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Abstract

The prediction of the Earth’s climate system is of immediate impor-
tance to many decision-makers. Anthropogenic climate change is a key
area of public policy and will likely have widespread impacts across the
world over the 21st Century. Understanding potential climate changes,
and their magnitudes, is important for effective decision making. The
principal tools used to provide such climate predictions are physical
models, some of the largest and most complex models ever built. Eval-
uation of state-of-the-art climate models is vital to understanding our
ability to make statements about future climate. This Thesis presents
a framework for the analysis of climate models in light of their inherent
uncertainties and principles of statistical good practice. The assessment
of uncertainties in model predictions to—date is incomplete and warrants
more attention that it has previously received. This Thesis aims to mo-
tivate a more thorough investigation of climate models as fit for use in

decision—support.

The behaviour of climate models is explored using data from the largest
ever climate modelling experiment, the climateprediction.net project.
The availability of a large set of simulations allows novel methods of
analysis for the exploration of the uncertainties present in climate sim-
ulations. It is shown that climate models are capable of producing very
different behaviour and that the associated uncertainties can be large.
Whilst no results are found that cast doubt on the hypothesis that green-
house gases are a significant driver of climate change, the range of be-
haviour shown in the climateprediction.net data set has implications for
our ability to predict future climate and for the interpretation of cli-
mate model output. It is argued that uncertainties should be explored
and communicated to users of climate predictions in such a way that
decision-makers are aware of the relative robustness of climate model

output.
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ature for 22711 quality controlled simulations. There is a pattern for
simulations with a worse score in one variable to have a worse score

in the other, although a number of exceptions exist. . . . . . . . ..

The distribution of 8 year DJF (JJA) temperature (precipitation)
is shown for simulations for the 2 degree set. The z—axis range is
maintained for following regional plots for ease of comparison. Note
that there is little variance in precipitation where averages are taken
over these largeareas. . . .. .. .. ... ... ... ........
The distribution of 8 year DJF (JJA) temperature (precipitation)
is shown for simulations for the 2 degree set. The z—axis range is
maintained for following regional plots for ease of comparison.

The distribution of 8 year DJF (JJA) temperature (precipitation)
is shown for the 2 degree set. Whilst all simulations show an in-
crease in surface temperature, the ensembles disagree on the sign of

precipitation change in all regions and seasons shown. . . . . . . ..
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8.4

8.5

8.6

8.7

8.8

8.9

Median temperature change for the 2 degree set for the DJF (panel
(a)) and JJA (panel (b)) seasons. Also shown in panels (c) and (d)
are the widths of the central 80 percent (10th-90th percentiles)of
temperature change, respectively for the DJF and JJA seasons.

The distribution of 8 year DJF (JJA) temperature (precipitation) is
shown for the 2 degrees set (blue) and the 3 degrees set (red). There
is often a large overlap between the two ensembles, especially for
precipitation. This shows that the 2 degree set and the 3 degree set
are not always robustly distinguishable. . . . . . . .. ... ... ..
The three grid-boxes selected to look at local impacts are shown.
These grid boxes are called London, Boulder and Jakarta since they
contain those cities. It should be noted that the grid—boxes are much
larger than the cities they contain. . . .. ... .. ... ......
The distribution of 8 year DJF/JJA temperature/precipitation is
shown for the 2 degree set (blue) and the 3 degree set (red). The
grid—boxes that contain London, Boulder and Jakarta are shown.
Note that the cities themselves are much smaller than the grid—boxes,
which are typically 50,000km? in area. . ... ............
The median change in temperature (degrees Celsius) is shown in
panel (a) and precipitation (mm per day) is shown in panel (b) over
the 3 degree set. Also shown is the difference between this and the
median temperature rise in temperature for the 2 degree set in panel
(c) and precipitation in panel (d). . . .. ... ... ... ... ...
Regional response factors for 27 regions shown in Table 8.8 in four
different variables. DJF temperature response factors are shown in
panel (a), JJA temperature in panel (b), DJF precipitation in panel
(c) and JJA precipitation in panel (d). Estimates from the 2 degree
set of simulations are shown in blue, the 3 degree set in green and
the four degree set in red. Estimates from the individual simulations
from the standard HadSM3 ICE are shown in black. The two black
lines show the minimum and maximum regional response in simula-
tions from the standard HadSM3 ICE. Vertical bars show 2 standard

deviations in estimates of the mean regional response from each set.
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8.10 Time series for the 2 and 3 degree sets. Transient warming occurs at
the point of CO, doubling (year 30) and stabilises by the end of the
final phase. Data on regional climate changes was available for the

final 8 years of each phase. . . . . . . ... . ... ... ... ...
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Nomenclature

Roman Symbols

IC  Initial Conditions

AR4 IPCC Fourth Assessment Report
CO, Carbon Dioxide

CPDN climateprediction.net

GCM General Circulation Model

GHG Greenhouse Gas

GMST Global Mean Surface Temperature
HFA Heat Flux Adjustment

ICE Initial Condition Ensemble

ICU Initial Condition Uncertainty

IPCC Intergovernmental Panel on Climate Change
NWP Numerical Weather Prediction
PDF Probability Density Function

PPE Perturbed Physics Experiment
SOTA State of the Art

SST Sea Surface Temperature
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Chapter 1

Introduction

In recent years climate change' has become a significant issue in science, politics
and the media. Whilst theories of man-made global warming have been around
since the 19th Century Arrhenius (1896); Tyndall (1861) only within the last 30
years has climate science become a major scientific focus. Furthermore, it is only
over the past 10 years that climate change has become a significant political issue,
driven by an increasing awareness of its potential impacts. Assessing the human
impact on the Earth’s climate has become a major area of research and is of im-
portance to many different decision-makers Association of British Insurers (2005);
Parry et al. (2007); Stainforth et al. (2007b); Stern (2006).

Whilst certain details may be still under dispute, it has become widely accepted
that the changes in climate that have occurred over the past 100 years are largely
anthropogenic (man—made) Oreskes (2004); Solomon et al. (2007a) and that an-
thropogenic factors will continue to have a significant effect throughout the 21st
Century. Focus has turned to predicting the details of how the climate will change
over the next Century. This Thesis examines the robustness of these details and
evaluates uncertainties in climate simulations.

Accurate climate prediction would be useful for at least three reasons:

1. Mitigation Decisions. The likely results of mitigation decisions can be
better understood in the light of reliable climate predictions. For example,
when considering whether (and by how much) to cut CO, emissions, it is
important to know how the climate might change for given scenario of future
CO, emissions Schellnhuber et al. (2005). When setting targets for emissions

!Terms defined in the Glossary are shown in italics at their first use.
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it is helpful to know how different emission scenarios will relate to climate

change on both local and global levels in a number of meteorological variables.

2. Adaptation Decisions. The planning of adaptation measures (e.g. the
building of flood defences) would benefit from insight to how the climate will
change on national or finer length scales. For example, suppose a government
is considering building a dam to prevent future flooding. The optimal design
and placement of this dam depends on several climatic factors. These include
the frequency, intensity, spatial and temporal patterns of precipitation in the
future, how much sea levels might rise, whether storms are likely to be more

frequent and intense and the correlations between these factors.

3. Impacts Assessment. Even where no adaptation or mitigation decisions are
planned directly, it is of interest to industry and government to know how the
climate will change in the future e.g. when considering how energy demand
might change in the coming years to decades. Take the example of a Life or
General insurance company. It might be of great use to an insurer to know
whether there is likely to be an increasing trend in extreme weather events,
changes in mortality rates and thus estimate what additional capital might

be needed to protect against future climate-related claims.

One of the key questions looked at in this Thesis is “How might climate models
inform such decisions?”. In order to provide support to decision—makers, projections
of future climate have been provided by state—of-the-art climate models. These
models are known as General Circulation Models (GCMs). GCMs represent a large
investment of scientific research and resources McGuffie & Henderson-Sellers (2006);
Solomon et al. (2007a); Thorpe (2005). The subject of this Thesis is the evaluation
of GCMs for decision-support.

The problem of climate prediction poses many new and interesting challenges to
statisticians. Increased study on the evaluation of complex models with little out-
of-sample data would be of value in a number of different areas of applied statistics.
In the case of climate predictions, statistical methods of model evaluation based on
a comparison of out—of-sample predictions with observational data are hampered
by lack of data — the long lead times of forecasts (10+ years) and the relative novelty
of the field limit the potential for such methods of evaluation.

This Thesis uses alternative methods to assess the potential value of climate models
to decision makers. The methodology used is briefly introduced in Section 1.1.
Important results are highlighted in Section 1.2.
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1.1 Methodology

This Thesis explores and analyses the richest source of climate model data available
to date — the CPDN data set. The aim of this Thesis is to evaluate the uncertainties
in climate model projections for decision—support and to establish statistical good
practice relevant to this field.

The reliability of a model’s out—-of-sample predictions can never be verified in the
sense of establishing a model as “true” Oreskes (1998); Oreskes et al. (1994). Meth-
ods of model evaluation can show where predictions are likely to be inadequate, but
a model’s out—of-sample predictions can never be proven to be accurate. Evaluation
of potential model skill is especially difficult in the case of climate prediction where
out—of-sample observations are lacking Smith (2002); Stainforth et al. (2007a). In
light of this, the approach adopted in this Thesis is to check climate models for
consistency of information rather than seeking to verify the models in any sense.
Model output is said to be consistent where differences between simulations are
not critical for decision—makers. These differences can be analysed a) across differ-
ent structural models, b) in the same structural model across different parameter
values or ¢) within a particular model across the starting state used to initialise
a particular model simulation, the model’s initial conditions (an Initial Condition
Ensemble, or ICE). A set of Initial Condition Ensembles, each run under different
model structures or parameter values (as in cases a) and b)) together form a grand
ensemble. The diversity of output across model projections places a limit on the
utility of model output in decision—support.

There have been attempts to attach probabilities to climate changes Annan & Har-
greaves (2006); Giorgi & Mearns (2003); Pittock et al. (2001). This Thesis does not
attempt to attach probabilities to climate impacts for four reasons;

1. Due to model inadequacy Kennedy & O’Hagan (2001b), there is no reason
that the details of a model’s climate distribution will hold for the Earth’s
climate system Smith (2002).

2. The effects of arbitrary choices of experimental design and parameter speci-
fication can affect the probabilities attained significantly Frame et al. (2005,
2007).

3. It is difficult to see how to probabilistically combine output from different
models given the lack of a reliable metric in model space Allen & Stainforth
(2002).
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4. It may not be necessary to express climate projections as probabilities for
model output to be useful Dessai & Hulme (2004); Judd (2008a).

Despite attempts to create Bayesian probability distributions for climate Annan
& Hargreaves (2006); Goldstein & Rougier (2006), the Bayesian approach faces sig-
nificant theoretical and practical difficulties, as outlined above. Rather than adopt-
ing a framework for uncertainties based on probability distributions, this Thesis
quantifies different types of known uncertainties present in climate models and the
level of consistency between models. Checking for consistency of information across
an ensemble of models provides a direct evaluation of the robustness of model pro-
jections.
Two important methods for evaluating the reliability of climate models are: 1) In—
sample consistency with observations and the 2) the range of predictions produced
by different models out—of-sample, as given in Raisanen (2007). Further evaluation
methods that can be used to gain confidence in model projections listed in Solomon
et al. (2007a) are the 3) simulation of present—day climate and 4) the fact that
models are based on well-understood physical principles. Question 1) is looked at
in Thesis in Chapter 3, although the main focus is on evaluation method 2), the
diversity of model output provided by current models, which is investigated in detail
in Chapters 6,7 and 8.
The uncertainty analysis applied in this Thesis is only possible with a large set
of climate model simulations. At present, the only source of sufficient data was
the climateprediction.net (CPDN) experiment, from which 45644 simulations are
analysed in this Thesis. In comparison, the Intergovernmental Panel on Climate
Change (IPCC) AR4 uses an ensemble of 58 simulations to evaluate climate mod-
els in their Summary for Policymakers Solomon et al. (2007a,b). Similar numbers
of simulations were used to make projections under various scenarios in the IPCC
Report. The CPDN data set allows new approaches to the quantification of uncer-
tainty. The availability of a large set of data provides a unique opportunity to test
the robustness of climate models.
New results and methods that are presented in this Thesis are given in Section 1.2.

1.2 Key results and new approaches

In this Thesis a framework for the evaluation of climate models is laid out and
the types of uncertainties present are demonstrated and explored. The structure of
this Thesis is as follows. Chapter 2 introduces a framework for understanding and

evaluating the uncertainties in climate simulations. Chapter 3 analyses data used
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in the IPCC AR4 in terms of GCMs’ in—sample fit and motivates a more thorough
assessment of uncertainty. Chapter 4 gives details of the CPDN experiment and the
data sets analysed in Chapters 5 through 8 of this Thesis. Chapter 5 examines the
heat flux adjustments (artificial adjustments of energy applied to the model’s ocean)
that are applied to the GCM used in the CPDN experiment. Chapter 6 presents
results for the largest Initial Condition Ensemble analysed to date (64 simulations of
the Hadley Centre’s HadSM3 model). Chapter 7 investigates the range of behaviour
across the CPDN data set of 45644 simulations and discusses the use of methods to
reduce the range of behaviour shown. Chapter 8 looks at the utility of global mean
temperature as a basis for decision—making and the uncertainty present on regional
scales for sets of simulations with very similar global mean temperature response.
Chapter 9 summarises this work and discusses the implications of new results for
decision—makers.

The main advances in this Thesis, by Chapter are:

1.3 Chapter 2

Three tests are proposed that can be used to evaluate whether climate models might
be fit for decision support. These tests are based on 1) The in—sample fit of climate
models, 2) The range of model behaviour within an Initial Condition Ensemble and
3) The diversity of model behaviour across an ensemble of different models. These
strawman tests are presented as means to test the consistency of information in
climate models. Uses of models that fail one or more of these tests are discussed.

1.4 Chapter 3: How reliable are climate models?

Chapter 3 examines climate model data presented in the Intergovernmental Panel
on Climate Change Fourth Assessment Report (IPCC AR4). It is shown that:

1. There are significant differences between different GCMs’ global mean temper-
ature of up to 3 degrees Celsius in their 1901-1950 base climates. Such large
differences could affect physical properties of these models that are relevant

when comparing model simulations to observations.

2. The effect of taking different types of anomalies is shown to give significantly
different presentations of GCMs’ in—sample fit. In particular, when taking
anomalies for each simulation results in a tighter multi-model ensemble than
when taking anomalies with respect to each model (averaging the bias cor-

rection over each model’s constituent simulations). It is shown that the use
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of anomalies in the IPCC ARA4 (taking anomalies for each simulation) is less
physically meaningful than taking anomalies for each model and the former
method distorts the variability of simulations both within individual models

and across different structural models.

3. Model output is compared to observed global mean temperatures over the
20th Century. Residuals are compared on a model by model basis and it is
shown that 1) There can be considerable structure in the residual time series
and 2) The magnitude of residuals can be large (up to 0.5 degrees Celsius) in
comparison to observed 20th Century global warming (~0.74 degrees Celsius).

4. The CMIP3 (the third Coupled Model Intercomparison Project Covey et al.
(2003)) GCMs used in the IPCC AR4 are shown not to be exchangeable,
calling into question the relevance of many methods of statistical analysis for
climate model output. This is shown by calculating the number of simulations
in one ensemble that exceeds the maximum member of another. This empirical
statistic is then compared to the theoretical expectation based on the ensemble
sizes. Results show that GCMs can not be assumed to be sampling from a
common distribution. These initial results were confirmed by a Kruskal-Wallis
test.

5. A new method for estimating the temporal correlation within GCM time series
is proposed. This method requires an Initial Condition Ensemble and is based
on the typical amount of time taken for an extremal simulation (maximum or
minimum) to cross the median of the ensemble. It is shown that the mixing
time for some GCMs is not significantly different from 1 year (the higher
frequency of data used here), but that it can be higher for other GCMs.

1.5 Chapter 4: Intro to CPDN

1. A new method of quality control is presented, correcting for problems identi-
fied in previous quality control methods Stainforth et al. (2005). An unphysi-
cal local feedback in the East Pacific is detected using a local anomaly statistic.
This method is shown to eliminate simulations with significant global cooling

which fail to be detected when using global mean statistics.

2. Features of the CPDN experiment are documented for the first time e.g. avail-
ability of data, experimental design and issues in data analysis. Such docu-
mentation is important for other studies based on CPDN data sets.
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1.6 Chapter 5: Heat Flux

The HadSM3 climate model used in the CPDN experiment analysed here requires
the use of heat flux adjustments (HFA). The variability and effect of the HFAs on
a grand ensemble of climate model simulations are looked at for the first time. It

is shown that:

1. Perturbation of Initial Conditions has little effect on the global mean HFA
(the greatest difference in global mean HFA between IC members across 418
model versions is 0.419W/m?). Perturbation of Initial Conditions can lead to
differences of up to 40W/m? (~100 times the greatest global difference) on a
grid box level.

2. Parameter perturbed model versions of HadSM3 can require significantly dif-
ferent global HFAs. This is shown by carrying out a Singular Value Decompo-
sition on Initial Condition Ensembles of HadSM3 model versions. The leading
Singular Vector is shown to explain significantly more variability in the HFA
fields where model simulations share parameter values than where simulations
are drawn at random. It is also shown that whilst perturbing Initial Condi-
tions makes less than 0.5W/m? difference on the global mean scale, perturbing
parameters can lead to changes of up to 7T0W/m?. It is argued that the HFA
should then be calibrated for each set of parameter values.

3. There are shown to be significant seasonal variations in the HFA both globally
and regionally. This effect is likely mimicking the seasonally-dampening effect
of a deep ocean and means HadSM3’s seasonal cycle might not respond to

rising COs in a physical way.

4. A relationship is shown between global mean HFA and climate sensitivity
(CS), a statistic representing the estimated extent of warming that will occur
in a model when CO; concentrations are doubled. Simulations with higher
values of CS tend to have strong negative global mean heat fluxes (less than
-10W/m?). This relationship is potentially important for interpreting simula-
tions with very high values of CS (greater than 8 degrees Celsius).

5. Relationships between HFA and model drift are investigated with the use of
global mean and refined local statistics. No discernible pattern between global
mean HFA and model temperature drift is found. The same model version
can produce simulations that either drift or do not drift, suggesting drift is
not dependent solely on parameter perturbation.
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1.7 Chapter 6: Initial Condition Ensembles in
Climate Modelling

1. The availability of a large Initial Condition Ensemble allows for a quantifi-
cation of the HadSM3’s internal variability, which is shown to be significant
on length scales relevant for impact studies and adaptation decisions. The
various roles of ICEs are discussed and their increased use is encouraged. It
has typically been assumed that the effect of perturbing Initial Conditions on
climate simulations was negligible Tebaldi & Knutti (2007).

2. It is shown here for the first time that Initial Condition perturbation can have
a significant effect on model behaviour on relevant length and time scales in
temperature and precipitation. The sign of the change in 8 year mean sea-
sonal precipitation under a doubling of CO; is unanimous in only ~ 3% of
grid boxes. In temperature, 8 year mean seasonal differences within an Initial
Condition Ensemble are shown to be as large as 10 degrees Celsius in some
grid boxes. Such large differences are not usually considered possible and
could affect the experimental designs and the interpretation of model vari-
ability. The effect of perturbing Initial Conditions is explored using bounding
boxes (the maximum, minimum and range of values across an ensemble) and
democracy plots (each member of an ensemble is given a vote and the number
of votes counted).

1.8 Chapter 7: Constraining New Results from
the CPDN grand ensemble

1. The range of behaviour shown in an ensemble of 45644 of GCM simulations is
unprecedented, with estimated CS ranging from from 0.9 to over 16 degrees
Celsius. Uncertainties are even larger on sub-global length scales.

2. Three methods are presented, as examples, to constrain the range of climate
simulations and these methods are discussed in light of statistical good prac-
tice. These methods are based on 1) Constraining the values for a key param-
eter, the Entrainment Coefficient, 2) Global mean heat flux adjustment and
3) Observational constraints in 7 variables. It is shown that for methods 1)
and 2) simulations with CS of over 8 degrees can not be ruled out and that,
for method 3), the distribution of CS is dependent on the choice of variable.
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3. Simulations are selected based on the three different values of the Entrain-
ment Coefficient (the most significant parameter perturbed in the CPDN
experiment) to look at the effect on the distribution of simulated CS. The
Entrainment Coefficient is shown to have an effect on the distribution of sim-
ulated CS but simulations with over 8 degrees CS exist for low, standard and
high value of this parameter. For method 3), applying the constraint in mul-
tiple variables rules out more simulations, less than 0.1% of simulations pass
the test applied in 7 variables simultaneously, whereas typically 10% pass in
any individual variable.

4. It is shown that the shape of the distribution of CS is not an inevitable feature
resulting from an approximately Gaussian distribution of feedbacks, as was
suggested in Roe & Baker (2007). The distribution of CS can be changed
substantially by a different choice of experimental design.

5. The relationship between strong negative global HFA and high CS simulations
might be used to constrain the distribution of simulated CS. This can be done
by considering a sub-set of simulations with a global mean HFA of magni-
tude less than the largest global mean HFA used in the standard HadSM3
ensemble. Global mean HFA can be used to change the distribution of CS,
but simulations with CS over 8 degrees are still admitted. The use of such
post-hoc filters is criticised on the basis of bad statistical practice.

6. When comparing model performance in—sample in 7 different variables, results
depend on the choice of variable. For example, constraining in temperature
tends to admit more high CS simulations and constraining in precipitation

more low CS simulations.

1.9 Chapter 8: On the relevance of Model Means

for Decision—Support

In Chapter 8, three sets of simulations are analysed, with global mean temperature

rise of 2, 3 and 4 degrees respectively; it is shown that

1. Regional changes can differ significantly (over 6 degrees Celsius for some re-
gions in 8 year mean seasonal temperature) for simulations with the same

global mean temperature change.
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2. The space and time scales of model diversity are quantified. The magnitude
of regional uncertainties for a given global mean temperature change varies
with length scale and variable. For example the range of DJF 8 year mean
temperature change for simulations with 2 degrees Celsius global mean tem-
perature rise rise is (0.96, 3.00) degrees in Australia and (1.32, 6.31) degrees in
Northern Europe. The distribution of regional change is used to present diver-
sity in sub—global response on a variety of length scales - global, hemispheric,
tropical and extra-tropical, regional and local. Uncertainties in model precip-
itation response to doubled CO; are large — the sign of change is uncertain

on length scales as large as many nations in most regions looked at.

3. The distributions of regional change are contrasted between the 2 and 3 degree
global mean temperature sets. The magnitude of overlap between these distri-
bution is shown to be large; in some regions and variables this overlap is over
20%, indicating that it is not always possible to define a unique relationship

between global and regional changes.

4. Even if global mean temperature is constrained to within 0.2 degrees Celsius,
significant regional uncertainties would remain. It follows from this result
that global mean constraints are of limited use and that methods based on

the patterns of change might be preferable.

At the end of each Chapter new results or methods will be listed as bullet points.
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Chapter 2

Uncertainty and the use of
State—of—the—Art climate models

in decision—support

2.1 Overview

This Chapter looks at the problem of climate prediction and some of the challenges
faced in using State—of-the-art (SOTA) climate models for decision support. The
term SOTA models is used in this Chapter to refer to the set of models that are
currently used to make climate predictions. In the context of the applications pre-
sented in this Thesis, SOTA models relates to GCMs, although this need not be the
case (the SOTA necessarily changes over time). A climate prediction is defined here
as a statement regarding the the future of Earth’s climate system on time-scales
typically of 10+ years. Particular focus is placed on the uncertainties inherent in
climate prediction and possible methods to establish SOTA models as potentially
fit for the purpose of decision support.

Section 2.2 explains the problem of climate prediction. The inherent uncertainties
in climate prediction are qualified into four categories; Forcing Uncertainty, Initial
Condition Uncertainty, Model Uncertainty and Model Inadequacy. Difficulties in
the evaluation of climate predictions are discussed. The use of ensembles in the
evaluation of these uncertainties is explained in Section 2.3.5.

Following on from the difficulties in establishing climate models as fit for decision-
support, Section 2.4 presents three tests for consistency of information in climate
prediction. These tests are not expected to prove that SOTA climate models are
useful in a particular case, rather to show one some of the ways decision support
can be sensitive to inherent uncertainties in climate simulations. The consequences

of failing one of these tests and subsequent uses of a model whose predictions fail
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are explained.

Section 2.5 discusses the use of climate model output in decision—support. Section
2.6 looks at the different needs of decision—makers in the context of adaptation to
or mitigation of climate change. It is argued here that adaptation decisions often
require more information and are subject to greater uncertainty than mitigation
decisions. Section 2.7 looks at the communication of uncertainties and why trans-
parent and effective communication is vital both for decision makers and providers

of climate predictions.

2.2 The problem of climate prediction

There are a number of obstacles to accurately predicting future climate. Two of

these obstacles are:

1. The Earth’s climate system is highly complex and exhibits non-linear be-

haviour. This is also true of the SOTA models used to simulate the Earth’s
climate system. The presence of non-linearities in a complex system mean
that precise prediction is impossible in practice due to inexact specification
of the initial state (the starting state of a model simulation) or observational
noise Judd & Smith (2001a); Lorenz (1963); Smith (2007). This is apparent in
the case of Numerical Weather Prediction (NWP), where uncertainty in the
initial state results in a loss of predictive skill typically after 2 weeks Orrell
et al. (2001). Since exact deterministic prediction of either weather or climate
is impossible, a distribution of climatic states should be forecast to represent
this uncertainty. Obtaining this distribution is the goal of climate prediction
Palmer et al. (2005); Smith (2002); Stainforth et al. (2007a).
The evaluation of the distribution of future climate faces a number of diffi-
culties. One such obstacle is that small perturbations to the climate system
can result in disproportionately large (or small) effects on the distribution
of future states due to feedback processes. Interactions between components
of a non-linear system are dependent on each other and so the system can
not be considered simply as the sum of its parts. In order to understand the
important interactions within the climate system, complex models have been
developed that can not be readily understood analytically. Since an analytical
approach to understanding climate models is not possible, it is necessary to
gain insight to the workings of the models from computer simulations (run-
ning the model and looking at the output).
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Since there are non-linear feedbacks in the Earth’s climate system, it is im-
possible to know whether some as yet unconsidered process or forcing will
change future climate in an unexpected way. Thus, any climate prediction is
conditional on the absence of any undiscovered feedbacks that would signifi-
cantly affect its conclusions. Therefore, it is important to note that no climate
prediction can be final but might be updated in light of future model develop-
ment or an improved understanding of the climate system. Whilst this is true
of scientific models in general, the conditional nature of climate predictions
is particularly prevalent due to the inherent nature of climate predictions as

extrapolations.

2. The climate system changes over time, thus any attempt at prediction must
not be critically dependent on the assumption that the future will resemble the
past; climate prediction is fundamentally a problem of extrapolation. The cli-
mate system is being altered due to anthropogenic influences with a potential
magnitude of climate change greater than any present in observational data.
Since the future climate is expected to be outside the range of data avail-
able, attempts at prediction are dependent on the dynamics of the change
in climate occurring in a way consistent with our current understanding of
climate science. A key motivation for the use of physical models in climate
prediction depends on our ability to understand the physical processes driving
future climate change Solomon et al. (2007a). This approach assumes that,
having captured all the important drivers of climate change from past data,
it is possible to extrapolate since climate will continue to react to forcings in

a similar way.

The non-linearity of the Earth’s climate system, coupled with a lack of analogues
in the observational record, make climate prediction difficult. These problems mean
that climate predictions are most relevant when the uncertainties in predictions can
be reliably estimated. As explained in Section 2.4, some common methods of model
evaluation are not possible for long-term climate prediction. Alternative methods
that can be used to qualify and quantify the uncertainty in climate predictions are
presented.

There are some important aspects of climate prediction that require the judicious
application of statistical good practice. One example of this is that climate models
are so complex that they can not be considered parsimonious in any conventional
sense. With hundreds of tunable parameters, and perhaps a little over 100 years of
reliable observational data, it might be argued that it is not surprising that models
can re-produce the past well. In fact, it would be surprising if a model with more
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tunable parameters than data points would not produce a good in-sample fit, unless
parameter values were heavily constrained. Evaluation of climate predictions can
not be definitive and should take the form of tests for consistency of information.
These tests, described in Section 2.4, provide a means of sanity—checking climate
predictions as potentially fit for purpose. Section 2.3 introduces the four categories

of uncertainties and how these might be explored using ensembles.

2.3 Uncertainties and Ensembles

The evolution of future climate is highly uncertain for several reasons Stainforth
et al. (2007a). Despite the huge research investment and fundamental physical
theory that goes into SOTA climate models, it is an open question to what extent
decision-relevant information can be extracted from these models. In order to
answer this question it is necessary to understand the different types of uncertainty
present in SOTA models; some are reducible, others not Smith (2002).

There are a variety of different uncertainties in climate prediction resulting from
the problem of extrapolating using dynamical systems. These uncertainties can be
classified in different ways Giorgi & Francisco (2000); Stainforth et al. (2007a). The
four categories of uncertainty used here are:

1. Forcing Uncertainty

2. Initial Condition Uncertainty
3. Model Uncertainty

4. Model Inadequacy

Forcing Uncertainty is not dealt with in detail in this Thesis, because it does not
relate to how climate models represent the climate system itself, and depends on po-
litical decisions and unknown natural forcings. Errors in the model’s representation
of the system being modelled are divided into three categories; Initial Condition
Uncertainty, Model Uncertainty and Model Inadequacy. The four categories are

now discussed in turn.

2.3.1 Forcing Uncertainty

Factors that affect the distribution of climate, not arising from internal variability
of the system!®, are known as forcings. Natural forcings include changes in solar

Internal, or “Natural”, variability usually means variations in climate not due to some external
forcing factors, such as anthropogenic effects.
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luminosity and volcanic eruptions. Volcanic eruptions are an important driver of
climate variability on timescales of months to years are volcanic eruptions, leading
to significant drops in regional and GMST Robock & Oppenheimer (2003); Yang
(1999). We might expect our models to be inaccurate in the future at least to
the extent that they do not take into account the potential effect of large volcanic
eruptions and other forcings we know that are unaccounted for.

Whilst naturally occurring forcings have an effect on the climate system, the most
important changes in forcings for the climate of the 21st century are anthropogenic
Cubasch et al. (2001); Stott & Kettleborough (2002). Anthropogenic forcings in-
clude the emissions in GHGs, such as CO,. In climate models the analysis of forcings
is often restricted to Greenhouse Gases (GHGs), or GHGs as CO; equivalent. The
effect of forcings can be measured in terms of their radiative effect (in W/m?).
Uncertainty in what the future forcing will be depends, in part, on policy and the
actions of mankind over the next 100 years. There are large uncertainties in the
emission of GHGs and other anthropogenic sources Nakicenovic et al. (2000). The
uncertainty in future anthropogenic forcings is, partially, in the control of global
policy and is not an issue for climate science, as such. Climate models can only
hope to provide insight into each forcing scenario under consideration, given the
other forms of uncertainty so that policy can be made in a more informed man-
ner. In so far as emissions are policy—dependent, Forcing Uncertainty is partially
controllable since mankind can choose what level of GHGs to emit over the course
of the 21st Century. Unlike mitigation decisions, for many decisions relating to
climate impacts or adaptation, Forcing Uncertainty must be included, as discussed
in Section 2.6. .

Assessing the likelihood of various forcings is not addressed in this Thesis. This
Thesis will treat the problem of climate prediction as conditional on a scenario of

future forcings.

2.3.2 Initial Condition Uncertainty

Climate models need to be initialised with some starting state. Where the model
and the system are identical (this is also known as the Perfect Model Scenario Judd
& Smith (2001a)), this might be done by using the most accurate estimates of the
system’s current state. Given that no observations are perfectly accurate, there will
be a set of possible starting states in whatever high—dimensional space the model
lives in. Propagating this set of possible starting states using a model results in a
distribution of possible states at each time point in the simulation. This distribu-
tion can be thought of as a manifestation of Initial Condition Uncertainty (ICU).
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With a Perfect Model and the ability to fully explore ICU, the distribution of future
climate would be representable by a reliable Probability Density Function (PDF)!
where the model’s PDF provides a fully accurate guide to the frequency of real
world events. Fully propagating ICU (every possible Initial Condition) in a climate
model gives the model’s PDF, also known as the model’s climatology.

It is a fundamental property of non-linear systems that simulations can show sen-
sitive dependence on initial conditions (ICs). In systems displaying sensitive de-
pendence on ICs, even arbitrarily close starting states diverge on long time scales
Lorenz (1963). An example of the growth of ICU can be taken from Numerical
Weather Prediction; there are fundamental limits to the predictability of weather
given noisy observations since very similar current states can lead to widely diver-
gent forecasts on timescales of a week or more.

In the case of climate, the initial growth of ICU is not of interest per se, since inter-
est lies in the behaviour of the model on timescales beyond which ICU is thought
to affect the distribution of model behaviour. Reducing ICU should have no signif-
icant effect on the model climate distribution on long time scales Stainforth et al.
(2007a). The presence of ICU in climate modelling means that we are always deal-
ing with a distribution of climatic states. Climate modelling aims to understand
how this distribution will change; weather modelling aims to provide forecasts on
short lead-times, conditioned on the estimated current state of the climate system.
Where the model and the system are distinct, there is no unique correct model start-
ing condition. Yet all models must be initialised in order to be run. A model can
be initialised using an analysis (observations projected into model space through a
model) although there would still be a set of different Initial Conditions with which
the model could be equivalently initialised. This set of possible initial states, when
transformed into model space, need no longer directly represent the uncertainty
in observations. It is critical to understand that a climate model’s PDF may not
bear any useful resemblance to future climate. It is the role of climate scientists
to evaluate the potential similarity between climate models’ PDFs and the future
climate. ICU is analysed in detail in Chapter 6.

2.3.3 Model Uncertainty

There is also uncertainty in how to represent our knowledge of the climate system.

This uncertainty is present both in the structure of the model and its parameter

1A PDF is reliable when the event occurs with a frequency consistent with the value indicated
by the PDF Brocker & Smith (2007a)
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values. The case of parametric uncertainty is discussed first, where the model struc-
ture is held constant. Unlike ICU, changing parameter values in a dynamical system
can lead to dramatically different behaviour Cuellar Sanchez (2006); Sprott (2003).
There are a number of different, plausible, values that each parameter can take.
Furthermore, parameter values may not be fixed and can vary over time Kennedy
& O’Hagan (2001b).

For many (if not all) parameters in a SOTA climate model, there are a set of values
that might be used, each potentially resulting in a different set of model dynamics.
An example of such an undetermined parameter is the drag coefficient, relating to
the frictional retardation of the atmospheric flow due to the roughness of the Earth.
This parameter value is thought to be known empirically to about +10% Thorpe
(2005).

The same structural model with a different set of parameter values is called a model
version. These different sets of parameters can be explored in a given model, in a
Monte Carlo-type approach. How the propagation of parametric uncertainty should
be done is an open question — the resultant distribution of model output depends
critically on subjective choices such as: which parameters were perturbed, which
intervals to vary the parameters within, the parameter sampling strategy, any prior
distributions that might be used and how to interpret the model output Frame et al.
(2005, 2007); Stainforth et al. (2007a). The effect of these prior choices for param-
eter perturbation differs from the case of perturbing ICs. Whereas perturbing ICs
allows a sampling of a single distribution, changing parameter sampling strategies
or other prior distributions changes the distribution of model output itself. Unlike
ICU, model behaviour under different sets of parameter values does not sample
from a common distribution; the model will behave differently for each different
set of parameter values. Each model version has its own distribution with its own
internal variability. There is therefore a hierarchy of uncertainty: ICU represents
the distribution for a given model with certain parameter values and parametric
uncertainty represents the different model versions that are possible for a given
structural model.

When considering the uncertainty of how to represent our physical understanding
structurally, it is clear that there is no way to sample objectively from “model
space” Allen & Stainforth (2002). It is only possible to consider existent models
rather than consider all the models that might potentially exist. It has been shown
that the differences between parametrically perturbed model versions can be larger
than the difference between structurally distinct models Solomon et al. (2007a);
Stainforth et al. (2005). This suggests that the current range of different structural

models are not fully representative of total Model Uncertainty.
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The significance of Model Uncertainty is that there are a number of different model
versions that can be used to predict future climate; differing either by parameter
values or model structure. We do not know which model version, if any, will pro-
duce the most accurate forecast! for a particular variable and future time period.
It is important to note that the concept of a single “best” model or set of parameter
values is irrelevant in the context of climate prediction since there are a number of
different qualities that can be looked for in a climate model. In the case of model
structure, there are a number of different ways of compiling the same physical un-
derstanding into a model. Furthermore, no single model is likely to be most useful
in every way and it is not always possible to tell which model will provide the most
useful predictions; thus a set of models must be considered.

The diversity of forecasts arising from different models forms a lower bound on the
precision with which climate predictions can be made. Such Model Uncertainty can

be explored using ensembles, as explained in Section 2.3.5.

2.3.4 Model Inadequacy

Every model is imperfect; this is true by a model’s very nature. In a theoretical
sense, a perfect model ceases to be a model and becomes a restatement of the sys-
tem itself. In the real world models are inevitably imperfect. As such, we do not
have access to a perfect climate model. In particular, complex computer simula-
tion models are inadequate i.e. they are an incomplete or flawed representation of
the system being modelled Chatfield (2002); Kennedy & O’Hagan (2001a); Oreskes
et al. (1994); Smith (2002). Whilst there is no doubt that models are imperfect
there is equally no doubt that some are useful. The relevant question is in what
way their inadequacies render them useful and in which ways they are useless (or
worse, misleading).

In the case of climate models, there are a number of known inadequacies. De-
spite their great complexity, there are still missing processes that are important for
modelling climate change (e.g. atmospheric chemistry, the carbon cycle, vegetation
models etc.). Many models do not have an explicit stratosphere or deep ocean (in-
cluding HadSM3, the model used in the CPDN experiment). Furthermore, the grid
resolution in current models is relatively coarse, leading to unrealistic simulation of
important processes such as clouds and precipitation Dai (2006); Karl & Trenberth
(2003).

Model Inadequacy is a major problem in the use of models to understand the cli-
mate. Unlike many other fields, such as NWP, the lack of out—of-sample data makes

IThe most relevant measure of forecast accuracy will depend on the user.
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it difficult to evaluate in which ways GCMs are adequate for use. Given a sufficient
amount of relevant out—of-sample data it is possible to evaluate a model and un-
derstand its strengths and weaknesses. Systematic biases can be detected, models
can be improved and the likely future out-of-sample skill of the model estimated.
Where there is insufficient out—of-sample data, it is not possible to tell how the
model will perform out—of-sample; but in—sample fit can provide a lower bound on
future model accuracy, as explained in Section 2.4.

The problem of extrapolation in light of Model Inadequacy can be related to the
story of Russell’s chicken Russell (1946); Stainforth et al. (2007a). A chicken is fed
each day by the farmer, and believes the farmer will continue his benign behaviour
in the future, then one day is suddenly slaughtered. For the chicken such an event
was unthinkable based on prior data. The problem has also been characterised as
the black swan effect Hume (1748); Taleb (2008) (prior to the discovery of Australia
it might never have been thought that there may be non—white swans.). The point
of such examples is that it is never possible to know whether the future will resemble
the past; indeed in the case of climate prediction we know that it will not.

Since we do not have the opportunity to compare climate model results to out-of-
sample verifications, it is not possible to know how a climate model will go wrong.

This problem is discussed in more detail in Section 2.4.

2.3.5 Ensembles

In the case of simple chaotic models, such as the logistic map May (1976); Sprott
(2003), it is possible to evaluate some of the uncertainties categorised in Section 2.3
analytically. For example the growth of ICU over time can be understood math-
ematically from the model equations Sprott (2003). In the case of SOTA climate
models, this is not possible; the models are far too complex to study mathemati-
cally and computations too laborious. The method most widely used to understand
climate model behaviour involves using ensembles Collins & Knight (2007). In the
case of climate modelling, an ensemble can be thought of as a dynamical system
version of a Monte Carlo simulation. Ensembles come in a variety of types, four
of the most important for climate modelling are discussed in this Section; ICEs,
perturbed physics ensembles (PPE) Murphy et al. (2004); Stainforth et al. (2005),
multi-model ensembles Solomon et al. (2007a); Tebaldi & Knutti (2007) and grand
ensembles.
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2.3.6 Initial Condition Ensembles

In order to evaluate ICU and understand the internal variability of a climate model,
an ICE can be run. ICEs are formed by running the same structural model several
times, with.the same parameter values, with different starting states. In the case
of the CPDN project the different ICs are formed by small perturbations about a
common temperature field. An ICE enables a quantification of the distribution of
a model’s climate. ICEs are discussed in detail in Chapter 6.

Perturbed Physics Ensembles

Model Uncertainty can be explored using a Perturbed Physics Ensemble (PPE). A
PPE consists of a set of model simulations, using the same structural model, but
with different parameter values. Due to the large number of parameters in a climate
model, the number of possible levels and combinations of parameter perturbations
it is not possible to fully explore this type of uncertainty given finite computational
constraints. In Murphy et al. (2004) 53 model versions were used to explore Para-
metric Uncertainty for 29 parameters chosen by climate modelling experts to be
important. PPEs of this kind can give an estimate of Model Uncertainty but the
particulars of the results inevitably depend on subjective choices, as described ear-
lier in this Section. The problem of how to sample parameter space effectively has
not been solved; linear factor analysis Murphy et al. (2004) and Latin hypercube
designs have been used Annan & Hargreaves (2007). Other work, such as Sanderson
et al. (2008), has shown how data from the CPDN ensemble can be used to inform
choices of future parameter values. In particular, Sanderson et al. (2008) proposes
that a neural net can be used to detect the likely choices of parameter values that
would yield a wide range of model behaviour, hence a smaller ensemble could be
used to achieve a similar range of behaviour than methods not informed by existing
perturbed physics ensembles. These methods have been chosen since they require
far less computational resources than fully exploring parameter space.

Multi-model Ensembles

A multi-model ensemble is a set of simulations made using a set of different struc-
tural models. There are at least 20 different modelling centres that have developed
GCMs; the range of results produced is a guide to the diversity present in how
current physical understanding is represented. These models share many similar
properties and should be thought of as highly inter-related. Furthermore, we can
not know how the diversity of GCMs currently available reflects uncertainties in the
structure of the model itself. The range of current SOTA climate models could be
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treated of as a lower limit on uncertainty in the model structure. A multi-model
ensemble is analysed at in Chapter 3.

Grand Ensembles

A grand ensemble is a set of ICEs run under different structural models or model
versions. In the CPDN experiment, a number of ICEs are run under a number
of different model versions where parameter values are varied. Grand ensembles
allow a comparison of model behaviour, allowing for more sophisticated uncertainty
assessment than single simulation a multi-model or PPE would allow. In a grand
ensemble the internal variability of each model used can be evaluated and used to
compare model behaviour. Since a comparison of climate distributions is relevant for
robust decision analysis grand ensembles are an important area of current research.
The CPDN grand ensemble is introduced in Chapter 4 and is studied in Chapters
7 and 8.

Duplicate Simulations

A duplicate simulation is an exact copy of an another simulation. Therefore, in
theory, the results obtained from duplicate simulations should be identical. Dupli-
cate simulations can be used to verify certain aspects of experimental design. Due
to differences in computing architecture, processor or numerical errors in computa-~
tion there can be differences between duplicate simulations in practice Knight et al.
(2007). Evaluation of these differences is useful so that other sources of variability
and uncertainty might be attributed.

2.4 Model Evaluation and straw—men for climate

Prior to using model output to inform decisions, it is statistical good practice to
evaluate for which purposes the model is fit for use. This poses the question:
“How can a climate model be evaluated given that it is extrapolating decades into
the future?”’. As previously stated, out-of-sample comparison of model output to
observations is not accessible in the case of climate prediction Reichler & Kim
(2008). Often models are use to make predictions on lead times of 10+ years and
have a working life of about 5-10 years. Once they are updated with a new model the
old model is no longer studied in detail. A notable exception to this is Hansen et al.
(1988, 2006) in which an older climate model is checked against out—of-sample data
for the years 1988-2005. Even where observations are available, only a single time

series can be used as a verification, placing limits on our ability to ever assess the
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probabilistic reliability Brocker (2005) of models. By virtue of their very newness,
current SOTA climate models are unevaluated out—of-sample. Other methods that
do not rely on out-of-sample data for evaluation must be used.

Whilst it is not possible to know that an extrapolation of the future state of the
climate system is justifiable Frame et al. (2007); Hume (1748); Oreskes et al. (1994),
it is possible to assess whether certain predictions are likely to be unreliable. This
“predictive falsification” can be achieved in a number of ways; three such straw-man
tests are presented in this Section. Failure in any one of these tests is tantamount
to considering those predictions as decision—irrelevant, although it is expected that
a model might be able to pass all these tests with respect to one decision and not
another. Passing all tests does not mean that the model is useful; these tests do not
verify a model but should be thought of as sanity checks. Each test will be presented
in the following format; 1) the rationale behind the test is first introduced, 2) the
test itself presented, 3) the justification for the test and 4) limitations of the test.

2.4.1 In-—sample fit

The degree to which a model can re-produce past observations, in—sample, provides
a lower bound on its ability to predict out—of-sample (future forcings are unknown
and models can not be over—fit out—of-sample as they can be in—sample). Whilst
accurate in—sample performance does not imply useful out—of-sample performance
it is a requirement that a model can produce skillful simulations in—sample, if the
model is to be useful out—of-sample. Such in—sample fit should properly be assessed
using an ICE of simulations that take account of the model’s internal variability.
The ability of a set of climate models to re-produce the GMST time series of the
20th Century is examined in detail in Chapter 3.

e The Test: In the variable(s) of interest, evaluate the model’s in—sample fit
for the predictor chosen e.g. 10 year mean August temperature in Southern
England. By comparing model output to observations using a relevant mea-
sure of model skill, a limit can be set on likely out—of-sample performance.
Model output should comprise a set of simulations, preferably including ICEs
to include the effects of each model’s internal variability, whereas the obser-
vations will comprise a single time series. The measure of model fit should be
relevant to the end—use of the model. Methods to evaluate in—sample model
performance include the use of bounding bozes Weisheimer et al. (2004), shad-
owing the observations to within observational uncertainties Judd & Smith
(2001a,b); Smith (2001), or by using some proper skill score in the case of
probabilistic model output Brocker & Smith (2007Db).
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e Justification: The consistency of model behaviour with observations in—sample
is a lower limit on its consistency with out—of-sample verifications. If it can
be shown that the model does not produce simulations consistent with obser-
vations when the verification is known prior to making the prediction, it is
difficult to see why the predictions should be more useful where the verifica-

tions are not known.

e Limitations: This test can only provide a lower limit on the accuracy of a
model’s predictions but can not set an upper limit. Thus, it can not be
directly inferred from passing this test that the model is producing the right
in—sample fit for the right reasons. An example where this test would be less
relevant would be if the model being tested is over-fit on the available data,

giving a misleadingly close in—sample fit.

2.4.2 Initial Condition Test

The magnitude of uncertainty seen across an ICE provides a lower bound on un-
certainty in that simulation, as explained in Chapter 6. ICU can be quantified in
a climate simulation and used as a straw—man as a test for robustness of model

predictions.

e The Test: Run a large ICE over the period of interest. By examining the
range of behaviour using the distribution of ICE members on various length
scales and variables it is possible to judge whether it is possible to inform a
particular decision e.g. if an ICE disagrees on the sign of precipitation change
on all relevant length and time scales it would be dangerous to use such a
model to inform decisions critically dependent on the sign of precipitation
change. A user—specified level of uncertainty could be set before conducting
this test if used to reject model predictions as failing to provide consistent

information.

e Justification: ICU is an irreducible source of uncertainty Stainforth et al.
(2007a), that represents the internal variability of the model. ICEs provide a
means to evaluate this type of uncertainty and reflect the robustness of model

behaviour.

e Limitations: Whilst this test provides an irreducible lower bound on uncer-
tainty, this type of uncertainty taken alone under—estimates the full uncer-
tainty present in climate predictions — this test may not be very powerful.
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This test becomes more powerful as the number of members in the ICE in-
creases; as more uncertainty is explored, the test becomes more stringent,
although there is likely to be a saturation in the value of adding extra IC
members after a certain size of ICE. As such, passing this test can not pro-
vide much confidence in a climate prediction but it can rule out predictions
that are subject to high levels of internal variability.

Determining the critical level of ICU is subjective and must be decided on a

case by case basis, preferably with consultation with the decision maker.

This test is discussed in the context of regional simulations of temperature and

precipitation in Chapter 6.

2.4.3 Model diversity Test

There are a number of different models that can be used to make climate predictions,
as stated in Section 2.3. Since any of these models might be used to make climate
predictions, the diversity of results across available models should be assessed as a
lower bound on Model Uncertainty. Model Uncertainty can be thought of as arising
from the existence of a set of possible models. This type of uncertainty is discussed
in more detail in Chapter 7 which the results of the CPDN grand ensemble are
presented.

This test is a more stringent version of the previous test using ICEs. The basic
principles are the same, but since it is expected that the diversity of different models’
predictions will be greater than the magnitude of ICU this test will likely be more
powerful than the test based on ICEs.

e The Test: Run a multi-model ensemble over the future period of interest,
where models differ by either parameter value (as in a PPE) or model struc-
ture. The diversity of behaviour across models can be used to assess the
magnitude of uncertainty arising from Model Uncertainty using a bounding
box methodology. A user—defined level of uncertainty could be specified before
conducting this test if used to reject models.

e Justification:

The range of model output represents the range of possible predictions that
could be obtained given a set of models and possible parameter values. Where
this range is very large (too large for useful decision support), it is not possible
to provide useful predictions without further information.
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e Limitations:

The diversity of climate models is limited in the sense that it is only possible to
run models that are available; these models are not independent and represent
an ensemble of opportunity rather than an objective spanning of model space
Allen & Stainforth (2002).

It is necessary to show some judgement in what constitutes an acceptable
model — it is possible to deliberately include models with a particularly low (or
high) level of diversity. As a possible guideline, only models whose predictions
which pass the first two tests described in this Chapter should be used in this
test i.e. only models that provide adequate in—sample behaviour and for which
ICU is not too great in the variables, length and time scales of interest.

In order for this test to be most powerful, as many and as different models as
possible should be used. The use of this test is discussed in Chapter 7 in the
context of a large grand ensemble of simulations.

2.4.4 Utility of models that fail these tests

If a particular model prediction fails to pass one or more of the above tests, this
model’s output, in the variables tested, is inadequate for quantitative use in decision
support. That is not to say that the model itself is useless, nor should a failure to
pass a test be seen as a purely negative result. Four uses of a model that fails one

of the above tests are presented here.

1. If a model prediction fails a test, it does not mean that the model as a whole
is invalid. It could be that a model will provide more robust predictions in
some variables and length scales than others e.g. failing to correctly simulate
local seasonal precipitation does not necessarily mean the model is useless for

predicting global annual mean temperature.

2. It is advantageous to know the cases in which predictions are highly uncertain.
This could save considerable expense on developing, interpreting or purchas-
ing detailed model output. Furthermore, decisions based on over—confident
information are unlikely to be optimal.

In the context of decision—support, it may be very important to remain flexible
rather than making a decision using pre—mature or incorrect information. To
act on climate predictions known to be unreliable risks a considerable over—
commitment on the decision-makers’ behalf and a loss of reputation and trust

on the behalf of the provider of climate predictions. It should be noted that
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the lifetime of a prediction, and the rate at which confidence in climate sci-
ence would be lost, is not necessarily on the same timescale as the predictions
themselves. Rather, loss of confidence in climate models’ predictions might
occur as soon as a new model, or set of predictions, provides conflicting ev-
idence. Where it is believed that model predictions will change with future
model improvement, it would be misleading to present them as final. This
concept is related to the idea of Stable Inferences from Data Allen & Stain-
forth (2002), in which it is proposed that we should have more trust more in
those aspects of model behaviour that are robust over different models and

over time than in those that are prone to change.

. The model can be still be used heuristically or for the purposes of scenario
generation. Whilst the model output may not be directly usable, quanti-
tatively, in the context of a particular decision, model output can help in
conceptualising a problem. Using the model to generate various scenarios can
be helpful even if such output will not play an explicit quantitative role. A
climate model may suggest avenues of investigation not previously considered
despite its inability to provide robust predictions. Furthermore, it has been
suggested that an invalidated (or yet to be evaluated) model can be used to
encourage appropriate data collection, or as an important illustrative device
Hodges (1991). A model that provides no conclusive quantitative evidence will
support policy that is flexible and responsive. A similar point is made in Allen
& Frame (2007), in which it is argued that we can adapt mitigation policy to
global warming as we observe it to occur. Such “wait and see” strategies do
not exclude pre—emptive mitigation, depending on the decision—makers risk
preferences and the relative costs of under or over—shooting mitigation targets.
An uncertain model would add weight to the argument for adaptive climate
policy since it may prove costly either to over or under commit on emissions

targets (or on local adaptation plans) based on current evidence.

. Model output is useful in understanding the current state, and progress of,
climate science. Using models to diagnose courses of future research and
model improvement is an essential use of models, regardless of whether they
can provide decision makers with useful predictions. In fact, detecting model
failures is key to model improvement. Whilst today’s models may not provide
robust predictions, it is possible that the next generation of models will. In
inter—disciplinary areas such as climate research, model output provides an
opportunity to assess the state of the science and inter-compatibility of the

various contributing areas.
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Based on the above four points, it would be wrong to interpret the failure to pro-
vide direct quantitative evidence as a reason to ignore SOTA climate models. Sig-
nificant qualitative understanding can be gleaned from models failing tests for con-

sistency of quantitative information as well as a basis for further scientific progress.

2.5 Decision support

This Thesis presents results that are aimed at informing decisions and climate
change policy. Any attempt to use model output to inform forecasts of climate
change requires some ability to translate information in model simulations to infor-
mation in the real world. Otherwise, model results will remain in “model land” and
do not relate to Earth’s climate or contain any direct relevance to real life decisions.
In order to improve the decision-relevance of climate predictions it is important to
work with the users of climate model output. Through partnership with decision
makers, climate experiments can be made more relevant and can be interpreted in
a more practical way. A framework for an iterative process between the providers
and users of climate model output has been suggested in Stainforth et al. (2007b).
As a first step towards evaluating the decision—value of climate models it is im-
portant for decision makers to determine how climate affects their decision and to
frame questions in terms of statistics that might be generated by climate models.
If a particular decision is robust to the uncertainties present across ensembles of
climate model simulations climate model output might be useful. It is likely that
decision makers will not have access to all the information they require and will ei-
ther have to settle for uncertain and provisional model results or not to use climate
model output at all. It is important here that the uncertainties inherent in climate
prediction are communicated effectively in order to differentiate the varying degrees
of confidence that should be attached to different aspects of model output.

An important question is how to represent model output to users. Various sug-
gestions have been made including giving the range of model diversity Stainforth
et al. (2007b), probability density functions Jenkins et al. (2007) or a more complex
Bayesian framework Goldstein & Rougier (2006). It is an open question how best to
communicate the information in imperfect models; other techniques are also being
suggested include the use of probabilistic odds instead of probabilities Judd (2008a).
In order to assess which methods should be pursued it is necessary to consult the
users of climate model results so that the most relevant and understandable method
is applied that can transmit uncertainty information.

In this Thesis, model output is not interpreted as probabilistic statements about

future climate, rather as giving insight to the workings of the climate model(s) used.
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2.6 Uncertainties in Adaptation and mitigation

decisions

Two important types of climate policy that might be informed by climate predic-
tions are 1) adaptation and 2) mitigation. Adaptation can be seen as changes that
are made to reduce the costs or exploit the benefits of a changing climate. Adapta-
tion decisions are subject to all four types of uncertainty explained in Section 2.3,
including forcing uncertainties. In order to make effective adaptation decisions it
is important to know not only the sign of climate change, but the possible magni-
tude of the change i.e. when deciding how high to build a flood barrier, it may be
insufficient to know only that it will rain more in the future; it is also necessary to
know by how much precipitation will change and statistics on how the magnitude
and frequency of precipitation events will change. It is possible to make adaptation
decisions based on the relative risk of climate changes e.g. the risk of flood waters
exceeding a certain level, rather than planning for specific changes. Using the rela-
tive risk of an event of interest has the advantage that it treats future climate as a
distribution considering a range of possible events.

Mitigation decisions target reductions in the extent of future climate change. Miti-
gation decisions can take a different approach to uncertainties to adaptation plan-
ning. Two differences in the treatment of uncertainties between mitigation and

adaptation decisions are:

1. Since the most important drivers of climate change are themselves the subject
of mitigation decisions, Forcing Uncertainty is, in part, reducible. Whilst
there are sources of Forcing Uncertainty that are not dependent on decision—
makers (such as variations in solar luminosity, or volcanic eruptions), to a large
extent the decision-making process relies only on providing robust predictions
conditional on a particular mitigation decision. Based on such conditional
predictions, usually of the form of scenario analysis Nakicenovic et al. (2000),

decision—makers can influence the future path of climate forcings.

2. Since GHGs and other important forcings are global in their effects, mitiga-
tion is largely a global issue whereas adaptation is a local one. Thus, miti-
gation decisions are not dependent on local climate changes in the same way
adaptation decisions are. The uncertainties associated with global means are
typically smaller than for regional means Solomon et al. (2007a) (shown in
Chapter 8) and mitigation decisions need not always consider the distribution
of specific costs and benefits on local scales. On the other hand, it is impor-

tant to understand the local impacts of climate change in order to estimate
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the likely costs of a given level of GMST rise. Thus mitigation decisions can
not exclude regional variations in climate response in the case of deciding eco-
nomically optimal policy but do not depend on this information as critically

as adaptation decisions.

2.7 Communication of uncertainties

It is important for climate scientists to communicate the uncertainties in climate
predictions transparently. Despite the importance of such communication, there
have been few attempts to provide decision-makers with comprehensive information
on the uncertainties in climate predictions. An example of the presentation and
communication of model output for decision-makers will be discussed in detail in
Chapter 3, taken from the IPCC AR4 Solomon et al. (2007a), where the performance
of SOTA models in simulating the time series of GMST over the 20th Century is
analysed in detail. This example will highlight the need for robust and relevant
model evaluation methods and provides motivation for investigating more relevant
methods of evaluation of climate predictions.

It is important not to mislead decision makers as to the uncertainties of climate

prediction because:

1. Decision—makers are likely to make worse decisions if they are not informed of
the full range of possibilities or are overconfident in the predictions of climate

models.

2. Climate scientists risk losing credibility if the uncertainties in current models
are not fully disclosed and the next generation of climate models produce
different forecasts. Such loss of credibility could be irretrievable and it will
take a very long time for sufficient verification data to be obtained in order
to establish new models as trustworthy. Exposure of misrepresentation of
uncertainty could be used by skeptics of anthropogenic global warming to
cast doubt on the better understood aspects of climate change.

There remain issues of how best to communicate uncertainty to decision makers.
An important issue is that many decision-makers lack the quantitative background
to understand technical aspects of climate statistics or model output. Decision-
makers would benefit from an understandable communication of uncertainties. It
is argued in this Thesis that the best way to do communicate climate science is to
present the uncertainties in climate prediction as fully as possible. Over the past 20
years, due to increased research in climate science, there has been a great increase in
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our understanding of the climate system; this knowledge has decreased uncertainty
in whether observed warming is anthropogenic but has increased our uncertainty in
its magnitude Andronova & Schlesinger (2001); Stainforth et al. (2005). It would
be wrong to interpret uncertainty as incompatible with knowledge, but rather as a

result of critical and honest evaluation of our understanding.

2.8 Conclusion

The problem of climate prediction has been presented together with a categorisa-
tion of the uncertainties involved. Such categorisation is important since the four
types of uncertainty discussed in this Chapter require different treatment: Forc-
ing Uncertainty is reducible in mitigation decisions, Initial Condition Uncertainty
(representing internal model variability) is quantifiable using ICEs, a lower bound
can be placed on Model Uncertainty using perturbed physics or multi-model grand
ensembles and an assessment of Model Inadequacy is only accessible with sufficient
comparison to observations (preferably out—of-sample).

Communication and transparency of uncertainty is argued to be of key importance
if climate science and science-based policy are to follow a successful and mutually
beneficial partnership. This Thesis aims to motivate a more complete understand-
ing of uncertainties in the light of statistical principles of good practice.

New methods presented in this Chapter are:

e Three methods to evaluate the consistency of information in climate sim-
ulations have been proposed using in—sample data, ICEs and multi-model
ensembles. These tests allow the providers and users of climate output to

weed out predictions with no robust predictive skill.

e The possible uses of quantitatively inadequate models (including models that
fail one or more of the tests presented) has been described. Failing one of the
tests presented has been shown to be a potentially useful result in itself.
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Chapter 3

How reliable are the models used
to make projections of future

climate change?

3.1 Introduction

The main models used to provide projections of climate today are GCMs, some
of the most complex models ever built. For these projections of future climate to
be used in decision-support, it is important to evaluate GCMs as fit for purpose.
As discussed in Chapter 2, this evaluation is non-trivial due to the nature of the
problem (long-term extrapolation of a complex, physical system) and a lack of
relevant past analogues with which to compare model output.

This Chapter looks at an example of the evaluation of some of the climate models
used in the recent IPCC ARA4. In particular, the ability of climate models to re-
produce the observed GMST time series over the 20th Century is looked at in detail.
It is shown that the presentation of model output in the AR4 is both limited and
misleading in its reflection of model performance. This example motivates a more
comprehensive analysis of climate models’ likely predictive skill.

Three criteria for the reliability of GCMs are presented in the IPCC AR4 (e.g. FAQ
8.1 in Working Group 1);

1. “One source of confidence in models comes from the fact that model funda-

mentals are based on established physical laws”

2. “A second source of confidence comes from the ability of models to simulate
important aspects of the current climate... Models’ ability to reproduce these

and other important climate features increases our confidence that they repre-
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sent essential physical processes important for the simulation of future climate

change”

3. “A third source of confidence comes from the ability of models to reproduce
features of past climates and climate changes ... One example is that the
global mean temperature trend over the past century can be modelled with
high skill when both human and natural factors that influence climate are
included.” (pages 600-601, Chapter 8, Solomon et al. (2007a)).

This Chapter focuses on the evidence for criteria 3) - the in—sample performance
of a set of GCMs in re-producing the time series of 20th Century GMST. The results
presented are also relevant for criteria 1). It should be noted that to accurately
simulate observed GMST is insufficient for many decisions Smith et al. (2008);
Stainforth et al. (2007b). Nevertheless, the extent to which GCMs can re-produce
observed 20th Century GMST in-sample places a lower bound on their ability to
inform decisions on finer spatial scales and in other variables Smith et al. (2008).
Furthermore, since models are tuned in-sample Bender (2008); Johnson (1997);
Oreskes et al. (1994); Stocker (2004) the magnitude of in—sample residuals provides
a lower bound on the potential out—of-sample accuracy, as explained in Chapter 2.
The IPCC ARA4 presents a plot of in-sample GCM simulations from 14 modelling
centres around the world versus observed GMST. This plot appears in two different
cases:

1. In Frequently Asked Questions 8.1 — “How reliable are the models used to
make projections of future climate change?”. The plot is used to suggest that
GCMs produce a reliable representation of the time series of 20th Century
GMST.

2. The plot also appears in Chapter 9, Figure 9.5, in a comparison of model’s
in—sample skill with and without anthropogenic forcings. This plot is used to
show that GCMs can only match observations when anthropogenic forcings are
included than using only natural forcings — “Figure 9.5 shows that simulations
that incorporate anthropogenic forcings, including increasing greenhouse gas
concentrations and the effects of aerosols and that also incorporate natural
external forcings provide a consistent explanation of the observed temperature
record, whereas simulations that include only natural forcings do not simulate
the warming observed over the last three decades.” (p. 684, Solomon et al.
(2007a))
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The presentation of model output in cases such as the IPCC AR4 Figures 8.1
and 9.5 is questioned here in the context of the reliability of climate models’ pro-
jections. The IPCC Figure 8.1 is limited in terms of case 1) demonstrating the
reliability of models’ projections and is better suited to case 2) attribution of the
causes of past warming. The agreement between models and observations shown in
IPCC Figure 8.1 has been described as “remarkable” Knutti (2008b); it is shown
here that the agreement is not as good as might appear at a first glance.

The ability of models to simulate GMST in—sample is looked at more closely in
this Chapter and the presentation of data is discussed. This is done by comparing
observations to GCM simulations in absolute space and an analysis of the partic-
ular way that each model responds to forcings. Presenting the raw model output,
without first taking anomalies, or the residuals of each model with respect to the
observations give a very different view of model skill than the IPCC Figure 8.1.
Section 3.2 briefly introduces some fundamental ideas underlying GCMs. Section
3.3 gives details of the data used in IPCC Figure 8.1 Solomon et al. (2007a). The
IPCC Figure is re-produced in Section 3.4 and is looked at in detail. In partic-
ular, the use of anomalies is looked at in Section 3.4 and are shown to obfuscate
important information regarding the reliability of model projections. The skill of
individual models is examined in terms of their residuals in Section 3.5 and the lack
of exchangeability between model simulations analysed in Section 3.6. Results and
suggestions for improvements in the presentation of model output are discussed in
Section 3.7.

3.2 General Circulation Models

The IPCC ARA4 report uses data from a number of GCMs. GCMs are complex
computational models based on our scientific understanding of the climate system.
All the GCMs looked at in this Thesis are deterministic and require a large amount
of computational power to run e.g. using a distributed computing set—up it takes
~ 2-3 weeks to run a 45 year simulation of the Hadley Centres’ HadSM3 model on a
typical Pentium4 3.2 GHz PC. Due to the large investment of time taken to develop
GCMs and the computational resources required to run climate modelling experi-
ments, studies using GCMs are often restricted to large modelling centres around
the world such as the UK’s Hadley Centre or the National Centre for Atmospheric
Research in the US.

In this Chapter the output of each of 11 different GCMs is condensed into a single
dimensional time series of GMST. GMST is calculated by an area weighted average
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of surface temperature over the globe and annual averaging. More details of this

calculation and specific features of GCMs are presented in Chapter 4.

3.3 The IPCC Figures

The IPCC Figures 8.1 and 9.5 present simulations of 20th Century GMST from 14
structurally distinct GCMs. For some GCMs, multiple simulations were available,
making an ICE. In total 58 simulations were plotted, together with the multi-model
mean of the anomaly—adjusted model output (the model-mean is calculated by the
arithmetic mean over all simulations). The observations, as well as each model
simulation are plotted as anomalies with respect to the period 1901-1950. Each of
these GCM simulations uses a set of anthropogenic and natural forcings (includ-
ing, but not exclusively, Greenhouse Gases (GHGs), solar forcings and volcanoes)
determined by each modelling centre. It should be noted that since the anthro-
pogenic and natural forcings used in 20th Century simulations are determined by
each modelling centre, different forcings are used in different GCMs Covey et al.
(2003); Meehl et al. (2005). Further details of how these Figures were made in the
IPCC ARA4 can be found in the Supplementary material to Chapter 9 of Working
Group 1 of the IPCC AR4, Appendix C. These methods are described briefly in
Section 3.4.

This Chapter uses 47 model simulations, available from the Coupled Model Inter-
comparison Project!, of the 20th Century are analysed from 11 structurally distinct
GCMs, developed at 9 different modelling centres across the world. These 47 sim-
ulations correspond to simulations used in IPCC Figure 8.1; the remaining 9 simu-
lations were not available at the time of analysis. The models used, the number of

simulations and their respective modelling centres are shown in Table 3.1.

There are a number of ways to present the same model output that can give
different indications of the model’s reliability. Three methods are presented in
Section 3.4, beginning with the raw model output. In all three plots, observations
are shown in black, model simulations in yellow and the multi-model mean in red

(averaged over all simulations). Vertical blue lines indicate the timings of four

1T acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercom-
parison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles
in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided
by the Office of Science, U.S. Department of Energy.
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Model 1.D. n Modelling Centre Country
ncar-ccsm3 8 | National Centre for Atmospheric Research USA
miub-echo-g 5 Max Planck Institute for Meteorology Germany
gfdl-cm2-0 3 US Department of Commerce, NOAA, USA
Geophysical Fluid Dynamics Laboratory
gfdl-cm2-1 3 US Department of Commerce, NOAA USA
Geophysical Fluid Dynamics Laboratory
giss-model-e-h 5 | NASA Goddard Institute for Space Studies USA
giss-model-e-r 9 | NASA Goddard Institute for Space Studies USA
inmcm3-0 1 Institute for Numerical Mathematics Russia
miroc3-2-medres | 3 Center for Climate System Research, Japan
National Institute for Environmental Studies
Frontier Research Center for Global Change
mri-cgcm2-3-2a | 5 Meteorological Research Institute Japan
ncar-pcml 4 | National Centre for Atmospheric Research USA
ukmo-hadgeml |1 Hadley Centre UK

Table 3.1: The models used in the CMIP 3 project used in this Chapter. The
model I.D., number of simulations available (n), and the modelling centre that ran
the experiment is shown.

major volcanic eruptions; Santa Maria (1902), Agung (1963), El Chichon (1982)
and Pinatubo (1991)

3.4 Presentation of Model Output

The raw data from the 47 simulations analysed in this Chapter are presented in
Figure 3.1. Figure 3.1 shows that the models range in their base GMST by about
3 degrees Celsius. If uniform, such a difference in temperature equates roughly to a
difference in radiation emitted at the surface of a blackbody of 16W/m? (this num-
ber is based on the Stephan-Boltzmann energy balance equation Boltzmann (1884);
Stefan (1879), stating that the total energy radiated from a black body is directly
proportional to the fourth power of the black body’s thermodynamic temperature)®,
a factor of 10 larger than the estimated anthropogenic forcing over the 20th Cen-

tury, estimated at 1.6W/m? (with a 90% confidence interval of 0.6-2.8W/m?) in

10f course, GCMs do not model the Earth as a black body, and so the actual difference in
surface radiation between GCMs will differ from 16W/m?. The point here is simply that 3 degrees
is a large difference for models that rely on their physical coherence for their predictive skill.
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Solomon et al. (2007a). Differences of this magnitude in the baseline GMST could
affect temperature-dependent feedback processes e.g.the 0 degree Celsius ice-line
could be significantly different in models differing by 3 degrees Celsius in GMST,
thus affecting albedo feedback processes. It is not argued here whether such large
differences can be robustly subtracted when comparing simulations to observations
(or when comparing GCMs), nor that this fact invalidates the relevance of GCMs
for simulating important aspects of climate change, rather that such differences are
better acknowledged. In IPCC Figure 8.1 a linear offset is applied to each non—
linear simulation, eliminating the differences in absolute GMST between GCMs.
The assumption that a linear offset can be robustly applied out—of-sample to a
non-linear model requires justification. Without any such justification, one might
interpret the 3 degree difference in GMST as a violation of the physical basis of
GCMs, stated as a reason to trust climate models in Chapter 8 of the AR4, as
given in Section 3.1. It is not obvious that a 3 degree difference in baseline GMST
does not have a significant impact on the physical properties of these GCMs. The
same data used to make Figure 3.1 is now used to make a re—production of IPCC
Figure 8.1. This re-production is shown in Figure 3.2.

In Figure 3.2, each individual model simulation (yellow) is plotted as an anomaly
relative to its 1901-1950 average, as are the HadCRUT3 observations (black). These
anomalies are taken for each simulation by subtracting the 1901-1950 simulation
mean from the 20th Century time series. The multi-model mean (red) is calculated
by the arithmetic mean over all simulations from the anomaly time series, and as
such is expected to lie closer to the line y = 0 due to a reduction in variance.
The multi-model mean shows less variability that individual model simulations
(furthermore, the multi-model mean will have an improved RMSE over individual
simulations through its lower variability independently of any improvement in its
representation of observed dynamics; a point often not considered in studies com-

paring the value of a multi-model mean to constituent simulations e.g. Reichler &
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Kim (2008)). Plotting the data as anomalies produces an immediate overlap be-
tween simulations and observations over the period 1901-1950, regardless of whether
simulations and observations sharing any common dynamics or baseline global mean
temperature level. In anomaly space, the model time series appear close to obser-
vations, showing a similar magnitude of change in GMST over the 20th century.
This graph is presented as evidence that “the global mean temperature trend over
the past century can be modelled with high skill” in Chapter 8 of the AR4 Solomon
et al. (2007a). Certain shortcomings of GCMs are noted in Chapter 8 of the AR4
with respect to their ability to forecast future climate change, such as “deficiencies
remain in the simulation of tropical precipitation” and “The ultimate source of most
such errors is that many important small-scale processes cannot be represented ex-
plicitly in models, and so must be include in approximate form as they interact with
larger-scale features.” (p.601, Solomon et al. (2007a)), but the ability of GCMs to
re-produce GMST changes is not included. Indeed, the ability of climate models
to simulate 20th Century GMST is presented as a source of confidence in models.

Figure 3.3 shows the same plot, but with anomalies calculated with respect to each
model rather than each simulation (the same period, 1901-1950 is used). Using
model-means as a basis for taking anomalies assumes there is a common bias within
each model that should be subtracted before comparing simulations. In contrast,
taking anomalies for each simulation, as in Figure 3.2, assumes there is a global
bias to be subtracted from each simulation individually and that this bias differs
between simulations produced by the same GCM. Taking anomalies for each sim-
ulation means that difference bias corrections are applied for simulations produced
by the same GCM. Since simulations produced by the same model differ only by IC,
and not in their dynamics (the model structure and parameters are identical across
all members of each model’s ICE), taking anomalies for each simulation reduces
intra-model variability and leads to an artificially tight agreement between simu-

lations and observations over the period during which anomalies are taken. The
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smallest difference in offset used for the same model is 0.045 degrees Celsius for
the ncar-pcm1 model and the largest is 0.294 degrees Celsius for the gfdl-cm2-0
model. It should be noted that the 0.294 degree difference in offset is of the same
order of magnitude as the observed warming over the 20th Century (~0.74 degrees
Celsius). Taking a single offset for each GCM, Figure 3.3 distorts the variability
between the simulations, when compared to Figure 3.2. Over the period 1901-
1950, the variance across simulations is, on average, 20% higher for simulations
with model-means subtracted compared to simulations with means subtracted for
every simulation. Conversely, the variance over the second half of the 20th Century
is about 10% lower when taking a single offset for each model, rather than each
simulation. These differences in variance might partly be due to any difference in
offset at the beginning of the 20th Century disappearing over time in the model-
mean anomaly case; there will be no difference, on average, between members of
an ICE. Thus, taking anomalies for each simulation rather than for each model has
the effect of distorting the variability in the ensemble since systematic differences
in GMST are introduced between ICE members where none should exist.

The variance of the ensemble increases greatly towards the end of the 20th Century;
the variance across the 47 simulations is approximately 3 times greater in the last
10 years of the 20th Century, taking anomalies either as simulation or model means,
than for the first 10 years. This could be an indication of the variable response to
GHG forcings across models or the most recent observational data not being avail-
able for “tuning” the model (pp.596, Working Group 1, AR4, also Bender (2008);
Murphy et al. (2004); Stocker (2004)) during development.

It is not clear that temperature anomalies are sufficient for decision makers
than absolute temperatures. Absolute temperatures are also very relevant for the
purposes of many decisions. In the case of impact studies, it can be very important
to consider the absolute temperature since various events of interest are linked to a

specific temperature e.g. water freezing at 0 degrees has an impact on agriculture,
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sea—ice extent, and even planetary albedo. Other examples of impacts sensitive to
absolute temperature are crop failure, heat mortality and water vapour feedbacks.
Note that these impacts are not global; knowing GMST is insufficient to uniquely
deduce regional impacts Smith et al. (2008). The relationship between GMST and
regional climate response is looked at in detail in Chapter 8.

Presenting the model output in absolute temperature space gives a very different
picture of the model’s ability to re-produce 20th Century observations. In Figure
3.2 the models appear to re-produce the dynamic changes seen in observations with
significantly different base GMSTs. Section 3.5 looks at the residuals of each GCM
individually in order to understand how well each GCM captures the dynamics of

the observed GMST time series.

3.5 Residual Analysis of Model Output

Section 3.4 illustrated significant and systematic differences in GMST between the
GCMs that make up IPCC Figure 8.1. Even if presenting GCM output as anomalies
is justified, understanding how well the individual GCMs capture the dynamics of
the climate system being modelled is useful for assessing their likely out—of-sample
skill. The extent to which GCMs can simulate the dynamics of observed GMST
change provides an estimate of the limit of their predictive skill out—of-sample.
This model-observation comparison can be done by looking at the residuals for
each GCM. Residuals are defined by subtracting the time-series of observations
from each model simulation. This differs from the model anomalies; anomalies are
calculated by subtracting a single number from the entire time series, in this case
the 1901-1950 mean.

Figures 3.4, 3.5, 3.6 and 3.7 show the model output for the 11 GCMs used in resid-
ual space (the time series of observations are subtracted from each simulation). The
simulations are presented by GCM, with the line y = 0 representing the observa-

tions. There are three notable points about these residual plots:
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1. Residuals are often as large as 0.3 degrees and in some cases are greater than
0.5 degrees. This is large in comparison to the magnitude of warming seen
over the 20th century (~0.74 degrees) and provides a lower limit on these

GCMs’ likely accuracy out—of-sample.

2. There is clear structure in the residuals, indicating that model errors can
not be assumed to be independent over time and identically distributed. For
the giss-e-r, miub-echo-g, miroc3-2-medres and mri-cgcm2-3-2a mod-
els there is a pattern in the residuals inverse to that of observations — ob-
servations warm from 1901-1945, then cool or level out to 1960 following by
sustained warming to 2007. When these four GCMs’ residuals are linearly re-
gressed against observations, each simulation has a significantly negative slope
coefficient, as shown in Table 3.2. That these patterns are seen inversely in
some models suggest these GCMs under-react in response to rising levels of
GHGs i.e. these GCMs warm, but by systematically less than observations.
These results indicate that the model error in these GCMs is systematic and
relevant for their ability to simulate 21st Century climate. If these GCMs
are not responding to forcings in the same way as the observations, their
projections will be increasingly unreliable for extrapolations further into the

future.

3. The GCM ICEs do not always “capture” truth; often IC members are too hot
or too cold and react in a common way; this effect can be most clearly seen in
Figure 3.5, top graph (giss-e-r model), where the 9 member ICE captures
the observations in only 43 years of the 20th Century. If the model were
accountable Smith (2001), we would expect to see some IC members above
the observations and some below (allowing for the ensemble size Judd et al.
(2007}). For those GCMs with more than 1 ICE member (a 1 member ICE
never captures), between 39 and 65 years of observations are captured. Testing

the ability of GCMs to capture observations in-sample allows systematic model
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Model 1.D.

n | Min/Max Slope Coefficient | Min/Max St. Dev.
miub-echo-g 5 (-0.77,-0.43) (2.92, -6.23)
giss-model-e-r 9 (-1.28,-0.97) (-6.12, -12.6)
miroc3-2-medres | 3 (-1.07,-0.86) (-8.8,-9.2)
mri-cgcm2-3-2a | 5 (-0.86, -0.77) (-11.2, -12.9)

Table 3.2: The range of slope coefficients and their significance using a simple linear
regression of GCM residuals against observations for four GCMs. The number of
simulations available for each GCM is denoted by n.

errors to be diagnosed.

When multi-GCM output is shown, without distinction for the constituent
GCMs, it is no longer possible to readily understand the details of individual simu-
lations. The presentation of model output in IPCC Figure 8.1 obscures important
information regarding uncertainties and makes the simulations appear in better
agreement with observations than suggested by the two alternative methods pre-

sented here, or by analysis of the residuals of individual GCMs.

3.6 Exchangeability

This Section answers the question of whether GCM output can be considered ex-
changeable. Exchangeability is defined here as the case where two models produce
output that are identically distributed, a critical assumption underlying many sta-
tistical methods. This definition is adapted from Galambos (1995) — “exchangeable
random variables are identically distributed.”. The exchangeability of models is
analysed using two statistical methods; 1) Using order statistics to evaluate where
one model is significantly hotter than the other and 2) The non—parametric Kruskal-
Wallis test Kruskal & Wallis (1952) for equality of medians is applied across 5 models
with at least 5 available simulations. A new method, based on order statistics, is
used to estimate the temporal correlation of model output in order to test the as-

sumptions that the analysis exchangeability relies on.
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The residual plots shown in Figures 3.4, 3.5 and 3.6 in Section 3.5 suggest a
lack of exchangeability between GCMs (different GCMs appear to have different
dynamics) - it can not be assumed that models are drawing from a common distri-
bution. This lack of exchangeability can be shown by plotting all GCM residuals
simultaneously, as in Figure 3.8, and highlighting two models for comparison. The
same model output as shown in Figure 3.2 is shown in two different presentations
- the top graph shows models and observations as anomalies from their respective
1901-1950 means and the bottom graph shows the residual time series of the model
output. The time series from two GCMs are coloured in red (8 simulations from the
ncar-ccsm3 GCM) and in blue (5 simulations from the giss-model-e-h GCM).
Colouring the simulations of these two GCMs highlights the fact that these models
appear not to be sampling from a common distribution. During the last ~30 years
of the 20th Century the NCAR model is frequently hotter, for every IC member,
than all simulations from the GISS model. The two GCMs match closely over the
first half of the 20th Century then differ in the latter part of the Century, suggest-
ing that these models are responding to rising GHGs in a different way. It might
be thought that the different responses can be explained by the different climate
sensitivities ! of the models, with varying model response to other factors such as
aerosols and volcanoes also accounting for some of these differences. In this case CS
refers to the amount of GMST rise that eventually results from doubling CO; con-
centrations in a climate model. The equilibrium CS of the ncar-ccsm3 and giss-h
models both have an equilibrium CS of ~2.7 degrees Celsius Kiehl et al. (2006);
Schmidt et al. (2006). Despite having the same equilibrium CS, it has been noted
that there is not always a direct relationship between equilibrium CS and transient
response Raper et al. (2001). The Transient Climate Response (the temperature
increase at the point of CO, doubling, where CO, concentrations are increased

steadily at 1% per year, i.e. after year 70 of the simulation) of the ncar-ccsm3

1Climate sensitivity will be explained in more detail in Section 4.4.1
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and giss-h are 1.5 and 1.6 degrees Celsius respectively Solomon et al. (2007a). It
seems that it is not possible to explain the difference in late 20th Century GMST
response by differences in the NCAR and GISS models’ CS.

The lack of exchangeability of these NCAR and GISS GCMs can be seen quantita-
tively by counting the number of ncar-ccsm3 simulations that are hotter than all
giss-e-h simulations at each time point. It is expected that, because there are 8
NCAR simulations, and 5 GISS simulations that the NCAR model will, on average,
contain at least one warmer simulation if the two models are drawing from the same
distribution. The theoretical number of simulations from an ensemble exceeding the
hottest simulation from another ensemble can be calculated under the assumptions
of exchangeability (simulations from the two GCMs draw from the same distribu-
tion) and a lack of temporal correlation.

The hottest simulations from the 5 member ensemble is expected to be exceeded %th
of the time by an ensemble drawing from the same distribution i.e. for an ensemble
of size 8, an average of % simulations each year. Thus, the probability of all 8 NCAR
simulations being hotter than all 5 GISS simulations is ~ 5.9 x 10~7 if both models
are drawing from the same distribution (this assumes a Binomial distribution of
NCAR simulations hotter than GISS simulations with a probability of % over 8 tri-
als). There is less than a 1% chance for at least 5 of the 8 NCAR simulations being
hotter than all 5 GISS simulations under the assumption of exchangeability. Figure
3.9 shows the number of NCAR CCSM simulations that are hotter than the hottest
GISS simulation for each year over the 20th Century. The horizontal line shows the
theoretical value of % for the expected number of NCAR simulations warmer than
the warmest GISS simulations for each year. From 1900 to 1940 there are typically
1 or 2 NCAR simulations warmer than the warmest GISS model simulations. Fig-
ure 3.9 then shows a significant trend from 1940 onwards, with 6 or more NCAR
simulations being hotter than all GISS simulations by about 1970. This suggests

that these models are not exchangeable and are responding in a different way to
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the rising GHGs that drive mid-to-late 20th Century warming. Given the different
dynamics of these models, it seems unreasonable to treat these GCMs’ ensemble
members as exchangeable. The theoretical statistics calculated here depend on a
lack of temporal structure if the available data set is small, although the results are
so significant that temporal correlations are unlikely to account for the differences

seen. The temporal correlation of these GCMs is estimated in Section 3.6.1.

3.6.1 Estimating temporal correlation using order statistics

Many statistical method, including the tests for exchangeability presented in this
Section, rely on the assumption that model output is temporally uncorrelated. A
method is presented here that estimates temporal correlation within an ICE using

order statistics. This method is applied as follows:

1. At time ¢, define the extremal simulations of an ICE of size n as Zins and
Tmagzt- Lhe extremal simulations are defined whenever z,,in 74 Tmin,t—1 OT
Tmaz,t 7 Tmaz,t—1 (this is done to avoid over—counting simulations which define
the minimum or maximum in consecutive years). Henceforth the calculation
is notated for the case of z,,:, where m represents either the minimum or

maximum.

2. Define the mixing time, 7, as the time taken for the time series of the simu-

lation defined by z,,; to cross the median.

3. A simulation z,,; at time ¢ is defined to cross the median where its rank is

less (greater), if the calculation uses Zoz¢ (Tmin,t), than 7.

4. x,,, crosses the median at time ¢ 4+ 7, where 7 denotes the mixing time.

The distribution of 7 provides an estimate of the temporal correlation within
a model. The above calculation was carried out for the 5 GCMs with 5 or more

available simulations. These distributions are shown in Figure 3.10 in red. The
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median mixing times for these distributions are 2, 2, 3, 3 and 4 years respectively.
The maximum mixing time for these distributions are 10, 16, 17, 21 and 23 years re-
spectively. The theoretical distributions are plotted in black in Figure 3.10. Based
on the assumption that the mixing time of each model is 1 year, the theoretical
distribution of estimated mixing times was calculated using a Geometric distribu-
tion. If the theoretical distribution is a good fit (a Chi-squared test could be used
to test this formally) to the empirical distribution, it might be concluded that the
model does not typically have significant temporal correlation. If the theoretical
distribution is a poor fit, then the mixing times could be repeated using multi—
annual means, increasing the temporal averaging until the theoretical distribution
well approximates the empirical distribution. The theoretical distribution is a good
approximation for the mri-cgcm2-3-2a and miub-echo-g models and a poorer
fit for the other three GCMs, especially the ncar-ccsm3 GCM. This suggests that
the mixing times for some GCMs is longer than 1 year, although this is not always
the case. It would be possible to estimate the mixing time of a GCM by repeating
the above analysis based on a n year temporal mean, and increasing n until the

theoretical distribution well approximates the empirical distributions.

3.6.2 Testing the exchangeability of GCM output

In order to show the results indicating a lack of exchangeability between the ncar-
ccsm3 and giss-model-e-r GCMs are robust when expanded to include all GCMs
with at least 5 simulations a Kruskal-Wallis test is carried out here. The Kruskal-
Wallis test is an extension of the Mann-Whitney rank sum test Mann & Whitney
(1947) that tests the equality of medians across 3 or more distributions. Here, the 5
GCMs with at least 5 simulations are selected for analysis (5 members are generally
required for the Kruskal-Wallis test statistics to be well-approximated by a Chi-
squared distribution Kruskal & Wallis (1952)). Output from the mri-cgcm-3-2a,

miub-echo-g, giss-model-e-h, giss-model-e-r and ncar-ccsm3 GCMs is used
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here, which have 5, 5, 5, 8 and 9 simulations respectively. The test was then carried
out for each year of the 20th Century on the 32 simulations from these 5 GCMs,
giving a time series of p-values. The model-mean adjusted anomaly time series are
used — the significant differences in baseline GMST is not included in this test. This
time series is shown is Figure 3.11. From 1901-1960 models there is little evidence
that the models have different annual medians, although it should be noted that
all models are forced to have zero mean over the 1901-1950 period by the use of
anomalies. From 1960-2000 there is strong evidence that the models have different
medians for every year. This test provides evidence that it can not be assumed, over
the second part of the 20th Century that these 5 GCMs are sampling from the same
distribution. The test carried out here assumes that there is no temporal correlation
within these GCMs simulations. As shown in Section 3.6.1, the mixing time of these
GCMs can be longer than 1 year. In order to show that these results are robust
to temporal correlations, the Kruskal-Wallis test was repeated for multi-year mean
time series. Temporal means are taken for 2, 5, 10 and 25 year means and the
results are shown in Figure 3.12. In all cases, the test is generally non-significant
during the first half of the 20th Century, but is always significant towards the end of
the 20th Century. This indicates that these 5 GCMs are not exchangeable during
the second half of the 20th Century, suggesting different dynamical responses to

mid to late 20th Century forcings.

3.6.3 Discussion of Results

Since the GCMs analysed show different dynamical behaviour in response to 20th
Century forcings, the relevance of certain multi-model statistics is dubious. An
important difficulty follows when non-exchangeable models are used to form multi-
model statistics based on an “ensemble of opportunity” (one can only analyse the
simulations that have been provided). In this case, statistics will be biased depend-

ing on which models are included and, in some cases, the number of simulations that
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are provided for each model. This is particularly a problem in climate model com-
parison where there is little co-ordination of experimental design. Similar difficulties
arise when statistics are calculated across all available simulations disregarding the
number of simulations produce by each model. In this case, models with more avail-
able simulations will be effectively weighted more heavily e.g. the two variants of
the GISS model will receive, jointly, 14 times more weight than either the Russian
inmcm3-0 or the UK’s hadgem1 GCMs.

Further to the problems facing statistics complied from non—exchangeable ensem-
bles of opportunity, the presentation of multi-model means from non—exchangeable
models faces further difficulties. In particular, multi-model means are necessarily
low in variability and can lead to a cancellation of temporal variability. This can
be shown withv a simple example. Suppose model A produces output with temporal
variability similar to that of a sine function and model B similar to that of an offset
sine function such that the sum of the two sine functions is 0. When taking the
multi-model mean of Models A and B from two ensembles of equal size (or giving
equal weight to each model in some other way), the effect will be a straight line with
no temporal variability. The multi-model mean need not bear a strong resemblance
in temporal variability to its constituent simulations.

It has been shown in this Section that GCM output can not be assumed to be ex-
changeable. This result has important consequences for the utility of multi-model

mean statistics that treat models as being interchangeable.

3.7 Recommended Presentation of Model Out-
put

An alternative way of presenting GCM output to the IPCC AR4 Figure 8.1 is

suggested in this Section. Three amendments are suggested:

1. If anomalies are to be used, these anomalies should be taken with respect to
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each model, not each simulation. This approach is consistent with the fact
that IC members from the same GCM follow the same dynamics and have the

same systematic dynamical biases.

. The use of a linear offset to reduce systematic differences should be stated
explicitly when presenting anomalies. It is important to give the magnitude of
this adjustment especially when it is large. In addition to this it is important,
in the accompanying text, to state explicitly the justification for using this

offset and whether it is likely to hold out—of-sample.

. The performance of individual models in capturing the observations should be
central to the evaluation of multi-model ensembles, especially where models
can not be assumed to be exchangeable. This could be achieved by running
an ICE (perhaps 10+ members) and looking at how often the model captures
the observations, such as in Weisheimer et al. (2004). When using GCMs to
extrapolate, it is important that individual models capture the dynamics of

change in the observations.

The first two suggestions above are important whether the intention is to show

the fact that all models warm under anthropogenic forcings, as in Chapter 9, Figure

9.5 of the AR4, or to give evidence to trust models out—of-sample, as in Chapter

8, Figure FAQ 8.1 of the AR4. The third condition is aimed more at providing a

clearer view of a model’s likely skill out—of-sample.

3.8 Conclusion

The presentation of model output in Figure 3.2, as shown in IPCC ARA4 does not

acknowledge significant systematic biases in the model’s base GMST and large dis-

crepancies between individual model simulations and observations. The presenta-

tion of data in IPCC Figure 8.1 suggests that the combined effect of 20th Century
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anthropogenic and natural forcings is sustained warming and that this result is ro-
bust across GCMs. The IPCC Figure is more suitable in the case of establishing the
sign of the net effect of forcings on GMST, such as in Stott et al. (2006), although
a table could equally provide this information. It does not, on the other hand, give
sufficient evidence to support the statement that GCMs can accurately re-produce
observed GMST in either its mean value or its dynamics. Individual GCMs must
accurately capture the dynamics of observations in—sample in order to justify their
extrapolations as reliable out—of-sample.

It has been shown here that the presentation of GCM output in—sample in the IPCC
Figure is inappropriate and I could not find an explicit acknowledgement of the con-
cerns raised here in the AR4. In cases of decision—support, it is critical to present
uncertainties with such transparency that the users of climate predictions will not
be surprised when comparing observations in 2010 or 2020 (or updated model out-
put before that time) to current GCM output. To overstate the predictive skill of
GCMs risks misleading decision makers and will likely weaken confidence in climate
science. The in—sample differences shown in this Chapter can be seen as a “straw-
man” test, similar to the in-sample test explained in Chapter 2. The differences
between GCMs simulations and observations in-sample provides an upper bound on
their likely accuracy out-of-sample. These differences can be significant e.g. resid-
uals values of up to 0.5 degrees Celsius. The ability of GCMs to extrapolate future
climate changes in this case does not seem well founded without an clear acknowl-
edgement of a) the use a linear offset to produce anomalies and b) the structure in
the residuals. Point b) is important since residual structure suggests that the some
GCMs used in this analysis may not be capturing the dynamics of temperature
change observed, an important condition for useful out—of-sample simulation.

The 47 simulations looked at in this Chapter are insufficient for a detailed sensitivity
analysis of model response to GHGs. Since the range of behaviour across different

structural models underestimates the full range of possible climate responses Stain-
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forth et al. (2005) it is necessary to look at the diversity of model behaviour in a
large set of simulations in order to make robust statements about future climate.
The methods of analysing uncertainties used in the remainder of this Thesis were
only applicable thanks to the availability of a large set of GCM simulations from
the CPDN experiment. Chapter 4 introduces the details of the CPDN experiment
and the data sets that will be analysed in subsequent Chapters.

New results presented in this Chapter are:

e There are significant differences between different GCMs’ global mean tem-
perature of up to 3 degrees Celsius. Such large differences call into question

the physical basis of these models.

o The effect of taking different types of anomalies gives significantly different
presentations of GCMs’ in—sample fit. The use of anomalies in the IPCC AR4
distorts the variability of models both within Initial Condition Ensembles and

across different structural models.

e Model output has been compared to observed global mean temperatures over
the 20th Century. Residuals are compared on a model by model basis and it
has been shown that 1) There can be considerable structure in the residual
time series and 2) The magnitude of residuals can be large (up to 0.5 degrees
Celsius) in comparison to observed 20th Century global warming (~0.74 de-

grees Celsius).

e CMIP3 GCMs are not exchangeable, calling into question the relevance of
many methods of statistical analysis for climate model output. GCMs can

not be assumed to be sampling from a common distribution.

e A new method for estimating the temporal correlation within GCM time series
is proposed. The mixing time for some GCMs is not significantly different from
1 year (the higher frequency of data used here), but that it can be higher for
other GCMs.
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Annual Global Mean Temperature - Observed versus simulated
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Figure 3.1: The absolute values of GMST from 47 simulations are plotted in yellow.
The HadCRUTS observations are plotted in black (the anomaly time series is offset
using the 1961-1990 global mean (14.0 degrees Jones et al. (1999))). The multi-
model mean is plotted in red. There is a difference of up to 3 degrees between

simulations’ GMST.

71



Annual Global Mean Temperature - Observed versus simulated
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Figure 3.2: (Reproduction of IPCC Figure 8.1) Comparison of 47 simulations from
11 structurally distinct GCMs (yellow) used in the AR4 to HadCRUTS observa-
tions (black). The multi-model mean is plotted in red. Each model simulation is
“centred” by taking anomalies relative to 1901-1950. Blue lines show the timings
of four major volcanic eruptions - Santa Maria, Agung, El Chichon and Pinatubo.
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Annual Global Mean Temperature - Observed versus simulated
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Figure 3.3: Comparison of 47 simulations from 11 structurally distinct GCMs (yel-
low) used in the AR4 to HadCRUT3 observations (black). The multi-model mean
is shown in red. In this plot the model is centred using the mean 1901-1950 anomaly
for each model (averaged over IC members). There is slightly more variance across
model simulations, during the 1901-1950 period where anomalies are taken, in this
plot than in Figure 3.2, as expected.
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Figure 3.4; The residuals for 3 different GCMs are shown as a time series. Residuals

for each simulation are found by subtracting the HadCRUT3 observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.5: The residuals for 3 different GCMs are shown as a time series. Residuals

for each simulation are found by subtracting the HadCRUT3 observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.6: The residuals for 3 different GCMs are shown as a time series. Residuals
for each simulation are found by subtracting the HadCRUT3 observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Figure 3.7: The residuals for 2 different GCMs are shown as a time series. Residuals
for each simulation are found by subtracting the HadCRUTS observations from each
simulation (and adjusting for any differences in baseline 1901-1950 GMST).
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Annual Global Mean Temperature - Observed versus simulated
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Figure 3.8: The time series of 47 GCM simulations is plotted against observations

as 1901-1950 anomalies (top) and as residuals (bottom). The NCAR PCMI1 GCM
is highlighted in red and the GISS-h model in blue. The highlighted models overlap
in the first half of the 20th Century but diverge from 1960 onwards.
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Figure 3.9: The number of NCAR PCMI simulations that are hotter than the
hottest GISS-h simulation over the 20th Century. The horizontal line shows the
number of simulations we would expect to be hotter, on average, at each time point
if the models were sampling from the same distribution. The horizontal line shows
the 5% significance level used in this test.
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Figure 3.10: The distribution of mixing times for 5 GCMs - mri-cgcm?2-3-2a, miub-echo-g, giss-echo-e-h, giss-echo-e-r and
ncar-ccsm3 with 5, 5, 5, 9 and 8 simulations respectively.



Kruskal-Wallis Test for Significance of model medians
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Figure 3.11: The p-values for the Kruskal-Wallis test are shown for the 20th Century.
Low values suggest evidence against the null hypothesis that all five models have
the same median.
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Test for Significance of model medions - 2 year meons Test for Significance of model medians - § year means
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Figure 3.12: The p-values for the Kruskal-Wallis test are shown for the 20th Century
for multi-year running medians of 2, 5, 10 and 25 year means respectively. In
all cases, the test is non-significant during the first half of the 20th Century, the
becomes significant towards the end.
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Chapter 4

Introduction to the

climateprediction.net experiment

4.1 Introduction

This Chapter gives an overview of climate models and details of the climate predic-
tion.net experiment. The scientific communities’ response to demands for decision—
relevant information on future climate has largely focused on the use of complex
climate models, such as GCMs. These models are explained in Section 4.2.

Section 4.3 introduces the CPDN experiment — the largest climate modelling project
ever undertaken. The climate model used in this experiment, developed at the
Hadley Centre, is briefly presented as well as the experimental design of the first
CPDN experiment. The CPDN project provides an opportunity to evaluate some of
the uncertainties in climate modelling using a multi-thousand member ensemble of
simulations. Section 4.4 looks at the type of data produced by CPDN from 45,644
model simulations. Methods for estimating key climate statistics and the process
of data quality control are also presented in this section. A new method of qual-
ity control is introduced that corrects for problems identified in previous methods

Stainforth et al. (2005).
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4.2 Climate Models

Climate models have been used to aid our understanding of the Earth’s climate
system for a long time Manabe (1975); Manabe & Bryan (1969). A variety of mod-
els have been developed, ranging from simple Energy Balance Equations Budyko
(1958); Sellers (1969) to highly complex GCMs Gordon et al. (2000); Johns et al.
(2006); Pope et al. (2000). All the climate models looked at in this Thesis are nu-
merical, computer—implemented, representations of scientists’ understanding of the
Earth’s climate system!. Climate models are primarily physically based, although

they often contain empirical and statistical components.

4.2.1 On statistical methods of climate prediction

SOTA climate models are based on physics and other natural sciences. Statistical
models are not widely used, despite their relative simplicity, in climate prediction.
A particular reason for this is that the climate system is changing in a way that
has never been previously observed. Data—driven methods that do not encode some
fundamental aspect of the way the system works are unlikely to prove reliable out—
of-sample. It is thought that the physical properties of the climate system will
be more robust under extrapolation than those derived from a purely statistical
approach. This is an important rationale for the use of complex physical models in
climate modelling.

The problem of modelling the future climate is primarily one of extrapolation and
thus a statistical model that assumes stationarity, or a constant relationship between
variables may not be appropriate. Despite this, statistical models could be usefully
applied in the field of climate prediction. Statistical models can be relevant in
Numerical Weather Prediction (NWP) and seasonal climate prediction, especially

when used as a “straw-man” Binter et al. (2009). These straw—men are often simple,

Tt is interesting to note that climate models are not restricted to the Earth; modelling of
Mars’ atmosphere is also an ongoing area of research Lewis (2003).
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computationally cheap, statistical models that set a minimum standard for a more
complex, physical, model to outperform. The process of model evaluation in NWP
and seasonal prediction depends largely on the availability of out—of-sample data;
in the case of climate prediction such out—of-sample verifications are few due to
the long time scales involved. Nevertheless, the use of simple statistical models as
sanity checks for more complex climate models is a potentially fruitful area of future

research.

4.2.2 Energy Balance

Perhaps the simplest way to understand the physics of the climate system is using an
Energy Balance Model (EBM). A simple EBM considers the Earth’s global mean
temperature as a uniform sphere. Incoming energy (or radiation) from the Sun
is balanced with outgoing energy from the Earth. Annually averaged incoming
energy from the Sun is approximately 1370 W/m? (every second per metre squared
perpendicular to the Sun’s rays) at the top of the atmosphere. Denote this constant
as S (radiation from the Sun is in fact not constant and does have an effect on
Earth’s climate). Some energy is reflected back into space (either from clouds or
the Earth’s surface) and the remaining energy warms the Earth. The reflectivity of
the Earth is called albedo. Denote albedo as a, where o can take values between 0
(no energy is reflected) and 1 (all the energy is reflected). The net amount of solar

radiation reaching the surface of the Earth is:

S(l1-—a) ’ (4.1)

The Earth absorbs energy like a disk (from the Sun’s perspective), but loses energy
like a sphere (from the Earth’s perspective). Energy gain for a disk of radius R is:

TR25(1 - @) (4.2)

Energy lost from a sphere obeys Stefan-Boltzmann’s Law Boltzmann (1884); Stefan
(1879) (this treats the Earth like a black body), given by:
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4nR?eoT* (4.3)

where € is the emissivity of the Earth (a constant close to 1) and o is the Stefan—
Boltzmann constant. 7 denotes the temperature in Kelvin. In equilibrium the
radiation balance is zero. Thus,

TR2S(1 — a) = 47 R%0T* (4.4)

Which reduces to:

S(1-a)=KT* (4.5)

where K is a constant, or

T x S¥/4 (4.6)

Solving this equation results in a global mean temperature of roughly -16 de-
grees Celsius. The actual GMST of the Earth is roughly 14 degrees Celsius New
et al. (1999) due to the “Greenhouse effect” Fourier (1824) !. GHGs allow visible
light from the Sun to pass through the atmosphere but absorbs a proportion of
the infrared radiation emitted back from the Earth’s surface at a lower frequency.
Important GHGs are water vapour (H20), Carbon Dioxide (CO,), Nitrous Oxide
(N20), and Chlorofluorocarbons (CFC's). Changing the concentrations of GHGs
may lead to changes in the greenhouse effect. Of particular interest is the rising
concentration of CO; in the atmosphere since this change is significant and largely
anthropogenic Solomon et al. (2007a).

An EBM is a representation of the Earth as a black body, with a uniform
surface that responds thermodynamically to changes in radiative forcing. This
model allows an insight to important aspects of the Earth’s energy budget but is
limited due to its simplicity and does not allow an understanding of possible climate

feedback mechanisms (see Section 4.2.3). Although energy balance is a fundamental

! Actually this is a misnomer since a greenhouse works in a different way, but the phrase has
stuck.
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principle underlying all climate models only a basic understanding of the climate
system can be gleaned from the energy balance equation. More sophisticated models
that include feedbacks can be used in order to gain a deeper understanding of the

climate system.

4.2.3 Feedbacks

Of key importance to the study of climate change is the idea of feedbacks. A
feedback is defined here as a process in which the output in turn affects the input. A
positive feedback acts to exacerbate the initial input’s effect and a negative feedback
dampens its effect. In the context of the climate system, an example of a feedback
would be if rising levels of CO, were to lead to ice melting, which led to more
heat being absorbed at the surface (partially due to lower albedo) which results
in further surface heating. Feedback processes are non-linear and require models
much more complex than an EBM to be understood. There is strong evidence that
feedbacks resulting from increasing levels of CO, will be positive Solomon et al.
(2007a), exacerbating the initial warming effect of GHGs. The magnitude and
speed of feedbacks is still very uncertain; understanding the nature and extent of
feedbacks is a key aim of climate modelling. In order to study feedbacks, complex

physical models (GCMs) have been developed.

4.2.4 GCMs and Grid Boxes

GCMs are discrete, 3~dimensional representations of the Earth’s climate, that nu-
merically solve fundamental equations describing the conservation of mass, energy,
momentum etc. of fluid motion. The model is configured as a set of grid bozes — a
set of discrete points over the Earth’s surface and in the vertical direction. Some
models can be adapted to run at different grid resolutions but this can require a re—
working of the representation of some physical processes. It might be thought that

the finer the resolution of models, the better their representation of the physics (and
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less parameterisation is required - see Section 4.2.5) and therefore an improvement
in their ability to predict climatic changes. The tendency is for new models to work
on finer resolutions, requiring more computing resources. Increasing resolution in
a GCM requires an exponential increase in the amount of computational resources
e.g. ceteris paribus a model with 10 times increased resolution in three dimensions
requires 1000 more time to run. There is a trade—off between the complexity of the

model, the number and length of simulations we are able to run.

4.2.5 Parameterisation

Climate models operate on a system of grid boxes with a resolution typically of
order ~10,000km? e.g. the HadAM3 atmosphere model operates on a resolution
of 2.5 degrees latitude by 3.75 degrees longitude Pope et al. (2000) (this resolution
is equivalent to 416km by 278km at the equator, reducing to 293km by 278km at
45 degrees latitude). At this resolution, it is not possible to capture all physical
processes of interest e.g. clouds. Where modellers include such sub—grid scale pro-
cesses parameterisations ' can be used, based on observational studies and statistical
models. Some parameterisations are well-understood and have been evaluated us-
ing observations, such as in Phillips et al. (2004); other parameterisations are more
uncertain or may simply ignore processes altogether McGuffie & Henderson-Sellers

(2006).

4.2.6 Parameter values

In contrast to the parameterisation schemes used to represent sub—grid scale pro-
cesses, a number of parameter values are defined in a climate model. An example
of parameters used in HadSM3 is the speed at which a convective cloud mixes into
surrounding clear air (for a full list of parameters used in the CPDN experiment see

Section 4.4.3). It should be noted that the role a parameter plays in the model may

1 A parameterisation is a representation of processes that operate on length scales smaller than
a grid-box in the model or that are omitted from explicit representation in the model
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be different to its “real world” namesake. Model parameters are firmly rooted in a
world of grid boxes and need not relate to empirical measurements of variables of
the same name. There are two reasons why model parameters need not correspond

directly to empirical counterparts include:

1. Measurements can mean different things when looked at on different spatial
scales. For example a variety of different spatial patterns of precipitation
could result in the same constant drizzle when averaged over a model grid

box.

2. Parameter values in the model can be artificial e.g. expressing the speed
at which cloud droplets form rain in a number may not represent anything
directly empirical in the real world. In some cases, model parameters hold a

tenuous relationship to anything we can measure.

It is not always clear how parameter values should be chosen in a GCM, given
their partial detachment from empirical phenomena. They could be chosen to match -
as closely as possible observations or chosen such that they produce a more realistic
looking model. It has been noted that there are O(100) uncertain parameter val-
ues in the HadAM3 atmospheric component of the HadCM3 and HadSM3 climate
models Palmer et al. (2005). In the case of CPDN, a range of values for each of 29
selected parameters (obtained by expert elicitation, as in Murphy et al. (2004)) is
explored. Having explored some of the uncertain parameters at pre-assigned levels
in the CPDN experiment it has been shown in Sanderson et al. (2008) how future
experimental design might be more efficient by selecting parameter values based on

their likely impact on model behaviour such as CS.

4.2.7 Time steps

For the set of differential equations that make up a GCM to be computed they

are first transformed into a discrete spatio—temporal set of differential equations.
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These equations are then solved on discrete time steps — 30 minutes is used in the
HadSM3 model in the CPDN experiment. Some parts of the model are integrated
over longer time steps e.g. incoming radiation operates on longer time scales than
atmospheric dynamics. The model integration scheme also takes into account the
interaction between grid boxes so that the larger scale dynamics of the climate can

be represented.

4.2.8 HadSM3

This subsection presents the GCM used in the CPDN experiment ] HadSM3 Williams
et al. (2001). Developed at the Hadley Centre, HadSM3 is a GCM operating on a
2.5 degree Latitude by 3.75 degree Longitude grid, with 19 vertical layers, giving
roughly 140,000 distinct grid boxes. Including the 100+ physical variables used at
each grid box, the dimensionality of HadSM3 runs into order 107. HadSM3 consists
of the atmospheric model HadAM3 Gordon et al. (2000); Pope et al. (2000) coupled
to a 50m deep slab ocean and sea-ice model Williams et al. (2001). In the vertical
direction, there are 19 layers over land. These layers are not evenly distributed, in
either distance or pressure. The vertical layers are narrower near the surface, where
more complex physical processes occur Pope et al. (2000).

HadSM3 consists of about 1 million lines of Fortran code (~40Mb) and takes roughly
2-3 weeks to run one simulation (45 years of “model time”) on a Pentium4 3.2GHz
home PC using distributed computing software Christensen et al. (2005). Since
the model does not include a deep ocean, and the atmosphere responds to forcings
comparatively quickly, the response time of HadSM3 is faster than its deep ocean-—
coupled counterpart, HadCM3 Cox et al. (2000); Gordon et al. (2000). The lack
of a deep ocean component allows experimental phases to be shorter thus saving
computational resources, although the HadSM3 model requires flux adjustments.
Two important aspects of the HadSM3 model, the slab ocean and the heat flux

adjustment, are discussed in the remainder of this Section.
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The Slab Ocean

The HadSM3 model uses a slab ocean, a single-layer ocean of constant depth of 50
metres throughout the globe. Many GCMs now have dynamic oceans with vertical
layers extending below the ocean surface. Whilst the use of a slab ocean is a
significant simplification, the model can be useful for understanding the atmospheric
response to changing GHGs. The ocean operates on much longer time scales and
can take 100s of years to reach equilibrium. The atmosphere, and land areas,
react much quicker and it is over land and in the atmosphere that the effects of
climate change will be most significant. Models with slab oceans are not suitable for
studying transient climate response since the lack of ocean dynamics will result in an
unphysically rapid response to forcings. In order to prevent unphysical behaviour in

the slab ocean, a heat flux adjustment is used, described in the following subsection.

Heat Flux Adjustments

Heat Flux Adjustments (HFA) are seasonally varying artificial fluxes of heat, be-
tween the ocean and atmosphere, applied to maintain Sea Surface Temperatures
(SSTs) close to climatological values Hewitt & Mitchell (1997); Williams et al.
(2001). HFA is used to prevent unphysical model drifts that can occur in models
using slab oceans Stainforth et al. (2005). This model drift is undesirable since even
a model simulation with no external forcing factors (e.g. GHGs or solar variation)
may display climate change.

The HadSM3 model includes HFA, calculated in the spin—up phase, as explained
in Section 4.3.1. The use of HFA in the HadSM3 model, its benefits and poten-
tial problems are discussed in detail in Chapter 5. The experimental design of the

CPDN experiment is explained in more detail in the next Section.
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4.3 The CPDN experiment

CPDN is a publically distributed computing experiment Allen (1999); Allen & Stain-
forth (2002); Christensen et al. (2005) that harnesses the computational resources of
members of the public. This allows a very large amount of experimental resources
to be used to run a number of different climate modelling experiments. Similar
projects include the SETI (Search for Extra-terrestrial In