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Abstract

The prediction of the Earth’s climate system is of immediate impor­
tance to many decision-makers. Anthropogenic climate change is a key 
area of public policy and will likely have widespread impacts across the 
world over the 21st Century. Understanding potential climate changes, 
and their magnitudes, is important for effective decision making. The 
principal tools used to provide such climate predictions are physical 
models, some of the largest and most complex models ever built. Eval­
uation of state-of-the-art climate models is vital to understanding our 
ability to make statements about future climate. This Thesis presents 
a framework for the analysis of climate models in light of their inherent 
uncertainties and principles of statistical good practice. The assessment 
of uncertainties in model predictions to-date is incomplete and warrants 
more attention that it has previously received. This Thesis aims to mo­
tivate a more thorough investigation of climate models as fit for use in 
decisionMSupport.

The behaviour of climate models is explored using data from the largest 
ever climate modelling experiment, the climateprediction.net project. 
The availability of a large set of simulations allows novel methods of 
analysis for the exploration of the uncertainties present in climate sim­
ulations. It is shown that climate models are capable of producing very 
different behaviour and that the associated uncertainties can be large. 
Whilst no results are found that cast doubt on the hypothesis that green­
house gases are a significant driver of climate change, the range of be­
haviour shown in the climateprediction.net data set has implications for 
our ability to predict future climate and for the interpretation of cli­
mate model output. It is argued that uncertainties should be explored 
and communicated to users of climate predictions in such a way that 
decision-makers are aware of the relative robustness of climate model 
output.



Contents

Nom enclature 20

1 Introduction 21
1.1 Methodology ............................................................................................  23
1.2 Key results and new approaches............................................................  24
1.3 Chapter 2 ..................................................................................................  25
1.4 Chapter 3: How reliable are climate m odels?....................................... 25
1.5 Chapter 4: Intro to C P D N ......................................................................  26
1.6 Chapter 5: Heat F lu x ................................................................................  27
1.7 Chapter 6: Initial Condition Ensembles in Climate Modelling . . . .  28
1.8 Chapter 7: Constraining New Results from the CPDN grand ensemble 28
1.9 Chapter 8: On the relevance of Model Means for Décision-Support 29

2 Uncertainty and the use of State—of—the—Art clim ate models in 
décision-support 31
2.1 Overview.....................................................................................................  31
2.2 The problem of climate prediction..........................................................  32
2.3 Uncertainties and Ensembles...................................................................  34

2.3.1 Forcing Uncertainty......................................................................  34
2.3.2 Initial Condition Uncertainty ................................................... 35
2.3.3 Model U n certa in ty ......................................................................  36
2.3.4 Model Inadequacy ......................................................................  38
2.3.5 Ensem bles...................................................................................... 39
2.3.6 Initial Condition E nsem bles......................................................  40

2.4 Model Evaluation and straw-men for clim ate......................................  41
2.4.1 In-sample fit ...............................................................................  42
2.4.2 Initial Condition T e s t................................................................... 43



2.4.3 Model diversity T e s t ..................................................................  44
2.4.4 Utility of models that fail these t e s t s .....................................  45

2.5 Decision support ..................................................................................... 47
2.6 Uncertainties in Adaptation and mitigation d ec is io n s ....................... 48
2.7 Communication of uncertain ties...........................................................  49
2.8 Conclusion.................................................................................................  50

3 How reliable are the m odels used to  make projections of future 
clim ate change? 51
3.1 In troduction ...............................................................................................  51
3.2 General Circulation Models ..................................................................  53
3.3 The IPCC Figures .................................................................................. 54
3.4 Presentation of Model O u tp u t ............................................................... 55
3.5 Residual Analysis of Model O u tp u t .....................................................  59
3.6 Exchangeability........................................................................................  61

3.6.1 Estimating temporal correlation using order statistics . . . .  64
3.6.2 Testing the exchangeability of COM o u t p u t .........................  65
3.6.3 Discussion of R e su lts ..................................................................  66

3.7 Recommended Presentation of Model Output ..................................  67
3.8 Conclusion.................................................................................................. 68

4 Introduction to  the clim ateprediction.net experim ent 83
4.1 Introduction...............................................................................................  83
4.2 Climate M o d els ........................................................................................  84

4.2.1 On statistical methods of climate p re d ic tio n .........................  84
4.2.2 Energy B alan ce ............................................................................ 85
4.2.3 Feedbacks.....................................................................................  87
4.2.4 GCMs and Grid B o x es ...............................................................  87
4.2.5 P aram eterisation ......................................................................... 88
4.2.6 Parameter v a lu e s ......................................................................... 88
4.2.7 Time s tep s .....................................................................................  89
4.2.8 H adSM 3........................................................................................  90

4.3 The CPDN experim ent............................................................................ 92
4.3.1 CPDN Experimental D esig n ...................................................... 92

4.4 D a t a ...........................................................................................................  95
4.4.1 Climate S ensitiv ity ...................................................................... 95



4.4.2 Quality C o n tro l...........................................................................  101
4.4.3 Data Format ............................................................................... 106

4.5 Conclusion................................................................................................... I l l

5 Investigating variations in heat flux adjustment in the C PD N  en­
semble 121
5.1 In troduction................................................................................................ 121

5.1.1 HFA in the CPDN experim ent..................................................  124
5.1.2 HFA Data S e t s ............................................................................ 125
5.1.3 Examples of HFA fields...............................................................  127

5.2 HFA v ariab ility .........................................................................................  129
5.2.1 The HFA bounding box ............................................................ 130
5.2.2 Variability with Initial C o n d itio n ............................................ 131
5.2.3 Perturbed Physics E n sem b les ..................................................  138
5.2.4 Stabilisation of Global Mean H F A ............................................ 146

5.3 Seasonality in the H F A ............................................................................. 150
5.4 HFA and Climate Sensitivity...................................................................  153
5.5 HFA and d r i f t ............................................................................................. 157
5.6 Conclusion...................................................................................................  163

6 ICEs and the Internal Variability of Climate M odels 165
6.1 Overview......................................................................................................  165
6.2 Introduction to I C E s ................................................................................  168
6.3 The internal variability of H ad S M 3 ....................................................... 169
6.4 ICEs and Robust Model Response.......................................................... 172

6.4.1 Regional response in the 64 member HadSM3 ensemble . . . 173
6.4.2 Comparison of two Perturbed Physics ICEs ............................. 177

6.5 ICEs in Transient Experiments .............................................................  179
6.6 Conclusion...................................................................................................  180

7 Constraining N ew  Results from the C PD N  grand ensemble 189
7.1 Introduction................................................................................................ 189
7.2 The Data S e t ............................................................................................. 194
7.3 Climate S ensitiv ity ...................................................................................  195
7.4 Sub-global Behaviour................................................................................  200
7.5 Constraining Model Sim ulations.............................................................  207



7.5.1 Constraining using the Entrainment C oeffic ien t.....................  207
7.5.2 Constraining using H F A .............................................................  211
7.5.3 Constraining using in-sample fit to observations.................... 212

7.6 Conclusion.................................................................................................. 219

8 The relevance of global means for clim ate policy 228
8.1 In troduction..............................................................................................  228

8.1.1 Data Sets U s e d ............................................................................  231
8.2 What does a 2 degree rise in GMST m ean?......................................... 232

8.2.1 From global to super-continental length sca les ......................  233
8.2.2 Regional Im p a c ts ..........................................................................  238
8.2.3 Grid-scale Im p a c ts ....................................................................... 245

8.3 What is the difference between 2 and 3 degrees G M ST?................... 248
8.3.1 Regional differences....................................................................... 248
8.3.2 Grid-scale differences.................................................................... 258

8.4 Linearity of Regional Response ............................................................  263
8.5 D iscussion..................................................................................................  267

8.5.1 M itigation ....................................................................................... 269
8.5.2 Adaptation and Impact Assessm ent..........................................  270

8.6 Conclusion..................................................................................................  271
8.7 A dditional..................................................................................................  272

0 Conclusion 275
9.1 Overview.....................................................................................................  275
9.2 Uncertainties ............................................................................................ 275

9.2.1 Initial Condition Uncertainty ....................................................  276
9.2.2 Model U n certa in ty .......................................................................  276
9.2.3 Model Inadequacy .......................................................................  277
9.2.4 Constraining uncertainties and regional climate response . . 278

9.3 Im plications...............................................................................................  279
9.4 Further W o r k ............................................................................................  281

9.4.1 Transient E xperim ents................................................................. 281
9.4.2 Experimental d e s ig n ....................................................................  283

9.5 Conclusion..................................................................................................  285

A Glossary 286



List of Figures

3.1 The absolute values of GMST from 47 simulations are plotted in yel­
low. The HadCRUTS observations are plotted in black (the anomaly 
time series is offset using the 1961-1990 global mean (14.0 degrees 
Jones et al. (1999))). The multi-model mean is plotted in red. There
is a difference of up to 3 degrees between simulations’ GMST. . . .  71

3.2 (Reproduction of IPCC Figure 8.1) Comparison of 47 simulations 
from 11 structurally distinct GCMs (yellow) used in the AR4 to Had- 
CRUT3 observations (black). The multi-model mean is plotted in 
red. Each model simulation is “centred” by taking anomalies rela­
tive to 1901-1950. Blue lines show the timings of four major volcanic 
eruptions -  Santa Maria, Agung, El Chichon and Pinatubo............... 72

3.3 Comparison of 47 simulations from 11 structurally distinct GCMs 
(yellow) used in the AR4 to HadCRUT3 observations (black). The 
multi-model mean is shown in red. In this plot the model is centred 
using the mean 1901-1950 anomaly for each model (averaged over IC 
members). There is slightly more variance across model simulations, 
during the 1901-1950 period where anomalies are taken, in this plot 
than in Figure 3.2, as expected................................................................  73

3.4 The residuals for 3 different GCMs are shown as a time series. Resid­
uals for each simulation are found by subtracting the HadCRUT3 
observations from each simulation (and adjusting for any differences
in baseline 1901-1950 GMST)..................................................................  74

3.5 The residuals for 3 different GCMs are shown as a time series. Resid­
uals for each simulation are found by subtracting the HadCRUT3 
observations from each simulation (and adjusting for any differences
in baseline 1901-1950 GMST)..................................................................  75



3.6 The residuals for 3 different GCMs are shown as a time series. Resid­
uals for each simulation are found by subtracting the HadCRUT3 
observations from each simulation (and adjusting for any differences
in baseline 1901-1950 GMST)..................................................................  76

3.7 The residuals for 2 different GCMs are shown as a time series. Resid­
uals for each simulation are found by subtracting the HadCRUT3 
observations from each simulation (and adjusting for any differences
in baseline 1901-1950 GMST)..................................................................  77

3.8 The time series of 47 GCM simulations is plotted against observations 
as 1901-1950 anomalies (top) and as residuals (bottom). The NCAR 
PCM l GCM is highlighted in red and the GISS-h model in blue.
The highlighted models overlap in the first half of the 20th Century
but diverge from 1960 onwards................................................................. 78

3.9 The number of NCAR PCM l simulations that are hotter than the 
hottest GISS-h simulation over the 20th Century. The horizontal 
line shows the number of simulations we would expect to be hotter, 
on average, at each time point if the models were sampling from the 
same distribution. The horizontal line shows the 5% significance level 
used in this test...........................................................................................  79

3.10 The distribution of mixing times for 5 GCMs - mri-cgcm2-3-2a, 
miub-echo-g, giss-echo-e-h, giss-echo-e-r and ncar-ccsm3 with
5, 5, 5, 9 and 8 simulations respectively..................................................  80

3.11 The p-values for the Kruskal-Wallis test are shown for the 20th Cen­
tury. Low values suggest evidence against the null hypothesis that
all five models have the same median...................................................... 81

3.12 The p-values for the Kruskal-Wallis test are shown for the 20th Cen­
tury for multi-year running medians of 2, 5, 10 and 25 year means 
respectively. In all cases, the test is non-significant during the first
half of the 20th Century, the becomes significant towards the end. . 82

4.1 The global mean heat capacity in the doubled CO2 phase is plotted 
over 1460 quality controlled simulations.................................................  113

4.2 Estimates of CS are plotted against each other for three different 
methods over 1460 quality controlled simulations. There is a strong 
linear relationship between each of the methods...................................  114

10



4.3 The range in estimated CS for three different methods is plotted
against the mean for 1460 quality controlled simulations....................  115

4.4 The distribution in top of atmosphere radiative flux imbalance in the 
doubled CO2 phase is shown for 1460 quality controlled simulations.
The method used to estimate this flux imbalance is the exponential 
fit of temperature change. There is a wide range of estimates for heat 
capacity, ranging from below 2 W /m ^  to over 6 W /m ? ........................ 116

4.5 The top of atmosphere radiative flux imbalance in the doubled CO2 

phase is plotted over 1460 quality controlled simulations. The method 
used to estimate this flux imbalance is the Gregory plot method.
There is a wide range of estimates for heat capacity, ranging from 
below 2 W /m ^ to over 6 W /m ^ ............................................................  117

4.6 The GMST time series over the 3 experimental phases of the GPDN
experiment for 350 simulations with estimated CS over 10 degrees 
Celsius (top). Also shown is the time series for 822 simulations with 2 
degrees CS (bottom). Whereas the 2 degree simulations seem to have 
reached an equilibrium by the end of phase 3, for the simulations with 
a CS greater than 10 degrees the simulated warming is so extreme 
that 15 years is not enough time for an equilibrium to be reached. . 118

4.7 The distribution of values of the Area 51 anomaly for 45644 simula­
tions before applying any quality control. The distribution is clearly 
bi-modal, representing simulations that do not exhibit a negative 
feedback (peak around 0), those that have (peak around -27) and 
a smaller number of intermediate simulations that are drifting (be­
tween -5 and -20)........................................................................................  119

4.8 The distribution of values of the Area 51 anomaly for 23050 complete
simulations with a non-significant GMST drift. The distribution is 
uni-modal about 0, with a long tail in the negative values.................  119

4.9 Panel (a) shows the time series of 2578 simulations with no quality 
control applied. Panel (b) shows the same time series, applying only 
the first two stages of quality control, leaving 1460 simulations. Panel 
(c) shows the time series with full quality control applied, leaving 
1447 simulations. Panel (d) shows the time series of 22723 simula­
tions after full quality control was applied to 45644 simulations. . . 120

11



5.1 Three randomly selected HFA fields from PPEquality There are sig­
nificant differences in HFA by region. Some areas require a reduction 
of heat in the ocean by more than IbOW/nP whereas others require 
more than 200W/m^ to be added. A HFA of 200W/nP is approxi­
mately the same effect as an increasing the solar constant by 50%. . 128

5.2 The three panels show the (a) minimum, (b) maximum and (c) range 
of the HFA field for P P  Equality The bounding box relates to the 
spread of the ensemble at each grid-box. Positive values denotes 
heat intro the ocean. The range of values shown in panel (c) can be
as large as 200hF/m^..................................................................................  132

5.3 A colour is plotted for each of 6 members of the Initial ICE where 
it defines the bounding box. The top picture shows the top of the 
bounding box, and the bottom the bottom of the bounding box.
The roughly even distribution of colours indicates that all members 
contribute to defining the bounding box and the patches of colour 
that there is some spatial correlation in the HFA..................................  135

5.4 Panels show (a) minimum, (b) maximum and (c) range of HFA for 
the Standard ICE. Panel (c) shows that there are regions for which 
members of the Standard ICE require HFAs differing by less than 
AW/rri^ but other areas where the differences can be as large as 40IF/m^l36

5.5 The HFA for 8 simulations randomly selected from the Standard 
ICE. The ensemble mean is subtracted from each simulation, giving
an anomaly field..........................................................................................  143

5.6 The HFA for 8 simulations randomly selected from the Standard 
ICE. The ensemble mean is subtracted from each simulation, giving
an anomaly field, expressed in rank order.............................................  144

5.7 Moran’s I statistic is plotted for the Standard ICE against distance 
in white. In blue, the statistic is calculated on a set of randomly 
generated data for comparison. Positive values of I indicate a positive 
correlation. For distances less than 7, grid-boxes show a positive 
correlation. Where the distance is greater than 10, there seems to be
no significant correlation across the ensemble....................................... 145

12



5.8 These graphs show the range of values for global mean HFA (top) 
and CS (bottom) as a function of ICE size. The range of values for 
global mean HFA is often so small that the minimum and maximum 
bars are almost indistinguishable. The number of ensemble members 
is “jittered” by adding a small amount of white noise so that each of 
the ranges is discernible. The top panel shows that whilst the global 
mean HFA can differ by over 70H^/m^ between model versions, the 
range within each model version is very small - at most 0.419VF/m^.
The comparative range of values of CS within model versions is large
in comparison to global mean HFA.........................................................  146

5.9 These graphs show the global mean HFA for the calibration phase.
Time runs in months throughout the phase. Panel (a) shows the
control ensemble (of 6 simulations, with an average CS of 3.4 degrees 
Celsius), panel (b) a randomly selected ensemble whose CS is 6.4 de­
grees Celsius (3 simulations) and panel (c) a 11.1 degree CS ensemble
(7 simulations)............................................................................................. 150

5.10 The y-axis shows the final 8 year mean global mean HFA for each of 
484 model versions. The x-axis shows the first 8 year mean minus the 
last 8 year mean. These values are fairly close, but with a tendency 
for simulations with negative values of global mean HFA to remove 
more heat during the last 8 years than the first 8 years......................  151

5.11 The global mean HFA is shown here for model versions with an av­
erage CS of 8 degrees or higher. There is an initial drop in the global 
mean HFA field, followed by a stabilisation...........................................  151

5.12 The HFA field for (a) DJF, (b) MAM, (c) JJA and (d) SON averaged 
over the Standard ICE...............................................................................  153

5.13 Total global cloud cover (as a fraction) is plotted against the global
mean HFA for P P  Equality There is a pattern for simulations with a
low total cloud amount to have negative global mean HFA................  156

5.14 The global mean HFA is plotted against CS for P P  Equality There is 
a distinct tendency for simulations with a large negative global mean 
HFA to produce simulations with very high CS....................................  156

13



5.15 The proportion of simulations from P P E 2578 with significant GMST 
drift is plotted for categories of global mean HFA of width 2W/m'^.
There is no clear tendency for simulations with a significant negative 
global mean HFA to have a significant GMST drift....................  161

5.16 The Area 51, JJA, HFA is plotted against the control phase drift 
for P P E 2 5 7 8- There is no clear pattern for simulations with a strong
reduction of heat over Area 51 to have a strong negative drift. . . . 162

5.17 The range of anomalies within an ICE is plotted over the problematic 
grid-box. Of 484 ensembles, only those with at least one unaccept­
able simulation (an Area 51 statistic less than -15 degrees) are plotted
(47 ensembles)....................................................................................  162

6.1 The standard HadSMS model 64 member ICE mean for 8 year tem­
perature change is shown for each season. Black areas show little or 
no cooling, white areas a cooling. Red areas show very high warming 
of over 9.5 degrees Celsius. Warming is strongly non-uniform and 
varies significantly with season........................................................  182

6.2 The variance in seasonal 8 year mean temperature change fields over 
the 64 member standard HadSM3 model ICE. Black areas show a 
variance of less than 0.2 degrees Celsius. Variance is typically higher 
over land -  over 2 degrees Celsius in some cases.................................. 183

6.3 The range (maximum - minimum values) for temperature change 
over the 64 member ensemble. Areas in black indicate a spread of less 
than 1 degree Celsius over the whole ensemble. The range of seasonal 
temperature change within this ICE is over 10 degrees Celsius in some 
cases..............................................................................................................  184

6.4 A democracy plot of precipitation change. The percentage of simu­
lations (over the standard HadSM3 model ICE for which the 8 year 
seasonal precipitation increases from control to doubled CO2 . Areas 
in black (red) indicate that more than 95% of simulations show an 
increase (decrease) in precipitation. Grey areas indicate that the sign 
of precipitation change in the standard HadSM3 model is undeter­
mined............................................................................................................  185

14



6.5 The distribution of 8 year means for the 64 members standard HadSMS 
model ICE for (a) Northern Europe Temperature, (b) Northern Eu­
rope Precipitation, (c) Central North American Temperature and (d) 
Central North American Precipitation. The control phase is shown 
in green and the doubled CO2 phase in red. The presence of an 
overlap indicates the sign of precipitation change is uncertain in the 
standard HadSMS model...........................................................................  186

6.6 Range of 8 year mean temperature change under a doubling of CO2 

for 2 ICEs of 8 and 12 members and 3 and 5 degrees CS respectively.
The magnitude of this internal variability is typically one degree Cel­
sius, but can be over 2.5 degrees Celsius, particularly for the larger,
5 degree CS, ICE........................................................................................  187

6.7 The difference in 8 year mean temperature/precipitation change un­
der a doubling of C 02  between the maximum of an 8 member ICE 
with 3 degrees CS and the minimum of a 12 members ICE with 5 
degree CS. The extent of this overlap is shown in temperature and 
precipitation. Positive values in temperature show where the maxi­
mum 3 degree simulation is hotter than the minimum 5 degree sim­
ulation. In precipitation, values denote the magnitude of the overlap 
between the driest (wettest) 3 degree simulations and wettest (driest)
5 degree, depending on the median direction of precipitation change 
form 3 to 5 degrees. Negative values denote areas with no overlap. . 188

7.1 The time series of model version mean (averaged over available qual­
ity controlled ICE members) for the three phases of the experiment.
Most simulations warm rapidly in the final phase, some by over 8 
degrees by the end of the 15 year doubled CO2 phase. There are 
some simulations with unsmooth trajectories........................................  197

7.2 The distribution of CS in the CPDN PPE. Panel (a) shows the dis­
tribution of all simulations, panel (b) the distribution of quality con­
trolled simulations. Panel (c) shows the ICE mean over all model 
versions, for quality controlled simulations. Panel (d) shows a com­
parison of the three different distributions as CDFs. The highest 
model version mean CS is 16.4 degrees Celsius.....................................  198

15



7.3 The change in temperature following a doubling of CO2 is shown 
for 12 CMIP II models and the CPDN ensemble. For some CMIP 
simulations, data pertaining to the transient period of warming im­
mediately following a doubling of CO2 was not available....................  199

7.4 The mean (upper panel) and variance (lower panel) of 8-year mean 
annual mean temperature change between the pre-industrial CO2 

calibration phase and the doubled CO2 phase over 22698 simulations. 
Warming is greater in the centre of large masses and in the Northern 
high latitudes. Warming over the ocean is typically between 1 and 3 
degrees Celsius, compared to 6 to 8 degrees in the Arctic................... 203

7.5 The mean (a), democracy plot (b) and bounding box of 8-year (the 
minimum is shown in panel (c) and the maximum in panel (d))mean 
precipitation change between the pre-industrial CO2 calibration phase 
and the doubled CO2 phase over 22698 simulations. The democracy 
plot shows the percentage of simulations with an increase in precipi­
tation at each grid box............................................................................... 204

7.6 The change in temperature from phase 2 to phase 3 is shown for two 
simulations. These simulations were selected on the basis of having 
very low and very high climate sensitivities of 1.2 and 16.9 degrees, 
respectively. Panel (a) shows the DJF change for the 1.2 degree CS 
simulation and panel (b) the JJA change. Panel (c) shows the DJF 
change for the 16.9 degree CS simulation and (d) the JJA change. . 206

7.7 The distribution of CS is shown for all quality controlled simulations 
for three different values of the Entrainment Coefficient - 0.6 (low)
in panel (a), 3 (standard) in panel (b) and 9 (high) in panel (c). . . 222

7.8 The implied distribution of feedbacks for three different values of the 
Entrainment Coefiicient .........................................................................  223

7.9 The global mean HFA is plotted against CS. The vertical lines de­
note the largest absolute values of global mean HFA in the 64 mem­
bers standard ensemble. The range of CS captured by this range is 
(1.59535, 8.17179).......................................................................................  224

16



7.10 The RMSE, relative to the standard model, is plotted against CS for 
22712 simulations in five different variables -  (a) surface temperature,
(b) sea surface pressure, (c) precipitation, (d) surface sensible heat 
fiux from sea and (e) surface latent heat fiux from sea. Panel (f) 
shows the average RMSE error over these five variables. The values 
for 13 GCMs taken from the CMIP II project are plotted as black 
diamonds......................................................................................................  225

7.11 The Cumulative Distribution Function of CS for the grand ensem­
ble, including only simulations with an RMS error no higher than 
the worst member of the 64 member standard ensemble. In the top 
Figure, temperature is used as the observational constraint (green).
Also shown is the effect of constraining in 7 different observational 
variables simultaneously. The variables shown are heat fiux latent 
surface, total precipitation rate, sea surface pressure, 1.5m tempera­
ture, surface sensible heat fiux from sea, surface latent heat fiux from 
sea, total cloud amount. The number of simulations left after apply­
ing constraining in each variable is shown adjacent to each variable’s 
name.............................................................................................................. 226

7.12 RMSE, relative to the standard model, for precipitation and temper­
ature for 22711 quality controlled simulations. There is a pattern for 
simulations with a worse score in one variable to have a worse score
in the other, although a number of exceptions exist.............................  227

8.1 The distribution of 8 year DJF (JJA) temperature (precipitation) 
is shown for simulations for the 2 degree set. The a;-axis range is 
maintained for following regional plots for ease of comparison. Note 
that there is little variance in precipitation where averages are taken 
over these large areas.................................................................................  236

8.2 The distribution of 8 year DJF (JJA) temperature (precipitation) 
is shown for simulations for the 2 degree set. The a;-axis range is 
maintained for following regional plots for ease of comparison. . . . 237

8.3 The distribution of 8 year DJF (JJA) temperature (precipitation) 
is shown for the 2 degree set. Whilst all simulations show an in­
crease in surface temperature, the ensembles disagree on the sign of 
precipitation change in all regions and seasons shown...........................  244

17



8.4 Median temperature change for the 2 degree set for the DJF (panel 
(a)) and JJA  (panel (b)) seasons. Also shown in panels (c) and (d) 
are the widths of the central 80 percent (10th-90th percentiles)of 
temperature change, respectively for the DJF and JJA seasons. . . 247

8.5 The distribution of 8 year DJF (JJA) temperature (precipitation) is 
shown for the 2 degrees set (blue) and the 3 degrees set (red). There 
is often a large overlap between the two ensembles, especially for 
precipitation. This shows that the 2 degree set and the 3 degree set
are not always robustly distinguishable..................................................  257

8.6 The three grid-boxes selected to look at local impacts are shown.
These grid boxes are called London, Boulder and Jakarta since they 
contain those cities. It should be noted that the grid-boxes are much 
larger than the cities they contain...........................................................  259

8.7 The distribution of 8 year D JF/JJA  temperature/precipitation is 
shown for the 2 degree set (blue) and the 3 degree set (red). The 
grid-boxes that contain London, Boulder and Jakarta are shown.
Note that the cities themselves are much smaller than the grid-boxes, 
which are typically 50,000A;m  ̂ in area....................................................  260

8.8 The median change in temperature (degrees Celsius) is shown in 
panel (a) and precipitation (mm per day) is shown in panel (b) over 
the 3 degree set. Also shown is the difference between this and the 
median temperature rise in temperature for the 2 degree set in panel
(c) and precipitation in panel (d)............................................................. 261

8.9 Regional response factors for 27 regions shown in Table 8.8 in four 
different variables. DJF temperature response factors are shown in 
panel (a), JJA temperature in panel (b), DJF precipitation in panel
(c) and JJA  precipitation in panel (d). Estimates from the 2 degree 
set of simulations are shown in blue, the 3 degree set in green and 
the four degree set in red. Estimates from the individual simulations 
from the standard HadSM3 ICE are shown in black. The two black 
lines show the minimum and maximum regional response in simula­
tions from the standard HadSM3 ICE. Vertical bars show 2 standard 
deviations in estimates of the mean regional response from each set. 266

18



.10 Time series for the 2 and 3 degree sets. Transient warming occurs at 
the point of CO2 doubling (year 30) and stabilises by the end of the 
final phase. Data on regional climate changes was available for the 
final 8 years of each phase.........................................................................  274

19



Nom enclature

R om an  Sym bols

IC  Initial Conditions

A R 4 IPCC Fourth Assessment Report

CO2 Carbon Dioxide

C P D N  climateprediction.net

G C M  General Circulation Model

G H G  Greenhouse Gas

G M ST Global Mean Surface Temperature

HFA Heat Flux Adjustment

IC E  Initial Condition Ensemble

IC U  Initial Condition Uncertainty

IP C C  Intergovernmental Panel on Climate Change

N W P  Numerical Weather Prediction

P D F  Probability Density Function

P P E  Perturbed Physics Experiment

SOTA State of the Art

SST Sea Surface Temperature

20



Chapter 1

Introduction

In recent years climate change^ has become a significant issue in science, politics 
and the media. Whilst theories of man-made global warming have been around 
since the 19th Century Arrhenius (1896); Tyndall (1861) only within the last 30 
years has climate science become a major scientific focus. Furthermore, it is only 
over the past 10 years that climate change has become a significant political issue, 
driven by an increasing awareness of its potential impacts. Assessing the human 
impact on the Earth’s climate has become a major area of research and is of im­
portance to many different decision-makers Association of British Insurers (2005); 
Parry et ai (2007); Stainforth et al. (2007b); Stern (2006).
Whilst certain details may be still under dispute, it has become widely accepted 
that the changes in climate that have occurred over the past 100 years are largely 
anthropogenic (man-made) Oreskes (2004); Solomon et al. (2007a) and that an­
thropogenic factors will continue to have a significant effect throughout the 21st 
Century. Focus has turned to predicting the details of how the climate will change 
over the next Century. This Thesis examines the robustness of these details and 
evaluates uncertainties in climate simulations.
Accurate climate prediction would be useful for at least three reasons:

1. M itiga tion  Decisions. The likely results of mitigation decisions can be 
better understood in the light of reliable climate predictions. For example, 
when considering whether (and by how much) to cut CO2 emissions, it is 
important to know how the climate might change for given scenario of future 
CO2 emissions Schellnhuber et al. (2005). When setting targets for emissions

 ̂Terms defined in the Glossary are shown in italics at their first use.
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it is helpful to know how different emission scenarios will relate to climate 
change on both local and global levels in a number of meteorological variables.

2. A d ap ta tio n  Decisions. The planning of adaptation measures (e.g. the 
building of flood defences) would benefit from insight to how the climate will 
change on national or finer length scales. For example, suppose a government 
is considering building a dam to prevent future flooding. The optimal design 
and placement of this dam depends on several climatic factors. These include 
the frequency, intensity, spatial and temporal patterns of precipitation in the 
future, how much sea levels might rise, whether storms are likely to be more 
frequent and intense and the correlations between these factors.

3. Im p ac ts  A ssessm ent. Even where no adaptation or mitigation decisions are 
planned directly, it is of interest to industry and government to know how the 
climate will change in the future e.g. when considering how energy demand 
might change in the coming years to decades. Take the example of a Life or 
General insurance company. It might be of great use to an insurer to know 
whether there is likely to be an increasing trend in extreme weather events, 
changes in mortality rates and thus estimate what additional capital might 
be needed to protect against future climate-related claims.

One of the key questions looked at in this Thesis is “How might climate models 
inform such decisions?” . In order to provide support to decision-makers, projections 
of future climate have been provided by state-of-the-art climate models. These 
models are known as General Circulation Models {GCMs). GCMs represent a large 
investment of scientific research and resources McGufhe & Henderson-Sellers (2006) ; 
Solomon et al. (2007a); Thorpe (2005). The subject of this Thesis is the evaluation 
of GCMs for décision-support.
The problem of climate prediction poses many new and interesting challenges to 
statisticians. Increased study on the evaluation of complex models with little out- 
of-sample data would be of value in a number of diflFerent areas of applied statistics. 
In the case of climate predictions, statistical methods of model evaluation based on 
a comparison of out-of-sample predictions with observational data are hampered 
by lack of data -  the long lead times of forecasts (10+ years) and the relative novelty 
of the field limit the potential for such methods of evaluation.
This Thesis uses alternative methods to assess the potential value of climate models 
to decision makers. The methodology used is briefly introduced in Section 1.1. 
Important results are highlighted in Section 1.2.
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1.1 M ethodology

This Thesis explores and analyses the richest source of climate model data available 
to date -  the CPDN data set. The aim of this Thesis is to evaluate the uncertainties 
in climate model projections for décision-support and to establish statistical good 
practice relevant to this field.
The reliability of a model’s out-of-sample predictions can never be verified in the 
sense of establishing a model as “true” Oreskes (1998); Oreskes et al. (1994). Meth­
ods of model evaluation can show where predictions are likely to be inadequate, but 
a model’s out-of-sample predictions can never be proven to be accurate. Evaluation 
of potential model skill is especially difficult in the case of climate prediction where 
out-of-sample observations are lacking Smith (2002); Stainforth et al. (2007a). In 
light of this, the approach adopted in this Thesis is to check climate models for 
consistency of information rather than seeking to verify the models in any sense. 
Model output is said to be consistent where differences between simulations are 
not critical for decision-makers. These differences can be analysed a) across differ­
ent structural models, b) in the same structural model across different parameter 
values or c) within a particular model across the starting state used to initialise 
a particular model simulation, the model’s initial conditions (an Initial Condition 
Ensemble, or ICE). A set of Initial Condition Ensembles, each run under different 
model structures or parameter values (as in cases a) and b)) together form a grand 
ensemble. The diversity of output across model projections places a limit on the 
utility of model output in décision-support.
There have been attempts to attach probabilities to climate changes Annan & Har­
greaves (2006); Giorgi & Mearns (2003); Pittock et al. (2001). This Thesis does not 
attempt to attach probabilities to climate impacts for four reasons;

1. Due to model inadequacy Kennedy & O’Hagan (2001b), there is no reason 
that the details of a model’s climate distribution will hold for the Earth’s 
climate system Smith (2002).

2. The effects of arbitrary choices of experimental design and parameter speci­
fication can affect the probabilities attained significantly Frame et al. (2005, 
2007).

3. It is difficult to see how to probabilistically combine output from different 
models given the lack of a reliable metric in model space Allen & Stainforth 
(2002).
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4. It may not be necessary to express climate projections as probabilities for 
model output to be useful Dessai & Hulme (2004); Judd (2008a).

Despite attempts to create Bayesian probability distributions for climate Annan 
& Hargreaves (2006); Goldstein & Rougier (2006), the Bayesian approach faces sig­
nificant theoretical and practical difficulties, as outlined above. Rather than adopt­
ing a framework for uncertainties based on probability distributions, this Thesis 
quantifies different types of known uncertainties present in climate models and the 
level of consistency between models. Checking for consistency of information across 
an ensemble of models provides a direct evaluation of the robustness of model pro­
jections.
Two important methods for evaluating the reliability of climate models are: 1) In- 
sample consistency with observations and the 2) the range of predictions produced 
by different models out-of-sample, as given in Raisanen (2007). Further evaluation 
methods that can be used to gain confidence in model projections listed in Solomon 
et al. (2007a) are the 3) simulation of present-day climate and 4) the fact that 
models are based on well-understood physical principles. Question 1) is looked at 
in Thesis in Chapter 3, although the main focus is on evaluation method 2), the 
diversity of model output provided by current models, which is investigated in detail 
in Chapters 6,7 and 8.
The uncertainty analysis applied in this Thesis is only possible with a large set 
of climate model simulations. At present, the only source of sufficient data was 
the climateprediction.net (CPDN) experiment, from which 45644 simulations are 
analysed in this Thesis. In comparison, the Intergovernmental Panel on Climate 
Change (IPCC) AR4 uses an ensemble of 58 simulations to evaluate climate mod­
els in their Summary for Policymakers Solomon et al. (2007a,b). Similar numbers 
of simulations were used to make projections under various scenarios in the IPCC 
Report. The CPDN data set allows new approaches to the quantification of uncer­
tainty. The availability of a large set of data provides a unique opportunity to test 
the robustness of climate models.
New results and methods that are presented in this Thesis are given in Section 1.2.

1.2 Key results and new approaches

In this Thesis a framework for the evaluation of climate models is laid out and 
the types of uncertainties present are demonstrated and explored. The structure of 
this Thesis is as follows. Chapter 2 introduces a framework for understanding and 
evaluating the uncertainties in climate simulations. Chapter 3 analyses data used
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in the IPCC AR4 in terms of GCMs’ in-sample fit and motivates a more thorough 
assessment of uncertainty. Chapter 4 gives details of the CPDN experiment and the 
data sets analysed in Chapters 5 through 8 of this Thesis. Chapter 5 examines the 
heat flux adjustments (artificial adjustments of energy applied to the model’s ocean) 
that are applied to the GCM used in the CPDN experiment. Chapter 6 presents 
results for the largest Initial Condition Ensemble analysed to date (64 simulations of 
the Hadley Centre’s HadSMS model). Chapter 7 investigates the range of behaviour 
across the CPDN data set of 45644 simulations and discusses the use of methods to 
reduce the range of behaviour shown. Chapter 8 looks at the utility of global mean 
temperature as a basis for decision-making and the uncertainty present on regional 
scales for sets of simulations with very similar global mean temperature response. 
Chapter 9 summarises this work and discusses the implications of new results for 
decision-makers.
The main advances in this Thesis, by Chapter are:

1.3 Chapter 2

Three tests are proposed that can be used to evaluate whether climate models might 
be fit for decision support. These tests are based on 1) The in-sample fit of climate 
models, 2) The range of model behaviour within an Initial Condition Ensemble and 
3) The diversity of model behaviour across an ensemble of different models. These 
strawman tests are presented as means to test the consistency of information in 
climate models. Uses of models that fail one or more of these tests are discussed.

1.4 Chapter 3: How reliable are climate models?

Chapter 3 examines climate model data presented in the Intergovernmental Panel 
on Climate Change Fourth Assessment Report (IPCC AR4). It is shown that:

1. There are significant differences between different GCMs’ global mean temper­
ature of up to 3 degrees Celsius in their 1901-1950 base climates. Such large 
differences could affect physical properties of these models that are relevant 
when comparing model simulations to observations.

2. The effect of taking different types of anomalies is shown to give significantly 
different presentations of GCMs’ in^am ple fit. In particular, when taking 
anomalies for each simulation results in a tighter multi-model ensemble than 
when taking anomalies with respect to each model (averaging the bias cor­
rection over each model’s constituent simulations). It is shown that the use
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of anomalies in the IPCC AR4 (taking anomalies for each simulation) is less 
physically meaningful than taking anomalies for each model and the former 
method distorts the variability of simulations both within individual models 
and across different structural models.

3. Model output is compared to observed global mean temperatures over the 
20th Century. Residuals are compared on a model by model basis and it is 
shown that 1) There can be considerable structure in the residual time series 
and 2) The magnitude of residuals can be large (up to 0.5 degrees Celsius) in 
comparison to observed 20th Century global warming (~0.74 degrees Celsius).

4. The CMIP3 (the third Coupled Model Intercomparison Project Covey et al. 
(2003)) GCMs used in the IPCC AR4 are shown not to be exchangeable, 
calling into question the relevance of many methods of statistical analysis for 
climate model output. This is shown by calculating the number of simulations 
in one ensemble that exceeds the maximum member of another. This empirical 
statistic is then compared to the theoretical expectation based on the ensemble 
sizes. Results show that GCMs can not be assumed to be sampling from a 
common distribution. These initial results were confirmed by a Kruskal-Wallis 
test.

5. A new method for estimating the temporal correlation within GCM time series 
is proposed. This method requires an Initial Condition Ensemble and is based 
on the typical amount of time taken for an extremal simulation (maximum or 
minimum) to cross the median of the ensemble. It is shown that the mixing 
time for some GCMs is not significantly different from 1 year (the higher 
frequency of data used here), but that it can be higher for other GCMs.

1.5 Chapter 4: Intro to CPDN

1. A new method of quality control is presented, correcting for problems identi­
fied in previous quality control methods Stainforth et al. (2005). An unphysi­
cal local feedback in the East Pacific is detected using a local anomaly statistic. 
This method is shown to eliminate simulations with significant global cooling 
which fail to be detected when using global mean statistics.

2. Features of the CPDN experiment are documented for the first time e.g. avail­
ability of data, experimental design and issues in data analysis. Such docu­
mentation is important for other studies based on CPDN data sets.
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1.6 Chapter 5: Heat Flux

The HadSM3 climate model used in the CPDN experiment analysed here requires 
the use of heat flux adjustments (HFA). The variability and effect of the HFAs on 
a grand ensemble of climate model simulations are looked at for the first time. It 
is shown that:

1. Perturbation of Initial Conditions has little effect on the global mean HFA 
(the greatest difference in global mean HFA between IC members across 418 
model versions is 0.419IF/m^). Perturbation of Initial Conditions can lead to 
differences of up to 40IF/m^ (~100 times the greatest global difference) on a 
grid box level.

2. Parameter perturbed model versions of HadSMS can require significantly dif­
ferent global HFAs. This is shown by carrying out a Singular Value Decompo­
sition on Initial Condition Ensembles of HadSMS model versions. The leading 
Singular Vector is shown to explain significantly more variability in the HFA 
fields where model simulations share parameter values than where simulations 
are drawn at random. It is also shown that whilst perturbing Initial Condi­
tions makes less than 0.5IV/m^ difference on the global mean scale, perturbing 
parameters can lead to changes of up to 70IV/m^. It is argued that the HFA 
should then be calibrated for each set of parameter values.

S. There are shown to be significant seasonal variations in the HFA both globally 
and regionally. This effect is likely mimicking the seasonally-dampening effect 
of a deep ocean and means HadSMS’s seasonal cycle might not respond to 
rising CO2 in a physical way.

4. A relationship is shown between global mean HFA and climate sensitivity 
(CS), a statistic representing the estimated extent of warming that will occur 
in a model when CO2 concentrations are doubled. Simulations with higher 
values of CS tend to have strong negative global mean heat fluxes (less than 
-lOW/ni^). This relationship is potentially important for interpreting simula­
tions with very high values of CS (greater than 8 degrees Celsius).

5. Relationships between HFA and model drift are investigated with the use of 
global mean and refined local statistics. No discernible pattern between global 
mean HFA and model temperature drift is found. The same model version 
can produce simulations that either drift or do not drift, suggesting drift is 
not dependent solely on parameter perturbation.
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1.7 Chapter 6: Initial Condition Ensembles in 
Climate Modelling

1. The availability of a large Initial Condition Ensemble allows for a quantifi­
cation of the HadSMS’s internal variability, which is shown to be significant 
on length scales relevant for impact studies and adaptation decisions. The 
various roles of ICEs are discussed and their increased use is encouraged. It 
has typically been assumed that the effect of perturbing Initial Conditions on 
climate simulations was negligible Tebaldi & Knutti (2007).

2. It is shown here for the first time that Initial Condition perturbation can have 
a significant effect on model behaviour on relevant length and time scales in 
temperature and precipitation. The sign of the change in 8 year mean sea­
sonal precipitation under a doubling of CO2 is unanimous in only ~  3% of 
grid boxes. In temperature, 8 year mean seasonal differences within an Initial 
Condition Ensemble are shown to be as large as 10 degrees Celsius in some 
grid boxes. Such large differences are not usually considered possible and 
could affect the experimental designs and the interpretation of model vari­
ability. The effect of perturbing Initial Conditions is explored using bounding 
boxes (the maximum, minimum and range of values across an ensemble) and 
democracy plots (each member of an ensemble is given a vote and the number 
of votes counted).

1.8 Chapter 7: Constraining New Results from 
the CPDN grand ensemble

1. The range of behaviour shown in an ensemble of 45644 of GCM simulations is 
unprecedented, with estimated CS ranging from from 0.9 to over 16 degrees 
Celsius. Uncertainties are even larger on sub-global length scales.

2. Three methods are presented, as examples, to constrain the range of climate 
simulations and these methods are discussed in light of statistical good prac­
tice. These methods are based on 1) Constraining the values for a key param­
eter, the Entrainment Coefficient, 2) Global mean heat fiux adjustment and 
3) Observational constraints in 7 variables. It is shown that for methods 1) 
and 2) simulations with CS of over 8 degrees can not be ruled out and that, 
for method 3), the distribution of CS is dependent on the choice of variable.
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3. Simulations are selected based on the three different values of the Entrain­
ment Coefficient (the most significant parameter perturbed in the CPDN 
experiment) to look at the effect on the distribution of simulated CS. The 
Entrainment Coefficient is shown to have an effect on the distribution of sim­
ulated CS but simulations with over 8 degrees CS exist for low, standard and 
high value of this parameter. For method 3), applying the constraint in mul­
tiple variables rules out more simulations, less than 0.1% of simulations pass 
the test applied in 7 variables simultaneously, whereas typically 10% pass in 
any individual variable.

4. It is shown that the shape of the distribution of CS is not an inevitable feature 
resulting from an approximately Gaussian distribution of feedbacks, as was 
suggested in Roe & Baker (2007). The distribution of CS can be changed 
substantially by a different choice of experimental design.

5. The relationship between strong negative global HFA and high CS simulations 
might be used to constrain the distribution of simulated CS. This can be done 
by considering a sub-^et of simulations with a global mean HFA of magni­
tude less than the largest global mean HFA used in the standard HadSMS 
ensemble. Global mean HFA can be used to change the distribution of CS, 
but simulations with CS over 8 degrees are still admitted. The use of such 
post-hoc filters is criticised on the basis of bad statistical practice.

6. When comparing model performance in-sample in 7 different variables, results 
depend on the choice of variable. For example, constraining in temperature 
tends to admit more high CS simulations and constraining in precipitation 
more low CS simulations.

1.9 Chapter 8: On the relevcince of M odel Means 
for Decision—Support

In Chapter 8, three sets of simulations are analysed, with global mean temperature 
rise of 2, 3 and 4 degrees respectively; it is shown that

1. Regional changes can differ significantly (over 6 degrees Celsius for some re­
gions in 8 year mean seasonal temperature) for simulations with the same 
global mean temperature change.
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2. The space and time scales of model diversity are quantified. The magnitude 
of regional uncertainties for a given global mean temperature change varies 
with length scale and variable. For example the range of DJF 8 year mean 
temperature change for simulations with 2 degrees Celsius global mean tem­
perature rise rise is (0.96, 3.00) degrees in Australia and (1.32, 6.31) degrees in 
Northern Europe. The distribution of regional change is used to present diver­
sity in sub-global response on a variety of length scales - global, hemispheric, 
tropical and extra-tropical, regional and local. Uncertainties in model precip­
itation response to doubled CO2 are large -  the sign of change is uncertain 
on length scales as large as many nations in most regions looked at.

3. The distributions of regional change are contrasted between the 2 and 3 degree 
global mean temperature sets. The magnitude of overlap between these distri­
bution is shown to be large; in some regions and variables this overlap is over 
20%, indicating that it is not always possible to define a unique relationship 
between global and regional changes.

4. Even if global mean temperature is constrained to within 0.2 degrees Celsius, 
significant regional uncertainties would remain. It follows from this result 
that global mean constraints are of limited use and that methods based on 
the patterns of change might be preferable.

At the end of each Chapter new results or methods will be listed as bullet points.
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Chapter 2 

Uncertainty and the use of 
State—of—the—Art climate models 
in decision—support

2.1 Overview

This Chapter looks at the problem of climate prediction and some of the challenges 
faced in using State-of-the-art (SOTA) climate models for decision support. The 
term SOTA models is used in this Chapter to refer to the set of models that are 
currently used to make climate predictions. In the context of the applications pre­
sented in this Thesis, SOTA models relates to GCMs, although this need not be the 
case (the SOTA necessarily changes over time). A climate prediction is defined here 
as a statement regarding the the future of Earth’s climate system on time-scales 
typically of 10+ years. Particular focus is placed on the uncertainties inherent in 
climate prediction and possible methods to establish SOTA models as potentially 
fit for the purpose of decision support.
Section 2.2 explains the problem of climate prediction. The inherent uncertainties 
in climate prediction are qualified into four categories; Forcing Uncertainty, Initial 
Condition Uncertainty, Model Uncertainty and Model Inadequacy. Difficulties in 
the evaluation of climate predictions are discussed. The use of ensembles in the 
evaluation of these uncertainties is explained in Section 2.3.5.
Following on from the difficulties in establishing climate models as fit for décision- 
support, Section 2.4 presents three tests for consistency of information in climate 
prediction. These tests are not expected to prove that SOTA climate models are 
useful in a particular case, rather to show one some of the ways decision support 
can be sensitive to inherent uncertainties in climate simulations. The consequences 
of failing one of these tests and subsequent uses of a model whose predictions fail
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are explained.
Section 2.5 discusses the use of climate model output in décision-support. Section 
2.6 looks at the different needs of decision-makers in the context of adaptation to 
or mitigation of climate change. It is argued here that adaptation decisions often 
require more information and are subject to greater uncertainty than mitigation 
decisions. Section 2.7 looks at the communication of uncertainties and why trans­
parent and effective communication is vital both for decision makers and providers 
of climate predictions.

2.2 The problem of climate prediction

There are a number of obstacles to accurately predicting future climate. Two of
these obstacles are:

1. The Earth’s climate system is highly complex and exhibits non-linear be­
haviour. This is also true of the SOTA models used to simulate the Earth’s 
climate system. The presence of non-linearities in a complex system mean 
that precise prediction is impossible in practice due to inexact specification 
of the initial state (the starting state of a model simulation) or observational 
noise Judd & Smith (2001a); Lorenz (1963); Smith (2007). This is apparent in 
the case of Numerical Weather Prediction (NWP), where uncertainty in the 
initial state results in a loss of predictive skill typically after 2 weeks Orrell 
et al. (2001). Since exact deterministic prediction of either weather or climate 
is impossible, a distribution of climatic states should be forecast to represent 
this uncertainty. Obtaining this distribution is the goal of climate prediction 
Palmer et al (2005); Smith (2002); Stainforth et al (2007a).
The evaluation of the distribution of future climate faces a number of diffi­
culties. One such obstacle is that small perturbations to the climate system 
can result in disproportionately large (or small) effects on the distribution 
of future states due to feedback processes. Interactions between components 
of a non-linear system are dependent on each other and so the system can 
not be considered simply as the sum of its parts. In order to understand the 
important interactions within the climate system, complex models have been 
developed that can not be readily understood analytically. Since an analytical 
approach to understanding climate models is not possible, it is necessary to 
gain insight to the workings of the models from computer simulations (run­
ning the model and looking at the output).
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Since there are non-linear feedbacks in the Earth’s climate system, it is im­
possible to know whether some as yet unconsidered process or forcing will 
change future climate in an unexpected way. Thus, any climate prediction is 
conditional on the absence of any undiscovered feedbacks that would signifi­
cantly affect its conclusions. Therefore, it is important to note that no climate 
prediction can be final but might be updated in light of future model develop­
ment or an improved understanding of the climate system. Whilst this is true 
of scientific models in general, the conditional nature of climate predictions 
is particularly prevalent due to the inherent nature of climate predictions as 
extrapolations.

2. The climate system changes over time, thus any attempt at prediction must 
not be critically dependent on the assumption that the future will resemble the 
past; climate prediction is fundamentally a problem of extrapolation. The cli­
mate system is being altered due to anthropogenic influences with a potential 
magnitude of climate change greater than any present in observational data. 
Since the future climate is expected to be outside the range of data avail­
able, attempts at prediction are dependent on the dynamics of the change 
in climate occurring in a way consistent with our current understanding of 
climate science. A key motivation for the use of physical models in climate 
prediction depends on our ability to understand the physical processes driving 
future climate change Solomon et al. (2007a). This approach assumes that, 
having captured all the important drivers of climate change from past data, 
it is possible to extrapolate since climate will continue to react to forcings in 
a similar way.

The non-linearity of the Earth’s climate system, coupled with a lack of analogues 
in the observational record, make climate prediction difficult. These problems mean 
that climate predictions are most relevant when the uncertainties in predictions can 
be reliably estimated. As explained in Section 2.4, some common methods of model 
evaluation are not possible for long-term climate prediction. Alternative methods 
that can be used to qualify and quantify the uncertainty in climate predictions are 
presented.

There are some important aspects of climate prediction that require the judicious 
application of statistical good practice. One example of this is that climate models 
are so complex that they can not be considered parsimonious in any conventional 
sense. With hundreds of tunable parameters, and perhaps a little over 100 years of 
reliable observational data, it might be argued that it is not surprising that models 
can re-produce the past well. In fact, it would be surprising if a model with more
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tunable parameters than data points would not produce a good in-sample fit, unless 
parameter values were heavily constrained. Evaluation of climate predictions can 
not be definitive and should take the form of tests for consistency of information. 
These tests, described in Section 2.4, provide a means of sanity-checking climate 
predictions as potentially fit for purpose. Section 2.3 introduces the four categories 
of uncertainties and how these might be explored using ensembles.

2.3 Uncertainties and Ensembles

The evolution of future climate is highly uncertain for several reasons Stainforth 
et ai (2007a). Despite the huge research investment and fundamental physical 
theory that goes into SOTA climate models, it is an open question to what extent 
decision-relevant information can be extracted from these models. In order to 
answer this question it is necessary to understand the different types of uncertainty 
present in SOTA models; some are reducible, others not Smith (2002).
There are a variety of different uncertainties in climate prediction resulting from 
the problem of extrapolating using dynamical systems. These uncertainties can be 
classified in different ways Giorgi & Francisco (2000); Stainforth et al. (2007a). The 
four categories of uncertainty used here are:

1. Forcing Uncertainty

2. Initial Condition Uncertainty

3. Model Uncertainty

4. Model Inadequacy

Forcing Uncertainty is not dealt with in detail in this Thesis, because it does not 
relate to how climate models represent the climate system itself, and depends on po­
litical decisions and unknown natural forcings. Errors in the model’s representation 
of the system being modelled are divided into three categories; Initial Condition 
Uncertainty, Model Uncertainty and Model Inadequacy. The four categories are 
now discussed in turn.

2.3.1 Forcing Uncertainty

Factors that affect the distribution of climate, not arising from internal variability 
of the system^, are known as forcings. Natural forcings include changes in solar

^Internal, or “Natural”, variability usually means variations in climate not due to some external 
forcing factors, such as anthropogenic effects.
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luminosity and volcanic eruptions. Volcanic eruptions are an important driver of 
climate variability on timescales of months to years are volcanic eruptions, leading 
to significant drops in regional and GMST Robock Sz Oppenheimer (2003); Yang 
(1999). We might expect our models to be inaccurate in the future at least to 
the extent that they do not take into account the potential effect of large volcanic 
eruptions and other forcings we know that are unaccounted for.
Whilst naturally occurring forcings have an effect on the climate system, the most 
important changes in forcings for the climate of the 21st century are anthropogenic 
Cubasch et al. (2001); Stott & Kettleborough (2002). Anthropogenic forcings in­
clude the emissions in GHGs, such as CO2 In climate models the analysis of forcings 
is often restricted to Greenhouse Gases (GHGs), or GHGs as CO 2 equivalent. The 
effect of forcings can be measured in terms of their radiative effect (in W/rn?). 
Uncertainty in what the future forcing will be depends, in part, on policy and the 
actions of mankind over the next 100 years. There are large uncertainties in the 
emission of GHGs and other anthropogenic sources Nakicenovic et al. (2000). The 
uncertainty in future anthropogenic forcings is, partially, in the control of global 
policy and is not an issue for climate science, as such. Climate models can only 
hope to provide insight into each forcing scenario under consideration, given the 
other forms of uncertainty so that policy can be made in a more informed man­
ner. In so far as emissions are policy-dependent. Forcing Uncertainty is partially 
controllable since mankind can choose what level of GHGs to emit over the course 
of the 21st Century. Unlike mitigation decisions, for many decisions relating to 
climate impacts or adaptation. Forcing Uncertainty must be included, as discussed 
in Section 2.6.
Assessing the likelihood of various forcings is not addressed in this Thesis. This 
Thesis will treat the problem of climate prediction as conditional on a scenario of 
future forcings.

2.3.2 Initial Condition Uncertainty

Climate models need to be initialised with some starting state. Where the model 
and the system are identical (this is also known as the Perfect Model Scenario Judd 
& Smith (2001a)), this might be done by using the most accurate estimates of the 
system’s current state. Given that no observations are perfectly accurate, there will 
be a set of possible starting states in whatever high-dimensional space the model 
lives in. Propagating this set of possible starting states using a model results in a 
distribution of possible states at each time point in the simulation. This distribu­
tion can be thought of as a manifestation of Initial Condition Uncertainty (ICU).
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With a Perfect Model and the ability to fully explore ICU, the distribution of future 
climate would be representable by a reliable Probability Density Function (PDF)^ 
where the model’s PDF provides a fully accurate guide to the frequency of real 
world events. Fully propagating ICU (every possible Initial Condition) in a climate 
model gives the model’s PDF, also known as the model’s climatology.
It is a fundamental property of non-linear systems that simulations can show sen­
sitive dependence on initial conditions (ICs). In systems displaying sensitive de­
pendence on ICs, even arbitrarily close starting states diverge on long time scales 
Lorenz (1963). An example of the growth of ICU can be taken from Numerical 
Weather Prediction; there are fundamental limits to the predictability of weather 
given noisy observations since very similar current states can lead to widely diver­
gent forecasts on timescales of a week or more.
In the case of climate, the initial growth of ICU is not of interest per se, since inter­
est lies in the behaviour of the model on timescales beyond which ICU is thought 
to affect the distribution of model behaviour. Reducing ICU should have no signif­
icant effect on the model climate distribution on long time scales Stainforth et al. 
(2007a). The presence of ICU in climate modelling means that we are always deal­
ing with a distribution of climatic states. Climate modelling aims to understand 
how this distribution will change; weather modelling aims to provide forecasts on 
short lead-times, conditioned on the estimated current state of the climate system. 
Where the model and the system are distinct, there is no unique correct model start­
ing condition. Yet all models must be initialised in order to be run. A model can 
be initialised using an analysis (observations projected into model space through a 
model) although there would still be a set of different Initial Conditions with which 
the model could be equivalently initialised. This set of possible initial states, when 
transformed into model space, need no longer directly represent the uncertainty 
in observations. It is critical to understand that a climate model’s PDF may not 
bear any useful resemblance to future climate. It is the role of climate scientists 
to evaluate the potential similarity between climate models’ PDFs and the future 
climate. ICU is analysed in detail in Chapter 6.

2.3.3 Model Uncertainty

There is also uncertainty in how to represent our knowledge of the climate system. 
This uncertainty is present both in the structure of the model and its parameter

PDF is reliable when the event occurs with a frequency consistent with the value indicated 
by the PDF Brocker & Smith (2007a)
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values. The case of parametric uncertainty is discussed first, where the model struc­
ture is held constant. Unlike ICU, changing parameter values in a dynamical system 
can lead to dramatically diflferent behaviour Cuellar Sanchez (2006); Sprott (2003). 
There are a number of different, plausible, values that each parameter can take. 
Furthermore, parameter values may not be fixed and can vary over time Kennedy 
& O’Hagan (2001b).
For many (if not all) parameters in a SOTA climate model, there are a set of values 
that might be used, each potentially resulting in a different set of model dynamics. 
An example of such an undetermined parameter is the drag coefficient, relating to 
the frictional retardation of the atmospheric fiow due to the roughness of the Earth. 
This parameter value is thought to be known empirically to about ±10% Thorpe 
(2005).
The same structural model with a different set of parameter values is called a model 
version. These different sets of parameters can be explored in a given model, in a 
Monte Carlo-type approach. How the propagation of parametric uncertainty should 
be done is an open question -  the resultant distribution of model output depends 
critically on subjective choices such as: which parameters were perturbed, which 
intervals to vary the parameters within, the parameter sampling strategy, any prior 
distributions that might be used and how to interpret the model output Frame et al. 
(2005, 2007); Stainforth et al. (2007a). The effect of these prior choices for param­
eter perturbation differs from the case of perturbing ICs. Whereas perturbing ICs 
allows a sampling of a single distribution, changing parameter sampling strategies 
or other prior distributions changes the distribution of model output itself. Unlike 
ICU, model behaviour under different sets of parameter values does not sample 
from a common distribution; the model will behave differently for each different 
set of parameter values. Each model version has its own distribution with its own 
internal variability. There is therefore a hierarchy of uncertainty: ICU represents 
the distribution for a given model with certain parameter values and parametric 
uncertainty represents the different model versions that are possible for a given 
structural model.
When considering the uncertainty of how to represent our physical understanding 
structurally, it is clear that there is no way to sample objectively firom “model 
space” Allen & Stainforth (2002). It is only possible to consider existent models 
rather than consider all the models that might potentially exist. It has been shown 
that the differences between parametrically perturbed model versions can be larger 
than the difference between structurally distinct models Solomon et al. (2007a); 
Stainforth et al. (2005). This suggests that the current range of different structural 
models are not fully representative of total Model Uncertainty.
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The significance of Model Uncertainty is that there are a number of different model 
versions that can be used to predict future climate; differing either by parameter 
values or model structure. We do not know which model version, if any, will pro­
duce the most accurate forecast^ for a particular variable and future time period.
It is important to note that the concept of a single “best” model or set of parameter 
values is irrelevant in the context of climate prediction since there are a number of 
different qualities that can be looked for in a climate model. In the case of model 
structure, there are a number of different ways of compiling the same physical un­
derstanding into a model. Furthermore, no single model is likely to be most useful 
in every way and it is not always possible to tell which model will provide the most 
useful predictions; thus a set of models must be considered.
The diversity of forecasts arising from different models forms a lower bound on the 
precision with which climate predictions can be made. Such Model Uncertainty can 
be explored using ensembles, as explained in Section 2.3.5.

2.3.4 Model Inadequacy

Every model is imperfect; this is true by a model’s very nature. In a theoretical 
sense, a perfect model ceases to be a model and becomes a restatement of the sys­
tem itself. In the real world models are inevitably imperfect. As such, we do not 
have access to a perfect climate model. In particular, complex computer simula­
tion models are inadequate i.e. they are an incomplete or flawed representation of 
the system being modelled Chatfield (2002); Kennedy & O’Hagan (2001a); Oreskes 
et al. (1994); Smith (2002). Whilst there is no doubt that models are imperfect 
there is equally no doubt that some are useful. The relevant question is in what 
way their inadequacies render them useful and in which ways they are useless (or 
worse, misleading).
In the case of climate models, there are a number of known inadequacies. De­
spite their great complexity, there are still missing processes that are important for 
modelling climate change (e.g. atmospheric chemistry, the carbon cycle, vegetation 
models etc.). Many models do not have an explicit stratosphere or deep ocean (in­
cluding HadSMS, the model used in the CPDN experiment). Furthermore, the grid 
resolution in current models is relatively coarse, leading to unrealistic simulation of 
important processes such as clouds and precipitation Dai (2006); Karl & Trenberth 
(2003).
Model Inadequacy is a major problem in the use of models to understand the cli­
mate. Unlike many other fields, such as NWP, the lack of out-of-sample data makes

^The most relevant measure of forecast accuracy will depend on the user.
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it difficult to evaluate in which ways GCMs are adequate for use. Given a sufficient 
amount of relevant out-of-sample data it is possible to evaluate a model and un­
derstand its strengths and weaknesses. Systematic biases can be detected, models 
can be improved and the likely future out-of-sample skill of the model estimated. 
Where there is insufficient out-of-^ample data, it is not possible to tell how the 
model will perform out-of-sample; but in-sample fit can provide a lower bound on 
future model accuracy, as explained in Section 2.4.
The problem of extrapolation in light of Model Inadequacy can be related to the 
story of Russell’s chicken Russell (1946); Stainforth et al. (2007a). A chicken is fed 
each day by the farmer, and believes the farmer will continue his benign behaviour 
in the future, then one day is suddenly slaughtered. For the chicken such an event 
was unthinkable based on prior data. The problem has also been characterised as 
the black swan effect Hume (1748); Taleb (2008) (prior to the discovery of Australia 
it might never have been thought that there may be non-white swans.). The point 
of such examples is that it is never possible to know whether the future will resemble 
the past; indeed in the case of climate prediction we know that it will not.
Since we do not have the opportunity to compare climate model results to out-of- 
sample verifications, it is not possible to know how a climate model will go wrong. 
This problem is discussed in more detail in Section 2.4.

2.3.5 Ensembles

In the case of simple chaotic models, such as the logistic map May (1976); Sprott 
(2003), it is possible to evaluate some of the uncertainties categorised in Section 2.3 
analytically. For example the growth of ICU over time can be understood math­
ematically from the model equations Sprott (2003). In the case of SOTA climate 
models, this is not possible; the models are far too complex to study mathemati­
cally and computations too laborious. The method most widely used to understand 
climate model behaviour involves using ensembles Collins & Knight (2007). In the 
case of climate modelling, an ensemble can be thought of as a dynamical system 
version of a Monte Carlo simulation. Ensembles come in a variety of types, four 
of the most important for climate modelling are discussed in this Section; ICEs, 
perturbed physics ensembles (PPE) Murphy et al. (2004); Stainforth et al. (2005), 
multi-model ensembles Solomon et al. (2007a); Tebaldi & Knutti (2007) and grand 
ensembles.
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2.3.6 Initial Condition Ensembles

In order to evaluate ICU and understand the internal variability of a climate model, 
an ICE can be run. ICEs are formed by running the same structural model several 
times, with the same parameter values, with different starting states. In the case 
of the CPDN project the different ICs are formed by small perturbations about a 
common temperature field. An ICE enables a quantification of the distribution of 
a model’s climate. ICEs are discussed in detail in Chapter 6.

Perturbed Physics Ensembles

Model Uncertainty can be explored using a Perturbed Physics Ensemble (PPE). A 
PPE consists of a set of model simulations, using the same structural model, but 
with different parameter values. Due to the large number of parameters in a climate 
model, the number of possible levels and combinations of parameter perturbations 
it is not possible to fully explore this type of uncertainty given finite computational 
constraints. In Murphy et al. (2004) 53 model versions were used to explore Para­
metric Uncertainty for 29 parameters chosen by climate modelling experts to be 
important. PPEs of this kind can give an estimate of Model Uncertainty but the 
particulars of the results inevitably depend on subjective choices, as described ear­
lier in this Section. The problem of how to sample parameter space effectively has 
not been solved; linear factor analysis Murphy et al. (2004) and Latin hypercube 
designs have been used Annan & Hargreaves (2007). Other work, such as Sanderson 
et al. (2008), has shown how data from the CPDN ensemble can be used to inform 
choices of future parameter values. In particular, Sanderson et al. (2008) proposes 
that a neural net can be used to detect the likely choices of parameter values that 
would yield a wide range of model behaviour, hence a smaller ensemble could be 
used to achieve a similar range of behaviour than methods not informed by existing 
perturbed physics ensembles. These methods have been chosen since they require 
far less computational resources than fully exploring parameter space.

M ulti-m odel Ensembles

A multi-model ensemble is a set of simulations made using a set of different struc­
tural models. There are at least 20 different modelling centres that have developed 
GCMs; the range of results produced is a guide to the diversity present in how 
current physical understanding is represented. These models share many similar 
properties and should be thought of as highly inter-related. Furthermore, we can 
not know how the diversity of GCMs currently available reflects uncertainties in the 
structure of the model itself. The range of current SOTA climate models could be
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treated of as a lower limit on uncertainty in the model structure. A multi-model 
ensemble is analysed at in Chapter 3.

Grand Ensembles

A grand ensemble is a set of ICEs run under different structural models or model 
versions. In the CPDN experiment, a number of ICEs are run under a number 
of different model versions where parameter values are varied. Grand ensembles 
allow a comparison of model behaviour, allowing for more sophisticated uncertainty 
assessment than single simulation a multi-model or PPE would allow. In a grand 
ensemble the internal variability of each model used can be evaluated and used to 
compare model behaviour. Since a comparison of climate distributions is relevant for 
robust decision analysis grand ensembles are an important area of current research. 
The CPDN grand ensemble is introduced in Chapter 4 and is studied in Chapters 
7 and 8.

Duplicate Simulations

A duplicate simulation is an exact copy of an another simulation. Therefore, in 
theory, the results obtained from duplicate simulations should be identical. Dupli­
cate simulations can be used to verify certain aspects of experimental design. Due 
to differences in computing architecture, processor or numerical errors in computa­
tion there can be differences between duplicate simulations in practice Knight et al
(2007). Evaluation of these differences is useful so that other sources of variability 
and uncertainty might be attributed.

2.4 Model Evaluation and straw—men for climate

Prior to using model output to inform decisions, it is statistical good practice to 
evaluate for which purposes the model is fit for use. This poses the question: 
“How can a climate model be evaluated given that it is extrapolating decades into 
the future?” . As previously stated, out-of-sample comparison of model output to 
observations is not accessible in the case of climate prediction Reichler & Kim
(2008). Often models are use to make predictions on lead times of 104- years and 
have a working life of about 5-10 years. Once they are updated with a new model the 
old model is no longer studied in detail. A notable exception to this is Hansen et al. 
(1988, 2006) in which an older climate model is checked against out-of-sample data 
for the years 1988-2005. Even where observations are available, only a single time 
series can be used as a verification, placing limits on our ability to ever assess the
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probabilistic reliability Brocker (2005) of models. By virtue of their very newness, 
current SOTA climate models are unevaluated out-of-sample. Other methods that 
do not rely on out-of-sample data for evaluation must be used.
Whilst it is not possible to know that an extrapolation of the future state of the 
climate system is justifiable Frame et al. (2007); Hume (1748); Oreskes et al. (1994), 
it is possible to assess whether certain predictions are likely to be unreliable. This 
“predictive falsification” can be achieved in a number of ways; three such straw-man 
tests are presented in this Section. Failure in any one of these tests is tantamount 
to considering those predictions as decision-irrelevant, although it is expected that 
a model might be able to pass all these tests with respect to one decision and not 
another. Passing all tests does not mean that the model is useful; these tests do not 
verify a model but should be thought of as sanity checks. Each test will be presented 
in the following format; 1) the rationale behind the test is first introduced, 2) the 
test itself presented, 3) the justification for the test and 4) limitations of the test,

2.4.1 In—sample fit

The degree to which a model can re-produce past observations, in-^ample, provides 
a lower bound on its ability to predict out-of-^ample (future forcings are unknown 
and models can not be over-fit out-of-sample as they can be in^sample). Whilst 
accurate in-sample performance does not imply useful out-of-sample performance 
it is a requirement that a model can produce skillful simulations in-sample, if the 
model is to be useful out-of-sample. Such in-sample fit should properly be assessed 
using an ICE of simulations that take account of the model’s internal variability. 
The ability of a set of climate models to re-produce the GMST time series of the 
20th Century is examined in detail in Chapter 3.

•  The Test: In the variable(s) of interest, evaluate the model’s in-sample fit 
for the predictor chosen e.g. 10 year mean August temperature in Southern 
England. By comparing model output to observations using a relevant mea­
sure of model skill, a limit can be set on likely out-of-sample performance. 
Model output should comprise a set of simulations, preferably including ICEs 
to include the effects of each model’s internal variability, whereas the obser­
vations will comprise a single time series. The measure of model fit should be 
relevant to the end-use of the model. Methods to evaluate in-sample model 
performance include the use of bounding boxes Weisheimer et al. (2004), shad­
owing the observations to within observational uncertainties Judd & Smith 
(2001a,b); Smith (2001), or by using some proper skill score in the case of 
probabilistic model output Brocker & Smith (2007b).
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• Justification: The consistency of model behaviour with observations in-sample 
is a lower limit on its consistency with out-of-sample verifications. If it can 
be shown that the model does not produce simulations consistent with obser­
vations when the verification is known prior to making the prediction, it is 
difficult to see why the predictions should be more useful where the verifica­
tions are not known.

• Limitations: This test can only provide a lower limit on the accuracy of a 
model’s predictions but can not set an upper limit. Thus, it can not be 
directly inferred from passing this test that the model is producing the right 
in-sample fit for the right reasons. An example where this test would be less 
relevant would be if the model being tested is over-fit on the available data, 
giving a misleadingly close in-sample fit.

2.4.2 Initial Condition Test

The magnitude of uncertainty seen across an ICE provides a lower bound on un­
certainty in that simulation, as explained in Chapter 6. ICU can be quantified in 
a climate simulation and used as a straw-man as a test for robustness of model 
predictions.

•  The Test: Run a large ICE over the period of interest. By examining the 
range of behaviour using the distribution of ICE members on various length 
scales and variables it is possible to judge whether it is possible to inform a 
particular decision e.g. if an ICE disagrees on the sign of precipitation change 
on all relevant length and time scales it would be dangerous to use such a 
model to inform decisions critically dependent on the sign of precipitation 
change. A user-specified level of uncertainty could be set before conducting 
this test if used to reject model predictions as failing to provide consistent 
information.

•  Justification: ICU is an irreducible source of uncertainty Stainforth et al. 
(2007a), that represents the internal variability of the model. ICEs provide a 
means to evaluate this type of uncertainty and reflect the robustness of model 
behaviour.

•  Limitations: Whilst this test provides an irreducible lower bound on uncer­
tainty, this type of uncertainty taken alone under-estimates the full uncer­
tainty present in climate predictions -  this test may not be very powerful.
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This test becomes more powerful as the number of members in the ICE in­
creases; as more uncertainty is explored, the test becomes more stringent, 
although there is likely to be a saturation in the value of adding extra IC 
members after a certain size of ICE. As such, passing this test can not pro­
vide much confidence in a climate prediction but it can rule out predictions 
that are subject to high levels of internal variability.
Determining the critical level of ICU is subjective and must be decided on a 
case by case basis, preferably with consultation with the decision maker.

This test is discussed in the context of regional simulations of temperature and 
precipitation in Chapter 6.

2.4.3 Model diversity Test

There are a number of different models that can be used to make climate predictions, 
as stated in Section 2.3. Since any of these models might be used to make climate 
predictions, the diversity of results across available models should be assessed as a 
lower bound on Model Uncertainty. Model Uncertainty can be thought of as arising 
from the existence of a set of possible models. This type of uncertainty is discussed 
in more detail in Chapter 7 which the results of the CPDN grand ensemble are 
presented.
This test is a more stringent version of the previous test using ICEs. The basic 
principles are the same, but since it is expected that the diversity of different models’ 
predictions will be greater than the magnitude of ICU this test will likely be more 
powerful than the test based on ICEs.

•  The Test: Run a multi-model ensemble over the future period of interest, 
where models differ by either parameter value (as in a PPE) or model struc­
ture. The diversity of behaviour across models can be used to assess the 
magnitude of uncertainty arising from Model Uncertainty using a bounding 
box methodology. A user-defined level of uncertainty could be specified before 
conducting this test if used to reject models.

•  Justification:

The range of model output represents the range of possible predictions that 
could be obtained given a set of models and possible parameter values. Where 
this range is very large (too large for useful decision support), it is not possible 
to provide useful predictions without further information.
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• Limitations:

The diversity of climate models is limited in the sense that it is only possible to 
run models that are available; these models are not independent and represent 
an ensemble of opportunity rather than an objective spanning of model space 
Allen & Stainforth (2002).
It is necessary to show some judgement in what constitutes an acceptable 
model -  it is possible to deliberately include models with a particularly low (or 
high) level of diversity. As a possible guideline, only models whose predictions 
which pass the first two tests described in this Chapter should be used in this 
test i.e. only models that provide adequate in-sample behaviour and for which 
ICU is not too great in the variables, length and time scales of interest.
In order for this test to be most powerful, as many and as different models as 
possible should be used. The use of this test is discussed in Chapter 7 in the 
context of a large grand ensemble of simulations.

2.4.4 U tility of models that fail these tests

If a particular model prediction fails to pass one or more of the above tests, this 
model’s output, in the variables tested, is inadequate for quantitative use in decision 
support. That is not to say that the model itself is useless, nor should a failure to 
pass a test be seen as a purely negative result. Four uses of a model that fails one 
of the above tests are presented here.

1. If a model prediction fails a test, it does not mean that the model as a whole 
is invalid. It could be that a model will provide more robust predictions in 
some variables and length scales than others e.g. failing to correctly simulate 
local seasonal precipitation does not necessarily mean the model is useless for 
predicting global annual mean temperature.

2. It is advantageous to know the cases in which predictions are highly uncertain. 
This could save considerable expense on developing, interpreting or purchas­
ing detailed model output. Furthermore, decisions based on over-confident 
information are unlikely to be optimal.
In the context of décision-support, it may be very important to remain flexible 
rather than making a decision using pre-mature or incorrect information. To 
act on climate predictions known to be unreliable risks a considerable over­
commitment on the decision-makers’ behalf and a loss of reputation and trust 
on the behalf of the provider of climate predictions. It should be noted that
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the lifetime of a prediction, and the rate at which confidence in climate sci­
ence would be lost, is not necessarily on the same timescale as the predictions 
themselves. Rather, loss of confidence in climate models’ predictions might 
occur as soon as a new model, or set of predictions, provides confiicting ev­
idence. Where it is believed that model predictions will change with future 
model improvement, it would be misleading to present them as final. This 
concept is related to the idea of Stable Inferences from Data Allen & Stain­
forth (2002), in which it is proposed that we should have more trust more in 
those aspects of model behaviour that are robust over different models and 
over time than in those that are prone to change.

3. The model can be still be used heuristically or for the purposes of scenario 
generation. Whilst the model output may not be directly usable, quanti­
tatively, in the context of a particular decision, model output can help in 
conceptualising a problem. Using the model to generate various scenarios can 
be helpful even if such output will not play an explicit quantitative role. A 
climate model may suggest avenues of investigation not previously considered 
despite its inability to provide robust predictions. Furthermore, it has been 
suggested that an invalidated (or yet to be evaluated) model can be used to 
encourage appropriate data collection, or as an important illustrative device 
Hodges (1991). A model that provides no conclusive quantitative evidence will 
support policy that is fiexible and responsive. A similar point is made in Allen 
& Frame (2007), in which it is argued that we can adapt mitigation policy to 
global warming as we observe it to occur. Such “wait and see” strategies do 
not exclude pre-emptive mitigation, depending on the decision-makers risk 
preferences and the relative costs of under or over-shooting mitigation targets. 
An uncertain model would add weight to the argument for adaptive climate 
policy since it may prove costly either to over or under commit on emissions 
targets (or on local adaptation plans) based on current evidence.

4. Model output is useful in understanding the current state, and progress of, 
climate science. Using models to diagnose courses of future research and 
model improvement is an essential use of models, regardless of whether they 
can provide decision makers with useful predictions. In fact, detecting model 
failures is key to model improvement. Whilst today’s models may not provide 
robust predictions, it is possible that the next generation of models will. In 
inter-disciplinary areas such as climate research, model output provides an 
opportunity to assess the state of the science and inter-compatibility of the 
various contributing areas.
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Based on the above four points, it would be wrong to interpret the failure to pro­
vide direct quantitative evidence as a reason to ignore SOTA climate models. Sig­
nificant qualitative understanding can be gleaned from models failing tests for con­
sistency of quantitative information as well as a basis for further scientific progress.

2.5 Decision support

This Thesis presents results that are aimed at informing decisions and climate 
change policy. Any attempt to use model output to inform forecasts of climate 
change requires some ability to translate information in model simulations to infor­
mation in the real world. Otherwise, model results will remain in “model land” and 
do not relate to Earth’s climate or contain any direct relevance to real life decisions. 
In order to improve the decision-relevance of climate predictions it is important to 
work with the users of climate model output. Through partnership with decision 
makers, climate experiments can be made more relevant and can be interpreted in 
a more practical way. A framework for an iterative process between the providers 
and users of climate model output has been suggested in Stainforth et al. (2007b). 
As a first step towards evaluating the decision-value of climate models it is im­
portant for decision makers to determine how climate affects their decision and to 
frame questions in terms of statistics that might be generated by climate models. 
If a particular decision is robust to the uncertainties present across ensembles of 
climate model simulations climate model output might be useful. It is likely that 
decision makers will not have access to all the information they require and will ei­
ther have to settle for uncertain and provisional model results or not to use climate 
model output at all. It is important here that the uncertainties inherent in climate 
prediction are communicated effectively in order to differentiate the varying degrees 
of confidence that should be attached to different aspects of model output.
An important question is how to represent model output to users. Various sug­
gestions have been made including giving the range of model diversity Stainforth 
et al. (2007b), probability density functions Jenkins et al. (2007) or a more complex 
Bayesian framework Goldstein & Rougier (2006). It is an open question how best to 
communicate the information in imperfect models; other techniques are also being 
suggested include the use of probabilistic odds instead of probabilities Judd (2008a). 
In order to assess which methods should be pursued it is necessary to consult the 
users of climate model results so that the most relevant and understandable method 
is applied that can transmit uncertainty information.
In this Thesis, model output is not interpreted as probabilistic statements about 
future climate, rather as giving insight to the workings of the climate model(s) used.
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2.6 Uncertainties in Adaptation and mitigation  
decisions

Two important types of climate policy that might be informed by climate predic­
tions are 1) adaptation and 2) mitigation. Adaptation can be seen as changes that 
are made to reduce the costs or exploit the benefits of a changing climate. Adapta­
tion decisions are subject to all four types of uncertainty explained in Section 2.3, 
including forcing uncertainties. In order to make effective adaptation decisions it 
is important to know not only the sign of climate change, but the possible magni­
tude of the change i.e. when deciding how high to build a flood barrier, it may be 
insufficient to know only that it will rain more in the future; it is also necessary to 
know by how much precipitation will change and statistics on how the magnitude 
and frequency of precipitation events will change. It is possible to make adaptation 
decisions based on the relative risk of climate changes e.g. the risk of flood waters 
exceeding a certain level, rather than planning for specific changes. Using the rela­
tive risk of an event of interest has the advantage that it treats future climate as a 
distribution considering a range of possible events.
Mitigation decisions target reductions in the extent of future climate change. Miti­
gation decisions can take a different approach to uncertainties to adaptation plan­
ning. Two differences in the treatment of uncertainties between mitigation and 
adaptation decisions are;

1. Since the most important drivers of climate change are themselves the subject 
of mitigation decisions. Forcing Uncertainty is, in part, reducible. Whilst 
there are sources of Forcing Uncertainty that are not dependent on decision­
makers (such as variations in solar luminosity, or volcanic eruptions), to a large 
extent the decision-making process relies only on providing robust predictions 
conditional on a particular mitigation decision. Based on such conditional 
predictions, usually of the form of scenario analysis Nakicenovic et al (2000), 
decision-makers can influence the future path of climate forcings.

2. Since GHGs and other important forcings are global in their effects, mitiga­
tion is largely a global issue whereas adaptation is a local one. Thus, miti­
gation decisions are not dependent on local climate changes in the same way 
adaptation decisions are. The uncertainties associated with global means are 
typically smaller than for regional means Solomon et al (2007a) (shown in 
Chapter 8) and mitigation decisions need not always consider the distribution 
of specific costs and benefits on local scales. On the other hand, it is impor­
tant to understand the local impacts of climate change in order to estimate
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the likely costs of a given level of GMST rise. Thus mitigation decisions can 
not exclude regional variations in climate response in the case of deciding eco­
nomically optimal policy but do not depend on this information as critically 
as adaptation decisions.

2.7 Communication of uncertainties

It is important for climate scientists to communicate the uncertainties in climate 
predictions transparently. Despite the importance of such communication, there 
have been few attempts to provide decision-makers with comprehensive information 
on the uncertainties in climate predictions. An example of the presentation and 
communication of model output for decision-makers will be discussed in detail in 
Chapter 3, taken from the IPCC AR4 Solomon et al. (2007a), where the performance 
of SOTA models in simulating the time series of GMST over the 20th Century is 
analysed in detail. This example will highlight the need for robust and relevant 
model evaluation methods and provides motivation for investigating more relevant 
methods of evaluation of climate predictions.
It is important not to mislead decision makers as to the uncertainties of climate 
prediction because:

1. Decision-makers are likely to make worse decisions if they are not informed of 
the full range of possibilities or are overconfident in the predictions of climate 
models.

2. Climate scientists risk losing credibility if the uncertainties in current models 
are not fully disclosed and the next generation of climate models produce 
different forecasts. Such loss of credibility could be irretrievable and it will 
take a very long time for sufficient verification data to be obtained in order 
to establish new models as trustworthy. Exposure of misrepresentation of 
uncertainty could be used by skeptics of anthropogenic global warming to 
cast doubt on the better understood aspects of climate change.

There remain issues of how best to communicate uncertainty to decision makers. 
An important issue is that many decision-makers lack the quantitative background 
to understand technical aspects of climate statistics or model output. Decision­
makers would benefit from an understandable communication of uncertainties. It 
is argued in this Thesis that the best way to do communicate climate science is to 
present the uncertainties in climate prediction as fully as possible. Over the past 20 
years, due to increased research in climate science, there has been a great increase in
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our understanding of the climate system; this knowledge has decreased uncertainty 
in whether observed warming is anthropogenic but has increased our uncertainty in 
its magnitude Andronova & Schlesinger (2001); Stainforth et al. (2005). It would 
be wrong to interpret uncertainty as incompatible with knowledge, but rather as a 
result of critical and honest evaluation of our understanding.

2.8 Conclusion

The problem of climate prediction has been presented together with a categorisa­
tion of the uncertainties involved. Such categorisation is important since the four 
types of uncertainty discussed in this Chapter require different treatment: Forc­
ing Uncertainty is reducible in mitigation decisions, Initial Condition Uncertainty 
(representing internal model variability) is quantifiable using ICEs, a lower bound 
can be placed on Model Uncertainty using perturbed physics or multi-model grand 
ensembles and an assessment of Model Inadequacy is only accessible with sufficient 
comparison to observations (preferably out-of-sample).
Communication and transparency of uncertainty is argued to be of key importance 
if climate science and science-based policy are to follow a successful and mutually 
beneficial partnership. This Thesis aims to motivate a more complete understand­
ing of uncertainties in the light of statistical principles of good practice.
New methods presented in this Chapter are:

• Three methods to evaluate the consistency of information in climate sim­
ulations have been proposed using in-sample data, ICEs and multi-model 
ensembles. These tests allow the providers and users of climate output to 
weed out predictions with no robust predictive skill.

•  The possible uses of quantitatively inadequate models (including models that 
fail one or more of the tests presented) has been described. Failing one of the 
tests presented has been shown to be a potentially useful result in itself.
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Chapter 3 

How reliable are the models used 
to make projections of future 
climate change?

3.1 Introduction

The main models used to provide projections of climate today are GCMs, some 
of the most complex models ever built. For these projections of future climate to 
be used in décision-support, it is important to evaluate GCMs as fit for purpose. 
As discussed in Chapter 2, this evaluation is non-trivial due to the nature of the 
problem (long-term extrapolation of a complex, physical system) and a lack of 
relevant past analogues with which to compare model output.
This Chapter looks at an example of the evaluation of some of the climate models 
used in the recent IPCC AR4. In particular, the ability of climate models to re­
produce the observed GMST time series over the 20th Century is looked at in detail. 
It is shown that the presentation of model output in the AR4 is both limited and 
misleading in its refiection of model performance. This example motivates a more 
comprehensive analysis of climate models’ likely predictive skill.
Three criteria for the reliability of GCMs are presented in the IPCC AR4 (e.g. FAQ
8.1 in Working Group 1);

1. “One source of confidence in models comes from the fact that model funda­
mentals are based on established physical laws”

2. “A second source of confidence comes from the ability of models to simulate 
important aspects of the current climate... Models’ ability to reproduce these 
and other important climate features increases our confidence that they repre­
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sent essential physical processes important for the simulation of future climate 
change”

3. “A third source of confidence comes from the ability of models to reproduce 
features of past climates and climate changes ... One example is that the 
global mean temperature trend over the past century can be modelled with 
high skill when both human and natural factors that influence climate are 
included.” (pages 600-601, Chapter 8, Solomon et ai (2007a)).

This Chapter focuses on the evidence for criteria 3) - the in-sample performance 
of a set of GCMs in re-producing the time series of 20th Century GMST. The results 
presented are also relevant for criteria 1). It should be noted that to accurately 
simulate observed GMST is insufficient for many decisions Smith et al (2008); 
Stainforth et al (2007b). Nevertheless, the extent to which GCMs can re-produce 
observed 20th Century GMST in-sample places a lower bound on their ability to 
inform decisions on finer spatial scales and in other variables Smith et al. (2008). 
Furthermore, since models are tuned in-sample Bender (2008); Johnson (1997); 
Oreskes et al. (1994); Stocker (2004) the magnitude of in^ample residuals provides 
a lower bound on the potential out-of-sample accuracy, as explained in Chapter 2. 
The IPCC AR4 presents a plot of in-sample GCM simulations from 14 modelling 
centres around the world versus observed GMST. This plot appears in two different 
cases:

1. In Frequently Asked Questions 8.1 -  “How reliable are the models used to 
make projections of future climate change?” . The plot is used to suggest that 
GCMs produce a reliable representation of the time series of 20th Century 
GMST.

2. The plot also appears in Chapter 9, Figure 9.5, in a comparison of model’s 
in-sample skill with and without anthropogenic forcings. This plot is used to 
show that GCMs can only match observations when anthropogenic forcings are 
included than using only natural forcings -  “Figure 9.5 shows that simulations 
that incorporate anthropogenic forcings, including increasing greenhouse gas 
concentrations and the effects of aerosols and that also incorporate natural 
external forcings provide a consistent explanation of the observed temperature 
record, whereas simulations that include only natural forcings do not simulate 
the warming observed over the last three decades.” (p. 684, Solomon et al. 
(2007a))
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The presentation of model output in cases such as the IPCC AR4 Figures 8.1 
and 9.5 is questioned here in the context of the reliability of climate models’ pro­
jections. The IPCC Figure 8.1 is limited in terms of case 1) demonstrating the 
reliability of models’ projections and is better suited to case 2) attribution of the 
causes of past warming. The agreement between models and observations shown in 
IPCC Figure 8.1 has been described as “remarkable” Knutti (2008b); it is shown 
here that the agreement is not as good as might appear at a first glance.
The ability of models to simulate GMST in-sample is looked at more closely in 
this Chapter and the presentation of data is discussed. This is done by comparing 
observations to GCM simulations in absolute space and an analysis of the partic­
ular way that each model responds to forcings. Presenting the raw model output, 
without first taking anomalies, or the residuals of each model with respect to the 
observations give a very different view of model skill than the IPCC Figure 8.1. 
Section 3.2 briefly introduces some fundamental ideas underlying GCMs. Section 
3.3 gives details of the data used in IPCC Figure 8.1 Solomon et al. (2007a). The 
IPCC Figure is re-produced in Section 3.4 and is looked at in detail. In partic­
ular, the use of anomalies is looked at in Section 3.4 and are shown to obfuscate 
important information regarding the reliability of model projections. The skill of 
individual models is examined in terms of their residuals in Section 3.5 and the lack 
of exchangeability between model simulations analysed in Section 3.6. Results and 
suggestions for improvements in the presentation of model output are discussed in 
Section 3.7.

3.2 General Circulation Models

The IPCC AR4 report uses data from a number of GCMs. GCMs are complex 
computational models based on our scientific understanding of the climate system. 
All the GCMs looked at in this Thesis are deterministic and require a large amount 
of computational power to run e.g. using a distributed computing set-up it takes 
~  2-3 weeks to run a 45 year simulation of the Hadley Centres’ HadSM3 model on a 
typical Pentium4 3.2 GHz PC. Due to the large investment of time taken to develop 
GCMs and the computational resources required to run climate modelling experi­
ments, studies using GCMs are often restricted to large modelling centres around 
the world such as the UK’s Hadley Centre or the National Centre for Atmospheric 
Research in the US.
In this Chapter the output of each of 11 different GCMs is condensed into a single 
dimensional time series of GMST. GMST is calculated by an area weighted average
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of surface temperature over the globe and annual averaging. More details of this 
calculation and specific features of GCMs are presented in Chapter 4.

3.3 The IPCC Figures

The IPCC Figures 8.1 and 9.5 present simulations of 20th Century GMST firom 14 
structurally distinct GCMs. For some GCMs, multiple simulations were available, 
making an ICE. In total 58 simulations were plotted, together with the multi-model 
mean of the anomaly-adjusted model output (the model-mean is calculated by the 
arithmetic mean over all simulations). The observations, as well as each model 
simulation are plotted as anomalies with respect to the period 1901-1950. Each of 
these GCM simulations uses a set of anthropogenic and natural forcings (includ­
ing, but not exclusively. Greenhouse Gases (GHGs), solar forcings and volcanoes) 
determined by each modelling centre. It should be noted that since the anthro­
pogenic and natural forcings used in 20th Century simulations are determined by 
each modelling centre, different forcings are used in different GCMs Covey et al. 
(2003); Meehl et al. (2005). Further details of how these Figures were made in the 
IPCC AR4 can be found in the Supplementary material to Chapter 9 of Working 
Group 1 of the IPCC AR4, Appendix C. These methods are described briefly in 
Section 3.4.
This Chapter uses 47 model simulations, available from the Coupled Model Inter- 
comparison Project^, of the 20th Century are analysed from 11 structurally distinct 
GCMs, developed at 9 different modelling centres across the world. These 47 sim­
ulations correspond to simulations used in IPCC Figure 8.1; the remaining 9 simu­
lations were not available at the time of analysis. The models used, the number of 
simulations and their respective modelling centres are shown in Table 3.1.

There are a number of ways to present the same model output that can give 

different indications of the model’s reliability. Three methods are presented in 

Section 3.4, beginning with the raw model output. In all three plots, observations 

are shown in black, model simulations in yellow and the multi-model mean in red 

(averaged over all simulations). Vertical blue lines indicate the timings of four

1̂ acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercom­
parison (PCMDI) and the WCRP’s Working Group on Coupled ModelUng (WGCM) for their roles 
in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided 
by the Office of Science, U.S. Department of Energy.
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M odel I.D . n M odelling C en tre C oun try
ncar-ccsm3 8 National Centre for Atmospheric Research USA
miub-echo-g 5 Max Planck Institute for Meteorology Germany
gfdl-cm2-0 3 US Department of Commerce, NCAA, 

Geophysical Fluid Dynamics Laboratory
USA

gfdl-cm2-l 3 US Department of Commerce, NO A A 
Geophysical Fluid Dynamics Laboratory

USA

giss-model-e-h 5 NASA Goddard Institute for Space Studies USA
giss-model-e-r 9 NASA Goddard Institute for Space Studies USA
inmcm3-0 1 Institute for Numerical Mathematics Russia
miroc3-2-medres 3 Center for Climate System Research, 

National Institute for Environmental Studies 
Frontier Research Center for Global Change

Japan

mri-cgcm2-3-2a 5 Meteorological Research Institute Japan
ncar-pcml 4 National Centre for Atmospheric Research USA
ukmo-hadgeml 1 Hadley Centre UK

Table 3.1: The models used in the CMIP 3 project used in this Chapter. The 
model I.D., number of simulations available (n), and the modelling centre that ran 
the experiment is shown.

major volcanic eruptions; Santa Maria (1902), Agung (1963), El Chichon (1982) 

and Pinatubo (1991)

3.4 Presentation of M odel Output

The raw data from the 47 simulations analysed in this Chapter are presented in 

Figure 3.1. Figure 3.1 shows that the models range in their base GMST by about 

3 degrees Celsius. If uniform, such a difference in temperature equates roughly to a 

difference in radiation emitted at the surface of a blackbody of 16IT/m^ (this num­

ber is based on the Stephan-Boltzmann energy balance equation Boltzmann (1884); 

Stefan (1879), stating that the total energy radiated from a black body is directly 

proportional to the fourth power of the black body’s thermodynamic temperature)^, 

a factor of 10 larger than the estimated anthropogenic forcing over the 20th Cen­

tury, estimated at (with a 90% confidence interval of 0.6-2.81T/m^) in

^Of course, GCMs do not model the Earth as a black body, and so the actual difference in 
surface radiation between GCMs will differ from 16W/m^. The point here is simply that 3 degrees 
is a large difference for models that rely on their physical coherence for their predictive skill.
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Solomon et al (2007a). Differences of this magnitude in the baseline GMST could 

affect temperature-dependent feedback processes e.g.the 0 degree Celsius ice-line 

could be significantly different in models differing by 3 degrees Celsius in GMST, 

thus affecting albedo feedback processes. It is not argued here whether such large 

differences can be robustly subtracted when comparing simulations to observations 

(or when comparing GCMs), nor that this fact invalidates the relevance of GCMs 

for simulating important aspects of climate change, rather that such differences are 

better acknowledged. In IPCC Figure 8.1 a linear offset is applied to each non­

linear simulation, eliminating the differences in absolute GMST between GCMs. 

The assumption that a linear offset can be robustly applied out-of-sample to a 

non-linear model requires justification. Without any such justification, one might 

interpret the 3 degree difference in GMST as a violation of the physical basis of 

GCMs, stated as a reason to trust climate models in Chapter 8 of the AR4, as 

given in Section 3.1. It is not obvious that a 3 degree difference in baseline GMST 

does not have a significant impact on the physical properties of these GCMs. The 

same data used to make Figure 3.1 is now used to make a re-production of IPCC 

Figure 8.1. This re-production is shown in Figure 3.2.

In Figure 3.2, each individual model simulation (yellow) is plotted as an anomaly 

relative to its 1901-1950 average, as are the HadCRUT3 observations (black). These 

anomalies are taken for each simulation by subtracting the 1901-1950 simulation 

mean from the 20th Century time series. The multi-model mean (red) is calculated 

by the arithmetic mean over all simulations from the anomaly time series, and as 

such is expected to lie closer to the line y = 0 due to a reduction in variance. 

The multi-model mean shows less variability that individual model simulations 

(furthermore, the multi-model mean will have an improved RMSE over individual 

simulations through its lower variability independently of any improvement in its 

representation of observed dynamics; a point often not considered in studies com­

paring the value of a multi-model mean to constituent simulations e.g. Reichler &
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Kim (2008)). Plotting the data as anomalies produces an immediate overlap be­

tween simulations and observations over the period 1901-1950, regardless of whether 

simulations and observations sharing any common dynamics or baseline global mean 

temperature level. In anomaly space, the model time series appear close to obser­

vations, showing a similar magnitude of change in GMST over the 20th century. 

This graph is presented as evidence that “the global mean temperature trend over 

the past century can be modelled with high skill” in Chapter 8 of the AR4 Solomon 

et al (2007a). Certain shortcomings of CCMs are noted in Chapter 8 of the AR4 

with respect to their ability to forecast future climate change, such as “deficiencies 

remain in the simulation of tropical precipitation” and “The ultimate source of most 

such errors is that many important small-scale processes cannot be represented ex­

plicitly in models, and so must be include in approximate form as they interact with 

larger-scale features.” (p.601, Solomon et al (2007a)), but the ability of CCMs to 

re-produce CMST changes is not included. Indeed, the ability of climate models 

to simulate 20th Century CMST is presented as a source of confidence in models. 

Figure 3.3 shows the same plot, but with anomalies calculated with respect to each 

model rather than each simulation (the same period, 1901-1950 is used). Using 

model-means as a basis for taking anomalies assumes there is a common bias within 

each model that should be subtracted before comparing simulations. In contrast, 

taking anomalies for each simulation, as in Figure 3.2, assumes there is a global 

bias to be subtracted firom each simulation individually and that this bias differs 

between simulations produced by the same CCM. Taking anomalies for each sim­

ulation means that difference bias corrections are applied for simulations produced 

by the same CCM. Since simulations produced by the same model differ only by IC, 

and not in their dynamics (the model structure and parameters are identical across 

all members of each model’s ICE), taking anomalies for each simulation reduces 

intra-model variability and leads to an artificially tight agreement between simu­

lations and observations over the period during which anomalies are taken. The
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smallest difference in offset used for the same model is 0.045 degrees Celsius for 

the n c a r-p cm l model and the largest is 0.294 degrees Celsius for the gfdl-cm2-0 

model. It should be noted that the 0.294 degree difference in offset is of the same 

order of magnitude as the observed warming over the 20th Century (~0.74 degrees 

Celsius). Taking a single offset for each GCM, Figure 3.3 distorts the variability 

between the simulations, when compared to Figure 3.2. Over the period 1901- 

1950, the variance across simulations is, on average, 20% higher for simulations 

with model-means subtracted compared to simulations with means subtracted for 

every simulation. Conversely, the variance over the second half of the 20th Century 

is about 10% lower when taking a single offset for each model, rather than each 

simulation. These differences in variance might partly be due to any difference in 

offset at the beginning of the 20th Century disappearing over time in the model- 

mean anomaly case; there will be no difference, on average, between members of 

an ICE. Thus, taking anomalies for each simulation rather than for each model has 

the effect of distorting the variability in the ensemble since systematic differences 

in GMST are introduced between ICE members where none should exist.

The variance of the ensemble increases greatly towards the end of the 20th Century; 

the variance across the 47 simulations is approximately 3 times greater in the last 

10 years of the 20th Century, taking anomalies either as simulation or model means, 

than for the first 10 years. This could be an indication of the variable response to 

GHG forcings across models or the most recent observational data not being avail­

able for “tuning” the model (pp.596, Working Group 1, AR4, also Bender (2008); 

Murphy et al. (2004); Stocker (2004)) during development.

It is not clear that temperature anomalies are sufficient for decision makers 

than absolute temperatures. Absolute temperatures are also very relevant for the 

purposes of many decisions. In the case of impact studies, it can be very important 

to consider the absolute temperature since various events of interest are linked to a 

specific temperature e.g. water freezing at 0 degrees has an impact on agriculture.

58



sea-ice extent, and even planetary albedo. Other examples of impacts sensitive to 

absolute temperature are crop failure, heat mortality and water vapour feedbacks. 

Note that these impacts are not global; knowing GMST is insufficient to uniquely 

deduce regional impacts Smith et al. (2008). The relationship between GMST and 

regional climate response is looked at in detail in Chapter 8.

Presenting the model output in absolute temperature space gives a very different 

picture of the model’s ability to re-produce 20th Century observations. In Figure 

3.2 the models appear to re-produce the dynamic changes seen in observations with 

significantly different base GMSTs. Section 3.5 looks at the residuals of each GCM 

individually in order to understand how well each GCM captures the dynamics of 

the observed GMST time series.

3.5 Residual Analysis of Model Output

Section 3.4 illustrated significant and systematic differences in GMST between the 

GCMs that make up IPCC Figure 8.1. Even if presenting GCM output as anomalies 

is justified, understanding how well the individual GCMs capture the dynamics of 

the climate system being modelled is useful for assessing their likely out-of-sample 

skill. The extent to which GCMs can simulate the dynamics of observed GMST 

change provides an estimate of the limit of their predictive skill out-of-sample. 

This model-observation comparison can be done by looking at the residuals for 

each GCM. Residuals are defined by subtracting the time-series of observations 

from each model simulation. This differs from the model anomalies; anomalies are 

calculated by subtracting a single number from the entire time series, in this case 

the 1901-1950 mean.

Figures 3.4, 3.5, 3.6 and 3.7 show the model output for the 11 GCMs used in resid­

ual space (the time series of observations are subtracted from each simulation). The 

simulations are presented by GCM, with the line y = 0 representing the observa­

tions. There are three notable points about these residual plots:
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1. Residuals are often as large as 0.3 degrees and in some cases are greater than

0.5 degrees. This is large in comparison to the magnitude of warming seen 

over the 20th century (~0.74 degrees) and provides a lower limit on these 

GCMs’ likely accuracy out-of-sample.

2. There is clear structure in the residuals, indicating that model errors can 

not be assumed to be independent over time and identically distributed. For 

the giss-e-r, m iub-echo-g, m iroc3-2-m edres and m ri-cgcm 2-3-2a mod­

els there is a pattern in the residuals inverse to that of observations -  ob­

servations warm from 1901-1945, then cool or level out to 1960 following by 

sustained warming to 2007. When these four GCMs’ residuals are linearly re­

gressed against observations, each simulation has a significantly negative slope 

coefficient, as shown in Table 3.2. That these patterns are seen inversely in 

some models suggest these GCMs under-react in response to rising levels of 

GHGs i.e. these GCMs warm, but by systematically less than observations. 

These results indicate that the model error in these GCMs is systematic and 

relevant for their ability to simulate 21st Century climate. If these GCMs 

are not responding to forcings in the same way as the observations, their 

projections will be increasingly unreliable for extrapolations further into the 

future.

3. The GCM ICEs do not always “capture” truth; often IC members are too hot 

or too cold and react in a common way; this effect can be most clearly seen in 

Figure 3.5, top graph (giss-e-r m odel), where the 9 member ICE captures 

the observations in only 43 years of the 20th Century. If the model were 

accountable Smith (2001), we would expect to see some IC members above 

the observations and some below (allowing for the ensemble size Judd et al. 

(2007)). For those GCMs with more than 1 ICE member (a 1 member ICE 

never captures), between 39 and 65 years of observations are captured. Testing 

the ability of GCMs to capture observations in-sample allows systematic model
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M odel I.D . n M in /M ax  Slope Coefficient M in /M a x  St. Dev.
miub-echo-g 5 (-0.77,-0.43) (-2.92, -6.23)
giss-model-e-r 9 (-1.28,-0.97) (-6.12, -12.6)
miroc3-2-medres 3 (-1.07,-0.86) (-8.8, -9.2)
mri-cgcm2-3-2a 5 (-0.86, -0.77) (-11.2, -12.9)

Table 3.2: The range of slope coefficients and their significance using a simple linear 
regression of GCM residuals against observations for four GCMs. The number of 
simulations available for each CCM is denoted by n,

errors to be diagnosed.

When multi-GCM output is shown, without distinction for the constituent 

GCMs, it is no longer possible to readily understand the details of individual simu­

lations. The presentation of model output in IPCC Figure 8.1 obscures important 

information regarding uncertainties and makes the simulations appear in better 

agreement with observations than suggested by the two alternative methods pre­

sented here, or by analysis of the residuals of individual CCMs.

3.6 Exchangeability

This Section answers the question of whether CCM output can be considered ex­

changeable. Exchangeability is defined here as the case where two models produce 

output that are identically distributed, a critical assumption underlying many sta­

tistical methods. This definition is adapted from Calambos (1995) -  “exchangeable 

random variables are identically distributed.” . The exchangeability of models is 

analysed using two statistical methods; 1) Using order statistics to evaluate where 

one model is significantly hotter than the other and 2) The non-parametric Kruskal- 

Wallis test Kruskal & Wallis (1952) for equality of medians is applied across 5 models 

with at least 5 available simulations. A new method, based on order statistics, is 

used to estimate the temporal correlation of model output in order to test the as­

sumptions that the analysis exchangeability relies on.
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The residual plots shown in Figures 3.4, 3.5 and 3.6 in Section 3.5 suggest a 

lack of exchangeability between GCMs (different GCMs appear to have different 

dynamics) - it can not be assumed that models are drawing from a common distri­

bution. This lack of exchangeability can be shown by plotting all GCM residuals 

simultaneously, as in Figure 3.8, and highlighting two models for comparison. The 

same model output as shown in Figure 3.2 is shown in two different presentations 

- the top graph shows models and observations as anomalies from their respective 

1901-1950 means and the bottom graph shows the residual time series of the model 

output. The time series from two GCMs are coloured in red (8 simulations from the 

ncar-ccsm S GCM) and in blue (5 simulations from the giss-m odel-e-h GCM). 

Colouring the simulations of these two GCMs highlights the fact that these models 

appear not to be sampling from a common distribution. During the last ~30 years 

of the 20th Century the NCAR model is frequently hotter, for every IC member, 

than all simulations from the GISS model. The two GCMs match closely over the 

first half of the 20th Century then differ in the latter part of the Century, suggest­

ing that these models are responding to rising GHGs in a different way. It might 

be thought that the different responses can be explained by the different climate 

sensitivities  ̂ of the models, with varying model response to other factors such as 

aerosols and volcanoes also accounting for some of these differences. In this case CS 

refers to the amount of GMST rise that eventually results from doubling CO 2 con­

centrations in a climate model. The equilibrium CS of the ncar-ccsm S and giss-h 

models both have an equilibrium CS of ~2.7 degrees Celsius Kiehl et al. (2006); 

Schmidt et al. (2006). Despite having the same equilibrium CS, it has been noted 

that there is not always a direct relationship between equilibrium CS and transient 

response Raper et al. (2001). The Transient Climate Response (the temperature 

increase at the point of CO2 doubling, where CO2 concentrations are increased 

steadily at 1% per year, i.e. after year 70 of the simulation) of the ncar-ccsm S

^Climate sensitivity will be explained in more detail in Section 4.4.1
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and giss-h are 1.5 and 1.6 degrees Celsius respectively Solomon et al. (2007a). It 

seems that it is not possible to explain the difference in late 20th Century GMST 

response by differences in the NCAR and GISS models’ CS.

The lack of exchangeability of these NCAR and GISS GGMs can be seen quantita­

tively by counting the number of ncar-ccsm S simulations that are hotter than all 

giss-e-h simulations at each time point. It is expected that, because there are 8 

NCAR simulations, and 5 GISS simulations that the NGAR model will, on average, 

contain at least one warmer simulation if the two models are drawing from the same 

distribution. The theoretical number of simulations from an ensemble exceeding the 

hottest simulation from another ensemble can be calculated under the assumptions 

of exchangeability (simulations from the two GGMs draw from the same distribu­

tion) and a lack of temporal correlation.

The hottest simulations from the 5 member ensemble is expected to be exceeded |t h  

of the time by an ensemble drawing from the same distribution i.e. for an ensemble 

of size 8, an average of |  simulations each year. Thus, the probability of all 8 NCAR 

simulations being hotter than all 5 GISS simulations is ~  5.9 x 10“  ̂ if both models 

are drawing from the same distribution (this assumes a Binomial distribution of 

NCAR simulations hotter than GISS simulations with a probability of |  over 8 tri­

als). There is less than a 1% chance for at least 5 of the 8 NCAR simulations being 

hotter than all 5 GISS simulations under the assumption of exchangeability. Figure 

3.9 shows the number of NCAR CCSM simulations that are hotter than the hottest 

GISS simulation for each year over the 20th Century. The horizontal line shows the 

theoretical value of |  for the expected number of NCAR simulations warmer than 

the warmest GISS simulations for each year. From 1900 to 1940 there are typically 

1 or 2 NCAR simulations warmer than the warmest GISS model simulations. Fig­

ure 3.9 then shows a significant trend from 1940 onwards, with 6 or more NCAR 

simulations being hotter than all GISS simulations by about 1970. This suggests 

that these models are not exchangeable and are responding in a different way to
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the rising GHGs that drive m id-tolate 20th Century warming. Given the different 

dynamics of these models, it seems unreasonable to treat these GCMs’ ensemble 

members as exchangeable. The theoretical statistics calculated here depend on a 

lack of temporal structure if the available data set is small, although the results are 

so significant that temporal correlations are unlikely to account for the differences 

seen. The temporal correlation of these GCMs is estimated in Section 3.6.1.

3.6.1 Estimating temporal correlation using order statistics

Many statistical method, including the tests for exchangeability presented in this 

Section, rely on the assumption that model output is temporally uncorrelated. A 

method is presented here that estimates temporal correlation within an ICE using 

order statistics. This method is applied as follows:

1. At time t, define the extremal simulations of an ICE of size n  as Xmin,t and 

Xmax,t- The extremal simulations are defined whenever Xmin,t ^  Xmin,t-i or 

Xmax,t ^  ^max,t-i (this is done to avoid over-counting simulations which define 

the minimum or maximum in consecutive years). Henceforth the calculation 

is notated for the case of Xm,t, where m  represents either the minimum or 

maximum.

2. Define the mixing time, r , as the time taken for the time series of the simu­

lation defined by Xm,t to cross the median.

3. A simulation Xm,t at time t is defined to cross the median where its rank is 

less (greater), if the calculation uses Xmax,t than

4. Xm,t crosses the median at time 14- T, where r  denotes the mixing time.

The distribution of r  provides an estimate of the temporal correlation within 

a model. The above calculation was carried out for the 5 GCMs with 5 or more 

available simulations. These distributions are shown in Figure 3.10 in red. The
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median mixing times for these distributions are 2, 2, 3, 3 and 4 years respectively. 

The maximum mixing time for these distributions are 10, 16, 17, 21 and 23 years re­

spectively. The theoretical distributions are plotted in black in Figure 3.10. Based 

on the assumption that the mixing time of each model is 1 year, the theoretical 

distribution of estimated mixing times was calculated using a Geometric distribu­

tion. If the theoretical distribution is a good fit (a Chi-squared test could be used 

to test this formally) to the empirical distribution, it might be concluded that the 

model does not typically have significant temporal correlation. If the theoretical 

distribution is a poor fit, then the mixing times could be repeated using multi­

annual means, increasing the temporal averaging until the theoretical distribution 

well approximates the empirical distribution. The theoretical distribution is a good 

approximation for the inri-cgcm2-3-2a and miub-echo-g models and a poorer 

fit for the other three GCMs, especially the ncar-ccsmS GCM. This suggests that 

the mixing times for some GCMs is longer than 1 year, although this is not always 

the case. It would be possible to estimate the mixing time of a GCM by repeating 

the above analysis based on a n year temporal mean, and increasing n  until the 

theoretical distribution well approximates the empirical distributions.

3.6.2 Testing the exchangeability of GCM output

In order to show the results indicating a lack of exchangeability between the ncar- 

ccsmS and giss-model-e-r GCMs are robust when expanded to include all GCMs 

with at least 5 simulations a Kruskal-Wallis test is carried out here. The Kruskal- 

Wallis test is an extension of the Mann-Whitney rank sum test Mann & Whitney 

(1947) that tests the equality of medians across 3 or more distributions. Here, the 5 

GCMs with at least 5 simulations are selected for analysis (5 members are generally 

required for the Kruskal-Wallis test statistics to be well-approximated by a Chi- 

squared distribution Kruskal & Wallis (1952)). Output from the mri-cgcm-3-2a, 

miub-echo-g, giss-model-e-h, giss-model-e-r and ncar-ccsm3 CCMs is used
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here, which have 5, 5, 5, 8 and 9 simulations respectively. The test was then carried 

out for each year of the 20th Century on the 32 simulations from these 5 GCMs, 

giving a time series of p-values. The model-mean adjusted anomaly time series are 

used -  the significant differences in baseline GMST is not included in this test. This 

time series is shown is Figure 3.11. From 1901-1960 models there is little evidence 

that the models have different annual medians, although it should be noted that 

all models are forced to have zero mean over the 1901-1950 period by the use of 

anomalies. From 1960-2000 there is strong evidence that the models have different 

medians for every year. This test provides evidence that it can not be assumed, over 

the second part of the 20th Century that these 5 GCMs are sampling from the same 

distribution. The test carried out here assumes that there is no temporal correlation 

within these GCMs simulations. As shown in Section 3.6.1, the mixing time of these 

GCMs can be longer than 1 year. In order to show that these results are robust 

to temporal correlations, the Kruskal-Wallis test was repeated for multi-year mean 

time series. Temporal means are taken for 2, 5, 10 and 25 year means and the 

results are shown in Figure 3.12. In all cases, the test is generally non-significant 

during the first half of the 20th Century, but is always significant towards the end of 

the 20th Century. This indicates that these 5 GCMs are not exchangeable during 

the second half of the 20th Century, suggesting different dynamical responses to 

mid to late 20th Century forcings.

3.6.3 Discussion of Results

Since the GCMs analysed show different dynamical behaviour in response to 20th 

Century forcings, the relevance of certain multi-model statistics is dubious. An 

important difficulty follows when non-exchangeable models are used to form multi­

model statistics based on an “ensemble of opportunity” (one can only analyse the 

simulations that have been provided). In this case, statistics will be biased depend­

ing on which models are included and, in some cases, the number of simulations that
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are provided for each model. This is particularly a problem in climate model com­

parison where there is little co-ordination of experimental design. Similar difficulties 

arise when statistics are calculated across all available simulations disregarding the 

number of simulations produce by each model. In this case, models with more avail­

able simulations will be effectively weighted more heavily e.g. the two variants of 

the GISS model will receive, jointly, 14 times more weight than either the Russian 

inmcm3-0 or the UK’s hadgem l GCMs.

Further to the problems facing statistics complied from non-exchangeable ensem­

bles of opportunity, the presentation of multi-model means from non-exchangeable 

models faces further difficulties. In particular, multi-model means are necessarily 

low in variability and can lead to a cancellation of temporal variability. This can 

be shown with a simple example. Suppose model A produces output with temporal 

variability similar to that of a sine function and model B similar to that of an offset 

sine function such that the sum of the two sine functions is 0. When taking the 

multi-model mean of Models A and B from two ensembles of equal size (or giving 

equal weight to each model in some other way), the effect will be a straight line with 

no temporal variability. The multi-model mean need not bear a strong resemblance 

in temporal variability to its constituent simulations.

It has been shown in this Section that GCM output can not be assumed to be ex­

changeable. This result has important consequences for the utility of multi-model 

mean statistics that treat models as being interchangeable.

3.7 Recommended Presentation of M odel Out­

put

An alternative way of presenting GCM output to the IPCC AR4 Figure 8.1 is 

suggested in this Section. Three amendments are suggested:

1. If anomalies are to be used, these anomalies should be taken with respect to
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each model, not each simulation. This approach is consistent with the fact 

that IC members from the same GCM follow the same dynamics and have the 

same systematic dynamical biases.

2. The use of a linear offset to reduce systematic differences should be stated 

explicitly when presenting anomalies. It is important to give the magnitude of 

this adjustment especially when it is large. In addition to this it is important, 

in the accompanying text, to state explicitly the justification for using this 

offset and whether it is likely to hold out-of-sample.

3. The performance of individual models in capturing the observations should be 

central to the evaluation of multi-model ensembles, especially where models 

can not be assumed to be exchangeable. This could be achieved by running 

an ICE (perhaps 10+ members) and looking at how often the model captures 

the observations, such as in Weisheimer et ai (2004). When using GCMs to 

extrapolate, it is important that individual models capture the dynamics of 

change in the observations.

The first two suggestions above are important whether the intention is to show 

the fact that all models warm under anthropogenic forcings, as in Chapter 9, Figure 

9.5 of the AR4, or to give evidence to trust models out-of-sample, as in Chapter 

8, Figure FAQ 8.1 of the AR4. The third condition is aimed more at providing a 

clearer view of a model’s likely skill out-of-sample.

3.8 Conclusion

The presentation of model output in Figure 3.2, as shown in IPCC AR4 does not 

acknowledge significant systematic biases in the model’s base GMST and large dis­

crepancies between individual model simulations and observations. The presenta­

tion of data in IPCC Figure 8.1 suggests that the combined effect of 20th Century
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anthropogenic and natural forcings is sustained warming and that this result is ro­

bust across GCMs. The IPCC Figure is more suitable in the case of establishing the 

sign of the net effect of forcings on GMST, such as in Stott et al. (2006), although 

a table could equally provide this information. It does not, on the other hand, give 

sufficient evidence to support the statement that GCMs can accurately re-produce 

observed GMST in either its mean value or its dynamics. Individual GCMs must 

accurately capture the dynamics of observations in-sample in order to justify their 

extrapolations as reliable out-of-sample.

It has been shown here that the presentation of GCM output in-sample in the IPCC 

Figure is inappropriate and I could not find an explicit acknowledgement of the con­

cerns raised here in the AR4. In cases of décision-support, it is critical to present 

uncertainties with such transparency that the users of climate predictions will not 

be surprised when comparing observations in 2010 or 2020 (or updated model out­

put before that time) to current GCM output. To overstate the predictive skill of 

GCMs risks misleading decision makers and will likely weaken confidence in climate 

science. The in-sample differences shown in this Chapter can be seen as a “straw- 

man” test, similar to the in-sample test explained in Chapter 2. The differences 

between GCMs simulations and observations in-sample provides an upper bound on 

their likely accuracy out-of-sample. These differences can be significant e.g. resid­

uals values of up to 0.5 degrees Celsius. The ability of GCMs to extrapolate future 

climate changes in this case does not seem well founded without an clear acknowl­

edgement of a) the use a linear offset to produce anomalies and b) the structure in 

the residuals. Point b) is important since residual structure suggests that the some 

GCMs used in this analysis may not be capturing the dynamics of temperature 

change observed, an important condition for useful out-of-sample simulation.

The 47 simulations looked at in this Chapter are insufficient for a detailed sensitivity 

analysis of model response to GHGs. Since the range of behaviour across different 

structural models underestimates the full range of possible climate responses Stain-
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forth et al (2005) it is necessary to look at the diversity of model behaviour in a 

large set of simulations in order to make robust statements about future climate. 

The methods of analysing uncertainties used in the remainder of this Thesis were 

only applicable thanks to the availability of a large set of GCM simulations from 

the CPDN experiment. Chapter 4 introduces the details of the CPDN experiment 

and the data sets that will be analysed in subsequent Chapters.

New results presented in this Chapter are:

• There are significant differences between different GCMs’ global mean tem­

perature of up to 3 degrees Celsius. Such large differences call into question 

the physical basis of these models.

•  The effect of taking different types of anomalies gives significantly different 

presentations of GCMs’ in-sample fit. The use of anomalies in the IPCC AR4 

distorts the variability of models both within Initial Condition Ensembles and 

across different structural models.

•  Model output has been compared to observed global mean temperatures over 

the 20th Century. Residuals are compared on a model by model basis and it 

has been shown that 1) There can be considerable structure in the residual 

time series and 2) The magnitude of residuals can be large (up to 0.5 degrees 

Celsius) in comparison to observed 20th Century global warming (~0.74 de­

grees Celsius).

• CMIP3 GCMs are not exchangeable, calling into question the relevance of 

many methods of statistical analysis for climate model output. GCMs can 

not be assumed to be sampling from a common distribution.

• A new method for estimating the temporal correlation within GCM time series 

is proposed. The mixing time for some GCMs is not significantly different from 

1 year (the higher frequency of data used here), but that it can be higher for 

other GCMs.
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Annua l  Global  Me a n  T e m p e r a t u r e  -  O b s e r v e d  v e r s u s  s i m u l a t e d
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Figure 3.1: The absolute values of GMST from 47 simulations are plotted in yellow. 
The HadCRUTS observations are plotted in black (the anomaly time series is offset 
using the 1961-1990 global mean (14.0 degrees Jones et al. (1999))). The multi­
model mean is plotted in red. There is a difference of up to 3 degrees between 
simulations’ GMST.
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Figure 3.2: (Reproduction of IPCC Figure 8.1) Comparison of 47 simulations from 
11 structurally distinct GCMs (yellow) used in the AR4 to HadCRUTS observa­
tions (black). The multi-model mean is plotted in red. Each model simulation is 
“centred” by taking anomalies relative to 1901-1950. Blue lines show the timings 
of four major volcanic eruptions -  Santa Maria, Agung, El Chichon and Pinatubo.
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Figure 3.3: Comparison of 47 simulations from 11 structurally distinct GCMs (yel­
low) used in the AR4 to HadCRUT3 observations (black). The multi-model mean 
is shown in red. In this plot the model is centred using the mean 1901-1950 anomaly 
for each model (averaged over IC members). There is slightly more variance across 
model simulations, during the 1901-1950 period where anomalies are taken, in this 
plot than in Figure 3.2, as expected.
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Figure 3.4; The residuals for 3 different GCMs are shown as a time series. Residuals
for each simulation are found by subtracting the HadCRUT3 observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.5: The residuals for 3 different GCMs are shown as a time series. Residuals
for each simulation are found by subtracting the HadCRUT3 observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.6: The residuals for 3 different GCMs are shown as a time series. Residuals
for each simulation are found by subtracting the HadCRUT3 observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.7: The residuals for 2 different GCMs are shown as a time series. Residuals 
for each simulation are found by subtracting the HadCRUTS observations from each 
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.8: The time series of 47 GCM simulations is plotted against observations 
as 1901-1950 anomalies (top) and as residuals (bottom). The NCAR PCMl GCM 
is highlighted in red and the GISS-h model in blue. The highlighted models overlap 
in the first half of the 20th Century but diverge from 1960 onwards.
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Figure 3.9: The number of NCAR PCMl simulations that are hotter than the 
hottest GISS-h simulation over the 20th Century. The horizontal line shows the 
number of simulations we would expect to be hotter, on average, at each time point 
if the models were sampling from the same distribution. The horizontal line shows 
the 5% significance level used in this test.
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Figure 3.10: The distribution of mixing times for 5 GCMs - mri-cgcm2-3-2a, miub-echo-g, giss-echo-e-h, giss-echo-e-r and 
ncar-ccsm 3 with 5, 5, 5, 9 and 8 simulations respectively.
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Figure 3.11: The p-values for the Kruskal-Wallis test are shown for the 20th Century. 
Low values suggest evidence against the null hypothesis that all five models have 
the same median.
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Figure 3.12: The p-values for the Kruskal-Wallis test are shown for the 20th Century 
for multi-year running medians of 2, 5, 10 and 25 year means respectively. In 
all cases, the test is non-significant during the first half of the 20th Century, the 
becomes significant towards the end.
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Chapter 4

Introduction to the

climateprediction.net experiment

4.1 Introduction

This Chapter gives an overview of climate models and details of the climate predic­

tion, net experiment. The scientific communities’ response to demands for decision­

relevant information on future climate has largely focused on the use of complex 

climate models, such as GCMs. These models are explained in Section 4.2.

Section 4.3 introduces the CPDN experiment -  the largest climate modelling project 

ever undertaken. The climate model used in this experiment, developed at the 

Hadley Centre, is briefiy presented as well as the experimental design of the first 

CPDN experiment. The CPDN project provides an opportunity to evaluate some of 

the uncertainties in climate modelling using a multi-thousand member ensemble of 

simulations. Section 4.4 looks at the type of data produced by CPDN from 45,644 

model simulations. Methods for estimating key climate statistics and the process 

of data quality control are also presented in this section. A new method of qual­

ity control is introduced that corrects for problems identified in previous methods 

Stainforth et a l (2005).
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4.2 Climate Models

Climate models have been used to aid our understanding of the Earth’s climate 

system for a long time Manabe (1975); Manabe & Bryan (1969). A variety of mod­

els have been developed, ranging from simple Energy Balance Equations Budyko 

(1958); Sellers (1969) to highly complex GCMs Gordon et al. (2000); Johns et al. 

(2006); Pope et al. (2000). All the climate models looked at in this Thesis are nu­

merical, computer-implemented, representations of scientists’ understanding of the 

Earth’s climate system^. Climate models are primarily physically based, although 

they often contain empirical and statistical components.

4.2.1 On statistical m ethods of climate prediction

SOTA climate models are based on physics and other natural sciences. Statistical 

models are not widely used, despite their relative simplicity, in climate prediction. 

A particular reason for this is that the climate system is changing in a way that 

has never been previously observed. Data-driven methods that do not encode some 

fundamental aspect of the way the system works are unlikely to prove reliable out- 

of-sample. It is thought that the physical properties of the climate system will 

be more robust under extrapolation than those derived from a purely statistical 

approach. This is an important rationale for the use of complex physical models in 

climate modelling.

The problem of modelling the future climate is primarily one of extrapolation and 

thus a statistical model that assumes stationarity, or a constant relationship between 

variables may not be appropriate. Despite this, statistical models could be usefully 

applied in the field of climate prediction. Statistical models can be relevant in 

Numerical Weather Prediction (NWP) and seasonal climate prediction, especially 

when used as a “straw-man” Binter et al. (2009). These straw-men are often simple.

Ît is interesting to note that climate models are not restricted to the Earth; modelling of 
Mars’ atmosphere is also an ongoing area of research Lewis (2003).
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computationally cheap, statistical models that set a minimum standard for a more 

complex, physical, model to outperform. The process of model evaluation in NWP 

and seasonal prediction depends largely on the availability of out-of-sample data; 

in the case of climate prediction such out-of-sample verifications are few due to 

the long time scales involved. Nevertheless, the use of simple statistical models as 

sanity checks for more complex climate models is a potentially fruitful area of future 

research.

4.2.2 Energy Balance

Perhaps the simplest way to understand the physics of the climate system is using an 

Energy Balance Model (EBM). A simple EBM considers the Earth’s global mean 

temperature as a uniform sphere. Incoming energy (or radiation) from the Sun 

is balanced with outgoing energy from the Earth. Annually averaged incoming 

energy from the Sun is approximately 1370 (every second per metre squared

perpendicular to the Sun’s rays) at the top of the atmosphere. Denote this constant 

as S  (radiation from the Sun is in fact not constant and does have an effect on 

Earth’s climate). Some energy is reflected back into space (either from clouds or 

the Earth’s surface) and the remaining energy warms the Earth. The reflectivity of 

the Earth is called albedo. Denote albedo as a, where a  can take values between 0 

(no energy is reflected) and 1 (all the energy is reflected). The net amount of solar 

radiation reaching the surface of the Earth is:

5(1 -  a) (4.1)

The Earth absorbs energy like a disk (from the Sun’s perspective), but loses energy 
like a sphere (from the Earth’s perspective). Energy gain for a disk of radius R  is:

7tR^S{1 -  a) (4.2)

Energy lost from a sphere obeys Stefan-Boltzmann’s Law Boltzmann (1884); Stefan 
(1879) (this treats the Earth like a black body), given by:
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4w RhaT ‘̂ (4.3)

where e is the emissivity of the Earth (a constant close to 1) and a is the Stefan- 
Boltzmann constant. T denotes the temperature in Kelvin. In equilibrium the 
radiation balance is zero. Thus,

7Tfl^5(l -  a) =  A'KR^eaT* (4.4)

Which reduces to:

5(1 - a )  = KT* (4.5)

where is a constant, or

T  oc 5 '/"  (4.6)

Solving this equation results in a global mean temperature of roughly -16 de­

grees Celsius. The actual GMST of the Earth is roughly 14 degrees Celsius New 

et ai (1999) due to the “Greenhouse effect” Fourier (1824) GHGs allow visible 

light from the Sun to pass through the atmosphere but absorbs a proportion of 

the infrared radiation emitted back from the Earth’s surface at a lower frequency. 

Important GHGs are water vapour {H2 O), Carbon Dioxide (CO2), Nitrous Oxide 

(N2O), and Chlorofluorocarbons (CFCs). Changing the concentrations of GHGs 

may lead to changes in the greenhouse effect. Of particular interest is the rising

concentration of CO2 in the atmosphere since this change is significant and largely

anthropogenic Solomon et al. (2007a).

An EBM is a representation of the Earth as a black body, with a uniform 

surface that responds thermodynamically to changes in radiative forcing. This 

model allows an insight to important aspects of the Earth’s energy budget but is 

limited due to its simplicity and does not allow an understanding of possible climate 

feedback mechanisms (see Section 4.2.3). Although energy balance is a fundamental

^Actually this is a misnomer since a greenhouse works in a different way, but the phrase has 
stuck.
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principle underlying all climate models only a basic understanding of the climate 

system can be gleaned from the energy balance equation. More sophisticated models 

that include feedbacks can be used in order to gain a deeper understanding of the 

climate system.

4.2.3 Feedbacks

Of key importance to the study of climate change is the idea of feedbacks. A 

feedback is defined here as a process in which the output in turn affects the input. A 

positive feedback acts to exacerbate the initial input’s effect and a negative feedback 

dampens its effect. In the context of the climate system, an example of a feedback 

would be if rising levels of CO2 were to lead to ice melting, which led to more 

heat being absorbed at the surface (partially due to lower albedo) which results 

in further surface heating. Feedback processes are non-linear and require models 

much more complex than an EBM to be understood. There is strong evidence that 

feedbacks resulting from increasing levels of CO2 will be positive Solomon et al. 

(2007a), exacerbating the initial warming effect of GHGs. The magnitude and 

speed of feedbacks is still very uncertain; understanding the nature and extent of 

feedbacks is a key aim of climate modelling. In order to study feedbacks, complex 

physical models (GCMs) have been developed.

4.2.4 GCMs and Grid Boxes

GCMs are discrete, 3-dimensional representations of the Earth’s climate, that nu­

merically solve fundamental equations describing the conservation of mass, energy, 

momentum etc. of fluid motion. The model is configured as a set of grid boxes -  a 

set of discrete points over the Earth’s surface and in the vertical direction. Some 

models can be adapted to run at different grid resolutions but this can require a re­

working of the representation of some physical processes. It might be thought that 

the finer the resolution of models, the better their representation of the physics (and
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less parameterisation is required - see Section 4.2.5) and therefore an improvement 

in their ability to predict climatic changes. The tendency is for new models to work 

on finer resolutions, requiring more computing resources. Increasing resolution in 

a GCM requires an exponential increase in the amount of computational resources 

e.g. ceteris paribus a model with 10 times increased resolution in three dimensions 

requires 1000 more time to run. There is a trade-off between the complexity of the 

model, the number and length of simulations we are able to run.

4.2.5 Parameterisation

Climate models operate on a system of grid boxes with a resolution typically of 

order ~10,000A;m^ e.g. the HadAMS atmosphere model operates on a resolution 

of 2.5 degrees latitude by 3.75 degrees longitude Pope et al. (2000) (this resolution 

is equivalent to 416km by 278km at the equator, reducing to 293km by 278km at 

45 degrees latitude). At this resolution, it is not possible to capture all physical 

processes of interest e.g. clouds. Where modellers include such sub-grid scale pro­

cesses parameterisations  ̂can be used, based on observational studies and statistical 

models. Some parameterisations are well-understood and have been evaluated us­

ing observations, such as in Phillips et al (2004); other parameterisations are more 

uncertain or may simply ignore processes altogether McGuffie & Henderson-Sellers

(2006).

4.2.6 Parameter values

In contrast to the parameterisation schemes used to represent sub-grid scale pro­

cesses, a number of parameter values are defined in a climate model. An example 

of parameters used in HadSM3 is the speed at which a convective cloud mixes into 

surrounding clear air (for a full list of parameters used in the CPDN experiment see 

Section 4.4.3). It should be noted that the role a parameter plays in the model may

parameterisation is a representation of processes that operate on length scales smaller than 
a grid-box in the model or that are omitted from explicit representation in the model
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be different to its “real world” namesake. Model parameters are firmly rooted in a 

world of grid boxes and need not relate to empirical measurements of variables of 

the same name. There are two reasons why model parameters need not correspond 

directly to empirical counterparts include:

1. Measurements can mean different things when looked at on different spatial 

scales. For example a variety of different spatial patterns of precipitation 

could result in the same constant drizzle when averaged over a model grid 

box.

2. Parameter values in the model can be artificial e.g. expressing the speed 

at which cloud droplets form rain in a number may not represent anything 

directly empirical in the real world. In some cases, model parameters hold a 

tenuous relationship to anything we can measure.

It is not always clear how parameter values should be chosen in a GCM, given 

their partial detachment from empirical phenomena. They could be chosen to match 

as closely as possible observations or chosen such that they produce a more realistic 

looking model. It has been noted that there are 0(100) uncertain parameter val­

ues in the HadAMS atmospheric component of the HadCMS and HadSMS climate 

models Palmer et al. (2005). In the case of CPDN, a range of values for each of 29 

selected parameters (obtained by expert elicitation, as in Murphy et al (2004)) is 

explored. Having explored some of the uncertain parameters at pre-assigned levels 

in the CPDN experiment it has been shown in Sanderson et al (2008) how future 

experimental design might be more efficient by selecting parameter values based on 

their likely impact on model behaviour such as CS.

4.2.7 Time steps

For the set of differential equations that make up a GCM to be computed they 

are first transformed into a discrete spatio-temporal set of differential equations.
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These equations are then solved on discrete time steps -  30 minutes is used in the 

HadSMS model in the CPDN experiment. Some parts of the model are integrated 

over longer time steps e.g. incoming radiation operates on longer time scales than 

atmospheric dynamics. The model integration scheme also takes into account the 

interaction between grid boxes so that the larger scale dynamics of the climate can 

be represented.

4.2.8 HadSMS

This subsection presents the GCM used in the CPDN experiment - HadSMS Williams 

et al. (2001). Developed at the Hadley Centre, HadSMS is a GCM operating on a 

2.5 degree Latitude by S.75 degree Longitude grid, with 19 vertical layers, giving 

roughly 140,000 distinct grid boxes. Including the 100+ physical variables used at 

each grid box, the dimensionality of HadSMS runs into order 10 .̂ HadSMS consists 

of the atmospheric model HadAMS Gordon et al. (2000); Pope et al. (2000) coupled 

to a 50m deep slab ocean and sea-ice model Williams et al. (2001). In the vertical 

direction, there are 19 layers over land. These layers are not evenly distributed, in 

either distance or pressure. The vertical layers are narrower near the surface, where 

more complex physical processes occur Pope et al. (2000).

HadSMS consists of about 1 million lines of Fortran code (~40Mb) and takes roughly 

2-S weeks to run one simulation (45 years of “model time”) on a Pentium4 S.2GHz 

home PC using distributed computing software Christensen et al. (2005). Since 

the model does not include a deep ocean, and the atmosphere responds to forcings 

comparatively quickly, the response time of HadSMS is faster than its deep ocean- 

coupled counterpart, HadCMS Cox et al. (2000); Gordon et al. (2000). The lack 

of a deep ocean component allows experimental phases to be shorter thus saving 

computational resources, although the HadSMS model requires flux adjustments. 

Two important aspects of the HadSMS model, the slab ocean and the heat flux 

adjustment, are discussed in the remainder of this Section.
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The Slab Ocean

The HadSMS model uses a slab ocean, a single-layer ocean of constant depth of 50 

metres throughout the globe. Many GCMs now have dynamic oceans with vertical 

layers extending below the ocean surface. Whilst the use of a slab ocean is a 

significant simplification, the model can be useful for understanding the atmospheric 

response to changing GHGs. The ocean operates on much longer time scales and 

can take 100s of years to reach equilibrium. The atmosphere, and land areas, 

react much quicker and it is over land and in the atmosphere that the effects of 

climate change will be most significant. Models with slab oceans are not suitable for 

studying transient climate response since the lack of ocean dynamics will result in an 

unphysically rapid response to forcings. In order to prevent unphysical behaviour in 

the slab ocean, a heat flux adjustment is used, described in the following subsection.

Heat Flux Adjustm ents

Heat Flux Adjustments (HFA) are seasonally varying artificial fluxes of heat, be­

tween the ocean and atmosphere, applied to maintain Sea Surface Temperatures 

(SSTs) close to climatological values Hewitt & Mitchell (1997); Williams et al. 

(2001). HFA is used to prevent unphysical model drifts that can occur in models 

using slab oceans Stainforth et al. (2005). This model drift is undesirable since even 

a model simulation with no external forcing factors (e.g. GHGs or solar variation) 

may display climate change.

The HadSMS model includes HFA, calculated in the spin-up phase, as explained 

in Section 4.3.1. The use of HFA in the HadSMS model, its benefits and poten­

tial problems are discussed in detail in Ghapter 5. The experimental design of the 

CPDN experiment is explained in more detail in the next Section.
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4.3 The CPDN experiment

CPDN is apublically distributed computing experiment Allen (1999); Allen & Stain­

forth (2002); Christensen et al. (2005) that harnesses the computational resources of 

members of the public. This allows a very large amount of experimental resources 

to be used to run a number of different climate modelling experiments. Similar 

projects include the SETI (Search for Extra-terrestrial Intelligence) project Kor­

pela et al (2001).

This Section explains the details of the first CPDN experiment. This experiment 

has produced the largest ensemble of climate simulations to date. Over 300,000 

members of the public have contributed to producing in excess of 200,000 simula­

tions. CPDN has run several experiments including a comparison of pre-industrial 

to doubled CO2 climate, a transient forcing experiment, and others including a 

sulphur cycle and an experiment to look at possible shutdown of the thermohaline 

circulation (see www.climateprediction.net for more details on these experiments). 

It is the first of these that is analysed in this Thesis, which was also the experiment 

with the most available simulations at the time of analysis. One of the key aims of 

this experiment is to better understand ICU and the effect of parameter perturba­

tion to explore model uncertainties.

The particulars of the experimental design, as well as some issues that arise in the 

analysis of the data set are presented in this section.

4.3.1 CPD N  Experimental Design

The first CPDN experiment has created a grand ensemble, a set of ICEs, run under 

parametrically perturbed versions of the HadSMS model. Parameters are perturbed 

from a standard set to form model versions. The parametrically unperturbed model 

containing the standard set of parameters is referred to in this Thesis as the standard 

HadSMS model. Each model version is run with multiple ICs plus some duplicate 

simulations that are used to verify the experimental design (especially whether the
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use of publically distributed computing is a reliable one for climate modelling). For 

the standard HadSMS model more ICE simulations are sent out than for perturbed 

parameter model versions. This larger ICE allows a more detailed analysis of the 

models’ internal variability and is explored in Chapter 6.

Calibration Phase

Each simulation in the first CPDN experiment consists of three distinct 15-year 

phases. The first 15 year phase of the CPDN experiment, the calibration phase, 

is run in order to calibrate the HFA field. The HFA is required to account for 

anomalies in the coupling between the atmospheric and ocean components of the 

HadSMS model and to produce a stable control climate. Different model versions 

can require significantly different adjustments. In the CPDN experiment, the HFA 

is calibrated for each simulation. Thus, each simulation uses a different HFA. In a 

different experimental set-up, the same HFA should be used for every simulation 

within a model version since simulations sharing the same dynamics should require 

the same HFA (assuming the initial condition has no significant effect on the HFA). 

This could be achieved by averaging the HFA over each ICE, providing a more robust 

estimate of the common HFA, or by only calibrating the HFA for one simulation, 

saving computational resources.

The HFA field is calibrated such that the model’s SST matches a 1961-1990 re­

analysis of observations New et al (1999). The HFA field used in subsequent phases 

is defined for each grid box and varies as a seasonal climatology Piani et a l (2005), 

but remains fixed from year to year. See Chapter 5 for a detailed discussion on this 

phase and characteristics of the HFA field in reducing model drift, its convergence 

and its relationship with CS.
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Control Phase

The second 15 year phase, the control phase, is run under pre-industrial CO2 

concentrations, as in the calibration phase. The HFA, derived from the calibration 

phase, is held fixed from year to year but varies seasonally during this phase. The 

control phase can also be used as a reference climatology for the third phase, where 

pre-industrial CO2 concentrations are doubled. The control phase also provides a 

measure of the model’s internal variability and is used in quality control to pick up 

unstable or drifting model simulations. The methods of quality control applied are 

discussed in section 4.4.2.

Doubled CO2 phase

At the start of the third 15 year phase (the doubled CO2 phase), CO2 concen­

trations are instantaneously doubled. The use of an instantaneous forcing means 

that this phase can be shorter than would be required in a transient forcing set­

up (gradually increasing CO2 over many years). Since the CO2 forcing applied 

is highly artificial, there is no direct comparability of the experiment’s time series 

to the Earth’s climate; the effects of doubling CO2 are isolated in the context of 

estimating the equilibrium response of the model. Both the control phase and the 

doubled CO2 phase are initiated from the end point of the calibration phase. The 

model response is then analysed, especially the GMST response. For some models, 

the GMST stabilises by the end of the third phase, whereas others are still warming 

Stainforth et al (2005). Since not all the models have reached equilibrium, the 

CS must then be estimated using the different methods explained in Section 4.4.1. 

Section 4.4 gives information on the data produced by the CPDN simulations.
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4.4 Data

Climate models produce a huge amount of data due to their high dimensionality 

and large number of variables. HadSMS operates in an order 10  ̂dimensional space 

and a 45 year simulation consists of almost a million time steps. Recording all the 

model output would require a large amount of disk space. In fact, only a sub­

set of meta-data is retained from each simulation -  it is this sub-set of summary 

data that is explained in this Section. Despite saving only a fraction of the entire 

model output, the CPDN experiment has produced quantities of data on the order 

of terabytes (~15Mb per simulation).

This Section describes three specific sets of data -  the ICE of the Standard HadSMS 

model, the initial release of data (2578 model simulations) and a larger set of 45644 

simulations.

Section 4.4.1 explains an important statistic in climate modelling, climate sensitivity 

(CS).

4.4.1 Climate Sensitivity

A number of different definitions of CS exist. In this Thesis, CS refers to equilibrium 

climate sensitivity, defined as the equilibrium global mean temperature response to 

a doubling of CO2 concentrations. CS can be understood more intuitively as the 

eventual amount of global warming we expect to occur if CO2 concentrations were 

doubled and then maintained, CS is an important component of our understand­

ing of climate change and has attracted a wide range of interest in the scientific 

community Annan & Hargreaves (2006); Arrhenius (1896); Manabe (1975); Roe & 

Baker (2007); Solomon et al. (2007a); Stainforth et al (2005). Whilst the output of 

an entire model simulation can be reduced to the single scalar statistic of CS, much 

important information is lost as shown in Chapter 8

The CS of a simulation can be estimated by taking the average GMST over a long 

simulation with pre-industrial CO2 concentrations and subtracting this from the
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average GMST over a long simulation with doubled pre-industrial CO2 . Each phase 

is 15 years long. Where there is still transient warming and it can not be assumed 

that the simulation has reached a new equilibrium CS must be estimated from the 

time series of GMST.

Three different methods for estimating CS are explained here. Two of these meth­

ods are based on the imposed radiative flux due to doubling CO2 concentrations 

and the heat capacity of the oceans^.

The third method is based on an exponential fit to the temperature change under a 

doubling of CO2 concentrations. This statistical method uses fewer physical quan­

tities as the other two methods, but gives comparable results (shown in Section 

4.4.1).

Heat Capacity

Two of the physical variables used to calculate CS are the climate system’s heat 

capacity and the top of atmosphere radiative flux imbalance (TOA flux). The heat 

capacity is an expression of the rate at which the climate system warms. Figure 4.1 

shows the variability in estimated heat capacity over 1460 quality controlled simu­

lations. Most of the simulations’ heat capacities lie in the region of S.4-4.4 W/rr?. 

The different heat capacities of simulations means that they warm at different rates. 

This has an impact on the calculation of CS.

Radiative forcing

Radiative forcing relates to an imbalance between the incoming and outgoing radia­

tion from the model. This can be understood as an imbalance in the Energy Balance 

equation in Section 4.2.2. The equation shows how temperature (or albedo) can 

change when the balance of energy changes. When a change in radiation occurs the 

model’s temperature adjusts, over a period of time, to a new level. Once this period

 ̂ Heat capacity measures how effectively a substance stores heat such that: à{ïT) =  C.S{T), 
where H is heat, C is the heat capacity and T is the temperature.
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of transition, which can take 10s or 100s of years, is complete, a new equilibrium 

is reached. Both the speed and nature of the period of transient change and the 

equilibrium value are of interest to climate scientists and decision-makers.

The TOA flux has been estimated at 4.37 W jm ^ in the IPCC Second Assessment 

report Houghton et al. (1995), revised to 3.7 IT/m^ in the Third Assessment report 

(Section 6.3.1) Houghton et al. (2001) and held constant for the Fourth Assessment 

Report Solomon et al. (2007a). Taking into account the importance of the uncer­

tainty in the estimation of the ocean heat capacity and the radiative forcing due to 

doubling CO2 could considerably change estimates of CS. In particular, estimates 

of CS could change by up to 20% depending on whether the best guess of the radia­

tive forcing resulting from doubled CO2 is taken from the IPCC’s Second or Third 

report.

M ethod 1: Physics-based Exponential fit

This method is based on the GMST response to a doubling of CO2 , allowing for 

uncertainty in the heat capacity of the model climate, as used in Stainforth et al.

(2005). Four physical quantities are used to estimate the CS parameter, A. The last 

8 years (of the 15 year phase) of the pre-industrial phase are taken as the control 

GMST. The TOA radiation imbalance, F, is calculated as the incoming shortwave 

radiation minus the outgoing longwave and outgoing shortwave radiation (incoming 

longwave radiation is assumed to be negligible). The heat capacity of the climate 

/ic, is calculated from the change in temperature and change in radiative forcing 

between the first five years of the doubled CO2 phase and the control phase. 

Finally, the time series of GMST change between the doubled CO 2 phase and the 

control temperature is used, from phase year 8 onwards, as an annual mean. The 

following exponential fit is then carried out using a gradient-expansion algorithm 

to compute a non-linear least squares fit Press (1992).
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Where ^  is the change in GMST, T, with respect to time, t, in years. CS is 

estimated by

M ethod 2: Gregory M ethod

This method is based on Gregory’s equation introduced in Gregory et al. (2002) 

and uses a linear fit between the doubled CO2 phase GMST difference (the time 

series of GMST change seen under a doubling of CO2 ) and the TOA atmospheric 

radiation imbalance, as defined in Method 1. The linear fit is accomplished using 

minimum least squares (see linfit.pro in the IDL documentation for more details). 

The CS is then estimated by Ç, where A is the negative of the gradient of the linear 

fit, and F  is the intercept.

M odel 3: Statistical Exponential Fit

This method uses a statistical fit to the doubled CO2 phase temperature to estimate 

the equilibrium state.

^  = A { 1 -  exp{B))

Where ^  is the change in GMST, T, with respect to time, t, in years. CS is 

estimated by the parameter A. Unlike the other two methods, this method does not 

use any physical information from the model, other than GMST. In principle this 

method might be extended to estimate the sensitivity to increased CO2 for other 

variables or length scales.

Other possible methods for calculating CS might be to fit a single exponential curve 

to all the members of an ICE simultaneously, or the method used in Knight et al. 

(2007) where the heat capacity is taken as fixed.
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D oes it m atter which m ethod is used?

This subsection looks at the relationship between the three methods for estimating 

CS presented and whether it makes any important difference which is used. Figure 

4.2 shows the three methods plotted against each other for 1460 simulations from 

the initial release of data presented in Stainforth et al. (2005). The diagonal pan­

els show a perfect correlation where each method is plotted against itself. There 

is a very strong linear relationship between the three methods, with small devia­

tions from the line x=y. Figure 4.3 shows the range of values estimated for each 

run (maximum estimated CS of the three methods minus the minimum) verses the 

mean. The range is typically on the order of 0.1 degrees Celsius, but can be as high 

as 1 degree. This range of values estimated is typically small, with a median of

0.1572 degrees Celsius (tenth and ninetieth percentiles are 0.0487 and 0.401 degrees 

respectively), far less than most quoted ranges of CS, e.g. 2-4.5 degrees in Solomon 

et al (2007a) and 1.9-11.5 in Stainforth et ai (2005). These results suggest that 

it does not make a significant difference which method is used for the purposes of 

estimating CS.

Knight et al. (2007) takes the radiative imbalanced due to doubling CO2 to be 3.74 

W /m ^ in calculating CS for a similar CPDN data set. Figure 4.4 shows the esti­

mated TOA Flux over 1460 perturbed-physics simulations of the HadSM3 model 

using Method 1. Both values (4.74 and 3.7 W jm ^ in the Second and Third Assess­

ment Reports, respectively) adopted by the IPCC are contained within the range 

of values seen. Method 2 gives different results, seen in Figure 4.5. Whilst the peak 

of the histogram is still around 3-4 W/m^, more simulations have higher estimated 

TOA fluxes. Using Method 1, most simulations have less than 4.5 VF/m^, whereas 

using Method 2 there are simulations with TOA fluxes up to 6 W/rn^ and above. 

This discrepancy is likely due to the method of estimation and explains some of the 

differences in estimates of CS produced by the different methods for estimating CS 

outlined above.
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Unless explicitly stated otherwise, Method 1 is used to calculate CS in this thesis. 

This method is chosen since it uses more physical information from each simulation 

than the other Methods presented. Results are not thought to be sensitive to the 

Method chosen.

High Climate Sensitivity Simulations

A key feature of the CPDN grand ensemble is that some simulations show a large 

magnitude of warming in response to doubling CO2 . Results presented in Chapter 

7 show that there are 350 simulations (~  1.5% of simulations) with an estimated 

CS of over 10 degrees Celsius.

In the case of these very high CS simulations (defined in this Section as greater 

than 10 degrees Celsius), the 15 year doubled CO2 phase does not allow sufficient 

time for an equilibrium to be reached. The time series for the 350 simulations 

with CS over 10 degrees (using Method 1) are plotted in Figure 4.6. Also shown 

are 822 simulations with a CS close to 2 degrees Celsius (simulations with a CS 

between 1.9 and 2.1 degrees Celsius, taken from the larger set of 45644 simulations) 

for comparison. The 2 degree simulations seem to have reached an equilibrium by 

the end of the phase, whereas the simulations with CS greater than 10 degrees 

have not. Whilst it appears that simulated warming in the final phase follows an 

approximately exponential pattern in many simulations, it may not be possible to 

accurately estimate very high values of CS. Despite this, the range of estimates for 

CS across the 3 Methods is still less than 1 degree Celsius. It is relevant to note 

that when the HadSM3 model was developed such high levels of CS were likely not 

considered possible. As such, it might be more prudent to judge any simulation with 

an estimated value of CS much above 10 degrees Celsius simply as an extremely 

severe case of global warming, without assigning much importance to the details 

that distinguish between such simulations.
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4.4.2 Quality Control

This Section presents a new method of quality control for the analysis of data from 

CPDN and other similar experiments.

Not all of the simulations produced by the CPDN experiment are suitable for anal­

ysis for a number of reasons. Two such reasons are that 1) some simulations have 

missing data and 2) some simulations show unphysical behaviour to a degree that 

renders them useless for understanding C02-forced climate changes. Such simula­

tions should be neglected from analysis on physical grounds. Four stages of quality 

control are presented here. These stages do not aim to be exhaustive but rather 

aim to purge simulations with gross internal inconsistencies.

Quality control methods were developed based on the initial release of 2578 CPDN 

simulations, then applied to the set of 45644 simulations. The four stages of qual­

ity control are 1) Rejection of simulations with insufficient data, 2) Rejection of 

simulations with significant global temperature drift during the control phase, 3) 

Rejection of simulations with evidence of a specific, unphysical, regional cooling 

feedback in the East Pacific and 4) Simulations with extremely rapid shifts in cli­

mate on seasonal timescales. These four stages are now explained in more detail:

1. Any simulations that contain insufficient information to calculate CS are re­

jected. A similar criteria of ruling our simulations with missing data was 

applied in Sanderson et al. (2008). It is in the nature of a distributed comput­

ing experiment Stainforth et al. (2002) that some simulations will be returned 

without the full complement of information. These simulations are not in­

cluded in the subsequent analysis of quality controlled data. It is assumed 

that there are no systematic biases in results due to eliminating simulations 

with missing data. The errors are believed to arise to due numerical errors or 

participants dropping out and not any relevant properties of the simulations’ 

physics. Of the full set of 45644 simulations, 31793 pass this first stage of 

quality control.
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2. Any simulations that show a significant GMST drift in the control phase are 

ruled out as unstable. A critical level of 0.02 degrees Kelvin per year is consid­

ered unstable, as in Knight et al (2007); Stainforth et al (2005). This degree 

of drift is very close to the maximum magnitude of drift seen in the standard 

HadSMS model (~0.019 degrees Kelvin per year). Where simulations show 

significant climate change during a period without any forcing effects they are 

dismissed. In the presence of significant GMST drift, it would be difficult to 

tell whether the climatic changes seen under a doubling of CO 2 occur as a 

result of the increased GHG forcing, or due to some other mechanism. Of the 

31793 simulations that pass the first stage of quality control, 23050 pass this 

second stage.

3. The main cause of unphysical GMST drift in both the control phase and the 

doubled CO2 phase is an unphysical negative feedback mechanism that occurs 

in the East Pacific. This problem arises as a result of the slab ocean’s inability 

to re-distribute heat through ocean currents. Cool SSTs in a specific area of 

the East Pacific (known henceforth as “Area 51”) and low-lying clouds cause 

a run-away feedback that affects SSTs first locally, then on the global scale. 

The effect is small at first, then becomes significant, leading to a drop in 

GMST of up to 27 degrees Celsius Stainforth et al (2005).

An “Area 51” statistic is presented here in order to rule out simulations with 

an East Pacific negative feedback. This statistic is defined as the difference 

between an identified problem Pacific grid box (located at longitude 78.75 

West and latitude 2.5 North) in the doubled CO2 phase and the same grid 

box in the calibration phase, adjusted by an Atlantic grid box of the same 

latitude (called Area 52 here), averaged over the last 8 years of each phase. 

Area 52 is defined by the grid box at longitude 48.75 West and 2.5 North. 

The Area 51 statistic. A, is given by:
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A = (areaôls — area52s)) — {areabli — areab2i) (4.8)

Where areabli represents the value of the Area 51 grid box in phase i and 

areab2i the value of the Area 52 grid box in phase i. The statistic A  detects 

simulations with a significant local cooling that might be missed when looking 

at global mean temperature drift, as applied in the second stage of quality 

control. Figure 4.7 shows the distribution of values for the Area 51 statistic 

after stage 1 of quality control. This distribution is bi-modal; the larger peak 

is about 0 and the smaller about -27. The first peak about 0 represents sim­

ulations that have not yet developed a significant feedback in this area. The 

second peak represents simulations that have drifted significantly already. Ap­

plying the second stage of quality control i.e. looking at complete simulations 

with non-significant GMST drift, this distribution changes to that shown in 

Figure 4.8.

Having eliminated simulations with significant GMST drift, the second peak 

(around -27 degrees) disappears, but there is still a long tail to the distribution 

of A. Whilst the distribution now appears uni-modal, there are still a number 

of problematic simulations with values of A as low as -30 degrees. The statis­

tic A  is used to overcome the problem seen in Stainforth et al. (2005), where 

simulations are admitted for analysis that show localised unphysical cooling. 

Any simulations for which this anomaly is less than -15 degrees Kelvin are 

ruled out as having an unphysical regional feedback. The value of -15 degrees 

is chosen to eliminate simulations with a very strong local cooling. The choice 

of this value is a trade-off between rejecting simulations with a significant, 

unphysical, feedback and not rejecting simulations without this problem.

It is not clear which level should be chosen as critical in the presence of a
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continuous tail. Here, a value of -15 is chosen so as to be sure of not ruling 

out simulations that have not drifted. Choosing a higher value, say -5 degrees, 

would not rule out very many more simulations (22329 simulations would pass 

all stages of quality control using -5 degrees, compared to 22723 using -15 de­

grees). It would be important not to set the critical value too high, for fear of 

ruling out simulations that show a physically consistent global cooling (this 

would be an important result). 23050 simulations pass the first two stages, 

and if no Area 51 quality control is applied 22871 pass the fourth stage of 

quality control. The exact value of the Area 51 statistic is not critical to the 

results of the analysis carried out in this Thesis -  cut-off levels for A of -5, 

-10, -15 and -20 allow 22329, 22643, 22723, 22775 simulations respectively.

4. Simulations that show extremely rapid seasonal changes in GMST are ruled 

out (of more than 20 degrees Celsius in any 3 month period). These jumps 

could be due to a numerical error (or lost data) for a short period of time that 

show up in the available time series as a more moderate jump in seasonally 

averaged temperature. It is judged here that a jump of more than 20 degrees 

in a single season is unphysical and thus those simulations should be dismissed 

from analysis. It is not expected that all simulations with unphysical jumps 

are detected by quality control, only the worst offenders. This last stage of 

quality control eliminates simulations with numerical errors that might distort 

the models’ results.

The four stages of quality control and the number of simulations remaining after 

each stage are shown in Table 4.1. Approximately half (49.8%) of all simulations 

pass all four stages of quality control and are then available for further analysis. 

The effect of this quality control process can be seen in Figure 4.9. The initial 

release of 2578 simulations, presented in Stainforth et al. (2005), are shown in their 

original form (panel (a), with 2578 simulations), after two stages of quality control 

(panel (b), with 1460 simulations) and all four stages of quality control (panel (c),
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Stage D escrip tion C ritica l Value Sim ulations
0 None NA 45644 (100%)
1 Insufficient data NA 31793 (69.7%)
2 Control phase CMST drift 0.02 degrees/year 23050 (50.5%)
3 East Pacific regional cooling -15 degrees 22899 (50.1%)
4 Unstable time series 20 degrees 22723 (49.8%)

Table 4.1: The four stages of quality control are given with critical values, where 
relevant, and the number of simulations remaining at each stage (also shown as a 
percentage of the initial number of simulations in brackets).

with 1447 simulations). Applying the first two stages of quality control means ruling 

out simulations without a full complement of data or simulations with a significant 

GMST drift (as applied in Stainforth et al (2005)). Applying the full quality con­

trol as described in this Section also rules out simulations that cool unphysically 

in the doubled CO2 (all these simulations cool due to the Area 51 problem). Also 

shown in Figure 4.9 (panel (d)) is the result of applying full quality control to a 

45644 member ensemble, leaving 22723 simulations. Whilst no simulations show 

sustained cooling in the doubled CO2 , one simulation in particular shows unstable 

behaviour; this can be seen in panel (d) of Figure 4.9 in years 38-40 where one sim­

ulation shows a significant, but temporary dip. By the end of phase year (year 45 

in the plot), this simulation has warmed by more than any other simulation (about 

10 degrees above its mean control phase temperature). This simulation was not 

rejected by the quality control procedure, but it is likely that further investigation 

might reveal unphysical behaviour in this model.

It is interesting to note that parameter perturbation in the CPDN ensemble can 

result in differences of up to 1.5 degrees Celsius in absolute CMST during both the 

calibration and control phase of the experiment, approximately half the difference 

between structural models shown in Chapter 3. This difference can be seen in Fig­

ure 4.9. This suggests that parameter perturbation can have, in some cases, less 

effect on the physical properties of a climate model than structural differences.

All the simulations with an unphysical cooling in the set of 2578 simulations are 

deemed unphysical using the quality control processes proposed in this Section. It
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is important to note that the process of quality control does not assume that simu­

lations should warm and rule out cooling simulations correspondingly. Rather, any 

simulations that are unstable in the control phase are excluded, whether this drift 

is a warming or cooling. Furthermore, the critical level of cooling used to detect 

an Area 51 anomaly is chosen to be low such that no simulations that cool due to 

another reason are mis-diagnosed and rejected accordingly.

In general, the quality control aims to be conservative in ruling out simulations so 

that only clearly unphysical simulations are dismissed. Quality control should be 

careful not to ignore the potentially most important simulations of all e.g. simula­

tions showing global cooling or rapid fluctuations in climate.

4.4.3 Data Format

For each simulation, data is available for each of the three 15 year experimental 

phases. For the calibration phase, additional data is recorded on the HFA (recorded 

as an 8 year mean fleld for each month). Each simulation produces data on a range 

of meteorological variables such as 1.5 metre surface temperature, precipitation rate, 

cloud cover, wind speed etc. on global, regional and grid box scales. Only a small 

sample of the model output is stored due to restrictions on storage and processing 

time. There are two general types of data available:

1. Global (or regional) mean data as a monthly time series. 22 regional averages 

are deflned as in Giorgi & Mearns (2000) over land areas as well as areas 

denoting the tropics. Northern and Southern extra-tropics and the North and 

South hemispheres.
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In order to calculate an area-weighted statistic, Tg using the following method 

is used:

® rücms

Where r = the radius of the Earth (~6371km), nlons=n\imher of longitude 

grid boxes (96 for the HadSMS model). latj=the mid-point of the j —th grid 

box, normalised to the range (-1,1); radians are calculated as the latitude in 

degrees times tt, divided by 180.

2. Seasonal field data, recorded for all grid boxes, as 3 month averages ([Decem­

ber January February], [March, April, May], [June, July, August], [September, 

October, November]). These seasonal averages are henceforth referred to as 

DJF, MAM, JJA and SON respectively. These fields are found from the last 

8 year mean of each phase; there are 12 fields available for each variable -  one 

for each phase and season.

Initial Condition Ensembles

For each model version (set of parameter values) between 1 and 10 ICE members are 

available. For the parametrically unperturbed model (the standard HadSM3 model) 

64 simulations are available. ICEs were obtained by using the same parameter values 

and perturbing ICs. ICE perturbation was achieved by perturbing a single ocean 

grid box by a small amount (for most ICE members by between -0.1 and 4-0.1 

degrees Celsius, from -3 to 4-3 for the standard HadSM3 ICE). This allows the 

same deterministic HadSM3 model version to be run a number of times, allowing 

of quantification of internal variability. The data set of 45644 simulations can be 

viewed as a set of 13535 ICEs, containing an average of just over 3 members in each. 

The standard HadSM3 model ICE is investigated in detail in Chapter 6.
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Initial release of m etadata

The original release of data from the CPDN experiment has been analysed in Knutti 

et al. (2006); Sanderson et al. (2007); Stainforth et al. (2005). Analysis of this data 

set showed a then unprecedented range of behaviour in GCMs, with values of CS 

ranging from below 2 to over 11 degrees Celsius. Such a wide range for CS has 

attracted an increase in efforts to constrain the range of values of CS Annan et al.

(2006); Hegerl (2006); Knutti et al. (2006). The question of constraining ensembles 

of climate projections is discussed in Chapter 7. This data set consists of 484 model 

versions, making up 2578 model simulations in total.

Grand Ensemble of 45644 m odel simulations

This Section explains the simulations forming the CPDN grand ensemble Stainforth 

et al. (2005). Up to 21 parameters values in the HadSMS model are perturbed in 

this experiment, each with between 2 and 4 levels determined by expert elicitation, 

following Murphy et al. (2004). A sparse (a sample of 45644 from 3̂  ̂ possible pa­

rameter combinations is very sparse) Latin hypercube sampling strategy is adopted. 

The 21 parameters perturbed in the CPDN experiment were chosen as being po­

tentially important and are varied within expert-elicited ranges as in Knight et al.

(2007); Murphy et al. (2004); Stainforth et al. (2005). Perturbing atmospheric and 

sea-ice parameters allows a sampling of uncertainties in climate feedbacks Collins 

et al. (2006). The parameters perturbed in the CPDN experiment are re-produced 

below, as from

http: /  /  www.climateprediction.net/science/parameters.php):

• v f l  Ice fall speed through clouds - important for the development o f clouds 

and determining type (rain, sleet, hail, snow) and amount of precipitation

• ct This relates how quickly cloud droplets convert to rain.

• rhcrit “critical relative humidity” relates the grid box scale atmospheric hu-
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midity to the amount of cloud in that grid box

• cw — land, cw — sea This relates how much water there is in a cloud to when it 

starts raining, which is dependent on the condensation nuclei concentration - 

the more condensation nuclei there are (bits of dust, salt etc. in the atmosphere 

on which raindrops can form) the smaller the raindrops.

• entcoef This parameter determines how rapidly a convective cloud (imagine 

a plume rising over a power station, or a bit thunder cloud) mixes in clear air 

from around it.

•  eacf Empirically adjusted cloud fraction This calculates how much cloud cover 

there will be when the air is saturated.

• ice — size This gives an effective radius for ice crystals in clouds i. e. what 

radius would they have if  they were perfectly spherical. It is important in the 

radiation scheme, to calculate how much incoming or outgoing radiation is 

reflected etc.

• i — st — ice — sw, i — cnv — ice — sw, i — st — ice — Iw, i — cnv — ice — Iw These 

parameters all allow for non-spherical ice particles in the radiation scheme.

• asym  — lambda This has to do with how rapidly air mixes by turbulence in 

the boundary layer (the layer of the atmosphere closest to the Earth).

•  GO This has to do with the fact that the ability of turbulence to mix air varies 

with how stable the air is - the more stable the air, the less turbulent mixing 

you get.

• zOfsea This parameter governs the transfer of momentum and energy between 

tropical oceans and the air (wind) above them.

• charnock This parameter governs the transfer of momentum and energy be­

tween seas and the air (wind) above them.
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• r —layers This is related to the number and size of plant roots in the soil - and, 

consequently, to how water is taken up from the soil and into the atmosphere 

by plant transpiration.

• ed d yd iff This parameter governs the diffusion of heat from the slab ocean to 

ice, where there is sea-ice present in the model.

•  start — level — gwdrag Gravity waves are waves in the atmosphere for which 

gravity is the restoring force - think of air passing over a mountain, it is forced 

upwards over the mountain, and then gravity will pull it back down, resulting 

in an oscillation (you often see clouds form downstream of mountains as a 

result). The air particles oscillating in these waves tend to lose energy because 

of friction (drag), and this energy manifests itself as heat. This parameter 

determines the lowest model level on which gravity wave drag is applied

• kay—gwave, kay — lee—gwdrag These parameters govern the way that gravity 

waves are formed as air interacts with surface features, such as mountains.

•  Alpham,dtice These have to do with the fact that the albedo (reflectivity) of 

sea ice varies with temperature.

• d i f f  — c o e f f , d i f f  — exp Diffusion coefficients and exponents govern how 

quickly something spreads through the material it is in - so, for example, if 

you put a drop of oil dyed purple into a beaker of un-dyed oil, how rapidly the 

dyed oil mixes with the oil around it until all the beaker has the same colour. 

Diffusion refers to mixing due to the random motion of particles, rather than 

turbulent mixing which happens when there are actual vortexes mixing things 

(which would happen if  you stirred the beaker with a spoon). In the case of 

the atmosphere, the horizontal diffusion coefficient and exponent determines 

the rate of diffusion of heat from a warm air mass to a cold one.

•  d i f f  — coef f  — q, d i f f  — exp — q These diffusion parameters determine the
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rate at which water vapour diffuses from a very humid air mass to a relatively 

dry one.

D uplicate Simulations

A number of duplicate simulations are sent out in order to check that distributed 

computing is a reliable method for generating ensembles of GCM simulations. In 

particular, it is important that any differences between duplicate simulations, aris­

ing from flaws in the experimental design, are small in comparison to the model 

behaviour being investigated. One source of differences between duplicate simula­

tions is the use of different computing architecture and processors. The differences 

in computing architecture has been analysed by Knight et al. (2007) and differ­

ences shown to be small in comparison to the effect of parameter perturbation. The 

magnitude of the differences, in terms of CS is of the same order of magnitude as 

the impact of different initial conditions. The presence of differences even between 

duplicate simulations does have important consequences for the interpretation of 

distributed computing experiments. The results of a distributed computing exper­

iment are therefore not always strictly reproducible. Duplicate simulations are not 

looked at in this Thesis.

4.5 Conclusion

The motivation behind climate modelling and the basics of state-of-the-art cli­

mate models has been introduced in this Chapter. The rationale behind the use of 

physical models has been discussed and key concepts in climate modelling such as 

the use of parameterisations, flux adjustments, energy balance and feedbacks are 

introduced. The details of the HadSMS model, used in the CPDN experiment have 

been explained in this Chapter.

The experimental design of the CPDN data analysed in this Thesis has been ex­

plained, as well as some issues that arise in the analysis of the data set. In particular,
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the methods of estimating CS and the process of quality control have been discussed. 

The different data sets that are used in this Thesis are explained; 1) the initial re­

lease of a grand ensemble of 2578 simulations, 2) a 64 member ICE of the standard 

HadSMS model and 3) a grand ensemble of 45644 simulations. Subsequent analysis 

is restricted by the availability of data; the accommodation of a multi-thousand 

grand ensemble means that limited model output can be stored from each simula­

tion. Chapter 5 will look at data from data sets 1) and 2). Chapter 6 focuses on 

set 2) and Chapters 7 and 8 looks primarily at set 3).

Original work presented in this Chapter are:

1. A new method of quality control, correcting for problems identified in previous 

quality control methods Stainforth et al. (2005). An unphysical local feedback 

in the East Pacific is detected using a local anomaly statistic. This method 

was shown to eliminate simulations with significant global cooling which fail 

to be detected when using global mean statistics.

2. Features of the CPDN experiment have been documented for the first time 

e.g. the availability and description of data, experimental design and issues 

in data analysis. Such documentation is important for other studies based on 

CPDN data sets.
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Figure 4.1: The global mean heat capacity in the doubled CO2 phase is plotted 
over 1460 quality controlled simulations.
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Figure 4.2: Estimates of CS are plotted against each other for three different methods over 1460 quality controlled simulations. There 
is a strong linear relationship between each of the methods.
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Figure 4.3: The range in estimated CS for three different methods is plotted against 
the mean for 1460 quality controlled simulations.
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Radiative forcing - 1460 runs
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Figure 4.4: The distribution in top of atmosphere radiative flux imbalance in the 
doubled CO2 phase is shown for 1460 quality controlled simulations. The method 
used to estimate this flux imbalance is the exponential fit of temperature change. 
There is a wide range of estimates for heat capacity, ranging from below 2 
to over 6  W/rrt^.

116



Radiative forcing - 1460 runs (Gregory Method)
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Figure 4.5: The top of atmosphere radiative flux imbalance in the doubled CO2 

phase is plotted over 1460 quality controlled simulations. The method used to 
estimate this flux imbalance is the Gregory plot method. There is a wide range of 
estimates for heat capacity, ranging from below 2  IT/m^ to over 6  IT/m^
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Figure 4.6: The GMST time series over the 3 experimental phases of the CPDN 
experiment for 350 simulations with estimated CS over 10 degrees Celsius (top). 
Also shown is the time series for 822 simulations with 2  degrees CS (bottom). 
Whereas the 2 degree simulations seem to have reached an equilibrium by the end 
of phase 3 , for the simulations with a CS greater than 1 0  degrees the simulated 
warming is so extreme that 15 years is not enough time for an equilibrium to be 
reached.
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Figure 4.7: The distribution of values of the Area 51 anomaly for 45644 simulations 
before applying any quality control. The distribution is clearly bi-modal, repre­
senting simulations that do not exhibit a negative feedback (peak around 0 ), those 
that have (peak around -27) and a smaller number of intermediate simulations that 
are drifting (between -5 and -20).
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Figure 4.8: The distribution of values of the Area 51 anomaly for 23050 complete 
simulations with a non-significant GMST drift. The distribution is uni-modal about 
0 , with a long tail in the negative values.
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Figure 4.9: Panel (a) shows the time series of 2578 simulations with no quality control applied. Panel (b) shows the same time series, 
applying only the first two stages of quality control, leaving 1460 simulations. Panel (c) shows the time series with full quality control 
applied, leaving 1447 simulations. Panel (d) shows the time series of 22723 simulations after full quality control was applied to 45644 
simulations.



Chapter 5 

Investigating variations in heat 

flux adjustment in the C PD N  

ensemble

5.1 Introduction

Heat flux adjustments (HFA) are often used to account for the flow of energy be­

tween the atmosphere and ocean in climate models that do not achieve realistic 

balance naturally Collins et al (2006); Knutson (2008); Murphy (1995); Murphy 

et al (2004); Sausen et al (1988); Shackley et al (1999); Stainforth et al (2005); 

Williams (1999). Flux adjustments play a number of different roles in climate mod­

elling. These roles are discussed in this Chapter and relationships between flux 

adjustments and the HadSMS model’s dynamics are investigated. Details of the 

HFA used in the CPDN experiment are documented in this Chapter for the first 

time and it is shown that the HFA used in the HadSMS model contains information 

on CS -  the equilibrium GMST response to a doubling of CO2 .

In this Thesis, HFA is deflned to be the anomalous amount of heat transferred 

from the ocean to the atmosphere such that the SSTs match the 1961-1990 climato-
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logical observations presented in New et al. (1999). This is not to be confused with 

sensible or latent heat fluxes (sensible heat flux relates to the energy flux in heating 

a surface without evaporation and the latent heat flux the flux of heat associated 

with the phase change of liquid through evaporation) that arise through physical 

processes in the model.

Investigating the potential relationships between the HFA and certain aspects of 

model behaviour (such as CS) is important for understanding the range of sim­

ulated behaviour for the purposes of decision support, in particular if the HFA 

produces a detectable bias. The HFA fleld may hold important clues for improve­

ment of the model and for the design of future experiments, as well as the analysis 

of the current data set.

It is valuable to look at the dynamics of the HFA itself and its effect on the HadSMS 

model’s response to rising CO2 concentrations in order to better design and inter­

pret flux adjusted modelling experiments. The use of HFA has been justifled in a 

number of ways: to maintain a realistic climate during the spin-up process Johns 

et al. (1997), to prevent signiflcant model drifts in the control climate Murphy 

(1995); Santer et al. (1994) and to represent missing ocean heat transports that are 

not reproduced by a slab ocean Sanderson et al. (2007). It has also been noted 

that models not using flux adjustments produce SSTs biases that might affect the 

reliability of regional simulations Collins et al. (2006). Furthermore, the use of a 

slab ocean with flux adjustments can enable a GCM to be run faster that would be 

possible with a dynamic ocean. For climate models with slab oceans HFA is used to 

simulate SSTs and produce stable model simulations. In the case of the CPDN ex­

periment, HadSMS is quicker that its fully coupled counterpart, HadCMS, allowing 

more simulations to be run in a given amount of time. For a detailed discussion of 

the use of flux adjustments and some scientists’ views on them see Shackley et al. 

(1999).

In the recent IPCC Assessment Reports Houghton et al. (2001); Solomon et al.
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(2007a) there has been a decrease in the use of flux adjustments due to their appar­

ently unphysical nature. Criticisms of the artiflcial nature of flux adjusted models 

are relevant since flux adjustments may not be able to mimic important feedbacks 

in response to rising GHGs. A solution recently adopted Houghton et al. (2001); 

Solomon et al. (2007a) of subtracting the control climate from the transient sim­

ulation (giving the “model anomaly”) in an attempt to eliminate model drift has 

not yet been shown to be better than applying flux adjustments in the case where 

unphysical model drift occurs in the control phase. It remains an open question 

how best to design climate modelling experiments to deal with systematic model 

biases.

This Chapter examines the HFA used in the CPDN experiment and is structured as 

follows. Section 5.2 looks at the variation in the HFA fleld across ICs and different 

sets of parameter values. The variability due to IG perturbation is shown to be 

small in comparison to the variability present across parameter sets. Parametric 

perturbation is shown to have a signiflcant effect on HFA flelds. The question of 

HFA stabilisation in the calibration phase is discussed. If the HFA has not stabilised 

by the end of the calibration phase, this would mean that simulations within an 

ICE would contain a systematic source of variability. It might not then be valid to 

consider the individual simulations of an ICE as drawing from the same distribution 

if the HFA is introducing a further, systematic source of variability. In Section 5.3, 

the seasonal variability of the HFA on global and regional scales is examined. In 

Section 5.4 a relationship is shown to exist between the HFA fleld and GS. Potential 

causes and consequences of this relationship are discussed. Section 5.5 looks at the 

HFA fleld as a possible cause of climate drift or a trigger for an unphysical nega­

tive feedback. No evidence is found that HFA is a signiflcant cause of model drift. 

Gonclusions and original work in this Thesis are given in Section 5.6. Each Section 

considers an aspect of the HFA and its relevance to the design and interpretation 

of flux adjusted climate modelling experiments. The remainder of the introduction
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explains the use of HFA in the CPDN experiment.

5.1.1 HFA in the CPD N  experiment

The HadSMS model used in the CPDN experiment requires HFA Williams (1999). 

The CPDN grand ensemble includes a large number of different model versions^ 

each employing a different set of parameter values. Since different parameter values 

can result in significantly different dynamics, the HFA is calibrated for each model 

simulation. Arguably, one should either calibrate the HFA once for each model ver­

sion, thus saving computational resources or to average the HFA over ICE members 

to obtain a better estimate for the HFA. In either case it is recommended that, in 

future, the same HFA should be used for all simulations within an ICE. There are 

at least two challenges to achieving this in the CPDN experiment;

1. Distributed computing does not easily enable users to obtain data from other 

simulations. This would require additional coding and the downloading of 

data that would likely reduce the speed at which simulations are completed.

2. It is useful to have ICE data from the calibration phase to use as a compari­

son to subsequent experimental phases and to analyse the difference between 

simulations sharing a single set of dynamics. Nevertheless, this data could be 

stored and a single HFA field applied for each member of an ICE.

During the first phase (the calibration phase) of the CPDN experiment the 

required HFA is calculated such that the model’s ocean matches 1961-1990 observed 

SSTs New et al (1999). The HFA is calculated as the addition or subtraction of 

heat required for HadSMS to produce observed SSTs. Henceforth, positive values of 

the HFA denote a flux of heat into the ocean and negative values out of the ocean. 

Having then defined the HFA (the last 8 -year mean of the 15 year phase is taken 

for each month), the same field of ocean HFA is then used each year in the control 

phase and the doubled CO2 phase Piani et al. (2005).
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The second (control) phase is run using pre-industrial concentrations of CO2 , as 

in the calibration phase. The only difference between the calibration and control 

phase is that the HFA is held constant from year to year in the control phase, thus 

there is no requirement for the model to re-produce observed SSTs. Models which 

display any significant and persistent drift during the control phase are disregarded 

as unphysical, as described in 4.4.2. Possible relationships between the HFA and 

model drift are looked at in Section 5.5.

The same HFA is applied in the doubled CO 2 phase as in the control phase. The 

HFA varies spatially and seasonally but is fixed annually and is not altered during 

the control or doubled CO2 phases. There is no HFA over land.

The HFA fields over the 15 year calibration phase are examined in Section 5.2 

in order to better understand the effect of parameter perturbation on the model 

versions’ dynamics. Analysis of the HFA can help to understand the results of 

slab-model experiments and might help improve the design of future flux adjusted 

modelling experiments. The convergence of HFA fields over a 15 year simulation in 

the CPDN experiment is looked at in Section 5.2 in order to better understand the 

effect of parametric perturbation.

5.1.2 HFA Data Sets

Four different subsets of CPDN data are analysed in this Chapter, both produced 

by the CPDN experiment. The data sets used are:

1 . A 48 member ICE of the standard HadSMS model, taken from a grand ensem­

ble of 45644 simulations, is used to look at ICE variability of the HFA more 

closely. Note that the the number of simulations available from the standard 

HadSMS model is different to the 64 Standard HadSMS simulations referred 

to in Chapter 4. This is because a full complement of data on HFA was avail­

able for only 48 of the 64 simulations. This data set will be referred to as the 

Standard ICE in the remainder of this Chapter.
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2. A 6 member ICE of the standard HadSMS model, taken form the grand en­

semble of 2578 simulations presented in Stainforth et al (2005). This set will 

be referred to as the Initial ICE henceforth and is used to assess the inter­

nal variability of the Standard HadSMS model. The Initial ICE is used in 

preference to the Standard ICE in one case only for ease of presentation.

S. A grand ensemble of 484 model versions with between one and nine distinct^ 

ICs simulation under each, giving 2578 simulations in total. This data will be 

referred to as P P E 2578 in the remainder of this Chapter. This grand ensemble 

was used instead of the lager grand CPDN grand ensemble of 45644 simula­

tions to investigate relationships between the HFA and model behaviour, as 

were the methods of quality control presented in Chapter 4. This was done 

so that any results found in the analysis of the HFA could be used as a part 

of quality control. For example, this could be the case if the HFA can be 

attributed as a key contributor of model drift, an inconsistency that is looked 

for in the process of quality control. Since the results do not suggest that the 

HFA can be linked to any important internal inconsistencies in simulations, 

HFA is not used in quality control. Despite this, the relationship between 

HFA and CS is examined as a method for constraining simulations, explored 

in Section 5.4 and Chapter 7.

4. After applying quality control, PPE^257S contains 1460 simulations. This new 

set is referred to as PPEquaiity

The Standard ICE, P P P 2578 and PPEquaiity data sets are used as appropriate 

in the analysis, the Standard ICE being used to investigate the internal variability 

of the standard HadSMS model and P P P 2578 and PPEquaiity are used to analyse 

the HFA across parameter perturbation.

^Some duplicate simulations, with identical ICs were also sent out in order to verify the 
experimental design. These duplicate simulations are not considered here as distinct simulations 
unless they produce different output.
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5.1.3 Examples of HFA fields

In order to motivate ideas and to better understand the HFA used in the HadSMS 

model, Figure 5.1 shows three HFA fields randomly selected from PPEquaiity’ There 

are regional patterns such as a blue band (representing heat being removed from 

of the oceans) about the equator and more heat being put in around Japan and 

the East Coast of the USA. These spatial patterns are discussed in more detail in 

Section 5.2. Figure 5.1 shows that these randomly selected HFA fields show similar 

regional characteristics although the magnitude of the HFA varies. Where the HFA 

is close to zero, this indicates that the model requires no significant fiux of heat to 

produce observed SSTs. Where the HFA if far from zero, the model requires a large 

flux of heat to match observed SSTs. Different models require different adjustments 

according to various missing ocean dynamics and model biases. Areas showing a 

significant flux of heat, e.g. around the equator, indicate the atmospheric and slab 

ocean components of the HadSMS model are not in balance.

The variability seen in the PPEquaiity is now analysed in Section 5.2.
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Figure 5.1: Three randomly selected HFA fields from PPEquaiity There are signif­
icant differences in HFA by region. Some areas require a reduction of heat in the 
ocean by more than 150VF/m^ whereas others require more than 200W/rrP to be 
added. A HFA of 200VF/m^ is approximately the same effect as an increasing the 
solar constant by 50%.
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5.2 HFA variability

This Section looks at variability in the HFA within the Standard ICE and PPEquaiity 

Studying the variability of the HFA can help inform the interpretation of flux ad­

justed experiments and aid future experimental design. Variability is looked at 

within the Standard ICE from the standard HadSMS model initially, then across 

different model versions.

Large variations are shown across PPEquaiity in Section 5.2.1. Section 5.2.2 shows 

there are spatial variations in the HFA within an ICE of the standard HadSMS 

model, indicating that some variability is due to IC perturbation and not parame­

ter perturbation. It is important to consider whether perturbing model parameters 

has a signiflcant effect on the HFA. This is looked at in Section 5.2.S. The stabilisa­

tion of the HFA flelds is discussed in Section 5.2.4 with reference to the global mean 

HFA time series over the calibration phase. Stabilisation of the HFA is deflned 

here as the limiting state of the HFA to within ICE variability. After the HFA has 

converged, further calibration will have no signiflcant effect.

Stabilisation is analysed in this Section on regional scales, although no regional 

HFA times series were available in this data set. The variability across 8  year mean 

flelds is used to look for evidence that suggests the HFA has not converged. Since 

ICE members should produce similar HFA flelds if the calibration phase is run to 

equilibrium, the relative variability in HFA flelds within and across model versions 

can be used to test the hypothesis of stabilisation. This test is carried out in Section 

5.2.3 and it is shown that perturbing parameters has a greater impact on the HFA 

than perturbing ICs.

It is shown that, whilst the stabilisation of the HFA can not be established conclu­

sively with the available data, the model output is consistent with the hypothesis 

that the HFA has reached an approximate stabilisation.
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5.2.1 The HFA bounding box

Spatial variability in the HFA field can be expressed using a bounding box Judd 

et al. (2007); Weisheimer et al. (2004). A bounding box comprises two extremal 

HFA fields (the maximum and the minimum) where each grid-box in the bounding 

box is defined by the most extreme member of the ensemble. A very wide range 

in the bounding box indicates a wide set of behaviour across simulations whereas a 

small bounding box shows that all members produce similar HFA fields (see Judd 

et al. (2007); Weisheimer et al. (2004) for a discussion on the use of bounding boxes 

as a means of ensemble evaluation). Figure 5.2 shows the maximum, minimum and 

range (maximum minus minimum) of PPEquaiity The minimum and maximum 

fields shown in panels (a) and (b) respectively show that, in some areas, HFAs of 

over 260VF/m^ and below -120W/rn^ are used. These are significant fluxes of heat, 

of the same order of magnitude as the total radiation from the sun (~340W/m^). 

The physical validity of using HFA in cases where such large corrections are re­

quired is dubious. In order for models with large values of HFA to be considered 

physically relevant, it must be shown that the HFA does not introduce any biases 

that significantly affect model results. It is an open question whether it is better 

to apply large artificial adjustments to correct model error or to use an un-flux 

adjusted model that has significant systematic errors Collins et al. (2006).

In the bottom panel of Figure 5.2, showing the range of the bounding box, gives 

an idea of the spread of HFA in PPEquaiity Dark blue areas represent a tight en­

semble whereas a yellow, or red, grid-box implies more variation between ensemble 

members. This gives an idea of how the HFA adjustment varies by region. There is 

relatively little variability in the high latitudes, and a tongue-like area off the coast 

of Peru. This East Pacific region is looked at in more detail in Section 5.5 when 

possible relationships between the HFA and model drift are examined. The largest 

range occurs in the West Pacific, just North and South of the equator. In some 

of these areas, there can be a difference of over 2 0 0 W/m^ between model simula­
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tions. This shows that the HFA can be very different between model simulations 

on regional scales.

5.2.2 Variability with Initial Condition

Attention is now restricted to the Standard ICE. The Standard ICE can be used to 

assess stabilisation of the HFA in the calibration phase through a quantification of 

a model versions’ internal variability.

For the purposes of experimental design it is important to know whether the HFA 

field has stabilised by the end of the 15 year calibration phase. Stabilisation is de­

fined here as the HFA reaching a equilibrium to within the range of ICE variability. 

An early stabilisation could allow for a shorter calibration phase, whereas a lack of 

stabilisation by the end of the phase might suggests a longer period of calibration is 

required. The range of values between members of the Standard ICE gives an idea 

of the internal variability of the model, and hence a means of assessing stabilisation. 

It is only possible to assess with confidence whether the HFA has stabilised to an 

equilibrium value by the end of the calibration phase using a time series. A time 

series is necessary to assess whether simulations are stabilising in time towards a 

common distribution. Without a time series, the question of stabilisation can not 

be answered conclusively but it is possible to look for information in the data avail­

able that is consistent with this hypothesis. For the HFA, only global means were 

available as a time series. The available spatial fields represent the 8  year monthly 

mean of years 8-15 of the calibration phase. The analysis carried out in this Chap­

ter is forced to work within this weakness of the experimental design.

An ICE, as a collection of spatial fields, can help to assess the internal variability 

present in the HFA and so place a lower limit on the degree of stabilisation attained 

by the end of the phase. If the HFA has converged, it would be expected that the 

difference between IC members would be small compared to the effect of perturbing 

parameter values. This is shown to be the case in Section 5.2.3. Furthermore, it
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Figure 5.2: The three panels show the (a) minimum, (b) maximum and (c) range 
of the HFA field for PPEquaiity The bounding box relates to the spread of the 
ensemble at each grid-box. Positive values denotes heat intro the ocean. The range 
of values shown in panel (c) can be as large as 2 0 0 VF/m^.
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might be expected that when looking at the 8  year mean spatial field across an ICE 

that each members’ anomalies (from the ICE mean) would differ in a random fash­

ion, without any systematic biases. The presence of systematic differences between 

ICE members would suggest that ICE members are not being drawn from the same 

distribution, indicating a lack of stabilisation.

If the fluctuation between IC members were random and not due to any system­

atic differences, the bounding box would be defined at a roughly equal number of 

grid-boxes by each member and in a fairly random fashion, with a certain amount 

of spatial correlation relating to the length scales on which the HFA operates. If 

the HFA is mimicking ocean dynamics, these length scales might be expected to be 

typically greater than a grid-box. This spatial correlation can be seen in Figure 

5.3.

Figure 5.3 shows the grid-boxes at which each member defines the top or bottom 

of the bounding box (equivalent to the maximum and minimum of the ensemble, 

respectively) for a six member standard HadSM3 ensemble (the 6  members of the 

standard HadSM3 ICE available from the 2578 ensemble). The Initial ICE is used 

here instead of the Standard ICE for presentation purposes, to avoid over-crowding 

the Figure. The “Technicolour raincoat” effect shows that members do tend to 

define small spatially-correlated regions but that their distribution about the globe 

appears random. The same member rarely defines both the top and the bottom of 

the bounding box in Figure 5.3. The bounding box is not defined by one or two 

members but all members contribute at different locations in a random fashion. 

This lends support to the hypothesis that members of the Standard ICE are being 

drawn from the same underlying distribution.

The bounding box of the Standard ICE is used in order to understand the magni­

tude of HadSM3’s internal variability. Figure 5.4 shows the bounding box for the 

Standard ICE. The minimum, maximum and the range are shown. Over most of the 

planet there is little variability between members, in particular around the equator.
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as shown in panel (c). Some areas have much more variability between members. 

Around the East coast of North America there is variation of over SOVE/m ,̂ perhaps 

due to the absence of an important ocean process, such as the Western Boundary 

Current, in the slab model. Large variations in the HFA indicates that the same 

model version (with different ICs) requires differing amounts of heat for the model 

to produce the observed SSTs. This internal variability could be a result of a lack 

of stabilisation in the HFA or an irreducible feature of variability in the HFA. The 

internal variability of the model is useful in assessing the effect of parameter per­

turbation. The difference in inter-model and intra-model HFA variability in the 

calibration phase is examined in Section 5.2.2 where it is shown that the inter-model 

differences dominate the variability within ICFs.

Spatial Correlation

The spatial correlation of the Standard ICF is examined in this Section. Spatial 

correlation is defined here as the autocorrelation between pairs of data points a 

specified distance apart on a spatial grid. The spatial correlation of ICF members 

can help understand the degree of internal variability present in the HFA and give 

insight to the way the HFA mimics missing ocean processes. Each member of the 

Standard ICF is considered as an anomaly from the ICF mean. It would be expected 

that if all ICF members are being drawn at random from the same distribution, 

that the anomalies would not show any systematic differences. In order to motivate 

ideas the spatial correlation present in the HFA can be looked at in a sub-set of 

simulations; Figure 5.5 shows examples of the HFA for 8  simulations (the ICF mean 

has been subtracted at each grid-box). Simulations were selected at random from 

the 48 available in the Standard ICF. There is visible spatial correlation within the 

anomalies of local HFA, suggesting that the noise is not independent on a grid-box 

level. This spatial correlation is quantified in the remainder of this Section.

Figure 5.6 shows the HFA anomalies for a different set of 8  simulations. Instead
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of plotting the anomalies themselves, each anomaly is assigned a rank (1  being the 

lowest anomaly, 48 being the highest anomaly). There is spatial structure in the 

rank ordered anomalies. Especially in the rank order anomaly fields, there seems to 

be small scale positive correlation and larger scale negative correlation (whilst there 

are patches of red and blue, red areas often sit next to blue areas). These results 

show that the ocean processes mimicked by the HFA operate on length scales larger 

than an individual grid-box. The presence of spatial correlation across the anomaly 

and rank-ordered anomaly fields indicates that this result is believed to be robust.

Coloured a re a s  show  w here  a  particular m em ber defines the top of the bounding box

90W
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M em ber Defining Bounding Box

Coloured a re a s  show  w here a  particular memt>er defines the  bottom of the  bounding box

180
Longitude

M em ber Defining Bounding Box

Figure 5.3: A colour is plotted for each of 6  members of the Initial ICE where it 
defines the bounding box. The top picture shows the top of the bounding box, 
and the bottom the bottom of the bounding box. The roughly even distribution of 
colours indicates that all members contribute to defining the bounding box and the 
patches of colour that there is some spatial correlation in the HFA.

A more formal test of spatial correlation is now carried out, as indicated above.
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Figure 5.4; Panels show (a) minimum, (b) maximum and (c) range of HFA for the 
Standard ICE. Panel (c) shows that there are regions for which members of the 
Standard ICE require HFAs differing by less than AW/m^ but other areas where 
the differences can be as large as 40
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In order to quantify the extent of spatial correlation in the HFA fields, an adapted 

version of Moran’s I  statistic Moran (1950) is used to assess the length scales on 

which spatial correlation is present. This statistic measures the spatial correlation 

between a grid-box and its neighbours at a distance d in the horizontal and vertical 

directions only (thus four points are considered for each grid-box). By calculating 

Moran’s I  statistic for various length scales, it is possible to assess the scales on 

which spatial correlation is typically present. The standard Moran’s I  statistic is 

adapted in this Section in order to suit the purpose at hand. Firstly, since HFA 

can be considered as “missing” over land, correlation is not calculated for or with 

land grid boxes. Only spatial correlation between ocean grid boxes is considered 

here (spatial correlation is evaluated even where ocean grid boxes are separated 

by grid boxes containing land). Secondly, due to heteroscedasticity in the data, 

standardised HFA anomalies are used; each the Standard ICE mean is subtracted 

at each grid-box from all simulations and is scaled by the ICE standard deviation 

at each grid-box. Morgan’s I  statistic is defined as:

E T »  d  ^  ^  I

_  i = l  ^i,j^i,j^i+d,j / r : i \
1 — ^  2 fOU j W i j z l j

where i , j  represents the grid-box i , j  for dimension size n  (number of longitude 

points) by m  (number of latitude points), where n  equals 96 and m  equals 73. The 

dummy variable Wij equals 0  for land grid-boxes and 1 for ocean grid-boxes and 

Zij equals the HFA at grid-box z, j  minus the global mean of the anomalies, d is the 

distance between grid-boxes for which spatial correlation is calculated. The statistic 

I  represents an estimate of the spatial correlation between ocean grid-boxes. I  is 

calculated over the Standard ICE for distances (values of d) ranging from 1 to 20. 

The values of I  for each ensemble member is plotted against distance in Figure 5.7. 

In order to assess whether there is significant spatial correlation in the anomalies, 

the values of I  are also calculated for an array of independent, standard Normal

137



variables where it is expected that there will be no significant spatial correlation 

present. Using this independent data set as a guideline for the presence of spatial 

correlation, it is possible to judge the average distance at which ICE members’ 

anomalies are correlated from Figure 5.7. The values of I  for the standard Normal 

data are used to define zero correlation for all distances, indicating no significant 

spatial correlation -  these values are centred about 0 with a range of (-3.55, 3.40). 

Spatial correlation in the Standard ICE is defined to be significant where at least 

90% (i.e. 39 of the 48) of simulations exceed the maximum value of the Normal 

data set. The HFA anomalies produce value of I  are significantly greater than 0 for 

distances up to 7 grid-boxes. Above distances of 7, there seems to be no significant 

spatial correlation. This demonstrates that the HFA fields are typically spatially 

correlated on scales up to about 7 grid-boxes.

There are at least two possible reasons for the presence of spatial correlation in the 

HFA field:

1 . The missing ocean processes the HFA is accounting for operate on length 

scales greater than an individual grid-box.

2. The HFA has not converged by the end of the calibration phase. Despite 

close agreement between the 48 members of the Standard ICE on the global 

mean level, it is possible that there are still regional differences that are yet 

to converge.

It is likely that 1) is true on physical grounds since the ocean dynamics, missing 

in HadSM3, are expected to operate on length scales greater than a grid-box. The 

question of stabilisation, raised in 2 ) is looked at further in Section 5.2.3 and 5.2.4 

where stabilisation of HFA within each model version is analysed using PPEquaiity

5.2.3 Perturbed Physics Ensembles

It has been demonstrated that there are local variations of up to 30IT/m^ resulting 

from IC perturbation and that there are spatial correlations within the HFA fields
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of the standard HadSMS model. In order to understand the significance of these 

variations and the effect of perturbing parameters on the HFA, attention is now 

turned to the PPEquaiity data set. Two questions are looked at here:

1 . Does the perturbation of parameters lead to significant differences in HFA? 

If this question can be answered in the negative, it may not be necessary 

to run a calibration phase for each simulation, saving up to a third of the 

computational resources. It is shown here that this can not be assumed and 

that parameter perturbation does have a significant effect on the HFA.

2 . Has the HFA converged by the end of the calibration phase? This question 

can only be fully answered using a spatial time series. Since a time series is 

only available for global mean HFA, it is only possible to assess whether stabil­

isation has occurred on a global level. Despite the lack of spatial time series, 

it is possible to use the 8  year mean HFA field to look for evidence against the 

hypothesis of stabilisation. Since model versions can have different dynamics 

and IC members can not, if the HFA had not converged at all, it would be 

expected that the HFA field would not be distinguishable between model ver­

sions. It is shown that the HFA from different model versions is significantly 

different on a spatial scale, indicating that some level of stabilisation has been 

reached by the final 8  years of the calibration phase.

If parameter perturbation has a significant effect on the equilibrium HFA, then 

it might be expected that the HFA from one ICE should be distinguishable from 

another. This is shown to be the case in this Section.

If the HFA has stabilised by the end of the calibration phase, ICE members that 

share the same parameter values should be similar on both global and regional 

scales (in particular, be more similar than randomly selected simulations). This 

similarity is based on the assumption that ICE members of the same model version 

will display the same dynamics and provide a lower limit on the variability that can
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be seen across a PPE. Figure 5.8 shows the range of global mean HFA in panel (a) 

and CS in panel (b) for each set of parameter values in PPEquaiity Whilst there 

can be quite a large range across ICs for CS (panel (b)), the global mean HFA is 

extremely close, so much so that the bars (showing the minimum and maximum 

within that ensemble) often appear as one in panel (a). The maximum difference 

in global mean HFA within a model version is 0.419W/m^. This suggests that the 

HFA fields within each ICE might have stabilised by the end of the calibration phase 

on a global scale.

It is important to check whether this similarity is present on regional length scales 

as well as globally. This requires an analysis of how much regional variability in 

the HFA field is present amongst members with the same parameter values. This 

can be tested against the hypothesis that the HFA has not stabilised by the end 

of the calibration phase and the same level of similarity is present for HFA fields 

randomly selected across different model versions. The spatial patterns within the 

HFA fields of PPEquaiity are analysed using Singular Value Decomposition (SVD) 

Press (1992). The leading pattern of the HFA field within ICEs is compared to the 

leading pattern of randomly selected groups of simulations. This comparison allows 

the hypothesis to be tested that simulations sharing parameter values share similar 

HFA fields. An experiment is designed to test this as follows:

For each model version, the last 8  years of the control phase, annual mean, HFA 

fields for quality-controlled simulations were used to form a 96x73 matrix (the 

HadSMS model used in this experiment is run on a 3.75 degree longitude by 2.5 

degree latitude resolution, giving a 96x73 grid), equivalent to a 7008 vector in this 

case. Data used are the average over the last 8  years of the calibration phase. The 

matrix of HFAs for each model version is then an nx7008 matrix, where n is the 

number of IC members available for that model version.

The global mean HFA is subtracted from each simulation. SVD was then used 

to form n new, orthogonal, directions and the associated singular values. The
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leading Singular Value is denoted LSV. This process is carried out for 440 model 

versions that have more than 2  quality controlled members (duplicate simulations 

are not included in the analysis). This gives 440 LSVs for the grand ensemble. 

For ensembles with different numbers of IC members, the LSV might be different 

and this needs to be reflected when testing the distribution of the 440 FSVs against 

randomly selected simulations. As each model version is analysed, the same number 

of HFA flelds are randomly selected and an SVD applied to the matrix formed by 

their HFA fields. This process gives two sets of 440 LSVs that can be tested for 

difference.

A statistical test is carried out to compare these distributions since the distribution 

of LSVs is unknown (and may be difficult to estimate reliably) a non-parametric 

test is appropriate. Where the ensembles come from the same model version, the 

mean LSV obtained was 0.913 (the full range is from 0.707 to 0.971) compared with 

0.638 (full range 0.439 to 0.957) for the randomly selected flelds. For comparison, 

the 6  member unperturbed ensemble gave an LSV of 0.865. It was judged that 

the test of difference could be restricted to the LSV alone, since the LSV typically 

accounts for over 90% of variation of HFA within ICEs. A Non-Parametric Rank 

Sum test for equality of the means within model versions and across model versions 

(a Mann-Whitney test Mann &: Whitney (1947) was used here) yields a p-value of 

less than 0.00001. Overall, there is strong evidence that the HFA flelds are more 

similar where they share the same parameter values although some similarity exists 

between randomly selected HFA flelds (the dot product of LSVs is always at least 

0.439). Perturbing model parameters leads to a non-trivial change in the required 

HFA on both regional and global scales. This provides evidence that parametric 

perturbation significantly changes the pattern of HFA, which therefore must be 

calibrated for each set of parameter values. Furthermore, the result that parametric 

perturbation has more effect on the HFA than IC perturbation, spatially as well as 

globally is consistent with the hypothesis of stabilisation by the last eight years of
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the calibration phase. Based on these results, it seems it is necessary to calibrate 

the HFA for each model version.
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Figure 5.5: The HFA for 8 simulations randomly selected from the Standard ICE.
The ensemble mean is subtracted from each simulation, giving an anomaly field.
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Figure 5.6: The HFA for 8 simulations randomly selected from the Standard ICE. 
The ensemble mean is subtracted from each simulation, giving an anomaly field, 
expressed in rank order.
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Figure 5.7: Moran’s I statistic is plotted for the Standard ICE against distance in 
white. In blue, the statistic is calculated on a set of randomly generated data for 
comparison. Positive values of I indicate a positive correlation. For distances less 
than 7, grid-boxes show a positive correlation. Where the distance is greater than 
10, there seems to be no significant correlation across the ensemble.
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Figure 5.8: These graphs show the range of values for global mean HFA (top) and 
CS (bottom) as a function of ICE size. The range of values for global mean HFA is 
often so small that the minimum and maximum bars are almost indistinguishable. 
The number of ensemble members is “jittered” by adding a small amount of white 
noise so that each of the ranges is discernible. The top panel shows that whilst the 
global mean HFA can differ by over 70IT/m^ between model versions, the range 
within each model version is very small - at most 0.4191T/m^. The comparative 
range of values of CS within model versions is large in comparison to global mean 
HFA.

5.2.4 Stabilisation o f G lobal M ean HFA

Figure 5.8 makes it clear that that there is very little variability in the global mean 

HFA within model ICEs in comparison to the differences between model versions. 

The CPDN experiment provides data to suggest that the HFA has stabilised by the

146



end of the calibration phase on the global level. But how long should the calibration 

phase be given a constrained amount of computational resources? This question is 

now addressed for the first time by examining the stabilisation, in time, of the HFA 

field over the calibration phase. The global mean HFA is recorded at each month 

of the calibration phase, giving a time series of 180 values.

Time series of global mean HFA is shown in Figure 5.9 which shows that the mem­

bers within each model version are fairly close throughout the phase. There seems 

to be little discernible trend in the mean or variability of the HFA although the 

seasonal characteristics appear highly regular and similar across model versions, 

although the seasonal cycle is greater for higher CS simulations, shown in panel 

(c). The variability within model versions is small from very early on in the cal­

ibration phase. If the differences between ICE members are small, and the HFA 

has stabilised by the end of the calibration phase, it is reasonable to consider that 

the HFA does not introduce systematic differences to the individual members of an 

ICE. Under these conditions it is possible to treat the ICE members as drawing 

from the same distribution.

A shorter calibration phase would save experimental resources. Figure 5.10 shows 

the difference between the first 8 year ensemble mean and the last 8 year ensemble 

mean. If the difference between these 8 year means were insignificant the calibra­

tion phase might be truncated to 8 years. There is little difference between the 

two—often less than 0.1 W/w?^ although there is a tendency for simulations that 

have the lowest HFA fields to take increasingly more heat out of the oceans during 

the calibration phase, indicating the HFA has not stabilised buy the end of the 

first 8 years. This reduction in HFA is shown in Figure 5.11. As seen in Figure 

5.9 the HFA field stabilises very quickly for most simulations (stabilised to within 

the degree of variability shown in the control ensemble) although for very high CS 

simulations, it may be necessary to run the calibration phase for its full length so 

that the HFA field reaches a stable level. It may not be possible to truncate the
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calibration phase and it is not easy to tell which simulations have converged. The 

very low HFA fields, in particular, require more heat to be taken out of the oceans 

during the last 8 years of the calibration phase than the first 8 years, whereas other 

simulations stabilise almost immediately. Nevertheless, this drift takes place over 

the first few years of the calibration phase, allowing for the possibility for cutting 

this phase short, saving computational resources. There are, however, three reasons 

why cutting the calibration phase short may be undesirable:

1. It may not be possible to know, before running the calibration phase, which 

model versions will show the change in HFA shown in Figure 5.11.

2. A 15 year calibration phase allows ease of comparison to the control and 

doubled CO2 phases. It might be useful to run the calibration phase for a 

full 15 years for this purpose, even if the HFA has converged very early in the 

phase.

3. The final 8 years of the phase are taken to provide an estimate of the equi­

librium HFA field. This reduces the internal variability of the HFA and relies 

on the assumption that the HFA has nearly stabilised after 8 years. It should 

be noted that the internal variability of the HFA can be further reduced by 

taking the ICE mean. This averaging over ICEs may not be easy to achieve 

within the experimental design of a distributed computing experiment. On 

the other hand, a future experiment could run the first member of an ICE 

with a calibration phase and apply this for all subsequent simulations using 

the same model versions i.e. after the first, simulations would contain no 

calibration phase.

That the HFA reduces progressively throughout the calibration phase might be 

an indication for a tendency of these simulations to warm up quickly or uncontrol­

lably and might be a factor leading to their high GMST increases under a doubling
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of CO2 concentration, A relationship between CS and the HFA is shown to exist 

in Section 5.4 and discussed.
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Figure 5.9: These graphs show the global mean HFA for the calibration phase. 
Time runs in months throughout the phase. Panel (a) shows the control ensemble 
(of 6 simulations, with an average CS of 3.4 degrees Celsius), panel (b) a randomly 
selected ensemble whose CS is 6.4 degrees Celsius (3 simulations) and panel (c) a 
11.1 degree CS ensemble (7 simulations).

5.3 Seasonality in the HFA

This Section studies seasonal variability in the HFA, in particular it is argued thats:

1. The HFA acts to mimic the ocean’s effect on the seasonal cycle, by transferring 

heat out of the ocean during warm seasons and into the ocean during cold
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Figure 5.10: The y-axis shows the final 8 year mean global mean HFA for each 
of 484 model versions. The x-axis shows the first 8 year mean minus the last 8 
year mean. These values are fairly close, but with a tendency for simulations with 
negative values of global mean HFA to remove more heat during the last 8 years 
than the first 8 years.
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Figure 5.11: The global mean HFA is shown here for model versions with an average 
CS of 8 degrees or higher. There is an initial drop in the global mean HFA field, 
followed by a stabilisation.

seasons. This transfer of heat is similar to the oceans’ dampening effect on 

the seasonal cycle.

2. The magnitude of HFA can be larger when analysed as seasonal than annual 

means. This fact could have an impact on the effect of HFA on instigating
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systematic regional biases.

Data from the last 8 years of the calibration phase is used in this Section; these 

data were available as monthly means. A distinct seasonal pattern can be seen at 

the global mean level from Figure 5.9. In order to better understand the seasonal 

variability on a spatial level, the 8 year mean fields are looked at in Figure 5.12. 

Figure 5.12 shows the HFA field, averaged over the Standard ICE, for each season. 

In particular, the HFA transfers heat into the oceans in the winter and takes heat 

out of the oceans in the summer. This is probably due to the use of a slab ocean 

which requires seasonally dampening to re-produce the observed seasonal cycle; the 

regulating effect of a deep ocean on the seasonal cycle is not present in a slab model. 

Figure 5.12 shows that heat is taken out of the ocean all year round around the 

equator. There are also clear seasonal patterns. During December, January and 

February (DJF), the Northern hemisphere shows large influxes of heat, especially in 

coastal regions. During the DJF season, the Southern hemisphere generally has a 

negative HFA. This means that the HFA field adds more heat to the oceans during 

the colder months. Similarly in the warm months (DJF in the Northern Hemisphere, 

JJA in the Southern) heat is taken out of the oceans. This suggests that the HFA 

acts to dampen the magnitude of seasonality in the model. This effect might be 

expected due to the role that oceans play in dampening the Earth’s seasonal cycle. 

Since the ocean has a higher heat capacity that land (the ocean warms up and cools 

down more slowly than land) and there is no deep ocean in the HadSMS model, the 

HFA acts as a proxy for the dampening effect of the ocean. It should be noted that 

the magnitude of the HFA can be larger on seasonal time scales e.g. in large areas 

of the Northern hemisphere the HFA puts up to 300IF/m^ into the oceans during 

the DJF season and takes out up to 200IF/m^ around the equator during the MAM 

and JJA seasons.

The East Pacific shows an interesting feature in the seasonal data, obscured in the 

annual average. From March to August the HFA shows a strong fiux of heat out
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of the oceans off the West Coast of South America, as shown in panels (b) and (c) 

of Figure 5.12. The HFA takes up to 200VF/m^ from the ocean to the atmosphere 

in this region. This area has been identified in Stainforth et al. (2005), as having a 

tendency for a strong negative feedback. This effect may be amplified or induced 

by a large negative HFA. Further investigation of this effect is carried out in Section 

5.5.
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Figure 5.12: The HFA field for (a) DJF, (b) MAM, (c) JJA and (d) SON averaged 
over the Standard ICE.

5.4 HFA and Climate Sensitivity

The CPDN experiment shows that GCMs are capable of producing values of CS sig­

nificantly higher than the typical 4-5 degrees Celsius estimated high range Houghton
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et al. (2001); Solomon et al. (2007a) for CS. Furthermore, it has been widely hy­

pothesised that HFA has no direct impact on CS Changnon et al. (2000); Houghton 

et al. (2001). In order to investigate possible relationships between HFA and CS, 

Figure 5.14 shows the global mean HFA plotted against CS. There is a pattern for 

simulations with large negative values of the HFA to result in high CS. All simu­

lations in P P E 2578 with a CS of more than 8 degrees Celsius have a global mean 

HFA of less than -13 W/m^. The very tight distribution of the annual mean HFA 

within each model version is the cause of the apparently streaky structure seen in 

Figure 5.14.

It is important to try and understand the physical reasons for the relationship 

between HFA and CS seen in Figure 5.14 in order to interpret simulations with 

high CS. It can not be concluded directly that the HFA has an effect on CS since 

there could be some other reason for their correlation or a confounding factor. Fig­

ure 5.13 shows the calibration phase total global cloud cover plotted against global 

mean HFA. There is a clear pattern for simulations with low total cloud cover to 

require negative HFA. The pattern seen in Figure 5.13 might be due to model ver­

sions with low amounts of cloud cover, and thus low reflectivity of solar radiation, 

requiring HFA as a surrogate cooling mechanism. Figure 5.13 shows that there is 

a relationship between clouds and the HFA and Figure 5.14 a non-linear relation­

ship between HFA and CS. The HadSM3 model conflrms that the amount of cloud 

cover is a key property for understanding high simulated CS in GCMs, as has been 

previously noted Solomon et al. (2007a). It might then be tempting to use simu­

lated cloud amount to constrain the range of values of CS. It would be statistical 

bad practice to use the observed relationships between CS, HFA and cloud cover to 

constrain the range of values for CS without understanding how these relationships 

arise. Such constraints face the danger of a selection bias whereby constraints are
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selected based on their effects rather than their physical basis. The search for obser­

vational constraints must be based on the physical relationships between variables, 

not by searching for observational variables that would produce the desired result. 

It is essential that expert judgements for constraints should be stated before the 

simulations are available; this would avoid the problem of cherry-picking patterns 

in the data that can lead to misleading results.

Various mechanisms could explain the relationship between HFA and CS seen in 

Figure 5.14. It is possible that simulations with negative global mean HFA produce 

high values of CS because the HFA is introducing an artificial source of heat in the 

model atmosphere although, if this were true, we might expect to see a stronger 

tendency for simulations with a strong positive HFA to cool. It is also possible that 

the HFA might be acting as a surrogate cooling mechanism for a lack of clouds in 

the calibration phase (with pre-industrial CO2 concentrations) but can not produce 

the same type of feedbacks when CO2 concentrations are doubled.

In this latter case, it is important to note that there are still large uncertainties 

in the feedback effects of clouds across different models Cess et al. (1989); Webb 

et al. (2006). The type of clouds, their height and regional distribution also play 

an important role in determining the sign and magnitude cloud feedback effects 

Ringer et al. (2006). The question of constraining the range of values of CS using 

the HFA is looked at in detail in Chapter 7. It is also possible that the relationship 

between HFA and CS might be “confounded” , to some extent, by another model 

aspect related to each of these components. This means that the relationship seen 

might not be a straightforward bias introduced by the HFA field on CS but a more 

complex mechanism.

It is not argued here that any of these explanations are definitive but that both sta­

tistical and physical understanding are necessary to gain insight to model behaviour 

and interpret important model features, such as high CS simulations.
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Figure 5.13: Total global cloud cover (as a fraction) is plotted against the global 
mean HFA for PPEguaUty There is a pattern for simulations with a low total cloud 
amount to have negative global mean HFA.
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Figure 5.14: The global mean HFA is plotted against CS for PPEquality There is a 
distinct tendency for simulations with a large negative global mean HFA to produce 
simulations with very high CS.
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5.5 HFA and drift

Despite the use of HFA in the CPDN experiment, a proportion of simulations 

(^30%) of P P E 2578 display a strong negative temperature drift^ during the control 

phase. These simulations are disregarded from the analysis of the effect of exter­

nal forcings on model climate since the simulation exhibits significant unphysical 

climatic changes in the absence of external forcings. A smaller proportion of simu­

lations show a positive temperature drift, but generally of a much lower magnitude 

than simulations with a negative drift (in P P E 2 5 7 8 , of 319 simulations with a signif­

icant positive drift, 3 have a positive drift greater than 1 degree Celsius per decade, 

whereas of 766 simulations with a significant negative drift, 265 have a negative drift 

of more than 1 degree Celsius per decade ). An important negative feedback mecha­

nism, first identified in Stainforth et al. (2005) and discussed in this Section, is a key 

component of negative drift. No such mechanism has been detected that results in 

unphysical positive feedbacks. Negative drift could arise from a mis-calibration of 

the HFA field or from some other source. This Section presents evidence to suggest 

that the HFA field (or its mis-calibration) is unlikely to be the sole cause of such 

model drift.

It would be expected that, if the HFA were a contributing factor to model drift, 

that there would be a discernible relationship between HFA and GMST drift. Fig­

ure 5.15 shows the proportion of simulations with significant control phase GMST 

drift plotted against the global mean HFA, for categories of size 2W /nP  (propor­

tions are taken since the number of simulations in each category varies) in PPFJ2578- 

P P E 2578 is used in this Section to analyse GMST drift; P P  Equality has been quality- 

controlled has thus does not contain simulations with significant GMST drift. There 

is no clear pattern for simulations with significantly non-zero global mean HFA to 

have a greater propensity to drift. Figure 5.15 suggests that a significantly non-

^Following Stainforth et al. (2005), a significant drift is defined as greater than 0.2 degrees 
Celsius per decade in magnitude. This drift is calculated by a linear fit to the last 8 years in the 
control phase.
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zero global mean HFA is not an important determinant of GMST drift. Possible 

relationships between the HFA and model drift in a region previously identified 

as important for understanding model drift Knight et al. (2007); Stainforth et al. 

(2005) are now looked for.

The major known cause of significant GMST drift occurs in the East Pacific, just 

off the coast of Peru Knight et al. (2007); Stainforth et al. (2005). A cycle of cool 

oceans and high cloud cover lead to a progressively colder East Pacific that can 

cause the temperatures in this region to fall by as much as 27 degrees Celsius. It 

might be that a strong negative HFA in this region is triggering a cooling feedback 

process. The negative feedback begins in a particular grid-box in the East Pacific, 

henceforth called “Area 51”. This Area 51 grid-box is used to characterise the 

cooling East Pacific problem and is used as a proxy for this local cooling feedback. 

The East Pacific problem is detected, using the temperature anomaly in the Area 

51 grid-box, following on from Knight et al. (2007). The Area 51 grid-box in the 

Pacific is identified as (78.75 West, 2.5 North). An Atlantic grid-box of the same 

latitude (48.75 West, 2.5 North) is subtracted from the Area 51 grid-box. The cali­

bration phase value for this difference is then deducted from the control phase value 

to give an anomaly statistic. This statistic has been presented in Section 4.4.2 and 

is used in the process of quality control. It might be expected that if the HFA is 

infiuencing the East Pacific negative feedback there would be a relationship between 

the HFA in Area 51 and the Area 51 temperature anomaly. It could be that the 

HFA persistently takes enough heat of the Area 51 region so that a local cooling 

feedback is initiated. Alternatively, the HFA might not initialise temperature drift 

in this area but may exacerbate an existent problem -  since HFA is kept constant 

for each year of the control and doubled CO2 phases, once such a negative feedback 

has begun the HFA will continue to take heat out of the oceans even when they are 

cooling significantly. If the HFA is a contributory factor to GMST drift, it might be 

expected that a strong negative HFA in the Area 51 grid-box would display some
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relationship with GMST drift (as defined in Section 4.4.2, drift is measure as the 

linear fit to the last 8 years of the global mean temperature time series in the control 

phase). Figure 5.16 shows this Area 51 anomaly plotted against model drift. No 

clearly discernible pattern is shown. This could be because all the simulations have 

a HFA in this area below a certain threshold level (Williams (1999) points out that 

using a HFA of less than -40W/m^ can lead to sea ice feedbacks in the HadSMS 

model). Figures 5.16 shows that all simulations have a strong out-fiux of heat of 

between -40 and -170W/m^ during the summer season.

The association between HFA and model drift can be further explored through the 

effect of 10 and parameter perturbation on model drift. Simulations within an 

ICE have very close global mean HFA. Figure 5.8 and 5.9 have shown that, on a 

global scale, the HFA fields are very close between ICE members. On regional scales 

there is more internal variability, as shown in Figure 5.4. Models sharing the same 

parameter values are much closer, on a regional level than simulations selected ran­

domly across parameter sets. If the HFA contributes to model drift, it would not 

be expected that some simulations within a ICE would exhibit significant drift and 

others not. Such differences are, in fact, found between ICE members, as shown 

in Figure 5.17. A value of -15 degrees Celsius for the Area 51 statistic is used to 

define which simulations are acceptable based on investigation of the distribution 

of this statistic, as explained in Chapter 4. Of 374 ICEs with more than 1 member 

available (and no quality control applied), 47 (12.47%) had at least one member 

with an anomaly below this cut-off point of -15 degrees Celsius (no simulations 

show an Area 51 statistic below -15 degrees since this criteria is explicitly applied 

during the quality control process). Figure 5.17 shows that there is a considerable 

range of Area 51 anomaly values across ICs. There are ICEs with no simulations 

that pass this test for the Area 51 temperature anomaly and have a relatively small 

range. Other ICEs have a wide range (over 20 degrees Celsius), with some simula­

tions proving acceptable and others being ruled out within the same model version.
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Figure 5.17 suggests that, for at least some parameter values, the problem of East 

Pacific cooling can not be determined exclusively by the parameter values or the 

HFA in this area using a 15 year control phase. Despite this, for some model ver­

sions, all members have a very low Area 51 anomaly with little variability between 

ICE simulations (less than 1 degree Celsius in some cases). It should be noted that 

none of the Standard ICE members show a significant GMST drift; this suggests 

that parameter perturbation is a contributing factor to the Area 51 problem. It 

could be that some parameter values are more susceptible to this problem in gen­

eral whereas other simulations fall into this category because of the IC variability 

alone.

It might be that if the control phase were run long enough the East Pacific prob­

lem would manifest itself across all simulations but there is no evidence for this 

assumption. Alternatively, it is possible that this effect occurs independently over 

parameter values, the only variable being at what point this problem occurs and 

can be detected. It is also possible that unphysical drift begins in the doubled CO2 

phase in cases where the HFA is no longer able to prevent instabilities in the new 

model state (some model simulations that do not exhibit drift during the control 

phase do show significant regional drift in the East Pacific during the doubled CO2 

phase). There are potentially some parameter values that are largely immune to 

GMST drift; this is suggested by the absence of significant GMST drift in the Stan­

dard ICE. These hypotheses could be tested by running a longer control phase (100 

years or longer) for selected model versions that exhibit the Area 51 problem in 1) 

No simulations and 2) Some simulations. The control phase time series of GMST 

and Area 51 statistics could be stored and compared to analyse whether there are 

stable sets of parameter values and the extent to which IC perturbation accounts 

for the presence of GMST drift.

It is judged here likely that the problem of model drift results from underlying er­

rors in the slab model that are exposed by parametrically de-tuning the standard
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HadSMS model from its stable state. Arguably, the HFA might be unable to sta­

bilise the HadSMS model in some parameter settings.

The HadSMS model requires large adjustments of HFA, shown in Figure 5.2, partic­

ularly in the East Pacific. There may be limits to the extent that HFA can account 

for lack of a dynamic ocean. In particular, where HFA adjustments of the order 

of lOOVF/m  ̂ are required, the validity of the HadSMS model might be questioned. 

The use of such large corrections may not be justifiable if the HFA does not respond 

to feedbacks in a physical way or has a direct effect on key model properties, such as 

CS. Since unstable simulations are eliminated via quality control, it is not thought 

that subsequent analysis is susceptible to the problems analysed in this Section.
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Figure 5.15: The proportion of simulations from PP E 2578 with significant GMST 
drift is plotted for categories of global mean HFA of width 2W/rrP. There is no 
clear tendency for simulations with a significant negative global mean HFA to have 
a significant GMST drift.
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Figure 5.16: The Area 51, JJA, HFA is plotted against the control phase drift for 
PPE 2578- There is no clear pattern for simulations with a strong reduction of heat 
over Area 51 to have a strong negative drift.
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Figure 5.17: The range of anomalies within an ICE is plotted over the problematic 
grid-box. Of 484 ensembles, only those with at least one unacceptable simulation 
(an Area 51 statistic less than -15 degrees) are plotted (47 ensembles).
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5.6 Conclusion

This Chapter has looked at variations in the HFA from different points of view; a 

comparison has been made between the impact of initial condition and parameter 

perturbation on the HFA, the stabilisation of HFA during the calibration phase, 

seasonal variation in HFA, the relationship between HFA and CS and the possible 

impact of HFA on model drift.

The relationship between HFA and climate drift has been looked at and, in par­

ticular, the question of whether the HFA could cause a specific negative feedback 

in the East Pacific. The results are inconclusive, although it seems unlikely that 

the problem of model drift is solely due to a miscalibration of the HFA field. It is 

more likely that the model structure is not stable over all sets of parameter values, 

particularly if a certain amount of interactive model structure-parameter tuning 

has occurred for the standard HadSMS model. Further work, presented in Chapter 

7, will analyse a larger set of CPDN simulations and will examine the use of HFA 

as a means of constraining model simulations.

Original results presented in this Chapter are:

• Perturbation of Initial Conditions has little effect on the global mean HFA 

(the greatest difference between IC members across 418 model versions is

0.419H7/m^). On the other hand, perturbation of Initial Conditions can lead 

to differences of up to AQW/w? (100 times the greatest global difference) on 

a grid-box level.

•  It has been shown by analysing the leading Singular Vector in the HFA fields 

of ICEs that parameter perturbed model versions of HadSMS can require sig­

nificantly different global HFAs. The leading Singular Vector has been shown 

to explain significantly more variability in the HFA fields where model simu­

lations share parameter values than where simulations are drawn at random. 

It was also also shown that whilst perturbing Initial Conditions has an impact
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of less than 0.51V/m^ on the global mean scale, perturbing parameters can 

lead to changes of up to 70VF/m^. The HFA should be calibrated for each 

set of parameter values, but can be averaged over ICE members to provide a 

more robust estimate.

•  Significant seasonal variations exist in the HFA both globally and regionally. 

This effect is likely mimicking the seasonally-dampening effect of a deep ocean 

and means HadSMS’s seasonal cycle might not respond to rising CO2 in a 

physical way.

• There is a relationship between global mean HFA and CS. Simulations with 

high values of CS (over 8 degrees) tend to have strong negative global mean 

HFA (less than -lOIF/m^). This relationship is potentially important for 

interpreting simulations with very high values of CS (greater than 8 degrees 

Celsius).

• Relationships between HFA and model drift have been investigated with the 

use of global mean and refined local statistics. No discernible pattern between 

global mean HFA and model temperature drift was found. The same model 

version can produce simulations that either drift or do not drift, suggesting 

drift is not dependent solely on parameter perturbation.
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Chapter 6 

ICEs and the Internal Variability 

of Climate M odels

6.1 Overview

Climate is a distribution^, consisting of a range of possible outcomes. A single cli­

mate model can exhibit a range of different states; this range of model behaviour 

is the internal variability of the model. Climate modelling is thus concerned with 

a long-term distribution and determining whether or not a range of forcings will 

result in significant changes in this distribution. This Chapter explains how the 

distribution of model climate can be evaluated using ICEs.

In a dynamical systems context, this internal variability can be understood in terms 

of the climate model’s “attractor” , the set of points to which a model will converge 

on long time scales. In a dynamical systems’ context, internal variability arises from 

not knowing on which point of the model’s attractor the system will lie at any given 

time point; there are a variety of possible states, depending on the precise speci­

fication of the IC^. The notion of simultaneously possible states is a multi-world

^Hence the saying, “Climate is what you expect, weather is what you get” Heinlein (1973).
În the case of chmate simulations, internal variabihty often refers to behaviour in an unforced 

model. In this Chapter, internal variability is used in a more general sense to include the variability 
of simulations under forcings. Such internal variability is not mathematically well-defined but is 
a useful concept when considering the effect of initial condition uncertainty on climate model
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scenario and thus can only be studied in “model land” . Unlike observations of the 

Earth’s climate for which estimates of a single, multi-dimensional, observation are 

available at each time point, climate models can simulate the same time period 

repeatedly. Thus, variability in model space occurs not only with time, but as a 

distribution of possible states at each time point.

The existence of internal variability places limits on our ability to make precise 

statements about the impacts of climate change. Instead, the distribution of model 

output within an ICE can be used to assess the consistency of model response on 

both regional and global scales. The internal variability of a model can be studied 

using ICEs, under the same model and same parameter values. There have been 

few efforts to run large ICEs for this purpose, due to computational constraints and 

choice of experimental design. Results based on the CPDN experiment show that 

internal variability can be non-trivial for the Hadley Centre’s HadSMS model. This 

has important implications both for decision making and our understanding of the 

internal variability of climate models.

Some common statistical approaches fail to distinguish between internal variability 

and other forms of uncertainty that affect the model’s dynamics, such as parametric 

uncertainty. One difficulty arises when the ICs are mixing Arnold & Avez (1968) in 

a sense that the parameter values are not; perturbed IC simulations result in iden­

tical long-term statistics, whereas perturbed parameter simulations can have very 

different dynamics Stainforth et ai (2007a). In particular, ICE members sample 

the same distribution, whereas changing parameter values can change the sampling 

distribution itself. The two types of ensemble should be kept conceptually distinct. 

ICEs have been used to reduce the variability of climate model output by taking 

ICE means Tebaldi & Knutti (2007). This Chapter presents two further uses of 

ICEs are shown that make use of information regarding the distribution of ICE

members. The roles of ICEs presented here include: 

response.
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1. ICEs are used here to assess variability in the HadSMS model’s response to 

a doubling of CO2 concentrations for different regions and variables. An ICE 

is necessary to understand how the distribution of model climates change in 

response to some external forcing. This method can be similarly applied to the 

comparison of different emissions scenarios or models that differ by parameter 

values or structure.

2. ICEs can be used to test for consistency of information in the model output, 

as laid out in Chapter 2. Such tests can provide a check for robustness of 

information in climate predictions through an evaluation of the magnitude 

of the model’s internal variability on various length scales and in different 

variables.

This Chapter presents the first detailed discussion of the use of ICEs to evaluate 

the distribution of climate and distinguish between models using their respective 

levels of internal variability. The magnitude of internal variability seen in climate 

simulations provides a “strawman” test for the consistency of model projections. 

This relates to the ICE test outlined in Chapter 2. Decisions made based on climate 

models should be robust to the magnitude of internal variability seen. It is shown 

that there is significant variability within the standard HadSMS model on regional 

scales in key variables.

The structure of this Chapter is as follows: Section 6.2 introduces the use of ICEs 

to evaluate the internal variability of climate models. Section 6.3 looks at the 

impact of IC perturbation under both a control (unforced) climate and a forced 

scenario (doubled CO2 concentrations). The effect of IC perturbation, whilst small 

on global scales compared to parameter perturbation Knight et al (2007), is shown 

to be non-trivial on regional and local length scales. Section 6.4 shows how ICEs 

might be used to distinguish between different forcing scenarios, model versions or 

multi-model ensembles. Section 6.5 discuses the role of ICEs in transient-forcing 

climate experiments.

167



6.2 Introduction to ICEs

Uncertainty in climate projections can be ascribed to a number of different sources 

Stainforth et al (2007a) (also see “Uncertainties and Ensembles” in Chapter 2). 

These uncertainties vary in magnitude with length scale and the variable of inter­

est. One of these types of uncertainty, ICU, is considered here. ICU is an irreducible 

uncertainty and is an expression of the model’s internal variability.

The distribution of model climate needs to be understood in order to make a judge­

ment on whether the model’s response lies outside the range of internal variability. 

There are at least 2 different ways to estimate the internal variability of GCMs:

1. Internal variability can be assessed using a very long simulation under the 

same scenario Min et al (2005); this approach is only valid in equilibrium 

experiments and not transient experiments.

2. ICEs can be used to assess internal variability in either equilibrium or transient 

settings. A single, long, simulation can be useful for detecting drift in the 

model but can not be used in transient experiments. In contrast ICEs can 

provide a distribution of climate over time.

Unlike in weather forecasting, where much computational effort is spent assess­

ing error growth due to uncertain ICs, there has been little consideration given to 

the role of ICs in climate modelling. Many methods of analysis implicitly assume 

that ICs do not have a significant impact on model climate Tebaldi & Knutti (2007) 

and experimental designs often run only a few members (and frequently only one) 

Houghton et al (2001); Solomon et al (2007a). This constrains our ability to quan­

tify internal variability in climate change simulations and to distinguish models and 

forcing scenarios.

A 64 member ICE is studied in this Chapter in order to understand the standard 

HaDSM3 model better and to provide additional understanding of the model’s in­

ternal variability.
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Since members of an ICE are samples from the same dynamical system (the model 

attractor, in the case of equilibrium experiments) ICEs might be used to make prob­

abilistic statements about the model attractor. These probabilistic statements are 

reliant on our ability to assume that members of an ICE are, in effect, independent 

draws from the same distribution. These assumptions are not tested here, nor might 

they be easy to test rigorously since this would require further assumptions regard­

ing the nature of the model and its attractor. It is important to note that whilst 

the terminology of dynamical systems is often used (e.g. climate models are often 

referred to as “chaotic” Liu et al. (2008)), dynamical systems theory is of limited 

use in the case of climate models; no computer model is truly aperiodic nor would 

a 10® dimensional model attractor be easily amenable to analysis. A pragmatic 

approach is therefore adopted and terminology used for the sake of convenience. 

Other types of ensemble, such as multi-model ensembles, draw from diverse at­

tractors, and thus the statistics produced are critically dependent on the sampling 

strategy and choice of models used Frame et al. (2005). ICEs explore variabil­

ity within a particular models whereas perturbing parameters or changing model 

structures explores uncertainty across models. Within a single model, it is possible 

to make probabilistic statements assuming independent and identically distributed 

samples. In contrast, the metric of model space (or even parameter space) is not 

well-defined in multi-model ensembles Allen & Stainforth (2002) and thus is not 

readily amenable to objective probabilistic analysis.

6.3 The internal variability of HadSMS

This Section looks at the internal variability of temperature and precipitation on re­

gional scales in the HadSMS model. The magnitude of internal variability is shown 

to be large, particularly on small spatial scales (up to 10 degrees Celsius in some 

cases), on 8 year mean seasonal timescales. The magnitude of internal variability
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is compared in temperature and precipitation between pre-industrial and doubled 

CO2 concentrations. Furthermore, it is shown here that there is considerable vari­

ability within a 64 member ICE in both temperature and precipitation. Whilst 

the estimates of CS from the standard HadSMS ICE are close (3.12-3.68 degrees 

Celsius, with a median of 3.37), warming is non-uniform across the globe and also 

varies significantly with season.

The ICE mean field can give an indication of the spatial variability of model re­

sponse. Figure 6.1 shows the 64 member mean change in 8 year temperature from 

pre-industrial CO2 (phase 2 of the experiment) to doubled CO2 (phase 3) for each 

season (DJF, MAM, JJA, SON). In general, the oceans warm by around 2 degrees 

Celsius, whilst land areas typically warm by 3 to 6 degrees with the centre of large 

land masses warming the most. A striking feature of the model is that the high 

Northern latitudes warm by up to 10 degrees Celsius in the DJF season, but can 

show very little warming, or even cooling (areas shown in white) in large areas dur­

ing the JJA season. Other areas show a much more consistent warming pattern, 

such as central North America which warms by by around 5-7 degrees all year 

round. The ICE contains information beyond the mean -  the internal variability of 

the HadSM3 model can also be evaluated. The variance across ensemble members 

is shown in Figure 6.2; this variance is a representation of IC uncertainty. The 

areas in black in Figure 6.2 represent an ensemble variance of less than 0.2 degrees 

Celsius, occurring mostly over the ocean areas. The oceans warm up by less than 

land areas (as seen in Figure 6.1) and the ensemble variance is low (mostly less than 

0.2 degrees Celsius). Over land there is a typical ensemble variance of 0.5 degrees 

Celsius, with the high latitudes showing a variance of up to 2 degrees in their winter 

season. The Arctic region has a high variance where extreme warming is predicted 

in some seasons and a variance close to 0 where no warming, or a slight cooling is 

projected in other seasons.

As an alternative to plotting the variance of the ICE, the range of behaviour can
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be studied using a bounding box. Figure 6.3 shows the ICE range in 8 year tem­

perature change under a doubling of CO2 concentrations. This range is calculated 

by subtracting the minimum temperature change from the maximum at each grid 

box. Figure 6.3 shows that there can be a difference of up to 10 degrees Celsius in 

8 year mean seasonal warming, due to IC perturbation alone. There are large areas 

in all seasons with 3 degrees or more of disparity between IC members. There are 

significant variations in the ensemble mean temperature change by region and by 

season. The internal variability of HadSM3 varies with season and region.

In precipitation, a democracy plot is shown in Figure 6.4, showing the percentage 

of ensemble members at each grid box for which precipitation increases under a 

doubling of CO2 . A democracy plot shows the extent to which an ensemble agrees 

on the sign of precipitation change and are most useful when representing binary 

information (such as change of sign or whether a certain threshold is exceeded) in 

variables expressed in units that are not readily intuitive (unlike degrees Celsius 

change for temperature).

Areas in red show a consistent reduction in precipitation over the ensemble; black 

areas denote regions in which almost all the ensemble members show an increase 

in precipitation. Over much of the globe, the internal variability of HadSM3 is 

such that the ICE does not agree on the sign of local precipitation change. It is 

interesting to note that a similar plot is shown in the IPCC AR4 Summary for Poli­

cymakers (SPM), Figure SPM.7. The democracy plot show in the SPM is based on 

a multi-model ensemble and shows a similar pattern of model agreement in precipi­

tation response to rising CO2 , although the SPM Figure is based on a 10-year mean 

transient response and Figure 6.4 is based on 8-year mean equilibrium response. 

This suggests that the apparent disagreement between models seen in the SPM 

democracy plot might be due to each model having an indeterminate precipitation 

response, arising from internal variability, rather than due to differences between 

structural models. This would mean attributing uncertainty in precipitation re­
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sponse to IC uncertainty and not to model uncertainty. It would be necessary to 

study an ICE from each of the constituent models used in the SPM to test this 

hypothesis.

There are significant regional differences at grid-box to regional length scales for 8 

year seasonal means that are hidden in global mean statistics. Averages over larger 

spatial or temporal scales will likely result in a more conclusive “vote” , in the case 

of precipitation, due to cancellation of differences and a reduction in variance.

There is a significant amount of variability due to IC perturbation alone, es­

pecially for regional^ simulations of precipitation. This suggests that the internal 

variability of climate models can be large on regional length scales.

6.4 ICEs and Robust M odel Response

This Section addresses a key use of ICEs; when comparing different scenarios, it 

is important to know whether the model responds in a way distinguishable from 

internal variability or whether the change seen could be a result of chance. It is 

shown here how ICEs can be used to robustly distinguish between model scenarios 

or model versions and how to interpret the results probabilistically. The use of 

ICEs to evaluate the consistency of information in climate model simulations was 

outlined in Chapter 2.

Given only the ICE mean change, without including information on the magnitude 

of model internal variability it is uncertain whether the changes in the ICE mean 

are significant. Here, an alternative view of model response is used that takes into 

consideration the range of model internal variability. Model output is looked at 

a distribution of values, not just the ICE mean. Whilst the ICE mean response 

might be of interest in some cases, the approach adopted here is useful for assessing 

the consistency of model response. The 64 member ICE of the standard HadSMS 

model is analysed in Section 6.4.1, and two smaller (8 and 12 members respectively)

^Regional refers to the 22 Giorgi regions Giorgi & Francisco (2000).
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HadSMS model versions, with different values of CS in Section 6.4.2. Distributions 

of climate change are compared in terms of robustness i.e. a consistent model 

response that is beyond the range of internal variability. The presence of an overlap 

between distributions in key variables highlights the limitations in using small ICEs; 

it is possible for simulations within the same model version to produce different 

signs of precipitation change. Large ICEs can help to detect where model response 

is robust.

6.4.1 Regional response in the 64 member HadSMS ensem­

ble

An important use of ICEs is to distinguish between models or forcing scenarios. In 

this Section, a 64 member ICE is used to examine whether a significant response 

can be detected in model behaviour to a doubling of CO2 concentrations. A single 

model run under each of these conditions does not allow the two different scenar­

ios to be statistically distinguished since we can not reliably estimate the model’s 

internal variability. With a few simulations under each scenario, it is only possible 

to make a limited assessment regarding the internal variability of the model under 

each level of CO2 and judge whether the two distributions are significantly different. 

On the other hand, large ensembles enable robust analysis of model response; it is 

highly likely that two sets of 64 simulations would overlap in distribution if there 

were no difference in model behaviour between the pre-industrial and doubled CO2 

scenarios. Distributions of model response are compared in this Section in terms of 

the magnitude of overlap observed; this overlap represents a measure of the distin- 

guishability of these distributions^. In the case of the CPDN experiment, the degree 

of overlap between the pre-industrial and doubled CO2 phase distributions of the 

standard HadSMS model ICE is a quantification of the consistency of model re­

sponse to doubled CO2 . Thus, when no overlap between model distributions is seen

^The overlap between distributions can also be thought of as the chance of observing a response 
in the opposite direction to the ICE median in the case where only a single simulation is run
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under different forcing scenarios, it can be concluded that there is a significant dif­

ference between these distributions, with the level of significance depending on the 

number of ICE members. Clearly, if the number of simulations in each distribution 

is very low, this significance level would be insufficient to conclude a statistically or 

physically meaningful result.

The probability of observing no overlap between two distributions of size m  and 

n  can be calculated non-parametrically as follows: under the assumption of inde­

pendent and identical draws from the same distribution, an ensemble of size n is 

expected to cover 100*(^^)%  of the probability mass^ Weisheimer et ai (2004). 

Take the ensemble of size n to be the base ICE (e.g. pre-industrial CO2 ) to which 

the distribution of size m is to be compared. The probability of a simulation, drawn 

from the same distribution as the base ICE, not falling within the range already 

covered is -  a probability of of falling below all n  simulations and a prob­

ability of of falling above. The probability that m  simulations are drawn from 

the same distribution as the base ICE and all fall outside the range covered would 

be 2 .(^ ^ )” ,̂ which becomes extremely small for large values of n and m. Where 

n  and m  are greater than 3 this probability is less than 5% and in the case of the 

64 member standard HadSMS ICE (n=m=64) the probability of observing no over­

lap, under the assumption that both sets of simulations are drawn form the same 

distribution, is less than 10“ ^̂ .̂ Where distributions do overlap, which is almost 

certain to occur if the 64 member ICEs are drawing from a common distribution 

the model produces a result that is within the range of internal variability. Clearly, 

these probabilities only represent whether there is a statistical difference between 

distributions and not whether the difference is meteorologically significant. In the 

case of overlap, the level of distinguishability between the distributions can be es­

timated as follows.

As explained above, the larger the ICE, the greater the chance of an overlap if there

^The mean of the distribution of probability mass covered. More detailed statistics of this 
distribution can be calculated analytically, using the theoretical properties of order statistics, if 
required.
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is no difference between distributions. In order to account for the varying size of 

ICEs, a distinguishability criteria can be used, such as the overlap in distributions 

used in Smith et al (2008) and in Chapter 8. The probability of overlap is estimated 

by sampling simulations at random from each distribution and asking whether one 

simulation is greater (e.g. hotter or wetter) than the other, where members are 

drawn at random from the whole ensemble, with replacement and bootstrapped 

Efron & Tibshirani (1994) to obtain robust estimates. This method will be applied 

to data shown in Figure 6.5.

Figure 6.5 shows the distribution of temperature and precipitation change for North­

ern Europe in panels (a) and (b) and Central North America in panels (c) and (d). 

The two sets of simulations show no overlap in temperature in panels (a) and (c); the 

model shows a response outside the probable bounds of internal variability. In pre­

cipitation, the distributions overlap for the Central North America region in panel 

(d), but not for Northern Europe (of the 22 land regions used there is an overlap 

in precipitation in 12 cases; in no region is there an overlap in temperature). The 

HadSMS standard model shows the possibility for the level of precipitation to either 

increase or decrease in Central North America under a doubling of (702, within the 

bounds of the models’ internal variability.

In the case of Central North American precipitation change, there is an overlap in 

distribution; the probability of this overlap can be estimated using the re-sampling 

method described above. Based on a re-sampling of 10000 times, this probability is 

~  8% (repeating this method 1000 times in no case gave a probability that differed 

by more than ±1% from this value), demonstrating that there is approximately a 

8% chance that a randomly selected simulation from the pre-industrial CO2 phase 

is wetter in the Central North American region than a randomly selected simulation 

from the doubled CO2 phase, where the median change of the ICE is for simulations 

to get wetter in the doubled CO2 phase. This indicates that the sign of precipitation 

change can occur in both directions for individual simulations, as well as an overlap
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in the distribution of simulated precipitation changes across the ICE.

This method of estimating the probability of an overlap allows the level of dis­

tinguishability of two ICEs to be quantified. If there is no overlap in the ICE 

distributions, and without involving distributional assumptions, it is not possible 

to know how many further members would be required to see an overlap. To detect 

an overlap in distribution in Northern Europe DJF temperature and precipitation 

at least 65 members would be required (at least one more than the available 64), 

but it is not possible to say exactly how many more. The information provided by 

these data demonstrates that the standard HadSMS model responds in Northern 

European DJF temperature and precipitation significantly outside the range of in­

ternal variability.

The method outlined in this Section provides information on a) In the case of an 

overlap, the probability of an overlap and b) In the case of no overlap, its expected 

probability given the number of ensemble members available without making distri­

butional assumptions. This method has advantages over simply testing the whether 

the mean of distribution has changed -  1) The non-parametric method proposed 

in this Section quantifies the consistency of model response; knowing that the mean 

has changed alone is not be a physically meaningful result for a decision-maker 

and 2) The probability of a single simulation showing a response in the opposite 

direction to the ICE median is relevant to the utility of single simulation ICEs.

In the case of Northern Europe, the probability of no overlap, given that simula­

tions from both scenarios are drawn from the same distribution is 2 .(^ )^ . It can 

be concluded there is a highly significant model response in DJF temperature and 

precipitation in the Northern European region and in DJF temperature in the Cen­

tral North America region but not for DJF precipitation in Central North America. 

In the latter case, the model response to doubled CO2 lies within the range of the 

standard HadSMS models’ internal variability.
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6.4.2 Comparison of two Perturbed Physics ICEs

Another use of ICEs is to examine whether or not two different models are statis­

tically distinguishable. In this sub-section, two ICEs from different model versions 

are compared. Taken from the CPDN grand ensemble, these ensembles have 8 and 

12 members and a mean CS of close to 3 and 5 degrees respectively. These ICEs 

were chosen since they are the largest ICEs with CS close to 3 and 5 degrees re­

spectively. Ideally the size of the ICEs would be the same to allow a more direct 

comparison but it is felt that it is better to use the largest possible ensembles avail­

able. The aim of the comparison in this section is to show that simulations from 

an ICE with a CS close to 3 degrees can be hotter/wetter than simulations from an 

ICE with a CS close to 5 degrees rather than to directly compare their diversities 

and hence is not critically dependent on the ICE size. Each ensemble uses the same 

structural model (HadSM3), but with different parameter values. Only ICs have 

been perturbed within each of these two ICEs. Taking two ICEs with diflFerent levels 

of global warming allows for a comparison of the distinguishability of the different 

scenarios simulated. Here, these two ICEs are compared at a grid box level.

Figure 6.6 shows the magnitude of IC variability for each ICE for 8 year annual 

mean temperature change under a doubling of CO2 . This range is found by sub­

tracting the minimum temperature change (the change is defined by the 8 year 

mean surface temperature in the doubled CO2 phase minus the 8 year mean surface 

temperature in the control phase) from the maximum temperature change at each 

grid box. For the 3 degree ICE, the magnitude of the model’s internal variability is 

typically between 0.5 and 1.5 degrees Celsius, and can be over 2.5 degrees Celsius. 

The 5 degree ICE shows a wider range (this is to be expected since it has more 

ensemble members), with large areas showing a range across ICE members of over

1.5 degrees Celsius. Note that this range is lower than that shown in Figure 6.3 

for the 64 member standard HadSM3 ICE. This is partly due to there being fewer 

ensemble members available for the parametrically perturbed HadSM3 model ver­
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sions, and due to annual means being used instead of seasonal means.

The distinguishability of these ICEs can be compared by looking for grid boxes 

where the two ensembles overlap. This is done by comparing the maximum sim­

ulation in the 3 degree ICE to the minimum simulation in the 5 degree ICE. In 

temperature, the maximum simulation relates to the simulation showing the great­

est warming and in precipitation the simulation showing the greatest reduction in 

precipitation (or the least increase).

This difference is plotted in Figure 6.7 for temperature (upper panel) and precip­

itation (lower panel). In temperature, there is an overlap (where the difference 

between the hottest 3 degree and coldest 5 degree is greater than 0) for 6619 of the 

7008 grid boxes (~  94%), with some regions in the Northern high latitudes showing 

a significant overlap of over 2 degrees Celsius. In precipitation, there is an overlap 

between the 3 degree and 5 degree ICE in 6780, or 97% of grid boxes. It is 

often impossible to robustly distinguish between local precipitation change between 

3 degree and 5 degree simulations. These results depend on the difference in the 

ICE mean CS chosen; it is expected that ICEs with very close values of CS will 

overlap more than for ICEs with very different values of CS.

Decisions reliant on grid-scale climate change information must take into account 

at least the variability in the model’s response due to ICU (about one degree Celsius 

over most land masses, as shown in Figure 6.7). This suggests a limit to the poten­

tial for the utility of climate models to inform local decisions. It has been shown in 

this Section how the magnitude of these limits can be evaluated using ICEs.

The detection of robust differences between scenarios is limited by the internal vari­

ability of the model. In order to attribute climatic trends robustly, the level of 

internal variability on relevant temporal and spatial scales must be taken into ac­

count. It has been shown that it is not always possible to distinguish model versions 

or robustly detect climate change in some variables and regions.
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6.5 ICEs in Transient Experiments

In equilibrium climate studies, ICEs can be used to understand the model attractor 

under different forcings. Such simulations do not reflect particular times and dates 

or precise real world forcing scenarios. In the case of the first CPDN experiment, 

artificially simple forcing scenarios are used to study model response.

The interpretation of ICs in transient experiments differs from that in equilibrium 

experiments since there is no flxed model “attractor” to be sampled from. In the 

transient case, the model’s attractor is being continuously changed by the forcing 

applied; the model has no long-run equilibrium state. In a transient experiment, 

the distribution of model climate changes with time.

Thus ICEs play a different role in transient experiments; providing insight into how 

the model’s dynamics change under a particular forcing. The model’s internal vari­

ability may not be directly comparable to the variability in the observed climate^. 

An ICE can help understand the internal variability of the model under transient 

forcings.

Recent studies Collins & Allen (2002); Cox & Stephenson (2007); Troccoli & 

Palmer (2007) have discussed the role that ICs play on timescales up to 10 years. 

There may be predictability beyond seasonal time scales arising from ocean features, 

such as El Nino or the Atlantic Meridional Overturning Circulation. Combining 

such sources of seasonal and inter-annual predictability with other forcing effects 

already included in some climate model simulations, such as variations of solar 

luminosity and anthropogenic forcings, could lead to decision relevant forecasts on 

1 to 20 year time scales. ICEs can be used to understand the potential for providing 

skillful seasonal-to-climate forecasts through an understanding of the predictability 

that arises due to natural variability and the predictability that is due to long-term

^Aside from model inadequacies, with many processes omitted, such as volcanoes and solar 
fluctuations, one might not expect the same type of variability in a model as observed in the 
climate system itself.
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forcing effects. The role that ICEs play in NWP evaluating the information in the 

systems current state can be combined with the use of ICEs to evaluate how the 

distribution of climate might change over time.

6.6 Conclusion

The internal variability of climate models has been investigated using ICEs. ICEs 

are often neglected due to sparseness of computational resources or low priority in 

experimental design. Two of the potential applications of larger ICEs have been 

presented in this Chapter. Firstly, they can inform modellers as to the natural 

variability within the model. This is especially important in transient studies, where 

it is impossible to use a long “control” simulation to evaluate the models’ internal 

variability in time. Running an ICE allows certain specific historical periods to be 

reproduced e.g. the very hot European summer of 2003 and attempt to understand 

whether the summer was a “freak” event Stott et al (2004). Such events can only 

be related to the impact of climate change by their risk of occurrence -  no definitive 

causal statements can be made due to the existence of internal variability. 

Secondly, ICEs can be used to compare different models and forcing scenarios e.g. 

the different scenarios of future forcings given in Nakicenovic et al (2000) can only 

be distinguished from each other robustly with a consideration of internal variability. 

This allows an assessment of qualitative changes in the model i.e. the robustness of 

a precipitation increase under a doubling of CO2 concentrations on different length 

scales.

The impact of internal variability has been shown to be significant, especially on 

regional and grid-box length scales. The relevance of a global metric should be 

questioned in light of the diverse changes occurring on regional scales e.g. slow- 

warming oceans, rapid and seasonally-dependent high latitude warming. Regional 

changes seen in model simulations should be considered as lacking robustness where 

an ICE fails to agree on the sign and approximate magnitude of the change. This has
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shown to be the case when looking at the effect of doubling CO2 concentrations. 

In some areas, there is an overlap of ICEs for 8 year mean temperature change. 

There is a limit to our ability to distinguish between different scenarios of climate 

change. In another example, two ICEs are compared on a grid box level using model 

versions with CS of 3 and 5 degrees respectively. Large overlaps in distribution are 

seen in key variables. The evaluation of ICU is of immediate relevance to decision­

makers since 1) ICEs provide a test for consistency of information that can assess 

where climate models show responses outside the range of internal variability and 2) 

Scenarios of future change can only be robustly differentiated using some measure 

of the internal variability of climate models. Given these uses, ICEs can be of 

significant use to climate modellers and decision makers and need not be restricted 

to weather and seasonal forecasting.

New results presented in this Chapter are:

•  The availability of a large ICE allows for a quantification of the HadSMS’s 

internal variability, which has been shown to be significant on length scales 

relevant for impact studies and adaptation decisions. The various roles of 

ICEs are discussed and their increased use encouraged. These results are 

significant since it has typically been assumed that the effect of perturbing 

Initial Conditions on climate simulations was negligible Tebaldi & Knutti 

(2007).

• It has been shown for the first time that Initial Condition perturbation can 

have a significant effect on model behaviour on relevant length and time scales 

in temperature and precipitation. The sign of change for 8 year mean seasonal 

precipitation is unanimous in only 3% of grid boxes. In temperature, 8 year 

mean seasonal differences is shown to be as large as 10 degrees Celsius in some 

grid boxes. Such large differences are not usually considered possible to have 

arisen from Initial Condition perturbation alone and these results could affect 

the experimental designs and the interpretation of model variability.
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Figure 6.1: The standard HadSMS model 64 member ICE mean for 8 year temperature change is shown for each season. Black areas 
show little or no cooling, white areas a cooling. Red areas show very high warming of over 9.5 degrees Celsius. Warming is strongly 
non-uniform and varies significantly with season.
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a spread of less than 1 degree Celsius over the whole ensemble. The range of seasonal temperature change within this ICE is over 10 
degrees Celsius in some cases.
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Figure 6.4: A democracy plot of precipitation change. The percentage of simulations (over the standard HadSMS model ICE for 
which the 8 year seasonal precipitation increases from control to doubled CO2 . Areas in black (red) indicate that more than 95% of 
simulations show an increase (decrease) in precipitation. Grey areas indicate that the sign of precipitation change in the standard 
HadSMS model is undetermined.
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Figure 6.5: The distribution of 8 year means for the 64 members standard HadSMS 
model ICE for (a) Northern Europe Temperature, (b) Northern Europe Precipita­
tion, (c) Central North American Temperature and (d) Central North American 
Precipitation. The control phase is shown in green and the doubled CO2 phase 
in red. The presence of an overlap indicates the sign of precipitation change is 
uncertain in the standard HadSMS model.
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Figure 6.6: Range of 8 year mean temperature change under a doubling of CO2 for 
2 ICEs of 8 and 12 members and 3 and 5 degrees CS respectively. The magnitude of 
this internal variability is typically one degree Celsius, but can be over 2.5 degrees 
Celsius, particularly for the larger, 5 degree CS, ICE.
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Figure 6.7: The difference in 8 year mean temperature/precipitation change under 
a doubling of C02  between the maximum of an 8 member ICE with 3 degrees 
CS and the minimum of a 12 members ICE with 5 degree CS. The extent of this 
overlap is shown in temperature and precipitation. Positive values in temperature 
show where the maximum 3 degree simulation is hotter than the minimum 5 degree 
simulation. In precipitation, values denote the magnitude of the overlap between 
the driest (wettest) 3 degree simulations and wettest (driest) 5 degree, depending 
on the median direction of precipitation change form 3 to 5 degrees. Negative values 
denote areas with no overlap. 188



Chapter 7

Constraining New Results from 

the C PD N  grand ensemble

7.1 Introduction

Ensembles of climate simulations can produce a wide range of behaviour Stain- 

forth et al. (2005). New results from the largest ever climate modelling experiment 

are presented in this Chapter. A grand ensemble of 45644 simulations from the 

CPDN experiment Allen (1999); Stainforth et al. (2002) is analysed in this Chapter 

in terms of its uncertainties on global and regional scales. Similar ensembles of 

climate simulations have shown large variations in estimated CS Sanderson et al. 

(2007); Stainforth et al. (2005). Values of CS range from 0.9 to 16.4 degrees Celsius 

are shown in the data presented, the largest range so far generated by a GCM. 

Such a range contains simulations with very little change in GMST and those with 

catastrophic changes (over 20 degrees change in many regions). The presence of 

such large model diversity calls into question whether some some simulations are 

responding to increased CO2 in an unphysical manner. Furthermore, the wide range 

of estimates for CS places difficulties on decisions that are sensitive to the amount 

of expected global warming.

Model diversity can reflect our uncertainty in the future, but only in a limited
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way. Whilst it is possible to explore uncertainties using ensembles (as described in 

Chapter 2), it is not possible to fully explore all uncertainties in the case of climate 

predictions Smith (2002). Thus the diversity of model output places a lower bound 

on our uncertainty in the future Stainforth et al. (2007b). Because of our inability to 

fully explore uncertainties, model output must be communicated to decision-makers 

carefully so as to not give a misleading impression of confidence -  “the end-user 

will always assume that the model spread provides some estimate of uncertainty” 

Knutti (2008a). A wide diversity of model output can encourage decision-makers to 

consider a wider range of possibilities, whereas low levels of model diversity might 

sharpen their prior beliefs and focus the decision-making process. The relevance 

that model diversity has for uncertainty in the future will depend on our confidence 

that climate models are able to simulate the future Stainforth et al. (2007b).

It is prudent to disregard simulations from décision-support in which we have no 

confidence in their ability to simulate future climate. Therefore, when considering 

this diversity of model behaviour, it is relevant to ask whether there is a systematic 

tendency for certain simulations to display unphysical behaviour that should be 

eliminated from décision-support. If model diversity can be reduced in a physically 

meaningful way, ensembles that initially produced a wide range of behaviour might 

be constrained to give robust results that can guide decision-makers towards par­

ticular courses of action.

Various tests can be devised that check climate model simulations for unphysi­

cal properties and can be used to exclude these unphysical simulations. These tests 

have been primarily based on observations of past climate Forest et al. (2000, 2007); 

Hegerl (2006); Piani et al. (2005); Sanderson et al. (2008) but can also be based on 

other qualities of physical coherence in the model simulations.

The use of methods used to constrain climate model ensembles is investigated in 

this Chapter in light of principles of statistical good practice. Prior to an analysis 

of three different methods for constraining model diversity, this Chapter looks at
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the magnitude of uncertainties present in a grand ensemble of CPDN simulations. 

Constraining is understood here as attempting to reduce uncertainties by eliminat­

ing simulations^. Mathematically, simulations receive an effective weight of either 

zero or one. Whilst fractional weights have been attempted Murphy et al (2004) 

the simpler, yet still challenging, approach of assigning weights of zero or one is used 

in this Chapter. The difficulties in constraining the range of results from climate 

ensembles are highlighted in this Chapter in the context of their physical rationale 

and statistical good practice.

The range of CS can be reduced by applying constraining procedures, although 

results may not be consistent across different methods. For example, it is shown 

in this Chapter that when using an observational constraint the distribution, and 

range, of CS depends on which variable is chosen as an observational constraint. 

Three methods for constraining model simulations are carried out in this Chapter:

• Constraining Parameter Values. It is possible to change the distribution of CS 

by constraining the range of parameters used in the experimental design. This 

can be done by eliminating simulations with parameter values that are consid­

ered inadmissible on physical grounds. Of all the parameters perturbed in the 

CPDN experiment, the Entrainment Coefficient has been shown to have the 

greatest effect on CS in Knight et al. (2007); Sanderson et ai (2007). It could 

be that particular values of the Entrainment Coefficient used in the CPDN 

experiment are physically unjustifiable and therefore these simulations could 

be disregarded from décision-support. All parameter levels for the CPDN ex­

periment were chosen by expert elicitation and there was no prior indication 

that the values chosen of the Entrainment Coefficient were any more or less 

realistic than other parameters. The selection of this particular parameter 

as a potential source of bias, only after seeing its effect on CS, is therefore

Ît is interesting to note that previous analysis of model diversity has been focused on the 
problem of reducing model diversity and little attention has been paid to the question of how we 
might extend model diversity to reflect known uncertainties not yet explored by ensembles.
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statistical bad practice. Despite these concerns, the distribution of CS for sim­

ulations with low, standard and high values of the Entrainment Coefficient are 

considered. Whilst the distribution of CS does indeed change when looking at 

simulations with a fixed Entrainment Coefficient, high CS simulations (over 8 

degrees Celsius) exist for all three levels of this parameter.

•  Heat flux adjustment The HadSMS model used in this experiment uses a Heat 

Flux Adjustment (HFA) (details have been presented in Chapter 5). It might 

be suggested that a global mean value of this HFA close to zero would be a 

desirable property of the model -  the global mean HFA is sometimes forced 

to equal 0 in fiux-adjusted experiments Min et al (2005). In particular, if 

the global mean HFA is close to zero this would suggest the atmosphere and 

ocean components of the model are in close equilibrium during the calibration 

phase. Furthermore, Chapter 5 established a relationship exists between HFA 

and CS; this might be used as the basis of a post-hoc constraint on CS. Such 

post-hoc filters are not recommended in this Thesis, rather this method is 

applied to make two points: a) It is statistical bad practice to choose a method 

for constraining CS a posteriori and b) The effect of ruling out simulations 

with a significantly non-zero global mean HFA is shown to have limited effect 

on the range of CS. Even when a stringent HFA filter is applied, simulations 

with high values of CS (over 8 degrees Celsius) are still admitted.

• In-sample fit. An important requirement for models to provide useful pre­

dictions is their ability to match the past, as discussed in Chapters 2 and 3. 

One approach to constraining model simulations could then be to disregard 

simulations that do not capture past observations within a certain level of 

accuracy. There are a number of different ways to do assess such in-sample 

fit. A simple criteria is set in this Chapter, using the in^am ple RMSE er­

ror, as in Reichler & Kim (2008); Stainforth et al. (2005), compared to the 

observational fields for 1961-1990. This RMSE is used to constrain model
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simulations in 7 different variables. The effects of constraining simulations 

on the distribution of CS are shown to depend on the variable used, demon­

strating that the resultant distribution can depend on subjective choices. In 

particular, using a constraint in temperature tends to skew the distribution 

of CS towards high values and and precipitation towards low values.

In addition to the methods for constraining model simulations used above, a 

process of quality control is used to eliminate simulations that are not internally 

inconsistent e.g. simulations with a significant decadal drift in GMST during the 

control phase are ruled out. This process of quality control has been explained in 

Chapter 4. Whilst both quality control and constraining methods result in eliminat­

ing simulations from further analysis their aims are different. There is an important 

distinction between quality control and the constraining methods analysed in this 

Chapter. Quality control seeks to purge internally inconsistent simulations whereas 

post-hoc constraining methods seek specifically to reduce model diversity.

The range of model behaviour seen, after any suitable constraining procedures have 

been applied provides an estimate of the uncertainty present in model projections. 

The range of resultant model diversity provides a test for consistency of information, 

as described in Chapter 2 (Model diversity test). It is shown that model diversity 

is large in the case of the CPDN PPE of parametrically perturbed versions of the 

HadSMS model.

In general, a larger ensemble will produce a wider range of CS. Similarly, a method 

that rules out many simulations is likely, on average, to constrain the range of CS 

by more than a method that rules out only a few due to simple counting statistics, 

regardless of the physical basis for this reduction in uncertainty. Since a very large 

ensemble is analysed in this Chapter high CS values are still admitted for many 

methods, even once constraining procedures are applied. The analysis presented 

in this Chapter shows that high CS simulations can remain, after a wide range of 

constraining methods have been applied. As more simulations are run, it should
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be expected that the range of values of CS will increase. Since large ensembles will 

explore the tails of the distribution of CS it is expected that very high values of CS 

will be seen, even if this occurs only seldom.

The layout of this Chapter is as follows: Section 7.2 introduces the data set anal­

ysed, Section 7.3 looks at the distribution of CS found in the data. Section 7.4 

examines the range of behaviour seen on regional scales; these uncertainties are 

often larger than on the global scale and vary with region. Section 7.5 applies three 

methods of constraining that attempt to reduce the uncertainties in estimated CS. 

The consequences of the results are discussed and conclusions given in Section 7.6.

7.2 The Data Set

The first CPDN experiment aims to understand the effect of doubling CO2 concen­

trations on key variables such as GMST and has produced the largest set of climate 

simulations to date. For more details on CPDN experimental design see Chapter 4. 

Analysis of data from the CPDN experiment has previously been carried out by 

Knight et al. (2007); Knutti et al. (2006); Piani et al. (2005); Sanderson et al. 

(2007); Stainforth et al. (2005, 2007a,b). In this Chapter, data from the first 45644 

simulations are analysed. For somç simulations, only a sub-set of data is available

i.e. there is data missing for some simulations. Rather than throwing away these 

simulations completely, analysis is carried out in each case on as many simulations 

as possible. Applying this principle results in a different number of simulations 

being used for diflFerent analyses; 31818 of these simulations had adequate data to 

calculate CS, and 22711 simulations passed quality control (22723 had a full time 

series global mean temperature).
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7.3 Climate Sensitivity

CS is a key statistic in understanding climate change over the 20th and 21st cen­

turies and has received much attention in the literature Annan & Hargreaves (2006); 

Annan et ai (2006); Forest et al. (2002); Frame et al. (2005); Gregory et al. (2002); 

Roe & Baker (2007); Schwartz et al. (2007); Solomon et al. (2007a) The IPCC 

Fourth Assessment Report said that CS is “likely to be in the range 2 to 4.5 degrees 

Celsius with a best estimate of about 3 degrees, and is very unlikely to be less than

1.5 degrees. Values substantially higher than 4.5 degrees cannot be excluded, but 

agreement of models with observations is not as good for those values.” .̂ There 

have been studies showing a wider range of values of CS; using simple climate mod­

els Andronova & Schlesinger (2001), and using GCMs Stainforth et al. (2005), that 

have presented estimates of CS as high as 10 and 12 degrees respectively. This 

Section presents results from the CPDN experiment that show a range of ICE mean 

CS from 0.9 to 16.4 degrees. The implication of such a wide range of CS is discussed 

in this Chapter as well as three possible methods to constrain this range.

CS is an equilibrium statistic calculated from a time series of GMST values. This 

time series has not always reached an equilibrium by the end of the final doubled 

CO2 phase of the experiment. This can be seen in Figure 7.1, which shows the 

time series of GMST quality controlled simulations over the three phases of the ex­

periment. During the calibration and control phases (with constant, pre-industrial 

CO2 concentrations) the distribution of GMST is fairly stable, with slightly more 

variability in the control phase. The effect of instantaneously doubling CO2 at the 

beginning of the third phase is characterised by a rapid and sustained warming in 

most simulations. Some simulations do not have a smooth time series. In some 

cases, like the notable dip at years 38-40, this is due to an unusually cold month

^Climate sensitivity has also been studied without the use of climate models. Morgan & Keith 
(1995) showed that there can be disagreement amongst climate scientists’ subjective estimates of 
CS.

^The terms “likely” and “very Ukely” are interpreted as corresponding to a probability of 
greater than 66% and 90% respectively in the IPCC AR4 Solomon et al. (2007a)
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skewing the annual mean time series. These features could be a result of the model’s 

internal variability or a numerical error. Whilst quality control explicitly picks up 

simulations with seasonal jumps of over 20 degrees Celsius, some simulations with 

instabilities on shorted timescales slip through.

The distribution of CS is important for understanding the likelihood of various lev­

els of warming. Figure 7.2 shows the range of CS for all simulations with quality 

control (panel (a)), without quality control (panel (b)) and for ICE means (panel 

(c)). The application of quality control reduces the number of simulations available 

from 31818 to 22711 but does not appear to significantly alter the shape of the dis­

tribution. Quality control does not appear to qualitatively change the distribution, 

in particular a wide range of CS values is admitted both with and without quality 

control. The similarity of the three distributions of CS is shown in panel (d) of 

Figure 7.2. Quality control seems have little effect on the distribution of CS, nor 

does the taking of model version ICE means.

There are three notable features of the distributions shown in Figure 7.2;

1. The peak is around 3.5 degrees for all three distributions of CS, close to the 

value of CS for the standard HadSM3 model (about 3.4 degrees Celsius, as 

stated in Chapter 6) and consistent with estimates from other state-of-the-art 

models Solomon et al. (2007a). This suggests that the effect of simultaneous 

parameter perturbations often cancels out (or the eflFect of perturbing some 

parameters is small) for GMST change (this need not be the case for other 

variables and length scales), often resulting in values of CS close to the stan­

dard model version.

2. The distribution is fairly smooth, with no obvious discontinuities or multi­

modality. There is a wide range of values, especially at the high end. Rather 

than a few isolated high values, there is a smooth tail, with a monotonically 

decreasing number of very high CS simulations.
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3. There are no negative values of CS. Despite having 22711 quality controlled 

simulations available, using 5983 different sets of parameter values, and ex­

ploring the range of possible high CS in great detail, the lowest CS found 

was 0.9 degrees Celsius. This result has important consequences for under­

standing the nature of feedbacks in the model -  it seems very difficult for the 

HadSM3 model to exhibit cooling behaviour under a doubling of CO2 in any 

simulation with even a very large sample size and a wide range of parameter 

values. In the absence of feedback effects, the temperature rise resulting from 

the radiative forcing equivalent to doubling CO2 has been estimated to be ~1 

degree Celsius Colman (2003); Roe & Baker (2007); Solomon et al. (2007a). 

The lowest values of CS are close to this “zero feedback” level, implying that 

feedbacks in the HadSM3 model are substantially positive for a wide range of 

parameter values.
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Figure 7.1: The time series of model version mean (averaged over available quality 
controlled ICE members) for the three phases of the experiment. Most simulations 
warm rapidly in the final phase, some by over 8 degrees by the end of the 15 year 
doubled CO2 phase. There are some simulations with unsmooth trajectories.

In order to understand the effect of parameter perturbation on model GMST 

response to increased CO2 it is possible to compare the time series of GMST from
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Figure 7.2: The distribution of CS in the CPDN PPE. Panel (a) shows the distribu­
tion of all simulations, panel (b) the distribution of quality controlled simulations. 
Panel (c) shows the ICE mean over all model versions, for quality controlled simu­
lations. Panel (d) shows a comparison of the three different distributions as CDFs. 
The highest model version mean CS is 16.4 degrees Celsius.

the parametrically perturbed CPDN experiment to other slab-model equilibrium 

experiments made with different structural models. It is shown here that the large, 

parameter perturbed CPDN ensemble produces a much wider range of behaviour 

than different structural models. It should be noted that it is easier to create a 

large parametrically perturbed ensemble than a new structural model since only
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Figure 7.3: The change in temperature following a doubling of CO2 is shown for 
12 CMIP II models and the CPDN ensemble. For some CMIP simulations, data 
pertaining to the transient period of warming immediately following a doubling of 
CO2 was not available.

parameter values need to be changed, rather than a re-working of the model’s 

physical structure.

Figure 7.3 shows the doubled CO2 phase of the CPDN PPE (grey). Also shown 

is an ensemble of simulations from the HadSM3 Standard model (black), also from 

the CPDN experiment, and comparable slab model simulations used in the Second 

Coupled Model Intercomparison Project (CMIP) Covey et al. (2003), in colour. 

This graph shows that all models and parameter values warm under a doubling of 

CO2 . The range of warming across the Standard HadSM3 model is approximately 

half a degree, compared to over 2 degrees across different structural models used in 

CMIP. For some of the CMIP models data for the transient part of the simulations is 

not available (e.g. the black dotted line for the m iroc3-2-hires model) -  Figure 7.3 

shows only the available times series after simulations have reached an equilibrium. 

The CPDN PPE shows a far greater range of warming -  from 1 degree to over
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8 degrees over the 15 year period. Note that there is one simulation that dips 

significantly below the range of the other models and proceeds to warm rapidly, 

showing the greatest amount of warming by the end of the phase. This is an 

example of a simulation that passes quality control but that one might not wish 

to consider useful for decision support. This simulation appears to be unstable; it 

begins to warm, then cools, then warms up rapidly (over 15 degrees in 6 years). 

Whilst simulations can not be ruled out simply for producing unexpected results, 

it is possible that the cause of such erratic behaviour is unphysical and thus might 

be more relevant for model developers than decision makers.

The set of simulations shown in black are generated from a 64 member ICE using 

the HadSMS standard model. It is clear that the range seen within this ICE is 

less than across different structural models. The range of warming shown within 

the standard HadSMS model ICE shown is ^^0.5 degrees Celsius, compared to ^̂ 2 

degrees across different structural models and almost 8 degrees across the CPDN 

PPE. These results show that changing parameter values can have a more significant 

effect on model behaviour than changing ICs and that parameter perturbation has 

explored a wider range of model behaviour than different structural models to date. 

The response to doubling CO2 is much more varied across the CPDN PPE than 

the CMIP multi-model ensemble.

7.4 Sub—global Behaviour

Section 7.3 has looked at the CS; this Section now looks at the sub-global responses 

simulated in the CPDN PPE. It is important to consider model behaviour on sub- 

global length scales since the response to increasing CO2 varies with region and can 

not necessarily be inferred directly from global means Smith et al (2008). Local 

climate changes are particularly relevant to impact studies and adaptation measures, 

which can require information on the length scales as a model grid-box or finer e.g. 

assessing the impact on climate change on downscaled precipitation over the River
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Thames Wilby & Harris (2006). The range of model behaviour is shown to be large 

for temperature and precipitation on grid-box length scales, but more so at the 

grid-box level.

Figure 7.4 reflects the spatial variations in temperature change for each grid box 

and the associated variance. Figure 7.4 shows the mean (upper panel) and variance 

(lower panel) of the change in 8 year annual mean 1.5 metre surface temperature 

between the control and doubled CO2 phases for 22698 quality controlled simula­

tions^ .

The ocean typically warms by 1-3 degrees Celsius (shown in dark blue), the centre 

of large land masses by around 4-6 degrees Celsius (shown in green and yellow, 

although lower in Central Africa) and the Arctic by up to 8 degrees. The variance 

in ocean warming is around 1-2 degrees Celsius. Note that the variance in land 

warming is higher than over the ocean -  typically about about 2-4 degrees Celsius 

with signiflcant regional differences; the Amazon region has a particularly high vari­

ance of about 6-7 degrees Celsius. There is also high variance in the Arctic region 

where the most extreme warming is simulated.

Figure 7.5 shows the mean, democracy plot and extremal fields for change in 8 year 

annual mean precipitation between the calibration and the doubled CO2 phases for 

22698 quality controlled simulations. Mean changes are calculated as the percentage 

change between the ensemble mean precipitation in the last 8 years of the doubled 

CO2 phase and the ensemble mean precipitation in the last 8 years of the control 

phase. Percentage change is used here rather than the absolute change since it is felt 

to be more intuitive and is consistent with common practice Solomon et al. (2007a). 

The use of percentage change can mean that in areas with very low precipitation in 

the control phase, small absolute changes appear as large relative changes.

The mean precipitation difference shows that, for large areas, there is less than 20%

^22698 simulations are used in this Section in contrast to the 22711 quaUty-controlled simula­
tions used in Section 7.3 since 13 simulations have requisite data for the calculation of CS but not 
for producing the required regional fields. Similar variations exist elsewhere in this Thesis due to 
a corresponding effect.
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change in precipitation. In other areas, mostly the high latitudes precipitation is 

simulated, on averaged, to increase by 20% or more. The democracy plot shows the 

percentage of simulations that simulate an increase in precipitation. Areas in black, 

occurring mostly in high latitudes (50 degrees or higher), show that over 95% of 

simulations indicate an increase in precipitation. Conversely, areas in red show that 

less than 5% of simulations simulate increased precipitation. Areas are coloured 

in white where between 40 and 60% of simulation show increased precipitation i.e. 

the ensemble is not consistent in simulating the change of sign of precipitation. It 

is not clear what level of agreement should be taken as a robust signal, but it is 

apparent that large parts of the USA are not robustly simulated by this model -  

roughly half the ensemble simulates more precipitation, and half less. Furthermore, 

these annual means do not help understand how precipitation events will change 

e.g. “no change” annually might mean half the number of rainy days with twice 

the frequency or many other types of behaviour.

In order to better understand the uncertainty in simulated precipitation change, the 

minimum and maximum percentage difference between the control phase and the 

doubled CO2 phase at each grid box is plotted in Figure 7.5. These plots show that, 

at every grid box, some simulations show at least a 40% drop in precipitation and 

others at least a 20% increase in precipitation; there is no grid box for which every 

simulation is either wetter or drier. Looking at the Middle East, simulations indi­

cate a range of precipitation changes from minus 80% (over a five-fold reduction) 

to over 300% increase. The wide range of model behaviour means that the HadSMS 

model can not guide impact studies reliant on regional precipitation information 

but does indicate the need to make flexible decisions and monitor climate responses 

carefully since large changes in precipitation are possible.
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Figure 7.4: The mean (upper panel) and variance (lower panel) of 8-year mean 
annual mean temperature change between the pre-industrial CO2 calibration phase 
and the doubled CO2 phase over 22698 simulations. Warming is greater in the 
centre of large masses and in the Northern high latitudes. Warming over the ocean 
is typically between 1 and 3 degrees Celsius, compared to 6 to 8 degrees in the 
Arctic.
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Figure 7.5: The mean (a), democracy plot (b) and bounding box of 8-year (the minimum is shown in panel (c) and the maximum 
in panel (d))mean precipitation change between the pre-industrial CO2 calibration phase and the doubled CO2 phase over 22698 
simulations. The democracy plot shows the percentage of simulations with an increase in precipitation at each grid box.



The range of behaviour across the CPDN grand ensemble is now examined in 

terms of the spatial pattern of temperature change in two extremal simulations. 

In Figure 7.6 the DJF and JJA seasonal mean temperature change is shown for 

each of two simulations with 1.2 and 16.9 degrees CS. It is notable that in the 

1.2 degree simulation, the centre of large land masses warms by up to 8 degrees 

Celsius in the JJA season and large parts of the Arctic by 6-10 degrees Celsius 

in the DJF season. For the 16.9 degree simulation, large areas warm by over 20 

degrees Celsius, particularly in the Northern high latitudes and the centre of large 

land masses. There are some areas where regional warming is far less than might 

be expected from the global mean; there are land areas with less than 5 degrees of 

warming in both seasons. It is important to consider the different regional responses 

when planning adaptation strategies e.g. if the 1.2 degree simulation, with a modest 

magnitude of global warming, is to be believed, some regions might still expect to 

experience 8 degrees of warming. Such information is vital for impact assessment 

and decision makers.

The magnitude of regional warming seen across the PPE is related to the amount 

of global warming. If CS were to be known to within a degree Celsius, or less 

(few studies afford such small uncertainty on CS even when heavily constrained by 

observations), the range of regional changes might be reduced. The question of the 

relevance of global means for regional impact analysis analysed with in detail in 

Chapter 8.
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Figure 7.6: The change in temperature from phase 2 to phase 3 is shown for two simulations. These simulations were selected on the 
basis of having very low and very high climate sensitivities of 1.2 and 16.9 degrees, respectively. Panel (a) shows the DJF change for 
the 1.2 degree CS simulation and panel (b) the JJA change. Panel (c) shows the DJF change for the 16.9 degree CS simulation and 
(d) the JJA change.



7.5 Constraining Model Simulations

This Section looks at three methods that can be used to constrain model diversity 

in the CPDN PPE. The range of temperature change across this data set has been 

shown to be very large in Sections 7.3 and 7.4 (see Figure 7.2). In fact, the full 

range of behaviour is so large that, in the absence of constraining methods (such 

as Annan et al (2006); Forest et al (2007); Hegerl (2006); Knutti et al (2006); 

Piani et al (2005)), this set of simulations can not guide decision making reliant 

on regional (and even global) information towards specific courses of action. This 

Section applies three constraining methods using a) the Entrainment Coefficient, 

b) global mean HFA and c) in-sample fit. For methods b) and c), a 64 member 

ICE from the Standard HadSMS model is used to set a benchmark for model per­

formance. This benchmark is explained in Section 7.5.3.

These three methods are now applied to the quality controlled CPDN PPE in order 

to attempt to assess whether the behaviour in the CPDN PPE should be considered 

over-dispersed. These methods are not expected to represent the full range of pos­

sible constraining procedures and alternative methods are likely to show different 

results. The three methods presented and applied here are rather used to discuss 

some of the potential difficulties faced when attempting to evaluate the model di­

versity climate model simulations in light of statistical good practice.

It is argued that methods that are used to change the model diversity of an ensem­

ble should be based on 1) physically meaningful grounds and 2) statistical good 

practice i.e. the investigation and design of physical tests should not be aimed at 

achieving a particular result, such as a reduction of model diversity, a posteriori.

7.5.1 Constraining using the Entrainment Coefficient

The first method used to attempt to constrain CS uses the Entrainment Coefficient 

(a parameter that describes how quickly a convective cloud mixes in clear air -  

see Section 4.4.3 in Chapter 4). The value of the Entrainment Coefficient is rele­
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vant to important cloud feedbacks and has been shown to be the parameter whose 

perturbation has the greatest effect on CS in the CPDN experiment Knight et al. 

(2007); Sanderson et al. (2007, 2008). The distribution of CS is examined under 

the three values of this parameter -  where the Entrainment Coefficient is at its low 

(0.6), standard (3, the unperturbed value) or high (9) values. Comparing these 

distributions enables an examination of how changing the Entrainment Coefficient 

alters the distribution of CS.

It is shown in Figure 7.7 that the Entrainment Coefficient has a significant qual­

itative effect on the distribution of CS. Figure 7.7 shows that the distribution of 

simulations with a low Entrainment Coefficient is highly skewed, with a significant 

number of simulations having CS above 10 degrees and some over 14 degrees Cel­

sius. For the “standard” value of the Entrainment Coefficient (unperturbed from its 

standard value) or the high value of this parameter, the tail reduces considerably. 

The distributions for all three values of the Entrainment Coefficient centres about 

3.5 degrees, but the distribution of CS has a significantly heavier tail above 8 de­

grees where the Entrainment Coefficient is low. Despite this, there are simulations 

with a high value of the Entrainment Coefficient with CS over 8 degrees. Where 

the Entrainment Coefficient is at its standard or high values the distribution of CS 

appears more symmetric and less right skewed than where the Entrainment Coef­

ficient is low. This suggests that the HadSM3 model has a propensity to produce 

fewer high CS simulations for the low value of the Entrainment Coefficient.

It has been disputed how the shape of the distribution of CS should be interpreted -  

the distribution has been shown to depend on subjective choice of prior distributions 

Frame et al. (2005) and that recent warming does not provide a strong constraint 

on CS Allen et al. (2006). Furthermore, it has been argued in more detail that 

the right skewed shape is an unavoidable feature of the nature of CS Roe & Baker 

(2007). It is clear in this case that if the experimental design had been different e.g. 

with no perturbation to the Entrainment Coefficient, a very different distribution
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of CS would have been obtained.

Constraining model output using the Entrainment Coefficient has been shown to 

significantly alter the distribution of CS. In particular, ignoring simulations with 

a low Entrainment Coefficient results in eliminating most simulations with a high 

CS. This method for constraining model diversity does not meet the requirements 

of statistical good practice since the choice of parameter and the values deemed un­

realistic were cherry-picked in order to rule out most simulations with CS above 8 

degrees Celsius. If ad hoc methods are permitted, a similar constraining procedure 

could be adopted that rules out simulations with low values of CS and exagerrating 

the right-skewed distribution. If simulations with a low Entrainment Coefficient 

are to be eliminated the justification for doing so must be physically based (e.g. 

if these model simulations do not re-produce key properties of the seasonal cycle 

Knutti et al. (2006)) and this test must be carried out in light of good statistical 

practice i.e. not designed to produce some desired effect such as eliminating simu­

lations with high values of CS.

In contrast to the results presented here. Roe & Baker (2007) presents a reason why 

CS should have a characteristically right-skewed distribution of a particular ana­

lytic form. Here these claims are refuted using evidence from the CPDN PPE for 

the first time. In Roe & Baker (2007) the equilibrium change in GMST in response 

to a radiative forcing is taken to be where To is the reference CS. Reference CS 

is the temperature response in the absence of any feedbacks. In the equation above, 

/  is the feedback parameter. The authors then explain, assuming feedbacks approx­

imately follow a Gaussian distribution ( “Although the general features of our results 

do not depend on this assumption, it facilitates our analysis” Roe & Baker (2007)), 

why GS is right skewed. This right-skewness is claimed to be a direct result of the 

non-linear transformation of Gaussian feedbacks to calculate CS. The fact that the 

distribution of CS will be skewed in an inverse-Gaussian manner assuming observa­

tional errors are Gaussian was also made in Piani et al. (2005). The claim that CS
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is inherently right-skewed due to its non-linear relationship to Gaussian feedbacks 

can be examined using data from the CPDN grand ensemble. This is done by tak­

ing three sets of simulations from the CPDN experiment (Entrainment Coefficient 

equal to its low, standard and high values). The distribution of CS should be largely 

similar under different parameter values ( “The basic shape...is not an artifact of the 

analyses or choice of model parameters. It is an inevitable consequence of a system 

in which the net feedbacks are substantially positive.” Roe Sz Baker (2007)). From 

the three empirical distributions of CS, the implied distribution of feedbacks was 

calculated. Roe & Baker (2007) suggest that the distribution of feedbacks can be 

assumed to be Gaussian without introducing any critical biases. The distributions 

of CS and the feedback parameter when holding the Entrainment Coefficient fixed 

are shown in Figures 7.7 and 7.8. The distributions of CS, shown in Figure 7.7, do 

indicate a long tail, although the shape of the distribution itself (and the skewness 

of the distribution) is highly dependent on the choice of parameter values. Due to 

the skewed distribution of feedbacks, a small number of negative feedbacks, shown 

in Figure 7.8 are simulated in some simulations.

The distribution of feedbacks, shown in Figure 7.8, appears approximately Gaus­

sian in the case of a high Entrainment Coefficient, less so for a standard value and 

highly left skewed for a low value. Where such highly skewed feedback distributions 

are possible, the assumption of Caussianity may no longer be tenable. With highly 

skewed feedback distributions, the distribution of CS need not have a long tail to­

wards high values of CS, as was argued to be the case in Roe & Baker (2007), but 

can take any other distribution.

It is concluded here that important features of these distributions of CS vary with 

the parameter values chosen. Furthermore, if the characteristics of the distribution 

of CS are subjective it does not make sense to attempt to interpret model output 

as an objective PDF.
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7.5.2 Constraining using HFA

In this Section the use of Global Mean HFA (GMHF) to constrain the range of 

CS is discussed. The HFA is calculated in the calibration phase as the flux of 

heat between the ocean and the atmosphere required to force model SSTs to match 

climatological values, as explained in Chapter 5. The HFA acts as a surrogate for 

missing ocean processes. Where the GMHF is far from 0 the ocean and atmospheric 

components of a model are not in balance and thus might be thought to be prone 

to instability due the artificial imposition of a systematic radiative flux. It should 

be noted that GMHF need not be close to 0 in a perturbed physics model version 

since different parameter values might not have a non-zero global radiation balance 

Collins et al. (2006). In fact, it has been shown in Chapter 5 that there are simu­

lations with significantly non-zero GMHF that do not show signs of instability in 

the time series of GMST. It is not clear that requiring parameter perturbed model 

versions to have a GMHF close to 0 is physically necessary.

It has been shown in Chapter 5, and in Figure 7.9, where GMHF plotted against 

CS, that there is clear structure between the GMHF and CS. In particular simula­

tions with a strong, negative GMHF tend to have very high values of CS. It would 

not be statistical good practice to choose a GMHF filter to rule out high CS sim­

ulations based on this relationship alone; such a filter is ad hoc and similar filters 

could be devised to obtain different results. Instead a physical explanation for this 

relationship must be found and such relationships must not be sought specifically 

to gain a desired result, as previously state din this Chapter. It is shown in this 

Section that even if such a filter were used, with a stringent requirement to have a 

GMHF close to 0, it would still admit simulations with values of CS over 8 degrees 

Celsius.

GMHFs within the 64 standard HadSMS ICE range from -2.18549 to -1.94776 

W /m^. This narrow range arises as a result of the low variability in GMHF within 

ICEs, as shown in Chapter 5. Applying a filter that requires the GMHF to be as
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close to 0 as the standard HadSMS ensemble (of absolute value less than 2.18549) 

results in a constraining method that allows simulations within the two vertical lines 

(denoting the range of GMHF in the standard HadSMS ICE) shown in Figure 7.9. 

Whilst this filter eliminates some very high CS simulations, the range of CS values 

admitted is still large; from 1.6 to 8.2 degrees Celsius. Using 2.18549W/m^ as a 

critical level for the CMHF rules out ~  92% of quality controlled simulations and 

might be considered as a fairly stringent requirement. The range of post-filter CS 

values is over twice as large as the interval of 1.5 to 4.5 degrees Celsius given in the 

IPCC Fourth Assessment Report Solomon et al. (2007a). Figure 7.9 suggests that 

whilst the CMHF is related with CS, but that a filter based on requiring CMHF 

to be close to 0 can not be used to reduce the range of CS simulated significantly. 

Furthermore, it would be statistical bad practice to use the CMHF to constrain CS 

only after having seen that a relationship exists.

7.5.3 Constraining using in—sample fit to observations

The third constraining method examined in this Chapter is based on comparing 

each model simulation to climatic observations. The method of calculating in- 

sample performance is similar to that applied in Stainforth et al. (2005), although 

here the in-sample performance of simulations is considered in up to 7 different 

variables unlike Stainforth et al. (2005) in which o in-sample performance is aggre­

gated across 5 variables. Other attempts to constrain climate model output using 

observations has been carried out in Knutti et al. (2006) and Piani et al. (2005). 

Piani et al. (2005) uses CPDN data to search for observational constraints on cli­

mate model behaviour, in particular CS and the feedback parameter (defined as the 

inverse of CS). Whilst such search methods can help to identify correlations between 

observations and future behaviour it is important to further investigate these cor­

relations to form consistent physical explanations. It is shown in this section that 

there may not be a single observational variable that can constrain CS but that
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different observational variables can indicate different values of CS. This point has 

been noted previously in Sanderson et al. (2008) in which it is shown that different 

observational fields can give different constraints on CS. This section extends the 

results of Stainforth et al. (2005) to a set of 22712 simulations and confirms the 

results of Sanderson et al. (2008) that the choice of variable used to constrain CS 

can be critical.

The root mean square error (RMSE) compared to gridded observations, relative to 

the ICE mean of 64 standard HadSMS simulations is used here to compare model 

simulations to observations. The scaling of RMSE error relative to the standard 

HadSMS model does not affect any results but provides a more intuitive interpre­

tation of the RMSE. The RMSE gives an indication of the relative in-sample skill 

of simulations in various variables, but the absolute values of these metrics should 

not be interpreted in terms of likelihood, as argued in Stainforth et al. (2005). In 

particular, it is not proposed here that there is a specific value at which model 

simulations should be considered realistic in the sense of RMSE proximity to obser­

vations. In each of the seven chosen variables, the CPDN PPE is pruned to those 

simulations that perform as well as the worst member of the 64 member standard 

HadSMS ICE. The level below which a model should be dismissed is an important 

question, but is not dealt with here.

Initially, the performance of a 64 member ICE of the standard HadSMS model is 

considered in 7 variables, followed by the CPDN PPE as a whole. This is done 

in order to evaluate whether there is a relationship between CS and in-sample fit 

and to analyse the effect of the choice of variable on any relationships that are 

found to exist. It is shown here that the choice of variables can effect the resultant 

distribution of CS when constraining model simulations.
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The M etric

When eliminating simulations using in-sample fit or the HFA it is necessary to 

choose a critical value, above which models are ruled out. The worst member of the 

standard HadSMS model will be used as a benchmark for the performance of the 

perturbed physics model simulations.

The 7 variables used to eliminate simulations here are : latent surface heat flux 

from land, latent surface heat flux from sea, sensible latent heat flux from sea, total 

cloud amount, total precipitation rate, sea surface pressure and 1.5 metre surface 

temperature.

The RMSE for a particular simulation, s, in variable j ,  is defined as:

(7 1)
i

where rriĵ i is the simulation value for variable in j  grid-box i averaged over the 

last 8 years of the control phase of that simulation, Oj * is the observed value for 

variable j  in grid-box i and wi is an area weighting for grid-box The error for 

each simulation is then divided by the RMSE of the standard HadSMS model to 

give the Relative RMSE score as for each simulation in variable j  as:

=  $  (7.2)
^h,j

Where j is the mean of j for the standard HadSMS model, averaged over 

the 64 ICE members. Hence the relative RMSE for each simulation is expressed 

as a scalar statistic representing the average disparity between the control phase 

simulation and observations.

In the case of constraining model diversity using in-sample fit, a simulation is 

required to match observations in its control phase at least as well as the worst 

simulation from the standard HadSMS model in order to be admitted. Simulations

^Grid-boxes in the HadSMS model correspond to different area of different size; grid-boxes 
are larger near the equator and smaller in the high latitudes.
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that are worse than all 64 of the standard HadSMS model simulations are rejected. 

This criteria is arbitrary, but the results are not believed to depend crucially on 

the precise level of RMSE used. The idea is rather to look at the use of different 

variables to constrain CS and whether it is possible to reduce uncertainties in a way 

consistent with statistical good practice and physical understanding.

Perturbed Physics Ensemble

The performance of simulations form the CPDN PPE is examined in this Section. 

Figure 7.10 shows the mean RMSE over 5 variables (to allow comparison of RMSE 

to CMIP simulations, 5 variables are used here) of 22712 simulations versus CS. 

The 5 variables used here are: annual mean temperature, sea level pressure, pre­

cipitation, and atmosphere-ocean sensible and latent heat flux; these were the only 

five variables were available from the CMIP II simulations used for comparison^. 

The CMIP GCMs are taken from the Coupled Model InterComparison Project II 

experiment Covey et al (2003), developed at modelling centres across the world. 

The mean RMSE is found by taking the arithmetic mean of RMSE over these 5 

variables, as in Stainforth et al (2005). The use of such a composite score is not 

recommended here, since differences in the variability of RMSE between different 

variables could, without standardisation, lead to some variables gaining more influ­

ence than others. Nevertheless, this mean RMSE score is shown in order to highlight 

the importance of considering the performance of simulations in the individual vari­

ables that comprise the mean score.

The quartiles of the distribution of RMSE are coloured in Figure 7.10 to aid visu­

alisation -  the bottom quartile is shown in red, the 25th percentile to the median 

in green, the median to the 75th in dark blue and the upper 25th percentile in light 

blue. The mean RMSE shown is relative to the standard HadSMS model; a model 

that performs similarly well on average to the standard HadSMS model will score 

about 1 on the y-axis. Panels (a), (d) and (e) show that there are variables where

Î would like to thank David Stainforth for providing data for the CMIP II GCMs.
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high CS simulations have a tendency to perform better than low CS simulations -  

surface temperature, atmosphere-ocean sensible and latent heat fluxes. In contrast 

to this, high CS simulations seem to perform worse in panels (b) and (c) (showing 

precipitation and sea surface pressure) although there is also a pattern for simula­

tions with CS lower than 3 degrees to also perform worse. When using the mean 

of these five variables, the details average out and there seems to be a tendency for 

high CS simulations to perform worse in this metric. Figure 7.10 shows that the 

mean RMSE obscures that fact that high CS simulations tend to perform well in 

some variables and worse in others.

The PPE simulations perform well against 13 CMIP models (shown in black dia­

monds), with no CMIP models scoring in the bottom quartile of the PPE in all 

variables except surface latent heat flux in panel (e). The CPDN PPE model ver­

sions perform well against these GCMs in four of five variables, with 10, 11, 9, 10 

and 2 of the 13 CMIP models falling into the worst quartile of the CPDN PPE in 

each of the 5 variables shown in panels (a) to (e).

Figure 7.10 demonstrates an important result since it suggests that there is no ro­

bust lack of compatibility with observations for simulations with high CS. This is 

not to say the same will be true for different types of modelling experiments and 

observational data sets, especially as more data becomes available throughout the 

21st Century. It might be that observations that take into account dynamic changes 

due to CO2 forcing will tend to favour particular values of CS in a more robust way 

than shown in Figure 7.10.

Figure 7.11 shows the resulting cumulative distribution functions (CDF) of CS from 

the CPDN PPE after constraining in 7 different variables. Some variables, such as 

precipitation (light blue, bottom panel), constrain the high end of CS to within 

about 7 degrees Celsius, whereas temperature (dark blue, top panel) does not con­

strain the range at all. Different variables constrain the range of CS by different 

amounts and “rule out” different numbers of simulations; 11032 simulations remain
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after constraining with 1.5m surface temperature, whereas only 2876 remain after 

constraining with latent surface heat flux .̂ A stricter constraint was applied where 

a simulation is admitted if it performs as well as the worst member of the 64 mem­

ber standard HadSMS ICE in all 7 variables.

Applying the constraint in all variables (a simulation must pass in all 7 variables to 

be included) give the top-most CDF in Figure 7.11, shown in the upper panel; the 

highest admitted CS is about 5 degrees Celsius. This shows that it is possible to 

constrain model diversity by using more tests and drastically reducing the number 

of simulations (408 pass the test in all variables -  ~1.4% of the original number). 

Constraining based on a single variable gives different results depending on which 

variable is used. Using more variables applies a stricter constraint but it is not 

clear how many should be used. Using all the data available to constrain model 

simulations would result in the CDF tending towards the standard model, since this 

is standard for in-sample fit used as the reference point^. If enough variables were 

included, at a sufficiently strict level of compatibility with observations, all simula­

tions could be ruled out. It is not clear what level of model-observation agreement 

should be demanded when constraining model simulations.

Using different variables results in a different CDF for CS. Furthermore, the seven 

variables used eliminate different numbers of simulations. The greatest number of 

simulations pass the constraint using total cloud amount (~71% of simulations), 

the fewest pass the constraint based on latent surface heat flux from land (~11%). 

Constraining using multiple variables provides a stricter constraint (stricter only in 

the sense of ruling out more simulations) on CS; when all variables are used only 

1.4% of simulations pass. Using multiple constraints fewer simulations are allowed; 

it could be that if enough constraints are added, the number of simulations admitted 

could be reduced to a very small number, even 0.

 ̂A similar result was found in Sanderson et al. (2008) where it is shown that top of atmosphere 
radiative flux provides a stronger constraint on CS than temperature or precipitation.

Ît is interesting to note that the method used in Piani et al. (2005) produced a best estimate 
of CS of 3.3 degrees Celsius -  very close to the median value of the CPDN CDF used here, when 
constrained by all 7 variables.
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It is important to consider whether the performance of model simulations is cor­

related in different observational variables. In particular, it would be misleading to 

prefer one simulation to another on the basis of its ability to simulate observed tem­

peratures, then use this model to simulate precipitation, without considering the 

relative performance in precipitation. In order to look at this. Figure 7.12 shows the 

relative RMSE in precipitation versus temperature over all 22711 quality controlled 

simulations. The structure indicates a pattern for simulations with worse in^am ple 

precipitation fields to also have worse temperature fields. This relationship is far 

from universal -  there are simulations with an relative RMSE better than the stan­

dard model in temperature (an RMSE of less than 1) and a relative RMSE of 3 

or more in precipitation. There is a relationship between in-sample performance 

in precipitation and temperature, suggesting that constraints are not independent. 

Simulations that perform well in temperature, have a tendency to also perform well 

in precipitation although, since this is not always the case, it would seem sensible 

to look for hindcast skill in all variables of interest.

As, shown in Figure 7.11, precipitation is a stricter constraint than temperature and 

constraining using these variables has different effects on the shape of the CDF of 

CS. In particular, constraining using temperature seems to skew the CDF towards 

higher values and precipitation towards lower values. This suggests that the effect 

of constraining model output using these variables is not equivalent to eliminating 

simulations at random, since the shape of the CDF changes with the variable cho­

sen.

The performance of model simulations in-sample has used the global mean RMSE 

relative to the standard HadSMS model. Three important limitations to using 

global mean relative RMSE as a guideline for model performance are:

1. By using the standard model as a benchmark, the relative RMSE shown does 

not give an indication of systematic bias present in all model simulations, nor 

any idea of the magnitude of model errors.
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2. The global mean statistic of RMSE used is here can only be a rough guide to 

model performance. More detailed spatial and temporal analysis is required 

for decision-relevant model evaluation.

3. The constraint is based on a static climate; no dynamical changes are included. 

Arguably, the ability of models to match dynamical changes in the Earth’s 

climate system are the most important test of likely out-of-sample skill. Such 

a test can not be carried out using the data analysed here since CO2 is in­

stantaneously doubled rather than increased transiently. Attempts by Annan 

& Hargreaves (2006); Knutti et ai (2006) to constrain CS using dynamical 

changes have yielded a reduction in high CS values, although the shape of this 

distribution itself is, to some extent, an artifact of the experimental design 

Frame et al. (2005).

7.6 Conclusion

The range of values for CS shown in the CPDN PPE is unprecedented and poses new 

challenges for the interpretation of model output for decision makers. Attempts to 

constrain such a large range of model behaviour face several difficulties. Appropriate 

variables must be chosen for which to evaluate the model output. To conform 

with statistical good practice, these variables must be chosen with relevance to 

out-of-sample model performance and not because they reduce model diversity by 

the largest amount. The importance of this principle is demonstrated using the 

examples of constraining with the Entrainment Coefficient, global mean HFA and 

model in-sample fit.

The use of global mean heat flux (GMHF) to constrain the range of values for 

CS, having seen the GMHF is related to CS, does not allow us to eliminate all 

high CS simulations; simulations with values of CS over 8 degrees pass this test. 

Furthermore, this would be statistical bad practice since we would be choosing
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the constraint based on the results we would like to see. The criteria used for 

constraining CS should be ideally chosen before running the experiment (or at 

least seeing the effect that various constraints would have on the data). Despite 

the difficulties in applying a constraint on CS based on the GMHF, it is useful to 

see the relationship between GMHF and CS since this might lead to an improved 

understanding of why this relationship occurs and why some simulations show such 

a large degree of warming. A physical understanding of why simulations have 

different behaviour is paramount to constraining the range of behaviour.

The use of in^am ple fit as a means of assessing model diversity is analysed in this 

Chapter. The choice of variables is shown to have an effect on the distribution 

of CS. In particular, using temperature as a constraining variable tends to permit 

more high CS simulations and using precipitation tends to permit more low CS 

simulations. The more observational variables simulations are required to perform 

well in, the fewer simulations will be admitted. In the limit, all simulations can be 

ruled out since none are realistic in every relevant sense. Attempts to constrain the 

model simulations here are based on a small set of observed data (30 years long) 

during which no significant climate change occurred. The ability for models to 

produce useful forecasts of climate change might better be assessed using a transient 

experiment and data during which the climate changes e.g. using observations of 

the 20th Century. This would test the dynamical strength of the models and provide 

a more relevant test for out-of-sample model performance.

In the next Chapter, a sub-set of simulations is analysed that all have very similar 

values of CS. This sub-set can be thought of both as a reflection the range of 

behaviour in simulations after successfully CS to a narrow range, even if such a 

constrain could be robustly achieved, and as an analysis of the utility of global 

mean metrics for décision-support.

New results from a grand ensemble of 45644 simulations of HadSMS presented in 

this Chapter are:
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• The range of behaviour shown in an ensemble of 45644 of GCM simulations is 

unprecedented, with estimated CS ranging from 0.9 to over 16 degrees Celsius.

• By comparing sub-sets of the CPDN PPE it has been shown that the shape 

of the distribution of CS is not an inevitable feature resulting from an approx­

imately Caussian distribution of feedbacks, as was proposed in Roe & Baker 

(2007). The distribution of CS can be changed substantially by a different 

choice of experimental design.

•  The global mean HFA and the Entrainment Coefficient can be used to change 

the distribution of CS, but simulations with CS over 8 degrees are still admit­

ted. The use of such post-hoc filters is criticised on the basis of bad statistical 

practice.

•  When comparing model performance in-sample in 7 different variables, results 

depend on the choice of variable. For example, constraining in temperature 

tends to admit more high CS simulations and constraining in precipitation 

more low CS simulations.
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Figure 7.7: The distribution of CS is shown for all quality controlled simulations 
for three different values of the Entrainment Coefficient - 0.6 (low) in panel (a), 3 
(standard) in panel (b) and 9 (high) in panel (c).
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Entrainment Coefficient
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Figure 7.9; The global mean HFA is plotted against CS. The vertical lines denote the 
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The range of CS captured by this range is (1.59535, 8.17179).
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Figure 7.10: The RMSE, relative to the standard model, is plotted against CS 
for 22712 simulations in five different variables -  (a) surface temperature, (b) sea 
surface pressure, (c) precipitation, (d) surface sensible heat fiux from sea and (e) 
surface latent heat fiux from sea. Panel (f) shows the average RMSE error over 
these five variables. The values for 13 GCMs taken from the CMIP II project are 
plotted as black diamonds.
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Figure 7.11: The Cumulative Distribution Function of CS for the grand ensemble, 
including only simulations with an RMS error no higher than the worst member 
of the 64 member standard ensemble. In the top Figure, temperature is used as 
the observational constraint (green). Also shown is the effect of constraining in 
7 different observational variables simultaneously. The variables shown are heat 
flux latent surface, total precipitation rate, sea surface pressure, 1.5m temperature, 
surface sensible heat flux from sea, surface latent heat flux from sea, total cloud 
amount. The number of simulations left after applying constraining in each variable 
is shown adjacent to each variable’s name.
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Figure 7.12: RMSE, relative to the standard model, for precipitation and temper­
ature for 22711 quality controlled simulations. There is a pattern for simulations 
with a worse score in one variable to have a worse score in the other, although a 
number of exceptions exist.
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Chapter 8

The relevance of global means for 

climate policy

8.1 Introduction

Climate simulations might provide information on strategies to mitigate or adapt to 

climate change. This Chapter looks at the utility of GMST (Global Mean Surface 

Temperature) as an index variable for policy and impact studies. The relevance 

of GMST as an index is then discussed from the point of view of mitigation and 

adaptation policies.

In recent years, there has been a significant rise in interest in potential impacts of cli­

mate change. Such impacts inevitably occur on sub-global length scales. Examples 

include the recent UK Climate Impacts Program (UKCIP), the recent IPCC Fourth 

Assessment Report Solomon et al. (2007a) and the Stern report on the Economics 

of Climate Change Stern (2006). It is often the case that climate simulations are 

taken as the basis for impact studies or adaptation strategies and important uncer­

tainties are ignored. An inadequate treatment of inter-model differences and known 

uncertainties can result in over-confidence in the use of climate simulations, espe­

cially if uncertainties are lost either by assuming future climate is known (using a 

single, deterministic simulation) or by assuming a one-to-one relationship between
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GMST and local impacts. This could lead to a lack of flexibility in planning or 

commitment to sub-optimal (or damaging) action due to over-confidence.

Plans for stabilisation of GHGs are often expressed in terms of GMST commission 

(2007); Parry et al. (2007); Solomon et al. (2007a); Toth et al. (2003); Yohe et al. 

(2004). GMST is used in impact studies for a number of reasons; it is supposed 

that models can produce realistic hindcast simulations of GMST Solomon et al. 

(2007a) and it is a fairly intuitive statistic to deal with. Many impact studies relate 

changes in GMST directly to impacts Stern (2006) (p. 180), Parry et al. (2007). This 

approach poses a number of problems that will be discussed in this Chapter. In 

particular, information on the regional responses to climate change and the associ­

ated uncertainties is lost. It is shown here that relating GMST change directly to 

sub-global climatic impacts can be highly misleading. Climate can be forecast, at 

best as a distribution Smith (2002) with its inherent uncertainties; moreover these 

uncertainties are larger on smaller length scales.

As a consequence of the analysis presented in this Chapter, it is shown that con­

straining GMST (or CS), even to within a very narrow range, may not provide a 

strong constraint on regional changes. The consequences of this are discussed. 

Using data from the CPDN experiment, the problem of how GMST change relates 

to regional change is looked at in this Chapter. For some variables and length 

scales, such as GMST, the models produce consistent results. In other cases, such 

as regional precipitation changes, the models produce inconsistent results and raise 

important questions about the degree of flexibility required in adaptation decisions. 

The extent to which GMST changes provide information on the length scales most 

obviously relevant for impact studies is investigated. The cause of climatic change is 

global but the impacts are always local. Whilst there are climatic changes that are 

local in extent, such as land-use change and volcanic activity, the simulations used 

here look at the possible effects of doubling atmospheric concentrations of CO2 , a 

GHG that mixes throughout the atmosphere and thus has a global impact. Nowhere
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is affected by a global mean per se\ rather each region and location experiences its 

own local climate. Whilst global mean statistics do have an important part to play 

in climate science, their relevance in terms of their direct use for climate impacts is 

limited.

Two specific questions are discussed in this Chapter;

1. What does a 2 degree rise in GMST mean for decision-makers? Different 

spatial patterns of change, and associated uncertainties, can be averaged out 

to give the same value of GMST. It is shown in this Chapter that many 

different local changes in climate can result in a 2 degree rise in GMST. The 

uncertainty in response to a doubling of CO2 is looked at on a variety of 

length scales for simulations with a fixed GMST response. This allows for an 

assessment of how much information GMST provides on climatic changes on 

various length scales.

2. How different is a rise in GMST of 2 degree Celsius compared to a rise of 3 

degrees? This question has importance both for policy decisions and localised 

impact assessment. In the case of adaptation, it is important to know how 

quickly our adaptation plans may have to change -  if 3 degrees is much worse 

than 2 degrees, we should prepare accordingly or least be flexible enough in 

our plans to adapt to the consequences of greater warming effectively. It 

may be that the local effects of a monotonie rise in GMST change result in 

non-linearities in regional climate response and adaptation methods planned 

accordingly. Another example of the limitation of annual mean global mean 

metrics, shown in this Chapter, is that there can be different effects in summer 

and winter e.g. a drier winter and a wetter summer should not be assumed 

to be equivalent to “annually no change” for impact assessment.

Planning mitigation strategies can be helped by understanding how policies 

targeting GMST may result in different regional responses. For example, if it is
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thought that rising GMST might lead to an increased risk of flooding in London, 

policies could be adopted to mitigate this risk. It would then be useful to know 

how much more risk is attributable to a 3 degree rise compared to a 2 degree rise. 

This work is also relevant to the problem of constraining CS in previous work 

in Chapter 7 and in the literature in general Annan & Hargreaves (2006, 2007); 

Forest et al (2007); Hegerl (2006); Knutti et al (2006), where attempts are made 

to constrain uncertainties in the value of CS. The utility of such global constraints 

for decision-makers reliant on regional climate information is questioned in this 

Chapter. Regional uncertainties are examined here for a narrow range of CMST 

change (0.2 degrees Celsius). Approaches that constrain climate change using CS 

may not reduce regional uncertainties to manageable levels; indeed is it shown that 

for simulations with 2 degrees CMST rise the range of 8 year mean DJF warming 

simulated in the Central North American region is from 1 to 7 degrees Celsius.

The structure of this Chapter is as follows. Section 8.1.1 describes the data sets 

used in this Chapter. Section 8.2 answers question 1) above by analysing the 

distribution of temperature and precipitation changes on various length scales for a 

set of simulations with 2 degree CMST rise. Section 8.3 answers question 2) above, 

the difference between simulations with 2 degrees CMST rise and 3 degrees CMST 

rise. Section 8.4 examines the assumption that regional responses are linear with 

respect to CMST rise. Section 8.5 discusses the results presented in this Chapter 

and the implications for mitigation and adaptation decisions. Section 8.6 gives 

conclusions.

8.1.1 Data Sets Used

Data from a grand ensemble of 45644 simulations is analysed in this Chapter. Model 

simulations within a narrow range of 0.2 degrees CMST change are analysed in 

terms of their regional distributions. Where simulations are said to have a CMST 

rise of X  degrees, this refers to all simulations with a CMST change of between X
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±0.1 degrees Celsius. Changes in 8 year mean temperature and precipitation (the 

regional time series are described in Chapter 4) are studied on the regional scale 

(regions are defined as in Giorgi & Mearns (2000)), and the grid-box level (in the 

HadSMS model, grid-boxes are 3.75 degrees in longitude by 2.5 degrees in latitude 

-  roughly 200 by 200 kilometres) for seasonal temperature and precipitation. The 

set of 402 quality controlled simulations with 2±0.1 degrees of GMST rise (defined 

by the difference between the last 8 years of the doubled CO2 phase and the last 

8 years of the control phase for comparability with the available regional data) is 

referred to hereafter as the 2 degree set. Similarly , further sets of 2441 and 795 

quality controlled simulations with 3 and 4±0.1 degrees of GMST rise are referred 

to as the 3 and 4 degree sets respectively.

8.2 W hat does a 2 degree rise in GMST mean?

This Section looks at the level of regional uncertainty associated with the 2 degree 

set of simulations, as described in Section 8.1.1. This analysis is motivated by two 

questions that are important for assessing the utility of GMST as a target, or basis, 

for decisions:

1. To what extent can mitigation strategies based on GMST change reduce sig­

nificant regional risks?

2. To what degree of certainty can impact studies link GMST to particular im­

pacts?

These questions can be informed by looking at the distribution of climate re­

sponse on various length scales when considering simulations with a given GMST 

rise. Model diversity is now examined beginning on hemispheric length scales, 

then smaller regions. It is shown that model diversity increases significantly when 

analysing the distribution of temperature and precipitation response on regional 

length scales.
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8.2.1 Prom global to super—continental length scales

This Section looks at seasonal changes for the 2 degree set in temperature and pre­

cipitation on global and super-continental length scales: namely, the Northern and 

Southern hemisphere, the tropics and the extra-tropics.

Figure 8.1 shows the change in global mean, tropical. Northern hemisphere extra­

tropics and Southern hemisphere extra-tropics for temperature and precipitation. 

The changes shown are in terms of the 8 year seasonal mean under a doubling 

of CO2 concentrations. For each region, four plots are shown -  DJF (December 

through February mean), JJA (July through August mean) for temperature and 

precipitation. The x-axes in Figure 8.1 are deliberately set at a wider range than 

the distributions of change might appear to justify so that similar distributions on 

smaller length scales can be compared on the same x-axes.

The range of temperature change is from 1.5 to 2.5 degrees Celsius in the global 

mean and 2 to 4 degrees in the Northern hemisphere in both seasons. Southern 

hemispheric change in temperature is lower -  1 to 2 degrees in DJF and about 2 

degrees in JJA. The lower levels of warming simulated in the Southern hemisphere 

is partly due to there being more ocean in the Southern Hemisphere than the North­

ern hemisphere (and oceans typically warm by less than land masses). The range 

of precipitation change is greater on the hemispheric level than the global level; 

0-20% in the Northern hemisphere and -10—1-10% in the Southern hemisphere. In 

the summer months, the magnitude of warming is less than in the winter. The 

global mean range is very tight, showing a increase of about 0-5%. Inferring tem­

perature changes on a hemispheric scale from the GMST change is robust across 

the 2 degree set. This suggests that is not unreasonable to infer global or hemi­

spheric temperature response from GMST rise. In contrast, precipitation changes 

are always not robust -  even the sign of the change is uncertain in the Southern 

hemisphere in the 2 degree set despite all simulations having a GMST change within 

a range of 0.2 degrees Celsius. This suggests that it is not possible to robustly infer
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the direction of Southern hemispheric precipitation response based on GMST rise 

in the HadSMS model. This difference can be seen from the variable magnitude of 

temperature change between the DJF and JJA seasons in the Northern and South­

ern hemispheres. These hemispheric differences will often cancel out on the global 

scale (in both DJF and JJA it will be summer in one hemisphere and winter in the 

other).

There are two reasons for the narrowness of these hemisphere-averaged ranges. 

First, averaging over many grid-boxes is expected to reduce the sampling variabil­

ity considerably. Second, regional variations in the sign of precipitation change 

partially off-set each other e.g. an area with reduced simulated precipitation and 

an area with increased simulated precipitation can cancel out, when averaged, to 

show little or no change. Large changes of different sign in regional precipitation 

change can cancel out; information that is hidden when using global mean statistics. 

Figure 8.2 shows the same statistics as Figure 8.1 but for different areas: the tropics. 

Northern hemispheric extra-tropics and Southern hemisphere extra-tropics. These 

areas are smaller than the global and hemispheric areas shown in Figure 8.1. The 

range of temperatures for these areas is similar in magnitude to the hemispheric 

averages, although the Northern extra-tropics does show a wider range of temper­

ature response (the range has a width of about 2 degree Celsius in both seasons). 

Furthermore, the magnitude of warming in the Northern hemisphere extra-tropics 

is higher than on global and hemispheric scales -  about 3 degrees in JJA and 4 

degrees in DJF. Notably, precipitation in the tropics is very tight in distribution. 

On super-continental length scales, the sign and magnitude of temperature change 

is robust across the model ensemble, with a range of up to 2 degrees Celsius in some 

areas and seasons. Precipitation change is generally robust, but in regions such as 

the Southern hemisphere the response is more uncertain (the change in precipi­

tation response varies from ~-15% to ~-flO%). When taking averages over large 

areas, significant changes in precipitation are cancel out. For example, it is shown
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in Figure 8.8 that the tropics show precipitation responses in different directions on 

a grid-box level, but the cancellation of these changes gives the tight distribution 

shown in the Tropics in Figure 8.2.
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8.2.2 Regional Impacts

Arguably, almost all climate impact decisions require information on regional or 

lower length scales. This subsection shows that model diversity increases signifi­

cantly when looking at regional temperature and precipitation change compared 

with continental and super-continental areas. Regional precipitation change is 

shown in this Section to be particularly uncertain with a lack of robustness in 

simulating the sign or magnitude of change.

Figure 8.3 shows the seasonal change in regional temperature and precipitation. 

Three regions are selected for comparison -  Australia, Central North America and 

Northern Europe. All the land regions’ (plus the global, hemispheric, tropical and 

extra-tropical areas) minimum and maximum change in seasonal temperature and 

precipitation for the two degree set are shown in Tables 8.1, 8.2 and 8.3. In no 

cases is there a fall in temperature in either season. In almost every case, the sign 

of precipitation change is uncertain; the exceptions are Greenland, Antarctica and 

the Global mean. The regional changes in temperature and precipitation are dealt 

with in turn.
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R egion V ariable Season M in M ax
Australia Temp DJF 0.957 3.00
Australia Temp JJA 0.859 2.79
Australia Precip DJF -2&3 59.8
Australia Precip JJA -33.4 50.6
Amazon Basin Temp DJF 1.23 5.42
Amazon Basin Temp JJA 1.00 5.72
Amazon Basin Precip DJF -25.9 13.2
Amazon Basin Precip JJA -30.8 15.8
Southern South America Temp DJF 0.650 2.69
Southern South America Temp JJA 0.640 3.09
Southern South America Precip DJF -7.13 18.8
Southern South America Precip JJA -19.5 26.9
Central America Temp DJF 1.24 3.77
Central America Temp JJA 1.64 4.00
Central America Precip DJF -42.0 105.
Central America Precip JJA -37.8 78.7
Western North America Temp DJF 0.320 4.56
Western North America Temp JJA 2.12 5.30
Western North America Precip DJF -28.3 41.2
Western North America Precip JJA -26.4 18.3
Central North America Temp DJF 0.887 7.22
Central North America Temp JJA 2.29 8.48
Central North America Precip DJF -34.2 46.3
Central North America Precip JJA -44.8 30.0
Eastern North America Temp DJF 1.03 5.43
Eastern North America Temp JJA 1.95 4.58
Eastern North America Precip DJF -16.0 43.6
Eastern North America Precip JJA -10.8 30.8
Alaska Temp DJF 0.00134 9.57
Alaska Temp JJA 0.130 3.11
Alaska Precip DJF -8.41 68.9
Alaska Precip JJA -9.72 27.8
Greenland Temp DJF 1.98 6.78
Greenland Temp JJA 0.963 2.86
Greenland Precip DJF 5.15 28.4
Greenland Precip JJA 1.98 24.4
Mediterranean Basin Temp DJF 1.40 4.11
Mediterranean Basin Temp JJA 1.81 5.80
Mediterranean Basin Precip DJF -25.5 26.3
Mediterranean Basin Precip JJA -58.2 2.93

Table 8.1: The minimum and maximum change for DJF and JJA seasons for tem­
perature and precipitation for the 2 degree set.
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R egion V ariable Season M in M ax
Northern Europe Temp DJF 1.32 6.31
Northern Europe Temp JJA 0.987 4.11
Northern Europe Precip DJF -2.97 40.0
Northern Europe Precip JJA -23.8 27.0
West Africa Temp DJF 0.992 3.28
West Africa Temp JJA 0.708 3.30
West Africa Precip DJF -62.4 108
West Africa Precip JJA -38.6 56.0
East Africa Temp DJF 0.827 4.28
East Africa Temp JJA 1.34 4.16
East Africa Precip DJF -11.8 40.7
East Africa Precip JJA -25.4 58.8
Southern Africa Temp DJF 0.929 2.60
Southern Africa Temp JJA 0.975 2.65
Southern Africa Precip DJF -14.8 29.4
Southern Africa Precip JJA -36.6 4.35
Sahara Region Temp DJF 1.09 4.42
Sahara Region Temp JJA 2.14 4.32
Sahara Region Precip DJF -77.9 146
Sahara Region Precip JJA -40.2 121
South East Asia Temp DJF 1.24 2.46
South East Asia Temp JJA 0.978 2.78
South East Asia Precip DJF -14.4 44.6
South East Asia Precip JJA -30.8 33.7
East Asia region Temp DJF 1.83 4.99
East Asia region Temp JJA 1.83 4.55
East Asia region Precip DJF -20.3 53.5
East Asia region Precip JJA -16.1 38.5
South Asia region Temp DJF 1.56 4.01
South Asia region Temp JJA 0.715 3.23
South Asia region Precip DJF -46.8 206
South Asia region Precip JJA -12.0 50.6
Central Asia region Temp DJF 0.848 5.31
Central Asia region Temp JJA 2.01 5.81
Central Asia region Precip DJF -33.9 55.3
Central Asia region Precip JJA -36.1 64.6

Table 8.2: The minimum and maximum change for DJF and JJA seasons for tem­
perature and precipitation for the 2 degree set.
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Temperature

Three regions are selected for more detailed examination in this Section -  Australia 

(with relatively low warming of ~3 degrees or less in DJF and JJA for the two 

degree set), Northern Europe (medium levels of warming of 4.1 degrees in JJA 

and 6.3 degrees in DJF) and Central North America (high levels of warming of 8.5 

degrees in JJA and 7.2 degrees in DJF). All three regions selected for comparison 

warm in both seasons, but with considerable differences in magnitude. Australia 

warms by about 2 degrees in both seasons (plus or minus about 1 degree) and 

Central North America typically warms by over 4 degrees, with a wide range of 

change from 2 degrees up to 8 degrees. Warming is generally greater during the 

winter months (DJF season for Central North America). Northern Europe similarly 

warms more during the winter, but typically by around 4 degrees in winter and 3 

degrees in summer. The range of temperature change seen in regions such as Central 

North America raises difficulties in evaluating whether 2 degrees of global warming 

is a relevant target for local adaptation strategies. Considerably different policies 

are required to adapt to 2 degrees of regional warming than for 8 degrees.

Precipitation

Unlike temperature, even the sign of precipitation change is uncertain in all four 

regions. In the Australia region, the range of precipitation change in both seasons 

ranges between roughly -30% up to 4-50% with the peak of the distribution close to 

0 (no change). The distribution of Central North American precipitation is centred 

about 0 in the summer months and at about 4-10% in the winter with a range of 

(-34%, 46%) in DJF and (-45%, 30%). Most simulations show an increase in North­

ern European precipitation in both summer and winter, but with a wide range of 

values for the magnitude of this change. In these regions, especially Australia and 

Central North America, it is difficult to say what a 2 degree Celsius in GMST would 

mean for precipitation. It seems the change could be up to 50% in many regions.

241



Region V ariable Season M in M ax
Tibet Temp DJF 2.67 5.79
Tibet Temp JJA 1.94 5.58
Tibet Precip DJF -2&8 65.8
Tibet Precip JJA -14.0 16.5
North Asia region Temp DJF 1.54 7.55
North Asia region Temp JJA 1.06 4.74
North Asia region Precip DJF 6.71 46.0
North Asia region Precip JJA -2.99 17.2
Antarctica Temp DJF 0.246 &28
Antarctica Temp JJA 1.07 5.28
Antarctica Precip DJF 0.162 19.9
Antarctica Precip JJA 6.24 27.9
North Hemisphere Temp DJF 2.10 3.58
North Hemisphere Temp JJA 1.63 2.97
North Hemisphere Precip DJF -1.19 21.2
North Hemisphere Precip JJA -0.690 17.0
South Hemisphere Temp DJF 0.814 2.22
South Hemisphere Temp JJA 1.22 2.72
South Hemisphere Precip DJF -10.1 6.34
South Hemisphere Precip JJA -14.6 9.10
Tropics Temp DJF 1.16 2.66
Tropics Temp JJA 1.21 2.78
Tropics Precip DJF -0.855 4.73
Tropics Precip JJA -0.938 4.82
North Hemisphere Extra-tropics Temp DJF 2.66 4.84
North Hemisphere Extra-tropics Temp JJA 1.58 3.75
North Hemisphere Extra-tropics Precip DJF -0.164 15.7
North Hemisphere Extra-tropics Precip JJA -0.00845 8.37
South Hemisphere Extra-tropics Temp DJF 0.751 2.01
South Hemisphere Extra-tropics Temp JJA 1.12 3.00
South Hemisphere Extra-tropics Precip DJF -1.28 6.77
South Hemisphere Extra-tropics Precip JJA -0.223 8.30
Global Temp DJF 1.64 2.80
Global Temp JJA 1.59 2.73
Global Precip DJF 1.31 5.48
Global Precip JJA 0.656 5.62

Table 8.3: The minimum and maximum change for DJF and JJA seasons for tem­
perature and precipitation for the 2 degree set.
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although it is not clear whether it will get wetter or drier.

The regional distributions, in general, show a wider range of behaviour in tem­

perature and greater uncertainty in the sign of precipitation response than the 

histograms for larger areas. These results imply that that decision makers should 

not assume a robust relationship between the extent of global warming and regional 

precipitation response.
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Figure 8.3: The distribution of 8 year DJF (JJA) temperature (precipitation) is shown for the 2 degree set. Whilst all simulations 
show an increase in surface temperature, the ensembles disagree on the sign of precipitation change in all regions and seasons shown.



8.2.3 Grid—scale Impacts

The impact of a 2 degree rise in temperature is important on scales as fine (and 

finer) as the HadSMS grid resolution, as well as on regional scales. A land grid-box 

is typically of the order of 10, GQOfcm̂  in area for the HadSMS model. Although this 

resolution is insufficient for many detailed impact studies, grid-box information is 

used in downscaling or impact assessment model, potentially introducing further 

uncertainties. Such downscaling procedures are only useful for guiding decision­

makers when climate changes are simulated robustly on the grid-box level.

Figure 8.4 shows the median and size of the 10% -  90% central interval (this central 

range was chosen to give a conservative estimate of the diversity regional change 

and exclude any potential outliers that might have unphysical regional responses) 

for the 2 degree set for 8 year mean seasonal temperature change. The median 

change fields (DJF in panel (a) and JJA in panel (b)) show three features obscured 

when using GMST as the basis for decision-making:

1. Warming over land (~3-5 degrees) is greater than over the oceans (~ l-3  

degrees).

2. The magnitude of regional change varies considerably and, for the two degree 

set, simulations show up to 8 degrees of warming in Northern high latitudes’ 

DJF season.

3. There is considerable variability with season. The most marked change is in 

the Northern high latitudes, showing ~ 8 +  degrees warming in the DJF season 

and almost no warming in the JJA season.

The width of the central 80% interval is shown in panels (c) and (d) of Figure 

8.4. The width of this interval is typically 1-2 degrees over the oceans and 1-4 

degrees over land. Northern high latitudes, where the greatest warming occurs, 

show a range of up to 6 degrees in the DJF season. The model diversity of up to 4 

degrees in simulated land temperatures, based on the 2 degree set, is considerable.
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The magnitude of grid-box level variability is further examined in Figure 8.7 in 

Section 8.3.2.

There is a large difference between the percentiles shown in panels (c) and (d) 

Figure 8.4 in terms of impacts; differences that are invisible when using a global 

mean. The range of variability present within each grid-box is much larger than 

for regional means -  indeed, statistically, this must be case. It should also be 

remembered that the fields shown in Figure 8.4 represent contributions from many 

different simulations and thus the patterns of change may not be consistent with 

any individual model simulation.

There is more variability at the grid-box level than at the regional level. Information 

on fine spatial levels is often highly uncertain, especially for precipitation. This 

suggests that decision-makers should consider the possibility that large regional 

changes are consistent with apparently low levels of global mean change e.g. panel 

(b) of Figure 8.4 shows a median Summer temperature response over the USA of 

4-6 degrees Celsius for the 2 degree set. If these model results are taken to be 

indicative of the real world, adaptation strategies would be necessary even under 

modest levels of global warming.
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8.3 W hat is the difference between 2 and 3 de­

grees GMST?

8.3.1 Regional differences

Model diversity in the 2 degree set has been looked at from global to grid-box length 

scales. In this Section, a comparison is made between the 2 degree set and the 3 

degree set. Our ability to distinguish between simulations with different GMST rise 

is often implicitly assumed in impact studies Lynas (2007); Solomon et al (2007a); 

Stern (2006). There is an important question to what level we can distinguish 

between such scenarios of GMST rise. Here, the question is asked “What is the 

difference between the 2 degree set and the 3 degree set on a regional level?”

It is shown in this Section for the first time that there are regional changes in 

temperature and precipitation consistent with both the 2 and 3 degrees sets.

For each of the two different sets of simulations considered (the 2 degree set and 

the 3 degrees set) there is a distribution of temperature and precipitation changes 

at each region, as shown in Section 8.2. Where these distributions overlap, there is 

a chance that a randomly selected simulation from the 2 degree set will be warmer 

(or wetter) than a simulation randomly selected from the 3 degree set. The size of 

this overlap places a limit on the value of GMST as a target for mitigation. Where 

this overlap is significantly greater than 0 GMST rise is a less effective tool for 

policy-makers.

The probability of an overlap between sets of simulations with GMST rise of 2 and 3 

degrees Celsius in region r  is calculated using a bootstrap Efron & Tibshirani (1994) 

method as follows. One simulation is selected at random from the 2 degree set and 

one at random from the 3 degree set and it is recorded whether the simulations 

from the 2 degree set is warmer than the simulation from the 3 degree set. This 

process is repeated 100000 times to estimate the probability of the overlap between 

the 2 degree set and the 3 degree set. Repeating this process 100 times in no case
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gave a difference of greater than 1% in the estimates presented. This procedure was 

carried out for DJF and JJA temperature and precipitation (in the precipitation 

case the probability of a simulation from the 2 degree set being wetter than the 3 

degree set was estimated).

The probability that a randomly selected simulation from the 2 degree set will be 

warmer (wetter) than a randomly selected simulations from the 3 degree set for each 

region and season is shown in Tables 8.4 and 8.5. A value of 0 (or 100) indicates that 

there is no overlap between these distributions. A value close to 50 indicates that 

there is no evidence to suggest that a simulation from the 3 degree set is likely to be 

warmer (wetter) than a simulation from the 2 degree set. Table 8.4 shows that the 

overlap between distribution varies by region e.g. in Greenland there is a 5% or less 

chance of a simulation randomly chosen from the 2 degree set being warmer than 

a simulation randomly chosen from the 3 degree set, whereas in South Asia there 

is roughly a 25% chance. Table 8.5 shows the probability of a randomly selected 

simulation from the 2 degree set being wetter than a randomly selected simulation 

from the 3 degree set is close to 50%. For some regions, such as Central Asia there 

is more chance that a 2 degree simulation will be wetter than a 3 degree in the DJF 

season but drier in the JJA season. For precipitation there is typically a significant 

probability of overlap -  it is difficult to tell whether regional precipitation will be 

wetter for simulations from the 2 degree set than the 3 degree set. The presence of 

overlaps in these distributions puts limitations on our ability to assess the potential 

impact of climate change in terms of GMST rise.

It might be argued that the magnitude of overlap seen in Tables 8.4 and 8.5 can 

be reduced if only simulations that re-produce the current climate “accurately” are 

included and the range of behaviour might be reduced if a sub-set of simulations 

that perform well in-sample are analysed. In order to test this hypothesis, the 

probability of overlap was calculated for simulations with a low in-sample RMSE 

score in 7 different variables as calculated in Chapter 7, Section 7.5, calculated in
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a similar way to Stainforth et al (2005), by comparing model output in the 8 year 

mean field for a particular variable with observations. Such an ad hoc filter is not 

recommended as means to reduce model diversity as discussed in Chapter 7; results 

are shown here simply to demonstrate that this filter does not have a significant 

effect on results even if it were statistical meaningful.

For each variable, the probability of overlap was calculated for 10% of simulations 

within the lowest RMSE score. The probability of overlap was also found using the 

mean RMSE score over the 7 variables (calculated as the arithmetic mean of the 

RMSE in all variables). These probabilities are shown in Tables 8.6 and 8.7. There 

is no clear indication that constraining by in-sample RMSE will significantly alter 

the magnitude of overlap. Tables 8.6 and 8.7 show that the existence of an overlap 

is not sensitive to the accuracy of simulations in re-producing present day climate.

250



Region % 2° > 3° (D JF ) % 2° > 3° (JJA )
Australia 5 6
Amazon Basin 8 14
Southern South America 4 10
Central America 14 12
Western North America 9 6
Central North America 20 23
Eastern North America 16 11
Alaska 15 4
Greenland 5 3
Mediterranean Basin 6 10
Northern Europe 11 5
West Africa 4 9
East Africa 9 10
Southern Africa 5 4
Sahara Region 5 2
South East Asia 6 14
East Asia region 16 16
South Asia region 25 23
Central Asia region 9 11
Tibet 13 11
North Asia region 11 9
Antarctica 13 9

Table 8.4: TEMPERATURE. The probability (in %) that a randomly selected sim­
ulation from the 2 degree set showing more warming, for regional DJF temperature, 
than a randomly selected simulation from the 3 degree set.
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R egion % 2° > 3° (D JF ) % 2° > 3° (JJA )
Australia 36 63
Amazon Basin 39 75
Southern South America 37 56
Central America 64 67
Western N.America 37 46
Central N.America 41 73
Eastern N.America 45 66
Alaska 29 23
Greenland 11 33
Mediterranean Basin 46 71
Northern Europe 28 63
West Africa 65 55
East Africa 61 52
Southern Africa 59 47
Sahara Region 59 63
South East Asia 41 59
East Asia region 67 52
South Asia region 68 40
Central Asia region 51 38
Tibet 56 22
North Asia region 17 21
Antarctica 12 7

Table 8.5: PRECIPITATION. The probability (in %) that a randomly selected 
simulation from the 2 degree set rise simulates a greater increase in regional DJF 
precipitation, than a randomly selected simulation from the 3 degree set.
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Region NONE Temp SSP Precip Cloud SS HF SL HF HF LS Mean
Australia 5 5 3 3 6 6 5 6 5
Amazon Basin 8 10 12 12 6 8 8 9 9
Southern S.America 4 4 3 4 3 4 4 6 6
Central America 14 18 16 16 15 14 14 19 16
Western N.America 9 10 8 8 8 9 7 8 8
Central N.America 20 31 19 26 19 27 24 23 29
Eastern N.America 16 21 13 16 16 17 16 17 18
Alaska 15 11 17 10 15 13 15 10 17
Greenland 5 4 5 4 5 4 5 4 6
Mediterranean Basin 6 6 9 5 7 6 5 10 6
Northern Europe 11 12 8 10 13 11 12 14 12
West Africa 4 5 6 6 5 5 7 6 5
East Africa 9 14 13 13 8 13 14 12 11
Southern Africa 5 7 6 9 6 10 11 7 8
Sahara Region 5 6 10 8 5 7 8 7 6
South East Asia 6 11 12 10 8 12 11 10 8
East Asia region 16 21 20 17 14 17 17 18 18
South Asia region 25 35 33 38 27 37 35 34 30
Central Asia region 9 9 11 8 10 9 10 9 7
Tibet 13 18 20 15 14 18 17 13 13
North Asia region 11 10 9 11 14 9 10 13 10
Antarctica 13 21 18 16 11 19 18 12 17

Table 8.6: Probability (%) of a hotter region for simulations from the 2 degree set than the 3 degree set. Values are shown where both 
sets are constrained by in-sample RMSE in each of 7 different variables, and an aggregate over these 7. The constraining variables 
shown are Temperature, Sea Surface Pressure, Total Precipitation Rate, Total Cloud Amount, Sea Sensible Heat Flux, Sea Latent 
Heat Flux, Heat flux latent surface and the Mean Score over these 7 variables. Results are shown for the DJF season.
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Region NONE Temp SSP Precip Cloud SS HF SL HF HF LS Mean
Australia 36 42 38 39 39 40 37 42 38
Amazon Basin 39 37 37 36 40 38 42 37 40
Southern S.America 37 34 34 32 31 34 33 38 32
Central America 64 60 67 57 60 63 64 60 65
Western N.America 37 37 31 35 38 37 41 31 33
Central N.America 41 43 41 42 34 42 44 42 41
Eastern N.America 45 38 49 47 49 39 41 41 37
Alaska 29 29 33 23 29 30 30 32 33
Greenland 11 11 11 9 11 9 11 11 12
Mediterranean Basin 46 41 50 46 46 45 46 49 46
Northern Europe 28 32 28 27 28 32 31 29 28
West Africa 65 66 66 63 62 62 65 66 66
East Africa 61 61 58 62 58 60 61 61 64
Southern Africa 59 68 58 54 60 62 56 62 64
Sahara Region 59 56 63 62 53 60 63 56 62
South East Asia 41 36 41 38 39 36 37 42 41
East Asia region 67 72 71 70 68 73 71 72 75
South Asia region 68 72 70 76 67 77 74 72 70
Central Asia region 51 55 50 53 49 52 58 48 54
Tibet 56 58 56 61 53 58 62 52 58
North Asia region 17 19 20 18 18 15 15 18 14
Antarctica 12 13 11 8 0 12 10 10 19 12

Table 8.7: Probability (%) of a wetter region for simulations from the 2 degree set than the 3 degree set. Values are shown where both 
sets are constrained by in-sample RMSE in each of 7 different variables, and an aggregate over these 7. The constraining variables 
shown are Temperature, Sea Surface Pressure, Total Precipitation Rate, Total Cloud Amount, Sea Sensible Heat Flux, Sea Latent 
Heat Flux, Heat flux latent surface and the Mean Score over these 7 variables. Results are shown for the DJF season.



It has been shown in this Section that there are regional changes in temperature 

and precipitation consistent with both the 2 degree and 3 degree sets. Next, dis­

tributions of regional temperature and precipitation response are looked at in more 

detail. The magnitude of regional change is now shown not to be robust in some 

regions in either temperature or precipitation.

In Figure 8.5 the distribution of simulations from the 2 and 3 degree sets are com­

pared for the three regions used in Figure 8.3. The distribution of simulations from 

the 2 degree set is shown in blue and the 3 degree set in red. There is some over­

lap for all regions, seasons and variables shown. The distributions of temperature 

are more distinct (the overlap in JJA temperature for Australia, Central North 

America and Northern Europe are 6%, 23% and 5% respectively compared to 63%, 

73% and 63% for precipitation), with higher regional warming seen in all regions 

in the 3 degree set. In Australia, the extra one degree of GMST rise leads to a 

shift in the distribution of about 1 degree to the right, whereas in Central North 

America and Northern Europe, the difference between the distributions is a shift 

of almost 2 degrees. Such shifts in distribution are best interpreted alongside the 

associated uncertainties and their overlaps. It is interesting to note that in the 

Northern European region, warming is more extreme in the DJF season than in 

the JJA season, whilst in Central North American warming appears more extreme 

in the JJA season. Such seasonal differences can be important to decision mak­

ers e.g. it is thought that warmer summers will increase mortality rates though 

heat deaths, whereas mild winters reduce mortality rates though a reduction in 

cold-related deaths Parry et al (2007). Thus the winter warming seen in Northern 

Europe might be considered less worrying than the summer warming simulated in 

the Central North American region. These results further suggests that studies on 

the seasonal impact of climate change based on one region would not translate to 

other regions.

It is apparent from Figure 8.5 that regions such as Central North America or North-
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ern Europe must be prepared to adapt to more extreme regional warming than is 

expected on the global scale. This is a key result for decision-makers since it sug­

gests that significant adaptation planning might be still necessary in the presence 

of more modest levels of global warming.

The distributions for precipitation are less distinguishable than for temperature. 

For Australia (both seasons) and the DJF season in other regions, the two distri­

butions in Figure 8.5 almost indistinguishable (36% and 63% overlap in the DJF 

and JJA seasons respectively). It would be difficult, based on evidence from the 

HadSM3 model, to tell what difference a 3 hotter world would look like compared 

to a 2 degree hotter world. For DJF precipitation in Northern Europe, all simu­

lations in the 3 degree set show an increase in precipitation. Although this result 

might not be robust when compared to other models or larger ensembles, the CPDN 

PFE provides evidence to support the assumption of an increase in precipitation 

(anywhere up to a 50% increase) for this region and season. The assumption of an 

increase in precipitation would not appear to be justifiable for say, JJA precipita­

tion over Australia since the ensemble is not consistent on the sign of the change. 

Thus, it may not be necessary to develop different adaptation decisions reliant on 

regional precipitation change depending on a forecast changing between 2 and 3 de­

grees of warming -  in either case we can not say whether precipitation will increase 

or decrease, and the distributions of regional behaviour are similar based on the 

simulations examined here.

256



X 2C02  Au&troliû c h a n g e x i C O i '  C e n t io l  N or th  A m e r ic a  c h o n g e

toÜT-4

0. 4

0.2

0.0
0 2 6 8 10

0 .4

0 .3

0.2

0.0
0 2 6 8 104

0 .0 8

0 .0 6

0 .0 4

0.02 
0 00

0 2 64 8 10

0 .0 5

0.00
0 6 .5 104

D.JF T e m p e ra tu re  C h o n g e  (K i JJA  T e m p e ro tu re  C h a n g e  (h )

0 .2 5

0 .20

0 .1 5

Ii 0.10
0 .0 5

0 00
- 5 0  0 50  1 0 0  1 50  2 0 0

21-/ 3 t  GMST
D jF  T e m p e ra tu re  C h a n g e  [ K)  ^

21-/ ô t  GMST
J.JA T e m p e ra tu re  C h a n g e  (l<)

D.JF Pi-ecip C h o n g e  (%)
- 5 0  0  5 0  10 0  1 5 0  2 0 0

JJA Precip. C han.ge (°5;

0 .3 0

0 .2 5

0.20

Ià: 0 .1 5

0.10

0 .0 5

0.00
- 5 0  0 5 0  10 0  150 200

DJF P re c ip  C h o n g e  (%) 

X2CQ2 N o r th e rn  E u ro p e  d ia n .g e

0.20

0.10

0 .0 5&
0.00

0 2 8 10

0.20

0.10

0 .0 5

0.00
c> 104 86

DJF T em per a tu l e  C h o n g e  (L j
2 F /3 K  GMST

J.JA T e m p e ra tu re  C h a n g e  (K)

- 5 0  0  5 0  100 150 2 0 0
DJF P re c ip  rShange (%)

0.2

0,0
- 5 0  0 5 0  1 00  1 5 0  2 0 0

0 .0 5

0.00
5 0 0 5 0  1 0 0  1 5 0  2 0 0

JJA  Pi-ecip C h o n g e  t.%)

JJA P re .;ip  iChonge (%)

Figure 8.5: The distribution of 8 year DJF (JJA) temperature (precipitation) is shown for the 2 degrees set (blue) and the 3 degrees 
set (red). There is often a large overlap between the two ensembles, especially for precipitation. This shows that the 2 degree set and 
the 3 degree set are not always robustly distinguishable.



8.3.2 Grid—scale differences

Figure 8.7 shows histograms, similar to those shown on regional scales, for three 

selected grid-boxes; specifically those corresponding to the location of the cities of 

London (UK), Boulder (Colorado, USA) and Jakarta (Indonesia) (see Figure 8.6) 

although the grid-boxes are much larger than the cities themselves. The scale on 

the x-axis differs from Figure 8.5 in light of the increased range in precipitation 

seen at the grid-box level. Changes in temperature are again robustly positive for 

these three grid-boxes, with the 3 degree set typically showing greater warming 

than the 2 degree set, with a probability of overlap in DJF temperature of 12%, 

22% and 6% for DJF temperature for the London, Boulder and Jakarta grid-boxes 

respectively. The upper end of warming in the boulder grid-box is over 8 degrees 

for the 3 degree set. Precipitation change is highly variable in the London and 

Boulder grid-boxes e.g. JJA precipitation change in Boulder ranges from a greater 

than 50% reduction to more than 100% increase for both sets of simulations. The 

Jakarta grid-box shows massively different responses in precipitation -  from almost 

100% decrease (almost no rainfall at all) to over 200% increase. Such variability is 

likely due to Jakarta lying in between rival patterns of change in the region, thus the 

extreme uncertainty does not suggest changes on a larger scale are unintelligible. 

The 3 degree set simulates precipitation to be wetter in summer and drier in winter, 

although there is much overlap in these distributions e.g. an overlap of 39%, 48% 

and 35% in DJF precipitation for the London, Boulder and Jakarta grid-boxes 

respectively. Note that Boulder shows a much wider range of values for temperature 

than Jakarta, but a much tighter distribution in precipitation. An area may show 

robust results in one variable and not another.

It is misleading to use such a wide range of model behaviour to drive downscaling 

models or impact assessment in areas such as Indonesia on the basis of these data. 

The most reasonable assessment of such information is that in many areas, on a 

grid-box level, the HadSM3 model versions used here do not allow us to make
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statements about changing precipitation. In some areas and variables, models can 

rule nothing out.

5 0

0

5 0

0 100 200 300
L on g itu d e

Figure 8.6: The three grid-boxes selected to look at local impacts are shown. These 
grid boxes are called London, Boulder and Jakarta since they contain those cities. 
It should be noted that the grid-boxes are much larger than the cities they contain.
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Figure 8.7: The distribution of 8 year D JF/JJA  temperature/precipitation is shown for the 2 degree set (blue) and the 3 degree set 
(red). The grid-boxes that contain London, Boulder and Jakarta are shown. Note that the cities themselves are much smaller than 
the grid-boxes, which are typically 50,000A:m  ̂ in area.
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Figure 8.8: The median change in temperature (degrees Celsius) is shown in panel (a) and precipitation (mm per day) is shown in 
panel (b) over the 3 degree set. Also shown is the difference between this and the median temperature rise in temperature for the 2 
degree set in panel (c) and precipitation in panel (d).



Having examined the variability within the 2 and 3 degree sets, Figure 8.8 shows 

the median change in GMST (panel (a)) and total precipitation rate (panel (b)) 

for the 2 degree set simulations and the difference between these simulations and 

the 2 degree set in panels (c) and (d). As expected from previous analyses, the 

regional distribution of warming shown in panel (a) is for oceans to warm the least 

(typically by 1-3 degrees), and the Arctic region the most (typically by 6-7 degrees 

Celsius). In general, inland regions warm by more than coastal regions. These 

patterns of regional temperature change for simulations with a fixed GMST change 

are consistent with the regional changes seen in the standard HadSM3 ensemble in 

Chapter 6 and across the CPDN grand ensemble in Chapter 7. Panel (c) shows the 

diflference between the median warming for the 3 degree simulations minus the 2 

degree simulations. There are few areas that show a negative value (negative values 

indicate the median in the 2 degree set is greater than the median in the 3 degree 

set) and considerable areas show a difference of less than 0.5 degrees, particularly 

in the ocean. The median of the 3 degree set is up to 3 degrees warmer than the 2 

degree set in the Arctic where the most rapid warming occurs.

Panels (b) and (d) in Figure 8.8 show the same statistics, but for precipitation. 

It is notable that, unlike temperature, the median change in precipitation (panel 

(b)) under a doubling of CO2 concentrations is negative over large areas. This 

variability in local response is most noticeable around the tropics; the equatorial 

pacific and the Indian sub-continent show an increase of precipitation by more than 

1 mm per day, whereas the East coast of Brazil shows a fall of more than 1 mm per 

day. The kind of regional variety shown here is lost in a global mean, with many 

of the features in this field cancelling each other out. This, together with basic 

counting statistics, explains how a tight distribution of global mean precipitation 

is consistent with large uncertainties in local changes. An important conclusion 

from this analysis is that global mean values destroy impact-relevant information 

on regional and local scales. One example of this is that at the global mean level

262



a misleadingly small change in precipitation (about 0-5% increase) hides changes 

of 50% or more at the regional level and over 200% at the grid-box scale. These 

changes are vital for adaptation planning and suggest that global mean metrics are 

of limited use to decision-makers.

8.4 Linearity of Regional Response

It has been proposed that regional climate response to forcings scales linearly with 

GMST change e.g. “the geographical pattern of the temperature, precipitation or 

other response is assumed to be independent of the forcing, the amplitude of this 

fixed pattern being proportional to the global mean change” Ruosteenoja et ai

(2007), and “Seasonal temperature and precipitation have been shown to scale ap­

proximately linearly with the magnitude of global warming when analysing ensem­

ble average change signals from multiple models” Diffenhaugh et al. (2007) and 

references therein. Other references to the linearity of regional climate change in 

proportion to global mean temperature change are made in Giorgi (2008); Solomon 

et al. (2007a). Whilst the CPDN experiment does not allow a consideration of the 

assumption of linearity to different magnitudes of forcing since the same doubled 

CO2 forcing scenario is used in all simulations, a similar question can be inves­

tigated -  do regional responses scale linearly with GMST in the CPDN PPE? If 

this question can be answered in the positive it implies that it is possible to infer 

patterns of regional change based on GMST alone -  this would save experimen­

tal resources (there is less need to store regional data or to explore the patterns of 

change within simulations with different values of GMST change) and would greatly 

increase the utility of global mean statistics as a basis for decision-makers. If there 

is evidence that this question should be answered in the negative it suggests that 

regional behaviour can be non-linear relative to global changes and that these re­

gional responses can not be inferred directly from global means. Since the CPDN 

grand ensemble can be divided into sub-sets of simulations with similar levels of
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GMST change, the robustness of regional response can be looked at across different 

model versions and values of GMST rise.

Regional response factors are defined in this Section, following Giorgi (2008), as 

the proportional change in regional climate response in seasonal temperature and 

precipitation with respect to GMST change. The regions used relate to the Giorgi 

regions Giorgi & Francisco (2000), as well as tropics, extra-tropics. Northern and 

Southern hemispheres. These regional response factors, for data set i and re­

gion R  are calculated as follows: define the 8 year mean global mean temperature 

change from the doubled CO^ phase to the control phase as Ag and the regional 

change (in temperature, or precipitation) as Ri is estimated by the ensemble 

mean regional change proportional to the ensemble mean global mean temperature 

change. This regional factor is calculated here for four different sets of data with 

different values of GMST change -  the standard HadSMS model ICE and three 

sets of simulations with global mean temperature changes of 2±0.1, 3±0.1, 4±0.1 

degree with 64, 402, 2441 and 795 available simulations respectively. The regional 

response for set i is defined as:

iîi =  ^  (8.1)
^G,i

where A r î denotes the ensemble mean change in region R  for data set i ior i = 

1,2,3,4 and Ao,i denotes ensemble mean GMST change. These regional response 

factors are calculated for 8 year mean D JF/JJA  temperature (panels (a) and (b)) 

and D JF/JJA  precipitation (panels (c) and (d)). Figure 8.9 shows these regional 

response factors for four sets of data, based on the 64 member standard HadSM3 

model and sub-sets of simulations with 2, 3 and 4 degrees of GMST change, re­

spectively.

Estimates from the standard HadSM3 IGE are shown in black, from simulations 

with 2 degrees GMST change in blue, 3 degrees GMST in green and 4 degrees in 

red. Vertical black bars are shown for each region and set of simulations, denoting
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Region Code Region
aust Australia
amsa Amazon Basin
ams Southern South America
amc Central America
amnw Western North America
amnc Central North America
amne Eastern North America
amal Alaska
grnl Greenland
eum Mediterranean Basin
eun Northern Europe
afw West Africa
afe East Africa
afs Southern Africa
afsh Sahara Region
asse South East Asia
ase East Asia
asso South Asia
asc Central Asia
astb Tibet
asn North Asia
ant Antarctica
hmn North Hemisphere
hms South Hemisphere
trop Tropics
hmnt North Hemisphere Extra-tropics
hmst South Hemisphere Extra-tropics

Table 8.8: Region codes and names for the 27 areas used to calculate regional 
response factors.

±2 standard deviations in the estimate of the mean regional response. Regions are 

denoted using the table of region codes shown in Table 8.8.
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Figure 8.9: Regional response factors for 27 regions shown in Table 8.8 in four different variables. DJF temperature response factors 
are shown in panel (a), JJA temperature in panel (b), DJF precipitation in panel (c) and JJA precipitation in panel (d). Estimates 
from the 2 degree set of simulations are shown in blue, the 3 degree set in green and the four degree set in red. Estimates from the 
individual simulations from the standard HadSMS ICE are shown in black. The two black lines show the minimum and maximum 
regional response in simulations from the standard HadSMS ICE. Vertical bars show 2 standard deviations in estimates of the mean 
regional response from each set.



Statistically, simulations with different values of GMST rise produce different 

estimates of the mean regional response rates (in many regions the estimates differ 

by over 2 standard deviations). The statistical significance is largely due to the low 

standard deviation of estimates in the mean since large sample sizes are used to form 

these estimates. It should be noted that even apparently small differences in esti­

mates of regional response factors will multiply when estimating regional response 

for higher GMST change e.g. a difference of 1 in regional response factor estimates 

between amnc (Central Northern America) temperature response (panel (a)) relates 

to a 5 degree Celsius differences in estimated regional temperature under 5 degrees 

of global warming. For the larger areas representing the tropics, extra-tropics and 

hemispheric means the response factors are more consistent than for smaller areas. 

In precipitation (panels (c) and (d) of Figure 8.9)the regional response factors es­

timated from individual simulations in the standard HadSMS model do not show 

a consistent sign of response (the upper and lower black lines often cover the lines 

y  =  0). Furthermore, estimates of regional response from the different sets do not 

always agree on the sign of regional response. Regional precipitation change can not 

be robustly estimated where different sets disagree on the sign of regional response 

factors.

The results in this Section show evidence that the assumption of linear regional 

response to global mean changes is not relevant for precipitation response and there 

are significant uncertainties in the estimation of regional temperature response in 

many regions. These results show that GMST can not be assumed to be related 

in a linear way to regional responses in temperature and precipitation, although 

non-linearities are larger in some regions than in others.

8.5 Discussion

Even when model GMST is known, significant regional “uncertainties” remain, par­

ticularly for precipitation. In all the regions (of area comparable to or larger than
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many nations) presented it is not clear whether precipitation will increase or de­

crease for the 2 degree set.

The difference between the 2 and 3 degree sets is not clear for precipitation -  in 

some regions and seasons the distribution shifts further from 0 (wetter or drier than 

the 2 degree ensemble), in others it shifts towards 0 (less significant change than for 

the 2 degree ensemble). This may suggest a non-linear “dose-response” to rising 

temperatures in the model. For example, in Figure 8.5, JJA precipitation in North­

ern Europe increases under the 2 degree set, then shifts back towards 0 for the 3 

degree set. This result may be peculiar to this model, or a robust feature over state- 

of-the-art climate models in general. It is difficult to compare such distributions 

to other models since there are no other suitably large ensembles amenable to the 

approach used in this Chapter^. Nonetheless, it is clear that the distributions shown 

in this Chapter should not be over interpreted and may contain model-specific fea­

tures or biases.

GMST is commonly used in policy discussion as the key index for climate change 

Parry et al. (2007); Stern (2006). The use of GMST change as an index for cli­

mate change impacts is, at best, highly restricted and can even provide misleading 

information^. New approaches to communicating the results of large ensemble ex­

periments would help motivate more robust impact assessment and aid better policy 

formulation.

The results presented in this Chapter also pose questions relevant to those inter­

ested in constraining model output. Whilst constraining GMST changes might be 

useful for reducing certain uncertainties, significant regional uncertainties remain. 

Attempts to constrain GMST are thus more useful for mitigation strategies that 

operate typically on global length scales (such as targets for global carbon emis­

sions) than regional or local adaptation decisions.

^To form a distribution for a narrow range of GMST either requires a very large ensemble of 
simulations or a specially designed experiment.

În some model regions, a 2 degree increase in GMST might lead to over 6 degree increases in 
temperature or more. Thus, limiting GMST to a certain level may not restrict regional warming 
to sustainable levels.
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The data presented in this Chapter has been in terms of an 8 year seasonal mean. 

Finer temporal scales would provide more relevant for many impact studies in order 

to evaluate an increased risk of flooding, droughts, heat waves etc. Such data is 

unavailable for the CPDN data set but, were any future large ensemble experiments 

to record such information^, the methods presented in this Chapter would be use­

ful for assessing how robust certain impact studies might be. It is only with large 

ensembles of climate models that the tails of distributions can be evaluated. Small 

ensembles do not allow robust statements regarding the tails of distributions.

The implications of the results presented in this Chapter are now discussed in terms 

of mitigation and adaptation decisions.

8.5.1 M itigation

There is much uncertainty in how GMST will respond to increasing concentrations of 

GHGs Murphy et ai (2004); Stainforth et al (2005). GMST and CS are often used 

as an index of this change. According to the IPCC AR4 Solomon et al (2007a), the 

likely GMST rise over the next 100 years will be between 1.5 and 4.5 degrees Celsius 

(range of best estimates from 6 different emissions scenarios), with a best guess of 

3 degrees. Studies suggesting that increases in GMST will have serious social and 

economic costs Parry et al (2007); Stern (2006) have prompted discussion as to 

what is an acceptable level of warming for a given cost of mitigation measures. 

The extent to which mitigation policy relating to global mean temperature will 

limit regional changes has been shown to be unclear in this Chapter. There are 

uncertainties in determining how policy will relate to emissions, how emissions will 

relate to GHG concentrations, how quickly GHG will warm the Earth and how 

GMST relates to climate impacts. It is this last link that is dealt with in this 

Chapter e.g. if GMST were to rise by 2 degrees Celsius, what would this mean

^Studies, such as those contributing to the IPCC Fourth Assessment Report, do record such 
data but the ensembles typically consist of at most 9 members, too few to carry out the analysis 
presented in this Chapter.
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for temperature and precipitation changes in different regions? Under the scenario 

of a 2 degree GMST rise, regional impacts and uncertainties therein have been 

analysed using data from the CPDN experiment. The results from this Chapter 

show that mitigation of regional risks is difficult given the rapidity of simulated 

warming in some regions (typically over twice as fast as CMST rise in Northern 

high latitudes) and the significant uncertainties in regional response. For a CMST 

rise of 2 degrees Celsius, there can remain significant risks of exceeding 6 degrees 

or more of regional temperature change. It should be noted that this Chapter has 

only considered CMST rises of up to 4 degrees Celsius, whilst the CPDN PPE does 

not rule out values of CS of over 10 degrees Celsius. Regional responses from high 

CS simulations are not studied here since high CS simulations have not reached an 

approximate equilibrium by the end of the experimental phase^.

8.5.2 Adaptation and Impact Assessment

It has been shown in this Chapter that knowing CMST change can not be robustly 

translated into regional changes in temperature and precipitation. In many regions, 

in key variables, there are large uncertainties for a given CMST change, hence it 

would be misleading to suggest that certain regional impacts will occur at a partic­

ular CMST rise. For example. Table 8.1 shows that for a 2 degree CMST rise, the 

range of Greenland temperature change is from 1.98 to 6.78 degrees Celsius in the 

winter season. Such differences in temperature could lead to very different futures 

for the Greenland ice sheet and highlights the need to consider the regional vari­

ability associated with CMST rise. Such events can occur at a variety of different 

CMST increases although risk of regional impacts can change with CMST. More 

generally, local decisions based on CMST would need to be robust to the diversity 

of behaviour seen here, even assuming the HadSMS model used to generate these

^100% of simulations in the 2 degree set have 8 year GMST rise of more than 90% of CS. This 
percentage drops to 70% and 15% for the 3 and 4 degree sets and 0% for simulations with over 5 
degrees of GMST rise, as explained in Section 4.4.1 and shown in Figure 4.6
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distributions is perfect.

It has been shown in this Chapter is that different regions can require very different 

adaptation strategies. HadSMS suggests that some regions are likely to face far 

more extreme climate changes that others e.g. Figure 8.5 has shown that simulated 

warming of up to 10 degrees in Central Northern America is consistent with 5 de­

grees of global warming, whilst Australians would expect half this level of warming. 

It is vital, when planning adaptation strategies, to consider the regional and sea­

sonal differences in climate change. An important result in this Chapter is that a 

wide range of regional responses can be consistent with the same variable, season 

and GMST change. This suggests that adaptation strategies should be flexible in 

order to account for a wide range of regional changes in climate even when GMST 

is assumed to be known.

Presenting a distribution of simulations, as in this Chapter, also provides decision 

makers with some (albeit rudimentary) idea of model diversity; it is important to 

consider not only expected changes but the the chance of extreme levels of regional 

warming (e.g. 6 degrees or greater).

It has been shown that GMST can not be used to robustly infer regional changes.

8.6 Conclusion

Data from the CPDN experiment has been used here to look at regional model 

diversity for a given level of global warming. The large range of regional behaviour 

present suggests that GMST has limited utility as an index for adaptation policy 

and impact assessment. Using an ensemble of simulations as a distribution, rather 

than simply taking a mean, and looking at changes on the length scales relevant to 

impact studies provides a more relevant framework for making robust statements 

of climate change.

New results presented in this Chapter are:

• Regional changes can differ significantly (over 6 degrees Celsius for some re-
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gions in 8 year mean seasonal temperature) for simulations with the same 

global mean temperature change.

• The spatial scales of model diversity have been quantified using the CPDN 

PPE. The magnitude of regional uncertainties for a given GMST change has 

been shown to vary with length scale and variable. The distribution of re­

gional change has been used to present uncertainties in sub-global response 

on a variety of length scales - global, hemispheric, tropical and extra-tropical, 

regional and local. Uncertainties in precipitation are large -  the sign of change 

is uncertain on length scales as large as many nations in most regions looked 

at.

•  The distributions of regional change have been contrasted between the 2 and 

3 degree sets. The magnitude of overlap between these distribution is large; in 

some regions and variables this overlap is over 20% for temperature and close 

to 50% in precipitation, indicating that it is not possible to robustly ascribe 

regional responses based on GMST.

• Even if GMST is constrained to within 0.2 degrees Celsius, significant regional 

uncertainties would remain. It follows from this result that global mean con­

straints are of limited use and that methods based on the patterns of change 

might be preferable.

8.7 Additional

Data for this Chapter has been taken from the CPDN experiment, as described in 

Chapter 4, Section 4.4.3. Data was available on regional and grid-box scale as 8 year 

seasonal means for each experimental phase. Analysis is based on these 8 year mean 

temperature and precipitation fields and climate changes are calculated by taking 

the difference between the last 8 years of the doubled CO2 and control phases. This 

approach assumes that the model simulations are roughly in equilibrium during
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these years.

Figure 8.10 shows the time series of annual GMST for all three phases for the 2 

and 3 degree sets. The distribution of these sets is shown in the left panels. The 

quality controlled ensembles are stable during the calibration phase, showing a little 

more variability in the control phase, then a marked increase in GMST at the start 

of phase 3 at the point of CO2 doubling. Whilst all simulations may not have 

converged to equilibrium by year 38, it appears that most of the transient warming 

has already taken place by year 38 in the final phase. It is assumed in this Chapter 

that the last 8 year mean of phases 2 and 3 provide an indicative estimate of regional 

climate changes.
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the point of CO2 doubling (year 30) and stabilises by the end of the final phase. 
Data on regional climate changes was available for the final 8 years of each phase.
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Chapter 9

Conclusion

9.1 Overview

This Chapter summaries the results presented in this Thesis and interprets them 

as implications for climate science and decision makers. Possible ways for climate 

science to move towards providing more decision-relevant information are proposed 

and discussed.

Section 9.2 summarises results concerning the different types of uncertainty present 

in climate predictions. Important results from Chapters 6, 7 and 8 are explained 

in light of three different categories of uncertainty. The implications of the results 

presented in this Thesis are explained in Section 9.3. Section 9.4 gives suggestions 

for further work that leads directly on from this Thesis.

9.2 Uncertainties

The four main categories of uncertainty are presented in Chapter 2; forcing un­

certainty, initial condition uncertainty, model uncertainty and model inadequacy. 

Forcing uncertainty is not dealt with in this Thesis. The three remaining uncer­

tainties are listed below, together with the insights that arise from this Thesis:
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9.2.1 Initial Condition Uncertainty

Initial Condition Uncertainty (ICU) (Chapter 6) has previously been little studied 

due to pressures on computational resources and the widespread assumption that 

the magnitude of ICU is small on climatic time and length scales. This assumption 

has been shown to be significant on some length and time scales in Chapter 6. 

Whilst the question of the division of computational resources must depend critically 

on the goals of each particular experiment, it can not be assumed a priori that ICU 

is small. It has been shown that the magnitude of ICU can be large on regional 

length scales in key variables. Differences on a grid-box level of up to 10 degrees 

Celsius are shown in 8 year mean DJF temperature change due to doubling of CO2 , 

arising from perturbation of ICs alone in Section 6.3. Furthermore, it is argued that 

ICEs are important tools in the analysis of the distribution of climate, providing the 

ability to evaluate the internal variability of models and differentiate more robustly 

the differences between models and scenarios (Section 6.4).

9.2.2 Model Uncertainty

Model uncertainty is a result of the existence of a diversity of climate models. 

There are different ways to estimate model uncertainty; it is possible to use a multi­

model ensemble or to perturb parameters in a single structural model to understand 

inter-model differences. Efforts to estimate model uncertainty are hampered by the 

availability of different structural models and their lack of independence. It is not 

possible to fully explore model uncertainty since there is no definable class of models 

that can be exhaustively sampled.

The parameter perturbation approach is used in Chapter 7 using data from the 

CPDN experiment. Using a set of parametrically “de-tuned” Bender (2008); Stocker 

(2004) models might give a more realistic view of predictive uncertainties than tak­

ing a model with a single set of parameters, tuned on past observations Allen et al.

(2006). The choice of data set was further motivated by the availability of large
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amounts of climate model data -  45644 simulations have been presented in this 

Thesis. Access to a large ensemble of climate models simulations allows for a more 

thorough analysis of model uncertainties than has previously been carried out. For 

comparison, the IPCC Fourth Assessment Report Solomon et al. (2007a), the largest 

attempt to synthesise research on climate change, brought together a total of only 

58 simulations from 14 different modelling centres for an analysis of 20th Century 

climate; similar sized ensembles were also used to simulate future climate changes. 

The analysis of model uncertainties in the CPDN experiment yielded uncertainties 

of an unprecedented magnitude. In particular, the range of values for estimated 

Climate Sensitivity (CS) ranged from 0.9 to 16.4 degrees Celsius, as presented in 

Chapter 7. Chapter 7 also examines the problem of constraining model uncertainty 

in light of statistical good practice. It is shown that this problem is non-trivial and 

the results of constraining can depend on subjective choices such as which variable 

to use when evaluating simulations’ in-sample performance. The results of Chapter 

7 suggest that important aspects of model behaviour, such as CS, are not robust 

to changes in parameter values. The parametrically de-tuned HadSM3 model can 

provide very different estimates of CS and regional climate changes, suggesting that 

the value of CS in the standard HadSMS model is misleadingly robust due to the 

tuning of parameter values.

9.2.3 Model Inadequacy

Model inadequacy is a result of the fact we do not have access to a perfect cli­

mate model, even if such a model might exist. All climate models are necessarily 

inadequate in some way due 1) a lack of accurate and complete representation of 

physical processes and 2) low resolution of model features and a lack of scientific 

understanding. The inadequacy of models is difficult to evaluate given the lack of 

out-of-sample climate data; other methods must be used to estimate the potential 

effect of model inadequacy on the utility of predictions. The quality of in-sample
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fit and the diversity of model predictions provide lower bounds on out-of-sample 

model performance. A model not evaluated on out-of-sample data and then used 

to extrapolate can not be established as adequate, although a model can be shown 

to be inadequate by failing in-sample tests. Thus, climate predictions can only ever 

be conditional and provisional in nature.

9.2.4 Constraining uncertainties and regional climate re­

sponse

The large range of behaviour in the CPDN ensemble is examined in Chapter 7. 

Chapter 7 discusses three methods that can be used to constrain this range of be­

haviour demonstrates some of the difficulties in constraining mode diversity in a way 

consistent with statistical good practice. The range and distribution of estimated 

CS is dependent on choices such as which method to use and which variables are 

looked at (Section 7.5).

Leading on from the results of Chapter 7, Chapter 8 looks at sets of simulations 

within a narrow range of GMST change. By choosing simulations with a specific 

value of GMST it is possible to examine the regional variations that are present 

when GMST change (or CS) is tightly constrained at a global level (in this case, to 

within 0.2 degrees Celsius). It is shown in Chapter 8 that there are still significant 

regional uncertainties present for simulations with similar GMST changes. This 

result holds deep implications for policy-making and model-based decision support 

(Section 8.5). Whilst the sign of temperature change is everywhere positive, the 

magnitude of regional temperature change can vary by over 4 degrees Celsius for 

simulations with very similar GMST change. In almost every region, the sign of 

seasonal precipitation change is uncertain. These results imply a limit to our ability 

to answer the question “What does a 2 degree world look like?” , and therefore the 

relevance of setting targets in terms of GMST. Furthermore, it is not clear how to 

apply pattern-scaling techniques in light of uncertainties in the direction of regional

278



response.

9.3 Implications

The results of this Thesis have implications for the future of climate modelling 

and for the manner in which climate models might be used to inform policy. In 

particular, it has been shown in Chapter 3 that the uncertainties involved in climate 

prediction are large and have not been fully explored or well communicated in the 

past.

The analysis of climate model data carried out in Chapters 3, 5, 6, 7 and 8 suggests 

that:

1. Climate scientists need to improve their communication of uncertainties. It 

is important for decision makers to be aware of the relative confidence they 

should place in different aspects of climate science. This can only take place 

with a transparent disclosure of uncertainties on the behalf of climate scien­

tists.

2. The internal variability of climate models can be large, especially on small 

spatial scales. ICEs can be used to evaluate such uncertainties and provide 

an estimate of the robustness of model response. Large ICEs are increasingly 

necessary as climate modelling experiments move from equilibrium to tran­

sient simulations where a single, long, simulations can not be used to reliably 

estimate a model’s internal variability.

3. Attempts to reduce uncertainties should be based on spatial patterns of change 

and not just global mean statistics, such as GMST or CS. It has been shown 

Allen (1999); Hegerl et al. (1997) that it is preferable for the purposes of the 

detection and attribution of climate change to look at the spatial patterns 

of change rather than global means. The analysis of spatial climate changes 

might be particularly useful in reducing the regional uncertainties that remain
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when constraining climate change using global means. The large regional 

uncertainties presented in Chapter 8 suggest that spatial constraining of the 

pattern of climate change Forest et al. (2007) is an important avenue of future 

research.

4. Downscaling methods that interpret climate output with impacts models 

should take into account the diversity of model outputs. Downscaling and 

integrated modelling can only provide robust information once the range of 

climate simulations is taken into account. Since uncertainties will cascade 

as more layers of modelling are included, local impact assessment should at 

least include the range of behaviour simulated by climate models. Studies 

that treat changes in climate as known can not offer robust results since they 

do not reflect the inherent uncertainties in climate predictions. It is highly 

recommended that the sensitivity of impact studies to the assumptions about 

climate change is included.

5. Policy might better aim to be robust to uncertainties either in the type of 

decisions made or by remaining flexible. Decision making in the presence of 

uncertainty is a significant field of research in itself Jordaan (2005); Tversky & 

Kahneman (1974) and will not be dealt with in any detail here. Nonetheless, 

due to the inherently provisional nature of climate science it is necessary for 

decisions to remain flexible, taking into account the relative costs and benefits 

of action and in-action Stern (2006). In general, over-confident actions based 

on incomplete information are likely to be sub-optimal; it is important for cli­

mate science to provide all the information relevant to the problem, including 

a full treatment of uncertainty.

6. Monitoring climate is important, especially in ascertaining which data gives 

the best indication of future climate changes. The signal of climate change 

can be stronger in certain regions, variables and seasons. For example, the
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HadSMS model suggests that winter temperature change will be most signif­

icant over land in the high Northern latitudes. If this result is robust across 

structural models, this may suggest that the signal of climate change could be 

more robustly and quickly distinguished from noise that using a global mean.

Section 9.4 presents further work that leads on from this Thesis.

9.4 Further Work

This Section highlights some areas of further work that lead on from this Thesis. 

Three main directions of research are suggested here; 1) Extension of results here 

to different structural models and to transient experiments, 2) Design of climate 

modelling experiments to provide optimal use of resources and improve relevance 

to decision makers and 3) In general, a more focused collaboration with decision­

makers in order to investigate how climate models can be of most practical use. By 

working with the end-users of climate model output climate scientists can improve 

the relevance and communication of results and ensure their work has be most long­

term impact on important decisions. Such a collaboration between the providers 

and users of climate science would be helped by the methods presented in this 

Thesis for evaluating uncertainties and an honest interpretation of the robustness 

of model output.

9.4.1 Transient Experiments

A key extension of this work is to check how robust key results are when looked at 

under different model structures and in the case of transient simulations. It is ex­

pected that some of the results presented in this Thesis are features of the HadSMS 

model and that other models will behave differently. Since there are no other PPEs 

of similar size to the climateprediction.net experiment, many of the methods used 

in this Thesis are not currently possible for other structural models. For example, it
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is not possible to look at the magnitude of ICU without large ICEs. Small ensemble 

size is problematic for a complete evaluation of model uncertainties.

An alternative CPDN experiment that uses transient forcings could be a more 

fruitful source of data. This new experiment, that uses the HadCM3 model with 

transient increases in GHGs to simulate climate from 1920-2080 using a perturbed 

physics grand ensemble. At the time of writing over 20,000 simulations had been 

completed in this transient experiment. The transient experiment allows further 

evaluation methods to be used since model time series can be compared to obser­

vations. In the CPDN equilibrium experiment, it was not possible to compare time 

series due to the experimental design. Comparing model output to observations will 

allow for improved understanding of the dynamics of the HadCMS model. Of par­

ticular relevance is the concept of shadowing Daron & Stainforth (2008); Gilmour 

(1999); Judd (2008b); Sauer et ai (1997). Whilst different definitions exist, a model 

can be said to shadow noisy observations if it stays close to the noisy observations 

for a period amount of time. The ability of a model to shadow to within at least 

a useful degree of precision (this is know as ^shadowing Smith (2001)) is an im­

portant guide to its ability to match the dynamics of the underlying system. Other 

methods can be used, based on likelihood and probabilistic measures of model skill. 

Measures of model performance based on the similarity between model behaviour 

and the observed dynamics of the Earth’s climate system hold potential to inform 

questions on the value of model predictions. A deeper understanding of systematic 

model errors can also help focus model development.

Another area of research that is likely to become very useful to decision makers is 

an evaluation of the short term (yearly to decadal) performance of state-of-the- 

art climate models. There are proposals to produce more forecasts on time scales 

of up to 10 years using current state-of-the-art climate models Keenlyside et al.

(2008); Troccoli & Palmer (2007). Since predictions use information in the current 

state of climate and its internal variability, there is reason to believe they might
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prove more accurate than simulations made without this information. The results 

will likely depend on how well observational analyses can be translated into model 

space. Yearly to decadal predictions have the advantage that they can be checked 

against observations in the not too distant future, unlike forecasts for 2080 and 

beyond or equilibrium experiments. Hindcast performance and the extent of model 

diversity can give an idea of the likely robustness of these forecasts.

9.4.2 Experimental design

Climate modelling experiments have focused on understanding the climate system 

from a scientific viewpoint. Attention is now turning to using climate models to 

inform decisions on climate impacts and mitigation policy. The relevance of climate 

science to such decisions might be improved in a number of ways by focusing models 

on pragmatic decision support rather than scientific understanding^. The precise 

form model improvement should take will not find a unique solution since decision­

makers’ needs vary. Potential paths towards providing more decision-relevant model 

output are listed below:

1. M odels : Developing models with emphasis on the processes of interest to 

decision makers. This could include turning points in the climate system, 

such as ice-cap melting or shutdown of the Thermohaline Circulation, adding 

hurricanes or increasing resolution.

In some cases, climate models are not able to provide decision makers with 

any useful information. This is particularly true on small length scales. In 

such cases, statistical models could be useful e.g. providing an estimate of 

the local change in precipitation for the next 5 years based on a statistical 

fit to local data, although statistical models will likely fail when the system 

undergoes a dynamical change, especially due to turning points in the climate

^Of course, scientific understanding must precede any attempt to use models to inform deci­
sions. What is advocated here is rather that the use of models to inform decisions requires new 
ways of designing experiments and interpreting results
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system.

2. D esign : Experimental design could be influenced by the requirements of 

decision makers e.g. if a climate modelling experiment aims to inform impact 

assessment, perhaps running a large set of simulations, covering a range of 

structural models and parameter values, for the next 10-20 years would be of 

most direct use for decision support. In this case, different emission scenarios 

will likely have little effect Cox & Stephenson (2007), leaving experimental 

resources to be diverted to running larger ensembles or using a model with 

higher grid-box resolution.

3. Ensem bles : Running ICEs of climate models allows for a quantification of 

the models’ internal variability and an estimate of the scale of potential model 

error. The typical ensemble size of 1-9 members commonly used at present 

is often insufiicient to evaluate a model’s internal variability, which can be 

critical from a decision-makers’ point of view.

4. D a ta  : Due to constraints on computational resources it is often not practical 

to store all the output from a climate modelling experiment. Usually only a 

small subset of output is stored. Climate modelling experiments could be 

made more relevant to decision makers by storing specific variables of interest 

e.g. extreme values, local impact statistics, regional time series etc. It should 

be considered which variables are of most interest to scientists, for model 

development and for decision makers. The use of metadata is an important 

component of storing data. With limited storage capacity and time to analyse 

data, it is important to find “decision-sufficient” statistics that contain all (or 

as much as possible) the relevant information in the data set at large. Such 

statistics would be sufficient in the sense of decision-makers not benefitting 

from any further statistics of the data set.
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9.5 Conclusion

The problem of climate prediction and a framework for evaluating climate models 

has been presented in this Thesis. A systematic categorisation of uncertainties has 

been introduced and explored using the largest set of climate simulations to date. 

Original work has been highlighted at the end of each Chapter. The main new 

results are that 1) The presentation of model output in high-profile reports such as 

the IPCC AR4 obscures important information regarding uncertainties in climate 

model simulations, 2) The effect of perturbing both initial conditions can be large 

on length scales relevant for decision-makers and that the internal variability can ac­

count for more model diversity than has been previously acknowledged, 3) the effect 

of parameter perturbation on global and regional climate response can be huge. The 

de-tuned HadSMS model versions generated by the CPDN experiment show that 

climate models can be highly sensitive to the values of uncertain parameter values, 

4) the range of model behaviour is not easily reducible in a physically and statis­

tically consistent way and 5) regional responses can not be robustly inferred from 

global mean changes. Global mean temperature is a much less decision-relevant 

statistic than was usually taken to be the case.

Whilst no result has been found that casts doubt on the link between rising GHGs 

cause and simulated warming (in fact, in a broad sense, the CPDN experiment 

adds evidence to support this relationship), it has been shown that the potential 

predictive skill of climate models is limited. It is important that uncertainties are 

understood as fully as possible and are communicated effectively to decision-makers. 

Not to do so will likely lead to sub-optimal policy, wasted resources and a loss of 

confidence in climate science.
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Appendix A

Glossary

Adaptation Action taken to adapt to the impacts of climate change e.g. building 

flood defences.

A lbedo The proportion of solar radiation reflected from the Earth’s surface. After 

Baede (2007).

Analysis In a meteorolgical sense, an estimate of the state of the climate system.

Anthropogenic Man-made or caused by man. In this thesis, “anthropogenic” 

relates to the effect that the human race has on the Earth’s climate.

A ttractor The equilibrium set of states to which a dynamical system evolves to 

after a long time. Attractors are only well-defined in the equilibrium for 

certain types of mathematical system; they do not exist in real world systems 

Orrell (2007).

Bootstrap A non-parametric method of re-sampling used to estimate properties 

of an estimator, such as confidence intervals.

Bounding Box The range of values spanned by an ensemble in each dimension. 

The bounding box is defined by the minimum and maximum points of an 

ensemble in each dimension Judd et al. (2007); Weisheimer et al. (2004).

286



Carbon Dioxide (CO2 ) A Greenhouse gas occurring naturally and as a result of 

burning fossil fuels such as oil, gas and coal. Carbon dioxide is often used as 

a reference against which other greenhouse gases are measured. After Baede

(2007).

Chaos A mathematical term relating to deterministic systems that exhibit proper­

ties of sensitive dependence on initial conditions, recurrence and aperiodicity. 

Whilst neither the climate system or GCMs are chaotic in a strict sense, they 

are often both treated as such since they display chaotic-like properties.

Climate The distribution of weather over long time scales (30 years is used by the 

World Meteorological Organisation).

Clim atology The long-run distribution of historical observations. Can also refer 

to the study of climate in general.

Clim ate Change An alteration of the climate distribution. Climate change can 

occur due to a number of sources both natural and anthropogenic. In the 

context of this thesis, the potential effect of increasing CHCs on the climate 

system is studied.

Climate M odel A mathematical representation of the Earth’s climate.

clim ateprediction.net (C PD N ) A distributed computing experiment, launched 

to the public on 12th September 2003. A grand ensemble of parametrically 

perturbed versions of the HadSM3 model are run on home PCs in order to 

evaluate uncertainties in climate predictions.

Clim ate Sensitivity (CS) A number of definitions exist in the literature. In this 

thesis, climate sensitivity is defined via the following thought experiment: a 

model is run using pre-industrial concentrations of CO2 for a long-time, so 

that its mean global temperature can be calculated. CO2 concentrations are 

then doubled and the model run for a long time. The model then reaches a
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new equilibrium global mean temperature. The difference between the dou­

bled CO2 global mean temperature and the pre-industrial CO2 global mean 

temperature is the model’s climate sensitivity.

D em ocracy  P lo t A plot showing the number (or percentage) of ensemble mem­

bers that simulate an increase (or decrease) in a particular variable e.g. pre­

cipitation change. Democracy plots are useful for showing to what extent an 

ensemble agrees on the sign of the change.

D ynam ical System  A mathematical description of a deterministic process that 

develops over time. Here, dynamical systems refers to a set of differential 

equations that display sensitive dependence on initial conditions.

Ensem ble A set of simulations run over the same time period. There are a number 

of different types of ensemble that are used for quantifying different quantities. 

See Initial Condition Ensembles, Perturbed Physics Ensembles and Grand 

Ensembles for details of these types of ensemble.

E qu ilib rium  E xperim en t A climate modelling experiment in which models are 

used to estimate the equilibrium (long-run) response to forcing. In some 

cases equilibrium is not reached by the end of the experiment and must be 

estimated.

Feedbacks Interactive mechanisms that cause a non-linear response. An initial 

process causes another which in turn affect the original process, or the sys­

tem itself. Feedbacks can be either positive (exagerrating the base effect) or 

negative (dampening the effect).

Forcing An agent that forces a system into a new set of dynamics. The IPCC uses 

the term “radiative forcing” to understand the effect of forcing agents; “The 

radiative forcing of the surface-troposphere system due to the perturbation in 

or the introduction of an agent (say, a change in greenhouse gas concentra­
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tions) is the change in net (down minus up) irradiance (solar plus long-wave; 

in Wm-2) at the tropopause AFTER allowing for stratospheric temperatures 

to readjust to radiative equilibrium, but with surface and tropospheric tem­

peratures and state held fixed at the unperturbed values.” Baede (2007).

F lux  ad ju stm en t An artificial adjustment made of the model for some physical 

variable such as heat, water or salt. A fiux adjustment is usually calculated 

such that the model produces more realistic dynamics and behaves in a similar 

way to the Earth’s climate.

H ea t F lux  A d ju stm en t (HFA) A fiux of heat into the ocean from the atmo­

sphere so that a slab ocean displays Sea Surface Temperature and heat trans­

port similar to that of a dynamic ocean. This is discussed in more detail in 

[chapterhfiux].

G eneral C ircu la tion  M odel (G C M ) Despite some variability in the literature, 

state of the art climate models are referred to here as General Circulation 

Models. Also called Global Climate Models.

G lobal M ean  (C lim ate M odel) An average taken over the entire model state 

space. GCMs operate in a 3 dimensional grid system on discrete time steps. 

The global mean can be calculated as the volume-weighted mean over the 

entire Earth [this is discussed in more detail in Chapter 4. Since observations 

are far more heterogeneous and sporadic, they are often adjusted and filtered 

through a model in order to produce an estimate of the global mean. This is 

also known as the analysis.

G lobal M ean Surface T em p era tu re  (G M ST ) The global mean value of sur­

face temperature calculated over a certain period, usually annual or decadal, 

using observations.

G rand  E n sem b le A set of model simulations containing two layers of perturba-
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tion. At the higher level, either different structural models or the same model 

with different parameter values is used. At the lower level, each of these 

models is run using a set of different initial conditions. A grand ensemble 

is a collection of initial condition ensembles run using models with different 

dynamics.

Greenhouse Gas (GHG) An atmospheric gas that absorb and emit radiation at 

specific wavelengths. This property cases the greenhouse effect Greenhouse 

gases include methane, water vapour and carbon dioxide. In some modelling 

studies, the total effect of GHGs is simplified to the equivalent concentration of 

CO2 . The climateprediction.net experiment investigates the effect of doubling 

CO2 concentrations from 275 parts per million to 550 parts per million.

Grid box A set of 3 dimensional points that make up a climate model.

Initial Condition The starting state of a model simulation at time zero. In the 

case of a GCM, this will be of very high dimension.

Initial Condition Ensemble (ICE) An ensemble of model simulations in which 

each run’s initial condition is changed slightly. In the case of the climatepre- 

diction.net experiment, the ocean temperature in one grid box is perturbed 

by a small amount.

In—sample Data that was used to build or estimate parameters in a model. This 

contrasts with out-of-sample.

Local In this thesis, referring to length scales roughly equal to a model grid box 

i.e. ~40,000 krn^.

M itigation Action taken to prevent or limit climate change e.g. reducing carbon 

emissions.

M ixing tim e The time taken for two initial condition ensembles to become sta­

tistically indistinguishable.
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M odel version A copy of a standard structural model with parameter perturba­

tion. In the case of the climateprediction.net experiment, the HadSMS model 

structure is used throughout sometimes with its standard (original) parameter 

values but mostly with various parameters perturbed. The HadSMS model 

with a non-standard set of parameter values is called a HadSMS model ver­

sion.

M ulti—m odel Ensem ble An ensemble in which more than one model is used..

N onlinear Not linear. In general, nonlinear systems do not have the property of 

additivity {f{x -\-y) = f{x)  4- f{y))  or homogeneity (f{ax) = af{x)).

N um erical W eath er P red ic tio n  (N W P ) Computational modelling of the Earth’s 

weather system. In this thesis, NWP refers to weather prediction on time 

scales up to two weeks.

O bservation  Meteorological measurements of the Earth’s surface. Raw data is 

post-processed, usually using models, to obtain a uniform grid of values across 

the Earth.

O u t—of—sam ple Data that was not available at any stage in the building or de­

velopment of a model.

P a ra m e te r  Multiple definitions exist. In climate modelling, a parameter is any 

non-mathematical constant (such as tt or e) that defines the model and as such 

is not state-dependent. Parameter values define the model and its behaviour, 

unlike initial conditions that do not affect the model’s behaviour or dynamics. 

Parameters do not change with time.

P a ram ete risa tio n  A representation of physical processes in a climate model not 

explicitly simulated in the model. Parameterisations are often statistical, 

arising as a result of finite model resolution.
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P e r tu rb e d  Physics Ensem ble (P P E ) An ensemble in which simulations are run 

using the same structural model but using more than one set of parameter 

values.

P ro b ab ility  The classical definition treats probability as the relative frequency 

of occurrence of total number of events. Bayesians treat probabilities in a 

subjective fashion. In this thesis, neither approach is adopted explicit, rather 

it is assumed that a probability is any quantity that meets the Kolmogorov 

axioms of probability and is intended to be used as such.

P ro b ab ilis tic  An expression of uncertainty that resembles a probability but that 

does not meet all the necessary requirements. Probabilistic statements can 

be qualitative e.g. “It is almost certain that rising CO2 concentrations will 

contribute to global warming” or quantitative e.g. expressing the likelihood of 

events as odds that do not sum to one (break the Second Kolmogorov Axiom 

of probability).

R egional In this thesis, refers to an area relating to one of the regions as defined 

in Giorgi & Mearns (2000).

Scenario An emissions scenario used as a basis for forcings in a climate projection. 

Also see SRES.

Sea Surface T em p era tu re  (SST) The temperature close to the surface of a large 

body of water.

Skillful In the context of forecasting, a forecast is said to be skillful if it can beat 

some simple straw-men that are tantamount to guessing.

Special R ep o rt on Em issions Scenarios Emissions scenarios first developed by 

Nakicenovic et al. (2000) to be used as a basis for climate projections. These 

scenarios are based on story lines that follow particular demographic, societal, 

economic and technical changes.
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S traw —m an  A naïve test for quality of information. Straw-men for forecast skill 

can include simple statistical techniques such as persistence or climatology.

T ra jec to ry  The time-ordered path of states taken by a simulation of a dynamical 

system.

T ransien t E xperim en t A climate modelling experiment run using time-varying 

forcings, usually as a simulation of Earth’s climate system.

V erification The target values for a model. Not necessarily verifying the model 

itself Oreskes et al  (1994) but targets that we would like the model to get 

close to, in some sense. In perfect model experiments verifications are the 

values from the a model simulation itself. In the case of climate models, that 

are imperfect, observations of the Earth’s climate can be used as verifications.
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