
E ssa y s  o n  E s t i m a t i o n  a n d  I n f e r e n c e  f o r  

V o l a t i l it y  w i t h  H ig h  F r e q u e n c y  D a t a

I lz e  K a l n in a

A  D is s e r t a t io n  

P r e s e n t e d  t o  t h e  D e p a r t m e n t  o f  E c o n o m ic s  

o f  L o n d o n  S c h o o l  o f  E c o n o m ic s  a n d  P o l it ic a l  S c ie n c e  

in  C a n d id a c y  f o r  t h e  D e g r e e  

o f  D o c t o r  o f  P h il o s o p h y

J u n e  2 0 0 9



UMI Number: U615957

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U615957
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



- 3



Declaration

I certify that the thesis I have presented for examination for the M Phil/PhD 

degree of the London School of Economics and Political Science is solely my own 

work other than where I have clearly indicated that it is the work of others (in which 

case the extent of any work carried out jointly by me and any other person is clearly 

identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted, 

provided that full acknowledgement is made. This thesis may not be reproduced 

without the prior written consent of the author.

I warrant that this authorization does not, to the best of my belief, infringe the 

rights of any third party.

©  Copyright by Ilze Kalnina, 2009. 

All Rights Reserved



Abstract

Volatility is a measure of risk, and as such it is crucial for finance. But volatility is 

not observable, which is why estimation and inference for it are important. Large 

high frequency data sets have the potential to increase the precision of volatility esti

mates. However, this data is also known to be contaminated by market microstructure 

frictions, such as bid-ask spread, which pose a challenge to estimation of volatility.

The first chapter, joint with Oliver Linton, proposes an econometric model that 

captures the effects of market microstructure on a latent price process. In particular, 

this model allows for correlation between the measurement error and the return pro

cess and allows the measurement error process to have diurnal heteroskedasticity. A 

modification of the TSRV estimator of quadratic variation is proposed and asymptotic 

distribution derived.

Financial econometrics continues to make progress in developing more robust and 

efficient estimators of volatility. But for some estimators, the asymptotic variance 

is hard to derive or may take a complicated form and be difficult to estimate. To 

tackle these problems, the second chapter develops an automated method of inference 

that does not rely on the exact form of the asymptotic variance. The need for a 

new approach is motivated by the failure of traditional bootstrap and subsampling 

variance estimators with high frequency data, which is explained in the paper. The 

main contribution is to propose a novel way of conducting inference for an important 

general class of estimators that includes many estimators of integrated volatility. A 

subsampling scheme is introduced that consistently estimates the asymptotic variance 

for an estimator, thereby facilitating inference and the construction of valid confidence 

intervals.

The third chapter shows how the multivariate version of the subsampling method 

of Chapter 2 can be used to study the question of time variability in equity betas.
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Chapter 1

Estim ation of Quadratic Variation  

in the Presence of Diurnal and 

H eteroscedastic M easurem ent 

Error

1.1 Introduction

It has been widely recognized that using very high frequency data requires taking 

into account the effect of market microstructure (MS) noise. We are interested in the 

estimation of the quadratic variation of a latent price in the case where the observed 

log-price Y  is a sum of the latent log-price X  that evolves in continuous time and an 

error u that captures the effect of MS noise.

There is by now a large literature that uses realized variance as a nonparametric 

measure of volatility. The justification is that in the absence of market microstructure 

noise it is a consistent estimator of the quadratic variation as the time between ob

servations goes to zero. For a literature review, see Barndorff-Nielsen and Shephard
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(2007). In practice, ignoring microstructure noise seems to work well for frequencies 

below 10 minutes. For higher frequencies realized variance is not robust, as has been 

evidenced in the so-called ‘volatility signature plots’, see, e.g. Andersen et al. (2000).

The additive measurement error model where u  is independent of X  and i.i.d. 

over time was first introduced by Zhou (1996). The usual realized volatility estima

tor is inconsistent under this assumption. The first consistent estimator of quadratic 

variation of the latent price in the presence of MS noise was proposed by Zhang, 

Mykland, and Ai't-Sahalia (2005a) who introduced the Two Scales Realized Volatility 

(TSRV) estimator, and derived the appropriate central limit theory. TSRV estimates 

the quadratic variation using a combination of realized variances computed on two 

different time scales, performing an additive bias correction. It has a rate of conver

gence n -1/6. Zhang (2004) introduced the more complicated Multiple Scales Realized 

Volatility (MSRV) estimator that combines multiple (~  n 1/2) time scales, which has 

a convergence rate of n -1/4. This is known to be the optimal rate for this problem. 

Both papers assumed that the MS noise was i.i.d. and independent of the latent 

price. This assumption, according to an empirical analysis of Hansen and Lunde 

(2006), ’’seems to be reasonable when intraday returns are sampled every 15 ticks or 

so” . Further studies have tried to relax this assumption to allow modelling of even 

higher frequency returns. Ai't-Sahalia, Mykland and Zhang (2006a) modify TSRV and 

MSRV estimators and achieve consistency in the presence of serially correlated MS 

noise. Another class of consistent estimators of the quadratic variation was proposed 

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006). They introduce realized 

kernels, a general class of estimators that extends the unbiased but inconsistent esti

mator of Zhou (1996), and is based on a general weighting of realized autocovariances 

as well as realized variances. They show that realized kernels can be designed to be 

consistent and derive the central limit theory. They show that for particular choices 

of weight functions they can be asymptotically equivalent to TSRV and MSRV esti
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mators, or even more efficient. Apart from the benchmark setup where the noise is 

i.i.d. and independent from the latent price Barndorff-Nielsen et al. (2006) have two 

additional sections, one allowing for AR(1) structure in the noise, another with an 

additional endogenous term albeit one that is asymptotically degenerate.

We generalize the standard additive noise model (where the noise is i.i.d. and 

independent from the latent price) in three directions. The first generalization is 

allowing for (asymptotically non-degenerate) correlation between MS noise and the 

latent returns. This is motivated by a paper of Hansen and Lunde (2006), where, 

for very high frequencies: ’’the key result is the overwhelming evidence against the 

independent noise assumption. This finding is quite robust to the choice of sampling 

method (calendar-time or tick-time) and the type of price data (transaction prices or 

quotation prices)” .1

Another generalization concerns the magnitude of the MS noise. All of the papers 

above, like most of related literature, assume that the variance of the MS noise is 

constant and does not change depending on the time interval between trades. We 

call this a large noise assumption. We explicitly model the magnitude of the MS noise 

via a parameter a , where the a  =  0 case corresponds to the benchmark case of large 

noise. We allow also a > 0 in which case the noise is ’’small” and specifically the 

variance of the noise shrinks to zero with the sample size n. The rate of convergence 

of our estimator depends on the magnitude of the noise, and can be from n -1/6 to 

n -1/3, where n -1/6 is the rate of convergence corresponding to the ’’big” noise case 

when a = 0.

How could the size of the noise ’’depend” on the sample size? We give a fuller 

discussion of this issue below, but we note here two arguments. First, there is a

xBy ’’independent noise” Hansen and Lunde (2006) mean the combination of the i.i.d. assumption 
and the assumption that the noise is independent from the latent price. Our paper proposes to relax 
the second assumption. As to the first assumption, we do not allow for serial correlation in the noise. 
At the same time, we only impose approximate stationarity compared to Hansen and Lunde (2006) 
since we allow for intraday heteroscedasticity of the noise.
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negative relationship between the bid-ask spread (an important component of the 

MS noise for transaction data) and a number of (other) liquidity measures, including 

number of transactions during the day. This negative relationship is a stylized fact 

from the market microstructure literature. See, for example, Copeland and Galai 

(1983) and Mclnish and Wood (1992). Also, Awartani, Corradi and Distaso (2004) 

write that ” an alternative model of economic interest [to the standard additive noise 

model] would be one in which the microstructure noise variance is positively correlated 

with the time interval” . This is in principle a testable hypothesis. Using Dow Jones 

Industrial Average data, the authors test for and reject the hypothesis of constant 

variance of the MS noise across frequencies.

The third feature of our model is that we allow the MS noise to exhibit diurnal 

heteroscedasticity. This is motivated by the stylized fact in market microstructure 

literature that intradaily spreads and intradaily stock price volatility are described 

typically by a U-shape (or reverse J-shape). See Andersen and Bollerslev (1997), 

Gerety and Mulherin (1994), Harris (1986), Kleidon and Werner (1996), Lockwood 

and Linn (1990), and Mclnish and Wood (1992). Allowing for diurnal heteroscedastic

ity in our model has the effect that the original TSRV estimator may not be consistent 

because of end effects. In some cases, instead of estimating the quadratic variation, 

it would be estimating some function of the noise. We propose a modification of the 

TSRV estimator that is consistent, without introducing new parameters to be chosen. 

Our model is not meant to be definitive and can be generalized in a number of ways.

The structure of the paper is as follows. Section 2 introduces the model. Sec

tion 3 describes the estimator. Section 4 gives the main result and the intuition 

behind it. Section 5 investigates the numerical properties of the estimator in a set 

of simulation experiments. Section 6 illustrates the ideas with an empirical study of 

IBM transaction prices. Section 7 concludes. We use ==>- to denote convergence in 

distribution.
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1.2 The M odel

Suppose that the latent (log) price process {X u t G [0, T]} is a Brownian semimartin- 

gale solving the stochastic differential equation

dXt = fLtdt +  a tdWu ( i.i)

where Wt is standard Brownian motion, /it is a locally bounded predictable drift 

function, and a t a cadlag volatility function; both are independent of the process 

{Wtl t G [0, T]}. The (no leverage) assumption of {a t , t G [0, T }  being independent 

of {Wt, t  G [0, T]}, though reasonable for exchange rate data, is unrealistic for stock 

price data. However, it is frequently used and makes the theoretical analysis more 

tractable. The simulation results suggest that this assumption does not change the 

result. Furthermore, in many other contexts the presence of leverage does not affect 

the limiting distributions, see Barndorff-Nielsen and Shephard (2002).

The additive noise model says that the noisy price Y  is observed at times i i , . . . ,  tn 

on some fixed domain [0, T]

where uti is a random variable representing measurement error. W ithout loss of much 

generality we are going to restrict attention to the case of equidistant observations 

with T  — 1. This type of model was first introduced by Zhou (1996) who assumed 

that uti is i.i.d. over i and independent of { X t , t  G [0,1]}. In this case the signal to 

noise ratio for returns decreases with sample size, i.e., var(AXtJ /v a r(A uti) —> 0 as 

n —> oo, and at a specific rate such that lim ^oo nvar(AXtJ /v a r(A u tJ  < oo, which 

implies inconsistency of realized volatility. We are going to modify the properties of 

the process {r^ } and its relation to {X u t G [0,1]}.

We would like to capture the idea that the measurement error can be small. This

(1.2)
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can be addressed by adopting a model uti = where eti is an i.i.d. sequence

with mean zero and variance one, and a£ is a parameter such that a€ —► 0. Many 

authors have found small <re in practice. As usual one wants to make inferences 

about data drawn from the true probability measure of the data where both n is 

finite and ae > 0 by working with a limiting case that is more tractable. In this 

case there are a variety of limits that one could take. Bandi and Russell (2006a) for 

example calculate the exact MSE of the statistic of interest, and then in equation 

(24) implicitly take <7e —> 0 followed by n —► oo. We instead take the sound and 

well established practice in econometrics of taking pathwise limits, that is we let 

a€ = oe(n) and then let n —> oo. Such a limit with ”small” noise has been used 

before to derive Edgeworth approximations (Zhang et al., 2005b), to calculate optimal 

sampling frequency of inconsistent estimator for QVX (Zhang et al., 2005a, eqn. 53), 

to estimate QVX consistently when X  follows a pure jump process and Y  is observed 

fully and continuously (Large, 2007), and to estimate QVX consistently in a pure 

rounding model (Li and Mykland, 2006; Rosenbaum, 2007). An example from MS 

modelling literature in microeconomics is Back and Baruch (2004) who show the 

link between the two key papers in asymmetric information modelling, Glosten and 

Milgrom (1985) and Kyle (1985) using a limit with small noise. In particular, they 

consider a limit of Glosten and Milgrom (1985) as the arrival rate of trades explodes 

(so the number of trades in any interval goes to infinity) and order size (and hence 

incremental information per trade) goes to zero, thus reaching the Kyle (1985) model 

as a limit. We are also mindful not to preclude the case where <re(n) is ’’large” i.e., 

(in our framework) does not vanish with n , and our parameterization below allows us 

to do that.
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We next present our model. We assume that

U ti =  vt i +Eti (1.3)

vtl = s1 „(Wi,-Wii_1)

eti = m (ti) + n~a/2w (U) eti, a  G [0 ,1 /2)

with eti i.i.d. mean zero and variance one and independent of the Gaussian process 

{Wu t e  [0,1]} with E\eti\4+v < oo for some 77 > 0. The functions m  and u  are 

differentiable, nonstochastic functions of time. They are unknown as are the constants 

S and a. The usual benchmark measurement error model with noise being i.i.d. and 

independent from the latent price has a = 0 , 7n =  0 and u(.) and ra(.) constant (see, 

e.g., Barndorff-Nielsen and Shephard (2002), Zhang et al. (2005a) and Bandi and 

Russell (2006b)).

The process for the latent log-price is motivated by the fundamental theory of 

asset prices, which states that, in a frictionless market, log-prices must obey a semi

martingale; we are specializing to the Brownian semimartingale case (1.1). We want

to model log-prices at very high frequency where frictions are important and observed 

prices do not follow a semimartingale. One way of partly reconciling the evidence in 

volatility signature plots of the price behavior in very high and moderate frequencies 

is to assume that observed prices can be decomposed as in (1.2). The first component 

X  is a semi-martingale with finite quadratic variation, while the second component 

u is not a semi-martingale and has infinite quadratic variation. In particular, the 

increments in u are of larger magnitude than that of X ,  and this difference is the 

key in identifying the quadratic variation of X.  We split the noise component u into 

an independent term e that has been considered in the literature, and a 1-dependent 

endogenous part v, which is correlated with X  due to being driven by the same 

Brownian motion. At the same time, v preserves the features of not being a semi

7



martingale and having infinite quadratic variation, the main motivation of the way e 

is modelled.

There are three key parts to our model: the correlation between u and X , the 

relative magnitudes of u and X ,  and the heterogeneity of u. We have E[uti] = m(ti) 

and var[uti] = <5272 (£* — ^_i) +  2n~acr2(i/n). To have the variance of both terms in u 

equal, we set 7 2 =  n l~a. This seems like a reasonable restriction if both components 

are generated by the same mechanism. In this case, both of the measurement error 

terms are Op(n~a). In our model the signal to noise ratio of returns varies with sample 

size in a way depending on a  so that only lim ^oo n 1_Qvar(AXti)/var(A uti) <  00. We 

exploit the fact that for consistency of the TSRV estimator, it is enough to assume 

that noise increments are of larger order of magnitude than the latent returns, and 

the usual stronger assumption limn_ 00 nvar(AXt.)/var(Auti) < 00 is not necessary.

The process eti is a special case of the more general class of locally stationary 

processes of Dahlhaus (1997). The generalization to allowing time varying mean and 

variance in the measurement error allows one to capture diurnal variation in the 

measurement error process, which is likely to exist in calendar time. Nevertheless, 

the measurement error in prices is approximately stationary under our conditions, 

which seems reasonable.

The term v in u induces a correlation between latent returns and the change 

in the measurement error, which can be of either sign depending on 5. Correlation 

between u and X  is plausible due to rounding effects, price stickiness, asymmetric 

information, or other reasons [Bandi and Russell (2006c), Hansen and Lunde (2006), 

Diebold (2006)].2 In the special case that at = a and u  (U) = u , we find

corr(AJVr(i, A u u ) ~  .
J[2<52 +  2u;2]

2In a recent survey of measurement error in microeconometrics models, Bound, Brown, and 
Mathiowetz (2001) emphasize ‘mean-reverting’ measurement error that is correlated with the signal.



In this case, the range of correlation is limited, although it is quite wide - one can 

obtain up to a correlation of ± l / \ /2  depending on the relative magnitudes of 8, u.

An alternative model for endogenous noise has been developed by Barndorff- 

Nielsen, Hansen, Lunde, and Shephard (2006). In our notation, they have the en

dogenous noise part such that vai(vti) = 0 ( 1 / n ) , and an i.i.d., independent from X  

part with var(eti) =  O (1). They conclude robustness of their estimator to this type 

of endogeneity, with no change to the first order asymptotic properties compared to 

the case where vti = 0.

The focus of this paper is on estimating increments in quadratic variation of the 

latent price process,3 but estimation of parameters of the MS noise in our model is also 

of interest. We acknowledge that not all the parameters of our model are identifiable. 

In particular, the endogeneity parameter may not be identified unless one knows 

something about the distribution of e and in particular that it is not Gaussian.4 

However, other parameters are identified. In Linton and Kalnina (2005) we provided 

a consistent estimator of a , see also Section 6 here for empirical implementation and 

discussion. Estimating the function uj (r) would allow us to measure the diurnal 

variation of the MS noise. In the benchmark measurement error model this is a 

constant u  (r) =  lj that can be estimated consistently by Y^=i O'Wi — Yu)2 /2 n 

(Bandi and Russell, 2006b; Barndorff-Nielsen et al., 2006; Zhang et al., 2005a). In

3There is a question about whether one should care about the latent price or the actual price. 
This has been raised elsewhere, see Zhang, Mykland, and Ait-Sahalia (2005). We stick with the 
usual practice here, acknowledging that the presence of correlation between the noise and efficient 
price makes this even more debatable, Ait-Sahalia, Mykland, and Zhang (2006b). Also, note that 
we are following the literature and estimating the quadratic variation of the latent log-price and not 
the latent price.

4Suppose that Xi+i =  X i + (cr/y/n)zi+i and Y% =  X i  +  pzi +  creei, where Zi is standard normal 
and Ei is i.i.d. with mean zero and variance one. Then r i + 1 =  Y ^ i  —Y i =  +  p̂ j zi + 1 — pzi +

a eei+i -  a e6i. We have var[ri+i] =  2 (p2 +  a 2) +  ^  cov[r<+i,r<] =  -  (p2 +  a*) -  and 
cov[n+j, r*] =  0, j  > 1. Therefore, from the covariogram we obtain a 2 =  n(var[ri+i] +  2cov[ri+i,r^]) 
but we can only identify p2 +  a 2 not the two quantities separately. There are just two equations 
in two unknowns and if e* is also Gaussian, then there is no more information. If there is a non- 
Gaussian distribution one can identify p using parametric restrictions. This is similar to the classical 
measurement error problem, Maddala, (1977, p 296).
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our model, instead of n~l , the appropriate scaling is na~l . Such an estimator would

converge to 82 +  J  oj2 (u) du. Hence, this estimator would converge asymptotically to

the integrated variance of the MS noise. Following Kristensen (2006), in the special 

case S = 0, we could also estimate u  (•) at some fixed point r  using kernel smoothing,

£2 M = i EIU -  r) (Ayti_t)2
2n1~a £ " =i K h (ti- i -  r )  (t, -  i ,_ i) '

When the observations are equidistant, this simplifies to

n

S 2 (r) = Y . K » ~  r ) ( ^ - , ) V 2» - a
i = l

In the above, h is a bandwidth that tends to zero asymptotically and Kh(.) = 

K ( . /h ) /h , where K(.)  is a kernel function satisfying some regularity conditions. If 

we also allow for endogeneity ( 6 ^ 0 ) ,  u)2 (r) estimates u 2 (r) plus a constant, and so 

we still see the pattern of diurnal variation. See Section 6 for implementation.

1.3 Estimation

We suppose that the parameter of interest is the quadratic variation of X  on [0,1], 

denoted QVx = cr2dt. Let

i w  =  £  ( v ,  -  y«,)2
i= 1

be the realized variation (often called realized volatility) of Y, and introduce a modified 

version of it (jittered RV) as follows,

P ”.>1w  =  \  p E  to * .  -  Yti) 2 + 2  (Yti+l -  r tj) 2)  . (1.4)
\  i= 1 i= K  )

10



This modification is useful for controlling the end effects that arise due to het- 

eroscedasticity.

Our estimator of QVx makes use of the same principles as the TSRV estimator in 

Zhang et al. (2005a). We split the original sample of size n into K  subsamples, with 

the j th subsample containing rij observations. Introduce a constant (3 and c such that 

K  = cnP. The dependence of K  on n is suppressed in the sequel. For consistency 

we will need (3 > 1/2 — a. The optimal choice of (3 is discussed in the next section. 

By setting a = 0, we get the condition for consistency in Zhang et al. (2005a), that 

(3> 1/ 2.5

Let \Y,Y]ni denote the j th subsample estimator based on a if-spaced subsample 

of size rij,
T l j  — l

K  > T 3 =  E  ( y**« -  V .» * +j )  . 3 =  1. • • •,.K,
i= 1

and let

1 K
[ Y x r 9 = x ' E i Y x r *

j=i

be the averaged subsample estimator. To simplify the notation, we assume that n is 

divisible by K  and hence the number of data points is the same across subsamples, 

rii = n2 = ... = tik = n /K .  Let n = n/K.

Define the adjusted TSRV estimator (jittered TSRV) as

Q V x = [V v ]°”9 -  ( ^ )  [y, r]{n}. (i.5 )

Compared to the TSRV estimator, this estimator does not involve any new parameters 

that would have to be chosen by the econometrician, so it is as easy to implement. The 

need to adjust the TSRV estimator arises from the fact that under our assumptions

5This condition is implicit in Zhang et al. (2005) in Theorem 1 (page 1400) where the rate of
convergence is y jK /n  =  cVVi2̂ -1 .
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TSRV is not always consistent. The problem arises due to end-of-sample effects 

induced by heteroscedastic noise. For a simple example where the TSRV estimator 

is inconsistent, let us simplify the model to the framework of Zhang et al. (2005a), 

and introduce only heteroscedasticity in the noise, the exact form of which is to be 

chosen below. Let us evaluate the asymptotic bias of TSRV estimator.6

n V * E {Q v lSRV - Q V X]

=  n 1/6 |^ [ « ,  v\av9 — — E [u, «]nl  +  o (1)

=  c - v ^ g  ( 4 +* 4 +* + 4 4 )
2= 1

-  ( c - 'n - W  -  « - / “) g  ( < , 4 ,  +  4 4 )  + 0 (1 )
2=1

g ( 4 +4 +. + 4 4 ) - c' ln_1/2j F 4 4  + g  4 4 } + ° ( 1)-
2= 1  V 2 = 2  i = n —K + l

We see that the first and last K  returns that are ’’ignored” by averaged subsampled 

realized volatility [F, Y]avg ~  [u, u]avg have to be off-set by a fraction of the noise of all 

returns, coming from [F, Y]n ~  [u, u]n. For this bias correction to work, the volatility 

of the microstructure noise in the morning and afternoon has to be ’’close” to the 

volatility of the noise during the day. A simple counter-example that is motivated 

by our empirical section 6.3 is a parabola on [0,1], u 2 ( i/n ) — a +  — 0.5) 2 /100,

where a is any constant. In this case simple calculations give that TSRV estimator is 

inconsistent,
i /a —T S R V  1  i / c

n 1/6E(QV"x  -  QVX ) =  - ^ q ™176 +  ° (1).

By contrast, jittered, RV , [Y, Y]' mimics the structure of the volatility component

6For the reader to be able to follow our calculations in the next few lines, she should use the 
exact definition of n, n = n~ ^ +1 that Zhang et al. (2005) use. For all other purposes differences 
between our and their definition are negligible.
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that needs to be bias corrected for in [Y, Y]av9, which is

1 n —K
f  2 2 I 2 2
\°ti+Keti+K U)tieti

and so delivers a consistent estimator Q V X.

We remark that (1.5) is an additive bias correction and there is a nonzero proba

bility that Q Vx  < 0. One can ensure positivity by replacing Q VX by max{QVx , 0}, 

but this is not very satisfactory. Note, however, that we usually have Q Vx  >
- r — T S R V  --------
Q Vx  (except for when first and last subsamples have all flat prices and so Q Vx  =
■^-~~~TSRV --------
Q Vx  ), so the probability that QVx  < 0 is lower than the probability that

— T SR V
Q VX < 0 .

1.4 Asym ptotic Properties

The expansion for [Y, Y]av9 and [Y, Y]n both contain terms due to the correlation 

between the measurement error and the latent returns. The main issues can be 

illustrated using the expansion of \Y,Y]aV9 , conditional on the path of at:

Sin[Y, y ]°”» =  QVx +  2^  J  atdt + E  [u, «]“”9 +  O
K

(«) (c)

(b)

(1.6)

where Z  ~  iV (0,1), while the terms in curly braces are as follows: (a) the probability 

limit of [X,X]avg, which we aim to estimate; (b) the bias due to correlation between 

the latent returns and the measurement error; (c) the bias due to measurement error; 

(d) the variance due to discretization; (e) the variance due to measurement error.

Should we observe the latent price without measurement error, (a) and (d) would 

be the only terms. In this case, of course, it is better to use [X , X]n , since that has
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an error of smaller order rC1!2. In the presence of the measurement error, however, 

both [Y,Y]avg and [Y, Y]n are badly biased, the bias arising both from correlation 

between the latent returns and the measurement error, and from the variance of the 

measurement error. The largest term is (c), which satisfies

E  [u, u]av9 =  2nn~a lu2 (u) du +  +  O (n~a +  n -1) =  O (nn~a) ,

i.e., it is of order nn~a. So without further modifications, this is what [Y, Y \av9 

would be estimating. Should we be able to correct that, the next term would be 

2(5'yn/K )  f  &tdt arising from E  [X , u]avg . This second term is zero, however, if there 

is no correlation between the latent price and the MS noise, i.e., if 8 = 0. Interestingly 

when we use the TSRV estimator for bias correction of E  [n, u]avg, we also cancel this 

second term.

The asymptotic distribution of our estimator arises as a combination of two effects, 

measurement error and discretization effect. After correcting for the bias due to the 

measurement error (terms like b and c in eqn. 1.6), we still have the variation due 

to the measurement error (term e in eqn. 1.6). We can see that its contribution to 

the asymptotic distribution by observing how the estimator converges to the realized 

variance of the latent price X ,

— (Q V x  ~  [X, X]avĝ j = >  iV 10 , 8£4 +  16 S2 J  u 2 (u) du +  8 J  u 4 (u) g
V o o

(1.7)

The rate of convergence arises from vai[u,u]aV9 = O ( n /K n 2a) . Both parts of the 

noise u , which are v and e, contribute to the asymptotic variance. The first part of 

the asymptotic variance roughly arises from var^ , u ], the second part from var[v, e] 

(which is nonzero even though the correlation between both terms is zero), and the 

third part from varfe, el. If the measurement error is uncorrelated with the latent
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price, the first two terms disappear.

Should we observe the latent price without any error, we would still not know its 

quadratic variation due to observing the latent price only at discrete time intervals. 

This is another source of estimation error. Prom Theorem 3 in Zhang et al. (2005a) 

we have

n x' 2 ([X, X]avg -  QVX ) =*► MTV ( 0, |  J  a^d t)  , (1.8)

where MN( 0 , S )  denotes a mixed normal distribution with conditional variance S  

independent of the underlying normal random variable.

The final result is a combination of the two results (1.7) and (1.8), as well as 

the fact that they are asymptotically independent. The fastest rate of convergence 

is achieved by choosing K  so that the variance from the discretization is of the same 

order as the variance arising from the MS noise, so set n -1/2 =  y /n /K n 2a. The result

ing optimal magnitude of K  is such that /? =  2 (1 — a ) /3 . The rate of convergence 

with this rule is n -1//2 =  n _1/6_Q/3. The slowest rate of convergence is n -1/6, and 

it corresponds to large MS noise case, a = 0. The fastest rate of convergence is 

n -1/3, which corresponds to a  =  1/2 case. If we pick a larger (5 (and hence more 

subsamples K)  than optimal, the rate of convergence in (1.7) increases, and the rate 

in (1.8) decreases and so dominates the final convergence result. In this case the final 

convergence is slower and only the first term due to discretization appears in the 

asymptotic variance (see (1.9)). Conversely, if we pick a smaller /? (and hence K)  

than optimal, we get a slower rate of convergence and only the second term in the 

asymptotic variance (’’measurement error” in (1.9)), which is due to the MS noise.

We obtain the asymptotic distribution of Q V x  in the following theorem

T heorem  1.4.1. Suppose that { X u t € [0,1]} is a Brownian semimartingale satisfy

ing (1.1). Suppose that {/xf, t  £ [0,1]} and {<Jt, t  £ [0,1]} are measurable and cadlag
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processes, independent of the process {Wt, t  E [0,1]}. Suppose further that the ob

served price arises as in (1.2) with a  E [0,1/2). Let the measurement error uti be 

generated by (1.3), with eti i.i.d. mean zero and variance one and independent of the 

Gaussian process {Wt, t  E [0,1]} with E\eti\A+r} < 00 for some 7] > 0. Then,

(QVx -  QVx) => N (0,1),

discretization measurement error

R e m a r k s .

1. The quantity V(cr) collapses to the expression in Zhang et al. (2005a) when 

cj(.) is constant.

2. If one could find a consistent estimator V (<j) such that V(a)  — V(a)  = o(l) a.s., 

then the above theorem can be strengthened along the lines of Barndorff-Nielsen and 

Shephard to a feasible CLT, i.e., V(a)~l/2n l^2{QVx  — Q Vx) ==> N  (0 , 1) from which 

one could obtain confidence intervals for QVX . W ithout assuming S = 0 or constant 

lu(.), the procedure of Zhang et al. (2005a), p. 1404, would work to estimate V(a).

3. The main statement of the Theorem 1.4.1 can also be written as

„ l /6 + « /3  ( g y x  _  Q V x J ^  M N  (Q) cV (< 7)) f

where V{cr) = Vi (a) +  with Vi(cr) being the discretization error, while M N

denotes a mixed normal distribution with conditional variance cV(a) independent of 

the underlying normal random variable. We can use this to find the value of c that 

would minimize the conditional asymptotic variance, Copt(a) = ^V^/V^cr))1/3, pro
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vided Vi(a) > 0, resulting in the asymptotic conditional variance (3/22/3)V21/̂3V12̂ 3(o‘). 

If one has consistent estimators Vj(a) — Vj(a) = o(l) a.s., j  = 1,2, then Copt (a) = 

(2V2(<7)/Vi((7))1/3 is consistent in the sense that copt(a) — c ^ c r )  = o(l) a.s.

4. Suppose now that the measurement error is smaller than above and we have 

a  G [1/2,1) instead of a  G [0,1/2). Then, there is a consistency condition /? > 

1/3 that becomes binding and therefore optimal (3 allows the measurement error to 

converge faster than the discretization error. For (3 = 1/3 +  A (where A small and 

positive) the rate of convergence is n -1/2 =  n~^1~(3̂ 2 =  n _1//3+A/2 . Note that this is 

exactly the rate that occurs when there is no measurement error at all. So choose 

(3 G (1/3,1). The conclusion of the Theorem 1.4.1 becomes

V » - 1/ V 1- W2 (Q V X -  Q Vx)  = *  N  (0 ,1 ) ,

where Vi(cr) = (4/3) f  ajdt. This can be shown by minor adjustments to the proofs.

5. W hat if a  > 1? This means that [u, u\ is of the same or smaller magnitude 

than [X, X]. In the case a = 1 they are of the same order and identification breaks 

down. When a > 1 , realized volatility of observed prices is a consistent estimator of 

quadratic variation of latent prices, as measurement error is of smaller order. This is 

an artificial case and does not seem to appear in the real data.

How can we put this analysis in context? A useful benchmark for evaluation of the 

asymptotic properties of nonparametric estimators is the performance of parametric 

estimators. Gloter and Jacod (2001) allow for the dependence of the variance of i.i.d. 

Gaussian measurement error pn on n  and establish the Local Asymptotic Normality 

(LAN) property of the likelihood, which is a precondition to asymptotic optimality 

of the MLE. For the special case pn = p they obtain a convergence rate n -1/4, thus 

allowing one to conclude that the MSRV and realized kernels can achieve the fastest 

possible rate. They also show that the rate of convergence is u -1/2 if pn goes to zero 

sufficiently fast, which is the rate when there is no measurement error at all. Our
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estimator has a rate ti_1/3+a when there is no measurement error, which is also the

rate of convergence when the noise is sufficiently small. Also, Gloter and Jacod have

that for ” large” noise, the rate of convergence depends on the magnitude of the noise, 

similarly to our results. The rate of convergence and the threshold for the magnitude 

of the variance of the noise is different, though.

1.5 Simulation study

In this section we explore the behavior of the estimator (1.5) in finite samples. We 

simulate the Heston (1993) model:

d X t = (nt -  vt/2) dt +  atdWt

dvt = k, (0 — vt) dt +  7v\!2dBu

where vt = of, and Wt, B t are independent standard Brownian motions.

For the benchmark model, we take the parameters of Zhang et al. (2005a): 

fj, = 0.05, « =  5, 0 =  0.04, 7  =  0.5. We set the length of the sample path to 23400 cor

responding to the number of seconds in a business day, the time between observations 

corresponding to one second when a year is one unit, and the number of replications 

to be 100,000.7 We set a = 0. We choose the values of u  and 5 so as to have a 

homoscedastic measurement error with variance equal to 0.00052 (again from Zhang 

et al. (2005a)), and correlation between the latent returns and the measurement error

7Note that in the theoretical part of the paper we had for brevity taken interval [0,1]. For 
the simulations we need the interval [0,1/250]. Suppose the parameter of interest is o \d t, the 
quadratic variation of X  on [0,r]. In that case the asymptotic conditional variance of the Theorem 
1.4.1 becomes

d u^  .

This follows by simple adjustments in the proofs. We take r  =  1/250.

V
T  /  T  T

{a) — - r  J  ajdt  -f c-3 I 8t2S4 + 16#2 J  J 2 (u) du + 8 t-1 J uj ( u )
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equal to —0.1. For this we use the identity

corr(AXti, A uti) =
E{a)

and the fact that for our volatility we have E (a) = 9, var(<r) =  6^2/2 k,. We set 

/? = 2 (1 — a ) /3 . Figure 1.1 shows the common volatility path for all simulations.

8

7

6

5

4

3

20 0.5 1 1.5 2 2.5

x 10

Figure 1.1: The common volatility path for all simulations.

First, we construct different models to see the effect of varying a  and the number 

of observations within a day. We take the values of 6 and u  that arise from the 

benchmark model, and then do simulations for the following combinations of a  and 

n. When interpreting the results, we should also take into account that both of these 

parameters change the size of the variance of the measurement error. We measure 

the proximity of the finite sample distribution to the asymptotic distribution by the 

percentage errors of the interquartile range of n l 2̂{QVx  — QVx) compared to 1.3>/V, 

the value predicted by the distribution theory. We note that this is not the same as 

the MSE or variance of the estimator: it can be that a very efficient estimator can 

be poorly approximated by its limiting distribution and vice versa. This measure 

is easiest to interpret if we work with a fixed variance, i.e., when we condition on
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the volatility path. Hence, we simulate the volatility path for the largest number 

of observations, 23400, and perform all simulations using this one sample path of 

volatility. The last parameter to choose is K , the number of subsamples. This is the 

only parameter that an econometrician has to choose in practice. We examine four 

different values as follows (the expressions are all rounded to the closest integer):

( 2 V r2 / l / 1 ) 1/ 3 n 3 ( 1- “ ) asymptotically optimal rate and c Tables A .l  and A .2
^ g ( l - a ) variation of above Tables A.S and A . 4

2
77,3 variation of above Table A .5

( 1 £ ) 1 / 3 " 1 /3 Bandi and Russell (2006a, eq. 24) Table A .6

Table 1.1: Choices of K

Table A .l contains the interquartile range errors (IQRs), in per cent, with the 

asymptotically optimal rate and constant (in terms of minimizing asymptotic mean 

squared error) for K. That is, we use K  = {2 V2 /V 1 ) 1/37t,2(1—"I/3, rounded to the nearest 

integer, where V\ and V2 are discretization and measurement errors from (1.9). Table 

A.2 contains the values of K.

First of all, for small values of a , the percentage errors decrease with n as predicted 

by the theory. However, we do see some large errors, and from the values of K  in 

Table A.2 we can guess this is due to the asymptotically optimal rule selecting very 

low 0 ^ •  In fact, for the volatility path used here, =  (2V2/V1)1/3 =  0.0242. Hence, 

another experiment we consider is an arbitrary choice c = 1. The next two tables 

(Table A.3 and A.4) contain the percentage errors and values of K  that result from 

using K  = n 2(1-a)/3.

The performance of this choice is much better. We can see from Table A.3 that 

for small values of a , the asymptotic approximation improves with sample size. The 

sign of the error changes as a  increases for given n, meaning that the actual IQR is 

below that predicted by the asymptotic distribution for small a  and small n  but this 

changes into the actual IQR being above the asymptotic prediction.
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Another variant that does not include the unobservable a  would be to use K  = 

n2' 3.

Finally, we consider a method proposed by Bandi and Russell (2006a), which

requires some discussion. They establish the exact mean squared error of TSRV

under the assumptions of the independent additive noise model, and in addition they
u 1

assume asymptotically constant volatility, i.e., f  o\du — f  a^du/n  for each i, as
U-i o

well as E  (e4) =  3E 2 (e2). Two assumptions are not satisfied in our simulation setup,

the independence between the noise and the latent returns, as well as the assumption 
u l
f  credit, = f  o2udu /n  for each i (see Figure 1.1). Therefore, this should be considered

ti— i 0
as another ad hoc selection method in our simulation setup. We note that this 

bandwidth choice results in an inconsistent estimator in our framework and in the

framework of ZMA (2005a) (i.e., when a  =  0, ^  > 1/2 is required for consistency).

Note tha t the choice K  was derived for Q V  without jittering , but this end-of-

sample adjustment, though theoretically crucial, is negligible in simulations and, as we 

will see in the next section, also in real data. Table A.6 contains the IQR percentage 

errors and values of K  that result from using K BR =  (3RV2/2R Q )1̂ 3 n 1/3, where 

R V  is the realized variance, R V  = (A^zoiu)2 and RQ  is the realized quarticity, 

RQ  =  § $3 (AYiow)4. Here, Y ^  is low frequency (15 minute) returns, which gives 

S  = 24 to be the number of low frequency observations during one day.

We see that the IQR errors of this choice get worse with sample size for small 

a , which reflects the inconsistency predicted by the theory. On the other hand the 

errors are small and improve with n for large a, i.e., when the noise is small. The 

performance is generally better than with asymptotically optimal K , except for cases 

that have both large n  and small a , including the case a = 0 usually considered in 

the literature. We notice that K BR rule gives better results than the asymptotically 

optimal rule when it chooses a larger K , which is in most cases, but not all. In 

comparison to rules K  = n 2̂ ~ a^ 3 and K  =  n2y/3 (Tables A.3 and A.5, respectively),
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the performance of this choice is still disappointing, especially for small a. We con

clude that in this setting the K BR rule is not always the best choice according to our 

criterion.

It has been noted elsewhere that the asymptotic approximation can perform 

poorly, see Gongalves and Meddahi (2005) and Ai’t-Sahalia, Zhang and Mykland 

(2005a).

From Tables A .l, A.3, and A.5 we see that magnitude of noise does not affect the 

quality of the asymptotic approximation. Although we see the interquartile range 

error having some relationship with a  in Table A.3 and especially Table A .l, this is 

purely driven by changes in K . This is evidenced by Table A.5 where the rule for 

K  does not depend on a  and the respective error is close to constant for the same 

number of observations and different a. Another conclusion here is that a good rule 

for K  does not necessarily have to depend on a , which is convenient for practical 

purposes.

In a second set of experiments we investigate the effect of varying cj, which controls 

the variance of the second part of the measurement error, for the largest sample size. 

Denoting by uj\ the value of u 2 in the benchmark model, we construct models with 

cj 2 =  uj2, Aw2, 8lu2, IOo; ,̂ and 20u 2. The corresponding interquartile errors are 0.96%, 

1.26%, 1.93%, 2.29%, and 4.64%.

In a third set of experiments we investigate the effect of varying 5, which controls 

the size of the correlation of the latent returns and measurement error. Denoting 

by S\ the value of S2 in the benchmark model, we construct models with S2 being 

from 0.01 x S2 to 20 x S2. The exact values of S2, as well as corresponding correlation 

between returns and increments of the noise, and the resulting interquartile errors are 

reported in Table A. 7. We can see that when the number of observations is 23400, 

there is no strong effect from the correlation of the latent returns and measurement 

error on the approximation of the asymptotic interquartile range of the estimator.
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1.6 Empirical analysis

To illustrate the above ideas, we perform a small empirical analysis. We discuss es

timation of a, <*;(.), and the quadratic variation of the latent price. The endogeneity 

parameter 5 is unfortunately nonparametrically unidentified and so cannot be esti

mated. Its sole purpose is in allowing for flexible size and sign of endogeneity, with 

respect to which our estimator of quadratic variation is robust.

Figure A .l in the appendix shows the volatility signature of the data we use, which 

is IBM transaction data, year 2005. The plot indicates that market microstructure 

noise is prevalent at the frequencies of 10 —15 minutes and higher. Since the volatility 

signature plot does not become negative, one cannot find evidence of endogeneity 

using the method of HL (2006). As pointed out already by HL(2006), this does not 

mean there is no endogeneity.

1.6.1 The D ata

We use IBM transactions data for the whole year 2005. We employ the data cleaning 

procedure as in HL (2006), main paper and rejoinder. First, we use transactions 

from NYSE exchange only as this is the main exchange for IBM. Second, we use only 

transactions from 9:30AM to 4:00PM. Third, for transactions with the same time 

stamp, we use the average price. Fourth, we remove outliers as follows. If the price 

is too much above the ask price or too much below the bid, we remove it. Too high 

means more than spread above the ask, and too low means more than spread below 

the bid. Fifth, we remove days with less than 5 hours of trading (there were none). 

For discussion of the advantages of this procedure see HL (2006). The mean number 

of transactions per day in our cleaned data set is 4,484 (for comparison, there are 

4,680 intervals of 5 seconds in the 6.5 hours between 9:30 and 16:00).
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1.6.2 Estim ation of a

The parameter that governs the magnitude of the microstructure noise, a, can be 

consistently estimated. Recall that the leading term of realized volatility [Y, Y]n is 

[it, u]n i.e.,

[Y, Y]n = y > tj+1 -  +  o ^ n 1-*)
i=1

n —1

=  n  ° y ^ (a iti+1et,+1 -  wtiet i +  5\/n(W ,,+1 -  Wt())2 + Opin1 a)
i=1

=  n 1~ac +  op(nl~a)

for some positive constant c. It follows that

logQY, Y]n/n ) = —a  log n +  log c +  op(\og n).

We therefore estimate a  by

log ( [ O T / n )  n i ma  = ----------— r—------- , (1.10)
log(n)

see Linton and Kalnina (2007).

Although this is a consistent estimator for a , it has a bias that decays slowly. To 

reduce the bias, we estimate a  over windows of 60 days instead of 1 day, i.e., we take 

our fixed interval [0,1] to represent 3 months instead of 1 day. Figure 1.2 shows the 

estimates over the whole year 2005 where we roll the 60 day window by 1 day. We 

see that a  varies between 0.64 and 0.7 with an average value of 0.67.

Although this is a consistent estimator for a , it is not precise enough to give 

a consistent estimator of na. As a consequence, this estimator cannot be used for 

consistent inference for Q V X. In Linton and Kalnina (2005) we provide a sharper bias 

adjusted version of a , a ad\  but the adjusted estimator is not feasible as it requires
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Figure 1.2: Estimated a over a rolling window of 60 days (approx. 3 months). X  axis 
shows the date of the first day in the window.

knowledge of u  (r). This last parameter can only be consistently estimated if a  =  0 

and (5 = 0. The lack of precision in a  also prevents us from developing a test of the 

null hypothesis a  =  0. Therefore, the deviations of a  we see in Figure A.l provide 

only a heuristic evidence that the true a  is positive.

1.6.3 E stim ation  o f Scedastic function  u j{ . )

Now we estimate the function u  (r) that allows us to measure the diurnal variation 

of the MS noise. In the benchmark measurement error model this is a constant 

lj ( t )  =  uj that can be estimated consistently by {^U+i “  ^t*)2 / ^ n (Bandi and

Russell (2006c), Barndorff-Nielsen et al. (2006), Zhang et al. (2005a)). In the special 

case a  =  0 and (5 =  0 this estimator would converge asymptotically to the integrated 

variance of the MS noise, f  u 2 (r) dr. We can estimate the function J 1 (.) at a specific 

point t using a simple generalization of the approach of Kristensen (2006) to the case 

with market microstructure noise. For equidistant observations, the estimator is
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We pick a random day, say 77th, which corresponds to 22nd of April. Assume 

a  =  0 and <5 = 0 and note that if these assumptions are not true, the level will be 

incorrect, while the diurnal variation will still be correct. Figure 1.3(b) shows the 

estimated function Q2 (r) using calendar time with 30 seconds frequency. We see 

that the variance of MS noise is far from being constant, and is closer to U-shape. 

Higher u)2 (r) at the beginning of the day and low values around 13:00 are displayed 

by virtually all days in 2005, while higher values of uj2 (r) at the end of the day 

are less common. Hence, overall, we confirm the findings of the empirical market 

microstructure literature that the intraday patterns are of U or reverse J shape (see 

references in the introduction).

0.06r 

0.05 

0.04 

0.03

0.02 ,

9:30 11:00 12:00 13:00 14:00 15:00 16:00

(a) Squared returns 

Figure 1.3: IBM transactions data, 22nd of April 2005.

1.6.4 E stim ation  o f Q uadratic V ariation

Our theory predicts that original T S R V  estimator is asymptotically as good as our 

jittered  version if intraday volatility pattern is ’’close enough” to constant volatility. 

Visual inspection of the estimated volatilities in the previous section suggest that 

there is some deviation from constant volatility, so one might call for adjustment to 

the T S R V  estimator. How important is this adjustment in practice?

(b) Estimated function uj2(.)
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We check empirically the effect of jittering  on daily point estimates of quadratic 

variation using IBM data in 2005. Figure 1.4(a) shows a plot of relative differences

—   TSR V
Q V x -  Q

 TSRV
QV x

for every day in 2005 where we use tick time sampling (with 1-tick and K  =  n2/3). 

The plot for 5 minute calendar time sampling (CTS) is very similar. The mean of 

these relative differences over all days is 0.0009. Figure 1.4(b) shows means of the 

relative difference for CTS, across different frequencies.8 We see that, on average, 

for high frequencies, jittering  makes very little difference. For lower frequencies the 

change is more visible. This arises from the fact that the jittering  changes the T S R V  

estimator on two subsamples only (see eqn. 1.12). The more subsamples there are, 

the less important our adjustment (this can also be achieved for any fixed frequency 

by using larger number of subsamples than our choice K  = n2/3).

Mar May July Sep Nov

(a) daily differences, 1-tick sampling

0.16

0.14

0 12

0.08

006

0.04
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(b) average daily differences, CTS

- T S R V

Figure 1.4: What is the relative difference —  from our adjustment to the
QV x

TSRV estimator?

Another important observation is that jittering  always increases the value of QV

8This average excludes October 27. On this day our estimator, when calculated on fequencies 
above 7 minutes, became several times bigger than TSRV estimator.
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estimates, since we can write

QVTx RY = QVx + \ ( y , {Yti+1 -  Ytl)2 + J2 (y‘<+. -  y*.)2) > QVx- (1-12)
\  i = 1 i —n —K + 1  )

The more there is variation in the beginning of the day and the end of the day, the 

larger is the adjustment. This implies that jittering partly alleviates the problem 

that the usual TSRV estimator can sometimes become negative. With our data set, 

the only negative value (though very small) we saw was on February 28 when we 

calculated TSRV estimator with 10 minutes CTS frequency. The jittered version was 

positive.

We conclude that for most applications our estimator is very close to the T S R V  

estimator, and so for practical applications plain T S R V  estimator can be used, with

out adjustment for heteroscedastic market microstructure noise. As a result, as far as 

point estimates are concerned, the existing empirical studies of T S R V  estimator are 

still valid in our theoretical framework. See, for example, investigations of forecasting 

performance in A'lt-Sahalia and Mancini (2006), Andersen, Bollerslev, and Meddahi 

(2006), Bandi, Russell, and Yang (2007), and Ghysels and Sinko (2006).

1.7 Conclusions and Extensions

In this paper we showed that the TSRV estimator is consistent for the quadratic 

variation of the latent (log) price process when the measurement error is correlated 

with the latent price, although some adjustment is necessary when the measurement 

error is heteroscedastic. We also showed how the rate of convergence of the estimator 

depends on the magnitude of the measurement error.

Inference for TSRV estimator is robust to endogeneity of the measurement error. 

Provided the suggested adjustment to the estimator is implemented to preserve con

sistency, inference is also robust to heteroscedasticity of the noise. However, since the
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rate of convergence depends on the magnitude of the noise, inference is not robust to 

possible deviations from assumptions about this magnitude. We plan to investigate 

this question further.

Other examples where inference question needs to be solved include autocorre

lation in measurement error (as in A'lt-Sahalia, Mykland, and Zhang, 2006a), or 

other generalizations to the independent additive error model (Li and Mykland 2007). 

Gongalves and Meddahi (2005) have recently proposed a bootstrap methodology for 

conducting inference under the assumption of no noise and shown that it has good 

small sample performance in their model. Zhang, Mykland, and Ait-Sahalia (2005b) 

have developed Edgeworth expansions for the TSRV estimator, and it would be very 

interesting to use this for analysis of inference using bootstrap. The results we have 

presented may be generalized to cover MSRV estimators and to allow for serial cor

relation in the error terms, although in both cases the notation becomes very com

plicated.
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Chapter 2 

Subsampling High Frequency D ata

2.1 Introduction

This paper proposes the first automated method for conducting inference with high 

frequency data. In particular, it proposes to estimate the asymptotic variance of 

some estimator without relying on the exact expression of the asymptotic variance. 

In the traditional stationary time series framework, this task can be accomplished by 

bootstrap and subsampling variance estimators, but these are inconsistent with high 

frequency data.

A new subsampling method is developed, which enables to conduct inference for 

a general class of estimators that includes many estimators of integrated volatility. 

The question of inference on volatility estimates is important due to volatility being 

unobservable. For example, one might want to test whether volatility is the same on 

two different days, or in two different time periods within the same day. The latter 

corresponds to testing for diurnal variation in the volatility. Also, a common way 

of testing for jumps in prices is to compare two different volatility estimates, which 

converge to the same quantity under the null hypothesis of no jumps, but are different 

asymptotically under the alternative hypothesis of jumps in prices. Then, a consistent
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inferential method is needed to determine whether the two volatility estimates are 

significantly different.

To illustrate the robustness of the new method, this paper considers the example of 

inference problem for the integrated variance estimator of Ait-Sahalia et al. (2006a), 

in the presence of market microstructure noise. As several assumptions about the 

market microstructure noise are relaxed, the expression for the asymptotic variance 

becomes more complicated, and it becomes more challenging to estimate each com

ponent of the variance separately. On the other hand, the new subsampling method 

delivers consistent confidence intervals that are simple to calculate.

According to the fundamental theorem of asset pricing (see Delbaen and Schacher- 

mayer, 1994), the price process should follow a semimartingale. In this model, in

tegrated variance (sometimes called integrated volatility) is a natural measure of 

variability of the price path (see, e.g. Andersen, Bollerslev, Diebold, and Labys, 

2001). With moderate frequency data, say 5 or 15 minute data, this can be es

timated by the so called Realized Variance (RV), a sum of squared returns. The 

nonparametric nature of Realized Variance and the simplicity of its calculation have 

made it popular among practitioners. It has been used for asset allocation (Fleming, 

Kirby, and Ostdiek, 2003), forecasting of Value at Risk (Giot and Laurent, 2004), 

evaluation of volatility forecasting models (Andersen and Bollerslev, 1998), and other 

purposes. The Chicago Board Options Exchange (CBOE) started trading S&P 500 

Three-Month Realized Volatility options on October 21, 2008. Over the counter, 

these and other derivatives written on RV have been traded for several years. These 

financial products allow one to bet on the direction of the volatility, or to hedge 

against exposure to volatility. Pricing of these derivatives is done according to the 

theory of quadratic variation.

31



Suppose the log-price X t follows a Brownian semimartingale process,

dX t =  [itdt +  atdW t , (2.1)

where 11, a , and W  are the drift, volatility, and Brownian Motion processes, respec

tively. Our interest is in estimating volatility over some interval, say one day, which 

we normalize to be [0,1]. The quantity of interest is captured by integrated variance, 

or quadratic variation over the interval, which is defined as

IVX = j  aids.
Jo

Realized variance (or empirical quadratic variation) is a consistent estimator of inte

grated variance in infill asymptotics, i.e., when the the approximation is made as the 

time distance between adjacent observations shrinks to zero. According to this ap

proximation, therefore, the estimation error in RV should be smaller for even higher 

frequency data than 5 minutes. Ironically, this is not the case in practice. For the 

highest frequencies, the data is more and more clearly affected by the bid-ask spread 

and other market microstructure frictions, rendering the semimartingale model inap

plicable and RV inconsistent. Zhou (1996) proposed to model high frequency data as 

a Brownian semimartingale with an additive measurement error. This model can rec

oncile the main stylized facts of prices both in moderate and high frequencies. Zhang, 

Mykland, and A'it-Sahalia (2005) were the first to propose a consistent estimator of 

integrated variance in this model, in the presence of i.i.d. microstructure noise, which 

they named the Two Scale Realized Volatility estimator. Consistent estimators in 

this framework were also proposed by Barndorff-Nielsen, Hansen, Lunde, and Shep

hard (2008a), Christensen, Oomen, and Podolskij (2008), Christensen, Podolskij, and 

Vetter (2006), and Jacod, Li, Mykland, Podolskij, and Vetter (2007). Ai't-Sahalia, 

Mykland, and Zhang (2006a) extend the Two Scale Realized Volatility estimator to
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the case of stationary autocorrelated microstructure noise, but do not propose an in

ference method. The problem with inference arises from the complicated structure of 

the asymptotic variance of the Two Scale Realized Volatility estimator. The method 

proposed in this paper can be used to conduct inference for the Two Scale Realized 

Volatility estimator in presence of not only autocorrelated, but also heteroscedastic 

measurement error. This allows the model to accommodate the stylized fact in the 

empirical market microstructure literature about the U-shape in observed returns and 

spreads.1

This new subsampling scheme is useful in practice when available estimators of 

the asymptotic variance are complicated and hence present difficulties in constructing 

confidence intervals. In such cases, a common procedure is to estimate the asymptotic 

variance as a sample variance of the bootstrap estimator. It turns out that even in 

the simple case of RV, this procedure is inconsistent, as the sample variance of the 

bootstrap estimator does not converge to the asymptotic variance of the original 

estimator, see Goncalvez and Meddahi (2008).

The subsampling method of Politis and Romano (1994) has been shown to be 

useful in many situations as a way of conducting inference under weak assumptions 

and without utilizing knowledge of limiting distributions. The basic intuition for con

structing an estimator of the asymptotic variance is as follows. Imagine the standard 

setting of discrete time with long-span (also called increasing domain) asymptotics. 

Take some general estimator 9n (think of i.i.d. Y(s, a parameter of interest 9 = E (Y ), 

and 9n = ^ S  Vj»)- Suppose we know its asymptotic distribution

r n(0n — 9) ==> N  (0, V)

as n —► oo, where = >  denotes convergence in distribution, and r n is the rate of

1See Andersen and Bollerslev (1997), Gerety and Mulherin (1994), Harris (1986), Lockwood and 
Linn (1990), and Mclnish and Wood (1992).
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convergence when n  observations are used. Suppose we would like to estimate V,
/ s

in order to be able to construct confidence intervals for 0n. This can be done with 

the help of many subsamples, for which the estimator 0n has the same asymptotic 

distribution. In particular, suppose we construct K  different subsamples of m  = m(n) 

consecutive observations, starting at different values (whether they are overlapping 

or not is irrelevant here), where m  = m(n) —► oo as n —» oo but m /n  —> 0. Denote by 

Qn,m,i the estimator 0n calculated using the Ith block of m  observations, with n  being 

the total number of observations. Then, the asymptotic distribution of Tm(0n^ i  — 0) 

is the same, i.e.

Tm (e„ ,m ,i-e )  = >  n (o, v ) (2 .2)

for each subsample Z, I =  1, . . . ,  K . Hence, V can be estimated by the sample variance 

of t m0n,m,i (with centering around 0n, a proxy for the true value 0). This yields the 

following estimator of V

^  I K  _  _  2
V  =  r m x -j7 ~  ®n)  ’ (2'3)

1 = 1

and we have

V  V,

where denotes convergence in probability. Notice that the estimator in (2.3) is 

like average of squared r m (0n,m,i ~  Qj over all subsamples, except that 0n plays the 

role of 0. The difference between 0n and 0 is negligible because 0n converges faster to 

0 than 0n,m,i does.

It is shown that a direct application of the above method to the high frequency 

framework fails. This fact is illustrated for the RV example in model (2.1). That is, 0n 

is taken to be Realized Variance and 0 its probability limit, integrated variance. The 

intuition behind the failure is straightforward. The problem is that 0n^ i  and 0n do 

not converge to the same quantity and so (2.2) cannot be satisfied. The underlying
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reason is th a t the spot (or infinitesimal) volatility at is changing over time. The 

estimator calculated on a small block cannot estimate the integrated variance 0, 

because 6 contains information about spot volatility on the whole interval.

A novel subsampling scheme is proposed that can estimate the asymptotic variance 

of RV. Importantly, it can also be applied to the Two Scale Realized Volatility estima

tor of Ait-Sahalia et al. (2006a), in the presence of autocorrelated measurement error 

with diurnal heteroscedasticity. There are no alternative inferential methods available 

in the literature for this case. Moreover, this subsampling scheme can, under some 

conditions, estimate the asymptotic variance of a general class of estimators, which 

includes many estimators of the integrated variance.

The remainder of this paper is organized as follows. Section 2.2 describes the usual 

subsampling method of Politis and Romano (1994) and proposes a new subsampling 

method. It also introduces an alternative scheme that can be potentially useful. 

Section 2.3 shows how inference can be conducted for the Two Scale Realized Varinace 

estimator in the presence of autocorrelated and heteroscedastic microstructure noise. 

Section 2.4 applies the subsampling method to a general class of estimators. Section 

2.5 investigates the numerical properties of the proposed method in a set of simulation 

experiments. Section 2.6 applies the method to high frequency stock returns. Section 

2.7 concludes.

2.2 Description of Resampling Schemes

The aim of this section is to motivate and introduce a new subsampling scheme in 

a relatively simple framework. Since the proposed method does not change across 

models or estimators, the methodology and intuition behind it is illustrated with 

the example of Realized Volatility. The first subsection explains the failure of boot

strap and subsampling (Politis and Romano, 1994) methods for the estimation of
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the asymptotic variance of RV. The second subsection introduces a new subsampling 

scheme th a t can estimate the asymptotic variance of RV consistently. The third sub

section describes an alternative scheme that is of theoretical interest, but which will 

not be used beyond the RV example.

We first describe the setting for the Realized Volatility example. Suppose that 

log-price X t is the following Brownian semimartingale process

dX t = n tdt +  atdWu (2.4)

where Wt is standard Brownian motion, the stochastic process n t is locally bounded, 

and at is a cadlag spot volatility process.2 Suppose that we have observations on X  

on the interval [0, T\, where T  is fixed. W ithout loss of generality set T  = 1. Assume 

observation times are equidistant, so that the distance between observations is 1/n. 

The asymptotic scheme is infill as n  —» oo.

Suppose the quantity of interest is integrated variance (also called integrated 

volatility),

IVX = (  aids. (2.5)
J o

IVx is a random variable depending on the realization of the volatility path {<t*, t G [0,1]}. 

The usual estimator of IVx is the Realized Variance (often called Realized Volatility)

n

RVn = (Xi/n ~  ^ (i- l) /n )2 • (2.6)
i—1

This satisfies

Vn (RVn -  IVX) = *  M N {0, V) (2.7)

V  = 2IQ = 2 f  a 4sds 
Jo

where M N (0 ,V )  denotes a mixed normal distribution with random conditional vari

2In other words, the sample paths of the volatility process are left continuous with right limits.
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ance V  independent of the underlying normal distribution.3 The convergence (2.7) 

follows from Barndorff-Nielsen and Shephard (2002) and Jacod (2006), and is stable 

in law, see Aldous and Eagleson (1978). Stable convergence is slightly stronger than 

the usual convergence in distribution. Stable asymptotics are particularly convenient 

because it permits division of both sides of (2.7) by the square root of any consis

tent estimator of V  to obtain standardized asymptotic distribution for conducting 

inference on RVn.

In fact, for the Realized Variance example, inference can be conducted relatively 

easily. Barndorff-Nielsen and Shephard (2002) propose to estimate V  as twice the 

realized quarticity, V  — 21 Qn, where realized quarticity is sum of fourth powers of 

returns, properly scaled,

niQn =  77 Y: (Xj/n ~ V(z-i)/n)4 • (2.8)
i = 1

The estimator V  is consistent for V  in the sense that V /V  — 1. This result allows 

the construction of consistent confidence intervals for Q Vx . For example, a two-sided 

level a  interval is given by Ca = RVn ±  za/2 V 1̂ 2/ y/n, where is the a  quantile from 

a standard normal distribution, and this has the property that Pr[/Vx £ Ca] —► 1 — a. 

Mykland and Zhang (2006,7) have proposed an alternative estimator of V  tha t is more 

efficient than V  under the sampling scheme (2.4) and can also be used to construct 

intervals based on the studentized limit theory.

The next subsection explains why the usual bootstrap and subsampling methods 

cannot be used to estimate V  in this framework. Then, a new subsampling method 

is introduced. Section 2.2 concludes with description of an alternative subsampling 

scheme.

3In other words, the limiting p.d.f. is of the form f ( x ) = f  <f>0 V(x) fv(v)dv ,  where f v  denotes the
p.d.f. of V  and 4>qjV{x ) — exp(—x 2/ 2v2) / V 2nv
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2.2.1 Failure of the Traditional Resam pling Schemes

Recently, Goncalvez and Meddahi (2008) have proposed a bootstrap algorithm for 

RV. They use the i.i.d. and wild bootstrap applied to studentized RV. They show 

that resampling the studentized RV gives confidence intervals for RV with better 

properties than the 2IQ n estimator of asymptotic variance. An essential feature of 

their procedures is reliance on an estimator of the asymptotic variance, which is not 

always available. A more widely used bootstrap procedure is to estimate asymptotic 

variance as the sample variance of the bootstrap statistic. This procedure is simple, 

but inconsistent in the high frequency framework, as even in the simple case of RV, the 

bootstrap estimator has a different asymptotic variance than the original estimator, 

see Goncalvez and Meddahi (2008). This means that confidence intervals constructed 

using the usual bootstrap method axe inconsistent.

We now consider the popular method of Politis and Romano (1994). This sub

sampling scheme fails in our setting, highlighting the difference that high frequency 

framework brings. It is however instructive to consider, as subsequent methods pro

posed use the same underlying idea.

Let 9n be the RV calculated on the full sample, and let 9nrnx be the RV calculated 

on the Ith block of m  observations,4

m l

9 n .m .l  =  ^   ̂ ( X i / n  ^ { i —\ ) j n )  i 

i = m ( l —1)

see Figure 2.1. In the above, 0 < I < K, where K  is the number of subsamples, 

K  = |_n/mj.

Assumption 5.3.1 of Politis, Romano and Wolf (1999) is satisfied, i.e., the sampling 

distribution of Tn(0n — 9) converges weakly. Therefore, in the setting of stationary

4For simplicity, all subsampling schemes in this paper are presented with non-overlapping sub
samples. However, it is inconvenient to display non-overlapping subsamples in Figures, so Figures 
2.1, 2.2, and 2.3 show maximum overlap versions of the subsampling schemes.
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THIRD SUBSAMPLE

 1---1---1---1---- 1--1---1---1---1---1--- 1
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Figure 2.1: The Subsampling Scheme of Politis and Romano (1994) 

and mixing processes, V  should be approximated well by

Ki ,
Vpr = m x

n
1=1

However, in our setting, it is easy to see that Vpr does not converge to V. The 

estimator on the full sample converges to the true value, 6n —>p 0. On the other hand, 

the estimator on a subsample converges to zero. This is because each high frequency 

return is of order n -1/2, so a sum of m  squared returns is of order m /n  —> 0. Thus, 

(on,m,i ~  Qn'j converges to 9 and Vpr is asymptotically equal to m62. Notice that 

the value 62 is not related to V, which is the parameter of interest. A formal proof 

of the following proposition is in the appendix,

P ro p o s itio n  2.2.1. Let X  satisfy (2.4) and 9n be the Realized Variance defined in 

(2.6). Let ra —> oo and m /n  —> 0 as n —» oo. Then,

Vpr  ~  m62 = op (m ) .

A  crucial ingredient of the subsampling method of Politis and Romano is that 

0n,m,i and 9n estimate the same quantity. A direct application of their method to
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high frequency framework violates this basic principle. Part of the reason is the 

different rates of magnitude. This could be accounted for by using ^ 0 n,m,z instead 

of 6 n ,m ,i• In this case, it still holds that ^ 0 n,m,z — 0n &  0. This is because ^ 0 n,m,z 

estimates the spot variance <j2 (•) at some point, instead of the integrated variance 6.5 

Therefore, the underlying reason for the failure of the subsampling method of Politis 

and Romano is the fact that the spot variance changes over time.

2.2.2 The N ew  Subsampling Scheme

We now introduce and motivate the new subsampling scheme. The current subsection 

describes this scheme for the RV example, and Section 2.3 applies it to the Two Scale 

Realized Volatility estimator. Section 2.4 applies this subsampling scheme to a more 

general class of estimators.

In the subsampling scheme of Politis and Romano (1994), the problem was that 

the estimator on a subsample 6n,mj  was centered at ’’the wrong quantity” . In the 

formula
^  1 K ^  2 
V p R  =  Tfl X  ^  ^  ^ 0 n,m ,l •>

1 = 1

the quantity 6n plays the role of 6, but the problem is that the leading term in #n?m,z 

is integrated variance over a shrinking interval,

lm /n
6i = f  a2 (u ) du. (2.9)

Thus, 0n m i either converges to zero or the spot volatility depending on whether it is 

scaled by n /m , but in any case it cannot estimate 9, the integrated volatility over the 

whole interval [0,1]. Therefore, 0n,mj  — 6n does not converge to zero, causing Vpr  to 

explode.

5For estimation of the spot variance using RV on a shrinking interval, see Foster and Nelson 
(1996), Andreou and Ghysels (2002), Mikosch and Starica (2005), and Kristensen (2008).
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Consider an alternative approach. We aim to center estimators at 6 1 , in order to 

extract the information about the variance of Qn,m,i* The leading term of the variance

of @n,m,l I®
Im/n

V, = 2  J  * 4ndu.

It is of course not equal to V, which we want to estimate, but we can use the fact 

that these add up to V  over subsamples,

K
V  = 2 f a 4udu = ' £ V l■

1 = 1

Given the additive structure of V, this approach can still give a consistent estimator 

of V, despite volatility changing over time. The only question left is, how to obtain 

an estimator of the centering factor Oi. So consider using two subsamples, one with 

length J  and one with length m, such that J  is of smaller order than m. Then, both 

^n ,m ,i and j d n,j,i estimate the spot variance, but they have different convergence 

rates. This in turn means one can be used to center the other. To simplify the
<4ong short ^

presentation, we use notation 6l and 9l instead of 6n^ i  and Vnjj.
^-short ,—

Since the rate of convergence of is V J , the estimator of V  becomes

-r'l 1 J£, /  Tl-^short Tl -~4,ong\ ^

k - - - ' x k S ( / '  - s "' )  (210)

—short long
where K  = \n /m \. 6 t and are Realized Variances calculated on the short 

subsample with J  observations, and the long subsample with m  observations. Fig

ure 2.2 provides a graphical illustration. The corresponding time intervals used are

, so the expressions for estimators on subsamples(l—l)m (l—l)m+J 
n ’ n and lm

n ’ n
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Figure 2.2: The New Subsampling Scheme

become

'pjshort / \  2
@1 —— )  ) ( X (I— l)m+t X. (I — l)m+i— 1 )

%— 1 '  71 n /

'pJong / \  2
I =~ )   ̂ ( X (/—l)m+i X (/ —l)m+i—1 )

i =  1 '  71 n /

~ ̂ short '-long
For an arbitrary volatility process, n J  9l and nm  Bx cannot be guaranteed 

to be close. For example, if the volatility process has a large jump on the interval
'~J°ng short .^ sh o r t _.^-long

covered by 9X , but not covered by 0X , then n J  6X and nm  6X can differ

substantially. Therefore, some kind of smoothness condition on the volatility paths is 

needed. Importantly, we do not require differentiable sample paths. It can be shown 

that a sufficient condition is to assume that volatility itself evolves like a Brownian 

semimartingale. This is a common way of modeling volatility in practice.

A ssu m p tio n  A l .  The volatility process {a t, t e  [0,1]} is a Brownian semimartingale
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of the form,

d(Tt = fitdt +  atdWt

where Wt is standard Brownian motion, the stochastic process Jlt is locally bounded 

and the stochastic process at is cadlag.

P ro p o s itio n  2.2.2. Suppose (A l)  holds and X  satisfies (2.4), LetOn be the Realized 

Variance defined in (2.6), m  —► oo, J  —► oo; m /n  —► 0, J /ra  —> 0, and J 2/n  —> 0 as 

n —> oo. Then,

Vki, v.

Sections 3 and 4 show that Proposition 2.2.2 can be extended to more general set

tings than RV in a Brownian semimartingale model. This is because the subsampling 

method does not rely on the exact form of V, which it estimates.

2.2.3 An Alternative Subsampling Scheme

This subsection presents an alternative subsampling scheme that is of theoretical 

interest. In general, it can be applied to cases when the asymptotic variance of an 

estimator on a sub-block of lower frequency observations has the same structure as 

the asymptotic variance of the estimator on the full sample. This scheme will not be 

used in further sections due to its inability to estimate the asymptotic variance of the 

Two Scale estimator in the presence of autocorrelated noise. We now describe it for 

the RV example.

Consider the following subsampling scheme. On every block of m  observations, 

calculate the estimator 6 twice as follows. First, calculate it using all m  observations,
^fast ,

denote it as 6t . Then, calculate the estimator 6 using every Q price observation
'̂ slow

in the block of m  observations, and denote it as 6t
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Figure 2.3: ^4n Alternative Subsampling Scheme.

The corresponding expressions for RV calculated on these subsamples are

0
■fast m  /  \  2 
fc =  ^  1 ( X t+m(fc— 1) V  j— 1 +m(fc-

i=l '
slow \ jn/Q \

Ou =  ^ 1 ( X.i Q + m ( k — 1 ) .V( i  —l ) Q + m ( f c  —1) j
%— 1 \  n n J

'->/ ast  —slow
Now, 6l can be used to center the 6l , because they both converge to (2.9), and

-~'fast —slow
because converges to (2.9) faster than 6t does. See Figure 2.3 for a graphical 

illustration. The estimator of V  becomes

1 K  0  n /m
771 I V - ^  (  U  ^slow  U ^ f a s t \  1 n  v— r f-^slow ^ f a s t \  1

v“ = q x ^ E ( ^ «  j  = o E ( « <  - *« )q  m '* )  Q j r t

This construction shows that lower frequency data can be used to achieve the 

same effect as taking a shorter block of observations. In our RV example, sparse 

observations still convey all the features of the model, so this subsampling scheme 

delivers a consistent estimator of V .

P ro p o sitio n  2.2.3. Suppose X  satisfies (2.4)- Let m  —► oo, Q —* oo, m /n  —* 0, and

44



R em ark s . 1. Brownian semimartingale model (2.4) assumes the paths of X  are 

continuous. Instead, suppose now that X  is a Brownian semimartingale with jumps. 

In other words, define X  on some probability space (fi, F , o j P) as the process 

dX t = p tdt +  crtdWt +  dJt . The continuous part is as in (2.4) and Jt is some jumps 

process, see for example Ait-Sahalia and Jacod (2008). In that case, the asymptotic 

variance of R V  contains jumps, and the subsampling estimator Va only estimates 

consistently the continuous part of the V . In particular, suppose m  —> oo, Q —► oo, 

m /n  —► 0, and Q /m  —> 0 as n  —*• oo. Then,

K ^ 2 f a 4udu + 4 ]T  Y l  ( ^ U paTp_ + V T ^T pU;otp)2
0 p:Tpe[ 0 ,1]

where np,p  = 1,2,... are uniform random variables, independent from F; Up, Up,p  =

1.2.... are standard normal random variables independent from F  and from k,p, p =

1.2....; Tp, p = 1,2,... are jump times. This shows the inconsistency of Va because 

the random variables Up and Up do not appear in the expression of the asymptotic 

variance of RV. I f  X  and a do not jump together, Va is unbiased, conditionally on 

F  because the random variable (Up + Up) 2 has expectation one. This illustrates the 

fact that the subsampling method needs V  to be continuous in time. This prevents a 

situation when there is some feature of V  that is only represented by one subsample. 

See also discussion of Assumption A6(ii) in Section 2.4.

2. Suppose, as in Remark 1, that X  is a Brownian semimartingale with jumps. In 

that case, integrated volatility can be estimated by Bipower Variation (see Barndorff- 

Nielsen and Shephard, 2007),



Then, the subsampling estimator of the asymptotic variance V  of 6 is only consistent 

i f  V  does not contain jumps. This happens if  max (r, I) < 1.

The subsampling scheme is similar in structure to the one in Lahiri, Kaiser, 

Cressie, and Hsu (1999). They similarly use two grids for subsampling to predict 

stochastic cumulative distribution functions in a spatial framework. However, they 

assume that the underlying process is stationary and their asymptotic framework is 

mixed infill and increasing domain.

This alternative subsampling method can also be applied to noisy diffusion setting, 

as long as noise is independent in time. However, if noise is autocorrelated and this 

autocorrelation appears in the expression of V, this subsampling scheme will not be 

able to estimate V. This is due to sparsely sampled data not containing all the needed
^slow

information about autocorrelations. Therefore, 6l is not be able to replicate that 

part in V, which pertains to autocorrelations.

2.3 Inference for the Two Scale Realized Volatility 

Estimator

This section shows how the new subsampling scheme can be applied to the Two 

Scale Realized Volatility estimator of integrated variance proposed by Ai’t-Sahalia 

et al. (2006a). Although only this example is discussed in detail, this subsampling 

scheme could also be applied to other integrated variance estimators in the presence 

of market microstructure noise, such as Multiscale estimators of Zhang et al. (2005) 

and Ait-Sahalia et al. (2006a), Realized Kernels of Barndorff-Nielsen et al. (2008a), 

and pre-averaging estimator of Jacod et al. (2007).

Stock price data at highest frequencies is well known to be affected by market 

microstructure noise. For example, trades are not executed in practice at the efficient 

price. Typically, they are executed either at the prevailing bid or ask price. Therefore,
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observed transaction prices alternate between bid and ask prices (the so-called bid- 

ask bounce), creating negative autocorrelation in observed returns, which is a stylized 

fact in high frequency data. This was the motivation for Zhou (1996) to introduce an 

additive market microstructure noise model where the observed log-price Y  is a sum 

of a Brownian semimartingale component X  and an i.i.d. noise 6, see (2.13) below. 

In this model, observed log-returns display negative first order autocovariance,

Cov (AYi/n, AY(i-i)/n) (2.12)

Cov (^AX^n +  6i/n A X (i—i}/n +  l)/n ^(i—2)/n)

= -V ar (e(i_i)/n) .

Another stylized fact is that Realized Variances calculated at the highest frequen

cies become very large. This is in contradiction to the Brownian semimartingale 

model, where RV has roughly the same expectation irrespective of the frequency, at 

which it is calculated. Also, RV should converge to IVx when higher and higher 

frequencies are used. This difficulty lies behind the underlying reason for the com

mon practice not to calculate Realized Variance at higher frequencies than 5 or 15 

minutes. The problem with this approach is that it implies discarding most of the 

available data. There are only 72 five minute returns in a day, and only 24 fifteen 

minute returns in a day, while the available high frequency data is usually measured 

in thousands. In order to be able to use all the available data, one has to work with 

a model that can accommodate the above stylized facts.

Zhang, Mykland, and Ai’t-Sahalia (2005) were the first to introduce a consistent 

estimator of integrated variance of the efficient price IVx within the additive mea

surement error model of Zhou (1996). Their model is as follows. Log-price X  is a 

continuous Brownian semimartingale (2.4). Observations are contaminated by some 

additive measurement error, so there are discrete observations on the noisy log-price
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Y available where

Yt =  Xt +  ej. (2.13)

The noise et is i.i.d., zero mean with variance Var(e) =  u 2 and Ee4 < oo, and

independent from the latent log-price X t. In this model, Zhang et al. (2005) propose

the following consistent estimator for the integrated variance of X tl

en = [y , y](Gl) -  ^  [y , r](1), (2.14)
n

where, for any parameter b,

l Z ( Y « +b) / n - Y i/n) 2
0 i = 1

n — b +  1 
b '

Notice that [Y, Y ]^  coincides with the RV estimator, while [Y, Y ]^ 1̂ consists of lower 

frequency returns. In particular, [Y, Y]^Gl  ̂ consists of returns calculated from prices 

that are G\ high frequency observations apart. Thus, time distance is n~l between 

high frequency observations and G\n~x between lower frequency observations. In em

pirical applications, a common choice for G\ is such that the lower frequency returns 

are sampled at 5 minutes. Zhang et al. (2005) call the above estimator the Two 

Scale Realized Volatility (TSRV) estimator. They derive the following asymptotic 

distribution of the estimator,

n1/6 (en -  s/vz

[Y,Y}(b) =  

nh =
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where the asymptotic (conditional) variance takes the form

v  = c\  I  aidu+ (2-15)o vv ^  y noise
signal

i.e., it consists of a signal part, which is due to the efficient price, and a noise part. 

In the above, Z  is a standard normal random variable, independent from V, and c is 

the constant in G\ = [cn2/3] . W ithi.i.d . noise, V  can be estimated component by 

component. Var (e) =  uj2 can be estimated using the following estimator proposed by 

Bandi and Russell (2008),
"~2 R V  p 2
o r  =  — ---------- > UJ .

2 n

We saw in Section 2.2 that in a model without noise, integrated quarticity J  cr^du 

can be estimated by realized quarticity defined in (2.8). This becomes more difficult 

in the presence of noise. However, Barndorff-Nielsen et al. (2008a) have proposed an 

estimator for f  a^du, which is consistent in presence of i.i.d. noise, see Section 2.5.

This model is for i.i.d. noise, so the noise is assumed to be homoscedastic. A well 

known stylized fact in empirical market microstructure literature is that intradaily 

spreads (difference between bid and ask price) and intradaily stock price volatility are 

described typically by a U-shape (See Footnote 2 for references). In other words, prices 

are more volatile in mornings and afternoons than at noon; spreads are also larger 

in mornings and afternoons. Figure 2.4(a) presents an estimate of heteroscedasticity 

function uJ1 (•) for transaction prices of Microsoft stock, averaged over all days in year 

2006. The diurnal variation is evident.

Kalnina and Linton (2006) introduce diurnal heteroscedasticity in the microstruc

ture noise in model (2.13). Suppose the efficient log-price X  is the same as above in 

(2.13), but the noise displays unconditional heteroscedasticity. In particular, suppose
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Figure 2.4: Properties of returns of Microsoft (MSFT) stock. Returns are constructed 
from transaction prices over the whole year 2006. See Section 2.6 for data cleaning 
procedures. Panel (a) shows the estimated heteroscedasticity function cu (-) , averaged 
over all days in 2006. Panel (b) shows the autocorrelogram of returns calculated in 
tick time.

the noise et satisfies

et = (J (t ) ut (2.16)

where u  (t ) is a nonstochastic differentiable function of time £, and ut is i.i.d. with 

E (uf) =  0, and Var(u*) =  1. As a result of this generalization, the asymptotic 

variance of 0n changes to

V = c^ f  crAudu +  8c 2 f  u 4 (u) du.
On o

In this model, the previous estimator of the noise part of V  ceases to be consistent as

,2 _ R V
U ‘  =  -

so, by Jensen’s inequality, its square would be always strictly smaller than the target
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f  uj4 (u ) du as long as there is any diurnal variation at all. Kalnina and Linton (2006) 

show that u  (•) can be estimated at any fixed point r  using kernel smoothing,

S 2 W  =  ( A y ^ ) 2.
i= l

In the above, h is a bandwidth that tends to zero asymptotically and Kh(.) = 

K (./h ) /h ,  where K (.) is a kernel function satisfying some regularity conditions. This 

suggests estimating the noise part of V  by

8c-2 f  u j 4 (u) du. 
o

As we saw earlier in (2.12), the i.i.d. measurement error model is consistent 

with negative first order autocorrelations in the observed returns. However, returns 

can sometimes exhibit autocorrelation beyond the first lag in practice. For example, 

Figure 2.4(b) graphs the autocorrelogram of the returns of the Microsoft stock for 

the whole year 2006. We see that Microsoft stock returns display strong negative 

autocorrelation well beyond the first lag. While the model (2.13) does generate a 

negative first autocorrelation, it implies that any further autocorrelations have to be 

zero. Since increments of a Brownian semimartingale are uncorrelated in time, any 

such autocorrelation has to be due to noise et.6

Ait-Sahalia et al. (2006a) generalize the i.i.d. measurement error model (2.13) in 

a different direction. They allow for autocorrelated stationary microstructure noise. 

In particular, they make the following assumption about the noise.

A ssu m p tio n  A2. The noise et is independent from the efficient log-price X t . Also, 

when viewed as a process in index i, eti is stationary and strong mixing with the mixing 

coefficients decaying exponentially

6In a Brownian semimartingale model, the only source of autocorrelations of increments is drift, 
which is negligible for high frequencies.
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In model (2.13) with et satisfying Assumption A2, Ai't-Sahalia et al. (2006a) 

propose the following consistent estimator for the integrated variance of X t ,

en =  [Y, y \ {Gi) -  [f, y ] (G2) (2 .17)
nc2

where G\ and G2 satisfy the following assumption,

A ssum ption A3. The G\ parameter of the Two Scale Realized Volatility estimator 

6n defined by (2.17) satisfies G\ =  [cn2/3J for some constant c. G2 parameter is such 

that Cov (e0, eG2/n) =  o , G2 —► 00, G2/G i -* 0.7

The Two Scale Realized Volatility estimator defined by (2.17) is a more general 

than the one in (2.14), which is a special case when G2 = 1 and G\ —> 00 as n  —► 

00. Ai’t-Sahalia et al. (2006a) show that the new TSRV estimator 0n has the same 

asymptotic properties except it has a more complicated asymptotic variance,

V  = c \  f  a^du +  8c_2Var (e)2 +  16c-2 lim C°v (eo, ei/n)2? (2.18)* n^ooi=1
—  —1 —  ■    — . . .  —  ✓signal

where c is the constant in G\ = [cn2//3J .

The literature does not provide any estimator for V  or an alternative method for 

constructing confidence intervals for 0n. Here we can estimate the asymptotic variance 

of the Two Scale Realized Volatility estimator 6n using the subsampling scheme.

T heorem  2.3.1. Suppose model (2.13) holds, and eti satisfy Assumption A2. Let 

6n be the TSRV estimator defined by (2.17), with parameters G\ and G2 that satisfy 

Assumption A3. Let V  be defined by (2.18). Assume {cr} and {p} are independent

7The restriction on Cov (eo, ec 2/n) should be considered in the light of the fact that Assumption 
A2 implies that there exists a constant (j) such that, for all i,

| Cov (ei/n , e(i+/)/n) | < <f>lVai (e ) .
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° f  {W }. Let J  —> oo, m  —► oo, J /m  —► 0, ra /n  —► 0, G i / J  —► 0 and Jm n  5/3 —► 0 

as n  —> oo. Then,

Vsub^ v

where
-~i 0 / o 1 ( n-̂ 'Shart n '7^ong\  ̂ . .^  =  J n - / 3 x _ g ( _ 0i )  (2.19)

with K  =  [n /m j.

^short
In above, 6t is simply 6 calculated on a smaller block of J  observations inside 

the Ith larger block of m  observations, with exactly the same parameters G\ and G<i
—n

as 6 uses. See Figure 2.2 for an illustration. In particular,

8s,hort = [K ,n (Gl) -  [y -y ]SG2)
J g2

where

[̂ 5 Y\i — (Y{i-1)m/n+{i+Gi)/n Y ( l - l ) m / n + i / n )  i  ̂ —  1? 2
'J ’i  i = 1

7  J  - G i  + 1
* =    ’ ’

^-short
One obtains 9t by substituting J  for m  above. In Figure 2.2 , the version with 

maximum overlap is presented. In practice, it is much quicker to compute the no 

overlap version, for which Theorem 2.3.1 is formulated. While this does not alter the 

conclusion of Theorem 2.3.1, the maximum overlap version is slightly more efficient. 

In this case, Vsub is defined by (2.19) with K  = n — m  +  1.

To the author’s knowledge, this is the only available method in the literature to 

construct confidence intervals for the Two Scale Realized Volatility estimator when 

the noise is autocorrelated. Similarly, one can apply this method to Multi-Scale esti
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mator of Ai't-Sahalia et al. (2006a) when microstructure noise is autocorrelated. The 

advantage of using Multi-Scale estimator is that it has the optimal rate of convergence 

n

However, the above model of Ait-Sahalia et al. (2006a) rules out any diurnal 

heteroscedasticity of the noise. When both autocorrelation and heteroscedasticity is 

taken into account, we have

L em m a 2.3.2. Suppose the observed price satisfies Yi/n = X i/n +  ti/n where the effi

cient log-price X t follows a Brownian semimartingale process (2.4) a,nd micro structure 

noise €i/n satisfies

et = u  (t) ut

where u ( ’) is a differentiable, nonstochastic function of time, ut satisfies Assumption 

A2 andVai (ut) = 1. Then, 6n defined in (2.17) satisfies

n 1/6 (\  -  6>) =>■ y /V Z

where

4 1  1 1 n  _
V  = c -  f  o4udu +  8c 2 feu4 (u ) du +  16c 2 f  co4 (u) du lim Cov (e0, Cj/n) .

0  0  0  n-+oc  ^= i

In this case of autocorrelated and heteroscedastic noise, Theorem 2.3.1 easily 

generalizes and subsampling again delivers consistent estimate of V.  This is because 

both are special cases of the consistency result of the subsampling estimator in the 

general case, which is described in the next section. To estimate this more complicated 

V,  exactly the same formula Vsui, should be used as for homoscedastic case. In this 

model, this is the only available method in the literature to construct confidence 

intervals for the Two Scale Realized Volatility estimator.

Importantly, this section illustrates robustness of the subsampling estimator of V
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across different sets of assumptions. Moreover, it is also easy to implement. All that 

is necessary is to compute 9n on several sub-blocks of observations. It seems that 

the subsampling estimator VSUb would be consistent for V  under even more general 

assumptions than considered above, for example, in the case when autocorrelations 

of the noise are changing through time.

2.4 Inference for a General Estim ator

This section shows how to use the new subsampling scheme (as described in Sections 

2.2.2 and 2.3) to conduct inference for a general class of estimators of volatility mea

sures. A set of assumptions is introduced and explained, under which subsampling 

delivers a consistent estimate of the asymptotic variance of an estimator 0n. As we 

shall see, there are two essential ingredients for subsampling method to work. One 

is additivity over subsamples of the asymptotic variance of 9n. The second is that 

the asymptotic distribution of 6n calculated on a block of observations is similar, 

in a sense explained below, to the asymptotic distribution of 6n calculated using all 

available data.

We do not assume a specific process for X .  It could be a pure diffusion or a 

diffusion contaminated with noise, as long as the regularity assumptions below are 

satisfied. All arguments in this section are made conditional on the volatility path 

{<7U,u  E [0,1]}. Suppose there is an estimator 9n, for which the asymptotic distribu

tion is known to be as follows

In the above, r n is a known rate of convergence of 9n. For example, r n =  n 1/2 for RV,

(2.20)

r n =  'ft1/6 for the TSRV estimator. Z  is a random variable that is known to satisfy 

E (Z ) =  0 and Var (Z ) — 1. A consistent estimator of V  thus enables a researcher to
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construct consistent confidence intervals for 0n.

We recall the subsampling scheme introduced in Section 2.2.2. Divide the total 

number of returns into blocks of m consecutive returns. Thus, we obtain [n/m \
long —-

subsamples. Denote by 9l the estimator 6n calculated using all m  returns of the 

Ith block, I = 1,..., [n /m \ . Denote by 9t the estimator 6n calculated using only J  

returns of the Ith block, where J  < m. See Figure 2.2 in Section 2.2.2 for a graphical 

illustration.
-rjshort n'7$on9In order to guarantee that j d l and -^9l converge to the same quantity, 

despite being defined on different time intervals, we need to impose some smoothness 

on the volatility paths. In particular, we use the following assumption.

A ssum ption  A4. (2.20) holds, where 6 and V  are the following functions of the 

volatility path {cru,u  6 [0,1]},

l
9 =  j g i ( a ( u ) ) d u  

o

V  = f  g2 (a (u )) du 
o

where gi,g2 £ C 1 [0,1] and a is a Brownian semimartingale as in (2.4)-

For example, we obtain integrated variance IV x  with gi (u ) =  a 2 (u ) and the

asymptotic variance of RV with #2 (v (u)) = 2<r2 (u ).

The type of estimators that are likely to satisfy assumptions of this section are 

those that are approximately additive over subsamples, i.e.,

-  I”/™! m ^short , x ,
0n — ~F®1 +  ° P  (1) (2.21)

1=1 J

or
^ [n/m\ ^0n= E  0/ + o p { 1). (2.22)

1 = 1

All currently available estimators of integrated variance and related quantities satisfy
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this additivity property. We also impose the following assumption, which ensures 

that estimators on subsamples are mixing.

A ssu m p tio n  A5. For any fixed n, the returns process j Rty > with r W  =
Xi/n — is strong mixing. Also, 0n = <p where (p : Mn i— ►

For example, suppose A  is a Brownian semimartingale as in (2.4). Then, As

sumption A5 is satisfied if we assume {/x}, {a} ±  {W }  and consider all arguments 

conditional on {/xt ,<rt , t G [ 0 ,1]}. This means that the conclusion about consistency 

of Vsub of Theorem 2.4.1 below holds, conditionally on {fit , t G [ 0 ,1]}. Hence, the 

same conclusion also holds unconditionally.
a t  shortAs discussed in previous sections, 6l and 6l do not estimate 6, since they 

use only information about the volatility path on a small time interval, whereas the 

volatility is changing throughout the interval [0,1]. Let us denote by O1™9 and Q*hort 

the respective quantities they estimate, and by VJs/lort and v}™9 what can be thought 

of as their asymptotic variances. They can be defined as follows,

[(l—l ) m+ J ] / n  [(l—l ) m+J ] / n

0thort = f  9i (a («*)) du, V ,* *  = J  g2 {a{u))du (2.23)
(l—l ) m / n  (I—l ) m/ n

Im/ n \(l—\ ) m+ J ] / n
Qlong = j  g i (a (u^ d u ,  VlshOTt= J  g2 {(j{u))du.

(l—l ) m/ n  (l—l ) m / n

Finally, we make the following assumption,

A ssum ption  A6. For every n, define 0^hort and Vlshort by (2.23), and define a tri

angular array

C,(n) = j  (e lhort -  -  v ,* " *

The array satisfies the following conditions
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(ii) { # > }  is LP bounded for some p > 1.

We now discuss Assumption (A6). The appendix contains verification of Assump

tion (A6) for the TSRV estimator, as this is how Theorem 2.3.1 is proved. 

Assumption A6 (i) can be written equivalently as follows,

as n oo, supE ( f t* * 0-*)-1 r l  ^  -» 1,

as long as Vlshort is of order J/n.  In other words, assumption A6 (i) requires that the
^-short

square of the standardized statistic ul has asymptotic expectation one. On the 

full sample, we know from (2.20) that standardized Q is asymptotically a random 

variable Z  with E ( Z2) =  1. Therefore, a sufficient condition for Assumption A6 (i)
^ short

to hold is that the asymptotic distribution of Ql satisfies the same condition on
^short

a subsample. Roughly speaking, we need the estimator on a subsample, 6t , to 

behave similarly to the estimator on a full sample, 6n.

Assumption A6 (ii) is a stronger assumption, and it illustrates the main idea of the 

subsampling method. Recall the basic idea of subsampling as described in the intro

duction of the paper. Roughly speaking, in a stationary world, the way subsampling 

estimates V  is by constructing many random variables with V  as their asymptotic 

variance. In our nonstationary case, continuity in time plays the role of stationarity 

as it ensures that the same feature in V  is estimated by many subsamples. Assump

tion A6 (ii) effectively imposes V fhort to be of order J /n , i.e., tha t there is enough 

continuity in V  with respect to time. Apart from this consideration, assumption A6 

(ii) requires existence of moments. This is not an issue for a Brownian semimartingale 

model due to the local boundedness assumption on the drift and volatility functions,



but becomes a constraint if X  also contains other components. For example, consider 

a model where observations are sampled from a Brownian semimartingale with an 

additive noise e. In this model, corresponding moments have to be assumed on e for 

assumption A6 (ii) to hold. In the case of the TSRV estimator discussed below, L4+e 

boundedness of e is needed, which is exactly what has been assumed by the authors 

of TSRV estimator to derive its asymptotic distribution.

We have the following result.

T h e o rem  2.4.1. Assume (A4), (A5), and (A6). Then,

v u  v

where
Jm  /  Tl'^short n ^ o n g X ^

= -2- g  ( / ,  -  j •

Importantly, exactly the same formula is applied to all models and estimators, 

which satisfy the above assumptions. All that is necessary to calculate the estimator 

for V  is to calculate the estimator 6 on several subsamples, as well as to know the 

convergence rate r n. In particular, VSUb simplifies to formula for the RV in (2.10) 

with r n =  y/n, and to the formula for the Two Scale Realized Volatility estimator in 

(2.19) with r n — n 1/6.

2.5 Simulation Study

In this section numerical properties of the proposed estimator are studied for the 

example of TSRV estimator of Ait-Sahalia et al. (2006a) in the case of i.i.d. or 

autocorrelated microstructure noise.

The observed price Yt is a sum of the efficient log-price X t and microstructure 

noise ut . The paths of the efficient log-price are simulated from the Heston (1993)

59



model:

dX t = (ati -  vt/2) dt +  atdWt 

dvt = a 2 (03 -  vt) dt +  a±vl/2dBt

where vt = a2, Wt and B t are independent Brownian Motions. The parameters of 

the efficient log-price process X  are chosen to be the same as in Zhang et al. (2005). 

They are a\ = 0.05, a 2 — 5, 0:3 =  0.04, and 04 =  0.5 (unit of time is one year). We 

simulate 35,000 observations over one week, i.e., five business days of 6.5 hours each. 

This is motivated by the fact that GE stock has on average 35,000 observations per 

week in year 2006, see Section 2.6.

The microstructure noise is simulated as an MA(1) process

Four different values of p are considered, p = 0, —0.3, —0.5, and p =  —0.7.

Size of the noise is an important parameter. Denote Var (u) = u 2. Denote the 

noise-to-signal ratio by

Results are simulated for two different noise-to-signal ratios, which are suggested by 

Barndorff-Nielsen et al. (2008a) and are £2 =  0.001 and 0.0001. These are motivated 

by the careful empirical study of Hansen and Lunde (2006), who investigate 30 stocks 

of Dow Jones Industrial Average. The volatility path is fixed over simulations to 

facilitate comparisons. The volatility path used is plotted in Figure 5. Varying 

volatility path across simulations does not affect the theory nor simulation results.

The parameters of the TSRV estimator and of the subsampling procedure are

1
/  o%du
0
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Figure 2.5: Simulated volatility sample path.

chosen as follows. We set G\ = 100, which in our data corresponds to 5 minute 

lower frequency. This is a very popular choice in practice. We set G2 = 10 in all 

simulations. Two values of J  are considered. First is J  = 2G\ = 200, second is 

J  = §G\ = 500. For m parameter, three different values are considered, m = 4J, 10J, 

and 15J.

The literature does not propose ways of estimating asymptotic variance of TSRV 

when noise is autocorrelated or diurnal. However, in the case of i.i.d. noise, there is 

an alternative, and this will serve as a benchmark for the simulation results. In the 

case of i.i.d noise, the expression for asymptotic variance V  of TSRV estimator is

and the alternative is to estimate each component of V  separately. The easiest com-

V = f  crAudu +  8c 2 [Var (u) f

ponent to estimate is [Var (u )]2. A popular estimator of Var (u ) =  uj2 is

6 1



This has been proposed by, for example, Bandi and Russell (2006, 2008). To estimate 

integrated quarticity IQ  (the first term in V)  in the presence of microstructure noise 

is more difficult. A consistent estimator in the presence of i.i.d. noise has been 

proposed by Barndorff-Nielsen et al. (2008a)

I Q b n h l s  (<5>s )  = max (K) . = E  <5 2 ( v t  -  2u>2)  -  2̂ 2)

where

Vjr = S  s?o  ~  ) )  ’ i  = 1, "

uj2 = exp |  log — 9n/ R V J

-  Mn

and where 6n is a consistent estimator of integrated variance IV x  • We take 9n to be 

the Two-Scale Realized Volatility estimator 6n. This estimator requires to choose S 

and S. We use the same choice as Barndorff-Nielsen et al. (2008a) do, for real and 

simulated data. This choice is S  = n 1/2 and 5 = n~Yl2. Estimator u 2 corrects small 

sample bias in u j 2 . W ith large number of observations, there is no difference between 

the two estimators in practice, but we keep the version of Barndorff-Nielsen et al. 

(2008a) anyway. Thus, the following alternative estimator of V  is constructed

^ 4 ^
Va. =  c ~ ^ I Q b n h l s  +  8c 2

This estimator is consistent for V  in the presence of i.i.d. noise.

When noise is autocorrelated, the estimator I Q b n h l s  *s inconsistent, but the 

sign of the bias depends on the exact parameters of the model. We now give heuristic 

explanation about what behavior can be expected of I Q b n h l s  in presence of 

autocorrelated noise. To simplify the exposition, notice that y2. can be thought of
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as simply one low frequency return squared. This is because yj is an average over 

returns that are very highly correlated given large overlaps in time they have. Also, 

use uj2 instead of uj2. Consider the building block of I Q b n h l s > f ° r  3 =

Suppose e l l  and that low frequency noise is uncorrelated. Then,

E ( y l  -  % ?) «  E (X i+ *  -  X , ) 2 -  i  t  E ( n  -  ^ ) 2 +  2E (  W )  .

The middle term is of smallest order and so can be ignored. Notice that last term 

is negative in practice, so E ( y f . — 2uj2̂ j becomes smaller. If noise is not too large, 

y\ . — 2co2 is biased towards zero. Thus, the final estimator of IQ  has a negative bias.

Results are represented in terms of coverage probabilities of 95% two-sided, left

sided, and right-sided confidence intervals for IV x • Table B .l contains the larger 

noise-to-signal case £2 =  0.001, and Table B.2 contains results for the smaller noise- 

to-signal case £2 =  0.0001. We see that the subsampling estimator performs well in all 

scenarios. Va performs well in the scenario it is designed for, which is the uncorrelated 

noise case. As the correlation increases, estimated values of Va decrease, resulting in 

undercover age. For the £2 =  0.001 scenario, two sided coverage probabilities of Va 

decrease from 0.93 to 0.78 as autocorrelation becomes stronger. For the smaller noise 

scenario with £2 =  0.0001, two sided coverage probabilities decrease from 0.93 to 

0.88. This improvement as noise becomes smaller is to be expected, given that Va is 

consistent for V  when noise is zero.
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2.6 Empirical Analysis

This section applies the proposed subsampling method to tick data of AIG, GE, 

IBM, INTO, MMM, and MSFT stocks obtained from the NYSE TAQ database, and 

compares it to the estimator Va, which is introduced in the previous section.

We use the whole year of 2006 of transaction prices for AIG, GE, IBM, INTC, 

MMM, and MSFT stocks obtained from the NYSE TAQ database. Zero returns are 

removed, as in Ai't-Sahalia et al. (2006a). Griffin and Oomen (2008) show that, in Re

alized Volatility case, this adjustment of data improves precision of estimation. Jumps 

are also removed,8 since the additive market microstructure noise model (2.13) does 

not allow for jumps. There is also an additional issue to consider, which Barndorff- 

Nielsen et al. (2008b) denote as local trends or ” gradual” jumps. These authors notice 

that the realized kernel, which is the estimator of integrated variance they propose, 

does not behave well in the presence of these ’’gradual” jumps. Such episodes occur 

rarely, but are nonetheless important. Barndorff-Nielsen et al. (2008b) notice that 

these local trends are associated with high volumes traded, and conjecture that they 

are due to non-trivial liquidity effects. The authors replace them with one genuine 

jump, but conclude that they do not have an automatic way of detecting episodes of 

local trends. The subsampling method proposed in the current paper also is vulnera

ble to such price behavior. Our strategy to identify these gradual jumps is based on 

the fact that they should look like genuine jumps on a lower frequency. Therefore, 

we construct a time series of lower (one minute) frequency data, and remove those 

lower frequency returns that are larger than seven weekly standard deviations. Such 

’’gradual” jumps occur rarefy, and most weeks do not contain any.

In the resulting data set, the average number of trades per week is 20,341 for AIG,

8 Jumps are identified as deviations of the log-returns that are larger than five standard deviations 
on a moving window. This is motivated by the thresholding technique of filtering out jumps, first 
proposed by Cecilia Mancini in a series of papers (e.g., Mancini 2004), see also Ait-Sahalia and 
Jacod (2007).
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35,361 for GE, 23,657 for IBM, 51,092 for INTC, 15,642 for MMM, and 45,646 for 

MSFT. The returns of all these stocks display large negative autocorrelation similar 

to GE in Figure 2.4(b).

The asymptotic variance of the Two Scale Realized Volatility estimator is esti

mated for each of the 52 weeks in year 2006. As long as the distance between obser

vations is of order 1 /n , the underlying theory can be extended to the non equidistant 

observations case. Therefore, the estimation is done in tick time, as suggested in 

Barndorff-Nielsen et al. (2008a) and other authors.

The results are displayed in Figures B.1-B.6 in the appendix B.2, in terms of 95% 

confidence intervals for integrated variance. Confidence intervals with bars corre

spond to subsampling method and confidence intervals with lines correspond to the 

alternative method Va. The TSRV estimate 6n is in the center of both confidence 

intervals by construction. The subsampling confidence intervals for TSRV are usually 

wider than confidence intervals of the alternative method Va. From our simulations, 

we conclude this might be due to negative bias of the Va estimator in the presence of 

negatively autocorrelated returns. This is because all six stocks have strongly nega

tively correlated returns, and we know from Section (2.5) that Va is downward biased 

in this case. On the other hand, subsampling estimator is immune to autocorrelation. 

The Figures also show a lot of variability in the estimates of V. This is mainly due to 

variability of the TSRV estimates, with large estimates of V  corresponding to large 

6n and vice versa. Thus, episodes of high volatility generally correspond to episodes 

of high volatility of volatility. Though not reported here, these also correspond to 

weeks with very large numbers of transactions and large volumes traded.
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2.7 Conclusion

This paper develops the first automated method for estimating the asymptotic vari

ance of an estimator in high frequency data. The method applies to an important 

general class of estimators, which include many estimators of integrated variance. The 

new method can substantially simplify the inference question for an estimator, which 

has an asymptotic variance that is hard to derive or takes a complicated form. An 

example of such case is the integrated variance estimator of Ait-Sahalia et al. (2006a), 

in the presence of autocorrelated heteroscedastic market microstructure noise. There 

is no alternative inferential method available in the literature in this case.

A question that is yet to be addressed rigorously is a data-driven bandwidth 

choice. Several choices for the Two Scale Realized Volatility estimator are suggested 

in the Monte Carlo section.

A very promising extension that will be considered in a future paper is inference 

for a multivariate parameter. Subsampling naturally produces positive semi-definite 

estimated variance-covariance matrices, which can be very important for applications. 

For estimators like Realized Volatility, all the results extend readily to the multivariate 

case. The real challenge, however, arises due to the additional complications, which 

are not present in the univariate case. These concern the fact that different stocks do 

not trade at the same time or so-called asynchronous trading. Also, uncertainty about 

the observation times becomes much more important in the multivariate context.
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Chapter 3

Subsam pling and Tim e Variation  

in B etas

3.1 Introduction

This paper studies the question of time variability in equity betas. Recent devel

opments in high frequency econometrics allows us to estimate quadratic variation 

version of the betas in a model-free framework with ultra high frequency and asyn- 

chronously observed data from NYSE. Due to the market microstructure noise in this 

data, estimators of beta can have complicated expressions of the asymptotic variance, 

in which case it is convenient to use an automatic inference method to implement tests 

on betas. The subsampling method of Chapter 2 cannot be applied directly to the 

beta estimators, because they do not satisfy the basic requirement of the method, 

additivity of the variance of beta estimator. On the other hand, we can easily derive 

the asymptotic variance of a beta estimator by Delta method if we use a multivariate 

inference method. Therefore, we show how subsampling of Chapter 2 can be imple

mented for a multivariate estimator. We then proceed to construct a test of betas 

being constant over time. We implement this test with six stocks on the NYSE over
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year 2006 with Standard and Poors Depositary Receipts (SPIDERS) as a proxy for 

the market factor. We conclude that the traditional 5, 15, or 20 minute based esti

mators can easily detect significant time variation over the whole year 2006 and also 

over some quarters for some stocks, but ultra high frequency estimators can detect 

significant time variation in betas for every quarter and every stock we consider.

The remainder of this paper is organized as follows. Section 3.2 introduces beta 

and shows how estimation and inference can be done with moderate and high fre

quency data. Section 3.3 shows how subsampling can be implemented to perform 

inference on a multivariate parameter. Section 3.4 implements this methodology on 

high frequency data to test the hypothesis that beta is constant over time. Section 

3.6 concludes.

3.2 Realized B eta

Denote X  to be the log-price process of the market portfolio, and Y  to be a log-price 

process of an individual stock. Suppose they both follow a Brownian semimartingale 

process,

dX t = t f d t  +  axdW x, (3.1)

dYt = [i\dt + oydW,?,

over k intervals of length one, i.e., t E [i — l , z ) , i = 1,..., k. In above, /lx and fiy 

are drift processes, ax and ay are volatility processes, and W x and W y are standard 

Brownian Motion processes with Corr ( W x, W?) =  pt. In continuous time, a natural

measure of the variability of the process X  over some interval [i — 1, i) is its quadratic

variation,

( X , X ) { = f  (of)2 dt,
i—1
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and similarly covariation

( X , Y ) t = J  a*t a vt ptdt
i —1

measures the covariability of X  and Y . Using these, we can define a quadratic varia

tion version of the beta over interval [i — 1, i) as

B. •= (3 2)
{ X , X ) ‘ J

This quantity has been estimated in a low frequency framework by Andersen et al. 

(2004) and Andersen et al. (2005). Barndorff-Nielsen and Shephard (2004) esti

mate the same quantity with ultra high frequency data after accounting for market 

microstructure noise. We consider both approaches.

We refer to this quadratic variation based beta as just beta from now on. Our 

goal is to construct a test for time variation in betas. To do that, we need to use 

discrete observations to estimate beta and conduct inference. We consider two dif

ferent observation schemes: 1) no noise and synchronous observations, and 2) noisy 

and asynchronous observations.

3.2.1 Estim ation of beta: noise-free and synchronous data

The first observation scheme is appropriate for moderate frequencies, such as 5 or 15 

minutes. In this case, it is reasonable to assume that we observe efficient stock prices 

X  without error. In general, obtaining 5 or 15 minute calendar time data entails some 

interpolation, but the effect of this is negligible. Therefore, we can reasonably safely 

assume that data is both free of microstructure noise and synchronously observed. 

Denote by n the number of observations in each time period, so that the distance be

tween observations is 1/n.  In this relatively simple scenario we can estimate quadratic
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variation by realized variance

[X,X]i -  J 2  { X ( i —l) n + j ~  X ( f _ i ) n + j _ i )

3= 1

and quadratic covariation by realized covariance,

—  Y 2  ( y ( i - l ) n + j  ^ ( i —l ) n + j  —l )  (X ( i - l ) n + j  ^ ( » - l ) n + j - l )  •
3= 1

These can be used to calculate the realized beta as explored by Andersen et al. (2004), 

Andersen et al. (2005), and BarndorfT-Nielsen and Shephard (2004),

It is consistent for the true beta as 1/n —► 0, under the assumption of no noise and 

synchronous observations. Asymptotic distribution of realized covariation matrix was 

first derived in Barndorff-Nielsen and Shephard (2004). We have

y/n N {  0 ,« i)

where

» i =  /
2a\ (u) 2cr\ (u) oy (u) p (u)

1 ^  2oi  (“ ) (“ ) P (“ ) al  (“ ) (“ ) (1 +  P2 (“ )) J
By Delta method, provided (X , X ) i > 0 for i = 1,.., k,

du. (3.3)

V n  (j3?V ~  f t )  =» N

(
0, (X, X } ~ 2 ( - p .  1 )*«

\  1 /
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From Barndorff-Nielsen and Shephard (2004), we know that the asymptotic variance 
^ RVof can be estimated by

Joint distribution of estimated betas for different times can be obtained from marginals, 

since asymptotic distributions of y/n ^  — p^j  are independent for any i ^  j  (see

e.g. Mykland and Zhang, 2006).

forms better than estimator in (3.4) in finite samples. Thus, it can be used as an 

alternative inference method for this sampling scheme. As it stands, their procedure 

is not applicable to the second sampling scheme we will now consider, although a 

modification might exist which can be used.

3.2.2 Estim ation o f beta: noisy and asynchronously observed  

data

We now turn to the second observation scheme. If we want to make use of the full 

record of transaction prices, it becomes important to account both for asynchronous 

observations across stocks and market microstructure noise. The latter is typically 

modeled as an additive measurement error. It means that instead of having observa

tions on X  and Y,  we have observations on X + e x and Y + e y. We assume noise (ex, ey) 

1The meaning of g here and in BN-S (2004) coincide, but 4^ is defined slightly differently.

(3.4)

where

Gongalves and Meddahi (2007) have proposed a multivariate bootstrap that per-
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is independent of the efficient price (X, Y), it is stationary, it has more than four mo

ments, and it is exponentially a-mixing when viewed as a process in observation times 

in (/(*), which is defined below.

Number of observations will in general be different for each interval and each 

stock, so additional notation is needed. For the ith interval, we have nx’̂  return 

observations on X  +  ex and ny^  return observations on Y  +  ey at non-equidistant, 

deterministic times. Let Qx^  be a set that contains transaction/observation times 

for X  +  ex on day z,

nx,(i) — /**,(*) 4.x,(i) +*,(*) +x,(i) \  a _  i h.
y \  L0 3 1  3 ^ 2  3 * * * 3  f 3

where is the j th transaction of X  on the ith day. Define Qy^  similarly. We

suppress the dependence of Qf and every its element t*'® on nx,^ \  This triangular 

structure arises due to infill asymptotics, i.e., asymptotics as the time distance be

tween any two observations shrinks. In particular, we will require, for each interval z 

(see Zhang 2008),

sup
j

sup
3

=  O ((»!*■«+n»'M )-1)  and

I = O ((«*■«>+ n*'<i>)_1V

Observations need to be synchronized between X  and Y  before proceeding. To do 

this, we use the Refresh Time idea of Barndorff-Nielsen et al. (2008c). This means 

creating a new set o f’’observation times” Q® with elements as follows. The first el

ement 4 °  is the first time both stocks have traded, = max t ŷ  J . After that,

next element is the earliest moment when both stocks have again traded at least 

once, i.e., is the maximum of min 11 E Qx^  : t  > 4 - i j  and niin 11 £ Qf : t >  4 - i} ' 

Next, we do not actually have transactions/observations for for X  and Y  at each time 

in (/(*), so we obtain a new set of data, X °  and Y°, by previous-tick interpolation to
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times in Q ^\2 Denote by the number of constructed returns on the ith day (i.e., 

is defined by | ( /^ |  =  +  1).

Beta can be estimated using very high frequency data using Two Scale estimator 

of Zhang et al. (2005) or Ai't-Sahalia (2006a), Multi Scale estimator of Zhang (2006), 

Realized Kernels of Barndorff-Nielsen et al. (2008a), or pre-averaging estimator of 

Jacod et al. (2007).3 We will use the Two Scale estimator of A'it-Sahalia et al. 

(2006a), which was extended to multivariate setting by Zhang (2008), to obtain the 

following estimator of beta,

-A M Z  = ( X , Y )

( X x v

AMZ

AMZ , i 1,..., k. (3.5)

In what follows, it is more convenient to use notation n* instead of Prom the 

joint asymptotic distribution

n 1/6

/  /  —-— . AMZ
{x ,  X V

{x ,  Y V
AMZ

( X , X V
N  (0, E / mz) , i =  l,

we obtain the asymptotic distribution for realized beta by the Delta method (provided 

<*,*> , > 0) ,

n ,1/6 [ pT ' Z -  fj i) => N  (0, V,AMZ) , i = l , ..., k

where

V AMZ = { X , X) - 2
i

The exact expression of Y,fMZ is rather complicated, and the reader can find it in

2For practical implementation, the algorithm in Palandri (2006) representing this synchronization 
process is useful.

3See Kinnebrock and Podolskij (2008) for a multivariate generalisation of Jacod et al. (2007) and 
a related paper Podolskij and Vetter (2007). See Barndorff-Nielsen et al. (2008c) for a multivariate 
generalisation of Barndorff-Nielsen et al. (2008a).
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Zhang (2008). We do not need the exact expression for estimation because we will

use subsampling to estimate see Section 3.3. Asymptotic distributions of
1/6 (^AMZ \ni [Pi ~ Pi) are again independent across periods i. Next, we show how to

construct a test that the true beta is constant across time.

3.2.3 Testing for constant betas

Using the joint asymptotic distribution of betas across k time periods, we can con

struct a Chi-square test for the true betas being constant across these time periods.
^ A M Z

The construction will be based on (3 , but exactly the same idea can be used to
^RV

construct the test based on (3 . Define

^ A M Z  (  ^ AMZ  - AMZ ~ A M Z  V  ,P =  f t  -  Pk aIld

P =  (  Pi P2 -  Pk )  '

i .AMZ
Given that asymptotic distributions of f3i — j3i are independent across time periods 

i = 1,2,...,&, we obtain the joint asymptotic distribution from the marginal ones. 

The asymptotic variance covariance matrix will be diagonal. We have

$  ^pAMZ - p \ = $ . N  (0, V AMZ)

where

V AMZ = d i ag(VAMZ, V AMZ, . , . ,V£MZ)

$ =  diag (n \ /6, n 2/6, ...,n k/6^ .
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We are interested in testing the hypothesis that true beta is constant over time

H0 : P1 = ... =  /3k, versus Hi : (3{ ^  /3j for some i and j.

^  i ^AMZ ~AMZ
One way to construct a test is to use the sum of squared differences j3i — p l for 

i = 2 , k, properly standardized. For this purpose, introduce the following k — 1 by 

k matrix
(

A =

- 1  1 0 0 ... 0

- 1  0 1 0 ... 0

- 1  0 0 1 ... 0

- 1  0 0 0 ... 1 /

This matrix can be used to construct a vector of length k — 1 containing all differences,

f'zAMZ \
(/? ~ 0 J  = $

/  ~ A M Z  ^ A M Z  / n  x \

02 ~  01 ~  (02 ~  0l)
~ A M Z  —AMZ
03 ~~ 01 ~  (03 ~~ 0l)

^ A M Z  'zAM Z
\  0k 01 ~  (0k ~~ 0l) J

N  (0, A V amzA')

By continuous mapping theorem, we have

(0 AMZ -  p j  3>A' (A V amzA ‘) 1 A $ (p AMZ Xl_v

Notice that under the null, A $ (/3 — fjJ = A<I>/3 . We can now take any

consistent estimator y AMZ and construct the following test statistic,

T  =  ( p AMZy  <5>A' ( A V amzA 1 A $ p AMZ,
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which has

T  => X^-i  under H0.

Under the alternative ffy, this test statistic T  diverges to infinity, meaning that 

the test is consistent. Also, estimate of the beta of the first interval was used for 

centering, but it can be shown that the resulting test statistic is invariant to the 

choice of centering.

3.3 M ultivariate Subsampling

The aim of this section is to generalize the ideas of Chapter 2 to the multivari

ate framework, thus producing an automatic, positive semi-definite estimator of the 

asymptotic variance-covariance matrix. In the next section, this method will be used 

to estimate y AMZ and implement the test of time invariant betas. To simplify nota

tion, consider the case of one interval only, k = 1, and drop the interval subscript i. 

We seek to estimate matrix E in

( e ~ e ) = > N (  o ,e )  (3.6)

where r n is a known rate of convergence when n  observations are used. The rate of 

convergence is assumed to be the same for all elements of 0. In the application later, 

we will choose some interval i , take n  to be the number of synchronized observations 

rii, choose

I  {X , X ) N

\ (X,Y) J  ’
estimate 0 using synchronized data X °  and Y°, and then use Delta method to do 

inference for (3. Note that none of the estimators of (3 considered so far can be 

subsampled directly. That is because one of the key requirements of the subsampling
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method in Chapter 2 is additivity over time of the asymptotic variance, and estimators 

of (5 considered in the previous section do not have this property.

The subsampling method of Chapter 2 is based on a series of longer blocks of 

observations, m  returns in each block, as well as a series of shorter blocks of observa

tions, J  returns in each block, J  < m  < n, see Figure 3.1. In Figure 3.1, observations 

are equidistant, which we do not assume of course. Denote A  to be a set containing 

some observation times, and 9 (A ) to be an estimator 9 calculated using observations 

at times in A. Using this notation, the subsampling estimator of the asymptotic 

variance-covariance matrix E is

^  - /  1  A  2  /n ^ s h o r t  T l^ o n g \  /  T l^short T l^ o n g \ '
Zsub = - j z  £  Tn ( - 9 i  ~ — 9l ) [ - 9 t -  — 9l J 3.7

n K  i= i  \ J  m  j  \ J  m  J

where

-rJong 'n (  ( 1 \
@1 =  9  —l ) s + l , t ( l - l ) s + 2 i  -"> t ( l —l) s + m + l  J j
short 'Ti (  f 1 \

K  =
n — m  
 +  1

K  is the number of subsamples, and 5 stands for ’’shift” , i.e., by how many observa

tions to roll the window to obtain the next subsample. Thus, it controls the amount 

of overlap between the subsamples. The smallest s is 1 and it corresponds to the 

maximum overlap and largest number of subsamples; Figure 3.1 is drawn for this 

case. This is also the most efficient choice. However, it can be very computationally 

intensive in practice, so a larger s can also be used at the expense of less efficient,
^  —short —long

but nevertheless consistent Esu&. From the definitions of 9t and 9t above, we 

can see that longer and shorter subsamples start at the same time. This case is less 

involved to write down, but in practice the case drawn in Figure 3.1 is better, i.e., 

both subsamples are centered at the same time. For this case, shorter subsample
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should start at i(/-i)a+[(m-j) /2j+i and n°t t{i-i)a+i- Also, notice that the formula in 

(3.7) simplifies to one in Chapter 2 for univariate estimator and no overlap case (i.e., 

s = m  and K  =  \n /m \) .

H 1 h
ALL OBSERVATIONS 

 1---1---1---1---1---h H 1 h
to t \

to FIRST SUBSAMPLE
H 1----1--- 1---1--h

I----1--- 1---1--1

'1  SECOND SUBSAMPLE
I 1---1---1---1---1---1---1-

9X 9 (m returns)

short
91 ( J  returns)

i— i— i— i— i

^2 THIRD SUBSAMPLE ^ m + 2
I 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1

Figure 3.1: The Subsampling Scheme of Chapter 2

It is easy to see that T,sub is positive semi-definite by construction. This avoids any 

risk of length of estimated confidence intervals for (3 (or other continuous functionals 

of elements of 9) being negative.

3.4 Empirical Analysis
^ R V  ^ A M Z

In this section we implement the test of constant betas based on p  and (3
^ r v  —A M Z

To implement the test, we will need estimated variances of (3 and (3 . To this
^RV

end, we use BN-S (2004) estimator of the variance-covariance matrix of [3 , and
„ '-AMZ

the estimator of variance-covariance matrix of (3 obtained by subsampling as in
'-A M Z  '-R V

Section 3.3. We calculate p  using all data, but for f3 we need to choose some 

lower sampling frequency. We choose three frequencies that are popular in practice, 5,
'-R V  '-R V  '-R V

15, and 20 minutes, and denote the resulting estimators as (3bmin, (3i5min, and /?2omm-
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3.4.1 The D ata

We use high frequency transactions data on six individual stocks. They are American 

International Group, Inc. (listed under the ticker symbol AIG), General Electric Co. 

(GE), International Business Machines Co. (IBM), Intel Co. (INTC), Minnesota 

Mining and Manufacturing Co. (MMM), and Microsoft Co. (MSFT). To proxy for 

a market portfolio, we use Standard and Poors Depositary Receipts (SPIDERS for 

short, ticker symbol SPY), which are an Exchange Traded Fund set up to mimic 

the movements of the Standard and Poor’s 500 Composite Stock Price Index. Our 

data covers the whole year 2006 and is obtained from the NYSE Trade and Quote 

database.

We clean the data as follows. We apply time filter 9:30 - 16:00. We retain all 

satellite markets. Where multiple transactions per second are recorded, we take the 

first one. Where repeated times are recorded, we take the average. Next, we delete 

bounce backs, jumps, as well as gradual jumps as follows. Bounce backs are most 

likely to result from data mistakes, such as incorrect time record, so as a first step we 

identify bounce backs among prices and delete them. We define bounce backs as two 

consecutive price changes of the opposite sign, where each of the two price changes 

is larger, in absolute value, than five standard deviations of the observed price over a 

moving window of 500 transactions. Next, we remove jumps using the thresholding 

methodology of Mancini (2004). In other words, we set those returns that are larger 

than some threshold to zero. The threshold for this purpose is defined as five standard 

deviations of the observed price, and is calculated over a moving window of one day. 

Finally, we remove gradual jumps. Barndorff-Nielsen et al. (2008b) discuss the fact 

that Realized Kernels do not behave well when price only rises (falls) over some period 

of time. Two Scale estimator is similarly not robust to gradual jumps, so we also have 

to deal with them. Barndorff-Nielsen et al. (2008b) define gradual jumps as relatively 

long periods containing only price increases or only price decreases. They then replace
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the returns of this period with one single jump. We define gradual jumps as at least 5 

minutes long interval containing only price increases (or decreases), provided the total 

price change exceeds a threshold of five standard deviations of the observed returns. 

Gradual jumps are replaced with a zero return. The threshold is recalculated over a 

moving window of 5 days. All window lengths mentioned in the cleaning procedure 

are average ones; windows are fixed in terms of number of transactions so as to achieve 

an average target of calendar time period over the year.

In order to calculate realized betas, we need to synchronize the data (see Section 

3.2.2). To maximize the information used, we synchronize data in pairs only. For 

example, to estimate beta of INTC, we synchronize INTC with SPY; to estimate 

beta of MMM, we synchronize MMM with SPY. Therefore, different transformations 

of the original SPY data is used to calculate different betas.

3.4.2 R esults

We start by analyzing the data. Table C.l contains some summary statistics of the 

data before synchronization: transactions per week, estimates of the noise variance, 

noise-to-signal ratio, and autocorrelations of returns at first three lags. First autocor

relations are all large and negative, which is typical of noisy data and unlikely to arise 

from Brownian Semimartingale. Second autocorrelations are all positive, some are 

large. Alternating signs of autocorrelations indicate that the main component of the 

noise is bid-ask bounce. In fact, if we removed all zero returns, the remaining data 

would display very persistent autocorrelation with alternating signs (see figure with 

autocorrelations in Chapter 2, this has been also noted in e.g. Griffin and Oomen 

2005). In full data set with zero returns, this effect is attenuated because switching 

times of bid and ask are random. Third autocorrelations are of different signs and 

small. The estimates of the noise variance (columns 2 and 3 in Table C.l) are very 

small, and in fact several orders of magnitude smaller than Hansen and Lunde (2005)
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estimates for year 2004. For example, the simplest estimator of the noise variance is

u2 = [X, X] / 2 n.

Our estimate for INTC in 2006 is 0.518 • 10-7 , while Hansen and Lunde (2005) report 

this number for 2004 to be 0.46 • 10-3. Apart from the obvious fact that years are 

different, there are also important differences in methodology. We calculate u)2 using 

the whole year, they calculate it every day and report the annual average. Data 

cleaning can also be an important source of differences. The more data is cleaned, 

the smaller estimate of the noise variance we would expect. However, it does not 

seem that these reasons can explain differences of such magnitude.

Table C.2 contains the same summary statistics for the cleaned data. As long as 

there is any asynchronicity in the observations, number of synchronized observations 

will be smaller. We can see the reduction of the transactions per week by comparing 

first columns of Table C .l and C.2. Noise variances are larger as measured by D2, but 

we can easily verify this is purely due to larger finite-sample bias caused by smaller 

number of observations. In particular, the bias-adjusted estimators

0 / ----------------------- ----------- - a m z \
Q2 = l [ X , X \ - { X , X )  \ / 2n

are the same with and without synchronization. Autocorrelations are smaller, which 

is due to frequency being lower.

Figure C.l contains volatility signature plots for each individual stock (plots of 

realized variance agains the frequency used in its calculation), as well covariance sig

nature plots (plots of realized covariance against the frequency). Volatility signature 

plots show a large increase for highest frequencies, consistent with the additive noise 

model where bias explodes as we sample more and more frequently. On the other 

hand, realized covariances display the so-called Epps effect due to Epps (1979), i.e.,
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they tend to zero as the frequency increases. Zhang (2008) analytically characterizes 

this bias for realized covariance based on previous-tick interpolated prices (Refresh 

Times is a special case of her approach). Therefore, neither Realized Variance, nor 

Realized Covariance should be calculated using the highest frequencies. On the other 

hand, the Two Scale estimator, while using all the synchronized data, cancels both 

the effect of noise and asynchronous observations and is consistent.
^ r v  ~A M Z

Figures C.2 - C.4 show plots of estimated betas using f35min and (3 together 

with 95% confidence intervals. We see that beta is estimated much more precisely
—AMZ

using all the data. The two parameters in (3 were chosen as follows. G\ was set to 

the number of ticks as to correspond to 5 minutes on average. G2 was set to 3, given 

that there is no evidence of autocorrelations at larger lags. The two parameters of the 

subsampling scheme were set to m =  20Gi and J  = bG\. Estimates and confidence
'-R V  ^ R V

intervals for (3l5min and {32omm are n° t shown, but they have much longer confidence
'-RV

intervals than /?5mm.

Table C.3 contains the results of the test for constant betas. In particular, it con

tains values of the test statistics with corresponding p-values in parenthesis. The null 

hypothesis is that the true beta is constant over some time period. We implement the 

test for five different time periods: the whole year 2006, and each quarter separately.
'-R V  '-R V  '-R V

Four different tests are implemented based on four estimators: f t 5mjn, ftomm
'-A M Z

and (3 . Roughly speaking, the results of the tests can be anticipated by looking at

the figures with point estimates and their confidence intervals. We see that the null 

hypothesis of beta being constant over the whole year can be rejected using a test 

based on any of the four estimators. For shorter periods, answer varies depending 

on the stock and the exact time period. The test based on (3 can reject the null, 

at 5% level of significance, for any of scenarios considered, except it has a p-value of
'-R V

0.057 for GE Ql. The test based on {35min rejects the null for fewer cases. The test
'-R V

based on /?15min fails to reject the null for roughly half of quarters-based cases, and
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the test based on /32qmin fails to reject the null for most of quarters-based cases.

We conclude that there is enough evidence against betas being constant across the 

whole year, but high frequency data can uncover significant variation in betas over 

shorter intervals.

3.5 Simulation Study

This section examines the finite sample properties of the subsampling method with 

irregular and asynchronous observations.

Efficient log-price of each of the two stocks follows a univariate Heston (1993) 

model:

d X f  = ( a i - v f / ^ d t  +  a fd W ®  

dv^  =  a 2 ^a3 — dt + a 4 d B ^ \  i = 1,2

where and B[l>> are independent Brownian Motions. The pa

rameters of the univariate efficient log-price process are chosen to be the same as 

in Zhang et al. (2005). They are a\ = 0.05, a 2 = 5, a 3 =  0.04, and a 4 = 0.5 

(the same for i = 1,2). Correlation of the two processes is obtained by setting 

Corr = g, with g taking values 0, 0.25 ,0.50, and 0.75 across different

experiments. In this model, the beta for the ith period is

Pi = Q %!  Ou)(7u )du /  f  ( v f f i d u .  (3.8)
i —1 j  i —1

Microstructure noise is simulated as a normally distributed white noise with variance 

^2I Q ^ \  where £2 is a noise-to signal ratio taking values 0, 0.001, and 0.01, and IQ ^  

is the integrated quarticity of the first stock (approximated as a Riemann sum of sim

ulated 1 second values of a1). Since volatility paths are different across simulations,
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noise variance also varies across simulations and increases with higher volatility of 

the efficient price. Observed prices are efficient log-prices plus noise.

As a first step, we simulate one week of 1 second synchronous observations (sim

ulation is done via an Euler scheme with one year as a unit of time and one second 

step length). From these, we take 35,000 irregular and asynchronous observations for 

each stock as follows. We draw a random permutation of all observation times in a 

week, take the first 35,000 of them, and sort them. Observation times are independent 

across stocks. Observations are then synchronized using the Refresh Time method, 

resulting in a random number of observations (usually somewhere around 25,000).

The Two Scale estimator is implemented with exactly the same parameters as in 

the empirical analysis (Section 3.4). In other words, G\ is taken so as to correspond 

to 5 minutes on average (typically around 70), and G2 = 3 (see Section 2.3 for the 

meaning of these parameters). Subsampling parameters are taken to be J  = 5Gi and 

m  =  20Gi also as in section 3.4. The resulting coverage probabilities for betas are as 

follows.

0 =  0 g =  0.25 0 =  0.5 g = 0.75
f 2 =  0 0.943 0.926 0.932 0.914
£2 =  0.001 0.939 0.927 0.925 0.924
£2 =  0.01 0.938 0.925 0.921 0.922

Table 3.1: 95% coverage probabilities of beta, where beta is estimated using Two Scale 
estimators as in (3.5). Confidence intervals of the Two Scale estimator are calculated 
using the asymptotic variance estimated by subsampling. £2 is the noise to signal 
ratio, q controls the realizations of beta, see (3.8). Number of simulations is 2000.

There is some under cover age, but otherwise subsampling method seems to work 

reasonably well in finite samples. An interesting finding (not documented here) was 

that the Two Scale estimator, even in the univariate case, was downward biased with 

irregular observations when G\ = 1, while it was unbiased for larger values of G\. 

This means that the same method that can deal with autocorrelated noise (G1 > 1)
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can decrease higher order biases due to irregular observations. Good finite sample 

properties of the underlying estimator are crucial for the subsampling method to 

deliver good estimates of the asymptotic variance.

3.6 Conclusion

This paper studies the question of time variability in equity betas. Recent develop

ments in high frequency econometrics allows us to estimate quadratic variation version 

of the betas in a model-free framework with ultra high frequency and asynchronously 

observed data from NYSE. Due to the market microstructure noise in this data, esti

mators of beta can have complicated expressions of the asymptotic variance, in which 

case it is convenient to use an automatic inference method to implement tests on 

betas. We show now the multivariate version of the subsampling method of Chapter 

2 can be used to achieve this. We then proceed to construct a test of betas being 

constant over time. We implement this test with six stocks on the NYSE over year 

2006 with Standard and Poors Depositary Receipts as a proxy for the market factor. 

We find that the use of ultra high frequency data allows to detect significant variation 

of betas over shorter intervals of time than the traditional estimators relying on 5, 

15, or 20 minute data.
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A ppendix A  

Appendices for Chapter 1

A .l Proof of Theorem 1.4.1

We assume for simplicity that fi = 0 in the sequel. Drift is not important in high 

frequencies as it is of order dt, while the diffusion term is of order y/dt (see, for example 

Ait-Sahalia et al.(2006)). With the assumptions of Theorem, the same method as in 

the proof can be applied to the drift, yielding the conclusion that it is not important 

statistically.

P r o o f  o f  T h eo rem . We will rely on the first and second moment calculations of 

[X, , [it, i t ] ^ ,  [X, u]aV9, [it, u]avg , and respective covariances. These can be found

in Section A.2. From there, 2711/2 [X,u]avg — n̂ - 2 [ X 1u ] ^  = op(l) by Chebyshev’s 

inequality and similarly [X, X]^n* =  op( 1). Also, we have E ([X, X ]avg — QVx) = 

o(n-1/2) from ZMA (2005) and E'fn1/2 [u, u]avg — [u, i t ]^ ]  =  o(l). Therefore,

n1/2 (QVx ~ QVx)

=  n 1/2 ( [X, X \av9 -  E [X, X]avs +  [it, t t H  -  E  [u, it]"" -  [u, tt]w  + ^ E [ u ,  u]{n)
\  K  K

+op (1) .
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We use Berk’s (1973) central limit theorem for ra-dependent variables with m  — 1. 

Note that we can prove the CLT for the special case a = 0 and convergence rate n 1/6, 

then get the needed result by multiplying and dividing the main expression by na^ .  

We proceed in the case where all three terms contribute, which is the case where K  

is chosen optimally to be K  = 0 (n 2/3). Also, we can do all calculations, conditional 

on o = {a t, t  G [0,1]}. Then, since o is independent of all other randomness, we can 

conclude the same CLT unconditionally. We apply Berk’s CLT to the following sums 

of Unii

Tn

=  V ( a ) -1# / 2 ([X, X]avg -  E [X, X]avg +  [u, u]avg

- E  [«, « r »  -  1  [u, u]<"> +  ± E  [u, u]w )

=  n~1/2 V (<r)~1/2Uni,
i= 1

—  (  K

K j = 1 J t ( i - l ) K + j

+  ^  I X ]  ( “ * < * + >  “  ~ ~  E  { “ t i K + j  _  % _ a ) ^ + j  )

U =1

f 2K_1l  2 1 2)
^  ^ 2  _  u ( i - l ) K + s )  ~  E — —  U ( ^ _ i ) x + s )  jK

=  +  c /u.i +
—  m  1 ^  m  1 ' - 'm  —  ^  m  1

There are 4 conditions to be satisfied in Berk’s CLT, which we denote (i)-(iv). 

Notice that {Uni\™~l is (conditionally on a) a sequence of 1-dependent random vari

ables. Therefore, condition (iv) on dependence is trivially satisfied. Condition (iii)
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requires the following to exist and be non-zero,

{n - l

u,

i=i

This follows by our moment calculations,

V(a)

=  lim I nvar [X, X]avg T  nvar [u, u]aV9 +  ( —— ^ var [u, u ] ^  
n —>oo I \  Tl J

—2— cov ([u, u ] ^ ,  [u, u]av9) |

=   ̂J  a4dt +  (l2d4 +  4Ee4 f  uj4 (u ) du +  24<52 J  J 2 (u ) du)

— (8d4 +  4 (.Ee4 — l) J  cu4 (u) du +  16d2 J  u 2 (u ) du)

=   ̂J  a4dt +  c-3 (8<54 +  16<52 f  lj2 (u ) du +  8 feu4 (u) du) .

Condition (ii) requires

var (Uns+1 +  ... +  t/ns') <  (s' — s) M ' for all z, j ,  and n sufficiently large, 

where M r is some constant. We have that

var {UnS+i +  ... +  U£s,)

- ~ (41  i: {(**., -v,„J - f "
\  j = l  i = s + l  ^

< 2 (s' — s) < sup o2 (u)
I we [0,1]

(A.l)
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v a r  ( U n s+ 1 +  -  +  U ns' )

_ 2 s ' (  K  ' I K - l

=  J o  { 4 H Var(“ ix+J'Vi)K+J)  +  X ] Var {u ( i - l ) K + l + j U ( i - l ) K + j )
* = s + l  k j = 1 j = 1

— 9  S '

12 { i var (“iJf-jf+O -  i var (««•+*•)+var (û +i)) + °(i)
*=s+l  ̂ '

< (s' — s) Cu | 6c 3 +  c 4} + o ( l) ,

where the o(l) terms arise from the mean m(2) and are asymptotically negligible, 

while c is the constant in the definition of K  and Cu is the maximum of the upper 

bound for (var (ui))2 and the upper bound for var (uf). Their respective expressions 

are as follows:

var (Ui) <  52 +  < sup u(t)  >
[*e[o,i] J

var (u2) <  2<54 +  4< sup m(t) > < sup cv(t) > + 4  sup m(t) < sup u)(t) > E |e |3
[*€[0,1] J [*€[0,1] J *e[0,l] [*€[0,1] J

+  s sup uj(t) > (Ee4 — l) +  4 < sup m(t) > 52 +  4 < sup uj(t) > 52.
[*€[0 ,1] J [*€[0 ,1] J [*€[0,1] J

By the Cauchy-Schwarz inequality we obtain (A.l).

Finally, condition (i) is:

For some 77 > 0 and M  < 00, E \ Uni\2+T1 < M  for all i and n. (A.2)

Then for some constant C, E[\Uni\2+r>] < C(E[\U^\2+̂ } +  E[\U%\2+1>] +  E[\U%\2+T>}). 

Different arguments are required for the C/*f and terms - the summands in 

are highly dependent but individually of small order while the summands in are 

independent or of low order dependence but of individually larger order. Define

'LVnij
n
K

rU ic+j
(X tiK+i - X .  f  -  /  aldu
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Then, since —X  ~  7V(0, f*lK+3 o\du), where oidu  =  0 (K /n ) ,

we have £^[|n;nij|r] < Cr < oo for all r , i , j .  Note that X tiK+j ~~Xt +. and X t.K+j, —

X  1)K+., ôr 3 7̂  f  are highly dependent. We write

uz* = ^ A iV(xt„r,J - x  .... Y - [ ' K+3 aidu\ = ^ - sT w-I E(*~,-v.,
Kj=i ^

Therefore, by Minkowski inequality

|2+1)i/2+,  < ^ J 2 ( e  M * 1] ) 1/1+11 =  ^  X >  [ k * l 241 ) 1/2+’’ <  oo.
j = 1 j = l

Similar arguments apply to the terms {/“? and U ^ ,  where we make use of the as

sumption that F7[|et .|4+7?] <  oo. We just show the argument for C/JJJ. Recall that 

utiK+i— ui =  Vt r f . —v, , where vt =  Sy/n (Wt — W*.H K + j  H K + j  ^ i - ^ K + j  H K + ]  V  V z % H - l J

and Eti = m  (U) +  u  (U) e^, so it suffices to show this result for the two components. 

The arguments to do with vti are straightforward because all moments exist and the 

magnitude is just right. Regarding the etiK+j terms, let £nj = (etiK+. -  £t{i_1)J(+j)2 -  

E(£tiK+j — £t(i_1)K+J)2i where are independent and mean zero random variables 

across j  = 1 , . . . , X.  First, notice that E[\etiK+j\4+2r>] < oo, supuG[0)i] |m(it)| <  oo, 

and supu6[0>1] |cj(u)| < oo imply that E[\etiK+j |4+2r/] < oo. Then, E[\eUK+. |4+2??] < oo 

implies that — £t . ,)2|2+7?] < oo and hence #[|£n?-|2+r?]. Then, by the
' J  ( i — l ) K - \ - j  J

Marcinkiewicz-Zygmund inequality for independent random variables and Holder’s
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inequality for sums

E
'  K P- K p / 2 '

 ̂v £ n j < CPE
- 3= 1 - j = i

< CPE
K  \  2/P

E i ^ r
j =i

p/2

K

= ^ ( E ^ i ^ r )  <
j = 1

oo

for any p for which E  |£nj |P < oo. It follows that

E[\U'i\2+*] ee E
_  K  

3= 1

2 + T } '

n \ 2+T)
< * K C 2+v < oo

for K  = 0 (n 2/3). This establishes condition (i).

To conclude, the conditions of Berk’s theorem are satisfied conditional on a  and 

so we have shown that Pr(Tn <  t\a) —*■ $(t)  for all t , which implies that Pr(Tn < 

t ) —► $(£), where <f>(£) denotes the c.d.f. of a standard normal random variable.

A .2 Technical Appendix to Chapter 1

This appendix contains first and second moment calculations of components of the 

estimator of Chapter 1.

For deterministic sequences An, B n we use the notation A n ~  B n to mean that A n 

is equal to B n plus something of smaller order than B n, i.e., A n/ B n —> 1.

To follow easier the notation regarding all subscripts, it is convenient to think in 

terms of grids. The time indices of the full dataset with n data points are on a grid Q =
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{1,2, 3 , . . . ,  n} . For the first few lemmas we take the first subsample only, which has 

time indices on the first subgrid Qi = {1, i f  +  1,2i f  +  1, . . . ,  (n — 1 ) if  +  1}, where 

n = n /K .  This translates into {i — 1 ) if  +  1, i = 1, . . .  ,n.  Hence, for summations like 

the one defining [Y, Y]ni we will need to take

i f  +  1, 2 if +  1 , . . . ,  (n — l ) i f  +  1 

1, i f  +  1 , . . . ,  (n — 2 )if +  1

i K  +  l,z  =  1 ,.. .  ,n  — 1 

(i — 1 ) i f  +  l,z  =  l , . . . , n  — 1
> .

Similarly, the j th subgrid is Qj = {j, K  +  j, 2K  +  j , . . . ,  (n -  1)i f  +  j} , j  = 1 , 2 , . . . ,  if. 

This translates into (z — l ) i f  +  j, i = 1 , . . . ,  n. Hence,

i f  +  j, 2 if  +  j , . . . ,  (n -  l ) i f  +  j  

j , K  +  j , . . . , ( n - 2 ) i f  +  j
=  <

i i f  +  j, i =  1 , . . . ,  n — 1 

(z -  l ) i f  +  j , i  =  1 , . . .  , n -  1

W e assum e for sim p lic ity  th a t /z =  0 in  th e  sequel. D rift is n o t im p ortan t in  

high  frequencies as it is o f  order dt , w h ile  th e  d iffusion  term  is o f  order y/dt (see, for 

exam ple A it-S ah a lia  et a l .(2 0 0 6 )).W ith  th e  a ssu m p tion s o f T heorem  1.4.1, th e  sam e  

m eth od  as in th e  proof can  b e  applied  to  th e  drift, y ie ld in g  th e  con clu sion  th a t  it is 

not im p ortan t sta tistica lly .

P r o o f  o f  T h e o r e m  1 .4 .1 .  E x p ecta tio n s  are tak en  con d ition a l on  th e  w h ole  

p ath  o f  a t. W e have

 3/2
n 1/2 (Q V X -  QVX )  =  S 1/2 [K, Y]av3 -  [Y, Y f  -  n l/2QVx

=  n 1/ 2 { [X , X]avs +  2 [X, u]avs +  [u, u]av9}
 3/2

{ {X, X ]{n> +  2 [X, u]{n} +  [u , «]{n>} -  n 1/2QVx  

= C1 + C2 + C 3 - C 4 - C 5 - C 6 .

We calculate the order in probability of these terms by computing their means
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and variances and using Chebychev’s inequality. We show below that:

mean variance

Cl -V 2 [X , X] avg-  n l/2QVx 0 0(1)

C2 2n1/2 [X,u]avg 0 (n Q/2) 0(1)

C3 n 1/2 [u, u]av9 O fn1/2) 0(1)

C4 ^  [X, X] {n} o(l) 0(1)

C5 + 2  [X,u}{n) 0 ( n a/2) 0(1)

C6 ^ [ u , u } ln} O fn1/2) 0(1).

(Cl) The term n 1̂ 2 [X, X]™vg — n l/2QVx  has zero mean and variance 0(1) from 

the result in Zhang et al. (2005) (eqn. 49, pp. 1401), and:

(C2,C5) In Lemma A5 we show that E  [02 — 05] =  op( 1). Lemma A2 shows that 

variance of 05  is small. From Lemma A6, 4nvar[X, u]avg = O (nn^~2) = O (n-1) .

(C3,C6) In Lemma A7 we show that E  [03 — 06] =  op( 1). From Lemma A4, 

var ( ^ -  [u, w]*n^  =  0(1) and from Lemma A8, var (n1/2 [u, u]aV9) =  0(1).

(C4) By Jacod and Protter (1998), [X, X]n-Q V x  = Op (rT 1/2) and so ^  [X, X]n = 

Op r t r )  =  O p(n“~1/2) =  0P (1). Since [X,X]n -  [X, X]{n} = Op (K/n) ,  we have 

a l s o ^ [ X , X ] {n> =  0l, ( l ) .

It follows that the limiting distribution of n l/2(QV X —QVX) is that of 0 1 + 0 3 —06. 

The covariances between these terms are calculated in Lemmas B l, B2, and B3.
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Therefore, the asymptotic variance is

{
/ —3/2 \   ̂  2

nvar [.X , X]avg +  nvar [it, u]avg +  ( ——  ) var [n, u ] ^  — 2— cov ( [u, n ] ^ ,  [n, n]OU5)

\  n J n
i

=   ̂J  a4dt +  2c-3 (l2<54 +  4Ee4 f  a;4 (u) cht +  24£2 /  a ;2 (w) du)
0

—2c-3 (8£4 +  4 (.Ee4 — l) Jo ;4 (u) du +  16£2 J  a;2 (n) cht)
1

=   ̂J  a4dt +  c-3 (8<54 +  16£2 f  u 2 (u) du +  8 f  cj4 (u) du) .
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A. 2.1 Lemmas

Here we give the lemmas needed in the proof of the Theorem 1.4.1. 

Lemma A l. For all n

m -i*4™
E [ x ,u } ni =  h n Y ,  /  ffi*.

i=i L

Lemma A2. A s  n —► oo,

:[X,u]ni =  0 ( n - ) + o ( L )

/ —3/2 \  ^
4 ( ——  j  var [X, i t ] ^  =  o (1).

var |

' ^ 3/ 2 '  2

Lemma A 3 .  As n  —► oo,

i

i£[u, it]”1 =  [m, m]ni +  2n in _a J  u 2 (it) du +  2ni<52n _a +  0  (n ~a) .
o

Lemma A 4 .  A s  n  —► oo, 

var [it, u]ni

= 112<54 +  4i£e4 / a;4 (it) du +  24£2 / tj2 (u) du + O ^ ^  +  O |

vax[u,«](n}

=  c~3 {12<54 +  4i£e4 f  u 4 (u) du +  24£2 J  u 2 (u ) du] +  o (1)
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L em m a A 5 . A s n  —► oo,

L e m m a  A 6 .

L e m m a  A 7 .

L e m m a  A 8 .

var [it, it]*™5 =

L e m m a  B l .

L e m m a  B 2 .

L e m m a  B 3 .

i

E[X,u]avt =  ^  J  a tdt +  0 ( n ~ ^
0

 3/2
s 1/2f f i , i i r j  =  — .e i x , «]<">+o (i)

n

As n  —> oo,

var[X, it]au5 ~  -^:var[A, it]™ =  O ( ^ ~ 2) •

As n —> oo,

rT3 / 2
n lt2E  [it, it]au5 =  E  [it, i t l ^  +  o(l)

n

As n —* oo,

|l2<54 +  4£ e4 J V  (u) du +  24c52 J V  (u) du +  O ( ^ " )  +  O (̂ 2 )  |

c_3n _1 {1254 +  4£'e4 J  a;4 (it) du +  24S2 J  u 2 (it) du +  o (1)} if (3 = -  (1 — a ) .
o

As n  oo,

cov ([X, X]a”», [u, u]a''9) =  O (n~aK ~ l) =  o  (u_1/2) •

As 71 —► oo,

cov ([A, X ] aV9, [it, i t ] ^ )  =  O (n_aA _1) =  o (n-1/2) .

As n ^  oo,
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cov ([it, it]*n ,̂ [it, u]av9) = zjjC 3 {854 +  4 (Ee4 — l) J  u A (u ) du +  16S2 f  u 2 (it) du + o (1)}
7\

A .2.2 Proofs o f Lemmas

Write symbolically [X, u] =  [X, v\ +  [X, e] and [it, it] =  [v, v] +  [e, e] +  2[v, e], where the 

process X  is independent of the process e and the process v is also independent of the 

process e. Also use for a function g and lag J  = 1, , K,  A jg(U) = g(U) — g(U-j) 

with A =  Ai for simplicity.

P roof of Lemma A l. We have

E[X, it]”1

n \ — 1 

£  E  [ ( « *U t i K + 1 U t ( i - l ) K + l ( i - \ ) K + l

i = 1
* ( i - l ) K + l

:( i - l ) K + l M'

P roof of Lemma A 2 . We have
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var[X,u]ni =  var[X,);]ni +  var[X,s]ni +  2cov ([X, [X,e]"1)

=  var[X, r’]n‘ +  var[X, e)ni since E ((A X )2 A W )  =  0 by normality 

=  0 ( n - “) + 0 ^ ) .  (A.3)

We prove (A.3) below. First part is var [X, v]ni ~  n l~a +  ^ )  ~  n~a by

- 5—-var [X, v
0  7  i

ini
Tn 
1

=  var

n\ — 1

~n\ — 1

var

n i  —1

)  V (XUK+1 ^
1 = 1

v t i K + 1 -  % - 1 ) K + 1

E  (* < « «  - - V . > * +.)  ({W i« +, -  w tiK} -  { w t(i_l)K+I -  WtH_ltK) )
i = l

=  E  Var [ ( X «<K+. -  * W + . )  ~ W“k\
i= 1

Til — 1
+

i = 1 
n \ —2

n\ — 1

E var[(x< )(Wf
t i K + l  f ( i - l ) K + l  I \  V y t ( i - l ) K + l  y V t ( i - \ ) K- W t . )]

+ 2  E  E [AKX tiK+1 (A W tiK+l ^ K^ t(i+1)K+1
i=  1 

t"n.—2 r +1 2t ^ f n l \
=  n  I  tr*dt + 0 { ^ ) '

where for the final equality we use:
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ni —1

E  var [ ( * W l  -  X Hl_1)K„ )  (WtiK+l -  WtJ
i —1

n i _ 1  /  \  2
=  E £ (* * * «  - ^ ( " w - ^ « ) 2

z=l 
n\ — 1

+  E  £2 ( ^ K + i_  v » * « )  (W'tiK+i -  w Uk) by normality
Z=1

n}  }  t i K  +  l  1 /  * i / C + l  \

E f  a *d t n + ( f  a ,d t I
i =  1 ^ i - lJ J C + l  \  tiK  J

E ™ [ (
t= l

n i _ 1  * i K + l  1 1 * n - / f + l

= I  ° 2t d t-  = -  I  ° t dt’
i= l  Hi~ 1)K+1 U 71

and

n \ — 2

2 £  E [A *X t(K+1 ( A H ^ +I -  AW((j_1)K+1) A *X t(j+1)K+1 ( a ^  -  AWtiK+l)
Z=1 

Til — 2
=  2 £ E ( A * X ((K+1AtEf(K+1) E ( A *

Z=1
n \ — 2

= 2 E
Z —1

£ i j c + i  * ( i + i ) / c + i

f  atdt f  a tdt
U K  t { i + l ) K ■ O S ) -
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For the second part of (A.3), we have var[X, e]ni = O (=?) +  O (n a) by

var[X, e]
* n i —1

n i

=  var
. *=1

n\ — 1

^  v v^r \^K-^tiK+i^K^tiK+i\ d" 2 ^   ̂ cov A #X £iA.+1 Ajf£'tiK-+1, _1̂K+1
i = l

ni —1

=  ^ E ( A KX (iK+1) 2 E ( A K£t4K+1) :

ni—1

i= 2

i = l

ni — 1
+2  E E (A«

i = 2

7̂ 1 ~ 1 * i K + l  r /

= 2 2  . f  a t d t [{A Km tiK+1) + n " a (c
* = 1  * ( i - l ) J C + l  

" I - 1  * z K + l

2 +  77. “  (  CJ? +  CJ?1 tz/C+1 *(» —1)/C+1)]

1 ) K + 1

~ -hi ''lA +  l  r

+ 2 E  /  CTiCtt /  + " _H -
i = 2  H i - 1 ) K + 1 H i - l ) K + l

-  ° ( ? ) +0 (“-)•

Now we prove the second part of Lemma A2. Note that by substituting n  for ni we 

get var[X, 7i]n =  O (n~a) + 0  ( ^ )  , and so var[X, u]n ~  (n3/ n 2n a) + (n3/ n 5) ~

n 3 ( l - / 3 ) - 2 - a  _  j j l —a —3/3 __  n l - a - 2 ( l - a )  _  n a - l  —  o  (l) . Since [X, ? i]n  —  is of

smaller order than [X, u ] ^ ,  the same holds for var[X, u ] ^ .

- 1 ) K + 1
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P r o o f  o f  Lem m a A3. We have

ni —1

E K “]ni =  E E ( « W % - 1)K+1)
i = \  *-

n\ — 1

=  E e  [s2j l ( w tiK+i- w tiK)2 +
i—1

<527^ (W V 1)K + 1 ^ - 1 ) K + 1

Til — 1

y  v  ̂ %-Dx+i
j = l  *-

=  [m, m]ni +  0
n\ — 1

)1 +  1) 5 S
n

2^2 
n

(A.4)

(A.5)

=  [m, to]"1 +  2ri!n a J  uJ1 (m) du + O (n “) +  2«i<52n2„ —a

We prove (A.5) below.

m—l

E®l(
i = l

ni —1

E e
i = 1

«/2,„ f ! £ ± 1 )  f, .. _  n - a/2w

-  (m t i K + 1  -  m H

0 n i - 1  r  ✓

) +«-aE k (
i = l  L '

n

iK  + l

i K + 1 (: I €td n J (

n
+ u 4 n

1)K+1
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P r o o f  o f  L em m a A4. We have

var[it, itlni

= var [v, u]ni +  var [e, e]ni +  4var [u, e]ni

=  m ^ n - ^ r n  +  O (n_2a) (A.7)

+4nin~2aEeA J  u 4 (it) du + O (n ~3a 2̂) +  O (n-a n -1)

+24J2n~2Q!ni f  u 2 (u ) du + O (n ~2a) +  O (n_Qn _1)

=  l2SAn~2ani +  24<52n -2an 1 f  u 2 (u ) du

+An\n~2cLEe4 J  u 4 (u) du + O (n-3a/2) +  O ( n ' an~1) (A.8)

=  1 12S4 + AEe4 f  u 4 (u) du + 24S2 f  u 2 ( i t )  du + O n \ ^  n  
7i\ J Vnf

We prove (A.7) below in a series of steps, but first we derive the second result of 

Lemma A4. Note that note by substituting n for n\ we get the following expression 

for var[it, it]n,

var [it, u]n = 1 12 S4 +  AEe4 f  u 4 (it) du + 24£2 J u 2 (it) du + O ^ +  O ^ “ 2̂  |

Prom this, we have

n 3/ 2 '  2
n

var [it, it]n

^ { l  2S4 + 4Ee4 J  u 4 (u) du + 24S2 fu>2 (u) du + O ( + - )  + o ( +

n3
nn2a

{1254 + AEe4 f  cj4 (it) du +  2A82 J uj2 (it) du + o (1)} 

=  c~3 {1284 + AEe4 f  ui4 (it) du + 2A82 f  u 2 (it) du} +  o (1),

since — c 3n 3̂  ® 1 2a = c 3n 2 2a 2^ 1 a>> = c 3. We get the second result 

of Lemma A4 by noting that [it, it]n — [it, i t ] ^  is of smaller order than [it, i t ] ^ ,  so

111



(^n“ )  var[w5 u]n ^ as the same leading term as va i[u ,u ]^ .

Now we prove (A.7) by calculating separately each of the three components of

varfu, u\n\

The first component of [u, u]ni is

ni-l 2

=  e  ( ^ + 1
i = 1

ni-l 2

=  <527n E  ( + < « «  -  + J  -  (W V 1)K+1 -  " W ) )
i=l

—i /  2 \  2
=  <5272 ^  Z 2, where Z* are 1-dependent N  ( 0, — j , cov(Z2, Z 2_x) =  — ,

i = i  \  n J  71

and hence,

v a r [ w ,  n f 1 =  <547*  (m -  1)  x  2 + )  +  25474 ( n x -  2)

=  12<5474 (n, -  1) ^  +  O (n~2a)

=  1254n - 2ara1 +  O (n_2“) .

The second component of var[u, v]ni is

\ 2
var[e, e]ni =  var ^  + « + ,  -  % _„*+, j

Z=1
ni —1 2 71 ~1

=  E var ( £< i/c+i ^ + -1)^+1)  ^ E  covM_i (A.9)
i = 1 i=2

=  E  { 24 , +1» “2“ ( ^ 4 + 1) + o  ( « - a5 )  +  0

ni—1
+2  n_2act;tA:+i (■̂ 'e4 — l)  +  ^  (n-3a//2) +  O (n~an ~l)

z=2
m

=  4n 2a# e4 +  O (n 3a/2) +  O (n Qn *)
Z=1

=  4nin -2a^ £ 4 J  u 4 (u ) du +  O (n-3a//2) +  O (n_Q:n _1) ,
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where we denote by cov^-i the terms that appear because the sum in var[e, e]ni 

involves 1-dependent terms. For exact expression and calculation of the second term 

in (A.9) see below. Before that, the first term in (A.9) is

var ( £t«+1 -  £*(i-i)*+i)

=  var (£i — £i-i)2 by an obvious change of notation 

=  var (m { -  i +  n~a/2 -  u ^ ie i - i ) ) 2

= var (2n~a/2 (rrii -  ra^i) -  Wi-iti-1) +  n~a -  u^-iCi-i)2)

=  4n~a (mi -  rrii-i)2 var -  i^-iC i-i) +  n~2avar (&& -  +

+4n - f Q (m< _  rrii-i) cov (o^e* -  cji-ie*-!, -  Ui-iEi-i)2)

=  4n-a  (mi -  m i_i)2 (w? +  a;?^) +  n~2a { (uf  +  (£e4 -  l) +  4a;?a;?_1} +

+ 4n - f Q (m . _  mi_i) (a;® +  ^ z3_i) Ee3

= O +  " _2Q { K  +  (Ee4 -  !) +  } +  0  E e3

Ee3.
n j

- 2 a (Ee* + 1) +  O ( " " “ J - )  + O
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The second term in (A.9) is

c o v m - i  —  c o v  — £ t ( i _ i ) x + i ^  ’ ^ ^ ( i - i ) K + i  — £ *(z- 2 ) k-+ i )  j

=  cov [(£3 — £2)2 , (e2 — £i)2] (change of notation)

=  var (^2) -  2cov (e\, £i£2) -  2cov (£2£3, £2) +  4cov (£i£2, £2£3) 

=  4m \n - auj\ +  n - 2au \  (Ee4 -  l)  +  4m 2n~3al2uj\Ee3 

—2 {2m 2m in~auj\ +  m in~3al2uj\Ee3}

—2 {2m2m3n “au;2 +  m 3n~3a^2ujlEe3} +  4 {n_am im 3c<;2}

= n~2au 2 (Ee4 — l) +  2ri~3at2u \E e3 {2m2 — mi — m3} 

+ 4n _a6J2 (m2 — m3) (m2 — mi)

^ t/c+1 ( ^ e4 -  l) +  ^  3o:/2̂  *) +  O (n an 2) ,

where we have used var(£2) =  4m |n au 2 +  n 2auj4 (Ee4 — 1) +  4771*71 3a/2u 3Ee3, 

cov (£?.,£ti+1£ti) =  2mtim*i+1n _Q:a;2+m*i+177_3Q!/2̂ . £ ,e3 andcov(£i£2,£2£3) = n " Qm im 3w .̂ 

The third component of varfu, u]m is

4var[n, e]ni
n\ — 1

4var ^   ̂ — ^(i-i)x+i) — ^(i-i)A-+i
i = l

7 l l  — 1

=  4<5272var X  (e t4K+1 -  et(i_1)K+1)  ,
i= 1

/  2 T \ 1
where Z* are 1-dependent TV I 0, —  I r.v.’s with autocovariance , Z E e

\  n J n

=  4<5271 X  Vla [Zi&KetiK+J  +  8<5272 X  cov |Z j  A KetlK+l, A KsHi_1)K+1}
j = l  i=2

=  45272 X  £ Z 2£  ( 6(ur+1 -  et(i_1)K+I) 2 +  8* 7* £  { 0  Q 5 )  +
2=1 * = 2  t \  /  J

= 2A82n~ 2arii J  w2 (u ) du + O (77_2q) + O ^n_a—̂  .
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P r o o f  o f  L e m m a  A 5 . We have

K  K  rij- 1 t iK +o

£ e [x , uP  = - Y
3=1 3=

K  K  nj ~  1 iK+i

E[x,u)avs = i E ^ w ^ E ^ E  [
^  i=1 J +i- 1

U j - 1  K  t iKp  J- n j - l ^ + y *

- ^ E E  /  ■<1- y E  /  «*
2 = 1  j = l  ^  2 = 1  /

—1 H K

0

H n
K

0

As for the second part of Lemma A5, we first calculate E [X , u ] ^ ,

n —A  .. /  n  A —1

£ [X ,u ]{n} =  E ^ [ A X (>AU(,] +  - (  ^  E  [AX^AueJ +  E  E  A * t A ut
2 ,

i = K  \ i = n —K + l  2 = 1

n - K  *». ^ n K   ̂ K - 1 *•.

=  C 7 „ E  /  <t‘*  +  5 cT'» E  /  (T*d t+ 2 C7« E  /  atdt
i = K  r  i=n—A + l  /  2 = 1  /1̂—1 &* —1 1

/  tn *K-1 ^

=  c7n J °tdt +  ^C7n I J  otdt +  J  atdt
tK-l Vn-fC *0

1

c 7 n  J atdt -  ^ C 7 n 0  (n x) .

Then,

 3/2
n 1/2£ [ X ,d 0''9 -  !?_-M A ,d W

n

n 1/2^  J  atdt +  n l/20  )  -  —p p h n J °tdt  + —̂ ~ 0  (7 J T l )
0 0

0  (n  ^  ̂  =  o (1).
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P r o o f  o f  L em m a A6. We have

var[X, u]avg

= var

j = i j i^ m  m = l

(A. 10)=  ^ 2  var[ ^ ’ wP j + 0  (n 1 an ) +  O (n ln  *)
3= 1

= J i  ^  + 0 (^2) ) + 0 + 0 (”“ln_1)
~  n~^~a +  n -/3_2+2/3 +  n - 1-Qn 1-/0 +  n _1+/3n _1 ~  n/3-2.

The above (A. 10) follows by noticing that all covariance terms are of the same order, so 

we can explore the magnitude of one of them. Since we are looking at the magnitudes 

only, assume without loss of generality that 8 — 1. Then,

=  cov

n —1

n —1

i = l

^  V { ^ t i K + 2  U t ( i - l ) K + 2 ^  { ^ t i K + 2  ^ - t { i - \ ) K + 2 ^

i = 1

(A.11)

The latter can be easily shown to be O (n 1 an) +  O (n 1n  *).
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P r o o f  o f  L em m a A7. We have

n

= n 1/2

1/2E[u,
n3/2

n
■E [u, u

u tiK+j -  Ut(i_1)K+j I } -  ^ r S[u ,u] { n }

j —1 i = l

—1/2 n-Kn '
K E  B [(e«+*

i = 1
£t*)'

n

’n - K n —1

=  n

2  ̂ e  [(^+* ~  ^ ) 2] + x i  e  [ ( ^ + i _  £t*y
L i= 1

E  (W‘i+K +

i= 1

n 1//2 n~K
i = K

K
2 = 1

3 / 2  I n - K

- n ~ a—  I V  fa;2 ,, +  a/22n 1 ^
*=i

,n1/2

) + £ (
i—K

{ n n —K  1 n —A"4

+  E
2=/r+l *=1 2=2

1 n —A  1 n  1 n —1 'I

- j E ^ - 2  E  4 - 5 E w<<f2=1 i = K + 1 z=iC Jn 1/2n
K =  0 (1) ,

where (A. 12) follows because contributions from v are zero,

n 1/ 2 o i l  f n 3/2 1 r73/2
_  („ _  JO «V B_  _  _ { _  (n _  * )  s ^ l -  -\ —  (» — k ) P *

n 1/2 n 1 n 3/2 1
=  _ ( „ - j o « v  ( „ - / o « v  . 0 ,

and (A. 14) follows because contributions from m (.) are negligible,

— 1/ 2  nL/z
K

2 = 1

n ly/2 1

n 2
f  2=1 i=A+l

~ rrn ^  + A r r
n 3/2 1 t73/2

— n — =  n “ 1/2 H-----— =  o (1).
n nz n 1

(A.12) 

(A.13) 

(A-14) 

(A.15)

(A.16)
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P r o o f  o f  L e m m a  A 8 . Using Lem m a 4,

varfit, u\avg

= var 

1
K

K

4  Y ^  u^ j r =  ~y. Y  vaxtw’ u n̂j (A-17)
3=1 J 3=1

^  1 12S4 +  AEe4 J  u 4 (u) du + 24<52 J  u 2 (u ) du + O ^ +  O { ^ ~ 2

1 12£4 +  4E'e4 f  u 4 (u) du + 24S2 J  u 2 (u ) du + O ^0/2 x n( —
K n 2a J ~ v~' ’ J ~ v~v — 1 ~ ^ ni y +

=  c_3n _1 {l2<54 +  4#e4 J  u 4 (u ) du +  24<52 /  a;2 (u ) du +  o (1)} if (3 =  ?  (1 — a ) .
o

In above, (A. 17) follows because all covariance terms are zero. For example,

ni_ i n2_ i r 2 2^
COV {[«,«]"*, [U , U p }  =  £  cov i  ( “*.*« -  % -i>K+1)  - -  % - „ * „ )  f •

i= 1 J = 1  ^ J

To show all terms in the summation above are zero, we do the calculation for the 

term with indices (i = l , j  = 1)

cov

=  cov ^ d 7n (WtK+l -  WtK) -  5ln  (Wtl -  W*) + (etK+1 -  etl) ] \

[ « 7»  ( W i * + ,  -  w tK+1 )  -  h n  (W t2 -  w tl) +  ( e tK+2 -  £ t 2 ) ] 2 )  =  0

as well as for the term with indices (i = 2, j  = 1) 

cov I  (ut2K+1 -  «tK+1) 2 , (utK+2 -  Ut,)2}

C O V  ^  [ ^ 7 n  ^ 7 n  (^ 7  ft'4-1 —  ( ^ . 2 K + l  ^ * K + l ) ]  »

[<57„ {W tK+2 -  Wt/f+1) -  57„ (Wi, -  Wtl) +  (etK+2 -  £(2) ] 2)  =  0.
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P r o o f  L em m a B l. We have

cov([X ,X ]^9, K u];„9)

=  covf
V j=l  j= l  J

= C°V ( l<  ^  ( ^ * + i  ~  ^t(i-i)jc+j) ’ J(  X I  S  “  % _ i)K+:l)
\  j = l  i=1 j = l  i= l

K  rij-1 K  rij- 1 \

x Y Y  v  f r A y  ~  7„&2,« +  63'«)2 )
j = l  i= l  j = l  i= l  /

/  #  Wj-1

( k  i t ,  x i
V j = 1 i= l
K Tlj—1

f t Y Y  W 61,« +  +  63,« “  27 A * A «  +  27 A « A «  -  27„&2, A ,ij)
j = 1 i= l

=  C l  +  C 2  +  C 3  +  C 4  +  C 5  +  C 6

=  O (X _1n _Q:) =  o (ft-1) as — p — a < — (1 — f3) holds if (3 =  ^ (1 — a)
o

where fc2,« =  ^ , (i_1)K+i-W /t(i. 1)̂ _ 1, *>3,« =  e(jff+3- £ t((_1)K+r

The last line follows because cl ~  c2 ~  X -2 and C3 =  C4 =  c5 =  C6 =  0 by 

properties of normal random variables.

=  cov

P roof of Lemma B2. First, note that cov ([X, X]™vg, [u, u]n) is of the same 

order as

cov ([X, X]2vg, [it, 11] ^ )  since [w, u]n — [it, u ] ^  is of smaller order than [it, u\^n\  Also, 

notice that cov ([A, X]™vg, [u , u]n) has to be of the same order as cov ([X, X]*vg1 [it, u]™vg) 

by similarity in construction of [it, u]n and [it, u]JJ . Hence, cov ([X, X]2vgi [u, w ]^ )  =  

o{n~l ) by Lemma Bl.
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P roof of Lemma B3. We need to prove here that

COV ([it, l i ] ^ ,  [it, u]aVg) = ~ 2 ^ 3 { ^ 4 +  4 ( ^ e4 — l) ae +  16£2 /  (it) du +  (9 (l) } .

We will calculate the expression for cov ([it, u]aV9, [it, u]n) . It has the same leading 

term as

cov ([it, u]av9, [it, it]{”}) since [it,it]n — [it, i t ] ^  is of smaller order than [it, i t ] .

i  K  n j ~ l  z

COV ( [ u , u } a V 9 , [u,uf) =  COV ( =  ( “ '<*+> ~  “%-»*+*) - K + l  -  “ J
\  j=1 1=1 1=1

=  cov ( ^  I Z  K + *  ~  “ i*)2 ’ I I  K + i  -  u*i)2l
\  i=l i=l /

=  COV
^ n —K  /  \  n —1

i=1 \  „ / i=l\ ai 02 a3 /
u«i+i +  £U+1 ~  £tt

\  fei 62 &3

=  ^ cov (a i +  a2 +  a3 +  2aia2 +  2aia3 +  2a2a3,

62 +  62 +  63 +  26i62 +  26163 +  26263)

=  ^ c o v  (a2 +  +  a3, 6? +  6  ̂+  6§)
2 

+ —cov (a2 +  a2 +  u3, 6162 +  6i63 +  6263) 
2

+  ~ C O V  ( a i a 2 +  <2i<23  +  <t2a 3 j  ^ 1  +  ^ 2 +  &3 )

4
+ —cov (aia2 +  a ia3 +  U2a3> ^1̂ 2 -H ^1̂ 3 H- ^2^3)
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Denote the terms in last four lines by

cov ([it, u]avg, [it, u]n)

= B3\ + B32 + B3$ +  B3^

= jB3i +  0 +  0 +  { 16£2c-1ti1-2q:-/? f  u 2 (it) du + o (n l~2a~/?) }
1

=  8<54i f -1ri1-2“ +  4 (£e4 -  l)  K ~ ln 1-'2a J  oj^du +  o ( / T  V “2a) +  O (n“Q)
0

+ K ~ 1n 1~2a {l6£2 f  oj2 (it) du + o (it1-20-10) }

=  K - ln l~2a {8<54 +  4 (Ee4 -  l)  a 4 +  16<52 f  u 2 (u) du + o{l) + 0  ( r t ^ 1) }

=  i=2 c~3 { ^ 4 +  ^ (Be4 — l)  <j4 +  16£2 / u 2 (it) du + o (1)} if j3 = ^  (1 — a ) .Tt j

This result is the same as in Zhang et al. (2005) paper, where the covariance is, 

apart from normalisation factor, cov ([e, e]aV9, [e, e]n) =  4var (e2) =  4 (Ee4 — 1).

To obtain the expression for the B 3i term, note that the terms cov (a2, b\ ) , 

cov (a2, 62) , cov(a2, 62) , and cov (a2 , 63) are all equal to 2S4'y4n ~1 +  o (it1_2a) , and

also cov (a2, b2) = cov (a^, 52) =  cov (a2,52) =  cov (a2, fr2) =  0. The final term in B 3i

is

fn —K  n —1
2

cov (a2, =  COV I (eti+K ~  eti) , (£‘<+> “  £(0 '
\  i = l  i= 1

1

4 (Ee4 — l)  n 1_2a J  uJ4du + o (n1-2a) +  O (K n ~a) ,

using similar steps as in Lemma A4. Hence,

B3i = ^ cov (al +  al +  a3> 1̂ +  2̂ +  ^3)
j.

86i K - 1n 1~2a +  4 (£e4 -  l)  J T  W -201 J  w4du + o (K ~ ln 1- 2a) +  O (n"a) .
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The next two terms are zero, B 32 — B % 3 =  0.

Finally, we show how to obtain F?34 =  16£2c-1n 1-2a-^ f  co2 (it) du + o (n1_2a_/3) . 

We have

B3a

4
=  ^ cov (a ifl2 +  aias +  h b 2 +  hbs + b2bs)

=  0 + 0 + 0 +

The first equality above follows because cov (aia2l bib2) = cov ( a i t^  bibs) = cov (aiQ^ b2bs) = 

cov (0103, bib2) = cov (a2as, bib2) — 0 and we have:

cov (aia3, bibs)

i) (eu+K ~  £tf) . X I  “  ^ 0  (e‘«  ~  £J

=  16£2c-17t1-2a_/3 /  a;2 (it) du +  o

=  16<52c_1n 1_2a_/3 f  u 2 (it) du + o (n1_2a_/3) +  O (n1_an _/3n -2 1̂-^ )

=  16<52c-1n 1-2a-^ f  u 2 (it) du + o (nl~2a~t3) .

n —1

i—1
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cov (flia3, ^2^3)
( n - K  ^

S27nCOV ( ^ 2  O^U+K “  Wti+K-i) (£ti+K ~  £t*) ’ X /  _
V i = l  i = 1

cov (a2a3, 6163)
' n - K n —1

<527^cov £  -  (Wti -  Wt, Z  {etl+K -  sti) , £  {Wti+X -
i= 1 

0 l

i= 1

a;.tt+i ’

cov (a2a3, 6263)

<527 2cov ( ^ 2  ~  (Wti ~  Wti-i) (£U+k ~  £u) > X ) "  ”
\ i=l  i=1

Wu) [£u+, ~ e ti)

(^t+1 ^t{
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A. 3 Tables and Figures

n \  a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
195 96 186 145 120 145 114 95 78 65 54 N/A
390 94 135 110 200 156 128 143 111 89 71 59
780 67 90 108 137 107 181 151 162 119 100 76
1560 55 74 67 86 94 125 205 161 119 125 92
4680 48 47 56 58 74 96 99 117 201 144 151
5850 44 51 57 57 66 81 76 135 98 160 163
7800 45 46 52 53 68 70 90 94 109 175 134
11700 40 44 45 52 53 59 81 78 141 208 148
23400 36 40 43 46 49 58 61 79 106 123 196

Table A.l: IQR percentage error with K  =  (2V2/V1 “)

n \  a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.E
195 3 2 2 2 1 1 1 1 1 1 0
390 4 3 3 2 2 2 1 1 1 1 1
780 7 5 4 3 3 2 2 1 1 1 1
1560 11 8 7 5 4 3 2 2 2 1 1
4680 22 17 13 10 7 5 4 3 2 2 1
5850 26 19 14 11 8 6 5 3 3 2 1
7800 31 23 17 13 9 7 5 4 3 2 2
11700 41 30 22 16 12 9 6 5 3 2 2
23400 65 47 33 24 17 12 9 6 4 3 2

Table A.2: K  =  (2V^./T4)1/3n§(1- “)
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n \  a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
195 -21 -16 -13 -7 -7 -3 -1 4 8 13 13
390 -15 -12 -7 -3 -3 1 3 6 7 12 14
780 -13 -11 -4 -2 0 0 4 5 6 11 14
1560 -9 -7 -2 -1 1 3 5 7 8 13 12
4680 -5 -3 -1 -2 1 0 3 5 6 7 11
5850 -4 -3 1 3 5 5 2 4 8 8 8
7800 -2 -2 0 1 3 2 5 3 6 8 10
11700 -3 0 0 2 2 5 4 2 6 3 8
23400 -2 1 2 1 3 4 2 6 6 6 8

Table A.3: IQR percentage error with K  = n ^ 1

n \  a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
195 34 28 24 20 17 14 12 10 8 7 6
390 53 44 36 29 24 20 16 13 11 9 7
780 85 68 54 44 35 28 22 18 14 11 9
1560 135 105 82 64 50 39 31 24 19 15 12
4680 280 211 159 120 91 68 52 39 29 22 17
5850 325 243 182 136 102 76 57 43 32 24 18
7800 393 292 216 161 119 88 66 49 36 27 20
11700 515 377 276 202 148 108 79 58 42 31 23
23400 818 585 418 299 214 153 109 78 56 40 29

Table A.4: K  = n ^ 1- ^
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n \ a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 K
195 -23 -23 -24 -23 -23 -21 -23 -24 -23 -24 -23 34
390 -17 -19 -19 -17 -19 -20 -18 -16 -16 -18 -18 53
780 -14 -15 -12 -15 -14 -12 -15 -15 -16 -14 -13 85
1560 -12 -9 -10 -10 -12 -11 -11 -9 -11 -12 -9 135
4680 -7 -2 -7 -5 -5 -7 -6 -5 -5 -6 -5 280
5850 -6 -6 -6 -6 -6 -6 -5 -7 -6 -5 -4 325
7800 -5 -6 -4 -4 -3 -4 -5 -4 -5 -6 -5 393
11700 -2 -6 -3 -3 -3 -4 -2 -5 -6 -2 -3 515
23400 -2 -2 -3 -2 -1 -2 -1 -3 -4 -2 -4 818

2
Table A.5: IQR percentage error with K  = n*

n \ a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 K BR
195 55 46 34 29 27 21 22 19 16 18 15 6
390 67 49 37 28 23 20 17 18 15 15 14 8
780 94 65 48 32 26 22 19 16 16 14 12 10
1560 124 81 54 36 27 24 15 14 14 13 13 13
4680 243 146 91 54 34 24 18 16 12 14 8 18
5850 263 155 92 53 35 24 18 11 11 11 12 20
7800 300 182 97 60 33 26 15 13 10 11 9 22
11700 381 223 125 68 39 24 17 11 12 9 8 25
23400 539 305 163 86 47 28 15 13 8 8 8 32

Table A.6: IQR percentage error with K BR =  (f) = {̂ 2 rq  )  n l‘̂

S2/S 2 corr(AXti, A u ti) IQR error
0.01 -0.0010 0.0133
0.05 -0.0051 0.0128
0.1 -0.0102 0.0049

0.25 -0.0254 0.0182
0.5 -0.0506 0.0037
1 -0.1000 0.0136
2 -0.1909 0.0100
4 -0.3280 0.0090
10 -0.4869 0.0130
20 -0.5351 0.0105

Table A. 7: Effect of S2 on the estimates Q VX 
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Figure A.l: Volatility signature plot for IBM transactions data, year 2005. The scale 
on the X  axis is the frequency of interpolated calendar time observations, in minutes. 
Y axis denotes average of daily RV using calendar time data at frequency specified by 
the x axis.
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Appendix B

Appendices for Chapter 2

B .l  Proofs of Chapter 2

Since {a t} , {3^} } {^}  and {/if} are locally bounded, it can be assumed, without 

loss of generality, that they are uniformly bounded by Ca (see Barndorff-Nielsen, 

Graversen, Jacod, and Shephard (2006), Section 3). We use C  to denote a generic 

constant that is different from line to line.
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B.1.1 Proof o f Proposition 1

By Cauchy-Schwarz and Burkholder-Davis-Gundy inequality (Revuz and Yor, 2005,

p. 160),

E 6n,m,l
Var 6n,m,l

<

ml ml
= E ( x i /n - x (i. l)/n) 2 < C  f  <7> < C C „ - ,i—m{l—1) i=m(l—1) l)/n ^ml ml

^   ̂ ^   ̂ CoV (X%jn Y(j_q/n) , {Xtf /ni'—m{l—1) i=m(l—1) ml ml
< ^  (^i/n  — Y(j_i)/n) (Yj//n — X(j/_i)/n) 2i'—m{l—1) i=m(l—1) ml ml
— ^  0^*/ni'=m(l—1) i=m(l—1)

1 /2

ml ml
c  E  E  Ei'=m{l—1) i—m(l—1)

< CCam 2n~2

(  f /n 4 j '/  °udu

E

1/2

(X-i' jn X(i/_ l)/n)
1/2

E
/  ri'/n \

/
—l)/n /

1 /2

for some constant C. Hence,

@n,m,l ~ Op  ̂^ ^

and

Epi? =  ̂̂  ^ y n̂,m,l
1 ^  -  1 “  -6n,m,l +  771 X — @̂n,m,l'j

1=1

K „^  „ m ^2 m \ 2
=  m6n — 2— ^  ̂\ @n,m,ij

i=i

= m6„ — 26nm  x
if

z=i

=  ra#n +  ( m) .

The result now follows by consistency of 6n for |
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B.1.2 Proof of Proposition 2

Before proceeding to the main proof, we state two useful inequalities that hold when 

X  and its volatility are Brownian semimartingales. First, for any q > 0

V (\a t+s- o t \q \Tt ) < C s ^ . (B.l)

This holds because

E (lo'i+s — &t\q \Ft) = E 

<  E

S+t S + t

f  v ud u +  f  audWu
t

s+t

\? t

I  /*udu
t

A t  + E
S + t

f  audWu
t

< C sq + C  E

< C s,/2

S+t
/  (TydU  
t

9/2

A t

were Davis-Burkholder-Gundy inequality (Revuz and Yor, 2005, p. 160) is used to 

obtain the second transition.

The second inequality is as follows, see Jacod (2007). For for all q > 1,

where

E I % k.i J-(k-
1 \  1A9/2 

^ 1 ; (B.2)

%k.i y/n (J ro(fc —1) /X1F(fc — 1 )m+i AX (fc —l)ro+i n J
[{k-l)m+i]/n . . . .

=  \fn  f  (li„du +  -  a m(k- o  1 dWuj
[(fc—l)m+i—l]/n n
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Introduce the following notation,

t / D I S C R  
sub

( V )  .

7 k

- .DISCR
7 k

- ( 
- (

i k
—  V  2a t- !

short -^4ong\ 2

A: “  J
short '^ lonq\
k ^A: J

(?)
\  D I S C R  J K
X = - V E

K h
_ D IS C R  
I k T k - 1

K

short = n  *  tr 2 ^  ( t y ( t - 1)m+< -

t/  ̂ |  77, V 71 Tb /

Jtons =  n. £
?7l  ̂— f  n  '  ^  ft, J

We want to show

^ = ^ E ( ^ r - r ‘) 2 ^ v = 2 / ^ .
A  A:=l  V 7  0

First, by Riemann integrability of <j ,

v-D I S C R  P. ^  = 2 / a^du. 
0

To prove Proposition 2, proceed in three steps. Prove V  — £ (v^j -^>0, then
/ ^ \ D I S C R  / ^ \  „  / ^ \ D I S C R

£ (V) - £  (V) ^  0, and finally £ (V) -  V™50* A  0.

The first step is to show

0.

By Lenglart’s inequality (see e.g. Podolskij 2006), it is sufficient to show that

K
E E

k = l

J_
K I k J-k-i

K
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We have

E

i/2
K 2

J 2

~K^k ..... , 
T|j<

{ -r ^ v ( X. {k — l)m+i X  (k — l)m+i — 1 ) ^ , | X  (k— l)m+i X  (k— l)m+i — 1 ) ^
J i—l V n n /  m  j=1 \ » n /  J

< c  J2 -  J2m2
K 2

for some constant C  not depending on k , by repeated use of Cauchy-Schwarz inequal

ity and
1 \  g/2

E (fc— l)ro+i X  (k — l)m+i— 1 J~k-\
< C ^ n )

for all q > 0, i = 1,..., m, and Cq some constant depending on q only. Hence,

K
E E
fc=1

J_
K Ik J-k- 1

K
< c 3- ^
~  K  n

The first step is thus proved, provided m J 2n 1 —> 0. 

Second step is to show

/ ^ \  D I S C R  J K

£ W  - £ M - 5 f £ E Tk-\
K

We have

E

=  E 

=  E k

K !SCR ik \ J~k-\
K

$ ‘r  -  + r 9 -  ^ hort| | { a i r 9 -  C " 9} -  -  C 4}]

a ' r  -  3 f  ̂  +  ̂ r9 -  t fT *  I x
n m

- Em j=i

- j E
J Z=1

m(fc-l) ^ A I T  (fc —l)rn+i ^ ^ A ^ f  (fc-l)m+z ^

m(fc-l) ( ATT(fc-l)m+i j f A W (fc-l)m+i j
n  \  n /  \  n  /

J-k- 1
K
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Let Ci = n /m  — n /  J  for i =  1 , J. Ci = n /m  for i = J  +  1, Second part is 

square root of

E kB"

= Efc (k — 1 )m-H

n
J , -

=  E
m

E q
i = l

Tl / /  \   ̂ /
-  E  ^ V d  ( )  -  ( A X ,
m i = 1  \   n -----  V n  /  V

E  m ( f c - l )  ^ A E E  ( f c - l ) m + i  ^  j

& m ( f c - l )  ^ A t E ( f c - l ) r o + i  ^  ^ A X (fc— l ) m + i  ^

@ m ( f c - l )  ^ A t E  ( f c - l ) m + i  ^  ^ A X  ( f c - l ) r o + 2  ^

E  E  W E f c |  L v ^  ( a ^  — l ) m + i  ^  ^ ^ ^ X " ( f c  —l ) m + i  ^
j— l j /  =  l  f  \_ n \  n /  V n J

_1| ( A V E ( *  ) 2 -  ^ A X  (fc —Uro+W ^  ̂^

E < e
2= 1

< C ^ E ^  +  C ^ E E h l M
2 = 1  2 = 1  i'  =  l

< Cn~5/2^ -  + Cn~3n2
%J

=  C r T ^ J - 1 + C n -1

because

Efc 

=  Efc

^ m(fc-l) f AVE(fc —l)m+i J ( AX (fc —l)m+i j
n  V n  /  \  n  /

2 i 2 r
^  m(fc—O AVE (fc-l)m+z AX (fc— l)m+i <7 m(fc-l) AVE (fc-1):

n  2i  n  J L n  n
c — l j m + i +  A X (fc-(fc —l ) m + i

< We * 0 ~ 7n ( f c _ 1) AEE (fc — l ) m - H  AX  (fc —l ) m + i Efc 0 ~m ( f c _ j )  ^ ^ f E  (fc —l ) m + i  ~f“ (fc —l ) m + i
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and, for i <i ! ,

Efc 

<  Efc 

E

G  m( f c  —1) (fc —l ) m + t  ^  (fc—l ) m + i  ^  ^ ^(X m( f c —1) ^  A W ^ £ f c  — ^  ^  (fc —1 ) m + i / ^

<X m ( f c - l )  (  A V F ( f c - l ) m + i  )  “  A X  (fc— l ) m + i  j
n  V n  /  \  n  /  I

m( f c  —1) l A W y c  — 1 ) m + i l  )  “  (AX (fc —l ) r o + i / )  r
n  \  n /  \  n  /  I n

< Cn~3̂ 2Ek

< Cn~3.

&  m ( f c - l )  (  A V F ( f c  —l ) m + t  )  “  ( A X  (fc—l ) m + i  I
n  \  n  /  \  n  /

First part is square root of

4 2 TT' /-Zong ^shart . ^ 9  ^shortX2kA  = Efc ( a fc -  ^  ^  -  6>fc J

^  ^ m ( f c - l )  ^  A f F ( f c - l ) m + i  ^  ^  ( f c - l ) m + i  ^  |  ^=  Ek

< c.

Combining both A  and B  terms, we obtain

E i 7 r c * - 7 * i J~k-1
K

K C n - ^ J - ^  + C n -1' 2,

from which second step

/ ^ \ D I S C R  / ^ x  I /  k

s ( v )  - f M N i f S E ItD I S C R  I
k “ 7 fc JF^i j < C J n - 1/AJ - l/2+ C Jn~ 1/2 A  0

follows, provided J 2/n  —> 0, which is implied by m J 2n 1 —► 0.
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Now we prove the third step.

t? . .DISCR
E  I k

& m(fc—1) h ~  ^  ̂ ( W (fc—l ) m + i  W (fc—l ) m + i —1 j ^  ̂( W (fc — l ) m + i  IT (fc—l ) m + i —1 j
J  j= l  V n n /  77i V n n /

- 4  2 _ 4 2^

H  r n ( k — 1)  T ^ ”m(fc  —1)  J   n  m

Thus,

w -

J K
— E E
*  fc=i 7* ^fc-i

K

J K  9  J K  9
_  V '  _ 4  z  V ' / r 4

K £ i  K t i  ^ ^ r n

= V#*™ -  0„ f ^  I .
m

This proves consistency of the subsampling method for RV, provided m J 2n  1 —► 0 

and a satisfies Al. |

B.1.3 Proof of Proposition 3

Proposition 3 is proved for the special case Q = m. The general Q case follows 

by the same steps, but the notation is more involved. Denote K  = \n jm \  and 

A5X t =  X t -  Xt_*.

Introduce the same notation as in Proposition 2.

V D IS C R m K
— 2crfc-i  
n k=1 k <0\  DISCR m  K

=  ^ E  v r f ,SCR
n  k= 1

J~k-\
K

■̂-slow
OLu —  (T i

I k

.D I S C R7 k

■ ( 
- (

■slow fast\ 2
Vk ~  &k J

„ slow f̂ast\ 2a u - a Jk J

m /  v :
a fkast =  c r i(fc_1} ^  ( A i Wi+m(k-i) )

n i= 1 ' n n /
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Also, denote E I k J~k-\ by EJL-l [7 J .  We want to show

K ^ V  = 2 f a i d u  
0

where

v a =  - Z  -  e{ast) 2 = -  E  { ( a ^ ) 2 -  £  ( a . x ^ - , , ) 2}m  k=1 \  J m i = 1 [V » « /  j=i \  " » /  J

First, by Riemann integrability,

D I S C R  P V  = 2 fa * d u .
0

To prove Proposition 3, use the following three steps. Prove V
D I S C R  / ^ \  „

v )
The first step is to show

/ ^ \ D I S C R  / ^ \  „  / ^ v \  D IS C R
£ \ V )  - S  ( p )  A  0, and finally 5 ( v )  -  A  0.

- e (  v )

(B.3)

0, then

v - e ( v )  =  K g  (7* - e [7*|% .] )  a 0.

By Lenglart’s inequality (see e.g. Podolskij 2006), it is sufficient to show that

T . E  \K l k \
k= 1

J - k- 1
K

0.

Notice that, by Burkholder-Davis-Gundy inequality, Cauchy-Schwarz inequality,
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and uniform boundedness of cr,

[r)i
m m m m / [ ✓ \ 8"| / f / \o

<  X] X] X) XI \ l k - 1 ( ^ i  A'i-nw(fc-i)) \ j ^ k - 1 J
i /// =  l i // =  l i / =  l  i = l  y  " n  y  J y  l _ \ n  n /

^Eg_i ^ A i X i"+m();-i)j  j^Efr_T | ^ A i I iW+m(fc-i)

x

< =  c  1
77, i f 4

for some constant C, which does not depend on any of the above parameters. Hence, 

and by similarity,

■s., [(sr)'] < % ,  k - ,  [(?:“)’] < es_, [(»r)’] * £<■>■<)
e;., [V " )‘j < § - „  K - ,  [(«;")•] < e;_, [ ( S f )

c
~  K 2

Prom here,

and

E E - j T S H E s J p r - ? ? - ) 4'

E E  \K Jk \
fc= 1

< C -  =  o( l )

The second step is to show

/  \  D I S C R  / ^ \  K
e ( v )  - e ( r ) - K £ E J~k-\

K

It is sufficient to show

K
K  E E [ | 7 r CB- 7 , | ] - 0 .

k = 1
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Write

K

t f E E [ | 7 r c* - 7 * i ]
k= 1

K
K T ,  E

k = 1

f a s t — a slow ^fast  slow  I

+  @k

{ a r - d f; s t}  -  { a t ™ - r r } \ ]

= A + B
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As to the first term, we have

K

<

*fas t  ^ s low  , 2 fa s t  ^ lowA = K Y  E a{ast- a sklow + 6Jk -  0k
k = 1

g /« t  _  g/«*

< K  e { e
k = l  I

< c e { e
fc=l I

=  C E  E
k= 1 I

■^fast ^ s low  , '?)fast ^slow
a k ~ a k + ° k  - h

2̂1 !/2
E s r - ^ r

2 ̂  1/2T
s  l ast- e i ast

1/2

^  i C7~ m(k— 1) /A j. ITi+m(fc —1) At j_ -A i+m(fc— 1) r
L n n  n n  n J

r n 2l 1/2
z (J m(fc —1) i  I T z+m(fc— 1) “I-  A_1 i+m(k — 1) f  ? 
v. n 71 n  71 n J  J J

K  I m  m  /  I" f  ^ 4 ]

C  Y i  1 Y l  zE  \  E  1 nt(fc-l) A j l ^ i+ m tt - l )  — A l X z+m(fc-l) f
fc=l [ i '  =  l i = l  y L  ̂ n "  n J J

( E  m(fe-l)  A l  W i + m ( k - l )  +  A  l X i + m ( k -  i )  M  x
\ l  K  n 71 n n  n J  I

^j/ e  | | a m(fc-l)  A j ^ + m f f c - i )  — A l X j /+ m (fc- i)  |  j

\ E  w  m ( k- l )  A l W i ' + m ( k - l )  T  A  _1 X  i ' + m( k - l )  f  |
y [ L n 71 n n 71 J

K  m  4  \  (  1 4 1
^  ^  j W  E  S (T m(k — 1) A l  IT i+ m ( f c —1) A . 1  X t+m (fc- l )  ^

fc=l  i =l  V I A ^ U 71 U  n  J  J

X

c  K 
< ^ E E f / E

V n  k= 1 » =

C K m
-  7 ^ e e < eV77- fc=l i=l

J ( <7 r o ( f c - l ) du

f 7 K  m

7 = E E <
V™ fc=ii=i

E f  f(7jKn[ ~  (Tu)  
\  K  /

du

2 \ 1/4

1 / 4

In above, to obtain second inequality, we used (B.4). To obtain the fourth in-
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equality, we used

E

< CE

C
^  “ 2» n z

S ( 7  m ( k  — 1)  j .  W i + m ( f c  —1) —I-  X .  i + m ( f c  — 1)  r
L n n n n  n  J  I

—1)
n  /  \  2

m(fc—i) “I- (Tu ) du

which follows by Burkholder-Davis-Gundy inequality. To proceed with term A, we 

use the arguments along the lines of the proof of Lemma 1 of Barndorff-Nielsen (2001). 

For every i and k , there exists a constant c^  s.t.

inf
i — l+m(fc — 1) i + m ( k

( (J [ K u \  — <JU ) < Ci k  < sup ( <J | K u  | —  du )
V JC /  i - i w f c - n  .  . i W J t - n  V *  /i— l+m(fc — 1) i + m ( k  — 1)

and
n ✓ \  2 ^
J' f (7 j_Ku_[ @uj du — .
r r . C l . _ 1 ’> \  K  /  Tl

Notice that

sup Ci k -> 0
i , k

by right-continuity and boundedness of a. Then,

a  K  m  

\ jn  k=n=i

f  ~  a u )
m ( k - l )  V K  J

du
i — l+m(fc— 1) 

n

p ! l  ‘/4

n

1 / 4

ft' m 1= c  E  £  -  o
f c = l  i = l  71

by Monotone Convergence Theorem. B  —> 0 is proved using exactly the same steps. 

This proves the second step.
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The final step is to show

/^\DISCR „£ ( y \  _  yDiscR 0

We have

E -.DISCR7 k J - k - l
K

&  m ( k — 1)  E  
n

® 1 ^-2  ̂ '

-  E  ( a i W W , , )'

Therefore,

-.DISCR
Ik J ~ k - \

K

DISCR K
=  k y : e

k=l

=  T , 4 r g l(*-i) +  oP (1) =  Vp/SCfl +  o„ (1 ) .
fc=l n

K (  2 A (  1

The result follows immediately. |

B .1.4 Proof of Theorem 2.3.1

To simplify the proof, assume \i =  0. Below arguments can easily be extended 

to nonzero drift. Recall that Theorem 2.3.1 assumes {a} _L {VF}. Therefore, all 

arguments are done conditional on volatility. This Theorem is proved by validating 

the conditions of Theorem 2.4.1 for the Two Time Scale estimator of Ait-Sahalia et 

al. (2006a).

We first introduce some additional notation. For some arguments w and q, define

_ q —w + 1
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This is the average numbers of observations in a (Infill Price type) subsample if total 

number of observations is q and there are w subsamples.

It is convenient to decompose the variance into signal and noise part, Vlshort =
y s i g n a l  +  y n o i s e  w h f i r e

a [ ( l - \ )m + J ] / nysisna, =  4 f  < A u
(l—\ ) m / n

y n o t s e  _  gc- 2^ y ar (e)2 _(_ 16—c-2 lim ^  ^OV (e0, Q/n)2 .
n n n—>oo i=1  v 7

We now prove Assumption A6(i) is satisfied. For that, we decompose into 

signal and noise components. For the signal part, we show that arguments of A'it- 

Sahalia et al. (2006a) carry over to the subsample. For the noise part, their arguments 

apply directly.

The decomposition is

) t f shor t  \ \-v , J Jshort \short

n 1/3 E ([X , X],(Gl) -  Qf™1 +  [e, e],(Gl) - 

■E ([X, X ] f ' } -  e f ^ J  + - j - E  ([6, e]

short

71_  y s h o r t  +  R i +

As a first step, we show negligibility of the signal part, i.e.,

X ,  X],(Gl) -  ef ort) 2 -  ^ V,si9nal =  o (1). (B.5)
' u

For this, we adapt the arguments of Zhang et al. (2005) to the subsample. We

n4 / 3

J
E 0
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have

[A-,X]I(G,) =  [X,A-]!(1) +  5l +  i i3

where
J —1 G i A i  /  7 \

&l =  2  ( A X ( i - i ) m / n + i / n )  X 3  (  1  —  7 7 “ )  {^■■^■( l - l )m /n+( i - j ) /n )  
i = 1 j = l  V  ^ 1 /

where A X i/n = X ijn — X ^ _ iy n. R 3 arises due to the end effects, see Zhang et al.

(2005), p. 1410., and it satisfies

E (R 3 ) < C ^ ,  E ( i^ )  < c 4  n v 7 r r

By (B.6) and (B.7), we have E (S f) <  JrC* ' 3  and n ^ E  ([X,X],(1) -  0?fcortV  < 

C n -5/3. Therefore, to prove (B.5), it is sufficient to show

n 4 / 3

J

We have

e ( [ x ,x ] , (1) + S i - _  V_v f9™i =  o (1) .

E (S?) 

=  E

(B.6)

J —1 G i A i  /

2  X ]  i ) m + i ] / n )  X >  (  ^ _  7 7 " ) ( ^ X [ ( i - i ) m + i - j ] / n )
i = 1 j = l  V  ^ 1

j - 1  [(Z—l ) m + i ] / n

= 4 E  I
i — 1 [(I—l ) m + i —l ] / n  

j _ l  [ ( Z - l ) r o + i ] / n

= 4 E /
i—G  1 [(Z—l ) m + i —l]/ra  

r2

G i A i  /  7 \  2

a2udu £  ( ! -  —  ) /  a 2du
j=i

G i

((Z—l ) m + i —j —l ) / n

j=i ((Z—l ) m + i —j  —l ) / n

J
n4/3

_  .  V - 1 <7f ( I - l ) m + . l / »  ^  / i  j  \ 2 < T [ ( ! - l ) m + i ] / n  , D  , D  , _ (  J

~  4 E   n S l 1 _ Cr J   n + R* +  B* + 0 {rfT3i= G  1 

-  4G l

4 c

[(Z—l ) m + i ] / n
J

77,4 / 3

4 C ,n  (  J  \
3 n ^  {  ai du + R * + B '  + 0 [ r f 7 s )
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where we use G\ = cn2/3.

The remainder terms R 4 and R 5 have expressions as below, and they are of smaller 

order than J n -4/3 by (B.l),

V iH n
j  4

7 7 4 / 3  J - 1 Q-f G\  /  7 \ 2  ( ( Z - l ) m + i - j ) / n

=  V 4 ^  ^  ( 1 -  7̂ - )  /  k -*?/»)«**
J  * = G i  71 j = l  \  ^ 1 /  ( ( i - l ) m + i - j - l ) / n

< C ^ y -4  E  f*  b  -  j - V  i M .  <  c r̂ - \ J ^ J G 1 -> 0,
J  i=Gl n  j=i \  Gi J n \ n J  n 2 V n

»</»
~ T  5
7 7 4 /3  „ 4 / 3  j - i  [(Z—l ) m + i ] / n  G i  /  « \  2 ( ( Z - l ) m + i - j ) / n

V V 4 . £  /  W -»?/„)<** £ ( i - 4 - )  /
^  J  i= G \  [( /— i ] / n  J —1 \  1 /  ((Z—l ) m + i — j —l ) / n

.n4/3 1 /  j  \  2 1 1 1
-  °  J  4 i§ I n3/ ^ i l V 1 < ? J  n - C  J  n W n JG l ^  °'

Therefore,
n4/3

J  v w J

Finally,

E (S,2) -  - v f 9 ™ 1 =  o( l )

n4/3 / \ 2 77̂ /3 ✓ , 77̂ /3 7
E ( M / 1 -  0 / ^ )  = - _ V a r ( [ X ,X ] < 1)) < C — ^  =  0 (1). (B.7)

J

This concludes the proof of (B.5). Next, we turn to the noise part and prove

  2
n ^ E  ([£, £]<°*> -  ^  [£, e]<G2) J  -  Vtshort = o ( ^  J  . (B.8)

In this case, Proposition 1 of A'it-Sahalia et al. (2006a) can be applied directly,
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with J  instead of n  (this is the number of observations used above) to obtain

TV ( 0 ,8Var (e)2 +  16 lim ^  C°v (e0, ^i/n)'

(Gi)   JGi _̂i(G2) \   /"noise
I J

8Var (e)2 +  16 lim J2 Cov (e0, e ^ Y
i=1

0,

which immediately gives (B.8).

The final step is to show R\ +  R 2 = o (1). We have

R i  = V / 3 E 
u g 2

+ v /3E

- G ) ' /=e + R[

where, for i = 1,2,

1  n - G  1

e ] |  —  ^  { X { i + G \ ) / n  ^ i / m )  ( e ( i +G i ) /n  e i / r a )  •2=1

First term is o( l )  because [X,X][G2̂  A  by substituting G2 for Gi  in (B.5). 

Second and third terms are of smaller order than m / n  by proof of Lemma 1 of Ait- 

Sahalia et al. (2006a), which implies, for i = 1,2,

E ( ( [ * , e f ()) 2 \ X ) < C ±  [X,X]<Gi).

The final terms R! and R 2 contain cross terms that are negligible by Cauchy- 

Schwarz inequality. This concludes verification of the assumption A6(i).
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Assumption A6(ii) can be verified using straightforward calculations, by using the 

mixing property of the noise e, as well as L4+5 boundedness of e for some <5, and finally

E ( \Xt — X t- S\q) <  Cqsq/2,

for some constant Cq depending on q only, for all q > 0 and all s. Above follows from 

Burkholder- D avis- Gundy inequality.

Assumption A5 is immediate due to {//}, {cr} _L {W}  assumption. This im

plies that conditional on volatility and drift path, returns are independent over non

overlapping intervals. Hence, strong mixing of follows from strong mixing of the 

e, which in turn holds by assumption. This concludes the proof of Theorem 2.3.1. |

B .1.5 P roof of Lemma 2.3.2

Most of the proof of the asymptotic distribution of TSRV estimator of Ait-Sahalia 

et al. (2006a) remains valid under the assumptions of Lemma 2.3.2. The noise 

component of the asymptotic distribution arises from the asymptotic distribution of

 ̂ n—Gi  ̂ T1—G2
2 -p: ^i/n^(i+Gi)/n T 2 ^i/n^(i+G2)/nt

V  ^  i = 0  V  ^

see page 26 of Ait-Sahalia et al. (2006a). Given that G 1 /G 2 —► 0 and

w _ w ( i )  <
\  n J \ n J  n

due to differentiability of u , the desired result follows. |
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B .1.6 P roof of Theorem 2.4.1

Assume n is divisible by m  by simplicity. As a first step, we prove

GK-) = 1 ^ 1 * Ts -  J e r * ) 2 *  ^ (B.9)
n I

For any two subsamples I and I' s.t. I ^  has no common returns with

Therefore, f  Sn  ̂ is strong mixing because R ^  is. Moreover, if we define

=  cl"1 -  e  (c l"> ),

it is also strong mixing. Therefore, under A6, is a uniformly integrable L1- 

mixingale as defined in Andrews (1998), to which we can apply Theorem 2 of Andrews 

(1998) to obtain

=  [<!">- E ( c « ) ] i o .n i=i n i=i L V /  J

By A4, we have

-  i :  7^n  ( ^  -  < OT‘) 2 “  “  ^  ^V ,short ±  0 u- ;=i J \  / n i=i J
m n  ,  _  sftort\ 2 p

 ................................  Vn

and so (B.9) follows.
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In a second step, we prove that G (n* — V  =  0.

V  -  G(n) (B.10)

J m r l  *  _  £ ™ i ’g ‘r 2 W -  _  " ^ ) 2(B.n )
/=1 ' J  772 / 71 1= 1 ' J  9  'n

JmT" E (—̂ °"s -  —ej0"9) 2 + l7mr2 £  (—flf”*9 -  _0fortYn

2 /rj Vm z m  1 J n2 (r{ \m  1 J 1 J

+ 2^ f i  e  f—t r 9 -  —elr gS) ( —e'r9 -  - e f ° A7i i=i Vm m J \m  J J
Jm rl nJ^  2 /  n^tort n hort\ /  n  ^  n  hor(\ 

- 2 _ ^ “ S T" b tf| A m * ' ~ J 8‘ )■

We have the following decomposition,

f  ^  Qshort    ^  Qlong\

\ J  1 m 1 J

n
J

71 lm /n
f  g { u ) d u  f  g (u ) du

(l—l ) m / n

[ ( l - l )m + J ] / n  \  /  Z m /n

<  I -  /  (0 ( u ) - 0 ( ( Z - l ) r a / n ) ) e f a )  +  ( — jf (# (u) -  g {(I -  1) m/n))  duJ

+2

m

f  (9 {u) ~ 9  ( ( l -  1 )  m / n ) )  d u
n lm /n

m  I  (g { u ) - g { ( l - l ) m / n ) ) d u
m  (l—l ) m / n

These terms are small enough due to A4 and (B.l) as follows,

E
Jm rl  £  /  n  lmj n

( /  (“ ) -  / ( (2 -  1) m/ n) )  du

< Jmrl Ji 71 lm /n

■n‘ m f  ( / ( u ) “ / ( ( / _ 1 W " ) ) * *n 1= 1 (Z_i)m/n
Tm 2 K

" E E ( / W - / ( ( i - i ) W » ) ftt z=i
Tttit2 k

<  G — - J - 2  E  E  (<T ( S | )  -  ( 7  ( ( /  -  1 )  m / n ) )
71  1 = 1

<  c J m r£ v  — =  c Jm r2 -> 0
n -  i = i  n n *
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by assumption. In above, the first equality follows by mean value theorem, which 

applies by differentiability of

f  ( f ( u ) - f ( { l - l ) m / n ) ) d u  (B.13)

in time.

Next, we show
J m r l  K /n_^an9 _  ^glongX2 _P> 0

n 2 I=1 Vm 1 m  1 J

By substituting m  for J  in

m J  nJl? o /n^hort

we obtain

g (- > ~ a v ,
77, i= i \  J  J  /

%  E  r l  ( - t r  -  - e lr ) 2 A  V,n1 i=i \m  m  /

and so by multiplying left hand side by J /m , (B.13) follows since J /m  —> 0.

The remaining cross-terms in (B.10) are negligible by above results and Cauchy- 

Schwarz inequality. This concludes the proof of Theorem 2.4.1. |

B.2 Tables and Figures of Chapter 2
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J  = 200 J  = 500
m 800 2000 3000 2000 5000 7500 Va

Two-sided 0.96 0.97 0.98 0.92 0.95 0.95 0.93
p = 0 Left-sided 0.94 0.95 0.95 0.91 0.92 0.92 0.91

Right-sided 0.97 0.98 0.98 0.96 0.97 0.97 0.96

Two-sided 0.97 0.97 0.98 0.93 0.95 0.95 0.91
p = -0 .3 Left-sided 0.96 0.97 0.97 0.93 0.95 0.95 0.91

Right-sided 0.97 0.98 0.98 0.95 0.97 0.96 0.92

Two-sided 0.97 0.98 0.98 0.93 0.95 0.96 0.84
p = -0 .5 Left-sided 0.95 0.96 0.96 0.93 0.94 0.94 0.87

Right-sided 0.97 0.98 0.98 0.95 0.97 0.97 0.91

Two-sided 0.97 0.98 0.99 0.95 0.95 0.96 0.78

II 1 O Left-sided 0.95 0.96 0.96 0.92 0.93 0.94 0.81
Right-sided 0.98 0.99 0.99 0.97 0.98 0.98 0.89

Table B.l: Coverage probabilities of 95% confidence interval of IV x , £2 =  0.001

J  =  200 J  =  500
m 800 2000 3000 2000 5000 7500 Va

Two-sided 0.96 0.97 0.98 0.92 0.95 0.95 0.93
p = 0 Left-sided 0.94 0.95 0.95 0.91 0.92 0.92 0.91

Right-sided 0.98 0.98 0.98 0.96 0.97 0.97 0.96

Two-sided 0.97 0.98 0.98 0.93 0.95 0.95 0.93
p =  —0.3 Left-sided 0.96 0.97 0.97 0.92 0.95 0.95 0.93

Right-sided 0.97 0.98 0.98 0.95 0.97 0.96 0.95

Two-sided 0.97 0.98 0.98 0.94 0.95 0.96 0.92
p = -0 .5 Left-sided 0.95 0.96 0.96 0.93 0.94 0.94 0.91

Right-sided 0.97 0.98 0.98 0.96 0.98 0.98 0.94

Two-sided 0.97 0.98 0.98 0.94 0.96 0.96 0.88o1II Left-sided 0.95 0.96 0.96 0.92 0.94 0.93 0.89
Right-sided 0.98 0.99 0.99 0.96 0.98 0.98 0.94

Table B.2: Coverage probabilities of 95% confidence interval of IV x > £2 — 0.0001
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Figure B.l: AIG stock
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Figure B.2: GE stock
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Figure B.3: IBM stock

Figure B.4: INTC stock
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Figure B.5: MMM stock
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Figure B.6: MS FT stock
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A ppendix C 

Tables and Figures of Chapter 3

C .l Tables and Figures of Chapter 3

trans./week Q2 • 107 u 2 • 107
—2 _ 
(  -105 acf(l) acf(2) acf(3)

AIG 18,029 0.207 0.136 0.156 -0.320 0.102 -0.014
GE 29,015 0.228 0.188 0.189 -0.582 0.248 -0.118
IBM 20,070 0.162 0.095 0.117 -0.302 0.081 0.008
INTO 35,267 0.518 0.407 0.127 -0.525 0.200 -0.085
MMM 14,005 0.284 0.123 0.121 -0.269 0.092 0.006
MSFT 32,421 0.338 0.282 0.178 -0.555 0.224 -0.100
SPY 39,801 0.037 0.018 0.048 -0.352 0.065 0.006

Table C.l: Summary statistics of data before synchronization. First column contains 
average number of transactions per week. Second and third columns contains variance 
of the noise estimates over the whole year 2006, u 2 = RV /2n, Q2 = ( r V  — i v ' j  /2 n 
where I V  is estimated by the TSRV; n is total number of transactions in 2006 
for the corresponding stock. Fourth column contains estimated noise-to-signal ra- 
tio, £ = u  / I V .  Last three columns contain autocorrelation functions of returns at 
first, second, and third lag.
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trans./week £ 2 • 107 £ 2 • 107
—2 _ 
f  -105 acf(l) acf(2) acf(3)

AIG(SPY) 15,425 0.220 0.138 0.282 -0.15 0.051 0.02
GE(SPY) 21,819 0.229 0.176 0.295 -0.221 0.058 0.015
IBM(SPY) 16,890 0.174 0.095 0.223 -0.166 0.052 0.021
INTC(SPY) 24,601 0.545 0.384 0.700 -0.247 0.060 0.016
MMM(SPY) 12,315 0.303 0.121 0.389 -0.114 0.048 0.014
MSFT(SPY) 23,322 0.347 0.267 0.451 -0.238 0.061 0.017

SPY(AIG) 15,425 0.059 0.011 0.045 -0.276 0.084 -0.006
SPY(GE) 21,819 0.049 0.014 0.040 -0.509 0.173 -0.059
SPY(IBM) 16,890 0.056 0.011 0.040 -0.257 0.069 0.011
SPY(INTC) 24,601 0.045 0.014 0.011 -0.439 0.132 -0.041
SPY(MMM) 12,315 0.071 0.011 0.031 -0.232 0.082 0.013
SPY(MSFT) 23,322 0.046 0.014 0.024 -0.476 0.155 -0.051

Table C.2: Summary statistics of data after synchronization. Notation AIG (SPY) 
means stock AIG after it has been synchronized with SPY. By construction, number 
of transactions of AIG (SPY) is the same as that of SPY(AIG). See Table 1 annotation 
for meaning of other column entries.
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SPY and AIG SPY and GE
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Figure C.l: The solid lines (left y-axis) are the volatility signature plots, i.e., realized 
variance plotted against the frequency (in ticks) used in its calculation. Dashed lines 
(right y-axis) are the realized covariance plots against the frequency (in ticks). Data 
covers the whole year 2006.
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SPY and AIG
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Figure C.2: Estimated betas for AIG and GE with 95% confidence intervals. Filled
*RV

dots with rectangular CIs correspond to P5min , empty dots with error-bar-type CIs
^AMZ

correspond to /? . Weeks on the x-axis.
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SPY and IBM
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Figure C.3: Estimated betas for IBM and INTO with 95% confidence intervals. Filled
^RV

dots with rectangular CIs correspond to (35min , empty dots with error-bar-type CIs
—AMZ

correspond to j3 . Weeks on the x-axis.
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SPY and MMM
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Figure C.4: Estimated betas for MMM and M SFT with 95% confidence intervals.
^RV

Filled dots with rectangular CIs correspond to /35min , empty dots with error-bar-type 
CIs correspond to f) . Weeks on the x-axis.
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2006 Q1 Q2 Q3 Q4

Test based on /?,
RV
bmin

AIG 196.5 (0) 23.47 (0.024) 35.63 (0) 52.83 (0) 56.28 (0)
GE 101.03 (0) 15.26 (0.228) 15.55 (0.213) 27.75 (0.006) 26 (0.011)
IBM 110.82 (0) 14.58 (0.265) 30.02 (0.003) 26.59 (0.009) 17.41 (0.135)
INTO 248.96 (0) 33.84 (0.001) 40.96 (0) 36.15 (0) 43.65 (0)
MMM 132.45 (0) 27.48 (0.007) 25.1 (0.014) 21.83 (0.039) 37.48 (0)
MSFT 213.3 (0) 22.74 (0.03) 71.43 (0) 64.97 (0) 42.23 (0)
Test based on {3

RV  
15 m m

AIG 112.7 (0) 26.03 (0.011) 19.99 (0.067) 33.69 (0.001) 15.78 (0.202)
GE 75.14 (0.012) 12.23 (0.427) 19.81 (0.071) 25.06 (0.015) 17.17 (0.143)
IBM 73.48 (0.017) 15.09 (0.236) 21.33 (0.046) 8.94 (0.708) 8.57 (0.739)
INTC 134.91 (0) 27.62 (0.006) 30.37 (0.002) 6.62 (0.882) 24.29 (0.019)
MMM 85.34 (0.001) 14.52 (0.269) 25.03 (0.015) 16.88 (0.154) 28.24 (0.005)
MSFT 121.52 (0) 15.49 (0.216) 39.48 (0) 34.18 (0.001) 22.8 (0.029)
Test based on f3,

RV
2 0 m m

AIG 74.54 (0.014) 24.37 (0.018) 9.43 (0.666) 9.19 (0.687) 22.8 (0.03)
GE 85.89 (0.001) 16.26 (0.18) 15.16 (0.233) 17.38 (0.136) 22.89 (0.029)
IBM 68.38 (0.043) 10.93 (0.535) 17.8 (0.122) 11.85 (0.458) 7.36 (0.833)
INTC 107.53 (0) 20.81 (0.053) 29.48 (0.003) 3.36 (0.992) 19.16 (0.085)
MMM 73 (0.019) 14.54 (0.268) 14.3 (0.282) 16.99 (0.15) 20.9 (0.052)
MSFT 87.09 (0.001) 13.61 (0.326) 19.62 (0.075) 28.56 (0.005) 15.33 (0.224)
Test based on (3

AMZ

AIG 269.04 (0) 22.44 (0.033) 34.97 (0) 71.28 (0) 57.31 (0)
GE 224.4 (0) 20.56 (0.057) 65.13 (0) 63.42 (0) 26.08 (0.01)
IBM 136.7 (0) 18.93 (0.09) 37.52 (0) 26.76 (0.008) 18.96 (0.09)
INTC 845.32 (0) 143.45 (0) 83.1 (0) 79.34 (0) 55.97 (0)
MMM 200.38 (0) 28.75 (0.004) 40.19 (0) 21.96 (0.038) 63.09 (0)
MSFT 403.21 (0) 30.24 (0.003) 96.47 (0) 124.55 (0) 60.15 (0)

Table C.3: Values of the Chi-square test; corresponding p-values in parenthesis. The 
null hypothesis is that true betas are constant over the some time interval. The top 
row indicates the corresponding time interval.
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