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Abstract

The problem of earthquake risk assessment and management in insurance is a
challenging one at the interface of geophysics, engineering seismology, stochas-
tics, insurance mathematics and economics. In this work, I propose stochastic
models and methods for the assessment of earthquake risk from an insurer’s
point of view, where the aim is not to address problems in the financial math-
ematics and economics of risk selection, pricing, portfolio management, and
risk transfer strategies such as reinsurance and securitisation, but to enable the
latter through the characterisation of the foundation of any risk management
consideration in insurance: the distribution of losses over a period of time for a
portfolio of risks.

Insurance losses are assumed to be generated by a loss process that is in turn
governed by an earthquake process, a point process marked with the earthquake’s
hypocentre and magnitude, and a conditional loss distribution for an insurance
portfolio, governing the loss size given the hypocentre and magnitude of the
earthquake, and the physical characteristics of the portfolio as described in the
individual policy records.

From the modeling perspective, I examine the (non-trivial) minutiae around
the infrastructure underpinning the loss process. A novel model of the earth-
quake process, a Poisson marked point process with spatial gamma intensity
measure on the hypocentral space, and extensions of the Poisson and stress
release models through the inclusion of hypocentral location in the mark, are
proposed. I discuss the general architectural considerations for constructing the
conditional loss distribution, and propose a new model as an alternative to the
traditional ground motion attenuation and seismic vulnerability approach in
engineering risk assessment. On the actuarial mathematics front, given a fully
specified loss process, I address the problem of constructing simulation based
and, where possible, analytical approximations to the distribution of portfolio
losses over a period of time.

I illustrate the applicability of the stochastic models and methods proposed
in this work through the analysis of a residential homeowners property catas-
trophe portfolio exposed to earthquake risk in California. I construct approxi-
mations to the distribution of portfolio losses over a period of time under each
of the three models of the earthquake process that I propose, and discuss their
relative merits.
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Chapter 1

Introduction

1.1 Background

The complex socio-economic development of the world has led to a dramatic

increase of losses due to natural and anthropogenic catastrophes: earthquakes,

hurricanes, floods, volcanic eruptions, and nuclear accidents to name only a few.

It is believed that within the next 50 years, more than a third of the world’s

population will live in seismically and volcanically active zones. Studies on pos-

sible scenarios of earthquakes and losses are a critical issue for decision making

in insurance, and are fundamental to the process of designing risk mitigation

mechanisms.

Traditional insurance operates on the assumption of independent, frequent,

low-consequence risks for which decisions on premiums, estimates of claims, and

likelihood of insolvency, can be calculated by using rich historical data. The law

of large numbers provides in this case a simple portfolio selection strategy: if

the number of independent risks in the portfolio is larger, then, in general,

the variance of the average claim is lower and lower premiums can be offered.

This increases the demand for insurance, the profits of insurers, the coverage of
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potential losses and, ultimately, the stability of the insurance industry.

Traditionally actuaries have had difficulty pricing risks that have low fre-

quency but potential for large severity. Often the prices charged for these risks

are determined by underwriting judgment and market forces in the insurance

cycle, a practice that may result in inefficiencies potentially leading to market

saturation or collapse. A case in point is earthquake risk, the actuarial mathe-

matics of which do not fall within the framework of conventional procedures.

Although large damaging earthquakes occur rarely, they are associated with

an extremely high loss potential where all forms of insurance can be affected

simultaneously. Earthquakes produce claims that are highly correlated in time

and space, depending on the density of buildings and their locations and individ-

ual characteristics, and on the mechanics of earthquake occurrence in time and

space. The law of large numbers does not operate (in general) and a “more-risk-

is-better” strategy could increase the probability of ruin for an insurer unless

access to a colossal contingency fund was secured. Then there is the problem of

lack of historical data on the occurrence of earthquakes and losses at a particu-

lar location. Although rich data may exist on earthquake activity on a regional

level, claims data are not so abundant, with many insurance companies lack-

ing the experience of handling claims for a major damaging earthquake. The

risk assessment and management problem in the case of earthquake risk is then

transformed from a purely statistical one into a challenging one at the interface

of geophysics, engineering seismology, stochastics, insurance mathematics and

economics, whose important considerations regarding risk selection, premium

pricing, portfolio management, and risk transfer strategies such as reinsurance

and securitisation, must be well grounded in a solid assessment of earthquake

risk.

In this work we propose a unified methodology comprising models and meth-

ods for the assessment of earthquake risk from an insurer’s point of view. It
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is basic to the extent that the aim is not to address the financial mathematics

and economics of pricing, portfolio management and risk transfer strategies, but

to enable the latter through the characterisation of the foundation of any risk

management consideration in insurance: the distribution of losses over a period

of time for a portfolio of risks.

1.2 The mathematical problem: an insurer’s per-

spective

Assume an insurance company writes earthquake coverage in a given geographic

region and has maintained data files for this line of business over a certain period

of time. Policy records describe the individual objects (buildings) covered under

the scheme by ascribing to each object a vector of observed characteristics c,

including its geographical location, its construction type (wood,unreinforced or

reinforced masonry, steel frame, etc.), its occupancy type (residential, commer-

cial, industrial, etc.), and the financial and coverage terms such as estimated

value, deductible, coverage limit, and number of reinstatements. Claims records

specify the policy number which (together with date) identifies uniquely the

damaged object and its characteristics at the time of the incident.

Assume there is an earthquake catalog available for a geographic region of

interest L ⊂ R3. The catalog describes the generic earthquake by a triple

(T, L, Z), where T ∈ R+ is its time of occurrence, time being reckoned from the

inception of the catalog, L ∈ L is its location in space, and Z ∈ Z ⊂ R+ is its

magnitude. We will henceforth refer to T as the time and to the pair (L,Z)

as the mark of the earthquake. We assume T , L, and Z, reside in (R+,BR+),

(L,BL), and (Z,BZ), the time, location, and magnitude spaces, respectively,

with BR+ , BL, and BZ, the Borel sigma-algebras. The earthquakes (Ti, Li, Zi)

are assumed to occur at isolated points of time (almost surely) so that they can
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be enumerated in chronological order, forming the earthquake process, a marked

point process {(Ti, Li, Zi)}i∈N with associated counting process

N(T ,L,Z) :=
∞∑
i=1

1T ×L×Z(Ti, Li, Zi) =
∫
T

∫
L

∫
Z
N(dt, dl, dz),

the number of earthquakes occurring in the time interval T ∈ BR+ , where T :=

(r, s], 0 ≤ r < s, with location in L ∈ BL, and magnitude in Z ∈ BZ.

Let the pair (Y, c) denote the generic insured object with characteristics c and

loss Y , given the occurrence of an earthquake with location L and magnitude

Z, and

G(y|l, z, c) := Pc[Y ≤ y|L = l, Z = z]

be its distribution function. Consider the portfolio in force at time t, henceforth

referred to as the t-portfolio, and its Kt constituent risks. The t-portfolio loss

given L and Z is R :=
∑Kt
k=1 Yk, with distribution

Gt(r|l, z) := P[R ≤ r|L = l, Z = z]

= [G( · |l, z, c1) ∗ · · · ∗G( · |l, z, cKt)] (r)

given by the convolution of G over the t-portfolio. We shall henceforth refer to

Gt as the conditional loss distribution.

If the mark (L,Z) for an earthquake occurring at time T is augmented to

include R, the earthquake process becomes the loss process, with associated

counting process
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N(t,L,Z,R) =
∞∑
i=1

1(0,t]×L×Z×R(Ti, Li, Zi, Ri)

=
∫

(0,t]

∫
L

∫
Z

∫
R
N(ds, dl, dz, dr).

Assuming the t-portfolio remains fixed during the time interval (t, u], the ag-

gregate loss over (t, u] is given by

Xt,u :=
∫

(t,u]

∫
L

∫
Z

∫
R+

rN(dτ, dl, dz, dr).

Let F = {Ft}t≥0 be the filtration to which the loss process is adapted,

including information about the marks and times of past events, as well as any

information about external variables or processes evolving in time in parallel

with the losses. Using the usual suggestive notation, the F−intensity of the

loss process is

Λ(dt, dl, dz, dr) := E[N(dt, dl, dz, dr)|Ft− ],

where Λ is a measure that admits a representation of the form

Λ(dt, dl, dz, dr) = λdt∆(dl)Φ(dz)Gt(dr|l, z),

with λ > 0, and ∆ and Φ the location and magnitude distributions, respectively.

Thus, specifying a loss process is tantamount to specifying its underlying earth-

quake process and conditional loss distribution.

1.3 Scope of the thesis

In this thesis we examine the (non-trivial) minutiae around the infrastructure

underpinning the loss process, and address the problem of constructing approx-
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imations to the distribution P t,u(x) := P[Xt,u ≤ x].

In Chapter 2, we discuss the general architectural considerations for con-

structing the conditional loss distribution, and propose a new model as an al-

ternative to the traditional approaches available in the engineering seismology

literature, which rely on the availability of ground motion attenuation relations.

In Chapter 3, we propose a novel model of the earthquake process, an appli-

cation of a spatial Poisson model with gamma intensity measure, along with an

extension of the spatial Poisson model that incorporates epicentral location and

depth as mark components. We also introduce this feature in a specification of

the stress release model of the earthquake process, considered in Chapter 4.

On the actuarial mathematics front, in Chapter 5 we address the problem of

constructing simulation based and, where possible, analytical approximations

to the loss distribution P t,u, and illustrate the applicability of the stochastic

models and methods we propose through the analysis of a residential home-

owners property catastrophe portfolio exposed to earthquake risk in Southern

California. We construct approximations to P t,u under each of the three models

of the earthquake process that we propose, and discuss their relative merits.
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Chapter 2

The conditional loss

distribution

2.1 General architectural considerations

In this chapter we address the problem of specifying Gt(r|l, z), the distribution

of R, the loss to the t-portfolio given the occurrence of an earthquake with

magnitude Z and location L. To the extent that Gt is given by the convolution

Gt(r|l, z) = [G( · |l, z, c1) ∗ · · · ∗G( · |l, z, cKt)] (r),

we first focus on the construction of G(y|l, z, c).

A. The need for a mixed distribution. Consider a policy/insured object

and its record c, listing, among other data, its value v. Given the occurrence

of an earthquake, let p ≥ 0 denote the probability of no loss occurring. The

magnitude of the earthquake, its location relative to the risk, the local site

conditions such as soil type, potential for liquefaction and/or landslide, and the
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individual characteristics of the object, all stored in c, are factors influencing

the probability of this event and consequently p = p(l, z, c). This same logic

applies to the event of total loss, occurring with probability q = q(l, z, c) ≥ 0.

The magnitude of the earthquake could be so large, and its location relative to

the risk in question be so close that, compounded with e.g. soft porous soils

prone to liquefaction and a weak construction profile in engineering terms, it

would lead to structural damage resulting in a total loss. Finally, between these

two ends of the loss spectrum, we have an infinite and uncountable number

of possibilities for the size of loss, each occurring with probability zero and

governed by a continuous distribution G(y|l, z, c), say, with support on (0, v).

In mathematical terms, Y has a mixed distribution G(y|l, z, c) with probability

density p and q, with respect to Dirac measure on 0 and v, respectively, and

probability density g with respect to Lebesgue measure on (0, v), i.e.,

p(l, z, c) = G (0|l, z, c)

q(l, z, c) = G (v|l, z, c)−G (v − |l, z, c) , and

g (y|l, z, c) =
G′ (y|l, z, c)

1− p(l, z, c)− q(l, z, c)

B. Establishing a reference hazard measure. The distribution G is

a function of earthquake magnitude and location, and of the covariates sum-

marised in c. Without reference to a hazard measure that translates the earth-

quake characteristics and the risk specifics into some form of damage potential,

conditioning the size of loss on the occurrence of an earthquake is meaningless.

The traditional approach in engineering seismology is to use the amplitude

of ground motion as a reference hazard measure. Given the location and mag-

nitude of an earthquake, the distribution of peak ground motion is estimated

through an attenuation relation whereby e.g. the peak ground acceleration A
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at the site is governed by a lognormal distribution H(a|l, z, c) with, say, mean

µ = µ(l, z, c) and variance σ2. Attenuation relations are developed regionally on

the basis of ground motion observations for earthquakes with magnitude above

a certain threshold. Given a level of peak ground acceleration, a seismic vulner-

ability function, a distribution GV (y|a, c), say, relating damage to peak ground

acceleration is then used to estimate damage at the site. Under this approach,

G would take the form

G(y|l, z, c) =
∫
GV (y|a, c)dH(a|l, z, c). (2.1)

For insurance risk assessment purposes, where the aim is not so much to predict

ground motion at a particular site as to obtain the probability distribution of

insurance losses over relatively long periods, the formulation in (2.1) is not ideal,

for a number of reasons. First and foremost, there are the natural robustness

issues arising from missing data and measurement and model specification error

for each of two different models, one for GV and one for H, with a compounding

effect for the uncertainties in each of the latter likely to be reflected in the

variance structure of G. Then there is the computational burden of calculating

(2.1) for each of the risks in the portfolio, a behemoth of a task if more than a few

hundred risks are present therein. We propose an alternative to the engineering

seismology two-staged approach through the design of a new hazard measure

which enables the modeling of G directly, without the need of the ‘auxiliary’

role played by the attenuation relation. The construction of this new hazard

measure is addressed next.

2.2 Construction of a reference hazard measure

A. Energy released by earthquakes and the inverse-square law. The

total energy E released when an earthquake occurs includes energy required to
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create new cracks in rock, energy dissipated as heat through friction, and energy

S elastically radiated through the earth. Of these, only the latter is susceptible

to measurement by ground motion recording instruments. An approximation

to S in terms of earthquake magnitude Z is given by the empirical relation

(Vere-Jones et al. [48])

S = 102.4+ 3
4Z , (2.2)

which is similar to the classical definition of seismic energy and Benioff strain

(Kanamori and Anderson [20]), with a changing coefficient considering new

seismological data.

A seismic wave loses energy as it propagates through the earth and, as a

result, the energy with which an earthquake affects a location is dependent

on the distance between the location and the hypocentre. The nature of this

relationship is governed by a physical inverse-square type law, whereby the

amount of energy radiated at a site is inversely proportional to the the square

of the distance from the energy source1.

B. Amount of energy radiated at the site of a risk. Taking S as

a measure of the energy released upon the occurrence of an earthquake with

magnitude Z, a measure of the energy radiated at the site of the object with

policy record c is given by

ε(l, z, c) :=
s(z)

‖l − l∗‖2
,

where s(z) := 102.4+ 3
4 z, ‖·‖ is the Euclidean norm, and the location l∗ ∈ R3 of

the object is stored in c. There are two conspicuous features of this formulation.
1In more general terms, inverse-square type laws assert that some physical quantity or

strength is inversely proportional to the square of the distance from the source of that physical
quantity. They appear in e.g. the theories of gravitation, electromagnetism, and acoustics.
Newton’s law of universal gravitation and Coulomb’s law describing the electrostatic force
between electric charges are examples of inverse-square laws.
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The first has to do with the energy per unit area when l = l∗. The energy

released by an earthquake radiates from the hypocentre and, at any time, sits

on a sphere centred at l. When the sphere attains radius ‖l − l∗‖ and hits the

object, the total energy is still s(z) and the area it is uniformly distributed over

is proportional to ‖l − l∗‖2. Thus, the energy per unit area must, by definition,

be infinite at ground 0 at time 0. The second feature is the implicit assumption

of isotropy that some would argue is inappropriate. To the extent that the

complexities of energy attenuation through an elastic medium are not being

accounted for, our formulation is crude. This crudity, however, is offset by

the fact that the ultimate goal is not to predict energy or ground motion at

a particular site, but to obtain the probability distribution of insurance losses

over relatively large periods of time and over a relatively large geographical

region. Any sensitivity of the loss distribution to the functional form of ε(·)

must then be addressed vis-à-vis the corresponding distribution obtained under

a formulation of the form (2.1), and the compounding effect of the uncertainties

inherent in the attenuation and vulnerability models.

C. Calculation of distances between earthquakes and risks. Earth-

quake catalogs and policy and claims records contain spatial location data in

a form akin to spherical coordinates. The latitude and longitude are angles

measured in degrees and, in the case of earthquake catalogs, the depth of an

earthquake, typically measured in kilometres, can be readily transformed into

a spherical radius by subtracting it from 6367km, the radius of the earth. As

for the risks in a portfolio, they can be assumed to be ‘at sea level’ if altitude

readings are not available.

Given a typical earthquake catalog entry (θ, φ, h), where θ and φ are the

longitude and latitude in degrees, respectively, and h is the depth in kilometres,

the location (in Cartesian coordinates) l = (l(1), l(2), l(3)) ∈ R3 is obtained from
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(θ, φ, h) through the relations

l(1) = r sin(φ∗
π

180
) cos(θ

π

180
)

l(2) = r sin(φ∗
π

180
) sin(θ

π

180
)

l(3) = r cos(φ∗
π

180
),

where r = 6367 − h and φ∗ = (90 − φ). The same logic applies for obtaining

l∗ = (l∗(1), l∗(2), l∗(3)), where the longitude and latitude readings are found in

the policy record c and the depth h can be assumed to be zero. The squared

distance

‖l − l∗‖2 = (l(1) − l∗(1))2 + (l(2) − l∗(2))2 + (l(3) − l∗(3))2

is then readily calculated.

2.3 Modeling of singularities

Having established ε = ε(l, z, c) as a reference hazard measure, G can be recast as

G(y|ε, c), with continuous componentG(y|ε, c), and probability atoms p = p(ε, c)

and q = q(ε, c). In this section we address the estimation of the latter.

A. The singularity at zero. First, we define the binary random variable

Y 0 = 1{Y=0} with probabilities P[Y 0 = 1] = p and P[Y 0 = 0] = 1 − p. Under

this setup,

Y 0 ∼ Ber(p)

and the problem is to obtain an estimate for p in terms of ε and c. A generalised

linear model (GLM) of the form
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η(p) = α0 + β0ε+ γ0c (2.3)

can be defined, where the scalars α0 and β0, and the vector γ0, are the pa-

rameters of the model, with η the link function. Several specifications of η are

possible (e.g. logit, probit, and complementary log-log), with each resulting in

a different formulation of (2.3). For estimation and inference considerations we

refer the reader to the monograph by McCullagh and Nelder [26], a standard

reference in generalised linear modeling.

Parameter estimation is performed on the basis of information available in

the claims records {κi}. We assume the policy records {ci} contained in the

latter include no-claims data from policies in force at the time of an event for

which no losses were reported, enabling the construction of the set of obser-

vations {y0
i }. The observations {εi = ε(l�i , z

�
i , l
∗
i )} are also constructed from

information available in {κi}, with l∗i the location of the object in claim i, and

l�i and z�i the location and magnitude, respectively, of the earthquake generating

the claim. The estimates α̂0, β̂0 and γ̂0, are obtained upon calibration of (2.3),

and the estimate of the probability p of a singularity at zero is given by

p̂ = η−1(α̂0 + β̂0ε+ γ̂0c).

B. The singularity at the value of the insured object. The argument

for the estimation of q is identical to that of p, with one caveat. If p and q were

modelled separately and each using the full set of claims records, there would

be a possibility of obtaining estimates p̂ and q̂ such that p̂+ q̂ > 1. To avoid this

problem, we define q∗ = P[Y = v|Y > 0] and fit the model to the observations

with Y > 0. Thus, the random variable Y v = 1{Y=v}1{Y >0}, with probabilities

P[Y v = 1] = q∗ and P[Y v = 0] = 1− q∗, whereby
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Y v ∼ Ber(q∗),

is first defined. A model

η(q∗) = αv + βvε+ γvc (2.4)

is then specified and calibrated, from where the estimate

q̂∗ = η−1(α̂v + β̂vε+ γ̂vc)

follows. Since q = P[Y = v] = P[Y = v|Y > 0]P[Y > 0], it follows that

q̂ = q̂∗(1− p̂).

Alternatively, p and q could be modelled together using, for instance, a

multinomial logistic model for the 3-category response

(I(Y = 0), I(0 < Y < v), I(Y = v)) .

For estimation and inference considerations we refer to e.g. Agresti [1].

2.4 Modeling of the continuous component

In this section we address the modeling of G(y|ε, c), the conditional distribution

of Y given 0 < Y < v, which we assume to be specified up to a vector of

unknown parameters ϑ = ϑ(ε, c). The j-th non-central and central (j ≥ 2)

moments of Y , given 0 < Y < v, are

m
(0,v)
j = m

(0,v)
j (ϑ(ε, c)) :=

∫ v

0

yjdG(y;ϑ(ε, c)) (2.5)
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and

m
(0,v)
j = m

(0,v)
j (ϑ(ε, c)) :=

∫ v

0

(y −m(0,v)
1 )jdG(y;ϑ(ε, c)),

respectively. As before, estimation of ϑ is performed on the basis of {κi}. In

principle, this exercise is no different to the estimation of p and q, the parameters

of the distributions of Y 0 and Y v, respectively. Whilst the Bernoulli distribution

was the obvious choice in the the case of the latter, the specification of G is not

so apparent. One architectural restriction is the need for G to have support

on (0, v), but this can be readily overcome by working with an appropriately

truncated distribution and so the candidates remain vast.

A. General estimation framework. Once more, we operate in the GLM

framework, where the aim is to ‘regress’ Y , given 0 < Y < v, on ε and c in a

way such that

η(µ) = α+ βε+ γc,

where µ = µ(ϑ) = E[Y |0 < Y < v] and, as before, α, β and γ are parameters,

with η a link function. A standard GLM specification would define the model

so as to contain a precision (or dispersion) parameter ϕ = ϕ(ϑ) allowing a

reparameterisation G(y;µ, ϕ) of G whereby, given the observations {yi}, {εi},

and {ci}, the log-likelihood is given by

lnL(α, β, γ, ϕ) =
∑
i

ln g(yi;µi, ϕ),

from where the maximum likelihood estimate (MLE)

(α̂, β̂, γ̂, ϕ̂) = arg max
(α,β,γ,ϕ)∈R4

lnL(α, β, γ, ϕ)
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follows, allowing the estimation of ϑ through ϑ̂ = ϑ̂(µ̂ = µ̂(α̂, β̂, γ̂), ϕ̂).

The gamma, Weibull (if the shape parameter is known), log-normal, and

Pareto distributions belong to the exponential family of distributions and could

be parameterised in the form G(y;µ, ϕ), constituting likely candidates for G.

Another case in point is the beta distribution, which has two further desirable

properties: it has a bounded support and a versatile shape accommodating a

variety of uncertainties. We present this model next.

C. The beta model. Assume G is beta distributed, whereby the density of

G with respect to Lebesgue measure on (0, v) is

g(y) =
1

B(α′, β′)

(y
v

)α′−1
(
v − y
v

)β′−1(1
v

)
1(0,v)(y),

where α′ = α′(ε, c) > 0, β′ = β′(ε, c) > 0, and B(·, ·) is the beta function. The

first three central moments of Y , given 0 < Y < v, are

m
(0,v)
1 = v

[
α′

α′ + β′

]
,

m
(0,v)
2 = v2

[
α′β′

(α′ + β′)2(α′ + β′ + 1)

]
, and (2.6)

m
(0,v)
3 = v3

[
2(β′ − α′)

√
1 + α′ + β′√

α′β′(2 + α′ + β′)

]
.

Because v varies between different insured objects we model the proportion of

loss out of the total value instead. We introduce the change of variable U := Y
v

and work with the density

g(u) =
1

B(α′, β′)
uα
′−1(1− u)β

′−11(0,1)(u), (2.7)

a beta distribution on the unit interval indexed by α′ and β′. Ferrari and

Cribari-Neto [10] have proposed a regression model where the response is beta

17



distributed using a parameterisation of (2.7) that is indexed by mean and dis-

persion parameters. The highlights of this model are presented below.

Let µ = α′

α′+β′ and ϕ = α′ + β′. Under this reparameterisation α′ = µϕ,

β′ = (1− µ)ϕ, and (2.7) can be recast as

g(u) =
Γ(ϕ)

Γ(µϕ)Γ((1− µ)ϕ)
uµϕ−1(1− u)(1−µ)ϕ−11(0,1)(u),

where 0 < µ < 1, ϕ > 0, and Γ(·) is the gamma function. The linear model is

obtained by assuming

η(µ) = α+ βε+ γc.

Note that µ varies as a function of the explanatory variables, while the dispersion

parameter ϕ = α′ + β′ remains constant. The log-likelihood function based on

the observations {ui}, {εi}, and {ci}, with i ∈ {1, . . . , nκ}, is

lnL(α, β, γ, ϕ) =
nκ∑
i=1

ln g(ui;µi, ϕ),

where µi = η−1(α + βεi + γci). Denoting u∗i := ln[ ui
1−ui ] and µ∗i := ψ(µiϕ) −

ψ((1− µi)ϕ), with ψ(·) the digamma function, the score function is given by

(Uα,β,γ(α, β, γ, ϕ)t, Uϕ(α, β, γ, ϕ))t,

where

Uα,β,γ(·) := ϕXtT (u∗ − µ∗),

with X = {(1, εi, ci)}, T = diag{ 1
d
dµi

η(µi)
}, u∗ = {u∗i } and µ∗ = {µ∗i }, and

Uϕ(·) :=
nκ∑
i=1

[µi(u∗i − µ∗i ) + ln(1− ui)− ψ((1− µi)ϕ) + ψ(ϕ)] .

18



The maximum likelihood estimates of α, β, γ, and ϕ, are obtained by finding the

root of the equations Uα,β,γ(α, β, γ, ϕ) = 0 and Uϕ(α, β, γ, ϕ) = 0, respectively,

and do not have closed-form. Fisher’s information matrix is obtained as follows.

Define

wi := ϕ(ψ′(µiϕ) + ψ′((1− µi)ϕ))
1

η′(µi)2
,

%i := ϕ(ψ′(µiϕ)µi − ψ′((1− µi)ϕ)(1− µi)), and

di := ψ′(µiϕ)µ2
i + ψ′((1− µi)ϕ)(1− µi)2 − ψ′(ϕ),

where ψ′(·) is the trigamma function. Let W = diag{wi}, % = {%i}, and

D = diag{di}. Further, let

Kα,β,γ := ϕXtWX,

K(α,β,γ),ϕ := Kt
ϕ,(α,β,γ) = XtT%, and

Kϕ := tr(D).

Fisher’s information matrix is given by

I = I(α, β, γ, ϕ) =

 Kα,β,γ K(α,β,γ),ϕ

Kϕ,(α,β,γ) Kϕ

 .

Assuming the usual regularity conditions for maximum likelihood estimation
are satisfied, the estimator (α̂, β̂, γ̂, ϕ̂) is consistent

(α̂, β̂, γ̂, ϕ̂)
p→ (α, β, γ, ϕ),

and asymptotically normally distributed

(α̂, β̂, γ̂, ϕ̂) d→ N
(
(α, β, γ, ϕ), I−1

)
.

The estimates of α′ and β′ are given by
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α̂′ = η−1(α̂+ β̂ε+ γ̂c)ϕ̂

β̂′ = ϕ̂− α̂.

2.5 Derivation of moments

A. The moments of R. On the basis of a fully specified model for the
conditional loss distributionG, the j-th non-central and central (j ≥ 2) moments
of R =

∑Kt
k=1 Yk, the conditional loss for the t-portfolio comprising Kt risks, are

given by

mR
j = mR

j ({ϑk}) :=
∫
rjdGt(r; {ϑk}) (2.8)

and

mR
j = mR

j ({ϑk}) :=
∫

(r −mR
1 )jdGt(r; {ϑk}), (2.9)

respectively. We assume Yk, k = 1, . . . ,Kt, are independent with mean, vari-
ance, and third central moment

m1,k = m1,k(ϑk) := E[Yk],
m2,k = m2,k(ϑk) := V[Yk], and
m3,k = m3,k(ϑk) := E[(Yk −m1,k)3],

from where it follows that mR
1 =

∑
km1,k, mR

2 =
∑
km2,k, and mR

3 =
∑
km3,k.

Below we derive analytical expressions for m1,k, m2,k, and m3,k.

B. Analytical expressions for the mean, variance, and third central
moment of Yk. The j-th non-central moment of Yk is

mj,k := (1− pk − qk)
∫
yjdG(y;ϑk) + qk(vk)j , (2.10)

where mj,k = mj,k(pk, qk, ϑk). From (2.5), (2.10) can be recast as

mj,k = (1− pk − qk)m(0,vk)
j,k + qk(vk)j ,

with m
(0,vk)
j,k := m

(0,v)
j (ϑk), from where m1,k follows trivially. To obtain m2,k

we use the identity V[Yk] = E[Y 2
k ]− E[Yk]2, from where it follows that

m2,k = m2,k −m2
1,k

and, in a similar way, using the identity E[(Yk−E[Yk])3] = E[Y 3
k ]−3V[Yk]E[Yk]−

E[Yk]3,

m3,k = m3,k − 3m2,km1,k −m3
1,k.
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Under the beta model presented in Section 2.4, m(0,vk)
1,k , m(0,vk)

2,k , and m(0,vk)
3,k

are given in (2.6). The first central moment of Yk is given by

m1,k = (1− pk − qk)m(0,vk)
1,k + qk(vk).

Since V[Y (0,vk)
k ] = E[Y (0,vk)

k

2
]− E[Y (0,vk)

k ]2, it follows that

m
(0,vk)
2,k = m

(0,vk)
2,k + (m(0,vk)

1,k )2,

from where m2,k and m2,k follow readily. The argument for m3,k is similar.
Using the third central moment identity it follows that

m
(0,vk)
3,k = m

(0,vk)
3,k + 3m(0,vk)

2,k m
(0,vk)
1,k + (m(0,vk)

1,k )3,

from where m3,k and m3,k follow.
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Chapter 3

Poisson type models of the

earthquake process

3.1 Introduction

Estimation and forecasting of geophysical risk has been the subject of intense

scientific effort in both the seismological and statistical communities. Stochas-

tic models with an increasing component of physical reasoning have been slowly

gaining acceptance over the past two decades, giving rise to statistical seismol-

ogy, a subject that aims to bridge the gap between physics-based models without

statistics, and statistics-based models without physics. For an illustration of the

range of issues now coming under the statistical seismology heading see [49].

From the statistical side, a fundamental impulse to statistical seismology

has been the development of the theory of stochastic point processes, whose

realisations can be represented as a family of Dirac measures in time or space

or both. Vere-Jones has long advocated (see e.g., [41] and [42]) the theory

of stochastic point processes as the natural framework for the development of

geophysical risk models. The point process context is relevant so long as the
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origin times can be treated as time instants, with which other variables can be

associated. One then has a choice of treating the process as a point process

in time and space, or as a marked point process in time, the mark for each

event containing information about spatial and other parameters it is desired

to include in the study.

Natvig and Tvete [28] have proposed a methodology aiming at predicting

earthquake occurrence in time and space. Their statistical methods are in sharp

contraposition to the point process framework, the interest being to predict

event ocurrence in coarse geographic areas and time windows, as opposed to

time instants and points in space.

In this and the next chapter we consider models of the process of earth-

quake occurrence. We assume that at the base of everything there is a filtered

probability space (Ω,F = {Ft}t≥0,P) and operate in the marked point pro-

cess framework introduced in Section 1.2, where we assume that the earthquake

process is intensity driven and that, using the usual suggestive notation,

Λ(dt, dl, dz) := E[N(dt, dl, dz)|Ft− ]

is its intensity, with {Ft} a filtration to which the process is adapted. The latter

includes information about the marks and times of (strictly) past events, and

possibly about external variables or processes evolving in time in parallel with

the earthquake process.

Vere-Jones [44] suggests that despite the massive literature on earthquake

prediction, there are very few models from which intensities or probabilities can

be calculated, and which at the same time have been tested on data, enjoy

some semblance of credibility and yield a significant sharpening of the risk over

the Poisson model. Some of the best-known and more successful attempts are

reviewed in Appendix A.
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In this chapter we formulate two Poisson type models of the earthquake

process. In Section 3.2 we present a model whereby the earthquake process is

Poissonian, setting the scene that will later allow us to assess the relative merits

of more complex formulations. In this model, the intensity of occurrence of

an earthquake is constant through time, with a deterministic time-independent

marking mechanism. In Section 3.3 we propose a Bayesian formulation: a Pois-

son model with gamma intensity measure where both the intensity of occurrence

of an earthquake and the marking mechanism are time-independent (a priori),

albeit stochastic. The purpose of the latter model is to capture earthquake

clustering in space, a pervasive feature of earthquake occurrence.

In both Poissonian models, independence plays a central role that leads to

elegant analytical expressions for moments and representation results. Interest-

ing extensions appear when the assumption of completely independent marks

is removed, and ways in which either the marks can influence the future de-

velopment of the process, or the current state of the process can influence the

distribution of marks, or both, is considered. This is the case in, for instance,

the stress release model presented in Chapter 4 or some of the ETAS models

reviewed in Appendix A.

3.2 The spatial Poisson process

A. Notation preliminaries. If X is a random variable, then we say L(X)

denotes the probability law of X. The conditional law of X, given the ran-

dom variable Y (or the sigma-algebra it generates) is denoted by L(X|Y ). We

may also occasionally write L(X|Y = y). In general we have L(X,Y ) =

L(X)L(Y |X). In particular, L(X,Y ) = L(X)L(Y ) signifies that X and Y

are independent. Some standard probability laws will have given names, e.g.

L(N) = Po(N ;λ) means that N has a Poisson distribution with mean λ and
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L(Λ) = Ga(Λ;α, β) means Λ has a gamma distribution with shape parameter

α and inverse scale parameter β.

B. The earthquake process. Let µ be Lebesgue measure on (R+,BR+),

ΛL a positive finite measure on (L,BL), and Φ a probability measure on (Z,BZ).

Define the product measure Λ on (R+ × L × Z,BR+ ⊗ BL ⊗ BZ) by specifying

that, for all T × L × Z ∈ BR+ ⊗ BL ⊗ BZ,

Λ(T ,L,Z) := (µ× ΛL × Φ)(T × L × Z) = µ(T )ΛL(L)Φ(Z).

We assume that, for all T × L × Z ∈ BR+ ⊗ BL ⊗ BZ,

L (N(T ,L,Z)) = Po (N(T ,L,Z); Λ(T ,L,Z)) ,

and that N(T ,L,Z) and N(T ′,L′,Z ′) are independent for any disjoint sets

T ×L×Z, T ′×L′×Z ′ ∈ BR+⊗BL⊗BZ. The convolution property (see Appendix

B, (B.5)) of the Poisson distribution ensures that N is a well defined random

measure, with the indexed family {N(T ,L,Z); T × L × Z ∈ BR+ ⊗ BL ⊗ BZ}

satisfying the Kolmogorov consistency conditions. We write

L (N) = Po
(
N ; (R+ × L× Z,BR+ ⊗ BL ⊗ BZ,Λ)

)
. (3.1)

We further assume that the ground process {Ti}i∈N of occurrence times, with

associated counting process

N(T ) := N(T ,L,Z),

the number of earthquakes occurred in the time interval T , is independent

of the marks process {(Li, Zi) = (L,Z)(Ti)}i∈N, that the locations {Li} are

mutually independent and are governed by a probability measure ∆(L),∀L ∈
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BL, and that the magnitudes {Zi} are mutually independent, governed by the

probability measure Φ, and independent of the locations {Li}. With such a

setting, the earthquake process is a generalized stationary compound Poisson

process whereby the mean measure Λ can be recast as

Λ(T ,L,Z) = µ(T )λ∆(L)Φ(Z),

where µ(T )λ, with λ := ΛL(L), is the mean measure of the Poisson ground

process. To verify this observe that

Λ(T ,L,Z) = µ(T )ΛL(L)Φ(Z)

= µ(T )ΛL(L)
ΛL(L)
ΛL(L)

Φ(Z)

= µ(T )λ∆(L)Φ(Z),

where ∆(L) := ΛL(L)
ΛL(L)

. Define N((0, s], ·, ·) := N(s, ·, ·) and let

{Ft = σ{N(s,L,Z); 0 < s ≤ t,L ∈ BL,Z ∈ BZ}, }t>0 (3.2)

be the natural filtration generated by the counting process (trivially, N(0,L,Z) =

0). The intensity of the latter, given Ft− , is

E[N(dt, dl, dz)|Ft− ] = Λ(dt, dl, dz) = dtλ∆(dl)Φ(dz),

from where it follows that the intensity of occurrence of an earthquake is inde-

pendent of the time and past history of the earthquake process.

C. Specification of the location and magnitude distributions. There is

a host of conceivable candidates for the location and magnitude distributions ∆

and Φ, respectively. The distribution of earthquake sizes, for instance, has been
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the subject of considerable research (see e.g. Utsu [40] for a thorough review).

It is known empirically that magnitudes of earthquakes follow roughly a (left

truncated) exponential distribution

φ(z) = γ exp (−γ(z − z0)) , z > z0, (3.3)

with z0 a minimum magnitude threshold1, known in the seismology literature as

the Gutenberg-Richter law (Gutenberg [11]). Several alternatives to the latter

have been proposed: the Pareto, left truncated gamma, and tapered Pareto

models (see, e.g., Kagan and Schoenberg [19]) to name a few.

The distribution of earthquake location in space has been explored by, e.g.,

Musmeci and Vere-Jones [27] and Rathbun [37], where kernel density estimators

have been applied to the modelling of the epicentral location of earthquakes.

In the light of the large number of observations usually found in earthquake

catalogs, an avenue of action is to avoid a particular choice of parametric model,

or of kernel, in favour of a nonparametric one, using the empirical distribution

of a sample of N(τ) observed locations L1, . . . , LN(τ),

∆N(τ)(L) :=
N(τ,L,Z)
N(τ)

, ∀L ∈ BL,

as an estimate of the latter.

D. Estimation. The estimation of the earthquake process amounts to ob-

taining estimates of λ, ∆(L),∀L ∈ L, and of any parameters appearing in the
1The minimum magnitude threshold z0 must be carefully selected to ensure there is his-

torical consistency, or completeness, in the catalog of events used for model calibration. The
completeness of a catalog is determined, in most part, by a seismic network’s capability of
consistently detecting earthquakes of a certain magnitude over a period of time. For low mag-
nitude earthquakes, for example, it is commonly the case that there is an apparent increase in
seismic activity over time which could be entirely due to improvements in a seismic network’s
station density and capabilities. The quality of the waveforms, phase picks, hypocentral loca-
tions and magnitudes also vary considerably, with the most recently recorded events having
the best determined parameters. For this reason only the largest shocks (typically Z ≥ 4
or 5) are considered, the reason being that earthquakes of this size or larger are almost cer-
tainly regarded as being consistently detectable. See Musmeci and Vere-Jones [27], and Ogata
et.al. [35].
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specification of Φ (e.g. γ, under the assumption that Φ has density (with re-

spect to Lebesgue measure on (Z,BZ)) φ(z), given by (3.3)). As a result of the

independence assumptions, the estimation of each of λ, ∆, and Φ, can be done

separately, using classical methods.

For the estimation of λ, consider Fτ and the occurrence times

T1, T2, . . . , TN(τ) ∈ (0, τ ].

The probability that N(τ) = n and the n events occurring in intervals [ti, ti +

dti), i = 1, ..., n, is

P[N(τ) = n, Ti ∈ [ti, ti + dti), i = 1, . . . , n] = e−λτ
n∏
i=1

λdti,

from where the likelihood function and maximum likelihood estimator of λ,

L
(
λ|N(τ), T1, T2, . . . , TN(τ)

)
:= e−λτλN(τ)

and λ̂ = N(τ)
τ , respectively, follow readily.

3.3 The spatial Poisson process with gamma in-

tensity measure

In this section we propose a new model of the earthquake process, a Poisson

marked point process with random intensity measure obtained by assuming

that the spatial measure ΛL in the Poisson process introduced in the previous

section is stochastic. Under this model both the intensity of occurrence of

an earthquake and the marking mechanism are time-independent (a priori),

albeit stochastic. Through the stochastic spatial intensity the proposed model

captures earthquake clustering in space, one of the most pervasive features of
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catalog data.

The spatial gamma and Dirichlet measures are introduced in paragraph A,

and a representation result for the gamma measure is obtained. Particular care

is taken to ensure that the measures are well defined and for this reason the

workings on an arbitrary finite partition of the location space are made explicit,

before extending the measure(s) to a bona-fide sigma algebra. The model is

then formulated in paragraph B, defining the Poisson model intensity measure

Λ as a random measure underpinned by the gamma measure ΛL. The posterior

distribution of the gamma measure is defined in paragraph C where, again, care

is taken to show the workings of the posterior measure on an arbitrary finite

partition of space before extending it. Finally, the posterior distribution of the

earthquake process and its intensity is derived in paragraph D.

A. The spatial gamma and Dirichlet measures. Let α be a positive

finite measure on (L,BL). Define a random measure ΛL on (L,BL) by assuming

that, for all L ∈ BL,

L(ΛL(L)) = Ga(ΛL(L);α(L), β),

and that ΛL(L) and ΛL(L′) are independent for any disjoint sets L,L′ ∈ BL.

The convolution property of the gamma distribution ensures that ΛL is a well

defined random measure, with the indexed family {ΛL(L); L ∈ BL} satisfying

the Kolmogorov consistency conditions. We write

L
(
ΛL
)

= Ga
(
ΛL; (L,BL, α), β

)
. (3.4)

Let ∆ be the random probability measure obtained upon norming ΛL to a
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probability:

∆(L) :=
ΛL(L)
ΛL(L)

, ∀L ∈ BL. (3.5)

(This is well defined: ΛL(L) > 0 almost surely since α(L) > 0.) From Appendix

B, Section B.6, we know that, for any measurable partition {L1, . . . ,Lk} of L,

we have

L(∆(L1), . . . ,∆(Lk)) = Dir(∆(L1), . . . ,∆(Lk);α(L1), . . . , α(Lk)) .

These joint multidimensional distributions determine the random measure ∆

uniquely, and we call this measure the Dirichlet measure on (L,BL) with pa-

rameter α, written

L (∆) = Dir (∆; (L,BL, α)) . (3.6)

This construction gives the following representation result (the infinite di-

mensional extension of (B.20)):

L
(
ΛL
)

= Ga
(
ΛL; (L,BL, α), β

)
⇔ (3.7)

L
(
ΛL(L),∆

)
= Ga

(
ΛL(L); α(L), β

)
Dir (∆; (L,BL, α)) .

Thus, the gamma measure can be constructed as the product of a gamma vari-

able and a Dirichlet measure.
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B. The earthquake process I. Let µ be Lebesgue measure on (R+,BR+),

ΛL a gamma random measure as in (3.4), and Φ a probability measure on

(Z,BZ). Define the random product measure Λ on (R+×L×Z,BR+ ⊗BL⊗BZ)

by assuming that, for all T × L × Z ∈ BR+ ⊗ BL ⊗ BZ,

Λ(T ,L,Z) := (µ× ΛL × Φ)(T × L × Z) = µ(T )ΛL(L)Φ(Z).

We assume that earthquake magnitude is independent of time and of location

and that Λ drives the earthquake generating mechanism in a way such that,

conditional on Λ, N is a Poisson measure as in (3.1),

L (N |Λ) = Po
(
N ;
(
R+ × L× Z,BR+ ⊗ BL ⊗ BZ

)
,Λ
)
.

The gamma distribution is the natural conjugate prior to the Poisson distri-

bution and so, for all T × L ∈ BR+ ⊗ BL,

L
(
ΛL(L)|N

)
= Ga

(
ΛL(L);α(L) +N(T ,L), β + µ(T

)
,

where we define N(·, ·,Z) := N(·, ·), which is equivalent to (using (3.7))

L(ΛL(L), (∆(L),∆(Lc)) |N) = Ga
(
ΛL(L);α(L) +N(T ,L), β + µ(T )

)
×Dir (∆(L),∆(Lc);α(L), α(Lc)) .

C. Posterior distribution of the gamma measure. The posterior dis-

tribution of ΛL, given N observed in the time interval (0, τ ], is obtained as

follows (trivially, for all L ∈ BL, N(0,L) = 0). Partition (0, τ ] into (th−1, th],

h = 1, . . . , j where 0 =: t0 < t1 < · · · < tj := τ , and denote the length of the

h-th interval by τh := th − th−1, h = 1, . . . , j. Partition L into {L1, . . . ,Lk},
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and denote αi := α(Li), i = 1, . . . , k. The joint distribution of

{Nhi := N((th−1, th],Li,Z); h = 1, . . . j, i = 1, . . . , k}

and

{Λi := ΛL(Li); i = 1, . . . , k}

is given by (the product of)

L(Λi; i = 1, . . . , k) =
k∏
i=1

Ga(Λi; αi;β)

and

L (Nhi; h = 1, . . . j, i = 1, . . . , k |Λi; i = 1, . . . , k) =
k∏
i=1

j∏
h=1

Po (Nhi; τh Λi) .

The conditional distribution of {Λi; i = 1, . . . , k}, given {Nhi; h = 1, . . . j, i =

1, . . . , k}, is proportional to their joint distribution:

L (Λi; i = 1, . . . , k |Nhi; h = 1, . . . j, i = 1, . . . k)

∝
k∏
i=1

(
Ga(Λi; αi, β)

j∏
h=1

Po (Nhi; τh Λi)

)

∝
k∏
i=1

(
Λαi−1
i e−β Λi Λ

∑j
h=1Nhi

i e−
∑j
h=1 τhΛi

)

∝
k∏
i=1

Ga

(
Λi; αi +

j∑
h=1

Nhi, τ + β

)
. (3.8)

Since this holds for all partitions of (0, τ ] and in view of the convolution property

(B.15) of the gamma distribution, (3.8) is also the conditional distribution of
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{Λi; i = 1, . . . , k}, given Fτ as defined in (3.2):

L (Λi; i = 1, . . . , k | Fτ ) =
k∏
i=1

Ga

(
Λi; αi +

j∑
h=1

Nhi, τ + β

)
.

By the extension theorem for measures, we obtain

L
(
ΛL | Fτ

)
= Ga

(
ΛL; (L,BL, α(·) +N((0, τ ], · )), τ + β

)
. (3.9)

D. The earthquake process II. The model and the results above can be

recast by use of (3.7). Assume that

L(ΛL(L),∆) = Ga
(
ΛL(L); α(L), β

)
Dir (∆; (L,BL, α)) (3.10)

and that

L(N |(ΛL(L),∆)) = Po
(
N ;
(
R+ × L× Z,BR+ ⊗ BL ⊗ BZ, µ× ΛL(L)∆× Φ

))
.(3.11)

Then

L
(
ΛL(L),∆ | Fτ

)
= Ga

(
ΛL(L); N((0, τ ]) + α(L), τ + β

)
×Dir (∆; (L,BL, N((0, τ ], ·) + α(·))) (3.12)

and

L (N |Λ,Fτ ) = Po
(
N ;µ× ΛL(L)∆× Φ

)
,

from where it follows that, for all T ×L×Z ∈ BR+ ⊗BL⊗BZ, with T := (τ, s],

33



E [N(T ,L,Z)|Fτ ] = E [E [N(T ,L,Z)|Λ,Fτ ] |Fτ ]

= E
[
µ(T )ΛL(L)∆(L)Φ(Z)|Fτ

]
= µ(T )E

[
ΛL(L)|Fτ

]
E [∆(L)|Fτ ] Φ(Z)

= µ(T ) · α(L) +N (τ)
τ + β

·∆τ (L) · Φ(Z),

where

∆τ (L) := E [∆(L)|Fτ ]

=
α(L) +N (τ,L)
α(L) +N (τ)

(3.13)

= p∆
τ ∆0(L) + (1− p∆

τ )∆N(τ)(L),

with p∆
τ := α(L)

α(L)+N(τ) , ∆0(L) := α(L)
α(L) , and ∆N(τ)(L) = N(τ,L)

N(τ) , is a Bayes

estimate of ∆(L). The expectation (3.13) follows readily upon recognising that

L (∆(L)|Fτ ) = Be (α(L) +N(τ,L), α(Lc) +N(τ,Lc)) .

Note that if α(L) is large, relative to N(τ), little weight is given to the obser-

vations. On the other hand, if α(L) is small, relative to N(τ), little weight is

given to the prior estimate ∆0. As α(L) tends to zero, the Bayes estimate ∆τ

converges to the empirical distribution function ∆N(τ).

In particular, we have

E [N(dτ, dl, dz)|Fτ− ] = dτ · α(L) +N (τ−)
τ + β

·∆τ−(dl) · Φ(dz).

Since the factor dτ annihilates the left limit, we can use the right-continuous

version of the intensity of the process and so
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E [N(dτ, dl, dz)|Fτ− ] = dτ · α(L) +N (τ)
τ + β

·∆τ (dl) · Φ(dz).
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Chapter 4

A stress release model of

the earthquake process

A distinctive feature of the Poisson type models proposed in the preceding chap-

ter is their time-independent nature. In this chapter we will consider a model

relating to the physical processes causing earthquakes, capturing the way in

which seismic activity, with its periods of quiescence and activation, depends on

the dynamical change of the underlying stress-field of a seismic region. The phys-

ical essence of this model is Reid’s elastic rebound theory of major earthquakes,

which postulates that elastic stress in a seismically active region accumulates

due to movement of tectonic plates and is released when the stress exceeds the

strength of the medium. The stress release model was first proposed by Vere-

Jones [42] to represent the deterministic build-up of stress within a region and

its stochastic release through earthquakes, further developing Knopoff’s [23]

stochastic Markov model for the occurrence of main-sequence earthquakes.

The model has been applied to historical earthquake catalogs from China

(Zheng and Vere-Jones [51] and Liu et al. [25]), Persia and Japan (Zheng and

Vere-Jones [52]), Taiwan (Bebbington and Harte [5]), and Italy (Rotondi and
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Varini [38]). In all these instances, the aim has been to model the ground process

{Ti}i∈N of occurrence times or the marked point process {(Ti, Zi)}i∈N. In this

chapter we include earthquake location as a mark component and consider a

stress release model of the marked point process {(Ti, Zi, Li)}i∈N.

4.1 The earthquake process

We operate in the marked point process framework introduced in Section 1.2

where, in the interest of simplicity of notation, we define

N(t,Z) := N(t,Z,L), and N(t) := N(t,Z,L).

4.2 The stress process

The general assumption is that the probabilities of earthquakes occurring within

the seismic region (or on the fault) in question are determined by an unobserved

state variable that increases linearly between earthquakes and decreases instan-

taneously when an event occurs. We assume that, at any time t > 0,

Xt := X0 + ρt− St,

where X0 is the initial stress level, represents the balance between the accumu-

lated tectonic stress in a region, building up linearly at a fixed rate ρ > 0, and

the total amount of stress released through earthquakes,

St :=
∞∑
i=1

1(0,t](Ti)s∗(Zi) =
∫ t

0

∫ ∞
z0

s∗(z)N(ds, dz),

where s∗(z) := 10
3
4 (z−z0) is (up to a constant of proportionality) the stress

released upon the occurrence of an earthquake with magnitude z, and z0 is an
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appropriate minimum magnitude threshold.

It is implicit in the formulation of the model that earthquakes lower the re-

gional stress and hence reduce the likelihood of immediately subsequent events,

limiting its validity to sequences of main events with magnitude above a thresh-

old z0, usually taken to be 5 or 6. This is not considered a major drawback since

it is the main events that carry the majority of tectonic information and are

of primary practical concern. The build up and release of stress from smaller

events follows a much more complex mechanism; they tend to occur in clusters

resulting primarily from perturbations of a near critical system where the stress

released does not simply dissipate, it moves down the fault and concentrates

in sites nearby, typically at the ends of the rupture, increasing the level in the

stress field. (See, e.g., Bebbington and Harte [5], and King et.al. [22]).

4.3 The earthquake process intensity

The stochastic mechanism governing the earthquake process and the stress pro-

cess must specify how the former is driven by the latter. Letting

{Ft = σ{N(s,Z,L), Xs; 0 < s ≤ t,Z ∈ BZ,L ∈ BL}}t>0

denote the filtration generated by the stress and counting processes, the stress

release model assumes that, using the usual suggestive notation,

E [N(dt, dz, dl)|Ft− ] := λ(Xt− , z, l)dt dz dl,

whereby at any time t when the current level of stress is Xt− , the intensity of

occurrence of an earthquake with mark in dz×dl is λ(Xt− , z, l)dzdl, independent

of the time and past history, but dependent on the current stress. The intensity

of occurrence of an earthquake is λ(Xt−) =
∫

L
∫ z(t)
z0

λ(Xt− , z, l)dzdl, where
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z(t) = z0 +
4
3

log10(Xt−) (4.1)

is the upper bound for the magnitude of an earthquake occurring at time t,

(obviously λ(Xt− , z, l) = 0 for z > z(t)). The intensity of occurrence of an

earthquake of magnitude z is

λ(Xt− , z) =
∫

L
λ(Xt− , z, l)dl,

and the intensity of occurrence of an earthquake is

λ(Xt−) =
∫ z(t)

z0

λ(Xt− , z)dz.

The ratio

f(z, l|Xt−) :=
λ(Xt− , z, l)
λ(Xt−)

is the joint density of the mark (Z,L) of an earthquake occurring at time t. We

assume the location of an earthquake is independent of the stress level triggering

it and, as a result, of its magnitude. In consequence,

f(z, l|Xt−) = φ(z|Xt−)δ(l), (4.2)

where φ is the density of Z and δ is the density of L, and

λ(Xt− , z, l) = λ(Xt−)φ(z|Xt−)δ(l). (4.3)

The intensity function (4.3) determines the probability structure of N uniquely

(see, e.g., Daley and Vere-Jones [7], Proposition 7.3.IV) and is the key not just

to the likelihood analysis, and hence to fitting and testing the model, but also

to simulation and prediction.

39



A. Specification of the intensity function. A commonly used parametric

model for the intensity λ(·) proposed by Zheng and Vere-Jones in [51] and [52]

specifies that

λ(Xt−) = exp(µ+ νXt−), (4.4)

where µ and ν are fixed parameters, the latter positive.

A problem arising is that the stress process X is not directly observable.

More specifically, the initial stress X0 plays a special role since it is an unknown

random variable generated by the stationary distribution FX of X (see discus-

sion in Section 4.4). If we should take account of this for maximum likelihood

estimation purposes, we would be loading an unbearable burden on ourselves.

Firstly, the likelihood would be the integral of the conditional likelihood, given

X0, with respect to the stationary distribution. Secondly, the stationary distri-

bution does not in general admit an explicit expression and would therefore ren-

der the likelihood maximization infeasible. To evade such problems we choose

to work in the conditional distribution, given the initial stress value, which

amounts to letting X0 be a parameter. A great gain in tractability against a

small sacrifice of information. Upon absorbing νX0 into µ and introducing new

parameters a = µ+ νX0, b = νρ, and c = 1
ρ , we arrive at the intensity function

λ(Xt−) = exp (a+ b [t− cSt− ]) . Thus, we will henceforth be working with the

parametric intensity function

λ(t) := λ(Xt−) = exp (a+ b [t− cSt− ]) , (4.5)

where θ = (a, b, c) is the parameter vector.
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B. Specification of the mark distribution. There is a vast number of

candidates for the magnitude and location distributions in (4.2) (we refer to

the discussion in Section 3.2 C). Considering the restriction imposed by the

upper bound z(t), we suggest a truncated exponential distribution with support

(z0, z(t)],

φ(z|t) := φ(z|Xt−) =
γ exp (−γ(z − z0))

1− exp (−γ (z(t)− z0))
.

Note that this is effectively a truncated version of the Gutenberg-Richter law

introduced in (3.3).

Our proposed model for the distribution of spatial location is the empirical

distribution of a sample of N(τ) observed locations L1, . . . , LN(τ),

∆N(τ)(L) :=
N(τ,Z,L)
N(τ)

, ∀L ∈ BL.

4.4 Stationarity of the stress process

A. Background. With the specification above, the pair (X,N) is a Markov

process, as is X taken alone, since it consists of a non-random drift and stochas-

tic jumps governed by an intensity that depends only on the current state of

X itself. The existence of a stationary distribution for the stress process then

becomes an issue.

Elastic stress in a seismically active region accumulates due to movement of

tectonic plates which are subject to forces working in different directions. Rela-

tive to the geological timescale, our short historical time horizon is infinitesimal

and so we assume that both the tectonic forces and the conditions of the earth’s

crust are constant. Thus, one should expect the stress process to possess a sta-

tionary distribution. It is in general not a simple matter to determine whether a

given process possesses a stationary distribution. For a brief account of the vast
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theory devoted to this problem we refer to Davis [8]. The ergodicity and exis-

tence of moments of the stress release model have been explored by Vere-Jones

( [47] and [43]), Zheng [50], and Last [24], who have considered conditions for

the existence of a stationary distribution and finiteness of its moments. Some

results have been obtained by Borovkov and Vere-Jones in [4] for a special stress

release model with exponential intensity. We shall not elaborate on this issue,

but point out that a stationary distribution does not always exist and that this

fact must be taken into account in our specification of the model parameters

and in their inferences.

B. Intuition behind the existence of a stationary regime. Intuitively,

the existence of a stationary regime suggests that if Xt becomes too small, the

rate of stress input ρ should exceed the mean rate of stress released due to the

occurrence of earthquakes, and similarly that for Xt large the reverse inequality

should hold. To verify that this is indeed the case, assume that X possesses a

stationary distribution, which we denote by FX . Let H be a continuously dif-

ferentiable function such that E[H(Xt)] =
∫∞

0
H(x)dFX(x) exists and is finite.

By the direct backward construction, conditioning on what happens in a small

time interval (0, h),

E [H(Xh)|X0 = x]

= (1− λ(x)h)H(x+ ρh) +
∫ zx

0

λ(x, z)h dz H(x− s∗(z)) + o(h)

= (1− λ(x)h)(H(x) +H ′(x)ρ h) +
∫ zx

0

λ(x, z)h dz H(x− s∗(z)) + o(h)

= H(x) +H ′(x)ρ h−
∫ zx

0

λ(x, z)[H(x)−H(x− s∗(z))] dz h+ o(h),

where zx denotes the maximum possible magnitude for an earthquake occurred

when the current level of stress is x. Integrating E [H(Xh)|X0 = x] with respect

to FX , using

42



∫ ∞
0

E [H(Xh)|X0 = x] dFX(x) = EE [H(Xh)|X0] = E[H(Xh)],

we obtain

E[H(Xh)] =
∫ ∞

0

H(x)dFX(x) +
∫ ∞

0

H ′(x)dFX(x) ρ h

−
∫ ∞

0

∫ zx

0

λ(x, z)[H(x)−H(x− s∗(z))]dz dFX(x)h+ o(h).

Since Xh is distributed according to FX , the term on the left cancels against

the first term on the right, and we arrive at

ρ

∫ ∞
0

H ′(x)dFX(x) =
∫ ∞

0

∫ zx

0

λ(x, z)[H(x)−H(x− s∗(z))] dz dFX(x).

This relationship holds for all H satisfying the stated conditions (H is contin-

uously differentiable and E[H(Xt)] exists and is finite) and, in principle, this

determines FX . It suffices to consider functions of the form H(x) = e−ηx since

they produce the Laplace transform,

F̂X(η) =
∫ ∞

0

e−ηxdFX(x),

which determines FX uniquely. We find

ρη

∫ ∞
0

e−ηxdFX(x) =
∫ ∞

0

∫ zx

0

λ(x, z)
[
eηs
∗(z) − 1

]
dz e−ηxdFX(x). (4.6)

One cannot hope to extract from this relationship an explicit expression for F̂X

(or FX) except possibly for very simple specifications of the intensity function

λ(x, z). Upon differentiating both sides of (4.6) with respect to η and setting
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η = 0, we obtain

ρ =
∫ ∞

0

∫ zx

0

s∗(z)λ(x, z) dz dFX(x),

from where it follows that, in the stationary state, the build-up of stress per time

unit equals the expected stress release per time unit, as expected on intuitive

grounds. Observe that, since the stress is not affected by the location of an

earthquake in our model, we have omitted the location in the above and worked

with λ(x, z) as the relevant intensity function.

4.5 Model estimation

A. Maximum likelihood estimation. Assume (a, b, c, γ) ∈ R4 is our

parameter vector. Taking our stand at time τ (the present time), the likelihood

of the observations (Ti, Zi), i = 1, . . . , N(τ), is (see Proposition 7.3.III in [7])

L (a, b, c, γ) =
N(τ)∏
i=1

λa,b,c (Ti)φc,γ (Zi|Ti) exp
(
−
∫ τ

0

λa,b,c(t)dt
)
, (4.7)

where the subscripts in λa,b,c(·) and φc,γ(·)1 mean that functions λ and φ are

specified up to a vector of parameters (a, b, c) and (c, γ), respectively. To the

extent that X0 is not directly estimable (it is confounded with a), the depen-

dence of φc,γ(z|t) on the latter (through (z(t)) renders the maximisation of the

likelihood impossible. To overcome this obstacle, consider the log likelihood

lnL (a, b, c, γ) =
N(τ)∑
i=1

ln (λa,b,c (Ti)φc,γ (Zi|Ti))−
∫ τ

0

λa,b,c(t)dt, (4.8)

1Note that the magnitude density φ depends on c = 1
ρ

through z(t), where z(t) = z0 +
4
3

log10(X0 + ρt− St− ).
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and the likelihoods

lnL1 (a, b, c) :=
N(τ)∑
i=1

lnλa,b,c (Ti)−
∫ τ

0

λa,b,c(t)dt, (4.9)

and

lnL2 (c, γ) :=
N(τ)∑
i=1

lnφc,γ (Zi|Ti) , (4.10)

where lnL = lnL1 + lnL2. Letting γ be a nuisance parameter, and treating the

marks as a set of given values, about whose structure or distribution we have

no information, lnL1 can be maximised to obtain the MLE of (a, b, c), given by

(â, b̂, ĉ) = arg max
(a,b,c)∈R3

lnL1(a, b, c).

Assuming the usual regularity conditions are satisfied, the MLE is consistent

(â, b̂, ĉ)
p→ (a, b, c), (4.11)

and asymptotically normally distributed

(â, b̂, ĉ) d→ N
(
(a, b, c), I−1(a, b, c)

)
, (4.12)

where I(a, b, c) is Fisher’s information matrix.

To obtain an estimate of γ we proceed as follows. From (4.1) we know that,

for all i = 1, . . . , N(τ), z(Ti) ≥ Zi. This constraint is tantamount to requiring

that, for all i, the stress released by an earthquake of magnitude Zi occurring

at time Ti, be less than or equal to the amount of stress available at time Ti,

this is, for all i, s(Zi) ≤ X0 + ρTi − STi− , from where it follows that
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X0 ≥ s(Zi)− ρTi + STi− , ∀i, (4.13)

and a lower bound for X0 is given by

X∗0 := max
i=1,...,N(τ)

{
0; s(Zi)− ρ∗Ti + STi−

}
,

where ρ∗ = 1
ĉ . Letting X∗Ti := X∗0 + ρ∗Ti − STi− , for all i, the upper limit z(Ti)

of the support of φ(Zi|Ti) can be calculated using (4.1) and so an estimator of

γ follows upon maximisation of the likelihood function

lnL∗(γ) :=
N(τ)∑
i=1

lnφγ (Zi|Ti) ,

with

γ̂ = arg max
γ∈R

lnL∗(γ).

B. Bayesian approach to estimation. The maximum likelikhood ap-

proach described above relies on letting γ be a nuisance parameter, treating the

marks as a set of given values, and estimating X∗0 to enable the maximum likeli-

hood estimation of γ. A Bayesian approach to estimation is an alternative with

the advantage that these restrictions are not required. Consider the original

specification

λ(t) = exp(µ+ ν[X0 + ρt− St− ])

and the model parameters (µ, ν, ρ, γ,X0). The joint posterior density of the

latter is given by
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π(ξ, ρ,X0|{Ti, Zi}) =
1
Kω

N(τ)∏
i=1

λ (Ti)φ (Zi|Ti) exp
(
−
∫ τ

0

λ(t)dt
)
π(ξ)π(ρ,X0),

(4.14)

where ξ = (µ, ν, γ), π(ξ) and π(ρ,X0) are prior densities, and Kω is the nor-

malizing constant. The parameters µ, ν, and γ, are assumed independent and

so

π(ξ) = π(µ)π(ν)π(γ).

On the contrary, ρ and X0 are related through the restriction (4.13). Define

Xρ := max
i=1,...,N(τ)

{
0; s(Zi)− ρTi + STi−

}

and let XU be a suitable upper bound for the stress level (under the assumption

of a stationary regime, the stress will not become too large before the occurrence

of an event and so one could take, e.g., XU = s(Z∗), the stress level correspond-

ing to a suitably large magnitude Z∗ for the seismic region in question). The

support for the density π(X0|ρ) is then (Xρ, XU ), and the prior of (ρ,X0) is

given by

π(ρ,X0) =
1
Kρ

π(X0)1(Xρ,XU )π(ρ),

where Kρ =
∫XU
Xρ

π(X0)dX0.

Conditional on X0, maximum likelihood estimates obtained on the basis of

(4.7) can be used to obtain the variability ranges of µ, ν, ρ, and γ, by varying

X0 along (0, XU ) (which is equivalent to assuming that π(X0) is uniform on

(0, XU )), thus enabling the specification of π(µ), π(ν), π(ρ), and π(γ), where the

support of the latter three should be positive. To the extent that the variability

ranges depend on the data through maximum likelikhood estimates, however,
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this procedure is not genuinely Bayesian.

Since the normalizing constant Kω in (4.14) cannot be obtained easily,

Markov Chain Monte Carlo methods can be used to generate a sample from

the posterior distribution, upon which parameter inferences can be based. A

Bayes estimate of (µ, ν, ρ, γ,X0), for instance, is given by (assuming quadratic

loss) the mean of the posterior distribution. We shall not elaborate further on

this aspect here or in the case study presented in Section 5.5, but refer to Ro-

tondi and Varini [38] who have followed this approach, and to Holden, Natvig

et al. [14], for further considerations in Bayesian modelling in the statistical

seismology context.

4.6 Simulation, prediction, and diagnostic pro-

cedures

A. Simulation. The specification of the stress release model in terms of an

intensity function has the major advantage that the latter can be used as the

basis of simulation procedures, which are a key component in evaluating the

numerical characteristics of the model and in the important task (in our case)

of model-based prediction of insurance losses.

The intuition behind simulation of space-time processes is as follows. The

first step is to simulate a constant rate Poisson process over a space by time

rectangle. The second step, referred to as thinning, involves working through

the points of the latter, one by one, and making a comparison between a uniform

random variable U on (0,M), where M is some upper bound for the intensity,

and the intensity λ(s). The point is selected if U ≤ λ(s)
M , otherwise rejected.

The main limitation of this method is the requirement that the intensity have

an upper bound, which is often not the case for extensions to more complex

history-dependent intensities. In such a case, if the process is to be simulated
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over a finite time interval (0, T ), the bound of the intensity should hold not

only over (0, T ), but also over all histories of the process up to time T . To

meet this difficulty, Ogata [29] suggested a sequential variant of the process

outlined above, requiring only a local boundedness condition on the intensity.

For a survey of the principal approaches to point process simulation and of

the theoretical principles on which these are based, we refer to Daley and Vere-

Jones [7], from where we extract a variant of Ogata’s thinning approach that can

be used for simulation of the stress release model we propose. This algorithm

is presented in Appendix C.

B. Prediction. Suppose we wish to predict some functional G of the process,

starting from time t and assuming the model is specified through its intensity.

Then the thinning method can be used, with the origin shifted to the current

time t, to simulate the behaviour of the process in [t, t+u) for any u > 0. From

the simulation, a value can be obtained for the quantity G of interest. Repeating

the simulation, with the same initial history, the empirical distribution of G can

then be constructed.

C. Diagnostic procedures. Apart from likelihood ratio and associated

AIC procedures, which can be applied to point process models much as to other

stochastic process models, testing and diagnostic techniques for point process

models have been slow to emerge. One of the first effective techniques was

developed by Ogata [30] for temporal point processes, and depends on a famous

theorem first clearly stated and proved by Papangelou [36]: under the random

time change t 7→ Λ(t), where Λ(t) :=
∫ t

0
λ(s)ds is the compensator of N , the

transformed process

Ñ(t) := N
(
Λ−1(t)

)
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is a Poisson process with unit rate. Ogata suggests to plot the cumulative

frequency of points in transformed time and examine for deviations.

Residuals can be constructed from the fact that, when the model is correctly

specified, the innovation or error process

I(t) := N(t)− Λ(t)

is a martingale, with E[I(t)|Ft] = 0 (see, e.g., Karr [21]). The adequacy of the

fitted model can then be assessed by inspecting whether the residuals

R(t) := N(t)−
∫ t

0

λ̂(s)ds,

where λ̂ represents the fitted intensity, are effectively close to zero. Various

plots and transformations of R(t) are useful diagnostics for a fitted point process

model. For further detail we refer to Baddeley, et al. [2] and Schoenberg [39].
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Chapter 5

Earthquake risk assessment

in insurance

In this chapter we address the problem of earthquake risk assessment from the

point of view of an insurer. The aim is not to address questions in the financial

mathematics and economics of risk selection, pricing, portfolio management,

and risk transfer strategies such as reinsurance and securitisation, but to enable

the latter through the characterisation of the foundation of any risk management

consideration in insurance: the distribution of losses over a period of time for a

portfolio of risks. On the actuarial mathematics front, we address the problem

of constructing simulation based and, where possible, analytical approximations

to the latter.

5.1 The aggregate loss distribution

Consider the t-portfolio and the aggregate loss in the time interval (t, u]

Xt,u =
∫

(t,u]

∫
L

∫
Z

∫
R+

rN(dτ, dl, dz, dr) (5.1)
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introduced in Section 1.2. The distribution P t,u(x) = P[Xt,u ≤ x] does not ad-

mit a closed form representation, and so any insight into its probability structure

goes hand-in-hand with simulation in all but the special cases when the earth-

quake process is Poissonian. In the latter case, analytical expressions for the

first three central moments of Xt,u can be obtained, which allow us to formulate

closed-form approximations of P t,u. We comment on this approach next, and

defer the discussion on simulation to Section 5.4.

5.2 Formulæ for selected moments of the ag-

gregate loss under the Poisson and Poisson-

gamma earthquake processes

Below we derive analytical expressions for the mean, variance, and third central

moment, given Ft, of Xt,u under the assumption that the earthquake process

is Poisson or Poisson-gamma. We assume that the t−portfolio remains fixed

throughout (t, u].

A. Moments under the Poisson model. Consider the Poisson model

defined in Section 3.2 and the moments of R =
∑Kt
k=1 Yk defined in Section 2.5.

We make the dependence of mR
j and mR

j on (l, z) explicit and define

mR
j (l) :=

∫ ∞
z0

∫
R+

rjdGt(r|l, z)Φ(dz), j = 1, 2, 3. (5.2)

The mean, variance, and third central moment measures of the Poisson random

measure N(dt, dl, dz, dr), are all equal to the Ft−intensity

dtλ∆(dl) Φ(dz) dGt(r|l, z).
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The first moment of Xt,u is

M t,u
1 := E [Xt,u| Ft]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

rE [N(dτ, dl, dz, dr)|Ft]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

rdGt(r|l, z)Φ(dz)λ∆(dl) dτ

= λ(u− t)
∫

L
mR

1 (l)∆(dl).

The variance of Xt,u is

M
t,u

2 := V [Xt,u| Ft]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

r2V [N(dτ, dl, dz, dr)|Ft]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

r2dGt(r|l, z)Φ(dz)λ∆(dl) dτ

= λ(u− t)
∫

L
mR

2 (l)∆(dl).

Finally, letting µ3 denote the third central moment operator, the third cen-

tral moment of Xt,u is

M
t,u

3 := µ3 [Xt,u|Ft]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

r3µ3 [N(dτ, dl, dz, dr)|Ft]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

r3dGt(r|l, z)Φ(dz)λ∆(dl) dτ

= λ(u− t)
∫

L
mR

3 (l)∆(dl).
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B. Moments under the Poisson-gamma model. Consider the Poisson-

gamma model defined in Section 3.3. Conditional on Λ, the random measure

N(dt, dl, dz, dr) is Poisson, with mean, variance, and third central moment,

given by the (random) intensity measure

Λ(dt, dl, dz, dr) = dtΛL(dl) Φ(dz) dGt(r|l, z).

A. The conditional moments. Consider the first three moments of Xt,u, con-

ditional on the gamma measure ΛL. The first conditional moment is

M1(ΛL) := E
[
Xt,u|ΛL

]
=

∫
(t,u]

∫
L

∫ ∞
z0

∫
R+

rE
[
N(dτ, dl, dz, dr)|ΛL

]
=

∫
(t,u]

∫
L

∫ ∞
z0

∫
R+

rdGt(r|l, z)Φ(dz)ΛL(dl)dτ

= (u− t)
∫

L
mR

1 (l)ΛL(dl).

The second conditional moment is

M2(ΛL) := E
[
X2
t,u|ΛL

]
= V

[
Xt,u|ΛL

]
+M2

1 (ΛL)

=
∫

(t,u]

∫
L

∫
Z

∫
V
[
rN(dτ, dl, dz, dr)|ΛL

]
+M2

1 (ΛL)

= (u− t)
∫

L

∫ ∞
z0

∫
R+

r2dGt(r|l, z)Φ(dz)ΛL(dl) +M2
1 (ΛL)

= (u− t)
∫

L
mR

2 (l)ΛL(dl) + (u− t)2

(∫
L
mR

1 (l)ΛL(dl)
)2

.

Finally, the third conditional moment is
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M3(ΛL) := E
[
X3
t,u|ΛL

]
= µ3

[
Xt,u|ΛL

]
+ 3V

[
Xt,u|ΛL

]
M1(ΛL) +M3

1 (ΛL), (5.3)

where the third central moment of Xt,u, given ΛL, is

µ3
[
Xt,u|ΛL

]
=

∫
(t,u]

∫
L

∫ ∞
z0

∫
R+

r3µ3[N(dτ, dl, dz, dr)|ΛL]

=
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

r3dGt(r|l, z)Φ(dz)ΛL(dl)dτ

= (u− t)
∫

L
mR

3 (l)ΛL(dl),

allowing (5.3) to be recast as

M3(ΛL) = (u− t)
∫

L
mR

3 (l)ΛL(dl)

+ 3(u− t)2

∫
L
mR

2 (l)ΛL(dl)
∫

L
mR

1 (l)ΛL(dl)

+ (u− t)3

(∫
L
mR

1 (l)ΛL(dl)
)3

.

B. The unconditional moments. The goal is now to obtain analytical expres-

sions for the moments of Xt,u, given Ft. The first moment is

55



M t,u
1 := E [Xt,u|Ft]

= E[E
[
Xt,u|ΛL]|Ft

]
= E[M1(ΛL)|Ft]

= (u− t)
∫

L
mR

1 (l)E[ΛL(dl)|Ft]

= (u− t)
∫

L
mR

1 (l)
αt(dl)
βt

,

where αt(dl) := α(dl) +N(t, dl, (z0,∞)) and βt := β +N(t) are the shape and

inverse scale parameters of the posterior gamma measure ΛL.

The second moment is

M t,u
2 := E[X2

t,u|Ft]

= E[E[X2
t,u|ΛL]|Ft]

= E[M2(ΛL)|Ft]

= (u− t)
∫

L
mR

2 (l)E[ΛL(dl)|Ft]

+ (u− t)2E

[(∫
L
mR

1 (l)ΛL(dl)
)2 ∣∣∣∣Ft

]
. (5.4)

To obtain a workable explicit expression for the expectation in (5.4), note that

E

[(∫
L
mR

1 (l)ΛL(dl)
)2 ∣∣∣∣Ft

]
= V

[∫
L
mR

1 (l)ΛL(dl)
∣∣∣∣Ft]

+
(

E
[∫

L
mR

1 (l)ΛL(dl)
∣∣∣∣Ft])2

=
∫

L
mR

1

2
(l)
αt(dl)
β2
t

+
(∫

L
mR

1 (l)
αt(dl)
βt

)2

,
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result which follows from the fact that the variance of the posterior gamma

measure ΛL is αt(·)
β2
t

, allowing us to recast the second moment as

M t,u
2 = (u− t)

∫
L
mR

2 (l)
αt(dl)
βt

+(u− t)2

[∫
L
mR

1

2
(l)
αt(dl)
β2
t

+
(∫

L
mR

1 (l)
αt(dl)
βt

)2
]
.

The third moment is

M t,u
3 := E

[
X3
t,u|Ft

]
= E[E

[
X3
t,u|ΛL]|Ft

]
= E

[
M3(ΛL)|Ft

]
.

This requires the evaluation of the expectations

E
[∫

L
mR

2 (l)ΛL(dl)
∫

L
mR

1 (l)ΛL(dl)
∣∣∣∣Ft] (5.5)

and

E

[(∫
L
mR

1 (l)ΛL(dl)
)3 ∣∣∣∣Ft

]
. (5.6)

Let mi =
∫

L m
R
i (l)ΛL(dl), i = 1, 2, 3. Then (5.5) can be recast as
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E [m2m1|Ft] =
∫
l

∫
l′
mR

2 (l)mR
1 (l′)E[ΛL(dl)ΛL(dl′)|Ft]

=
∫
l

∫
l′
mR

2 (l)mR
1 (l′)E[ΛL(dl)|Ft]E[ΛL(dl′)|Ft] (5.7)

+
∫
l

mR
2 (l)mR

1 (l)V[ΛL(dl)|Ft], (5.8)

a consequence of the fact that

E[ΛL(dl)ΛL(dl′)|Ft] = E[ΛL(dl)|Ft]E[ΛL(dl′)|Ft] + V[ΛL(dl)|Ft]δ{l,l′},

where δ is Kronecker’s delta. If dl∩dl′ = ∅, ΛL(dl) and ΛL(dl′) are independent,

and the double integral in (5.7) can be recast as

∫
L
mR

2 (l)
αt(dl)
βt

∫
L
mR

1 (l)
αt(dl)
βt

.

The variance of the posterior gamma measure ΛL is αt(·)
β2
t

, and so the integral in

(5.8) is

∫
L
mR

2 (l)mR
1 (l)

αt(dl)
β2
t

.

The third central moment of the posterior gamma measure ΛL is 2αt(·)
β3
t

, in

consequence, recalling that µ3 denotes the third central moment operator,

µ3
[
m1

∣∣Ft] =
∫

L
mR

1

3
(l)µ3

[
ΛL(dl)

∣∣Ft]
=

∫
L
mR

1

3
(l)

2αt(dl)
β3
t

.
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Finally, the identity

E[m3
1|Ft] = µ3[m1|Ft] + 3V[m1|Ft]E[m1|Ft] + E[m1|Ft]3

allows us to evaluate (5.6) and to recast the expression for M t,u
3 as

M t,u
3 = (u− t)E

[
m3

∣∣Ft]+ 3(u− t)2E
[
m2

∣∣Ft]E
[
m1

∣∣Ft]
+ 3(u− t)2

∫
L
mR

2 (l)mR
1 (l)

αt(dl)
β2
t

+ (u− t)3E[m3
1|Ft]. (5.9)

The variance and third central moment of Xt,u, given Ft, follow readily from

the non-central moments. The former is

M
t,u

2 = M t,u
2 −M t,u

1

2
,

and the latter is

M
t,u

3 = M t,u
3 − 3M

t,u

2 M t,u
1 −M t,u

1

3
.

5.3 Analytical approximations to the aggregate

loss distribution

There exist various approximations of the aggregate loss distribution in classical

risk theory (see e.g. Daykin et al. [9]). The most well-known ones are the nor-

mal approximation and its refinements (the normal power (NP) approximation

and the Edgeworth expansions), the gamma approximation and the Esscher

approximation. Chaubey et al. [6] have introduced the inverse Gaussian (IG)

and the gamma-IG approximation. The underlying principle is to approximate
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the aggregate loss distribution by a function that uses the mean, variance, co-

efficient of skewness, and for some approximations (Edgeworth and gamma-IG)

the coefficient of kurtosis of the aggregate loss.

Next, we give an overview of some approximations of the distribution P t,u

of Xt,u that can be constructed on the basis of the mean, variance, and third

central moment of Xt,u. Throughout, we work with the coefficient of skewness

defined by

γt,u :=
M

t,u

3

M
t,u

2

3
2
.

A. The NP approximation. The NP approximation extends the normal

approximation with a correction for the positive skewness of the aggregate loss.

Under the NP approximation,

P t,u(x) ≈ Φ

(√
9

γt,u2 +
6ẋ
γt,u

+ 1− 3
γt,u

)
, (5.10)

where ẋ := x−Mt,u
1

M
t,u
2

1
2

, and Φ is the standard normal distribution function.

B. The gamma approximation. Following a translation of x0 units from

the origin, three moments can be fitted. Under the gamma approximation,

P t,u(x) ≈
∫ x

x0

βα

Γ(α)
(s− x0)α−1e−β(s−x0) ds, (5.11)

where Γ(·) is the gamma function, α =
(

2
γt,u

)2

, β = 2

γt,uM
t,u
2

1
2

, and x0 =

M t,u
1 − 2M

t,u
2

1
2

γt,u .

C. The IG approximation. As in the case of the gamma approximation,

three moments can be fitted following a translation of x0 units from the origin.

Under the IG approximation,
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P t,u(x) ≈
∫ x

x0

α√
2πβ(s− x0)3

exp
(
− (α− β(s− x0))2

2β(s− x0)

)
ds, (5.12)

where α =
(

3
γt,u

)2

, β = 3

γt,uM
t,u
2

1
2

, and x0 = M t,u
1 − 3M

t,u
2

1
2

γt,u .

5.4 Simulation of the loss process

The loss process, which can be defined in a number of ways and can be seen as a

functional of a finite segment of the future of the earthquake process, rarely falls

into any general category for which analytic expressions are available. Since, on

the other hand, simulation of the earthquake process is relatively straightforward

once its intensity function is specified, prediction of the loss process goes hand-

in-hand with simulation.

Suppose that our aim is to predict a particular quantity Xt,u that can be

represented as a functional of the future of the earthquake process over (t, u].

So far we have considered Xt,u to be the aggregate loss for the t−portfolio over

(t, u], defined as in (5.1) or by the equivalent representation

Xt,u :=
N((t,u])∑
i=1

Kt∑
k=1

Yk,i. (5.13)

This need not be the case, however, and various considerations in portfolio

management in insurance will call for alternative specifications. The maximum

t−portfolio loss occurring from a single event over the period (t, u]

Xt,u = max
i∈{1,...,N((t,u])}

Kt∑
k=1

Yk,i, (5.14)

for instance, might be of interest, as might be the n-th and subsequent event

losses over (t, u]
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Xt,u =
N((t,u])∑
i=n

Kt∑
k=1

Yk,i, (5.15)

where Xt,u := 0 if N ((t, u]) < n.

The aim is to estimate the distribution of Xt,u. An outline of prediction

procedures under each of the proposed earthquake processes follows.

A. Simulation under the Poisson model. We simulate earthquake activ-

ity and resulting losses over the period (t, u], Nsim times, under the assumption

that the earthquake process is Poisson, as defined in Section 3.2. For each

q ∈ 1, ..., Nsim, we have a simulated loss xq, calculated on the basis of (5.13).

For alternative specifications of the loss, step 9 below must be modified accord-

ingly.

1. Set q = 1.

2. Simulate t1, t2, ..., ti according to a Poisson process with rate λ̂. If there

are no points in the simulated process and q ≤ Nsim, set xq = 0, q = q+1,

and repeat this step. If q > Nsim, go to step 12. Otherwise go to step 3.

3. Simulate the locations l1, l2, ..., li as a set of i.i.d random variables from the

empirical distribution ∆̂N(t). Simulation from the empirical distribution

of spatial locations is considered in Appendix C, Section C.1.

4. Simulate the magnitudes z1, z2, ..., zi as a set of i.i.d random variables

following the Gutenberg-Richter law (see (3.3)).

5. Set j = 1.

6. Set k = 1.

7. Simulate yk as a random variable from the distribution G(y|εk, ck). Set

k = k + 1.
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8. If k ≤ Kt, return to step 7.

9. Set rj =
∑
k yk. Set j = j + 1.

10. If j ≤ i, return to step 6.

11. Set xq =
∑
j rj and q = q + 1. If q ≤ Nsim, return to step 2.

12. The output consists of the empirical distribution of {x1, . . . , xNsim} and

key characteristics of the latter, such as its mean, standard deviation, and

selected quantiles.

B. Simulation under the Poisson-gamma model. We simulate earth-

quake activity and resulting losses over the period (t, u], Nsim times, under the

assumption that the earthquake process is Poisson-gamma, as defined in Sec-

tion 3.3. For each q ∈ 1, ..., Nsim, we have a simulated loss xq, calculated on the

basis of (5.13). For alternative specifications of the loss, step 10 below must be

modified accordingly.

1. Set q = 1.

2. Simulate λ as a random variable from the distribution

Ga (α(L) +N(t), β + t) .

This is done by setting λ =
∑
p λp, where {λp} is the output of the first

step of the algorithm described in Appendix C, Section C.2.

3. Simulate t1, t2, ..., ti according to a Poisson process with rate λ. If there

are no points in the simulated process and q ≤ Nsim, set xq = 0, q = q+1,

and return to step 2. If q > Nsim, go to step 13. Otherwise go to step 4.

4. Simulate the locations l1, l2, ..., li as a set of i.i.d random variables from

the Bayes estimate of the Dirichlet process defined in (3.13). Simulation
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from the latter is considered in Appendix C, Section C.2.

5. Simulate the magnitudes z1, z2, ..., zi as a set of i.i.d random variables

following the Gutenberg-Richter law (see (3.3)).

6. Set j = 1.

7. Set k = 1.

8. Simulate yk as a variate from the distribution G(y|εk, ck). Set k = k + 1.

9. If k ≤ Kt, return to step 8.

10. Set rj =
∑
k yk. Set j = j + 1.

11. If j ≤ i, return to step 7.

12. Set xq =
∑
j rj and q = q + 1. If q ≤ Nsim, return to step 3.

13. The output consists of the empirical distribution of {x1, . . . , xNsim} and

key characteristics of the latter, such as its mean, standard deviation, and

selected quantiles.

C. Simulation under the stress release model. We simulate earthquake

activity and resulting losses over the period (t, u], Nsim times, under the stress

release model of the earthquake process introduced in Chapter 4. For each

q ∈ 1, ..., Nsim, we have a simulated loss xq, calculated on the basis of (5.13). For

alternative specifications of the loss, step 7 below must be modified accordingly.

1. Set q = 1.

2. Simulate a realization of the earthquake process over (t, u] following the

thinning algorithm considered in Appendix C, Section C.3. If there are

no points in the simulated process and q ≤ Nsim, set xq = 0, q = q + 1,

and return to step 2. If q > Nsim, go to step 10. Otherwise go to step 3.
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3. Set j = 1.

4. Set k = 1.

5. Simulate yk as a variate from the distribution G(y|ε(lj , zj , ck), ck). Set

k = k + 1.

6. If k ≤ Kt, return to step 5.

7. Set rj =
∑
k yk. Set j = j + 1.

8. If j ≤ i, return to step 4.

9. Set xq =
∑
j rj and q = q + 1. If q ≤ Nsim, return to step 2.

10. The output consists of the empirical distribution of {x1, . . . , xNsim} and

key characteristics of the latter, such as its mean, standard deviation, and

selected quantiles.

5.5 Case study

In this section we illustrate the applicability of the proposed earthquake risk as-

sessment methodology through a case study involving the analysis of a subset of

an insurer’s residential homeowners book of business. Company XYZ is a large

personal lines insurer member of the California Earthquake Authority (CEA),

operating in a number of major lines of insurance, including auto, property,

life, and commercial. The business under analysis in this example is the resi-

dential homeowners property catastrophe business exposed to earthquake risk

in Southern California. Although a typical earthquake policy offered by XYZ

insures for loss against structural damage, damage to contents, and loss of use,

this example will consider losses arising from structural damage only.
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A. The loss records. Table D.1 in Appendix D shows a sample of XYZ’s

California residential homeowners property portfolio in force at the time of the

1994 Northridge earthquake, along with the recorded losses resulting from the

latter. Each of the loss records provided by XYZ includes a location identifier,

the address of the structure in question, which we do not disclose, except for

the city, its value, and the loss, if any. No information on the policies’ financial

structures (such as deductibles and limits) was provided and so we assume that

the value entry refers to the property’s value, not the sum insured, and that the

loss entry refers to structural loss and not the actual claim that has been lodged

against XYZ. The geocoding details for each structure have been retrieved on

the basis of its address and comprise the structure’s location in terms of latitude

and longitude, the local soil type, and geological conditions such as the local

soil’s proneness to liquefaction and landslide. Figures D.1, D.2, and D.3, in

Appendix D, display maps for California showing these characteristics.

There are a total of 211 records in the Northridge earthquake reference loss

experience provided by XYZ, out of which 109 report no loss. The remaining

102 policies covered structures for which a loss occurred. Figure 5.1 shows the

geographical distribution of the structures, along with their loss ratio, defined

as the ratio of loss to value. It is not surprising that the largest concentration

of high loss ratios correspond to structures in or around the Los Angeles area,

with close proximity to the location of the Northridge earthquake epicentre.

The geographic distribution of the available structures is suitably disperse, thus

providing observations of ε(l, z, c) over a wide range of energy values. Further-

more, in the model considered, with conditional independence between risks and

no time dependence on conditional individual loss distributions, the conditional

distribution can be estimated from losses generated by the same earthquake or

different earthquakes.
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Figure 5.1: Northridge earthquake reference loss experience for Company XYZ.

B. Modeling of the conditional loss distribution. The conditional

loss distribution G(y|ε, c) was introduced in Chapter 2. We first focus on the

modeling of the singularity of G at 0, and then proceed to model its continuous

component. Observe that the largest loss ratio recorded was 0.3001, and so there

is no data to support the modeling of a singularity at the value of the building.

This, however, might not be the case if the policies’ financial structures were to

be modelled.

Consider the random variable

Y 0 ∼ Ber(p)
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Conditional Loss Distribution
Logistic regression model of the singularity at zero

Parameter Estimate Std. Error z-stat p-value
α0 −3.33 0.48 −6.95 < 0.001
β0 8.12× 10−5 1.22× 10−5 6.64 < 0.001

Null deviance (D0) 292.28 on 210 degrees of freedom
Residual deviance (D1) 75.47 on 209 degrees of freedom
P[D0 −D1 > 216.80] < 0.001
AIC 79.47

Table 5.1: Estimation results for the conditional loss distribution.
Logistic regression model of the singularity at zero.

and the GLM

η(p) = α0 + β0ε+ γ0c,

defined in Section 2.3, paragraph A. In this example, c = (ST,LIQ,LL), where

ST denotes soil type, LIQ denotes the soil’s proneness to liquefaction, and

LL denotes the soil’s proneness to landslide1. Various GLM configurations,

comprising different covariate arrangements and link functions were investigated

and the best, in terms of parameter significance, likelihood ratio test, and AIC,

was found to be

η(p) = α0 + β0(ε ∗ ST ∗ LIQ), (5.16)

where * denotes the product operator and η the logit link. The model estimation

results, obtained using the glm() function in R, are summarised in Table 5.1.

To model the continuous component G(y|ε, c) of G, we considered the beta

1ST , LIQ, and LL are all dimensionless quantitities. ST ranges from 1 - 4, with 1 rep-
resenting rock and 4 representing soft soil; LIQ ranges from 1-5, with 1 representing very
low and 5 representing very high proneness to liquefaction; and LL ranges from 1-5, with 1
representing very low and 5 representing very high proneness to landslide. For further detail
please refer to figures D.1, D.2, and D.3, in Appendix D, where maps for California showing
these characteristics are displayed.
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Conditional Loss Distribution
Beta regression model of continuous component

Parameter Estimate Std. Error z-stat p-value
α −2.5698 0.1726 −14.89 < 0.001
β 3.7645× 10−6 4.048× 10−7 9.30 < 0.001
γ −0.1497 3.883× 10−2 −3.86 < 0.001
ϕ 35.4585 5.1233

Null deviance (D0) 210.85 on 101 degrees of freedom
Residual deviance (D1) 67.79 on 99 degrees of freedom
P[D0 −D1 > 143.05] < 0.001
AIC -409.73
Pseudo-R2 0.49

Table 5.2: Estimation results for the conditional loss distribution.
Beta regression model of the continuous component.

regression model introduced in Section 2.4, paragraph C, whereby

Y (0,v) ∼ Be (α′(ε, c), β′(ε, c)) ,

and

η(µ) = α+ βε+ γc,

where µ = E[Y (0,v)]. As before, we assume c = (ST,LIQ,LL). The best model

configuration, in terms of parameter significance, likelihood ratio test, AIC, and

pseudo-R2 (the sample correlation coefficient between η(µ̂i) and η(ui), with µ̂i

and ui the fitted and observed loss ratios, respectively), was found to be

η(µ) = α+ β(ε ∗ ST ∗ LIQ) + γ(ST ∗ LIQ), (5.17)

with η the logit link. The model estimation results, obtained using function

betareg() in package betareg in R, are summarised in Table 5.2.
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Figure 5.2: Southern California seismicity from 1932 - 2009. Events with mag-
nitude greater than 4.

Note that models (5.16) and (5.17) are non-hierarchical in the sense that

they include interactions without the correponding main effects and lower-order

interactions.

C. Modeling of the earthquake process. For the purpose of this illustra-

tion we have used the earthquake catalog compiled by the Southern California

Earthquake Center (SCEC), comprising earthquakes occurred over the time

span 1 January 1932 - 22 February 20092, limited to the region 30 − 36◦ N,
2Generally speaking, historical consistency in event detection and measure-

ment requires that only a limited amount of years’ worth of data be used.
For a brief summary of the various ‘eras’ in the SCEC catalog please see
http://www.data.scec.org/catalog search/date mag loc.php. Musmeci and Vere-
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115 − 120◦ W, and with magnitude greater than 4. There are a total of 1740

such events, shown in Figure 5.2.

The estimated annual rate rate of occurrence is

λ̂ =
1740

77.1452
= 22.55,

and maximum likelihood estimation of γ in the exponential density

φ(z) = γ exp (−γ(z − 4)) , z > 4

results in the estimate γ̂ = 2.30 (with standard error = 0.055). The boundaries

of the earthquake location space

L = [−2641,−2256]× [−4897, 4442]× [3313, 3743]

were obtained upon conversion of the spherical coordinates in the earthquake

catalog into Cartesian coordinates (see Section 2.2, paragraph C.). The space L

was divided into 602, 602 grid cubes, each corresponding to a volume of 125 km3.

Simulation of the empirical distribution of earthquake location (in the case of

the Poisson and stress release models) and of the Dirichlet process (in the case

of the Poisson-gamma model) was performed on the basis of this grid, as was the

computation of the analytical expressions of the moments of Xt,u formulated in

Section 5.2.

In the case of the Poisson-gamma model, our baseline results are under the

assumption of a total prior mass α(L) = 0.5 placed uniformly across the grid

cubes, with the inverse-scale parameter of the gamma measure β set at 0.02217.

The uniformity assumption corresponds to a non-informative Dirichlet prior

Jones [27] point out that in such circumstances modelling is clearly more of an art
than a science. However, the historical catalogues provide a unique, and in most cases the
only, record of regional earthquake activity over periods of time of the order of hundreds of
years.

71



Figure 5.3: Southern California seismicity from 1932 - 2009. Events with mag-
nitude greater than 5.

specification, while the prior α mass is arbitrarily set to 0.5 (which, relative to

the 1740 observed events, is negligible) to give virtually all of the weight to the

empirical distribution function in the Bayes estimate of the Dirichlet process

(see 3.13).

For the implementation of the stress release model we set z0 = 5. There were

a total of 171 events with magnitude 5 or greater occurring in the time span

and region under consideration, shown in Figure 5.3. The intensity function

λ(t) = exp (a+ b [t− cSt− ]) ,
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Stress Release Model

Intensity function
Parameter Estimate Std. Error

a -4.9975 07.5× 10−2

b 1.7911 ×10−5 3.6046× 10−10

c 54.18 0.2944

Magnitude distribution
Parameter Estimate Std. Error

γ 2.0574 0.1721
Lower bound for X0 (X∗0 ) 195.5118

Table 5.3: Maximum likelihood estimation results for the intensity
function and magnitude distribution of the stress release model of
earthquake occurrence in Southern California.

and the magnitude distribution

φ(z|t) =
γ exp (−γ(z − 5))

1− exp (−γ (z(t)− 5))
, 5 < z ≤ z(t),

were estimated following the maximum likelihood procedure set forth in Section

4.5, paragraph A. The parameter estimates and standard errors are shown in

Table 5.3, and the fitted intensity function is shown in Figure 5.4.

The goodness of fit of the model was assessed through residual analysis. The

random time change theorem introduced in Section 4.6, paragraph C, suggests

that, if the compensator used for the random time change

ti 7→ Λ(ti) =
∫ ti

0

λ(t)dt

is that of the true model, then the transformed process will be unit-rate Poisson,

whereas if the wrong compensator is used, the transformed process will show

some systematic departure from the unit-rate Poisson process. Figure 5.5 shows

a plot of the cumulative number of events versus the transformed times
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Figure 5.4: Fitted intensity for the stress release model and historical seismicity
in Southern California (1932 - 2009).

ti 7→ Λ̂(ti) =
∫ ti

0

λ̂(t)dt, i = 1, . . . , 171,

where no systematic departure from the unit-rate Poisson assumption is evident,

suggesting that the intensity function λ(t) has been specified correctly. This is

further supported by the structure of the residuals

R(ti) := N(ti)−
∫ ti

0

λ̂(t)dt, i = 1, · · · , 171,

shown in Figure 5.6.

D. Estimation of the aggregate loss distribution. The reference ex-

posure provided by XYZ is a subset of its Southern California residential lines

portfolio in force on 1 March 2009, an excerpt of which is shown in Table D.2in

Appendix D. It comprises policies covering 83 distinct locations with a com-
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Figure 5.5: Residual analysis of the stress release model. Cumulative number of
events versus the transformed times ti 7→ Λ̂(ti).

bined value of 615, 704, 000 USD. We assumed this to be the t-portfolio, where

we set t equal to 00:00 hours on 1 March 2009, and Kt = 83.

We set u equal to 23:59 on 28 February 2010 and the distribution of the

aggregate loss

Xt,u =
N((t,u])∑
i=1

Kt∑
k=1

Yk,i =
∫

(t,u]

∫
L

∫ ∞
z0

∫
R+

rN(dτ, dl, dz, dr)

was estimated on the basis of simulation of 10,000 (t, u] periods of earthquake

activity in Southern California, in accordance with the simulation algorithms for

the Poisson, Poisson-gamma, and stress release models, introduced in Section

5.4. We also calculated the mean, variance, and third central moment of Xt,u

under the Poisson and Poisson-gamma models, in accordance with the formulæ

derived in Section 5.2. Our findings are summarised in Table 5.4, where we show

selected quantiles and moments of the distribution P t,u of Xt,u. The exceedance
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Figure 5.6: Residual analysis of the stress release model. Events versus residuals.

probability refers to 1− P t,u(x) and so, for example, under the Poisson model,

1− P t,u(46.69) = 0.005.

The tail of the simulated distribution for each of the different models is shown

in Figure 5.7, and the various analytical approximations to the latter are shown

in figures 5.12, 5.13, and 5.14 (for the stress release model, the approximations

are calculated on the basis of simulated moments).

E. Differences in modeled results. The differences in the estimated

losses under the Poisson, Poisson-gamma, and stress release models, are seem-

ingly moderate. We shall hypothesize as to the reasons behind the following

conspicuous features of the modeled results (we refer to Table 5.4):

1. Estimated coefficient of skewness of Xt,u under the Poisson-gamma model,

which is the largest, followed by its counterparts under the Poisson and
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Southern California Residential Portfolio
Distribution of the aggregate loss
(01 March 2009 - 28 February 2010)

Stress release Poisson Poisson-gamma
Exceedance probability Loss (USD million)

0.05 8.38 7.77 7.53
0.02 19.43 17.12 14.70
0.01 35.16 32.58 23.78

0.005 57.39 46.69 48.97
0.004 66.27 53.14 53.59
0.002 79.82 73.51 79.12
0.001 96.20 86.51 95.00

0.0005 113.02 117.43 132.46

Probability of no loss 0.69 0.45 0.47
Mean (USD million) 1.87 1.85† 1.76†

Std. dev. (USD million) 7.57 6.90† 7.05†

Coefficient of skewness 8.84 10.20† 11.85†

† On the basis of analytical evaluation of moments

Table 5.4: Distribution of the aggregate loss over the period 01 March 2009 - 28
February 2010. Except where indicated otherwise, all figures are estimates on
the basis of 10,000 simulated (t, u] periods.

stress release models, in that order.

2. Larger estimated mean and standard deviation under the stress release

model. More generally, evidence of first order stochastic dominance of

the aggregate loss distribution under the stress release model (over the

counterparts under the Poisson and Poisson-gamma models) up to the c.

100 million USD level, after which the stochastic dominance is reverted.

The Poisson and Poisson-gamma models share the same magnitude dis-

tribution, and so the probability of observing very large aggregate losses un-

der the Poisson-gamma model is likely to be driven by a combination of the

stochastic frequency and Dirichlet-driven earthquake location components of

the model. To the extent that the prior mass α(L) = 0.5 is negligible (relative

to N(t) = 1740), the Bayes estimate of the Dirichlet process is almost entirely
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Figure 5.7: Exceedance probability (1 − P t,u(x)) curves estimated on the basis
of 10,000 simulated (t, u] periods for the Poisson, Poisson-gamma, and stress
release models of the earthquake process.

determined by the empirical distribution of locations, and so we think it is

reasonable to hypothesize that the differences are mainly due to the increased

variability introduced by the presence of a stochastic intensity measure. In turn,

the differences are seemingly mild, which would suggest that there is no strong

evidence of spatial clustering (feature which would be uncovered by the gamma

intensity measure). However, this is likely to be influenced by the relatively

concentrated t-portfolio (see Figure 5.8) and so this should not be regarded as

conclusive evidence.

We tested the sensitivity of the estimated aggregate loss distribution to

changes in the specification of α(L). In the first sensitivity analysis we placed a

prior mass α(L) = 1
2N(t) distributed uniformly across the 602, 602 grid cubes.

The impact of the prior distribution, which has a weight of 1
3 on the Bayes esti-

mate, is evident in the estimated losses shown in Figure 5.9: prior mass is being
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Figure 5.8: Southern California reference exposure for Company XYZ. Portfolio
in force on 01 March 2009.

wasted in spatial regions where there is no empirical evidence of earthquake ac-

tivity, and one could argue that knowledge of the location of earthquake faults

should be used to inform the specification of the prior α measure; to the extent

that this knowledge is not being incorporated in the specification of the prior,

the latter is misspecified. In our second sensitivity analysis, we constructed a

prior α measure as follows. We assumed the observed faults to dip vertically 13

km (twice the average earthquake depth, assuming fault rupture occurs half-way

through its vertical length) under the surface of the earth, and placed a prior

mass α(L) = N(t) uniformly across the grid cells intersecting the fault planes.
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Figure 5.9: Analysis of sensitivity of the estimated aggregate loss distribution to
the specification of the prior α measure under the Poisson-gamma model. Case
when, a priori, α(L) = 1

2N(t) is uniformly distributed.

Having α(L) = N(t) results in the Bayes estimate of the Dirichlet process being

a mixture of the prior and empirical distributions of location, in equal parts.

The resulting estimated aggregate loss distribution under this assumption is

shown in Figure 5.10, along with the baseline estimate. To the extent that the

prior α measure was specified on the basis of observed fault locations, there is

a closer agreement between both estimates: the prior α measure (and result-

ing normed probability measure α(·)
α(L) ) is already largely defined by empirical

evidence.

We now turn our attention to the second conspicuous feature referred to

above. The stress release and Poisson models share exactly the same distribu-

tion of spatial location, and so, most likely, the differences in the loss estimates

are due to the assumptions on the frequency and magnitude components of the

models. The estimated mean annual number of occurrences under the stress

release model (on the basis of 10,000 simulated (t, u] periods) is 2.48, with a

95% C.I. given by (2.45, 2.51), and so there is strong statistical evidence to

80



0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Aggregate annual loss (USD Millions)

E
xc

ee
da

nc
e 

pr
ob

ab
ili

ty

Poisson−gamma (baseline)
Poisson−gamma (sensitivity case 2)

Figure 5.10: Analysis of sensitivity of the estimated aggregate loss distribution
to the specification of the prior α measure under the Poisson-gamma model.
Case when, a priori, α(L) = N(t) is uniformly distributed on fault planes.

suggest an increased frequency of event occurrence over the Poisson or Poisson-

gamma models (the average annual rate of events with magnitude 5 or above

is 171
77.14 = 2.22). This in turn helps to explain the larger estimated mean, stan-

dard deviation and, in general, larger quantiles of loss up to the c.100 million

USD mark: relative to the Poisson or Poisson-gamma models, there is an in-

creased frequency of ‘low-magnitude’ events which prevent the underlying stress

level becoming too large and thus potentially triggering a very large magnitude

event that would result in a very large portfolio loss. Under the Poisson and

Poisson-gamma models, on the other hand, there are no restrictions on the size

(magnitude) of events, as the latter is independent of the current time or past

history of the process. To get an insight into the sensitivity of this condition

to the specification of the lower bound X∗0 , we simulated event occurrence un-

der the stress release model, and the resulting aggregate losses, under three

different assumptions for the value of the initial level of stress. We considered

X0 = 500, 750, and 1000, corresponding to levels of stress required to make
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Figure 5.11: Sensitivity scenarios under the stress release model for the distri-
bution of the aggregate loss over the period 01 March 2009 - 28 February 2010.

the occurrence of events of magnitude 8.6, 8.83, and 9, respectively, possible.

The results are shown in Figure 5.11 and Table 5.5. Under the most extreme

scenario, the ‘restriction’ on very large magnitude event occurrence disappears

as a result of the larger value of X0.

The baseline estimated losses would suggest that, for underwriting purposes

(e.g. premium rating and management of accumulations), the stress release

model produces more conservative loss estimates, while for reinsurance man-

agement purposes, the Poisson and Poisson-gamma models would be more con-

servative. This would only be valid for the one year period (t, u]. Should the

time span considered be larger than a year (as is typically the case for capi-

tal management considerations such as securitisation of earthquake risk), the

distribution of losses predicted by the stress release model may be completely

different. Furthermore, this would in general have to be considered in relation
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Southern California Residential Portfolio
Distribution of the aggregate loss
(01 March 2009 - 28 February 2010)

SRM scenario
Baseline X0 = 500 X0 = 750 X0 = 1000

Exceedance probability Loss (USD million)
0.05 8.38 8.67 9.79 9.15
0.02 19.43 19.10 23.37 21.84
0.01 35.16 33.90 41.20 44.07

0.005 57.39 53.62 66.31 67.92
0.004 66.27 62.34 70.31 77.16
0.002 79.82 87.21 91.84 106.03
0.001 96.20 108.67 117.56 132.54

0.0005 113.02 123.07 132.12 156.89

Table 5.5: Sensitivity scenarios under the stress release model for the distribu-
tion of the aggregate loss over the period 01 March 2009 - 28 February 2010.
All figures are estimates on the basis of 10,000 simulated (t, u] periods.

to the policies’ financial structures in place, such as deductibles and limits, as

the latter may have a mitigating effect (to the insurer) on large losses.

F. On the accuracy of the analytical approximations of the aggregate

loss distribution. The NP approximation is known (see e.g. Daykin et

al. [9]) to be a fairly accurate approximation if 0 ≤ γt,u ≤ 1, with accuracy

decreasing as γt,u increases. It is thus not surprising to see that the NP approx-

imation of the empirical distribution of simulated losses is very poor in all three

cases, with the approximation on the basis of the simulated mean, variance, and

third conditional moment of Xt,u under the stress release model being the better

of the three owing to the low value (relative to the counterparts under the Pois-

son and Poisson-gamma models) of the coefficient of skewness (see Figure 5.14).

Under the Poisson earthquake process, both the gamma and IG approximations

are surprisingly accurate (see Figure 5.12), and this is still the case under the

Poisson-gamma model (see Figure 5.13), if to a lesser degree of accuracy owing

to the larger coefficient of skewness of Xt,u relative to that under the Poisson
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model. The accuracy of the gamma and IG approximations is further confirmed

under the stress release earthquake process (see Figure 5.14). In the latter case,

however, the estimates of the moments on which the approximations are based

are simulation based, and hence the potential gains in computational expense

that would make the use of approximations attractive in the first place are not

as apparent. One could argue, though, that the computational expense of simu-

lation to obtain a required amount of precision for loss estimates corresponding

to very low exceedance probabilities (i.e. far away in the tail of the distribution)

could be reduced.
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Figure 5.12: Analytical approximations of P t,u under the Poisson model of earth-
quake occurrence, on the basis of M t,u
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Figure 5.13: Analytical approximations of P t,u under the Poisson-gamma model
of earthquake occurrence, on the basis of M t,u
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Figure 5.14: Analytical approximations of P t,u under the stress release model of
earthquake occurrence, on the basis of simulated moments.
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Appendix A

Notable models in

statistical seismology

A.1 The Hawkes process and the ETAS model

In the early 1970’s Hawkes [13] introduced a family of what he referred to as self

exciting models, which became pioneering examples of the conditional intensity

methodology and models of general utility for the description of earthquake

catalogs. The conditional intensity takes the form

λ(t) = ν +
∫ t

0

g(t− s)N(ds), (A.1)

where ν > 0 is a background immmigration term and g(u) > 0 represents the

contribution to the conditional intensity after a lag of length u, with
∫∞

0
g(u)du <

1. This construction captures earthquake clustering, one of the most pervasive

features of catalog data: any event can be thought of as the parent of a family

of later events, referred to as its offspring, which ultimately die out but are

replenished by the immigration component ν. In practice, g(u) is usually given
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a simple parametric form1. Ogata [30] used the Pareto-type specification

g(t− s) =
K0

(t− s+ c)p
eα(z−z0), (A.2)

by analogy with Omori’s law2. In this model, known as the Epidemic Type

Aftershock-Sequences (ETAS) model, the conditional intensity function takes

the form

λ(t) = ν +
∫ t

0

∫ ∞
z0

K0

(t− s+ c)p
eα(z−z0)N(ds, dz), (A.3)

where Z represents magnitude, z0 is a minimum magnitude threshold and

(ν,K0, c, α, p) is a parameter vector representing certain characteristics of seis-

mic activity in the region under study; α and p, for instance, characterize the

temporal pattern of seismicity. The value p indicates the decay rate of after-

shocks, and the α value measures an efficiency of magnitude of an earthquake

in generating its offspring, or aftershocks.

The ETAS model has been extended to include spatial location and magni-

tude as mark components. For a Borel rectangle K = L×Z of spatial locations

and magnitudes, the time-space-magnitude intensity takes the form

λ(t, l, z) = φ(z)
[
ν(l) +

∫ t

0

∫
L

∫
Z
g(t− s, l − l′, z)N(ds, dl′, dz)

]
, (A.4)

where L ∈ L ⊆ R2 represents the epicentre, ν(l) is a spatially distributed

immigration term and g(u, l, z) is now a space-time kernel. Musmeci and Vere-

1Vere-Jones and Ozaki [46], and Ogata et.al. [34], considered specifying g(u) as a finite
sum of Laguerre polynomials but these choices yielded poor-fitting models.

2The frequency of aftershocks is well represented by the modified Omori formula

n(t) = K(t+ c)−p,

where t is the lapse time from the occurrence of the mainshock and K depends on the mag-
nitude of the mainshock and the lower bound of the magnitude of aftershocks counted, while
p is known to be independent of these. See e.g. Ogata [32].
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Jones [27] suggested a Gaussian diffusion-type kernel

g(u, l, z) = Aeαze−βu
1

2πσl(1)σl(2)u
exp

{
− 1

2u

(
l(1)2

σ2
l(1)

+
l(2)2

σ2
l(2)

)}
, (A.5)

where l = (l(1), l(2)) represents an earthquake’s epicentre, A is an overall con-

stant, eαz describes the dependence of the risk on the magnitude of the exciting

event, e−βu is an exponential damping factor (energy absorbption) and the dif-

fusion constants σl(1) ,σl(2) control the rates of difussion of risk along the l(1)

and l(2) directions, respectively. Rathbun [37] applied the standard bivariate

Gaussian kernel to California earthquakes with Z ≥ 5 between 1932 and 1992.

Kagan [17] suggested other parametric forms based on investigations of the

second-order moment features in time and space. Kagan and Jackson [18] took

the space-time-magnitude ETAS model one step further by incorporating not

only the location but also the orientation of the fault movement. Ogata’s most

recent studies (see e.g. [33] and [35] ) use a version with spatially dependent-

dependent parameters, coupled with a penalized-likelihood approach, to give

optimal spatial smoothing.

Vere-Jones [44] points out that the disadvantage of these models, from the

earthquake prediction point of view, is that the models have little predictive

power. To the extent that g(·) is typically a decreasing function, the highest risk

is immediately following a past event. As the local activity increases in a region,

so does the risk of further events. This is not to be taken as a criticism of the self-

exciting models, it is either a fact of life or a reason to look outside the catalog.

Ogata ( [31], [32]) further points out that as the number of data increases or

as threshold magnitudes decrease, it becomes difficult for a single ETAS model

to represent the seismicity throughout the considered region or volume. This is

mainly owing to the fact that significantly different seismicity patterns often take
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place, even in neighbouring regions. Conseguently, the ETAS model frequently

fits poorly to data with a large number of small events of microearthquakes.

It is also possible that the real seismicity for a region may include forms of

quiescence and activation not reproduced by the ETAS models, which do not

fully capture the way in which seismic activity depends on the dynamical change

of the underlying stress-field of an area.

A.2 Stress release models

The first stress release model was proposed by Vere-Jones [42] to represent the

deterministic build-up of stress within a region and its stochastic release through

earthquakes. A version of this model is introduced in Chapter 4, to which we

refer for background. The general assumption is that the probabilities of events

occurring within the region are determined by an unobserved state variable. In

the versions of the model that have been developed so far it is assumed that this

state variable can be represented by a scalar quantity Xt which increases linearly

between events and decreases instantaneously when events occur. Whilst it is

not necessary that this quantity be interpreted literally as stress, this is the

general character. At any time t > 0 and for an initial stress level X0,

Xt = X0 + ρt− St (A.6)

represents the balance between the accumulated tectonic stress in a region,

building up linearly at a fixed rate ρ, and the total amount of stress released

through earthquakes,

St =
∫ t

0

∫ ∞
z0

s∗(z)N(ds, dz). (A.7)

Under the stress release model, at any time t when the current level of stress is
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Xt− , the intensity of occurrence of an earthquake with magnitude z is

λ(t, z) = Ψ(Xt−)φ(z|Xt−), (A.8)

where Ψ(x) is a nondecreasing function. Letting Ψ(x) = K, for a constant K,

would result in a Poisson model. Assuming a singularity

Ψ(x) =

 0 x ≤ xc

∞ x ≥ xc,
(A.9)

where xc is the fixed crustal strength of the region, results in a time-predictable

model (see e.g. Vere-Jones [44] and references therein for further detail).

The time-predictable model is a version of the characteristic earthquake

model which assumes that every major fault or fault-segment is characterised

by earthquakes of a fixed size and frequency. The ideal characteristic earth-

quake sequence would have identical magnitudes, identical fault mechanisms

and identical time intervals between successive events. The variability intro-

duced through uncertainties of measurement and the physical process itself has

led to the sequence of inter-event times being modelled either as a renewal pro-

cess, or as a modified renewal process (the time-predictable model) in which

the time to the next event is taken to be proportional to the size (in terms of

observed stress drop) of the preceding event, the justification being that the

time interval represents the time taken to build up the stress along the fault

segment to the critical value needed to rupture that segment again.

The stress release model has been used to identify statistically distinct re-

gions, in the sense that each is best fitted by different stress release models.

In [51] Zheng and Vere-Jones divided North China into four seismic belts and

noted evidence of clustering which relates to some form of action at a distance,

i.e. stress transfer and interaction. This motivated a modification of the stress
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release model by Liu, Vere-Jones et.al. [25] and Bebbington and Harte [5].

In the linked stress release model a finite number of disjoint spatial regions

follow a stress release model, with the additional possibility of positive or nega-

tive stress transfers between regions at the time of occurrence of an earthquake.

The stress in each region i is represented by the process

X
(i)
t = X

(i)
0 + ρit− S(i)

t , (A.10)

where

Si(t) =
∑
j

∫ t

0

∫ ∞
z0

θijs
∗(z)N(ds, dz). (A.11)

The integrand in (A.11) corresponds to stress drops resulting from earthquakes

originating in region j, weighted by the stress transfer coefficient θij measuring

the fixed proportion of stress drop, initiated in region j, transferred to region

i. The θij form a matrix of stress transfer coefficients with θii = 1 and with

off-diagonal elements either positive or negative, reflecting damping or excita-

tion, respectively. The conditional intensity in each region is of the form (A.8),

where each region has the exponential risk function Ψ(xi) = exp(µi,+νixi),

with differing parameters indicating that the strength and the tectonic loading

rate can differ in each seismic region.
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Appendix B

The Poisson-gamma and

Dirichlet processes

In this appendix a number of representation results for a finite collection of inde-

pendent Poisson variates and for the Dirichlet distribution are derived. Further,

conjugate priors to the Poisson and multinomial distributions are derived. Much

of the material presented here is standard. For further detail please refer to e.g.

the treatises by Johnson, Kotz and Balakrishnan, [15] and [16].

B.1 The univariate Poisson distribution

The random variable N is said to be Poisson distributed with frequency param-

eter τ λ > 0, written

L(N) = Po(N ; τλ),

if its density with respect to the counting measure on the integers is

P[N = n] =
(τ λ)n

n!
e−τ λ, (B.1)
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n = 0, 1, . . . The parameter τ > 0, which might appear redundant, represents

operational time and λ represents the frequency of events per time unit.

The Laplace transform of N is

LN (s) =
∞∑
n=1

e−sn
(τ λ)n

n!
e− τ λ = e−τ λ (1−e−s). (B.2)

B.2 The multinomial distribution

A random vector (N1, . . . , Nk) is said to be multinomially distributed, written

L(N1, . . . , Nk) = M(N1, . . . , Nk; n, δ1, . . . , δk),

if its density with respect to k-dimensional counting measure on the integers is

P[Ni = ni , i = 1, . . . , k] =
n!

n1! · · ·nk!

k∏
i=1

δnii , (B.3)

ni ∈ {0, . . . , n}, i = 1, . . . , k,
∑k
i=1 ni = n, where the parameters are as follows:

n is integer, δi > 0, i = 1, . . . , k, and
∑k
i=1 δi = 1.

B.3 The distribution of multiple independent Pois-

son variates

Let (N1, . . . , Nk) have independent Poisson entries,

L(N1, . . . , Nk) =
k∏
i=1

Po(Ni; τ λi).

Its joint distribution is
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P [Ni = ni, i = 1, . . . , k] =
k∏
i=1

(τ λi)ni

ni!
e−τ λi . (B.4)

Introduce

N :=
k∑
i=1

Ni , λ :=
k∑
i=1

λi.

By the independence assumption and (B.2),

LN (s) =
k∏
i=1

e−τ λi (1−e−s) = e−τ λ (1−e−s),

hence, by (B.2),

L(N) = Po (N ; τ λ) . (B.5)

It follows that the Poisson distribution is infinitely divisible.

Set n =
∑k
i=1 ni, and rewrite (B.4) as

P [N = n, Ni = ni, i = 1, . . . , k] =
(τ λ)n

n!
e−τ λ

n!
n1! · · ·nk!

k∏
i=1

(
λi
λ

)ni
.

Comparing this with (B.1) and (B.3), we rediscover (B.5) and can moreover

state the following representation result (where δi := λi/λ, i = 1, . . . , k):

L(N1, . . . , Nk) =
k∏
i=1

Po(Ni; τ λi)

⇔ (B.6)

L(N, (N1, . . . , Nk)) = Po(N ; τ λ) M(N1, . . . , Nk; N, δ1, . . . , δk),

Thus, a finite collection of independent Poisson variables can be obtained in two
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steps: first generate their sum from a Poisson distribution and then generate

the individual Poisson variables from a conditional multinomial distribution.

B.4 The Beta and Dirichlet distributions

A random variable ∆ is said to be beta distributed with shape parameters α > 0

and β > 0, written

L(∆) = Be(∆; α, β),

if its density with respect to Lebesgue measure is

1
B(α, β)

δα−1 (1− δ)β−1 1(0,1)(δ), (B.7)

where

B(α, β) :=
∫ 1

0

δα−1 (1− δ)β−1 dδ =
Γ(α) Γ(β)
Γ(α+ β)

is the so-called beta function. The moments are easily obtained, e.g.

E [∆] =
α

α+ β
, Var [∆] =

αβ

(α+ β)2 (α+ β + 1)
.

A multivariate version of the beta distribution is defined as follows. The

random vector (∆1, . . . ,∆k) is said to be Dirichlet distributed with parameter

(α1, . . . , αk), written

L(∆1, . . . ,∆k) = Dir(∆1, . . . ,∆k; α1, . . . , αk),

if the joint density of (∆1, . . . ,∆k−1) with respect to (k−1)-dimensional Lebesgue
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measure is

1
B(α1, . . . , αk)

k∏
1=1

δαi−1
i , (B.8)

δi > 0, i = 1, . . . , k − 1,
∑k−1
i=1 δi < 1, where δk := 1−

∑k−1
i=1 δi. Here

B(α1, . . . , αk) =
∏k
i=1 Γ(αi)

Γ(
∑k
i=1 αi)

is the multidimensional beta function. The redundant variable ∆k := 1 −∑k−1
i=1 ∆i is introduced for the sake of symmetry. It will be demonstrated below

that (B.8) is a well defined density. Moreover, it will be demonstrated that, for

any partition {K1, . . . ,K`} of {1, . . . , k}, the ∆Kj :=
∑
i∈Kj ∆i, j = 1, . . . , `,

are distributed as

L(∆K1 , . . . ,∆K`) = Dir

(
∆K1 , . . . ,∆K` ;

∑
i∈K1

αi, . . . ,
∑
i∈K`

αi

)
. (B.9)

B.5 The univariate gamma distribution

A random variable Λ is said to be gamma distributed with shape parameter

α > 0 and inverse scale parameter β > 0, written

L(Λ) = Ga(Λ; α, β),

if its density with respect to Lebesgue measure is

βα

Γ(α)
λα−1 e−βλ dλ 1(0,∞)(λ) . (B.10)
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Plainly,

E[Λr e−sΛ] =
βα

Γ(α)
Γ(α+ r)

(β + s)α+r
, r > −α, s > −β. (B.11)

In particular, the Laplace transform of Λ is

LΛ(s) = E[e−sΛ] = (1 + s/β)−α, s > −β , (B.12)

and the first two moments are

E [Λ] =
α

β
,

Var [Λ] =
α

β2
.

B.6 The distribution of multiple independent gamma

variates

Let the entries of (Λ1, . . . ,Λk) be independent gamma variates with common

scale parameter,

L(Λ1, . . . ,Λk) =
m∏
i=1

Ga(Λi; αi, β) .

By (B.10), their joint density is

β
∑k
i=1 αi∏k

i=1 Γ(αi)

(
k∏
i=1

λαi−1
i

)
e−β

∑k
i=1 λi , (B.13)

λi > 0, i = 1, . . . , k. From the independence assumption and (B.12) it follows

that the sum,

Λ :=
k∑
i=1

Λi,

has Laplace transform
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LΛ(s) =
k∏
i=1

LΛi(s) = (1 + s/β)−
∑k
i=1 αi , s > −β .

Thus, setting

α :=
k∑
i=1

αi, (B.14)

L(Λ) = Ga(Λ; α, β). (B.15)

It follows that the gamma distribution is infinitely divisible.

Consider the transformation of (λ1, . . . , λk)′ to



δ1
...

δk−1

λ


=



λ1/
∑k
i=1 λi

...

λk−1/
∑k
i=1 λi∑k

i=1 λi


.

The inverse transform is



λ1

...

λk−1

λk


=



δ1 λ

...

δk−1 λ

λ
(

1 −
∑k−1
i=1 δi

)


. (B.16)
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The Jacobi matrix of the inverse transform is

J =



λ 0 0 · · · 0 δ1
...

...
...

...
...

...

0 0 0 · · · λ δk−1

−λ −λ −λ −λ −λ 1 −
∑k−1
i=1 δi


.

The determinant of this matrix is (add the first (k − 1) rows to the k-th row)

det(J) = det



λ 0 0 · · · 0 δ1
...

...
...

...
...

...

0 0 0 · · · λ δk−1

0 0 0 · · · 0 1


= λk−1. (B.17)

The joint density of



∆1

...

∆k−1

Λ


=



Λ1/
∑k
i=1 Λi

...

Λk−1/
∑k
i=1 Λi∑k

i=1 Λi


(B.18)

is obtained upon substituting (B.16) into (B.13) and multiplying by the (abso-

lute value of the) determinant (B.17):

β
∑k
i=1 αi∏k

i=1 Γ(αi)

(
k−1∏
i=1

(δi λ)αi−1

)(
λ

(
1 −

k−1∑
i=1

δi

))αk−1

e−βλ λk−1

=
β
∑k
i=1 αi

Γ(
∑k
i=1 αi)

λ
∑k
i=1 αi− 1 e−βλ ×

Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)

(
k−1∏
i=1

δαi−1
i

)(
1 −

k−1∑
i=1

δi

)αk−1

,

δi > 0, i = 1, . . . , k − 1,
∑k−1
i=1 δi < 1, λ > 0. Inspection of this expression and

99



(B.8) and (B.10) gives the following representation result for

(∆1, . . . ,∆k) =
1
Λ

(Λ1, . . . ,Λk) , Λ =
k∑
i=1

Λi : (B.19)

L(Λ1, . . . ,Λk) =
k∏
i=1

Ga(Λi; αi, β)

⇔ (B.20)

L(Λ, (∆1, . . . ,∆k)) = Ga(Λ; α, β) Dir((∆1, . . . ,∆k);α1, . . . , αk).

Thus, Dirichlet variables are obtained by dividing independent gamma variables

with common scale parameter by their sum (the scale parameter cancels in these

ratios, of course). And a finite collection of independent gamma variables can

be obtained as the product of a gamma variable and an independent Dirichlet

variable with shape parameters satisfying (B.14).

The previously announced result (B.9) is a simple consequence of (B.19) and

(B.20).

B.7 Conjugate priors to the Poisson and multi-

nomial distributions

Suppose

L(∆1, . . . ,∆k) = Dir (∆1, . . . ,∆k; α1, . . . , αk) ,

and

L (N1, . . . , Nk |∆1, . . . ,∆k) = M(N1, . . . , Nk; n,∆1, . . . ,∆k) .
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Recalling (B.3) and (B.8), we find

P[∆i ∈ dδi, i = 1, . . . , k − 1 |Ni = ni, i = 1, . . . , k]

∝ P[Ni = ni, i = 1, . . . , k |∆i = δi, i = 1, . . . , k − 1] ×

P[∆i ∈ dδi, i = 1, . . . , k − 1]

∝

(
k∏
i=1

δni+αi−1
i

)
dδ1 · · · dδk−1 ,

and conclude that

L (∆1, . . . ,∆k |N1, . . . , Nk) = Dir(∆1, . . . ,∆k; N1 + α1, . . . , Nk + αk).(B.21)

Thus, the Dirichlet distribution is the natural conjugate prior to the multinomial

distribution.

Suppose

L(Λ) = Ga(Λ; α, β) , (B.22)

and

L (N |Λ) = Po(N ; τ Λ) . (B.23)

From (B.1) and (B.10) we gather

P[Λ ∈ dλ |N = n] ∝ P[N = n |Λ = λ] P[Λ ∈ dλ] ∝ λn+α−1 e−(τ+β)λdλ,

which means

L (Λ |N) = Ga(N + α, τ + β) . (B.24)
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Thus, the gamma distribution is the natural conjugate prior to the Poisson

distribution.

(A side remark: From (B.11) we obtain

P[N = n] = E
[

(τ Λ)n

n!
e−τ Λ

]
=
(
n+ α− 1

n

) (
β

τ + β

)α (
τ

τ + β

)n
,(B.25)

n = 0, 1, ... This means that the marginal distribution of Ni is

L(N) = NB
(
α,

β

τ + β

)
,

the negative binomial distribution.)

Now consider the multivariate doubly stochastic Poisson-gamma model,

L (Λ1, . . . ,Λk) =
k∏
i=1

Ga(Λi; αi, β) , (B.26)

L (N1, . . . , Nk |Λ1, . . . ,Λk) =
k∏
i=1

Po(Ni; τ Λi) . (B.27)

Due to independence, (B.24) can be applied component-wise to give the poste-

rior distribution

L (Λ1, . . . ,Λk |N1, . . . , Nk) =
k∏
i=1

Ga(Λi; Ni + αi, τ + β). (B.28)

Using (B.6) and (B.20), the model can equivalently be cast as

L (Λ, (∆1, . . . ,∆k)) = Ga(Λ; α, β) Dir(∆1, . . . ,∆k;α1, . . . , αk) , (B.29)
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L (N, (N1, . . . , Nk) |Λ, (∆1, . . . ,∆k))

= Po(N ; τ Λ) M (N1, . . . , Nk; N,∆1, . . . ,∆k) . (B.30)

By (B.21) and (B.24), the posterior distribution is

L(Λ, (∆1, . . . ,∆k) |N, (N1, . . . , Nk) )

= L(Λ |N) L (∆1, . . . ,∆k | (N1, . . . , Nk))

= Ga(Λ; N + α, τ + β)Dir(∆1, . . . ,∆k;N1 + α1, . . . , Nk + αk).(B.31)
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Appendix C

Simulation

C.1 Simulation of earthquake location in space

Consider earthquake location L =
(
L(1), L(2), L(3)

)
∈ L and assume

L :=
[
l
(1)
l , l(1)

u

]
×
[
l
(2)
l , l(2)

u

]
×
[
l
(3)
l , l(3)

u

]
⊂ R3,

where [l(j)l , l
(j)
u ] denotes the support of L(j), j = 1, 2, 3, is the seismic region

under study. The interest is to simulate observations of L on the basis of the

empirical distribution ∆N(τ) of the latter, or, equivalently, on the basis of the

density estimate (given l1, · · · , lN(τ))

δ̂N(τ)(l) =
1

N(τ)

N(τ)∑
i=1

 3∏
j=1

1[−hj ,hj ]

(
l(j) − l̃(j)i

) , (C.1)

where hj is the bandwidth in the l(j) direction, and l̃
(j)
i is the centre of the

interval in which l
(j)
i falls.

To this end, we construct a grid to be laid over L as follows. For j = 1, 2, 3,
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the grid points in the l(j) direction are

l
(j)
i+1 = l

(j)
l + i ·∆l(j), i = 0, . . . , Nj ,

the grid size in the l(j) direction is given by

∆l(j) :=

(
l
(j)
u − l(j)l

)
Nj

,

and the grid midpoints in the l(j) direction are

l̃
(j)
i = l

(j)
l +

i

2
·∆l(j), i = 1, . . . , Nj − 1.

Define the set of grid hypercube midpoints

S :=
{(
l̃
(1)
i , l̃

(2)
j′ , l̃

(3)
k

)}
,

for all i = 1, ..., N1 − 1, j′ = 1, ..., N2 − 1, and k = 1, ..., N3 − 1, and let l̃p

denote its p-th element. Probability weighted sampling from S, on the basis of(
δ̂N(τ)(l̃1), . . . , δ̂N(τ)(l̃Ngrid)

)
, can then be used to generate observations of L.

C.2 Simulation of the Dirichlet process

Consider the partition {L1, . . . ,LNgrid} of L, where Lp, is the p−th constituent

hypercube of the grid defined in C.1, with midpoint given by the p−th element

of S. Given Ft, an observation of the Dirchlet process can be simulated as

follows:

1. Simulate {λp}, p = 1, ..., Ngrid, as a set of independent

λp ∼ Ga (α(Lp) +N(t), β + t)
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random variables.

2. Set δp = λp∑
p λp

.

3. The output is the vector (δ1, . . . , δNgrid).

An observation of L can then be simulated using the approach in C.1, using

probability weighted sampling from S on the basis of (δ1, . . . , δNgrid).

C.3 Simulation of the stress release model

We assume that the process, specified through its fitted intensity λ̂(s), is to be

simulated over a finite time interval (t, u], given Ft. For s > t, define the list

history

Hs := {Ft, t1, . . . , tN(s)},

where N(s) is the number of points ti satisfying t < ti < s. For every s in

(t, u], we assume there are given two quantities, a local bound M(s|Hs) for the

intensity over a time interval of length L(s|Hs). We take

L(s|Hs) =
2

λ̂(s|Hs)

and

M(s|Hs) = λ̂(s+ L(s|Hs)|Hs),

where the reasoning behind the latter is that, with high probability, the next

event would occur within twice the mean interval length at the start of the

interval, and because of the increasing nature of the intensity function, a simple

bound is its value at the end of the interval. The algorithm then proceeds as

follows.

1. Set s = t+, i = 0.
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2. If s ≥ u go to step 8. Otherwise, calculate L(s|Hs) and M(s|Hs).

3. Generate T as an Exp (M(s|Hs)) random variable and U as a Unif(0, 1)

random variable.

4. If T > L(s|Hs), set s = s + L(s|Hs) and return to step 2. Otherwise

go to step 5. (This step is to verify whether the simulated time T corre-

sponds to the ocurrence time of a candidate earthquake. The event that

T > L(s|Hs) means no earthquake occurred —according to the model—

because otherwise the interocurrence time would be less than or equal to

L(s|Hs).)

5. If T ≤ L(s|Hs) and λ̂(s+T |Hs)
M(s|Hs) > U , replace s by s+T and return to step 2.

Otherwise go to step 6. (This step is essentially a thinning step to verify

whether the candidate earthquake occurring at time T is a ‘qualifying’

event. If the thinning criteria λ̂(s+T |Hs)
M(s|Hs) > U is met, then T doesn’t

correpond to the occurrence time of an earthquake.)

6. Set i = i+1 and ti = s+T . Set s = ti and generate zi from the distribution

φ(z|ti) and li from the empirical distribution ∆̂n.

7. Update the list-history H to H ∪ (ti, zi, li), and return to step 2.

8. The output is the list {i; (t1, z1, l1), . . . , (ti, zi, li)}.
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Appendix D

Sample loss and policy

records
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Figure D.1: California soil type by ZIP code.
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Figure D.2: California proneness to liquefaction by ZIP code.
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Figure D.3: California proneness to landslide by ZIP code.
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