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A bstract

We study participation decisions and bidding behaviour in Michigan Department of Transportation 
procurement auctions. Patterns in the bidding data suggest that bidders’ participation behaviour 
has a forward looking component. To fully understand the extent of these effects on auction 
outcomes, we construct and estimate a dynamic asymmetric auction model with endogenous par­
ticipation. We develop an estimation approach which builds on Guerre et al. (2000) and recently 
developed dynamic discrete game estimators. We then quantify the level of inefficiencies under 
the current auction rules and then consider how alternative auction rules affect efficiency. We also 
analyse the effect of ignoring dynamics in this market by estimating a static version of our model. 
This approach results in misleading conclusions concerning auction efficiency.
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Introduction

This dissertation contributes to an increasing effort to understand auctions and bidding behaviour 

in context, in particular, the question of how bidders decide whether to participate in an auction. 

In this environment, changes to auction rules will not only have consequences for bidding behaviour 

but will also have an effect on the participation decision of bidders and therefore on the success of 

the auction. For example, changing the competitiveness of an auction, can lead to bidders being 

discouraged from entering and thus leading to potentially worse auction revenues, as explained 

by Klemperer (2002). This interplay is even more important when considering auctions with 

asymmetric bidders.

This dissertation investigates these interactions in the context of procurement auctions run by 

the Michigan Department of Transportation (MDOT). There are a number of interesting features 

in this market that warrant investigation. The first is the aforementioned fact that bidders in this 

market not only decide how much to bid but also whether to bid at all. The second interesting 

feature is that auctions run by DOTs occur frequently and with little time between auctions. On 

average, the timing between rounds of bidding is about two weeks. This raises the question of 

whether there is scope for dynamic linkages between auctions and, if these linkages do exist, how 

they affect the performance of auction rules. This also begs the question to what extent we can 

apply insights gained from the very well developed theoretical literature on the design of efScienct 

auction mechanisms1.

The first chapter of the thesis presents descriptive analyses of the bidding data. The aim of this 

chapter is to establish the potential existence of dynamic linkages between auctions. In particular, 

the existence of dynamics in participation behaviour is considered here. The chapter presents 

descriptive analysis of the market and then more detailed analyses of bidding and participation by 

regular bidders.

The second chapter uses the insights gained from the descriptive analyses to construct a theo­

retical model that can rationalize the observed bidding and participation patterns. We formulate 

the participation game as a dynamic game in Markovian strategies. The second part of this chapter 

shows how it is possible to estimate the primitives of this model.

The third chapter summarises results from an assessment of the performance of the auction

1See for example the contributions of Myerson (1981) and Riley &; Samuelson (1981)
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mechanism. Given the results, we then provide an alternative set of auction rules that will address 

some of the shortcomings of the existing mechanism.

The fourth chapter considers the consequences of only considering asymmetries due to bidder 

size and ignoring the dynamic asymmetries due to participation cost synergies.

Literature Review

Participation in Auctions: The theoretical auctions literature has focused much attention on 

analysing within auction bidding behaviour. However, there has also been an effort to under­

stand auctions in context with a particular interest in understanding participation behaviour of 

bidders. Samuelson (1985), McAfee & McMillan (1987) and Levin & Smith (1994) are the key 

references in this area. Samuelson (1985) considers an auction model where bidders must pay an 

entrance fee and perfectly know their values prior to entering an auction. Bidders will, therefore, 

only participate in an auction if their values cross a threshold value allowing them to make posi­

tive or zero profits after entry. McAfee &; McMillan (1987) and Levin &; Smith (1994) analyse an 

auction environment where bidders must pay an entry fee to learn their private values. McAfee & 

McMillan (1987) characterize optimal reserve prices in this environment. Levin & Smith (1994) 

provide a more detailed analysis allowing for mixed strategy entry equilibria and also considering 

the effect of market thickness, i.e. altering the number of potential entrants. Milgrom (2004) 

summarises this strand of research.

Structural Econometrics of Auctions: Given that auctions are a prevalent mechanism for the 

allocation of goods and services and that their rules are simple and known to investigators, auctions 

are an ideal environment for structural empirical work. The literature on the structural estimation 

of auctions begins with the parametric approach of Paarsch (1992). The approach here is to specify 

the parametric form of the value distribution and use the optimal bidding strategies and observables 

to derive a likelihood function. Standard MLE is not appropriate in these environments since the 

boundary of observed bids often depends on the parameter of the distribution of latent values. 

Donald & Paarsch (1993) propose methods to overcome this issue using piecewise MLE.

Laffont et al. (1995) suggest an alternative parametric method that takes advantage of revenue 

equivalence between first price and second price auctions. Instead of computing the distribution 

of winning bids in a first price sealed bid auction, which requires the computation of potentially 

hard to solve bidding strategies, and maximising the likelihood consistent with this density, Laffont 

et al. (1995) suggest simulating the distribution of winning bids from a second price auction using 

importance sampling for a given set of parameters of the value distribution and taking means. The 

parameters are then found by minimising the squared distance between the observed winning bids 

and the simulated ones.

An alternative non-parametric approach is due to Guerre et al. (2000). The important insight
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of this paper is that the first order condition for the optimality of a bidder’s best response can be 

re-written in terms of equilibrium bid distributions. This allows for the indirect estimation of the 

values for each observed bid. This paper also provides conditions for non-parametric identification 

of first price sealed bid auctions. The estimation approach proceeds in two steps. First strategies, 

i.e. the bid distributions are estimated. Second using the first order condition for an optimal 

bid pseudo-values for each observed bid are computed. These pseudo-values are then used to 

non-parametrically estimate the distribution of values.

Guerre et al. (2000)’s approach also cleverly bypasses the computation of equilibrium strategies. 

This is a major advantage especially when considering the estimation of asymmetric auctions and 

more complicated dynamic auctions where closed form solutions to bidding strategies might not 

be possible. For example, Jofre-Bonet & Pesendorfer (2003) provides an approach to estimating 

a dynamic auction model which we will discuss later. Li et al. (2002) propose non-parametric 

identification and estimation approaches for the first price auction with affiliation. Athey Sz Haile

(2007) provide further non-parametric identification results.

Krasnokutskaya (2003) provides a non-parametric method of estimating auction games with 

auction specific non-parametric unobserved heterogeneity that is common knowledge to all bidders. 

Krasnokutskaya (2003) uses tools from deconvolution theory and allows for asymmetric bidders. 

She also provides results on identification with unobserved heterogeneity.

Structural Econometrics of Auctions with Participation: There is also a growing literature on 

estimating static auctions with endogenous participation, for example, Athey et al. (2008), Li 

& Zheng (2009), Bajari & Hortacsu (2003) and Krasnokutskaya & Seim (2005). Athey et al.

(2008) consider the performance of alternative auction rules with endogenous participation. They 

estimate a structural model of open auctions with participation and simulate alternative auction 

environments. Using the structural estimates they also simulate auctions under the assumption 

of competitive bidding and collusion to explore whether the outcomes of a subset of auctions can 

be explained by collusive bidding. The key contribution of this paper is to take into account 

asymmetries between bidders. Asymmetries are an important determinant of auction outcomes 

and the interplay between participation and bidding with asymmetric bidders is difficult to anlayse 

theoretically. Athey et al. (2008) provide a direct analysis of this problem.

Li &; Zheng (2009) consider procurement auctions and estimate a number of different auction 

participation games. They then select a model that best describes the data. In particular, they 

consider which model can provide the best mean squared error of predictions for the ratio of actual 

to potential bidders and bids. Their particluar interest is then understanding two opposing effects 

in their theoretical models, namely the competition and entry effect on bids. The competition 

effect is simply the increase in competitiveness at the bidding stage as a result of a greater number 

of potential bidders. The entry effect is the negative effect an increase in the potential number
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of bidders has on the equilibrium entry probabilities. This leads to less actual competition in the 

auction stage and therefore to less aggressive bidding behaviour. The counterfactual analysis is 

then focused on understanding how these two effects interact in this auction environment.

Krasnokutskaya & Seim (2005) consider bidder preference programmes in California procure­

ment auctions. This paper studies what effect bidder preference programmes have, in particular 

whether preference programmes have adverse effects on procurement costs.

Bajari & Hortacsu (2003) are not explicitly interested in understanding participation behaviour 

in their paper. The main focus of this paper is to understand the magnitude of the winner’s curse 

in common value auctions on EBay for antique coins. However, the model they estimate takes into 

account that bidders have to make a participation decision and that the actual number of active 

bidders is unknown to the players.

Estimation of Dynamic Games: Hotz & Miller (1993) provides the foundations for all current esti­

mators of markov games. The typical approach in estimating maxkov decision problems has been 

to apply a nested approach developed by Rust (1987) or in the case of finite methods algorithms 

that solve the dynamic optimization problem by backward induction as in Keane & Wolpin (1997). 

The nested fixed point algorithm, for example, has an inner contraction fixed point algorithm to 

compute the value functions for each trial value of the parameters and an outer algorithm that 

searches for parameters that maximise a likelihood function. Hotz & Miller (1993) provide an ap­

proach that bypasses the computation of the solution to the dynamic optimization problem. They 

show that the conditional choice probabilities and the parametric assumptions on unobserved state 

variables can be used in an inversion to estimate the value functions. Manski (1993) also develops 

a related approach, the ’path-utility’ approach, which uses observations of other individuals to 

estimate expected payoffs. The approach of Hotz Sz Miller (1993) is also related to the two stage 

approach of Guerre et al (2000).

One of the first papers, we are aware of that makes use of these insights and estimates a 

dynamic game is Jofre-Bonet &; Pesendorfer (2003). This paper looks at how capacity constraints 

affect bidding behaviour. The approach taken here is a two-step approach that builds on Guerre 

et al. (2000) and Hotz & Miller (1993). Estimation proceeds again in two stages, where in the first 

stage bid distributions are estimated and then first order conditions are used to infer pseudo-values. 

The key difference here is that the first order condition involves a forward looking component which 

complicates estimation. Jofre-Bonet & Pesendorfer (2003) show how an expression for the value 

function can be found in terms of observables and how this can be used to estimate the model. 

The approach echoes Hotz & Miller (1993) in that observables are used to estimate conditional 

value functions.

There are a number of more general dynamic game estimators. Bajari et al. (2007) develop an 

estimator that allows for discrete and continuous choices. Their estimator is based on estimating a
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set of moment inequalities that an observed action has to fulfill and makes use of forward simulation 

to estimate value functions. Auguirregabiria & Mira (2007) develop a pseudo-maximum likelihood 

estimator. This estimator maximises a  likelihood constructed using best response functions derived 

from a Markov Perfect Equilibrium. Other papers that look at estimating dynamic games Eire Eind 

Pakes et al. (2007). Pesendorfer & Schmidt-Dengler (2008) develop an estimator that also proceeds 

in two stages, where strategies are non-paxametrically estimated in the first stage. In the second 

stage where the structural parameters are to be estimated, Pesendorfer & Schmidt-Dengler (2008) 

exploit the fact that the markov perfect equilibria can be characterised using a matrix equation 

which can be used for estimation. In particular, an equilibrium will be a fixed point of this matrix 

equation. The estimator then seeks parameters that minimise the distance between the equilibrium 

choice probabilities given beliefs implied by the model and the non-parametrically estimated choice 

probabilities.

The aforementioned papers estimate Markov games. However, there have been a number of 

papers that estimate non-markov dynamic games and take advsmtage of the particluar structure 

of games. In particular, Schmidt-Dengler (2006) and Einav (2010) estimate games of timing. 

Schmidt-Dengler (2006) considers a game of timing similar to Fudenberg & Tirole (1985) of tech­

nology adoption and estimates a model of MRI scanner adoption amongst hospitals. Einav (2010) 

estimates a game of movie release times. Both approaches take advantage of the ’’finiteness” of the 

game and use pseudo-backward induction algroithms to solve the games and estimate parameters.

Procurement Auctions: Procurement auctions are an excellent market environment for structural 

econometric work. The rules of the game are well understood and bidders sure experienced. These 

auctions have been analysed by, for example, Porter & Zona (1993), Bajari & Ye (2003) and 

Hong & Shum (2002). Porter Sz Zona (1993) and Bajari & Ye (2003) have a particular interest in 

developing tests for possible collusion in auctions.
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Chapter 1

Participation in M DO T  
Procurem ent A uctions

In this chapter I analyse MDOT procurement auctions. This chapter summarises interesting 

patterns that emerge from the participation behaviour of long lived regular bidders. We first 

present an overview of the market and present summary statistics on the data. We then move 

to a more detailed descriptive analysis of the bidding and participation behaviour of bidders to 

establish whether there are any dynamic patterns in participation. The data suggest there axe 

dynamic linkages between auction rounds. Specifically, previous round competition has an effect 

on current procurement costs. There is also evidence that dynamic synergies in participation 

exist. These synergies effectively create an asymmetry between bidders that will have a bearing 

on auction efficiency. To fully understand these features and their effect on auction outcomes, we 

construct and estimate a dynamic auction game. The level of inefficiencies due to auction rules is 

quantified and changes to the auction environment are considered. We then explore the effect of 

ignoring dynamics in estimation and find that this will result in misleading conclusions concerning 

efficiency.

1.1 The Procurem ent Process in M ichigan

In this section the data source and some aspects of the procurement process are described. Reduced 

form evidence of dynamic linkages between auction rounds is presented. In particular, we look at 

the effect of previous round competition on current round procurement costs. We then explore 

whether dynamic effects also exist when we look directly at an individual bidder’s participation 

and bid level decisions. The results suggest that past round competition lowers procurement costs 

by a small amount in current round auctions. There is also evidence that potential dynamic 

synergies exist in bidders’ participation behaviour and that past participation has an effect on 

bidding behaviour in current auctions.

The Awarding Process: The auctions under investigation award contracts for highway construc­

tion, bridge construction and highway resurfacing. Contracts are awarded by the Michigan State
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Department of Transportation (MDOT) in bi-monthly rounds using a first price sealed bid procure­

ment auction. A bid is a detailed cost break down for all costs, such as labour, mobilization and 

materials. However, the winner is determined solely by the level of the final total cost submitted 

by a bidder. Cost breakdowns axe mainly used to ensure that a bid adds up and is sensible. Bid 

breakdowns are also used to ensure that a bid is not "materially unbalanced”, to ensure that no 

bid skewing takes place1. MDOT requires that bidders pre-qualify before bidding2. An average of 

50 contracts are awarded in a round of bidding. The average project size is $1,476 million and the 

maximum project size in our data set is $165 million. The timing of contract rounds for the year is 

known in advance, however the contract characteristics are not fully known. Prior to the awarding 

of the contract, bidders can purchase plans for contracts, which detail the location of a project, 

the nature of the work and the estimated cost. The list of bidders who have purchased these plans,

i.e. the plan holders, is publicly known and posted on the internet. However, some plans can 

be downloaded free of charge from the MDOT website, where bidders’ identities are not revealed. 

Bids can be submitted in person or electronically. On the letting day, all bids axe unsealed and 

ranked. As mentioned previously, the lowest total cost bidder wins the auction, i.e. the bottom 

line cost of the project determines the winner. Bidders must also provide a bid deposit that is a 

pre-determined percentage of the contract value, as determined by the engineer’s estimate, prior to 

bidding. Once a contract has been awarded the primary contract winner is allowed to subcontract 

up to 60% of the contract value to subcontractors3.

Table 1.1: Summary Statistics
N u m b e r  O f  

O b ser v a tio n s
M ea n S ta n d a rd

D e v ia t io n
M in im u m M a x im u m

Number of 
Bidders
Log o f Engineer’s 
Estim ate
Ranked2-Rankedl

Rankedl
R ankedl-Estim ate

Estim ate

4927

4927

4832

4927

4.943

14.205

0.083

-0.069

2.731

1.203

0.184

0.146

1

8.517

0

-0.198

19

18.922

0.880

0.626

Summary Statistics for all Bidders: We focus our attention on general construction contracts. 

Table 1.1 and Table 1.2 provide summary statistics of the data. Table 1.1 reports that on average 

an auction attracts 5 bidders, with some contracts having only one bidder and others with 19 

participating bidders. The third row of Table 1.1 presents data on ’’money left on the table”, 

which can give an indication of the level of uncertainty in the market. This is the percentage 

difference between the winning bid and the lowest losing bid. On average there is a difference of

1?, for exam ple, find that bid skweing is a frequent occurence in timber auctions.
2This entails a  check on the financial status of the firm. The information required for qualification includes: The  

identity of the owners, shareholder and managers of the company, any affiliations w ith other contractors, recently 
completed contracts and identity o f clients, previous sales, an average of the firm’s backlogs over the past three 
years, activities in other states, connections to other pre-qualified bidders, firm’s Balance sheet. M DOT also has 
a disadvantaged business programme to encourage participation from smaller or disadvantaged firms, however this 
occurs only on a small fraction of contracts.

3We do not have any data on subcontracting and exclude this from our analysis.
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about 7% with a standard deviation of 8%. This suggests that there are substantial informational 

asymmetries.
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Table 1.2: Summary Statistics by Number of Bidders
Number of 
Bidders:

1 2 3 4 5 6 7 8 9-10 11-19

Obs. 91 742 999 781 618 534 376 272 286 228
Estimate

Mean 12.838 13.208 13.334 13.108 13.290 13.372 13.411 13.459 13.339 13.336
Standard
Deviation

1.030 1.093 1.176 1.297 1.286 1.262 1.221 1.087 1.157 1.053

Ranked 1-Est. 
“ ISF."'

Mean 0.008 -0.015 -0.045 -0.052 -0.062 -0.089 -0.084 -0.101 -0.112 -0.130
Standard
Deviation

0.128 0.133 0.152 0.161 0.163 0.1323 0.138 0.120 0.113 0.119

Ranked2-Ranked 1 
Ranked 1

Mean 0.113 0.082 0.082 0.063 0.059 0.053 0.048 0.043 0.041
Standard
Deviation

0.121 0.078 0.088 0.059 0.060 0.051 0.048 0.041 0.049



Table 1.2 summarises the data by number of bidders. The "Observations” row of the table 

reveals that 91 auctions attracted one bidder, 742 auctions attracted two bidders and so on. Table

1.2 also reproduces money left on the table data by number of bidders. It can be seen that money 

left on the table decreases with the number of bidders. However, the average amount of money left 

on the table is still substantial but is in line with other studies, see for example Krasnokutskaya 

(2003). Table 1.2 indicates that informational asymmetries matter in procurement competition. 

As the number of bidders increases the relative difference between the lowest bid and the engineer’s 

estimate falls. Also, notice that larger projects do not necessarily attract more bidders, the degree 

of competition in an auction is not related to the engineer’s estimate.

We now turn to the key question of whether procurement costs are affected by previous partic­

ipation decisions and whether entry dynamics matter. To establish whether this feature is present 

in the data, we run a regression on the log winning bid and a set of covariates, which include the 

log number of previous round bidders, the engineer’s estimate of the project cost and geographic 

variables. Table 1.3 summarises the results of an OLS regressions. The log number of previous 

round bidders and its squared component are individually statistically significant at 5% and are 

jointly significant at 5%. The regression results imply that increasing the number of previous round 

participants initially increases the winning bid level but after the number of previous round bidders 

exceeds roughly 3 bidders procurement costs start to decrease slightly, however the marginal effect 

of an additional bidder is very small. If we consider increasing the average number of bidders in 

a previous round by 10 bidders from 82 to 92 we see a 1% decrease in the procurement cost in a 

current auction.

We next turn to the individual bidder’s participation decisions. We first provide summary 

statistics on participation. To analyse an individual bidder’s participation decision we estimate 

probit models of the probability of entry by an individual bidder on a set of covariates including 

a measure of previous round competition.

1.2 Participation Decisions of Regular Bidders

The tables presented here focus on the behaviour of large and small regular bidders. A regular 

bidder has participated in more than 100 auctions and a large bidder is one with more than six 

plants in Michigan State. A similar definition of regular bidders is applied by Jofre-Bonet & 

Pesendorfer (2003) and Krasnokutskaya (2003). A plant is a base of operations for the contractor, 

where equipment is stored as well as materials prepared for construction. We use six plants as a 

cutoff since plant sizes for bidders are clustered around one and two plants or more than six plants4. 

We focus on regular bidders since these are firms considered by MDOT to be unconstrained and 

are able to concurrently complete a number of large projects. Participation rates are 7% of all
4This excludes the possibility that a bidder might have plants in neighbouring states and uses those to  mobilise 

equipment to  com plete a project. We will be investigating this in future.
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Table 1.3: Regression Results of Winning Bid on Covariates
V ariable
D ependent Variable: Log W inning Bid

Coefficient
(Std. Err.)

OLS
Log o f Engineer’s Estim ate 1.0058 **

(0.0020)

Log Number of Bidders in Previous Round 0.0338 *
(0.0122)

Log Number of Bidders in Previous Round Squared -0.0137 **
(0.0024)

Bay Region Dummy 0.0093
(0.0090)

Grand Region Dummy 0.0049
(0.0093)

M etro Region Dummy 0.0068
(0.0089)

North Region Dummy 0.0117
(0.0092)

Superior Region Dummy 0.0408 **
(0.0097)

University Region Dummy 0.0006
(0.0089)

Log Number of Auctions in Previous Round 0.0441 **
(0.0090)

constant -0.1913 **
(0.0303)

Number of Observations: 4880

auctions with the most frequent participating bidder entering 17% of the auctions of which they 

win on average 1.5%. Bidders on average are plan holders of around 11% of the contracts.

Fringe Bidders: However, before conducting a more detailed analysis of regular bidders, we 

present some statistics on fringe bidder participation. On average, there are about on average 

2.76, with standard deviation 2.37, fringe bidders in an auction. There is a potential pool of about 

500 unique fringe bidders. The average participation probability of a single fringe bidder is 0.51% 

with standard deviation 0.83%. Given that these bidders have such low participation probabilities, 

it is therefore reasonable to treat them as separate from regular bidders.

Participation in Auction Rounds: Given that contracts are awarded in rounds we also provide

some information on participation per round. Bidders participate in roughly 70% of the auction 

rounds. They enter in roughly 8% of auctions in a round, with an average of 50 contracts on 

offer per round which translates roughly to participation in four auctions in a round. Bidders 

participate in most of the auctions for which they hold plans but there is still uncertainty, being a 

plan holder does not guarantee participation. Figure 1.1 shows a plot of the number of plan holders 

for a project, i.e. bidders who have requested hard copies of plans and who then are listed on the 

webpage,versus the number of bidder who bid on the same contract. We might believe that there 

could be a backward bending relationship between the two, since bidders might be discouraged from
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Figure 1.1: Plan Holder versus Number of Actual Bidders

Ran Holders versus Number of Active Bidders
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bidding if they see a large number of plan holders. However, there is no such pattern. Moreover, 

we can see that sometimes the number of actual bidders exceeds the number of plan holders, i.e. 

there are data points above the 45° line. This occurs when plans can be downloaded anonymously 

from the MDOT website, introducing uncertainty into the actual number of bidders.

Only one large bidder is active across Michigan whereas only 1/3 of small bidders are active 

across the entire state of Michigan. It therefore seems plausible that geographic factors might 

affect participation and ignoring them could be misleading. The majority of small bidders bid 

on all types of contracts, and only one large bidder bids on all types. Again, this suggests that 

ignoring contract characteristics for the participation decisions will lead to potentially misleading 

estimates. However, some contract types do not occur very often, for example New Construction 

contracts represent 1% of the total number of contracts offered, Traffic operations are only 8% of 

total contracts and Roadside Facilities are only 5%.

18



Table 1.4: Probit Estimates
V ariable Coefficient
Dependent Variable: Participation (Std. Err.)

(0 (ii) (iii) (iv) (v) (vi)
Participation in 0,1952** 0.1925** 0.1267 * 0.1152* 0.1811** 0.1575**
previous round (0.0185) (0.0185) (0.0203) (0.0205) (0.0192) (0.0240)

constant -1.5156** -1.5927** -2.6129** -2.7573** -2.4729** -3.6621**
(0.0095) (0.0011) (0.0797) ( 0.0800) (0.0279) (0.3617)

Large bidder dummy 0.2835**
(0.0141)

#  Auctions won 0.2835** 0.0158* 0.0119*
in previous round (0.0141) (0.0034) (0.0027)

Size of bidder 0.0444**
(0.0021)

0.0492**
(0.0021)

Afs -0.004 * -0.0034* -0.0036 * -0.0004 -0.0056* -0.0055
(0.0014) (0.0014) (0.0015) (0.0015) (0.0014) (0.0134)

Me -0.0185 * -0.0218* -0.0126 -0.0121 -0.0167* 0.1040**
(0.0078) (0.0077) (0.0081) (0.0082) (0.0079) (0.0280)

Bidder Fixed Effects NO NO YES YES NO YES

Auction Covariates NO NO YES YES YES YES

Time Fixed Effects NO NO NO NO NO YES

Number of Auctions: 4927 
Number of Bidders: 30



1.3 E xistence o f Dynam ic Synergies in Participation

We now present reduced form evidence on the probability of participating in an auction. The 

descriptive analysis here seeks to determine the existence and qualitative features of dynamic 

synergies in participation. We estimate a set of Probits to determine whether participation in 

at least one auction in the previous period has an effect on participation in an auction in the 

current period. This would give an indication of whether there is evidence for synergies between 

rounds of auctions. We also considered specification where participation effects from rounds in 

even earlier time periods, for example participation in auctions two rounds before the current and 

so on. In those specification, there were no statistically significant dynamic participation effects. 

We therefore restrict attention here to descriptive analyses that only focus on immediately previous 

rounds of bidding.

The average participation rate in auctions is about 7.2%. We can see from Table 1.4 column 

one that participation in an auction in the previous round increases the probability of participating 

in a current auction round from 7.2% to 9.5%. We also control for regular opponent’s previous 

round entry behaviour. In particular, Ms, Me is the number of small and large regular bidders who 

participated in the previous round of bidding. M s,M e  are jointly significant in this specification. 

The effect persists when we include bidder fixed effects as in column (iii). However, the bidder 

fixed effects reduce the magnitude of the participation effect. The dynamic effects also persist 

when other contract characteristics are included such as the type of project and the location of the 

contract. We also consider in columns (ii) and (v) specifications including a bidder size variable. 

In all specifications the dynamic participation effects persist in their statistical significance.

In columns (iv) and (v), we partially control for potential capacity constraints by including the 

number of contracts won in a previous round of bidding. In these specifications we still find that 

the own participation status has a positive effect on participation probabilities.

There might still be concerns that these descriptive analyses are picking up other effects, such 

as firms taking on non-MDOT contracts. A feature of this market is that construction in the 

winter months in Michigan stops. During this period firms are essentially not affected by capacity 

constraints or other construction related activities. However, MDOT still awards contracts during 

this period. It should then be possible able to recover the pure effect on own participation status 

on participation probabilities during winter months. To take into account seasonality, round fixed 

effects are included in the probit specifications. The results are shown in column (vi). With this 

specification, the own activity status effect still persists and remains statistically significant.
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Table 1.5: Bid Level Estimates (Heckman)
V ariable
Dependent Variable: Log of Bid Level

Coefficient 
(Std. Err.)

Log(Engineer Estimate) 0.9751**
(0.0016)

Participation in 0.0166
Previous Round (0.0106)

constant 0.3862**
(0.0780)

Large Bidder Dummy -0.0323 *
(0.0104)

State Variables
Ms -0.0009

(0.0006)

Me -0.0038
(0.0033)

Number of Auctions: 4927 
Number of Bidders: 30

1.4 Bid Level Decision:

Table 1.5 summarises results from Heckman estimates of the bid level decision. The engineer’s 

estimate is clearly the strongest influence on the bid level. State variables do not have a statis­

tically significant effect on bid levels. In particular, own participation status has no statistically 

significant effect on bid levels. The large bidder dummy has a negative sign, which indicates po­

tential asymmetries between large and small bidders. We also consider a specification with bidder 

fixed effects for each regular type bidder. In this specification the own participation variable is 

significant and leads to a 7% increase in the bid level. This is evidence that there might be dynamic 

effects on bidding behaviour from previous round participation.

To summarise, the reduced form evidence suggests that dynamic linkages between auctions do 

exist and can have an impact on procurement costs for MDOT. Previous round competition has 

a statistically significant effect on current auction procurement costs. There is a positive effect 

of previous round participation on current auction participation, which indicates the existence of 

some form of synergies. Previous round competition and participation have little effect on the 

bid level decision. These results merely indicate patterns in the data and are by no means causal 

relationships. This prevents us from making stronger statements about the causal nature of these 

outcomes.

To understand these effects more fully, we therefore proceed to construct a structural economet­

ric model that will allow us to understand the dynamic strategic effects that might be operating in 

this market and quantify their effect. The data suggest that participation is a costly process and 

that participating in consecutive rounds of bidding is less costly than in non-consecutive rounds.
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The preparation process must therefore generate two types of knowledge, one which is project spe­

cific, i.e. knowledge about completing a specific project in a specific location, and another which 

is general and transferable but time-sensitive. The latter would be knowledge on the activities of 

the firm and the activities of other firms. The next section outlines the theoretical framework we 

take to the data that seeks to capture this notion.
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I

Chapter 2

A  D ynam ic Structural M odel o f  
Participation in A uctions

In this chapter we construct a theoretical model of auction participation in a dynamic framework. A 

dynamic auction game in which participation is decided in every period is constructed here. Entry 

into an auction is costly and bidders must pay an information acquisition cost to learn their private 

completion costs,which are equated to the opportunity cost of preparing a bid. Bidders compare 

the expected profit stream from participation and non-participation to determine entry. There 

are information acquisition synergies between auction rounds. Specifically, a bidder can improve 

the information cost draws in the next period by participating in an auction in the current round. 

Once a bidder decides to enter an auction the bidders engage in a first price sealed bid procurement 

auction.

2.1 Participation and Auction Game

2.1.1 Setup and Assumptions

This section outlines the theoretical bidding model. The focus of the analysis is on risk neutral1 

long-lived bidders who participate in more than 100 auctions in our data set. Bidders who partici­

pate in fewer auctions are categorised as short lived fringe bidders. Throughout it is assumed that 

participation is solely determined by information acquisition costs. These costs can be interpreted 

as bid preparation costs, i.e. the opportunity cost of having to discuss the completion of a project. 

It is also assumed that once private costs are known, a bidder will participate in the auction2.

Time is discrete with an infinite horizon. There are two types of regular bidders, large bidders 

N £ =  {1,..., Ac}> who have more than six plants in the state, small bidders N 5 =  {Ac +  1 ,..., Ac +  

N s}, who have up to six plants, and a fixed set of fringe bidders Nyr =  {N c  +  A s -I- 1,..., A f  +  

N s  +  Ac}. We will sometimes denote the total number of bidders as iV =  Nc  +  A s +  A T- A

1T he assumption of risk-neutrality can be justified by realising that m ost regular bidders are large corporations 
and are active in various states. We can therefore use a portfolio diversification argument.

2A n  alternative participation model is by Samuelson where bidders already know their valuations when they  
make their entry decision but have to  pay a cost to  learn their values. Here the set o f bidders will be  a  selected  
sam ple of bidders who have valuations above a certain threshold value. It is possible that the true participation  
decision is a hybrid between the Samuelson (1985) and Levin & Smith (1994) participation game. Li &: Zheng (2009) 
estim ate these different auction m odels in their paper.
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typical bidder of either type will be denoted by i. The number of bidders of each type does not 

vary over time.

The Stage Game: Each time period t is broken down into two stages, the Participation Stage 

followed by the Auction Stage. The sequence of events is as follows:

1. Participation Stage

(a) Each bidder i receives a draw from a private information acquisition cost distribution 

at the beginning of period t

(b) All bidders decide simultaneously whether to enter the auction

2. Auction Stage

(a) Contract characteristics co,t axe revealed to all bidders

(b) Without observing the outcome of the first stage, each bidder learns their own comple­

tion cost privately

(c) All participating bidders simultaneously submit bids without knowing the actual number 

of bidders participating

(d) The contract is awarded to the low bidder

This setup is similar to Li & Zheng (2009)’s specifications of the entry game. Krasnokutskaya 

(2003) assumes that bidders know the identity of their opponents. We assume that bidders ignore 

plan holder information, since our data is from a period where it was also possible to download 

plan anonymously. The published plan holder list will therefore not always be complete and there 

is still uncertainty about the actual level of competition for a contract. However, if we did choose 

to include the plan holder information, the only difference from our model would be the inclusion of 

an extra stage prior to the participation stage, which determines plan holder status. This has been 

excluded for simplicity and, as described previously, the fact that plan holder status is not recorded 

for all bidders. We have also undertaken some reduced form analyses on plan holders and found 

that the dynamic synergies discussed in the previous section persist when controlling for plan holder 

status3. In addition, the inclusion of plan holder information would require the state space of the 

dynamic game to be expanded which will make the estimation more computationally burdensome. 

We have also assumed that bidders decide on entry prior to contract characteristics being revealed. 

However, in future we will correct these issues by allowing for plan holder information as well as 

some contract characteristics, such as project locations, to be used.

3To establish this, we turn our attention to  participation behaviour of bidders, given that they are plan holders. 
In particular we look at the probability of participation given state variables as before for the subset o f bidders who 
have expressed an interest in the contract. The results suggests that the effects of that state variables persist with  
a reduced magnitude. Specifically, the probability of participating is increased by 10% if a  bidder participated in 
the previous round of bidding. In other words, it does seem that even when controlling for plan holder status the  
between round synergies we posited still exist.
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As mentioned before, the procurement auctions under investigation are run in rounds, where 

up to 100 construction contracts are auctioned off at once. This might introduce scope for possible 

synergies between contracts offered in the same round or possible exposure problems, where bidders 

win too many contracts a t once. These possibilities me not considered in this model, due to the 

lack of further information on ex post costs and the department of transportation not offering 

contracts in packages. Moreover, only intertemporal substitution of auctions and not within round 

substitutions are considered. The rest of the setup is as follows:

Reserve Price: The Michigan Department of Transportation requires that the winning bid be lower 

than 110% of the engineer’s estimate. If the Department wishes to accept a bid higher than this 

threshold, it is required to write a justification for doing so. The data have a number of projects 

being awarded for more than the threshold. This suggests that these restrictions do not come into 

effect very often. We follow Krasnokutskaya (2003) and assume there is no binding reserve price. 

We also follow Li Sz Zheng (2009) to address the issue that there is a chance a bidder will face no 

competitors and could then bid an infinite amount. To avoid this Li & Zheng (2009) suggest that 

when a bidder is the only entrant he must compete with the Department. We, therefore, assume 

that when a bidder is the sole participant, he will then face the DOT that draws a completion cost 

from a regular large bidder’s cost distribution.

Contract Characteristics a t time t are denoted by co,t € Co and are drawn from the known 

exogenous distribution Fo(.). Future contract characteristics are unknown to all bidders. The 

contract characteristics are the physical attributes of the contract. Our analysis restricts attention 

to the engineer’s estimate of the project size.

Private Completion Costs: Bidder i of type j  = C, «S, T  draws private costs, c*jt G C ?, indepen­

dently and identically from the cost distribution Fj(ciit|co,t) on [c,c], conditional on co,t- The 

assumption of independent private values can be justified by assuming that differences in cost 

estimates are due to firm specific factors such as differences in opportunity costs and input prices.

An action for bidder i in period t is given by the participation decision and the bid submitted at 

the auction stage, a^t G A* =  {0,1}U [0, oo). Sometimes, the participation decision will be denoted 

separately by G {0,1} and the bid by b^t G [0, oo).

Public States for Regular Bidder i: Bidder i is characterised by a publicly observable state vari­

able Sitt G S i = {0,1} that affect its actions. The state is the participation status of a bid­

der in the previous round of bidding, i.e. s^t =  di^-i-  The vector of all bidders’ state vari­

ables is given by st =  (s i,t ,..., sjv,t) G S =  We will sometimes use the notation

S - ij  — (si.t, S2 ,t, •••, ^  S_i =  to denote the vector of state variables
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excluding bidder i. The cardinality of the state space S equals m s — 2 N.

Private States for Regular Bidder i of type j: Information Costs, (f>i>t € =  [1, oo), are drawn

independently and identically from the conditional distribution with associated density

hj{<f>i,t\si,t)-> and are unobserved by other bidders and the econometrician. Information costs have 

a Markov structure and have following transition probability:

(2-i)

where log[aj(siit)] =  o o j+ a ijS i.t-  Both parameters axe unknown to the econometrician but known 

to the bidders. Rivals’ actions and states do not affect the private costs of information acquisition. 

We have experimented with alternative specifications of the information cost distributions and 

estimated the model with them, including the exponential and half-logistic, however neither of 

these distributions comes close to matching the estimated choice probabilities. We, therefore, 

settled for the Pareto which provided a better fit. Note, that the structure of the information 

cost distribution is such that participating in an auction in this period will allow bidders to draw 

information costs from a more advantageous distribution, i.e. a distribution with lower mean, in 

the next period. It is possible to make the information cost depend on more than one previous 

period and to allow for cumulative cost advantages. However, this has been excluded in the current 

analysis but will be explored at a later date.

Information Costs for Fringe Bidders: Fringe bidder i needs to pay information cost K  to learn 

her private completion costs.

Discounting: Bidders discount the future with common discount factor /? G (0,1), known to the 

econometrician and the bidders and fixed over time. The annual discount factor equals f3 = 0.9. 

Note that this imposes forward-looking behaviour of regular bidders. Hendricks &; Porter (2007) 

discuss possible strategies for identifying the discount factor using exogenous variation in the 

bidding environment.

Conditioned Independence: As in Rust (1987), it is assumed that the unobserved information costs 

are conditionally independent of observable states. Also note that the structure of the problem 

already embodies the usual assumption that the private ’’shocks”, here the information costs, are 

additively separable. For further discussion of these assumptions see Rust (1994).

Bidder Strategies: Strategies for bidder i of type j  are restricted to be Markovian for the entry 

game. The strategy for bidder i of type j  = C ,S,J- consists of a participation strategy df 7 (s, <^) 

and a bidding strategy b°j(s, c*, cq) and will be denoted — (dfj(s, </>*), &£ •(s, c», C o )). Formally, 

a Markov strategy is a map, Oij : S x <&j x Cj x Co —► At . Fringe bidder strategies are denoted 

separately by o^jr and the set of all fringe strategies is denoted ajr = { e r^  : i = 1,..., Njr}.
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Strategies consist of a bidding strategy and an entry strategy d°F.

Beliefs on the Probability of Participation: To form the necessary expectations and to compute the 

probability of a bidder winning an auction bidders’ beliefs of the likely number of bidders based 

on the decision rules of bidders must be defined. Beliefs are

/OO

H d ijis t ,  4>) =  l}hj(<j)\si,t)d<j> (2.2)

The above is the expected behaviour of firm i of type j  when i follows its participation strategy in 

cr. The integration is over private information costs 4>.

Characterisation of Payoffs for Regular Bidders: A bidder decides whether to enter an auction 

and incur the information cost by comparing the value of participation and non-participation. 

Let iy/0(st ; o’, ojP) be the value of not participating at state st with all opponents following their 

strategies prescribed in a  and WP^s^cr, ojP) be the value of participation. We will define these 

values more carefully after introducing some more notation. The Bellman equation for bidder i of 

type j  is then:

W/ (st, <j>i,t ',(T,(Tjr) = max j  W j (st; a, ojr) -  4>i<t, W 3i0  (st ; <r, oT ) } (2.3)

Next define the ex ante value function as the integrated version of the above Bellman equation, 

where all private information is integrated out:

/OO

W i(s t ,<l>-,a,ar)aj (si,M -° ‘̂ - 1dcl>, Vs, (2.4)

We can then write the choice specific values as:

=  E c>c max[6 -  c] P r(i wins|si)t, s_ i)t, b, c0; a, ojr)

+P 5Z  P l(s't+ i\st,di)t = l;(T,ojr)Vf{s't+i-,(7 ,ojr) (2.5)
s ' t + i€ S

and the value of not participating

W 30 {st,o ,o jr)= Q  + f5 ^ 2  Pr(s'i+i\st,d i>t= 0;o ,o jr)V P (s,t+1 -,cr,(jjr) (2.6)
s ' t+ i€ S

The value function can equivalently be written as

V?(st ;(T,or) = q i j (st )(W ?1 (st ; cr,o^) -  Ê cf)\(f> < ( 3 {st ; <7 , 0 ?)]) +  [1 -  qi,j(st)}WP0 (st ',o,(Tjr) (2.7)

where (st ; (7, ojr) = W 3X (st ;cr, ojP) — W 30 (st ; cr, o?) and we have made use of an individual bidder’s

decision rule, as defined in (2.2). This formulation will be useful for estimation later on. The

probability of a bidder winning an auction is given by,

/  i  wins against \  f t  wins against \  /  i wins against \
Pr(z wins) =  Pr I N c  potential C J X Pr I N s  potential S  I X Pr I Nyr potential J7 I (2.8)

\  type bidders /  V type bidders J  V type bidders /
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where if bidder i is of type j  and k = 0,1 indexes the participation status of a bidder 

/  i  wins against N j  \
Pr I potential j  type  J =  (2-9)

\  bidders /

N°'i "
N, t -  11'J

fc=0,l
" 0 , 3  =  0  

" 1 , 3  =  1 { 3 = £ }

where CTj(.|c0it,Sfc) is the equilibrium bid distribution at state sk,t =  (k, s_i)t) where k — 0 ,1  

is the bidder’s own participation status, so t and Siit are then states for a bidder who did not 

participate in a previous round and a bidder that did participate, respectively. C n^’J =

(N k , j  l{si,t=fc} \ are ĵje usua] binomial coefficients, and N t , is the total number of bidders
n k, j  J  ’3

who have participation status k =  0,1 and 1 {j=c} is an indicator. The indicator captures the

aforementioned assumption that a bidder will always face at least one large bidder, either an

actual large bidder or the Department. 1{S< is an indicator that equals one if the bidder has

participation status k. If a bidder i is not of type j  then the above is simply:

/  * wins against N j  \
Pr I potential j  type I =

\  bidders /

N o , j , N lt j

E  II  [C"‘.i] ~  -  Gi(M«o.«.<>*.*)]n‘J (2.10)
„0„ = o  *=0'1

Note, that the main difference between (2.9) and (2.10), is that in (2.9) we are correcting for the 

number of opponent players that are of the same type as player i. For fringe bidders the equivalent 

expression is:

( i wins against Njr \  N?
potential T  type j =  P r ( n ^ |S t ) [ l  — Gyr(&i t |co ,t, S*)]n:F ( 2 - H )

bidders J  n r= Q
We discuss in detail how we specify the term Pr(njr|st ) in the next section.

Markov Perfect Equilibria: A MPE in this game is a set of strategy functions a* such that for any 

i of type j  and for any (s, ^ ,C j,co) G S x x C j  x Co,

< > , & )  =  arg max { U W fa o * ,p '? )  -  &) +  (1 -  di)(W/0(s;<T*,py)) (2.12)

and

bfj(s,Ci,co) Gargmax[6i -C j]P r(t wins|s,6i ,co;a,* ,a t)  (2.13)f>i€B

where B =  [0, oo).
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Existence of Equilibrium in the Participation Game: Following Auguirregabiria & Mira (2007) 

and Pesendorfer & Schmidt-Dengler (2008), the existence of equilibria of the participation game 

is analysed in probability space. A bidder will enter an auction if

W?i(s*; <X,cjjt) -  (f>i<t >  W* (s,;<x, (2.14)

(2.14) characterises the optimal decision rule. The above can be evaluated before the information 

acquisition costs are observed which yields the ex ante optimal choice probabilities, induced by a*, 

given perceptions of opponents’ entry strategies, a and a jr.

/ OO

1{w? i(si5 <*t ) ~  W/o(st; > 4>}dHj{(j)\sitt) =  Ai,j(st ;<r, ( 2 . 1 5 )

pitj is therefore the optimal choice probability induced by the MPE a * defined previously. Equi­

librium existence of the participation game is easily shown by looking at the ex ante optimal 

choice probabilities defined previously. Let the set of ex ante choice probabilities be given by 

A(q) =  {A ij(s t -,(y) : i =  1,..., N  & j  =  £ , «S}, these are the choice probabilities induced by the 

strategies in <r, where q  =  {q ij(s') : i =  1,..., N  & j  = C, S  & s' E S} is the set of entry decision 

rules for all regular bidders, as defined in 2.2. Equilibrium points are therefore fixed points, i.e. 

let p be the set of optimal choice probabilities for every state and every bidder then

P =  A(p), (2.16)

since beliefs in equilibrium are consistent. These choice probabilities are well defined and contin­

uous in the compact set of bidder’s choice probabilities. Brouwer guarantees that at least one set 

of beliefs exist for this system.

Existence of Equilibrium in the Auction Game: The auction game resembles existing static auctions 

considered in the theoretical literature. First note that the following hold: the completion cost 

space C j  is a separable metric space with measurable partial order, the joint density of types is 

bounded and atomless, action space is compact, and payoffs are continuous for every c G [c,c]. In 

our case the interim payoffs are log supermodular and therefore single crossing holds. Following 

Reny (2008), the auction game we consider has an equilibrium in monotone pure strategies.

2.2 Estim ation

Our data consists of repeated observations of bids, participation decisions for all players and 

contract characteristics for T  periods.

data =  {6i)t, di>t, c0)t : i =  1,..., N; t = 1 ,2,..., T }  (2.17)

In this section we show how private costs can be inferred from observed bids. We then show 

how the participation model can be estimated using an asymptotic least squares estimator. The
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first step requires the estimation of auxiliary parameters of the model, i.e. the optimal choice 

probabilities of participation Pi,j{st) and the equilibrium bid distributions. We then use the first 

order condition for an optimal bid to compute an expression for privately known costs as a function 

of the submitted bid, the equilibrium bid distribution and the optimal choice probabilities. We 

then outline an optimal minimum distance estimator that finds parameters which minimise the 

distance between the non-parametrically estimated choice probabilities and the choice probabilities 

implied by our model.

2.2.1 Optimal Choice Probabilities

Per period profits do not depend on the identity of the bidder but merely on the number of each 

type of bidder, i.e. the number of laxge and small bidders, all relevant information in •

i =  1,2, ...,iV} can be captured in a bidder’s own participation status dijt- 1 and the number of 

competitors of each type, defined as =  Z)fceN£\i ^M -i & N s,t = 52k’%ns \i dk ',t-1- Following 

Auguirregabiria & Mira (2007), the optimal conditional choice probabilities at some state sm =

(s, A//;,.A/s) are estimated by simple frequency estimators, for states not observed the nearest

neighbour is used. The estimator has the following form:

~  iTr \r  \ S t  l { ^ i , t  =  =  s ,  Mc,t =  A/]c, A /s ,t  =  A fe }
Pj{s,J\£,Afs) =  ------------ 1 t ’-------------------------------------~------------:—~— (2.18)

EieNj E t=o,i E f  =  k,St =  Si, Nc,t =  Me, Ms,t =  JV5 }

Ideally, we would make use of kernels to smooth over states that we do not observe and are 

exploring possible approaches to this. We use these probabilities as inputs into the computation of 

the transition matrices and the period payoffs. The estimation routine does not require us to use 

nearest neighbours. We could equally only use choice probabilities for observed states and then 

estimate the structural parameters. However, this would be inconsistent with the auction game, 

since bidders take expectations over all possible number of bidders and not just over observed 

bidder configurations. At a later stage we will explore alternative methods that will not require 

the use of unobserved states.

Fringe Bidders.:Fringe bidders enter with same probability p* conditional on state variables, as 

specified by their entry strategy in Oj?. With a large number of potential bidders, we model 

the number of fringe bidders in an auction as a poisson process with parameter S depending on s, 

similar to Bajaxi h  Hortacsu (2003). In other words, the probability of observing njr fringe bidders 

is given by:

p -s& 8 (S\n*r
Pr(nH s) =   ------ - y —  (2.19)njrl

where log[<5(s)] =  60  + £iA/s +  62A//;.
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2.2.2 Bid Distributions

Following Athey et al. (2008) and Jofre-Bonet & Pesendorfer (2003), bid distributions are estimated 

parametrically and assumed to follow Weibull distributions. We assume that the shape parameter, 

x/j ij  and scale parameter, depend on the contract size and the state variables. The bid 

distributions have the following functional form,

/  iog(frt,t+i) v
\  V,2j'(co,l , 5 i,t , S—j^ ) J (2.20)

where V’fc.jO) is given by ]ni/}kjj(co, sM,s_ M) =  ^ k}0j + ^k,ijCo,t +  ^k,2jSi,t + $k,3jN c,t + 

for j  =  C, S  Sz k =  1, 2.

Fringe Bidders: We assume that the fringe bid distribution is also described by a Weibull distrib­

ution.

Gjr(btrt\cott,s t) =  1 -  exp (2.21)

where logi>k,T(co,t, &t) =  ^k,T ,o +  V ^ .ico .t +  +  f p k ^ ^ c  for k — 1, 2, where the last two

terms in the expression axe the number of laxge and small bidders who participated in an auction 

in the previous round.

2.2.3 Private Costs

The first order condition for an optimal bid can be re-written to yield an expression for private 

information Cijt, in terms of observables:

ci,t — bi,t — [r}c(bi,t, st> co,t;<7*) -1- Tjs(bi,t,st , cq,*;cr*) +  Tir(bitt, st ,co,t;aj?)\ - l (2.22)

where

q /  i wins against N j
\  potential j  type bidders b i , t i Sf, CQ^ti (J  ̂ / d b i j

P r (  i wins against N j bi,t> St , C0)t;
(2.23)

potential j  type bidders

The second term in (2.22) is the markup term. The exact form of (2.23) can be found in the ap­

pendix. The above closely follows Guerre et al. (2000), except that expectations axe taken over the 

number of actual competitors with the number of potential competitors constant over time. Quasi­

valuations can be computed by estimating the equilibrium bid distributions Gj( . \ co)t, Sijt, s_ i>f) and 

substituting these into expression (2.22). This allows for point-wise estimation of the private cost 

distribution.

2.2.4 Parameters of the Participation Game

The primitives are estimated by finding parameters that minimise the distance between the non 

parametrically estimated choice probabilities and the choice probabilities implied by the model. 

Values can be computed from the data conditional on the structural parameters, these can then
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be used to compute optimal choice probabilities for our model. Let 6  =  (qo,£, c*i,£, cto,<S) c*i,<s)- 

Given the Pareto distribution assumption on information costs this allows for a simple form of the 

value function. We can use equation (2.7) together with the Pareto assumption to re-write the 

value function for bidder of type j  as:

V '(s<ft,s_ <tt;<r*, *>,*) =  (2.24)

1 -  atj^Sij)

where ^ ( s t ,a*) =  The details of the derivation of the value function can be found

in the appendix. The next step involves substituting the expression for an optimal bid into the 

expected period payoff function. Specifically, changing the variable of integration from cost, c to 

bids b yields

’b Pr(i wins|s*it, 6, cq; cr*, cr£)
^  (s*,t j S—i,t5 <7 , (Jjr) — E c

r  P r (* w in sK t ,  6, co; cr*, <r£)
I . . 9j\P\Si,tiS—i tj co)dbJo r}c + r}s + T ]jr

(2.25)

where 77̂ , 775 and T)jr are as defined in (2.23). The above can be used in the ex-ante value function 

which is then given by

P J(sM,s_ i>t;<r*,(7> ,0) =  y ( 8 t><T*y(3Mj8_M;<7 * ,a »  (2.26)

+P 7J (st ,a*) ^ 2  PT(st+i\st,di,t =  i;a* ) +  [ i - 7 J (st , £T*)]Pr(s;+1|st ,diit =0;cr*)
8't+ieS

X V i  ( S ; + 1 ; „ } r ,  9 )  +

Now let n 3 (<7 ' , ( j f )  — [7rJ(s'; o*,o^)]B'gs bo the vector of expected period payoffs , V*{o* , 0 ^ , 8 ) =  

/es be the vector of values, P J (st) =  \pj(dijt = 1 [s'; cr*)]s/es is the vector of choice 

probabilities, P^cr*) =  diag([7J (s', cr*)]s/eSi) and M{(a*) is the m s x m 3 transition matrix induced 

by participation in the current round of auctions. In other words, row s G S of the transition matrix 

is given by [Pr(s'|s, d = 1; cr*)s/eg]. And let A-7 =  diag([aj(s')]s/eSi) be a m s x m s diagonal matrix. 

The matrix equation for the value function can then be written as follows:

V V .ffJ r i* )  = P ( O I F (o ',a ? )  + /?[P((X *)(M f(0 - Mg(<7‘ )) +  M (5 (< r* )]l"W jd « ) (2.27)

+ ( /  -  A i ) - l A> ■ l

where i is a m s x 1 vector of ones. The above can be re-arranged to yield

V V ,* > ;0 )  =  [I -  0 P '( O ( A ^ ( O  -  M lia*)) -  p M ii* * ) ] - 1 (2.28)

x [r i{(7 *)nj (a*,(T*r) +  (J -  Ai )~1Ai ■ i]
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To compute the value function estimates of the choice probabilities, defined above, and the period 

payoffs are required. The period payoffs can be computed by numerically integrating the expression 

in (2.25). To compute the expectation with respect to bitt in (2.25) Gaussian quadrature methods 

are applied as outlined in Judd (1998) and with respect to contract characteristics the payoffs are 

evaluated at a fixed random sample of 50 contract characteristics and simple averages are taken. 

Given the above we can then compute the optimal choice probabilities implied by our model. 

The probability that a bidder enters an auction, given her participation in the previous round of 

bidding, is given by

(2.29)

ttj (st ;<r*,CT» +  /? ^  [Pr(sj+1|st , ditt =  1;(T*) -  Pr(s't+1|st , diti = 0; a*)]VJ(s't+1;a*, a?) si,t
*t+1

Stacking the above expression over states and bidder types yields p  =  A(p; 9). The estimator 

forces the equality constraints p  — A(p; 9) =  0 to estimate the structural parameters. In other 

words the estimator given first stage estimates is given by

nun (p -  A(p; 0))' W (9) (p -  A(p; 9)) (2.30)
0

where W  is the optimal weight matrix which depends on the covariance matrix of auxiliary para­

meters and the bid distributions and the derivatives of the estimating equations with respect to 

the auxiliary parameters and the parameters of the bid distribution functions4. Specifically, the 

optimal W  is given by

W ( 6 )  =  ( [ (1 : 0 ) -  V (p,* ).A (p;0)] £  [(1 : 0 ) -  V (p ,* ) 'A (p ;» ) ] ')_1 (2.31)

0 is a (2 * m s) x matrix of zeros, where is the number of parameters in the bid distribution 

function, \Er is the vector of bid distribution parameters, and E is the variance covariance matrix 

of the choice probability estimator and of the bid distribution parameters. The optimality of this 

weight matrix follows from the conditions presented in Gourieroux & Monfort (1995). Asymptotic

normality of this estimator is also established there. Our estimator is different from Pesendorfer

Sz Schmidt-Dengler (2008) since payoffs are known and computed in the first stage of estimation. 

As a result, our weight matrix will not only depend on the variance covariance matrix of the 

optimal choice probabilities but also on the bid distribution estimates. Given that our first stage 

estimates are consistent and asymptotically normal we can directly apply the results in Gourieroux 

& Monfort (1995).

4 Note that the special feature of auction participation games as opposed to  standard market entry gam es, is that 
the payoffs do not contain any unknown parameters. As a result, for certain information cost specifications we can 
directly compute the information cost parameters, for example this is the case w ith the exponential distribution.
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2.2.5 Identification

Identification of the latent values of bidders follows directly from the conditions from Guerre 

et al. (2000). In particular as pointed out by Athey &; Haile (2007), the identification result from 

Guerre et al. (2000) can be re-interpreted as being conditional on the realisation of auction specific 

covariates and state variables. For identification we require monotonicity of the markup term in 

(2.22) conditional on auction covariates and state variables.

The parameters of the dynamic game are overidentified. This can be established following 

Pesendorfer & Schmidt-Dengler (2008). In particular, we can also write an equilibrium characteri­

zation linear in the unknown parameters for a bidder that is just indifferent between entering and 

not. This equation system will have more equations than unknowns. In our case period payoffs 

are known, except for the bid distribution and the optimal choice probabilities. The only unknown 

parameters of the dynamic game are therefore those of the information cost distribution. The best 

estimator for our problem is the asymptotic least squares estimator outlined above making use of 

the optimal weight matrix.

2.3 R esults

This section presents results of the estimation. We begin by summarising the estimation of the 

auxiliary parameters followed by estimation results on period payoffs and the structural parameters. 

In each section we provide evidence on the goodness of fit of each estimator.

2.3.1 Optimal Choice Probabilities

We estimate choice probabilities by frequency estimators, as shown in (4.6), and use these two 

compute the transition matrices. Goodness of Fit: To test the goodness of fit we compare the 

average number of large and small bidders across all auctions in our data with simulated numbers 

computed using our choice probability estimates. For each realisation of the state variables observed 

in the data, we select the associated choice probability and draw a uniform random variable on 

[0,1], if the choice probability is greater than the uniform variable the bidder enters. We complete 

this procedure for large and small bidders separately. We compute the mean simulated number of 

large and small participants across all auctions and compare with the data. We find that the mean 

actual number of bidders is 0.457 and the simulated mean is 0.448, with standard deviations given 

by 0.656 and 0.637, respectively. The means are not statistically different at 99% confidence. The 

average number of small bidders is 1.723 with standard deviation 1.754. The simulated number is 

1.7290 with standard deviation 1.251. The means are not statistically different at 99% confidence.
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2.3.2 Bid Distribution Estimates

The parameters of the bid distributions axe shown in Table 2.1. Goodness of F it: To test the 

goodness of fit of the bid distributions, we follow Jofre-Bonet & Pesendorfer (2003) and Athey 

et al. (2008) and compute the mean and standard deviation of the observed bids across all auctions 

and compare with means and standard deviations of bids generated by the estimated distribution. 

The computation of the means proceeds as follows. First we extract the bids, the number of bids 

submitted in each auction and the associated auction covariates including the state variables from 

the data. We compute the mean and standard deviation of all bids observed in our data. We then 

use the data on the number of bids submitted in an auction and the covariates to draw bids from 

our estimated distribution. We then compute the mean and standard deviation across all drawn 

bids. This computation is done separately for large and small bidders.

For large bidders the mean of observed log bids is 13.503 and the simulated mean is 13.5116, 

with standard deviations given by 1.1298 and 1.1232. The difference between the two means 

is statistically not significant at 99% confidence. Similar results are found for the small bidder 

distributions, with an observed mean of 13.512 and a simulated mean of 13.596, with standard 

deviations 1.1232 and 1.2287, respectively. The two means are not statistically different at 99% 

confidence. We conduct similar tests for the fringe bidder distributions and find similar results.

We also simulate a low bid from the distributions. This test is more appropriate since the 

minimum bid determines the procurement costs of MDOT. We take the minimum bid in each 

auction by large and small bidders across all auctions, the number of large and small bids submitted 

and the associated auction covariates. We compute the mean and standard deviation across the 

entire set of minimum bids for each type of bidder separately. We then draw the same number 

of bids as observed in the data from our estimated distribution for each set of auction. We then 

compute the minimum bid in each auction and compute the mean and standard deviation across 

all auctions.

For this test, we follow Athey et a l (2008) and we consider the means and distribution of the bid 

residuals. Specifically, given the Weibull distribution we can write a bid from bidder i of type j  as 

K t = sitt, s_i)t)e*)t(co,i, sitt, S - i%t)  which can be re-arranged as ^ / ^ ( c o . t ,  si>t,s_ itt) =

Ci,t{co,t> si,t, s_ i.t). We then compute the bid residuals for the observed minimum bids and for our 

simulated minimum bids. We find that for large bidders the means of the residuals are given by 

0.994 and 0.988, for the actual and simulated bids, respectively. The standard deviation for the 

observed bids is 0.013 and for the simulated it is 0.020. The means are not statistically different 

at 95% confidence. For small bidders the observed mean is 0.985 with standard deviation 0.019 

and the simulated mean is 0.939 with standard deviation 0.068. The means are statistically not 

different at 95% confidence. We therefore find that the fit is good for both distributions.

Effect of Individual Variables on Large Bid Distribution: We compute the mean of our estimated
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Table 2.1: Bid Distribution Estimates Whole Sample
V ariable

Large

Coefficient 
(Std. Err.) 

Small Fringe
0 io, constant 1.8385 1.8351 1.4342

(0.1062) (0.0408) (0.0020)

0 n , engineer 0.1897 0.1898 0.2122
(0.0092) (0.0033) (0.0002)

020, constant 1.6591 1.6593 1.6488
(0.0104) (0.0221) (0.0001)

02i , engineer 0.0702 0.0702 0.0710
(0.0007) (0.0014) (0.0000)

State Variables

0 12, i’s state, sitt = 0.0299 0.0263
(0.0698) (0.0263)

013» #  of large bidders in previous round, Me 0.0071 0.0069 0.0003
(0.0029) (0.001) (0.0001)

014» #  of small bidders in previous round, Ms -0.0602 -0.0573 -0.0363
(0.0316) (0.0071) (0.0004)

022, i’s state, sitt — ditt- \ 0.0018 0.0018
(0.0023) (0.003)

023, #  of large bidders in previous round, Me -0.0002 -0.0002 0.0001
(0.0001) (0.0003) (0.0001)

024, #  of small bidders in previous round, Ms 0.0010 0.0010 -0.0008
(0.0014) (0.0015) (0.0000)

Number of Auctions= 4927 
Number of Bidders= 30

Weibull distribution for the average engineer’s estimate and value of the state variables.

Log of Engineer’s Estimate: Increasing the engineer’s estimate by 0.01 increases the mean from by 

1%, the variance decreases from 0.0453 to 0.0452.

State Variables: Increasing M e by one increases the mean of the distribution by 0.8% and the 

variance increases to 0.0535. Increasing M s by one increases the mean by 6.8% and the variance 

increases to 0.2623. Very similar results are found for the small bidders distribution.

2.3.3 Estimation of Private Costs and Markups

Recall that markups over costs are defined in (2.22). We substitute the estimated density and 

bid distribution into this expression evaluated at the observed bid and its associated covariates. 

On average the observed markup for large bidders is equal to 21.46%. The average markup for a 

winning bid is equal to 25.89%. The average markup for a small bidders is 21.08%. The average 

markup for a winning small bid is 23.76%. The average markup for a fringe bidder is equal to 

24.27%.

Krasnokutskaya (2003) estimates her model using MDOT data as well, however for a different 

time period, and finds markups in the order of 8% and for a winning bid the markup is 16%. 

The main difference between these results and ours is the inclusion of unobserved heterogeneity 

which reduces the amount of variation due to private information. It is possible, as in Athey
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Figure 2.1: Bid Function for Large Bidders
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et al. (2008), to include parametric unobserved heterogeneity into the bid distributions here and 

estimate a Weibull-Gamma mixture. We aim to implement this feature in the future. Jofre-Bonet 

& Pesendorfer (2003) find markups that exclude dynamic effects on average roughly equal to 20%. 

Bajari et al. (2006) and Bajari et al. (2004) estimate markups that are equal to 6%.

In Figure 2.2 we plot the cost distributions for the sample average of the engineer’s estimate 

and at the most frequently observed state variables, which occurs in 13% of the auctions. We can 

see that the large bidder distribution has a lower mean, which we would expect given that a large 

bidder is more able to mobilise equipment across the state of Michigan. Note, that this was not 

imposed during the estimation. The average cost for a large bidder is $521,130.04 and for a small 

bidder the mean is $836,069.91. Moreover, the difference in costs is statistically significant at 99% 

confidence.

Bidding Function: Given our estimates we can compute the bidding function. We use (2.22) to 

compute an optimal bid for different completion costs. The bid function is plotted by holding the 

state variables fixed, taking an average of the engineer’s estimate and varying the completion cost. 

The results can be seen in Figure 2.1. The bid function approaches the 45° fine. We also find that 

for bids at the lower end of the bid support, we compute negative costs which we find implausible. 

When we find negative costs we set these equal to zero, as in Jofre-Bonet & Pesendorfer (2003).

We can also compare how bidding behaviour changes as a bidder’s own participation status 

changes, i.e. when si<t =  0 and when si t = 1 and all other state variables remain unchanged. The 

results are shown in Figure 2.3. It can be seen that a bidder who has s^t =  1 bids higher, i.e. places 

a higher markup on its costs. The reason for this asymmetry is that the bidding strategy takes
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Figure 2.2: Completion Cost Distributions For Most Frequently Realised State

Cost Distributions for Large and Small Bidders
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Figure 2.3: Bid Function for Large Bidders
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Figure 2.4: Bid Function for Large Bidders
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into account that bidders are asymmetric in their entry behaviour, due to size and information cost 

differences. A bidder who was active in a previous round therefore faces one fewer rival who on 

average is going to have a lower information cost. A bidder with t =  0 has to take expectations 

over a larger number of bidders who were active in a previous round and who will enter with 

a higher probability and will therefore have to bid more aggressively. Put another way, when a 

bidder’s own state changes from si<t =  1 to t =  0 the potential pool of bidders of type whose 

participation status was 1 increases by one. Therefore, the number of potential high probability 

entrants is higher for a bidder with =  0 then one with si>t =  1, and therefore the bidder must 

bid more aggressively since the potential number of actual competitors is higher. Recall that from 

the reduced form analysis we found a positive effect of own participation on the bid level. However, 

we would expect this effect to be reduced when we are in state configurations when there a large 

number bidders who were active in the previous round. This is precisely what can be seen in Figure 

?? where we have plotted a large bidder bidding function for a state where the maximum number 

of previous round large and small bidder participants is reached and only own participation status 

of the bidder changes.

2.3.4 Period Payoffs

We compute ex ante expected period payoffs using (2.25) yielding payoffs as a function of public 

states. These results will be used as inputs in the estimation of the structural parameters. The 

average period payoff over all possible states for a large bidder is $111,901.14 and for a small bidder 

it is $43,539.92.
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2.3.5 Information Costs

The parameters for the participation game are presented in Table 2.2. Given the parameters 

we can compute the average expected sunk information cost, i.e. Ê icj)\(f> <

Wq (st ; cr*, cr r̂)) averaged over all states. The information cost amounts to $9212.10 for a large 

bidder and $3979.90 for a small bidder. For states where a bidder participated in the previous round 

the average information cost is then $8052.30 and for states where a bidder did not participate 

is given by $10,371.97. For small bidders the average information cost for states where they 

participated in the previous round is given by $4043.30 and for states they did not the average 

information cost is $3916.50. Average information cost sunk by smaller bidders are lower than large 

bidders, since small bidders require very low draws for the information costs in order to enter. As 

shown in the previous section, small bidders’ period payoffs are on average much lower than large 

bidders, therefore a small bidder requires a much lower information cost to induce participation, 

since the expected profits from participation are not as high as a large bidder.

Table 2.2: Structural Parameter Estimates
V ariable Coefficient 

(Ltd. Err.)

otc, o -4.8346
(0.0101)

ct£t i 0.2245
(0.0064)

as,o -5.2267
(0.003)

ats, i 0.1322
(0.0001)

Goodness of Fit: To test the goodness of fit of our model we simulate the number of entrants

for all observed states and compute the average number of bidders across all auctions. We draw 

information costs from our estimated distribution for 0 and compare this to the value of entering 

given by the difference W /(st ; cr*, <r̂ r) — Wq (st ; cr*, The average number of large bidders is 

0.4572 with standard deviation 0.6555. The model predicts an average number of 0.3920 with 

standard deviation 0.5930. The model underpredicts the number of entrants on average. On 

average there are 1.7233 small bidders with standard deviation 1.7537. The model predicts an 

average number of entrants equal to 1.4210 with standard deviation 1.1528.
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Chapter 3

Policy Im plications and 
Sim ulations

In this chapter we consider the performance of the auction mechanism using the estimated primi­

tives. With the primitives in hand, it is possible to assess potential allocative inefficiencies and to 

simulate the effects of addressing these inefficiencies. The first step is to determine whether the 

presence of asymmetries between bidders leads to misallocations due to the use of a first price auc­

tion. The second section deals with addressing potential issues with the mechanism by considering 

an alternative auction rule that leads to efficient allocations, which, however, might have adverse 

effects on procurement costs.

3.1 Inefficiencies due to A uction Format

When bidders are asymmetric it is possible that a first price sealed bid auction will lead to inefficient 

outcomes. In our model there sure two potential sources of asymmetry. The first is through the size 

of the bidder which affects the completion costs and the other is through the dynamic synergies in 

participation. To determine whether this is the case in the MDOT data we use the primitives to 

estimate how often the low bidder does not win the auction, holding the entry process fixed.

We take a random sample of 250 contract characteristics and compute the simulations for the 

same set of contracts 1000 times. The steps of the simulation are as follows. We draw information 

costs from our estimated information cost distribution and use the estimated strategies of large 

and small bidders to determine entry. For fringe bidders we use the estimated poisson model to 

determine the number of entrants. After the entrants have been determined we draw bids and 

use the inverse bidding strategy to compute costs. We then compute the fraction of auctions 

the low bid does not correspond to the lowest cost. We find that this occurs on average in 

10.84% of the auctions. The average difference between the low bidder and the winner’s cost 

is 4.31% of the engineer’s estimate. Krasnokutskaya (2003) estimates the average probability of 

inefficient outcomes in her MDOT data at 5%. Jofre-Bonet & Pesendorfer (2003) find a 32% 

average probability of the low bidder not winning.
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3.2 Changing the A uction Format: Open Auctions

Given that there are inefficiencies due to auction format we consider changing the auction rule. 

The open auction rule can lead to efficient outcomes, when bidders play the dominant strategy 

equilibrium in which they bid their costs truthfully. We exclude fringe bidders in this analysis, 

since we have not explicitly estimated the primitives that drives fringe participation behaviour. As 

mentioned before, we focus on the dominant strategy equilibrium where all bidders bid their costs. 

We then look at the change in procurement costs relative to the original format and the presence 

of fringe bidders. We simulate this auction using the same random sample of 250 contracts used 

in the efficiency measurement exercise.

As mentioned before, conditional on entry, the auction stage game can be easily simulated 

given that the strategies we focus on take the simple of form of bidding one’s costs. We draw 

costs for the entrants and compute the auction price and profits. If there is only one bidder in an 

auction, they must compete against the MDOT who draw their costs from a regular large bidder 

completion cost distribution. The next step is to compute an equilibrium for the entry game. The 

main challenge we face here is that there are potentially multiple entry equilibria, as described in 

Doraszelski & Satterthwaite (2009). We initially search for equilibria using the estimated entry 

choice probabilities as starting values.

The first step in this exercise is to compute the expected period payoffs for the auction stage 

game at all states for a player of type j .

N jT  n S  -  1{j=S} N C -  1{j=£}

7rj I (s) = '52 X  X  PT(nr ,n s ,n c ) E COjCtX[ (x -c ) l(c < x ) \s ]  (3.1)
njr n s  n c

where x  =  min{cfc}££;*ns+n£, is the lowest cost of the participating opponent bidders. To evaluate 

the above integral, we apply Monte Carlo techniques. Given the payoffs we can then search for the 

optimal set of choice probabilities that are fixed points of the aforementioned equilibrium condition

P =  A(p) (3.2)

There are potentially multiple fixed points for the above, however for this counterfactual exercise 

we follow Ryan (2006) and will focus on only one. Procurement Costs: We now compare the 

procurement costs in the simulated open auction with the realised procurement costs. Using the 

same intuition as in Athey et al. (2008), we would expect the open auction to discourage entry 

from small bidders, since their chances of winning are reduced as large bidders no longer shade 

their costs more than small bidders. As a result, this could then also lead to an increase in the 

procurement costs. In our case the procurement cost in the open auction are on average 133.33% 

of the engineer’s estimate with standard deviation 24% and the observed procurement costs are 

95.51% with standard deviation 14%. The mean procurement costs are statistically different. We 

also compare the procurement costs if we made information costs zero, excluded fringe bidders and
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used an open auction format. In this environment all bidders enter since participation is costless 

and the dynamic effects have been removed in this market. In this case the average procurement 

costs are 11.94% of the engineer’s estimate.
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C hapter 4

A Static Participation M odel

In this chapter we present and estimate a static version of our dynamic game in order to determine 

the effect of ignoring dynamic linkages in these auctions. The estimation approach we take here 

is similar to the dynamic game estimator presented previously. However, the simple structure 

of these auction games, specifically the fact that period payoffs are known and do not contain 

unknown parameters aside from the bid distributions and entry probabilities, allows for an even 

more straightforward estimation approach.

The static model echoes our dynamic participation game. Bidder’s participation decision is 

again completely determined by the information cost which is unobserved by the other players. 

Bidders compare the information acquisition cost with the expected profit from entering the auc­

tion, if this difference is positive they enter, if not they stay out.

4.1 Setup

Bidders are risk-neutral and are categorised as large (£), small (<S) and fringe (T) bidders, as in 

the main paper. Denote the set of bidders of type j  as N j. The game is structured as before.

Private Completion Costs: Bidder i of type j  = £ ,S ,J -  draws private costs, c* € Cj, independently 

and identically from the cost distribution Fj(ci\co) on [c,c], conditional on co,t*

Information Costs for type j  bidder: All types of bidders draw information costs from a Pareto 

distribution with density

=  (4 -1 )

Let Hj denote the distribution of <f) for type j .

Strategies consist of a bidding strategy and an entry strategy. A bidding strategy maps from the 

completion cost to a bid. The entry strategy specifies a cut-off value for entry costs. Denote the 

participation choice separately as dj for bidder of type j . Denote the set of strategies for each type 

separately a  =  {cr*,j, i = 1, N  h j  =  £ , T , 5}. Let qj be the ex ante expected entry probability
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for a bidder of type j , in other words

1*00 ___

/
OO

1 {<*»(« =  1 } M ^ ) #  (4-2)

The above is the entry probability of a bidder if they follow their strategies specified in aj. 

Payoffs: A bidder’s expected profit conditional on entry is given by:

7rJ (c q , Cj, cr) =  max[6 — c*] Pr(i wins|5, Co; a) (4.3)
b

where

/  i  wins against \  /  i  wins against \  /  * wins against \
Pr(t wins) =  Pr I N c  potential C J X Pr I N s  potential S  I X Pr I Nj r  potential T  J (4.4)

V typ>e bidders J  \  type bidders J  V type bidders J

and where

(i  wins against N j  \
potential j  type j =  (4.5)

bidders J

Nj~ l{ieN •}

n j = 1 U = c y  j

where l{»GNj} is 2111 indicator that equals one if bidder i is of type j

Equilibrium: A type symmetric equilibrium is a collection of bidding strategies for each type of 

bidder and entry strategies with property that, bidder’s bid strategy maximises profits conditional 

on entering and each bidder only enters if the expected profits, prior to revelation of contract 

characteristics, exceeds information acquisition cost. Denote the equilibrium strategies as a*. 

Denote the equilibrium entry probability for a bidder of type j  as pj.

4.2 Estim ation

4.2.1 Entry Probability

We estimate the entry probability for each regular bidder type separately and non-parametrically 

by a simple frequency estimator.

ZiGNj H i = 1}
Pi — ---------— ^---------------  (4.6)

Z k= o , i Z l  H d j , t  =  k }

Entry probabilities for large players is given by 11.43% and for small players 6.63%. We test the 

goodness of fit of these estimates by assessing whether the estimator can reproduce the average 

number of entrants of each type. We find that they indeed can.

For fringe bidders we estimate entry probabilities by assuming that the number of fringe bidders 

follows a poisson process with distribution given by:

P r(n^) =  e- ± r  (4.7)
n j r \
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4.2.2 Private Costs

We assume that all bidder types have the same functional form for their bid distributions. All 

types have bid distributions that follow a Weibull distribution, with shape and scale parameters 

functions of the contract size.

(4.8)

for j  =  .F, £,«S where log V>fcj(co,t) =  ipk,j,o +  V’fcj.iCo.t for k = 1,2. The fit of the bids is tested 

following the same procedure outlined in the main paper. We find that the bid distributions fit 

well. We then use the first order condition for an optimal bid to infer private costs as described 

previously. In other words private costs can be estimated by computing:

c*,t =  &i,t -  {nc(bi>t, c0,t ; cr*) +  r)s{bitt, c0>f; a * )  +  r]r(bijt; <r*)]- l

where and
n p r /  i  wins against N j

y potential j  type bidders bitti CQ,ti &  ̂ / dbij

Pr (  * w*ns against N j  
\  potential j  type bidders bi,t j Cott'f

(4.9)

(4.10)V c o , t ’i & ) —

The above expression will have a similar structure to the dynamic version.

4.2.3 Entry Cost Distribution

Given the first stage estimates we can directly compute the parameters of the entry cost distrib­

ution. The first step involves computing the expected profits from an auction, prior to contract 

characteristics being revealed. This involves substituting the expression for an optimal bid into 

the payoff function in (4.3). We then integrate over private costs and contract characteristics. A 

change of variable of integration from c to b yields

nj (a*) = E,Co /
JO

Pr(i wins|6, c0;cr*)_ . .
■gj{b\co)db (4.11)

r)c +  Vs +  rjjr

We use Gaussian quadrature to evaluate the integral with respect to bids and take a random sample 

of 50 contract characteristics and take simple averages. A bidder will enter an auction if

5fJ (cr* ) >  4>, (4.12)

This optimality condition can be evaluated before the information costs are known, by integrating 

over information cost acquisitions, which yields the ex ante optimal entry probabilities

/
°° ~ ~ ~ 

l{7r^(<7*) >  (/>}hj{(f>)d(f) = i/(7r*(cr*)) =  1 — (cr*)\~aj (4.13)

We can now simply rearrange the above expression to infer the value for otj for each type of bidder, 

which yields

_  Iog(l ~ P j)
log(7rJ(<r*))

Everything on the right hand side is known and we can therefore infer the value of oTj.

(4.14)
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4.3 R esults and Comparison to  Dynam ic M odel

We summarise the main results of the estimation below.

• Markups are comparable to the dynamic model, average markups across all auctions for large 

bidders is 25.08% and for small bidders is 24.13%.

• Completion costs are on average higher for small bidders than for large bidders. We com­

pute costs for a bidder at the average engineer’s estimate. We find that average costs for 

a large bidder are $475,376.40 and $570,297.98 for a small bidder, with standard deviations 

$134,688.55 and $568,837.87 for large and small players respectively. The means axe statis­

tically different at 95% confidence.

• Entry costs sunk by bidders are on average $3553.28 for large bidders, and $4283 for small 

bidders.

• Inefficiencies: Holding the entry process fixed, we simulate auctions for the same random 

sample of 250 auction covariates used previously, and repeat the experiment 1000 times. We 

test the efficiency of the auctions using the same procedure outlined in the main paper. It 

turns out that only 0.1% of the auctions are inefficient with an average cost difference of 

0.29% of the engineer’s estimate.

To summarise, the estimated entry costs axe on average lower than the dynamic model. Average 

markups are roughly in line with the dynamic estimates. However, the major discrepancy between 

the two approaches are in the measurement of inefficiencies due to the first price auction rule. 

The static estimates imply virtually zero inefficiencies. One possible reason for the low level of 

inefficiencies is due to the fact that the asymmetry between bidders who participated in a previous 

round of bidding has been removed from the static framework. Recall the discussion of the bidding 

function in the previous section. In Figure 2.3 we saw that bidders of the same type bid differently 

for participation statuses si>t =  1 and s%tt = 0. The static model, on the other hand, does not 

allow for this asymmetry between bidders of the same type. Ignoring this asymmetry between 

bidders who are of the same type but have different states would make the first price auction 

seem less inefficient than it actually may be. Unfortunately, we cannot compare these results with 

other papers that consider static auctions with participation such as Athey et al. (2008) or Li & 

Zheng (2009) since they either do not measure inefficiencies due to auction rules or only consider 

symmetric auction models.
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Chapter 5

Conclusion

This dissertation analyses procurement auctions of the Michigan State Department of Transporta­

tion. We find evidence of dynamic linkages between auction rounds. In particular, past partic­

ipation has an influence on current procurement costs. We also find evidence for participation 

synergies between rounds of bidding. To fully account for these features we propose an estimation 

procedure for auctions with endogenous participation in a dynamic framework. Private completion 

costs and parameters affecting information acquisition costs and participation are estimated. We 

then quantify the level of inefficiencies due to the use of a first price auction rule. The probability 

of an inefficient outcome is roughly 11%. We find that changing the auction rule from a first 

price auction rule to an open auction, increases the average procurement costs, however it does 

eliminate the inefficiencies caused by asymmetries of bidders in first price auctions. We find that 

the driving force behind higher procurement costs, is that smaller bidders are discouraged from 

entering. There is also scope to analyse the efficiency of entry in this setup. We could, for example, 

consider limiting potential competition. These policy simulations will be pursued at a later date.

We then compare our results to a static participation model. The estimation output leads 

to misleading conclusions concerning the inefficiency of the auctions. In particular, we find that 

the probability of an inefficient auction is close to zero. This divergence can be attributed to 

the removal of a source of asymmetry between bidders in the static model, namely synergies in 

participation between rounds. This result emphasizes the importance of considering potential 

dynamic effects in auction markets.
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Appendix A

A ppendix

A .l  Derivation o f the Value Function
This result follows if one computes the conditional expectation defined in (2.7) using the Pareto 
assumption. Specifically, in equilibrium

p>(st)E44>\<l> < (Hat)) = /

f iirj/B  \  _  w J / e -------------\ l - a , f s , . t ) + l

Notice that 1 — pj(st ) = (W i(st \a,(Tjr) — Wo(st;<r, 0>-))-Qy(s<-*), then we can write the above as:

< (Hat)) = , (l-pj(s,))[W^(B,;<T.ffJr) -  W’̂ s . ja ,^ ) ]  -  . ,(A-2)

Using this in (2.7) with the equilibrium choice probabilities leads to (2.24).

A .2 Com putation of Markups
To compute the expressions in (2.23) we require the derivative of the probability of a bidder. Let 
9 j(- |co,t, Sitt, s_ i,t)  be the associated density of the equilibrium bid distribution. When bidder i is 
of type j  this derivative equals

/  i wins against N j  \  
d P r I potential j  I 

V type bidders )
dbi,t

N0,3 ~
N i , j  -

”-o,j =  0 fc=0,1

ni.J = 1ii=c}

X [ C n - » j ]  Pjfa-kT-^i l  - Pi(s_t ))w-*J - n-*J [l -  G j(6 ji(|c o ,„ s_ jti()]n-fc,j (A-3) 

for regular bidders and if i is not of type j  then the above is equal to:

/  i wins against N j  \  
d P r [ potential j  j

V type bidders J
dbi>t
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No,j,Ni'j
Y  Y [C» ‘i ]  -  Pj(s*))w,'J - " ‘-i [l -  Gj(6<>t|cfc,e, St>t)]**>■-- 1 rjfcjPj(bi.ticfc,t , s fc,t)

n 0,j =  0 fc=0)1

niJ = 1 {J=c}

X [c^:/]pj(s-„)"-‘'>(l-Pi(s-i ))JV-‘J- n-‘-i [l-Gi(6i,.|c-M.s-M)]n-*J (A-4)

and for fringe bidders

( i  wins against Nj? \
potential T  I ^

typ e  bidders )  ^  _ Mnr  g A K A ^ U ^ t )  / A ^

----------------- db~t------------ L =  E  i - g ^ m K „ s , ) (A~5)
* 7 l J T = 0
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A. 3 Identification
We follow Pesendorfer &; Schmidt-Dengler (2008) and focus on the indifference expression for a 
player to  establish identification. In this section we drop j  type superscripts to ease exposition. A 
player is indifferent between entering and not entering if the difference between the value between 
entering and not entering is equal to the cost of information acquisition:

s_M; a*, o*T , 9) -  W0(sj>t, s_M; a*, <r>, 9) = <f> (A-6)

where <f> is an indifferent type. We can then write the above in matrix noting that the parameters 
we seek to estimate are contained in the diagonal matrix T and the matrix A. Let $  be the vector 
of indifferent types. We can then write the indifference equation as:

n  + p(M1 -  m 0)[j -  /?r(Mi -  M0) -  /?M0]_1( rn  -  ( / -  a)~xa  • o  -  $  =  o (a -7)

Which can be re-written as:

-  (I  -  A ) - 1 A  • l =  0 (A-8)

where V& =  /3-1 [/ — /?Mo](Mi — Mo)_1[II — $] and is an m s x 1 vector. Let P  =  diag([p(s')]s/es)> 
then we can re-write T =  (I — A )~ l (P  — A). These can be used in the above expression to yield

+  ( /  -  A )~X(P -  A )$  -  (I  -  A ) - 1 A  • t =  0 (A-9)

(.I  -  A ) ^  +  (P  -  A)<f> -  A  • i = 0 (A-10)

$  -  A® + P $  -  A $  -  A  i = 0 (A -ll)

+  P$] -  A[$ +  ^  4-1] =  0 (A-12)

Let us re-write the above by re-writing A as a vector A  =  [a(s')]s/es and re-writing the vector 
[<£ 4- r  +  l\ into a m s x m s diagonal matrix 0 . This will allow us to write the above equation as:

T + -  0A = ©_1[r + P$] -  A =  0 (A-13)

The first term is a vector containing only known elements. We now focus on the second term which 
is equal to A  =  [exp(o;o — a is ') ]5/es- We therefore take logs of our equation which yields

iog(0—1 [r +  p*]) =  iog(A) =  t o;o
a i (A-14)

where £ is a m s x 2 matrix with a vector of ones in the first column and in the second column a 
vector of ones in the first m s/2  rows and zeros in the remaining rows. This is a matrix equation 
that is linear in the unknowns of the information cost distribution. This indicates that we have an 
overidentified system, since we have m s equations and only two unknowns per type of player.
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