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A bstract

Long term weather forecasts are in great demand across many industries, 

such as the agricultural, tourism, and energy sectors. And hence, one of the 

major goals of this thesis is to develop a good quality benchmark for long 

term weather forecasts. In 2001, a survey was conducted on behalf of the UK 

government by PriceWaterHouseCoopers, which revealed that 95% of UK 

businesses lost on average 10% from their profits due to unforseen weather. 

Another goal of this thesis is to develop enhanced methodology that allows 

business to reduce their weather risk exposure.

There are existing methods and tools that are available to address some 

of the difficulties of long-term weather forecasting and weather risk hedging. 

In particular we consider historical weather data and its statistics, synthetic 

weather data generated by statistical models and short, medium and sea­

sonal physical weather forecasts. For the purpose of reduction of weather 

risk exposure, weather derivatives are considered. There are however limi­

tations and weaknesses in the currently available techniques.

The quality and availability of historical data varies dramatically de­

pending on the type of the weather variable and the location of interest. 

Operational errors are not always clearly identified, and are quite often hard 

to detect. In addition, observational errors are always present. The qual­

ity and quantity of the available historical data affects all other methods of 

weather forecasting. Short term and medium range physical weather fore­

casts exhibit high skill, but do not cover the desired time range. Seasonal 

(long term forecasts) are vague in their nature, offering only a probability



of being above, at or below the climate norm, and the notion of the norm is 

itself questionable. Classical synthetic temperature generation models make 

questionable assumptions, such as independence of certain observed patterns 

in the data, and other distributional assumptions. Finally the inapplicabil­

ity of pricing by dynamic hedging to weather derivatives results in the lack 

of a unique no-arbitrage price.

In this thesis a new long-term temperature forecasting benchmark is 

proposed. In particular, the Ensemble Random Analog Prediction (ERAP) 

dynamic resampler is developed. ERAP allows one to generate tempera­

ture scenarios over long time scales without making assumptions about the 

underlying model of temperature. ERAP works by identifying similar pat­

terns in the historical data across multiple time scales. We also propose 

a new non-linear weather resembling test system - a weather-like process 

that mimics the real temperature with additional long term non-linear pat­

terns. Finally we study the mixing of physical weather forecasts with the 

historical data. In particular, combination forecasts are developed that mix 

information from both physical forecasting models and historical data. The 

methodology is developed by exploring kernel dressing of forecast scenarios 

and ignorance skill-score based optimization of parameters.

The new weather generator ERAP is then extensively tested in the per­

fect model scenario, by studying its performance in terms of the generated 

statistics, using both a noisy Lorenz system and the new weather like test 

process. ERAP is also tested on real weather data by assessing its perfor­

mance on the Berlin daily maximum temperature in terms of the generated



statistics. Finally ERAP is also used for pricing a weather derivative, and 

the prices compared to other existing techniques including pricing based on 

the historical statistics, Monte-Carlo using a fitted distribution, plus other 

statistical techniques from the weather derivative literature. For combina­

tion forecasts we study the sensitivity of parameters to ensemble size and 

the level of noise in the initial conditions, within the perfect model scenario.

We show that ERAP performed well in the perfect model scenario, on the 

actual data and when used for pricing. The historical statistics were closely 

replicated, the statistics of a chosen verification set were also well replicated 

and in some cases, ERAP generated data provided a better match to the 

statistics of the verification set than the climatology (the statistics of the 

learning set itself). Some non-conventional statistics were better replicated 

using ERAP in both the perfect and imperfect model scenarios. Addition­

ally, information is provided by ERAP on the uncertainty of the computed 

statistics. We also show that ERAP provides more reliable pricing, because 

it provides more reliable long-term simulations.

The fake weather generator developed in this thesis has shown to provide 

a good test data set that is non-linear with patterns on multiple time scales 

and closely resembles the characteristics of real temperature time series. 

This process could be a viable alternative, if parameters are fully calibrated 

to the chosen weather data, to existing statistical temperature modeling 

approaches.
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This work could be further improved by the creating better parameter 

estimation techniques for ERAP. ERAP could also be extended to several di­

mensions allowing the generation of more enhanced synthetic weather data. 

For the purpose of pricing weather derivatives more work needs to be done 

to address the transformation of ERAP scenarios to probabilistic weather 

forecasts. Further work may also include studies of the performance of com­

bined forecasts, which mix synthetic data and physical weather forecasts, in 

practice.
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CHAPTER 1 

Introduction.

The aim of this thesis is to build a methodology for weather index mod­

elling, which will allow us to improve the valuation of weather contracts 

in all possible pricing frameworks. Additionally we aim to provide a high- 

quality long term benchmark forecast for weather predictions derived from 

physical models.

Weather forecasting has been an area of great interest and great de­

velopment. Even hundreds of years ago people were trying to forecast the 

weather by noticing certain recurrences, for example, that a cloudy sky at 

night might precede rain and milder temperatures. Although weather fore­

casting skill has improved significantly since, many questions still remain 

unanswered.

Over the years weather forecasting became rather sophisticated and at 

present there are different time-scale forecasts that are available to a user 

(discussed in chapter 2) including seasonal forecasts, which extend a rela­

tively long time into the future. Seasonal forecasts, however, are extremely 

limited in their use due to their nature. In this thesis we address this issue 

of long term forecasting, in particular in chapter 4 we develop a technique 

for combining information from climatology and physical forecasts.

Apart from forecasts physical, limited historical data and synthetic weather 

data are also available. This allows us to compute statistics that are often
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used as a forecast, for longer time scales and as a benchmark for shorter 

range forecasting. In chapter 5 a dynamic climate generator is developed 

that produces enhanced long-term climatology- based forecasts and offers 

an improved benchmark for the short range forecasts. The generator is ex­

tensively tested on data sets constructed in the perfect model scenario and 

then applied to real temperature data. The construction of data sets for 

the generator experiment and a description of the real temperature data are 

provided in chapter 3.

A wide variety of industries are exposed to weather related risks. In 

August 2001 an independent study was conducted on behalf of the Met. 

Office, [9] on the impact of weather on British businesses. The survey was 

carried out on businesses from a wide variety of areas such as: leisure, retail, 

manufacturing and finance. The survey revealed that 95 percent of the UK 

firms questioned have lost 10 percent of their profits due to unexpected 

weather. A new opportunity has arisen, in the form of weather derivatives, 

that allow businesses to offset at least some of their weather exposure by 

transferring risk into the financial markets.

The weather derivatives market was born as a result of deregulation in 

the power market, when energy traders Aquila, Enron and Koch Industries 

constructed and executed the first weather derivative contract [15]. Since 

1997 the market has been growing; the number of contracts traded has in­

creased as has their variety ([9] and [14]). Although the weather derivative 

market has been growing, there are two main factors that slow its develop­

ment: deficiency of historical weather data, discussed in chapter 2 and the



lack of a systematic pricing framework. The latter problem is mainly due 

to  the difficulties in weather index modelling, which is inherited from the 

limitations in weather forecasting.

We combine the techniques developed in this thesis in order to construct 

a coherent and improved framework for modelling of weather indices (chap­

ter 6) and as the result an improved weather derivative pricing methodology 

is produced. In particular, a weather derivative is priced using a new dy­

namic climate generator in an actuarial pricing framework. This is followed 

by a discussion on the incorporation of combined long term forecasts into 

the pricing method. Finally, in chapter 6 conclusions are drawn and future 

work is proposed.
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CHAPTER 2

Background: Weather and Weather Derivatives.

In this thesis a new hedging approach for weather sensitive risk is pro­

posed. Successful weather risk hedging requires: information on future 

weather behaviour; and the formulation of a hedging strategy that would 

allow us to compensate for the weather risk exposure. Prior to presenting 

the new proposed weather hedging approach, in this chapter we examine 

what has been developed in recent years in both: the area of weather fore­

casting/modelling; and the area of weather hedging.

In particular, in the first part of the chapter, three different categories 

of techniques that are used to describe and model weather behavior are 

discussed. These three categories are: climatology, synthetic weather data 

and physical weather forecasts1. First, issues concerning historical weather 

data and climatology based forecasts axe examined (section 1.1). Followed by 

a discussion on modelling approaches that are used to construct synthetic 

weather data (section 1.2). Finally, the characteristics and limitations of 

physical forecasts that fall into three categories: seasonal, medium range 

and short term, are considered (section 1.3).

The second part of the chapter is an overview of the development of an 

extremely versatile weather hedging product - the weather derivative. First 

a brief description of the market is presented, followed by the characteristics

1For the definitions please refer to the Glossary for this chapter.



of weather derivative contracts. Finally the approaches currently used in 

pricing weather derivatives are listed (section 2).

1. W eather.

As previously stated, accurate identification of the future behaviour of 

the weather is a major step towards successful weather hedging. Approaches 

that are currently used in describing and modelling weather behaviour can 

be separated into three main categories. These categories are: climatology, 

synthetic weather data and physical weather forecasts. The three categories 

vary in their use, mainly depending on the resources available and the time 

scale for which the forecast is required.

The first category - climatology, obtains information about weather be­

haviour using historical weather data only. In particular, information ob­

tained does not involve any modelling, simply various statistics calculated 

directly from the historical data. In contrast, the synthetic weather ap­

proach requires a statistical model for the behaviour of weather data. This 

approach does not model the physics of the weather system, but rather fits a 

statistical model to a chosen weather time series (such as temperature or the 

precipitation data). As part of the new weather hedging approach (chap­

ter 5) we propose a new synthetic weather generator that provides improved 

weather risk hedging across longer time scales. Finally, the physical weather 

forecasting models describe the evolution of the weather system according 

to physical laws. Such forecasts are usually produced by meteorological 

institutions, such as Met Office.



Although, each of the above approaches have weaknesses and limitations 

(discussed in sections 1.3, 1.1 and 1.2), they are capable, especially when 

combined, of producing a useful description of weather behaviour that can be 

used to model weather sensitive risk exposure. In chapter 4 we propose a new 

approach to combining information from physical forecasts and synthetic 

weather data that can be used in pricing weather derivatives ( see chapter 

6 on the discussion of further application of this method).

1.1. H isto rica l w ea th e r d a ta  an d  clim atology. Climatology is de­

fined to be historical statistics of weather data such as historical frequencies 

and averages of observations [3].

Collecting descriptive statistics of the historical weather data is a crucial 

step towards modelling and or predicting weather behaviour. It can either 

be used on its own as a weather modelling tool or can be used as a first step 

in simulated weather approaches. It also serves as a benchmark for all other 

weather forecasting techniques.

Weather data is used not only in climatology but in all other areas of 

weather modelling. Although, there has been a significant improvement in 

the quality and availability of weather data, there are still several issues 

affecting the data, and as a result the statistic obtained from it:

• The weather data record is rather limited. Temperature records 

extend further than any other weather variable, and even so the 

time span it covers is minute compared to the existence of the 

global weather dynamics. The lack of historical data has been a



significant motivation behind the development of synthetic weather 

generators.

•  The available data quite often contains missing values that are 

sometimes not clearly indicated or have been inappropriately sub­

stituted. This is another reason why synthetic weather generators 

have been developed.

• Before satellites, the number of locations on the globe where data 

has been recorded, compared to the total surface area, is very small. 

At some sites data was not recorded due to the economic, social or 

political circumstances. Historical measurements are particularly 

course in oceanic regions [4]. This is one of the sources of errors in 

physical weather forecasting.

• Measurement error and human error, that are inevitably present in 

data, are very important factors that are difficult to identify. Phys­

ical weather forecasts are particularly sensitive to measurement er­

ror. Measurement error has been one of the reasons why physical 

weather forecasts are now produced in the ensemble mode2.

•  Finally, even if the data is ‘perfect’, statistics vary greatly depend­

ing on the amount of data used in the analysis, due to the ob­

served recent trends in temperature and other variables [5]. This 

has caused a deviation in opinion among practitioners in the finan­

cial markets on the amount of data that should be used in mod­

elling weather risk hedging strategies. The new proposed synthetic

2See glossary of this chapter for the definition and section 1.3 for the explanation on 

ensemble forecasts.
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weather generator, chapter 5, allows us to avoid the debate on the 

size of historical weather record that is used in modelling weather 

risk.

1.2. S y n th e tic  w ea th e r d a ta . Producing synthetically generated weather 

data is a widely used weather forecasting approach, specifically in the area 

of managing weather sensitive risk. Typically the synthetically generated 

data is used whenever physical weather forecasts are not available. Weather 

generators produce synthetic weather data, such that it is consistent with 

the historical data, often offering enhanced statistics. Such forecasts also can 

be used as benchmark forecasts. Weather generators are statistical models 

that can fill up missing data or produce indefinitely long synthetic weather 

time series. Usually key properties of observed meteorological records, such 

as daily means, variances, extremes, etc are simulated.

Most techniques developed use a stochastic framework (stochastic weather 

generators) to model a particular weather variable. This allows a certain 

flexibility in order to maintain uncertainty due to imperfect modelling3. 

Some weather generators were focused on modelling precipitation. The mo­

tivation for modelling precipitation was driven by the end users, many of 

whom required precipitation forecasts on a long time scale. Additionally, 

the occurrence and amount of precipitation affects the statistics of other 

weather variables, such as temperature(Wilks and Wilby, 1999). As the re­

sult, a new class of weather models was developed. These models first model 

precipitation occurrence and intensity, and then condition the statistics of

q
For the definition on imperfect modelling please refer to the glossary of this chapter.



daily non-precipitation variables on the occurrence or non-occurrence and 

amount of precipitation [28].

Most of the statistically based synthetic weather models used, however, 

generate daily temperature data directly. In this thesis we concentrate on 

the models of synthetic temperature, that have been proposed for the pur­

pose of managing weather risk. Models in this category typically assign a 

functional form to different behavioural patterns that are generally observed 

in temperature data. Such patterns will include, but are not limited to: 

seasonality, daily oscillations, past state dependance and long term trends. 

Alternatively, models in this category may make assumptions about the dis­

tribution of temperature, which can then be used directly or re-sampled to 

produce synthetic temperature scenarios.

Practitioners, particularly in the financial sector, are often more con­

cerned with replicating the way that other practitioners in the market model 

their risk exposure, rather than modelling future weather more precisely. For 

tha t reason we pay particular attention to the most used synthetic weather 

models (in the financial sector) and use the output from those models, gener­

ated in chapter 3, as the benchmark for the new proposed weather generator. 

In particular, the methodologies proposed by Cao and Wei [30] and M. Davis 

[31] are examined in chapter 3 and are used to generate synthetic maximum 

daily temperature for Berlin, Germany. The comparison is then made by 

pricing a weather derivative using those approaches and the new proposed 

synthetic weather generator ( chapter 5 in chapter 6).
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1.3. P hysical w ea th e r forecasts. Physical weather forecasts axe based 

on the meteorological weather modelling approach, where the physical dy­

namics of earth’s atmosphere is considered. There axe three main categories 

that physical forecasts fall into, depending on their time scale: short term, 

medium range and seasonal forecasts. For short and medium range fore­

casts the evolution of the weather system is modelled. For seasonal fore­

casts, long-term weather subsystems are studied, in particular, the weather 

patterns that had been observed in the past whenever certain long-term 

weather subsystems were present [16]. This modelling approach offers po­

tentially the most accurate weather forecast especially on short time scales. 

The equations that describe the evolution of the weather system, however, 

exhibit sensitivity to initial conditions, such as you see in chaotic systems4 

[27]. We proceed by examining the characteristics of each of these categories 

in more detail.

Short term forecasts usually extend up to four to five days maximum. 

In recent years short term forecasts axe produced in the form of an ensemble 

forecast Each ensemble member represents a possible temperature scenario 

at a given time, rather than an exact prediction. This allows us to account 

for uncertainty due to measurement error in initial weather observations. An 

ensemble forecast is constructed by using perturbed initial conditions for the 

equations of motion that model the weather dynamics. This is further ex­

tended by producing probabilistic weather forecasts, where each ensemble 

member, at a given time, is assumed to be a possible draw from a forecast

4On the definition of chaotic system please refer to Glossary of this chapter.
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distribution [6]. A particular feature of short term forecasts is that ensem­

ble members usually exhibit relatively similar behaviour to each other for 

up to two or three days, providing that a good model is used to construct 

such an ensemble [6]. Even on such a short time scale on accurate fore­

cast is not guaranteed. It has been stated by Tim Legg and Ken Mylne, 

Predictability and Ensemble Forecasting Group, NWP Division, UK Met 

Office, that: ‘forecasts beyond day 3 can sometimes be completely wrong, 

and even shorter-range predictions can at times contain serious errors, at 

least in details or timing’ [1].

Figure 1 illustrates a one day forward probability forecast for temper­

ature constructed using 51 ensemble members (MetOffice, UK, [2]). Short 

term forecasts exhibit less uncertainty compared to medium and seasonal 

range forecasts [7] and are very useful if predictability is required for a short 

term, particularly in the time period of less than three days. The proce­

dure involved however in producing such short term forecasts is extremely 

complex and requires significant resources. It is important to note that the 

distribution produced is not in a standard form (such as Normal Distribution 

[25] for example), at least in example provided.

Medium range forecasts are very similar in their characteristics to short 

term forecasts, however the main difference is that forecasts produced axe 

for the longer term, which extends to ten to twelve day time period, where 

the uncertainty is much greater. Typically as time increases the spread, 

given by the Euclidian distance ([8]) between ensemble members on a given 

day, in the ensemble gets larger. As a result, a wider spread in the forecast
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F i g u r e  1. Example of one day forward temperature proba­

bility density forecast, produced by PREVIN - the numerical 

weather forecasting system of the UK Met Office. The top 

scale shows temperature anomalies (w.r.t climatology); the 

operational forecast value is marked as a circle.

distribution will be observed. On figure 2 an example of a five day forward 

forecast probability distribution for the temperature at Heathrow airport is 

presented. It can be noted that the difference between the maximum and 

the minimum temperatures with positive probabilities is larger compared to 

the difference observed in the one day forward distribution, figure 1. It is 

also evident that the distribution is wider (in terms of standard deviation 

[25]) and the shape is more complex exhibiting several peaks.

Medium range probability forecasts offer much greater potential rewards

compare to short term forecasts, however at a greater cost. Uncertainty is

much larger and the computer resources needed are much greater. Both
13
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short term and medium range forecasts will offer little no reward for long 

term weather forecasting.

In terms of successful weather risk hedging strategy, forecasts are re­

quired on a much longer time scale than medium range forecasts can offer. 

The main characteristic of physical seasonal forecasts is that they are vague 

in their nature, offering probabilities of a divergence from climatology of a 

particular weather variable, rather than a day to day fluctuational forecast 

(for example see [16]), see figure 3. This seriously limits the use of seasonal 

forecasts on their own, specially in the case of weather derivatives.

Producing seasonal weather forecasts involves analysis of large atmo­

spheric and atmospheric-oceanic systems of the global weather dynamics. 

Forecasting in this framework is possible due to the operation of these sys­

tems on a longer time scale and statistical association of these systems with
14
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F ig u re  3. An example of a seasonal forecast for a given 

variable. The forecast issues probabilities for that variable 

being above average, below average or average, 

certain weather patterns [16]. The reliability and length of such forecasts 

vary through regions, as some of the atmospheric-oceanic systems are more 

predictable in their behaviour and are slower progressing than others.

Figure 4 illustrates short term, medium range and seasonal forecasts, in 

particular, how each of these relate to each other with regards to the time 

scale. Medium range and short term forecasts are presented in the ensemble 

mode.

2. W eather derivatives: an  overview

It has been stated that identifying future weather is a crucial step to­

wards successful risk hedging. The other major component involves the 

identification and modelling of weather risk exposure. A financial instru­

ment, the Weather Derivative, was introduced onto the market in 1997 [15], 

that is flexible enough to allow most weather sensitive industries to cover 

themselves against weather risk.
15
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F i g u r e  4 . Comparative illustration of forecasts from three 

categories of physical forecasts, characterised by the time 

scale that they are produced for. Blue- a seasonal forecast, 

magenta- an ensemble of a medium range forecast and green- 

an ensemble of the short term forecast.

A Weather Derivative is a financial contract for which the payout de­

pends on an underlying weather variable. If certain conditions of the weather 

occur a purchaser of a contract receives a payout, which is usually propor­

tional to the change in a weather variable, although in some cases the payout 

is fixed.

The weather derivative market has two types of participants: speculators

and weather sensitive end users, see Figure 5. Weather sensitive end users

were the initiators of the market. These businesses want to hedge their

exposure to the weather by purchasing weather derivative contracts that

would cover, or at least partially cover their existing weather risk. The sellers

of weather derivatives are mainly from the financial sector, these companies
16



are not exposed to the weather risk until they enter into a contract. The 

profit in this case would heavily depend upon reliable hedging against any 

possible losses.

End UsersSpeculators

Banks, Insurance Companies and Hedge Funds Enery sector, Agriculture, Trasport, Tourism

Exposure to the weather risk.
Want to compansate by purchasing a weather 
derivative. Do not have much choice in price 
or type o f contract offered.

No risk from the weather until a contract is sold 
Want to gain profit by taking weather risk 
Arbitrage opportunities o f the market are often 
explored.

Weather Derivatives Market

F i g u r e  5. Diagram of the participants of the Weather De­

rivative market and their characteristics

Initially there was a fast development of the weather market, as it of­

fered a sophisticated weather hedging strategy and additionally an uncorre­

lated product to many financial instruments on the market [9]. At present 

however, the weather derivatives market is extremely illiquid5, with a very 

small number of trades, and lopsided, where most participants are poten­

tial buyers of contracts, which pushes up the prices of weather derivatives, 

hence further reducing liquidity. The main reason behind this is the lack 

of a standard weather pricing methodology combined with the uncertainty 

in modelling the weather (temperature in particular) long term. The new

5See glossary for definition
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weather hedging approach proposed in this thesis uses weather derivatives 

as a hedge structure, but evaluated using on improved long term weather 

modelling framework. In chapter 6 a weather derivative is priced using dif­

ferent weather modelling approaches, including the new proposed synthetic 

weather generator. For that reason, let us consider the structure of a typical 

weather contract.

In a typical weather contract, the following is specified:

• The length of the contract, which might range from one month to 

up to (typically) a season, and its starting date, which we will refer 

to as to- T  - time when the contract expires is usually referred to 

as the expiry.

•  Underlying Index, will always be a weather variable or a function 

of weather variables. In this thesis we price a weather option that 

is written on a Cooling Degree Days (CDD) index, figure 6. Degree 

Days are defined to be: number of degrees, above (for the CDD) 

or below (for the Heating Degree Days) a chosen threshold6 added 

over the length of the contract T  — t days. The arithmetic average 

Ai of the observed daily maximum and minimum temperatures is 

calculated in order to determine by how many degrees the temper­

ature on a particular day i exceeds or goes below the threshold, 

equation (1).

6in Europe this threshold is defined to be 18 degrees Celsius
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(1)
T - t

CDD  =  ^  max (0, — 18)
X —  1

Temperature

Set temperature 
level:
18 C in Europe

T
Time ( days )

F i g u r e  6. Example of the cooling degree days index calcula­

tion over the length of a contract, where the dotted green line 

indicates the set level of the threshold and the red crossed 

area indicates the days which will qualify and as the result 

the temperatures that will be used in the calculation of the 

CDD index.

• Location: the locations for which weather contracts are structured 

at the moment are limited. In theory any location could be chosen, 

provided there is weather data available.

•  Type of contract: this section describes the rights given to a buyer

of the derivative. Some standard contracts, the payoff functions of 

which are illustrated in figure 7, include: a Call Option that gives 

a purchaser the right to buy a specified asset at the agreed strike 

price at a specified time in the future and a Put Option that gives a
19



purchaser the right to sell a specified asset at the agreed strike price 

at the specified time in the future ([24]). For weather derivative the 

asset is cash proportional to CDD. The weather derivative priced 

in chapter 6 is a call option.

Payoff (£) Payoff (£)

0

Strike Price o f an

0

Strike Price o f an
underlying asset underlying asset

F i g u r e  7 . Payoff function of a Call Option (right corner), 

where the payoff is zero until the underlying asset reaches the 

value of the predetermined strike. If the value of the under­

lying asset is bigger than the strike the payoff is determined 

by the difference between the two. Payoff function of a Put 

Option (left corner), where the payoff is zero unless the as­

set’s value is less than the value of the strike. Although in 

this figure the payoff (in both cases) does not go negative, 

in practice if the price of the underlying asset is below (for 

call) and above (for put) the strike price, the payoff is at the 

negative level of the option premia.

• Choose tick value, or fixed payout amount. Tick value attaches 

monitory value to the underlying weather variable index. Usually, 

to a degree, say, there would be an amount attached, which gets

multiplied by the index in the end of the contract and with the

20



help of the pay off function the payout on the claim is calculated 

in pounds, say, rather than degrees Celsius.

2.1. P ric in g  W ea th e r D erivatives. Whenever a derivative is priced, 

a discounted expected payoff under a pricing measure is determined [17], 

equation 2.

(2) V%oeather =  e x P { ~ r  {P  ~  ^)) P M  { P  (-0 ) ?

where P  (I) is a payoff function that maps the underlying index I  to 

the claim of the contract and M  is the pricing measure. exp(—r ( T  — t)) 

is the discounting factor under the assumption that the interest rate r is 

continuously compounded.

In the financial markets, values of contracts are based on the Black- 

Scholes no-arbitrage pricing [22] framework. The Black-Scholes method 

provides a unique pricing measure M , and hence a unique price V,  for any 

given contract, together with a perfect hedging strategy, provided that the 

conditions of the model are satisfied and the market is complete7. One of the 

crucial conditions required by Black-Scholes is that the underlying asset of 

the derivative has to be traded. Temperature and other weather variables are 

not traded assets, and the weather derivatives market is illiquid and hence 

incomplete, which unfortunately forces one to abandon the well developed 

no-arbitrage8 framework of pricing.

7For the assumptions of the Black-Scholes model please refer to [22] and see glossary 

for the definition of the complete market

8See glossary for definition.
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Due to inapplicability of the Black-Scholes approach, in order to price a 

weather derivative according to equation 2, one has to identify:

(1) the pricing measure M;

(2) how to model/forecast index I.

In this section existing approaches of pricing weather derivatives are 

examined. The existing methods of pricing fall into two different groups: 

one of which concentrates on modelling the underlying weather index and 

other addresses issues concerning the pricing measure. As the emphasis in 

this thesis will be made on the modelling of the behaviour of temperature 

based indices, the latter will be visited only briefly in this section.

2.2. M odelling beh av io u r o f th e  u nderly ing  index  for th e  p u r­

pose o f p ric ing  w ea th e r derivatives. In the weather derivative pricing 

literature an underlying weather index most often modelled using:

• Climatology based approach and/or

•  Synthetic weather generator.

2.2.1. Climatology based 'pricing approach. The first method that was 

proposed for the problem of pricing weather derivatives was based on the 

climatology of a weather variable, in particular the Sample Mean [25]. Pric­

ing a weather derivative using the sample mean based on various sets of 

historical data was described in [29] by Zeng (2000) and is still a widely 

used preliminary step in pricing and hedging weather derivatives. It must 

be noted that the sampled mean price should be used as a benchmark rather 

than the absolute quoted price, as it is only a fair price for both parties un­

der many consecutive runs in the repeated experiment. A mark up, often in
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the form of sampled standard deviation is added to the sampled mean price 

in order to hedge some of the risk.

Another entity that is used in determination of the hedging strategy is 

Value A t Risk (VAR), [24]. Value At Risk is given by some value, v say, such 

that the probability that the payout is greater than v is q%, in [29] q = 10%. 

VAR is also computed in chapter 6 using different competing methods. VAR 

also can be used as a price of the weather derivative, providing that the q% 

is not set too high, as this would result in a too expensive price for a buyer. 

The value of q% will change, depending on the risk preference of the user, 

the more risk-averse 9 the user, the higher the q%. The climatology only 

based pricing is often referred to as the actuarial method of pricing.

The actuarial method could be further extended by fitting a distribution 

to the historical index, often using calculated sampled mean and standard 

deviation and assuming Normality of temperature data. The distribution 

fitting approach was proposed in [29] in order to satisfy two purposes. First 

purpose is achieving a more secure hedge on the option, where instead of 

using the standard deviation as the mark up on the sampled mean price, 

a more conservative value could be used based on the tails of the fitted 

distribution. The second purpose is the desire for larger amounts of data, 

where additional data is generated using the Monte Carlo technique, [17] 

based upon the fitted distribution.

9See glossary for definition
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In [29], the expected contract payout, volatility and VAR, calculated 

using only historical data, are compared to the expected payout, volatil­

ity and VAR calculated using long run estimates that are generated via a 

Monte Carlo simulation approach. Zeng demonstrated that the Monte Carlo 

approach produced larger estimates for all the variables of interest. Addi­

tionally, both historical estimates and Monte Carlo based estimates of the 

expected payoff, volatility and VAR are compared for different quantities of 

historical data used in the analysis, in order to find the sensitivity of the 

result to the amount of data used. The value of the sampled mean and 

standard deviation would vary dramatically, as the number of data used 

changes. The values increased as the number of years used in calculation 

decreased, which is consistent with problems discussed in section 1.1. This 

gives another advantage to the proposed new synthetic weather generator.

In chapter 6 Zeng’s experiment is reproduced, where the weather de­

rivative, used as an example in [29], is priced using: the climatology based 

approach (with the historical data sets that are consistent with the data sets 

chosen by Zeng) and the Monte Carlo based approach. We further compare 

results of climatology only based prices with competing approaches, includ­

ing: the new proposed weather generator (chapter 5) and other competing 

synthetic weather generators (that are discussed in chapter 3).

The sample mean method is the easiest to use and implement, however 

it is not clear how many years of data should be used in the calculation. By 

fitting a distribution to the historical data one can achieve extra flexibility 

in the determination of the mark up price and perhaps address, to some
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•extent, the lack of data, however with added problems. Apart from suffer­

ing from the same constraints - the mean and variance sensitivity to the 

amount of data used in the analysis - a further assumption is introduced by 

choosing a shape of the distribution that is fitted. The value of the mark up 

entirely depends on the tails of the assumed distribution. This gives another 

advantage of using the new proposed synthetic weather generator (chapter 

6) that does not make any assumption on the distribution of the underly­

ing weather variable but at the same time produces the desired amount of 

synthetic data.

2.2.2. Synthetic weather generators based pricing. There are several mod­

els of temperature data that have been proposed in the weather derivative 

pricing literature. The pricing framework that is used as a benchmark for 

the new proposed synthetic weather generator for the purpose of pricing 

weather risk, was proposed by Cao and Wei [30]. Cao and Wei (2004) pro­

posed to model the underlying index, temperature in particular, by assuming 

that temperature can be modelled as Seasonal Normal Temperature (SNT) 

10 with an Autoregressive Process of order three [26] (AR(3)) plus and sea­

sonal volatility. For the details of Cao and Wei’s model refer to chapter 3, 

where the methodology of Cao and Wei is reproduced to construct synthetic 

temperature data for Berlin, Germany. Another, similar modelling approach 

was proposed by Davis (2000) [31], where temperature is also modelled us­

ing SNT and an Autoregressive Process of order one. Davis’s methodology 

is also reproduced based on the Berlin data in chapter 3.

10Deffinition in glossary
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Other authors, such as Campbell, Diebold (2005), suggested to use sim­

ple statistical approaches to model the weather time series. Specifically, 

the authors claim that the generated data have the ‘conditional mean and 

variance dynamics preserved’, see [32]. Temperature is modelled using a 

simple low-order polynomial deterministic trend, autoregressive lags and a 

low-order Fourier series to model seasonality.

Another, very popular temperature modelling framework that was pro­

posed is in the form of a stochastic processes11 [23]. This class of model 

is less widely used for pricing weather derivatives compared to the simple 

statistical models. Mean reverting12 [18] models driven by a standard Brow­

nian Motion [19], were initially and are still used as a basis for Monte Carlo 

Algorithms, for example see [33].

Modelling temperature time series with a stochastic process requires an 

assumption about the shape of the distribution. Modelling certain signals in 

the temperature data separately assumes that those signals can be modelled 

independently. Many authors have used simple temperature models, despite 

the realisation that such models are not necessarily the best possibility for 

the weather data modelling, in order to concentrate and address the second 

half of the problem of pricing weather derivatives: the pricing measure.

11 See Glossary for the definition

10See Glossary for the definition.
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In chapter 6 a weather derivative is priced using Cao and Wei and Davis’s 

methodology, in the actuarial pricing framework. The results are then com­

pared to Zeng’s (climatology based) prices and prices obtained using the 

new proposed synthetic weather generater.

2.2.3. Pricing weather derivatives using different optimisation mecha­

nisms. Different pricing measures in the calculation of the expected value 

(equation 2) result in different prices. For example, if the real measure is 

used the price obtained is the fair price under many repeated experiments; 

if the risk-neutral measure [17] is used the price is fair if the market is 

complete. Alternative optimisation approaches to pricing under the real 

measure, in the incomplete market setting is also a big area of research.

One of the most popular, and mathematically interesting approach to 

pricing weather derivatives involves maximisation of different utility func­

tions13. Utility functions allow different risk attitudes to be attached to 

different investors. In order to find a price for a given derivative, the ex­

pected value is taken of the utility function of a payoff. Often when utility 

functions are used, the closed form solutions for the option prices can be 

derived, by making assumptions on the behaviour of the underlying asset, 

[30]. Some authors also use the utility approach together with the statistical 

modelling of the underlying weather variable, see [30].

2.2.4. Pricing weather derivatives using seasonal weather forecasts. In 

the final section of this chapter lets examine the use of weather forecasts in 

weather derivatives pricing. Several authors propose different approaches to

1 ̂ See glossary for the definition of a utility function
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incorporating extra information received from weather forecasts. One has 

to be particularly careful when trying to incorporate weather forecasts that 

are given for a shorter time scale than the length of the contract.

Briggs and Wilks, [42], present a procedure for estimating climatological 

statistics for a broad range of subseasonal variables, conditional on seasonal 

forecast probabilities, by bootstrapping the observed climatological record 

consistent with the forecast probabilities. Their procedure computes con­

ventional climatological statistics using weights equal to the probabilities 

specified in the forecast, for more details see [42]. This idea has been further 

explored by several authors, who statistically model the probability function 

of the weather variable and bootstrap the distribution of the weather vari­

able according to the forecasted seasonal probabilities, this distribution is 

then used in the expected value calculation, [43].

The weather derivative in Zeng’s paper, [29], is also priced using seasonal 

forecasts and the results obtained axe compared to the Actuarial method of 

pricing. In particular, the long term average, which is referred to as the 

climate norm is based on historical data from 1961 and 1990. The long 

term forecasts extend for three months. Specifically, the predictions for 

June, July, August were given by the National Centre of Environmental 

Predictions. The assumptions axe made that: the seasonal summex weather 

predictions approximate the July prediction and that the probabilities that 

the CDD will be above, near and below the climate norm are well approx­

imated by the seasonal forecast probabilities of temperature being above, 

near and below norm.
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A normal distribution is then fitted to the historical data for the cal­

culated index (Cooling Degrees Days), by using sampled mean and sam­

pled variance. The resulting distribution is then divided into three equal 

probability areas with below, near average and above average index values. 

Finally, the fitted distribution is sampled in accordance to the given fore­

casted probabilities being above, below and near average. This approach is 

sometimes called a biased sampling Monte Carlo approach.

In chapter 4 we propose a new methodology for combining informa­

tion from short/medium range physical forecasts and historical data. The 

methodology is developed in a perfect model scenario, and tested on chaotic 

and Autoregressive type systems. It is then applied to combine information 

form short/medium range physical weather forecasts and the generated syn­

thetic weather data. This is particularly useful when weather derivatives 

are revalued daily during the life of the contract14.

14The time between the starting time of the contract to and the expiry time T  (refer 

to section 2 for more detail.)
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2.2.5. Glossary o f terminology used in this chapter and definitions.

Climatology Statistics of historical weather data.

System is a set of interacting or interdependent entities 

forming an integrated whole. In the case of this thesis 

the system is described in the form of 

a mathematical function.

Chaotic System Systems whose state evolves with time 

that may exhibit dynamics that are highly 

sensitive to initial conditions. This sensitivity 

manifests itself as an exponential growth of 

perturbations in the initial conditions 

on a trajectory.

Ensemble Forecast Forecast that contains several possibilities 

(scenarios) at each forecasted time t.

Imperfect model Model that approximates the actual system.

Illiquid Market Market where assets are infrequently 

traded or unavailable.

Complete Market is one in which the complete set 

of possible gambles on future 

states-of-the-world can be constructed with 

existing assets.
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No-Arbitrage when there no possible advantage 

can be taken of a price differential 

between two or more markets.

Risk-aversion Risk aversion is a concept where an 

investor would have a preference for a more 

certain but lower payoff to a less 

certain but higher payoff.

Seasonal Normal 

Temperature

An average daily temperature, where an 

average is taken for ever day of the year, 

over multiple historical years.

So average 1st of January, 

average 2nd of January, etc.

Utility function A functional form for the 

risk preference of an investor.
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CHAPTER 3

Observations, Synthetic weather data and a 

‘Weather like’ test data.

In this thesis we propose a new approach to hedging weather risk in the 

form of an improved synthetic temperature generator for long time scales 

applied to pricing weather derivatives. The purpose of this chapter is to 

generate benchmark synthetic weather data based on alternative methods 

proposed in the weather derivatives literature. Additionally to generate our 

own ‘weather like’ test data set that in its behaviour mimics the components 

of weather data, such as seasonality, daily oscillations and weather fronts. 

Finally we also provide descriptive statistics for the actual weather data that 

is used through this thesis.

In particular, the historical record of Berlin daily observed maximum 

temperature is analysed to produce descriptive statistics section 1. This 

is followed, in section 2, by implementation of Cao and Wei’s methodology 

[30] and additionally Davis’ methodology[31] for generating synthetic Berlin 

daily maximum temperature beyond the scope of physical weather forecasts. 

Finally, a ‘weather like’ process that is used as a test data set for the new 

weather generator (presented in chapter 5), is given in section 3.
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1. D escrip tion  of th e  real te m p e ra tu re  d a ta  used in th is  thesis:

S um m ary  s ta tis tic s

This part of the chapter describes the real weather data that is later 

used in various experiments.

1.1. G erm any, Berlin: daily  m axim um  te m p e ra tu re . Consider 

daily maximum temperature data for Berlin, Germany. The time range 

covered by the data is: 1876/01/01 - 2005/08/01, and there are only 2 

isolated and 2 consecutive values missing in the time series. A section of the 

data set is illustrated on figure 1.

45

35

25

EE

-1 5

-2 5

-3 5

1 982 / 07/28 1 984 /07/28 1 986 /07/28 1988/ 07/28
Tim e (D ays)

F i g u r e  1. Daily maximum temperature for Germany,

Berlin, for the period: 1982/07/28 - 1988/01/08

Table 1.1 displays the summary statistics of the Berlin daily maximum 

temperature.

For the Berlin maximum daily temperature the relative frequency is 

presented in figure 2, together with 95 % and 5% percentiles (red).

We also present the distribution of extreme values in figure 3, where 

extreme values are defined to be values observed above the 95 % and below 

5 % percentiles of the total data set.
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Mean 13.053

Standard Deviation 9.0177

Median 13.1

Kurtosis 2.2052

Skewness -0.0379

95 % Percentile 27.3

5 % Percentile -0.9

Average number of freezing days per year1 23.628
Table 1 . Summary statistics of daily Berlin maximum tem­

perature based on 1982/07/28 - 1988/01/08 historical data.

Temperature in Degrees C

F igure 2. Relative frequency distribution of all observed 

maximum daily temperatures for Germany, Berlin, for the 

period: 1876/01/01 - 2005/08/01 together with 95 % and 5 

% percentiles presented in red.

The relative histograms of first and second differences is presented in 

figure 4, together with the 95 % and 5 % percentiles (red). Additionally table

1.1 contains various percentiles values for the first and second differences.
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28 30  32 3A  36 38
Temperature in Degrees O

F i g u r e  3 . Relative frequency of observed extreme high ob­

servations (above 95 % percentile of Berlin daily maximum 

data.

First and second differences D] are defined as presented in equations 3 

and 4 respectively.

(3) D] = st - s t- 1 ,

(4 ) A2 =  s t ~  S t - 2 ,

where s* is temperature observed at time t.

The relative frequency of extreme first differences is given in figure 5 

(again extreme is defined to be values in the tail of observed relative fre­

quency, i.e. below 5 % and above 95 %).

In section 3 we construct a data set, the components of which behave like 

certain characteristics of temperature data. In particular, the main charac­

teristics include: cold and warm fronts, seasonality and daily oscillations. 

A front is defined to be a temperature pattern where a sudden (over 1 or 2

days) ‘significant’ rise (for warm) or drop (for cold) in temperature occurs.
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R e la t . F roq . o f  F irst D if f e r e n c e s R e la t . F req . o f  S e c o n d  D if f e r e n c e s

T e m p ertu re  D if fe r e n c e s  in D e g r e e s  C T e m p e rtu r e  D if fe r e n c e s  in D e g r e e s  C

F igure 4. Relative frequency of first and second differences, 

observed in Berlin data, together with the 5 % and 95 % 

percentiles (red).

P ercen tile  and  difference ty p e Value in degrees C

95 % Percentile of First Differences 4.8

5 % Percentile of First Differences -5.1

97.5 % Percentile of First Differences 6.8

2.5 % Percentile of First Differences -6.8

95 % Percentile of Second Differences 5.9

5 % Percentile of Second Differences -6.3

97.5 % Percentile of Second Differences 8.2

2.5 % Percentile of Second Differences -8.4
Table 2. Table of percentiles of first and second differences 

of the Berlin data.

‘Significant’ can be defined as a drop/rise in temperature on the level ob­

served in the tails of the relative frequency distribution for first and second 

differences.
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R e la t . F req . o f  E x tr e m e  H igh  F irst D if f e r e n c e s

0.25

£

B

F i g u r e  5 . Relative frequency of extreme first differences,

Berlin data.

Here we present fronts observed in the Berlin daily maximum temper­

ature data at various times of the year. In particular, figure 6 illustrates 

examples of warm fronts observed in summer; figure 7 displays cold fronts 

examples observed in winter; and finally figure 8 contains examples of both 

cold and warm fronts observed in the autumn and spring periods.

R e la t . F req . o f  E x tr e m e  L ow  F irst D if f e r e n c e s

T em p e rtu r e  D tfferen o

Warm Front in Jul 1970

1 2 3 N um ber of [fays 6 7

Warm Front in Jun 1971

N um ber of D ays

Warm Front in Jun 1970

N um ber of D ays

Warm Front in Jun 1883

2 4 6 8 10 12 14 16
N um ber of D ays

F i g u r e  6. Example of warm fronts observed in the summer 

periods of the Berlin data.
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Cold Front in Jan 1907 Cold Front in Feb 1929

o
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Q

N um ber of days

Cold Front in D ec 1988

o
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N um ber of d ay s

® -10

O  -1 2

2 6 8 
N um ber of d ay s

10 124

Cold Front in Feb 1881

o

1
S

N um ber of d ay s

F igure 7. Example of cold warm fronts observed in the win­

ter periods in Berlin data.

Cold Front in the beggining of March 1940 Warm Front in the end of May 1970

o

N um ber of d ay s

Cold Front in the end of Nov 1890

o

2 3 4 5
N um ber of d ays

6 7 8

O
1
E

Number of days

Warm Front in beggining of S ep  1988

N um ber of d a y s

F igure 8. Example of cold and warm fronts observed in the 

spring and autumn periods in Berlin data.

Also we present the relative frequencies of the first and second differences 

as defined in equations 3(figure 9) and 4 (figure 10) respectively for each
3 9



Season M ean S tan d a rd  D eviation

Winter 1.9548 1.7144

Summer 2.6269 2.0866

Spring 2.6146 2.073

Autumn 2.0046 1.6708
Table 3. Mean and variance statistics for the abso 

differences for different seasons.

ute first

season separately, presented together with the sample mean and variance 

statistics. This information is later used in construction of the test data set, 

section 3.

W i n t e r  S u m m e r

A u tu m n

T e m p  drff Jn D e g r e e s  C  T e m p  dlff In D e g r e e s  C

F igure 9. Relative Frequency distribution of first differ­

ences by season.

Finally, as we model daily oscillations and fronts separately in the ‘weather 

like’ process we want to identify the mean and variance of the first and sec­

ond differences of our data after the fronts have been removed.
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W in te r S u m m e r

A ■
T e m p  diff in D e g r e e s  C

A u tu m n

A. ■
S p rin g

!:;1 ■*-
T e m p  diff in D e g r e e s  C  T e m p  diff in D e g r e e s  C

F igure 10. Relative Frequency distribution of second dif­

ferences by season.

Season M ean S tan d a rd  D eviation

Winter 3.8335 2.3378

Summer 3.5287 2.7381

Spring 3.6424 2.832

Autumn 2.7387 2.1944
Table 4. Mean and variance statistics for the absolute sec­

ond differences for different seasons.

2 . G enerating  syn the tic  w eather da ta : com m on s ta tis tica l

approaches.

In this section we reproduce synthetic weather data using the methodolo­

gies developed by Cao and Wei [30] and Davis [31]. The generated synthetic 

data is then used in chapter 6 to price a weather derivative. These prices 

and various statistics are then compared to prices and statistics that are ob­

tained using historical data alone and the proposed new weather generator. 

The temperature modelling approach used by Cao and Wei and Davis

are very popular techniques used extensively in the financial industry to
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Season an d  difference M ean S ta n d a rd  D ev ia tion

Winter First Difference 1.8937 1.6093

Summer First Difference 2.5922 2.0358

Summer Second Difference 3.3335 2.5399

Winter Second Difference 2.6092 2.0791
T a b l e  5. Mean and standard deviation of the first and sec­

ond difference after the removal of fronts as identified in this 

section.

model weather, particular temperature. Hence it is important to use those 

techniques as a benchmark for the new methodology (chapters 5 and 6 ).

Cao and Wei [30] model temperature by trying to capture several char­

acteristics of real temperature data such as: ‘seasonal cyclical patterns’; 

‘daily variations in temperature around some ‘normal’ temperature’; ‘au­

toregression property of temperature changes’; ‘seasonal extent of variations 

(bigger in the winter and smaller in the summer)’, [30]. Davis, [31] proposes 

similar, but simpler structure to model temperature time series, using also 

‘normal’ temperature for daily variation and an autoregressive [26] process 

as a simple temperature change approximation. The methodology of both 

is implemented using the Berlin data (data description is given in section 

1). Now lets consider each methodology, in a little more detail.

We used Berlin data from Ol-Jan-1983 to 31-Dec-2002 to produce syn­

thetic temperature time series according to Davis’ methodology 2. Let the 

daily temperature series be denoted {7}, i — 1 ,.. .  4015}, and { T j , j  =  1 ,.. .  365}

o
2o years were used as calibration period by Cao and Wei
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denotes the long term average temperature for each day of the year. Tj is 

obtained by computing an average between 20 temperatures on a corre­

sponding date (for example, average 1st of Jan, average 2nd of Jan and so 

on) and then smoothing the series using a moving average, with 9 points 

used in the construction of the smoothed average. Figure 2 illustrates an 

example of one year of the Berlin data (1984) and the resulting Tj.

0

£

|

« Ba

F i g u r e  11. SNT (in pink) of Berlin data and the actual 

observations (blue) for the 1984.

Then the deviation, denoted as D{ = Ti — Tj, (where j  is the correspond­

ing day of the year to i) is modelled as a Autoregressive Process of order 

one [26]:

(5) D{ = aiDi_k +  ci +  6ef, 
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where e* are independently identically distributed normal random variables 

[25] with mean zero and variance one and eq, b\ and ci are constants, 

which are determined using a least squares [25] optimisation method. For 

the Berlin data the optimal parameter values, according to least squares 

were: a\ = 0.01, b\ =  2.8685 and c\ =  0.0015. Examples of 250 generated 

temperature paths are given in figure 2 together with the actual 2003 Berlin 

temperature observations.

* «  «  a  B ao K
Tine in ftp

F i g u r e  12. Generated 250 paths of synthetic weather data 

according to Davis methodology (blue) and the actual 2003 

Berlin data (pink).

For the implementation of Cao and Wei model we again used Berlin 

data from Ol-Jan-1983 to 31-Dec-2002. Cao and Wei’s model is defined as 

following. Let yr index the years in the sample period, such that yr = 1 for 

1984, yr = 2 for 1985, etc. Also let d index days in a year, such that d = 1
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is 1st of Jan, d = 2 is the 2nd of Jan and so on. Denote temperature on day 

d in year yr  as Yy r Then the generated temperature Yyr,d is given by:

(6)

where Uyr t̂ is the daily temperature residual, which follows a k = 3 lag 

autoregressive process. In particular,

where Pi,cro,<Ji,(f) are parameters of the model.

Yyrj  is the mean and the trend of the time series. It is computed, by 

first talcing an average over all the years for a particular day of a year. For 

example, average 1st of Jan (average over 20 years of the historical data), 

average 2nd of Jan and so on. These daily averages are often referred to 

as Seasonal Normal Temperature (SNT). Then monthly averages based on 

SNT can be determined, and are referred to as monthly SNT.

Cao and Wei further propose to adjust 20 year daily SNT in accor­

dance with the deviation of a particular month in a particular year from the 

monthly SNT. In particular, they compute:

(1) For each month the average of 20 year based daily averages (Tra-

i=i

&yr,t = 00 -  0-11 sin  (71-2/365 + <f)) I ,

(7) Cyr.t ~  N  (0 , 1 ) .

ditional SNT) -12 such averages;
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(2) For each particular year they compute the realized average temper­

ature of each month;

(3) For each month, they find the difference between the actual monthly 

average from Step 2  and the the average from Step 1;

(4) Finally, for each day of the month, they adjust the historical SNT 

by the quantity calculated in Step 3.

This series is denoted as Adjusted SNT. Cao and Wei’s approach to use 

Adjusted SNT to construct Yyrj  produces a better model fit to the historical 

data in terms of Maximum Likelihood [25]. It only works, however, for the 

historical data. The same technique can not be used to extrapolate forward, 

as the monthly deviations from 20 year based SNT are not known in advance. 

Hence, it makes more sense to use SNT values to represent Yyr>t. Here we 

generate temperature time series using both SNT and Adjusted SNT. And in 

chapter 6  we compare prices generated using both SNT and Adjusted SNT. 

Figure 2 illustrates actual Berlin temperature (blue) for 1984 the generated 

SNT (in pink) and the Adjusted SNT (in red).

By construction, a simulated temperature Yyr,t at time t, yr (see equa­

tions 6  and 7) is a Normally distributed random variable with mean

3

(8)

and variance

(9) =  (°o -  0-11 Sin (tt/365 +  4>) | ) 2 .
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Trerdays

F igure 13. SNT (in pink), Adjusted SNT (in red) produced 

according to Cao and Wei methodology of Berlin data and 

the actual observations (blue) for the 1984.

The set of parameters 0  =  (pi, p2 , /03, 0 0 , 0 1 , (f>) is assumed to be optimal 

when the likelihood function is maximized. In order to simplify the problem 

the log-likelihood is used instead. The log-likelihood function is given in 

equation 10

(10) l & Y )  =  - 1  f )  f  ( V * *  (y^ )]2 ^ ) )
Z y r= 1 t = 1 \  a yr,t )

The parameters are optimal when log-likelihood function is maximized 

subject to:

(11) (00  ~  0 1 1s in  (7r/365 +  0 )|) >  0 
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Season SN T  based A d justed  SN T based

Pi 0.80321253 0.823964237

P2 -0.093194699 -0.083310864

P3 0.074565646 0.069397676

<70 3.489280269 3.74983828

<71 1.121357784 1.177412501

0 1.678540421 1.583706887
T a b l e  6 . Table of parameters of the Cao and Wei model for 

the Berlin data.

The table of parameters for the Berlin data optimized using maximum Like­

lihood is presented in table 2

Time in days

F ig u r e  14. Generated 250 paths of synthetic weather data 

according to Cao and Wei methodology (blue) and the actual 

2003/2004 Berlin data (red).
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3. Test data: Synthetic weather data - characteristics and

param eters

One of the main aims of this thesis is to compare synthetic weather 

data, produced by popular weather generators to synthetic weather data 

produced by the proposed new weather generator (chapter 5), when used 

for financial risk management and weather derivative pricing. In general, 

whether the interest lies in hedging weather derivatives other areas of risk 

management, or perhaps different application areas such as logistics, health, 

tourism, transport etc, estimates of future weather over a long time pe­

riod axe required. Here we propose a process that mimics the behaviour 

of temperature data, which is then used to test the proposed new weather 

generator in a controlled experimental environment.

3.1. Overall structure o f the m athem atical m odel. The discrete 

weather-like process is of the form:

X (t)  =  F ( ^ ( t ) , ^ ( t ) , t )  +  T ( * ( t ) , t )  +

+ A ( $ ( t ) , t - t ; ) r ( * ( t ) , t ) 3 c ( t - £ )

(12) + a  ($ (t),t- 1*) r($ (t), t)sw (t-rj + K + i

This weather-like process consists of six terms: a periodic term F  (A  (t ) , <f) ( t ) , t ) , 

which represents seasonality of the real weather data; a random autore­

gressive term Y(<I>(t),t), which represents daily fluctuations of the real

weather data; a term A (<3> (t) , t — t*) T($ (t ) , t ) ^ c (t — tl)  which represents

49



cold fronts, that are observed in winter in the real weather data (see chap­

ter 1); a term A ( $ ( £ ) ,£ -  t r(<I> (t ), t ) 3 w (t — t£,) which represents warm 

fronts tha t are observed in summers in the real weather data (see section 

1 ); a constant term k  that controls the mean of the output data; and finally 

a white noise term & which represents measurement and operational error. 

t is time (in days), (f) (t) represents small shifts which affect the periodicity 

of the seasonal component, (t ) is the annual phase of the generated year, 

where 4> (t) = 3J5 ? 3§s» • •» §§§? finally t  — t* and t — t^, are times since 

onset of fronts. The coefficients, summarised in the table 7 are discussed 

below; they can be tuned such that the output data has the characteristics 

similar to the climate of a preferred chosen location.

Each term is now considered separately in more detail. First consider the 

periodic term F  (A  (t ) , (f) ( t ) , £), which is given by equation 13. The tuning 

of the parameters of this part of the process is driven by the seasonality 

observed in the daily temperature data.

(13) F  (A  (t ) , 0 (t) , t) = A  (t ) sin (wit +  ^  (t ))

The seasonality structure of temperature data is chosen to be represented 

in functional form as a sine wave. Where A  (t ) is an amplitude, w\ defines 

the period of the sine wave (such that the period of sine wave is equal to 365 

simulated days), and <j>(t) controls small shifts in the length of the period.

Now examine each part of the seasonal component in even more detail. 

The amplitude A  (t ) is given by equation 14.
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(14) A (t) = A q (1  +  gsin (wst))

where u 3 is a constant that defines the period of the variation in the ampli­

tude and q  is a scaling constant that controls the impact of the time varying 

component of the amplitude of the seasonal factor of the generated ‘weather 

like’ data.

The amplitude is a function of time, constructed such that it exhibits 

small fluctuations around A q  as time increases. A q ,  which is also given in 

table 7, is chosen such that the time series produced will have an average 

temperature spread consistent with that observed in the chosen climate. 

The amplitude of the sine wave is not the only parameter that was chosen 

to vary with time. The periodicity of the sine wave does not remain the 

same for each generated year. This allows us to produce a realistic looking 

temperature series which can be compared to real temperature data. It also 

allows us to keep a sufficient level of complexity in the generated process. 

That is achieved by setting (f> (t) as it is given in equation 15.

(15) (f) (t) — 77 COS ( UJ2t)

where U2  specifies the period and 77 is a scaling constant that controls the im­

pact of the time changing component on the periodicity shift of the seasonal 

component.
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Both the amplitude A  (t ) and the periodicity shift 4> (t ) are illustrated 

in figure 15. The complete seasonal component F  (A  (t ), (f) ( t ) , £) of the 

generated data is shown in figure 16.

Amplitude of the sine wave: A f t ^ ^ ’C I+e'sintw S't)); e=0.05; AjJ=10; w3=(2"piy(perA); perA=365*2.9

10 .5 1

9.5
1000 2000 3000 4000 5000 6000 9000 10000

P h ase  shift f: f(t)=cos(w2‘t); w2=(2‘pi)/(per(); per =365‘N; N-total years

0 5

-0 .5

FIGURE 15. The amplitude (top plot) and the shift (bottom) 

of the seasonal component of the process.

Sin* w iv i: X{ty»A»ln(w1“t+*hrink*f); •hrink-0.3. f Is ths phass shm  and wl Is th« frequency

0 1000 2000 3000 4000 5000 8000 7000 8000 9000 10000

F igure 16. Periodic signal F  (A(t) ,<f)(t) ,t)  of the gener­

ated process.
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Note that the chosen value of us creates an approximately three year 

periodic shift in the amplitude of the seasonal component. The chosen q  

results in an impact on the time varying factor in the amplitude of the sea­

sonal component ranging from -0.5 to 0.5. Finally, the value of U2  impacts 

the periodicity shift of the seasonal component in a smooth decreasing and 

then increasing fashion over a period of 40,000 days. This is an artificially 

chosen behaviour that is not necessarily present in the real data. Identify­

ing the periodicity of the actual weather data is a study in itself, and is not 

investigated in this thesis. It is also not clear whether the changing period­

icity of the actual weather data can be defined in a functional form. These 

components were chosen for the purpose of creating a complex enough test 

data set, with varying length periodic patterns, and behaves like weather 

data, rather than creating ‘the best model’ to model actual weather time 

series. In particular, we wanted to create a data set that contains patterns 

on various time scales to see how the new proposed weather generator (chap­

ter 5) performs on a non-linear, weather like process, that is seasonal and 

periodic, but periodic on multiple time scales.

The second term of the process, T  ($(£),£), represents random daily 

fluctuations (or in other words volatility [24]) observed in temperature data. 

T  ($ (t) , t) is an Autoregressive order 3 (AR(3), [26]) process which is given 

by equation 16.

(16) T  (S (t) ,*) =  * ( *  (t) , t) (aTt_x +  6T *_2 +  cXt _ 3 +  et)
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where Et is iid3 and et ^  N  (0,1) and represents noise of the AR(3) process 

and a, b, c are constants of the AR(3) process.

The amplitude of the AR(3) process, ($  (t ) ,£), is a function of time 

t but is also a function of the phase of the year $  (t ). In the actual Berlin 

data set (see section 1 ) it has been observed that the volatility (in terms of 

first differences) varied through the year. In order to mimic this behaviour 

pattern in the weather-like process, the random oscillations that are pro­

duced by the AR(3) process are chosen to have different amplitudes for the 

different seasons of a year, equation 17.

a +  5i cos2 (o»41 ) , otherwise

a +  S2  cos2 (w41 ) , $  (*) G [ , 5§§]

a +  S3  cos2 (a>At ) , $  (t) G [§£§, §§§]

where a is a constant that affects the mean of the amplitude. <5i, 8 2  and 

8 3  are the magnitudes of the impact of the time changing component. A 

change to these parameters would create larger or smaller volatility in the 

weather-like process. 014 is the periodicity of the amplitude of the AR(3) 

process.

Again, U4  and <$1 , 8 2 , 8 3  were chosen arbitrarily to add complexity to 

the generated test ‘weather like’ process. The choice of 0J4  results in the 

amplitude of the AR(3) process being periodic, with a period of 1800 days. 

Cao and Wei [30] ( section 2) assumed a seasonal structure for the volatility, 

where winter was more volatile compared to summer. We have seen that, in

Independent Identically Distributed [25]
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terms of mean absolute first difference, this was not the case for the Berlin 

data  (see section 1). Although the severity of volatility observed in different 

seasons depends on the measure of volatility that is used (such as max, 

max of absolute values, mean, mean of absolute values, s.d. of actual or 

absolute values, of first/ second/third differences), in order to pick $1 , 8 2  

and <53 we will concentrate on second differences. According to the mean 

of the second differences, winter is the most volatile, followed by spring, 

summer and finally autumn, see table 1 .1 .For simplicity spring and autumn 

have chosen to have the same volatility. The second term T (<3> (t ) , t) of the 

weather-like process and its amplitude are shown on the figure 17.

2.5

500  1000 1500 2000  2500  3000
Time (Days), starting in the middle of Spring

F i g u r e  17. T ($ ( t ) , t )  (bottom plot) and its amplitude 

^  (<f> (t ) ,£) (top plot).

The third term of the process represents the effects of cold fronts. In 

a typical cold front the temperature drops suddenly by several degrees and 

then takes several days to recover (see section 1, figures 7 and 8 ). The 

template for the synthesised cold fronts is illustrated in the top plot of
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figure 18; it is given by the equation 18. (t — £*) has been constructed as 

a function of time since initialisation of the cold front, t — t*.

(18)

(n i (t -  t * ) 2  - n 2 { t -  £*)) exp (n3 (t -  £*)), 

for t - t *  = 1 , 2 , . . .  1 2 ;

0 , otherwise.

where n\, n2, and n 3 are constants that affect shape of the function and 

t —t* is the time since onset (initialisation of a cold front) with t —t* =  1 . . .  12  

days.
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F igure 18. Generated cold (blue) - top plot and warm (red)

- bottom plot fronts, x-axis represents time in days and y axis 

represents temperature in degrees C.

Similarly, the fourth part of the process represents warm fronts in the

weather data. The main feature of a warm front is that the temperature

rises by several degrees over a couple of days and, after reaching its peak

56



temperature, drops slowly - sometimes staying at the peak for several days 

(section 1 , figures 6  and 8 ). A synthesised warm front, shown on the bottom 

of figure 18, is given by equation 19. As in the case of cold fronts 5s w (t — t*w) 

is constructed as a functions of time since initialisation, t  — ( measured

in days),

(19)

53w (t ~  tc) ~  i

(m i  (t -  t ^ ) 2  +  m2 (t -  exp (m 3  (t -  ,

for t  — tj, =  1 ,2 ,. ..  15;

0 , otherwise.

where m i,m 2 ,m3 are constants.

Both 53 c (t — t*) and 53w (t — t£,) are episodic in their nature and are 

chosen not to occur in some parts of the year. During the rest of the year, 

in particular from June to August plus or minus 9 days of autumn and spring 

(for warm fronts), and from December to February plus minus 15 days of 

autumn and spring (for cold fronts), the probability of both warm and cold 

front occurring are for simplicity, chosen to be equal and are denoted as 

P f .  In order to define the initialisation of cold or warm fronts a function 

A ($(£),£  — £*) is created using equation 20. A ($ (£), t — t*) is a function 

of the phase of the year $  (£) and time since onset.

(20)

A ( $ ( t ) , t - i* , t )  =
1, rand ^  p and ($  (t) G [ ^ ,  Jjg] or $  (t) G [§§§ g g ]) and t — t* =  0 

0 , otherwise.
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and rand  is a random number drawn from a uniform distribution between 

zero and one.

When $  (t ) € , t — = 0 and rand < Pf a warm front is

initialised when $  (t ) € [§§§ • • • M§] >  ̂— =  0 , rand < Pf a cold front is

initialised. Once a front has been initialised it goes through its full cycle 

(i.e. 12 time steps for a cold front and 15 time steps for a warm front).

The functional form of the fronts in the weather-like process, and their 

occurrences, have been tuned to match the behaviour of real fronts in the 

actual weather data. In order to do so we use the definition of fronts from 

section 1 , additionally specifying that cold fronts are characterised by a 

temperature drop of more than approximately 6  degrees over one or two 

days, which corresponds to 2.5th % percentile of the first differences (table 

1.1) in the Berlin data. Similarly, we define warm fronts to be characterised 

by an approximately 8  degree rise over one or two days, which corresponds 

to 97th % percentile of second differences in the Berlin data(table 1.1). This 

construction allowed extra flexibility by considering drop (cold fronts) and 

rises (warm fronts) using first and second differences, in order to account 

for the fact that in the actual Berlin data sharp rises/falls sometimes occur 

over a longer period of time than one day (see figures 6 , 7 and 8 ). Then, the 

chosen functional form for fronts is a smoothed, simplified representation of 

the behaviour actually observed in the data, some examples of which are 

represented in section 1

In order to propose a reasonable guess for the probability of occurrence 

and the amplitude of fronts, we study the occurrence and severity of fronts
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in the Berlin data. First, we compute fronts that happened based on the 

first difference (182.6 cold fronts and 77 warm fronts occurrences) and the 

number of fronts that happened based on the second difference (700 cold 

fronts and 429 warm fronts occurrences). From this we compute the yearly 

average occurrence of fronts according to the first (1.46 cold fronts and 0.598 

warm fronts per year on average) and second differences (5.42 cold fronts and 

3.3316 warm fronts per year on average), by dividing by the total number of 

years in the available Berlin record. We then compute the average between 

the first and the second difference based average yearly occurrence of fronts 

(3.418 cold fronts and 1.96 of warm fronts). Finally, based on the observed 

average yearly occurrence of fronts in the chosen period one can approximate 

the occurrence of fronts to be:

_  Yearly_ave_occur_fronts 
^  Max_fronts_per_year ’

where

n, r Total_nu_of_days_fronts_may_occur
(22) Max_fronts_per_year = -------------------    —------------
v J F J length, of-front

Yearly_ave_occur_fronts is yearly average occurrence of fronts;

Max_fronts_per_year is the maximum possible number of fronts per year;

Total_nu_of_days_fronts_may_occur is the total number of days where fronts
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may occur; and length, of .front is a length of a front as defined by its func­

tional form. Hence, for cold and warm fronts sampled probability of occur­

rence is equal to:

=  0.34, for cold fronts 

=  0.267, for warm fronts

As we have chosen to use one probability of occurrence for both warm and 

cold fronts, approximately an average between those probabilities suffices.

In the real temperature data the amount by which temperature drops 

(cold front) and rises (warm front) would vary depending on the time of 

the yeax. In order to account for these behaviour patterns the function 

T ($ (t) , t), which is given by the equation 24, is introduced into the weather­

like process. It is the amplitude of fronts and it changes for different time 

periods in the generated winter and summer months. T (4> (t) , t) is illus­

trated in figure 19 and is a function of time and the phase of the year. The 

parameters of the chosen functional form for this amplitude were roughly 

based on the amplitudes of fronts observed in the the Berlin data. Again, 

it is important to note that the ‘weather like’ process is constructed as a 

test data set, rather than a realistic model. For that reason, the 20th % 

percentile of the actual front amplitudes, observed in the Berlin data was 

chosen to represent the maximum amplitude of generated fronts. This allows 

us to generate ‘dramatic’ drops/rises that are not too unrealistic compared 

to the actual data.
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(24)

r ( *  (*)>*) =  <

0 . *  (t) e  h fe , J&] or *  W 6  [ s i  i s ]  or *.(t) €  [§§ gj§]

«i. $  W e  [ I b > s s ]  or $  W e  [ i s  i s ]

*2 , *  (*) € [fjjj, i § ]  or $  (t) € [fjjj ffj]

S3 , $  (t) e  [ f | ,  f y  or $  (t) e  [f& i f ]

54, * ( t ) e [ ^ , ^ ]

55 , * ( t ) €  [ i j j . f f j ]  o r $ ( < ) €  [§fj fjjj]

„ * « .  *  W e  [§ § ,!§ ]

The fifth term of the weather-like process is a constant, which affects 

the mean of the output data, the value of which is given in the table 7. This 

parameter allows us to match the daily min, max or average temperatures 

in a chosen climate in a simplistic way. Figure 22 illustrates for example 

the generated ‘weather like’ process that was shifted using this parameter 

to match the Berlin daily minimum data record.

Finally, the last term of the process £*, given on the figure 20, is an in­

dependently identically distributed normal random variable, with N  (0,1.5), 

which represents the measurement and operational observational noise present 

in the temperature data.
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Amplitude of Fronts, as a function of time and the phase of the year

1.2

1
>

0.6

0.2

10 150
Time (Days), starting in the middle of Spring

200 350

F i g u r e  19. Amplitude of fronts, as a function of time and 

the phase of the year

Noise
5.----------- ,----------- 1----------- 1----------- 1----------- 1----------- 1-----------1----------- 1----------- n

4 - I . I

3 -I | I I, I I

50 200 400 600 800 1000 1200 1400 1600 1800

F i g u r e  20. Generated random numbers from a Normal dis­

tribution with varience=1.5 and mean=0

Our toy weather process can now be used to generate a large amount of

data that will form one of the learning sets used to test the proposed new

weather generator (chapter 5) in a controlled environment. The generated
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d ata  exhibits characteristics of real weather data. The data generated by 

the process shown in figure 2 1 .

Ganaratad Test Data for 5 years
30

25

20

15

101

5

0

-5

■10

-150 200 400 600 600 1000 1200 1400 1600 1800

F i g u r e  21. Generated toy weather process, zoomed into the 

five year period.

Zoom onto shifted down Test weather data  and  actual Berlin Min tem perature

Time (Days)

F i g u r e  2 2 . Generated toy weather data (pink), together 

with the min daily temperature, Berlin (green).

All the parameters that have been used in the construction of the weather­

like process are summarised in table 7.
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T able o f P a ra m e te rs  o f th e  T est W ea th e r D a ta

N Number of years generated. 3000

n i

n  2 

n 3

Parameters of the template function 

that generates a cold front.

2
9

4 0
3

2
" 3

m i

m 2

m 3

Parameters of the template function 

that generates a cold front

3
1 4 4

5 0
12

2 .3
12*

N w

Number of points (days) tha t the 

template function of a warm 

front generates.

15

N c

Number of points (days) that the 

template function of a cold 

front generates.

1 2

Pc((f> (t )) Probability of a cold front occurring 

on a given day in the winter season.

0.3

Pw (<t> (t )) Probability of a warm front occurring 

on a given day in the winter season

0.3

W Extra days outside the summer 

season where fronts may occur.

10

U Extra days outside the winter 

season where fronts may occur.

15
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T able o f P a ra m e te rs  o f th e  T est W ea th e r D a ta

si 0 .2 8 * 2 .5
6.2

S2 Parameters regulating the amplitude 

of cold and warm fronts.

0.28x2.1

S 3 These parameters change depending 

on the time of year.

0 .2 8 x 2 .5
4 .9

S 4 0 .2 8 x 2 .5
4 .5

S 5 0.28x3.4

S6 0.28x4.7

CJi Parameter controlling the length of 

the period of the periodic component.

27r 
3 6 5

CJ4 the periodicity of the amplitude of the AR(3) process 2tt 1 
3 6 5  10

V The scaling constant that controls the impact 

of the phase shift on the seasonal term.

0.3

Ao The amplitude of the amplitude function of the 

seasonal component (the sine wave).

1 0

Q Scaling constant that controls the impact of 

the phase shift in the amp. of the seasonal comp.

0.05
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T able o f P a ra m e te rs  o f th e  T est W ea th e r D a ta

U)2 Constant that controls the period of 

the phase of the seasonal component.

27T 
3 6 5 N

U>3 Constant controlling the phase of the variation 

in the amp. of the seasonal component.

27T
3 6 5 * 2 .9

a 0.7

b Constants of the AR(3) process. -0.4

c 0 .2

a Constant effecting the mean of the amplitude 

of the AR(3) process.

0 .8

Si Parameters that control the magnitude of 

the impact of the time changing component.

1.75

$2 These parameters create larger or 1

S3 smaller volatility depending on 

the time of year.

1.95

fj,r Mean of the Identically Independently Normally 

distributed random variable.

0

Variance of the Identically Independently 

Normally distributed random variable.

1

k Parameter that effects the mean of the 

generated ‘weather like’ process.

8.5

Table 7. Table of parameters of the weather like process.
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CHAPTER 4

Ensemble Forecasting: Principles and Practice

In this chapter a method is developed that allows us to produce a long 

term forecast1 for a given time series, such that it combines information from 

both: a forecasting model and historical data. The output of a forecasting 

model is initially in the form of an ensemble (see chapter 3). Kernel-dressing 

is used to transform an ensemble forecast into a probability forecast. The 

main goal of the experiment is to establish and analyse the composition of 

the forecast, and to determine parameters for the kernel-dressing process.

1. O verview

We are interested in long term forecasting of data produced by what is 

potentially a non-linear chaotic system. The forecast F l (y ) is chosen in a 

form such that at any given time t  it combines information produced by two 

sources: a forecasting model and the climatology. The forecasting model is 

our best guess for the system that generated the data. In other words, a 

forecasting model attempts to predict the future. The climatology is a set 

of statistics produced by all data that has been observed so far. The central 

question is how to combine the information produced by a forecasting model 

and the information from the climatology for a given system and how the 

chosen combination changes with time. We can also ask a different question

1A11 highlighted words are defined in the Glossary.
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that is related to the problem of determining F l (y): how long does it take 

for the forecast produced by a forecasting model to lose information for a 

given scenario.

Let’s formalise this: assume that a forecasting model at time t produces 

a forecast of data in a form of probability density function - p^ (y ); and 

the climatology produces a historical, frequency-based, forecast - also in the 

form of a probability density function [25], which is denoted by pc (y). Then 

at time t  the issued forecast F l (y) will combine the information in those 

two probability functions and can be represented as shown in equation 25,

(25) F l (y) = afp) (y) +  ( l -  a1) pc {y) ,

where a 1 is the proportional weight and is set to be: 0  < a* < 1 .

We are interested in determining the ‘best’ forecast F 1 (y) with respect 

to minimising Ignorance [45]2. This poses further questions: how the per­

formance of F 1 (y) is evaluated in order to determine the ‘best’ forecast; how 

to determine a t \ and how to construct p^ (y) and pc (y ). The methodology 

developed in this chapter was examined in the perfect model scenario frame­

work using chaotic systems [27] and a threshold autoregressive process [54]. 

The parameters and the methodology of the forecast were established using 

a learning set for each of the studied systems and then applied to produce 

an Out of sample forecast. The definitions of the parameters used in this 

chapter axe presented in table 1 .

Definition and explanation of Ignorance skill score is given in section 2.2
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N ls Length of a learning set.

Te Lead time covered by an ensemble.

N b i n s Number of bins used in the construction of climatology.

M Size of an ensemble, i.e. number of members.

£t A random variable [48] representing Additive noise 

on the studied system.

Pe Mean of the distribution [49] of the additive noise.

Standard deviation of the dist.[49] of the additive noise.

St Value of a data point of a learning set at a given location.

Vt A random variable representing Perturbation noise.

Prj Mean of the distribution of the perturbation noise.

(Jjj Standard deviation of the dist. of the perturbation noise.

L Number of randomly chosen locations on a 

learning set, where data points are perturbed.

Tm a x Maximum forecasting lead time.

A A value of an ensemble member i at each lead time t, 

where i = 1 . . .  M

am A width of a kernel-dressed dist. around a m th 

ensemble member, i.e. p\,  at a given lead time t.

a t The blending parameter between the (x) and p c (x ) .

Table  1. The definitions of parameters: combined forecast experiment.
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2. Setting o f the experim ent.

2.1. D efin itions o f used  s ta n d a rd  d is tr ib u tio n s  an d  num erical 

schem es. First, let’s define some standard probability distributions that 

are used in this thesis. A Normally distributed [49] random variable x  with 

mean /z and standard deviation a is denoted by x  ~  N  (p, a), where N  (/z, a) 

is given by:

A random variable x  is uniformly distributed and is denoted as x ~  

U (a, 6), where U (a, 6) is given by equation 27.

Next let’s define the Ignorance skill score [45]. In particular, given a 

verification set y =  {yi,V 2 , •••, yr}  the Ignorance skill score is defined by:

where p (y) is a probability function, yi is a verification point and T  is the 

size of the verification set. Ignorance is a measure that reflects how uncertain 

you are in your probability forecast p (y) given a verification set [45].

Also, let’s define the Logit transformation [26] of parameters where, for 

a given parameters 0 < a 1 < 1 and cr^ > 0, one can define new parameters 

a *1 and cr^ as presented in equations 29 and 30 respectively:

(26)

0, otherwise.

(27)

(28) ^ i ° g 2 (p fej)),
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(29) a** =  In
cr

1 — a1

(30) =  In (o r^ ),

such that —oo < a ** < oo and —oo < cr^ < oo.

Finally, the Runge-Kutta [47] numerical integration scheme of fourth 

order, extended to three dimensions, is defined as follows. For a given system 

of differential equations with respect to time t :

dx
—  = fx  (t , X ) with X  ( t o )  =  X o ,
at
dzi
-fa =  f y  (t, y) w i t h  y  M  = 2/0 ,

dz
■jT =  / « ( i ,«) with z (t0) =  *o,

(31)

the discrete approximation is given by:

xn+i — xn +  — (kf +  2&f +  2fcf +  k%); 
b

2/n+i =  2/n +  g (&i +  2^ 2  +  2A:| +  k\ ) ;

zn +1  =  zn +  — (kf +  2 +  2&f +  fcf); 
b



where k f , k^, kf with i = 1 , . . . ,  4 are defined by equation set 33.

&1 — fx  (̂ Ti) x n) 5 — /y (̂ n> Vn) > — /z {tn, ^n)

=  / x ^ n  +  ^ n  +  ^ l ^  , ^ = / y  ^ n  +  ^ ,y n  +  ^ i ^  ,

=  f z  ( t n  +  7^, *n +  ;

=  f x  ( t n  +  ^ , X n  +  7^ 2 ^  , =  / y  Vn +  ,

&3 =  f z  ( t n  + f̂ , Z n  +  7^ 2 )  J

k^ =  f x ( t n +  h , x n +  hk3 ) , =  / y  (tn +  h, y n +  h k ^ ) ,

^4 =  /z (^n ~f" ti, zn -+- hk$ ) . 

h is a time step  

(33)

2.2. E x p erim en ta l design. The experiment can be divided into sev­

eral stages:

(1) G en era tin g  a  learn ing  set: First, iterate forward in time a cho­

sen system with a predetermined numerical scheme, such that Nis 

data points axe generated. Add independent realisations of e, where 

£ rsj N  (/i£, cre), to each point of the generated data (other distri­

butions can be considered as possible models for an observational 

noise). Learning sets are used to train parameters of F 1 (y). In this 

thesis, the learning sets will only contain one of the components 

of the chosen chaotic system - the x  component. The methods
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used in the production of forecasts, however, could be extended to 

multi-dimensional data.

(2) D efining clim atology: The climatology pc (y ) is created by con­

structing the historical relative frequency, of values in the learning 

set. The range is split into N b i n s  equally sized bins, that range 

from the recorded minimum to the recorded maximum of the learn­

ing set.

(3) C o n s tru c tin g  in itia l conditions: The predictability at different 

points in the learning set and, in the case of a chaotic system, 

across different regions of any attractor, may vary [50], and a good 

forecasting model should account for this. In order to accommodate 

this phenomena, L  randomly selected locations on the learning set 

are chosen, such that the locations are uniformly distributed across 

the length of the set.

The locations are assumed to be uniformly distributed in order 

to use the simplest model for even sampling across varying regions. 

It is also a reasonable assumption if the underlying system is un­

known.

In order to examine the sensitivity of the combined forecast 

to the uncertainty in the initial condition perturbed, noisy initial 

conditions are constructed. Specifically, a perturbed initial condi­

tion rji is one of the realisations of a random variable 77, such that 

77 ~  N  ovj), with Hr) defined by a value of a point on a learn­

ing set p,  ̂ = St for a chosen time t. The variance a^ is chosen
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to be the same for each location. Then a set of perturbed initial

tions of 77. Again we have chosen to consider normally distributed 

perturbation. Other distributions, such as Uniform, might also be 

interesting to consider.

(4) G en era tin g  ensem bles using th o se  in itia l conditions: Once

an input into a forecasting model. As we are assuming the perfect 

model scenario the equations that have generated the learning set 

are also used as the forecasting model. As a result, L  ensemble fore­

set), extending up to lead time N e, where each ensemble consists

condition).

(5) P a ra m e te r  o p tim isa tio n  using  Ignorance.

We are interested in transforming ensemble forecasts into a 

probabilistic form, and for this we use the procedure known as 

kernel-dressing [6 ]. This is achieved by assuming that ensemble 

members, at lead time t, are draws from a probability density func­

tion pyr (y), which is defined by equation 34.

The form of p^ (y) is derived by fitting a Normal distribution around

each ensemble member p\ at a given lead time t, and then averaging
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conditions at each location is produced by generating M  realisa-

sets of the initial conditions have been generated they are used as

casts are produced (one for each random location on the learning

of M  ensemble members ( one for each perturbation of the initial

(34)



over M  normal distributions to get an ensemble based probability 

distribution. As a result, is the first parameter that has to be 

determined.

The second unknown parameter is a*, which determines how 

much information from the forecasting model is used in the final 

forecast F 1 (y), equation 25. We proceed by simultaneously choos­

ing <7^  and a 1 by minimising the Ignorance skill score [45] of F l (y), 

measured in bits. In our case the L  verification sets are subsets of 

the learning set of length N e — 1 that start one day after the L  

initial dates t. Each location has an ensemble forecast and it’s cor­

responding verification set. Hence at each location, for every given 

lead time t , the Ignorance surface of F l (y) is defined by:

The Ignorance skill score is computed for every location, and

for every given lead time t, are the values that minimise the 

average Ignorance surface of F l (y ):

(IGN, (**(„))) =  - i E j =1l°g2

(35)

then an average of those scores is taken. The parameters a* and

(36) mm
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The minimum on the surface is found using the Conjugate Gra­

dient minimisation algorithm [47]. The Conjugate Gradient min­

imisation will search for a 4 G (—0 0 , 0 0 ) and <7^  G (—0 0 , 0 0 ), how­

ever, we require 0 <  a 4 < 1 and <7^  > 0. in order to overcome 

this problem the Logit parameter transformation is used, and new 

parameters a;**, equation 29, and cr^, equation 30, are introduced.

The Logit transformation allows the Conjugate Gradient method 

to freely search for the parameter values of a*4 and 0 % in the range 

from —0 0  to 0 0 . Using equations 29 and 30, a4 and cr^ can then 

be written as:

(37) ot =
exp (a*4) 

exp (a**) +  1

(38) = exp(̂ m)-

Then substituting for a 4 and cr^ as defined in equations 37, 38 

into equation 36 and applying averaging over locations at a fixed 

time we obtain the average ignorance, equation 39. Now equation 

39 can be minimised by the Conjugate Gradient minimisation al­

gorithm.
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(39)

IG N  {F1 (y)) =  i  ( E t  [ - *  E j= i  log2 ( ^ 1 .

(__ 1__ Lpf ^ C ) ] )  +
\exp((T^)V^7rM  [ P  ^2(exp(<r£*)) J j j

+ ) * ( « ) ) ] ) •

Finally, the Conjugate Gradient method requires the first par­

tial derivatives of a function with respect to the parameters that 

need to be optimised. are given in

equations 40 and 41 respectively.

dIG N( F t (y)) 1 f  I x r  (  e x p f a * * )

 5a** =  L  ( E i  [ - T  1o82 (,(«p(a‘.)H-;

E m
i = 1exp(ap*)V2nM

)+ i)T 

+

+ exp (a**) 
(exp(a*t )+ l) rJPc (!/*))]) •

(40)

(  I ^ [ e x p  (  -(vj-Pi) \  (  (vj— /**) _  ±\  1 A .
\exp(a%)y/2nM)  \  t_1 [ \2(exp(a^)) J  ^(exp(a^)) ) \ )

(41)
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Once the optimal a*f and have been determined one can 

compute corresponding values of a 1 and cr^ using equations 29 and 

30 respectively.

(6) Issuing the out o f sam ple forecast

The final stage of the process combines the results obtained in 

all the previous steps. A first a point of the system being studied, 

denoted for convenience as St, is chosen out of sample. This point 

defines the start of the prediction period and is used to construct 

perturbed initial conditions, as described in step 3.

The next step involves determining p^ (y) by kernel-dressing 

the forecast ensemble for each lead time t using equation 34 and 

the calculated in step 5. Finally the out of sample forecast is 

given by the equation 25 with the pc (y ) constructed in step 2 and 

a 1 also computed in step 5.

3. Lorenz Experim ent

The method is first tested on a chaotic system. Chaotic systems exhibit 

sensitivity to the initial conditions, which means that only initial uncertainty 

results in a forecast uncertainty that grows rapidly with time [27]. The 

same characteristic is also observed in weather forecasts (see chapter 2), 

although this is due not only to the uncertainty in initial conditions, but also 

operational and model error. As a result, this property of chaotic systems 

allows us to conduct a controlled experiment using a method that one wants

to apply to weather forecasts, but in a much simpler setting.

78



a r b xo yo zo

10 28 8
3 0 -0.01 9

Table  2. Parameters and initial conditions of the Lorenz 

system for the chaotic state.

The experiment was first carried out on a data set generated using the 

Lorenz 63 dynamical system [44]. The Lorenz system is nonlinear, three- 

dimensional and deterministic. The equations that describe the system are 

presented in equation 42 and were derived from the convection arising in the 

equations of the atmosphere. For some parameter values [46] the system 

is chaotic. Such parameters were chosen and are shown in table 2 together 

with the initial conditions.

dx 
dt 
dy 
dt
dz 
dt

(42)

In order to generate the Lorenz data a numerical integration scheme has

to be used. The classical fourth-order RungeKutta method [47] has been

chosen and extended to the three dimensional system (see section 2.1).

Now everything is set in order to conduct the experiment and produce

out of sample combination forecasts for noisy Lorenz data ( particularly the
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Nis M Te L N b i n s <7<q Tm a x h

72 L.s 100 7.3 L.s 200 128 0.2 0.4 7.3 L.s 0.01
Table  3. Parameter values used in the production of com­

bination forecasts for the Lorenz data experiment, where L.s. 

stands for Lorenz seconds.

x  component). The summary of parameter values used in production of 

combination forecasts in the Lorenz experiment are presented in table 3.

3.1. G en e ra tin g  L orenz learn ing  se t an d  clim atology. First Runge- 

K utta numerical integration ( equations 32 and 33) with h =  0.01 are used 

to generate Nis = 72 Lorenz seconds of Lorenz data, which forms the Lorenz 

attractor [27] presented in figure 1. It can be seen from this picture that 

some parts of the Lorenz attractor are very flat ( area of the two ‘wings’).

It is always a benefit to examine the system visually, as in this case, if we 

choose a point on the attractor that falls into the flat area ( which we do 

later on in this chapter), when that point is perturbed with nose, the ‘noise 

ball’ around it will occupy all parts of the space, in particular parts of the 

space where the Lorenz observations will never occupy. We do not study in 

this thesis the effects of perturbing initial conditions such that they occupy 

part of the space that is not incorporated by the attractor of that chosen 

system. It is something, however, to bare in mind for the further research of 

the noise propagation through the equations of motion of a chosen chaotic 

system.

In this experiment, to minimise computer time and for simplicity, only

the x  component of the Lorenz data is used, however the method can be
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F ig u r e  1. Lorenz attractor, 

extended to multiple dimensions. Once the data has been generated, a Nor­

mally distributed (equation (26)) nose e ~  N  (/xe, a£) is added. The value of 

ae = 0.2 is chosen such that generated realisations of e range from (—1,1), 

which is approximately 2% of the size of the Lorenz attractor in the x  com­

ponent direction. The realisations of £{ are generated using Matlab’s randn 

function [56]. A fragment of the resulting noisy x  component is presented 

in figure 2. The values of the x  component lie in the ranges (—20 17) and 

exhibit growing oscillations that are followed by rapid jumps. Growing os­

cillations happen when points are moving on a wing of the Lorenz attractor. 

These are regions with better predictability, compared to the periods where 

jumps occur in the time series. This corresponds to jumps between the two 

wings of the attractor.

The next step is to construct the climatology of the learning set, i.e. the

climatology of the noisy Lorenz x  component. This is achieved by setting

the number of bins to be: N q i n s  — 128, which is a reasonable number

of bins to be able to distinguish details in the observed relative frequency
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F ig u r e  2. Fragment of the x  component of the Lorenz dy­

namical system with additive noise e ~  N  (0,0.2).

with regards to number of points in the learning set and the range of data. 

The bins are equal in size and range from the minimum to the maximum 

observed values in the learning set.

F ig u r e  3. Historic relative frequency of the noisy x  com­

ponent of the Lorenz system, constructed using 128 equally 

sized bins ranging from the minimum to the maximum values 

of the observed 72 Lorenz sec of data.
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3.2. G en e ra tin g  p e r tu rb e d  in itia l cond itions an d  re su ltin g  en ­

sem ble fo recasts. The length of the learning set Nis defines the upper 

boundary of the uniform distribution, in other words a = 1 and b = 72 

Lorenz sec, equation (27). Then L = 200 random draws from that uniform 

distribution are taken using Matlab’s rand function.

Once the locations on the learning set are determined, sets of perturbed 

initial conditions are constructed. The value of the Lorenz data at each 

location St determines the mean of the perturbation noise 77 N(fh,,<rv) 

where =  St and =  0.404145. The chosen value of av produces noise 

that ranges from (—1.9 1.9) from St and is approximately 4.5 % size of the 

attractor in the x  component direction. We want to examine the consistency 

and characteristics of a combinational forecast, for relatively low levels of 

perturbation noise. Again, the realisations of 77* are generated using Matlab’s 

randn function. As mentioned in the previous section the generated noise 

will occupy the part of space ( for the flat regions of the attractor) that are 

not occupied by the Lorenz system, see figure 4.

Initial conditions are used to generate ensembles (ensemble forecasts) at 

each location. Each ensemble is chosen to consist of M  =  100 members and 

each ensemble extends up to Te = 7.3 Lorenz seconds. As discussed, the 

uncertainty in ensemble forecasts will vary for different locations for a given 

level of noise in initial conditions, as some regions of the Lorenz attractor 

display better predictability compared to others. This can be observed in 

figure 5 where ensemble forecasts for three locations are displayed.



10.

-10

F igure 4. Generated initial conditions that has been per­

turbed with Normally distributed noise with standard devi­

ation 0.404145.

It can be seen that at the first location (top plot) the ensemble forecast 

is the least certain. The split of the ensemble members happens at approx­

imately 0.1 Lorenz sec., where some ensemble members go to another wing 

of the Lorenz attractor compared to the verification set. This location cor­

responds to a less predictable region of the Lorenz attractor, where a small 

change in an initial condition leads to a trajectory ending up on the opposite 

wing. At a location displayed in the second plot, ensembles are the most 

stable out of the three locations displayed, and ensemble members stay close 

together for up to 1.0 Lorenz sec. This ensemble was generated from initial

conditions in a more stable region of the attractor. After one sec. more
8 4
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F igure 5. Examples of generated ensembles from perturbed 

initial conditions in three different locations (blue), together 

with the verification data (red) for the Lorenz experiment.

uncertainty is present and that is evident by the increasing spread3 of the 

ensemble members. The split occurs later, at around 1.6 Lorenz sec.

3.3 . K ern el dressing: co n stru c tin g  p a ra m eter  surface u sin g  ig­

n oran ce sk ill score and  fin d in g  th e  m in im a . The next step in produc­

ing combined forecasts, involves parameter estimation: the kernel dressing 

parameter olm and the blending parameter a 1. Particularly, we use equation 

39 with T  = 1 L.s, M  = 100 and y\- the value of ith ensemble member with 

i = 1. . .  M  for each initial location, for a given lead time t. yj is the value

3The ensemble spread is defined to be the difference between the max and the min 

values of the ensemble members at a given time.
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of the learning set one step after the perturbation point at each location, 

i.e St+i- Equations 40 and 41 are also constructed with the same parameter 

values, and are provided to the Conjugate Gradient minimisation algorithm. 

As a result optimal a * 1 and cr^ are found. Finally equations 37 and 38 are 

used to determine a* and cr^ respectively. Values of a 1 and <t^ as functions 

of lead time are presented in figures 6 and 7 respectively.

0.8

0.6

0.4

0.2

3.0
Time

1.0 2.0 4.0
Time Lorenz sec

5.0 6.0 7.0

F igure 6. Blending parameter for the Lorenz experiment.

Red- is the value of the blending parameter a 1 with lead time 

(x- axis), y axis indicate the size of the attractor for the x 

component of Lorenz system.

The resulting blending parameter a 1 remains at 1 for up to 1.0 Lorenz

sec., which means that up to 1.0 Lorenz sec. all the information in the

combinational forecast is going to come from the ensemble forecast. And

the uncertainty exhibited in ensembles will be reflected in the values of the

kernel dressing parameter cr^. It is also evident that as lead time increases

the values of a 1 exhibit a decreasing trend. The instability, however, in the

values of a 1 increases with lead time.
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The values of a 1 for the Lorenz experiment were calculated for the max­

imum lead time of T m a x  = 7.2 Lorenz sec. The value of a 1 only drops to 

approximately 0.8 at the maximum observed lead time, which means that 

even after 7.0 Lorenz sec. most of the information (80 %) is taken from 

the ensemble forecast rather than climatology. This is reasonable, as a 1 

reflects how well the verification data is captured by the ensemble forecast. 

By 7.0 Lorenz sec., verification sets axe mostly contained within some of the 

members of the corresponding ensemble forecasts. This therefore results in 

a larger values of a l. As lead time increases the verification data falls out 

of the ensemble more frequently, which courses the decreasing trend in the 

values of a 1.

35 

30 

25 

20 

15 

10 

5

°0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Time Lorenz se c

F ig u r e  7. The width of the fitted distribution parameter 

<7^  with lead time (x- axis), y axis indicate the size of the 

attractor for the x  component of Lorenz system.

The value of is initially very small compared to the size of the attrac­

tor, but it is consistent with the size of the perturbation noise. As a 1 is 1 at

the initial time all the uncertainty in the combinational forecast has to be
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accounted for by cr^. Hence the value of cr^ in the initial period should be 

comparable to the average size of the perturbation noise. As the lead time 

increases, cr^ also increases, however the level of even after Tm a x  =  7.2 

is minute compared to the size of the attractor, cr^ reflects the average 

distance of a verification data from members of the corresponding ensemble 

forecast. Small levels of a^  after 7.2 Lorenz sec. lead to the conclusion that 

most of the ensemble members at most locations still remain close to the 

verification set.

3.4. Exploring the influence o f noise in the initial conditions 

and the size o f the ensem ble on the param eter estim ation. In order 

to examine the sensitivity of the parameter estimation and hence the change 

in predictability of the combination forecasts to the levels of uncertainty 

in initial conditions, the experiment was repeated with a higher level of 

noise. Particularly, the level of noise in perturbed initial conditions has been 

doubled , particularly =  0.808290. Figure 8 illustrates the comparison 

between perturbed initial conditions generated with an = 0.404145 and = 

0.808290.

The change in the level of noise in the initial conditions affects the 

behaviour of the resulting ensemble forecasts, in particular the ensemble 

spread. Figure 9 compares ensemble forecasts for the same three locations, 

displayed in figure 5, produced using two levels of noise in perturbed initial 

conditions. It can be seen on that picture particularly clearly that the gen­

erated noise ( for both cases) occupies the part of space where the Lorenz
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F ig u r e  8 . Comparison of the perturbed initial conditions 

at a location on the attractor, where different level of noise 

has been added. Green- initial conditions constructed with 

Normally distributed noise with av =  0.404145. Blue are 

initial conditions constructed with normally distributed noise 

with standard deviation = 0.808290. Red-noisy Lorenz 

attractor.

attractor is not present. Again this is not studied here, but should be inves­

tigated. This figure also clearly illustrates the size of the generated noise for 

two cases and the relative size of the two nosy initial conditions sets with 

respect to the Lorenz attractor.

It can be observed that ensembles generated using initial conditions with

(Tfj = 0.808290, generally exhibit larger spread. Also the split in the ensemble

members, where some of the trajectories travel to the opposite wing happens

earlier, as expected. In other words increased level of the perturbation

noise leads to greater uncertainty in the ensemble forecast. As a result

of the larger level of the perturbation noise, ensembles contain less precise
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F ig u r e  9. Comparison of ensembles generated using dif­

ferent levels of noise at a given location. Green- ensem­

ble generated using normally perturbed initial conditions 

with Urj = 0.404145; Blue- ensembles initialised with nor­

mally distributed initial conditions with doubled level of 

av = 0.808290 and red is the verification data.

information about the combined forecast. This is evident in the values of a* 

and (j^. The values of a1 and cr^, as functions of lead time t, calculated using 

perturbed initial conditions with the doubled level of noise are compared to 

the previously computed a 1 and cr^, and the results shown in figures 10 and 

11 respectively.

For larger levels of noise a 1 stays at exactly 1.0 for a shorter period 

of time and drops to a lower level as lead time increases. By 7.2 Lorenz
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F ig u r e  10. a 1 for increasing lead times computed as the 

result of different levels of noise in the initial conditions. 

Magenta-blending parameter a 1 for the smaller noise level.

Red is a* for the doubled level of noise.

sec. however, the level of a 1 still remains at a large level of approximately

0.7. The difference between the combined forecast parameters (a:* and

for those two different levels of noise is small, as even the doubled level of

perturbation noise is still small compared to the size of the attractor in the

x  component direction.

Again, larger levels of noise in the perturbed initial conditions result in

a larger cr^, on average. If the perturbation noise is very large, say 30 %

the size of the attractor in the x  component direction, the values of cr  ̂ also

start at a level of 30 % of the size of the attractor, a 1 in this case will remain

at 1.0 for a long time as the ensemble will always capture the corresponding

learning set. If we, however, start with the perturbation noise smaller than

the observation noise, the determined a 1 will initially be even less than 1.0

and will also reduce further in value as lead time increases.
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F i g u r e  1 1 .  ]

Zoom into the cr^ values for increasing lead times computed as the result 

of different levels of noise in the initial conditions. Cyan- s.d. of the 

dressing kernel - cr^ for the smaller noise level. Blue is for the doubled

level of noise respectively.

We are also interested in sensitivity of the combined forecast’s calibrated 

parameters to the ensemble size M. Therefore we examine what happens to 

the estimates of the parameters when the ensemble size is reduced: specif­

ically M  = 50, M  =  25 and M  = 12 have been used. Figure 12 and 13 

illustrate changes observed in a 1 and respectively that occur when the 

ensemble size is reduced.

It can be noted that the general trends observed in the parameter values 

with M  = 100 remain the same. Particularly, as lead time increases the 

values of cr^ grow and the values of a 1 exhibit a decreasing trend. Addition­

ally it can be seen that the values of cr^ increase as the size of the ensemble 

decreases, which is expected. Previously it has been observed in ensemble 

forecasts (for M  = 100), that most of the ensemble members stay close to
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F ig u r e  12. Contrasting a 1 resulted from different ensemble 

sizes, colours darken with the increase in ensemble size: The 

green is respectively generated using ensemble consisting 

of 12 members; magenta is a 1 of the ensemble composed of 25 

members; red is a 1 for the 50 member ensemble; and finally 

deep burgundy is a f that has been generated for the full 

ensemble size ( 100 members).

the verification set particulary for smaller lead times. As a result, as the 

number of ensemble members reduces, members that are far away from the 

verification set will have more influence over the average distance between 

the ensemble members and the corresponding verification set. The values 

of a 1 decreases as the size of the ensemble is reduced, which is expected 

as the verification set is more likely to fall outside the boundaries of the 

corresponding ensemble.

3.5. Issuing forecasts. The final stage of the production of the com­

bined forecast of a time series uses results from all previous parts of the

experiment. First we start with a point of the Lorenz time series that one
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F ig u r e  13. Contrasting cr^ resulted from different ensem­

ble sizes, colours darken with the increase in ensemble size:

Yellow - generated using ensemble consisting of 12 mem­

bers; Cyan is cr^ of the ensemble composed of 25 members;

Blue is cr^ for the 50 member ensemble; and finally Dark 

purple is a^  that has been generated for the full ensemble 

size ( 100 members).

observes and beyond which one wishes to forecast. This data point is used 

to generate perturbed initial conditions with the same level of perturba­

tion noise, i.e. a  ̂ =  0.404145, that was used in the parameter estimation. 

Finally, the ensemble forecast is produced using these perturbed initial con­

ditions, see figure 14.

Red- is the out of sample Lorenz x  component time series that one 

wishes to predict in the form of a probability distribution. So for the chosen 

parameters of the Lorenz experiment: cr̂  =  0.404145, M  = 100, TMAX,Te = 

7.2 Lorenz sec.; the previously constructed climatology (figure 42); and the 

calibrated a 1 and cr^ (figures 6 and 7); the combinational forecast in the
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F ig u r e  14. Out of sample ensemble forecast for the Lorenz 

x  component that is used in the final probability forecast 

(blue) and the verification (red).

form of probability function is produced, using equations 25 and 34. Figure 

15 shows combinational forecast distributions for up to lead time t =  2.5 

Lorenz sec.

The combinational forecast obtained displays higher certainty up to 0.5 

Lorenz sec. After that the spread in the forecasting distribution increases, 

providing a less precise forecast. For lead times around 1.0 Lorenz sec. the 

distributions become tighter for a short period, and afterwards widen where 

we observe a dip in the levels of a*, which means that the climatology gets 

introduced into the combinational forecast. It can be seen that as lead time

increases the spread in the forecasting distribution increases. The combined
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F igure 15. Final probability forecast issued for the Lorenz 

x  component using combinational forecasts, 

forecast produced closely reflects the behaviour of the ensemble forecast, 

figure 14. This is reasonable, as the values of a 1 remain close to 1.0 for the 

forecasting period.
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T R xo 2/o Zo

6 20 0.1 0 0
Table  4. Parameters and initial conditions of the Moore- 

Spiegel system.

N ls M Te L N b i n s <j71 Tm a x h

73 M-S.s 4 100 110 M-S.s 200 128 0.02 0.057735 110 M-S.s 0.01
Table  5. Parameters of Moor-Spiegel experiment

4. Perfect m odel scenario: M oore-Spiegel experim ent.

The method of combined forecasts has been also tested on another 

chaotic system: Moore-Spiegel [27]. The Moore-Spiegel dynamical system 

describes the evolution of gas flows in the centre of a galaxy. The equations 

that describe the system are given in equation 43.

— =  —z — (T — R  + R x 2) y -  Tx.  
at

(43)

For some parameters the system exhibits chaotic behaviour. These pa­

rameter values have been chosen for this experiment and axe presented in 

table 4 together with the initial conditions.

The parameters that are used to produce combined forecasts are sum­

marised in table 5.
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4.1. G enera tion  of th e  learn ing  se t and  clim atology for th e  

M oore-Spiegel chaotic oscillator. In order to generate Moore-Spiegel 

data Runge-Kutta numerical integration is also used, equations 32 and 33 

with h = 0.01. The length of the leaning set was chosen to be Nis = 73 

Moore-Spiegel seconds. Additionally additive noise e is generated where 

e ~  N  (/j,e ,cre ) with fi£ = 0 and cr£ =  0.02. The realisations of £t are gen­

erated using Matlab’s randn function. The resulting noisy attractor for the 

Moore-Spiegel system, is illustrated in figure 16. Again visual illustration 

of the attractor allows to examine the parts of the space that the system 

occupies.

N

- 60 ;

•10 -3

F igure 16. Moore-Spiegel attractor with added noise, 

where added noise is normally distributed with zero mean 

and s.d. =  0.02.
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Again the learning set will only comprise of the x  component of the 

Moore-Spiegel data. The time series corresponding to the x  component of 

the Moore-Spiegel system is illustrated on figure 17.
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-0.5
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1.0 2.0

Time (Moore Spiegel sec )
3.0 

iegel sec )
4.0 5.0>k

F ig u r e  17. The noisy x  component of the Moore-Spiegel 

dynamic isolator.

The climatology of the learning set is constructed using N b i n s  =  128 

bins. The size of the bins is identical and the range is determined by the 

minimum and the maximum observed values in the learning set. The clima­

tology is displayed in figure 18.

4.2. C onstruc tion  of in itia l conditions and  ensem ble forecasts.

The first stage in construction of perturbed initial conditions involves de­

termination of locations on the attractor where these conditions will be 

constructed. Again, the locations axe chosen to be uniformly distributed, 

with b = 73 Moore-Spiegel sec is chosen to be used in equation 27. L  =  200 

random draws from that uniform distribution are generated using Matlab’s 

rand function.
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F ig u r e  18. Climatology of the generated noisy x  compo­

nent of the Moore-Spiegel system, where 73 Moore-Spiegel 

seconds of data has been used distributed between equally 

sized 128 bins, ranging from the maximum and minimum 

vales observed in the data.

At each chosen location the value of the Moore-Spiegel St determines

the mean of the perturbation noise /j^ = St, with 77 ~  N  ( ^ , 0rv). The

standard deviation of the perturbation noise is set to be = 0.057735,

which produces noise in the range (—0 .1 , 0 .1 ) from s* and is approximately

4% size of the attractor in the x  component direction. This Perturbation

noise is generated using Matlab’s randn function. The perturbed initial

conditions are displayed on figure 19 with relation to the attractor space.

We use figure 19 to make sure that the perturbed initial conditions are

distributed ‘reasonably uniformly’ on the attractor. And actually in this

case it can be seen in figure 19 that there are some regions of the attractor

that are not sampled by the chosen initial conditions.
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F i g u r e  19. Normally distributed perturbed 200 initial con­

ditions with s.d. =  0.057735.

Next ensemble forecasts are generated using the equations that describe 

the Moore-Spiegel system, equation 43. Each ensemble is chosen to consist 

of M  = 100 members and each ensemble extends up to Te = 110 Moore- 

Spiegel sec. Three examples of ensemble forecasts generated together with 

the verification in three locations axe shown on figure 20.

As in the Lorenz experiment, in the Moor-Spiegel experiment different 

locations exhibit different predictability, and this is evident in the ensemble 

forecasts, particularly ensemble spread. It can be observed that the location 

corresponding to the bottom plot is the most stable, and the ensemble fore­

cast produced has very little uncertainty, and most of the ensemble members

are close to to the verification set for up to 6 Moore-Spiegel sec. After which
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F ig u r e  20. Examples of ensembles generated using per­

turbed initial conditions at a given locations: blue are the 

ensembles and red are corresponding verification sets, 

a split in the ensemble forecast occurs. In comparison the middle plot shows 

on ensemble which splits before 1.0 Moore-Spiegel sec. and is much more 

volatile compared to the others.

4.3. K ernel dressing of re-sam pled  M oore-Spiegel ensem bles 

w ith  m inim isation of ignorance skill score based p a ram e te r su r­

face. We proceed by estimating the values of a* and cr^. We are particu­

larly interested in what happens for extended lead times. For the purpose 

of saving computation time, ensembles and the corresponding verification 

sets are re-sampled, and every 10th point is taken. Equations 39, 40 and 41

are used in the Conjugate Gradient minimisation algorithm to estimate the
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kernel dressing parameter and the blending parameter. Again equations 37 

and 38 are used to determine a 1 and respectively after the optimisation 

is performed. Values of a 1 and <7̂  as functions of lead time are presented 

in figures 21 and 22.
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F ig u r e  21. Values of parameter at for the re-sampled x  

component of the Moore-Spiegel system with lead time.
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F ig u r e  22. Values of parameter <jf for the re-sampled x  

component of the Moore-Spiegel system with lead time.

It can be seen, that as in the Lorenz experiment the values of a1 decrease

with time and the values of cr^ increase with time. Even after a long lead

1 0 3



time T m a x  =  110 Moor-Spiegel sec. the value of a ^  still remains very 

small compared to the values of a1, which reduce dramatically as lead time 

increases.

It can be concluded, after these experiments, that for the observed 

chaotic systems the values of er^ starts at the level of the perturbation 

noise used to generate initial conditions. W ith the increase, in the lead time 

afn increases but only by a very small magnitude. The values of the blend­

ing parameter a 1 exhibit much more dramatic changes in value as the lead 

time increases. At the initial time a* starts at 1.0, unless the perturbation 

noise added is much smaller than the additive noise. As the lead time in­

creases a1, —> 0. The spread in the values of both parameters increases with 

increased lead time. This is reasonable as with increased lead time more 

and more ensemble members end up in a different region of space compared 

to the corresponding verification sets, which leads to increased levels of cr^ 

and decreased levels of at . Later ensembles come topgether again, due to 

the cyclical nature of the chosen systems, which results in the levels of cr^ 

being dramatically reduced and levels of a* being dramatically increased.

4.4. P ro d u c in g  final p ro b ab ility  fo recast. Lastly, the combined 

forecast, in the form of a probability distribution for the Moore-Spiegel x  

component is produced. First, the out of sample Moore-Spiegel data point 

determines the mean of the perturbation noise and the same level of stan­

dard deviation av = 0.057735 is used to construct the perturbed initial con­

ditions. Then the resulting ensemble forecast is constructed as illustrated in
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figure 14. Again the equations of Moore-Spiegel are used to construct the 

ensemble.

Values of x component of Moore Spiegel

F ig u r e  23. Ensemble forecast produced for the x  compo­

nent that is dressed and combined with climatology to pro­

duce final probability forecast. Blue- ensemble and red- 

verification data.

The final forecast of the time series in the Moore-Spiegel experiment with 

the parameters: cr̂  =  0.057735, M  = 100, T u A X ^ e  =  HO Moore-Spiegel 

sec.; the climatology as shown on figure 18; and using the optimal a 1 and 

(figures 21 and 22); is produced, using equations 25 and 34. Figure 24 

shows this forecast distributions for up to lead time t = 1.5 Moore-Spiegel 

sec.
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F ig u r e  24. Final probability forecast for lead times issued 

for the x  component of the Moore-Spiegel chaotic isolator, x  

axis indicate the value of the forecasted variable and y axis 

is lead time.

Again the behaviour of the ensemble forecasts is closely mimicked by the 

combined probability forecasts produced. Probability forecasts are produced 

for up to 0.7 Moore-Spiegel sec. with little uncertainty.
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5. The perfect m odel experim ent in th e statistical m odelling  

framework: Threshold A utoregressive Process

The method for long term forecasting of a time series using combined 

forecasts was also tested on a data set generated by a classical time series 

model. Real weather data exhibits jagged and irregular behaviour on short 

term scales and this test has been performed in order to examine the effec­

tiveness of the method on a time series that is mostly driven by a random 

component, in contrast to time series generated by a chaotic system.

The purpose is to examine the influence of information produced by 

a forecasting model in the combined forecast as lead time increases. Ad­

ditionally, an exact analytical probabilistic forecast can be constructed in 

this framework, which then can be compared to the numerically computed 

prediction.

The system to be tested is: A threshold autoregressive process of order 

three (TAR3) [54]. The TAR3 process is defined by equation 44.

xt+i = Ci + a \x t +  b ix t-i +  ciXt- 2  +  i f  x t < D ; 

xt+i = C2  + a2 xt +  b2 x t- i  +  c2 xt- 2 +  £f2+i i f  x t > D\

(44)

where t is a time step, D  is a threshold constant and the random compo­

nents $  and $  are chosen to be independent gaussian random variables

~  iV^0,<7£i^, ~  N  ^0,0^2^, with a^i = 0.3, 2 =  0.1. The list of
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T a b l e  7. Parameters used in TAR(3) process based experiment.

parameters of the process and the initial conditions used to generate the 

data are presented in table 6.

A summary of parameters used in the combined forecast experiment is 

given in table 7.

5.1. Choice o f p a ra m e te rs  for th e  T h resh o ld  A utoregressive 

P rocess: co n stru c tio n  o f th e  d a ta  se t a n d  clim atology. The TAR(3) 

time series that comprise the leaning set is first generated using the param­

eters in table 6 and equation 44. The resulting time series is displayed in 

figure 25. The series exhibits oscillating behaviour, varying between approx­

imately -70 and approximately 0, in a periodic manner.

The climatology was then constructed using the learning set and N b in s  =  

128 values bins, where the bins range from the minimum to the maximum 

vales observed in the leaning set (as in all other previous experiments). The

resulting climatology is displayed in figure 26.
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F ig u r e  25. Threshold Autoregressive process order 3 

(TAR3), x  axis indicate time in generated data points and y 

axis is value.
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F igure 26. Numerically computed climatology of TAR3 

constructed using 128 equally sized bins ranging between the 

max and the min values of the observed 729000 generated 

data points.

5.2. In itia lisa tion  of ensem bles. Next L = 200 uniformly distributed 

locations on the length of the attractor (where a =  1, b = 729000, equation 

27) are chosen and perturbed.



F i g u r e  27. Perturbed initial conditions (blue) and their lo­

cations on the TAR3 time series (red) that has been gener­

ated using normally distributed noise with s.d. =  0.519615.

The observed behaviour of the ensembles is very different to those of the 

chaotic systems. In the TAR(3) time-series, the predictability of ensemble 

forecasts do not vary much in different locations, and each ensemble exhibits 

similar spread. The general behaviour of the ensemble is that the spread 

increases with time. Figure 28 displays three examples of ensemble forecasts 

obtained as a direct result of a perturbation of the initial conditions, in three 

different locations on the learning set.

As a result of ensembles being more steady in their behaviour, where 

general increase in the ensemble spread is observed, the values of a1 and 

should be much more smooth without jumps.

5.3. P a ra m e te r  surface for th e  T hresho ld  A utoregressive P ro ­

cess using ignorance skill score and  i t ’s m inim a. Indeed, when we 

consider the estimated parameters a1 and er^, figures 29 and 30 respectively, 

we can observe that the values of the parameters do not exhibit jumps. More
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F ig u r e  28. Examples of generated ensembles (blue), where 

different realisations of the random component of TAR3 has 

been used for each ensemble member, together with the ver­

ification (red) generated from perturbed initial conditions at 

given locations, x  axis- lead time and y axis value.

than that, the values of a 1 decrease at a relatively steady rate after 600 data 

points.

cr^ also increases steadily, but more steadily in the beginning, and then

more steady at the level of 10, or approximately 13% of the spread between

max and mean of the generated series. Interestingly, the observed values

of aln exceed twice the value of the perturbation noise that has been used.
m
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F ig u r e  29. The blending parameter a1 obtained for TAR3.

This is consistent as the process contains more randomness and less structure 

than the chaotic systems, therefore larger levels of cr^ are expected.
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F ig u r e  30. The kernel dressing parameter cr  ̂ obtained for TAR3.

5.4. A naly tical p robab ility  forecast verses th e  num erical ap­

p rox im ated  forecasts. Finally the combined probability forecasts of the 

TAR3 time series is produced, by perturbing an out of sample point of the

series with the same level of perturbation noise as used in the estimation
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of a 1 and cr^, i.e. a^ = 0.057735. An ensemble forecast is then generated, 

and is shown in figure 31. It can be observed that the ensemble forecasts 

increase in spread steadily as the lead time increases.

400

300

(TAR da ta  
points)

-2 5 -20 10

F igure 31. Ensemble forecast of TAR3 used in the con­

struction of final probability forecast.

The resulting probability forecasts, computed using the estimated a 1 and 

together with the ensemble forecasts and the predetermined climatology, 

is shown on figure 32.

As expected the prediction given for TAR(3) is much more vague in 

its nature, compared to the ensemble prediction that was produced in the 

chaotic systems study. It is evident that even for a very short lead time the 

uncertainty in the forecast is huge.

Finally lets compare the numerically obtained prediction with the ana­

lytically computed one. We can calculate the analytical probability density 

function of the one, two and three day forward forecast. As the TAR3 pro­

cess, defined in equation 44 contains a normally distributed random compo­

nent, the forecasting pdf is also in the form of a normal distribution. The
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F ig u r e  32. Final probability forecast issued for the time 

series of the TAR3 process, where x  axis indicate the value 

of the series and y  axis is lead time.

mean an<  ̂ variance &TAR3 ° f  the forecasting pdf for one d =  1, two

d =  2 and three d =  3 day forward forecast of the TAR3 time series are 

presented in equations 45, 46 and 47 respectively.

Mtor3 — Ci +  a\Xt +  b\Xt- \  +  C\Xt - 2',

(45) a tar3 ~  5

^tar3 ~  C'l (1 +  Oi) +  (a? +  &i) Xt + 

4 - ( a \ b \  +  C \)  x t - \  +  a l c i X t - 2 ', 

(46) vLr3 = (! + a?);
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t^TARS — (l +  a i +  a i +  &i) +  x t (cif 4- 2ai&i +  ci) +

+  ( M i  +  a ic i  +  6?) x t - i  +  (a 2c i +  61 c i )  x t~2]

(47) otarz =  ^  ( l  +  a i +  (a i +  ^1) )  ;

These forward probability forecasts are presented in figure 33, in red, 

together with the numerically obtained combined forecasts, in blue.
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F igure 33. Comparison of the analytical one, two and three 

day forward probability forecasts (red) with the numerically 

obtained combinational forecasts (blue).

It can be seen that the numerical distributions are skewed compared 

to the analytical ones. As time increases the numerical pdfs become more 

normal in their shape. The skewness can be corrected by increasing the 

number of the ensemble members.

5.5. C onclusions of th e  experim en t. It has been observed that in

the case of chaotic systems, if the variance of the perturbation noise is

smaller than the variance of the observational noise, the levels of cr1 remain
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close to the size of the perturbation noise. When the verification is outside 

the ensemble a 1 drops in value, but because the ensemble splits (when some 

of the members go to a different wing of the attractor), and hence some 

of the ensemble members still capture the move in the verification data, a 1 

does not drop significantly. When ensemble members recombine the value 

of a 1 jumps back to one. Even after 7.0 Lorenz seconds, the model has a lot 

of skill.

As the size of the perturbation noise increases the value of a 1 drops to 

lower levels, but the general behavioral patterns of alpha remain. It can 

also be seen that the return to one happens much less frequently. For larger 

perturbation noise a* is also on average larger. More than that, when the 

size of the perturbation is doubled, the level of a 1 on average doubles as 

well, and again grows with time. The level of a 1 is lower than the variance 

of the perturbation noise.

In terms of ensemble size, the smaller the ensemble, the smaller the 

average levels of a 4, at a given time. This is because a* is sensitive to 

whether the verification points are contained within the ensemble spread 

(between the minimum and the maximum values of the ensemble members 

on a given day). Again, a1 increases as the ensemble size reduces. Doubling 

the ensemble size reduces a1 (on average) by half for a given lead time. 

Finally, when the Moore-Spiegel experiment was run for much longer times, 

it was observed that a 1 becomes more volatile with time, a1 remained very 

stable, and very small.



W ith the random process, the level of sigma is much larger, as expected 

, due to the nature of the system. But the overall behavior of cr1 is very 

stable, a 1 is also rather stable and remains at one for much shorter time, 

compared to the chaotic examples.

As mentioned previously, the optimisation of a 1 and a 1 was done simul­

taneously. It would be interesting to investigate how the behavior of both 

change when this optimisation is performed independently.
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CHAPTER 5

ERAP: chaos, synthetic weather and real weather

data.

1. O verview

In this chapter a new weather generator is presented. Based on Random 

Analog Prediction [50], Ensemble Random Analog Predictions (ERAP) gen­

erates a collection of synthetic time-series, consistent with both the historical 

distribution and the short range (non-linear) dynamics of observations.

One of the goals of this thesis is to apply synthetic weather data, pro­

duced by a weather generator and in particular Random Analog Prediction 

(ERAP), to price weather derivatives (chapter 6). In general, whether the 

interest lies in pricing weather derivatives in different areas of finance and 

risk management, or perhaps in different application areas such as logistics, 

health, tourism, transport etc, estimates for the occurrence of various types 

of weather over a time period are required. Traditional statistical methods 

which use linear models are typically ineffective in estimating this informa­

tion from limited observations. The ERAP approach constructs synthetic 

data for both non-linear processes as well as linear processes. If the model 

class is known to be linear (that is, if the unknown process that generated 

the data is known to be a linear process), well established linear techniques 

would probably outperform the ERAP approach. Both data analysis and
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physical intuition suggest that the weather process of interest is not linear 

(chapter 2).

In order to assess the performance of the ERAP approach, in the sec­

ond part of this chapter the statistics of the generated synthetic data are 

compared to the statistics of the input data. Testing the ERAP method 

on data sets of varying lengths and varying characteristics, generated by 

known non-linear processes with well understood characteristics, allows us 

to conduct a controlled assessment of the method. Two non-linear processes 

have been chosen to test ERAP, including: the weather like non-linear pro­

cess generated in chapter 3 and the Lorenz data (see chapter 4) with added 

seasonality in a form of a sine wave. Finally ERAP is applied to the real 

weather data set, described in chapter 3, to produce synthetic weather data.

The terminology used in this chapter is defined in table 1.

2. T he  E R A P  m echanism .

The ERAP approach can be though of as a dynamic re-sampling tech­

nique. In particular, the method is structured by finding similar patterns 

to the present state in the observed data. ERAP works on multiple time 

scales, in particular it identifies similar patterns both the shorter and longer 

time scales. The idea behind this is that once the long term similar patterns 

are identified, short term similar patterns are chosen from those long term 

ones. This multi-scale pattern search does not have to be limited to two 

time scales. Depending on the data set, a multi-scale approach could be 

adopted.

1 2 0



ERAP - Ensemble Random Analog 

Prediction

Ensemble Random Analog Prediction is 

the approach based upon the Random 

Analog Prediction (or RAP, see 

L.A. Smith 1997) that has been 

extended to the ensemble mode.

synthetic data Data produced by ERAP method.

system System is an assemblage of inter-related 

elements comprising a unified whole, 

and in this document is described by 

a mathematical model.

robustness Robustness in this document is referred 

to, in some sense, consistency of the 

statistical estimations.

perfect model scenario Controlled experiment, where a data used 

has been generated from a chosen system 

with known characteristics.

learning set A learning set is data that

serves as an input into the ERAP method.

‘true’ statistic statistic of the system

true PDF An invariant measure of the system

In this section the step by step algorithm of the ERAP technique is

described. Parameter definitions are given in table 2.
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switch of

the Lorenz system

The switch occurs when points switch 

from one wing of the Lorenz attractor 

to another.

number of consecutive 

decreasing /  increasing days

Each set of the consecutive increasing 

or decreasing days is considered 

as a unique set, i.e. the number of days 

in a set is counted only once. For 

example, if a set contains 5 points, the 

number of 5 consecutive days is recorded 

once and the number of 4,3,2 consecutive 

days are not calculated from this set.

Value At Risk (VAR) Value at Risk is defined 

to be a value V, such that all the observed 

values only go above(below) that point 

a p% of the time.

Table  1. Glossary of terminology and definitions.

Consider a given time series {s*} where i = 1 . . .  N . Before the method 

is applied to the chosen time series, a size for the Learning Set Ni is chosen, 

where Learning Set is defined to be the set of data which will be used as an 

input into the model.

(1) First stage of the method is to arrange the time-series into a time

delay space [27] of a chosen size, as shown in equation 48.
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Si An observation in a chosen time series.

N The number of points in a chosen time series.

N t Length of the learning set.

T0 The last observation in the learning set.

TR'long Space delay parameter:size of the window length for the 

long term scale.

short Size of the window length for the short term scale.

Rang Time delay parameter- long time scale.

Tshort Time delay parameter- short time scale.

Cl A number that defines first constraint of the 

Relevant se t

X The delay matrix of the chosen time series.

mreducedJong Number of components in the reduced space.

'W'reduced^short Number of components in the reduced space.

Ajlong
Neighbours Number of nearest neighbours for the 

long term scale.

T\rshort
Neighbours Parameter of ERAP: number of nearest 

neighbours for the short term scale.

M  CLXextention The maximum number of points by which data can 

be extended at each iteration.

ZUj Weight assigned to each short term neighbour.

\
S r + 1  ® 2 r + l  • • • s miong

s 2 t + 1    S m i o n g + T

: !23: .. :

........................................  SNi y

(48) X  =

si

^T+l



T

&iteration

Delay parameter.

The number of points of synthetic data constructed at 

each iteration.

M i n extenti0n Minimum number of days by which data is extended 

on each iteration

M  dX extention Minimum number of days by which data is extended 

on each iteration

A, A singular value

C The transformation matrix of SVD
T a b l e  2. The definitions of the parameters of the ERAP algorithm.

where r  is the delay parameter and rriiong is size of the long time- 

scale window (see table 2 for parameter definitions).

(2) Let the i th  row of the X  matrix be denoted as X{, such that:

(^ 9 )  x i { s (i—l) r+ l>  s ir+ l>  s ( i+ l) r+ l>  • • • > s {i—l)T+m jonff }

The technique works by finding similar patterns among it the 

X{ to the current state x*. On the first iteration x* will be the 

last miong data points of the learning set and To will be the last 

component of the x* (To = s n ). A t every iteration of the method 

x* is shifted such that newly generated data points are included in 

the new x*.

(3) In order to make the search for the closest patterns more targeted, 

the rows of X  are filtered, which means that every point in the 

constructed Rmjon9 space is filtered, and only the points that satisfy
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a set of criteria will form the ‘Relevant Set ’ from which the closest 

patterns are chosen. The first criterion is that Xi belongs to the 

‘Relevant Set ’ only if its last component is within plus or minus £1 

of To. Such points are identified at this stage and their indices are 

recorded.

(4) The next part of the method attempts to reduce the dimentions 

of X  using to remove the predominantly noise influenced compo­

nents. With SVD any matrix X  can be represented as shown in 

the equation 50.

X  = UT,VT

Where: U is a matrix containing Left Singular Vectors; S is a 

diagonal matrix containing singular values and V  is a matrix con­

taining Right Singular Vectors. The Singular vectors contained in 

U are found by taking the eigenvectors of X X T, and the singular 

vectors contained in V  axe found by computing the eigenvectors 

of X TX.  V  plays the role of a transformation matrix, which al­

lows us to represent the matrix X  in an orthogonal representation, 

where basis vectors are given by Singular Vectors. The singular vec­

tors represent directions of maximum variance stretch; and singular 

values the amount by which that particular direction is stretched. 

SVD can be applied to any matrix. Furthermore, a ‘cheap’ SVD can 

be achieved by applying the decomposition to X TX .  As we only 

need V T for further work we can show that applying SVD to X TX



can produce desired V T. In particular, given the decomposition of 

X  defined in equation 50, then:

(51)

(5) Talcing the dot product of X  with only the first m redUCedJong num­

ber of rows of V, projects X  into the lower dimensional space 

Orthogonal9 > a^ows us t°  reduce the dimensionality and as a result 

the noise dominated components.

(6) In order to avoid running out of data points while constructing fu­

ture trajectories, a further restriction is applied to exclude certain 

rows of X  from the ’Relevant Set’ reducing it even further. The 

rows excluded are: x Nl-m long+i-Maxextenuon • • - x Nl-m long+i, where 

M axextention is the maximum number of points that can be gener­

ated at each iteration.

(7) The next step is to find N l™?ghbcmrs ‘closest’ points in

to x* from the set of X{. These nearest neighbours’ are chosen 

from the Relevant Set only ( the Relevant Set defined in 3rd and 

6th steps of the method). Euclidian distance is used to define the 

closeness.
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(8) Once the closest long time scale neighbours axe found their indices 

axe recorded. The ’Relevant Se t’ used in the next steps, only con­

tains those points which are the closest neighbours to x* in the 

long-term analysis. For example, further analysis will only be con­

ducted within the correct season.

(9) Many time series, a specially weather data exhibit long and short 

term behavioural patterns. In order to capture short term be­

haviour, once the nearest neighbours have been found, and the in­

formation concerning their location in ^orthogonal îas been recorded, 

nearest neighbours for the short time period are also found. This 

is achieved by first constructing the m short dimensional time delay 

space from the Learning Set, as given in equation 52.

(52)

t

X S h o rt  —

^ r + 1  & 2 t + 1

®r+l ®2r+l

\

\
m s h o r t

s m g h o r  t + T

SN,

x* now will contain m short number of elements.

(10) Singular Value Decomposition is again applied, in order to reduce 

dimension.
m r e d u c e d

(11) X short  is then transformed into the R orthogonal sPace defined by 

the short term singular vectors. Again this is achieved by taking a 

dot product of the new X short with the first ^reduced components 

of new V.
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m r c  a u c e u  ,

(12) In the ^Orthogonal SPaCe w e  f i n d  t h e  N Ne%hb<mrs c l o S e s t  neighbours, 

as before, by calculating, Euclidian distances between x* and the 

rest of the points in the adjusted ’Relevant Se t’.

(13) Once the set of short-time nearest neighbours have been chosen, one 

nearest neighbour is picked at random with an assigned probability, 

given by equation 53, that is inverse proportional to the distance 

from the x*.

{vjj /  distancej) =  1

Where Wj is the weight of a particular short term nearest neigh­

bour j .

We select a iteration> which represents by how many points data will 

be extended on this particular iteration, at random from the pre­

determined range, 3? =  \M in extenticm • • • M a x extention], where each 

extension length is an integer, and is equally likely.

Then, the future trajectory of x* is constructed using the future 

trajectory of the nearest neighbour, as in the equation 54.

rp.  ̂  rpN eighbour  pN eighbour  _j_ p

where j  =  0 . . .  a ite ra tio n ' T ^ et9hbour is the last component in 

the chosen closest neighbour vector and rp ^ et9hbour -1S j th  com _ 

ponent of the future trajectory of the nearest neighbour. In other 

words, the one day forward ‘prediction’ is defined by the sum of the

(53)

(14)

(15)



last known data point and the first forward difference of the future 

trajectory of the nearest neighbours.

(16) The above procedure is repeated to generate a time series that 

constructs one member of the synthetic data ensemble. Finally, 

we repeat the steps, starting with the same learning set and the 

same parameters, to generate different realisations, producing an 

ensemble of synthetic weather data.

2.1. P a ra m e te rs  in  m ore  d ep th . In this section some brief reasoning 

and intuition behind the initial choice of parameters is presented. Addition­

ally a parameter calibration methodology is proposed, but this methodology 

was not implemented in this thesis. First let’s consider what influence each 

parameter has on the generated ensemble.

• The size of the learning set N f

The size of the learning set would depend upon the total amount 

of data available. A sufficient amount of data must be allocated for 

out of sample performance assessment. Additionally the size of the 

learning set must be large enough to capture long term patterns. 

As for any time series analysis techniques, ERAP heavily relies on 

the amount of data available in a learning set and the general rule 

remains, the more data available the better.

• The size of the Reduced dimension for the long term miongreduced'-

This parameter allows us to reduce the ‘numerical cost’ of search­

ing for nearest neighbours, by only searching using the least noise 

affected components. This parameter was chosen by adding noise



to the original time series and then arranging it into the same size 

delay space as the original time series. Then Singular Value De­

composition is performed. Singular values which are least affected 

by the added noise give an indication to the extent that the size of 

the dimension can be reduced.

• The size of the Reduced dimension for the short term m short.reduced''

As for the long term case Singular Value Decomposition is per­

formed on both the noisy learning set and the original after they 

have been arranged into the delay space using m short • Singular 

values which are least affected by the added noise determine the 

size of the reduced dimension.

•  Number of long term neighbours N l̂ f ghb(mrs\

This parameter defines the size of the set, that contains neigh­

bours exhibiting similar long-term behaviour to the present state. 

The size of the set has to be large enough to permit ’freedom of 

choice’ but on the other hand it will serve as a filter, so further 

analysis will be based only on relevant information. Generally it 

will depend on the size of the data set, the magnitude of the delay 

parameter and the clustering of points in delay space.

•  Number of the short-term neighbours ^Neighbour s-

In order to determine the size of the N ^ l°[ghb(mrs parameter, 

a Talagrand Diagram [55] has been used. In particular, proce­

dure of ERAP has been slightly altered by proceeding through the 

method until step 13. At this stage instead of choosing the size of
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the extension of the time series at random from the chosen range: 

M i n exten tion  • • • M a x exten tio m  a  predetermined fixed size extension 

will be used on every iteration, for every ensemble member. This re­

sults in an equal number of one-day, two-day, three-day, etc forward 

ensembles in the constructed synthetic data. This construction of 

the synthetic data allows us to assess the quality of the one-day 

forward, two-day forward etc, frequency distribution, produced by 

ensembles with a chosen N $^ghboura parameter. The size of the 

fixed extension used for this exercise is equal to 9 days.

After completing the construction of the synthetic data with a 

fixed extension size, a Talagrand Diagram can be assembled. First 

only the one-day forward ensemble of realisations is considered. 

The realisations are arranged into increasing order. Then bound­

aries of the Talagrand bins which are determined by the predictions 

themselves, are established. In particular: Binl: (—0 0 ; Ti) ; Bin 2: 

[Ti; T2 ) ; Bin 3: [T2 ; T3 ), • • •, Bin 33: [T32 ; 0 0 ) on a given simulation 

day. T\ is the smallest (for the weather data coldest) realisation T2 

is the second smallest, and so on. This allocation of the bin size 

is produced for each one-day forward ensemble. Then for each one 

day ahead forecast the actual temperature is recorded in relation 

to the pre-defined bins. In particular, we see which bin the actual 

observation falls. This is conducted for all one day ahead forecasts. 

So we get a frequency diagram. This is repeated for all days ahead. 

So for each day ahead we a Talagrand Diagram.
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Ideally, the Talagrand diagram will be flat, which will indicate 

that the distribution of the real data was sampled well with a cho­

sen number of scenarios in the ensemble. The bins are chosen to 

ensure that there ought to be an equal probability of a measurement 

falling into each bin. If the diagram is not flat, then the probability 

distribution implied by the ensemble is not well represented.

Once the Talagrand diagram has been constructed forecast day 

ahead the deviations from the mean bin level are computed by de­

riving the T as shown in the equation 55. When T =  0 a histogram 

is flat:

t  = X > - m t )2
i

Where b{ is the number of observations in ith bin and fiT is the 

mean bin level, which is defined as the average number of points in

v* T  otal m umber o  bs
Nbins

If the number of points in the outside bins is considerably large, 

^Neighbours could be increased, as one of the reasons for overcrowd­

ing of the outside bins might be the small size of the ensemble, 

resulting in missing a large proportion of the tails of the real data’s 

distribution. If, on the other hand, too many points are concen­

trated in the middle bins of a histogram Nj^?rgthbours could be re­

duced, as one of the reasons could be that the range of values 

produced by the ensemble is too large.

•  First restriction in construction of the ‘Relevant Set’ £i:



This is the first restriction which is applied to the Learning 

Set, after it has been arranged into the time delay space. In order 

to make the search more targeted, only rows X{ of the matrix X  

the last component of which is within plus or minus Cl degrees 

of To will be considered as candidates for the closest neighbours. 

The value of this parameter can be determined by considering the 

difference between the observed maximum and minimum values in 

the learning set, and choosing £i such that the search for the nearest 

neighbours is conducted only within, say, 1 0 % (with respect to the 

size of the of the difference between max and min values observed 

in the learning set), of To.

There could be other restrictions that allow us to construct 

a more targeted search for the nearest neighbours, such as phase 

control of the nearest neighbours. For example, the neighbours can 

be forced to be chosen from similar times of the year, However, 

it is important to allow the method to have enough freedom to 

choose nearest neighbours, especially for the long term phase of 

the procedure, from ‘out of character’ locations. For example, a 

given April can be more like February or sometimes like May. The 

phase control restriction must allow such choice.

• Finally we discuss methods that can be used to determine: Long­

term Lag - miong, Short-term lag - mshort’ The maximum and 

minimum number of days in the forward trajectory - M i n ext ention  

and MaXextention• The choice of miong is driven by the desire to
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capture the most dominant long term pattern present in time series, 

such as seasonality (for weather data). Parameter m short captures 

short-term behaviour of the system. As for the long term lag, the 

initial choice is currently based on intuition and nature of the time 

series. M i n exten tion  a n d  M a x exten tion  are parameters that deter­

mine the size of the chunks of the historical data that make up 

generated synthetic data at each iteration. Choosing the value of 

the M i r i exten tion  parameter too small would prevent capturing of 

the behaviour of the real weather variables trajectory, and choosing 

the value of the M a x ext ention  parameter too large will result in a 

poor quality of the synthetic weather data. These four parameters 

could be optimised by minimising Ignorance Skill Score [45] (de­

scribed in chapter 4), where all the other parameter of the ERAP 

method are fixed. This optimisation is not conducted in this thesis.

3. T esting  E R A P : E xperim ented D esign in  th e  p e rfec t m odel

scenario.

This section describes the experiment that has been carried out on syn­

thetic data generated by the ERAP method. The main goal of the ex­

periment is to strengthen the argument that the data generated by ERAP 

provides better estimates for the ‘true statistics of the underlying system, 

compared to the statistics calculated from a limited data set of that sys­

tem. Additionally, it can be determined how well ERAP can quantify the 

uncertainty in estimates of statistics compared to limited observations.
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The experiment is conducted on two constructed data sets: Lorenz 

(chapter 4) and ‘weather-like’ data (chapter 3). In this case, Lorenz data 

is the output of the Lorenz system’s ([44]) x  component that has been su­

perimposed onto a sine wave. The sine wave has been added so that yearly 

periodicity and seasonality characteristics of temperature data are present 

to some extent 1. Finally the ERAP approach is applied to the Berlin data 

described in chapter 3, to produce an ensemble that is later used in chapter 

6  to price a weather derivative.

The experiment is constructed as follows:

(1) Generate experimental data that includes the actual (sometimes 

refereed to as the ‘tru th ’ or verification) and also the learning set. 

The number of points generated is referred to Nactuai ■

(2) Determine the parameters of ERAP in order to generate synthetic 

data using the chosen learning set, where the number of points in 

the learning set is defined as iV).

(3) Generate ERAP ensembles using chosen learning sets. Different 

sizes of learning set are used in the case of ‘weather-like’ process.

(4) Calculate and compare traditional statistics, including frequency 

distributions and distributions of moments of the ERAP ensemble 

to actual frequency distribution and moment (frequency distribu­

tion and moments computed using the entire data set with N actuai

•^Seasonality not only manifests itself in the rise and fall in the summers and winter. 

There are other characteristics such as seasonal daily fluctuations etc., that will not be 

represented by just a sine wave.
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points) and also the frequency distribution and moments of the 

learning set (computed using Ni data points).

(5) Calculate and compare the distribution for the number of consecu­

tive 2,3,4. . .6  cold/warm days of the ERAP ensemble to actual and 

learning sets based distributions of consecutive days, (consecutive 

cold/warm days are defined as monotonically decreasing/increasing 

days in the data).

(6 ) Calculate and compare distributions of number of freezing days for 

all data sets.

(7) For the Lorenz data, calculate and compare the proportion of switches 

(refer to table 1 for the definition of switches) for the learning set 

and the actual data, and the distributions of switches for the ERAP 

ensemble data.

(8 ) Compute and compare relative frequencies of lower and higher ex­

treme values again based on the ERAP ensemble, the learning set 

and the actual data.

(9) Calculate and compare the percentiles for all data sets.

4. Controlled experim ent: weather-like data.

8,000 years of weather-like data was generated as described in chapter 4.

The statistic of these 8,000 years is considered to be the ‘tru th ’. We consider

two sizes of learning set: 1 ,0 0 0  and 1 0 0  generated years, where each year

consists of 365 data points. These two learning sets are used to generate

ERAP ensembles that are then compared, in terms of statistic calculated
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from the ensembles, to the ‘tru th ’ and also to the statistics computed from 

the learning sets.

4.1. E R A P  p a ra m e te rs  for th e  w eather-like  process. As men­

tioned previously the parameters of ERAP that have been used in all the 

controlled experiments are initial choices that could be further optimised, as 

proposed in section 2.1. In this chapter we present an illustration of some of 

the concepts described in section 2.1, in order to demonstrate the reasoning 

behind the initial parameter choice. All the presented figures in this section 

were produced using the 1000 years learning set, the results for the 100 years 

learning set were very similar.

The weather-like data has many characteristics of real weather data (by 

construction). Hence miong (size of the long term window) and m short (size 

of the short term window) might reflect season and a particular week for 

example. That is to say, that one wishes to determine a similar season in 

the past data and then from that choice of similar season, one wants to 

pick the most similar week to the weeks immediately prior to the point of 

forecast.

First, the delay matrix X  is constructed from the learning set and then 

SVD is performed. Singular values for both long and short term are given 

in figure 1 and 2 respectively.

Similarly, long and short term singular vectors are shown in figures 3 

and 4 respectively.

In order to determine the nearest neighbours, the Talagrand diagram 

has been used as proposed in section 2.1. Here we present one day ahead,
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In d e x  o f  th e  s in g u la r  v a lu e

F ig u r e  1. Singular values derived for th e  long term  case

constructed using 1000 years of the learning set of the

weather-like process.

Singular Values for short period for the Test W eather DatalO
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In d e x  o f  t h e  s in g u la r  v a l u e s

F igure 2. Singular values derived for the short term case

constructed using 1000 years of the learning set of the

weather-like process.

five day ahead and nine day ahead simulation based Talagrand diagrams in

figures 5, 6 and 7 respectively.

Lets summarise the parameter values that were chosen for the ERAP

generator applied to the weather-like process:



First

I

F igure 3. First Four Singular Vectors of the Weather-like 

Data, derived for the long term case.

F igure 4. First Four Singular Vectors of the Test Weather 

Data, derived for the short term case.

Note that in this case we used both: the value restricting parameter Cl 

and the phase control parameter that allowed us to conduct a more targeted 

search. This results in a stable ensemble of synthetic data.

4.2. E R A P  ensem ble for the  w eather-like process. Once all the 

parameters had been chosen, the ERAP weather generator was run. The re­

sulting synthetic test weather-like data is presented in figure 8. In particular,
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F igure 5. Talagrand Diagram for the One Day forward sim­

ulations for the Test weather data. Horizontal magenta line 

indicates the sampled mean of the histogram

..iillnlllillii.
F igure 6. Talagrand Diagram for the Five Day forward sim­

ulations for the Test weather data. Horizontal magenta line 

indicates the sampled mean of the histogram

F igure 7. Talagrand Diagram for the Nine Day forward 

simulations for the Test weather data. Horizontal magenta 

line indicates the sampled mean of the histogram

the first two rows (blue) illustrate individual ensemble members generated 

by the ERAP approach using 1,000 years as a learning set. Two samples of 

the verification data are illustrated in the third row in red.
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&iterations 100

Size-o f -ensemble 100

seed 69

phase-control -parameter 5

T a b l e  3. Parameters of ERAP for the Weather-like process experiment.

The whole ERAP ensemble for the weather-like process is shown in figure 

9. The ensemble generated by the ERAP approach (blue) using 1000 years 

of the weather-like data as a learning set, the corresponding verification is 

shown in red.

4.3. C om paring  s ta tis tic : w eather-like process experim en t. In

the case of the controlled experiments, one knows the true statistic. In

particular for the weather-like system, the true statistic is approximated by
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F igure 8. First two rows (blue) illustrate individual ensem­

ble members generated by the implemented ERAP approach 

using 1,000 years as a learning set, two samples of the verifi­

cation data are illustrated in the third row in red.

G en era ted  T est W eath er D ata ERA P E nsem ble  an d  Actual

F igure 9. Ensemble generated by the ERAP approach 

(blue) for the learning set consisting of 1,000 years of the 

weather-like data. The verification is shown in red.

the 8000 years of weather-like data. 8000 years of the generated weather­

like data will contain all the patterns that the process contains (please refer 

to section 3 for the details of the weather-like process). Each statistical
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measurement in this section is therefore computed for the 8,000 years of the 

weather-like data ( referred to as the ‘tru th ’, verification or the actual); two 

learning sets (1,000 years and 100 years of data); and the ERAP ensembles 

that resulted from these two learning sets. The ERAP based statistic is 

always presented in the form of a frequency histogram, where the bins are 

populated by the statistical measurements computed from each ensemble 

member.

We follow the steps of the experimental design outlined in section 3 in 

order to identify whether ERAP generated synthetic data is consistent with 

the learning set, and how well it represents the true statistics of the chosen 

system.

First we consider the 1st four moments [48]. The first moment is pre­

sented in figure 10. The mean of each ensemble was computed and then 

arranged into a relative frequency histogram which is given in blue on the 

plot. The mean of the learning set, which in this case contained 1000 years 

of data, is computed and presented in green. Finally we also compute the 

‘true’ mean.

It can be seen that the first moment of the learning set and the actual 

first moment (the ‘true’ mean) are both well represented, and both the 

learning set mean and the actual mean fall into the maximum probability 

bin. The distribution of the mean based on ERAP synthetic data appear 

to be skewed. We also observe that the leaning set mean is identical to the 

actual mean, which tells us that the learning set is large enough to capture 

precisely the first moment statistic.
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F igure 10. Comparison of the distribution of the first mo­

ment of the ERAP ensemble (blue) to the first moment com­

puted from the 1000 years of the learning set (green) and the 

actual data based mean (red).

Now lets consider the standard deviation statistic, figure 11, where again 

synthetic ERAP data produces a distribution for the standard deviation 

(presented in blue), which is then compared to the actual s.d (red) and the 

learning set based s.d (green). This is a very important statistic for hedging 

weather risk, and in particular weather derivative valuation (see chapter 6 

for more details on how variance is used in the process of weather derivative 

pricing).

It is evident that the learning set and the actual standard deviation are

almost identical, and so again the learning set of 1000 years represented

the ‘true’ standard deviation well. As a result, we expect the ERAP based

standard deviation to be consistent with the true standard deviation. It

is evident that this is the case, as the learning set standard deviation and
144
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F i g u r e  11. Comparison of the distribution of the standard 

deviation of the ERAP ensemble (blue) to the s.d computed 

from the 1000 years of the learning set (green) and the actual 

data based (red).

the actual standard deviation fall into the maximum probability bin of the 

synthetic standard deviation distribution.

Figure 12 illustrates the third moment of the synthetic ERAP data, 

presented in the form of relative frequency, together with the actual and the 

learning set third moments.

Both, the learning set and the actual skewness have small negative val­

ues, which is consistent with the synthetic skewness histogram which has 

most of its probability weighting allocated to the negative values. The actual 

and the learning set statistics are on the edge of the maximum probability 

bin. Again the learning set well represents the true skewness of the process.

Figure 13 demonstrates the synthetic distribution of the fourth moment 

(in blue), the fourth moment computed from the learning set that contains

1000 years of data (in green) and the actual 4th moment (red). As with the
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F i g u r e  12. Comparison of the distribution of the third mo­

ment of the ERAP ensemble (blue) and the third moment 

computed from the 1000 years of the learning set (green) 

and the ‘true’ third moment (red).

Fourth Moment

Bins in Degrees C

F i g u r e  13. Comparison of the distribution of the fourth mo­

ment of the ERAP ensemble (blue) and the fourth moment 

computed from the 1000 years of the learning set (green) and 

the actual data based (red).

other moments, the learning set captures the actual kurtosis and hence the

synthetic data kurtosis distribution is expected to be consistent with the
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true kurtosis. We can see that although the true kurtosis does not fall into 

the maximum probability bin, it is well represented.

Now let’s consider the yearly percentile. For the synthetic ERAP gener­

ated data, we compute daily 95th and 5th percent percentiles, presented in 

blue on figure 14. Then it is compared to the verification data (in red). We 

can see that the verification data goes outside the 5th and 95th isopleths 

approximately 10% of the time.

Yearly Percentiles

150 200
Tim© in D ay s

F igure 14. Comparison of the 95th and 5th isopleths’ daily 

evolution generated by the ERAP ensemble (blue), and the 

actual data (red).

Figure 15 displays the 95th percentile relative frequency distribution

computed from the synthetic ERAP data (blue) which is compared to the

95th percentile of the learning set (green) and the actual 95th isopleth (red).

The relative frequency distribution is constructed by computing the 95th

percentile of all the values observed in each ensemble member. Then all the

ERAP based measurements are arranged into a relative frequency histogram.
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F i g u r e  15. Comparison of the relative frequency of the 

ERAP based yearly percentiles (blue), 1000 years sized learn­

ing set based (green) and the actual yearly percentiles (red).

Similarly, the 5th percentile relative frequency histogram is constructed 

from synthetic data and compared to the actual and the learning set 5th 

percentiles. In both cases: the actual 95th and 5th percentiles are identical 

to the learning set and are well captured by the ERAP synthetic data.

Next we consider the consecutive increasing and decreasing days count, 

which was introduced in section 3. Here we consider the cases of 1,2,..,6 con­

secutive days. The ERAP synthetic data based measurements are presented 

in the form of a relative frequency histogram, after the consecutive increas­

ing/decreasing days count has been conducted for each ensemble member. 

Such relative frequency histograms are presented in figures 17 for consecu­

tive decreasing days and 18 for consecutive increasing days. The plots also 

illustrate the actual consecutive increasing and decreasing day count (red), 

and the count based on the learning set (green), adjusted to take into the

account the number of years in the learning set and the actual. So one
148
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F i g u r e  16. Comparison of the relative frequency of the 

ERAP based 5th % yearly percentile (blue), 1000 years sized 

learning set based (green) and the actual yearly percentiles 

(red).

might think of this statistic as an average per year count. Additionally we 

also present the mean of the synthetic data based count, which is illustrated 

in yellow.

One can see that in the case of 1,2,..., 5 consecutive cold days the learn­

ing set based measurement coincide with the actual count. In this case 

the actual count falls in the area of maximum probability on the synthetic 

data based relative frequencies. For 5 consecutive decreasing days, the ac­

tual count falls in an area where there is no probability weight, however 

the neighbouring bins exhibit the largest relative frequency. This is due to 

the large number of bins chosen to represent that frequency distribution. 

As number of consecutive days is increased, the number of observed occur­

rences decreases, and hence the number of bins in the construction of such 

a histogram should be reduced.
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F igure 17. Comparison of the relative frequency of the 

ERAP based consecutive decreasing days (blue), together 

with the mean on that distribution (yellow), 1000 years sized 

learning set based (green) and the actual consecutive decreas­

ing days count (red).

As the number of consecutive decreasing days being considered increases 

the statistic becomes harder to estimate, due to the rareity of such occur­

rences in all data sets. It can be seen that for 6 consecutive cold days, figure 

17, the mean of the ERAP based distribution (yellow) coincides with the 

actual measurement (red), and the learning set based count (green) is lower 

than the actual and falls into the maximum probability bin. A similar result 

is observed for the consecutive increasing (or ‘warm’) days count, figure 18.

This is another statistical measurement that is important to be able to 

replicate well, especially as the number of consecutive days count increases. 

It is particularly significant, that this measurement is hard to estimate from 

limited historical data. It is encouraging that the ERAP based frequency 

was consistent with the learning set measurement (the learning set count fell
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F igure 18. Comparison of the relative frequency of the 

ERAP based consecutive increasing days (blue) together with 

the mean on that distribution (yellow), 1000 years sized 

learning set based (green) and the actual consecutive decreas­

ing days count (red).

into the maximum probability bin) and that the mean of the ERAP based 

relative frequency distribution coincided with the actual count. This tells 

us that the ERAP synthetic data produces enhanced statistics that are not 

necessarily captured by the learning set.

Next we consider the number of freezing days count, where freezing days

are defined as values below or equal to zero. As with the consecutive days

count, the number of freezing days is counted for each ensemble member.

Then these measurements are arranged into a relative frequency histogram,

see figure 19 in blue. Finally the actual freezing days count and the learning

set based count are compared to the synthetic data based frequency and to

each other. Again, the learning set count well represents the true freezing

days count, both of which fall close to the maximum probability bin. It can
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be seen however, that the ERAP based freezing days count overestimates the 

number of freezing days. This could probably be improved if the parameters 

of the ERAP approach are optimised, as mentioned in section 2.1.

Nu of freezing days

Bins in number of days

F igure 19. Comparison of the relative frequency of the 

ERAP based freezing days count (blue) to the freezing days 

count based on the 1000 years sized learning set (green) and 

the ‘true’ freezing days count (red).

Finally we consider the distributions of extreme low and high values. In 

other words we pay particular attention to the tails of the relative frequency 

distribution. Figures 20 and 21 show the distributions of extreme low and 

high values of the synthetic ensemble data (in blue where all ensemble mem­

bers make one frequency distribution), the learning set (in green) and the 

actual (in red).

Once again, the learning set in this case well represents the measure­

ments of the actual data set. As a result we expect the synthetic data based 

relative frequency distribution to represent the ‘true’ distributions well. It

can be seen that the low and high value distributions are represented well,
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F igure 20. Comparison of the of the ERAP based (blue), 

relative frequency of the low extreme values computed from 

1000 years based learning set (green) and the actual data 

based (red) relative frequency distributions of extreme low 

values.
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F i g u r e  21. Comparison of the of the ERAP based (blue), 

relative frequency of the extreme high values computed from 

1000 years based learning set (green) and the actual data 

based (red) relative frequency distributions of extreme high 

values.
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however there is more probability weight attached to the lower and higher 

values compared to the actual results. In other words the relative frequency 

in the extreme bins is overestimated. This means that ERAP generated 

data has ‘fatter’ tails when compared to the actual distribution.

4.3.1. Comparing ERAP statistics based on 100 years of the learning: 

weather-like process experiment. In this section we reproduce all the parts 

of the experiment but now we use a learning set that contains 100 years. 

In particular, we are interested in how well the learning set represents the 

actual statistics, and how well the synthetic data, generated using such a 

reduced learning set, represents the actual statistics. The colours on all the 

plots are identical to the colours used in the previous experiment. All the 

statistics presented in this section are constructed in the same manner as 

for the 1000 years learning set case.

First we present the four moments on figures 22, 23, 24 and 25 respec­

tively.

It can be seen that the mean of the learning set is almost identical to 

the true mean. The ERAP ensemble based relative frequency of the mean 

overestimates both the true and the learning set’s mean, as the majority 

of the relative frequency is assigned to higher values of the mean by about 

a degree. The actual and the learning set based mean however falls into a 

high relative frequency bin.

In the case of standard deviation statistic the learning set based mea­

surement and the actual measurement are identical. W hat we can see in
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F ig u r e  22. Comparison of the distribution of the first mo­

ment of the ERAP ensemble (blue) to the first moment com­

puted from the 100 years of the learning set (green) and the 

actual data based mean (red).
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F ig u r e  23. Comparison of the distribution of the standard 

deviation of the ERAP ensemble (blue) to the standard devi­

ation computed from the 100 years of the learning set (green) 

and the actual data based (red).

the ERAP synthetic data histogram, is that the standard deviation is over­

estimated, and the majority of the probability weight is assigned to higher
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values of the standard deviation. The relative frequency distribution is dif­

ferent in its characteristic when compared to the relative frequency of the 

standard deviation constructed using a 1000 year learning set. This shows 

that the statistic generated using the ERAP approach is significantly influ­

enced by the size of the learning set. The estimation of standard deviation 

in case of the 100 year learning set could be improved by parameter opti­

misation. The first and second moments are affected by how well long term 

patterns are captured. We know that in the case of 100 year learning set 

some of the long term characteristics of the weather-like process are not well 

captured.

Third Moment

Bins in Degrees C

F i g u r e  24. Comparison of the distribution of the third mo­

ment of the ERAP ensemble (blue) and the third moment 

computed from the 100 years of the learning set (green) and 

the ‘true’ third moment (red).

Actual skewness and kurtosis (figures 24 and 25 respectively) are well 

represented by the learning set and the ERAP synthetic data relative fre­

quency histogram. Again the relative frequency distribution are different
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compared to the distribution obtained using 1000 years of data for the learn­

ing set.

Fourth Moment

Bins in Degrees C

F igure 25. Comparison of the distribution of the fourth mo­

ment of the ERAP ensemble (blue) and the fourth moment 

computed from the 100 years of the learning set (green) and 

the actual data based (red).

Next we consider the relative frequency of all observed values, figure 26, 

where again blue histogram represents statistics computed from the syn­

thetic data (data generated by the ERAP approach constructed using data 

from all ensemble members), green is the learning set and red the actual 

relative frequency histograms.

The shape of all histograms are consistent with each other, in particular, 

the learning set represents the relative frequency of all observed values well 

when compared to the actual data. The synthetic data based histogram 

overestimates frequency in the warmer part of the distribution and slightly

underestimates the frequency in the mid range of values.
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F i g u r e  26. Comparison of the relative frequency distribu­

tion of all observed values in the generated ERAP ensemble 

(blue) to the relative frequency of the learning set (green), 

where learning set contains 100 years and the ‘true’ relative 

frequency.

We also, following the experimental design, examine the yearly per­

centiles (constructed in an identical manner to the 1000 year learning set 

case) and the 5th and 95th percentile histograms of the synthetic data to­

gether with the actual and the learning set measurements are plotted.

The synthetic data based yearly 95th and 5th percentiles (blue) well 

capture the verification data (red), figure 27 where the verification data 

goes outside the 95th and 5th percentile boundaries approximately 10% of 

the time.

Both the actual 95th (figure 28) and the 5th (figure 29) percentiles are 

captured well by the learning set. The actual 95th percentile statistic is 

reproduced better by the synthetic data compared to the 5th, as the actual

95th percentile measurement falls into a higher frequency bin.
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F igure 27. Comparison of the relative frequency of the 

ERAP based yearly percentiles (blue), 100 years learning set 

based (green) and the actual yearly percentiles (red).
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F igure 28. Comparison of the relative frequency of the 

ERAP based 95th % percentile (blue), learning set based in 

green, where learning set contains 100 years and the actual 

95th % percentile (red).

We also consider the consecutive increasing and decreasing days. As

before, as the number of consecutive days increases the observed instances
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F ig u r e  29. Comparison of the relative frequency of the 

ERAP based 5th % percentile (blue), yearly percentiles com­

puted from 100 years based learning set (green) and the ac­

tual 5th % percentiles (red).

decrease. One can see how the size of the learning set affects this statistic 

in the output synthetic data histograms.

Figures 30 and 31 display the consecutive decreasing and consecutive 

increasing statistic respectively. The blue corresponds to the synthetic data 

based relative frequency distribution of the consecutive decreasing/increasing 

days, where the day count was computed for each ensemble member and then 

arranged into a relative frequency histogram. Green represents the consecu­

tive days count based on the 100 year the learning set, red shows the actual 

consecutive days count and finally yellow is the mean of the synthetic data 

consecutive days count.

It is evident that the true one and two consecutive decreasing days statis­

tic is represented well by both the learning set and the synthetic relative

frequency distribution (as the actual measurement falls in to the maximum
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1 Cons Cold Day 2 Cons Cold Days

6 Cons Cold Days

Bins in nu of o ccu rren ces  B ins in nu  of o ccu rren ces

F ig u r e  30. Comparison of the relative frequency of the 

ERAP based consecutive decreasing days (blue), together 

with the mean on that distribution (yellow), learning set that 

contains 100 years based (green) and the actual consecutive 

decreasing days count (red).

probability bin). The actual four consecutive cold days are not represented 

as well by the synthetic relative frequency histogram, as it was with the 

1000 year learning set based synthetic data. For the case of 6 consecu­

tive cold days, the learning set based measurement falls into the maximum 

probability bin of the synthetic relative frequency histogram, but again the 

number of bins must be reduced due to the limited number of occurrences. 

Increasing consecutive days are generally better represented by the synthetic 

relative frequency distribution. Overall we can observe that the 1000 year 

based synthetic data produced more consistent statistics compared to the 

true measurements.

Next we look at the distribution of the number of freezing days, again

an important measurement for the purpose of weather hedging, figure 32.
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F ig u r e  31. Comparison of the relative frequency of the 

ERAP based consecutive increasing days (blue) together with 

the mean on that distribution (yellow), learning set of 100 

years based (green) and the actual consecutive decreasing 

days count (red).

Nu of freezing days

40 50 60
Bins in nu of days

F ig u r e  32. Comparison of the relative frequency of the 

ERAP based freezing days count (blue) to the freezing days 

count based on the learning set that contains 100 years 

(green) and the ‘true’ freezing days count (red).
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The relative frequency histogram of the synthetic data, captures rela­

tively well the actual number of freezing days, where both the actual count 

and the learning set based count fall on the edge of the maximum probabil­

ity bin. The distribution itself is less spread both in terms of the maximum 

and minimum observed values and the standard deviation, when compared 

to the freezing days count generated by data synthetic using a 1000 year 

learning set.

Extreme Low Values

Bins in Degrees C

F i g u r e  33. Comparison of the of the ERAP based (blue), 

learning set consisting of 100 years (green) and the actual 

data based (red) relative frequency distributions of extreme 

low values.

Finally figures 33 and 34 display the frequency distributions of the ex­

treme low and and high values respectively. Again we are considering the 

tails of the distribution in a little more detail. One can see that the 100 

year learning set statistic does not match exactly the actual distribution of 

the extreme low and high values. The synthetic data based distribution in

this case is affected by this, particularly in the case of the extreme high
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values (this is also true for the case of the extreme low values), and the 

relative frequencies obtained through the ERAP generated data are signif­

icantly different to both the actual and the learning set frequencies. This 

could be potentially improved however by parameter optimisation.

Extreme High Values
0.45 |-------------------,-------------------i-------------------»-------------------.--------------------.--------------------,-------------------,---------

0.4 - 

0.35 -

Bins in Degrees C

F igure 34. Comparison of the of the ERAP based (blue), 

learning set (green) and the actual data based (red) relative 

frequency distributions of extreme high values.

4.4. Conclusions of th e  E R A P  controlled  experim ent: w eather­

like da ta . This experiment allowed us to examine how well ERAP based 

synthetic data reproduces the statistics of the learning set and the true 

statistics of the chosen weather-like system. We studied how different sizes 

of learning set affect such statistic estimation.

Overall we could observe that, particularly in the case of the 1000 year

learning set, ERAP based synthetic weather data produced statistics that

were consistent with the learning set statistics and the true statistics of the

system. Furthermore, in some cases (such as 6 consecutive decreasing days)

the synthetic data provided a better estimate when compared to the learning
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set. In the case of such statistics as 6 consecutive decreasing days, where a 

limited learning set does not allow accurate estimation, it is encouraging to 

see that the synthetic data provides an accurate estimate of the truth.

It was also evident from the experiment that when the learning set is 

reduced, the quality of the synthetic data based statistic is affected. It is 

not necessarily, however, affected in a negative way. We observed that the 

freezing day count actually improved as the size of the learning set decreased.

Finally, it is important to note that the experiment was constructed with 

an initial choice for the parameters that were shown to be reasonable using 

the techniques described in section 2.1. These parameter values, however, 

are not optimal. As mentioned in section 2.1 the initial choices of parameters 

can be further optimised. It is not the intention of this thesis however to do 

this at this stage, and the optimisation of ERAP parameters will remain as 

further work.

4.5. Controlled experim ent: Lorenz system . .

In this experiment we test the ERAP approach on the noisy, ‘seasonal’ 

x  component of the Lorenz system [44] (see chapter 4 for details on the 

numerical generation of the noisy Lorenz data). In particular we generate 

Nactual — 348,575 sample points, with a sampling rate of 0.1 Lorenz seconds. 

Then noise is added, such that the noise level is approximately 2% of the 

size of the attractor in the x component direction. The methodology for 

constructing such data together with a description of the additive noise is 

presented in chapter 4. Finally, a sine wave is added to the noisy re-sampled 

x  component data. The sine wave has a period of 365 data points and
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amplitude equal to one. The sine wave has been added with the weather 

data in mind. We also choose the size of the learning set to be Ni = 36,500. 

The resulting data, that is used to test ERAP, is illustrated in figure 35.
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T im e

2 5 0 3 0 0 3 5 0 4 0 0

F ig u r e  35. Zoom into the Lorenz noisy x  component with 

added sine wave.

4.5.1. Choosing parameters of ERAP for the Lorenz experiment. Now 

let’s consider the choice of parameters for the Lorenz experiment. It can be 

seen in figure 35 that the time series have regions where the values oscillate 

rapidly, which corresponds to a location change between the two wings of 

the Lorenz attractor (see picture 1). This is followed by stable, growing 

oscillations, which corresponds to movement on a wing of the Lorenz attrac­

tor. The sine wave shifts the Lorenz x  component series such that the data 

appear to be ‘seasonal’.

In order to determine a reasonable guess for the initial choice of the 

miong and m shorti the following analysis has been applied:

• Examine the first difference for the step before and the step after 

a sign change.
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• Record number of points between sign change. This is the area of 

the attractor where the movement jumps from one wing to another.

• The 90th percentile of these lengths is used as the short-term scale 

parameter.

• Once the length of the short term scale has been determined, we es­

timate the number of points between short-term spikes, and choose 

a large enough percentile of those lengths so that this pattern will 

be well captured.

The number of nearest neighbours (long and short term) and the size 

of the ensemble, were chosen to be the same for all the experiments: the 

Lorenz experiment, the weather-like process experiment and for the actual 

Berlin data. The Talagrand diagram was applied to confirm that the number 

of short term neighbours N f^ ^ hh(mra (and hence the number of the long 

term neighbours, as described in section 2.1) is appropriate for the Lorenz 

experiment. A summary of the parameters that were chosen for the ERAP 

generator for Lorenz data is given in table 4.5.1.

4.6. Lorenz experim en t: com paring  s ta tis tic s . Once the ERAP 

parameters have been chosen for the Lorenz experiment, the ERAP genera­

tor was used to generate a synthetic data ensemble. The resulting synthetic 

data is displayed as individual ensemble members in figure 36, where the 

individual ensemble members are blue and fragments of the actual data axe 

shown in red. In this experiment we also used a phase controlling parameter. 

When the phase of the chosen nearest neighbours is restricted, the resulting 

ERAP ensemble is more stable. This allows us to produce synthetic data
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T 1
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jylong
Neighbours 28

\Tnshort
Neighbours 32

M  CLXextention 27

M  ITlextention 9

&iteration 100

Size - 0  f  -ensemble 100

seed 69

phase-control-parameter 9

T a b l e  4. Parameters of ERAP for the Lorenz experiment.

that extends further in time. In this experiment we generated 7 years of 

synthetic data.

Figure 37 illustrates the complete ERAP synthetic ensemble for the

Lorenz experiment, together with the verification.

In this section the steps of the experimental design are followed, in order

to assess the performance of the ERAP generator. First traditional statistics

are compared. Figure 38 illustrates the frequency distribution of the mean

generated by the ERAP ensemble (blue) together with the mean of the

168



F igure 36. First two rows (blue) illustrate individual en­

sembles generated by the implemented ERAP approach. The 

verification data is displayed in red.

5 0 0  1 0OO 1 5 0 0  2 0 0 0  2 5 0 0
Time

F igure 37. ERAP ensemble produced (blue) using the 

learning set, with the verification, which is given in red.

learning set (green) and the ’true’ mean computed form the actual data 

using Nactuai data points (red dashed line). This plot illustrates where, in 

this distribution the actual mean and the mean of the learning set fall. It 

can be seen that the ERAP based distribution overestimates the value of 

the actual mean, as most of the distribution is observed for higher values of



the mean. It it also evident that the learning set mean is also overestimating 

the actual value.

Distribution of M ean for the ERAP ensem ble

ERAP 
TRUE 955 years 
LEARNING SET0 025

0.005

0 1 2  3
Bins in te rm s of value

F igure 38. Comparison of the relative frequency distribu­

tion of the ERAP based mean (blue) together with the mean 

of the learning set (green) and the actual (red dashed line).

Figure 39 shows the frequency distribution of the standard deviation 

of the ERAP ensemble (blue) together with the standard deviation of the 

learning set (green) and the actual (red dashed line). This plot illustrates 

where, in the ERAP standard deviation frequency distribution, the actual 

standard deviation and the standard deviation based on the learning set 

fall. It can be observed that the ERAP based distribution captures both 

the actual standard deviation and the standard deviation of the learning 

set well, i.e. they both fall in the largest probability bins. It can also be 

observed that the standard deviation of the learning set underestimating the 

actual standard deviation.

Figure 40 demonstrates the relative frequency distribution of the kurtosis

for the ERAP ensemble (blue) together with the kurtosis of the learning set
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x io ’3 Distribution of V ariance for the ERAP ensem ble
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ERAP
TRUE 955 years 
LEARNING SET

F igure 39. Comparison of the relative frequency distribu­

tion of the standard deviation for the ERAP ensemble (blue) 

together with the standard deviation of the learning set 

(green) and the actual data (red dashed line).

(green) and the actual kurtosis (red dashed line). It can be seen that both 

the actual kurtosis, and the kurtosis of the learning set are identical and well 

captured by the distribution based on the ERAP generated data, although 

they do not fall into the largest frequency bin.

Distribution of Kurtosis for the ERAP imbli

F igure 40. Comparison of the relative frequency distribu­

tion of the ERAP ensemble based kurtosis (blue) to the kur­

tosis of the learning set (green) and the actual data based 

kurtosis (red dashed line).
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Finally, figure 41 illustrates skewness. In particular, the frequency distri­

bution of the skewness computed from the ERAP ensemble (blue) together 

with the skewness of the learning set (green) and the actual skewness (dashed 

red line) is shown. Actual skewness and the skewness of the learning set are 

well captured by the ERAP based generated data and are identical to each 

other.

40

Distribution of S kew ness for this ERAP ensem ble

F igure 41. Comparison of the relative frequency distribu­

tion of the ERAP ensemble based skewness (blue) together 

with the skewness of the learning set (green) and the skew­

ness based on the actual data (dashed red line).

Next the climatology, in particular the relative frequency of all observed 

values, is examined. Figure 42 illustrates the climatology of the actual (red), 

learning set (green) and the ERAP ensemble based 5th and 95th isopleths. 

It can be seen that the actual climatology and the climatology of the learning 

set are both close to each other and are captured within 90 % of the ERAP 

based climatology distribution.

We comparing distributions of the proportion of switches from one wing

to another on the attractor. A distribution of the logarithm of base two of
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F i g u r e  42. Climatology of the actual data (red), the learn­

ing set (green) and the ERAP ensemble based 5 and 95 iso- 

pleths. The isopleths were found by calculating climatology 

for each ensemble member.

the relative frequency of the time spend on the ‘negative’ wing of Lorenz 

attractor for the learning set shown in figure 43. It can be observed that 

short stay on the wing is most prominent.

Now lets compare frequency distributions of decreasing/increasing con­

secutive days. The relative frequency distribution of the number of consec­

utive unique decreasing data points for the 5th, 50th and 95th isopleths of 

the ERAP ensemble (blue), the learning set (green stars) and the actual 

(red dashed line) is shown on figure 44.

Similarly the relative frequency distribution of the number of the con­

secutive unique increasing data points for the 5th, 50th and 95th isopleths 

of the ERAP ensemble (blue), the learning set (green stars) and the actual 

(red dashed line) is illustrated on figure 45.
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F i g u r e  43. A  distribution of the logarithm of base two of 

the relative frequency of the time spend on the ‘negative’ 

wing of Lorenz attractor for the learning Set. It can be ob­

served that short stay on the wing is most prominent.
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F i g u r e  44. Relative frequency distribution of the number

of the consecutive unique decreasing data points for the 5th,

50th and 95th isopleths of the ERAP ensemble (blue), the

learning set (green stars) and the actual (red dashed line).

It can be noted that for both, the consecutive decreasing and increasing

days the learning set’s based statistic and the actual are both well captured

by the ERAP produced ensemble.
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F i g u r e  45. Relative frequency distribution of the number 

of the consecutive unique increasing data points for the 5th,

50th and 95th isopleths of the ERAP ensemble (blue), the 

learning set (green stars) and the actual (red dashed line).

4.7. Conclusions of th e  E R A P contro lled  experim ent: Lorenz 

system . As in the case of the weather-like experiment the true statistical 

properties of the Lorenz noisy re-sampled x  component (with added sine 

wave) data is represented well by the synthetic data generated using the 

ERAP approach.

Particularly in the case of standard deviation estimation, it was observed 

that the synthetic data based frequency captured the true standard deviation 

well, and the actual standard deviation fell into the maximum probability 

bin. In that particular case, the learning set standard deviation was signif­

icantly different to the true standard deviation. The percentiles were also 

well represented, both in terms of the relative frequency distribution and 

the actual comparison.
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Again the optimisation of the ERAP parameters for the Lorenz case 

might potentially improve the skill of the synthetic data, and its ability to 

reproduction key statistical measurements.

5. E R A P experim ent on the real w eather data: Berlin m ax daily

tem perature.

In the last section of this chapter synthetic weather data is generated 

for the Berlin daily max temperature using ERAP. The Berlin data that is 

used as a learning set (125 years) has been described in chapter 3. In this 

section the actual observed values of one year that occurred after the last 

point in the leaning set are referred to as the verification or the actual (the 

verification set contains: Ni +  +  365 data points).

The parameters that were chosen for the test weather process were also 

used for real weather data. Example singular values and vectors are pre­

sented in figures 46 and 47 respectively. They confirm that the initial choice 

for r r i i^ g ^  is reasonable, according to the methodology given in section 2.1. 

The other parameters are also examined using the methodology of section 

3.

After the initial choice of parameters had been determined, the ERAP 

synthetic weather generator was applied to simulate the Berlin synthetic 

daily maximum temperatures that are used in chapter 6 to price a weather 

derivative. The resulting ensemble, and the verification is presented in figure 

48.
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F i g u r e  46. Singular Values for the Berlin max temperature 

and singular values for the noise added Berlin max tempera­

ture for the long term signal
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F i g u r e  47. Singular Values for the Berlin Min temperature 

and singular values for the noise added Berlin max Temper­

ature for the short term signal.

It can be seen that the generated ensemble data looks reasonable. In 

order to examine whether the generated synthetic data represents the veri­

fication and the learning set well, we compute all the statistics described in

section 3 following the steps of the experimental design. It is of particular
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F i g u r e  48. ERAP ensemble (blue) and the verification 

(red) for the Berlin data.

interest how the learning set statistics vary when compared to the verifica­

tion data statistics and where the synthetic data statistics provide better 

insight into the characteristics of the Berlin data, beyond the capabilities of 

the learning set alone.

5.1. C om paring  s ta tis tic s  of th e  E R A P  ensem ble w ith  th e  s ta ­

tistics  of th e  h istorical observations - B erlin  daily m axim um  da ta .

First we examine the relative distributions of moments of the synthetic data, 

the moments of the learning set and the moments of the verification. The 

frequency distribution of the moments of the synthetic data, as before, are 

represented in blue in all the plots in this section. The statistical measure­

ments computed from the learning set are presented in green, and finally 

the verification based measurements are given in red.

Figures 49, 50, 51 and 52 show first, second, third and fourth moments 

respectively. In the case of the first moment the learning set overestimates

the mean of the verification by approximately one degree. The distribution
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F i g u r e  49. Comparison of the distribution of the first mo­

ment of the ERAP ensemble (blue) to the first moment of the 

learning set (green) and the verification based mean (red) for 

the Berlin data.

of the mean of the synthetic data, however, the maximum probability bin 

falls between the values of the verification mean and the learning set’s mean. 

In the case of the mean, the synthetic data is both consistent with the 

learning set and offers enhanced statistics, as the mean of the verification 

set is well captured.

In the case of the standard deviation, the learning set standard devia­

tion is not identical to the verification set standard deviation. The relative 

frequency distribution of standard deviation constructed using the ERAP 

generated data captured the actual standard deviation well, since the ac­

tual standard deviation fall on the edge of the maximum probability bin. A 

similar situation occurs in the case of the skewness.

The fourth moment computed from the verification does not fall into the

maximum probability bin, whilst the learning set estimation of the fourth
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F i g u r e  50. Comparison of the distribution of the standard 

deviation of the ERAP ensemble (blue) to the standard de­

viation of the learning set (green) and the verification based 

standard deviation (red) for the Berlin data.
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F i g u r e  51. Comparison of the distribution of the third mo­

ment of the ERAP ensemble (blue) to the third moment of 

the learning set (green) and the verification based third mo­

ment (red) for the Berlin experiment.

moment does. It is evident, however, that the ERAP ensembles fourth

moment distribution contains bins with positive frequency of kurtosis values
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that are above the verification based estimate. This is particularly relevant,

as the learning set kurtosis underestimates the verification kurtosis, figure 

52.
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F i g u r e  52. Comparison of the distribution of the fourth 

moment of the ERAP ensemble (blue) to the fourth moment 

of the learning set (green) and the verification based fourth 

moment (red) for the Berlin experiment.

Next we consider the relative frequency distribution of all observed val­

ues, give in figure 5.1. It is evident from the plot that the ERAP relative 

frequency follows the verification relative frequency more closely when com­

pared to the learning set relative frequency.

When we looked at the yearly 5th and 95th percentiles of the ERAP

synthetic data, it was evident that ERAP generated data captures well the

verification series, particularly in the first half of the generated year. It

can be observed that with real weather data, the skill of the generated

synthetic series reduces as generated time increases, figure 53. This is a

particulary interesting example of performance of the ERAP, in particular
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Comparison of the rel freq. distr of ERAP ensemble, actual and the 

learning set: Berlin data.] Comparison of the relative frequency 

distribution of the of the ERAP ensemble (blue) to the relative frequency 

distribution of the learning set (green) and the verification based relative 

frequency distribution (red).

its limitations. The second half of that particular verification year was the 

hottest on record in Germany, and hence is not well captured by the ERAP 

generated ensemble. This is because the ERAP ensemble will only contain 

measurements that came from the historical data.

Next, the 5th and 95th percentiles of the verification set and the learn­

ing set were compared to each other, and the frequency histogram of the 

percentiles of the ERAP synthetic Berlin weather data is shown in figures 

54 and 55 respectively.

The 95th percentile of the learning set is almost identical to the 95th 

percent percentile of the verification. And both measurements are well rep­

resented by the synthetic relative frequency histogram of the 95th percentile,

as both measurements fall into the maximum probability bin. In the case
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F igure 53. Comparison of the ERAP based yearly 95th and 

5th percentiles (blue) and verification yearly data (red) for 

the Berlin experiment.
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F i g u r e  54. Comparison of the relative frequency of the 

ERAP 95th % percentile (blue), 95th % percentile computed 

from the learning set (green) and the 95th % percentile of 

the verification (red) for the Berlin experiment.

of the 5th percentile, it is quite a different story. The learning set 5th per­

centile is different to the verification 5th percentile by around 2 degrees. The

verification 5th percentile falls on the edge of the maximum probability bin
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of the ERAP synthetic data histogram of 5th percentiles. The distribution 

itself in this case exhibits large uncertainty, figure 55.
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F igure 55. Comparison of the relative frequency of the 

ERAP based 5th % percentile (blue), 5th % percentile com­

puted from the learning set (green) and the 5th % percentile 

of the verification (red).

In the case of the consecutive increasing and decreasing days count that 

are presented in figures 56 and 57 respectively, it can be observed that 

in most cases, the mean of the ERAP frequency distribution of the days 

count, is almost identical to the count of the verification set (apart from 

2 consecutive days case). In comparison, the learning set count does not 

estimate the verification statistic as well. This is even more prominent in 

the case of the increasing days count.

The freezing days count statistic was computed for the verification set 

and the learning set, both measurements were compared to the ERAP syn­

thetic data frequency histogram (figure 58). The learning set underesti­

mated the number of freezing days of the verification data by about 10
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F ig u r e  56. Comparison of the relative frequency of the 

ERAP consecutive decreasing days (blue), together with the 

mean of that distribution (yellow), learning set (green) and 

the verification consecutive decreasing days count (red).
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F i g u r e  57. Comparison of the relative frequency of the 

ERAP consecutive increasing days (blue), together with the 

mean of that distribution (yellow), learning set (green) and 

the verification consecutive increasing days count (red).

instances. And although the learning set based measurements fell into the 

maximum probability bin of the ERAP based distribution, the verification



based statistic falls in the the second largest probability bin. Additionally it 

can be observed that there are significant positive frequencies above the ver­

ification value that were generated by the ERAP ensemble for the freezing 

day count statistic.

Number of Freezing Days

Bins in number of days

F igure 58. Comparison of the relative frequency of the 

ERAP based freezing days count (blue) to the freezing days 

count based on the learning set (green) and the verification 

based freezing days count (red) for the Berlin data.

Finally the relative frequency distributions of the extreme low and high 

values were compared for the verification data (red), the learning set (green) 

and the synthetic data ensemble (blue). These statistics are presented in 

figures 59 and 60 respectively.

It can be observed especially in the case of the extreme low value distri­

bution, that the verification distribution is better represented by the ERAP 

ensemble distribution than the learning set distribution. That is because 

the difference in the relative frequencies observed between the verification

and the ERAP distributions are smaller in magnitude than the difference
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F ig u r e  59. Comparison of the of the ERAP based (blue), 

learning set based (green) and the verification data based 

(red) relative frequency distributions of the extreme low val­

ues for the Berlin data.

between the frequencies of the verification and the learning set, across all 

the bins.
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F i g u r e  60. Comparison of the of the ERAP (blue), learning

set (green) and the verification data (red) relative frequency

distributions of the extreme high values for the Berlin data.
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Summarising the results of this section, it can be concluded that all the 

verification based statistical measurements, described in the experimental 

design, axe well and in some cases better represented by the synthetic ERAP 

than by the learning set. This could be further improved through parameter 

optimisation.
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CHAPTER 6

Implications for pricing and predicting.

1. Overview

In this chapter, the different approaches to producing future temperature 

scenarios, which have been used to price weather derivatives (discussed in 

chapters 2 and 3) are compared to ERAP based pricing (chapter 5). All 

the methods that were used generated future temperature scenarios when 

physical weather forecasts were not available.

The comparison is made between the prices obtained using:

(1) The historical data based actuarial method, which uses samples 

of historical data. Also in this category we examine pricing using 

fitted distributions. In particular, a Normal distribution fitted to 

the equivalent historical data sample. Both pricing methodologies 

follow Zeng’s [29] paper, adapted to our option specification.

(2) The statistical temperature modelling approach based on, Cao and 

Wei’s paper [30] and pricing using Davis’ paper [31]

(3) Finally, the ERAP approach with all the historical data available 

as an input to the ERAP re-sampler.

* using 20 years for calibration
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All the obtained prices are compared, together with additional charac­

teristics of the Cooling Degree Day scenarios, such as: standard deviations 

of option payoffs and Value At Risk (VaR).

The weather option that is priced in this section is: a July Cooling 

Degree Day(CDD) Call, based on daily maximum observations. In this case 

the daily maximum observations are used, rather than the standard daily 

averages that are often used as a basis of the CDD calculation (see section 2 

for the definition on CDD)2. The option is written for Berlin, with a strike 

of K  =  130 CDD converted to currency at the rate k =  100£ per Degree 

Day.

The last section of this chapter briefly discusses how the information 

from weather forecasts could be added to the ERAP generated tempera­

ture simulations, using the methodology described in chapter 4, in order to 

produce more ‘accurate’ prices.

The data used was 126 years of Berlin daily maximum temperatures 

(01/01/1876-31/12/2002 inclusive, see chapter 3 for full details). As the 

verification set, 3 years were used from 2003 to 2005 inclusive, figure 1. 

Three years were used to compose the verification set, as the daily maxi­

mum temperature observations in July of each of those three years varied 

extensively.

It can be seen that in 2003, the beginning of July experienced a heat 

wave and the overall daily maximum temperature stayed at a very high 

level. 2004 had the most stable July in the verification set and the daily

n
This is due to the data that was available
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F i g u r e  1. Daily max temperature observations for July for 

the period of 2003-2005, Berlin. Red-2003; pink - 2004; pur­

ple - 2005.

maximum values were close to the ‘expected’ level. July 2005 experienced 

rather low maximum values in the beginning of the month, followed by a 

rapid rise. We want to see a variety of payoffs, in order to see what happens 

for different temperature behaviour.

2. P ricing  th e  CD D  Ju ly  Call using h istorical d a ta  only.

We begin by adapting the steps taken by Zeng [29] and consider a differ­

ent number of years as a basis for the price of the CDD Call. We extend the 

sample used by Zeng, and also consider the price obtained with 126 and 2 

most recent years of the historical data. The 126 year based price is useful, 

as we also used 126 most recent years as an input to the ERAP approach. 

The motivation behind the 2 year based price, is the tendency in the finan­

cial industry to use as little historical data as possible. It is feared that 

additional years might result in underpricing due to recent Global warming 

temperature shifts.
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In section 2.1 each historical year is considered as a temperature scenario. 

In section 2.2 temperature scenarios are drawn from a Normal distribution 

fitted to the historical data.

For each scenario, for a chosen month, the CDD value is computed, using 

equation 1, with Ai being the daily maximum temperature (instead of an 

average daily temperature) and T is the number of days in that particular 

month. By the definition of the CDD Call, if the monthly CDD count 

is above the strike level, the difference between the monthly CDD and the 

strike is multiplied by the price per CDD. This calculation defines the payoff 

of the option (see chapter 2) for each temperature scenario. Finally, to 

determine the payoff for the Berlin CDD Call, an average of the payoffs over 

all scenarios is taken (see chapter 2 on the actuarial pricing methodology).

2.1. C om paring  ch arac te ris tics  o f C D D  p ro d u ced  using  h is to r­

ical d a ta  only. July of each historical year is considered as a scenario for 

pricing. Figure 2 illustrates the CDD count and the corresponding payoffs 

that would have occurred in each year for the full historical record (126 

years: 1876 - 2002 inclusive).

As the option payoff is computed as an average over several years, var­

ious subsets of the 126 most recent years are considered, following Zeng’s 

methodology [29]. It can be seen, that in the earlier years, the CDD count, 

and hence, the payoffs exhibit multiple upward spikes. Overall, the data at 

the beginning of the historical record displays higher maximum temperature 

measurements for July. This would result in a higher average payoff if earlier
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F igure 2. Cooling Degree Days and Payoffs of the CDD 

July Call for each historical year: 1876-2002. Blue stars are 

the monthly CDD recorded for July of each historic year.

Red stars are the corresponding payoffs in £.

years are included. Figure 3 shows payoffs, standard deviations of payoffs 

and VaR computed using different number of years.

The CDD Call prices (payoffs) for Berlin, based on different number of 

years, together with the standard deviation and VaR are also summarised 

in table 1. The payoffs, as concluded in Zeng’s paper, increase as the size 

of the most recent historical record decreases. This is only true, however, 

starting from the 30 year record. Both, the 51 year record and the full 126 

year record, produced payoffs at a higher level. The payoff based on the 126 

years of data is higher than the payoff based on 10 years. This finding does 

not contradict Zeng’s conclusions, at least with regards to the 51 year record. 

He was dealing with daily average temperatures, rather than maximum in



3000

*5 2000

10001-------
126 years 51 years 30 years 20 years 10 years 2 years

aa
CO 4000

2000

4000

3000

2000
126 years 51 years 30 years 20 years 10 years 2 years

8000

6000

126 years 51 years 30 years 20 years 10 years 2 years

F ig u r e  3. Payoffs, standard deviations and VaR measure­

ments for the July CDD Call, computed using different num­

ber of years. Blue stars are the payoffs in £; pink stars are 

the standard deviation of the payoff in £; finally the green 

stars are the VaR also in £

this case, and additionally the CDD option in Zeng’s paper was priced for

the US, rather than Europe.

Now, let’s examine the payoff that occurred in the verification years.

In other words, if the option would have been priced using the actuarial

historical data based price, how many years, as the basis of pricing, should

have been considered. Also, how ‘wrong’ was the price. The payoff of July

2003, 2004 and 2005 are considered together with the average for those three

years. Additionally, boundaries are created around the payoffs according to

the standard deviations, to see whether the actual payoff would have been

captured if the standard deviation had been added to the price. This is a
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Years included  

in calculation

M ean Payout S.D . o f Payout VaR

126 2349.69 3299.12 7062

51 1790.96 2555.59 5816.00

30 1242.58 2438.30 3920.00 20

20 1320.95 2783.84 2360.00

10 1932.73 3733.72 5930.00

2 2935.00 2965.46 5319
T a b l e  1. Payoffs, s.d. and VaR for the CDD July Call for 

Berlin, computed suing different number of years samples.

useful assessment of performance, as the price of a weather contract could be 

defined as average payoff plus or minus one standard deviation, depending 

upon whether the user is sensitive to under or over pricing.

Figure 4 illustrates the payoffs computed using different number of years 

(blue stars as in figure 3) compared with the payoffs that would have oc­

curred in 2003 (red), 2004(magenta), 2005(green) and the 2003-2005 average 

payoff (black).

It can be concluded that for the hot July condition (such as the 2003 heat 

wave), all prices even with the addition of standard deviation, underpriced 

the final value of the option. More worrying than that, the payoff observed 

in 2003 exceeded all the VaR values. In 2004 and 2005, the payoffs with 

standard deviation bounds captured the price. However, the estimations 

that were based on 51, 30 and 20 most recent years performed the worst. 

The most interesting case, is when the average of the verification payoffs
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F ig u r e  4. Comparing the payoffs of the CDD July Call com­

puted using different numbers of years (blue stars) to the 

payoffs observed in the verification set (2003 - red, 2004 - 

magenta, 2005 - green and average between 2003-2005 - 

black.)

(the average payoff over 2003, 2004 and 2005) was considered - black line on 

the figure 4. It can be seen that 51, 30 and 20 year based pricing, even with 

added standard deviation, did not capture the average verification level.

2.2. C om paring  characteristics of C D D  produced  using d is tri­

bu tion  fitting  pricing approach. The next step is to examine what hap­

pens to the payoffs, standard deviation and VaR, when Monte Carlo pricing 

is applied. The Monte Carlo method computes all the measures by using 

many (in this case 10000) draws from a fitted Normal distribution. Follow­

ing Zeng’s methodology, chapter 2, a Normal distribution is fitted to each

historical record, such that the mean and the variance are defined by the
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sample mean and variance of each historical data sample. The method is 

applied using: 126, 51, 30, 20, 10 and 2 years of data.

In figure 5 the payoffs, standard deviation and VaR, obtained using 

Monte Carlo are compared to payoffs, standard deviation and VaR computed 

in the previous section using historical data only.

u  2500
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G- 1500

2 years126 years 51 years 30 years 20 years 10 years

u
c

Q
trj

126 years 51 years 30 years 20 years 10 years 2 years

100001-1 1 1 1----------------------------------------------------------------------------

ui 8000 " •
£  6000 - « .

4000 -

years 51 years 30 years 20 years 10 years 2 years
N um ber of y ea rs  th a t the  calcu lation  is b a s e d  on

F ig u r e  5. Payoffs, standard deviations and VaR measure­

ments for the July CDD Call, computed by fitting a Normal 

distribution, using CDD mean and variance computed from 

different number of years. Blue stars are the payoffs in £\ red 

stars are the standard deviation of the payoff in £; finally the 

green stars are the VaR also in £.  We compare the Normal 

distribution based results to the payoffs (light blue dotted 

line), standard deviation (pink dotted line) and VaR(dark

green dotted line) computed using exclusively historical data.
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Y ears included  

in  calcu la tion

M ean  P ay o u t S.D . o f P ayou t V aR

126 2328.2 3089.1 7001.70

51 1793.3 2495.4 5649.80

30 1398.90 2341.50 4869.70

20 1466.1 2559.6 5392.30

10 2256 3450.7 7399.20

2 2967.5 3605.1 8326.90

Table  2. Payofi :s for the CDD July Call computed the

Monte Carlo approach by fitting Normal distributions to dif­

ferent numbers of years.

Again, comparing the results for the Berlin option to the the conclusions 

from the Zeng’s paper, it is evident that VaR of the Berlin max temperature 

CDD option computed using the Monte Carlo method differs the most, when 

compared to the VaR baaed on the historical record only. Additionally, 

payoffs, standard deviation and VaR computed using Monte Carlo exceed 

the historical record for most yearly samples. This is again consistent with 

Zeng’s result for the US daily average CDD option. Finally, it is also evident 

that as the number of years that the calculations is based on decreases, the 

difference between the Monte Carlo based measures and the historical data 

based measures increases.

So now consider how the Monte Carlo based payoffs compare to the 

verification payoffs. Again, the comparison is drawn with respect to the 

actual payoffs for the July 2003, 2004, 2005 and their average payoff.
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F i g u r e  6. Comparing the payoffs of the CDD July Call com­

puted using Normal Distributions fitted to different numbers 

of years (blue stars) to the payoffs observed in the verifica­

tion set (2003 - red, 2004 - magenta, 2005 - green and average 

over all the verification years - black.)

The performance of Monte Carlo derivative prices is very similar to 

the historical data based prices, as expected. The payoffs computed using 

Monte-Carlo with 126, 2 and 10 years, capture 2004, 2005 and the average 

verification payoff within the standard deviation bounds.

3. P ricing  th e  CD D Ju ly  Call using s ta tis tica l te m p e ra tu re  

m odelling approaches and  ERA P.

In this section Berlin daily maximum temperature based CDD for July, 

are constructed from synthetic temperature scenarios generated using the 

methodologies of two papers: M. Davis [31] and Cao, Wei [30], generated
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in chapter 3. For the details on temperature models used in those papers 

see chapter 3. Then, using the simulated CDD, the average payoff, stan­

dard deviations of payoff and VaR are computed in the actuarial pricing 

framework. In particular the payoff is computed for each scenario and then 

the average is taken to produce the payoff of the Call option (as for Zeng’s 

pricing). Finally the average payoff, standard deviation and VaR computed 

based on Davis and Cao and Wei methodology are compared to the average 

payoff, standard deviation and VaR constructed using the ERAP method 

(see section 5).

The synthetic temperature scenarios for July, according to the Cao and 

Wei temperature model were constructed in chapter 3, [30]. Here we con­

sider the CDD that resulted from both simulated temperatures constructed 

using Seasonal Normal Temperature (SNT) and simulated temperatures con­

structed using Adjusted Seasonal Normal Temperature denoted as Yyrj  (for 

definitions see section 3). Cao and Wei noted tha t in order to construct fu­

ture temperature scenarios SNT should be used, as the Adjusted SNT was 

specific to certain historical dates. They also suggested, however, that the 

parameters of the model are more precise when the Adjusted SNT is used. 

Here we examine how different are the average payoffs, standard deviation 

of payoffs and VaR for those two approaches.

The synthetic temperature scenarios for July, following the Davis method­

ology were generated in chapter 3. Again the CDD are constructed from 

Davis temperature scenarios, by computing the payoff for each scenario and 

then finding the mean price, standard deviation and the 90th percentile
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M eth o d M ean  P ayou t S.D . o f P ayou t V aR

Davis 7353.075158 1636.287952 9475.599341

Cao and Wei SNT 6346.537479 4526.90637 12435.40857

Cao and Wei Yyr,t 6692.840868 5726.242814 15155.6974

ERAP 5153.3 5775.99 13575
T a b l e  3. Comparing payoffs, s.d. and VaR achieved using 

Cao and Wei (both SNT and Yyr^ based), Davis and ERAP 

approach.

(VaR) of those scenario payoffs. The weather options’ payoff, s.d. of pay­

off and VaR are then computed and compared to the ERAP pricing result, 

figure 7. Table 3 summarises the results obtained for all the methods.

It can be noted that ERAP produces the smallest value of the payoff, 

compared to the other synthetic temperature simulation methods. At the 

same time, the ERAP payoff was much closer to the historical data based 

payoffs (table 1). The measure of standard deviation of scenario payoffs 

based on ERAP and based on Cao and Wei, were very similar in magni­

tude to each other. When compared to standard deviation computed using 

historical data alone (table 1), ERAP and the Cao, Wei method produced 

much higher values. The levels of VaR also vary between the methods. All 

the methods produced much higher levels of VaR, when compared to the 

historical data based VaR.
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Cao and Wei (both SNT and Yyr,t based), Davis and ERAP 

approach.

4. Conclusion

Now we compare how all the methods performed, when compared to 

the verification set. It can be seen that the verification payoff that resulted 

from the hot conditions of 2003 is not captured by any method. In the 

case of 2004, 2005 and the average of 2003-2005, the ERAP based payoff 

outperforms other methods.

What we are interested in, is the consistency and reliability of all the 

pricing methods with respect to the verification set. In order to assess 

that, differences between the method’s average payoffs and the verification’s 

payoffs are summarised in table 4. Additionally, for each method, the area 

of the payoff plus or minus one standard deviation of that payoff is also 

considered (table 5).
2 0 2
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F ig u r e  8. Comparison of payoffs constructed using Davis, 

Cao and Wei and ERAP methodology (blue stars) with the 

actual payoff of 2003 (red), 2004 (magenta), 2005 (green) 

and the average of 2003-2005 (black). Cyan lines show the 

catchment area of standard deviations for each method.

Table 5 is constructed in two stages. First, for each method the lower and 

the upper boundary is found. The lower boundary is equal to the average 

payoff minus the standard deviation of the payoff. The upper boundary 

is computed by adding the payoff and the standard deviation. Then the 

differences are computed as following:

• if the verification payoff is lower than the lower boundary for the 

studied method, then the difference is taken between the lower

boundary and the verification payoff;
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M eth o d verification  - 2003 2004 2005 aver, o f 2003-2005

Hist 126 -9355.31 2349.69 -770.31 -2591.98

Hist 51 -9914.04 1790.96 -1329.04 -3150.71

Hist 30 -10462.42 1242.58 -1877.42 -3699.09

Hist 20 -10384.05 1320.95 -1799.05 -3620.71

Hist 10 -9772.27 1932.73 -1187.27 -3008.94

Hist 2 -8770.00 2935.00 -185.00 -2006.67

Davis -4351.92 7353.08 4233.08 2411.41

Cao and Wei SNT -5358.46 6346.54 3226.54 6346.54

Cao and Wei Yyrj -5012.16 6692.84 3572.84 1751.17

ERAP -6551.70 5153.30 2033.30 211.63
T a b l e  4. Differences between the Davis, Cao,Wei and 

ERAP based payoffs and the verification set.

• if the verification payoff is higher than the upper boundary for the 

studies method, then the difference is taken between the upper 

boundary and the verification payoff;

• if the verification payoff is between the lower and the upper bound­

ary, then zero is recorded.

It is clearly evident that ERAP outperforms all the other modelling 

methods for the Berlin max temperature CDD for July, given the 2003,2004, 

2005 and average 2003-2005 verification set, in terms of mean absolute error. 

It also performed consistently across all 3 verification years. Finally, even in 

exceptionally hot conditions observed in 2003, the payoff did not cross the
2 0 4



M eth o d verification  - 2003 2004 2005 aver, o f 2003-2005

Hist 126 -6056.19 0 0 0

Hist 51 -7358.44 0 0 -595.11

Hist 30 -8024.11 0 0 -1260.78

Hist 20 -7600.20 0 0 -836.87

Hist 10 -6038.55 0 0 0

Hist 2 -5804.54 0 0 0

Davis -2715.63 5716.78 2596.78 775.12

Cao and Wei SNT -831.55 1819.63 0 0

Cao and Wei Yyrj 0 966.59 0 0

ERAP -775.71 0 0 0
T a b l e  5. Differences between the s.d. defined lower and 

the upper boundaries for Davis, Cao,Wei and ERAP and the 

verification set.

VaR value, which suggests that the ERAP based price should be used instead 

of the historical data based price, as it produces better risk estimates.

5. In co rp o ra tin g  m ed ium  range  w ea th e r fo recast in fo rm ation  

in to  p ric ing  an d  reev a lu a tin g  w ea th e r derivative .

In this last section we briefly discuss, how the methodology studied and

tested in chapter 4 should be used, in order to more accurately price weather

options. Even if the forecast is not available at the time of pricing a weather

option, once the contract starts it is possible to assess the value of it, using

the information received from weather forecasts.
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In chapter 4 it was shown how to kernel dress and mix ensemble forecasts 

with the climatology in the perfect model scenario. Medium range weather 

forecasts (up to 14 days) also come in the form of an ensemble forecast (see 

section 1.3).

In chapter 5 it has been shown that ERAP produces consistent and, more 

importantly, enhanced climatology for a time series for both the weather like 

process and the chaotic Lorenz series. It has also been demonstrated in this 

chapter, that ERAP based pricing produced more coherent result, when 

compared to the historical pricing or other statistical models.

This leads to the conclusion that in order to achieve better insight into 

value of weather options, simulated temperature scenarios should be con­

structed by mixing kernel dressed physical weather forecast information and 

the ERAP based temperature simulations, such that the parameters of ker­

nel dressing and the mixing weight between the forecasts and simulated data 

are determined by minimising Ignorance Skill Score [45].
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6. Conclusion

We set out on a quest to design a high quality benchmark for long term 

temperature forecasts beyond the capabilities of a historical climatology. We 

also wanted to explore how weather risk exposure can be reduced by com­

bining all the available information in terms of weather forecasting including 

this benchmark. In particular we have chosen a weather derivatives contract 

as an example of how one can reduce the risk due to weather uncertainty.

In chapter 2 a variety of existing weather forecasting methodologies have 

been considered together with their strengths and weaknesses. It has been 

stated that on a short time scale high quality weather forecasts are available. 

It is also true that the equations of motion chosen by the weather offices to 

model (approximate) the evolution of the atmosphere exhibite chaotic be­

havior. As a result, such forecasts contain uncertainty that rapidly grows 

with time. On a long time scale, historical climatology, statistical temper­

ature simulation and the probability of being above or below some ‘norm’ 

were the only options available. Also in chapter 2 a weather risk hedg­

ing strategy has been chosen, in the form of a weather derivative. There 

are several pricing frameworks that can be used in the evaluation of such 

weather contracts and due to the nature of weather derivatives any pricing 

framework requires quantitative long term weather forecasts.

In chapter 3 we went deeper into the temperature simulation techniques 

that have been previously used in evaluating a weather contract. In partic­

ular we followed in the footsteps of Cao and Wei [30] and Davis [31] and 

applied their methodologies to a chosen data set (Berlin daily temperatures).
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The Berlin data was examined in detail where some historical statistic was 

recorded. Additionally in that chapter a test process was developed that 

mimicked well the Berlin temperature time series. The purpose here was 

to build a time series that is non-linear, periodic on multiple time scales, 

contains random components and at the same time resembles temperature 

series typically observed in the European climate.

We proceeded by developing (in chapter 4) a methodology that allows to 

produce combined forecasts. In particular it allows to construct a forecast 

that contains information form both physical forecasts (forecasts obtained 

from models of the dynamics of the underlying system that generated the 

data) and historical/simulated statistics. This methodology has been ex­

tensively tested on two noisy chaotic series and a Threshold Autoregressive 

process. It has been demonstrated that in the case of chaotic systems, in the 

perfect model scenario with perturbed initial conditions, the quality of the 

physical forecast (in terms of the amount of information that such forecasts 

contain about the actual observations) decreases as the forecast horizon in­

creases. This highlighted the importance of the historical/simulated data 

that is used to compensate for the information loss from physical forecasts.

Given that, for the purposes of weather risk hedging long term weather 

forecasts are required, our attention has been drawn to the possibilities of 

improving the quality of long term forecasts by constructing a sophisticated 

temperature simulation methodology. A methodology that takes into ac­

count the dynamics of the weather series and does not assumes that the
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‘observable’ components of the temperature times series (such as ‘season­

ality’, daily fluctuations, trends, and so on) can be defined mathematically 

and modelled independently. In particular, in chapter 5 an Ensemble Ran­

dom Analog Prediction (ERAP) climate generator was introduced. The 

generator was extensively tested both in the perfect model scenario and on 

the actual Berlin data, the perfect models being a chaotic time series and 

a weather-like random process, that was specifically designed to mimic real 

weather data. It was evident that in all those experiments ERAP gener­

ated statistics consistent with the statistic of the learning set. In most cases 

the true statistic of the chosen test process were captured better by the 

generated ERAP synthetic data than by the limited learning set.

Finally we have applied ERAP for the purpose of pricing weather deriva­

tives and compared ERAP performance, in terms of pricing, to other existing 

methods for weather index modelling, chapter 6. It has been observed that 

for all the verification sets the ERAP based pricing performed well, both in 

terms of mean absolute error and VAR.

6.1. F u tu re  W ork. This work raises new questions:

• How does the behavior of the information loss in the combined 

forecasts change with different distributions of the initial perturba­

tions, both in terms of mixing parameter a  and the kernel dressing 

parameter cr?

• How does the estimation of the parameters in the combined forecast 

change if the optimisation of the parameters is done independently?

2 0 9



• How to best address the parameter estimation for the ERAP tech­

nique. Should it be forecast orientated or end application cost 

function orientated?

• Can ERAP be extended to multidimensional time series? For ex­

ample temperature and precipitation data combined.

•  How can ERAP produced ensembles be transformed into distribu­

tions? this could allow more sophisticated optimisation techniques 

to used for the pricing of weather derivatives.

•  How well a global trend is captured by ERAP. This important in 

the case of the fast Global waxming.

•  Finally, further investigation is needed to examine weather deriv­

ative pricing and weather data simulation using ERAP and com­

bined forecasts under different climates.
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