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Abstract

No two crises are identical. As we learn from them, they evolve and change. 

This thesis is an attempt to understand some of their features. We discuss the 

abandonment of a peg (Chapter 2 ), full disruption of payments (Chapter 3) and 

illiquidity in one-sided markets (Chapter 4).

Chapter 2 investigates the consequences of introducing uncertainty about the 

willingness of a central bank to defend the peg in an economy in which a gov­

ernment runs a persistent deficit. We analyze how not knowing when other 

arbitrageurs intend to attack a currency affects investors’ decision to attack. 

Specifically, we show how the lack of common knowledge induces arbitrageurs 

to delay their attack on the currency, which in turn leads to a discrete devaluation 

of the exchange rate as it is generally observed during currency crises.

In Chapter 3 we examine how financial integration of payment systems creates 

a feedback channel which might threaten the stability of financial markets. In 

payment systems, banks rely heavily on incoming transfers to finance outgoing 

payments requiring a high degree of coordination and synchronization. We 

study the response of the payment system to disruptions in payments and to 

changes in the precautionary demand for liquid balances targeted by the different 

institutions in a payment system. This work aims to shed light on the recent 

events in credit markets.

The analysis of liquidity in one-sided markets is the focus of Chapter 4. When a 

market is in distress, liquidity typically vanishes playing a key role in the build­

up of one-sided markets. We present an alternative view of market liquidity 

which results from a tradeoff between market externalities and a congestion 

effect. When congestion is the dominating effect, as during fire sales, diminishing 

market frictions can deteriorate liquidity and reduce welfare. Our results provide 

a rationale for circuit breakers.
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CHAPTER 1

Introduction

F i n a n c i a l  c r is e s  are not a new phenomenon. Historically, they have emerged under a 

broad variety of financial systems with dissimilar monetary and regulatory regimes. Promi­

nent episodes include the 1720 crisis following the South Sea and Mississippi bubbles1, the 

1763 crisis, the 1928-1933 episode in the US, and more recently, the Scandinavian crises of 

the early 1990’s, the Asian crisis of 1997, the 1998 Russian crisis and the LTCM episode, 

the 2001-02 Argentinean crisis and even the current turmoil in financial markets2.

The devastating effects of financial crises3 have long attracted the interest of academics

*A review on the literature on bubbles can be found in Brunnermeier (2008a).
2See Kindleberger and Aliber (2005) and Visano (2006). For an account of the 1763 crisis, see 

Schnabel and Shin (2004).
3Bordo et al. (2001) analyzes the costs and frequency of financial crises. See also Boyd et al. (2005).
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and policymakers aiming to extract some helpful lessons for future episodes. However, no 

two crises are identical and as we learn from them, crises evolve and change. As Alan 

Greenspan puts it in a recent article in the Financial Times4:

In the current crisis, as in past crises, we can learn much, and policy in the 

future will be informed by these lessons. But we cannot hope to anticipate the 

specifics of future crises with any degree of confidence.

This constitutes a great challenge for economists seeking an explanation of the onset 

of financial crises and a considerable disappointment for those aiming to completely avoid 

them. Traditionally, different theories have highlighted various, sometimes complementary, 

mechanisms to explain the build-up and contagion of crises. However, in practice, financial 

crises are very complex phenomena5. This thesis presents a theoretical approach to different 

financial crises in an attempt to better understand some of their distinctive features. We 

analyze the abandonment of a peg in Chapter 2 , full disruption of payments in a payment 

system (Chapter 3) and, in Chapter 4, the role of liquidity in asset market crashes (and 

booms).

Chapter 2 focuses on a currency crisis in an economy with a fixed exchange rate and 

inconsistent government macroeconomic policies that deplete the central bank foreign re­

serves. Traditional first-generation models of currency crises assume investors are perfectly 

informed about macroeconomic fundamentals and hence the transition from a fixed to a 

floating exchange rate occurs without jumps in the exchange rate. The original model is due 

to Krugman (1979). These models conclude the attack on the currency is accurately pre­

dictable and thus implies zero devaluation. However, in practice, large discrete devaluations

4'We W ill Never Have a Perfect Model of Risk’ by Alan Greenspan, Financial Times, 16 March 2008 
(Greenspan (2008)).

5Allen and Gale (2007) presents an excellent discussion of theories of financial crises.
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are observed during currency crises.

We investigate the consequences of introducing uncertainty about the willingness of a 

central bank to defend the peg in an economy in which a government runs a persistent 

deficit. The main idea relies on the assumption that even if arbitrageurs could precisely 

know the underlying value of the currency (the shadow price), they would not want to share 

this information with other investors. We analyze how not knowing when other arbitrageurs 

intend to attack a currency affects investors' decision to attack. Specifically, we show how 

the lack of common knowledge induces arbitrageurs to delay their attack on the currency. 

Not knowing what others know gives arbitrageurs incentives to hold this currency for some 

time instead of selling it immediately as soon as they realized it is overvalued. They prefer 

to invest in this currency because it is overvalued, but they would not want to hold it for too 

long and suffer the capital loss associated with the devaluation of the currency. Arbitrageurs 

optimally prefer to ride "the bubble” for a while, in Abreu and Brunnermeier (2003)’s spirit, 

before they attack the currency. Delaying the attack leads to a discrete devaluation of the 

exchange rate as it is generally observed during currency crises.

Chapter 3 is motivated by the recent events in credit markets6 and aims to address the 

question of what would be the consequences to the payment system if one (or few) bank(s) 

would target more conservative balances. We would like to understand what could happen 

if one bank were to increase its precautionary demand for liquid balances to conserve cash 

holdings because some conduits, SIVs or other off-balance sheet vehicles that this bank is 

sponsoring have drawn on some credit lines.

In the U.S. reserve banking system, banks in aggregate make payments that exceed by 

a factor of more than 100 their deposits at the Federal Reserve Banks. To achieve such

6Greenlaw et al. (2008) reviews the key credit market events since August 2007 and highlights their 
main policy implications. Also, Fender and Hordahl (2007) presents an overview of the key events over the 
period from end-May to end-August 2007.
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velocities, a high degree of coordination is required. We examine how financial integration 

of payment systems creates a feedback channel which might threaten the stability of finan­

cial markets. The events of September 11, 2001, highlighted how vulnerable the financial 

system is to disruptions to its payment system7. Those disruptions damaged the ability 

of some financial institutions to execute payments and as a result other entities received 

fewer payments than expected. Lesser incoming funds impaired their capacity to send out 

payments causing unexpected shortfalls and liquidity shortages across the entire financial 

system.

In a payment system, where banks rely heavily on incoming funds to finance outgoing 

payments, if a bank were to target a more conservative balance, it would then alter the 

value of payments this bank sends relative to the payments it receives. But changes in 

outgoing transfers will affect incoming funds and incoming funds changes will then affect 

outgoing transfers. We use lattice-theoretic methods to solve for the unique fixed point 

of an equilibrium mapping and conduct comparative statics analysis on changes to the 

environment. To study the response of the payment system to disruptions in payments and 

to changes in the precautionary demand for liquidity, we present simulations of a stylized 

payment system reminiscent of the U.S. Fedwire payment system. We find that changes 

towards more liquid balances induce an enormous increase in the use of intraday credit 

provided by the Federal Reserve Banks and, ultimately, full disruption of payments.

Chapter 4 considers dramatic collapses in asset prices when liquidity is scarce. When a 

market is in distress, liquidity typically vanishes playing a key role in the build-up of one­

sided markets. In Chapter 4 we focus on the study of liquidity in one-sided markets to 

better understand the response of financial systems to the threat of market disruptions such

7McAndrews and Potter (2002) gives a detailed account of the consequences of the September 11, 2001, 
events to the US payment system.
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as the 1998 LTCM crisis8, the September 11, 2001, events9 and the recent credit market 

turmoil10.

In financial markets, we typically think of liquidity as a coordination phenomenon. In­

vestors moving into a market facilitate trade for all investors by reducing the cost of par­

ticipating in this market. Lower trading costs then attract potential investors. As a result, 

a market externality is created in which new investors provide market liquidity and market 

liquidity attracts new investors. However, if investors preferred to concentrate on the same 

side of the market, trade would become more difficult, decreasing the returns to participat­

ing in this market. Lower returns would discourage new investors from entering this market. 

A negative externality arises. Consider, for instance, a fire sale where investors wish to sell 

their holdings of an asset. The sell-side of the market for this asset is “congested” and as it 

gets congested potential buyers may prefer to invest in other markets, making it even more 

difficult for the sellers to exit this market. The arrival of investors to the congested side of 

a market "repels” new investors.

We present an alternative view of market liquidity, in which liquidity results from a 

tradeoff between two effects: the well-known market externality and a congestion effect. 

When congestion is the dominating effect, for example during fire sales, diminishing market 

frictions can deteriorate liquidity and reduce welfare. This might seem counterintuitive but 

it is a very interesting result. It states that fewer frictions in a distressed market can make 

the market less liquid and investors worse-off. Or equivalently, a policy intended not to 

deteriorate liquidity or welfare but to enhance it would have to increase frictions in this 

market, at least temporarily. An example of such policy would be a “circuit breaker” 11

8For an analysis of the events surrounding the market turbulence in autumn 1998, see BIS (1999) and 
IM F (1998).

9Cohen and Remolona (2001) presents a summary of the September 11, 2001 episode in global financial 
markets.

10See Brunnermeier (2008b).
n A circuit breaker is a pause in trading at predetermined thresholds during a severe market decline. It is
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which could halt trading if market declines beyond trigger levels. Our results thus provide a 

rationale for circuit breaker trading halts.
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CHAPTER 2

Imperfect Common Knowledge in First-Generation Models of 

Currency Crises

F i r s t - g e n e r a t i o n  m o d e l s  assume the level of reserves of a central 

bank is common knowledge among arbitrageurs, and therefore the timing 

of the attack on the currency can be correctly anticipated. The collapse 

of the peg thus leads to no discrete change in the exchange rate. We relax 

the assumption of perfect information and introduce uncertainty about the 

willingness of a central bank to defend the peg. In this new setting, there 

is a unique equilibrium at which the fixed exchange rate is abandoned. 

The lack of common knowledge will lead to a discrete devaluation once 

the peg finally collapses.
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2.1 Introduction

Traditionally, exchange rates have been explained by macroeconomic fundamentals. How­

ever, there seem to be significant deviations from them. The need to understand these un­

explained movements has drawn attention on the basic assumptions of the standard models, 

such as the homogeneity of market consumers or the irrelevance of private information.

First-generation models of currency crises assume that consumers are perfectly informed 

about macroeconomic fundamentals. The original model is due to Krugman (1979), who 

drew on the work of Salant and Henderson (1978) on the study of attacks on a government- 

controlled price of gold1. Krugman (1979) presents an economy in which the level of the 

central bank’s foreign reserves is common knowledge among consumers. In this setting, 

market participants not only know the level of reserves, but also, that the other agents 

know it too. There is perfect transmission of information and speculators can precisely 

coordinate the attack on the currency. The model concludes that the attack is therefore 

accurately predictable and implies zero devaluation. However, during currency crises, large 

discrete devaluations are normally observed.

In this paper, we incorporate the information structure presented in Abreu and Brunner­

meier (2003)2 to introduce uncertainty about the willingness of the central bank to defend 

the peg in first-generation models of currency crises. The application of Abreu and Brun- 

nermeier's dynamic model to currency crises presents several advantages over the original 

setting. Firstly, it provides a reasonable explanation for the assumption that the asset's 

market price remains constant until the time when the bubble bursts. In our setting, the

1For a review on the currency crises literature see Flood and Marion (1999).
2Abreu and Brunnermeier (2003) consider an economy in which arbitrageurs learn sequentially, but in 

random order, that the market price has departed from fundamentals. They assumed this information 
structure to argue the existence and persistence of asset bubbles despite the presence of rational agents in 
the economy.
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exchange rate does remain invariable until the peg collapses and the cumulative selling 

pressure will not affect the fixed exchange rate until it exceeds a certain threshold and the 

central bank can no longer maintain the peg. Secondly, it gives a sound interpretation to 

the exogenous price paths, which in our model can be intuitively identified with the fixed 

exchange rate. Thirdly, in Abreu and Brunnermeier's model it is necessary to introduce a 

final condition which guarantees the burst of the asset bubble even if no arbitrageur sells his 

shares. In our model, the central bank will be ultimately forced to abandon the peg when 

the foreign reserves are exhausted (even if no speculator attacks the currency).

We consider an economy with a fixed exchange rate regime and a persistent deficit that 

reduces the central bank's reserves. In this setting, we suppose a continuum of arbitrageurs 

who, one by one, cannot affect the exchange rate. They can choose between local and 

foreign currency. We assume that holding local currency generates higher returns, although 

there is a risk of devaluation. Arbitrageurs take their investment decisions by evaluating 

the trade off between these higher profits and the fear of capital losses. At some random 

time, they become sequentially aware that the shadow price3 has exceeded the peg, and 

they have to decide between canceling and maintaining their positions. Arbitrageurs notice 

the mispricing in random order and they do not know if other arbitrageurs are also aware of 

it. They would prefer to hold local currency for as long as possible, since it produces higher 

profits, but they would not want to wait for too long because of the capital losses caused 

by devaluation.

We suppose that arbitrageurs have financial constraints which limit their individual max­

imum positions and their impact on the exchange rate. To force the exchange rate off the 

peg, it will be necessary to coordinate the attack on the currency. They face a synchro­

nization problem and at the same time a competition dilemma: only a fraction of them

3The shadow price is the exchange rate that would prevail in the market if the peg were abandoned. 
This concept was originally developed by Flood and Garber (1984).
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can leave the market before the peg collapses, because as soon as a large enough number 

of arbitrageurs sell out local currency, the central bank will be forced to abandon the fixed 

exchange rate regime and those who, at that time, still hold local currency will suffer a 

capital loss.

We prove that there exists a unique equilibrium in which, for moderate heterogeneity 

among arbitrageurs, the peg is abandoned after enough arbitrageurs have hold overvalued 

currency for some period of time r *  since they noticed that the fixed exchange rate lies 

below the shadow price. Arbitrageurs will hold a maximum long position in local currency 

until they fear the attack is imminent. At that time, they will sell out causing the fall of the 

peg. For extreme levels of dispersion of opinion among them, the fixed exchange rate regime 

collapses when the central bank's foreign reserves are completely exhausted. In either case, 

the abandonment of the peg implies a discrete devaluation of the currency. In the former, 

we will prove that arbitrageurs optimally hold overvalued currency for some time r *  >  0  

("After becoming aware of the bubble, they [arbitrageurs]... optimally choose to ride the 

bubble over some interval.” , in Abreu and Brunnermeier’s setting). Hence, the attack will 

take place strictly after the shadow price exceeds the peg causing a jump in the exchange 

rate. In the latter, the central bank will defend the peg until the reserves are exhausted. 

This will necessary occur some time after the shadow price exceeds the peg, which will imply 

a discrete change in the exchange rate. In this paper we derive a first-generation model of 

currency crises with imperfect information, which explains the discrete jump in the exchange 

rate generally observed in the transition from a fixed to a floating exchange rate regime.

This paper is related to the recent literature on currency crises which incorporates pri­

vate information to accommodate discrete devaluations. Guimaraes (2006) introduces un­

certainty in a first-generation model by assuming that agents do not know whether they 

would be able to escape the devaluation. He argues that there is a unique equilibrium in
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which agents delay their decisions to attack the currency due to these market frictions. A 

different approach is presented in Pastine (2002). He incorporates a forward-looking rational 

policy maker that dislikes speculative attacks and it is capable of choosing the timing of the 

move to a floating exchange rate regime. Pastine (2002) shows that the monetary authority 

has an incentive to introduce uncertainty into the speculators' decisions in order to avoid 

predictable attacks on the currency. In this model, the standard perfectly predictable attack 

is replaced by an extended period of speculation which gradually places increasing pressure 

on the policy maker.

Broner (2008) relaxes the assumption of perfect information including a new type of 

investors: the uninformed consumers. The ratio between informed and uninformed con­

sumers is fixed exogenously and determines the resulting equilibria. He concludes that, if 

the fraction of informed consumers is high enough, market agents face a situation similar to 

the lack of private information. However, when the private information is high, the model 

arrives to a large set of equilibria, characterized by possible discrete devaluations, which 

differ on the informed consumers’ propensity to attack the currency. In Broner’s model, 

it is still common knowledge among informed consumers the threshold level of the central 

bank’s reserves and therefore, the exact time when the peg is attacked. In a competitive 

environment though, rational agents may not be willing to reveal what they know to other 

participants.

In independent work, Rochon (2006)4 applies Abreu and Brunnermeier’s structure to 

currency crises. She considers an economy with a fixed exchange rate regime in which a neg­

ative shock triggers a gradual depletion of the central bank’s foreign reserves. The similarities 

between Rochon (2006) and our work lie in the application of Abreu and Brunnermeier’s 

information structure to currency crises. However, our paper differs from Rochon (2006)

4I am thankful to Fernando Broner for bringing this paper to my attention at the International Economics 
seminar (London School of Economics, December 2004)



26 Imperfect Common Knowledge in First-Generation Models of Currency Crises

in several ways. We consider a different setting; we assume a first-generation model, as 

described in Krugman (1979), in which a government runs a persistent deficit which will 

gradually reduce the central bank's foreign reserves. Rochon (2006) defines a model in 

which the central bank is committed to defend the fixed exchange rate regime but it is not 

forced to finance an expansionary monetary policy. Also, we suppose that rational agents 

have imperfect information about the shadow price, while in Rochon (2006) the key vari­

able is the level of reserves. From there on, the specification and focus of the model, the 

derivation of the unique equilibrium and the timing of the attack are clearly different.

The paper is organized in the following order. Section 2.2 analyzes the Krugman model. 

We explain Abreu and Brunnermeier's model in Section 2.3. Section 2.4 illustrates the 

generalization of the traditional first-generation model of currency crises. We relax the as­

sumption of perfect information and define the new setting. Section 2.5 studies the resulting 

unique equilibrium. We derive the timing of the attack and analyze the determinants of the 

period of time r *  during which arbitrageurs optimally hold overvalued domestic currency. 

Finally, we present our conclusions in Section 2.6.

2.2 The Krugman Model

The original model of speculative attacks on fixed exchange rates is due to Krugman (1979). 

Fie considered an economy with a fixed exchange rate regime where the government runs a 

budget deficit that will gradually reduce the central bank's reserves. The model concludes 

that the peg will be abandoned before the reserves are completely exhausted. At that time, 

there will be a speculative attack that eliminates the lasting foreign exchange reserves and 

leads to the abandonment of the fixed exchange rate.
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In this model, the central bank faces two different tasks. First, it must satisfy the 

financial needs of the government and second, it has to maintain a fixed exchange rate. 

The central bank finances the deficit by issuing government debt and defends the peg 

through direct intervention in the foreign exchange rate market. In this economy, the asset 

side of the central bank's balance sheet at time t  is made up of domestic credit ( D t) and the 

value in domestic currency of the international reserves (/?t). The balance sheet’s liability 

side consists of the domestic currency in circulation, the money supply (M f) . Hence:

M st =  D t +  Rt 

The budget deficit grows at a constant rate fi ( n >  0):

Also assume that the purchasing parity holds:

where, at time t, Pt is the domestic price level, St the exchange rate of domestic currency 

for foreign, and Pt* is the foreign price level. We can fixed Pt* =  1, and therefore the 

exchange rate can be identified with the domestic price level (Pt =  St).

In this model it is supposed that money is only created through the deficit. As long as the 

central bank is committed to defend the peg, it will print money to finance the deficit. This 

will tend to raise the money supply, and hence affect the domestic prices and the exchange 

rate. Domestic prices will begin to increase bringing about an incipient depreciation of
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the currency. To maintain the exchange rate fixed, the authorities will reduce the foreign 

reserves to purchase the domestic currency and foreign reserves will fall as domestic assets 

continually rise. Ultimately, if the budget is in deficit, pegging the rate becomes impossible, 

no matter how large the initial reserves were.

However, the model concludes that the attack comes before the stock of foreign reserves 

would have been exhausted in the absence of speculation. Why? In Krugman’s model, con­

sumers can correctly anticipate the exhaustion of the reserves, they can only choose between 

domestic and foreign money and it is also supposed that foreigners do not hold domestic 

money. Then, the assumption of perfect foresight implies that speculators, anticipating an 

abandonment of the peg, will attack the exchange rate to acquire the central bank’s reserves 

and to avoid a capital loss.

To determine the timing of the crisis, we introduce the following definition.

Definition 2 .1 . (Krugman and Obstfeld (2003)) The shadow floating exchange rate or 

shadow price at time t (St)  is the exchange rate that would prevail at time t  i f  the central 

bank held no foreign reserves, allowed the currency to float but continued to allow the 

domestic credit to grow over time.

In Appendix 2.7.1 we derive an expression for the shadow floating exchange rate. To 

simplify the analysis, it is convenient to express all magnitudes in logarithms5. We present 

logarithmic versions of the previous equations and describe the monetary equilibrium by the 

Cagan equation. Then, the logarithm of shadow price is given by:

st — 7  +  p  x t

5We use the standard notation in which an upper case letter represents a variable in levels and a lower 
case one its logarithm: st =  ln (5t)- From now on, exchange rates will be expressed in logarithms. To 
simplify the reasoning we will still refer to them as fixed exchange rate and shadow price, where, to be 
precise, it should say fixed log-exchange rate and log-shadow price.
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where 7  and p  are constants and p  is the rate of growth of the budget deficit. The time of 

the attack on the currency T  is defined as the date on which the shadow price reaches the 

peg (st =  s):

In the Krugman model, the level of the central bank's foreign reserves is common knowl­

edge among consumers. Thus, the timing of the attack is accurately predictable and the 

transition from a fixed to a floating exchange rate regime occurs without discrete jumps in 

the exchange rate.

2.3 The Abreu and Brunnermeier Model

Abreu and Brunnermeier (2003) present a model in which an asset bubble can survive de­

spite the presence of rational arbitrageurs. They consider an information structure where 

rational arbitrageurs become sequentially aware that an asset's market price has departed 

from fundamentals and they do not know if other arbitrageurs have already noticed the 

mispricing. The model concludes that if the arbitrageurs’ opinions are sufficiently dispersed, 

the asset bubble bursts for exogenous reasons when it reaches its maximum size. And in the 

case of moderate levels of dispersion of opinion, Abreu and Brunnermeier (2003) prove that 

endogenous selling pressure advances the bubble collapse. They demonstrate that these 

equilibria are unique. Also, the model shows how news events can have a disproportionate 

impact on market prices, since they allow agents to synchronise their exit strategies.

This model considers two types of agents: behavioral traders (influenced by fads, fash­

ions, over-confidence...) and rational arbitrageurs. Initially the stock price pt grows at the 

risk-free interest rate r (pt =  en) and rational arbitrageurs are fully invested in the market.
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At t  =  0, the price starts growing at a faster rate g  (g  >  r). Behavioral traders believe 

that the stock price pt will grow at a rate g  in perpetuity. Hence, whenever the stock price 

falls below pt =  e**, they are willing to buy any quantity of shares (up to their aggregate 

absorption capacity hl). Then, at some random time to (exponentially distributed on [0, 

oo)), rational arbitrageurs become (in random order) sequentially aware that the price is 

too high. However, the price continues to grow at a rate g >  r  and hence, only a fraction 

(1  — /?(•)) of the price is explained by the fundamentals, where /?(•) represents the "bubble 

component” . Rational agents understand that the market will eventually collapse but still 

prefer to ride the bubble as it generates higher returns.

In Abreu and Brunnermeier’s model, the bubble collapses as soon as the cumulative sell­

ing pressure exceeds some threshold k (the absorption capacity of the behavioral traders) 

or ultimately at t =  to +  r  when it reaches its maximum size (/?). It is assumed that arbi­

trageurs, one by one, have limited impact on the price, because of the financial constraints 

they face. Consequently, large movements in prices require a coordinated attack. They 

consider that in each instant t, from t  =  to until t =  to +  7 7 , a mass of I / 7 7  arbitrageurs 

becomes aware of the mispricing, where 77 can be understood as a measure of the dispersion 

of opinion among agents concerning the timing of the bubble. Since to is random, they 

do not know how many other rational arbitrageurs have noticed the mispricing, because 

they will only become aware of the selling pressure when the bubble finally bursts. Rational 

arbitrageurs face temporal miscoordination. Then, an arbitrageur who becomes aware of 

this mispricing at time t; has the following posterior cumulative distribution for the date 

(to) on which the price departed from its fundamental value, with support [t; — 7 7 , £7]:
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Therefore, from t =  to +  r)K onwards, the mispricing is known to enough arbitrageurs 

to correct it. Nevertheless, they do not attempt to, since as soon as they coordinate, the 

selling pressure will burst the bubble. However, there is also a competitive component in 

the model: only a fraction K of the arbitrageurs will be able to sell out before the bubble 

collapses (because it bursts the moment the selling pressure surpasses /t). Thus, arbitrageurs 

have also an incentive to leave the market.

In this setting, each arbitrageur can sell all or part of her stock of shares until a certain 

limit due to some financial constraints. It is possible to buy back shares and to exit and re­

enter the market multiple times. The strategy of an agent who became aware of the bubble 

at time t,- is defined as the selling pressure at time t : cr(-, t,) =  [0, t-, +  r ]  ► [0,1]. The 

action space is normalised to be the continuum between [0 , 1 ], where 0  indicates a maximum 

long position and 1 a maximum short position. Then, the aggregate selling pressure of all 

agents at time t >  to is given by s(t, to) =  ti)dtj and therefore the bursting

time can be expressed as:

T * ( t0) =  in f{t|s (t, t0) >  k or t =  t0 T  r }

Given this information structure, arbitrageur t/'s beliefs about the date on which the 

bubble bursts are described by:

n(t0|t/) =  [ </cD(to|t,)
J T * ( to )< t

In their analysis, Abreu and Brunnermeier focus on trigger-strategies in which an agent, 

who sells out at t, continues to attack the bubble at all times thereafter. In this case, 

solving the optimisation problem of the arbitrageur who notices the bubble at time t,- and
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sells out at time t yields the following condition:

Lem m a 2 .1 . (Abreu &. Brunnermeier) (sell out condition). I f  arbitrageur t(- s subjective 

hazard rate is smaller than the 'cost-benefit ratio’, i.e.

0 { t  -  T*-»(t))

trader t\ will choose to hold the maximum long position at t. Conversely, i f  h (t\tj) >  

she will trade to the maximum short position.

where h (t\tj)  =  j 's t îe hazard rate that the bubble will burst at time t, n(t|t,-) repre­

sents the arbitrageur t/s  beliefs about the bursting date and 7 r ( t |  t/) denotes the associated 

conditional density. They conclude that an arbitrageur who becomes aware of the mispricing 

at time t,- will hold a maximum long position until his subjective hazard rate becomes larger 

than the cost-benefit ratio. That is, arbitrageur t, will ride the bubble until his subjective 

probability that the bubble will burst in the next trading round is high enough. At that time, 

arbitrageur t,- will trade to the maximum short position to get out of the market.

They consider two different scenarios. When arbitrageurs’ opinions are sufficiently dis­

persed, Abreu and Brunnermeier (2003) prove that the selling pressure does not affect the 

time when the bubble collapses, because each arbitrageur optimally rides the bubble for so 

long that, at the end of the horizon ( t  =  t0 +  t ) ,  there is not enough pressure to burst 

the bubble (less than k will have sold out). They show that there is a unique equilibrium 

at which the bubble bursts for exogenous reasons at t  — to +  r .  A different conclusion is 

reached when a moderate level of heterogeneity is assumed. In this case, they demonstrate 

that there is a unique and symmetric equilibrium in which each arbitrageur sells her shares 

r *  periods after becoming aware of the mispricing. The bubble bursts at t =  to +  tjk +  r *  

( <  t0 +  t , given small values for rj).
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The model assumes an information structure based on the lack of common knowledge 

(when an arbitrageur becomes aware of the mispricing, he does not know if others know) 

and derives that these equilibria are unique. However, in typical applications, the symmetry 

information game has multiple equilibria. Abreu and Brunnermeier (2003) argue that the 

fact that arbitrageurs are competitive (since at most a fraction of them can leave the market 

prior to the crash) leads to a unique equilibrium even under symmetric information.

2.4 Imperfect Common Knowledge

This section presents a first-generation model of currency crises in which the traditional 

assumption of perfect information is relaxed. We introduce the new setting and we derive the 

sell out condition that determines the moment when an arbitrageur fears the abandonment 

of the peg and prefers to attack the currency.

Consider an economy similar to the one described in Krugman (1979) and summarized 

in Section 2.2. In this setting, the level of the central bank’s foreign reserves is common 

knowledge among arbitrageur and therefore, the peg is attacked whenever it leads to no 

discrete change in the price level, i.e., as soon as the shadow price reaches the fixed ex­

change rate (st =  s). In our model we incorporate the information structure presented 

in Abreu and Brunnermeier (2003) (and reviewed in Section 2.3) to introduce uncertainty 

about the willingness of the central bank to defend the peg. We consider that the level of 

reserves is no longer common knowledge among arbitrageurs and in this paper we analyze 

the consequences of this uncertainty on the abandonment of the fixed exchange rate.
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2.4.1 The Model

The following process is assumed in our setting. The central bank establishes the fixed 

exchange rate at a certain level s as depicted in Figure 3.1. We denote (the logarithm of) 

the shadow price6 by st . We assume that t  is exponentially distributed on [0, oo) with 

cumulative distribution function F ( t )  =  1 — e~Xt (A >  0, t >  0). Prior to t — t, the peg 

lies above the shadow price st (s >  st) and the fixed exchange rate cannot collapse, since 

arbitrageurs would only attack the peg if it profitable for them. If before t =  t  the peg is 

abandoned, the currency would immediately revaluate to reach the shadow price (the local 

currency would worth more while arbitrageurs hold short positions in domestic currency). 

Hence, anticipating this capital loss, arbitrageurs will not attack the currency and therefore 

no speculative attack will occur before t =  t. From t =  t  onwards, the shadow price 

exceeds the fixed exchange rate (s <  st) and the peg might be attacked.

Agents and Actions

In our model, there is only one type of agent: the rational arbitrageurs. We assume a 

continuum of arbitrageurs, with mass equal to one, who one by one cannot affect the 

exchange rate because of some financial constraints which limit their maximum market 

positions. In currency crises, however, it may seem more realistic to consider that only 

a few relevant institutions actively participate in currency markets and that information 

might be clustered. This assumption would not modify the intuition of our results. In 

Brunnermeier and Morgan (2006), they prove that the equilibrium delay in such games al­

ways exceeds equilibrium delay in the game with a continuum of agents and no information 

clustering (i.e. in the Abreu and Brunnermeier model). Hence, defining a finite number of

6ln Appendix 2.7.1 we prove that the logarithm of the shadow price is a linear function of time (st =
7 +  n  x t), or equivalently, that the shadow price grows exponentially.
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S, = y +  p x t
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Figure 2.1: F ix e d  e x c h a n g e  r a t e  (s ) a n d  s h a d o w  p r ic e  (st ) - W e represent 
a fixed exchange rate regime in which the central bank finances a persistent deficit 
and maintains the exchange rate fixed at a certain level (s ). W e plot the random  

tim e t =  t, when (the logarithm o f) the shadow price (st ) reaches the peg (s).

arbitrageurs and allowing for information clustering increases the optimal waiting tim e t * , 

and therefore it delays longer the attack on the fixed exchange rate regime, causing a larger 

discrete devaluation o f the home currency.

Let us denote by arbitrageur / the agent who, at time t;, receives a signal indicating 

that the shadow price exceeds the fixed exchange rate. Arbitrageur / may take one o f two 

actions. He can hold local currency or buy foreign currency. Investing in domestic currency 

generates a return equal to r  while the foreign investment yields r * . We impose the following 

condition:

Assumption 2.1. r  >  r*

We consider that the local currency pays an interest rate r  higher than the foreign 

currency ( r  >  r* )  to  guarantee that, initially, arbitrageurs invest in domestic currency. 

Hence, in our economy, rational arbitrageurs originally prefer to  invest in domestic currency
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because of the higher profits, but they understand that the exchange rate will be attacked 

and the peg eventually abandoned. Therefore, the only decision is when to exit. Selling too 

early leads to less profitable outcomes, but if they wait too long and they do not leave the 

market before the fixed exchange rate collapses, they will incur in capital losses associated 

with the devaluation.

An individual arbitrageur is limited in the amount of currency he can buy or sell. As in 

Abreu and Brunnermeier (2003), we can normalise the action space to lie between [0,1] and 

define the strategy of arbitrageur / by his selling pressure at time t: cr(-, t,) =  [0 , t; +  r] i-> 

[0,1]. A selling pressure equal to zero (a ( t , £,) =  0) indicates a maximum long position in 

local currency and a value equal to one (<r(t, t,-) =  1 ) implies that arbitrageur / has sold out 

all his holdings of domestic currency (maximum pressure). Let s(t, t)  denote the aggregate 

selling pressure of all arbitrageurs at time t >  t.

Collapse o f the  Peg

The fixed exchange rate can collapse for one of two reasons. It is abandoned at t — 

t  +  r *  -f  r]K, when the aggregate selling pressure exceeds a certain threshold k  >  k )

or ultimately at a final time when all foreign reserves are exhausted, say at t =  t  +  r .  Let 

us denote this collapsing date by T * ( t )  =  t +  £, where £ =  r *  +  r)K if the abandonment 

of the peg is caused by arbitrageurs' selling pressure (endogenous collapse) and £ =  r  if 

it is due to the exhaustion of reserves (exogenous collapse). Since we have assumed that 

arbitrageurs have no market power, they will need to coordinate to force the abandonment 

of the peg. However, only a proportion k <  1 of arbitrageurs can exit the market before 

the peg is abandoned. Therefore, arbitrageurs face both, cooperation and competition.
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In form ation S tructure

To simplify the analysis, we assume that at the random time t — t  when the shadow 

price reaches the peg, arbitrageurs begin to notice this mispricing. They become aware 

sequentially and in random order and they do not know if they have noticed it early or 

late compared to others. They cannot know if they are the firsts or the lasts to know. 

Specifically, at each instant (between t  and t +  7 7 ) ,  a new mass I / 7 7  of arbitrageurs receives 

a signal indicating that the shadow price exceeds the fixed exchange rate, where 77 is a 

measure of the dispersion of opinion among them. The timing of arbitrageur / 's signal is 

uniformly distributed on [t, t  +  7 7 ] ,  but since t is exponentially distributed each arbitrageur 

does not know how many other others have received the signal before him. Arbitrageur / 

only knows that at t =  £,• +  77 all other arbitrageurs received their signals. Conditioning 

on t £  [t, — 7 7 , £/], arbitrageur /"s posterior cumulative distribution function for the date t 

on which the shadow price reached the peg is =  e-p ^ p--~. Then, arbitrageur / ’s

posterior cumulative distribution function over the collapsing date T * ( t )  is

A t, _  A ( t ,+ C - T * C t ) )

n (T 'C *)lft)  = -----------------------------

given that T * ( t )  £  [t, +  £ -  77 , t, +  £ ] .

Further Assumptions

We consider the following statements to simplify the analysis and the specification of our 

setting:

Assumption 2 .2 . In equilibrium, an arbitrageur holds either a maximum long position or a 

maximum short position in local currency: o (t, t,) £  {0 ,1 }  V t, t,.
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We consider that an arbitrageur prefers to invest his whole budget in local currency, 

since it generates higher returns, until a certain time when he fears that the attack on the 

currency is imminent and decides to cancel his position by selling all his stock of domestic 

currency. Hence, his selling pressure is initially equal to 0 (when he is fully invested in 

domestic currency) and equal to 1 once he sells out. The information structure considered 

in our model and Assumption 2.2 imply the following result:

Corollary 2 .1 . I f  arbitrageur i holds a maximum short position at time t in local currency 

( o ( t , tj) =  1 ), then at time t any arbitrageur j  (Vt; <  £,■) has already sold out his stock o f 

domestic currency (o ( t , tj) — 1, Vt) <  £,•).

We assume that once an arbitrageur sells his stock of domestic currency, any arbitrageur 

that became aware of the mispricing before him, is already out of the market.

Assumption 2.3 . No re-entry.

To simplify the analysis we suppose that once an arbitrageur gets out of the market, he 

will not enter again. Intuitively, an arbitrageur sells out when he believes that the attack is 

close. Then, even if he does not observe the attack during some period of time after leaving 

the market, he still will not know when the fixed exchange rate will collapse, but certainly 

it will happen sooner than he thought when he exited the market. Therefore, if he does not 

change his beliefs, he will not have an incentive to re-enter the market.

T h e  Sell O u t Condition

In our economy, an arbitrageur can choose between buying domestic or foreign currency. 

Initially, they are fully invested in local currency because of the higher returns ( r  >  r*),
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but there is a risk of devaluation. Hence, each arbitrageur will sell exactly at the mo­

ment when the fear of the devaluation of the home currency offsets the excess of return 

derived from investing in local currency. Ideally, he would like to sell just before the ex­

change rate is abandoned and the domestic currency suffers devaluation or equivalently 

just before the appreciation of the foreign currency. In Appendix 2.7.2 we define the 

size of the expected appreciation of the foreign currency perceived by arbitrageur # as

-  ti)
i i ■

E St s i tj
s

1 -  E [ f  |t,] >  0 (if E [ l | t , ]  <  1 ), and we present the

optimisation problem which yields the following sell out condition:

Lem m a 2 .2 . (sell out condition). Arbitrageur i prefers to hold a maximum long position 

in local currency at time t i f  his hazard rate is smaller than the ‘greed-to-fear ratio’, i.e., i f

l - E [ ^ | t , ]

He trades to a maximum short position in local currency, i f  h (t\ti) >  - j - — :— r
A'f [ t  — tj)

r — r

In our model, an arbitrageur who notices the mispricing at time t =  tj compares his 

subjective hazard rate (h (t \t j) )  with the ‘greed-to-fear ratio' and trades to a

maximum short position as soon as he observes that the probability of devaluation given 

that the peg still holds is larger that the ‘greed-to-fear ratio’.

2.5 Equilibrium

The exchange rate collapses as soon as the cumulative selling pressure exceeds a threshold 

k or at a final date t  =  t +  r  when all foreign reserves are exhausted. This statement implies 

that no fixed exchange rate regime in an economy with persistent deficit can survive in the
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long term. We will focus our analysis in the first scenario, in which the peg collapses for 

endogenous reasons.

2.5.1 Endogenous Collapse of the Peg

We have seen that arbitrageurs become aware of the mispricing in random order during an 

interval [t, t  +  7 7 ] ,  where t  is exponentially distributed and represents the time when the 

shadow price reaches the peg. To simplify the analysis we have supposed that t is also the 

moment when the first arbitrageur notices the mispricing. 77 is a measure of the heterogeneity 

of the arbitrageurs (a larger 77 corresponds to a wider dispersion of opinion among them). 

Since all arbitrageurs are ex-ante identical, we restrict our attention to symmetric equilibria. 

Then, for moderate values of the parameter 77 , we will show that there exists a unique 

symmetric equilibrium in which the peg falls when the aggregate selling pressure surpasses 

a certain threshold («:).

Consider the following backward reasoning. If at the final date t =  t +  r  the selling 

pressure has not exceed the threshold k , we have assumed that the exchange rate collapses 

because the central bank’s foreign reserves are exhausted, and that this final condition is 

common knowledge among all arbitrageurs7. This induces arbitrageur / to sell out at t\ 

periods after he observes the mispricing (t, +  Ti <  t  +  r )  in order to avoid a capital loss. 

Therefore, the currency will come under attack at t =  t-\-Ti +  r)K, <  t +  r  (since we consider 

small values of the parameters 77 and k ). But if the peg is abandoned at t — t  +  t \ +  777c ,

7Specifically, r  is common knowledge among arbitrageurs but not t  — t; +  r ,  which will depend on the 
random time when each arbitrageur notices the mispricing. It is supposed that once an arbitrageur finds 
out that the shadow price has exceeded the peg, he knows that the central bank’s foreign reserves will last 
at most r  periods and he also knows that all other arbitrageurs, who are aware of the mispricing, will know 
it too. But this arbitrageur does not know if he has learnt this information early or late compared to the 
other arbitrageurs, and hence he does not know if the attack on the currency will happen before this final 
date.
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arbitrageurs will sell out earlier, let us say 72 <  T\ periods after they notice that the shadow 

price exceeds the peg. But given the new timing, arbitrageurs will choose to sell even 

earlier (73 ) and so on. As the selling date advances, the cost of devaluation of the domestic 

currency (or the appreciation of the foreign currency) diminishes and therefore, the benefit 

from holding local currency rises, that is, the ‘greed-to-fear ratio’ increases as the selling 

date advances. In our setting, at each instant, an arbitrageur compares his hazard rate to 

his ‘greed-to-fear ratio'. He will prefer to sell local currency until the time ( t  =  t-, +  r * )  

when the ‘greed-to-fear ratio’ equals the probability of the peg collapsing given that it still 

holds (the equality defines the switching condition). This guarantees that arbitrageurs will 

have an incentive to hold "overvalued” local currency for some period of time after they 

become aware of the mispricing, or equivalently, that the decreasing sequence of periods 

converges to r *  >  0. This result is depicted in Figure 2.2.

We can derive an expression for r *  from previous results. We have assumed that, 

in equilibrium, an arbitrageur holds either a maximum long position or a maximum short 

position in local currency, depending on the relation between the probability of the peg 

collapsing and the profits derived from holding local currency. Hence, we can obtain r *  

from the time ( t  =  t,- +  r * )  when agent / will switch from maximum holding to maximum 

selling. This is given by:

where r — r* is the excess of return, h =  h (t\tj)  denotes the hazard rate (which we will prove 

that remains constant over time), / i  is a positive constant corresponding to the slope of the 

linear logarithm of the shadow price (st) which represents the rate of growth of the budget 

deficit and r '  is indicative of the difference between the date t; at which the arbitrageur
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Figure 2.2: C o l la p s e  OF THE p e g  ( m o d e r a t e  l e v e l s  o f  d is p e rs io n  o f  

o p in io n ) -  W e plot (the logarithm o f)  the fixed exchange rate (s ), (the logarithm  
o f) the shadow price (st ) and relevant moments in tim e. A t t  =  t, the shadow price 

exceeds the peg and arbitrageurs become sequentially aware o f it. A t t  =  t  - f  rjn, 
enough arbitrageurs have noticed the mispricing but they prefer to  w ait r *  periods 

before selling out. A t t  =  t  +  r *  +  tjk, the selling pressure surpasses the threshold 
k, and the peg is finally abandoned. There is a discrete devaluation of the exchange 

rate.

receives the signal about the mispricing and the time when he believes the foreign currency 

begins appreciating.

We can summarize this result in Proposition 2.1:

Proposition 2.1. There exists a unique symmetric equilibrium a t which each arbitrageur 

sells out t *  periods after becoming aware o f  the mispricing, where:

Thus, the fixed exchange rate w ill be abandoned a t t  =  t  +  r *  +  r/n .
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P ro o f

Arbitrageur / prefers to invest in local currency for as long as possible, since this strategy 

generates higher returns than buying foreign currency (r  >  r*). But, at a certain moment 

in time ( t  =  t;), he learns that the shadow price exceeds the peg and that there exists a risk 

of devaluation. We have argued that he still prefers to hold domestic currency (for some 

period of time r * )  until he fears that the attack on the currency is imminent and he decides 

to sell out. This occurs at t =  t-, +  r * . Arbitrageur / sells whenever his ‘greed-to-fear ratio' 

equals his hazard rate, i.e. when h (t\t)  =  • From this switching condition we will

derive the optimal waiting time r* , i.e., the period of time when an arbitrageur knows that 

he is holding overvalued currency.

We will organise the proof in three steps. In the first one, we demonstrate that the 

‘greed-to-fear ratio’ is decreasing in time. Step 2  shows why the hazard rate is constant in 

time. Finally, in Step 3 we derive the expression for r *  from the time when the hazard rate 

equals the ‘greed-to-fear ratio' and arbitrageur /’ changes from a maximum long position to 

a maximum short position in local currency.

Step 1. The ‘greed-to-fear ratior decreases in time.

Proof. The 'greed-to-fear ratio’ is defined as:

r — r* 

A f ( t  -  tj)

where r —r* is the excess of return derived from investing in domestic currency and A'f ( t — tj) 

denotes the size of the expected appreciation of the foreign currency feared by agent /:

~  =

x
St

t i — 1 — E
5_

St
t i



44 Imperfect Common Knowledge in First-Generation Models of Currency Crises

and
'S_

st ti| =  [ ‘ =  fe -" * '- ' '*
J t j - T }

where k =  k G [0,1] for A >  \l. Hence, A'f ( t  — t,) is an strictly increasing

and continuous function of the time elapsed since agent i received his signal indicating that 

the shadow price exceeded the peg.

Assumption 2.1 establishes that the excess of return ( r — r*)  is positive and constant in 

time. Therefore the ‘greed-to-fear ratio’, J7 .r\ , , decreases in time. Intuitively, the further 

in time, the larger the possible appreciation of the foreign currency once the peg collapses, 

and therefore the smaller the benefits (in relative terms) that a rational agent obtains from 

holding local currency. Thus, the ‘greed-to-fear ratio’ will decrease in time. □

Step 2. The hazard rate is constant in time.

Proof. The hazard rate is defined as: h (T * ( i) \ t j )  =  where 7r ( 7”* ( t ) |t ; )  is

the conditional density function and n (7 ”* ( t ) |t /) ,  the conditional cumulative distribution 

function of the date on which the peg collapses. The hazard rate represents, at each time, 

the probability that the peg is abandoned, given that it has survived until t =  t-,. We 

have considered that the timing of agent /”s signal is uniformly distributed on P. t + v] 
and that t is exponentially distributed. Then, an arbitrageur, who becomes aware that 

the shadow price exceeds the peg at t — t;, has a posterior density function of the date 

on which the peg is abandoned, with support [t; +  r *  +  r]K — 7 7 , t; +  r *  +  tjk], given by: 

7 r(T *(i) \t j)  =  (?)) =  Ae- > i i " 7 ^ , where £ =  t *  +  rjn if the peg collapses for

endogenous reasons. This is depicted in Figure 2.3.

At time t =  t-n arbitrageur / only knows if the peg has collapsed or not. But if the fixed 

rate regime has not been attacked, arbitrageur / cannot know when it will happen, since
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T \ t )+  T|K —T] t j + T * + T \ Kf / + T * + T | K - T }  t j  + T  *  +T|K

Figure 2.3; POSTERIOR DENSITY FUNCTION FOR ARBITRAGEURS / AND j

he does not know if any other agent became aware of the mispricing before him. A t any 

other time t  =  t j  >  t j ,  arbitrageur j  faces an equivalent scenario (shifted from t j  to  tim e t j ,  

but w ith no additional information), i.e., arbitrageurs cannot learn from the process ( if  the 

peg has not collapsed, they cannot know when the attack will take place). Therefore, the 

hazard rate, over the collapsing dates t  =  t j  +  t * , is constant in time and it is given by the 

following expression:

h ( t j  +  T * \ t j )  =
A

I  _  q - X tjk
=  h

□

Step 3. The optim al t *  is given by: r *  =  J In j^(l — 1 — T

Proof. We have obtained that the ‘greed-to-fear ra tio ’ is a decreasing function of time, while 

the hazard rate is constant. Therefore, we can derive r *  from the time t  =  t j  -F r *  when 

arbitrageur / fears that the collapse of the peg is imminent and decides to  sell out the local 

currency. We have proved that he will hold local currency during r *  periods after becoming 

aware of the mispricing, i.e., arbitrageur / will hold a long position in local currency until
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t — tj +  r * , when his ‘greed-to-fear ratio' equals his hazard rate:

r — r

A‘f ( . t - t i )' v '
Greed to Fear 

Ratio

A r - r

t= t,+T*
 ̂   q — \ t]K

Hazard Rate

1 -  ke-vit'+T*-*')
=  h

r *  =  — In
r — r - l

— r t *  =  — In
h — (r — r*)

— T

where r f =  J In £ G [0roo). The optimal waiting time r *  has two components. The first 

one defines the trade-off between the excess of return derived from investing in domestic 

currency and the capital loss bore by arbitrageur / if the fixed exchange rate is abandoned 

before he sells out. The second component r '  is due to the information structure and 

measures the period of time elapsed between the date t  =  t ;  at which arbitrageur / receives 

the signal and the time when he believes that the foreign currency starts appreciating. To 

simplify the reasoning suppose that there is no delay, i.e., assume that at t —  t i  arbitrageur 

/ receives the signal about the mispricing and believes that the shadow price has "just" 

reached the peg. In this case, r '  =  0 and each arbitrageur waits r *  =  J In ( l  — L^ ~ )  1 

after receiving the signal. Then, he exits the market.

Figure 2.4 represents the decreasing ‘greed-to-fear ratio’, the hazard rate, r *  and the 

time of the attack. It is interesting to note that if the hazard rate is larger than the excess 

of return (h >  r — r*), arbitrageurs wait a finite positive period of time (r *  >  0 ) before 

selling out. At some point in time, they believe that the attack on the fixed exchange rate is 

imminent and they cancel their positions in home currency. There is an endogenous collapse 

of the peg. However, if h =  r — r* arbitrageurs sell overvalued currency after waiting for an 

infinite time (r *  =  oo) to elapse since receiving the signal. Finally, if h <  r —r*, arbitrageurs
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never sell, i.e., if the probability tha t the peg collapses (given tha t it still holds) is lower 

than the excess of return derived from investing in domestic currency, then arbitrageurs do 

not fear a devaluation and hence they never leave the market. In this case (h <  r  — r*)  the 

fixed exchange rate collapses for exogenous reasons when the central bank’s foreign reserves 

are exhausted.

Greed-to-Fear Ratio 
r - r *

Currency 
under attack

Hazard Rate

r - r

t t +T|K  t +T|K  + X * t
First agent K agents K agents
notices the aware of the sell out 
mispricing mispricing

Figure 2.4: T im in g  o f  t h e  a t t a c k  - An arbitrageur holds a maximum long 
position in local currency until he believes th at the attack is imminent, and he 

prefers to  sell out, th a t is, when his ‘greed-to-fear ratio ’ equals his hazard rate. A t 
t  =  t  ~F t *  +  Tfn enough  arbitrageurs have sold out and the currency comes under 
attack.

□

2.5.2 Determinants of r *

Excess o f return. The period o f time r *  during which arbitrageurs optimally hold over­

valued local currency depends directly on the excess o f return derived from investing in 

domestic currency. Increasing the spread between returns ( r  — r* )  delays the attack on
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the peg, since a more attractive local currency will induce arbitrageurs to hold overvalued 

currency for a longer time. The size of the delay depends on:

d r* _  1 1

d (r — r*) fi h — (r  — r*)

This suggests that rising returns will have a small impact on the delay of the attack if 

the probability of the peg collapsing (given that it still holds) and the slope of the (logarithm 

of the) shadow price are high.

Hazard rate, r *  is a decreasing function of the hazard rate ( ^  <  0). The hazard 

rate represents the probability that the fixed exchange rate is abandoned given that the peg 

is still in place. Assuming the information structure presented in this paper, the hazard rate 

remains constant over time8 and equal to:

  q—Xt]k

where A characterises the exponential distribution of t  (the time when the shadow price 

exceeds the peg), 77 is a measure of the dispersion of opinion among agents and tz defines 

the threshold level of cumulative selling pressure that triggers the attack on the currency.

A lower heterogeneity among market participants increases the hazard rate and advances 

the currency crises. In the limit as 77 tends to zero (no private information), we converge 

to the Krugman setting in which the fundamentals are common knowledge and the peg is 

attacked as soon as the shadow price reaches the fixed exchange rate. In this case, h —► 0 0  

and r *  =  0. On the other extreme case where there is large dispersion of opinion among 

arbitrageurs, the hazard rate tends to zero and the peg is abandoned whenever the central

8This is proved in Subsection 2.5.1.
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bank’s foreign reserves are exhausted.

Also, a higher threshold k delays the crisis. If the central bank is determined to commit 

a larger proportion of its foreign reserves to defend the fixed exchange rate, the peg will 

survive longer.

Slope of the shadow price. The optimal time r *  depends inversely on the slope of 

(the logarithm of) the shadow price /i <  0 ). fi can be seen as the speed of depletion of 

the central bank’s foreign reserves. This suggests that a steeper (logarithm of the) shadow 

price implies a faster rate of exhaustion of reserves and ultimately that the central bank’s 

reserves will be exhausted earlier. Hence, a higher slope, reduces r *  and advances the attack 

on the fixed exchange rate.

H also represents the rate of growth of the government’s budget deficit. Then, the faster 

the level of government’s expenditure, the shorter arbitrageurs will be willing to hold the 

overvalued local currency, hence, advancing the attack on the currency.

Our analysis suggests that in a first-generation model in which a government runs a 

persistent deficit, which grows at a constant rate /i, rising the spread between returns to 

make the local currency more attractive, committing more foreign reserves to defend the peg 

and inducing dispersion of opinion among arbitrageurs will delay the attack on the currency. 

However, since the expansionary monetary policy makes a fixed exchange rate ultimately 

unsustainable, these policy instruments would only increase the size of the devaluation 

whenever it occurs. The only effective means would be to reduce the rate of growth of the 

budget deficit (fi). This would delay the speculative attack on the fixed exchange rate and 

diminish the size of the devaluation when the peg finally collapses.
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2.6 Conclusion

In this paper we relax the traditional assumption of perfect information in first-generation 

models of currency crises. We consider an economy similar to the one described in Krugman 

(1979) and, to introduce uncertainty about the willingness of a central bank to defend the 

peg, we incorporate the information structure presented in Abreu and Brunnermeier (2003).

At a random time, the shadow price exceeds the fixed exchange rate and sequentially, 

but in random order, arbitrageurs become aware of this mispricing. They understand that 

the currency will be attacked and the peg eventually abandoned, but still prefer to hold local 

currency during some period of time ( t * )  after they notice the mispricing, since we have 

assumed that holding domestic currency generates higher returns. We derive an expression 

for t *. The optimal period of time r *  is the same for all arbitrageurs and it is independent 

from the time when each arbitrageur notices the mispricing. Increasing the excess of return 

( r —r *) obtained from investing in domestic currency, reducing the hazard rate or diminishing 

the level of persistent deficit, would increase the period of time when arbitrageurs prefer to 

hold overvalued local currency and therefore it would delay the attack on the currency.

In our model, arbitrageurs sequentially know that the peg lies below the shadow price 

but they do not know if other arbitrageurs have already noticed it, i.e., macroeconomic 

fundamentals are no longer common knowledge among market participants. Therefore, 

arbitrageurs in this economy face a synchronisation problem. However they do not have 

incentives to coordinate, since as soon as they do, the peg collapses. There is also a 

competitive component in our model: only a fraction tz of arbitrageurs can leave the market 

before the fixed exchange rate is abandoned. Consequently, in our setting, the currency 

does not come under attack the moment the shadow price exceeds the peg, as in Krugman’s 

model, but at a later time when a large enough mass of arbitrageurs has waited r *  periods
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and decides to leave the market because of fear of an imminent attack.

We conclude that there is a unique equilibrium in which the fixed exchange rate col­

lapses when the selling pressure surpasses a certain threshold (k ) or ultimately at a final date 

t  — t +  T, when the central bank’s foreign reserves are exhausted, if dispersion of opinion 

among arbitrageurs is extremely large. This equilibrium is unique, depends on the hetero­

geneity among agents and leads to discrete devaluations. This result differs from the zero- 

devaluation equilibrium in Krugman’s model and also from other settings (Broner (2008)) 

in which lack of perfect information brings multiple equilibria.

2.7 Appendix

2.7.1 The Shadow Price

In this section, we will derive an expression for the shadow price in a first-generation model 

of currency crises. To simplify the calculations, it is convenient to express magnitudes in 

logarithms. We will use upper case letters to represent a variable in levels and lower case 

letters to indicate its logarithm.

We consider an economy with a fixed exchange rate regime (s =  In(S)), in which a 

government runs a persistent deficit. In particular, we assume that it grows at a positive 

constant rate [i\

f , = i5t =  h ^ r  =  clt ^  {A1)

where dt =  ln(Dt) is the logarithm of the domestic credit.

The central bank has two main tasks: to finance the government’s deficit by issuing debt
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and to maintain the exchange rate fixed through open market operations. In our economy 

there are no private banks. Then, from the central bank's balance sheet the money supply 

at time t, M l,  is made up of domestic credit (D t) and the value in domestic currency of 

the international reserves (R t)-

M l =  D t +  Rt (A .2)

We assume that the purchasing parity holds. Then, the exchange rate 5t is defined as:

c Pt _  *
St =  =► St =  Pt -  Pt

We can take the foreign price as the numeraire (P t* =  1 =>• p*t =  0). Then,

St =  pt (A .3)

The monetary equilibrium is described by the Cagan equation:

mst -  pt =  - S  x pt

By equation A.3, the Cagan equation can then be written as:

mst — st =  - S  x  St (A.4)

The shadow price is the exchange rate that would prevail in the market if the peg is

abandoned. The central bank will defend the peg until reserves reach a minimum level. To

simplify the analysis, assume that the central bank abandons the fixed exchange rate when 

the reserves are exhausted, i.e., when Rt =  0. Then, the money supply (equation A .2) is
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given by:

M st =  D t =► mst =  dt (A .5)

Equations A .l and A .5 imply:

nft — dt =  ii => m\ — 4- n  x t

Hence, substituting this result in equation A.4 we obtain:

ml +  fi x  t — st =  — 8 x  st => mJ +  j L t x t - s t +  5 x s t =  0

To solve this differential equation, we can try a linear solution:

st =  constant +  / i x t

Then,

ml +  fi x  t  — constant — f i x t  +  6x f j .  =  0  constant =  +  <5 x  n

Therefore, (the logarithm of) the shadow price is given by:

st =  ml +  5 x fi +/x x t  =  7  +  / / x t  => st =  7  +  /i x  t (A .6 )

7

where 7  and fi are constants and // represents the rate of growth of the budget deficit.

We have proved that (the logarithm of) the shadow is a linear function of time.
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2.7.2 Sell Out Condition

In this section we derive the sell out condition stated in Lemma 2.2. In our economy, an 

arbitrageur can choose between either holding local or foreign currency. Investing in domestic 

currency generates a return equal to r, while the foreign currency yields r*. Assumption 

2.1 ( r  >  r*) makes the domestic investment more attractive. Therefore, arbitrageurs are 

initially fully invested in domestic currency. At some random time t — t the shadow price 

reaches the fixed exchange rate and from then onwards the peg might be attacked.

We want to determine the optimal selling date for the arbitrageur who becomes aware 

of the mispricing at time t =  Each arbitrageur’s payoff from selling out depends on the 

price at which he can sell the domestic currency. At time t  >  t the peg may or may not 

hold. The price (in local currency) of an asset which yields a constant rate r is en . The 

payoff function is denominated in foreign currency, hence the price of domestic currency if 

the peg still holds is pt =  ert=, where 5  is the fixed exchange rate. However, if the peg 

has been abandoned, the price will be: E[pt |t;] =  which can be expressed as a

fraction of the pre-crisis price as: E[pt \tj] — ert=E[J^|t,], and E [i||t /]  can be understood 

as a rate of variation in the exchange rate. Then, arbitrageur i's payoff9 from selling out at 

time t  is given by:

tj 7r(s| t/) ds +  e~r*t ert i  (1 — n (t|t,-))

where n ( t |t ,)  represents agent i ’s conditional cumulative distribution function of the date 

on which the peg collapses and 7r (t |t ,)  indicates the associated conditional density.

9W e assume there are no transaction costs to simplify the specification of the payoff function. W e could 
easily incorporate transaction costs in our setting. For example, let us define the transaction cost at time 
t  equal to cer * (as in Abreu and Brunnermeier (2003)). This convenient formulation guarantees that the 
optimal solution is independent of the size of the transaction costs.

I
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Differentiating the payoff function with respect to t  yields:

7r(t|t,-) _  r - r *  _  Uf+ \+ \ _  r ~  r *
i  -  n(t|t, "

where A'f ( t  — £,•) is the size of the expected appreciation of the foreign currency feared by 

agent / once the fixed exchange rate is abandoned. A'f ( t  — t;) is a strictly increasing and 

continuous function of t — t-,, the time elapsed since arbitrageur i becomes aware of the 

mispricing.

Therefore, arbitrageur / maximises his payoff to selling out at time t  when his hazard 

rate equals the ‘greed-to-fear ratio’. Thus, arbitrageur / holds:

r — r*
•  a maximum long position in local currency, if h (t\tj) <  - j -  r , or

A'f { t  — t[)

r — r*
•  a maximum short position in local currency, if h (t\tj) >   r.

A'f[t — tj)
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CH APTER 3

Systemic Risk and Liquidity in Payment Systems

I n  t h i s  c h a p t e r  we study liquidity and systemic risk in high-value pay­

ment systems. Flows in high-value systems are characterized by high ve­

locity, meaning that the total amount paid and received is high relative 

to the stock of reserves. In such systems, banks rely heavily on incoming 

funds to finance outgoing payments, necessitating a high degree of coor­

dination and synchronization. We use lattice-theoretic methods to solve 

for the unique fixed point of an equilibrium mapping and conduct com­

parative statics analyses on changes to the environment. We find that 

banks attempting to conserve liquidity cause an increase in the demand 

for intraday credit and, ultimately, full disruption of payments.
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3.1 Introduction

Since the credit market turmoil began last summer, investment banks and other financial 

institutions have become seriously preoccupied with their liquidity. Banks have attempted 

to conserve cash holdings concerned about the possibility that they might face large draws 

on the standby liquidity facilities and credit enhancements of the special-purpose invest­

ment vehicles (SIVs) they sponsored. Moreover, as some of these SIVs were in dan­

ger of failing, banks came under raising pressure to rescue them by taking the assets of 

these off-balance sheet entities onto their own balance sheets. Greenlaw et al. (2008) and 

Brunnermeier (2008) present a detailed analysis of this recent episode in financial markets.

Banks, concerned about liquidity, have attempted to target more liquid balances as 

financial tension intensified. However, as banks increase their precautionary demand for 

liquid balances, they become less willing to lend to others. As a result, interbank funding 

rates have been showing clear signs of distress since August 2007. This has been highlighted 

by Fed Chairman Ben S. Bernanke in a speech last January1

.. .these developments have prompted banks to become protective of their li­

quidity and balance sheet capacity and thus to become less willing to pro­

vide funding to other market participants, including other banks. As a result, 

both overnight and term interbank funding markets have periodically come un­

der considerable pressure, with spreads on interbank lending rates over various 

benchmark rates rising notably.

A shorter, but perhaps an even sharper episode of the systemic implications of the

gridlock in payments came in the interbank payment system following the September 11,

^Financial Markets, the Economic Outlook, and Monetary Policy’, speech by Ben S. Bernanke, 10 
January 2008 (Bernanke (2008)).
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2001 attacks. The interbank payment system processes very large sums of transactions 

between banks and other financial institutions. Moreover, one of the reasons for the large 

volumes of flows is due to the two-way flow that could potentially be netted between the 

set of banks. That is, the large flows leaving bank A is matched by a similarly large flow 

into bank A over the course of the day. However, the fact that the flows are not exactly 

synchronized means that payments flow backward and forward in gross terms, generating 

the large overall volume of flows.

The nettable nature of the flows allows a particular bank to rely heavily on the inflows 

from other banks to fund its outflows. McAndrews and Potter (2002) notes that banks 

typically hold only a very small amount of cash and other reserves to fund their payments. 

The cash and reserve holdings of banks amount to only around 1% of their total daily 

payment volume. The rest of the funding comes from the inflows from the payments made 

by the other banks. To put it another way, one dollar held by a particular bank at the 

beginning of the day changes hands around one hundred times during the course of the 

day. Such high velocities of circulation have been necessitated by the trend toward tighter 

liquidity management by banks, as they seek to lend out spare funds to earn income, and 

to calculate fine tolerance bounds for spare funds.

There is, however, a drawback to such high velocities that come from the fragility of 

overall payment flows to disruptions to the system, or a small step change in the desired 

precautionary balances targeted by the banks. After the September 11 attacks, banks 

attempted to conserve liquidity and raised their precautionary cash balances as a response 

to the greater uncertainty. Given the high velocity of funds, even a small change in target 

reserve balances can have a marked effect on overall payment volumes, and this is exactly 

what happened after September 11. McAndrews and Potter (2002) gives a detailed account 

of the events in the U.S. Fedwire payment system following the September 11 attacks.
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Our paper addresses the issue of liquidity in a flow system. The focus is on the interde­

pendence of the agents in the system, and the manner in which equilibrium payments are 

determined and how the aggregate outcome changes with shifts in the parameters describing 

the environment. In keeping with the systemic perspective, we model the interdependence 

of flows and show how the equilibrium flows correspond to the (unique) fixed point of a 

well-defined equilibrium mapping. The usefulness of our approach rests on the fact that 

our model abstracts away from specific institutional details, and rests only of the robust 

features of system interaction. The comparative statics exercise draws on methods on lat­

tice theory, developed by Topkis (1978) and Milgrom and Roberts (1994), and allows us to 

analyze the repercussions on the financial system of a change in precautionary demand for 

liquid balances. Specifically, we aim at better understanding the systemic implications of 

a shift towards more conservative balance sheets targeted by one or a small set of market 

participants in a payment system.

We find that a reduction in outgoing payments to conserve cash holdings translates into 

lesser incoming funds to other banks, but lesser incoming funds will then affect outgoing 

transfers. Our findings show that if few banks targeted more liquid balances, there will be 

an increase in the demand for intraday liquidity provided by the Federal Reserve System and 

it could even lead to a full disruption of payments.

The outline of the paper is as follows. In the next section we introduce a theoretical 

framework for the role of interlocking claims and obligations in a flow system. An application 

to the interbank payment system then follows. Section 3.3 briefly reviews the US payment 

system paying special attention to the Fedwire Funds Service. Section 3.4 presents numerical 

simulations based on a stylized payment system. Then, Section 3.5 analyzes the response 

of payment systems to a change in precautionary balances. Miscoordination in payments 

and a potential policy intended to economize on the use of intraday credit are discussed in
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Section 3.6. Section 3.7 concludes.

3.2 The Model

There are rt agents in the payment system, whom we will refer to as "banks” . Every member 

of the payment system maintains an account to make payments. This account contains all 

balances including its credit capacity.

Banks in a payment system rely heavily on incoming funds to make their payments. 

Let us denote by y[ the time t  payments bank / sends to other members in the payment 

system. These payments are increasing in the total funds x ' bank / receives from other 

members during some period of time (from t  — 1 to t). We do not need to impose a specific 

functional form on this relationship. In particular, we will allow each bank to respond 

differently to incoming funds. The only condition we impose is that each bank only pays 

out a proportion of its incoming funds. Formally, it entails that transfers do not decrease 

as incoming payments rise and that its slope is bounded above by 1 everywhere. Then, 

outgoing transfers made by bank / at time t are given by:

yi =  f ' W A )

where 6t =  ( bt , ct) and bt represents the profile of balances b't and ct is the profile of 

remaining credit c'. Outgoing payments made by bank / will depend on incoming funds, 

which in turn depends on all payments sent over the payment system. Then, for every 

member in the payment system we have:
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This system can be written as:

yt =  F(yt- i , O t)

where yt =  [yt\ y t2, ... r y ”]T and F  =  [f  \  f 2 f n]T .

The task of determining payment flows in a financial system thus entails solving for a 

consistent set of payments - that is, solving a fixed point problem of the mapping F.  We 

will show that our problem has a well-defined solution and that the set of payments can be 

determined uniquely as a function of the underlying parameters of the payment system. We 

will organize the proof in two steps. Step 1 shows the existence of at least one fixed point 

of the mapping F. We will show uniqueness in Step 2.

Step 1. Existence o f a fixed point o f the mapping F.

Lemma 3.1. (Tarski (1955) Fixed Point Theorem) Let (Y , < )  be a complete lattice and 

F  be a non-decreasing function on Y. Then there are y* and y* such that F(y* )  =  y * , 

F(y*) =  y*, and for any fixed point y, we have y* < y  <y*-

A complete lattice is a partially ordered set ( Y , < )  which satisfies that every non-empty 

subset S C Y  has both a least upper bound (join), sup(S), and a greatest lower bound 

(meet), inf(S). In our payments setting, we can define a complete lattice ( Y , < )  as formed 

by a non-empty set of outgoing payments Y  and the binary relation < . Every subset S of 

the payment flows Y has a greatest lower bound (flows are non-negative) and a least upper 

bound which we will denote by y ;. y, represents the maximum flow of payments bank i can 

send through the payment system. This condition can be understood as a maximum flow 

capacity due to some technological limitations of the networks and communication systems
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used by the banks to receive and process transfer orders. We have:

y =  [O.yJ X [0,y 2] x ... x [0 ,y n]

The relation <  formalizes the notion of an ordering of the elements of Y  such that

y  <  y ' when y;- <  yj for all the components / and yk <  yk for some component k.

In our payments problem, (Y ,  < )  is a complete lattice and since outgoing payments 

made by bank / do not decrease as incoming funds rise, i.e. f ‘ is a non-decreasing function, 

then F  =  [ f 1, f 2, ... f n]T is non-decreasing on Y.  Our setting hence satisfies the conditions 

of the Tarski's Theorem and as a result there exists at least one fixed point of the mapping

F. Moreover, in Step 2 we will show that the fixed point is unique.

Step 2. Uniqueness o f the fixed point o f the mapping F.

Theorem 3 .1 . There exists a unique profile o f payments flows yt that solves yt =  F (y t_ i, 6t).

Proof F  is a non-decreasing function on a complete lattice ( Y , < ) .  Then, by Tarski's 

Fixed Point Theorem (Lemma 3.1), F has a largest y* and a smallest y* fixed point. Let 

us consider, contrary to Theorem 3.1, that there exist two distinct fixed points such that 

y* >  y/+ for all components / and yk >  ykif for some component k. Denote by x* the 

payments received by bank / evaluated at y* and by x ,* the payments received by bank / 

evaluated at y,*. By the Mean Value Theorem, for any differentiable function f  on [xf-*,x*], 

there exists a point z G (x,*,x,*) such that

f ( 4 )  -  -  X , . )

We have assumed that the slope of the outgoing payments is bounded above by 1 

everywhere (§£  <  1 everywhere). Hence,
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yt -  yi* =  ^ (y i- xl ) -  f l {yi> *1*) < xt -  *1* 

yl -  y2* =  f2(72’ x2) -  f2(72-*2*) < xl  -  x2*

<

yk* -  yk, =  f k(yk.4 ) ~  f *(y*.**.) < K  ~  *k. 

y„* -  yn. =  ^"(y„. *„') -  f"(y„. xm) < -  x„,
<

Re-arranging the previous system of equations we get

f

xu -  yu  <  * r  -  y{ 

x2* -  yi* <  xl -  yl

<

Xk* -  yk* <x*k - y * k 

xn* -  yn* < x ; ~  y*n

Summing across banks we have

£ * , . - £ y . . < X > - X >
/=! /=! /=! /=!

so that the total value of the balances including credit capacity is strictly larger under y*,  

which is impossible. Therefore, there cannot exist two distinct fixed points and as a result

y* — y*- □
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Although uniqueness is relevant to our analysis of payment systems, our key insights 

stem from the comparative statics results due to Milgrom and Roberts (1994).

3.2.1 Comparative Statics

Theorem  3 .2 . Let y t* (91) be the unique fixed point o f the mapping F . I f  for all yt E Y , F  

is increasing in 9t , then y?(0t) is increasing in 9t .

Proof. Let F  be monotone non-decreasing and Y  a complete lattice. From Tarski's Fixed 

Point Theorem (Lemma 3.1) and Theorem 3.1 there exists a unique fixed point y?(&t) of 

the mapping F.  For the simplicity of the argument, let us suppress the subscript t. Define 

the set S(9)  as

S(0) =  { y \ F ( y , 0 ) < y }

and define y*(9)  =  inf S (0). Since F  is non-decreasing in 9, the set S(0) becomes more 

exclusive as 9 increases. Hence, y*(9)  is a non-decreasing function of 9. Formally, if F  is 

increasing in 9, then for 9' >  9, F( f f )  >  F(9)  and

S(9,) =  { y \ F ( y , 9 ' ) < y } c S ( 9 )

Thus,

y*(9' )  =  inf S(0') >  inf S(9) =  y*(0)

Therefore, if F  is increasing in 9, the fixed point y*(9)  is increasing in 0 too. □
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3.3 Payment Systems

Payment and securities settlement systems are essential components of the financial systems 

and vital to the stability of any economy. A key element of the payment system is the 

interbank payment system that allows funds transfers between entities. Large-value (or 

wholesale) funds transfer systems are usually distinguished from retail systems. Retail funds 

systems transfer large volumes of payments of relatively low value while wholesale systems are 

used to process large-value payments. Interbank funds transfer systems can also be classified 

according to their settlement process. The settlement of funds can occur on a net basis 

(net settlement systems) or on a transaction-by-transaction basis (gross settlement systems). 

The timing of the settlement allows another classification of these systems depending on 

whether they settle at some pre-specified settlement times (designated-time (or deferred) 

settlement systems) or on a continuous basis during the processing day (real-time settlement 

systems).

A central aspect of the design of large-value payment systems is the trade-off between 

liquidity and settlement risk. Real-time gross settlement systems are in constant need of 

liquidity to settle payments in real time while net settlement systems are very liquid but 

vulnerable to settlement failure2. In the last twenty years, large-value payments systems 

have evolved rapidly towards greater control of credit risk3.

In the United States, the two largest large-value payment systems are the Federal Reserve 

Funds and Securities Services (Fedwire) and the Clearing Flouse Interbank Payments System 

(CHIPS). CHIPS, launched in 1970, is a real-time, final payment system for US dollars that

2Zhou (2000) discusses the provision of intraday liquidity by a central bank in a real-time gross settlement 
system and some policy measures to limit the potential credit risk.

3Martin (2005) analyzes the recent evolution of large-value payment systems and the compromise be­
tween providing liquidity and settlement risk. See also Bech and Hobijn (2006) for a study on the history 
and determinants of adoption of real-time gross settlement payment systems by central banks across the 
world.
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uses bi-lateral and multi-lateral netting to clear and settle business-to-business transactions. 

CHIPS is a bank-owned payment system operated by the Clearing House Interbank Payments 

Company L.L.C. whose members consist of 46 of the world's largest financial institutions. 

It processes over 300,000 payments on an average day with a gross value of $1.5 trillion.

Fedwire is a large-dollar funds and securities transfer system that links the twelve Banks 

of the Federal Reserve System4. The Fedwire funds transfer system, which we will discuss 

in more detail below, is a real-time gross settlement system, developed in 1918, that settles 

transactions individually on an order-by-order basis without netting. The average daily value 

of transactions exceeded $2 trillion in 2005 with a volume of approximately 527,000 daily 

payments. Settlement of most US government securities occurs over the Fedwire book-entry 

security system, a real-time deli very-versus-payment gross settlement system that allows 

the immediate and simultaneous transfer of securities against payments. More than 9,100 

participants hold and transfer US Treasury, US government agency securities and securities 

issued by international organizations such as the World Bank. In 2005 it processed over 

89,000 transfers a day with an average daily value of $1.5 trillion. Figure 3.1 depicts the 

evolution of the average daily value and volume of transfers sent over CHIPS and Fedwire.

3.3.1 Fedwire Funds Service

Fedwire Funds Service, owned and operated by the Federal Reserve Banks, is an electronic 

payment system that allows participants to make same-day final payments in central bank 

money. An institution that maintains an account at a Reserve Bank can generally become a 

Fedwire participant. Approximately 9,400 participants are able to initiate and receive funds 

transfers over Fedwire. When using the Fedwire Funds Service, a sender instructs a Federal

4See Gilbert et al. (1997) for an overview of the origins and evolution of Fedwire.
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Figure 3.1: Average daily value (a) ($ trillion) and volume (b) (thousands) of 
transactions over CHIPS, Fedwire Funds Service and Fedwire Securities Service, 
1989-2005. Source: The Federal Reserve Board and CHIPS.

Reserve Bank to  debit its own Federal Reserve account for the amount o f the transfer and 

to  credit the Federal Reserve account o f another participant.

The Fedwire Funds Service operates 21.5 hours each business day (Monday through 

Friday), from 9.00 p.m. Eastern Time (ET) on the preceding calendar day to  6.30 p.m. 

ET5. It was expanded in December 1997 from ten hours to  eighteen hours (12:30 a.m. - 

6:30 p.m.) and again in May 2004 to  accommodate the twenty-one and a half operating 

hours. This change increased overlap o f Fedwire’s operating hours w ith  foreign markets and 

helped reduce foreign exchange settlement risk.

A Fedwire participant sending payments is required to  have sufficient funds, either in

the form o f account balance or overdraft capacity, or the payment order may be rejected.

The Federal Reserve imposes a minimum level o f reserves, which can be satisfied w ith vault

cash6 and balances deposited in Federal Reserve accounts, neither o f which earn interest. A

5A detailed description of Fedwire Funds Service operating hours can be found at 
www.frbservices.org/Wholesale/FedwireOperatingHours.html.

6Vault cash refers to U.S. currency and coin owned and held by a depository institution.

—  CHIPS
° Fedwire Funds Service

- •  - Fedwire Securities Service
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http://www.frbservices.org/Wholesale/FedwireOperatingHours.html
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Fedwire participant may also commit itself or be required to hold balances in addition to any 

reserve balance requirement (clearing balances). Clearing balances earn no explicit interest 

but implicit credits that may offset the cost of Federal Reserve services. Fedwire participants 

thus tend to optimize the size of the balances in their Federal Reserve accounts7.

When an institution has insufficient funds in its Federal Reserve account to cover its 

debits, the institution runs a negative balance or daylight overdraft. Daylight overdrafts 

result because of a mismatch in timing between incoming funds and outgoing payments 

(McAndrews and Rajan (2000)). Each Fedwire participant may establish (or is assigned) a 

maximum amount of daylight overdraft known as net debit cap8. An institution's net debit 

cap is a function of its capital measure. Specifically, it is defined as a cap multiple times 

its capital measure, where the cap multiple is determined by the institution’s cap category. 

An institution's capital measure varies over time while its cap category does not normally 

change within a one-year period. Each institution’s cap category is considered confidential 

information and hence it is unknown to other Fedwire participants (Federal Reserve (2005), 

Federal Reserve (2006d)).

In 2000 the Federal Reverse Board’s analysis of overdraft levels, liquidity patterns, and 

payment system developments revealed that although approximately 97 percent of depos­

itory institutions with positive net debit caps use less than 50 percent of their daylight 

overdraft capacity, a small number of institutions found their net debit caps constraining 

(Federal Reserve (2001)). To provide additional liquidity, the Federal Reserve now allows 

certain institutions to pledge collateral to gain access to daylight overdraft capacity above 

their net debit caps. The maximum daylight overdraft capacity is thus defined as the sum

7Bennett and Peristiani (2002) find that required reserve balances in Federal Reserve accounts have 
declined sharply while vault cash applied against reserve requirements has increased. They argue that 
reserve requirements have become less binding for US commercial banks and depository institutions.

8Appendix 3.8.1 briefly reviews the evolution of net debit caps and describes the different cap categories 
and associated cap multiples.
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of the institution’s net debit cap and its collateralized capacity.

To control the use of intraday credit, the Federal Reserve began charging daylight over­

draft fees in April 1994. The fee was initially set at an annual rate of 24 basis points and 

it was increased to 36 basis points in 19959. At the end of each Fedwire operating day 

the end-of-minute account balances are calculated. The average overdraft is obtained by 

adding all negative end-of-minute balances and dividing this amount by the total number of 

minutes in an operating day (1291 minutes). An institution’s daylight overdraft charge is 

defined as its average overdraft multiplied by the effective daily rate (minus a deductible). 

Table 3.4 presents an example of the calculation of a daylight overdraft charge. An institu­

tion incurring daylight overdrafts of approximately $3 million every minute during a Fedwire 

operating day would face an overdraft charge of $6.58.

At the end of the operating day, a Fedwire participant with a negative closing balance 

incurs overnight overdraft. An overnight overdraft is considered an unauthorized extension 

of credit. The rate charged on overnight overdrafts is generally 400 basis points over the 

effective federal funds rate. If an overnight overdraft occurs, the institution will be contacted 

by the Reserve Bank, it will be required to hold extra reserves to make up reserve balance 

deficiencies and the penalty fee will be increased by 100 basis points if there have been more 

than three overnight overdraft occurrences in a year. The Reserve Bank will also take other 

actions to minimize continued overnight overdrafts (Federal Reserve (2006a)).

9Fedwire operates 21.5 hours a day, hence the effective annual rate is 32.25 basis points (36 x  and 
the effective daily rate is 0.089 basis points (32.25 x
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3.4 An Example of Payment System

In this section we present numerical simulations of a stylized payment system reminiscent 

of Fedwire. We first describe the payment system and next we introduce the characteristics 

of a standard day of transactions in this payment system.

3.4.1 The Payment System

Consider a network of four banks. Each bank sends and receives payments from other 

members of the payment system. The payment system opens at 9.00 p.m. on the preceding 

calendar day and closes at 6.30 p.m. Every bank begins the business day with a positive 

balance at its central bank account and may incur daylight overdrafts to cover negative 

balances up to its net debit cap. For simplicity we assume initial balances and net debit 

caps of equal size. The expected value of bank i ’s outgoing payments equals the expected 

value of its incoming funds to guarantee that no bank is systematically worse off. Each 

member of the payment system is subject to idiosyncratic shocks which determine its final 

payments.

Following McAndrews and Potter (2002) we define outgoing transfers as a linear func­

tion of the payments a bank receives from all other banks. Specifically, at every minute 

of the operational day, bank / pays at most 80 percent of its cumulative receipts and a 

proportion of its reserves and credit capacity (which we fix at 10 percent of the bank’s net 

debit cap). We assume banks settle obligations whenever they have sufficient funds. When 

the value of payments exceeds 80 percent of a bank's incoming funds and 10 percent of 

its net debit cap, payments are placed in queue. Queued payments are settled as soon as



72 Systemic Risk and Liquidity in Payment Systems

sufficient funds become available10.

When banks use more than 50 percent of their own daylight overdraft capacity11, they 

become concern about liquidity shortages and reduce the value of their outgoing transfers. 

Inspired by McAndrews and Potter’s estimates of the slope of the reaction function of banks 

during the September 11, 2001, events, we assume that banks would then pay at most 20 

percent of their incoming funds. Table 3.1 summarizes how banks organize their payments.

Banks pay a t most:
N o r m a l  c o n d i t i o n s C o n c e r n e d  a b o u t  l i q u i d i t y

80% of its cumulative receipts 
and up to 

10% of the bank’s net debit cap

20% of its cumulative receipts 
and up to 

10% of the bank’s net debit cap

Table 3.1: Outgoing payments.

Once bank / becomes concerned about a liquidity shortage and reduces the slope of its 

reaction function, it faces one of two possible scenarios. Its balance may become positive (it 

has been receiving funds from all other banks according to the 80 percent rule while it has 

been paying out only 20 percent of its incoming transfers). The “episode" would be over 

and bank / would return to normal conditions. However, it may also be possible that despite 

reducing the amount of outgoing payments its demand for daylight overdraft continues to 

rise. Bank / would incur negative balances up to its net debit cap. At that time, it would 

stop using intraday credit to make payments and any incoming funds would be devoted to 

settle queued payments and to satisfy outgoing transfers at the 20 percent rate per minute.

We first introduce the baseline setting. Then, in Section 3.5, we analyze what happens

10To avoid excessive fluctuations we consider that if at any time bank i's use of reserves and credit 
capacity is below the 10 percent threshold, bank / will devote its spare capacity to  settle queued payments. 
Otherwise, payments will remain in queue.

“ According to a Federal Reserve Board’s review, in 2000, 97 percent of depository institutions with 
positive net debit caps use less than 50 percent of their daylight overdraft capacity (Federal Reserve (2001)).
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when a bank attempts to conserve cash holdings. Section 3.6 discusses the potential impli­

cations of miscoordination in payments and a policy intended to economize on the use of 

intraday credit.

3.4.2 Standard Functioning of the Payment System

We consider a payment system as the one just described above and focus on the functioning 

of the payment system during one business day. The value of payments by time of the day is 

depicted in Figure 3.2(a). Payments are defined to follow the pattern of the average value 

of transactions sent over the Fedwire Funds Service12. Thus, as in the case of Fedwire, 

the market opens at 9.30 p.m. on the preceding calendar day, there is almost no payment 

activity before 8 a.m. and from then on the value of payments increases steadily and it 

peaks around 4.30 p.m. and again around 5.15 p.m.13 The market closes at 6.30 p.m.

Each bank starts the operating day with a positive balance in their Federal Reserve 

accounts, which we assume equal to 10. Figure 3.2(b) plots the balances at the central 

bank account of each member of the payment system during this business day. Before 8 

a.m. all balances remain close to the opening balance because of the low payment activity. 

Let us focus our attention on banks B and C, for instance. Bank C initially receives more 

payment orders than transfers. Bank B represents the opposite case. Just after 1 p.m. 

bank C starts running negative balances and thus incurring daylight overdrafts as illustrated 

in Figure 3.2(c). Overdrafts peak at 5.10 p.m., shortly after bank C places some payments 

in queue. The top panel of Figure 3.2(d) presents the payments placed in queue at each 

minute of the operating day. In this case, queued payments are settled at the next minute.

12See McAndrews and Rajan (2000) (Chart 3) and Coleman (2002) (Chart 1).
13The average value of Fedwire funds peaks at 4.30 p.m. and at 5.15 p.m. most likely from settlement at 

the Depositary Trust Company and from institutions funding their end-of-day positions in CHIPS respectively 
(Coleman (2002)).
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After that, bank C begins receiving more payments than payment orders. A t 5.25 p.m. it 

runs a positive balance and ends the day with a positive balance (its closing balance more 

than doubles its opening balance).
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As shown in Figures 3.2(c) and the top panel o f 3.2(d), banks A, B and D  also incur 

daylight overdrafts and delayed payments. Banks A and D  reach the end o f the operating day 

with positive balances while B  runs a negative closing balance and it will need to  “sweep”
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deposits from another account to its account at the central bank to avoid an overnight 

overdraft charge (Figure 3.2(b)).

In this exercise, we set net debit caps equal to 100. During this business day, none of 

the four banks have reached half of their net debit caps (their balances never fall below 

—50 (50 percent of their cap)) and hence every bank sends out payments according to the 

80 percent rule. The slope of their reaction functions is thus 0.8 as depicted in the bottom 

panel of Figure 3.2(d).

Overall, this example pictures the smooth functioning of the payment system. Let us 

now introduce a more interesting scenario.

3.5 Increased Precautionary Demand

Consider a member of the payment system becomes suddenly concerned about a liquidity 

shortage. Suppose, for instance, this bank wants to conserve cash holdings because the 

conduits, SIVs or other off-balance sheet vehicles that it is sponsoring have drawn on credit 

lines as experienced in credit markets during the recent market turmoil.

We are interested in the consequences of an increase in the liquid balances targeted by 

one bank in our payment system. Specifically, we assume bank A is the one concerned about 

a liquidity shortage. To preserve cash, bank A decides to pay only 20 percent of the funds it 

receives (and up to 10 percent of its net debit cap per minute). Banks B, C and D  initially 

behave as in the baseline setting, i.e. they send out payments according to the 80 percent 

rule. As a result, even though there is almost no payment activity before 8 a.m., the size 

of bank A ’s balance increases steadily as it receives transfers at the 80 percent rate while 

paying out at most 20 percent of the funds it receives. The evolution of the balances hold
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at the central bank accounts as a function o f time is depicted in Figure 3.3(b). Comparing 

Figure 3.3(b) to  Figure 3.2(b) clearly shows tha t both the size and pattern o f these balances 

differ from the standard functioning o f the payment system described in Subsection 3.4.2.
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Just before 1 a.m., banks B, C and D  begin running negative balances (Figure 3.3(b)) 

and incurring daylight overdrafts (Figure 3.3(c)). Around 10.15 a.m. their daylight over­

drafts exceed half o f their caps (Figure 3.3(b)) and they start paying out at most 20 percent 

o f the funds they receive as illustrated in the bottom panel o f Figure 3.3(d). A t noon, banks
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B, C and D's daylight overdrafts reach their net debit caps (Figure 3.3(c)) and they start 

placing payments in queue (top panel of Figure 3.3(d)). At that time, total payments are 

finally disrupted as shown in Figure 3.3(a).

It is important to highlight that a change in preferences of a member of the payment 

system towards more liquid balances induces the following effects. First, it causes full 

disruption of payments. Payment activity is disrupted as soon as the other members reach 

their maximum credit capacity. Second, the size of banks’ balances hold at the Federal 

Reserve increases compared to the standard functioning of the payment system. Thirdly, a 

raise in precautionary demand leads to an enormous use of intraday credit.

3.6 Miscoordination and Multiple Settlements

In this section we analyze, first, if the payment system is sensitive to timing miscoordination. 

Secondly, we discuss the possibility of having two synchronization periods (instead of having 

only one late in the afternoon).

3.6.1 Timing Miscoordination

In the U.S. payment system, banks in aggregate make payments that exceed their deposits 

at the Federal Reserve Banks by a factor of more than 10014. To achieve such velocities a 

high degree of coordination and synchronization is required. In the standard functioning of 

the payment system, introduced in Subsection 3.4.2, we assumed banks could synchronize 

their payment activity perfectly, i.e., we considered the value of the payments made by every 

bank exhibited exactly the same pattern. In the next example, we examine the response of

14See McAndrews and Potter (2002).
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the payment system to  miscoordination in the tim ing o f payments. Specifically, suppose that 

banks experience a five-minute delay w ith respect to  each others. Figure 3.4 summarizes 

our findings.
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Figure 3.4: T im i n g  M is c o o r d in a t io n  - Total value of payments sent over the 
Payment System (a), banks’ balances (b), value of daylight overdrafts (c), queued 
payments and slopes of reaction functions (d) by time of the day.

Payments are organized as follows. Bank A starts sending out payments first. B begins 

five minutes after A, then C after B  and D  will be the last one. As a result, there will 

be a mismatch in tim ing between the settlement o f payments owned and the settlement of 

payments due. Initially, bank A makes more payments that it receives (Figure 3.4(b)) and 

hence it incurs daylight overdrafts as shown in Figure 3.4(c). The bank tha t pays first will
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demand the largest amount of intraday credit. Then, the bank after the first one and so 

on (Figure 3.4(c)). This pattern persists across business days (simulations). Once a bank 

has used half of its credit capacity, it starts making payments according to the 20 percent 

rule. This is depicted in the bottom panel of Figure 3.4(d). The top panel of Figure 3.4(d) 

reports the payments placed in queue.

Banks A and B end the operating day with a negative balance while banks C and D  

run positive closing balances. We could think this is a consequence of the time mismatch. 

However, this is not the case. In this exercise, payments are delayed but the expected value 

of outgoing funds and incoming payments is still the same. To emphasize this result we 

present a different business day in Figure 3.5. Now, banks A and B hold a positive closing 

balance while banks C and D  will need to "sweep” deposits to avoid the overnight overdraft 

penalty rate.

A five-minute miscoordination in payments thus induces an increase in the size of bal­

ances at the central bank accounts and a more intense use of the intraday credit compared 

to the standard functioning of the payment system.

3.6.2 Multiple Settlement Periods

To economize on the use of intraday credit, a potential operational change in settlement 

systems which is being considered (Federal Reserve (2006b)) is the possibility of developing 

multiple settlement periods. An example of such policy could be the establishment of two 

synchronization periods, one late in the morning and then another early in the afternoon 

peak, as proposed by McAndrews and Rajan (2000).

Assume there is an additional synchronization period around noon such that the value of
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Figure 3.5: T im in g  M is c o o r d in a t io n  (D ifferent business day)

payments sent over the payment system follows the pattern in Figure 3.6(a). Let us discuss 

the response of the payment system to  such policy. Our results are reported in Figure 3.6.

Relative to  the standard functioning, we find that introducing multiple synchronization 

periods does not alter significantly the size o f banks’ balances at their central bank accounts 

or the ratio between outgoing and incoming funds. This is depicted in Figures 3.2(b) and 

3.6(b) and at the bottom  panel o f Figures 3.2(d) and 3.6(d). On the contrary, it reduces 

the use o f daylight overdraft (Figures 3.2(c) and 3.6(c)) and the amount o f payments in



3.6 Miscoordination and Multiple Settlements 81

(a) (b)
100

2  70
c

I  60raa
=5 50
o
<a

03
>

21:00 23:00 1:00 3:00 5:00 7:00 9:00 11:00 13:00 15:00 17:00

  Bank A
- -  Bank B
-  - Bank C

Bank D

c

-20

-3 0 1--------»-------- *-------->-----------------«-------------■---------------------*---------------------*---------------------.--------------------- *-1—
21:00 23:00 1:00 3:00 5:00 7:00 9:00 11:00 13:00 15:00 17:00

(c)
  Bank A
- - Bank B
—  Bank C 

Bank D

o 10

21:00 23:00 1:00 3:00 5:00 7.00 9:00 11:00 13:00 15:00 17:00

(d)

E

12
■o
ID

I  1o
2<i

5 1

 Bank A
 Bank B
—  Bank C 

Bank D

0023:00 1:00 3:00 5:00 7:00 9:00 11:00 13:00 15:00 17:00 
Eastern Time

 Bank A
- - Bank B 

- -  Bank C 
Bank D

:00 23:00 1:00 3.00 5:00 7:00 9:00 11:00 13:00 15:00 17:00 
Eastern Time
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queue (bottom  panel o f Figures 3.2(d) and 3.6(d)).

We conclude that having two synchronization periods does economize on the use of 

intraday credit.
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3.7 Concluding Remarks

The focus of the paper is on the role of liquidity in a flow system. We argue for the 

importance of the interdependence of the flows in high-value payment systems. High-value 

payment systems such as the interbank payment systems that constitute the backbone of the 

modern financial system, link banks and other financial institutions together into a tightly 

knit system. Financial institutions rely heavily on incoming funds to make their payments 

and as such, their ability to execute payments will affect other participants’ capability to 

send out funds. Changes in outgoing transfers will affect incoming funds and incoming 

funds changes will affect outgoing transfers. The loop thus created may generate amplified 

responses to any shocks to the high-value payment system.

We draw from the literature on lattice-theoretic methods to solve for the unique fixed 

point of an equilibrium mapping in high-value payment systems. Using numerical simu­

lations based on simple decision rules which replicate the observed data on the Fedwire 

payment system in the U.S., we then perform comparative statics analysis on changes to 

the environment of this payment system. We find that changes in preferences towards more 

conservative balances by one bank in the payment system leads to a full disruption of pay­

ments, increased balances at the Federal Reserve accounts and an immense use of intraday 

credit.

Our framework also allows simulations of counterfactual "what if” scenarios of distur­

bances that may lead to gridlock and systemic breakdown, as well as the consequences 

of potential policies such as the possibility of multiple settlement periods. We show that 

introducing a second synchronization period late in the morning economizes on the demand 

for intraday credit.
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3.8 Appendix

3.8.1 Net Debit Caps

In 1985, the Federal Reserve Board developed a payment system risk policy on risks in large- 

dollar wire transfer systems. The policy introduced four categories of limits (net debit caps) 

on the maximum amount of daylight overdraft credit that the Reserve Banks extended 

to depository institutions: high, above average, average and zero. In 1987 a new net 

debit cap ( de minimis) was approved. It was intended for depository institutions that incur 

relatively small overdrafts. The Board incorporated a sixth cap class ( exempt-from-filing) 

and modified the existing de minimis cap multiple in 1990. The de minimis cap multiple was 

then increased in 1994 when daylight overdraft fees were introduced15. A brief summary16 

of the actual cap categories and their associated cap multiples for maximum overdrafts on 

any day (single-day cap) and for the daily maximum level averaged over a two-week period 

(two-week average cap) are presented in Tables 3.2 and 3.3.

3.8.2 Example Daylight Overdraft Charge Calculation

Table 3.4 contains an example of the calculation of a daylight overdraft charge.

15For a comprehensive study of the history of Federal Reserve daylight credit see Coleman (2002). See 
also Federal Reserve (2005).

16For a detailed reference, see Federal Reserve (2006c).
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Table 3.2: Brief definition of cap categories.

Cap Category Chosen by institutions that Requirements

High 

Above Average 

Average

Regularly incur daylight 
overdrafts in excess of 

40 percent of their capital.

They are referred to as 
"self-assessed".

Self-assessment of own creditworthiness, 
intraday funds management, customer 

credit and operating controls and contingency 
procedures. Each institution’s board of 

directors must review the self-assessment 
and recommend a cap category at least 

once in each twelve-month period.

De minimis Incur relatively small 
daylight overdrafts.

Board-of-directors resolution approving 
use of daylight credit up to de minimis 

cap at least once in each 12-month period.

Exempt-from-filing Only rarely incur 
daylight overdrafts.

Exempt from performing self-assessments 
and filing board-of-directors resolutions.

Zero

Do not want to incur daylight 
overdrafts and associated fees. 

A Reserve Bank may assign 
a zero cap to institutions 

that may pose special risks.

Table 3.3: Net debit cap multiples of capital measure.

Cap Category Single Day Two-week Average
High 2.25 1.50

Above Average 1.875 1.125
Average 1.125 0.75

De minimis 0.4 0.4
Exempt-from-filinga min{$10 million,0.2} min{$10 million,0.2}

Zero 0.0 0.0

aThe net debit cap for the exempt-from-filing category is equal to the lesser of $10 million or 0.20 
multiplied by a capital measure.
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Table 3.4: Daylight Overdraft Charge

Example of Daylight Overdraft Charge Calculation3

Policy parameters
Official Fedwire day =  21.5 hours 

Deductible percentage of capital =  10%
Rate charged for overdrafts =  36 basis points (annual rate)

Institution’s parameters
Risk-based capital =  $50 million 

Sum of end-of-minute overdrafts for one day =  $4 billion

Daily Charge calculation
Effective daily rate =  .0036 x (21.5/24) x (1 /360) =  .0000089 

Average overdraft — $4,000,000,000 /  1291 minutes =  $3,098,373 
Gross overdraft charge =  $3,098,373 x .0000089 =  $27.58 

Effective daily rate for deductible =  .0036 x (10 /24) x (1 /360) =  .0000042 
Value of the deductible =  .10 x $50,000,000 x .0000042 =  $21.00 

Overdraft charge =  27.58 - 21.00 =  $6.58

aFederal Reserve (2006d).
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CH APTER 4

Liquidity and Congestion

T h is  c h a p t e r  studies the relationship between the arrival of potential 

investors and market liquidity in a search-based model of asset trading. 

The entry of investors into a specific market causes two contradictory 

effects. First, it reduces trading costs, which then attracts new investors 

(thick market externality effect). But secondly, as investors concentrate 

on one side of the market, the market becomes ‘,congested,,, decreasing 

the returns to participating in this market and discouraging new investors 

from entering ( congestion effect). The equilibrium level of market liquidity 

depends on which of the two effects dominates. When congestion is the 

leading effect, some interesting results arise. In particular, we find that 

diminishing trading costs in our market can deteriorate liquidity and reduce 

welfare.
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4.1 Introduction

Liquidity is sometimes defined as a coordination phenomenon. In financial markets, as 

investors move into a specific market they facilitate trade for all investors by reducing the 

cost of participating in this market. At the same time, easier trade and lower trading costs 

attract potential investors. There is a thick market externality where new investors provide 

market liquidity and market liquidity attracts new investors. However, as investor prefer 

to join one side of a market, i.e. as they become buyers or sellers, this side of the market 

becomes "congested” , hindering trade. Congestion then discourages investors from entering 

this market.

One-sided markets arise during financial booms and, more drastically, during market 

crashes. When a market is in distress, liquidity typically vanishes playing a key role in the 

build-up of one-sided markets. The study of liquidity in one-sided markets is thus vital to 

understand the response of financial systems to the threat of market disruptions. Recent 

episodes of market distress include the LTCM crisis1 in 1998, the September 11, 2001, 

events2 and the turbulence in credit markets3 during the summer of 2007.

In this paper we present an alternative view of market liquidity. The main difference 

with the previous literature is that we consider not only a thick market externality but also 

a congestion effect. In our model, the arrival of new investors causes two opposite effects. 

First, it diminishes transaction costs and eases trade, which attracts potential investors. But

1For an analysis of the events surrounding the market turbulence in autumn 1998, see BIS (1999) and 
IM F (1998).

2Cohen and Remolona (2001) presents a summary of the September 11, 2001 episode in global financial 
markets. Also, McAndrews and Potter (2002) gives a detailed account of the consequences of the Septem­
ber 11, 2001, events on the US payment system and of the actions of the Federal Reserve System to provide 
liquidity to the financial system.

3See Fender and Hordahl (2007) for an overview of the key events over the period from end-May to 
end-August 2007. Greenlaw et al. (2008) analyzes relevant credit market events since August 2007 with 
special emphasis on their main policy implications. See also Brunnermeier (2008).
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secondly, as investors concentrate on one side of the market, trade becomes more difficult, 

reducing the returns to participating in this market and discouraging potential investors from 

entering. Market liquidity thus results from the tradeoff between thick market externalities 

and a congestion effect.

We assume an infinite-horizon steady-state market where agents can invest in one asset 

which can be traded only bilaterally. In this market, investors cannot trade instantaneously 

but it takes some time to find a trading partner resulting in opportunity and other costs. 

Once an investor buys the asset, he holds it until his preference for the ownership change 

and he prefers to liquidate the investment and exit the market. To model the search process 

we adopt the framework introduced in Vayanos and Wang (2007). In our setting though, 

investors are heterogeneous in their investment opportunities in the sense that some investors 

have access to better investment options than others.

We compute explicitly the unique equilibrium allocations and the price at which investors 

trade with each other and show how they depend on the flow of new investors entering the 

market. Prices negotiated between investors are higher in the flow of potential investors. 

However, investors' entry decision is endogenous and thus depends on market, asset and 

investors characteristics. A change in investors’ search abilities, for instance, affects both 

the rate of meetings between trading partners and the flow of investors entering the market, 

which then determines the distribution of potential partners with whom they can meet.

Moreover, the equilibrium flow of investors arises from a tradeoff between thick market 

complementarities and a congestion effect. When congestion is the dominating effect some 

interesting results come to light. First, reducing market frictions can decrease market 

attractiveness. Under some cases, one-sided markets can develop. A regulatory reform 

or the introduction of a technological advance, such as a new electronic trading system, 

can induce an adverse effect on the distribution of investors during upswings. Specifically,
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it would allow the few sellers present in the market to exit at faster rates leading to an 

even more unbalanced distribution of investors. Congestion then intensifies as the market 

becomes more one-sided, discouraging potential investors and thus dampening down the 

attractiveness of this market.

Second, diminishing market frictions can deteriorate market liquidity and reduce welfare. 

The reason for this counterintuitive result is the following. In a one-sided market with more 

sellers than buyers, for example during a fire sale, introducing a measure that improves the 

efficiency of the search process makes it easier for one of the few buyers present in the 

market to acquire the asset. But when the buyer purchases the asset (and a seller exits), 

the proportion of buyers to sellers falls further and the market becomes more one-sided. As 

investors cluster on the sell-side of this market, buyers gain a more favorable position in 

the bargaining process and try to lower the price they pay to acquire the asset. Reducing 

market frictions in a distressed market thus magnifies the effect of congestion and results in 

a lower asset price (a higher price discount) and ultimately in a less liquid market. Investors 

who hold this asset and those trying to sell it are clearly worse-off as the market becomes 

more one-sided, leading to a decrease in overall welfare. From this point of view, this paper 

provides an example of the Theory of the Second Best. Improving the efficiency of the 

search process, when there are other imperfections in the market such as the ones arising 

from the congestion effect, is not necessarily welfare enhancing.

Third, market illiquidity measured by the price discount can increase while trading vol­

ume rises. Reducing search frictions during downswings amplifies the effect of congestion, 

resulting in a higher price discount and in a less liquid market. But a more efficient search 

process also increases the frequency of meetings between the investors already present in the 

market. More frequent meetings then translates into a higher trading volume. Thereby, a 

measure intended to shorten the waiting times needed to locate a trading partner in a mar­
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ket experiencing distressed selling can cause both higher price discount and higher trading 

volume. This third result joins the discussion on the measurement of the effect of liquidity 

on asset prices and shows how alternative measures capture different dimensions of market 

liquidity.

The outline of the paper is as follows. In the next section, we discuss the related 

literature. We introduce a theoretical framework to examine the relationship between market 

liquidity and the arrival of potential investors to this market in Section 4.3. Section 4.4 

determines the population of investors, their expected utilities and the price of the asset, 

taking as given investors’ decision to enter the market. Then, Section 4.5 endogenizes the 

entering rule and characterizes the study of the unique market equilibrium. Market liquidity 

and welfare are discussed in Section 4.6. Finally, Section 4.7 concludes. Some proofs and 

additional results are presented in the appendices.

4.2 Related Literature

The notion of thick market complementarity is clearly captured in Diamond (1982a). He 

considers an economy where islanders face production opportunities and decide whether to 

remain unemployed or to climb a palm tree and retrieve coconuts. Trees differ in their 

heights (the cost of production). Islanders only climb trees shorter than a certain height 

and they cannot consume the coconuts they pick. They need to search for a trade to swap 

the coconuts. The likelihood of meeting a trading partner in this economy increases in the 

number of potential traders available. This key feature constitutes the basis of the strate­

gic complementarity in Diamond’s model. This is highlighted in Cooper and John (1988), 

where they discuss the economic relevance of strategic complementarities in agents' payoffs 

and explain how they can lead to coordination failures. A related argument is presented in
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Milgrom and Roberts (1990). They show the Diamond-type search model is a supermod- 

ular4 game, where more production or participation activity by some islanders raises the 

returns to increased levels of activity by others.

Building on strategic complementarities Brunnermeier and Pedersen (2007) and Gromb 

and Vayanos (2002) analyze the link between capital and market liquidity. Also, Pagano 

(1989) focuses on the feedback loop between trading volume and liquidity to study concen­

tration and fragmentation of trade across markets. In Dow (2004), multiple equilibria with 

di-fferent degrees of market liquidity result from informational asymmetries. Plantin (2004) 

assumes investors can learn privately about an issuer’s credit quality by holding an asset. 

This "learning by trading" also creates a thick market externality. From a broad perspective, 

this literature studies liquidity as a self-fulfilling phenomenon where both liquid and illiquid 

market equilibria may arise. Illiquid markets are thus a consequence of a coordination failure.

Our paper is also related to the search literature. The economics of search have their 

roots in Phelps (1972). Search-theoretic models such as the frameworks introduced in labour 

markets5 by Diamond (1982a), Diamond (1982b), Mortensen (1982) and Pissarides (1985) 

have been broadly used in different areas of economics. In asset pricing6, Duffie, Garleanu 

and Pedersen introduce search and bargaining in models of asset market equilibrium to 

study the impact of these sources of illiquidity on asset prices. This paper is related to 

Duffie et al. (2005), which presents a theory of asset pricing and marketmaking in over-the- 

counter markets with search-based inefficiencies. They conclude that risk neutral investors 

receive narrower bid-ask spreads if they have easier access to other investors and marketmak- 

ers. Similarly to Duffie et al. (2005) we consider risk-neutral agents who can only invest in

4ln the unidimensional case, a supermodular game is a game exhibiting strategic complementarities in 
which each agent’s strategy set is partially ordered. See Topkis (1979) and Cooper (1999) for a formal 
definition.

5See Pissarides (2001) for a review of the literature on search in labour markets.
6For an excellent review on liquidity and asset prices, see Amihud et al. (2005).
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one asset. In our model though, investors can only trade with other investors and our focus, 

rather than on liquidity and marketmaking, lies on the endogenous relationship between 

market liquidity and the arrival of potential investors to this market.

Duffie et al. (2007) extends their setting to incorporate risk aversion and risk limits 

and finds that, under certain conditions, search frictions as well as risk aversion, volatility 

and hedging demand increase the illiquidity discount. Lagos and Rocheteau (2007) also 

generalizes Duffie et al. (2005) to allow for general preferences, unrestricted long positions, 

idiosyncratic and aggregate uncertainty and entry of dealers. Our paper shares with theirs 

the existence of strategic complementarities and an endogenous entry decision. To define 

the entry of dealers, Lagos and Rocheteau (2007) specify that the contact rate between 

investors and dealers increases sublinearly in the number of dealers. In our framework, entry 

is the result of a decision problem where investors compare the benefits of this market to 

their best investment opportunities.

Weill (2007) and Vayanos and Wang (2007) extend the framework of Duffie, Garleanu 

and Pedersen to allow investors to trade multiple assets7. They show that search fric­

tions lead to cross-sectional variation in asset returns due to illiquidity differences. In 

Vayanos and Wang (2007) investors are heterogeneous in their trading horizons while in 

Weill (2007) investors are homogeneous, but there are differences in the assets’ number 

of tradable shares. From a methodological point of view, our paper is closely related to 

Vayanos and Wang (2007). The main difference with their work is that we consider only 

one asset and focus on the analysis of the liquidity in the market for this asset rather than 

on the liquidity across two assets.

Our paper is close in spirit to Huang and Wang (2007). They also find that decreasing

7See also Vayanos and Weill (2007) for an application to the on-the-run phenomenon, by which recently 
issued bonds have higher prices than older ones with the same cash flows. They develop a multi-asset 
model where both the spot market and the repo market operate through search.
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market frictions can diminish the level of market liquidity. However, their framework and 

the general mechanism that yields this result clearly differ from ours. Rather than a search- 

based model, they consider a centralized market where exogenous transaction costs take 

the form of participation costs. Agents can pay an ex-ante cost to trade constantly (and 

become market makers) or pay a spot cost to trade after observing their trading needs. 

Huang and Wang (2007) argues that, when there is insufficient supply of liquidity, lowering 

the cost to enter on the spot can decrease welfare because it reduces investors’ incentives 

to become market makers. In our model, market liquidity results from a tradeoff between 

thick market externalities and congestion effects. We show that, when the congestion effect 

dominates, the market becomes one-sided and improving the efficiency of the search process 

can diminish market liquidity because it discourages agents from investing into our market.

This paper also relates to the literature on asset pricing with exogenous trading costs 

studied in Amihud and Mendelson (1986), Vayanos (1998) and Acharya and Pedersen (2005), 

among others. We complement this literature by endogenizing transaction costs.

4.3 The Model

Time is continuous and goes from zero to infinity. There is only one asset traded in the 

market with a total supply S. This asset pays a dividend flow d.

Consider risk-neutral agents, whom we will refer to as investors. By assuming risk neu­

trality, we aim to study the concentration of liquidity in a specific market without reference 

to investors’ shifts in their attitudes towards risk. Investors are infinitely lived and have time 

preferences determined by a constant discount rate equal to r >  0. At some random time, 

investors decide to enter the market and aim to buy one unit of the asset. They become
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buyers-to-be. Once they purchase the asset, buyers-to-be become non-searcher investors. 

Non-searchers hold the asset and enjoy the full value d of its dividend flow until they receive 

a liquidity shock which makes them want to liquidate their portfolio and leave the market. 

We assume liquidity shocks arrive with a Poisson rate 7  and reduce investors' valuation to 

a lower level d — x of flow utility, where x >  0  captures the notion of a liquidity shock 

to the investors, for example, a sudden need for cash or the arrival of a good investment 

opportunity in another market, x could also be understood as the holding cost borne by 

the investor who receives a liquidity shock and is aiming to exit the market. At that time, 

non-searcher investors become sellers-to-be and seek to sell8. Upon selling, investors exit 

the market and join the initial group of outside investors.

The flow of investors entering the economy is defined by a function f . Investors are het­

erogeneous in their investment opportunities k, i.e. we consider they differ on their outside 

options as some investors enjoy better investment possibilities than others. We assume f  

is a continuous and strictly positive function of the investor’s investment opportunity class 

n, such that the total flow of investors entering the economy is given by f(n )dK , where 

[k, 7c] is the support of f( /c ) . Only a fraction i/ ( k ) of the flow of investors entering the 

economy decides to invest in this market. At any point in time there is a non-negative flow 

of every class of investor from the outside investors’ group into the market, and hence the 

total flow of investors entering the market is defined by g =  J'* v(K,)f(n)dK,.

We assume markets operate through search, with buyers and sellers matched randomly 

over time in pairs. Search is characteristic of over-the-counter markets where investors need 

to locate trading partners and then bargain over prices. There is a cost associated to this 

search process. In a market where it is more likely to find a counterpart in a short time,

investors are risk neutral and thus have linear utility over the dividend flow d. Consequently, they 
optimally prefer to hold a maximum long position in the asset (which we can normalize to 1) or zero units 
of the asset (once they seek to exit the market).
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the search cost is smaller and liquidity, measured by search costs, is higher. But we could 

think of a broader interpretation of the search friction. In a centralized market, it represents 

the cost of being forced to trade with an outside investor who does not understand the full 

value of the asset and requires an additional compensation for trading. These investors only 

buy the asset at a discount and sell it at a premium. This transaction cost decreases in 

the abundance of investors. In the market of a frequently traded asset, it is less likely that 

it is necessary to trade with an outside investor who "mis-values” the asset and hence the 

transaction cost linked to this asset is smaller and its liquidity higher. In this paper, we use 

the first intuition because of its more transparent interpretation.

We adopt the search framework presented in Vayanos and Wang (2007). To define the 

search process, we first need to describe the rate at which investors willing to buy meet those 

willing to sell and once they meet we need to specify how the asset price is determined. The 

ease in finding a trading partner depends on the availability of potential partners. Let us 

consider that an investor seeking to buy or sell meets other investors according to a Poisson 

process with a fixed intensity. Thus, for each investor the arrival of a trading partner occurs 

at a Poisson rate proportional to the measure of the partner’s group. Denote by 77/, the 

measure of buyers-to-be and by 7/s the measure of investors seeking to sell (sellers-to-be). 

Then, a buyer-to-be meets sellers-to-be with a Poisson intensity \r js and a seller-to-be 

meets buyers-to-be at a rate Xrjb, where A measures the efficiency of the search and a high 

A represents an efficient search process. The overall flow of meetings9 between trading 

partners is then given by Ar]br)s.

Once investors meet they bargain over the price p of the asset. These meetings always 

result in trade as Proposition 4.5 shows. For simplicity we assume that either the investor

9See Duffie and Sun (2007) for a formal proof of this result. This application of the exact law 
of large numbers for random search and matching has previously been used in Duffie et al. (2005), 
Duffie et al. (2007) and Vayanos and Wang (2007) among others.
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willing to  buy or the one willing to  sell is chosen randomly to  make a take-it-or-leave-it offer 

to  his trading partner. Denoting by ^  the probability o f the buyer-to-be being selected 

to  make the offer and thus by ^  the probability tha t the seller-to-be makes the offer, 

z  G  (0, o o )  captures the buyer’s-to-be bargaining power.

Figure 4.1 describes our market, specifying the different types o f investors and the flows 

between types. 770 denotes the measure o f non-searcher investors.

Non­
searcher

Seller-
to-be

Y

Buyer-
to-be

O U T S ID E
IN V E S T O R S

Figure 4.1: An outside investor enters the market and becomes a buyer-to-be aiming 

to  meet a seller-to-be. If he suffers a liquidity shock before meeting a trading  

partner, he exits the market. On the contrary, if he meets a seller-to-be, he bargains 

over the price, buys the asset (pays p) and becomes a non-searcher. He holds the  

asset until he receives a liquidity shock. A t th a t tim e, he becomes a seller-to-be 
seeking a buyer-to-be. W hen he meets a buyer-to-be, he bargains over the price, 
sells the asset (receives p ) and exits the market returning to  the group o f outside 

investors.
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4.4 Analysis

In this section we first solve for the steady-state measure of every type of investor in the 

market. Next, in Subsection 4.4.2, we describe investors’ flow utilities. We show in Subsec­

tion 4.4.3 that every meeting between trading partners results in trade and we discuss thick 

market externalities in Subsection 4.4.4.

4.4.1 Measure of Investors

In this subsection we determine the measure of buyers-to-be (rjb), non-searcher investors 

(770) and sellers-to-be (t]s). Although investors are heterogeneous in their investment op­

portunities k , once they enter the market their class does not alter their behavior in this 

market. Investors develop sudden needs for cash at the same Poisson rate 7 , independently 

of their outside investment opportunities k . In consequence, we do not need to consider the 

distribution of investment opportunities within each population but the aggregate measure 

of buyers-to-be, non-searcher investors and sellers-to-be. This assumption could be gener­

alized by considering 7  a function of the outside option rz. The analysis would be similar 

but the notation more complicated, as we would need to take into account the distribu­

tion of investment opportunities k within each group of investors rather than the aggregate 

measures10.

In equilibrium, the market needs to clear and thus the supply of the asset equals the 

measure of investors holding the asset, each of whom holds one unit of the asset. Specifically, 

the sum of the measures of non-searchers and sellers-to-be is equal to the total supply of

10See Section 3 in Vayanos and Wang (2007) for a particular case.
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the asset:

T]0 +  Vs =  5  = >  Tjs =  5  Tjo (4.1)

In a steady state, the inflow of investors joining a group matches the outflow such that 

the rate of change of the group’s population is zero. The inflow and outflow of the different 

types of investors are summarized in Figure 4.1. Let us first consider the non-searcher 

investors. In this case, inflows are given by the buyers-to-be who meet a trading partner 

and buy the asset (\r)bT}s), while non-searchers receiving a liquidity shock (7770) constitute 

the outflow. Setting inflow equal to outflow and using equation (4.1) yields:

We now analyze the population of buyers-to-be. The flows of investors coming from the 

outside group are defined by g. The outflow is comprised of the buyers-to-be who receive a 

liquidity shock before meeting a trading partner (777*,) and of those who meet sellers-to-be 

and buy the asset (Xr]bTjs). Then,

g =  ir)b +  \r}br]s

Using equations (4.1) and (4.2) we can rewrite the previous equation as:

(4.3)

Equation (4.3) determines 770 as a function of g . Then, substituting 770 in equations 

(4.1) and (4.2) specifies r}s and rjb respectively. Let us first assume the flow of investors 

entering the market g  is constant. We generalize our results in Subsection 4.5.1.
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Proposition 4 .1 . Given g  constant, there is a unique solution to the system (4.1) - (4 .3) 

given by:

Vo = (4.4)

Vs = (4.5)

V b =
7  A 

A27 5 - A
(4.6)

where A =  (g  +  7 S +  p£) -  y j(g  +  7 S +  ^ ) 2 -  4 7 gS.

The proof is presented in Appendix 4.8.1. It is interesting to note how the different 

measures of investors respond to changes in the parameters of our model. For instance, as 

the flow of investors g  entering the market rises, the measure of investors willing to buy 

(buyers-to-be) and of those passively holding the asset (non-searchers) increase. However, 

given that there are more investors seeking to buy the asset, it is now easier for a seller-to-be 

to find a trading partner and hence the measure of investors seeking to sell falls. This is 

summarized in Proposition 4.2 and proven in Appendix 4.8.1.

Proposition 4 .2 . The measure o f buyers-to-be and non-searcher investors is increasing in 

g ( ^ ,  ^  >  0 ) while the measure o f sellers-to-be decreases in g  ( ^  <  0).

Given the measures of investors rjt, seeking to buy and those rjs seeking to sell, the 

efficiency of the search process A defines the overall flow of meetings (and transactions, 

according to Proposition 4.5) in our market. However, the measures of the different types 

of investors also depend on the efficiency of the search process. In particular, for the same 

level of investors entering the market, if the search process is more efficient, there will be 

a lower measure of investors “waiting” to meet a potential seller ( ^ f  <  0). Thus, outside
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investors, who enter the market, meet a trading partner and become non-searcher investors 

at a faster rate if the search process is more efficient >  0). A proportion of non-searcher 

investors then joins the pool of sellers-to-be and hence there is a higher flow of investors 

coming from the non-searchers to the group of sellers-to-be. And, although there are more 

inflows of investors and less investors seeking to buy, if the search process is more efficient, 

the measure of sellers-to-be "waiting” to sell is reduced <  0). Proposition 4.3 presents 

these results:

Proposition 4 .3 . Given g  constant, the measure o f buyers-to-be and sellers-to-be is de­

creasing in X <  0 ) while the measure o f non-searcher investors increases in X

d? > o;.

The proof is in Appendix 4.8.1.

4.4.2 Expected Utilities and Price

We now determine the expected utility of the buyers-to-be ( v )̂, the non-searcher investors 

(vo) and the sellers-to-be (vs), as well as the price p. Investors exit this market because of a 

need for cash. We assume that the expected utility of outside investors is zero. Once they 

are out of the market, investors have different investment opportunities and decide where 

to invest next. They could even choose to re-enter this market again.

To derive the expected utility of every type of investor we analyze the possible transitions 

between types. For example, a buyer-to-be can leave the market if he receives a liquidity 

shock, remain a potential buyer or meet a seller-to-be and become a non-searcher. This is 

summarized in Figure 4.2:

The utility flow rv*, of buyers-to-be is thus equal to the expected flow of exiting the
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Seller-
to-be

Non­
searcher

d  -  x

-  P

Buyer-
to-be

OUTSIDE
INVESTORS

Figure 4.2: Groups o f investors and transitions between groups.

market ( ( 0  — 1̂ ) 7 ) and becoming an outside investor plus the expected flow derived from 

meeting a trading partner seeking to  sell (which occurs at rate \ r ]s), buying the asset (paying

p) and becoming a non-searcher investor ( \ r ]s(vo — vb — p)). Then,

rvb -  - 'y v b  +  \ r js(v0 -  vb -  p) (4.7)

Non-searcher investors can either remain non-searchers enjoying the full value d o f the 

asset's dividend flow or receive a liquidity shock w ith probability 7  and become a seller-to-be. 

In this case, the flow of u tility  o f being a non-searcher is

rv0 =  c/ +  7 (vs -  v0) (4.8)

Sellers-to-be exit the market as soon as they meet a trading partner, i.e., with intensity
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\7]b they sell the asset (receiving p) and become outside investors with zero expected utility. 

Meanwhile, they enjoy a low level d — x  of utility. Thus,

rvs =  {d  — x ) +  \r )b{p +  0 -  vs) (4.9)

The asset price is determined by bilateral bargaining between a buyer-to-be and a seller- 

to-be. We have assumed that with probability ^  the buyer-to-be makes a take-it-or-leave-it 

offer to his trading partner and offers him his reservation value vs. With probability

the seller-to-be is chosen to offer the buyer-to-be his reservation value v0 — v*,. As a result,

p = y T z Vs + I T z ^ 0"  ^  (4'10)

where z measures the buyer’s-to-be bargaining power which we treat as exogenous. Propo­

sition 4.4 summarizes this subsection's main result. The proof is in Appendix 4.8.1.

Proposition 4 .4 . Given g  constant, the system o f equations (4 .7)-(4 .10) has a unique 

solution given by:

I  X  X r l s Z  f  A t  t \

Vb ( r  +  7 + A r7s)z +  7 r +  7

Vo =  d- - k ( x-  +  1------------ * -------- )_ 2 L _  (4.12)
r \ r  (r +  y  +  XnAz +  y / r  +  y

Vs =  d- - k ( x-  +  1------------*  ----------)  (4.13)
r \ r  ( r  +  7  +  Xqs)z  +  7 /

p =  — — k — (4 1 4 )
r r

where k =  ( '  +  7  +  A% )z  +  7
( r  +  7  +  A?7s)z +  ( r  +  7  +  A r)b)

The price of the asset as given by equation (4.14) is thus equal to the present value of
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all future dividend flows d, discounted at the rate r, minus a price discount due to illiquidity. 

The second term is the product of present value of the holding cost x  borne by investors 

seeking to exit the market and a function k. k E ( 0 , 1 ) measures the severity or intensity 

of the illiquidity discount11.

It is interesting to highlight that the asset price will be higher when fundamentals are 

stronger (i.e. if the asset pays a higher dividend flow d) and whenever the demand for the 

asset increases (f§ . >  0). On the contrary, the price decreases with investors trying

to sell the asset and in the buyer's-to-be bargaining power (§ f , <  0). If during the

bargaining process the buyer-to-be holds a more favorable position, he would try to lower 

the price paid to acquire the asset. The proof of this set of comparative statics is presented 

in Appendix 4.8.2.

4.4.3 Trade among Investors

In this subsection we prove a result we have assumed so far in our analysis:

Proposition 4 .5 . All meetings between buyers-to-be and sellers-to-be result in trade.

Proof. Trade between buyers-to-be and sellers-to-be occurs if the gain from trade is strictly 

positive, i.e., if the buyers’-to-be reservation value v0 — vb exceeds the sellers'-to-be reser­

vation value vs. Let us see if (v0 — vb) — vs >  0. Subtracting equations (4.13) and (4.11) 

from (4.12), we get:

, x   *(1  +  z)________
V° Vb Vs (r  +  7 )(1  +  z) +  Xr}sz +  A rjb

11See Section 4.6 for a discussion of market liquidity.
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which is always strictly greater than zero since x, r, 7 , A, r)s, r)b, z >  0.

Therefore, once investors meet, trade among partners always occurs. □

4.4.4 Thick Market Externality

In financial markets, thick market externalities arise when the gains from investing in a 

market depend on the number of investors who decide to come to the market. In this case, 

the more traders move into a market, the easier become the transactions and as a result 

the bigger is the gain derived from participating in this market. In our framework, the price 

of the asset is higher as the flow of investors moving into the market increases12 ( | |  >  0 ). 

As investors arrive to this market, the costs of search are reduced and hence the illiquidity 

discount is diminished. This increases the returns to investing in this market, making it 

more attractive to new investors. To understand how higher participation may encourage 

further participation we need to endogenize investors' entry decisions.

4.5 Equilibrium

In our setting, market equilibrium is determined by the fraction of investors entering the 

market, a measure of each group of investors, their expected utilities and the price of the 

asset. We center our study on the steady-state analysis. In the previous section we take 

as given investors’ decision to enter the market, and we now endogenize the entering rule 

in Subsection 4.5.1. A formal definition of the market equilibrium is then presented in 

Subsection 4.5.2. Subsection 4.5.3 introduces the congestion effect.

12The proof is presented in Appendix 4.8.2.
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4.5.1 Entering Rule

In this subsection we endogenize the entering rule. In our framework, outside investors can 

choose between entering the market, which we will refer to as our market, and investing in 

an alternative market. Investors are heterogeneous in their outside investment opportunities 

k, i.e. each class of investor has access to different investment opportunities. However, 

once they enter our market, their type no longer influences their decisions in the sense that 

every buyer-to-be, for instance, enjoys the same expected utility independently of his original 

outside opportunity. Interestingly, a buyer's-to-be expected utility does depend on the flow 

of investors who entered this market before him.

Let us refer to the investor who is deciding between moving or not into our market as 

the marginal investor. And, let us denote by nr and by vait(n '), respectively, the best outside 

investment opportunity of the marginal investor and his expected utility from investing in 

that alternative market. For simplicity, we assume va/t(Av') =  nf, such that an investor with 

a better outside option (higher k ) enjoys a higher level of expected utility.

When an investor faces the decision to choose a market, he prefers to enter our market 

if the expected utility Vb of being a buyer-to-be in this market is higher than the expected 

utility vait derived from his best outside option. Then, if our market represents the best 

opportunity for the marginal investor, it is also preferred by any other investor with a worse 

investment opportunity, i.e. any investor whose type k, <  k ' moves into our market too. As 

a result, when our market is chosen by a marginal investor with a high type, a high flow 

of investors enters our market. A high flow of investors implies an increase in the measure 

of buyers-to-be, which then affects the expected utility of being a buyer-to-be. Thus, even 

though each investor's type does not alter his expected utility, the type of the last investor 

who enters does. The type of this last investor defines the total flow who prefers our market
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and hence determines how concentrated the population of buyers-to-be is.

Let us define the fraction v ( k)  of investors with outside investment opportunity k  who 

enters the market as follows:

alternative markets. The total flow of investors moving into our market is thus given by:

In equilibrium, as we discuss in more detail in the next subsection, the total flow g* depends 

on the equilibrium fraction of investors v* entering our market. But the equilibrium fraction 

of investors is determined by the marginal investor who is indifferent between our market 

and his best outside option. We refer to this investor as the indifferent investor. For the 

indifferent investor, the expected utility of being a buyer-to-be equals the expected utility 

of his best outside option:

0 if k >  At'

=  [0,1] if k =  «'

1 if k, <  k '
V

where 1 — v ( k )  represents the fraction of investors with outside option k  who invests in

g (k') =  f *  i/(/c)f(/c)cf«, where f  defines the total flow of investors entering the economy.

(4.15)

Before we proceed, let us introduce the formal definition of market equilibrium.
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4.5.2 Equilibrium Definition and Characterization

Defin ition  4 .1 . A m arket equilibrium consists o f a fraction i/ ( k ) o f investors entering the 

market, measures (rjs, rjb, rjo) o f investors and expected utilities and prices (vb, vQ, vs, p) 

such that:

•  (rfs, rfb, t}q)  solve the market-clearing condition and inflow-outflow equations given by 

the system (4.1) - (4.3),

•  (V£, V q ,  v*, p *) solve the flow-value equations for the expected utilities and the pricing 

condition given by the system (4.7) - (4.10),

•  v * ( hl) solves the entering condition given by the system (4.15).

To analyze the equilibria in this market, we need to solve for the fixed points of the 

system of equations (4.1) - (4.3), (4.7) - (4.10) and (4.15). There are two types of possible 

scenarios depending on the behavior of the expected utility va/t of investing in an alternative 

market and the expected utility vb of being a buyer-to-be in our market. There is an 

equilibrium where all investors clearly prefer one market (either all enter or no one enters) 

or an equilibrium where a fraction of investors is better off by investing in our market while 

others prefer not to enter. Theorem 4.1 summarizes a key result:

Theorem  4 .1 . There is a unique market equilibrium.

The proof is in Appendix 4.8.3. To gain some intuition for this result, let us introduce 

Figure 4.3. Figure 4.3 represents the expected utility va/t of investing in an alternative market 

and the expected utility of being a buyer-to-be of the marginal investor, i.e. the one deciding 

whether or not to enter our market. Consider, for example, the marginal investor with outside
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investment opportunity k!v  He compares the u tility  o f his outside option, \za/ t ( ^ i)  =  « i> to  

the u tility  o f being a buyer-to-be, Vb{g(Ki)), given that investors w ith outside opportunities 

tx <  have already entered our market. He enters since vb(g (K i ) )  >  vait (n'x), as shown 

in Figure 4.3. Now, let us focus on the marginal investor w ith investment opportunity 

n'2. The expected u tility  o f being a buyer-to-be has decreased because now all investors 

w ith n <  are in the market. Still he is better-off by moving into our market. Suppose 

marginal investor k,* is now facing the entry decision. For him, V f , ( g ( /c * ) )  =  va/t (/c*) and he 

is indifferent between markets. Any investor w ith a better outside opportunity prefers not 

to  enter.

’u l» Vb
alt

K KK K ,  K K

Figure 4.3: U n iq u e  M a r k e t  E q u ilib r iu m  - Investors compare expected utilities 
vb and va/t and decide to move into our market if vb >  va/t . /c* defines the outside 
investment opportunity which makes investors indifferent between entering or not 
our market, k  and 7c determine the support of the flow of investors who enter the 
economy.

Let us see why the equilibrium is unique. Given non-negative expected utilities, if 

vb(n ' =  0 ) >  vait (K,' =  0 ) and vb decreases in while va/t is strictly increasing, then 

by continuity there exists a unique threshold k * such tha t expected utilities are equal and 

investors indifferent between markets. A unique threshold n* then defines a unique flow of
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investors g* =  g (n ' =  k *) entering our market. And given a unique flow of investors g*, 

steady-state measures, expected utilities and the asset price can be determined uniquely as 

stated in Propositions 4.1 and 4.4. Consequently, market equilibrium is unique. It is inter­

esting to note that the expected utility of buyers-to-be decreases as more investors enter 

our market. We discuss this result in the following subsection.

4.5.3 Market Congestion

Why is the expected utility of a buyer-to-be reduced as the flow of investors entering the 

market rises? Because buyers-to-be suffer from a congestion effect. In our market, an 

increase in the flow of investors g  affects differently the steady-state measures of investors. 

Every investor who enters our market becomes a buyer-to-be first. Then, only a proportion 

of buyers-to-be meets a trading partner, purchases the asset and becomes a non-searcher. 

Only a fraction of non-searcher receives a liquidity shock becoming a seller-to-be. But, 

given that the measure of buyers-to-be has increased, it is now easier for a seller-to-be to 

meet a trading partner and hence the steady-state measure of investors seeking to sell is 

reduced as the flow of investors g  increases13. As a result, in our framework buyers-to-be 

are worse off when g  rises because it is now more difficult for them to meet a seller-to-be 

and purchase the asset. There is a congestion effect as investors move into our market in 

the sense that buyers-to-be face a crowded market where there is increasing competition 

among buyers-to-be for the fewer sellers-to-be.

13Comparative statics of the steady-state measures of investors in the market were introduced in Section 
4.4.1 (See Proposition 4.2).
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4.6 Liquidity, Market Efficiency and Welfare

In this section we first discuss the relationship between market liquidity and the equilibrium 

flow of investors who move into our market. In our model, the equilibrium flow is endoge­

nously determined and depends on the characteristics defining the market, the asset and 

the investors. To analyze, for instance, the consequences on market liquidity of a change 

in market efficiency we need to understand both the direct effect of this change on the 

asset price, and hence on liquidity, and also the indirect effect through the equilibrium flow 

of investors. Subsection 4.6.2 examines the introduction of a new electronic system in our 

market to provide some intuition for the interaction between search costs and the equilibrium 

flow of investors and thus to better understand this indirect effect. The general relationship 

between the flow of investors and the parameters of the model, including search efficiency, 

is derived in Subsection 4.6.3. Finally, in Subsection 4.6.4 we introduce welfare and study 

the implications on welfare and market liquidity of an improvement in the efficiency of the 

search process when our market experiences a fire sale.

4.6.1 Market Liquidity

In our model, an investor willing to buy or sell needs to find a trading partner and bargain over 

the asset price before the transaction takes place. Investors cannot trade instantaneously 

but there is a time delay due to this search process. This search cost can be identified with 

the expected time required to locate a trading partner and, as a result, liquidity can be 

viewed as inversely related to this time delay. In Subsection 4.4.2 we define illiquidity as 

measured by the illiquidity discount
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where f  is the present value of the holding cost x  and k =  (r+1^x^z+<}Ẑ+Xrjb) • ^et us 

denote by r s =  - ^  the expected time required to locate a buyer-to-be and by r b =  ^  the 

expected time it takes for a buyer-to-be to meet a seller-to-be. The function k is increasing 

in t s and decreasing in Tb. Then, as the time a seller-to-be needs to wait before he can 

leave the market ( r s) increases, k rises and the effect of the illiquidity discount is more 

severe. In contrast, if a buyer-to-be needs to wait longer to locate a seller-to-be, the effect 

of illiquidity discount is diminished. The equilibrium level of market liquidity thus rises in rfb 

but diminishes in 77*. In our market, an increase in the equilibrium measure of buyers-to-be 

and a reduction in the equilibrium measure of sellers-to-be occurs whenever the equilibrium 

flow of investors, g *, moving into our market increases14. We formalize this result in the 

following proposition, which we prove in Appendix 4.8.4:

Proposition 4 .6 . Liquidity increases in the flow o f investors entering the market.

Understanding the relationship between market liquidity and investors’ decision to enter 

a market constitutes one of the main motivations of our analysis. In our model, there is 

a trading externality as the arrival of new investors facilitates the search process for every 

investor in the market. If the flow of potential traders increases, trade becomes easier and 

liquidity rises.

However, as the flow of investors moving into a market increases, the congestion effect 

makes it more difficult for a buyer-to-be to locate a trading partner. Consequently, as the 

market gets crowded, it becomes less attractive to investors. This translates into a lower 

flow of investors entering the market and as a result into a less liquid market.

In equilibrium, the flow of investors and hence the level of market liquidity result from 

a tradeoff between thick market complementarities and congestion effects. The equilibrium

14See Proposition 4.2.
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flow of investors though is determined endogenously in our framework and depends on 

the market, investors and asset characteristics such as search efficiency, frequency of the 

liquidity shocks and dividend flow, among others. If we were interested in the consequences 

on market liquidity of a change in any of these characteristics, we would need to consider 

two different type of implications. Assume, for instance, an improvement in the efficiency 

of the search process. It would not only increase the rate at which investors meet but 

it would also affect the flow of investors who enter our market. Specifically, it raises the 

frequency of meetings between buyers-to-be and sellers-to-be, favoring market liquidity, and 

induces two opposite effects on the equilibrium flow of investors who move into our market. 

First, trading externalities attract potential investors, increasing the flow. But, secondly, 

congestion deters investors from entering our market, diminishing the flow. The overall 

level of market liquidity thus depends on this tradeoff and on the effect of the improvement 

in efficiency on the trading frequency. We discuss the aggregate effect on market liquidity 

in Subsection 4.6.4, but we first introduce the following example to better understand the 

interaction between trading costs and flow of investors.

4.6.2 An Example of a Technological Innovation

We consider a search-based market of asset trading as the one described in the previous 

sections. We are interested in understanding the consequences of a technological innovation 

intended to increase the efficiency of the search process, such as the introduction of a new 

electronic trading system. The efficiency of the search process in our model is defined by 

the parameter A. A high value of A represents an efficient search process and corresponds 

to a market where the rate at which investors meet trading partners is high and hence the 

friction introduced by the search process and its associated cost are low.
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We assume the flow o f investors f  entering the economy is uniformly distributed15 with 

support [0,5], where k  =  0 and k, =  5. Investors have time preferences with discount rate 

equal to  1% ( r  =  0.01). The asset pays a dividend flow d =  2 and is in to ta l supply 5  — 2. 

The holding cost is defined as a 40% of the dividend flow to  indicate tha t once an investor 

receives a liquidity shock his valuation o f the asset drops to  a 60% o f the initial value. 

Liquidity shocks arrive at a Poisson rate 7  =  0.2 and hence the expected time between 

shocks is 5. The value o f z is chosen such tha t buyers-to-be and sellers-to-be have the same 

bargaining power, i.e. z — 1. We refer to  this example as the baseline setting.
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Figure 4.4: B a s e l in e  S e t t i n g  - Improving efficiency (higher value of A) attracts 
more investors to our market (higher g * ) .  The value of the model parameters is set 
at the following: r  =  0.01, 5  =  2, x  =  0.8, z  =  1, 7  =  0.2, a =  1, b =  1, k =  0 
and k, =  5.

Figure 4.4(a) represents the expected utility  va/t o f investing in an alternative market 

and the expected u tility  vb o f being a buyer-to-be as a function o f the marginal investor's

15Formally, we assume a beta distribution defined on the interval [0,5] with shape parameters a =  1 and 
6 = 1 ,  which is identical to a uniform distribution with support [0,5]. The beta distribution is a flexible 
class of distributions defined on the unit interval [0,1], whose density function may take on different shapes 
depending on the choice of the two parameters. These include the uniform density function and hump­
shaped densities (See Evans et al. (1993)). We introduce the beta distribution to facilitate the comparison 
between settings when we later discuss the second example.
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outside investment opportunity k '. The expected utility vt, of buyers-to-be is plotted for four 

different values of the market efficiency A, where a higher A indicates a more efficient search 

process. The intersection between vt, and va/t gives, for each level of search efficiency, the 

threshold k * that defines the indifferent investor, k * is hence the solution to our fixed point 

problem. In equilibrium, investors whose best outside investment opportunity k!  is below the 

threshold value n* enter our market, while those with k,' >  k * prefer the alternative market. 

Figure 4.4(a) shows that an improvement in the efficiency of the search process (higher 

value of A) makes our market attractive to more investors (higher k *). A higher threshold 

n* then corresponds to an increase in the flow of investors g* who prefer our market. Figure 

4.4(b) depicts the equilibrium flow of investors g* entering our market, which is strictly 

increasing in the efficiency of the search process.

An increase in the equilibrium flow of investors g* causes a rise in the equilibrium 

measures of buyers-to-be r]*b and non-searchers tjq and a reduction in the equilibrium measure 

of sellers-to-be16 rfs. But the equilibrium measures of investors in our market also depend 

on the efficiency of the search process17. In particular, as the search process becomes more 

efficient (higher value of A), the measures of investors "waiting" to buy or sell (tjI  and 77*) 

decrease while the measure of non-searchers rises. The overall effect on the equilibrium 

measures is presented in the top panel of Figure 4.5(a):

More interestingly, the bottom panel of Figure 4.5(a) illustrates the ratio between buyers- 

to-be and sellers-to-be as a function of the efficiency of the search process. This ratio 

captures the notion of congestion in our market. A high value of the proportion of buyers- 

to-be to sellers-to-be ( > >  1 ) describes a market where there is strong competition among 

buyers-to-be for the few sellers-to-be. There is congestion on the buyer-side in this market. 

On the contrary, a very low value of this ratio corresponds to a market where there is

16See Proposition 4.2.
17See Proposition 4.3.
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o

Figure 4.5: B a s e l in e  S e t t in g  - Equilibrium measures of investors in our market 
and ratio of buyers-to-be to sellers-to-be (a), expected utilities and price (b) as 
a function of the market efficiency A. Other parameters are set at the following 
values: r  =  0 .0 1 , S =  2 , x =  0.8, z =  1 , 7  =  0 .2 , a =  1 , b =  1, k  =  0  and k =  5.

congestion on the sell-side (more sellers-to-be than buyers-to-be). The effect o f congestion 

gets attenuated as the ratio between buyers-to-be and sellers-to-be tends to  1 as in our 

baseline setting.

Figure 4.5(b) depicts equilibrium price and expected u tility  o f sellers-to-be and non­

searchers (top panel) and buyers-to-be (bottom  panel) as a function o f A. Price and expected 

utilities increase in the efficiency o f the search process.

In this baseline setting a new electronic trading system, which improves search efficiency, 

enhances the attractiveness o f our market. But this is not always the case. Let us introduce 

the following example.
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Market Boom or Market Crash in an Outside Market

Assume a scenario similar to the one we have just discussed in the baseline setting and 

let us now consider a severe adverse shock which affects investors’ outside investment 

opportunities. The worsening of investors’ outside options could correspond to a boom in 

our market or to a market crash in another market18 and would affect the distribution of 

investors f  entering the economy as a function of their outside investment opportunities k. 

It would lead to a shift to the left of the mass of the distribution of investors f . In particular, 

we consider a beta distribution with support [0,5] and parameters a — 2 and b =  15, which 

is a right-skewed hump-shaped density function.

We present our results in Figures 4.6 and 4.7, where the value of all parameters (but 

the distribution parameters) remains as in the baseline setting, i.e., r  =  0 .0 1 , d =  2 , S =  2 , 

x  =  0.4c/, 7  =  0.2 and z =  1.

Figure 4.6(a) illustrates the expected utility va/t of investors’ outside options and the 

expected utility Vb of being a buyer-to-be in our market for the same four values of market 

efficiency considered in the baseline setting. It is interesting to highlight that the equilibrium 

threshold k* now decreases in the search efficiency, such that to a market with a more 

efficient search process corresponds a lower cutoff value k * of the outside option, which 

then defines a lower equilibrium flow of investors g* entering the market. As Figure 4.6(b) 

clearly shows, the equilibrium flow of investors entering our market strictly decreases in the 

search efficiency.

Why is the equilibrium flow of investors decreasing as the search process becomes more 

efficient? Let us see why this is the case. Our market is now attractive to more investors

18ln either case, market conditions improve significantly in our market compared to  those in alternative 
markets. For the ease of exposition, we consider the market crash interpretation.
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Figure 4.6: M a r k e t  C ra s h  S e t t in g  - Improving efficiency (higher value of A) 
discourages investors from entering our market (lower equilibrium flow of investors 
g*). Model parameters are set at the following values: r =  0.01, S =  2, x =  0.8, 
z =  1 , 7  =  0.2, a =  2, b =  15, k =  0 and k =  5.

because o f the worsening of conditions in another market. This is indicated in Figures 4.4(b) 

and 4.6(b), which show that for any given level o f market efficiency (fixing A), the equilibrium 

flow o f investors now entering our market is higher than in the baseline setting. Then, from 

the buyers’-to-be perspective, our market has become crowded in the sense that there are 

too many buyers-to-be for each investor seeking to  sell and hence it is now more difficu lt to 

meet a trading partner and purchase the asset. If search frictions were then reduced in this 

market (higher values o f A), the effect o f congestion would be amplified. Investors would 

meet at faster rates, which reduces the measures o f buyers-to-be and sellers-to-be as shown 

in the top panel o f Figure 4.7(a) but, most importantly, it would allow sellers-to-be to  exit 

faster leading to  an even more unbalanced distribution o f investors (bottom  panel o f Figure 

4.7(a)).

As the bottom panel o f Figure 4.7(b) illustrates, buyers-to-be are worse-off as the search 

process becomes more efficient and congestion intensifies. This discourages potential in-
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Figure 4.7: M a r k e t  C ra s h  S e t t in g  - Equilibrium measures of investors in our 
market and ratio of buyers-to-be to sellers-to-be (a), expected utilities and price (b) 
as a function of the market efficiency A. Other parameters are set at the following 
values: r =  0.01, S =  2, x =  0.8, z — 1 ,7  =  0.2, a =  2 , b =  15, k =  0 and k  =  5.

vestors from moving into our market, reducing the equilibrium flow o f investors g*.

The reason for this counterintuitive result is that lower trading frictions in a one-sided 

market magnify the effect o f congestion, discouraging investors from entering this market. 

In this case, congestion dominates thick market externalities and hence the introduction of 

a measure intended to  improve market efficiency results in a less attractive market.

4.6.3 Flow of Investors and Market Efficiency

In this subsection we determine the general relationship between the equilibrium flow of 

investors g*  entering the market and the efficiency A o f the search process. To simplify the 

analysis we first derive the equilibrium measure o f sellers-to-be ( r/*) as a function o f the 

market efficiency A and the other nine parameters o f the model (7 , r, S, x, z, a, b, k  and 

77). There is a one-to-one relationship between g*  and rj*. Hence, once we compute rj*, we
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can then determine the equilibrium flow of investors g* who enter our market.

In our setting, market equilibrium is the solution to the system of equations (4.1)-(4 .3), 

(4.7)-(4.10) and (4.15). We thus need to solve for the fixed point of this system, which is

reduced to solving the indifference condition that defines investors’ entry rule. Investors, in

our framework, compare the expected utility va/t of investing in an alternative market to the 

expected utility vt, derived from being a buyer-to-be in our market and they decide to move 

in whenever Vb >  k' =  va/t . To present this indifference condition (v*, =  k!) as a function 

of the measure of sellers-to-be (r]s), let us first redefine the measure of buyers-to-be rjb as 

a function of rjs. Using equations (4.5) and (4.6) we find:

1  A 7  2M S  — r)s) 'v S - r ig
Vb~ X 2 - y S - A ~  A27 S -  2 i(S  -  rfe) ^  Vb ~  A r]s ^

We can now express the expected utility Vb of buyers-to-be as a function of r]s by 

substituting equation (4.16) into equation (4.11):

=  J L ________________ ^   (4 17)
r +  7  \z r j l  +  [(r +  7 ) ( 1  +  z) -  7 ] r}s +  7 S

Next we write k!  as a function of r}s. In this model, the flow of investors g  who move into 

our market is determined by the proportion of the total flow of investors f  whose expected 

utility Vb of being a buyer-to-be exceeds their best outside option k'. We assume the flow 

of investors f  follows a beta distribution with support [k, 7t] and shape parameters19 a and

19The probability density function of the beta distribution defined over the interval [0,1] with shape 
parameters a and b is:

where a, b >  0 and f (  ) is the gamma function. For integer values of a and b, the cumulative distribution
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b. For notational convenience we omit reference to the shape parameters. Then,

g { K')  =  /  fbeta(K)dK =  Fbeta (^ )  => k' =  F ^ g )  (4.18)
J K

where fbeta and Fbeta denote respectively the probability density function {pdf) and the 

cumulative distribution function (cdf) of a beta distribution. F^Ja is the inverse cumulative 

distribution function. Using equation (4.5) and the definition of A in Page 102 we can 

express the flow of investors g  as a function of the measure of sellers-to-be rjs\

=  7 ( l  +  ^ ) ( S - > f c )  (4.19)

Substituting equation (4.19) in equation (4.18) yields:

«' =  F & ,  ( 7  ( l  +  ^ ) ( S -  * ) )  (4.20)

The indifference condition results from equating the expected utility vb of buyers-to-be 

(equation (4.17)) to the marginal investor outside option k ' (equation (4.20)):

A zrfs
r +  7  \z r j l  +  [(r +  7 ) ( 1  +  z ) -  7 ] ^  +  7 S = ( 7 i 1 + i ) ( s ~  ^

function of the beta distribution is given by:

a+b—l
Fb,a{y; a, b) =  £  ( * '+ b ~ % { 1  -  y ) ^

j=a

where ( • « - * )  =
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Rearranging, we get

Xzrfl
7 ( 1 +  A ^ ) (S r +  7  \z r i l  +  l ( r +  7 )(1  +  * ) -  i\Vs  +  7 $

Then,

7

a + b —1

j = a

a +  b — 1 Aztj

r +  7  Azry2 +  [(r +  7 ) ( 1  +  z ) -  7)775 +  7 5 y
(1 -

Az ?7; \  a + 6 - l - j

r +  7  \Z7 )1  +  [(r  +  7 ) ( 1  +  z ) -  7)775 +  7 S )
(4.21)

Equation (4.21) is a polynomial of degree 2(a +  b) in the measure of sellers-to-be20. To 

solve for 77* we use the bisection method21. Once we compute 77*, we can derive g *:

=  gr*(A, 7 , r, 5 , x, z, a, b, « ,« )

20ln the simple case of shape parameters of the beta distribution both equal to 1 (a =  1 =  b), which 
corresponds to a uniform distribution with support [k,/c], the indifference condition (v*, =  « ')  is:

——  t — 2— r7------- \--------------- 1---------c = «  +  (« — n )l ( 1 +  -  77s)r +  7 Azr/f 4- [(r  +  7)(1 +  z )  — 7)775 +  75 \  A77s/

Reorganizing terms yields the following polynomial o f degree four in the measure of sellers-to-be t)s\

X 2z ( k  — 75)7775 +  |a (k  — «)7C — XzD  -I— — A2zJ77I  +  |a(7c — k )7 2S(1 — z ) — CdJ775 —

— [7SD +  («  — « )72SCj T)s — ( k  — « )73S2 =  0

where C =  ( r  +  7)(1 +  z ) — 7 and D — Xk +  A(ac — 75)7S — (7c — « )72. There exists closed-form solution 
to this equation. In particular, there are at most four solutions but only one, 77*, (as proved in Subsection 
4.5.2) lies in the interval (0, 5 ) , the set of possible values of the measure of sellers-to-be. Unfortunately, 
the solution is intractable. We use the bisection method over the interval [0, S] to determine the zero of 
this equation.

21The bisection algorithm is a numerical method for finding the root of a function. It recursively divides 
an interval in half and selects the subinterval containing the root, until the interval is sufficiently small. 
Burden and Faires (1993) presents a clear description of this algorithm as well as other numerical methods 
for solving root-finding problems.
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where g* is a function of the efficiency of the search process A, the rate 7  at which investors 

receive liquidity shocks, the discount rate r, the supply of the asset S, the holding cost x, 

buyer's-to-be bargaining power z, the shape parameters a and b of the beta distribution and 

the support \k,,k ] of the flow of investors f  entering the economy. To gain some intuition 

for how the model parameters affect the equilibrium flow of investors g*, we set the value of 

those defining the distribution of f  and vary the other parameters of the model. We assume 

a =  2, b =  15, k =  0 and /c =  5 as in the market crash setting in Subsection 4.6.2. The 

first set of results is depicted in Figure 4.8:

Figure 4.8 represents g* as a function of the efficiency of the search process A, where g* 

is plotted for four different values of the discount rate r (a), the supply of the asset 5  (b), 

the holding cost x (c) and the buyers’-to-be bargaining power z (d). The distribution of 

parameters underlying these graphs corresponds to a one-sided market scenario discussed in 

Subsection 4.6.2. Then, in all four cases, increasing market efficiency (higher values of A) 

translates into a lower equilibrium flow of investors entering the market. Also, for a given 

level of market efficiency (fixed A), more investors move into our market as we increase 

the total supply of the asset, the holding cost or the buyers’-to-be bargaining power. The 

equilibrium flow of investors decreases as they become more impatient (higher r).

More interesting is the interaction between market efficiency A and the arrival rate of 

liquidity shocks 7 . Figure 4.9(a) demonstrates how the equilibrium flow of investors g*, 

who enter our market, varies with the market efficiency A and the frequency of liquidity 

shocks 7 . Contours are depicted in Figure 4.9(b). Now, the relationship between g* and 

A is non-monotonic. It is first decreasing in market efficiency, corresponding to a one-sided 

market scenario, but then it becomes increasing in A for higher values of the liquidity shock 

rate 7 .

If liquidity shocks arrive at very low rates (low values of 7 ), investors hold the asset,
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Figure 4.8: Equilibrium flow of investors g *  entering our market as a function of 
the market efficiency A for different values of r (a), 5 (b), x (c) and z (d). Other 
parameters are set at the following values: r =  0.01, S =  2 , x =  0.8, z =  1 ,
7  =  0.2, a =  2, b =  15, k  =  0 and K =  5.

on average, for a long time. As a result, there are few investors trying to  sell and exit the 

market. Increasing the efficiency o f this market (raising A) attracts new investors, amplifying 

the effect o f congestion. The market becomes one-sided because there are more buyers-to-be 

and few sellers-to-be. In this case, reducing market frictions diminishes the flow o f investors. 

This is shown in Figure 4.9(c) for values o f 7  <  0.3. This phenomenon is attenuated as 

investors need to  exit at a faster rate. Then, for intermediate values o f 7 , there are enough 

sellers-to-be in our market and improving market efficiency attracts new investors ( 7  =  0.4
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Figure 4.9: Equilibrium flow of investors g* entering our market as a function of 
the market efficiency A and the frequency of liquidity shocks 7 . The values of other 
parameters of the model are set at the following: r =  0.01, S =  2, x  =  0.8, z =  1, 
a =  2, b — 15, k =  0 and K =  5.

and 7  =  0.5 in Figure 4.9(c)). Thick market externalities dominate congestion. Also, as 

Figure 4.9(d) indicates, if  investors need for cash is very frequent (values of 7  above 0.5), 

they prefer not to  invest and the flow o f investors g* who enter our market is reduced. Still, 

for a given frequency o f the liquidity shocks 7 , diminishing search frictions improves the 

attractiveness o f our market.
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4.6.4 Liquidity and Welfare

In this subsection we discuss market liquidity and present the welfare analysis. In particular, 

we are interested in the implications of potential policies designed to improve the efficiency 

of the search process and to thus reduce market frictions.

We measure welfare by the weighted sum of investors’ expected utilities. Weights are 

determined by the measure of every type of investors in our economy, including the outside 

investors. Then, our measure of welfare is:

where the first three terms represent the welfare of the investors who prefer to enter our mar­

ket ( W jn s jd e  in v e s to r s )  and the last term reflects the welfare of outside investors ( W o u ts id e  in v e s to r s ) -  

Outside investors (those with investment opportunities above the threshold value k,*) enjoy 

the expected utility derived from investing in an alternative market va/t , which for sim­

plicity we assume equal to k', the outside investment opportunity. Substituting equations 

(4.11)-(4.13) and the pdf of a beta distribution into equation (4.22), we get:

(4.22)

W j ns jd e  in v e s to rs  —  5  kxr r +  7
1 ?S[(7 +  Arjs)z +  (r +  7)] +  rjs [(r +  27 +  Xr]s)z +  (r +  7)]

(r +  7 +  \rjs)z +  7

W o u ts id e  in v e s to rs D ' V J J
j —a + 1  v J '

To gain some intuition for how changes in market efficiency affect welfare we introduce 

the last example.
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Fire Sales in our Market

Consider a search-based market similar to the baseline setting described in Subsection 4.6.2 

and assume investors need for cash is now more frequent. Specifically, we assume liquidity 

shocks arrive at a Poisson rate 7  =  0.4. The value of all other parameters remains as in the 

baseline case: r =  0.01, d =  2, S =  2, x  =  OAd, z  =  1, a =  1, b =  1, k =  0 and k =  5.

Investors now prefer to hold the asset, on average, for a shorter period of time and they 

are willing to sell and exit our market at faster rates. Then, for any given value of the 

search efficiency, the equilibrium measure of sellers-to-be has increased significantly (top 

panel of Figure 4.10(a)) compared to the baseline setting (top panel of Figure 4.5(a)), 

while the equilibrium measure of non-searchers has decreased. Given that there are now 

more sellers-to-be in our market, it is easier for an investor seeking to purchase the asset to 

meet a trading partner. As a result, the equilibrium measure of buyers-to-be has diminished 

compared to the baseline case. Most importantly, the proportion of buyers-to-be to sellers- 

to-be has fallen drastically. This is depicted in the bottom panel of Figure 4.10(a). Our 

market is now one-sided and there is severe congestion on the sell-side of the market. This 

scenario could correspond to a market experiencing a fire sale.

Increasing the efficiency of the search process (higher value of A) in this market causes 

two effects. First, it raises the flow of investors who enter our market as plotted in Figure 

4.10(c). Secondly, investors meet at faster rates reducing the equilibrium measure of buyers- 

to-be and sellers-to-be (top panel of Figure 4.10(a)). The overall effect on the ratio of 

buyers-to-be to sellers-to-be is presented in the bottom panel of Figure 4.10(a). As the 

market becomes more efficient, the proportion of buyers-to-be to sellers-to-be falls further 

and from the sellers’-to-be perspective the market gets even more crowded. Congestion 

intensifies as it is now more difficult to meet a buyer-to-be and exit the market. Hence,
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Figure 4.10: F i r e  S a le s  S e t t in g  - Equilibrium measures of investors in our 
market and ratio of buyers-to-be to sellers-to-be (a), expected utilities and price 
(b), flow of investors g *  (c) and welfare (d) as a function of the market efficiency 
A. Other parameters are set at the following values: r =  0.01, S =  2 , x =  0.8, 
z =  1, 7  =  0.4, a =  1, b =  1, k =  0 and « =  5.

as the top panel o f Figure 4.10(b) illustrates, sellers-to-be and non-searchers (who become 

sellers-to-be at rate 7 ) are worse-off as efficiency rises. The expected u tility  o f buyers-to-be 

increases in A because they can now acquire the asset at faster rates (bottom  panel o f 

Figure 4.10(b)).

A very interesting result is presented in Figure 4.10(d). We find that as search frictions 

are reduced, welfare decreases. In this market, improving the efficiency o f the search process 

amplifies the effect o f congestion. There are then fewer buyers-to-be per each seller-to-be
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and the expected utilities o f investors holding the asset fall. This induces an adverse effect 

on welfare.

Figure 4.11(a) represents our measure o f illiquidity as a function o f the efficiency o f the 

search process A, where illiquidity is defined as the price discount. As market efficiency 

increases and the population of investors gets saturated w ith sellers-to-be, the price o f the 

asset falls as shown in the top panel o f Figure 4.10(b). This leads to  the rise in illiquidity 

depicted in Figure 4.11(a). Intuitively, given that there are few buyers-to-be compared to  

sellers-to-be, the price o f the asset behaves as if buyers-to-be would hold a more favorable 

position in the bargaining process. The effect is equivalent to  an increase in the buyers’-to- 

be bargaining power z, which is exogenous in our model. If we were to  endogenize z, the 

effect on the price (and hence on market liquidity) would be amplified.

(a) (b)
78.5 0.36

0.34

77.5 |  0.32

■g'3
g-

o 3

H  0.2876.5

0.26

75.5, 0.24,
10

X X

Figure 4 .11: F i r e  S a le s  S e t t in g  - Illiquidity measured by price discount (a) and 
trading volume (b) as a function of the market efficiency A. The value of the model 
parameters is set at the following: r =  0.01, S =  2, x  =  0.8, z  =  1, 7  =  0.4 , 
a = l ,  b =  1, « =  0 and k =  5.

Our market becomes less liquid as the search frictions are reduced. However, as Figure 

4.11(b) indicates, trading volume increases. The reason for this counterintuitive result is
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the following. Facilitating search in our market has two consequences. First, it magnifies 

the effect of congestion. There are fewer buyers-to-be relative to the measure of investors 

trying to exit. Buyers-to-be prefer to pay less to purchase the asset, which translates into 

a lower price and hence into a less liquid market (higher price discount). Second, it raises 

the frequency of meeting between trading partners. Investors in our market now meet at 

a faster rate, increasing the trading volume. Consequently, even though our market is less 

liquid, investors meet faster and trading volume increases.

4.7 Conclusions

This paper proposes a search-based model to study the relationship between market liquidity 

and the endogenous arrival of potential investors to a specific market. As investors enter a 

market, they make trade easier, attracting new investors. This gives rise to a thick market 

externality. Interestingly, as investors get attracted to this market, the market becomes 

crowded and congestion reduces the returns to investing. This paper aims to complement 

the literature on self-fulfilling liquidity by incorporating a second effect: the congestion 

effect.

In our market traders can invest in one asset which can be traded only when a pair 

of investors meet and bargain over the terms of trade. Finding a trading partner takes 

time and introduces opportunity and other costs. Investors’ ability to trade thus affects the 

illiquidity discount and ultimately, the equilibrium price. We present a numerical example 

of an advance in trading technology to illustrate the link between the flow of new investors 

and market liquidity, and to discuss the implications of search frictions on market liquidity.

We then derive the general relationship between the equilibrium flow of investors moving
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into a market and the efficiency of the search process and highlight the tradeoff between 

the thick market complementarity and the congestion effect. The equilibrium outcome 

depends on which of these two effects dominates. In particular, we find that diminishing 

trade frictions in a market with many buyers and too few sellers leads to a lower equilibrium 

flow of investors into this market. Less search frictions would allow sellers to exit faster 

amplifying the effect of congestion (even more buyers per seller) and further discouraging 

investors from entering this market. We also show that reducing market frictions, in a 

“congested" market experiencing a fire sale, induces an adverse effect on both market 

liquidity and welfare. Improving search efficiency (to facilitate coordination and enhance 

liquidity), magnifies the effect of congestion (less buyers per seller trying to exit) to the 

detriment of the overall level of market liquidity and social welfare. From this perspective, 

this paper presents an example of the Theory of the Second Best, where eliminating one 

but not all market imperfections does not necessary increase efficiency as it may amplify the 

effect of the remaining distortions.

4.8 Appendix

4.8.1 Proofs of Propositions 4.1 - 4.4 

Proof of Proposition 4.1

Proof. Rearranging equation (4.3), we get
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where rjo G R +. This quadratic function takes positive values as rjo —► oo, is non-negative 

at 7}o =  0 and negative at rjo — S. Then, by continuity, the polynomial equation has a root 

in the interval [0, S) and another one in the interval (S, oo). The two solutions and 

r f f  are given by:

77(1)VO O2 7
=  ^ [ t e  +  7S +  y )  - \ / ( £  +  1'S +  y ) 2 - 47gS] 

=  ^ - [ ( ^  +  7 S +  y )  +  y ( g  +  7 S +  y ) 2 - 4 7 gS](2)
Vo 027

where 0 <  r j ^  <  S <  t^2) <  00. 770̂  is thus not a valid solution since the total supply 

of the asset is held either by the non-searchers or by the sellers-to-be and as a result the 

measure of non-searchers cannot exceed the supply of the asset. Then, there is unique 

solution to equation (4.3) given by:

Vo =  IT -a  (A .l)
27

where A =  (g  +  7S +  p£) — \J {g  +  7S +  ^ ) 2 -  47gS. Plugging equation (A .l)  into 

equations (4.1) and (4.2), we find

Vs =  S -  ~ A  
27

7 A
Vb = A 27 S — A

which proves Proposition 4.1. □
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Proof of Proposition 4.2

Proof. Let us compute the partial derivatives of the measures given by the system of equa­

tions (4.4) - (4.6) with respect to g :

drjo drjo dA _  1 dA
dg dA dg  2 7  dg
dr]s drjs dA _  1 dA
dg dA dg  2 7  dg
drjb drjbdA _  27 2 S dA

dg dA dg  A (27 S -  A )2 %

(A.2)

(A.3)

(A.4)

where

M  +  ^  +  (A.5)

dg  V ( S  +  7S  +  £ ) 2 _ 47*S

To determine the sign of we check if the second term on the right-hand-side of 

equation (A.5) is greater than 1:

(fi- +  7 S +  ^ ) - 2 7 S > l

\ ] { g  +  7 S +  £ ) 2 -  47gS
►

T — >v(g  +  7 5  +  -  2 7 5  >  J ( g  +  7 S +  ^ - ) 2 -  4 jg S  ; (A .6 )

where the right-hand-side of equation (A .6 ) is strictly positive since

(g  +  7 S +  y  ) 2 -  4 7 gS = y ( g -  7 S)2 +  2{g +  7 S ) y  +  ^ 2  >  0  (A -7)

We analyze two cases. If (g" +  7 S +  p£) — 2 7 S <  0, then equation (A .6 ) is not satisfied.
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On the contrary, if (gr +  7S +  ^ )  — 275 >  0,

2 2 I 2 2

+  7 S +  y ) -  27s] >  [ y  (g- +  75  +  y  ) 2 -  47g-sj ;

( g - l S + \ ) 2 >  (^  +  7 5  + - 5 - ) ^ - 4 7 ^ 5 ;
7 x2

A

Simplifying we arrive to:

4 s  < 0
A

a contradiction, since 7, A and 5  >  0. Therefore, the second term in equation (A.5) is 

strictly lower than 1 and as a result:

g > 0  (A.8)

Thus, substituting the previous equation into equations (A.2) - (A.4) yields:

dr] 0  

dg  
drjs 

dg 
dr]b 

dg

>  0  

<  0  

> 0

since 7, A and S >  0. □
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Proof of Proposition 4.3

Proof. Using equations (4.4) - (4.6) we can compute the partial derivatives of the measures 

of every type of investor with respect to the efficiency of the search process A:

dr]o 
d \  

drh 
dX 
drjb 
dX

drfodA 1 dA  

~dAdX =  2^dX  
drjs dA  _  1 dA
dA dX 2 7  dX
7 1 27S dA 1
A 2 7 5  — A .2 7 S — A d X  X

(A .9)

(A.10)

(AH)

where

dA
dX yJ(g +  l S + £ ) 2 - * 7 g S t

(A.12)

We verify whether the second term in the expression in parenthesis is greater than 1 to 

determine the sign of

( *  +  T *  +  £ )

\ f { g  +  l S  +  £ ) 2 -  4 7 gS

( , + , s 4 ) 2

> 1;

>  [\J(s + 75 +  y  ) 2 -  47gs] ;

/  7  ̂\  2
>  +  +  -47g-5; (A.13)

where we can square both sides of the expression because, using equation (A.7) and g ,7 , S 

and A >  0, the numerator and denominator are strictly positive. Rearranging equation 

(A.13) we get:

4 7 ^ -5  >  0
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which is true since 7 ,g  and 5  >  0. As a result, the second term in the expression in 

parenthesis in equation (A. 12) is strictly greater than 1 and

dA

dX
> 0 (A. 14)

Thus, plugging the previous equation into equations (A.9) - (A .10) we find:

>  0
drjo 
OX

t  <»

The proof that ^  <  0 is not so straightforward. Let us first rearrange equation (A .12) 

as follows
dA  72 A

dX X2 \J (g  +  l S  +  '£ )2 -4 'y g S

Now, substituting equation (A .15) in equation (A .11) we get:

drjb 7 A  
~dX ~  27S -  A

2 7  5  Y

2 7 ,5  A A 0 g +  7 S +  t ) 2 ~  A'ie s
- 1

(A.15)

(A. 16)

where we need to derive the sign of the expression in brackets to determine the sign of . 

Let us then verify if the first term of the expression in brackets in equation (A .16) is strictly
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lower than 1:

2 j  5  Y

( 2 7 5  -  A ) X \ I  (g  +  7 5  +  ^ - ) 2 -  47^5 -  2 7 3S >  0;

A [(2 7 S -  A ) \J (g  +  7 S +  y ) 2 -  4 7 gS -

<  l;

> 0;

Given that A >  0 and A =  (g  +  7 S +  y ) — y j(g  +  7 S +  y  ) 2 — 4 7 gS, then

[2 7 5 - (g +  7 5 + y ) ] y ( g  +  7 5  +  y ) 2 - 4 7 g 5 + [ y ( g  +  7 S + ^ ^ - 4 7 g 5 j  -  >  0;

( , _ l S  +  f ) - - ( < - 7 5  +  £ ) ^ - , s  +  f ) .  +  l £ £  +  ^  >

2 _ _
To simplify the exposition of the proof, let us define D  =  g  — 7 S +  Therefore,

D  -  D \ D 2 +
473S 2j S

A
+

A
>  0 (A .17)

We consider two possible scenarios. If D  <  0, then equation (A.17) is satisfied since 

A, 7  and S >  0. On the contrary, if D >  0, then we need to prove that

2 2 7  3 5
D  — -— >  D \ D 2 +

47 35

Squaring both sides and rearranging, we find

D 4 +
4 7 3S 2 47 6S2

A
D  +

A2
>
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Simplifying,
476S2

>  0

and this is always satisfied. Then, we have shown that the first term in the expression in 

brackets in equation (A .16) is strictly lower than 1 and as a result

§?<»

which completes the proof of Proposition 4.3. □

Proof of Proposition 4.4

Proof. Using equation (4.10), we can rewrite equations (4.7) and (4.9) as:

rvb =  - 7 vb +  \r jSY ^ { v o  - v b -  vs)

rv,; ==  d - x  +  \ r ) b— — (v0 - v b - v s) 
1 +  z

(A.18)

(A.19)

Subtracting equation (A.18) from equation (4.8) yields:

r { v o - v b) =  d +  7 (vs — v0) — -  i v b +  \r )SY ^ ( v o  ~  vb -  vs) 

=  d +  7 (vs -  v0 +  vb) -  Xr)s -  vb -  vs)  =>

= >  v0 -  Vb =
d +  +  \r}5j^ ) v .

r +  7  +  A ?7S ̂
(A .20)
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We can solve for vs by plugging equation (A .20) into equation (A.19):

rvs =  d -  x +  Xr]b

=  d — x  +  \r)b

1 +

1 +  z

d +  (7  +  \r)s^ ) v .

r +  7  +  Xrjs^~z 

d — rvs

-  Vc

(r  +  7 +  Ar/s)^ +  r +  7  

A rib
(r  +  7  +  Ar/S)z  +  r +  7

1 + A Vb

( r  +  7 + A t7s)^ +  /' +  7 .
d — x

d I *  Lv, =  k  k
r r ( r  +  7  +  M s)z  +  7

(A.21)

where

k =
(r  +  7  +  A?7s)z  +  7

(r  +  7  4- Xr)s)z  +  (r  +  7 +  A ^ )

Given vSl we can determined Vo, v*, and p uniquely from equations (4.8), (A.18) and 

(4.10) respectively. Let us compute them. We can solve for v0 by plugging equation (A.21) 

into equation (4.8):

rv0 =  d +  7
d , x x  _ Is  _ //
r r (r  +  7  +  Xr]s)z  +  7 -  7^0

d x 7  7
v0 =  k ---------------- k

r r r +  7 r +  7  (r  +  7  +  A7ys)z  +  7
(A.22)

We now compute vb by substituting equations (A.21) and (A.22) into equation (A.18):



142 Liquidity and Congestion

rvb
1 +  z

\ d- - k x-  
L r r

7 7
r +  7  r +  7  (r +  7  +  At/s)z  +  7

d  , x  x
-  Vb b k  b /f7--------------  r-------

r r (r  +  7 +  Xr)s)z  +  7J

r +  7  +  A^
1 +  z

W> =  A?7s
1 +  z

+  /c
r +  7  (r  +  7  +  Xfjs'jz +  7  r  +  7_

Xrjsz
r  +  7  (r  +  7  +  A77s) z  +  7

W e  now solve for the price. Plugging equations (A .21) -  (A .23) into equation (4.10) we

get:

P =
1 +  z

( i - k ~ -  k -
\ r  r V

+  ± - k X- ^ - k

( r  +  7  +  Xr]s)z  +  7 .  

7  x

Iz  +

- k -
Xrjsz

r r r  +  7  r +  7  (r +  7  +  A77s) z  +  7  r +  7  (r  +  7  +  A/fcJz +  7

r 1 +  z
^ p _ + z )  +  /i. *

r Vr +  'v /• r +  7 r  +  7

c/ , x
=> p =  k -

r r
(A .24)

Th is  concludes the proof o f Proposition 4.4. □

=>

(A .23)
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4.8.2 Additional Proofs

Proof of | f , >  0 and §f, <  0

Proof. Using equation (4.14), the partial derivative of the price with respect to the dividend 

flow d is
d p i  dp
—  =  -  > o => —  > o yd
dd r  dd

Let us now compute the partial derivative of the price with respect to the measure of

buyers-to-be rjb: dp _  dp dk _  x dk

drjb dk dpt, r  drjb

where:
dk _  ( r  +  7 +  At/s)z -f 7
drjb [ ( r  -|- 7 +  A77s)z +  (r  -1- 7 +  A77/,)]2 

which is strictly lower than zero since r, 7, A, r)s, z  >  0. Therefore,

>  0 V?ib
drib

Next, we obtain the partial derivative of the price with respect to the buyer's-to-be 

bargaining power z:
dp  dp  d k  x  d k

d z  d k  d z  r  d z

where:
d k  r \ r i srib
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which is strictly greater than zero since r, A, r]s, r]t> >  0. Then,

r < °  Vzdz

To complete the proof, we calculate the partial derivative of the asset price with respect 

to the measure of sellers-to-be:

dp _  dp dk _  x dk 

dr)s dk dr)s r drjs

where:
dk A z (r  +  Xr)b)
drjs [(r +  7  +  Xrjs)z  +  (r  +  7  +  A^ ) ] 2 

which is strictly greater than zero since r, A, rjb, z >  0. Thus,

! ^ < o  V *
drjs

□

Proof of > 0

Proof. Using equation (4.14), the partial derivative of the asset price with respect to the 

flow of investors g  entering the market is

dp x dk

dg r d g

where k — (r+^ x ^ z + ( lZ+^+Xr)b) • ^et us derive the partial derivative of k with respect to the
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flow of investors g :

dk
j  ( r  +  ~  [ ( r  +  7 +  s)z +  7

yp lb
dg [(r  +  7  +  *ns)z  +  (r  +  7  +  ^ b ) ]2 dg l v  ' 1 '" /s'~  ' 'J dg

which is strictly lower than zero since r, 7 , A, r)s, 77*,, z  >  0 and, as shown in Proposition 4.2,

dp =  _xdk_  

dg r dg

<  0 and fa* >  0. Then,

which proves the price increases in the flow of investors entering the market. □

4.8.3 Proof of Theorem 4.1

Proof. In our framework, the marginal investor decides whether to enter or not after com­

paring the expected utility va/t of investing in an alternative market to the expected utility 

Vb of a buyer-to-be in our market. The expected utility of the marginal investor va/t =  

is a non-negative and strictly increasing function of his outside investment opportunity k '. 

Also, Vb(rf =  0) >  vait(nf =  0) =  0. Hence, if Vb were decreasing in the outside investment 

opportunity of the marginal investor, then there would be a unique threshold k * satisfying 

the indifference condition Vb(g(k*) )  =  va/t(/t*). Let us show this is the case.

The expected utility Vb of a buyer-to-be is a function of the flow of investors g  entering 

the market. Let us compute the partial derivative of Vb, defined in equation (4.11), with 

respect to g:

dvb A zx 1

dg r +  7  [ (1  +  z ) ( r  +  7 ) +  A(z% +  % )]'
( ( l  +  z ) ( r  +  7 ) +  A%

which is strictly negative since r, 7 .x , z, A, 7 7 /, ,  775 >  0 and, as shown in Proposition 4.2,



146 Liquidity and Congestion

<  0  and ^  >  0. Hence, the expected utility vb of a buyer-to-be strictly decreases in the 

flow of investors g  entering the market. However g, as given by g {r f)  =  f *  i)f(n )d K  =  

f *  f(n )d n , is increasing in k ' . As a result,

dvb =  dvb dg <  

dud dg d id  ~

where ^  <  0  and >  0 .

Then, by continuity, there exists a unique value of td satisfying the indifference condition: 

vb(g(K*)) — Vait(K*)- A unique threshold k * thus defines a unique flow of investors g* =  

g{K*)  entering the market. But given a flow of investors entering the market, there exists 

unique equilibrium measures (77̂ , t]q, 77*) of each type of investor, expected utilities (v£, Vq, 

v*) and price of the asset, p*, as proved in Propositions 4.1 and 4.4. Consequently, market 

equilibrium, as presented in Definition 4.1, is unique. This proves Theorem 4.1. □

4.8.4 Proof of Proposition 4.6

Proof. The illiquidity discount is defined as:

k x-
r

where ~r is the present value of the holding cost x, k =  (r+7+Ajs|z+(r+7+Ar;b) anc* anc* 

rjb, as given by equations (4.5) and (4.6), are functions of the flow of investors g. Let us 

compute the partial derivative with respect to the flow of investors g  entering the market:
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since | |  <  0 (as shown in subsection 4.8.2) and x , r  >  0. Hence, illiquidity decreases in g  

or equivalently, market liquidity increases in the flow of investors entering our market. □
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