension”
of contractual exchanges. For more detail aboussdal contract law's limited efforts to
accommodate the implicit dimension, see David Catiphnd Hugh Collins, “Discovering the
Implicit Dimensions of Contracts”, itmplicit Dimensions of Contract—Discrete, Relatibnand
Network Contractseds. By David Campbell, Hugh Collins and John hfigan (Oxford and Portland,
Oregon: Hart Publishing, 2003)

% The English casaird v. Marks & Spencehighlights the divide between the classical and
relational approaches to the previous course dfrdmaas a nonpromissory projector. In this case, t
claimant Baird had been a garment supplier to #ierdlant Marks & Spencer for the past thirty years
without a written agreement. The latter suddenlypged placing order from the former, which
believed that they deserved reasonable notice defar proper termination of the relation. The UK
Court of Appeal, from a classical perspective,afjsirded the previous relation and refused to iraply
contract between the two parti&aird Textile Holding Ltd. v. Marks & Spencer p]2001] EWCA
Civ 274.

In contrast, Mulcahy and Andrews, employing a refwl analysis, finds that the non-verbalised
agreement manifested in long-term relation shoudd emforceable. Linda Mulcahy and Cathy
Andrews, “Baird Textile Holdings v Marks & Spendelc” in Feminist Judgements—From Theory to
Practice (Oxford and Portland, Oregon: Hart, 2010)

141

play vital parts in the most modern and developesbacieties Even kinship, a
form of status which plays major roles in so maogiaties, is by no means
absent as an exchange-projector in [modern sociakyjough it may now be

overshadowed by class or other structures withighgrtelated roles®

In the history of FOSS collaboration, the earlyksacustom has long functioned as
a nonpromissory projector influencing computer eaisk “relational” exchanges
since the 1950s and 1960s. This hacker custom,hwivis only retrospectively
documented by Steven Levy in 1984, was Iinitiallyydan ethic seldom codified,
but embodied instead in the behavior of hackerisleéves™’ The advent of FOSS
licences like GNU GPL largely verbalise the sometlod previously uncodified
programmers’ stewardship responsibilities into egprpromissory projectors. Note
that express licensing terms in FOSS licences oadify a minimum set of legal
responsibility necessary for the preservation diwsre commons, but it by no
means spells out every single detail in FOSS cotktion® In short, non-verbalised
commitments play an important role in the day-tg-daperation of FOSS
collaboration and their importance cannot be eelipby the verbalised licensing

terms.
RCT’s Two Implications for FOSS Licensing

Given the subject of this dissertation, it is imgbke to give a comprehensive survey
of Macneil's RCT and its great influence on contenapy contracts scholarshipl
narrow my research down to two implications tha arost crucial to a relational
analysis of FOSS licensing. These two implicatiares based on a general survey of
Macneil's theoretical contributions to contractshaarship by Whitford, who
concludes that Macneil has two important “messages$dwyers. The first message

is relatively well received and the second is &ilely underappreciated by lawyers.

% Macneil,NSG p.7

37 Levy, Hackers p.7

% In fact, it is impossible for general-purpose FQi&nces like the GPL to go beyond specifying the
minimum responsibilities. For example, importasuiss concerning when, what, by whom and how
those many contributions are made often remainagiied in these FOSS licences.

% For a recent research on Macneil’s great conidbuto contract scholarship, see Cathy Joanne
Andrews,Bridging the Divide—An Exploration of lan MacneiRelational Contract Theory and Its
Significance for Contract Scholarship and the Liwatbrld of Commercial ContractPhD Thesis,
(London: Birkbeck College, University of London,12)

142

Macneil’'s first message is that “there is no singlement at which the parties
confirm a meeting of the mindeespecting the important terms of the contratt.”
This is clearly an attack on classical contract'$amsistence that there should be a
single grand moment where parties’ minds meet dintheir obligations would be
fully presentiated from that moment on. In a magalistic fashion, RCT suggests
that parties’ consent to an agreement may welleaehed incrementally through a
period of timeWhitford finds that this insight has been “gengratcepted”: in this
sense, RCT has superseded classical contract ldwemomes the “now mainstream
contract theory.** In the US context, the recent judicial developmienthe more
specific area of information product licensing hiasgely proved Whitford’s
observation correct. The line of jurisprudence gpeaded by the 1996 landmark
ProCD ruling again serves as an important example ferpilwpose of this chapter.
In ProCD, Easterbrook challenged the classicist model lggssting that a licensing
contract was not formed at the single point whensthftware was purchased. Instead
a user’s consent to the licence can be construntedoeriod of time between the
point of purchase and the actual use of the liakmseduct. In this period, the user
arguably had ample opportunity to read and digestdontent of the licence and
there was no excuse for him to say no consent @rased. Barnett, in approving this
logic behindProCD, comments that “[t]here is no reason in principley contracts
cannot be formed in stages, provided the circunss&or prior practice makes this
clear or adequate notice is provided. This insightneither revolutionary nor
reactionary.*” From a pure classicist point of vieRtoCD and its progeny represent
a “neoclassicalturn® that started to erode the traditional mechanismouofsenting

where minds only meet at single one point. This enisvsometimes lamented as the

“°The single moment of the meeting of minds is dyaghat is required by the classicists’ technique
of presentiation: “Before this grand meeting of dinthere was no contractual liability. And afteist
point, all important decisions—particularly the elehination of the terms governing the relationship
and the measurement of expectation damages—couldedehed only by referring to that all
encompassing agreement.” Whitford, “Macneil’s Cinttion” supra note 32, at 546

*Libid., at 548

“2Randy E. Barnett, “Consenting to Form Contracf8002) 71Fordham Law Review27 at 644;
Macaulay looks at the same issue from a slighttieint angle. He points out that Barnett’s proviso
(i.e. “provided the circumstances or prior practicakes this clear or adequate notice is providad”)
the above quoted sentence matters should be givea meight in reality: “The essential part of
Barnett's observation is in his proviso. Those vefip terms into the fine print almost never make
anything clear or give notice adequate enough teesthe legitimating idea of actual or manifest
choice.” Stewart Macaulay, “Freedom from Contre@tilutions in Search of a Problem?” (2004)
Wisconsin Law RevieW77, FN 94 at 804 (hereafter “Freedom from Colttityac

3 Seeinfra Section 4.4.1

143

cause leading to “waning of consefitdr even “death of assefitin the neoclassical
standard-form licensing jurisprudence, which is mlass strict about the affirmative
manifestation of licensees’ explicit assents. Alttjo the neoclassical law seems to
take on board Macneil’s first message, | call fonare careful and nuanced reading
of RCT, which will reveal that “assent” or “consérg not irreversibly “dead”, but
they still play “a vital triggering mechanisnaf relational exchangé®and it is
important to understand “consent” in relationahtsr Just as Gudel observes there
has never been a real “decline of assent,” butetlieronly “a decline of assent

discretelyunderstood” in contract jurispruderite.

Macneil's second message is a cautionary one: wbairacts scholarship moves
away from the consent-driven classical model, ihidanger of recalibrating contract
law as a neoclassical apparatus solely for theqa@rpf promoting parties’ “desire to
maximize wealth® This is not what a true relational approach shauftbrace, but
in fact “parties in relational contracts frequent&mper wealth maximization goals
with other objectives® In fact, Macneil himself makes it clear that peojaiining in
relational exchange are by no meankelymotivated by maximising their individual

utility, but they are also driven by their desioe &€nhancing social solidarity.

Going back to the discussion of standard-form saféwlicensing, the neoclassical
ProCD ruling again is exactly an exemplary occasion,iregawhich Macneil’s
second message warns. Sidelining the role of ciassconsent”, Judge Easterbrook

reoriented the ground for enforcing standard-foroerices towards the need of

4 Margaret Jane Radin, “Boilerplate Today, The Riséodularity and the Waning of Consent”,
(2006)104Michigan Law Review 223

5 Mark Lemley, “Terms of Use” (2006) Mlinnesota Law Review59 at 464

6 Macneil, NSG p.50; | will also show later that, for those FOP®ducts targeted at non-
sophisticated end users (rather than professiandewelopers), a higher requirement of affirmative
manifestations of users’ assents (e.g. througleltbkewrap technology) is not completely unnecessary
4" Paul J. Gudel, “Relational Contract Theory and@esmcept of Exchange”, (1998) Biffalo Law
Review763 at 773

“8\Whitford , “Macneil’s Contribution” supra note 32 549; For more detail about the this wealth
maximisation view of relational contract, see fotample, Charles Goetz and Robert E. Scott,
“Principles of Relational Contracts” (1981) 67 {6)jginia Law ReviewlL089

49 Whitford, supra note 32 at 550

*% Jan R. Macneil, “Exchange Revisited: Individualllty and Social Solidarity”, (1986) 96 (Hthics
567; Robert W. Gordon, “Macaulay, Macneil, and Biscovery of Solidarity and Power in Contract
Law” (1985)Wisconsin Law Revie®65

144

reduction of transaction costslt is necessary to enforce the license in this case
because it would “make information more readily ilde, by reducing the price
ProCD charges to consumer buyeP$.The kind of consent obtained through
traditional ways of bargaining would only make saations too costly to benefit
information product suppliers and consumers ecooaltyi®® It is important to know
that an economic justification of standard formke Ithis was not first invented by
Easterbrook, nor is it unique to mass softwarenbagg, but it is preceded by many
non-software cases long time ago before RneCD. Whitford nicely summarises
this general shift from obtaining classicist corisén guaranteeing wealth-
maximisation as the basis of legitimating Standamin Contracts [SFK]:

It is now generally recognized that true consenaltoaspects of the SFK is
usually lacking. From a wealth maximisation perspecthis is as it should be.
Individual negotiation of every contractual detabuld take too much time.
Because of the absence of true consent, a mafritcpmmentators no longer
regard agreement to a SFK as sufficient to valittateontent. Rather, judicial
and legislative oversight of some terms is deemeth appropriate and
desirable. In suggesting ways to exercise that soyler, however,

commentators very often look just to wealth maxatian values. The question
they frame is what terms the parties would haveedjto if they had negotiated
the contract, were well informed, and were conagrselely with wealth

maximization>* (internal citations omitted)

With this background in mind, | argue that any @esi attempt to justify FOSS
licensing must cautiously distance itself from tiwealth-maximisation oriented
jurisprudence developed iRroCD. Instead, it needs to take on board Macneil's

second message that relational contract promotesultiplicity of values but the

*1 According to Macneil, neo-classical contract labuilt on the foundation of microeconomics. The
Coasean transaction cost analysis may subtly vasyneoclassical model, though the presupposition
that human beings are utility-maximisers does hainge. See Macnelil, I.R., “Economic Analysis of
Contractual Relations: Its Shortfalls and the Némda Rich ‘Classificatory Apparatus’ ”, (1981) 75
Northwestern University Law Reviel@18

>2ProCD v. Zeidenberg86 F.3d 1447 at 1455

%3 In Easterbrook’s own words, this would “drive grcthrough the ceiling or return transaction to the
horse-and-buggy age.” 86 F.3d 1447 at 1452

** Whitford, supra note 32 at 553,

145

wealth-maximisation objective is only one of th&hThe reduction of RCT to the
neoclassical model would only risk impoverishing Macneilian relational contract.
A radically decentralised FOSS project attractsaegd number of volunteer
contributors rightly because utility maximisatios mot the only predominant
motivational force, but programmers are motivatgcabvariety of reasons. A 2005
empirical survey shows that the top three motivetidoehind volunteer FOSS
contribution are intrinsic intellectual enjoymeritomding, the prospect of improving
programming skills and the belief that FOSS is atlocause for its own sake.
None of them is directly about the increase of k@buators’ material utility or
wealth®® It can be argued that relational contracts in F@&fects are intended to
create a kind “relational wealtRi*, which splices together a variety of motivational
values, which can be either utilitarian or non#arian. It is a kind of non-monetary
wealth that is absent iProCD, where the plaintiff and the defendant are in
antagonistic competition and have no intention a@faborating to build a common
project. Macneil’s contract norm of “preservatioh the relation”therefore is of
critical importance in maintaining the relationadalth in FOSS projects and it could
be a new basis for evaluating the legal strength@$S licensing® With Macneil’s
two messages in mind, | will move on to explore HE@SS licences are understood
by existing doctrinal rules as a contrast to tHati@nal perspective in the following

section.
4.3 Three Doctrinal Routes to Enforcing a FOSS Liagce

Are FOSS licences contracts? If so, are they eeédie contracts? If not, according
to what other possible legal doctrines might theyehforced? Should the application
of a chosen doctrine take into account of the imat aspect of FOSS licensing

%5 Whitford believes that “Macneil’s many descriptioof relational contracting illustrate that parties
to such contracts commonly pursue a number of &Gbgsx; only one of which is wealth
maximization.” Whitford, supra note 32 at 560

% | will discuss the three motivations in more dei@iChapter 5 on FOSS authorship. See Karim R.
Lakhani and Robert G. Wolf, “Why Hackers Do WhageyDo: Understanding Motivation and Effort
in Free/Open Source Software Projects”, in Persgecn Free and Open Source Software, eds. by
Feller, Fitzgerald, Hissam & Lakhani (Cambridge, 9da MIT Press, 2005)

" For a general account of relational wealth, semé&h Diwan, “Relational Wealth and the Quality
of Life” (2000) 29Journal of Socio-Economic05; in the specific context of this chapter, | wis
show that FOSS projects’ “relational wealth” is tkiad of peer-produced “wealth” as indicated in
Benkler's book titleThe “Wealth” of the NetworkAlthough “relational wealth” may indirectly bring
material wealth for FOSS programmers, the formenotbe entirely reduced to the latter.

%8 For the norm of “preservation of the relation"contractual exchanges, see Maci¢8G p.66

146

practice? As FOSS licences are designed to faeilid@centralised collaboration,

there is no doubt that it is important to find aessvto these questions. However,
given the complex nature of the issue, there ti® ldonsensus on the enforceability
of these licences among schol@3here are at least three different theories, @eth

doctrinal routes, under which that a FOSS liceneg be enforced. The first theory
suggests that a FOSS licence can be enforcedsdfatvalid contract. The second
theory argues that a FOSS licence may well lackrdractual status due to problems
such as the lack of bargained-for exchanges. ldsteahould be enforced as a bare
licence (or pure property licence) regardless efltbence being contractual or not.
The third theory finds that the second theory haseakness: a bare licence is
revocable by the licensor. So in order to prevelRO&S licensor from going back on

his promise, the equitable doctrine of estoppehniige evoked when necessary.
4.3.1 First Route: Contractual Licence

The first route argues that a FOSS licence sudBNiS GPL can be enforced as a
contractual licence. One of most enthusiastic chansp of this argument is
Gomulkiewicz, who believes that the GPL fulfils #le requirements under a US
model code known as the Uniform Computer Informrafileansaction Act (UCITA)

to be a contract® The UCITA explicitly recognises a “license” as hay a
contractual status because here “licence” is ddfia® “a contract that authorizes
access to, or use, distribution, performance, naatibn, or reproduction of,
informational rights, but expressly limits the ass@r uses authorized or expressly
grants fewer than all rights in the information,eiler or not the transferee has title

to a licensed copy** However, this resort to the UCITA is problematichuse the

% Nimmer even suggests that to ask whether a FQB8r&e is a contract or not is a wrongly framed
question in the first place. It simplifies the issioo much. The right way of approaching the idsue
to look into how these FOSS licences are actualbdwor intended to be used. Raymond Nimmer, “Is
the GPL license a Contract? The Wrong Question” 5Sept@nber 2005 at
<http://www.ipinfoblog.com/archives/licensing-lawsues-is-the-gpl-license-a-contract-the-wrong-
question.html>

0 Robert W. Gomulkiewicz, “How Copyleft Uses LicenBéghts to Succeed in the Open source
Software Revolution and the Implications for theplizations for Article 2B” (1999) 36iouston Law
Reviewl79

®1 Section 102 (a) (41), UCITA

147

spirit of this Act has its provenance in the hugedytroversialProCD ruling® In
the FOSS community, Richard Stallman is openly regjathe UCITA, which is
believed to suit proprietary software developersiteiests but not FOSS
programmer$§? Largely for this reason, the Free Software Foluindatas refused to
categorise the GPL as a UCTIA-type contfdd¢dowever, in order to do some justice
to FSF's argument later, | first need to give tioerice-as-contract argument some
benefit of the doubt at the moment by examining lotegontract” may be formed in

a “licence”.
Formation of Contract

Anglo-American contract law insists on three maomponents being present to
form a contract: offer, acceptance and consideratioba FOSS licence has to be
recognised as having a contractual status, themust have all these three

components.
(A) “Offer” in FOSS Licensing

It is a relatively straightforward issue to find &offer” ®°in a FOSS licence. An
offer is a licensor's manifested willingness toaiwsers permissions to access, use,
modify or redistribute a piece of FOSS and thesemsions are usually
accompanied by some restrictions pursuant to Fofev&re Definition and Open
Source Definition. Rosen points out that the wihess to offer can be manifested

by posting the software to a publicly accessibleSBECQrepository website on the

%2 UCITA is said to be the “bad fruit” from the ProGQrisprudence. Roger C. Bern, “ ‘Terms Later’
Contracting: Bad Economics, Bad Morals, and a B#shlfor a Uniform Law, Judge Easterbrook
Notwithstanding”, (2003-2004) 1®urnal of Law and Policg41 at 772

%3 Stallman points out that the UCITA is a producpadprietary software developers’ lobbying

efforts and it run against the spirit of free safter movement. See Stallman, “Why We Must Fight
UCITA”, 31 January 2000 at
<http://w2.eff.org/IP/UCITA_UCC2B/20000131_fight itec stallman_paper.html>

® See infra subsection 4.3.2

% In an US context, an offer is defined as the “rfemtation of willingness to enter into a bargain so
made as to justify another person in understanttiag his assent to that bargain is invited and will
conclude it.” American Law Institute, S.24. Resta¢at (Second) of Contracts

148

internet (e.g. SourceForge) so that “all prospectisensees will be able to retrieve
the software under the terms of the licerie”.

(B) “Acceptance” in FOSS Licensing

According to the classical contract model, an atzege should be the “mirror
image” of the offer, that is, it must be “absolut®id must “correspond with the
terms of the offer®” The offeree needs to unequivocally convey hisniiba to
accept “without leaving room for doubt as to thetfaf acceptance, or as to the
coincidence of terms of the acceptance with thdsthe offer”®® An offeree may
accept an offer through verbalised agreements, Heutmay also manifest his
acceptance through non-verbal forms of conductclvie not unusual in the mass-
market off-the-shelf software worff.There are three main ways that software
licensing terms may be offered to potential licexssér acceptance—shrinkwrap,

clickwrap and browsewrap—each of which will be dissed in turn.

Shrinkwrap and the ProCD case Early mass-market software products are often
sold in boxes wrapped with shrinkable clear plastider the so-called shrinkwrap or
box-top licences. When the purchasers pierce @siplopen, it is normally assumed
that they assent to the licensing terms attachethdosoftware within the boxes.
Before 1996, shrinkwrap licences were routinelyniwuio be unenforceable at the
federal appellate level across the (F3However, in 1996, the situation was changed
by the US Seventh Circuit’s landmark decisioiPioCD v Zeidenbergwhere Judge
Easterbrook ruled that a shrinkwrap license wasrerfble as a contraltin this
case, the plaintiff ProCD sells a database product called SelectPhone(TM),

comprising a national telephone directory and @k program for searching the

% Lawrence RosenQpen Source Licensing—Software Freedom and InteiédProperty Lawy
(Upper Saddle River, NJ: Prentice Hall PTR, 2006Pp
Z;J. BeatsonAnson’s Law of ContradOxford: OUP, 2002, 28th Edition) p. 37

ibid.
%9 Of course, the offeree may also choose not adtepbffer. For instance, in a Scottish case, a
customer refused to accept the offer by returriregsoftware to the seller without opening the d&rin
wrapped box. SeBeta Computers (Europe) v Adobe Systems (Eu@gep) SLT 604
"0 SeeVault Corp. v Quaid Software LtdB47 F.2d 255 (5 Cir. 1988);Step-Saver Data Sys. Inc. v
Wyse Tech939 F.2d 91 (8 Cir. 1991);Arizona retail v. Software Link831 F. Supp. 759 (D. Ariz.
1993)
" Scholars normally divide the ProCD ruling into tywortions: one on contract formation and the
other on copyright. In this subsection | only foaus the former but | will go back to the latter in
Section 4.4 of this chapter.

149

data. The product is delivered on CD-ROM disksrdtwrapped by a notice: “Both
the software and the data listings are subjecthéoterms and conditions of the
enclosed license agreement which is part of theglyet and printed in full on the
enclosed envelope. Please read fully the licenseeatent.”> Note that this notice
itself is not the actual licence containing therterand conditions, but the former is
merely an alert to the latter. It is impossible the defendant-purchaser Matthew
Zeidenberg to know, let alone consent to, the cuntd# the licence when he

purchased the boxed ProCD product.

Since Zeidenberg did not make any explicitly vedeal assent to the licence that he
was only able to view later after the purchase,cthart faced a difficult question as
to whether the licence was actually “accepted” bBpd then binding on, the
purchasef? Judge Easterbrook ruled that Zeidenberg did “atdkp licence and he
was thus bound by it. The reason is that althougildehberg did not make a verbal
assent to the licence in the classical sense, dtuseptance” of the licence can be
inferred from his failure to return the ProCD product te trendor after reading the
licence. Easterbrook bases this judgment primaoily Section 2-204(1) of the
Uniform Commercial Code (UCC) that relaxes the gilast offer-acceptance
doctrine by allowing assents to be manifested ‘fiy ananner sufficient to show
agreement”” In this sense, a buyer's acceptance does nottbawe obtained after a
conventional bargaining process, but it can be ceteéd by any conduct of
“performing the acts the vendor proposes to treameceptance’” Because the
ProCD vendor “proposed a contract that a buyer vactept bysingthe software
after having an opportunity to read the licenselesure” (original emphasis),

Zeidenberg’'s actual use of the software should drestcued as his assent to the

2 According to Macaulay, this notice “was printedsir-point type in the middle of a long paragraph

on the bottom flap of the software box.” Stewartddlalay, “Freedom from Contract”, supra note 42
at 805

" This problem is not a peculiar only to this cadsa, it is generic to all shrinkwrap licences: “Udi

a typical unilateral contract, in which one partycepts an offer by engaging in conduct that
unmistakably indicates assent—say, painting my &etthe conduct used as evident of a shrinkwrap
contract is hardly unambiguous evidence of asseettiley, “Terms of Use”, supra note 16, at 468

" The whole clause of S2-204 reads: “A contractdale of goods may be made in any manner
sufficient to show agreement, including conductbmth parties which recognizes the existence of
such a contract.” However, Macaulay finds that &dwsbok’s use of S2-204 does not really “follow

the definitional cross reference to Section 1-20)(3), which says that an ‘agreement’ is ‘thergain

of the parties in fact [...]' ” (added emphasis) Maleg, “Freedom from Contract”, supra note 42, FN

103 at 806

86 F.3d 1447 at 1452

150

licence and he had “no choice, because the softg@lieshed the licence on the

screen and would not let him proceed without intilficpacceptance’®

The ProCD ruling has provoked tremendous contrgvershe academic world. Eric
Posner observes that the decision has “precipi@tiggphoon of academic hostility”
and remains “probably the most criticized case indemn history of American

contract law”’’ What is most disturbing to contract scholarshigha ProCD overtly

challenges the consent-driven classical contractaihaevhich relies on bargained-for
exchanges to generate full and unambiguous mesefirige minds. Post finds it is
hugely problematic for Easterbrook to use Sectie20D2 of the UCC to construct

Zeidenberg'’s inactivity as the “tacit assent” te #roCD licence:

Even if we were to use the ‘gestalt’ approach totiaxt formation in S. 2-204
[of UCC] which would look at all the communicatiohetween the parties
without an attempt to isolate a particular docunm@ntommunication that was
the offer or the acceptance, there is still theblgnm of finding assent in the
passivity of the buyers unless we are willing teuase ‘tacit assent’ from their
silence or inaction. That too flies in the faceraflitional contract doctrin®.

Concurring with Post’s critique, Macaulay also rigasterbrook’s interpretation has
stretched a little too much the concept of “ass€as’ “in any manner sufficient to
show agreement” under S.2-204) to possibly covéargained or under-bargained
non-consensual relations. This would allow manuigt of consumer goods such
as the ProCD supplier to gain unilaterally a widage of “freedonfrom contract”

by “packing inside the box contract clauses thegnapt to repeal various laws that

business dislike™ From the viewpoint of a classical “contract pufigtis just “very

® Note also that Zeidenberg was given the oppostunitreturn the product if he found the licensing
terms were unsatisfactory to hirbid., 1452

" Eric Posner, ProCD v Zeidenbergnd Cognitive Overload in Contractual Bargainirfg010) 77
The University of Chicago Law Reviéd81 at 1193

8 Deborah W. Post, “Dismantling Democracy: Commoms®eand the Contract Jurisprudence of
Frank Easterbrook”, (2000) I&uro Law Revievt205, FN64 at 1226

" Steward Macaulay further comments that to assuomswmers’ assents to licensing terms from
their failure not return the products is only “adbake”. See Macaulay, “Freedom from Contract”,
supra note 42 at 805

151

difficult to offer a convincing argument that thelsielden clauses work to create a
contract with the desired effect®.

The ProCD decision is important in the sense that it forbgfikkick-starts a
neoclassical reengineering of the classical cohttaw in software licensing
jurisprudence. By sidelining the strictly bargaimeated classical doctrine,
Easterbrook shifts to an economical justificatidrstandard-form licensing couched
in Coasean language of transaction &bsrom a neoclassical point of view, the
traditional fully-dickered bargaining is not a viaboption in the mass-market
software world because it would only slow down tifamsactional speed and blur the
discreteness of transactioffsin the ProCD case, without enforcing the attached
standard-form licence, it would otherwise “drivecgs through the ceiling or return
transaction to the horse-and-buggy age” even timsteould only be viewed after
the purchasé& In summary, the great significance BfoCD lies in the fact that
Easterbrook articulates a dominant neo-classictbrrae for software licensing
jurisprudence despite the incessant academic aesssto it. The rationale mandates
that routine enforcements of standard-form inforaratproduct licences is a
predominant economic necessity for increasing ntaeficiency and decreasing
transaction cost in the mass-market software wovldle customers’ manifestation
of assents to these licences is demoted to beanday issue, which should be as
flexible as possible. This rationale by Easterbrbak twofold consequences. On the
one hand, it clears the classicist hurdle to emigrstandard-form licences under
contract law. On the other hand, the dominance hef RroCD rationale also

impoverishes the software licensing jurisprudendeene the possibility of non-

®ibid., at 805-6

8 For a detailed Coasean explanation of the maiionale behind ProCD ruling, see Frank
Easterbrook, “Contract and Copyright” (2005) 42K #uston Law Revie@53

8 For example, Raymond Nimmer is an important champf this view. He argues that fully
dickered agreement is a romantic view about confoamation and it does not apply to mass-market
software licensing. “Under contract law, formatioha contract and definition of its terms do not
require sophisticated or equally leveraged partiesparties with incentive to devote time, effamd
cost to negotiate. Standard terms, leverage, ahdradce to pre-set terms characterize all commerce.
Most importantly, it has never been consideredetdhe role of contract law to generally reshape the
balance created by market conditions. [...] The gbdf parties to standardize and control the terms
under which a product or information is marketedegi an important element of efficiency in
transactional environment.” See Raymond T. Nimrfigreaking Barrier: The Relationship between
Contract and Intellectual Property Law” (1998)B&keley Technology Law Jourrg27 at 847

886 F.3d 1447 at 1452

152

neoclassical alternatives risks being ignored amderdeveloped. To fill this gap, |
will analyse aelational rationale for FOSS licensing in Section 4.4.

Clickwrap and Browsewrap Given the high penetration of fast broadband
Internet connection among the population worldwlE®SS nowadays is more likely
to be downloaded directly from a repository websitehe local computers rather
than being delivered on the physical medium of GDM& using a shrinkwra} In
fact, clickwrap and browsewrap licences are magguently used by FOSS and they
raise slightly different concerns in terms of cawstrformation.Clickwrap licences
require affirmative actions from licensees to mestiftheir acceptance: they are
asked to press the button “Yes, | Agree” as a Wagseenting to the licensing terms
and conditions before they actual download or Ih#ta software. Kim has observed
that click-wrap licences “do not raise the sametremd formation concerns as
shrinkwrap agreements because the user typicaflynbfice of the terms and has an
opportunity to read themprior to engaging in the contractual relationship.” goral
emphasis}® The clickwrap technology employs a slightly moieehsee-friendly
measure by using an interactive interface, whialrallg is a pop-up dialogue box
displaying the licensing terms. Software userglaus notified of the existence of the
licence, though they may not actually read or ustaexd everything in it. FOSS
projects, especially those are keen to rapidlydoaihon-sophisticated end-user base,

often employ clickwrap as its licensing interface.

Although clickwrap is a slightly more user-friendgchnology than shrinkwrap, this
does not mean the problem of assumed “assentstensing term is completely
gone. In fact, FOSS software developers often melees to manifest “acceptance”
in two ways: “acceptance” can be manifestedt only through clicking the
“Acceptance” buttorbut alsothrough the actual conduct of installing and udimg

software. For example, when Google released its FF®@Bwser “Chrome” in

8 A FOSS project is often a work in progress amay distribute many beta versions in a very short
space of time before releasing a stable deliveradision. This process requires frequent bug-fixing
and rewriting the code. So it is not always neagssatransfer the ever-changing code onto a CD,
when it can be easily downloaded from a repositergbsite such as Freshmeat.net and
SourceForge.net.

8 Nancy S. Kim, “Clicking and Cringing”, (2007) ®on Law RevieW97 at 842-843

153

September 2008 Google Chrome Terms of Service assumed usersdept the

licence through either of the two ways:

2.2 You can accept the Terms by:

(A) clicking to accept or agree to the Terms, whénes option is made
available to you by Google in the user interfageafoy Service; or

(B) by actually using the Services. In this cas®) ynderstand and agree that
Google will treat your use of the Services as atzege of the Terms from that
point onwards®’ (see Figure 4.1 Screenshot of Google Chrome Terms of

Service

Note that the clickwrap here is lumped togetherhvattual use of software as
assumed manifestation of ass&ht this light, a user may give his assumed assent
to the licence even though he fails to click thec€Apt” button, which means the

clickwrap mechanism may be bypassed compléfely.

% Chrome is released under two twined licences:isnke BSD licence for the source code release
and the other is the Terms of Service for consumarcutive code release. The latter uses the
clickwrap technology and makes reference to thenéor

87 Section 2, Google Chrome Terms of Service

8 ¢.f. The ProCD vendor also assumes actual use of thiigras assent to the licensing terms.

8 For a hypothetical example, a university studentising a Chrome browser to surf internet in a
computer lab. Because the software has already instailed by the university IT staff, this student
does not have to manifest his assent by clickinglarton and he thus does not know the licensing
terms. However, he would still be assumed to astenChrome licence because of his conduct of
using the software. In this sense, it is possibiate clickwrap mechanism to be completely bypaisse
for this reason.

154

Figure 4.1 Click-wrap: Screenshot of Google Chrom&erms of Service

BGoogle Chrome for Windows — Terms and Conditions Agreement — Mozill... E[E[X
File Edit View History Bookmarks Tools Help

@ = & (ar | ® http://mmw. google. com/chrome/cul a. himl Yt -1 G- il s
-E_Most Visited @ A[JF0H M Google Nail — Inbox Audio Edition | Bcon ™ BBC — Radic — Podeas::

M Gaoogle Mail - Inbox - - ® Google Chrome for Wi--E | [ClTerms and Conditions —-

‘Google Chrome for Windows - Terms and Conditions Agreement

Goegle

Chrome

Google Chrome Terms of Service

These Terms of Service apply to the executable code version of Google Chrome. Source code for
Google Chrome is available free of charge under open source software licence agreements at
hitp:/fcode.google com/chromium/terms. htrml.

1. Your relationship with Google

1.1 Your use of Google's products, software, services and websites (referred to collsctively as the
"Services" in this document and excluding any services provided to you by Google under a separate

written agreement) is subject to the terms of a legal agreement between you and Google. "Google"

means Google Inc., whose principal place of business is at 1600 Amphitheatre Parkway, Mountain 3

O optional: Help make Goagle Chrame better by automatically sending usage statistics and crash reports to Goagle. Learn more

Accept and Install H Cancel

©2008 Google - Home - About Google - Privacy Policy - Help =

] plctures an:.. ¥) 2 Firefox - [= & Q)e ~ £ 0:02

Note: This is a licence is for distributing the executable code version of Chrome and it should
be used together with BSD License for distributing the source code version of the software.

Compared with shrinkwrap and clickwrap licencesopwsewrap licences are the
most problematic of the three types. It assumes Iyausing or installing the
software, “licensees” automatically “agree” to teems and conditions that can be
viewed somewhere as a webpage or merely an elexitice. Not all browsewrap
licences had been enforced by courts @@CD™. As a rule of thumb, in order to
decide whether a browsewrap licence is valid or inas important to know if the
browsewrapped software carripsominent noticedor a user to be aware of the
licensing terms. In other words, “a user is notrmbby a [browsewrap] contract of
which he is not made awaré"This means that the licensing terms should be
reasonably easy and straightforward to be locatéldr@ad by users. For example, in
the caseTicketmaster Corp. v. Tickets.com, Itice court ruled that the “terms of

use” on the plaintiffs webpage was enforceablecabse there was evidence

% | emley observes that courts tend to enforce bremae against businesses but not against
individuals. See Lemley, “Terms of Use” (2006)Mdihnesota Law Revied59 at 476
° Christian H Nadan, “Open Source Licensing: Virns/atue?” [2002] Texas Intellectual Property
Law Journal349 at 364

155

showing that the defendant had actual knowledgé.8fin contrast, inSpecht v.
Netscape Communications Car@ disputed arbitration clause in a browsewrap
licence was ruled to be unenforceable, becauses wgas not given a prominent

notice about the existence of the licensing termthe defendant’s webpage.

FOSS developers must put a lot of emphasis onynagiftheir licensees about the
licensing terms when the browsewrap is used. Fiante, Section 5 of the GPL v.3
makes it clear that all downstream distributorsnafdified source versions have the
responsibility of giving “prominent notices” abotlte licensing status of the code
involved:

[...]

b) The work must carrprominent noticestating that it is releasaghder this
License and any conditions added under sectiorhi&d requirement modifies
the requirement in section 4 to ‘keep intact atices’.

[....]

d) If the work has interactive user interfaceach must display Appropriate
Legal Notices however, if the Program has interactive interfateat do not
display Appropriate Legal notices, your work neest make them do sU.
(added emphasis)

Note that Section 5 (d) contains a proviso that @Rigrammers are not required to

use “interactive interfaces” to display appropriktgal notices. The consequence is

that GPLed works are allowed to be conveyed withasing the clickwrap
technology. This is in line with the “technologyteal requirement” stipulated in
the Open Source Definition (OSD). In 1998, Open rEeunitiative amended the

OSD by adding a tenth criterion making sure thah-alckwrap technologies

(including those with no graphic interface at altpuld not be discriminated against

in distributing FOSS. The official Rationale attadhto Criterion 10 “License Must

Be Technology-Neutral” in the OSD explains:

Rationale: This provision is aimed specifically at licensekieth require an
explicit gesture of assent in order to establistoatract between licensor and

licensee. Provisions mandating so-called “click-wrap” may dbat with

922003 U.S. Dist. LEXIS 6483 (C.D. Cal. 2003)

%3306 F.3d 17 (2d Cir. 2002)

% Section 5. “Conveying Modified Source Versions’PIGv.3; similarly, Section 4 of the GPL
requires to carry an “appropriate copyright noticefiveying a verbatim copy of the covered work.

156

important methods of software distribution suchFI$® download, CD-ROM
anthologies, and web mirroringuch provisions may also hinder code re-use.
Conformant licenses must allow for the possibilitsit (a) redistribution of the
software will take place over non-Web channels tthatnot support click-
wrapping of the download, and th{&d the covered code (or re-used portions of
covered code) may run in a non-GUI environment tdaanot support popup

dialogues”
(C) Consideration

The last leg of contract formation—considerationerse to be an even more
unsettled issue in FOSS licensing. Under the doetoif consideration, common law
courts do not generally enforce a simple donatiremise® but only enforce one

party’s promise that is reciprocated with anothartyd promise or performance. In
Currie v. Misa Lush J. points out that a “valuable consideratiorthe sense of the
law, may consist in some right, interest, profit,o@nefit accruing to the one party,
or some forbearance, detriment, loss, or respditgigiven, suffered, or undertaken
by the other.*” In short, a consideration must confer some benafil detriments to

the promisee and promisdt.

A consideration must have some value, though comiamencares very little about
how valuable it needs to be. Treitel points out tlaa act, forbearance or promise
will amount to consideration only if the law recoggs that it has somsconomic

values and it “may have such value even though the valaenot be precisely

09

quantified.”™ So when it comes to “non-monetary performanceooftful economic

value to the promisor”, it becomes a difficult issto decide whether it can be

% 0sl, “The Open Source Definition (Annotated)”, Yien 1.9
<http://www.opensource.org/docs/definition.php>

% Melvin Eisenberg, “Donative Promises” (1979) 4Y The University of Chicago Law Revidw

" Currie v. Misa(1975) L.R. 10 Ex. 153 at 162

% Atiyah finds that the doctrine of consideratiomtins “two legs” 1) “the idea that a promise is
legally binding if it is given in return for somgenefitwhich is rendered, or to be rendered, to the
promisor”; and 2) “a promise becomes binding if flilemisee incurs a detriment by reliance upon it,
that is, if he changes his position in relianceto promise in such a way that he would be worse of
if the promise were broken than he would have bt promise had never been made before.” He
also points out that the second leg as detrimeeliaince has “close connections with other branches
of the law, such as the law of tort, and also vaiequitable doctrines, as well as the doctrine of
‘estoppel’ in its various forms”. AtiyghAn Introduction to the Law of Contragip,118-119

% Guenter TreitelThe Law of Contag(London: Sweet and Maxwell, 2003, 11th Editior§3%

157

qualified as the right kind of consideration recisgd by law®. In most FOSS
projects, volunteer licensees’ contributions aresthiyonon-monetary performances
(e.g. reporting bugs or testing submitted patchtes a@nd it is not always clear
whether these performances can have the right ten@nvalues” to qualify as

consideration as defined by Treitel above.

In this scenario, now | try to explore a questibattis often asked: does the GNU
GPL involve a valid consideration with the rightbeomic value to form a binding
contract? The scholarly community again fails tacke a consensus and is divided
into two camps on the issue. The first camp befieere is consideration in the
GPL. This view is championed by Wacha who belietlest there are reciprocal
“mutual promises” between licensors and licenséhs. licensors offer the software
under certain conditions, while the licensees, cassideration, agree[] to keep all
copyright notices intact, to insert certain reqdireotices, and to redistribute code
only under certain conditions® The second camp believes that the GPL fails to be
a contract for a lack of consideration. This vieaheld by Kumar, who looks at the
same set of restrictions that was examined by Wachiae GPL, but she reaches a
diametrically opposite conclusion. According to Kamnconsideration is exactly
GPL’'s “Achilles heel”. The licensors’ offer of sefare is a kind of conditional
donative promise and the licensees’ adhering toatiteched conditions is not a
consideration to this offer: “The GPL places a nembif restrictions on the user of
GPL-licensed software [...] However, adhering to nieBbns on the use of a
licensor's copyrighted software is not considematizecause the restrictions do not
directly benefit the licensor*®? In other words, there is no reciprocal exchange
between the licensors and licensees, becausertherfdo not get any a clear benefit
in return. Kumar then argues that the GPL is “basedeal property licenses”, which
concurs with the FSF’s official explanation of t6€L as a bare licence. “Suppose
that a landowner grants a revocable license tgthic to cross through a strip of
the landowner’s property to access a public bealsh.landowner does not explicitly
receive anything in return from the public. Thouthie landowner may limit the

1% Mindy Chen-WishartContract Law(Oxford: OUP, 2008, 2nd Edition) p.134

101 Jason B. Wacha, “Taking the Case: Is the GPL Erfarle” (2005) 2Banta Clara Computer and
High Technology Law Journdb1 at 474 (internal citations omitted)

192'5ee Sapna Kumar, “Enforcing the GNU GPL” 2006iversity of lllinois Journal of Law,
Technology and Policy at 19-21

158

public’s access to certain times of day, thesedbuns’ on the public do not serve as
consideration for using the landowner’s propertiyeyl are merely limitations on the

access that the public is receiving™

Following Kumar’s argument, the debate betweenwtecamps can be also framed
as the one about whether licensees’ obeying thditwomal restrictions under the
copyleft is a benefit to the licensors or not. @mput it another way, is the relation
between the licensors and licensees under the efb@ykeciprocal one? It could be
argued that Kumar slightly over-simplifies the issuln fact there are two groups of
GPL licensees. The first group simply uses thewsoft and makes no publicly
released contributions back to the community. THesmsees do not benefit the
licensors'® In contrast, the second group do not only modifijveare and but they
also choose to share the source code of theseigatdihs with the community. This
use of the GPLed software is different from theatibn of “real property licences”
to give public access as discussed by Kumar alddwe second group of licensees is
not merely passively allowed public access to thHeL&l code, but they also
proactively makemprovemert to the code. The improved code will thus bringieo
benefit to the whole community including the origiticensors, though this benefit
may not be the type that can be immediately coademto monetary wealth. Of
course, these two groups of licensees may not rematually exclusive and things
can change. Some licensees in the first group rhagse to join the second group
and become proactive contributors over the timevacglversa.

4.3.2 Second Route: Bare Licence

As has been discussed above, the attempt to us@rgheoute to enforce FOSS
licences as contract are likely to encounter twoeutainties: 1) lack of explicitly

verbalised assents from users and 2) lack of cersidn understood by classical
contract law. The second route attempts to byphsset two difficult issues by
treating a FOSS licence as a bare licence, whiehusilateral permission given by

the property owner to enable the licensees to lisenbrk in a way which would

103 K umar, ibid., at 20-21
194 GPL allows private modifications that are not ceyed to the public. See Section 3.5.1 Chapter 3

159

otherwise be infringing®® The idea of “bare licence” is a relatively unfaianil
concept to software licensing jurisprudence, beeauss usually discussed in the
land or real property conteXt® It is interesting to see that the old doctrine'tmdre
licence” initially used in land law is now beingvieed in the FOSS world. This
attempt is championed by Free Software Foundat&¥}), which interprets that the
GPL is a bare licence but not a contratiéccording to them, the permission under
the GPL is unilaterally granted to licensees, wiiekms to be a one-way operation.
Unlike a classical contract where an offeree needsnequivocally “accept” an
“offer”, licensees of the GPL as a bare licencerarerequired to verbally “accept”
the licence. Because all GPLed software is coptemjim the first place, one would
have infringed the copyright without the permissfoom its owner. In other words,
to obey the terms of the GPL is the condition oihgsthe GPL covered work.
Section (9) of the GPL v3.0 makes it clear that theceptance” in a classical
contract is not required in the GPL as a bare tieen

You are not required to accept this License in otdeeceive or run a copy of
the Program. [...] However, nothing other than thikehse grants you
permission to propagate or modify any covered wadthkese actions infringe
copyright if you do not accept this License. Theref by modifying or
propagating a covered work, you indicate your atzuege of this License to do
s0l%
Eben Moglen, in the first International Confererure the GPL v3.0 (intending to
clarifying FSF’s jurisprudence behind this new vams of the GPL to the
community), reiterates two points supporting FS#ifecial position that the GPL is
not a contract. First, bargained-for exchanges atoerist in the GPL. Second, the

195 According to Rosen, if there is a failure of offacceptance or consideration to form a contract, a
FOSS licence may fall back on copyright for beingaae property licence. See Ros@pen Source
Licensing pp. 65-66

1% The “bare licence” in land law is an old instiarj which dates back to a seventeenth-century
English case, where Vaughan C.J. defined a profieeyce simply as a permission that “only makes
an action lawful, without which it had been unlal¥furhomas v. Sorrell(1673) Vaugh 330 at 351;
see also I.J. Dawson and Robert A. Peak@zences Relating to the Occupation or Use of Land
(London: Butterworths, 1979) p.1

9" Moglen and Stallman, “Transcript of Opening sessid first international GPLv3 conference”,
transcribed by Ciaran O'Riordan, 16 January 2008hdtp://www.ifso.ie/documents/gplv3-launch-
2006-01-16.html>

1% Section 9, GPL 3.0

160

GPL is a copyright licence, without which one’s udehe GPLed software would
lead to copyright infringement.

We [on behalf of the FSF] have not argued now, wiirwe, nor can anyone

argue, who reads the text of the language, thatdbeipt of the code is some
quid-pro-quo for the acceptance of some terms. arguments based on the
contractual exchange of the code for promises oftiance have nothing to do
with us. We give permissions here and the enforo¢emeight of our license

lies in the fact that you have no permission toppgate, that is, you have no
permission to do what copyright law requires pesmois to do, but through this

license. That's our legal theory and we are stigkinit'%°

Furthermore, there are also two policy reasons thikyFSF insists that the GPL is
not a contract but a bare licence. First, FSF'stippshas to do with its attempt to
avoid the unpopular model contract code UCITA, Wwhderives its jurisprudence
from the controversiaProCD ruling*'° The UCITA that treats software licences as
contracts, according to Stallman, is essentiallgr@aduct of proprietary software
lobbying efforts!** By arguing the GPL is a bare licence, the freetwsuk
movement keeps a critical distance from the legabty behind the UCITA-type
contract law. Second, Moglen argues that conteags lin different countries around
the world are by no means uniform, and it woulddifécult for the new globally
applicable GPL v3.0 to handle the diversity withire world contract regimés?
When the GPL is a bare licence, it will base itkdity solely on software copyright.
Because most countries’ copyright laws are modellgdn the same set of
international agreements such as the Berne Comwenti is more conceivable to
reconcile approaches than when dealing with wasldtract laws. Even with a single

country like the US where different states havertben contract laws (while the

199 Moglen and Stallman, “Transcript of Opening Sessi First International GPLv3 Conference”,
supra note 107

110Note Easterbrook treats “licences” are “ordinamptcacts accompanying the sale of products” but
he deliberately leave the question “why licenc&samtracts” unanswered: “[w]hether there arellega
difference between ‘contracts’ and ‘licenses’ [.sJai subject for another dayProCD v. Zeidenberg

86 F.3d 1447 (77 Cir.1996) at 1450

1 stallman, “Why We Must Fight UCITA”, supra note 63

12GPL 2.0, when it was first written, was only intled to be used within the US. The popularity of
this licence around the world makes the FSF detidé the new GPL 3.0 should be globally
applicable.

161

Copyright Act is federal), the many state contreexjimes can be unwieldy for
individual licensors and licensees alike in the tdShandle'!® For this reason, the
enforcement of the GPL would be better off whemted as a non-contractual bare

licence:

The reason that’s our legal theory and [we] amekstg to it remains the one we
gave before. There are [too many] contract law m&ein the world and the
more you depend upon them, the more variability yeill have. Berne

[Convention] is good, the harmonisation of copytighgood, for us. Our rules

will use a toolset that is as close to global stadds we can gét?

Moglen’s concern is understandable that a big dityeiof contract regimes around
the world would Babelise the jurisprudence behinel GPL and reduce the legal
certainty for enforcing the licence in a global wxt. However, this point is not
universally accepted. The fragmentary contractnnegi may have been exaggerated.
Rosen points out that today’s globalised economy teuired a high level of
“consistency of commercial transactions” and “caats are interpreted in much the
same way around the world*® At the same time one should not underestimate
inconsistency of the copyright regimes around tleldv Again, Rosen argues, for
example, that there is no agreed definition of Rdeive work” in global copyright
law, and its meaning vary from country to coun®g. it would be better to have the
licence drafters to clarify its meaning through thehicle of contract rather than

merely relying on copyrightt-®

It is also important to note that FSF's relianceBamne-type copyright law is mainly
a pragmatic choice and it is just for the convecdéenf licence enforcement. The
hacker custom is still against any private propedgime including copyright.

(Recall that Moglen’s call for “[a]bolition of afbrms of private property in ideas” in

the dotCommunist Manifestd”) Stallman followed up Moglen’s above quoted

113 Although there is a uniform model contract law caming computer information transactions, i.e.
UCITA, its impact is very limited. Only two statedvaryland and Virginia—have ratified UCITA so
far.

114 See “Transcript of Opening Session of First Iraéional GPLv3 Conference”, supra note 107

115 RosenOpen Source Licensing.58

1%ibid, p.58

1 Moglen, The dotCommunist Manifesto, January 2003,
<http://emoglen.law.columbia.edu/publications/dcimlb

162

speech by making their hackers’ ideological leantigar that they are not
uncritically endorsing the global copyright regime:

That ['‘Bern is good, the harmonisation of copyrigstgood, for us’] doesn’t
mean that we are in favour of copyright law as iaegal matter. [...] We're not
totally against copyright law, in a simple or blehlsense either, but we're not
defending the global copyright system that has pdsten imposed on the
world merely because we use it because it's thergWe are not endorsing the
Berne plus WTO system of copyright law as it staadsa good thing, but it
exists and whatever harm it may do in other an@asge trying to do some good

with it when we cart*®
Revocability of Bare Licences

One of the most obvious weaknesses of a bare kcsrtbat it is only binding on the
licensee but not on the licensor. A bare licence loa unilaterally terminated or
revoked at the pleasure of the licensor. In otherd®, a FOSS licence as a bare
licence is not mutually binding. This problem migbad to unfairness when the
licensee has contributed modified source code bat¢ke project or merely formed
reliance by using the licensed software. The U® béisrosystems Software, Inc. v.
Scandinavia Onlindias exposed this problefit.In this case, two computer hackers,
Eddy Jansson and Matthew Skala, developed a progadled CPHack which was
released under the GNU GPL. CPHack was designedisttble Microsystems’s
censorware known as “Cyber Patrol 4”. The two heskeere then sued by
Microsystems for their anti-censorware. In ordeséttle the dispute, the two hackers
agreed to revoke the GPL and assign the copyrig@Rtlack to Microsystems. So
the copylefted software thus became proprietdtfhe GPL, when it is a bare

licence, cannot prevent the licensors from goingklan their promised permissions

118 Supra note 107. Stallman’s explanation also echibesmain argument of 2 Chapter that free
software programmers endorse “IP” law only to tixéeet it can be leveraged to facilitate FOSS
collaboration.

119 Microsystems Software, Inc. v. Scandinavia OnfiBe 98 F. Supp. 2d 74 (D. Mass., 2000), aff'd,

226F. 3d 35(% Cir., 2000)

120«The Story of CPHack”, at <http://cphack.robinlieart.com/#slapp>(Last updated: 21 June 2002)

163

made in the licence. The unilateral withdrawal loé GPLed code understandably

would pose another layer of uncertainty to any F@&fect'**

4.3.3 Third Route: Promissory Estoppel

The second route does not make obligations in a-@8nce mutually binding. In
other words, a bare licence can be enforced onfynatthe licensee but not the
licensor. In order to compensate this weaknedsy@ itoute via an equitable doctrine
of “estoppel” is suggested to prevent FOSS licendmm revoking or terminating
the licence at will when the licensee has cleadyelbped a detrimental reliance
upon it.*?> Unlike the doctrine of consideration in contraew! that enforces
bargained-for exchanges, estoppel can be usedftocenreliance-based liability
arising from unreciprocated promisédSome scholars have already proposed this
third route to enforce FOSS licences (including@fL) in the US context* where

the doctrine of “promissory estoppel” is codifiedSection 90, Restatement (Second)

of Contracts:

A promise which the promisor should reasonably ekpe induce action or
forbearance on the part of the promisee or a f@rdon and which does induce

such action or forbearance is binding if injusticen be avoided only by

121 McGowan observes that the revocability of the GRakes FOSS programmers inclined to make
compromise with proprietary software companies idispute like this one. See David McGowan,
“Legal Implications of Open-Source Software”, (20Qhiversity of lllinois Law Reviek41, FN 283

at 302

122|1n general, Denning finds that the equitable doetof estoppel “is a principle of justice and of
equity” and it deals with a situation like this: Hen a man, by his words or conduct, has led another
to believe in a particular state of affairs, helwibt be allowed to go back on it when it would be
unjust or inequitable for him to do so.” Denning NtRMoorgate Mercantile Co. Ltd. v. Twitchings
[1976] 1 QB 225, CA, at 241

123t is important to know that estoppel is oftendsti be “suspensive” rather than “extinctive”. This
means that the promisor can be allowed to go backheir promise if the promisee has not yet
developed reliance. See Beatson, supra note 67 p.1

124 For example, Madison argues that “[i]f the authttempted to take the improved version of the
code private, equitable theories such as estopgitmrovide a useful backstop in cases where the
facts could not support a formal contract theoiithael Madison, “Legal Implications of Open-
Source Software” (2001 niversity of lllinois Law RevieW241 at 297; Other scholars champion this
approach includes Kumar, “Enforcing the GNU GPLlpsa note 102; Rose@®pen Source Licensing
pp.64-65; Chip Patterson, “Copyright Misuse and MKed Copyleft: New Solutions to the
Challenges of Internet Standardization”, (2000)M8higan law Revievt351, at 1379;

164

enforcement of the promises. The remedy grantetdrissch may be limited as

justice requires?

As promissory estoppel protects software usersfirdental “reliance”, so it is
necessary to ask what constitutes “reliance” in FESS context?® As a rule of
thumb, users’ conduct of modifying the original FO®ould suffice to constitute
reliance. Kumar argues that the mere use of thsvadd will be difficult to prove
reliance. However, if users make derivative worksdad on the FOSS licensed
software, it is a strong sign that reliance hasnbestablished and his “reliance”
should be protected against original software dmess’ attempt to terminate the
GPL.127

Although the promissory estoppel in the FOSS cdrttas never been actually tested
in court, the danger of software developers’ teation of a FOSS licence is not
entirely hypotheticalThere is good strategic reason for a commercialpamy to
make their software released under a FOSS licencthe beginning and later
terminate it to back-claim royalties when they sgpropriate. To spell it out, a
company may strategically adopt a FOSS licence thad let its user-base grow
because of the generous grants in this licence.nvithise FOSS licensed software
becomes so popular that it turns out to bediadactostandard, it will be too costly
for its users to switch to other software. At th@nt, the company may threaten to
terminate the FOSS licence and start to collecltm®s from users. If users refuse to
pay back royalties, they can then choose to tetmitiae licence and then sue for
copyright infringement?® In this scenario, promissory estoppel can be dulise
doctrinal tool to be evoked to prevent users agdims kind of strategic use of FOSS
licences:**

125 ALI, Section 90 Restatement (Second) of the Law of Contracts

126 Cooke observes that “reliance” is at the hearesibppel, but it is also fundamentally a matter of
“causation”, which is very difficult to be prove8o there “is a generous helping of common sense”
involved to decide what is reliance and causatielizabeth CookeThe Modern Law of Estoppel
(Oxford: OUP, 2000) p.105

127 Kumar, supra note 102 at 25

128 This worry has been raised by Chip Patterson, §@ght Misuse and Modified Copyleft: New
Solutions to the Challenges of Internet Standatiizg (2000) 98Michigan law Revievit351

129 However, it is worth noting that promissory estepgannot be used as a cause of action but it can
only be used as a defense as if it a “shield” ufdweglish law. se€entral London Property Trust Ltd.

v High Trees House Ltd[1947] KB 130

165

4.4 Conceptualising the GPL as a Relational Contrac

Having canvassed the difficulties of applying exigt doctrinal rules to FOSS
licensing above, | will now try to re-examine thePIG from a relational
perspectivé>® The re-examination is divided into two subpaRstly, in Section
4.4.1, | identify two obstacles to re-conceptualdel as a true Macneilian relational
contract. One can straightforwardly be derived frdm consent-driven classical
contract law, whilst the other comes from the mioidious neoclassicd&roCD-
type law. Secondly, in Section 4.4.2, | proposd tBBL is better understood as a
relational “umbrella agreement”, which is designedharness the serendipitous
nature of the peer production of FOSS and at theedéme stabilise the long-term

collaborative relation.

Before | start, a caveat is worth making at thetsfa paper document on which the
GPL is written cannot be a relational contratte GPL may become relational only
when it is adopted and used by certain a FOSS qir(gey. the Emacs project or the
Linux project) where there is an ongoing collabweatelation. To make it clear, my
focus of this section is not about the GPL beingatyeas a textual document as such,
but it concerns how the GPL is relationally undeostin the context of the real lived

collaborative experience as in peer-produced FOBBqis.
4.4.1 Two Obstacles: Classical and Neoclassical Law

There are two conceptual obstacles to developingve line of enquiry about the

GPL in relational terms. A relationally understoG®L needs to overcome each of
them before it can potently account for the collatige relations in a decentralised
and coordinated FOSS project. The first obstaekeih the inconvenient fact that the
GPL is a standard-form licence, which often doed remuire unequivocally

verbalised manifestation of consent from the liesss This is at odds with classical
contract law that is anchored in explicitly bargalrfor exchanges. Under the
classical model (also known as the contract-aserdnaodel), a thoroughly dickered

bargain gives rise to a meeting of the minds aihgles moment when the offeree

130 This enquiry continues and deepens the discusgit@PL and FOSS Collaboration” as in Section
3.5 of Chapter 3.

166

accepts the offer. Only at that single point thialtéegal obligation is presentiated
and becomes fully binding on the parties.

In order to negotiate this first obstacle posedclagsical contract-as-consent law,
RCT provides a more realistic and sophisticatecetstednding of the role of explicit
“‘consent” in contract formation. From a relatior@@rspective, consent does not
simply take place at one stroke, and nor doesniayd have to be fully verbalised.
Instead, consent often happensrementallyover a period of time, and it may well
come out of a mix of verbalised and non-verbalisethmitments. Macneil points
out that the exercise of choice in a consensuatiosl is “an incremental process in
which parties gather increasing information andigedly agree to more and more as
they proceed®! The incremental process of consent can hardly couteof an
isolated discrete transaction but it has to beutjnoa series of repeated dealings
between parties in a timeline. As the gradual faromaof consent through repeated
dealings clearly does not fit into the discretensi@ctional model, a more nuanced
understanding of the “bargaining” mechanism is waated. Lon Fuller famously
observes that either full bargain or zero-bargainvery rare in real contractual
exchanges. Between these two extremes, people ofch agreement through
“half-bargaining”. “where men cannot bargain withonds, they can often half-
bargain with deeds; tacit understandings arisingodweciprocally oriented actions
will take the place of verbalized commitmentd®In a long-term FOSS project,
there are plenty of chances to “half-bargain wiedk” in a rich collaborative
relation, which can often alleviate the heavy buarda the one-shot explicit consent
as the sole device to effectuate the obligatiors licence like the GPL. In contrast,
a consumer of proprietary software is much lesslyiko develop an incremental
consent, because a proprietary software develamenally has no intention to enter
into a collaborative relation with his consumer dredwould thus tries to make a
software transaction as discrete as possible. &®tis no future relation beyond this
particular discrete transaction, it is impossildethe user of the proprietary product
to incrementally assent to the licensing terms aveeriod of time.

131 Macneil, “Economic Analysis of Contractual Relaiso Its Shortfalls and the Need for a Rich
‘Classificatory Apparatus’ ”, (1981) Morthwestern University Law Revied@18 at 1041

32| on Fuller, “The Role of Contract in the OrderiRgocesses of Society Generally” (originally
written for the third edition oBasic Contract Layvin The Principles of Social Ordeedited by
Kenneth I. Winston (Durham, N.C.: Duke Universitess, 1981) p.185

167

The second obstacle to conceptualising the GPL edafional contract does not
come directly from the classical model, but frone ttnore elusive neoclassical
contract law, which assumes the supremacy of maeKetiency in maximising
individuals’ material utility. It is not uncommor tconfuse the neoclassical model
with Macneil’s relational contract model, thougte ttwo models may bear certain
surface resemblance in terms of their tinkerinchvifite classic modéf® However,
the neoclassical model does not substantially devieom the classical law’s
ideology which assumes the supremacy of the goatafimising individual utility.

In fact, neoclassicism is even more decisive arlless in pursuing and executing
the discreteness of transactions than classicatamriaw. Macneil observes that the
extreme pursuit of transactional discreteness mékeseoclassicism unsuited to

deal with the relational aspect of contracting:

Neoclassical contract law is founded in theory arghnization on the discrete
transaction, but with many a relational concessibnan often deal adequately
with the more discrete issues in contractual retesti But when discrete and
relational principles conflict, neoclassical lancka any overriding relational
foundation, and thus lacks a resource often needeslational law***

In the software licensing context, the neoclassapglroach is probably good enough
to supply an economic justification of proprietagftware licensing that promotes
discrete transactions, but it is rather incompetanexplaining non-market-based
relational exchange in FOSS collaboration. Thera eonspicuous “relational” gap
to be filed by a true Macneilian understanding refational contract, where

exchanges are not solely conducted under the goahximising individual utility.

As it is impossible to canvass the whole picturen@dclassical contract law in this

chapter™® | only limit my discussion to the neoclassicistastgy to replace

133 For example, both neoclassical law and RCT woeldxrthe classicist offer-acceptance doctrine in
contract formation.

134 See MacneilNSG p.72

1% For a detailed account of the subject, see Machél, “Economic Analysis of Contractual
Relations: Its Shortfalls and the Need for a RiClassificatory Apparatus’ ”, (1981) M8orthwestern
University Law Reviewl018. Also, Macneil indicates that the neoclassieal is based on
neoclassical economics. Campbell observes: “Macsmihewhat confusingly uses the term ‘neo-
classical’ to capture both the neo-classical ecacehat are the foundation of the classical law of
contract and the neo-classical law that he beliéves improvement on that law (i.e. it is a distin

168

“consent” with “market efficiency” as the main @tiale in legitimating standard
form contracts. This strategy is achieved by twapst first, it dismisses thoroughly
negotiated “consent” as unrealistic and unnecessahe second step then
recalibrates the legitimation mechanism against eav rbenchmark of market
efficiency, which becomes the most salient featofeneoclassical contract law.
Raymond Nimmer succinctly records this two-stepftstiiom classicism to

neoclassicism as follows:

[...] the [classical contract's] ideas of choice aamgreement convey[] a
romantic view of contracts, i.e., that the choioasst follow actual negotiation
between parties of equal bargaining power. Nedotiabver terms seldom
occurs in either a mass market or a commercial etpikce. Our economy, and
the mass market in particular, is not, and neves,wa bazaar economy
characterized by recurrently dickered terms shapesghch transaction. Nor can
it ever be so. Economics and efficiency concereslpde it"*°

From a neoclassical point of view, it is clear tlaty-dickered negotiations are
unnecessarily costly, but they must give way to goal of maximising parties’
individual utilities in the most calculably effigie fashion. Easterbrook’®roCD
ruling epitomises this neoclassical view wheregh@rcement of the standard-form
licence in dispute is based on the ground of ecamafficiency in promoting
discrete transactions of the ProCD product. As dlesady been shown in above
Section 4.3.1, Easterbrook disregards the classidfer-acceptance doctrine but

favours the neoclassical UCC'’s approdéthat allows consent to be assumed “in

form of traditional contract law from the classid¢alv [...]. The classical law is, of course, typigall
expressed in formal doctrinal terms to which, as baen said, Macneil does not pay particular
attention. However, he describes writing on contbgclaw and economics scholars as the elaboration
of the economic foundation of the classical lavibdvid Campbell, “lan Macneil and the Relational
Theory of Contract” in lan MacneilThe Relational Theory of Contract: Selected Workdao
Macneil ed. by David Campbell, (London: Sweet & Maxwe01) p.29

1% Raymond T. Nimmer, “Breaking Barrier: The Relathip between Contract and Intellectual
Property Law” (1998) 1Berkeley Technology Law Jourrgt7 at 846

1371t is important know that UCC is exactly a neoslaal legislation that deviates from classical law
to reflect complex mass-market transactions in Acaer society. Post comments: “The U.C.C. was
drafted and adopted in the post World War 1l erghasUnited States became a ‘consumer economy
characterized by mass consumption, modern consomg@nd mass culture.” Deborah W. Post,
“Dismantling Democracy: Common Sense and the Contlarisprudence of Frank Easterbrook”,
(2000) 16Touro Law Review205 at 1214

169

any manner sufficient to show agreemert® Precluding time-consuming
negotiations that traditionally legitimates conseasrelations, he reduces the
practice of standard-form licensing to an efficianbney-saving device that is
believed to be economically beneficial to consum&t$ost finds Easterbrook’s
neoclassic strategy to trade consumers’ consemnhéoket efficiency is a “ruthless”
one. Easterbrook assumes that “reduced cost isallr@nsumers want”, but fails to
appreciate “the values and desires (not transktaitb dollars and cents) that
animate human beings*® The ProCD-type law is a slippery slope that may
eventually lead to an undemocratic assent-destgog@sult: “Constructive assent,
manufactured through the manipulation of the ruégontract formation and the
interpretation of silence as assent (becauseadéiid by the light of judge’s belief that
he knows what is best for the consumer or for t@nemy), is inappropriate and
undemocratic.*** Post’s view is endorsed by Macaufd§, who in his own
examination oProCD case, openly favours Macneil's approach over Hasiek's:

“l like lan Macneil's approach much better than tedsrook’s. Macneil concedes
that [standard form contracts] are not real comstaout he would enforce many of
them. He argues that we enter many relationshipsrevive do not know all the
terms—marriage, the military, and jobs at univgrétw schools. Our relationship
with our computer or software supplier is just omere.™*3

Here Macaulay means “lan Macneil’'s approach” by dhe advocated in the essay
“Bureaucracy and Contracts of Adhesion”, where Mgcproposes aelationally
understood “consent” to standard forfiSUnlike Easterbrook who ostensibly bases
his judgement on a constructive “consent” (assufn@th a consumer’s inactivity,
I.e., his failure to return the product before udéacneil is candid that the classical
contractual consent, which is “individual manifésta of a willingness to be bound

in relatively specific ways”, cannot work well ireditimating standard from

138 32-204, UCC.

139 Easterbrook, in concluding his ruling, argues tfie} nforcement of the shrinkwrap license may

even make information more readily available, bguang the price ProCD charges to consumer
buyers.” 86 F.3d 1447 at 1455

140Deborah W. Post, “Dismantling Democracy: Commomsgeand the Contract Jurisprudence of
Frank Easterbrook”, (2000) I®uro Law Reviev205 at 1230-1

“lipid., at 1238

142 For Macaulay’s endorsement of Post’'s essay oreBasik’s jurisprudence as just quoted above,
see Stewart Macaulay, “Freedom from Contract”, suqmte 42 at FN 86 at 802

“3ipid. at 807

144 Macneil, “Bureaucracy and Contracts of Adhesio884) 220sgoode Hall Law Journd

170

contracts-*> Scholars have to face the fact that it is impdeditr adhering parties to
comprehend every single detail in a standard foontract at the outset of a
contractual relation. For Macneil, a consent taamdard form has to be understood

asa consent to join an unfolding relatidhat is projected into the future.

Liberal society has always recognized numerousitegierelationsinto which
entry is by consent, but the content of which rgdy unknown at the time the
consent was given. This is the idea of joininglatren. We can join a law firm
or a university faculty or any other employmenatien; we can join the army;
we can join a corporation by buying its shares;car join in holy matrimony.
In each instance we can do so in spite of largeesigmorance about the
restraints we are accepting. In spite of our ignoediberal society will bind us

to those unknown restraint®

Macneil finds that the “consent to join an approvethtion”, though ubiquitous in
liberal society, lacks open recognition by libesathinking and is largely “hidden in
the liberal intellectual closet*’ In fact, any FOSS licence like the GPL delibesatel
doesnot presentiate the total legal obligation concermmaking contribution to the
project. So the consent to the GPL is largely amédian consent to join a relatign
which is gradually unfolding through ongoing coltahtive efforts. This FOSS
relation is not dissimilar from a marriage relatiomhich also normally avoids
presentiation of the total obligation but is moreséd mutual trust to carry on the
relationship among the couple. | will soon showt BRL is in fact a constituion-like
umbrella agreement that only promulgates genetes for those who are willing to
join the collaborative relatiolf® and its legitimacy is supported by Benkler's peer

production modet?®

“®ibid., at 5

“®ibid., at 20-21

147 Macneil observes: “mainstream liberal thinking igothe existence of relations like the plague,
because the concept of relation, particularly wités given the common label of status, is anathema
to the individualism upon which liberalism is baged Legitimation by consent to relations
approved by society is, whenever possible, hiddehe liberal intellectual closetibid., at 21

18 This view is corroborated by Weber's observatitihe core constitutional message of an open
source license is fashioned as a statement toabhelapers. And the foremost statement is that they
will be treated fairly if theyoin the community (added emphasis) Web&uccessp. 179

149 See for detail infra subsection 4.4.2

171

Although the neoclassical model (unsatisfactoriginoves the classicist hurdle in
contract formation, its own rationale to promoterked efficiency in furthering
individual utility maximisation becomes a new herdb a relational understanding
of FOSS licences. The economic rationale beRraCD is probably good enough to
justify a proprietary software licence that is useda one-shot discrete transaction,
but it is hugely inadequate in coping with the mooenplex relational exchange in
FOSS collaboration, where contributors are notlsingndedly motivated by the
sole desire to maximise their individual materiakalth. Whitford worries that
Macneil's message of respecting a multiplicity @flues held by participants in a
relational contract would be unfairly overridden e neoclassicist's sole agenda
for wealth maximisation. He urges that “the lawdahe legal academics, should
more fully recognize the place of other values,eeglly participation, where a
[standard form contract] is used in a relationdtisg. While individual negotiation
of each contract may be just too inefficient, theray be other ways to provide
adhering parties a sense of participation in frgnire contents of their agreements”
(added emphasis$}® Note that Whitford here highlights “participatioa% one of the
values that can not be managed well in discretesaetions, but | think that this is
exactly the value that should be taken seriouslfF@SS collaboration. Whitford
summarises the difference between discrete transaend relational contract in

terms of “participation”:

Participation is another value commonly reflectedhe behavior of parties to
relational contracts. Participation, as | use #rent means that the parties seek
influence in formulating the substantive contenadfansaction. [...] In discrete
transactions, take-it-or-leave-it bargains seenteqsatisfactory because the
party not drafting the terms can exercise effectieatrol over its own well-
being and, indirectly, over the terms of the staddarm contract simply by
declining to enter the transaction or refusing tatee another one. As

transactions become relational, however, withdrab@tomes a less viable

130 see Whitford, “Macneil’s Contribution”, supra n@g at 553-4
172

means of control, and the parties seek directgypatiion the formulation of the
rules of the relationship*

“Participation” is an important site where a reda@l FOSS licence is distinguished
from discrete transactional proprietary softwacerice. In a discrete transactional
proprietary licence, not all parties can equallgrtipate” to decide the substantive
content of a contract. The parties with strongegaaing power often proffer the
total legal obligation for the weaker parties, whay only choose to take it or leave
it. In contrast, a relational FOSS licence doespresentiate total obligation for the
adhering parties, but it requires all parties tostantly and proactively “participate”
to shape their own obligation in terms of makintuatcontribution to a project in an
ongoing cooperative relation. | will use the GPLsigbstantiate this argument in

more detail below.
4.4.2 GPL as an Umbrella Agreement: Balancing Flekility with Certainty

Though the value of “participation” is an importaone, it is not a straightforward
task to apply it to GPL as a relational contradie Tmain difficulty lies in the fact
that many standard-form contracts “involving consusrare used in transactions that
are not highly relational*®? So how does GPL as a standard form become a
relational contract and how do users of GPLed sofwo “participate” to shape
their own obligation in a collaborative relation? drder to answer this question, |
propose to examine the issue at two levels. Tise Iéwvel is the GPL as an umbrella
agreement, which specifies the participantainimum legal commitments to
guarantee software freedom but leaves open thetasub® contents of actual

contributions. The second level contains a myridd sab-agreements about

151 Whitford observes that although the value of piptition does not exclude material wealth
maximisation, it can be pursued for its own sakBhdugh often participation serves the wealth
maximization objectives of the parties seeking itan be and often is an objective independeitsof
wealth maximizing effects. People want some coragr@r their own destiny, even if sheer obedience
to the dictates of another would be more efficlevithitford, ibid., at 552

132 \Whitford observes that most standard form consrace not relational, but there are exceptions:
“An outstanding example of the use of a SFK in katienal setting is the real estate lease. The
contract for a new car is also quite relationale Harties are committed to a long term relationship
because of the extensive warranties in use todayicplarly since it usually is not practical fdvet
buyer to simply sell the car and buy another whenfronted with a problem. In these contexts, |
believe that concern for participation and othduea different from wealth maximization should be
reflected in the content of regulation.” WhitfortMacneil’s Contribution”, supra note 32, FN30 at
553-4

173

programmers’ actual volunteer contributions, whaite impossible without these
contributors’ direcparticipation These second-level obligations are not, and danno
be, fully presentiated in the umbrella GPL, whosanpurpose is to make sure that
all contributions can be later legally pieced tbgetinto one sustaining free software
project. In short, the GPL as an umbrella at th&t fevel is merely to facilitate the
real lived collaborative experience happening atthcond level. It makes sure all
contributions are not merely isolated transactidmg,they can be considered under
the same relational umbrella. In contrast, a petary software licence like the
ProCD user licence is more likely to be employed only @ few isolated
transactions, and users are not expected to dewadlmpg-term collaborative relation
with the original product supplier to substantialijprove the product. In other
words, a transactional software licence is not ymdeed by a long-term
collaborative relation between the original softevdevelopers and its users, but it is
only a device to regulate some one-shot transactioh software as discrete

commodities.

In the business sector, the use of umbrella agnesme by no means rare, because
they are very useful to stabilise lasting comménm@kations under which a series of
interrelated transactions may take pldteMouzas and Furmston point out that
umbrella agreements are generally “not concerneth wnmediate contractual
decisions but rather they explicitly spell out tpenciples that guide future
contractual decision:>* The main reason for employing umbrella contrasisigely
due to the tremendous difficulty of presentiatihgtbtal obligation for parties at the
outset of a long-term cooperative relation. Assiimpossible iron out every single
detail for an unfolding relation, an umbrella do@nhis needed to specify some
general principles that prevent that relation meaind into nowhere. In this sense,

%3 Mulcahy and Andrews summarise the useful rolehef umbrella contract in long-term business
cooperation: “[...] the umbrella contract performseattremely useful function in long-term business
relations. It provides a framework of clauses arntituion’ which sets out the arrangements and
norms which will govern the parties’ commercialat@nship. It provides certainty regarding the
conditions under which particular exchanges may fallace and a platform for ongoing negotiation.
The umbrella contract articulates what have bedlecc@ high order of shared conventions which
comprise customary expected, legal and non-ledakrand principles.” Linda Mulcahy and Cathy

Andrews, “Baird Textile Holdings v Marks & Spendelc” in Feminist Judgements—From Theory to
Practice (Oxford and Portland, Oregon: Hart, 2010) p.200

% They define “umbrella contracts” as “private agements that provide a framework of clauses
which regulate future contracts.” Stefanos Mouzasd Michael Furmston, “From Contract to

Umbrella Agreement” (2008) 67(Qambridge Law Journad7 at 38

174

an umbrella contract is very close to a kind of dsitution”, which provides
“certainty regarding the conditions under which leseges may take place” and also

“a platform for an on-going negotiation”:

In this way, umbrella agreements take the formcohstitutions’ of contracts.
To view an umbrella agreement as a constitution beaselevant to problems of
interpretation remembering Marshall C.J.’s famonginction that ‘we must
never forget that it is a constitution we are exmbng.” The validity and
legitimacy of constitutions is based upon the etioluof consent among related
actors over time. This consent articulates a higteroof shared conventions
which comprise customary, expected, legal, andnoften-legal rules and

principles®® (internal citation omitted)

In the academic literature, it is not uncommon that GPL is also often seen as a
community’s “constitution”, which echoes nicely thbove view that an umbrella
contract is a “constitution” for participating p&d in a relation. In his study of open
source software, Weber repeatedly mentions thabmen source licence is not
narrowly a legal document for a particular transect but it is “a de facto

constitution” that determines the governance stimecof a project. Weber argues:

Yet there is another way to see the license, as facto constitution. In the
absence of hierarchical authority, the license bexothe core statement of the
social structure that defines the community of ogenrce developers who
participate in a project. One way to manage compylex to state explicitly (in

a license or constitutiorthe norms and standards of behavior that hold the

community togethéer® (added emphasis)

No secondary commentary can be more revealing tirartext in the GPL itself,
which indicates that the licence is a constitutiaumabrella specifying “the norms
and standards of behavior that hold the commuaggther”. The preambular text of

the GPL makes it clear that the licence is no ntbam codifying general rules for

%5 Mouzas and Furmstoibid., at 38-9

1% \Weber,Successp.179; Weber reiterates the same idea laterersétme chapter: “[...] the licence
represents foundational beliefs about the consiitat principles of a community and evolving
knowledge about how to make it work.” Web8tccessp.185

175

guaranteeing software freedom in all publicly coreg contributions in a
collaborative relation. It reads:

The licenses for most software and other practiaaks are designed to take
away your freedom to share and change the workscdyrast,the GNU
General Public License is intended to guaranteer yfoeedom to share and
change all versions of a program—to make surentai@s free software for all
its users We, the Free Software Foundation, use the GNUef@érPublic
License for most of our software; it applies alsahy other work released this
way by its authors. You can apply it to your progsatoo™’ (added emphasis)
Not unlike all other umbrella agreements, the GPlalso designed to achieve a
balance between two interrelated needs, which aféhé need to remain flexible”
and 2) “the need for certainty and calculability’an ongoing cooperative relation
among parties>® Recall that in Chapter 1, | argue that “collabiomt in any
successful FOSS project has two defining aspettss inot only 1) radically
decentralised but also 2) coordinated among a latgeber of contributors® The
first aspect concerning decentralisation correspdaodhe need for flexibility, while
the second aspect concerning coordination correlsptmmthe need of certainty and

calculability. Now | will explain both aspects/neseid turn.

Firstly, GPL does not, and cannot, presentiatettii@l obligation that licensees
should bear in a radically decentralised collabeeagnvironment®® but the need for
flexibility or serendipity precludes presentiation. The substantive decisitans
contribute (e.g. what, when and how to contribate) completely left to individual

volunteers themselved® In this light, the GPL as a relational umbrellantact

" para. 2, Preamble, GPL v3.0; It is although wortting that the FSF claims that the GPL is a
constitution for the whole free software communiBPL “is the Constitution of the Free Software
Movement” as “its goals are primarily social anditgzal, not technical or economic.” See FSF,
“GPL Version 3: Background to Adoption”, <http://wwfsf.org/news/gpl3.htmI>

1% These two needs are identified by Stefanos Mouaag, Michael Furmston, “From Contract to
Umbrella Agreement”, supra note 154 at 49

%9 5ection 1.3.1, Chapter 1

180 Note that the concept of relational “contract”\iery different from UCITA’s definition of
“contract” as “the total legal obligation resultiftpm the parties’ agreement as affected by thigt][A
and other applicable law”. Section 102 (a) (17),T&L

161 Kelty observes that project leaders like Linus vBdds do not directly assign or solicit
contributions. Programmers make contribution elyticé their own volition: “At no point were the

176

dovetails well with Benkler's peer production systewhich refuses to specify the
creative tasks for “peer” programmers. The peedpection thus distinguishes itself
from market and firms, both of which struggle teaify or presentiate as much as
possible the objects to be produced via the pricech@mnism or managerial
commands?? It encourages individual programmers to pursu@ then intellectual
interests during the evolution of a project. Trasbased on the belief that human
creativity is a highly individuated enterprise andy individuals themselves can best
identify what they are most capable of doing. Fos reason, Benkler argues that

creative tasks cannot be fully specified or prdaaéed by classical contract:

[...] human intellectual effort idighly variable and individuated?eople have

different innate capabilities, personal, social,d aeducational histories,
emotional frameworks, and ongoing lived experienddsese characteristics
make for immensely diverse associations with, ighasatic insights into, and

divergent utilization of, existing information aralltural inputs at different

times and in different contextsluman creativity is therefore very difficult to
standardize and specify in the contracts necesgargither market-cleared or

hierarchically organized productioff® (added emphasis)

Secondly, those “highly variable and individuatedhtributions by peers also pose
someuncertaintieswhen they are needed to be pieced together ictharent free
software project. Without an explicitly agreed coitment, it is not automatically
clear whether all individual programmers are wilito share their contributions
permanently and irrevocably as free software. thegrogrammers are allowed to
withdraw their contributions from the project ateithwill, it would cause great
uncertainty to the project. For example, the legakertainty caused by the

patches assigned or solicited, although Torvaldassy famous for encouraging people to work on
particular problems, but only if they wanted to &lk/, Two Bits p.220

162 Benkler observes: “Collaborative production systgmse an information problem. The question
that individual agents in such a system need teesol order to be productive is what they should do
Markets solve this problem by attaching price signa alternative courses of action. Firms solie th
problem by assigning different signals from diffgragents different weights. To wit, what a manager
says matters. In order to perform these functibnth) markets and firms need to specify the objéct o
the signal sufficiently so that property, contraefjd managerial instructions can be used to
differentiate between agents, efforts, resourcew] potential combinations thereof.” Benkler,
“Coase's Penguin, or, Linux and ‘The Nature of Firen™ (2002) 112, (3)Yale Law JournaB69, at
375

163 Benkler, Wealth of Networks: How Social Production TransferMarkets and FreedortNew
Haven: Yale University Press, 2006), p. 414

177

withdrawal of Gosling’s code from “Emacs commune’the pre-GPL era was real
and tremendou¥’ So the GPL as an umbrella agreement reducesribertainty by
standardising a few minimum legal commitments @ necessary to prevent a
project from disintegrating, although it never pneisates any detailed obligations
concerning substantive contributions. These minimabtigations mainly concern
the availability of source code when a contribui®oonveyed to the public. In other
words, the GPL makes sure all publicly conveyedecagrbatim or modified, must
be made available for the public to freely copye,umodify and redistributé® In
this light, the GPL as an umbrella adds a levetertainty by making sure that it
would provide a legal infrastructure where all wgEntiated peer-produced
contributions can be legally compatible free sofsvao stay in the same

collaborative project.

In summary, the GPL as an umbrella agreement asieBdbe need fdlexibility by
not presentiating the substantive content of peadyction in a continuing relation,
and at the same time it addresses the needcddninty by standardising the
minimum legal commitment to make these peer-prodiucentributions legally
compatible. Again it is worth reemphasising thah@lgh the GPL is an important
umbrella agreement that balances these two neealsataborative relation, it does
not equal, but only facilitate, this whole relatiqtust as Macneil reminds: “Under
the relational approach, express terms in contractsno more than an extremely
important part of a dense web of relatioh¥. The next chapter will address the issue
concerning FOSS authorship, which is another ingmbrpart of the relational web

but is too complex to be fully explained by the e2gs text of the GPL.
4.5 Conclusion

This chapter examines some difficult issues conogrthe FOSS licences as non-
negotiated standard from contracts. From a stridtgsical contractual view, most
FOSS licensing schemes would lack affirmativelyresped consent from licensees

184 See Section 2.3.2, Chapter 2

185 5ee Section 3.5, Chapter 3

% 1an R. Macneil, “Reflection on Relational Contrakheory after a Neo-classical Seminar”, in
Implicit Dimensions of Contract—Discrete, Relatignand Network Contractseds. By David
Campbell, Hugh Collins and John Wightman (Oxford &wortland, Oregon: Hart Publishing, 2003)
p.208

178

to make themselves binding. There are two altereatio this classical approach.
One is the neoclassical contract law as represdmyethe ProCD ruling, which
reorients the legitimation of standard forms towgarthe goal of maximising
individual utility gains. The other alternative tise Macneilian relational contract
approach, which is endorsed by this chapter. |atpat the relational approach is
more appropriate to deal with a relation-rich FQ®8aborative experience than the
classical or neoclassical contract model. My exatmm of the GPL as a relational
umbrella agreement shows its role in maintainingakance between the need for
flexibility in identifying the creative tasks by programmémsnmselves and need for
legal certainty in producing legally compatible contributions taysin one project
irrevocably as free software. Based on this retaionsight, the next chapter will
explore the diverse motivational forces behind F@8®orship in relation to FOSS

licensing.

179

Chapter 5 The ldea of Authorship in FOSS Licensing

5.1 Introduction

Who are the “authors” of free and open source sw#® How do programmers claim
their “authorship” in collaboratively created FO$®jects? To which extent does
this FOSS “authorship” deviate from the eighteerghtury Romantic author vision
that has purportedly shored up the modern copyright? Do FOSS licensing
schemes correspondingly carve out a unique legabpa for programmers working
in collaboration that is detached from Romantictlastics? Compared with many
scholarly writings on legal enforcement of FOS®Hices including copyleft licences,
the size of the legal literature tackling above sjisms about FOSS authorship is
considerably small Dusollier observes that “[tlhe author is barelgmtioned in
copyleft, despite playing a prominent role in tlystem” and this marked absence
“unfortunately conceals the importance of the awuthgure in the philosophical
model of copyleft.? As all copyleft licences are copyrigiitences in the first place,
Dusollier’s observation tallies with Ginsburg’s wpthat “the figure of the author is
too-often absent” in “contemporary debates overydgpt” and this absence may
only lead to an incomplete understanding of “cogyts role in fostering

nd

creativity.”” Similarly, the lack of discussion of authorship HOSS licensing

schemes can also risk losing sight of the wholeupgcof the role of FOSS licensing

! For a definitive account of the Romantic authosiom and modern copyright, see Martha
Woodmansee, “The Genius and CopyrightTime Author, Art, and the Market—Reading the History
of Aesthetic{NY: Columbia University Press, 1994) originallutpished in (1984) 17 Eighteenth-
Century Studies 425, titled “The Genius and Coprigcconomic and Legal Conditions of the
Emergence of the ‘Author” (Hereafter “The GeniuglaCopyright”)

See also James Boyhamans, Software, and Spleens—Law and the Cotiatra¢ the Information
Society, (Cambridge, Mass.: Harvard University Press,6)9fr two important critiques of Boyle’s
treatment of Romantic authorship and law, see Nlarkley, “Romantic Authorship and the Rhetoric
of Property”, (1997)75Texas Law Reviewd73 (hereafter “Romantic Authorship”) and Pamela
Samuelson, “The Quest for Enabling Metaphors fow land Lawyering in the Information Age”
(1996) 94 (6Michigan Law Reviev2029 (Hereafter “Enabling Metaphors™)

% For example, Dusollier’s attempt to link FOSS ausihip with postmodern aesthetics in a 2003 law
journal article still remains arguably the most orant contribution in the legal literature. See
Severine Dusollier, “Open Source and Copyleft: Auship Reconsidered?” (2003) ZBolumbia
Journal of Law and the Art383

%ibid., p.288

“ Jane C. Ginsburg, “The Concept of Authorship inmParative Copyright Law” (2003) 5RePaul
Law Reviewl063 at 1063

180

in coordinating FOSS collaboration. As the last lap of my journdyegploring
FOSS licensing, my task in this chapter is exatdlynap out the complex idea of

collaborative authorship as manifested by FOSiicey schemes.

The main thrust of this chapter is that “authore”exist in FOSS projects and they
exist not only at the individual level, but morepantantly, also at the collective
(project) level. At the individual level, Dusolliesuggests that authors are the
“initiators” of each individually created piece ebde® but she does not go further to
elaborate in detail how these individual contribog are later integrated into a
collectivework, which can be attributed to a project as alefigVhat is ignored
here is exactly FOSS authorship at the collectwell which is an equally important
but poorly understood matter. An “authorless” pcojat the collective level would
simply be a failed project where individually cre@tcontributions do not aggregate
into a coherent whole. An “authored” FOSS projschot content oriented towards
producing a Babel of unrelated software fragmentsairadically decentralised
environment, but it also wants every contributocaordinatewith one anothef.lt is
exactly these coordinating efforts that give bidhthe collective authorship, which
can be held responsible and deserve credit foptb@uction of an integrated FOSS

® Dusollier seems to think that these individuahaus then fully withdraw their authorial controlewv
their creation once and for all under FOSS licenteshis scenario, the software becomes a kind of
constantly reformulateable free-flowing postmodénork”, whose link with its initial individual
authors is irreversibly lost: “Once the work is reaaailable to the public, the formerly unwavering
link to the author becomes blurred. The authoroidomger considered ‘the initiator of the colleetiv
work.” Furthermore, the integrity of the work—thalement which reflects authorial personality and
justifies an extensive moral right in Continentakcttine—no longer means much. In this sense, the
author resembles the figure of postmodern liteessthetics of Foucault’s ‘founder of discursivity.”
As the initiator of an open discourse—of an eversheng work—the author of an element of a
collective creation in copyleft finds her partiauleontribution diluted by the whole of successive
contribution. The ‘work’ in the copyleft regime ®software in constant (re)-formation; it is the
production of meaning from different convergentsoiccessive artistic practices.” Dusollier, supra
note 2, pp. 294-5

® Dusollier only mentions collective authorship iasging at the end of the concluding part of her
essay. She seems to argue that the collective iwartade possible with the help of copyleft, but she
does not explain how the legal mechanism of copgheéctly helps to coordinate individual authors’
interests in more detail: “The author is not orfig initial founder of a discourse and instigatomof
creation of which her contribution is only the fisfage. She is also the figure by whtita whole of
the collective creatioffinds itself marked by the stamp of freedom. la tihain of contributions, of
works which will come to add incrementally to thestf act, none will be able to escape the refusal o
intellectual property rights exerted in a propnigtand exclusive manner. Foucault’s desire for igrea
cultural freedom is brought to life in copyleft.t{ded emphasisddid., at 295

" See also Section 1.3.1, Chapter 1, where | atate‘¢ollaboration” in any successful FOSS project
has two defining aspects: it is not only ragically decentralisecbut also 2)coordinatedamong a
large number of contributors. This chapter elaleswrahe second aspect of collaboration in terms of
FOSS licences’ role in coordinating contributoesjdl commitment.

181

project. Of course, thisollective authorshipn the whole project should not be
conflated with thendividual authorshign each individual contribution. The former
by no means compromises the latter, which is atspected within the FOSS
community. A full evaluation of FOSS authorship rglation to FOSS licensing
should be scrutinised at both collaborative andviddal levels, though the existing
literature does not tend to be discerning enoughfterentiate the two. In particular,
I will highlight the pivotal role of a small corer@up of lead authors—who are the
lead programmers or coordinators in a FOSS projextiategrate individual

authors’ creation into a collective work. | caleth “stewards”, whose coordinating
efforts make their authorship quite different frahe conventional author-owners

claiming exclusive rights under the intellectuabperty regimé.

The chapter is divided into three parts. In thstfpart (Section 5.2), | examine
whether the Romantic genius vision fits with FOS#harship at both individual and
collective levels. At the individual level, there mo shortage of extremely talented
FOSS programming “geniuses” in the community. Hosvethe making of a
collaborative FOSS project always goes beyond cafiely the virtuosity of these
individual “geniuses”Individually created contributions must be aggregated into a
workable coherent whole, which can then tdlectively held responsible and
deserve credit for an integrated project as a whidlest interestingly, individual
author-geniuses do not simply disappear under b@@lav the collective FOSS
authorship, but a few most active and enthusiastes, who usually become project-
leaders/coordinators, stand out as théhor-stewardsfor certain projects for a
sustaining period of time. | point out that, altgbuthese coordinators play a
tremendously important role in channelling indivatl@authorship into collaborative
authorship, their author-stewardship is an unddmstl phenomenon by legal
scholarship. In the second part (Section 5.3) plae the FOSS programmers’ legal
persona, which has developed to a large extenpardently of the Romantic author
vision. | try to demonstrate how FOSS programmeses theirlicensing schemes to
claim their authorship at both individual and coliee levels, despite the fact that

® The alignment of authorship with stewardship ingSOprojects is in counterpoint to Mark Rose’s
famous observation that modern authorship is djstshed by its link with ownership: “the author is
conceived as the originator and therefore the owhearspecial kind of commaodity, the work.” Rose,
Authors and Owners—The Invention of Copyrig8ambridge, Mass. & London: Harvard University
Press, 1993) p.1

182

Anglo-American law does not statutorily give softe/gorogrammes a standalone
attribution right. In particular, | will tackle theroblem as to how project-leaders, in
the capacity of author-stewards, enlist trademak to protect the reputation or

goodwill for their project as a whole. The thirdfpgection 5.4) concludes.

5.2 Individual and Collective “Authors” in FOSS Programming

This section discusses the authorial consciousoE$0SS programmers at both
individual and collective levels. It examines theeamt to which Romantic aesthetics
is still viable in explaining the actual practicERDSS programming. It shows that
the individualistic Romantic author vision may Istbe applied toindividual
authorship of contributed code, but it is toodequate to account for FOSS
authorship at theollectivelevel. In particular, the Romantic vision seemsudfer
from a blind spot by failing to recognise projeeadlers’ unique authorial role as
“stewards”, who are instrumental in channellingiwdual authors’ efforts into one
collective authorship that can be held responsdnd deserve credit for a FOSS

project as a whole.

5.2.1 Debating the Legacy of Romantic Aesthetics

Theindividualised“author”, who is credited as the sole origin ofraative work, is a
construct of relatively recent pedigree. Woodmanseker 1984 essay, has provided
a definitive account of the rise of the self-ingplir‘genius” and its repercussion in
modern copyright law since the Western Romantic &moent beginning in the
second part of the eighteenth century. Literaryatmes, equipped with the
ammunition from Romantic aesthetics, lifted themsglout of the unimaginative
rank of craftsmen and they become author-geniuses capable of maiitadly
original contributions derived from their unique creativegomality. The oft-quoted
Wordsworth’s testimony made in 1815 is an exemplstgtement asserting the

literary author-genius to be the sole fountainisfdmiginal creation:

Of genius the only proof is, the act of doing wehat is worthy to be done, and
what was never done before: Of genius in the fitg ¢he only infallible sign is
the widening the sphere of human sensibility, Far delight, honor, and benefit

of human nature.Genius is the introduction of a new element inbe t

183

intellectual universeor, if that be not allowed, it is the applicatiohpowers to
objects on which they had not before been exercisedhe employment of
them in such a manner as to produce effects hithertknown?® (added

emphasis)

The Romantic vision of author as a Wordsworthianigge capable of introducing “a
new element into the intellectual universe” hasualdy exerted an indelible and
tremendous influence in shaping the contour of modepyright law in the western
world. Woodmansee points out that modern copyrigjtexactly built upon this cult

of the author-genius:

Our laws of intellectual property are rooted in theentury-long
reconceptualization of the creative process whidmmated in high Romantic
pronouncements like Wordsworth’s to the effect ttis procesoughtto be
solitary, or individual, and introduce ‘a new elerhanto the intellectual
universe.” Both Anglo-American ‘copyright’ and Camgntal ‘authors’ rights’
achieve their modern form in this critical fermeand today a piece of writing
or other creative product may claim legal protectionly insofar as it is
determined to be a unique, original product of thiellection of a unique

individual (or identifiable individuals)’ (original emphasis)

In the more specific area of software copyrigheréhis no shortage of academic
works that bear out Woodmansee’s worry about lawisritical acceptance of the
Romantic mode of solitary and individualised augihgo. Jaszi, an ardent champion
of Woodmansee'’s thesis, observes that “lawyersjaohges have invoked the vision
of the Romantic ‘author-genius’ in rationalizingtbxtension of copyright protection
to computer software”, because software prograngs “ap less inspired than

traditional literal works, and that the imaginatipeocess of the programmer are
analogous to those of the literary ‘authdt.It is worth noting that the main source
that Jaszi relies upon to make his observationntheer influential article titled

° William Wordsworth, “Essay, Supplementary to theefRce”, quoted in Woodmansee, “On the
Author Effect: Recovering Collectivity” (1992) Xardozo Arts and Entertainment Law Jour2aR

at 280 (Hereafter “On the Author Effect”)

19 Martha Woodmansee, “On the Author Effedtid., at 291-2

! peter Jaszi, “On the Author Effect: Contemporaopgight and Collective Creativity”, (1992) 10
Cardozo Arts and Entertainment Law Jour28B3 at 297-8

184

“Silicon Epics and Binary Bards” (hereafter “SilicdEpics”) written by Anthony
Clapes and his colleagues in 188({three years after Woodmansee’s essay on “the
Genius and Copyright” was first published). In f&in Epics”, Clapeset. al.
straightforwardly liken software to “the arcaneepoetry of the Information Agé®
and a programmer is correspondingly the ‘poet’ @ poetic creation. It is
emphasised that software should not be treateerdiffly from literary works,
because they are also “works of authorship in whith range and variety of
expression are broad and deep” and software ask$aafrauthorship exhibit all the
attributes of literary works of a kind with whichet general public and copyright
laws are already quite conversafitNote that the programmer-as-poet vision is not
preached by “Silicon Epics” for the first time, hticomes from Frederick Brooks’
1975 classical work on software design, which temfcredited as an earlier source

equating programmer with poet:

The programmer, like the poet, works only slighidynoved from pure thought-
stuff. He builds his castles in the air, from areating byexertion of the
imagination Few media of creation are so flexible, so eagyolesh and rework,
so readily capable of realizing grand conceptualicstres|...]*> (added

emphasis)

From Brooks’ point of view, programming is by no ane a mindless job but it
involves author’s “exertion of the imagination” updiis creation, and it is also
enjoyable and fun. The programmer-author has the€isjoy of making things” that
is new and original: “As the child delights in hisud pie, so the adult enjoys
building things, especially things dfis own design | think this delight [in
programming] must be an image of God’s delight ekmg things, a delight shown
in the distinctness of newness of each leaf anth saowflake.*® The authors of
“Silicon Epics” seem content to use Brooks'’s authergod metaphor to defend the

extension of US copyright law to software as praslp recommended by the Mel

12 Anthony Clapes, Patrick Lynch, and Mark R. Stemgbe‘Silicon Epics and Binary Bards:
Determining the Proper Scope of Copyright Protectar Computer Programs” (1983% UCLA Law
Review1493

“ibid., at 1584

“ibid.

1> Brooks,Mythical Man-Month pp.7-8, quoted by Clapes. al, “Silicon Epics”,ibid., at 1497

'®ibid., at 1496-7

185

Nimmer and National Commission on New Technologidalkes of Copyrighted
Works (CONTU)' Note that this 1987 “Silicon Epics” essay is ndirgle isolated
effort to invoke Romantic authorship to justify goijght protection for software, but

it has a sustained appeal. For example, Milleg iaterHarvard Law Revievarticle,
makes a similar authorship argument that “imagamatioriginality, and creativity
involved in writing a program is comparable to thatolved in more time-honored
literary works and far exceeds various mundanertsffthat have long enjoyed
protection under the copyright rubri®’. For this reason, he also reaches the
conclusion that the unique creative expression firaividual software programmers

deserves copyright protection:

[...] the communicative precision required of a comgpuyrogrammer is not
unlike the discipline that a poet must achieve aovey a complex message
within the confines of a tightly constrained meterthat of a composer who
must work within the limited ranges of musical msbhents or of the human
voice. In each case, the copyright law rewardsat#hor's imagination and
originality of expressionin the hope of encouraging further creative

productivity!® (added emphasis)

Both Clapes and Miller's articles have vindicatedb®imansee’s observation that
“creative product may claim legal protection onigofar as it is determined to be a
unique, original product of the intellection of a uniquedividual (or identifiable
individualg” ?° (added emphasis). It is not difficult to find tR®mantic creative
mode, which is arguably the aesthetical mooringnotlern copyright law, is based a
presumption that the “original” contribution musinge from a unique identifiable
“individual”. | argue that this Romantic conceptionf “originality” and
“individuality” fails to account for the complex phomenon FOSS programming on

two grounds.Firstly, the Romantic view of “originality” ignoreshe fact that

74t is this factual underpinning that was persuasio Mel Nimmer and the majority of CONTU
members in recommending only modest changes inCiygyright Act so that the full body of
copyright law would apply to computer programs.’af#s, “Silicon Epics”, at 1583; For CONTU'’s
report that analogises software to literary wode slso the discussion in Section 3.3, Chapter 3 of
this dissertation.

8 Arthur R. Miller, “Copyright Protection for Compert Programs, Databases, and Computer-
Generated Works: Is Anything New Since CONTU” (1p286Harvard Law Revie®77 at 983-4
Yibid., at 984

2 Woodmansee, “On the Author Effect”, supra note 9

186

programming is also an engineering discipline tiat always prized intelligently
reusingold elements in solving practical problems since itdyehacker culture.
Secondly, the Romantic conception of “individudlify.e., author as solitary and
self-inspired genius) makes itself difficult to éaip the practice otollaborative
FOSS programming in a radically decentralised emvirent. | will explain both

grounds in turn now.
5.2.2 Programming as an Engineering Discipline: Qustioning “Originality”

The first ground calls into question the Romantialagy of software programmers
to Wordsworthian literary geniuses, whose uniquégioal” creative expression
must introduce “a new element into the intellectuaiverse”. In fact, FOSS
programming is not always about creating new thiogs of nothing in a rarefied
atmosphere, but it is also an engineering dis@plgeeking to solve practical
problems by using old and pre-existing technicalittans®* Samuelsoret. al. find
Clapes or Miller's attempt to treat programmers ldasrary author-geniuses
ultimately fails®, but argue that a “well-designed program is this # the work of
a talented engineer whose skilled efforts in apgyknow-how,accumulated from
years of experience and trainingields a successful design for a bridge or other
useful product® There are two characteristics to this programnseessgineer view.
First, programmers do not merely compose code wsaly text, but more
importantly they produce utilitarian artifacts thagrform certain functions, from

which the primary value of the program is derivé&econdly, programming as an

%L The development of US software case law, espgadiier the 1992\ltai case where software was
treated partially as a functional object and itm-eapressive elements were accordingly excluded
from copyright protection, seems to fly in the faafethe Romantic argument that programmers are
“original” literary writers. In other words, softwa copyright law afteAltai seems not go down the
exact trajectory as laid down by Romantic aestketiut it seems to veer onto a non-aesthetical
course where programmers are recognised as “emgin&seComputer Associates International, Inc.
v. Altai, Inc, 982 F.2d 693 (2d Cir.1992)

2 pamela Samuelson, “Enabling Metaphors” supra fiot¢ 2038-9; See also Lemley, “Romantic
Authorship”, supra note 1 at 894

% pamela Samuelson, Randall Davis, Mitchell D. Kapand J. H. ReichmanA Manifesto
Concerning the Legal Protection of Computer Progsa(t994) 94 (8Columbia Law Revie®308 at
2332 (hereafteManifestq

24 “While conceiving of programs as texts is not imeet, it is seriously incomplete. A crucially
important characteristic of programs is that thehadve; programs exist to make computers perform
tasks. Program behavior consists of all the actibasa computer can perform by executing program
instructions. [...] Behavior is not a secondary bgehrct of a program, but rather an essential part of
what programs are. To put the point starkly: No woald want to buy a program that did not behave,

187

engineering discipline is not just about bringiragriew element into the intellectual
universe”, but it is also about intelligently reugiand combining old elements that
have been “accumulated from years of experience taaiding”. The second
characteristic directly challenges the “origindligf Romantic authors and calls for
recognising the incremental and accumulative moélecreativity in software

engineering:

The products of software engineering almost intdyiaontainadmixtures of
old and new elementsSome consist almost entirely of old elements. The
innovation in such programs may lie in the mannerwhich the known
elements have been combined in a new and efficramner. Or it may come
from combining some new elements with well- knoweangents in order to
achieve the same result in a new way. When we smpdagrograms as
“industrial compilations of applied know-how," it iin recognition of the
frequency with which software engineering involvéd®e reuse of known
elementsUse of skilled efforts to construct programs gsirmaboutcumulative,
incremental innovation characteristic of engineering discipétrf> (added
emphasis)

Samuelson’s depiction of software programmers @neers, whose innovation is
incremental and cumulative and involves skilledsieg of old elements, shows that
software programmers’ authorial consciousness dabeosolely determined by
Romanticaestheticthoughts but there is also a stromghnical dimension to the

issue. The awareness that programmers are engioedéexhnicians is critical to

understand the non-Romantic (incremental and cume)amode of practical

creativity in collaborative FOSS programming. Welobserves: “Open source is
first and foremost an engineering culture—bottom pmgmatic, and grounded
heavily in experience rather than theof§Ih fact, this engineering culture can be
exactly stretched back to the early MIT-style hackelture, where the ethos of

sharing and reusing of existing solutions to techinproblems was strong and robust

i.e., that did nothing, no matter how elegant tbarse code "prose" expressing that nothinbid.,
pp. 2316-7

> Samuelsomt. al. Manifestg supra note 23 at 2332

% Weber,Successp.164

188

among computer hackets. For hackers and later FOSS programmers, it is
unnecessarily wasteful to reinvent the wheel fraamateh, however original this
reinvention may be without copying from other sasclt is argued that there is “an
ethical duty of hackers to share their expertisewiing open-source code and
facilitating access to information and to computiegources wherever possibf8.”
However, the rise of private intellectual propeirtysoftware and its accompanied
pursuit for “originality” significantly diminishedhis sharing and reusing ethos since
the late 1970s. It pushed the common activitiesharing and reusing under the
hacker culture into a newly created category knawrsoftware “piracy” or “theft”,
which was exactly the kind of “crime” that Stallmavas accused of during his
conflict with the proprietary software company Swyiits over the Lisp
programming language initially co-developed atMi& Al Lab.?° In this sense, the
hacker culture grounded in engineers’ practicatlilgence is to a large extent a
victim of software copyright law’s obsession witlorRantic mode of “originality”,

which refuses to see the more incremental and atimeltype of creativity.

5.2.3 Stewarding a FOSS Project: Questioning “Indirduality”

The second ground questions authors’ “individualiag assumed by Romantic
aesthetics. As a general matter, this individualigsion tends to attract two types of
criticism. First, literary theorists blame it foreglecting the prevalentollective
creative processes in the contemporary tith8econdly, legal scholars are not
satisfied with the lack of precise guide that Rotitamesthetics is able to provide for
the actual development of legal doctrines of iewlial property. In particular, the
Romantic individualistic vision is least compet@mttelling what law can do when
there is a dispute between upstream and downstagdinors. In this light, Lemley
points out that Romantic authorship ultimately daib inform how to balance the

interests among what he calls “first and seconeggions” of authors:

%" See Section 2.2.1, Chapter 2 of this dissertdtiomore detail.

2 «The Hacker Ethic” in Jargon File, compiled by Raynd, at
<http://www.catb.org/jargon/html/H/hacker-ethic.itm

29 For more detail of Symbolics incident, see Secfigh2 Chapter 2

% For example, Woodmansee observes that “electr@uionology is hastening the demise of the
illusion that writing is solitary and originary” dnthe “writing” practice has become frequently
collective in the electronic age. See Martha Woawsea, “On the Author Effect: Recovering
Collectivity” (1992) 10Cardozo Arts and Entertainment Law Jour230 at 289

189

The problem is that the idea of Romantic authorslups not necessarily lead
one to favor one side or the other in a disputevéen two types of authors—
the first and second generations. One could inwbkelanguage of romantic
authorship either to demand strong copyright ptaiecfor a first-generation

author or to demand an expansive interpretatiorfaof use for a second-
generation author who has “transformed” a firstegation work®*

In the case of large-scale decentralised FOSS g@maging, this inter-generational
authorial conflict can be exacerbated because tbanebe unlimited numbers of
generations of programmers who work on the sameepigf software. What
complicates things further is that even foundingmhers (i.e. the first generation of
contributors) of a FOSS project do not always stagtream in a project. They can
rapidly move downstream when they use and modifgtrdmutions from later-
generation programmers. FOSS licensing schemesrtee £xtent pre-empt this
problem by standardising all individual authorgjaé commitments when making a
collaborative project? Having said this| do not mean to give an impression that the
collaborative efforts of a FOSS project can be ceduo its legal form as forged by
these licensing schemes. Instead, | try to showRQES collaboration requires one
lead programmer or a core team of programmers terbath legal and extra-legal
arrangements to coordinate peer-produced contoibsitinto a whole. | call these
coordinators the “stewards” of FOSS projects. Th&tegvards occupy a critically
important “authorial” role in splicing individualughorial interests into a collective

one.
Project-Leader/Coordinator as Author-Stewards

To understand FOSS project-leader/coordinatordiaigl persona as “steward” is
not based on a false belief that FOSS programnrergieapable of making original
contribution asndividuals There is no need to overcompensate for the weaakoie

Romantic aesthetics by denying the existence ajraraming “genius” in the FOSS

community. In fact, many lead FOSS programmerdistknown to the public for

31 See Lemley, “Romantic Authorship”, supra note 886

¥t is worth emphasising again the difference betweopyleft and non-copyleft schemes. Copyleft
licences makesall generations of authors have the same set of replity to commit their
contributions to the commons, while non-copyledetices schemes only limit this responsibility to
the first generation of authors.

190

their virtuoso hacking skills rather than the nekly unsung role as project
coordinators. Recall that Levy’'s 1984 hagiograpliycomputer hackers, as its
subtitle “Heroes of the Computer Revolution” sudgess exactly a book full of
larger-than-life programming geniuses in the pioimgedays of hacking. One of the
most notable of them is no doubt Richard Stallnveimy is depicted by Levy much
like a typical solitary Romantic genius. For exaeptluring Stallman’s personal
struggle against the proprietary software compaymltilics which refused to share
improvements of the Lisp language, Stallman’s irdiial virtuosity in programming
even won the admiration from a Symbolics employeyrammer who commented:
“[...] Stallman doesn't have anybody to argue with might over there. He’s
working alone! It isincredible anyone could do this alon&*(original emphasis)
Levy’'s writing is one of the earliest sources wh8tallman gains this lonely (and
sometimes unsociable) “genius” image. In 1990, tmage is further reinforced by
the prestigious MacArthur fellowship (also knownthe “genius grant”) given to
Stallman literally in recognition of his “geniustasus in the hacking worlf.Nine
years later, Michael Gross conducted an importatgrview further revealing that
Stallman has exhibited all kinds of attributes nalfgn associated with a solitary
genius since his childhood as a lonely prodigy wdas precociously talented and

curious in many intellectual subjecfs.

However, Stallman’s image as hacking genius sonastiovershadows his arguably
more mundane administrative role as the coordirsttavard behind the GNU

% Levy, Hackers p.426

%It is interesting to note that the very generogsriius grant” ($240,000 in value including health
insurance to Stallman) allows to Stallman to fullgdicate himself to the cause of free software
without taking another full time job. Lerner explaiwhat kind of people can be the awardees of the
“genius grants”; “The MacArthur fellowships, knovas "genius grants,"” are awarded annually to
exceptionally talented and creative people. Thiar'gerecipients include artists, human rights
activists, mathematicians, and astronomers.” ReuvenLerner, “Stallman wins $ 240,000 in
MacArthur Award”, 18 July 1990 at < http://tech.radu/V110/N30/rms.30n.htm!>

% In this interview, Stallman recalled that he wagesy lonely child who had few friends, but he took
an avid interest in many subjects: “| learned dalswhen | was something like 7 or 8. So it wasn't
hard for anyone to tell that | was interested @rténg as much math and science as possible. For a
couple of years when | was 14 to 16, | would gdh®e library and get two or three books a week
about various subjects, like History, Math and 8céee And | would read them all. At one point, |
decided to learn Latin, so | got a first-year Latntbook and went through it in a month, and then
got the second-year book and went through thahénntext month”. See Michael Gross, “Richard
Stallman: High School Misfit, Symbol of Free Softea MacArthur-certified Genius”, 2000,
<http://www.mgross.com/MoreThgsChngl/interviewsigtain1.html>; this interview about Stallman
as a genius is important because it lays the fdiowéor a later book-length biography of Stallman
by Sam Williams. Sam WilliamsFree as in Freedom—Richard Stallman's Crusade fozeF
Software O’Reily 2002 at <http://www.oreilly.com/openboéieedom/>

191

project. From thewhole project’s point of view, Stallman’s perseveringwardship

can be much more important than his personal geoads This is because
Stallman’s individual ingenuity, however greatsi would only be diluted in a robust
project that can continue to attract a burgeonimglmer of contributors. At the same
time, Stallman’s role as coordinator would only dradually accentuated over the
time because a growing pool of programming taler@sds more and more of his
stewardship to channel their peer-produced corttabs into a coherently integrated
project. To put it succinctly, it is a lead prograer’s tenacity rather than his
ingenuity that gives him the stewardship, which terat most to the sustainability

and longevity of a project.

The above point becomes even clearer when it iBeapf the Linux project under
the stewardship of Linus Torvalds. Raymond obsetlas Torvalds fails to be an
individually “original” computing genius like Statlan in the first place, but he
stands out as an engineer who is extremely goathglementing and integrating
other people’s contributions into the project. listsense, Torvalds is considered to
be a kind of lesser “genius of engineering and en@ntation”, but he knows how to
harness the collective intelligence from other leaskdespite his lack of personal

ingenuity:

But Linux didn’t represent any awesome concepteap IforwardLinus is not
(or at least, not yet) an innovative geniok designing in the way that, say,
Richard Stallman [... is]. Rather, Linus seems to toebe a genius of
engineering and implementationvith a sixth sense for avoiding bugs and
development dead-ends and a true knack for finthegminimume-effort path
from point A to point B. Indeed, the whole desidgrLmux breathes this quality

and mirrors Linus’ essentially conservative andgifying design approactf.

It is not difficult to find that Raymond’s argumems subtly widened the meaning of
“genius”, which has been conventionally pegged he individualistic mode of
“originality” under Romantic aesthetics. For Rayrdpthe “genius” may mean not

only the self-inspired creator in the Romantic getsit it may also include the more

% Eric Raymond, The Cathedral and the Bazaar version 3.0 at

<http://www.catb.org/~esr/writings/cathedral-bazeathedral-bazaar/> (hereaft@athedra)
192

mundane but less individualistically “original” tgpof “genius of engineering and
implementation” as epitomised by Torvalds who isd@t using and reusing other
people’s innovation. In fact, Torvalds is not alofug being this kind of lesser
“genius”, but he belongs to a core stewardship teasubsystem maintainers for the
Linux project. This team of maintainers are Linusgatekeepers”, because they are
responsible for reviewing all contributed patchekjch can only be integrated into
the mainline kernel with its approviiKelty illustrates how these gatekeepers do

their daily job of reviewing and merging code sutted from other contributors:

Almost all of the decisions made by Torvalds amditenants were of a single
kind: whether or not to incorporate a piece of cedbmitted by a volunteer.
Each such decision was technically complex: inleet code, recompile the
kernel, test to see if it works or if it producasyaugs, decide whether it is
worth keeping, issue a new version with a log @ thanges that were made.
Although the various official leaders were givere thuthority to make such
changes, coordination was still technically inform&ince they were all
working on the same complex technical object, aarsqn (Torvalds) ultimately
needed to verify a final version, containing ak thubparts, in order to make

sure that it worked without breakirit).

Furthermore, when a project-leader keeps coordigair stewarding a project for a
continuingly long time, he would not only be creditfor his individual contribution,
but more significantly, he would also get credir fois stewardship work that
integrates other contributors’ efforts into a coliee whole. To illustrate, Torvalds
may claim two types of authorship for his work. the one hand, he is tidividual
author of the code written by him; on the other hand,idh@lso thestewardship

37 A 2009 Linux Foundation’s report shows briefly hpatches are reviewed and approved by the
subsystem maintainer term and it also shows tleatdlde that Torvalds has merged under that release
was slightly under 3%. “Patches do not normallyspdisectly into the mainline kernel; instead, they
pass through one of one-hundred or so subsystes. tEach subsystem tree is dedicated to a specific
part of the kernel [...] and is under the control tbé specific maintainer. When a subsystem
maintainer accepts a patch into a subsystem teeer Bhe will attach a “Sign-off-by” line to it. &h

line is a statement that the patch can be legatigrporated into the kernel; the sequence of sfgnof
lines can be used to establish the path by which eaange got into the kernel.” See Greg Kroah-
Hartman, Jonathan Corbet, Amanda McPher&imjx Kernel Development: How Fast it is Going,
Who is Doing It, What They are Doing, and Who i®rSpring It: An August 2009 Updat
<http://www.linuxfoundation.org/sites/main/filesiplications/whowriteslinux.pdf>, p.13

% Kelty, Two Bits p.220

193

author who reviews, approves and integrates other pepmentribution into the
mainline Linux kernel. The former is familiar toetfRomantic mode of individuated
authorship, while the latter is a less familiar dné is crucial to the success of a

large-scale collaborative FOSS project.

These two types of authorship may substantiallyrlapein a small budding project
in its early formative stage, when a main programsnandividual contributions
account for the most part of the program. At thags, his significant individual
authorship can easily give rise to project leadprshhich is “essentially the same as
ownership” as observed by Web@towever, when the project scales up into a
huge one, the lead programmer’ individual authqrstan be rapidly diluted to the
extent that he can no longer justify his ownerdagdership of the whole program.
Suppose that this programmer continues to be easticsabout leading the project
ahead, the basis of his leadership practice muét sbm the ever-dwindling
ownership of the software to the ever-increasistewardshipresponsibility in

coordinating other people’s contributions for theject*°

This shift from ownership to stewardship is sigrafit to a rounded understanding of
project-leaders’ unique authorial role in takingveardship responsibility to forge
collaboration in a FOSS project. Most importantlypuntering the Romantic
assumption of self-inspired authorship, FOSS lesidmithor-stewardship seems to
flesh out the two most important components ofaht#hor-as-steward thesis argued
by Kwall. The first component comes from an awassnihat an author himself is
not the sole source of his own creation. Inst@ahiration is externally endoweas

a gift that enables the author to make his own cre&tiemother words, the author
Is not entirely self-inspired, but he receives exdéinspiration as a gift that contains

%9 Weber,Successp.166

“9 According to Lucy and Mitchell, the hallmark ofstardship is one’s “responsibilities o#reful
use rather than the extensive rights to exclude, robraind alienate that are characteristic of private
property” (added emphasis) and in a nutshell they “duty-bearers” rather than “right-holders.”
William N.R. Lucy and Catherine Mitchell, “ReplagirPrivate Property: The Case for Stewardship”
(1996) 55Cambridge Law Journgd66 at 584

“! Roberta Rosenthal Kwall, “The Author as Stewardr ‘Eimited Times™, (2008)Boston University
Law Reviews85 at 703

Hyde vividly portrays how externally endowed inggion work for creative artists: “We also rightly
speak of intuition or inspiration as a gift. As tgist works, some portion of his creation is besd
upon him. An idea pops into his head, a tune beginday, a phrase comes to mind, a color falls in
place on the canvas.” Lewis HydEhe Gift: Imagination and the Erotic Life of Prope(New York:
Vintage Books,1983) p.xii

194

“unearned value® bestowed upon hinn a large-scale FOSS project, it is clear that
every programmer benefits from other people’s ¢buations, and no one can claim
to be the sole source of the whole program. Everthfose founding members of
projects, many of them try hard to avoid reinvegitihe wheel if there are existing
technologies available for reuse. For example, &iharvalds did not start the Linux
kernel from scratch in 1992, but his inspiratioomes from the pedagogical Minix
system initially developed by the Amsterdam-basedhmuter scientist Andrew
Tanenbaum in the late 1970s. Similarly, Stallmash bt start the Emacs editor in
the early 1980s from nothing, but the program wasdeveloped by a few
programmers at the MIT Lab since the 1970s.

The second component of author-stewardship goessigawarding creators with
exclusive ownershipight. Instead it evokes a sense reSponsibilityto offer an
author’ work as a return gift back to the communitizere the author gets his
externally endowed inspiration in the first plaGe.to put it in Kwall's words, this is
the author’'s stewardship responsibility to partitgin “the cyclical dimension of
creative enterprise® Lewis Hyde thinks that this responsibility actyatbmes from
creators’ “labour of gratitude” which spurs creatéo do something reciprocal for
the external inspiration that is bestowed upon teanly on** In the history of FOSS
development, Richard Stallman is exactly a progremmith a strong sense of
stewardship responsibility to offer his softwarekh&o the community, though his
view has lost much support facing the rise of comuméproprietary software. When
Stallman started his GNU project in 1983 (two ydzatore his first copyleft licence
in 1985), his initial announcement of the projdetady indicates that he was driven
by an ethical responsibility to share his softwatith the community: “I consider

that the golden rule requires that if | like a paog | must share it with other people

2 Schwarzenbach argues that a gift contains “undavakie” and the gift-receiver thus holds the gift
with “unearned value” in stewardship. See Sibylhw®arzenbach, “Locke’s Two Conceptions of
Property” (1988) 14 (2pocial Theory and Practicb41 at 146

“3 Roberta Rosenthal Kwall, “The Author as Stewardr ‘Eimited Times'™, (2008)Boston University
Law Reviews85 at 703

4 «Between the time a gift comes to us and the tiveepass it along, we suffer gratitude. Moreover,
with gifts that are agents of change, it is onlyewththe gift has worked in us, only when we have
come up to its level, as it were, that we can giveaway againPassing the gift along is the act of
gratitude that finished the labomhe transformation is not accomplished until weehthe power to
give the gift on our own terms. Therefore, the ehthe labor of gratitude is similarity with thefigor
with its donor.” (added emphasis) Lewis Hyde, supte 41, p.47

195

who like it.”* His later experiment with copyleft, which makesogmammers
contribute (publicly released) modifications or noypements back to the community,
further bears out his belief in “the cyclical dins@m of creative enterprise” that is
articulated in the legal language through softwiaensing®® To summarise, fusing
the aforementioned two components together, awgt@vardship manages to
“blend[] an awareness of both externally endowespimation and the cyclical
dimension of creative enterpri$é” and it is very different from the conventional
author-ownership model, which argues that the awylitself-inspired Romantic

genius needs to be rewarded with private ownetshipotect their creative works.
Reputational Incentive in the FOSS Community

It would be unrealistic to expect all FOSS programsnto harbour the same
irresistibly strong and noble sense of stewardségponsibility to share software as
Stallman does. FOSS licensing only prescriben@mimum set of stewardship
responsibilities that secure software freedom tihey do not and cannot translate the
entire MIT-style stewardship tradition in legal fws. In fact, individual
programmers are often driven by a diversity of wadtonal forces ranging from a
high sense of stewardship to highly self-interesteotives. This is in line with
Macneil's general thesis (as discussed in Chapténat participants to a long-term
cooperative relation can be driven byspectrumcovering both individual utility-
enhancement and non-utility-maximisation motivessMnterestingly, if Stallman’s
high sense of stewardship represents the selfl@saitilitarian end of the spectrum,
Eric Raymond’s argument in favour of reputatiorelard marks the individualistic
utility end of the spectrum of FOSS programmerstiwations. As | will soon show
that, in the following Section 5.3, US case lawp(esented by théacobsencase)

seems to be primarily based on a Raymondian indalistic understanding of FOSS

%5 Stallman further explains his ideal of sharingtwafe with community: “By working on and using
GNU rather than proprietary programs, we can bepitatsle to everyone and obey the law. In
addition, GNU serves as an example to inspire abdrmer to rally others to join us in sharing. This
can give us a feeling of harmony which is impossiblve use software that is not free. For abolft ha
the programmers | talk to, this is an importantgiagss that money cannot replace.” Stalln@GRU
Initial Announcementl983 at <http://www.gnu.org/gnu/initial-announaarhhtml>

“®For the legal mechanism of copyleft in institutitising the sharing norm, see for detail Section
3.5.1 Chapter 3

" Roberta Rosenthal Kwall, “The Author as Stewardr ‘Eimited Times™, (2008)Boston University
Law Reviews85 at 703

196

programmers’ motivation and leaves little room far Stallmanian one, it is

worthwhile explaining Raymond’s approach in somidl@ow.

From a Raymondian point of view, it is futile toxdi whether it is morally right or
wrong for programmers to share software with thenrminity or “hoard” software

“8 1t is more important to know that FOSS programmers not

privately.
fundamentally different from other self-interestational human beings who seek to
maximise their individual utility. A FOSS bazaam@iions just like a free market
and it is made of “a collection sklfish agents attempting to maximize utwitgich

in the process produces a self-correcting spontenewvder more elaborate and
efficient than any amount of central planning cotidve achieved® (added
emphasis) However, what really makes FOSS bazaqueirs the fact that money is
not primarily used as a measure of programmersityut’ In this scenario, FOSS
programmers use “reputational reward” as an altena&kind of utility that they
intend to maximise. Or in Raymond’s words, repotatsimply has the “utility
function” that satisfies FOSS programmers’ etfdglore specifically, there are three
kinds of “utility” from reputation gains that mayide a programmer to participate in
a FOSS project. Firstly, Raymond does not doulit“tdi@od reputation among one’s
peers is a primary reward”, i.e., it gives intrmsatisfaction to a programmer.
Secondly, one programmers’ good reputation alsdstéio attract attention and
cooperation from others? In this sense, reputation is not a matter of iitlisl
motivation, but it also leads to collaboration. dfe is well known for generosity,
intelligence, fair dealing, leadership ability,ather good qualities, it becomes much
easier to persuade other people that they will ggiassociation with you’® Thirdly,

“reputation may spill over and earn you higherwsatn the world outside the FOSS

“8“perhaps in the end the open-source culture wiglirtph not because cooperation is morally right or
software “hoarding” is morally wrong (assuming yoelieve the latter, which neither Linus nor | do),
but simply because the closed-source world canmotaw evolutionary arms race with open-source
communities that can put orders of magnitude mdiled time into a problem.” Raymond,
Cathedral supra note 36
*ibid.
Y Raymond argues that “the open-source culture dolesve anything much resembling money or an
internal scarcity economy, so hackers cannot bsymng anything very closely analogous to material
wealth (e.g. the accumulation of scarcity tokenRaymond, Section 5, “Locke and Land Title” in
Homesteading the Noosphe&902, at
<http://www.catb.org/~esr/writings/homesteading/lesteading/> (hereaft®loospherg
>l RaymondCathedra) supra note 36
*2 Eric RaymondNoospheresupra note 50
>3 ibid.

197

community®® Note all the three reasons given by Raymond is quatlitatively
different from lawyers’ understanding of highly i@ individuals’ attributional
right to secure reputational gains as a kind offian capital”. For example, the legal
scholar Catherine Fisk is one of the most notabkmpions of the view that the
“reputation we develop for the work we do proveshe world the nature of our
human capital® In fact, reputation is believed to be a kind ofdjperty” owned by
individuals. “If professional reputation were profye it would be the most valuable
property that most people owrt® This reputational “property” is especially
important to those highly skilled and highly edechivorkers, the value of whose
work is otherwise difficult to be accurately asseks

Particularly in the case of highly-educated or hiegkilled employees or
people who possess a great deal of tacit knowlealggessing the nature and
value of human capital is difficult. The abilitie$ a software designer or music
producer cannot be measured the way the speetypisaor the competence of

a machine operator can. When the cost of erroassessment is great, or when
assessments about human capital need to be magkerity/ or rapidly, easily,
interpretable informatiorabout human capital is valuable because it reduces
search costs. Thus, credit becomes a form of huraaital itself because it

translates and signals the existence of a deeper ¢ human capital’

Although Raymond’s reputation theory seems high&ugible to explain individual
programmers’ incentive to participate in FOSS paogming, it suffers from at least
two weaknesses that need to be addressed. FingtndRd’s theory by no means
gives the whole picture of multiple motivationatdes behind FOSS programmers’
efforts. An important empirical survey conducted lakhani and Wolf shows that
reputation ranks rather low (11%) among all motoadl forces that are most
commonly recognised by programmers themselves. drticplar, it shows that
incentives such as programmers’ intrinsic pleasto FOSS programming for its
own sake (“Code for project is intellectually stilaing to write”, 44.9%; “Improve

**ibid.

% Catherine L. Fisk, “Credit Where It's Due: The laand Norms of Attribution” (2006) 95
Georgetown Law Journa9 at 50

*®ibid., at 50

*"ibid., at 54

198

programming skills”, 41.3%5 and their desire to contribute software back ® th
community (“Believe that source code should be dp&83.1%; “Feel personal
obligation to contribute because use F/OSS”, 28%8%)e regarded as more
important than the reputational gains. (See Tablg %he second weakness of
Raymond’s theory comes from its individualistic @wegtion. It does not really
explain why programmers as selfish agents, who keenaximise their individual
reputational gain, wouldollaborateto create an integrated project. Weber finds that
uncoordinated individual reputation competition hiigonly introduce conflict
among individual programmers, or even lead to thsjration of a project’
Furthermore, Raymond does not really delve intoithgortant issue where FOSS
programmers are also keen to protectdbiéectivereputation of a whole project. For
example, Stallman has campaigned very hard to matethat the “GNU” project’s
always get credit when it is used in juxtapositivith the Linux kernef* Most
interestingly, FOSS project-leaders may not ongpreto copyright to protect FOSS
programmers’ attribution right (as the legal carrief FOSS programmers’
reputation), but they may also evoke trademark tavprotect a certain project’s
name as the repository of the collective reputatogoodwill, which will be dealt

with in the following section in some detail.

*® These top two motivations (i.€Code for project is intellectually stimulating tarite” and
“Improve programming skills”) from the survey latgdear out Richard Sennett's research on FOSS
programmers’ obsession with trguality of their work for its own sake and their perfentgi
tendency to improve their technical skills. (He sisgnux programmers as an example) See Richard
SennettCraftsman Richard SennetfThe Craftsmar{New Haven & London: Yale University Press,
2008) pp.24-27

¥ These two obligations under the heading “oblig@iommunity-based intrinsic motivations” seem
to be very close to Lewis Hyde’s “labour of gratiéll argument as mentioned above in Stallman’s
case, where Stallman feels obligated to share aoftwith the community. See Hyde, supra note 41,
p.47

0 Weber lists many possibilities where programmeegputational incentives can fragment a project:
“You might try to enhance your reputation by gratiitg toward a project with the largest number of
other programmers (because this choice increagesite of your audience, the number of people
who would actively see your work). This would befficient on aggregate: Open source projects
would then attract motivated people in proportiortteir existing visibility and size, with a winner
take-all outcome. Or you might migrate toward pctgehat have the most difficult problems to solve,
believing that you cannot make a reputation workimgymerely average problems (even for a big
audience). But this choice would progressivelyadie barriers to entry and make it difficult faw
programmers to do anything valuable. Or you couidage in strategic forking—creating a new
project for the purposes of becoming a leader amdpeting for the work of other programmers by
distributing out the positive reputation returnsrembroadly within the community.” WebeBuccess
pp.148-9

®% Stallman, “What’s in a Name?” at <http://www.gnmgignu/why-gnu-linux.html>

199

62

Table 5.1 Lakhani and Wolf's Survey of Motivationst o Contribute to FOSS Projects

Percentage of respondents | Percentage of | Percentage
Motivation indicating up to three | volunteer of paid
statements that best reflect | contributors contributors
their reasons to contribute
Enjoyment -based | Code for project is | 44.9 46.1 43.1
intrinsic intellectually stimulating
motivation to write
Economic/extrins Improve programming | 41.3 45.8 33.2
ic-based skills
motivation Code needed for user | 33.8 19.3 55.7
need (Work need only)
Code needed for user | 29.7 37.0 18.9
need (Nonwork need)
Enhance professional | 17.5 13.9 22.8
status
Obligation/comm Believe that source | 33.1 34.8 30.6
unity-based code should be open
intrinsic Feel personal obligation | 28.6 29.6 26.9
motivations to contribute because
use F/OSS
Like working with this | 20.3 215 185
development team
Dislike proprietary | 11.3 115 111
software and want to
defeat them
Enhance reputation in | 11.0 12.0 9.5
F/OSS community

Note: This survey is also relevant to my argument about relational contract as discussed in
Chapter 4. It shows that FOSS collaboration is not motivated solely by individuals’ desire to
maximise their material wealth, but it is driven by a diversity of values ranging from intrinsic
satisfaction of code writing to reputational enhancement. This defeats the Easterbrookian
assumption that all that licensees want is the lowest price, but it is in line with Macneil's
viewpoint that participants are driven by both economic and non-economic motivational
forces to collaborate under a long-term relational contract.

5.3 Development of the Legal Persona of FOSS Prognaers

Although FOSS collaboration is largely based onrtbeexclusive use and reuse of
software components, this does not mean that FO&§gmmers wish to give up
the paternity right in their contributions. Inste#itey are keen to claim credit where
it is due and an efficient attribution system isessary for that purpose. Almost all
FOSS licences, regardless of being copyleft or capyleft, require downstream
distributors to retain copyright notices includiagribution information about the
concerned projects and contributing programmeilifuture public redistributions.

%2 Reproduced from Karim R. Lakhani and Robert G. W8Nhy Hackers Do What They Do:
Understanding Motivation and Effort in Free/Openuf®e Software Projects”, iRerspective on Free
and Open Source Softwareds. by Feller, Fitzgerald, Hissam & Lakhani (@aioige, Mass.: MIT
Press, 2005) pp.13-14

200

Legal scholars has been well aware that theresisomg norm of retaining correct
attribution information in the FOSS community, wddicences are used to make
sure that credit as well as blame goes to the mgbjects and contributors. For
example, Fisk observes that “[a]ttribution is imaoit to many participants in the
open source movement, even though exclusivityisiséd.®® She further points out

that because FOSS programs are pubfiobgifiable both upstream contributors and
downstream modifiers should be correctly attributéor their respective

contributions:

Open source licenses are an example of explicirtetb allocate credit and
blame in attribution. All open source licenses seegrevent badnodifications
of the software from being attributed to the orairauthors. Although the
explanation of the attribution requirements coredinn the licenses are more
focused on preventing wrongful attributions of b&athan credit, presumably if
a modification proves to be wonderful, the origimalthors will not get credit

either® (added emphasis)

In the same vein, thBree Software Ac{FSA), which has been proposed by Free
Software Consortium, nicely summarises the licemsiorm of correct attribution in
three points. “Authors’ rights shall be protectadthe following way [...]: (a) The
author of any free software program retains thitraf attribution to his/her work. (b)
Any modifier must acknowledge the authorship of th@ginal program and the
authorship of the modification. (c) All authorshimust always be correctly
attributed.® This explanation and Fisk's have something imparia common.
Both acknowledge the importance of a proper attidousystem that should be even-
handed on the authorial interests of both upstrearthors and downstream
modifying authors. It is worth noting that FOSSriatition is not merely about
crediting thesendividual authors, but it is also about acknowledging thdective
authorship that can be credited as the source aitagrated software artifact. Very
often this integrated collective authorship is kmow the general public through the

%3 Fisk, supra note 55 at 89

®ibid., p.90

® Jaco Aizenman, Maureen O’Sullivan, Martin Pederdeedro Rezende, Shilu Shah, Pia Smith,
Jorge Villa, Free Software Act (Draft) (2004) 1 (4) SCRIPT-ed at
<http://www.law.ed.ac.uk/ahrc/script-ed/issue4/F&-pdf>

201

name of the corresponding project (e.g. “Linux”,pa&he”, “GNU”, etc.). Some
projects would become brand names if they conttoygovide products or services

with certain a level of consistent quality for atining period of time.

Although there is clearly a need to attribute BO&ithors at both individual and
collective levels, Anglo-American legal system doex straightforwardly have a
statutory attribution right for computer programmierhis has posed two difficult
problems for the jurisprudence of FOSS licensingatkle. First, how do FOSS
programmers write their attribution requirementoirthe licensing condition of
copyright licences? Secondly, how do FOSS programmers estatlemarkas a
proxy attribution right system to protect the regiion or goodwill of the collective
authorship of the whole project? My analysis befmas that FOSS programmers, in
order to compensate for the lack of statutory laitron right under copyright, have
no choice but to assume the legal persona as tha€id of intellectual property
(either copyright or trademark, or both) of theantributions in the first place, which
will then allow them to indirectly claim authorshigggally. The situation is far from
ideal and certain, but it partially works withoutamging the existing legislative
structure about programmers’ attribution right. Agpyright and trademark are
different legal regimes in relation to authoridti@ution, | will deal with “copyright”
(in Section 5.3.1) and “trademark” (in Section 8)3eparately. The discussion will
be followed by a further examination of how FOS®jgct leaders find the legal
form of their stewardship in trademark in compamiseith copyright (in Section
5.3.3).

5.3.1 Claiming FOSS Authorship under Law (1): Copyiight

Strictly speaking, authors’ right to claim attritmrt of their creation, also known as
the right of paternity, is not a proprietary riglhtstead, it belongs to the “moral
right” regime independent from a copyright ownextonomic right. Article Bis of

the Berne Convention makes this clear: “Independesft the author's economic

202

rights, and even after transfer of the said rigttis, author shall have the right to
claim authorship of the work [...

Unfortunately, the Berne-type attribution rightnist directly applicable to software
programmers under Anglo-American copyright lawtHa US, only visual artists but
not computer programmers are entitled to the nmight of attribution®” In the UK,
computer programmers are expressly excluded frormgdhe right to be identified
as authd®, and this attribution right is only conferred tdfeav non-programming
creators who affirmatively assert their attribuabinteresf® However, the British
copyright law traditionally gives authors a riglgainst “false attribution”, which
may still be applicable to computer programmersis TBritish indigenous moral
right is not derived from the Berne Convention, ibliarks back to the UK Fine Arts
Copyright Act 1862, and has its reincarnations @spectively in s.43 of the
Copyright Act 1956 and s.84 of CDPA 1988Lai finds this right against false
attribution is an historical “anomaly” and it makdittle sense for computer
programmers to have it without having the rightatfibution in the first placé&: In
comparison, US programmers do not readily havaegoay against false attribution
under their copyright law, but they may have ana@mnee protection under s.43(a) of

% The other moral right that is under same clausmisvn as authors’ right of integrity, which is the
right to “object to any distortion, mutilation other modification of, or other derogatory action in
relation to, the said work, which would be prejugli¢o his honour or reputationBerne Convention
the Berne Convention for the Protection of Literayd Artistic Workg(1971 revision with 1979
amendments)

However, some countries, such as the UK, have cexquately localised Berne’s moral rights regime
into their national legislation. See Laddie al Modern Law of Copyright and Desigp.586

%7 Visual Artists Right Act, 17 U.S.C s.106A ,

83,79 (2) (a) CDPA

%9s. 77. However, even for those non-programmingtors, s.77(1) ends with a proviso saying that
the right of attribution “is not infringed unlesshas been asserted”. This requirement of assertion
makes the CDPA out of line with Berne Conventiorfoiomality requirement. Ginsburg believes that
the CDPA's text is a mistranslation of 6bis of B&EmConvention, as “the drafters of the CDPA
fashioned an obligation to assert authorship befoegight to be recognized can take effect.” Jane
Ginsburg, “The Right to Claim Authorship in U.S. @yoight and Trademarks Law”, (2004) 41 (2)
Houston Law Revie®63, p.291

O For a brief statutory history of this right, seaddie et. al. supra note 66, pp.585-6

" 4f it is important to the author of a computerogram not to have his work falsely attributed sit i
difficulty to see why it is not important for hine e attributed as the author in the first pladalr,
The Copyright Protection of Computer Software ie thnited Kingdom(Oxford and Portland,
Oregon: Hart Publishing, 2000), p.20

203

the Lanham Act that codifies the common law actdrpassing off, which | will

come back to in Section 5.3.3 in some défail.

Although Anglo-American copyright has largely failéo reproduce a Berne-type
attribution regime to protect their programmerss tacunamay be filled by private
licensing schemes made by programmers in theirotigpaf copyright ownersThis
means these copyright licences make attributioa oid the proprietary right owned
by FOSS developers. For this reason, Lastowka argbhat Anglo-American
copyright only protects attribution half-heartedily a collateral fashion”, where the

attribution requirement needs to be “contracted in”

It might be argued that copyrightotects attribution in a collateral fashidy
protecting works of creative authorship as propgertppyright enables the
contractual protection of attribution. If an autte@an control the dissemination
and reproduction of her work pursuant to copyri@w, copyright law will
grant her the contractual leverage to protect ligibation interests. (added

emphasisy

So FOSS developers, in order to have their mogdit rof attribution enforceable
under law, must take on the legal persona firsttheescopyright owners The
possibility of collateral protection of attributiona a copyright licence has been
subject to a 2008 landmark ruling made by the U8rCaf Appeals for the Federal
Circuit (CAFC) in Jacobsen v. Katzerwhere the FOSS code in dispute was
reproduced, modified and distributed without atitibg to the original FOSS

contributors’*

“Collateral” Protection of Attribution in Jacobsen v. Katzer

2 See, for exampleGilliam v ABC538 F.2d 14 (2d Cir.1976follett v New American Librarg97 F.
Supp. 304 (SDNY, 1980)

3 Lastowka, “The Trademark Function of Authorshi2005) 85Boston University Law Review
1172 at 1214 (here after “Trademark Function”)

Although | follow Lastowka to use the term “colled® protection of attribution under copyright, my
following discussion of thdacobsercase shows that FOSS licences are not neces&amiractual”,
but they can be conditional licences where attiilouts made the pre-condition to use copyrighted
FOSS programs.

535 F.3d 1373 (Fed. Cir. 2008)

204

The Jacobserncase concerns a dispute over a FOSS project kiaswidava Model
Railroad Interface” (JMRI) that develops softwaoatrolling model railroads. JMRI

is led by Professor Robert Jacobsen, who is a Berlghysicist by profession and a
model train hobbyist in his spare time. The JMRdeander dispute was then
released under Artistic License (AL)T0lt is generally believed that this licence
has explicitly created a private regime of morghts enabling JMRI developers to
have wider authorial control than allowed under $tetutory language of the US
copyright law. The Preamble of AL1.0 makes no éfforconceal this intent: “The
intent of [AL] is to state the conditions under winia Package may be copied, such
that the Copyright Holder maintains some semblasicartistic control over the
development of the package [../f’(added emphasis) Fabricius comments that “the
essential noveltydf AL lies exactly in its “granting the author more dtirion and
creative control than would be granted in the aadincase of a copyright license to
copy, distribute, and prepare derivative workslh this way, JMRI programmers are
given “a private moral right” that is akin to thedion 106A of the U.S. Visual
Artists Right Act providing attribution right only certain visual artist€

The actual dispute revolves around a program célecbderPro®, which is a sub-
project of the JMRI® In September 2006, the JMRI developers discovéned

Matthew Katzer had copied and modified some Ded@aerfiles into his own

5 IMRI now changes their licence to the GPL 2.0.

AL1.0 is not drafted by a lawyer but it is writtby Larry Wall, a linguist by training and a reputb
hacker who has invented the widely used open sdRedeprogramming language. Wall, though not a
lawyer, was convinced that copyright law was crutiaany open source project. A short extract
below from Wall's writing reflects his awarenesstloé importance of copyright: “A circle with a ‘c’

in it [i.e. ©]. Open Source lives or dies on cogti law. Our fond hope is that it lives. Pleaséslall

do our part to keep it that way. If you have a deato plug copyrights over patents, please do so. |
know many of you are already plugging copyrightravade secrets. Let’s also uphold copyright law
by respecting the wishes copyright holders, whethearot they are spelled out to the satisfaction of
everyone’s lawyer.” See Larry Wall, “Diligence, Raice, and Humility”, inOpen Sources—Voices
from the Opens RevolutipBiBona, Ockman & Stone (eds.), (Sebastopol: QRei999) p.142

® Preamble, Atrtistic License 1.0

" Erich M. Fabricius, “Jacobsen v. Katzer: Failuféhe Artistic License and Repercussions for Open
Source” (2008) North Carolina Journal of Law & Teology 65, at 85

Bibid., at 85

" “DecoderPro is able to easily configure more tB80 types of devices because hobbyists have
contributed more than 100 decoder definition filtkese definitions, produced by lots of separate
contributors, are what makes the program so ussifute they express a model railroader’'s view of
how best to configure a particular device. DecodeffiPst started using this approach in September
2001” JMRI, “JMRI Defense: Our Story So Far”, attiph//www.decoderpro.com/k/History.shtml>,
last retrieved on 15 April 2010

205

proprietary product. At the same time Katzer dehbsly removed the following
information that would have identified JMRI contitbrs as authors of their code:

1) the authors’ names,
2) JMRI copyright notices
3) references to the COPYING file
4) and identification of SourceForge or JMRI as theioal source of the
definition files, and
5) a description of how the files or computer code hadn changed from the
original source cod®.
Katzer did not dispute that his act of copying, batcontended that AL as a public
licence had permitted him to copy the code andattnbution of IMRI authors was
not a cause of action itself under the US copyrigit®" So the difficult question is
whether Katzer's act of deleting attribution infaton would lead to the
infringement of the copyright of DecoderPro softer The trial court (District
Court for the Northern District of California) toathe view that the attribution
requirement was merely @ntractual covenant, the breach of which would only
entitle JMRI developers to contractual damagesnmitan injunctive relief: “The
condition that the user insert a prominent noti€ettribution does not limit the

scope of the license. Rather, Defendants’ allegethtion of the conditions of the

80535 F.3d 1373 at 1376
To illustrate, a typical JIMRI file contain a piecEXML code showing who the author is. Here is an
example from JMRI's webpage about the dispute:

<version author="Phil Grainger (grainger@ca.com)"

version="1" lastUpdated="20030805

The above XML code identifies three items of autteated information: 1) the author's name is
“Phil Grainger” followed by his email address; Betversion number is "1"; 3) it was last updated by
the author on the date of 5 August 2003. HowevbenKatzer copied of JIMRI files, he only retains
the last two items, but he deliberately left out first item about JMRI authors. JMRI developers
further observes: “Original JMRI definition fileotain the version, the date modified, the author’s
name, and a copyright notice. These have free-fantent, so there are many formats. The version
strings and the modification date strings in theMNKAiles are EXACTLY the same as those in the
original JMRI files they were copied from. The awts name, however, was not copied into the
KAM file, nor was the JMRI copyright informationJMRI, “JMRI Defense: Our Story So Far”, at
<http://www.decoderpro.com/k/History.shtml>; For mevidential information, see JMRI, “Copying
Evidence: JMRI Defense: Evidence KAM Copied From RIM at
<http://jmri.sourceforge.net/k/copycomparison.shtml
8 The CAFC finds that the parties “do not disputattBacobsen is the holder of a copyright for
certain materials distributed through his websKatzer/Kamind also admits that portions of the
DecoderPro software were copied, modified, andriligied as part of the Decoder Commander
software. Accordingly, Jacobsen has made out a grfatie case of copyright infringement.
Katzer/Kamind argues that they cannot be liablecépyright infringement because they had a license
to use the material.” 535 F.3d 1373 at 1379
8t is noticed that the “heart of the argument gpeal concern whether the terms of the AL are
conditions of, or merely covenants to, the copyrigiense.”lbid., at 1380

206

license may have constituted a breach of the ndngixe license, but does not
create liability for copyright infringement whettenould not otherwise exist®

Failing to get an injunction, Jacobsen appealed#se to the CAFC, which reversed
the district court ruling by arguing that attribariiof JMRI developers is a necessary
condition for the public to use their copyright matefialThe failure to fulfil this
condition would lead to infringement of copyrighthich may give rise to the
remedy of injunctive relief. Note that the CAFC da®t straightforwardly enforce
JMRI authors’ attributionas such “Open source licensing restrictions are easily
distinguished from mere ‘author attribution’ casdSopyright law does not
automatically protect the rights of authors to drddr copyrighted materials®
Instead, FOSS developers’ attribution interest ng/ acollaterally protected when
they are the condition of a copyright licence thatintended to fulfil certain

economiggoals:

The clear language of the Artistic License createsditions to protect the
economic rightsat issue in the granting of a public license. Bhesnditions
govern the rights to modify and distribute the comep programs and files
included in the downloadable software package. Tdt&ibution and
modification transparency requirements directlyveeto drive traffic to the
open source incubation page and to inform downstraaers of the project,
which is a significaneconomicgoal of the copyright holder that the law will

enforce®® (added emphasis)

This interpretation seems largely, if not entirely,vindicate Lastowka’s view that

copyright only gives collateral protection to autbattribution®” In other words, the

8 The District Court’s decision was quoted by CARIZ.

8 The appellate court made two observations to stipfoargument. First, AL states “on its face”
that it creates “conditions” “The intent of thi®aiment is to state theonditionsunder which a
Package may be copied [...]" (added emphasis). igégothe US case law shows that the phrase
“provided that” is typically employed to indicateat a certairconditionhas to be met. For example,
the clause that Katzer was alleged to breach isdpe8 of AL stipulating that licensees, among othe
conditions, “may otherwise modify [their] copy ¢ifi$ Package in any waprovided thafthey] insert

a prominent notice in each changed file stating lama when [they] changed that file [...]” (added
emphasis). AL 1.0.

% 535 F.3d 1373, FN5 at 1382

%535 F.3d 1373 at 1382

87 Lastowka argues that copyright give collateradtgction of “creative authorship as property”
throughcontractualarrangements. See Lastowka, “Trademark Functiapiesnote 73

207

CAFC ruling interprets that FOSS authors needaorctheir attributional interest as
a matter of licensing condition in furtherance loé £conomic goal of copyright and
thus wear the legal persona as copyright ownehénfirst place. The licensing
“conditions” including the attribution requiremehelp to get upstream authors as
“copyright holders” of their contributions alwaysredited in downstream
distributions:

The conditions set forth in the Artistic License aital to enable theopyright

holder to retain the ability to benefit from the work dbwnstream users. By
requiring that users who modify or distribute tlogyrighted material retain the
reference to the original source files, downstreasers are directed to
Jacobsen's website. Thus, downstream users knowt Hisocollaborative effort
to improve and expand the SourceForge project ahey learn of the

“upstream” project from a “downstream” distributjcand they may join in that

effort2® (added emphasis)

Although theJacobsenruling is widely welcomed among FOSS developerd an
supporters of their cauSeit is not entirely free from problems. There ateleast
two problems that are worth further scrutiny. Thetfone concerns an unintended
consequence that FOSS author-owners may freelyyseidacobserlike licensing
conditions to expand control over their works. dstbeen worried thdacobsercan

be an open-source version of the unpopular Sev€irtuit's ProCD decision®.
Narodick points out thatacobserfdoes not represent a fundamental shift in judicia
policy, but the Federal Circuit's rationale Jacobsemmay justly concern the very
open source software engineers who want to produmre programs in the future.
This expansion of intellectual property rights effeely stacks the deck in favor of

any software producer already in the marR&if’Narodick is right,Jacobseris just

8535 F.3d 1373 (Fed. Cir. 2008) at 1381

8 For example, Lessig wrote a blog entry celebratheyJacobsen decision: “So for non-lawgeeks,
[the Jacobsen case] won't seem important. But tmet this is huge.”, see Lessig, “Huge and
Important News: Free Licenses Upheld”, 13 August 132008, at
<http://lessig.org/blog/2008/08/huge_and_importaatvs_free_|.htmI>

% For the discussion ¢froCD and its influence in software licensing jurisprode, see Chapter 4

L1t is observed thatProCD has been gradually accepted by the federal jugiaigr through and
including the decision inJacobserf Benjamin I. Narodick, “Smothered by Judicial leovHow
Jacobsen v. Katzer Could Bring Open Source Soft@axeelopment to a Standstill’ (2010) B&ston
University Journal of Science and Technology 1284 at 279-281

208

another case where copyright owners expand theprigtary right through a private
licensing scheme regardless of the software bed§3-or proprietary: in this case,
the expansion yielded an author’s attribution rigitanother case, it could diminish
or eliminate a user exception or effectively (as RnoCD) extend copyright
protection to non-copyrightable materials. Gomulkez is aware of a view that not
all restrictions in a software licence will qualiigs a non-contractual licensing
“condition”, but they should be limited to certants that directly concern or “touch
upon” copyright. In this scenario, in order to dlciwhether a clause is too
expansive to qualify as a copyright “condition” pes, questions must be asked how
far or remotely this condition “touches on”, or rislated to, the right to copy,
distribute or make derivative works under copyrighthe farther a purported
condition strays from touching on an exclusive capyt, the less compelling the
case that a licensee infringed a copyright by rfgilto abide by the conditiof®”
Unfortunately, in the case of moral rights, Gomelkicz himself is not sure whether
attribution “touches upon” copyright, because itais extremely uncertain “gray

area” that is not related “directly to copying, tdisution, or derivative works®®

This uncertainty leads to a second problem: if CAF@terpretation gives an

impression of AL being a device to privately organcopyright holders’ “economic”
interests, does it really fall under the Easterki@mo neoclassical agenda to establish
economic efficiency as the best justification feanglard-form software licences?
This is not entirely clear. CAFC’s underlying platiphy seems to be only slightly
more eclectic than the economic reductionist apgroapparent in thdroCD
rationale, which assumes that all software conssiner end-users need is the

cheapest price with transaction cost saved from uhkargained standard-form

2 Gomulkiewicz gives some sample criteria about ¢ting upon” copyrights: “To qualify as a
condition on the right to copy, for instance, tloadition should relate to issues such as: Copyinig o
what? Using what to make copies? How many copiebat\Wype of copies? Who can make copies?
For a condition on the right to distribute, the dition should relate to issues such as: Where (and
where not)? When? To whom? By whom? For how longP & condition on the right to make
derivative works, the condition should relate tohat¥/type of works? Who can make derivatives?
Analytically, this approach seems to make sense-yagitt violations triggered by breach of a
license condition should actually invoke copyrights Robert Gomulkiewicz, “Conditions and
Covenants in License Contracts: Tales from a Tegtie@ Artistic License” (2009) 1Texas IP Law
Journal 335 at 354

% He also feels uncertain about the situation ofytefp For example, GPL’s share-alike provision
“might not qualify” as a “condition” in this sengsther, because it does not directly “touch upon”
copyrights.ibid., 355

209

licence?* The Jacobsercourt is aware that FOSS is different from othraditional
commercial copyright materials that are mainly stdd money, but the lack of
monetary exchange with FOSS does not mean it cdomimgt economic benefit to the

FOSS author as the copyright holder:

Traditionally, copyright owners sold their copyrigd material in exchange for
money. The lack of money changing hands in opencedicensing should not
be presumed to mean that there is no economic dmnasion, however. There
are substantial benefits, including economic bésefio the creation and
distribution of copyrighted works under public s that range far beyond
traditional license royalties. For example, programeators may generate
market share for their programs by providing cartamponents free of charge.
Similarly, a programmer or company may increasendtional or international

reputation by incubating open source projects. lovement to a product can
come rapidly and free of charge from an expertexan known to the copyright

holder®

The above paragraph shows that CAFC has notice@ast two types of non-
monetary “economic” gains, the first being markeare growth a certain FOSS
product and the second being FOSS programmers’tdmbagputation that may
attract a diversity of expertise needed to impregéiware itself. Note the second
benefit from a good reputation (as italicised abovéhe CAFC’s decision) is not
qualitatively dissimilar from a Raymondian economimderstanding of the
reputational incentive in FOSS production, whereodyaeputation will attract
cooperation from other experts: FOSS programmensstige is a good way [...] to
attract attention and cooperation from others.né as well known for generosity,
intelligence, fair dealing, leadership ability,aher good qualities, it becomes much
easier to persuade other people that they will hgiassociation with you?® This is
exactly a kind of non-monetary benefit that profamg software owners would not
have, because their users are merely consumersavehnot allowed to modify or

% For ProCD’s economic reductionist approach, sedobsh Post,“Dismantling Democracy:
Common Sense and the Contract Jurisprudence ok [Hasterbrook”, (2000) 16ouro Law Review
1205; see also Section 4.4.1 Chapter 4 of thigdetson for more detalil.

%535 F.3d 1373, 1379

®Eric RaymondNoosphergsupra note 50

210

improve the proprietary products. In this sense,Jcobsencourt seems to agree
that reputation is a special human capital, whiebembles but is not exactly the
same as money. This view has been articulated blgaRi Ghosh who likens FOSS
programmers’ reputation to “a currency, i.e. a graxhich greases the wheels of the

economy”, but it is subtly different from the moast currency:

Unlike money, reputation is not fixed, nor doegome in the form of single
numerical values. It may not even be cardinal. Meeg, while a monetary
value in the form of price is the result of matghadtemand and supply over time,
reputation is more hazy. In the common English seniss equivalent to price,
having come about through the combination of midtipersonal attestations

(the equivalent of single money transactiofs).

Apart from being a non-monetary “hazy” currencyputation also functions as a
proxy-measure of quality of one’s work as assedsegeer programmers. Weber
finds that a FOSS *“author is too close to the wamki needs external measures of
quality in order to know whether the work is goaudehow to improve it*® and
that's why external assessment of reputation byspeeneeded:

As is true of many technical and artistic discipbn the quality of a
programmer’s mind and work is not easy for othergutige in standardized
metrics. To know what is really good code and ttmsssess the talent of a
particular programmer takes a reasonable investnoéntime. The best
programmers, then, have a clear incentive to rethieenergy that it takes for
others to see and understand just how good they[arp The programmer
participates in an open source project as a demativet act to show the quality
of her work. Reputation within a well-informed asélf-critical community

becomes the most efficient proxy measure for thatity.*

" Rishab Ayer Ghosh, “Cooking Pot Markets: An EcoimModel for the Trade in Free Goods and
Services on the Internet” (1998) 3 (3) First Monday at
<http://firstmonday.org/htbin/cgiwrap/bin/ojs/indekp/fm/article/view/580/501>

% Weber,Successp.141

% Weber,Successp.142

Fisk is also aware that reputation as a qualitysuesais not just in software area. In most cases of
“highly-educated or highly-skilled employees or pleowho possess a great deal of tacit knowledge,
assessing the nature and value of human capithffisult”: “The abilities of a software designer o

211

In short, the double function of reputation as barthincentive and a proxy-measure
of quality largely bears out CAFC’s analysis that tlack of money changing hands
in open source licensing should not be presumaddan that there is no economic
consideration®, but the licensing condition requiring attributican help to fulfil

copyright owners’ “economic” goal of organising F®8roduction and circulation.

However, thelJacobsercourt’'s economic approach, which makes attributide on
the economic interest of the copyright holder, tapay a price. It unfortunately
screens out some “softer” non-economic values (eajtware freedom”) that a true
Macneilian relational licence would embotfyFor example, Stallman has insisted
that the licensing conditions of the GPL are inthtb advance “software freedom”,
which is an intrinsic value independent of prograemsh economic interest§? He
further argues that accurate attribution to the emmf “free software” projects is
absolutely necessary to spread the ideal of “soévitieedom” behind their efforts.
For example, as the “GNU” software is a significartégral component in the whole
Linux operating system, Stallman is afraid thabenmon non-attribution to “GNU”
would only leave people oblivious to the “softwdreedom” value that GNU
programmers are keen to spread. For this reasas,dmphatic that the right way of
attribution of the operating system is “GNU/Linusdther than “Linux”. He is even
prompted to write an essay—"What's in a Name’—teest the importance of
attribution to GNU and the underpinning softwamefifom ideal, without which their

efforts may be gradually watered down by the ersdroeent of proprietary software:

music producer cannot be measured the way the spfeadypist or the competence of a machine
operator can. When the cost of errors in assesssigreat, or when assessments about human capital
need to be made frequently or rapidly, easily, rpnetable informationabout human capital is
valuable because it reduces search costs. Thulit bezomes a form of human capital itself because
it translates and signals the existence of a ddaper of human capital.” Fisk, supra note 55, p.54
190535 F.3d 1373, 1379; supra note 95

101 Recall that, in Chapter 4, | argue that a Macaeilielational licence is very different from a
neoclassical contract (as exemplified by EastedsodroCD ruling) but it embodies a multiplicity of
values including those non-economic values. See\Wifliam Whitford, “lan Macneil's Contribution

to Contracts Scholarship”, (1988jisconsin Law Revie®45

192 The Jacobsencourt seems to be skewed towards the businessiyi¢open source” approach
advocated by Raymond, in order to argue that F®8ding conditions have the effect of furthering
the economic goal of copyright holders. Howeveisaems difficult to square the more purist “free
software” values with theJacobsenruling. Stallman argues that “free software is ethical
imperative, because only free software respectsutiees' freedom. By contrast, the philosophy of
open source considers issues in terms of how teermakware “better"—in a practical sense only.”
See Stallman, “Why Open Source Misses the Point Bfee Software” at
<http://www.gnu.org/philosophy/open-source-misdespoint. html>

212

Names convey meanings; our choice of names detesntire meaning of what
we say. An inappropriate name gives people the gvidea. [...] Is it important
whether people know the system's origin, histong purpose? Yes—because
people who forget history are often condemned peaeit. The Free World that
has developed around GNU/Linux is not guaranteedsutwive; the problems
that led us to develop GNU are not completely etdid, and they threaten to

come back'®®

According to Stallman, the GNU project desperatedgds credit because their cause
of fighting for software freedom is far from sucsfs and the correct attribution to
the project would constantly remind people of ttésise: “If ‘the job’ [of the free
software movement] really were done, if there waoéhing at stake except credit,
perhaps it would be wiser to let the matter dropt Be are not in that position. To
inspire people to do the work that needs to be dameneed to be recognized for
what we have already done. Please help us, byngatlhe operating system
GNU/Linux.” *** Interestingly, thelacobserruling did mention the (GNU/) “Linux”
system twice in passing, referring to “GNU” on tfiest occasion® but not the
second on€®. It is worth noting that on the second occasite, tLinux” system
(without attributing to GNU) is quoted as an exaeng show why FOSS licensing is
essential to fulfil the economic goal of “creatigellaborative projects” in a most

efficient way:

Open Source software projects invite computer @nogners from around the
world to view software code and make changes angrawements to it.
Through such collaboration, software programs c#enobe written and
debugged faster and at lower cdisain if the copyright holder were required to

do all of the work independently. In exchange andcensideration for this

igi Stallman, “What's in a Name?” at <http://www.gmgynu/why-gnu-linux.html>

ibid.
1%5«Open source licensing has become a widely usetiadeof creative collaboration that serves to
advance the arts and sciences in a manner angateathat few could have imagined just a few
decades ago. [...] Other public licenses suppor&Ne&J/Linuxoperating system [...].” 535 F.3d 1373
at 1378 (added emphasis)
1% This time the court only mentions the “GNU” in faposition with the “GPL”, but not with
“Linux”, i.e., it does not use the term “GNU/Linuds insisted by Stallman. The court writes tha¢ “th
GNU General Public License, which is used for thieuk operating system, prohibits downstream
users from charging for a license to the softwaited., FN 2 at 1379

213

collaborative work, the copyright holder permitserssto copy, modify and
distribute the software code subject to conditidhat serve to protect

downstream users and to keep the code acces¥ible.

Note that CAFC interprets FOSS licensing exactly aasost-efficient way of
manufacturing and improving software thanks to ¢b#aborative intelligence that
can be attracted to the job: because “softwarerpmeg can often beritten and
debugged faster and at lower cdisan if the copyright holder were required to tlo a
of the work independently,” this is certainly inetreconomic interests of the
copyright holders. “Software freedom” is not mengd as one of most important
non-economic values behind the GNU/LIn#R.In this light, | think that the
Jacobserruling, though hailed as a long waited victory FDSS authors, does not
go far enough to embrace the Macneilian messagesfect non-economic values in
building a relational contract. It merely substatds Lastowka’s worry about the
persistent influence of “utilitarian and propersgmtric view of copyright'® in
software licensing jurisprudence. It also illumimt how the programmer’s
attributional interest is “collaterally” protecteshder their legal persona as a utility-
maximising property “owner”, who uses licensing diions to advance their
economic interest’ Having said that, the situation is not entirely E&s fault,
because the court is restrained by the existingliye framework where there is

no stand-alone attribution right.
5.3.2 Claiming FOSS Authorship under Law (ll): Trademark

Apart from relying on copyright for collateral peation of attribution, FOSS
projects nowadays are also actively seeking tradem@aotection of their

attributional interests. This is because trademddsgnating the origin of goods or

97 The paragraph is from the main text accompanyliegiN2 of the rulingibid.

1% Here my observation is not a critique of the CA§@ailure to mention “software freedom”,
because the court is constrained by previous @ageuhd the copyright legislation where attribution
on its own is not recognised. What | want do isyahlaw a Macneilian perspective that may shed
some light on some non-economic factors that may essential to FOSS collaboration.

199 astowka, “Trademark Function”, supra note 73271

110 astowka comments: “If we see authorship simplyaasystem for efficiently parcelling out
proprietary ownership rights, the law should grawhership (denoting it as ‘authorship’) to the most
efficient distributors and exploiters of works. Agathe problem with this model—from the
standpoint of attribution—is that the non-statutamgn-dominant author lacks the control to secure
attribution”. ibid.

214

services are not dissimilar from an authorial latttion system ascertaining the origin
of creative work$*, though | will show soon the two systems are ncacey

identical.

When a FOSS project has been able to provide wa@tproduct or service, whose
quality can be consistently experienced by the ipubiien the name of this project
may well accumulate enough reputation or goodwallbecome a brand over the
years™'? Examples of brand-name projects are profuse anulyméthem already
have had registered trademarks such as Linux®, #g@cor DecoderPro®, just to
name a limited few. The official guide provided 8gftware Freedom Legal Centre
(SFLC) fully recognises the necessity of protectmgbrand’-name FOSS project
through the trademark regime: “Like other produdt®SS applications develop
reputations over time as users come to associatapphcation’s name with a
particular standard of quality or set of featufBde mark law can help protect this
relationship of trust and reliance that a projemtelops with its users; it allows the
project to maintain a certain amount of control rothee use of its brand™* The
Apache Software Foundation’s (ASF) is an outstagjd®ample which has been
serious about protecting the “Apache” brand by wuagkout a trademark policy
making clear what kind of marks and graphic sidrad aire intended to be protected:
“Apache’, ‘Apache Software Foundation’, the mudtiioured feather, and the
various Apache project names and logos are tradentdr The Apache Software
Foundation, and are usable by others only with@sgpermission from the ASE*

Moreover, the ASF is also a pioneer that expliditigorporates a trademark clause

111 astowka proposes to do a thought experiment éctlse connection: “If one were [...] to equate
authorial attributions with trademarks and worksaathorship with all other goods, misattributions
would capture a situation that seems generallyogioals to trademark infringement.” Furthermore, if
misattribution is analogous to trademark infringemlagiarism can be said to be “reverse passing
off”. Greg Lastowka, “Trademark Function” supraeds, at 1193

12 Similarly, Rose observes that an author’s namebeaa brand name: “the name of the author—or
artist, conductor, director, or , sometimes, stlnt,in mass culture the authorial function is afte
filled by the star—becomes a kind of brand namesaognizable sign that the cultural commodity
will be of a certain kind and quality.” See Mark $29 Author and Owners—The Invention of
Copyright (Cambridge, Mass. & London: Harvard Universitg$y, 1993) pp.1-2

1135ee Software Freedom Law Center, “Chapter 5: Comfmademark Issues” iA Legal Issues
Primer for Open Source and Free Software Proje8tislarch 2008, p.31

114 Apache’s graphic mark of multi-colour feather lsokke this:Arache see Apache Software
Foundation, “FAQ—Is Apache a Trademark”, at <hfypww.apache.org/foundation/licence-
FAQ.html#Marks>

215

into its licensing scheme, which is designed tov@né unauthorised use of the marks
that it owns:

This [Apache] License does not grant permissionuse the trade names,
trademarks, service marks, or product names ofittensor, except as required
for reasonable and customary use in describingotigin of the Work and
reproducing the content of the NOTICE fifg.

The Apache-style trademark clause is widely usetthenFOSS community. Artistic
License 1.0 (as the one used by JMRI in Jaeobsencase) is another prominent
example: “The name of the Copyright Holder maylm®used to endorse or promote
products derived from this software without specifirior written permission®®
Interestingly, early versions of the GPL do notdavrademark clause and Stallman
was not aware that it could have been an issweadtnot until the latest version 3.0
when Stallman decided to follow ASF’s footstep lolgliag an option to decline “to
grant rights under trademark law for use of soradeémames, trademarks, or service
marks” !’

FOSS trademarks can be either registered marksregistered marks, the former of
which gives stronger and more certain protectidflL(strongly recommends that
FOSS projects to register marks with trademark attbs: “Registration grants
much stronger protections for your trademark if eone else uses the mark in
connection with goods similar to the ones describad your registration
application.”*® For example, “Linux®” is a registered marks ownkey Linus
Torvald$*® and administered by the Linux Mark Institute (LK) It is worth noting

15 Section 6, Apache License 2.0

'1® Section 8, AL 1.0

17 section 7 (e), GPL 3.0

18 SFLC (Richard Fontana et. alA Legal Issues Primer for Open Source and FreewBoé
Projects 3 March 2008, at <http://www.softwarefreedom.oegbdurces/2008/foss-primer.html>
19 A search of “Linux” from the online USPTO Trademakpplication and Registration Retrieval
system (TARR) shows following information:

Mark (words only): LINUX

Standard Character claim: No

Current Status: This registration has been renewed.

Date of Status: 2005-11-29

Filing Date: 1994-08-15

Transformed into a National Application: No

Registration Date: 1995-09-05

216

that Torvalds and his fellow programmers were atifi not aware of the need to
register the “Linux” mark when the project startedake off in the early 1990s and
the GPL 2.0 adopted by Linux has not yet had ati@xfrademark clause. However,
in 1994, William R. Della Croce, Jr., a person Ueed to the development of the
Linux kernel, first registered the “Linux” mark en attempt to collect licensing fee
from various Linux distributors. In 1996, Linus Tatds on behalf the Linux
community filed a lawsuit against Croce’s bad-farggistration. The case was
settled and it led Croce to transfer the ownersiifhe mark back to Torvalds, who
then delegated his right to the LMI for the usalef mark. A similar dispute over a
registered FOSS mark also took place in the afonéioreed Jacobsencase. The
JMRI project has registered mark “DecoderPro®”, hie domain name
decoderpro.com was first registered by Matthew &atwho had never involved in
the development of the DecoderPro product. AccgrtiinKatzer, the reason for his
registration was as follows: “If | decide that &leased (sic) a licensed version of an
open source development effort, what better pladeave it [than] the name of the
development effort?#! Katzer’s reason, though hardly justifying his aybguatting
behaviour, usefully indicates that the name of &E@roject can be a valuable asset
as it points towards to the “development efforthimel the project. Independent of
his copyright claim, Jacobsen filed a Uniform Dom&ame Dispute Resolution
Policy (UDRP) complaint with the World IntellectuRioperty Organisation (WIPO)
in Switzerland in order to regain the domain nawetlie DecoderPro project. The
WIPO panel ruled that Katzer’s registration wadad faith and “there is essentially
a purpose on the part of Katzer to disrupt therimss of a competitor by interfering
with [JMRI team’s] exercise of [their] trademarkghis”. The panel ruling led
DecoderPro.com to be transferr&dIn summary, the above two disputes give an
glimpse into the world where the registered makksdomain names) may play a
function of crediting FOSS projects because thegm ba extremely useful to

ascertain their origin as well the developmentreffbehind.

(last retrieved 26 April 2009; the result is follesvby a more detailed registration history whichas
included here)

120 5ee Linux Mark Institute at <http://www.linuxmaokg/>

121 See JMRI Defense: Regaining DecoderPro.can<http://jmri.org/k/UDRP/index.shtml|>

122 \WIPO Arbitration and Mediation Center (Adminstxati Panel Decision), "WIPO finding on
Robert G. Jacobsen v. Jerry R. Britton”, Case No20@-0763, July, 2007 at
<http://www.wipo.int/amc/en/domains/decisions/h20i07/d2007-0763.html>

217

Apart from registered marks, it is also possibletfee trademark regime to protect
unregistered marks through the common law actioripaksing off’. In the US
context, it was not uncommon for US authors to kev8ection 43(a) of the Lanham
Act, which has codified the “passing off” law, toopect authorial attribution to
creative work¥>and even the artistic integrity of the authifdn 2001, the US
Court of Appeals for the Eleventh Circuit,tanetary Motion v. Techsplosipruled

in favour of an attempt to resort to Section 43@) the unregistered trademark
protection of a FOSS product. In this case, Byramr&h has written an email service
program for UNIX users and he released it under GBRL 2.0 free of charge since
1994. He named this software “Coolmail”, which ageel with the announcement
sent to the users and the user manual for eachseeldarrah later transfers all
intellectual property rights in this software te@mpany known as Planetary Motion,
who then became the proprietor of “Coolmail” softecaTechsplosion was another
company, which in 1998 offered a similar email sgrvprogram also bearing the
mark “Coolmail” (four years after Darrah’s use d@dolmail”). Planetary Motion
sued Techsplosion for infringement of the unregestemark that was purchased
from Darrah under the Section 43 (a). The assighmieDarrah’s rights to Planetary
Motion was not disputed, but Techsplosion contentted Darrah’s “Coolmail”
software was merely a hobby unworthy of common teademark protection in the
first place*?® The Eleventh Circuit found that Darrah did not felsouse” or squat
on the mark, but his continuous distribution of soéware under this mark gave him
the prior right to the “Coolmail” mark and his effaleserved to be identified as the
source of the product. In particular, the distritnitof the software under GPL 2.0,
which lacks an explicit trademark clause, did nedermine Darrah’s IP rights in his

software including the trademark. The court poiraat

That the Software had been distributed pursuanma 8NU General Public
License does not defeat trademark ownership, nes tlus in any way compel

a finding that Darrah abandoned his rights in tmaak. Appellants [i.e.,

123 @ g,Follett v. New American Librar¢97 F. Supp. 304 (SDNY, 1980) ; For a detailetiopre of
using Section 43 (a) to prevent misattribution @véerse passing off’, see Roberta Rosenthal Kwall,
“The Attribution Right in the United States: Caugtthe Crossfire Between Copyright and Section
43(A)” (2002)Washington Law Revie985

1246 g.,Gilliam v ABG 538 F.2d 14 (1976)

125261 F.3d 1188 at 1198

218

Techsplosion] misconstrue the function of a GNU &ah Public License.
Software distributed pursuant to such a licenseotsnecessarily ceded to the
public domain and the licensor purports to retaimership rights, which may

or may not include the rights to a mafR.

In fact, the GPL is more than just showing Darratés-abandonment of proprietary
rights to the public domain, but it is evidencettpasitively affirms the intention to
control the “Coolmail” mark. “Because a GNU GeneRalblic License requires
licensees who wish to copy, distribute, or modifg software to include a copyright
notice, the license itself is evidence of Darraéfforts to control the use of the
‘Coolmail’ mark in connection with the Softwar&” Most relevant to our discussion,
the court is also aware that the “Coolmail” markeidremely useful for users to
identify Darrah as the source, as well as the [&adthor/Maintainer”, of the

software:

[...] the mark served to identify the source of theft®are. The ‘Coolmail’
mark appeared in the subject field and in the tektthe announcement
accompanying each release of the Software, thetistipguishing the Software
from the other programs that might perform simflanctions available on the
Internet or sold in software compilations. The ammements also apparently
indicated that Darrah was the ‘Author/MaintaineiGzfolmail’ and included his

e-mail addres¥®

This source/author identification function of theanmk will become ever more
important for identifying the origin of a FOSS poj, because it may be subject to
unlimited numbers of downstream redistributionsr lexample, when SuSE—a
famous distributor of the Linux system in Germanytempts to incorporate
Darrah’s software into its own product, it can Badocate Darrah as the
“author/maintainer” of the software in the US armdjuest permission to use the
“Coolmail” mark. This will in turn help SUSE’s useor even competitors to easily
trace the origin of the “Coolmail” software in SuSEedistribution. The appellate
court observes: “Any individual using the SuSE prcigd or competitor of SUSE, that

126 ihid.
127ibid., FN 16 at 1198
128ihid., at 1197

219

wanted to know the source of the [Coolmail] progrdmat performed the e-malil
notification function, could do so by referring ttee user manual accompanying the

product.™?°

It is not difficult to find that in a small projetike “Coolmail”, Darrah is the author
as well as the owner of the program. This authonership makes him the
undisputable project leader who dictates the doacin which the program will
go.**% In this sense, Coolmail is a typical case of Wasb&small project” where
leadership is “essentially the same as ownerstiigdowever, as has already been
mentioned in Section 5.2.3, the basis of leadershg much bigger project like the
Linux kernel is very different from a small projdidte Coolmail, but it shifts from
lead programmers’ ever-dwindling ownership of tliegoam to their ever-growing
stewardship responsibility in shepherding the mtoj# is worth noting that project
leaders’ stewardship by no means entirely extirigggsheir own, let alone ordinary
contributors’, “IP” rights. Instead, one of theirost important stewardship
responsibilities is to coordinate programmers’ au#l interests in order to make a
legally coherent project that can be attributed asllective project-level “author”. |
will now explain project leaders’ author-stewargshs a way to summarise FOSS
programmers’ legal persona that has been affegtdubth copyright and trademark

laws.
5.3.3 Legal Persona of Author-Stewardship

The legal persona of the FOSS authors is no doulkbraplex and puzzling
phenomenon. It is an extremely grey intersecti@ame& where it is not always clear
whether copyright or trademark laws should be imebko regulate the designation
of the authorial origin of FOSS programs. For exEnpn Jacobsen FOSS
attribution is protected through the copyright mutvhilst, in Planetary Motion

129The court notes that in the user manual for SulBEx_4.3 contains attributional information like
this:
“Copyright (c) 1994 Byron C. Darrah
Author:; Byron C. Darrah <darrah@kaiwan.com>an@all K. Sharpe <rsharpe@ncsa.uiuc.edu>
Version 1.3"
Seeibid., FN 15 at 1197
130 Darrah’s author-owner-leadership even gives hienatthority to assign the whole program to the
company Planetary Motion later.
131 \Weber,Successp.166

220

trademark law is used to do the similar job. Int facis important to see that FOSS
authorship has botbopyrightandtrademarkelements, which play slightly different
roles in FOSS projects and are worth explainingssply. To begin with, copyright
is a legal institution that traditionally regulatége activities such as reproduction,
modification and distribution of works of authonghiAn author, from a traditional
copyright’s point of view, is an individual who imgsses his creative personality
onto his work. Ginsburg’s definition of “author” aaly captures the essence of

conventional copyright law’s understanding of aushp:

[...] an author is (or should be) a human creator ,whatwithstanding the
constraints of her task, succeeds in exercisingmaihpersonal autonomy in
her fashioning of the work. Because, and to thereéxhat,she moulds the work
to her vision(be it even a myopic one), she is entitteat only to recognition
and payment, but to exert some artistic contror @vE? (added emphasis)

From the above definition, we see that one of thetnmportant aspects of copyright
is to reward an individual author with certain axstVe control over his creation (be
it “recognition and payment” or “some artistic caitover it”). Under Anglo-
American copyright law, this exclusive control igimly interpreted as the protection
of authors’ economic interests rather than thaheir attributional interests. (To put
it succinctly, it puts “payment and recognitionftwe “artistic control’.) So FOSS
authors have to writecopyright licences to collaterally protect their authorial
attribution as if it is of grea@conomicconsequence. The most prominent example in
the FOSS world is the aforemention@dcobsencase, where the appellate court
argues that attribution as the licensing condii®no fulfil the economic goal of
FOSS programmers as copyright hold&ts.In short, following theJacobsen
rationale, it is essential for FOSS programmerswiar their legal persona as
copyright owners, who are assumed to be the ecanatiity maximisers, in order

to directly claim authorship under a FOSS licence.

However, it would be much harder to employ the sdaembserrationale to further

satisfactorily explain lead programmers’ stewarggbi coordinate or organise peer-

132 Jane C. Ginsburg, “The Concept of Authorship inmParative Copyright Law”, supra note 4, at
1064
133 Jacobsen v. Katzeb35 F.3d 1373 (Fed. Cir. 2008); see also sugssseation 5.3.1

221

produced contributions into a project as a whatefact, many lead programmers
work hard to play down their own individual imparte in the project and
emphasise their non-economic motives to lead tlmegt For example, Linus
Torvalds has been famous for his self-deprecatiagmar through belittling himself
as “basically a very lazy person who likes to getdd for things other people
actually do”*** Also he refrains from expressly admitting that Hivotion to the
project is motivated by mainly maximising his indival economic utility or
reputational incentive, but he regards the intdndieasure to solve programming
problems in a community as the primary motiv&n Torvalds’s own parlance, this
intrinsic pleasure in coding is the “Entertainmauth the capital E”, which is “the
kind that gives your life meaning” among FOSS pamgmers->® Of course, it is
FOSS project leaders’ stewardship responsibility deannel his and other
programmers’ “Entertainment” into a meaningful eblbrative effort. In short, lead
programmers, as the anchorage of a project, nedouitd their credibility and
trustworthiness from their relatively selfless coitment. Weber observes that
Torvalds and leader programmers of other largeeptsj must share this good
stewardship quality of being humble and at the séime capable of motivating

other programmers:

While leaders of other large projects have diffeneersonality traits, they do
tend to share an attitude that underemphasizesdtva individual importance
in the process. And they share, more importantlyigommitment to invest
meaningful effort over time in justifying decisigrdocumenting the reasons for
design choices and code changes in the languatgehniical rationality that is

the currency for this community’

134 For example, Torvalds is honest about his evertetil individual contribution in the Linux kernel
and he makes this famous statement in his usdalleptecating manner: Raymordathedral supra
note 36

135 Weber observes: “While [Torvalds] is not shy amesinot deny his status as leader, he does make
a compelling case that he was not and is not ntetivdy fame and reputation. The documented
history, particularly the archived email lists, popt him on this point. He continue to emphasize th
fun of programming and opportunities for self-exgsien and claims ‘the feeling of belonging to a
group that does something interesting’ as his gralenotivation.” WeberSuccessp.167

13 |inus Torvalds, “What Make Hackers Tick? a.k.anus’s Law” as the prologue fBhe Hacker
Ethic and the Spirit of the Information Adey Pekka Himanen, (NY: Random House, 2001) p. xvi

137 \Weber,Successp.167

222

Of course, FOSS leaders have an important stewigrdssponsibility to make sure
that the collective authorship of the whole projectalways correctly attributed.
There are two routes to achieve this goal. The ficsite is to unify copyright
ownership of individual programmers’ code into tmend of lead programmer on
behalf of the project. This would give the projéeader undisputable power to
enforce FOSS licensing conditions including itgilatition requirement. For this
reason, Software Freedom Law Centre (SFLC) beliéjaentralizing copyrights
via direct copyright assignment provides some cdlmgeadvantages if developers
are willing to do so™3®

However, it is not always an easy task to perseagey programmer to assign their
copyright to the project despite some perceivedaatiges of doing so. So project
leaders may seek to protect the collective authmprsha project via the trademark
route, which seems to be a more convenient legah fthat FOSS leaders’
stewardship can fit into. There are two distindtiees of this trademark-protected
stewardship. On the one hand, trademark protedksctioe authorship of a whole
project but not directly individual authorship; tre other hand, trademark does not
only protect authors, but it also protects the mubbm being confused about the
authorial origin of the software. First, almost aldividual authors would get
copyright over their individual contribution, butost of them are unlikely to have
their names protected as trademarks. Only the nam#se whole projects such as
“Linux”, “JMRI” or “Apache” would be the depositorgf collective reputation or
goodwill that merits trademark protection. Here téective authorship of a project
deviates from Ginsburg’s definition of “author” as individual “human creator”,
but it is largely an organisational fiction thattagrates countless individual
authorship under a collective persona bearing ttige@t's name. This fictional

collective persona is necessary, because it is reasker for the public to identify

%8 4In general, the most important reason to contebeopyrights to the project is to enable the
project to enforce the license. Unifying ownersbipthe copyrights gives the project indisputable
enforcement power that is both simple and cleacolfyright ownership is scattered throughout a
developer community spanning many countries andrsyeenforcement efforts face additional

barriers. With a diluted base of copyright holdesforcement efforts are hindered by figuring out
which pieces were copied, tracking down the dewa®pvho contributed those pieces, and then
getting them involved in the enforcement actiorpdesally in cases where it is unclear how much or
which code has been copied, the project needs aa ayuibbling about whose copyrights are at
stake.” SFLC, Chapter 2, SFLC (Richard Fontanalét.A Legal Issues Primer for Open Source and
Free Software Projectsupra note 118

223

one FOSS product with one collective “author” rattiean countless individual
authors. The collective FOSS authorship bears @yttdnn’s “authornym” theory
that separates “the fact of authorship” and “ttaéeshent of authorship”, the latter of
which is rightly called “authornym” by héf® So in a FOSS project, each individual
authors would be the Ginsburgian “human creatoe’,(the fact of authorship) while
the collective author bearing the project’'s nameuldobe the Heymannian
“authornym” (i.e., the statement of authorship),ickhis mainly used to give a
unified persona that can be easily recognised éytiblic. For this reason, Heymann
argues that “authornymic attribution is not a nratttauthorial justice, but rather a
matter of organizational integrity. It preserve® tbrganizational framework that
authornyms create such that reader responses avithformed and minimizes the
likelihood of confusion a consumer of creative comdiities might otherwise

experience *°

Secondly, to get a FOSS project’ name correctiybaiied is not merely a matter of
garnering credit for this project, but it also maitusers from the publifrom being
confused about the authorial origin of the progréims in these users’ interest to
make them always go to the software bearing theerthat can correctly identify the
authorial origin of the project. Just as Heymanrseobes, when a work is
misattributed, it does not only cause a copyrigatnh to the author but also a
trademark harm to the public, who may well be ceatuiabout the origin of the
creative work‘*! In this sense, trademark law can be employedusottp give credit
to the collective authors but it also prevents mubbnfusion, because it is exactly a
legal institution that regulates the designatiornhef sources of products or services.
For example, the public deserve to know that thectlerPro” product is produced
by Jacobsen’s team rather than Katzer's compantheoopen source “Coolmail” is
originated from Byron Darrah rather than Techsglosbr the Linux kernel product
is maintained by Linus Torvalds and his colleaguaier than Mr. Croce. Based on
the correct attribution, members of the public Wwal protected from using a “wrong”
FOSS product bearing the same or similar marks.

139 Laura A. Heymann, “The Birth of the Authornym: Aotship, Pseudonymity, and Trademark
I1_4%w” (2005) 80Notre Dame Law RevietB77 at 1446
ibid.
“Libid., at 1383
224

Moreover, | should also warn that the legal form RDSS author-stewardship
through trademark does not necessarily reprodueewthole hacker stewardship
tradition. Nor do the FOSS licences that prescribe minimum stewardship
responsibility to secure software freedom (whick been discussed in Chapter 3). In
fact, it is very difficult to translate a full semf stewardship obligation, which
“blends an awareness of both externally endowegirgtson and the cyclical
dimension of creative enterprise” summarised by Kit&ainto one single legal form
(be it trademark or copyright). A high sense of\@rlship has more to do with what
the sociologist Richard Sennett calls the “craftssi@” instinct, which is hard-
wired to FOSS programmers’ fundamental motivatiomalke-up. According to
Sennett, the “desire to do a job well for its ovakes’ is a common hallmark of to all
types of craftsmanshif and FOSS programmers are an exemplary type oé thes
craftspeopl&*. Just as a computer hacker in Levy's book saysickers can do
almost anything and be a hacker. It's not necdgdaigh tech. | thinkit has to do

with craftsmanship and caring about what you're rdpi**°

(added emphasis) It is
exactly this high sense of stewardship/craftsmanghdo a job well for its own sake
(or simply the feeling of “caring about what you'd®ing”) that motivates many
FOSS programmers, especially those long-term prégeders, to work for a certain
project for a sustaining period of time. In thighl, it is understandable for a few
FOSS developers to call for replacing ownershighwsiewardship in understanding
FOSS: “we must make a distinction between ‘owngrstand ‘stewardship.’
Ownership is something that is fully transferalstenf one owner to another without
loss of values. [....] Stewardshipn the other hand, applies when something
undergoes change, when it evolves, or when it baekind of life cycle.** In this
sense, stewardship is a better way of realisingfuliesalue of an evolving object

that has a life cycle (e.g. animals or software tiegeds to be “herded”) than private

192 Roberta Rosenthal Kwall, “The Author as Stewaror ‘Eimited Times™, (2008)Boston University
Law Reviews85 at 703

13 SennettThe Craftsmansupra note 58, p.9

144 Sennett, in his study of craftsmanship in the emstivilisation, finds that Linux programmers are
not dissimilar from other traditional craftsmen Bugs carpenters since the time when the Homeric
hymn to Hephaestus (i.e. master god of craftsmes3 written. He observes that people “who
participate in ‘open source’ computer software,tipalarly in the Linux operating system, are
craftsmen who embody some of the elements firgthrated in the hymn to Hephaestus” and “Linux
draws on craftsmen in an electronic bazaar.” S¢nbét., pp.24-25

195 evy, Hackers p.434

146 Chris DiBona, Danese Cooper, and Mark Stone, dthiction” to Open Sources 2,&dited by
Chris DiBona, Danese Cooper, and Mark Stone (SepaktCA: O’'Reilly, 2006) p. xxxvii

225

ownership, which might be only good at dealing wdikcrete static non-evolving

objects. To assume steward’s responsibility isamoeasy job but it requires a lot of

skills and competence and “only a good stewardreatize the full value of that

which is stewarded™’ Most importantly, a carefully stewarded projeaids to be

nurtured by a long-term collaborative relation agn@nogrammers, and it is mostly

likely coordinated by a highly capable long-ternojpct leader, who would then

always be associated with this project. This logrgrt stewardship would sometimes

outcompete many commercial proprietary softwarejegts, which are not

“stewarded” but commercially “managed” by compargautives:

The proof is in the longevity of open source sofevprojects and the stewards
who tend them. Linus Torvalds is still at the heddhe Linux kernel ‘tribe’
more than a decade after the first public reledseirmx. Eric Allman has
guided Sendmail for more than 20 yeas. Larry Waltill the guiding vision
behind Perl, gain after more than 20 years. Inetheesd many more cases, a
common core group stood behind the software féor longer than most
proprietary software enjoys the benefits of a comrdevelopment teantt is
this—the dynamics of stewardship—far more than'ldgons of programmers’

that accounts for the success of open source seffii{added emphasis)

Raymond makes a similar observation about Stallsmmdorig-term stewardship that

gives the GNU Emacs project a “unified architedtursion”, and most interestingly,

it makes Stallman stewardship-“author” of the pectje

In fact, there have been open-source projects mhaintained a coherent
direction and an effective maintainer communityroyeite long periods of time
without the kinds of incentive structures or ingdittnal controls that
conventional management finds essential. The dpuedot of the GNU Emacs
editor is an extreme and instructive example; & hhsorbed the efforts of
hundreds of contributors over 15 years intaurdfied architectural vision

despite high turnover and the fact that only onesqe (ts autho)) has been

4 ibid.

148

ibid., p. xxxviii

226

continuously active during all that time. No clossalirce editor has ever
matched this longevity recofd’ (added emphasis)

To summarise, the success of a collaborative FO§j8gb does not only depend on
a good number ofindividual programmers, but lead programmers’ good
stewardship—which makes individually contributedeanto a collective one—is an
equally important matter. This stewardship maimhg$ its legal form in trademark,
which is most helpful to protect the collective lauship of the project as whole.
However, trademark law does not translate the whtdevardship obligation into a
particular legal form, but FOSS project leadersdntge make additional efforts to

coordinate the long-term collaboration under tsewardship.
5.4 Conclusion

This chapter has examined FOSS programmers’ aatlmersona in both aesthetical
and legal senses. Aesthetically | find that the Rioiic author vision of author-
genius does not tally well with programmers’ coliedtive attempt to “author” a
FOSS project. Instead, | find that FOSS programhuasire to be identified as the
authorial origin of their creation happens at botfividual and collective levels. It is
very important to recognise the role of projectdera/stewards who are crucial to
channelindividual contributions into aollectivework of authorship, which can be
held responsible and deserve credit for this FO®§eq as a whole. Legally, the
Anglo-American system does not readily recogniseg@mmers’ non-economic
authorial interests including their right to beriatited as the origin of their creation.
So FOSS developers have to wear the legal perdooapgright/trademark owners
to indirectly claim their authorship. The situatienfurther complicated by the need
to claim FOSS authorship at both individual andlemtive levels. | find that
copyright licences can largely satisfy the neederognise individual authorship,
whilst trademark gives a more suitable legal fonréflect lead programmers’
stewardship responsibility to defend FOSS projedsllective reputation and

goodwill.

149 RaymondCathedra) supra note 36

227

Chapter 6 Conclusion

6.1 Contributions to the Scholarly Literature

The emergence of free and open source software(F@& posed many challenges
to mainstream ways of producing and circulatingvgafe as proprietary products.
This dissertation has been written in an attempbase sense of only one dimension
of these challenges: i.e. FOSS programmers’ useteliectual property licensing
schemes in support of large-scale decentralisddbmyhtion. On the surface, these
FOSS licences may look quite similar to other massket standard-form contracts
including proprietary software licences, where wafe users are given the licensing
terms on a take-it-or-leave-it basis. However, rogusny of these licences in this
dissertation shows that FOSS licences are diffdrent their proprietary cousins in
three aspects, the identification of which is imtedh to be my three modest
contributions to the legal scholarship of softwmirensing jurisprudence. These three
distinctions respectively cover the historical (Btea 2), legal (Chapters 3 and 4) and
authorial (Chapter 5) aspects of FOSS licensing. Sy of these three aspects
aims to create a synergy to show FOSS programragrgjgles against a dominant
assumption—which has underpinned both intellegtwaperty and contract laws—
that human beings are fundamentally self-constituindividuals and they work
mostly in a possessively individualistic and contpet environment.l will now
briefly review each of the aspects that are essletctia sound understanding of the

collaborative ethos in relation to FOSS licensing.

Firstly, FOSS licensing does not come into existenca historical vacuum, but it is
a unique product from a historical period when W@ -style hacker custom was
eclipsed by the rise of intellectual property reguin (especially copyright) over
software in the early 1980s. The GNU General Publmense (GPL) is often
believed to be the very first conscious attempgrft the hacker custom on the IP
institution through a licensing scheme crafted bghBrd Stallman. However, it is
relatively a difficult task to gauge the exact ughce of the lingering influence of the
hacker custom in the GPL, which has also beencis@dl for overly relying on
software copyright and its underlying proprietageology. In order to avoid
228

exaggerating the emergence of FOSS licensing esthexr historical inevitability or
merely the consequence of a few isolated one-afidaats, my assessment of the
historical context is based on a few general pigtee tenets of the Hacker Ethic
but it is also balanced out by some historicallgafic events including the Emacs
dispute, which directly led to the creation of tivst copyleft licence in 1985 |
highlight three important controversies (i.e. therdk printer incident, the Symbolics
incident and the Emacs incident) to show that FO&Bsing comes out of a mix of
idealism and pragmatism. All of them share a comth@me in that Stallman, as a
dedicated hacker, has campaigned hard to rescuéldbker Ethic rooted in its
original MIT-based setting, where programmers aveded by their “Hands-on
Imperative” to indulge their curiosity about comgutechnology.In 1998, this free
software movement led by Stallman was further cacafgd by a spin-off campaign
under the banner of “open-source” led by Eric Raydhto integrate non-proprietary
software into the commercial mainstream. | argw the “open source” twist both
benefits and challenges Stallman’s cause. As afibetiee “open source” agenda
functions much like a business plan for “free sait®V to be marketed to a much
wider constituency beyond the close-knit MIT-styl@ckerdom. As a challenge, it
also forces Stallman to clarify his “free softwapiilosophy to put an ethical limit
on the commercialism of “open source” movement bypleasising the intrinsic
value of “software freedom®.My analysis also shows that the two definitional
baseline documents—Free Software Definition (FSBJ ®pen Source Definition
(OSD)—respectively championed by Stallman and Rayinare compatible with
each other as both stipulate similar minimum stelaip responsibility for FOSS
programmers to preserve software commons. In csintqaroprietary software

developers mainly use their licence to maximisé tle¥enue streams and there is no

! Levy has provided a definitive account of the HacEthic containing six tenets. Steven Levy,
Hackers—Heroes of the Computer Revolufioondon: Penguin Books, 1984,1994)

2The Emacs dispute has been carefully detailed lys®pher Kelty, whose account of the story
calls into question the real influence of so-calléatcker Ethic as identified by Levy. Kelty does not
believe that the birth of the GPL is a purely iaentally driven product from the Hacker Ethic, litut
largely a knee-jerk response to the specific diesfhgtween Stallman and Gosling over the Emacs
program from 1983 to 1985. In this sense, the Hadkihic, according to Kelty, may be an
exaggerated influence, because this “vaunted” athig reveals itself in its “native practical sagi
rather than as a rarefied list of rules”. See Kelkwo Bits--The Cultural Significance of Free
Software (Durham: Duke University Press, 2008), p.15

% This “Hands-on Imperative” is Tenet 1 of the Hackéhic documented by Levy.

* Stallman, “Why Open Source Misses the Point of eFreSoftware” at
<http://www.gnu.org/philosophy/open-source-misdespoint. html>

229

ethical limit to rein in that motive. They do noaJe a responsibility to make
software reproducible, modifiable and redistriblgalbor downstream users or
developers. In other words, proprietary licencesate an “asymmetrical relation”
where there is an unbridgeable gap between softewarers and the non-owning
public. On the other hand, FOSS licences creatsyanrhetrical relation” where
upstream and downstream developers have exactlysdahee sets of rights (i.e.
software freedom) and obligations (i.e. the minimst@awardship responsibility as

specified in FSD and OSD) to co-develop software.

Secondly, the symmetrical relations intended by $QABensing do not mean
anarchy but are organised around two legal ingiitgt covering both “IP” and
contract. As these two institutions provide diffatranechanisms to structure a
licence, | need to deal with them separately, whighh eventually lead to my
proposal to tackle the issue from a relational @it perspective. First, FOSS
programmers are not simplistically for or againi”; but they have much more
nuanced understanding of the issue. They are alwarélP” is not a unified body of
law but that software freedom is affected by it timportant components—

copyright and patent—in subtly different ways.

Copyright When copyright was first extended to softwar¢hasigh it were a kind
of literary work, FOSS programmers’ initial kneekj@eaction was very negatiVe.
However, they soon discovered that copyright'sahte software freedom could
be contained by appropriately crafted licensingnter In particular, after his
dispute with Gosling over Emacs, Stallman wrote“topyleft” condition into his
copyright licence, which allowed publicly releasethodifications and
improvements of the original code to be shared wh#h community in order to
mimic the hackers’ old share-alike tradition. HoweV-OSS programmers’ use of
copyright does not mean that they embrace copyvigthiout reservation, because
most of them are still against stretching copyrighturther cover non-literal (i.e.,
functional) elements of software. This is exemetifiby the campaign led by

® The distinction between “symmetrical relation” (@ommons) and “asymmetrical relation” (in
private property) is detailed by BenklaNealth of Networks: How Social Production Transferm
Markets and FreedonfNew Haven: Yale University Press, 2006) p.143

® For example, Stallman thought it was “blasphemdusthe Hacker Ethic by copyrighting software
programs in the early 1980s. See Webtackers p.419

230

Stallman and his MIT colleagues to protest agalmdts’'s lawsuit to bring its

non-literal user interface under copyright law.

Patent Unlike software copyright, FOSS programmers weot immediately
aware, let alone able to make an assessment, tifirént from patent to software
freedom. In 1981 when the US Supreme Court allowedoftware-related
invention to be patentable Diamond v. Diehrthe issue simply passed unnoticed
by most FOSS programmefsHowever, the hidden threat from patent only
gradually revealed itself in the early 1990s (alttes years afteDiehr).® FOSS
programmers find patent threat much more diffi¢alhandle and it can be only
partially contained by licensing schemes. This ésduse the patent system is
much less intuitive than copyright and at the satnge it is prohibitively
expensive for most individual programmers who pers@SS merely as a hobby
to get patents. Despite this difficulty, the latestision of the GPL (v3.0) does
make some efforts to deal with various patent ssug this would not change

Stallman and his followers’ patent abolitionist jtios.’

Apart from “IP” law, the second legal institutiomat heavily affects FOSS licensing
is contract. However, it is not always clear whetlae FOSS licence, or more
specifically some of its conditions, have a corttratstatus. The heated debate about
whether a FOSS licence is a pure property licence @ontractual licence is
emblematic of this puzzling issd.One of the most vocal oppositions against

7450 U.S. 175 (1981)

The European equivalent @iehr is EPO’s ruling onVicom in 1987 and it similarly had little
publicity when the decision was made. See Vicom/Quter-related invention, T208/84 [1987]
EPOR74

8 For example, in September 1991, Stallman himsel§ fiorced to abandon a data compression
program contributed by a volunteer programmer. Thisecause just about one week before a release
of GNU software, Stallman accidentally found a newdsued patent that might “read on” this
contributed compression program. See Stallman, efRatReform Is Not Enough” at
<http://www.gnu.org/philosophy/patent-reform-is-retough.htmi>

° For Stallman, software invention patents are landsmwhich are impossible to avoid unless they are
stopped being produced. See Stallman, “The DangeSoftware Patents”, 24 May 2004, a talk
delivered at the University of Dublin, Trinity Celje, organised by Irish Free Software Organisation,
transcript by Glenn Strong, Malcolm Tyrrell, AidaBelaney and Ciaran O'Riordan at <
http://www.ifso.ie/documents/rms-2004-05-24.html>

1 The difficulty to draw the line between propertydacontract is not unique to FOSS licensing, but it
has been a persistent problem to a wider rangegad phenomena. As Merrill and Smith observe that
property (in general) and contract are both “beklriostitutions of the legal system” but “it is ofie
difficult to say where the one starts and the otbaves off.” Thomas W. Merrill and Henry E. Smith,
“The Property/Contract Interface”, (2001) 101 @hlumbia Law Review73 at 774

231

treating FOSS licence as contract comes from tke Boftware Foundation, which
insists that the GPL is a pure property licence raoida contract. The reason behind
this opposition stems from the need to distanceGRé& from the kind of software
licensing jurisprudence used by EasterbrookPmCD v. Zeidenbergwhere a
standard-form licence was ruledntractuallybinding on an end usétThe ProCD
decision and its model law progeny (i.e. Uniformn@uter Information Transaction
Act or UCITA) is based on a law-and-economics pmgstion that all that a licensee
needs is to maximise his material wealth througin-megotiated standard-form
licensing contract, which is achieved by reduciramsaction cost. | argue that this
ProCD jurisprudence has largely inhibited the furthervelepment of FOSS
licensing jurisprudence from being in keeping with few new theoretical
breakthroughs in contract scholarship. Most sigaiitly, 1 propose that FOSS
licensing jurisprudence, if scrutinised in a cootual framework, needs to
incorporate Macneil’s relational contract theoryC(R, which is conspicuously
absent in the legal literature about FOSS licendhag the sake of completeness, |
list all the three contractual approaches to shaw IRCT stands out from the

classical and neoclassical approaches to softuamesing.

Contract as consen(classical approach)The classical contract model bases its
legitimacy on the idea that consent is obtainedudh a fully bargained process
between parties. It assumes that there is a simgiment when the minds of
negotiators unequivocally meet and the total caehicd obligation is thus
“presentiated” into a present paper document thailly binding on parties after
that moment. Neither proprietary software licensiog FOSS licensing fits neatly
into this classical model, whose rigidity may linthis approach to be only
heuristically useful in explaining contractual eaolges in an idealised textbook

setting.

Contract as discrete producfneoclassical approach)The neoclassical model
deviates from the classical model by marginalising role of fully verbalised
“consent” in contract formation. Instead, it takeself-claimed “realist” position

to recalibrate contractual exchanges against tbelassical rationale of material

1186 F.3d 1447 (7th Cir.1996)
232

wealth maximisation for individuals. Th&roCD decision epitomises this
neoclassical approach by pretending that end usiesice is an acceptance of the
standard-form licensing terms, which are actualbstified on the basis that they
provide lowest price for consumers with reducedga&tion cost. By doing so, the
ProCD jurisprudence effectively creates a kind of digergontract-as-product®

or “legal-ware®? as if the licensing terms are an integral “phyiit@ature of the
licensed product. This dissertation argues thigteixactly this neoclassical variant
(rather than the classical law) that has posedythatest conceptual obstacle to
understanding FOSS licensing contractually. Theclassical view may reflect
well what proprietary software licensors intendatthieve, but it hardly explains

the highly collaborative relations that are essémti the success of FOSS projects.

Contract as relation(RCT approach)Both classical and neoclassical approaches
conceive of contractual exchanges as discrete a@ctings, where a sustaining
relation developed between exchangers is not eake(ithe only difference
between the two is that the neoclassicist is vgllitm sacrifice the classicist
consent for thorough transactional discretenesscphtrast to contract-as-consent
classicism and contract-as-product neoclassicisauggest that FOSS licensing
should be understood as a relational contract witkersoftware code is not traded
merely as commodity but a kind of “relation-ware tsustain long-term
collaboration where participants are motivated bgnaltiplicity of values. The
rationale behind this “relation-ware” is differédndm the current dominamroCD
law in software licensing jurisprudence in two sd-irst, FOSS “relation-ware”
still respects contract as a consensual relatian, garties’ consent is now
relationally understood in a longer-term contextieve no total obligation is
formed at one particular single moment. Insteadtigs consent is allowed to
evolve when the project move on to reflect the higierendipitous and flexible
nature of FOSS contributions. In other words, ndaltoobligation can be
presentiated in the beginning of a FOSS project, dnly a minimum set of
responsibilities of programmers is written dowrthe text of a FOSS licence and

12 Margaret Jane Radin, “Humans, Computers, and Bin@ommitment” (1999) 75%ndiana Law

Journal1125 at 1126

¥ See Michael J. Madison, “Legal-ware: Contract &upyright in the Digital Age” (1998) 67 (3)

Fordham Law Review025

233

they are mainly about how to keep software freedattmer than the actual content
of contributions. Secondly, to make FOSS ‘“relatreare” is driven by a
multiplicity of motivational forces ranging fromehhard-core monetary motive to
the more ambivalent reputational incentive to tkeft” values such as “software
freedom” to the intrinsic satisfaction from codingjile theProCD ruling tends to
reduce this multiplicity to a single individualistiutility-maximising rationale.
This second argument reflects what relational e@mbtrscholars are keen to
achievé?, and is deserving of more attention from the acade and FOSS
licensing provides an excellent opportunity to pmge such an endeavor. Based
on the above two insights, | then propose to exantie GPL as an “umbrella
relational contract®, which coordinates many contributors’ legal conmeihts to

a project. The GPL as an umbrella “relation-wameaicompromise between two
needs. On the one hand it tries to satisfy the heeskerendipity and flexibilityn
terms of the actual content of contribution, whismot presentiated at all in the
beginning. On the other hand, it also tries torciteéhe need for limitedertainty
to make sure all generations of contributions wdnddlegally compatible with
each other in any downstream distribution. Furtteeento analyse GPL as a
relational umbrella contract also gives a chancgethow far RCT can be applied
to a real-world collaborative situation. It hopesshow that RCT is not merely a
scholarly thought experiment, but it may also pdevijudiciaries with some
insights into some highly relational cases, whdessical and neoclassical law
designed for discrete transactions clearly canopéeavell.

The third contribution that | try to make is abde®SS programmers’ authorial
consciousness as manifested respectively in tsithatical and legal personas. In
terms of FOSS authors’ aesthetical persona, tlehttle doubt that the Romantic
aesthetical vision of author as solitary “geniusésd not suit the highly collaborative
nature of FOSS programming. It is inadequate insdrese that it shares the exactly
the same individualistic presumption adopted bydiserete transactional view from
the classical contract model as discussed aboviactnin a FOSS project, there are

1 william C. Whitford, “lan Macneil’s Contributionot Contracts Scholarship”, (198%Yisconsin
Law Reviewb45

!> For the phenomenon of “umbrella relational coritrirt a general context, see Stefanos Mouzas,
and Michael Furmston, “From Contract to Umbrellarégment” (2008) 67(1Cambridge Law
Journal37

234

not merely individual programmers who can be idesttias theindividual authors
of their contributions, but more importantly, thesealso acollective authoithat can
be held responsible and deserve credit for the ymtomh of an integrated FOSS
project as a whole. | thus argue that a full eviadmaof FOSS authorship in relation
to FOSS licensing should be scrutinised at bothviddal and collective levels,
though the existing literature does not tend tadiseerning enough to differentiate
the two. In particular, | analyse the pivotal rofdead programmers in “stewarding”
FOSS projects for a sustaining long period of tiffilkese project-leaders’ author-
stewardship does not replace the individual progmams’ efforts in actually
producing code, but it only channels individualheuship into collective authorship

of a certain project.

My enquiry of FOSS programmers’ legal persona &xkhe following question:
How do FOSS programmers claim credit through laav8hort, FOSS programmers
need to wear the legal persona as the “IP” ownktkeir contributions in the first
place and then indirectly claims their authorshiprider to compensate for the lack
of statutory attribution right under the Anglo-Ane@an system. This may be
achieved either via copyright or trademark foreliéint situations.

Copyright Unlike the continental European legal system, |l&sfgmerican
copyright does not readily recognise a standaloaerpity right for software
programmers to be attributed to their works. As akeshift solution, copyright
licences need to be crafted to make the attribatianterests ride on the
proprietary rights owned by FOSS developers. Jastastowka observes that
copyright protects attribution only “in a collatefashion” by using the device of
its licensing schemée$.So FOSS developers, in order to have their atidhu
right enforceable under law, must take on the lggailsona as theopyright
ownersto begin with. This observation has been corraieoran a 2008 landmark
ruling in Jacobsen v. Katzemwhere the US Court of Appeals for the Federal
Circuit (CAFC) enforced the condition in a FOSSehice that requires correct

attribution to the original FOSS contributdfsAlthough Jacobseris widely hailed

8 Greg Lastowka, “The Trademark Function of Authgush(2005) 85 Boston University Law
Reviewl172 at 1214
17535 F.3d 1373 (Fed. Cir. 2008)

235

as a long-waited triumph within the FOSS communitis far from unproblematic.
It is worried that theJacobsenruling only strengthens copyright owners’
proprietary interest that becomes an unavoidableluge to enforcing

programmers’ attribution right collaterally througla copyright licence.

Furthermore, the licensing condition made by capiriowners can effectively
allows a privately legislated moral right regimeatttupsets the initial balance
intended by the copyright legislation. | think tliaé only permanent solution to
solve this problem is a legislative change thatasses out programmers’
paternity right from their economic right and asault FOSS programmers would
no longer pretend that attribution furthers theneeoic goal of copyright holders

under a copyright licence but it could be enforireis own right.

Trademark Apart from relying on copyright for collateralgiection of attribution,
many FOSS developers also actively seek tradenratieqtion of their projects’
names. This is because trademarks designatingridia of goods or services are
not dissimilar from an attribution system asceitggnthe authorial origin of
creative works. The name of a project is worth geohg when it accumulates
enough reputation or goodwill to become a brandenaPnojects do not have to
register their names with trademark authoritieguth registration would give
them stronger and more certain protection. The éwAgherican system brings
unregistered marks under protection through thencomlaw action of “passing
off”. In the US, it is not unusual to invoke Sectid3(a) of Lanham Act, which
codifies the “passing off” action, as a proxy patgr right to get authorial
attribution. The 2001 US cadelanetary Motion v. Techsplosiols exactly a
successful example where a FOSS project had iegistered mark (i.e. its project
name “Coolmail”) protected under the Lanham Adturthermore, | argue that, in
a large-scale FOSS project, lead programmers hevetéwardship responsibility
to defend the collective reputation or goodwill afproject as a whole, and
trademark lends itself to be suitable legal fornrm@nifest this stewardship. There
are two features of trademark protection of the @aanFOSS project under
stewardship. Firstly, trademark protects the ctilec authorship of a whole

project but not directly individual authorship. $adly, when a FOSS project is

18261 F.3d 1188
236

misattributed, it does not only cause a copyrigatnh to its author but also a
trademark harm to the public, who can be confusenlitathe authorial origin. In
this sense, trademark law can be employed notfqushe purpose of allocating
credit (and possibly reputational incentives) tohaus of their works, but it may
also help the public to find a FOSS product with tight origin.

In summary, both copyright and trademark may be leyep to protect FOSS
programmers’ attributional interests. Neither ofe thwo regimes is entirely
satisfactory because they make attribution heawdBpendent on the strong
proprietary right afforded by law in the first p&ac In particular, trademark gives a
legal form to FOSS project-leaders’ stewardshipictvis responsible to defend the
collective reputation or goodwill of the project aswhole, though it does not
translate the whole hacker tradition to coordintuwe collaborative efforts among

FOSS programmers.
6.2 Avenues for Future Research

This dissertation is a study of some key legal @assooncerning FOSS licensing
jurisprudence, which is largely informed by Steuasvy’s pioneering work on the
Hacker Ethic as published in 1984 (one year betioee“‘copyleft” licence was first
invented by Stallman). In following decades, thiackler Ethic has undergone a
chequered development largely due to the changiggl lenvironment concerning
intellectual property regulation over software imatbon. However, two more recent
developments, which may have a continuous impac¢herHacker Ethic as well the
FOSS movement, should not go unnoticed. One is itleeeasing corporate
participation in FOSS projects and the other isgpiéing over of the Hacker Ethic
into non-programming or mixed innovations. | wilbw explain briefly why these

two developments can be two avenues leading tadwbite research in the future.

The first avenue concerns a revaluation of Tenef the Hacker Ethic—“Mistrust
Authority—Promote Decentralisation”—which was ingested by Levy as hackers’

mistrust of any type of centralised bureaucratistesy® epitomised by software

9 “Bureaucrats hide behind arbitrary rules (as opfa® the logical algorithms by which machines
and computer programs operate): they invoke thages rto consolidate power, and perceive the
constructive impulse of hackers as a threat.” Léiackers p.41

237

companies like the IBM® Levy argues that IBM programmers are “priests sl
priests” and they “could never understand the alevisuperiority of decentralized
system, with no one giving order-Tronically, over two decades later after this
observation was first made, IBM today becomes dnine most active companies
contributing to FOSS projects including Linux andathe?? Apart from IBM, other
corporate giants such as Google, Intel, HP, No®dld Hat, which would no doubt
be classed as “bureaucracies” by Levy's 1984 stahdae also important FOSS
contributors® Lerner and Schankerman, in a recent book-lengtkareh, further
demonstrate that many companies in fact producle paiprietary code and FOSS
code, the two of which can be closely “cominglenl’ai corporate environmefit.

In this light, it is important for scholars to exera the extent to which this corporate
foray into FOSS would challenge Benkler's peer-picithn model where code is
produced independent from a hierarchical corposdtacture oriented towards
making economic profit&> In other words, it is worth finding out the degref
compromise that those employed FOSS programmersaffard to make without
losing their independent status to the corporatBumu®® Chapter 3 of this
dissertation has provided a glimpse of this issueugh the lens of “open source

% “The epitome of the bureaucratic world was to leintd at a very large company called
International Business Machines—IBMbid.

I Levy, Hackers p.42

21BM, “Open Source at IBM” at <http://www-03.ibm.aulinux/ossstds/oss/ossindex.html|>

2 A survey conducted by the Linux Foundation showat tLinux contributors are not simply
individual hobbyists, but a significant number d&ietn have corporate affiliations. Greg Kroah-
Hartman, Jonathan Corbet, Amanda McPher&imjx Kernel Development: How Fast it is Going,
Who is Doing It, What They are Doing, and Who i®rSpring It: An August 2009 Updat
<http://www.linuxfoundation.org/sites/main/filesiplications/whowriteslinux.pdf>

24 Josh Lerner and Mark Schankermafhe Comingled Code: Open Source and Economic
Developmen{Cambridge, Mass.: MIT Press, 2010)

Although Lerner and Schankerman’s research has pessed for its unprecedentedly wide scope
(surveying about 2300 companies and nearly 2009raromers), it only represents a starting point of
the still poorly understood corporate FOSS phenameand “the literature of this important
development in recent economic history is still ffam complete.” Se@he Economist‘Untangling
Code”, reviewing Lerner and Schankerman’s booK, J&nhuary 2011 at 79

% Yochai Benkler, “Coase's Penguin, or, Linux antiéTNature of the Firm™” (2002) 112, (Yale
Law Journal369

% Raymond observes that some “star” FOSS programareriikely to attract corporate “patronage”
to support themselves financially. For example, ltheux Foundation (comprising mostly corporate
developers and distributors of the Linux kernelalide to pay Linus Torvalds a full salary and Healt
insurance and thus saves him from having anothgijata See Eric Raymond, “Open R&D and the
Reinvention of Patronage” in The Magic Cauldron 1999 at
<http://www.catb.org/~esr/writings/magic-cauldron/>

238

patents®’, though it is not intended to be a full accounttbé still emerging
corporate FOSS phenomenon. It observes that sormperate FOSS developers are
keen to build patent portfolios to defend themselkgainst potential patent litigation,
whilst individual FOSS hobbyists are unlikely to sim given the sheer cost of getting
and maintaining patents. Again IBM is a most coospus example of a corporation
both developing FOSS and owning a large numbesoftiare patents?® Another
interesting example is a FOSS patent consortiumvknas Open Invention Network
(OIN) formed by corporate FOSS developers to defeémaux from patent
litigation.?® To acquire defensive patents for FOSS projectarifrom a satisfactory
solution because it does not eradicate the thoestftware freedom from its root, i.e.
the legal system that produces software inventiatergs in the first place. It also
unfortunately creates a schism within the FOSS conity into two divisions: one
belongs to the well-financed corporate developdrs are less interested in changing
the patent system and the other belongs to hobdgistlopers with no direct
corporate affiliation who are keener to defendwsafe freedom in its own right. |
think that FOSS licensing schemes would play a lieriged role in eliminating this
schism by reining in corporate penetration into BOBy speculation is that how far
this corporate foray into FOSS will go would langéle dependent on the scope of
the commercial success that these companies caavachy selling their FOSS
products on the market. Corporate FOSS is likelyoiarish mainly in the consumer-
goods area where products are mainly used by npmistacated end-users who are
not expected to make modification or improvemenht software. Corporate FOSS
would thus understandably be less able to harnasge-kcale decentralised
collaboration under the peer-production moteln this light, | argue that legal

scholarship needs to be more attentive to this wewelopment of corporate

" Leveque and Méniére call this phenomenon “opemcsopatents” to account for patents owned by
corporate FOSS developers. See Francois Levequerand Méniere, “Copyright Versus Patents:
The Open Source Software Legal Battle” (2007) &eyiew of Economic Research on Copyright
Issue27 at 42

See also Section 3.4, Chapter 3 of this dissentditipa more detailed analysis.

%8 |n 2005, the IBM signalled its commitment to th@$S cause by its pledge not to assert its 500
patents to the FOSS community. See IBM, “IBM Staamof Non-Assertion of Name Patents
against OSS” at <http://www.ibm.com/ibm/licensingignts/pledgedpatents.pdf>

29 See OIN's website at <http://www.openinventionratacom/>

% |n particular, established companies may well BEESS as a marketing gimmick to get quick
publicity for their new products in a short space tone, rather than attracting large-scale
collaboration with hobbyist developers. Google’source Chrome browser and its Android smart
phone platform are both good examples of this kihdorporate FOSS strategy.

239

participation in FOSS, which would be significamt ¢hanging the landscape of
FOSS collaboration.

Apart from calling for more research into corpor&t@Ss, | also need to highlight
another avenue that merits further research. Téusrsl avenue concerns the last
tenet (i.e., Tenet 6) of the Hacker Ethic—“Compsitean change your life for the
better"—under which Levy predicts that the Hack#éni&would spill over into and
eventually benefit the non-programming world endblby computer technologies:
“Surely everyone could benefit from a world basadlte Hacker Ethic. This was the
implicit belief of the hackers irreverently extedd#e conventional point of view of
what computers could and should do—leading the dvtrla new way of looking
and interacting with computerdFollowing this tenet, there seems no significant
conceptual barrier preventing FOSS programmers ftoinging their software
freedom to other creative spheres such as nmtigianost glaring success story of
this kind of endeavour is the attempt to build datmrative online encyclopedia
universally accessible to and modifiable by evetgrinet user. Stallman, in an essay
titted “The Free Universal Encyclopaedia and LeagnResource”, calls for “a
universal encyclopedia covering all areas of kndgé and a complete library of
instructional courses” and “a conscious effort tevent deliberate sequestration of
the encyclopaedic and educational information @nrtét.®® This vision indeed led
to the creation oWikipediaunder the efforts of Jimmy Wales and his collabms
who use the wiki technology to enable users all dive world to create a universally
free encyclopedid® The Wikipediaphenomenon, clearly a product of the last tenet of
the Hacker Ethic, also reflects a widespread ogtimabout “collective creativity”
enabled by networked computer technologies (e.dd)wihich are sometimes
romanticised as the “weapons of mass collaboratiorihe “age of participation®

% Levy, Hackers p.46

% Moglen argues that “music, and movies, and traihedules, and all other useful forms of
information in the twenty-first centurydre no more than “other types of software”. Ebenghdn,
“Freeing the Mind: Free Software and The Death obpRetary Culture”, 29 June 2003,
<http://moglen.law.columbia.edu/publications/magmeech.htmi>

% Richard Stallman, “The Free Universal Encyclopedand Learning Resource”, at
<http://www.gnu.org/encyclopedia/free-encyclopetianl>

% See Larry Sanger, “The Early History of Nupedid &vikipedia: A Memoir”, inOpen Sources 2.0
edited by Chris DiBona, Danese Cooper, and Marké&{8ebastopol, CA: O'Reilly, 2006)

% The terms are used by Tapscott and Williams whguer “New low-cost collaborative
infrastructures—from free Internet telephony to mpsource software to global outsourcing
platforms—allow thousands upon thousands of indiaid and small producers to cocreate products,

240

Most significantly, this optimism has also led solaeyers to experiment with new
licensing schemes to facilitate ttWeikipediatype collective creativity. The most
well-known example is no doubt a set of creativenemns licences that aim to
“build a layer of content, governed by a layeredisonable copyright law, that others
can build upon” in a free and re-mixable culttftélowever, some other lawyers are
not entirely convinced by this trend. For instan@kerges, who is keen to defend
private property in the digital era, is vehementgainst over-romanticising
“collective creativity” enabled by networked comgutechnologies. For Merges, the
“weapon of mass innovation” would defeat neithetividual creativity’ nor private
property®® | think that Merges is mostly right in the senbattcreativity in the real
world does not have one single particular modeitbedn run the whole gamut from
being very solitary to highly collaborative, thoughost contributions to a FOSS-
inspired collective work are most likely to be @ogo the collaborative end of the

spectrum.

However, in order to further test Merges’ thest thrivate property is still relevant
to collective creation in the digital age, | thittkat more study needs to be done
because the property system, on which FOSS licgrsthemes are based, is by no
means the only parameter that makes collaboratike place® For this reason, |
wish to narrow this enquiry down to a case studs obllaborative project known as
PureData—which is a widely used computer music dagg—to see how far the
Hacker Ethic (as well as Merges’ thesis about pitypean stand in an intersectional

area of programming and non-programming (i.e. nallsareativities. There are two

access markets, and delight customers in waysothigtlarge corporations could manage in the past.
This is giving rise to new collaborative capakdlii and business models that will empower the
prepared firm and destroy those that fail to adjusapscott and WilliamsWikinomics(London:
Portfolio, 2006) p.11

% Lessig explains: by using creative commons licenégv]oluntary choice of individuals and
creators will make this content available. And tbantent will in turn enable us to rebuild a public
domain.” LessigFree Culture: How Big Media Uses Technology andlthe to Lock Down Culture
and Control CreativitNew York: The Penguin Press, 2004) p.283

3" Merges does not believe that “collective worksl &itd should systematically replace individual
works in the digital era.” Robert Merges, “The Ceptof Property in the Digital Era” [2008] 45 (4)
Houston Law Revied239 at 1249

% Merges argues that “property rights still makesseas a legal and social institution. [...] contimuin
to grant and enforce property rights does not threshe viability of collective creativity, but [...]
seriouslycurtailing property rights so as to further promote collestoreativitywould significantly
undermine the conditions for individual creativit{original emphasisibid.

%9 Again, it would be inappropriate to solely creplivate property for the making of collective works
while ignoring other parameters contributing to thal lived experience of collaboration.

241

reasons why PureData is a promising candidatenfetkind of research in the future.
First, PureData sits astride two creative fieldgetimg both software and music. On
the one hand, it is a visual programming languagh @& modular and extensible
architecture, whose lead developer/coordinator—evlillPuckette—is deeply
sympathetic with the original MIT-type hacker etBioce he was an undergraduate
student at MIT. In fact, the proprietary predecedsoPureData called Max, which
was also initially developed by Puckette in 198&wlne was affiliated with Institut
de Recherche et Coordination Acoustique/MusiqueCARI) in Paris, has drawn
many ideas directly from researchers and develdpassd at MIT? Puckette later
felt deeply disaffected by IRCAM’s decision to sigghen intellectual property
control over Max as a proprietary product becahgedreated a lot more difficulties
for Puckette and his colleagues to disseminate Mtated works to the world
outside IRCAM™* As a result, Puckette left IRCAM and started then®ff
PureData project licensed under a FOSS licéh@m the other hand, PureData is not
merely for software programmers but it also usedngicians dedicated to making
electronic arts. It follows a long line of pursud build a kind of “composition
machine”, which can be stretched back to the eaddern time of Leibnitz (1646-
1716) and Marin Mersenne (1588-1648)Note that PureData as a versatile
programming tool does not only facilitate electiomusic making, but it also deals
with other forms of electronic arts such as vided atill images with its Graphics
Environment for Multimedia (GEM) external, whiclsaleffectively bears out Tenet
4 of the Hacker Ethic: “You can create art and beauwn a computer”. In short,
PureData users/co-developers are two categoriesraztors—programmers and
sound artists—rolled into one. The second reasoyn RireData is worth further
researching is that its community members are awthre of the ongoing debate
about IP and creativity and consciously pursuer tileictronic arts in the spirit of the
FOSS movement. Within the PureData community, tie® been a palpable anti-

9 Miller Puckette, “Who Owns Our Software—A Firstrpen Case Study”’2004 ISEA Online
Proceedingsavailable at <http://crca.ucsd.edu/~msp/Publicetiisea-reprint.pdf>

“1 Puckette’s situation at IRCM at this point is w@gsimilar from Stallman’s at MIT AL Lab in the
early 1980s.

“2This licence is called Standard Improved BSD LaeSIBSD), which is a variant of the original
BSD License.

“3For the intellectual and historical backgroundPoireData, See Winfried Ritsch, “Does Pure Data
Dream of Electric Violins?—PD Introduction and Oview” (Wolke Verlag, Hofheim, 2006) from
the edited book based on the First InternationaCBdvention 2004, Graz/Austria, p. 11

242

property sentiment akin to early computer hackdrslike of private ownership of
softward®. For example, Puckette himself argues that elpictrarts (such as the
PureData project) are not privately “ownable” whedetached from physical

embodiments:

Artifacts of art may be owned, but ‘digital artsélf is not intrinsicallyownable

by anybody. This is bad news to composers, foaitst, who obviously would
like to own their scores. They do indeed own theepand ink on top of it, but
the work exists only as a way of arranging things, in the things themselves,
and therefore can’t be owne@omposers and other digital artists must survive
by the mechanism of attributiohis is indeed how J.S. Bach operated; the
intervening years, dominated by physical printimgsges and their output, can

be seen as an aberration, now coming to arefadlded emphasis)

| think that Puckette’s above argument indicateleasdt two directions in which the
so-called “digital art” may go under the impact thie MIT-style Hacker Ethic.
Firstly, it can be read as a challenge to Merge$ece of private ownership in the
digital age. Largely due to the nature of digitdl“as a way of arranging things, not
in the things themselves”, this art form cannot dwened like physical objects.
Puckette further suggests that the material gaim forivate ownership would distort
the creators’ (including both researchers andtajteelf-motivation to indulge their
academic or artistic passion: “It is now ironic tthasearchers and artists now find
themselves trapped by their own efforts to make tireations have monetary value
in the form of IP. Researchers [...] are too eastiyused by the promise of material
gains to be reaped from our work. Artists [...] fallo the same trap. Both eventually
lose control over their own work® This argument bears strong resemblance to
Stallman’s polemic where he argues why softwareishoot be owned’ Secondly,
Puckette envisions a mechanism that protects tigitests’ attributional interest to
sustain their creation in the digital era just likel.S. Bach’s time. This argument is
largely in line with my observation made in Chapter where | find FOSS

“ This dislike is strongly registered by Stallman his essay “Why Software Should Not Have
Owners”, 1994, at kttp://www.gnu.org/philosophy/why-free.htm

> Miller Puckette, “Who Owns Our Software—A Firstrpen Case Study”, supra note 40

“Cibid.

“" Richard, Stallman, “Why Software Should Not Have r@vws", 1994, at
<http://www.gnu.org/philosophy/why-free.html>

243

programmers are keen to claim the attribution rigdependent from the economic
right of their works. It also converges with a gmog legal literature calling for
separating non-economic authorial right from pevatvnership right in creative
works. For example, the legal scholar Zimmermamni@sghat it is possible to protect
and encourage “authorship without ownership” in ¢herent digital agé® | believe
that more empirical research is necessary to exaihi@ extent to which PureData
artists’ practice can flesh out Zimmerman'’s th€as opposed to Merges'’s thesis) in

a mixed creative environment of programming ansl. art
6.3 Concluding Remarks

This chapter summarises three modest contributibas | intend to make to the
existing literature of FOSS licensing jurisprudenEestly, it shows the historical
context from which FOSS licensing emerged as aorespto the rise of intellectual
property regulation over software innovation. Settpnit deals with the legal aspect
of FOSS licences, which are proposed to be scsaiihunder a relational contract
perspective. The third contribution concerns thinaal aspect of FOSS licensing,
which is shown to have developed independently fri@omantic aesthetics. It
explains the FOSS authors’ attributional right—ne ttegal form of copyright and
trademark—at both individual and collective levélarthermore, | suggest that there
are two possible avenues for future research.l¥irsiore research needs to be done
to assess the impact of the increasing corporatetfion in FOSS, which may
gradually erode Benkler's peer-production modeF&fSS production. Secondly, |
call for further research into the impact of theckler Ethic and IP law on the
intersectional areas of programming and non-progreng creativities and | suggest
that an electronic arts project known as PureData ipromising candidate for

continuing the line of inquiry of the FOSS movemeant a broader context.

“8 Based on her observation that the Victoria litgrpublishing in 19-century England depended
much more on authors’ relation with editors and lighlers than the private property system,
Zimmermann proposes that internet publishing camilaily take off without private copyright
ownership. Diane Leenheer Zimmerman, “Authorshifheiit Ownership: Reconsideration Incentives
in a Digital Age” (2003) 5DePaul Law Review121

244

Bibliography

Andrews, Cathy Joann@&ridging the Divide—An Exploration of lan MacneiRelational
Contract Theory and Its Significance for Contrach@arship and the Lived World of
Commercial ContragtPhD Thesis, (London: Birkbeck College, UniversifiLondon, 2010)

Bainbridge, DavidlLegal Protection of Computer Softwaitdeywards Heath, West Sussex:
Tottel Publishing, 2008, 5th Ed.)

Barnett, Randy E., “Conflicting Visions: A Critiguef lan Macneil's Relational Theory of
Contract”, (1992) 78 (5Yirginia Law Reviewl175

Barnett, Randy E., “Consenting to Form Contrac20Q) 71Fordham Law Review27
Beatson, JAnson’s Law of ContradOxford: OUP, 2002, 28th Edition)

Benkler, Yochai “Coase's Penguin, or, Linux andéMature of the Firm™ (2002) 112, (3)
Yale Law JournaB69

Benkler, Yochai,Wealth of Networks: How Social Production Transferarkets and
Freedom(New Haven: Yale University Press, 2006)

Bently, Lionel and Sherman, Braldtellectual Property LawOxford: OUP, 2009, 3rd Ed.)

Bergquist, Magnus and Ljungberg, Jan, “The Power Gifts: Organizing Social
Relationships in Open Source Communities”, (20a1nformation Systems Journad5

Bern, Roger C., “ ‘Terms Later’ Contracting: BadoBomics, Bad Morals, and a Bad Idea
for a Uniform Law, Judge Easterbrook Notwithstagdin2003-2004) 12Journal of Law
and Policyat 772

Biancuzzi, Federico, “A Look Back at 10 years of IQS12 February 2008, at
<http://www.onlamp.com/pub/a/onlamp/2008/02/12/akidvack-at-10-years-of-osi.html>

Boyle, James,Shamans, Software, and Spleens—Law and the Comstruof the
Information SocietyCambridge, Mass.: Harvard University Press, 1996)

Boyle, James, “The Second Enclosure Movement aed Gbnstruction of the Public
Domain”, (2003) 6@.aw and Contemporary Probler838

Boyle, James, “Cultural Environmentalism and BeyofD07) 70Law and Contemporary
Problems5

Boyle, JamesThe Public Domain—Enclosing the Commons of the Mielw Haven&
London: Yale University Press, 2008)

Burk, Dan, “Copyrightable Function and Patentalpeegh” (2001) 44 (2Communications
of the ACMB9

245

Burk, Dan, “Anticircumvention Misuse” (2003) 20CLA Law Review 095

Campbell, David, and Harris, Donald, “Flexibility Long-Term Contractual Relationships:
The Role of Co-operation”, (1993) 20 ®urnal of Law and Society66

Campbell, David, “lan Macneil and the Relationake®dty of Contract” in lan MacneilThe
Relational Theory of Contract: Selected Works of Macneil ed. by David Campbell,
(London: Sweet & Maxwell, 2001)

Campbell, David and Collins, Hugh, “Discovering thaplicit Dimensions of Contracts”, in
Implicit Dimensions of Contract—Discrete, Relatipnand Network Contracfseds. by
David Campbell, Hugh Collins and John Wightman @edfand Portland, Oregon: Hart
Publishing, 2003)

Canfield, Kenneth, “The Disclosure of Source Cadeésoftware Patents: Should Software
Patents be Open Source?” (2006) Vhie Columbia Science and Technology Law Review

Chen-Wishart, MindyContract LawmOxford: OUP, 2008, 2nd Edition)

Clapes, Anthony L., Lynch, Patrick and Steinbergr¥R., “Silicon Epics and Binary Bards:
Determining the Proper Scope of Copyright Protectmr Computer Programs” (19834
UCLA Law Reviewt493

Collins, Hugh, “Introduction: The Research Agendléniplicit Dimensions of Contracts”, in
Implicit Dimensions of Contract—Discrete, Relatignahd Network Contractseds. By
David Campbell, Hugh Collins and John Wightman @edfand Portland, Oregon: Hart
Publishing, 2003)

Cooke, ElizabethThe Modern Law of Estopp@Dxford: OUP, 2000)

Covotta, Brian and Sergeeff, Pamela, “ProCD, IncZgidenberg” (1998) 1Berkeley
Technology Law Journ&5

Dempsey, Bert J., Weiss, Debra, Jones, Paul anehB@eeg, Jane, “Who Is an Open Source
Software Developer?—Profiling a Community of Linievelopers”, (2002) 45 (2)
Communications of the ACBY

DiBona, Chris, Cooper, Danese, and Stone, Markirdttuction”, in Open Sources 2.0,
edited by Chris DiBona, Danese Cooper, and Mark&{8ebastopol, CA: O'Reilly, 2006)

Diwan, Romesh, “Relational Wealth and the QualityLife” (2000) 29 Journal of Socio-
Economics305

Dawson, 1.J., and Pearce, Robert licences Relating to the Occupation or Use of Land
(London: Butterworths, 1979)

Dusollier, Severine, “Open source and Copyleft: hauship reconsidered?” (2003) 26
Columbian Journal of Law and the A283

Dusollier, Severine, “Sharing Access to IntellettBaoperty Through Private Ordering”,
(2007) 82Chicago-Kent Law Revie®891 at 1435

Easterbrook, Frank, “Contract and Copyright” (2008)(4)Houston Law Revie@53
246

Eisenberg, Melvin A., “Why There is No Law of Redatal Contracts” (2000) 94
Northwestern University Law Revi&05

Elkin-Koren, Niva, “What Contracts Cannot Do: Themits of Private Ordering in
Facilitating a Creative Commons” [2005] Férdham Law Revie®75

Evans, David S. and Layne-Farrar, Anne, “SoftwaateRts and Open Source: The Battle
Over Intellectual Property Rights” (2004) 9 (Mjginia Journal of Law and Technology

Fabricius, Erich M., “Jacobsen v. Katzer: Failufgh® Artistic License and Repercussions
for Open Source” (2008Yorth Carolina Journal of Law and Technology

Feinman, Jay M., “Relational Contract Theory in o, (2000) 94 Northwestern
University Law Review37

Feller, Joseph and Fitzgerald, Bridvnderstanding Open Source Software Development
(London: Addison-Wesley, 2002)

Fisk, Catherine L., “Credit Where It's Due: The land Norms of Attribution”, (2006) 95
Georgetown Law Journal 49

Fuller, Lon, “The Role of Contract in the OrderiRgocesses of Society Generally”The
Principles of Social Orde edited by Kenneth I. Winston (Durham, N.C.: Duleiversity
Press, 1981)

Free Software Consortium (Jaco Aizenman, Mauregdullvan, Martin Pedersen, Pedro
Rezende, Shilu Shah, Pia Smith, Jorge VilR)ee Software Act (Draft(2004) 1 (4)
SCRIPT-edat <http://www.law.ed.ac.uk/ahrc/script-ed/iss#SHAct. pdf>

Free Software Foundation, “Overview of the GNU 8gst 1996 (last update 2008) at
<http://www.gnu.org/gnu/gnu-history.html>

Free Software Foundation, “GPL Version 3: Backgobuo Adoption”, 9 June 2005
<http://www.fsf.org/news/gpl3.html>

Free Software Foundation, “GPL v3 Final Discussidbraft Rationale”, at
<http://gplv3.fsf.org/rationale>

Galli, Peter, “Rewriting GPL No Easy Task” eSemsaf2 February 2005, eWeek,
<http://www.eweek.com/c/a/Linux-and-Open-Source/Reéng-GPL-No-Easy-Task/>

Garnett, Kevin, Davies, Gillian and Harbottle, Guil, Copinger and Skone James on
Copyright(London: Sweet & Maxwell, 2005, 15th Edition)

Gates, Bill, “An Open Letter to Hobbyists”, 3 Febry 1976 at
<http://www.digibarn.com/collections/newslettergtiebrew/V2_01/gatesletter.html>

Ghosh, Rishab Ayer, “Cooking Pot Markets: An EcoiomModel for the Trade in Free
Goods and Services on the Internet” (1998) 3 (Birst Monday at
http://firstmonday.org/htbin/cgiwrap/bin/ojs/indgkp/fm/article/view/580/501>

Ginsburg, Jane C., “The Concept of Authorship irm@arative Copyright Law” (2003) 52
DePaul Law Review063

247

Ginsburg, Jane C., “The Right to Claim AuthorsmpJ.S. Copyright and Trademarks Law”,
(2004) 41 (2Houston Law Revie®63

Gomulkiewicz, Robert W., “How Copyleft Uses LicenRéghts to Succeed in the Open
source Software Revolution and the Implicationstfia Implications for Article 2B” (1999)
36 Houston Law Review79

Gomulkiewicz, Robert W., “A First Look at Generall#fic License 3.0", (2007) 24
Computer and Internet Lawyéb

Gomulkiewicz, Robert W., “Conditions and Covenaintd.icense Contracts: Tales from a
Test of the Artistic License” (2009) TTeéxas IP Law Journa835

Gordon, Robert W., “Macaulay, Macneil, and the Digry of Solidarity and Power in
Contract Law” (1985Wisconsin Law Revie®65

Griffiths, Jonathan, “Misattribution and Misrepresstion—the Claim for Reverse Passing
Off as ‘Paternity’ Right” [2006] 1.P.Q. 34

Gross, Michael, “Richard Stallman: High School MisBymbol of Free Software,
MacArthur-certified Genius”, 1999, at
<http://www.mgross.com/MoreThgsChng/interviewslstan1.html>

Guadamuz, Andres, “Viral Contracts or Unenforcedbbeuments? Contractual Validity of
Copyleft Licences” (2004) 26 (%.1.P.R.331

Guadamuz, Andres, “Legal Challenges to Open Solieences” (2005) 2 (25CRIPT-ed
163

Gudel, Paul J., “Relational Contract Theory and @encept of Exchange”, (1998) 46
Buffalo Law Review63

Hass, Douglas A., “A Gentlemen's Agreement: Assgsie GNU General Public License
and its Adaptation to Linux” (2007) ®hicago-Kent Journal of Intellectual Proper®t3

Henley, Mark, “Jacobsen v. Katzer and Kamind Asstes—An English Legal Perspective”
(2009) 1 (1)nternational Free and Open Source Software LawidRev

Heymann, Laura A., “The Birth of the Authornym: Aotship, Pseudonymity, and
Trademark Law” (2005) 8Blotre Dame Law Revieth377

Himanen, PekkaThe Hacker Ethic and the Spirit of the Informatidge (NY: Random
House, 2001)

Houweling, Molly Shaffer Van, “Cultural Environmedism and the Constructed
Commons”, (2007) 7Qaw and Contemporary Probler28

Hyde, Lewis,The Gift: Imagination and the Erotic Life of PropeNew York: Vintage
Books,1983)

Irlam, Gordon and William, RossSoftware Patents: An Industry at Risk994, at
<http://www.progfree.org/Patents/industry-at-rigkah>

248

Jaszi, Peter, “Toward a Theory of Copyright: Thedfnsorphoses of ‘Authorship’ ” (1991) 2
Duke Law Journa#t55

Jaszi, Peter, “On the Author Effect: Contemporagp@ight and Collective Creativity”
(1992) 10Cardozo Arts and Entertainment Law Jour28i3

Jones, Pamela, “The GPL is a License, Not a Cant¥daich is Why the Sky Isn't Falling”,
14 December 2003 at
<http://www.groklaw.net/articlebasic.php?story=20284210634851>

Karjala, Dennis S., “Federal Preemption of Shrirdgwrand Online Licenses” 22 (3)
University of Dayton Law Reviebd 1

Karp, James P., “A Private Property Duty of Stewhipn: Changing our Land Ethic” (1993)
23 Environmental Law'35

Kelty, Christopher M.,Two Bits--The Cultural Significance of Free SofteyafDurham:
Duke University Press, 2008)

Kim, Nancy S., “Clicking and Cringing”, (2007) 8&€yon Law Review 797

Kretschmer, Martin, “Software as Text and Machifiédhe Legal Capture of Digital
Innovation”, 2003 (1) The Journal of Information, Law and Technolo@jLT) at
<http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2@0 1/kretschmer/>

Kroah-Hartman, Greg, Corbet, Jonathan and McPhefsmandalinux Kernel
Development: How Fast it is Going, Who is DoingMhat They are Doing, and Who is
Sponsoring It: An August 2009 Updaite
<http://www.linuxfoundation.org/sites/main/filesfpiications/whowriteslinux.pdf>

Kumar, Sapna, “Enforcing the GNU GPL” 20Qiversity of lllinois Journal of Law,
Technology and Policy

Kwall, Roberta Rosenthal, “The Attribution Right the United States: Caught in the
Crossfire Between Copyright and Section 43(A)” (200/ashington Law Revie985

Kwall, Roberta Rosenthal, “The Author as Stewardr‘Eimited Times™, (2008)Boston
University Law Revied85

Laddie, Hugh, Prescott, Peter, Vitoria, Mary, Speattrian and Lane, Lindsaihe Modern
Law of Copyright and Designé_ondon, Edinburgh & Dublin: Butterworth, 2000, d3r
edition) Vols. One & Two

Lai, Stanley, The Copyright Protection of Computer Software im tnited Kingdom
(Oxford and Portland, Oregon: Hart Publishing, 2000

Lakhani, Karim R. and Wolf, Robert G., “Why Hackdds What They Do: Understanding
Motivation and Effort in Free/Open Source SoftwBrejects”, inPerspective on Free and
Open Source Softwareds. by Feller, Fitzgerald, Hissam and Lakharmini@ridge, Mass.:
MIT Press, 2005)

Lastowka, Greg, “The Trademark Function of Authge$h(2005) 85Boston University
Law Reviewl172

249

Leadbeater, Charleg/e-Think(London: Profile Books, 2008)
Leff, Arthur Allen, “Contract as Thing”, (1970) 12) American University Law Reviel31

Lemley, Mark, “Convergence in the Law of Softwarep@right”, (1995) 10 High
Technology Law Journdl

Lemley, Mark, “Romantic Authorship and the RhetasicProperty”, (1997)79exas Law
Review873

Lemley, Mark, “Beyond Preemption: The Law and BPpliof Intellectual Property
Licensing” (1999) 87 (1¥alifornia Law Reviewl11

Lemley, Mark and Shapiro, Carl, “Probabilistic Fras, (2005) 19 (2Yournal of Economic
Perspectiveg5

Lemley, Mark, “Terms of Use” (2006) Minnesota Law Revieds9

Lemley, Mark, Risch, Michael, Sichelman, Ted R. afdgner, Polk, “Life after Bilski”
(2011)Stanford Law Revied01

Lerner, Josh and Schankerman, Marke Comingled Code: Open Source and Economic
DevelopmenfCambridge, Mass.: MIT Press, 2010)

Lessig, Lawrence, “Open Code and Open Societiekiegaof Internet Governance” (1999)
74 Chicago-Kent Law Reviet105

Lessig, LawrenceFree Culture: How Big Media Uses Technology and ithe to Lock
Down Culture and Control CreativifNew York: The Penguin Press, 2004)

Leveque, Francois and Méniére, Yann, “Copyright sdser Patents: The Open Source
Software Legal Battle” (2007) 4(BReview of Economic Research on Copyright Issues

Levy, Steven,Hackers—Heroes of the Computer Revolut{tiwndon: Penguin Books,
1984,1994)

Lucy, William N.R. and Mitchell, Catherine, “Replag Private Property: The Case for
Stewardship” (1996) 58ambridge Law Journé866

Macaulay, Stewart, “Non-Contractual Relations in siBess’ (1963) 28American
Sociological Review5

Macaulay, Stewart, “The Reliance Interest and thwltMOutside the Law Schools’ Door”,
(1991)Wisconsin Law Revie247

Macaulay, Stewart, “The Real and Paper Deal: EwgliriPictures of Relationships,
Complexity and the Urge for Transparent Simple BRu{2003) 66Modern Law Review4

Macaulay, Stewart, “Freedom from Contract: Soluion Search of a Problem?” (2004)
Wisconsin Law RevieW&77

MacQueen, Hector, Waelde, Charlotte and Laurie,e@m Contemporary Intellectual
Property—Law and PolicfOxford: OUP, 2008)

250

Madison, Michael J., “Legal-ware: Contract and Guagiyt in the Digital Age” (1998) 67 (3)
Fordham Law Review025

Madison, Michael J., “Legal Implications of OpentBce Software” (2001Wniversity of
lllinois Law Review241

Madison, Michael J., “Reconstructing the Softwaieehse” (2003) 33.oyola University
Chicago Law Journa275

Maier, Gregory J., “Software Protection—IntegratiRgtent, Copyright and Trade Secret
Law” (1987) 69Journal of Patent and Trademark Office SociEdi

Ronald J. Mann, “Do Patents Facilitate Financinghe Software Industry?” (2005) 83 (4)
Texas Law Revie@61

Macnelil, I.R., “The Many Futures of Contracts” (B974) 47South California Law Review
692

Macnelil, I.R., “Restatement (Second) of Contracid Bresentiation” (1974) 60 (¥)jrginia
Law Reviewb89

Macnelil, I.R., “Contracts: Adjustment of Long-Tefatonomic Relations under Classical,
Neoclassical and Relational Contract Law” (1978)N&2thwestern University Law Review
854

Macneil, I.R.,The New Social Contract—An Inquiry into Modern Cactual Relations
(New Haven and London: Yale University Press, 1980)

Macneil, I.R., “Economic Analysis of Contractuall&ens: Its Shortfalls and the Need for a
Rich ‘Classificatory Apparatus’ ”, (1981) 75 Northstern University Law Review 1018

Macneil, I.R., “Bureaucracy and Contracts of Adbesi(1984) 220sgoode Hall Law
Journal5

Macnelil, I.R., “Relational Contract: What We Do abBd not Know” (1985) 3Wisconsin
Law Review483

Macneil, I.R., “Exchange Revisited: Individual litifl and Social Solidarity” (1986) 96 (3)
Ethics567

Macneil, I.R., “Contracting Worlds and Essentialn@act Theory” (2000) $ocial and
Legal Studieg31

Macnelil, I.R., “Reflection on Relational Contradidory after a Neo-classical Seminar”, in
Implicit Dimensions of Contract—Discrete, Relatihpnand Network Contractseds. By
David Campbell, Hugh Collins and John Wightman @edfand Portland, Oregon: Hart
Publishing, 2003)

Marrella, Fabrizio & Yoo, Christopher S., “Is OpeéBource Software the New Lex
Mercatoria?” (2007) 47 (4Yirginia Journal of International Law

McGowan, David, “Legal Implications of Open-Sour&eftware” (2001)University of
lllinois Law Review241

251

McLaughlin, Nancy A., “Rethinking the Perpetual Me of Conservation Easements”,
(2005) 29Harvard Environmental Law Revief21

Merges, Robert, “The End of Friction? Property Réghnd Contract in the ‘Newtonian’
World of On-line Commerce (1997) Berkeley Technology Law JourrEl5

Merges, Robert, “Software and Patent Scope: A Rdpam the Middle Innings” (2007) 85
Texas Law Revieh627

Merges, Robert, “The Concept of Property in theitalgera” [2008] 45 (4)Houston Law
Reviewl239

Merrill, Thomas W. and Smith, Henry E., “The Prag#&Zontract Interface”, (2001) 101 (4)
Columbia Law Review73

Miller, Arthur, “Copyright Protection for ComputdPrograms, Databases, and Computer-
Generated Works: Is Anything New Since CONTU” (1p9B86Harvard Law Reviev@77

Moglen, Eben, “Anarchism Triumphant: Free Softwangl the Death of Copyright”, (1999)
4 (8) First Monday at <http://www.firstmonday.org/issues/issue4_8jtan/>

Moglen, EbenThe dotCommunist Manifestdanuary 2003,
<http://emoglen.law.columbia.edu/publications/ddmlk

Moglen, Eben, “Freeing the Mind: Free Software @ahé Death of Proprietary Culture”, 29
June 2003, <http://moglen.law.columbia.edu/pubilicet/maine-speech.html>

Mouzas, Stefanos and Furmston, Michael “From Ceabtia Umbrella Agreement” (2008)
67(1)Cambridge Law Journad7

Mulcahy, Linda, and Andrews, Cathy, “Baird Textifoldings v Marks & Spencer PIc” in
Feminist Judgements—From Theory to Pracf©&ford and Portland, Oregon: Hart, 2010)

Nadan, Christian H., “Open Source Licensing: ViarsVirtue?” [2002] Texas Intellectual
Property Law JournaB49

Narodick, Benjamin I., “Smothered by Judicial Lowow Jacobsen v. KatzeZould Bring
Open Source Software Development to a Stands#ilQ) 16Boston University Journal of
Science and Technology L&64

Netscape, “Netscape Announces Plans to Make Nexexagon Communicator Source
Code Available Free on the Net” 1998 at
<http://wp.netscape.com/newsref/pr/newsrelease&8B:h

Nimmer, Raymond T., “Breaking Barrier: The Relasbip between Contract and
Intellectual Property Law”, (1998) 1Berkeley Technology Law Jourrta7

Nimmer, David, Brown, Elliot and Frischling, Gary.,,NThe Metamorphosis of Contract
into Expand”, (1999) 87 (IGalifornia Law Reviewl7

O'Reilly, Tim, “Lessons from Open-Source Softwaresv@lopment”, (1999) 42 (4)
Communications of the ACBB

252

O'Reilly, Tim, “The Open Source Paradigm Shift”, @pen Sources 2.0,edited by Chris
DiBona, Danese Cooper, and Mark Stone (SebastGpolQO’Reilly, 2006)

Passmore, JohnMan’'s Responsibility for Nature—Ecological Probleragd Western
Traditions(London: Duckworth, 1974)

Patterson, Chip, “Copyright Misuse and Modified ¢eft: New Solutions to the Challenges
of Internet Standardization”, (2000) 88chigan Law Review351

Perens, Bruce, “Open Source Definition” @pen Sources: Voices from the Open Source
Revolutioneds. by Chris DiBona, Sam Ockman & Mark Stone &Stipol, O'Reilly &
Associates, 1999)

Pila, Justine, “Dispute over the Meaning of ‘Invent in Art. 52(2) EPC—The Patentability
of Computer-Implemented Inventions in Europe” (2086 IIC (2) 173

Pila, Justine, “Software Patents, Separation oféPeyand Failed Syllogisms: A Cornucopia
from the Enlarged Board of Appeal of the Europeatef Office, (20100xford Legal
Research Paper SerieBaper No 48/2010

Posner, Eric, ProCD v Zeidenbergand Cognitive Overload in Contractual Bargaining”
(2010) 77The University of Chicago Law Reviéi81

Post, Deborah W., “Dismantling Democracy: Commonsgeand the Contract Jurisprudence
of Frank Easterbrook”, (2000) Te®uro Law Revievt205

Puckette, Miller, “Who Owns Our Software—A Firstrpen Case Study’2004 ISEA
Online Proceedingsavailable at <http://crca.ucsd.edu/~msp/Publicetfisea-reprint.pdf>

Radin, Margaret Jane, “Humans, Computers, and Bin@ommitment” (1999) 7tdiana
Law Journall125

Radin, Margaret Jane, “Boilerplate Today, The Ri$eModularity and the Waning of
Consent” (2006)10&Michigan Law Review 223

Raymond, Eric (editor), The New Hacker's Dictionary(or “Jargon File”) at
<http://www.catb.org/~esr/jargon/html/H/hacker.r#ml

Raymond, Eric,The Magic Cauldron1999 at <http://www.catb.org/~esr/writings/magic-
cauldron/>

Raymond, Eric, The Cathedral and the Bazaar 2000, version 3.0 at
<http://www.catb.org/~esr/writings/cathedral-bazeathedral-bazaar/>

Raymond, EricHow to Become a Hacke2001, at <http://www.catb.org/~esr/fags/hacker-
howto.html>

Raymond, Eric, Homesteading the Noosphere 2002 at
<http://www.catb.org/~esr/writings/homesteading/lesteading/>

Raymond, Eric and Raymond, Catherine Olanigbensing HOWTQ9 November 2002, at
<http://catb.org/~esr/Licensing-HOWTO.html>

253

Rose, Mark,Authors and Owners—The Invention of Copyrigt@ambridge, Mass. &
London: Harvard University Press, 1993)

Rosen, LawrenceQpen Source Licensing—Software Freedom and InteliedProperty
Law, (Upper Saddle River, NJ: Prentice Hall PTR, 2005)

Rowland, Dane and Campbell, Andrew, “Supply of ®afe: Copyright and Contract
Issues” (2002) 10 (Ipternational Journal of law and Information Techogy 23

Rychlicki, Tomasz, “GPLv3: New Software Licence aNew Axiology of Intellectual
Property Law” (2008) 30 (&ruropean Intellectual Property Revi&t82

Samuelson, Pamela, Davis, Randall, Kapor, MitcBe]l Reichman, J. H., “A Manifesto
concerning the Legal Protection of Computer Progfanil994) 94 (8)Columbia Law
Review2308

Samuelson, Pamela, “The Quest for Enabling Metapliar Law and Lawyering in the
Information Age” (1996) 94 (6Wlichigan Law Reviev2029

Saunders, Davidiuthorship and Copyrigh{London: Routledge, 1992)

Schwarzenbach, Sibyl, “Locke’s Two Conceptions afferty” (1988) 14 (25ocial Theory
and Practicel41

Sennett, Richardlhe CraftsmariNew Haven & London: Yale University Press, 2008)

Shankland, Stephen, “Defender of the GPL”, CNET Bleam, 19 January 2006 at
<http://news.cnet.com/Defender-of-the-GPL/2008-1382028495.htmI>

Shemtov, Noam, “The Characteristics of Technicahr@bter and the Ongoing Saga in the
EPO and the English Courts” (2009) 409urnal of Intellectual Property Law & Practice
506

Shemtov, Noam, “Software Patents and Open Sourcgeldn Europe: Does the FOSS
Community Need to Worry about Current Attitudeshet EPO?” (2010) 2 (2nternational
Free and Open Source Software Law Revigly

Shils, Edward, “Henry Sumner Maine in the Traditiminthe Analysis of Society”, ifThe
Victorian Achievement of Sir Henry Maine: A CentaehrReappraisal ed. By Alan
Diamond (Cambridge: CUP, 2001)

Shindler, Andrew, “Derogation from Grant in Copyrig.aw” (1986) 49 (4Modern Law
Reviews13

Slawson, David, W., “Standard Form Contracts andan@eratic Control of Lawmaking
Power” (1971) 84 (3Harvard Law Revievb29

Smith, RogerProperty Law(Essex, England: Pearson Education Limited, 2008Edition)

Software Freedom Law Center, “Originality Requireseunder U.S. and E.U. Copyright
Law”, 27 September 2007, at <http://www.softwareftem.org/resources/2007/originality-
requirements.html>

254

Software Freedom Law Center (Richard Fontana &t. A&lLegal Issues Primer for Open
Source and Free Software Projects 3 March 2008, at
<http://www.softwarefreedom.org/resources/2008Amsmer.html>

Stallman, Richard, “Initial Announcement”, 1983, ahttp://www.gnu.org/gnu/initial-
announcement.html>

Stallman, RichardThe GNU Manifestal 985, at <http://www.gnu.org/gnu/manifesto.htmi>

Stallman, Richard, “GNU Emacs availability infornaet”’, 3 July 1985 at
<http://mirror.libre.fm/MIT/gnu/emacs-16.56/etc/DIRIB>

Stallman, Richard, “Why Software Should Be Fre®91, at
<http://www.gnu.org/philosophy/shouldbefree.html>

Stallman, Richard, “Why Software Should Not Have r@ws”, 1994, at
<http://www.gnu.org/philosophy/why-free.html|>

Stallman, Richard, “The Free Software Definition”, 1996, at
<http://www.gnu.org/philosophy/free-sw.html>

Stallman, Richard, “Patent Reform Is Not Enough”, 994, at
<http://www.gnu.org/philosophy/patent-reform-is-+estough.html>

Stallman, Richard, “The GNU Operating System amdRtee Software Movement” @pen
Sources: Voices from the Open Source Revolwis by Chris DiBona, Sam Ockman &
Mark Stone (Sebastopol, O'Reilly & Associates, 1999

Stallman, Richard, “Why We Must Fight UCITA”, 31nlaary 2000 at
<http://w2.eff.org/IP/UCITA_UCC2B/20000131_fight_itec_stallman_paper.html>

Stallman, Richard, “Software Patents—Obstacles dtiware Development”, script of a
speech delivered at the University of Cambridge Qater Lab, 25 March 2002, at
<http://www.cl.cam.ac.uk/~mgk25/stallman-patentslht

Stallman, Richard, “On Hacking”, 2002, at <httgalknan.org/articles/on-hacking.html|>

Stallman, Richard, “Fighting Software Patents—Singhnd Together”, 2004, at
<http://www.gnu.org/philosophy/fighting-softwaretpats.html>

Stallman, Richard, “The Dangers of Software Pate@#% May 2004, a talk delivered at the
University of Dublin, Trinity College, organised blyish Free Software Organisation,
transcript by Glenn Strong, Malcolm Tyrrell, Aiddbelaney and Ciaran O'Riordan at
<http://www.ifso.ie/documents/rms-2004-05-24.html|>

Stallman, Richard, “Did You Say ‘Intellectual Proge? It's a Seductive Mirage”, 2004 at
<http://www.gnu.org/philosophy/not-ipr.htmI>

Stallman, Richard, “Why ‘Free Software’ is Bettdnah ‘Open Source’?” 2005 at
<http://www.gnu.org/philosophy/free-software-foeédom.html>

Stallman, RichardNU Emacs ManugBoston, MA: Free Software Foundation, 2010" 16
Edition)

255

Stallman, Richard, “What's in a Name?” at <httpwAw.gnu.org/gnu/why-gnu-linux.html>

Stokes, Simon, “The Development of UK Software Gapyt Law: from John Richardson
Computers to Navitaire” (2005) 11 (@pmputer and Telecommunications Law Reig®

Tapscott, Don and Williams, Anthony Vikinomics(London: Portfolio, 2006)

Titmuss, Richard M.The Gift Relationship—From Human Blood to Socididyo eds. by
Ann Oakley and John Ashton, (NY: The New Press/i@®iginally published in 1970)

Torvalds, Linus, “What Make Hackers Tick? a.k.anus’s Law” as the prologue fbhe
Hacker Ethic and the Spirit of the Information Ad®yy Pekka Himanen, (NY: Random
House, 2001)

Treitel, GuenterThe Law of Contac{London: Sweet and Maxwell, 2003, 11th Edition)
Tushnet, Rebecca, “Naming Rights: Attribution arsiv’ (2007) 3Utah Law Review 81

Vaidhyanathan, Siva, “The Anarchist in the Coffesubke: A Brief Consideration of Local
Culture, The Free Culture Movement, and Prospecta {Global Public Sphere”, (2007) 70
(2) Law and Contemporary Probler285

Wacha, Jason B., “Taking the Case: Is the GPL Epftle” (2005) 21Santa Clara
Computer and High Technology Law Jourdall

Wagner, R. Polk “Information Wants to Be Free—I@eual Property and the Mythologies
of Control, (2003) 102 Columbia Law Review 995, Imellectual Property: Critical
Concepts in Lapedited by David Vaver (Oxford: Routledge, 2006)

Wayner, PeterFree for All—How Linux and the Free Software Movetmgndercut the
High-Tech Titans (HarperBusiness, 2000) also available at
<http://www jus.uio.no/sisu/free_for_all.peter_wayt»

Weber, SteveriThe Success of Open Sou(€ambridge, Mass.: Harvard Uni. Press, 2004)

Williams, Sam, Free as in Freedom--Richard Stallman's Crusade Foee Software
O’Reily, 2002 at <http://www.oreilly.com/openboaigédom/>

Wightman, John, “Beyond Custom: Contract, Contegts] the Recognition of Implicit
Understandings”, in Implicit Dimensions of ContradDiscrete, Relational, and Network
Contracts, eds. By David Campbell, Hugh Collins dadn Wightman (Oxford and Portland,
Oregon: Hart Publishing, 2003)

Whitford, William C., “lan Macneil’'s Contribution ot Contracts Scholarship”, (1985)
Wisconsin Law Revie®45

Woodmansee, Martha, “The Genius and CopyrightThe Author, Art, and the Market—
Reading the History of Aesthetig®Y: Columbia University Press, 1994) originally
published in (1984)17 Eighteenth-Century StudieS, 4R2led “The Genius and Copyright:
Economic and Legal Conditions of the EmergencéefAuthor™

Woodmansee, Martha, “On the Author Effect: RecaowgiCollectivity” (1992) 10Cardozo
Arts and Entertainment Law Journ2r9

256

Zimmerman, Diane Leenheer, “Authorship without Oveidp: Reconsideration Incentives
in a Digital Age” (2003) 5DePaul Law Review121

257

Appendix (A): Development of “Intellectual Property” and FOSS: A Timeline

~

1”4

—

Copyright Patent Trademark | Miscellaneous

1972 Gottschalk v. Benson

(US SC)
1973 European Patent
Convention
1978 | US CONTU
recommendation
1980 | US Congress
amended its
Copyright Act to
expressly cover
software
1981 Diamond v. Diehr
(US SC)

1983 Emacs disputé
between Stallmat
and Gosling

1984 Steven Lewy
documented the
Hacker Ethic

1985 Emacs GPL (firs
copyleft licence)

1986 | Whelan v. Jaslov

(3“Cir)

1987 Vicom/Computer-

related invention
(EPO)
1988 | UK CDPA

(expressly

recognising

copyright

subsistence in

“software”)

1989 -Stallman’s Anti
Lotus Litigation
Protest
-GPL 1.0

1990 | Lotus v. Paperback

(first Lotus case)
1991 | EU Software
Directive
1992 | Computer GPL 2.0
Associates v. Altai
(2™ Cir.)
1996 | *ProCD v.
Zeidenberg 7" Cir.)
1998 State Street Bank Open Source
Signature Financia Initiative (OSsI)
Group (CAFC) founded

258

2001 Planetary
Motion V.
Techsplosion
2002 PBS
Partnership/Pension
Benefit SysteitEPO)
2004 Hitachi/Auction
Method(EPO)
2006 Microsoft/Clipboard Open Source As
Form 1&ll (EPO) Prior Art (OSAPA)
launched
2007 Aerotel Ltd. v. Telcg GPL 3.0
Holdings Ltd. (UK
CA)
2008 | Jacobsen v. KatzerBilski v. Kappor
(CAFC) (CAFC)
2010 Bilski v. Kappor(US
SC)

(*Author’s Note: TheProCD case is not purely a copyright case. More impditait deals
with an intersectional area covering both copyrightl contract. See Chapter 4 of this
dissertation for a more detailed analysis.)

259

Appendix (B): GNU Emacs General Public License (1989
originally published in 1985,clarified 11 Februat@88*

The license agreements of most software compareep kou at the mercy of those

companies. By contrast, our general public licéegatended to give everyone the right to

share GNU Emacs. To make sure that you get thésrigh want you to have, we need to
make restrictions that forbid anyone to deny yaséhrights or to ask you to surrender the
rights. Hence this license agreement.

Specifically, we want to make sure that you haweright to give away copies of Emacs,
that you receive source code or else can getyiufwant it, that you can change Emacs or
use pieces of it in new free programs, and thatkymw you can do these things.

To make sure that everyone has such rights, we toafeebid you to deprive anyone else of
these rights. For example, if you distribute comie&macs, you must give the recipients all
the rights that you have. You must make sure they,ttoo, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certhiat everyone finds out that there is no

warranty for GNU Emacs. If Emacs is modified by some else and passed on, we want its
recipients to know that what they have is not wivat distributed, so that any problems

introduced by others will not reflect on our repiaa.

Therefore we (Richard Stallman and the Free So&wdoundation, Inc.): make the
following terms which say what you must do to bwakd to distribute or change GNU
Emacs.

Copying Policies 1. You may copy and distributebatim copies of GNU Emacs source
code as you receive it, in any medium, provided ytwa conspicuously and appropriately
publish on each file a valid copyright notice "Cadgit 1988 Free Software Foundation,
Inc."” (or with whatever year is appropriate); kestact the notices on all files that refer to
this License Agreement and to the absence of amsanty; and give any other recipients of
the GNU Emacs program a copy of this License Agesdnalong with the program. You
may charge a distribution fee for the physicaladtansferring a copy.

2. You may modify your copy or copies of GNU Emaosirce code or any portion of it, and
copy and distribute such modifications under thiengeof Paragraph 1 above, provided that
you also do the following:

- cause the modified files to carry prominent registating who last changed such files and
the date of any change; and

- cause the whole of any work that you distribut@ublish, that in whole or in part contains

or is a derivative of GNU Emacs or any part therémfbe licensed at no charge to all third
parties on terms identical to those contained ig ltitense Agreement (except that you may
choose to grant more extensive warranty protediiosome or all third parties, at your

option).

- if the modified program serves as a text editanise it, when started running in the
simplest and usual way, to print an announcemedudmg a valid copyright notice
"Copyright 1988 Free Software Foundation, Inc.F @ith the year that is appropriate),
saying that there is no warranty (or else, sayivaj you provide a warranty) and that users

260

may redistribute the program under these conditiand telling the user how to view a copy
of this License Agreement.

- You may charge a distribution fee for the phylsaa of transfer ring a copy, and you may
at your option offer warranty protection in excharigr a fee.

Mere aggregation of another unrelated program with program (or its derivative) on a
volume of a storage or distribution medium doeshmiotg the other program under the scope
of these terms.

3. You may copy and distribute GNU Emacs (or a iportor derivative of it, under
Paragraph 2) in object code or executable form utiaeterms of Paragraphs 1 and 2 above
provided that you also do one of the following:

- accompany it with the complete corresponding rimecheadable source code, which must
be distributed under the terms of Paragraphs Ralmbve; or,

- accompany it with a written offer, valid for &alst three years, to give any third party free
(except for a nominal shipping charge) a completachine-readable copy of the
corresponding source code, to be distributed utideterms of Paragraphs 1 and 2 above; or,

- accompany it with the information you received@svhere the corresponding source code
may be obtained. (This alternative is allowed dolynon commercial distribution and only
if you received the program in object code or exeule form alone.)

For an executable file, complete source code malrbhe source code for all modules it
contains; but, as a special exception, it neednuttide source code for modules which are
standard libraries that accompany the operatinggsysn which the executable file runs.

4. You may not copy, sub license, distribute ondgfar GNU Emacs except as expressly
provided under this License Agreement. Any atteroffterwise to copy, sub license,

distribute or transfer GNU Emacs is void and yaghts to use GNU Emacs under this
License agreement shall be automatically terminatkxvever, parties who have received
computer software programs from you with this LeerAgreement will not have their

licenses terminated so long as such parties remdil compliance.

5. If you wish to incorporate parts of GNU Emacdoirother free programs whose
distribution conditions are different, write to tReee Software Foundation. We have not yet
worked out a simple rule that can be stated harewe will often permit this. We will be
guided by the two goals of preserving the freeustatf all derivatives of our free software
and of promoting the sharing and reuse of software.

Your comments and suggestions about our licensfigigs and our software are welcome!
Please contact the Free Software Foundation,8i@&. Mass Ave, Cambridge, MA 02139.

NO WARRANTY

BECAUSE GNU EMACS IS LICENSED FREE OF CHARGE, WE ®GYRDE
ABSOLUTELY NO WARRANTY, TO THE EXTENT PERMITTED BYAPPLICABLE
STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING,FREE
SOFTWARE FOUNDATION, INC, RICHARD M. STALLMAN AND/@R OTHER
PARTIES PROVIDE GNU EMACS "AS IS" WITHOUT WARRANTYOF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS BR A

261

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THENU EMACS
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF AINECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILLFREE SOFTWARE
FOUNDATION, INC., RICHARD M. STALLMAN, AND/OR ANY OTHER PARTY
WHO MAY MODIFY AND REDISTRIBUTE GNU EMACS AS PERMITED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PB®FITS, LOST
MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUEMNAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OFHE PROGRAM TO
OPERATE WITH PROGRAMS NOT DISTRIBUTED BY FREE SOFARE
FOUNDATION, INC.) THE PROGRAM, EVEN IF YOU HAVE BER ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM B ANY OTHER
PARTY.

(**Author’s Note: This is the very first copyleficence written by Stallman as his response

to the dispute with Gosling over a version of Emadisor from 1983 to 1985. It is followed
by the three generic versions of GNU General Pubtiense respectively published in 1989,

1992 and 2007. For the history of the GPL, see @nsj2 and 3 of this dissertation for more

detail.)

262

