
- a I - 1 6 ^ 0 ^ i

? %* «• A
™ ("OLITISAL Ui)G CJ'

0 Am * > /

<̂g».̂ i^jbyy

ENHANCING DISCRETE EVENT MODELLING BY INTERFACING

EXPERT SYSTEMS AND SIMULATION MODELS

By

Daniel Goodman

B .S c. (LSE)

Thesis subm itted in partia l fu lfilm ent of the requirem ents

fo r the degree of Doctor of Philosophy at

the London School of Economics and Political Science,

U niversity of London.

May 1992.

UMI Number: U616004

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U616004
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

This thesis investigates the representation of operational decision makers

w ithin simulation modelling.

A rtific ia l Intelligence concepts, such as expert systems focus on the

problem of representing, in h igh-level code, complex real-w orld decision making

problems.

The author therefore proposes that the use of expert system technology

may provide an improved means of representing operational decision tasks and

th a t as a consequence, aprio ri possibilities may exist in the context of model

experim entation based on alternative operational policies.

The thesis fu rth e r investigates the nature of operational decision making

and the potential need to represent w ithin a model, inter-dependencies between

decision makers.

A prototype system called ESSIM is developed which comprises of two

in terlinked components, a discrete event simulation module and expert system

module. The benefits of the proposed approach are then assessed by comparing

the functionally of ESSIM with conventional modelling techniques. The

comparison is carried out by developing three alternative models of an

automated container po rt, one of these using ESSIM. Experiments were then

devised and executed which seek to draw conclusions on the thesis proposal.

ACKNOWLEDGEMENTS

Many thanks to David Baimer, my supervisor, fo r his invaluable guidance in

producing th is thesis.

I would also like to thank my w ife, parents, in laws, and friends fo r th e ir moral

support.

CONTENTS

CHAPTER ONE: INTRODUCTION Rgp

1.1 The thesis proposition. 1

1.2 The research strategy. 2

1 .3 Research background. 4

1.4 S tructure of the thesis. 6

CHAPTER TWO: RESEARCH CONTEXT

2.1 In troduction . 8

2 .2 Simulation modelling. 9

2 .2 .1 What is Simulation Modelling? 10

2 .2 .2 What is the purpose of simulation modelling? 11

2 .2 .3 Simulation model development and experim entation. 13

2 .2 .4 Limitations of the simulation modelling approach. 15

2 .2 .5 The relationship between simulation and 19

Decision Support Systems.

2 .3 A rtific ia l intelligence. 21

2 .3 .1 What are Expert systems and how do they work? 23

Knowledge representation: 24

Inference & control strategies: 27

2 .3 .2 What is the purpose of an expert system? 31

2 .3 .3 Limitations of expert systems. 32

2 .4 A I and simulation modelling - mutual support. 34

2 .4 .1 Expert systems and simulation - Is there a difference? 34

2 .4 .2 Simulation and expert systems - Complementary techniques. 37

2 .5 Wider aspects of A I support of simulation m odelling. 40

2 .5 .1 Simulation program generators. 41

2 .5 .2 Model verification and validation. 43

2 .5 .3 In te llig en t fro n t-en d s. 45

2 .5 .4 A I languages & tools in sim ulation. 47

Using ES shells in developing simulation models: 50

LISP based system and Object Oriented Programming: 52

PROLOG based systems: 56

2.5 .5 In terfac in g expert systems and simulation models. 59

2 .6 Conclusion. 63

CHAPTER THREE: REQUIREMENTS OF A DECISION ORIENTED SIMULATION

ENVIRONMENT.

3.1 In troduction . 65

3 .2 Decision m aking. 67

3 .3 Decision making w ithin sim ulation. 69

3 .4 Representing decision making using expert systems. 71

3 .5 Linking simulation and expert systems - A suggested approach. 73

3.5 .1 In teg ra tin g expert system and simulation methodologies. 77

3 .5 .2 Facilities th a t should be provided by the expert system. 85

3 .5 .3 Facilities that should be provided by the simulation component89

3 .6 Conclusion. 90

CHAPTER FOUR: ESSIM - AN ENVIRONMENT FOR SIMULATION

4.1 In troduction . 94

4 .2 Research stages. 96

4 .2 .1 Simulation of a Job-Shop. 96

4 .2 .2 The development of ESSIM. 101

4 .3 Overall system design. 103

4 .4 Design of the expert system component. 106

4.4 .1 The knowledge-base. 106

4 .4 .2 Modelling "Cooperative Decision Making" 113

4 .4 .3 The knowledge-base part-com piler. 115

4 .4 .4 The inference engine. 123

4 .5 Design of the simulation component. 128

4 .6 Design of the communications in terface. 134

4 .6 .1 . The C l-generato r. 137

4 .7 The man-machine in terface. 140

4 .7 .1 ESSIM lib ra ry of low -level routines. 142

4 .7 .2 The graphics display module. 142

4 .7 .3 The man-machine fron t-end module. 144

4 .7 .4 Designer. 144

4 .8 The code lin k e r. 148

4.9 Conclusion. 148

CHAPTER FIVE: VALIDATION OF ESSIM USING A CONTAINER PORT MODEL

5.1 In troduction . 152

5 .2 Design of the container p o rt. 157

5 .3 S tructure of the simulation model. 163

5 .4 S tructure of the expert system knowledge base. 172

5 .5 Design of the man-machine in terface. 182

5 .6 Model validation. 187

5 .7 Model experim entation. 189

5 .7 .1 Experimenting w ith ru le param eters. 190

5 .7 .2 Experimenting w ith variable values w ithin ru les . 192

5 .7 .3 Experimenting w ith ru le structures. 193

5 .8 The alternative Port models. 201

5 .8 .1 Experimenting with the models. 204

5.9 Concluding thoughts on the ESSIM modules. 212

5 .9 .1 Observations on ESSIM’s simulation module. 212

5 .9 .2 Observations on ESSIM's expert system. 215

5 .9 .3 Benefits and lim itations of the user in terface. 219

5.10 Conclusion. 222

CHAPTER S IX : CONCLUSION

6.1 Review of the thesis proposition. 227

6.2 The research rationale. 227

6.3 Review of the research stra teg y . 228

6.4 Conclusions from the model experim entation. 231

6.5 Summary of the research achievements. 235

6 .5 .1 Principal achievements. 235

6 .5 .2 Subsidiary achievements. 237

6 .5 .2 .1 New approaches to expert system design. 237

6 .5 .2 .2 Improvements to the three-phase routines. 238

6 .5 .2 .3 Additional software developments. 238

6 .5 .2 .4 Peripheral benefits of the ESSIM approach. 239

6.6 Future w ork. 240

APPENDICES:

A Job-Shop production scheduling using ESSIM. 243

A .l In troduction . 243

A .2 O verall system design. 244

A .3 The simulation model. 246

A .4 The user in terface. 247

A .5 The expert system and interfaces to the simulation model. 249

B The port model knowledge-base under ESSIM. 252

C Addition of a ru le -set to the knowledge-base. 266

D Coding the port model knowledge-base in Pascal. 272

E Designer - An in teractive approach to man/machine in terface 290

Development.

E .l In troduction . 290

E .2 Using Designer. 290

E .3 Modifying Designer files . 295

F O bject-oriented simulation. 298

F . 1 In troduction . 298

F .2 What is object oriented programming. 299

F .3 Examples of languages based on the object oriented approach.300

F .4 Applying the object oriented approach to model development. 325

G ESSIM output displays fo r the Port model. 330

H References. 334

I B ibliography. 349

CHAPTER ONE

INTRO DUCTIO N

1-1 THE THESIS PROPOSITION

This thesis w ill investigate possible approaches in using A rtific ia l

In telligence techniques in im proving the representation of operational decision

makers w ithin simulation models.

The thesis proposition is th a t expert systems techniques may provide an

improved means of representing w ithin the model, operational policies which in

the real-w orld dictate the course of events. Such operational policies may

require the involvement of m ultiple decision makers and may potentially involve

the representation of some form of hierarchical management s tru c tu re .

The belief that expert system technology may have a role to play w ithin

conventional simulation modelling is a consequence of the fact that much of

A rtific ia l Intelligence research is focused on providing tools fo r the resolution

of complex real-w orld decision making tasks.

There are a number of potential benefits which could be derived from

using A rtific ia l Intelligence techniques in the detailed representation of

operational decision makers and th e ir in ter-re la tionsh ips. The main advantage

is like ly to resu lt from the ease w ith which model experiments could be carried

out based on a lternative operational policies. (In the context of th is thesis, the

1

term "Model Adaptability" w ill be used to describe th is b e n e fit). A second

derivative benefit is that adding model detail in the context of operational

decision making, may ultim ately resu lt in a model which is a b e tte r

representation of the real-w orld problem. The term , "Model Accuracy" w ill be

used in th is thesis to describe th is benefit.

Observations similar to the above have already been made by a number

of authors including Fishman [1973] . They assert th at conventional simulation

languages are not well suited to the representation of decision tasks. Several

authors have identified the potential of A rtific ia l Intelligence (A I) approaches

to overcoming these d ifficu lties . The possibility of in tegrating a model of

operational decision-making in the form of an expert system and a conventional

simulation model has been envisaged by O'Keefe and Roach[1987]. Flitman and

Hurrion [1987] then provide the firs t practical insight in to the potential of

linking an A rtific ia l Intelligence tool w ith a simulation model by building a

system based on two inter-com m unicating m icro-com puters. The research

presented in this thesis follows on and builds upon Flitm an's [1986] pioneering

work by concentrating on two key problems: (1) The representation of

operational policies which are reflected by the real-w orld operational s ta ff and

th e ir cooperative actions. (2) The need to create a "practical" modelling

environment in which the lin k between simulation model and expert system is

almost seamless.

1.2 THE RESEARCH STRATEGY

The firs t stage of the research involves a detailed lite ra tu re study

2

covering both simulation modelling and a rtific ia l intelligence. The emphasis of

the lite ra tu re study is in iden tify ing appropriate s ta te -o f-th e -a rt technology

which could be applied in creating a simulation environment incorporating

a rtific ia l intelligence techniques. Of particu lar in terest are the various A rtific ia l

In telligence approaches to the representation of "Knowledge" and the inference

of conclusions from this knowledge. These can broadly be divided into A I

languages (e .g . Lisp & Prolog) and A I Tools (e .g . Expert Systems and Object

Oriented environm ents). Another im portant aspect of the lite ra tu re study, is

to learn what other researchers have achieved or proposed in the context of

combining a rtific ia l intelligence and simulation modelling techniques. F inally ,

much of th is thesis is concerned with the representation of decision making

activ ities and the in ter-re lationsh ip between decision makers during the process

of enacting operational policies. Consequently, background research was

necessary into the nature of decision making and the implications of hierarchical

management structures.

The approach adopted in th is thesis, was to build upon earlie r work

undertaken by Flitman [1986] and to investigate through the development of a

number of prototype systems, the implications of in tegrating an expert system

model of operational decision making and a conventional simulation model.

The development of the prototype environment involves the identification

and resolution of the many practical d ifficu lties in bringing together expert

system and conventional simulation modelling techniques. The firs t

implementation of a prototype environment principally served the purpose of

iden tify ing these practical d ifficu lties and defining the specification of a second

implementation. This second implementation seeks to overcome the problems

3

identified in the firs t version and form s the basis of a generic simulation

modelling environment w ithin which the practical modelling experience could be

obtained.

A research strategy based on th e development of prototypes is only

effective if one is able to define a means of comparing the value of the new

simulation technique with a more conventional modelling approach. The research

therefore includes the development of th ree simulation models of a container

p o rt. One using the proposed approach,, another using conventional simulation

techniques, and a th ird using Pascal functions to replicate some of the

characteristics of an expert system. A number of experim ents are then devised

which seek to assess the functionality of the three models against the identified

potential benefits of the proposed modelling environm ent.

1 .3 RESEARCH BACKGROUND

The motivation fo r the proposed research orig inally arose from the

author's involvement in the Computer Aided Simulation Modelling (C .A .S .M)

group at the London School of Economics which brought together a number of

research studies in simulation techniques.

One such project which was subsequently to provide a practical modelling

context fo r th is thesis was a jo in t project between the London School of

Economics (L .S .E .) and the In s titu te Nacional de Tecnologia (I . N . T .) , a

Brazilian research C entre. The intention was to produce computer simulation

models fo r production planning and control which were to be used in assessing

4

the consequences of d iffe ren t jobbing and batch production structures in a

typ ical job-shop environm ent. I . N . T . were to provide the necessary expertise

in production engineering w hilst in the fin a l stage of the research, two

m anufacturing concerns, NATEC LTDA and DANCOR S . A . , were to provide the

practical context. The computer systems used a t the proposed sites were to be

in tegrated with the models in providing a decision support system which was to

aid management to schedule and control production.

The rationale in providing such a decision support tool was based on the

fact th a t in a typical batch m anufacturing environm ent, more than 90% of time

is spent idle in queues awaiting processing. Consequently, i t was fe lt that

there was considerable room fo r improvements in productivity by rationalising

the m aterial flows.

R egrettably, geographical b a rrie rs led to d ifficu lties in maintaining close

contact with our B razilian counterparts. The firs t prototype system

encompassing an expert system and conventional simulation model was developed

with the job-shop modelling requirem ents specifically in mind. However, the

subsequent d ifficu lty in gaining access to real-w orld experts meant th a t a

differen t model had to be developed fo r th e evaluation of the second prototype

system. The new model was that of an automated and p artia lly un-manned

container port which was to be b u ilt by Highland Participants PLC on the Is le

of G rain. The real-w orld container p o rt was to be controlled by a software

application, the core of which would consist of decision rules formalised w ithin

a 'knowledge-base*.

5

1 .4 STRUCTURE OF THE THESIS

C hapter two consists of a review of the two areas of research appropriate

to th is thesis, simulation modelling and A rtific ia l In telligence. The chapter

begins w ith an analysis of simulation modelling covering its purpose, lim itations

and applicability w ithin decision support systems. A sim ilar approach is taken

in investigating the area of A rtific ia l Intelligence though particu lar emphasis is

placed on knowledge representation, a topic p articu larly pertinent to th is

thesis. A study of recent papers follows, outlin ing what are cu rren tly

considered to be "advanced" systems in the area of co-operative systems

involving both simulation and A I.

Chapter three focuses on the characteristics of decision making and seeks

to id en tify the possible ways of representing these w ithin simulation modelling

and A rtific ia l In telligence. The possible ways of combining simulation and

A rtific ia l Intelligence knowledge representations are identified and the benefits

and lim itations c ritica lly compared. A choice is ultim ately made as to the

approach to be selected fo r the purpose of building a prototype system.

Chapter four describes the process applied in developing the prototype

system re fe rred to as ESSIM (E xpert System S IM ulation). The firs t prototype

system which consisted of a model of a Job-shop is described and the

conclusions drawn from th is in itia l investigation outlined. The general design

of the second prototype system is then explained followed by an in -d ep th

definition of the function of the various modules of the system.

6

Chapter fiv e outlines the development of the un-manned container port

model already re ferred to in section 1 .3 . The implementation of th is model forms

the basis of the validation of the proposed methodology based on the lin k

between simulation system and expert system . The structure of the simulation

system component of the port model is explained followed by the expert system

knowledge-base component. The process of experim enting w ith the port model

is assessed with respect to the introduction of modifications to knowledge base

and simulation system code. P articu lar emphasis is placed during th is

assessment process on the impact of the expert system approach on modelling

aspects including model "Accuracy" and "A daptab ility". The value of the new

modelling process as encompassed in ESSIM is then compared w ith more

conventional approaches through the implementation of the same port model code

using existing modelling tools. The benefits and lim itations of the ESSIM

approach to modelling are then summarised.

Chapter six concludes the thesis by summarising the work undertaken

and conclusions presented. The achievements of the research are formalised and

suggestions made as to fu tu re work which could be undertaken in order to build

upon the experiences that resulted from the research encompassed in th is

thesis.

7

CHAPTER TWO

RESEARCH CONTEXT

2.1 INTRO DUCTIO N

The research presented in this thesis covers two distinct areas of

knowledge, simulation and a rtific ia l intelligence. The background lite ra tu re

study presented and discussed in th is chapter therefore commences w ith a

review of the nature, goals and lim itations of each of these technologies.

The lite ra tu re study revealed that there existed some degree of overlap

between simulation modelling and expert systems approaches. A number of

published papers were also found which argued th is case. Chapter two

therefore continues to investigate the sim ilarities between simulation modelling

and expert systems and explores the work of other researchers who have

attempted to carry out simulation modelling using a rtific ia l intelligence

languages and tools.

Researchers have fo r some time been investigating the potential of using

simulation and A I to mutual benefit. From the simulation perspective, A I

provides the necessary tools fo r creating advisory systems to assist the user

in all stages of the process of developing and experim enting w ith simulation

models. From the A I perspective, simulation provides the required framework

fo r handling problems involving temporal reasoning (tim e h a n d l i n g) and gives

advisory systems the capability of investigating the fu tu re . Such research,

may provide valuable experience and insight in to knowledge representation

8

techniques and methods used in b rin g in g together simulation and A I. The

chapter therefore concludes with a review of research studies which have

investigated the in terfacing of simulation models and A I languages and tools.

2 .2 SIMULATION MODELLING

Computer simulation modelling dates back to the early days of computers.

Nance [1981] and Shannon [1986] broadly divide the development of simulation

into five stages. Up until the 1960's, simulation models were mostly coded

directly in FORTRAN. In the early 60's, the concept of simulation modelling

attracted much in terest which spurred on the development of simulation specific

languages (themselves using FORTRAN as the base language) including GPSS,

CSL, SIMSCRIPT (Markowitz et a l . , [1963]) and SIMULA. In the late 60's,

revised versions of these languages appeared including GPSS I I / I I I , SIMULA

67 and ECSL (Clementson, 1982). The 1970's was a period of slow development

fo r simulation in which new languages were introduced th a t perm itted the

combination of discrete and continuous components in one model. D uring the

fifth stage which spans from the late 1970's to the present day, attention

shifted from adding more powerful functions to existing languages to one of

providing a more formalised modelling approach which could be used as a basis

from improved productivity in code creation. The CASM (Computer Aided

Simulation Modelling) project at the LSE as described by Baimer and Paul[1986]

is one such example. The CASM concept centered around the use of an

In teractive Simulation Program Generator (ISPG) and a suite of PASCAL

simulation routines based on systems developed a t Lancaster u n ivers ity . The

formalism of an A ctiv ity Cycle Diagram (ACD) is used as a basis fo r in pu t into

9

the generator. Also under the umbrella of the CASM project, was work

undertaken by Doukidis (See Paul and D oukidis[1986]) on automating the

process of model form ulation using a N atural Language Understanding System

(NLUS). The Pascal simulation routines used in the CASM projects are well

documented and tested and are consequently of potential benefit to the research

in th is thesis. These routines form part of the Extended Lancaster Simulation

Environment (eLSE) and are well described by Chew [1986].

The terms 'simulation' and 'modelling' have a widespread and varied

usage. Consequently, th e ir meaning in the context of the thesis requires some

clarification .

2 .2 .1 What is Simulation Modelling?

In general term s, 'Modelling' re fers to the process of constructing a

scaled down version of an existing or proposed real world system. The intention

in building a model is to create e ith er a physical replica such as a three

dimensional object or to generate an alternative system which does not have the

same physical connotations but can nevertheless be used in investigating the

properties of the system being modelled. In th is second category one can

include computer programs used in implementing various types of simulation and

mathematical models consisting of series of equations or logical propositions. A

prime example is mathematical programming in which a set of linear equations

and inequalities are used in creating a model which has no direct equivalence

in the real world system being modelled.

10

Each form of modelling has its strengths and weaknesses. Mathematical

or analytic models are powerful w ith respect to the level of generality of th e ir

associated solution techniques. However, such an advantage leads to the

converse disadvantage of making it d ifficu lt to make model behaviour match

th a t of the real w orld. In the case of simulation models, where the analogy

between the model representation and the real world are th a t much g reater,

there is a singular lack of generality , power and elegance as compared to the

compact mathematical solution technique. On the other hand, considerable

benefit is to be gained by greater faithfulness to detail in th at investigation by

experimentation is made possible by allowing analogical relationships w ith the

real world to be maintained.

2 .2 .2 What is the purpose of simulation modelling?

A simulation model is simply a statement of the way in which the various

components of a real world system in teract to produce a behavioural pattern .

The implementation of the model on a computer permits time scales to be reduced

to a manageable level and hence perm its the program code to be used as a basis

fo r experim entation. Pidd[1992] and M cArthur et al[1986] id en tify a number

of reasons fo r justify ing the cost in time and e ffo rt of developing a model:

Repeatability: In the case of d irect experim entation on a real world

system, replication using d iffe rin g parameters is often e ither impossible

or undesirable. Take a m anufacturing plant as an example. Managers and

customers alike would be ra th er unhappy if 'live ' experim entation led to

a sharp deterioration in delivery lead tim es.

11

Danger: D irect experimentation on a real world process can be

dangerous. Experim enting, fo r example, w ith the operating

characteristics of a nuclear power station or a irc ra ft may be unwise.

Time: Specifying the logic of a model and implementing i t as program code

can take an inordinate amount of tim e. On the other hand, once

implemented, the model can be used to run innumerable experiments on

a time scale drastically reduced from th at of real tim e, (e .g . , economic

systems could not possibly be experimented on d irec tly because of the

time fa c to r .)

In ev itab ility : Some real world systems, such as the solar system cannot

be manipulated d irec tly .

Cost: Simulation models are typ ica lly expensive to develop given that

skilled analysts and programmers are required over a significant period

of tim e. Nevertheless a rash decision implemented as an operating policy

on the real world system can tu rn out to be more costly.

In deciding whether or not to develop a simulation model, the eventual

goal(s) have to be id en tified . As pointed out by Shannon et a l.[1985],

experim enting w ith a lternative operating policies or procedures is not the only

potential use of a model. A simulation model perm its the acceptability of the

corresponding real world system to be evaluated, e ither in terms of robustness

or performance, and in accordance with a given set of c rite ria . S ensitivity

analysis can be used in id en tify ing the factors which are most significant in

12

a f fe c t in g s y s te m p e r fo rm a n c e . O p tim is in g p ro c e d u re s ca n be u se d to f in e - tu n e

s y s te m p e r fo rm a n c e . A n in v e s t ig a t io n can be m ade in to e s ta b l is h in g th e

fu n c t io n a l re la t io n s h ip s th a t e x is t b e tw e e n one o r m ore p a ra m e te rs in th e

s y s te m . F in a l ly , a m ode l e n a b le s t r a n s ie n t b e h a v io u r s u c h as q u e u e b u i ld u p s ,

b o tt le n e c k s , a n d u t i l is a t io n le v e ls to be id e n t i f ie d .

2 .2 .3 S im u la tio n m ode l d e ve lo p m e n t a n d e x p e r im e n ta t io n .

1. Definition of the problem based on an analysis of the actual or proposed
real-world system.

\
2. Assessment of the feasibility of the simulation, drawing on relevant experience

in solution techniques.

I
3. Identification of objectives and critical system components.

\
4. Formulation of a conceptual model followed by its representation as a

communicative model.

i
5. Creation of a programmed model.

1
6. Design of experiments leading to the validation of the model and the

presentation of model results. Return to previous stages in developing modified
versions of the model.

I
7. Transfer of the model conclusions to the real world application.

F/GURE 1 STAGES OF THE SIMULATION LIFE CYCLE

13

In b ro a d te rm s , th e d e v e lo p m e n t o f a s im u la t io n m odel in v o lv e s th e

im p le m e n ta tio n o f th e m odel o f th e re a l w o r ld s y s te m u s in g e i th e r a g e n e ra l

p u rp o s e h ig h le v e l la n g u a g e o r s im u la t io n s p e c if ic p ro g ra m m in g la n g u a g e ,

fo llo w e d b y an in v e s t ig a t io n o f th e m ode l th r o u g h e x p e r im e n ta t io n .

PROBLEM
DEFINITION

PHASES

DECISION SUPPORT
PHASES

DECISION MAKERS

i 1
INTEGRATED

DECISION
SUPPORT

COMMUNICATED
PROBLEM

PROBLEM FORMULATION

FORMULATED
PROBLEM

INVESTIGATION OF
SOLUTION TECHNIQUES, r

PROPOSED SOLUTION
TECHNIQUE

(REQUIRING MODELLING)

SYSTEM INVESTIGATION

PRESENTATION OF
MODEL RESULTS

MODEL RESULTS

3

SYSTEM AND OBJECTIVE
DEFINITION

REDEFINITION
CONCEPTUAL

MODEL

MODEL 1
REPRESENTATION

COMMUNICATIVE
MODEL(S)

MODEL
DEVELOPMENT

PHASES

FIGURE 2
MODEL LIFE CYCLE

EXPERIMENTATION PROGRAMMINGz
]

PROGRAMMED
MODEL

EXPERIMENTAL
MODEL EXPERIMENTAL

DESIGN

14

A proposed simulation model life cycle is defined by Nance [1981] &

Balci[1986] and is illustrated in fig ure 2. The basic stages are listed in fig ure

1.

As with conventional program development life cycles, the process must

be treated as ite ra tiv e , particu larly in the model validation stage, where

through display of output, e rro rs or omissions in the logic of the model

typ ically become apparent. Furtherm ore, experim entation requires a re-analysis

of the logic of the model and implementation of such changes through

modification of the program code.

2 .2 .4 Limitations of the simulation modelling approach.

Simulation model formulation and implementation forms part of a

challenging and complex process that demands of the modeller considerable

analytic skills . The experimentation stage that follows the construction of the

model also exacts specialised skills in statistical design and analysis of

experim ents. Another point noted by Moser[1986] is th a t the experts needed

in in terpreting simulation results do not all come from a simulation background

and include specialists from the fie ld being investigated. The potential scarcity

and cost of such expert advice fo r output in terpretation can n u llify the

advantages of simulation as a management planning tool. Such lim itations linked

with the fact that the process of simulation modelling requires long and complex

computer programs have lead to the reputation of simulation as a costly and

time-consuming process. Pidd[1986] claims th a t such factors are serious

limitations and consequently that ’computer simulation should be regarded as a

15

last resort - to be used if all else fa ils '. Indeed, many see the prim ary

contribution of simulation to decision support as being lim ited to areas of high

risk strategic decision making in which physical danger or capital investments

are major factors.

Simulation modellers face a number of other lim itations that cannot easily

be overcome and these are typ ically acknowledged as shortcomings which are

offset by the benefits that the model occasions (See Koskossidis & Davies[1987]

and Fishman[1973]). Some such lim itations can be classified as follows: (The

firs t two have also been discussed in chapter one)

Accuracy: Accurate representation of the real world tends to be a

d ifficu lt goal to reach, p articu larly in cases where extensive use is made

of simple approximations based on prio r observation and sampling ra th er

than modelling actual behaviour. Many systems include the presence of

one or more decision makers who typically have considerable influence

over the activities th at take place. The complexity of decision making

tasks sometimes mean that sim plification or omission are necessary in

creating the model. As O'Keefe and Roach[1987] explain , the d ifficu lties

in using present modelling structures fo r the representation of decision

making leads to an inclination on the part of the modeller to lim it the level

of detail. This lim itation in the the level of detail with which decision

tasks are represented may have the effect of restric tin g the scope fo r

experim entation. Another problem sited by the authors is that much

critical knowledge can also get lost or m isinterpreted during the

translation to computer code. I t should however be noted th at the reverse

16

situation can be just as much of a problem. The gains achieved by an

overly detailed model may be to ta lly outweighed by the development

overheads incurred and the d ifficu lties that ensue in modifying the model

logic. Consequently, a careful balance is required between the level of

detail and the investment necessary in achieving the degree of

representational accuracy.

A daptability: As we have seen, the scope fo r the application of simulation

is lim ited. O ther modelling techniques may be more appropriate or there

may exist inherent problems in creating a fa ith fu l representation of the

real w orld. Given that the simulation model has been created, the modeller

may, (at the experimentation stage, and sometimes earlie r if systems

analysis and design methodologies are not adhered t o ,) be faced with the

need to a lte r the logic of the model. Meadows[1988] highlights th is

problem in terms of incomplete or incorrect problem specification which

results in a need to make m ultiple alterations to the code simply to

incorporate one modification. M cArthur et al.[1986] state that these

lim itations resu lt from difficu lties in structuring knowledge. They also

maintain that any structure achieved in the in itia l model typ ically becomes

lost as more complexity is added or modifications made, w ith embedded

assumptions being 'hidden, scattered, and fragmented throughout the

program . 1. Such problems are exasperated by the complex interaction of

model entities and the d ifficu lties in maintaining consistency in the data

th at reflects curren t system status. Such a problem is highlighted in the

port application described in chapter five.

17

M aintainability: Simulation modelling is p artia lly a cyclical process

requiring the modeller to switch between experim enting with the model

and modifying the code in testing alternatives. The need to repeatedly

a lte r the model imposes intolerable burdens on the structure and

m aintainability of the code.

Ease of use: As pointed out e arlie r, experim entation necessitates

modification which means that the analyst and programmer have to be

involved throughout the duration of the model life -c y c le .

Speed: Even at the best of times, long simulation runs are time

consuming. Consequently, repeat runs necessary in investigating a range

of alternative parameter settings can be a problem. In some cases,

simulations run slower than real time potentially eradicating any gain in

developing and using the model. (See M cArthur et a l.[1 9 8 6])

Validation: According to M cArthur et a l. [1986], ' there is no assurance

that the simulation embeds an accurate or complete model of the dynamic

system .1. Consequently, the modeller cannot have total fa ith in any

results obtained from the model and can only attempt to gain an

acceptable level of confidence through 'verification ' of the computer

program and by demonstrating an acceptable correspondence between the

output of the model and any actual or historic data. (See G reig[1979],

Kheir & Holmes[1978], M ihran[1972], Naylor & F inger[1967],

Schlesinger[1974], Schruben[1980], Van Horn[1971] and Koskossidis &

Davies [1987]).

18

In terp re ta tio n : Simulation models typ ically produce a mass of data. I f the

modelling exercise is to be of any value, the data has to be correctly

in terpreted which is an e rro r prone and time consuming process.

M cArthur et a l.[1986] give m ilitary simulations as an example,

emphasising the d ifficu lties in isolating the critica l behavioural properties

from ’hundreds of pages of numerical o u tp u t'.

2 .2 .5 The relationship between simulation and Decision Support Systems.

Decision Support Systems (DSS) are flexib le computer based systems that

help the decision maker u tilise available resources in reaching a specific

decision in an unstructured environm ent such as management and operational

control or strategic planning. As stressed by Gray and B orovits[1986], the

role of a DSS should not be misunderstood. The intention is to provide support

rath er than generate specific solutions which the user accepts as a fin al

decision.

Simulation modelling, by providing an insight into the functionality of the

real world system, is itse lf fundam entally a tool fo r the support of

decision-m aking. Where simulation modelling d iffers from the concept of a

decision support system, is in the level of support provided to the user.

According to Nathan and Sokol [1986], simulation neither relates the simulation

results to a manager's m ultiple and conflicting objectives, nor does it d irectly

assist the manager in identify ing the best solution. Simulation models have a

number of other lim itations in the context of decision support; Large amounts

of output are produced with no d irect means fo r comparing the effects of

changes to the model parameters in d ifferen t runs. Furtherm ore, an ind iv id ual,

19

when experim enting with the model, needs to be guided ra th er than le ft to the

slow process of 'tr ia l and e rro r'. This problem is fu rth e r compounded by the

fact th at the analysis of the output of a stochastic simulation requires a deal of

statistical expertise and cannot sensibly be le ft to a busy manager faced with

an urgent decision. Even if such statistical analysis could be reduced to a

simple routine and the whole embedded w ithin an optimising algorithm , the

execution of the multiple replications of each of the alternative decision

scenarios required by such a process may pose intolerable computational

burdens fo r an on-line decision support system.

Taking an alternative view point, simulation modelling can be seen to make

significant contributions to decision support systems. For example, The actual

process of developing a simulation model may occasion w ithin the user an

enhanced appreciation of the operation of the system modelled. This may, in

itself prove useful in supporting decision making or may contribute in d irectly

to the process of creating a DSS. Another possibility is th at the model produced

could be used in a formal series of experiments which potentially culminate in

a rule or set of rules that are then used as part of the DSS. For instance, a

regression model could be fitted to the simulation output which then adequately

summarises the effects of changes in certain input param eters. The changes to

the input parameters could represent alternative decisions on the operation and

management of the real world system and consequently, the regression equation

could be incorporated in the DSS which then requires no fu rth e r reference back

to the simulation model. (See Nathan and Sokol[1986])

Another common approach has been to embed the model w ithin the DSS

thus allowing the simulation to play a d irect role in decision support. A system

20

developed by Basset and K ochhar[1985], provides data analysis and report

generation routines but does not provide the user w ith any degree of fle x ib ility

and the problems of using simulation fo r decision support highlighted in the

previous paragraphs remain unresolved. Other w riters such as Moser[1986] take

a sim ilar approach but re ly on a rule-based expert system fo r the in terpretation

of the simulation output. This expert system is developed in parallel w ith the

simulation and embodies the knowledge of both simulation analyst and domain

experts used in the in terpretation of output. Another system form erly known

as KBS and now named Simulation C ra ft takes a fa r more ambitious approach

(McRoberts et a l.[1 9 8 6], Reddy et a l.[1 9 8 6]/ R eddy[1987], and Sathi et

a l.[1 9 8 6]). I t is proposed th at Simulation C ra ft be capable of iden tify ing

appropriate sets of scenarios, automatically generating a number of experim ents

such th at the stated 'goal1 be attained and producing a report explaining the

scenario selected. Such a system offers a functionality w hich, if fu lly realised,

reserves fo r simulation a place w ithin the realm of on-line DSS.

The next section w ill provide an overview to the area of A I and in

particu lar, expert systems, p rio r to investigating the research that has been

undertaken in combining characteristics of simulation and A I.

2 .3 A R T IF IC IA L INTELLIG ENCE.

The roots of A rtific ia l Intelligence are w idely accepted as dating back to

1950 when T u rin g [1950] wrote his speculative paper on computer machinery

and intelligence. (In comparison, the firs t commercial computer, the IBM 705,

appeared in 1954 and the firs t programming language, FORTRAN, in 1957). In

21

1956, a conference at Dartmouth college on symbolic computation paved the way

fo r the development of practical applications. However, it was not u n til the

1970's that the concept of A I was to find acceptance outside research

environm ents. U nfortunately, in terest dwindled because the A I applications

were too slow coupled with high development costs and small practical re tu rn s

(Harmon and K ing[1 985]). I t was not un til the 1980's th a t A I was fin a lly to gain

acceptance, and not so much because of any significant theoretical advances,

but because developments in chip technology led to the introduction of a new

generation of substantially more powerful computers at re la tive ly lower costs.

A I is concerned with how humans 'acquire, organize, and use knowledge'

(Shannon et a l.[1 9 8 5]). The constituent areas of A I are not clearly defined

but broadly fa ll into three classes. N atural language processing, robotics, and

knowledge based systems.

Natural Language Processing (NLP) is prim arily concerned w ith the

development of computer applications that can read documents, speak,

and recognise spoken words (speech recognition). The in terest in NLP

is spearheaded by a need to provide a more powerful means of

communication between man and computer, coupled with the commercial

availability in recent years o f, tex t scanners, speech synthesisers and

speech recognition equipment. (See Winograd[1972] fo r a more detailed

coverage of N L P).

Robotics is concerned with how robots can be given tactile and visual

senses. Dramatic advances have been made in recent years, resu lting in

22

wide usage of such technologies in in dustry , prim arily in the context of

Automated Guided Vehicles (A G V s), image recognition (e .g fin g erp rin t

id en tifica tio n), and machine guidance (e .g . welding and cutting in the

car m anufacturing in d u s try). The scope for the use of robotics is

substantial as businesses cut overheads in s triv ing to remain com petitive.

(See P ra tt[1978] and Brooks et a l.[1979] fo r a more detailed discussion

of the topic) .

Knowledge based systems include Expert Systems and Neural Networks,

a new area of research mainly dedicated to machine learn ing. Expert

Systems (ESs) are concerned with the automation of mental tasks th a t are

normally undertaken by an expert in a specific application area. Expert

systems d iffe r significantly from other A I applications, namely NLP and

robotics, in that the underlying goal is not that of gaining an insight into

how human experts reach a given conclusion, but ra th e r, that of devising

methods by which such conclusions may effectively be duplicated

(Shannon et a l. [19 85]). The research presented in th is thesis is prim arily

concerned with the contributions that expert systems can make to

sim ulation, and consequently, the following sections w ill focus exclusively

on ES theories.

2 .3 .1 What are Expert systems and how do they work?

According to Feigenbaum [1982], expert systems are in telligent computer

programs that use '...kn o w led g e and inference procedures to solve problems

that are d ifficu lt enough to require significant human expertise fo r th e ir

solution.' Expert systems d iffe r from conventional problem solving techniques

23

both in terms of the development process and architecture of the implemented

end product. The procedural approach used in conventional high level

languages is abandoned in favour of an architecture which is typ ica lly based

on the use of three distinct modules that represent the knowledge of the

system. The three components are:

A database (or equivalent) for the storage of data corresponding to the

'declarative knowledge' to be used by the ES, and run-tim e data

representing the curren t status of the system. (declarative knowledge is

data, specified before the s tart of the inference process).

A knowledge-base which encapsulates the facts and rules th at embody the

expert's domain knowledge.

An inference engine that consists of deductive strategies th a t define the

problem solving approach to be used. The inference engine analyses

available facts and rules and attempts to draw conclusions which get

added to the database or are used to modify curren t database en tries.

The inference engine is fu rth e r responsible fo r instigating order in the

pattern of in q u iry .

1 .Knowledge representation: Expert system shells which are high level tools

fo r the creation of expert systems typically provide a language construct, data

structures, a generalised inference engine, and a u ser-frien d ly in terface.

There exists several forms of representation fo r the facts and knowledge stored

in the database and knowledge-base. The most common of these are: Semantic

networks, fram es, ob ject-attribu te-value trip le ts , and predicate calculus. O ther

24

forms of representation including program code, ru les , conditional probabilities,

and firs t-o rd e r logic which are used almost exclusively in representing domain

specific knowledge in the knowledge-base.

Semantic networks are one of the oldest and most general representation

schemes fo r declarative knowledge (Harmon and K ing [1985]). Objects to

be represented are symbolised by nodes and relationships denoted by

arcs that link the objects together. The advantage of such a

representation is the clear image th at can be obtained as to relationships

between objects through graphical representation compared to lines of

code in a classical program . Semantic networks are flexible inasmuch as

new nodes and arcs can be added as needed and have the benefit of

perm itting objects to in h e rit the a ttrib u te values of other objects through

the creation of additional arcs.

Frames are a form of representation fo r objects which contains slots for

the storage of facts about the object. The slots may contain values or

pointers. A pointer may point to another frame or a lternatively to a

procedure or set of rules th at re tu rn a value. Consequently, frames are

capable of both procedural and declarative representational form s. As

with semantic networks, frames can in h e rit the a ttrib u te values of other

objects. (See A lty and Coombs[1984])

O b ject-attribu te-value trip le ts are sim ilar in concept to semantic

networks. The arcs used in semantic networks to symbolise relationships

are sim plified by only allowing two kinds of relationships. Namely, "is-a"

and "has-a" arcs. O -A -V trip le ts were used in the MYCIN medical

25

diagnosis expert system (see Buchanan and S h o rtliffe [1984]) .

Predicate calculus is a simple language fo r the definition of objects and

facts (predicates) relating to these objects. The form at of statements in

predicate calculus consist of a fact followed by one or more object names

between parentheses. For example, "Is-Assem bly Machine (Mach_A)" is

equivalent to the statement that "machine A is a machine fo r the assembly

process". Such an assertion can either be TRUE or FALSE. Predicate

calculus has the advantage of being fa ir ly English like and yet has a

simple and lim ited syntax. (See A lty and Coombs[1984])

Program code is often used in conjunction with other knowledge

representation structures in defining the domain specific knowledge. A

procedure may be called when a given set of conditions are satisfied. A

number of expert system shells provide facilities fo r in terfacing to

conventional high level languages though data sharing is often impossible

or awkward to use.

Rules (production ru les) typ ically have an IF -TH E N type stru ctu re

consisting of a premise and conclusion which can be grouped together

using logical operators. The premise is used to check the curren t state

and if satisfied, results in a modification of the curren t state through

activation of the statements declared in the conclusion. Some production

ru le languages provide facilities fo r conditional probabilities which perm it

rules to conclude results that only have a certain probability of being

correct given that the premise has been satisfied, (see Buchanan and

S hortliffe[1984] fo r a description of reasoning about uncertainty in

26

M Y C IN).

F irs t-o rd er logic, or more specifically, Horn clauses can be used in

defining knowledge in e ither a declarative or procedural sense (See

Futo[.1985], Bullers & S chultz[1986], C leary et a l.[1985] and

A delsberger[1984]) . For example, B A I , . . ,A n . can be in terpreted as

a logical statement that says th at B is tru e if A I to An are tru e .

A ltern ative ly , in the procedural sense, the statement can be in terpreted

as being th at the problem of evaluating B is reduced to the sub-problem

of evaluating A I to A n. A more detailed evaluation of firs t-o rd e r

predicate logic is reserved fo r a la te r section in a discussion of the

facilities provided by Prolog.

2 .In ference & control strategies: The inference engine is the part of the

expert system that embodies the strategies that are used to draw inferences

from the facts and rules declared in the database and knowledge-base, and

that controls the reasoning process. The inference engine also acts as an

in terface between the end-user and the stored knowledge, effectively

conducting a consultation whilst drawing on the knowledge to provide solutions.

A t the simplest level, the inference strategies used by expert systems

simply consists of statements that say that if the premise of a ru le is tru e ,

that the conclusions can then be accepted. Modification of th is principle also

exist such that a basic statement of the type IF A THEN B can also be taken

as meaning that i f A is NOT true then that B cannot also be tru e . Another

possibility is that i f the value of B can be evaluated (b u t not that of A), that

we can then derive the value of A w ithout the need to exp lic itly code this fact

27

using another ru le . As mentioned in the section on ru les , probabilities can also

be associated with statements that re flect the uncertainty of the va lid ity of

given inform ation.

A t the control leve l, the inference engine must organise the steps taken

in solving a problem. The inference engine is also responsible fo r the following

tasks:

1. Selecting a position from which the reasoning process can begin.

2. Resolving conflicts in logic between ru les.

3. Choosing, a ru le from a set of rules that can all be evaluated.

4. In te rru p tin g the inference process in order to obtain missing

information from the operator.

The two most common control strategies are forw ard chaining and

backward chaining, the use of which w ill depend on the problem domain.

Furtherm ore, forw ard and backward chaining can either be carried out using

a d e p th -firs t or b re ad th -firs t searching strategy.

A forw ard chaining or data-driven strategy is usually employed when

the desired goal is not in itia lly known. This is typ ically the case in monitoring

systems in which there is no goal to commence the inference from . In forw ard

chaining, the s ta rt conditions consist of the current entries in the database and

the inference proceeds by identify ing those rules that have premises th a t can

be satisfied . The action part of the statements are executed resulting in fu rth e r

facts being added to the database. The process is then repeated u n til e ith er a

28

desired state is reached or un til no remaining premises can be satisfied. The

d iffic u lty with the forw ard chaining strategy is that a t each step in the cycle,

a choice has to be made between a number of rules that have premises that are

satisfied. As the number of such rules increases, a noticeable deterioration in

performance is fe lt consequent to the increased complexity of the selection

process.

A backward chaining or goal-directed strategy is used in circumstances

where the desired end goal is known. The goal is evaluated by searching fo r

a ru le (o r ru les) that has an action that satisfies the premise of the goal. This

ru le is then defined as a sub-goal and the process repeated un til the premise

of the original goal is satisfied or u n til no more sub-goals can be iden tified . I f

the search strategy is 'irrevocable' and the goal is unresolved, the inference

engine can proceed no fu rth e r (see Shannon et a l.[1 9 8 5]). A lternative paths

through the solution space can only be attempted by re-commencing the

inference process. I f the search strategy is 'ten ta tive ', the inference engine

can backtrack to an earlie r sub-goal, select a new ru le , and again endeavour

to find a solution.

In D ep th -firs t searching, p rio rity is given to producing sub-goals.

Hence, alternative paths through the solution space are only considered once

a particu lar path reaches a dead-end. I f the expert system interrogates the

operator fo r in p u t, the feeling given is one of a search which results in

questions of ever-g rea ter detail.

In b re a d th -firs t searching using a backward chaining inference s tra teg y ,

consideration is given firs t to alternative sub-goals. In other words, all paths

29

th a t c o u ld le a d to th e s o lu t io n a re in v e s t ig a te d s im u lta n e o u s ly . T h e e f f ic ie n c y

o f b r e a d t h - f i r s t s e a rc h in g is d e p e n d e n t on how q u ic k ly a r u le p re m ise ca n be

fo u n d th a t s a t is f ie s th e g o a l. B r e a d th - f i r s t s e a rc h in g te n d s to be u n p o p u la r in

s y s te m s th a t r e q u ir e s u b s ta n t ia l u s e r in te ra c t io n c o n s e q u e n t to th e o p e ra to r

fe e lin g u n e a s y a b o u t h a v in g to a n s w e r q u e s tio n s th a t seem to be o rd e re d a t

ra n d o m .

BREADTH-F/RST
SEARCH

DEPTH-F/RST
SEARCH

BACKWARD CHAINING
GOALS O ---------►

GOALS

BREADTH-F/RST
SEARCHDEP7H-F/RST

SEARCH FORWARD CHAINING
FIGURE 3 INFERENCE ENGINE SEARCH STRA TEG/ES

30

2 .3 .2 What is the purpose of an expert system?

The principle underlining the expert system approach, is to enable the

representation of the knowledge of one or more experts w ithin a specific

domain. For example, in Fox and Sm ith[1984] the pertinent expert knowledge

is concerned with the scheduling of jobs w ithin a machine shop. This

knowledge-base is searched to provide answers to questions such as which

jobs should be given p rio rity if a goal of ensuring th a t contractual agreements

on delivery dates has to be met.

In many cases, the knowledge represented in the developed system

relates to some complicated decision-making process but cannot be described

as an expert's knowledge. Consequently, expert systems can be used in a

method akin to conventional programming in situations where the inference

strategy and incremental development process of a knowledge-base are deemed

advantageous.

Expert system shells often attem pt to provide fac ilities that in some ways

resemble the approach taken by human experts. For example, experts often

need to consult others in solving problems and consequently the expert system

may incorporate facilities fo r in terrogating the operator. The user can typically

skip questions or associate an uncertainty factor w ith an answer. The expert

system can usually explain a line of reasoning and ju s tify conclusions, though

the fac ility is lim ited in that the output obtained is typ ically a trace of the

inference through the knowledge-base.

31

The most common use of expert systems is as advisory systems in which

some form of in teractive consultation takes place. Two of the best known

examples are MYCIN (Shortliffe[1976] and Buchanan & S h o rtliffe [1984]) fo r

medical diagnosis and PROSPECTOR (Duda et a l.[1 9 7 9]) fo r the analysis of

geological data. Another common use fo r expert systems is fo r tra in in g and

educational purposes, e ither through modification of an existing ES (Buchanan

& S h o rtliffe [1984]) , or by using an approach that 'customises1 the teaching

session according to past attainm ent. Research is also being carried out into the

use of expert systems as in tegral modules in software fo r on-line decision

making fo r m anufacturing process control (Brown et a l.[1 9 8 5]) and as

in te llig en t front-ends (Muetzelfeldt et a l.[1 9 8 5]).

2 .3 .3 Limitations of expert systems.

Many researchers (and particu larly those not working in A I) have cast

doubt on the effectiveness of the expert system approach whereas others have

stopped just short of heralding its discovery as the dawn to a new era . The

main argument put forward by the sceptics is that the ES approach is to

produce a system which externally manifests the behaviour of the relevant

expert but that in tern a lly , uses an unnatural format fo r the representation of

the experts knowledge and uses an inference strategy that is a crude

sim plification of the way the expert th inks. The knowledge of an expert in a

diagnostic domain is believed to consist of both a mental model of the problem

and rules of thumb which are used to guide the diagnostics process. This

mental model is flexib le in that it is adaptable to similar problem domains by

perm itting analogical reasoning. A lty[1985] points to the deficiency of using

IF -TH E N type rules (production rules) by exem plifying the d ifficu lties in

32

tran sferrin g knowledge represented in th is form at to other applications.

Production rules are an ideal representation fo r the rules of thumb used by the

exp ert, but otherwise necessitate a considerable amount of domain knowledge

to be discarded at the expense of the addition of extraneous computational

knowledge. .

The use of production rules leads to a tendency to expand the

knowledge-base increm entally as rules are elicited from the exp ert. This can

lead to an scattering of rules which inevitab ly results in a system which is

either incomplete, ambiguous or inconsistent. Poor performance of the ES

results from difficu lties in maintaining order in the knowledge-base which would

otherwise benefit the re la tive ly simplistic search and pattern matching

procedures of the inference engine (M uller[1 9 86]).

Maintenance of a knowledge-base is frau ght with d ifficu lties resulting

from an inab ility to manually trace through the logic of the system consequent

to the scattering of the production rules and the lack of an explicit definition

of the expert systems inference strategy. Most expert systems consequently

incorporate an 'explanation’ fac ility that lists the rules that are activated at

each step in the inference process.

Most expert systems are poor at incorporating algorithm ic approaches to

supplement the rule-based reasoning and many have no facilities fo r executing

procedural code.

Expert systems handle decision making as an instantaneous process,

whereas time may be a critical facto r. An ES controlling a production line using

33

on-line data may fo r example have to c a rry out forw ard projections in reaching

a decision. The incorporation of time into the inference mechanism blurs the

distinction between expert systems and simulation models. (M iller[1986])

2 .4 A I AND SIMULATION MODELLING - MUTUAL SUPPORT.

Previous sections have identified the general characteristics of both

simulation and expert systems, as well as the shortcomings and benefits of

each approach. The sim ilarities between simulation and expert systems are now

considered with emphasis being placed on the possibility of adapting an expert

system to carry out the role of a simulation model (and v ice -versa). The

possible ways of in tegrating simulation and A I techniques are then considered.

2 .4 .1 Expert systems and simulation - Is there a difference?

Operational sim ilarities between simulation and expert systems, have been

noted by several w riters . As pointed out by Shaw and Gaines [1986], an expert

system can be considered as the simulation of the external manifestations of the

knowledge processes of a person. A more subtle relationship also exists in th a t

simulation and expert systems are both aids to individuals in coping with the

real w orld. Simulation does not provide d irect advice b u t, through the use of

a model, permits experiments to be carried out giving the user a greater

understanding of the system being modelled and perm itting the investigation of

ideas before implementation in the real w orld. S im ilarly, expert systems can be

seen, through advice giving and explanation fac ilities , as providing a means of

gaining an increased appreciation of the c rite ria applied in reaching a decision.

34

Advice provided by the ES may then be applied in the real w orld.

Sim ilarities between simulation and expert systems have also been

identified at a methodological leve l. For instance, Doukidis[1987] argues that

a " three-phase simulation system can be seen as a production system ", his

reasoning being that the three essential components are present: Data memory,

production model, and inference engine. In discrete event simulation, model

execution is effected through a three-phase executive which performs a

tim e-advance in the A phase, executes all curren t tim e-dependent events in the

B phase and examines and executes where appropriate a ll state-dependent

events in the C phase (Tocher[1962]). The executive can be compared to a

forward chaining inference engine, which, at each tim e-advance, scans the

state-dependent C events (the production ru les) in search of routines th a t can

be activated. The definition of the model logic, separate from the executive

controlling model execution, gives three-phase simulation some of the

characteristics of a declarative language. A diagrammatic representation of the

three-phase approach is shown in fig ure 4.

Though the general structure of a discrete event simulation model and an

expert system are quite clearly sim ilar, the strategies applied during the

inference processes are significantly d iffe re n t. D iscrete event simulation is

prim arily concerned with time handling and the representation of the activities

that constitute the model. L ittle consideration is given to the representation of

decision making. Conversely, expert systems re ly on a detailed description of

decision rules with no consideration being given to the effects of tim e. The

expert system inference strategy is a general one th at permits the application

of expert systems to a varie ty of problems. Hence, a simulation model can be

35

s p e c if ie d u s in g a d e c la ra t iv e e x p e r t s y s te m a p p ro a c h in w h ic h th e tim e h a n d lin g

c a p a b il i t y is d e f in e d in te rm s o f p ro d u c t io n r u le s . A lth o u g h fe a s ib le , e x p e r t

s y s te m p ro d u c t io n ru le s a re n o t an id e a l m ed ium f o r th e re p re s e n ta t io n o f

s im u la t io n e n t i t ie s a n d a c t iv i t ie s a n d th e a p p ro a c h is c o n s e q u e n tly o f no

s ig n if ic a n t b e n e f i t . A n a l te r n a t iv e a p p ro a c h is to a d a p t th e s t r a te g y u s e d b y

th e in fe re n c e e n g in e to r e p re s e n t d is c re te a d v a n c e s in tim e b y m a in ta in in g a

d ia r y o f s c h e d u le d e v e n ts . T h e n e c e s s a ry a lte ra t io n s a re s ig n i f ic a n t and

p re v e n t t h e r e a f te r th e use o f th e in fe re n c e e n g in e in i t s t r a d i t io n a l r o le . T h e

a p p ro a c h ha s been in v e s t ig a te d b y R o b e r ts o n [1 9 8 6] a n d is d e s c r ib e d in m ore

d e ta il in s e c t io n 2 . 5 . 4 .

NO
FINISHED

YES

FIN A LISA TIO N

B PHASE

C PHASE

IN IT IALISA TIO N

A PHASE

FIGURE 4: THREE PHASE SIMULATION

36

2 .4 .2 Simulation and expert systems - Complementary techniques.

Many applications have been developed th at in some way make use of both

a simulation model and an expert system. Such applications have evolved from

a realisation that the strengths of simulation complement the weaknesses of

expert systems and vice-versa. The potential fo r interaction between both

technologies has been noted by many w riters (O 'Keefe et a l.[1 9 8 6], Helman &

Bahuguna[1986], Flitman & H urrion [1987], H ill & Roberts [1987] , and Shannon

et a l. [1 9 85]).

Researchers including Fox & Smith[1984] and Brown et a l.[1985] are

investigating the use of expert systems as core elements in decision support

systems. In such systems, simulation can be used to the benefit of A I, by

using a model fo r the generation of test data which would normally be accessible

to the DSS. Thus simulation is being used to reduce the effect of one of the

shortcomings of ES methodologies, namely validation of the knowledge-base.

Brown et a l. use the ES fo r the detection of tool wear and fix tu re fau lts in a

hypothetical d rillin g process. The v iab ility of the approach is being

investigated using simulation modelling in re-creating the operational

environm ent. Stewart and Surgenor[1987] follow a sim ilar principle by using

a simulation model fo r the validation of a prototype ES fo r fau lt diagnosis in a

production p lan t. The simulation model and expert system are implemented on

separate microcomputers with simulation output being transm itted fo r diagnosis

to the expert system. Consequently, the ES can be validated using a wide

range of realistic data reflecting potentially ra re occurrences such as m ultiple

simultaneous fau lts .

37

Expert systems can also be of benefit to simulation modellers. One of the

shortcomings of simulation mentioned in section 2 .2 .4 is the necessity fo r

considerable expertise in producing the model and analysing the generated

output. Advisory expert systems th at provide support to the user by

embodying the knowledge of experienced simulation modellers are cu rren tly

being considered by several researchers. Doukidis and Paul [1991] describe

SIPDES, a system which helps users to discover the location of compilation

erro rs occurring w ithin th e ir simulation program and proposes possible

solutions. S im ilarly, the experim entation and analysis phases of simulation

modelling are being supported by automatic systems such as th at embodied in

the 'model execution1 and 'model analysis' modules of Simulation C ra ft (Sathi

et a l.[1 9 8 6]). The model execution expert is prim arily responsible fo r

determ ining the necessary experiments and the corresponding number of runs

that are required . The model analysis expert is claimed to evaluate experim ents,

generate alternatives, and provide explanation facilities using statistical

routines.

Such mutual support activities are clearly beneficial and do not

necessitate any d irect interaction between expert system and simulation model

other than fo r the sharing of data. Another area fo r mutual co-operation is in

the marriage of ES and simulation techniques in providing a simulation

environment that perm its the modelling of in telligent behaviour, the handling

of events over tim e, and the representation of algorithm ic components of the

model.

For instance, in the modelling of a m anufacturing fa c ility , the

decision-making activ ities of employees, whether machine operators or top-level

38

management, can be considered as a particu lar form of expertise. This expertise

may be represented in the form of rules which may be clearly-stated

instructions, rules of plausible reasoning, or rules of thumb (h eu ris tics). The

knowledge of employees is fu rth e r supplemented by "facts" which may have

been acquired through job experience and data which may be publicly available.

The basic functions and performance of machines including durations of

operations and the basic processing sequences of product are well described by

the conventional data structures and are well handled in conventional

procedural languages usually used in simulation. Any m aterial requirem ents

planning functions depending on orders outstanding and curren t cost data can

also be well accommodated w ithin a procedural fram ework.

In contrast, decision tasks of any significant complexity may be d iffic u lt

to in tegrate with the discrete event model. This is because decision tasks are

often broken down into a significant number of related rules which are d ifficu lt

to define in the sequential order required by a procedural language. In forcing

a procedural context, rules have to be repeated w ithin the code and the

associated between such rules formalised through the use of logical operators.

In contrast, the declarative programming approach as used in expert systems,

permits the formalisation of decision tasks through the definition of component

rules but w ithout any requirem ent fo r order and without the need to lin k the

rules through logical operators. Instead, the expert system inference engine

embodies an inference strategy which is used to scan the defined rules in an

attempt to satisfy the conditional statem ents.

39

Various methods have been considered in combining the functionality of

ESs and simulation. Some researchers, and often those w ith a strong

background in a rtific ia l intelligence have opted fo r using A I languages, usually

LISP or PROLOG. In the United States, LISP is the main language used in A I

and so there is a natural inclination towards its use in th is context. Most LISP

based simulation environments operate according to the object oriented

programming paradigm . In Europe and Japan, government sponsored research

has given the PROLOG approach the leading edge. In some cases, modified

versions of standard PROLOG have been used th at are tailored to simulation.

Another approach, though usually discussed ra th er than attem pted, is to

in terface a simulation model with an expert system. The d ifficu lties with this

approach consist of implementing an adequate form of communication between

functionally incompatible softw are. An approach which has been used in

overcoming th is problem is to implement the simulation model and expert system

on separate computers and achieve data sharing through a generalised

communication protocol (see section 2 .5 .5).

2 .5 WIDER ASPECTS OF A I SUPPORT OF SIM ULATION MODELLING.

In recent years, much research has been carried out on im proving the

performance of simulation models by confronting the problems highlighted in

section 2 .2 .4 . Such research, coupled w ith improvements in hardware and

falling prices in the area of personal computers and workstations has resulted

in the possibility of applying simulation modelling techniques to a fa r wider

range of applications.

40

The level of capital investment necessary in undertaking a simulation

study is now less of an issue, particu larly in the context of microcomputer

based systems where the presence of easily accessible, colour graphics has

promoted the growth of windowing environments and iconic displays. The

overall e ffect has been that researchers have focused th e ir in terest on

developing tools that enable the re la tive ly inexperienced simulation modeller to

define and develop models, devise experiments and then analyse simulation

output w ithout the need to call on the resources of more experienced

practitioners.

2 .5 .1 Simulation program generators.

Researchers have invested considerable time and e ffo rt in the

development of simulation program generators with a view to reducing the

necessary time span in the model creation stage of the simulation modelling

life -cycle (see Clem entson[1982]) . A second consideration has been to attem pt

to devise flex ib le and u ser-frien d ly systems that guide the inexperienced user

through a model specification process.

Sathi e t a l.[1986] place most emphasis on the second consideration and

use an expert system that encapsulates the knowledge of simulation experts

fo r an in teractive model specification session based on the use of graphics fo r

the description of model components. The ES is also responsible fo r consistency

and completeness checks. Shannon[1986] describes a hypothetical system which

is sim ilarly based on the use of icons fo r model specification and templates fo r

the definition of the actions relating to components.

41

The use of graphical depictions as a means of form alising the behaviour

of a system is a long standing approach to modelling (See Clem entson[1978],

Matthewson[1975], Gordon[1981], and Zeig ler[1976]) . Such an approach has

the benefit of providing a simple vehicle fo r discussion between client and

analyst and. perm its the detection of potential logic e rro rs . The main lim itation

associated with graphical depictions is the d iffic u lty in representing complex

real-w orld systems in which the paths between queues and activ ities are

numerous and often ambiguous. Furtherm ore, graphical representations omit

all references to decision making including conditional branching and batch

processing of queue entities. Such problems re s tric t the value of using

graphical model representations as input to program generators as only the

simplest of modelling tasks can be dealt w ith.

A few researchers including Doukidis[1987] take a d ifferen t approach and

re ly on a tentative method based on techniques derived from N atural Language

Understanding Systems (N LU S). The client and analyst are expected to go

through the consultation session together, the end product being a logic model

which can in tu rn be used as input to a program generator.

In O verstreet & Nance [1985] and Balci & Nance [1987], the prototype of

a discrete-event Simulation Model Development Environment (SMDE) is

described. SMDE includes a model specification and documentation generator

as well as a model analyser. The model generator is used in creating a formal

model specification which is domain independent and can la te r be converted into

executable code. The advantage w ith such an approach is that erro rs detected

in the model specification are fa r easier to correct that errors in source code

because of a lack of any stringent syntactic and semantic elements.

42

Furtherm ore, the model specification is defined in terms of a simple language

re fe rred to as the Conditional Specification (C S). According to Nance and

O verstreet, CS strikes a balance between 'descriptive generality and an

in stru ctive formalism' which permits the analyst to fu rth e r develop and test

the model before generating the source code.

2 .5 .2 Model verification and validation.

The curren t trend in creating development environments has naturally led

to research into ways of automating the process of model verification and

validation.

V erification is the process of debugging the simulation code and checking

th a t the model operates as intended (See Koskossidis & Davies[1 9 87]). The

Simulation Model Development Environment (SMDE) as described in the previous

section includes a model analyzer that diagnoses the model specification created

by the model generator. The intention is to help id en tify mistakes, in particu lar

conceptual and descriptive e rro rs , to suggest alternative model configurations

that may prove to be more e ffic ien t, and to provide general guidance during the

modelling e ffo rt. The approach taken in SIMULATION CRAFT (Sathi et

a l.[1 9 8 6]) is sim ilar though this time, the embedded model building ES is

responsible fo r consistency and completeness checks during the graphical model

input process. O ther research projects have also used the expert system

approach to model verification . SIPDES (D oukid is[1987]) and TIM (H ill &

Roberts[1987]) re ly on an in teractive session with the user in identify ing the

potential source of compilation and run-tim e erro rs .

43

The generation of execution errors during the model building and

experim entation processes are a considerable help to model verification and

tend to form the basis fo r the diagnosis processes in simulation support

softw are. In contrast, the validation of a model is a complex process,

necessitating from the analyst considerable sk ill and experience. The

form alisation of such knowledge in the development of an expert system is

rendered im practicable by the problem-dependent nature of the validation

process (Van H orn [1971]).

Validation consists of ensuring that a model is a realistic representation

of the real world and that results obtained and conclusions drawn from

experim ents can safely be applied to the real w orld. According to Van

H orn[1971], validation is "the process of building an acceptable level of

confidence that an inference about a simulated process is a correct or valid

in ference fo r the actual process." . Van Horn also claims that a simulation model

can seldom, if ever, be proved to be a "true" representation of the real

process. The problem of validating a model is compounded by concealed and

questionable assumptions that are embedded in the code and result in a

tendency to trea t the model as a 'black box' that transform s inputs into

outputs.

Consequent to model complexities, the validation process only partia lly

relies on an in -depth perusal of the in ternal model representations. Reliance

is instead placed on the use of historical data in comparing model output with

observations from the real world. Some researchers have taken the view that

involvement of the client in the modelling and testing stages of the simulation

life cycle is of considerable help to the validation process. Talavage[1978]

44

describes the development of one such model fo r which only a small amount of

historical data was available. Confidence in the valid ity of the model was

nevertheless attained by involving the client in the analysis of the models

behaviour compared to that observed in the real world.

Improvements in graphics and the increased used of iconic displays has

led to the growth of Visual In teractive Simulation (V IS) modelling in which

changes in the state of the model through time are represented in pictorial form

during the simulation runs (Crookes & Valentine [1982] , H urrion [1978],

Vujosevic[1990]) . The use of animated displays eases the problem of client

involvement in the model validation process and improves management confidence

in the modelling analogy.

Simulation models do not embody the tru e complexities of human decision

making with the consequent need fo r simplifications that complicate the

validation process. V IS can be seen to represent some response to this problem

by perm itting the user to intervene in response to observed model behaviour,

a lter characteristics of the model, and then continue the run with the modified

model. By appropriate in terventions, decision mechanisms of a rb itra ry

complexity may be achieved. However, this achievement is at the cost of not

being able to secure the benefits of replication and statistical analysis of

performance.

2 .5 .3 In te llig en t fro n t-en d s.

The complexity of certain software solutions, which includes simulation

environments, has led to research into ways of using expert systems fo r ease

45

of communication and information presentation. A technically complex system

is wasted unless the user can have confidence in its operations. Such

confidence can only be attained if the operator finds the system comprehensible

and usable.

An In te llig en t Front-End (IF E) is an in terface that sits between the

software package and the operator and shields the user from complex application

specific operational tasks. Through consultation with the user, the IFE

generates the necessary instructions to operate the program .

In the context of comprehensive and unavoidably complex simulation

environm ents, In te llig en t front-ends provide the potential of maximising on the

productive use of the model. The flex ib le nature of expert systems permits the

customisation of the environm ent, and in particu lar the dialogue management,

to suit the requirem ents and level of expertise of individual users.

Some researchers have extended the role of the in telligen t front-end to

encapsulate both the generation of simulation code and the analysis of simulation

resu lts. Such facilities go beyond the idea of an IFE as an in terface fo r dialogue

handling and make of the fron t-end an integrated part of the simulation

package. Simulation C raft (Sathi et a l.[1 9 8 6]) is probably the most advanced

system so fa r produced and is prim arily intended fo r use in m anufacturing

domains. Simulation C raft attempts somewhat ambitiously to automate all stages

of the modelling process and consequently has three embedded expert systems

fo r model build ing, model execution, and model analysis respectively. KIPS

(Knowledge based In terface to Process Simulation) is a conceptually sim ilar

system, implemented on a LISP workstation th at acts as a fron t-end to a

46

mainframe simulation program used in petrochemical process plants. The KIPS

prototype is principally a program generator based on the use of a graphical

flowsheet editor fo r input and a so fa r p artia lly completed knowledge-base fo r

user interaction and guidance (Fjellheim [1985]) .

O ther researchers have concentrated th e ir e ffo rts on two aspects of

in telligen t fron t-end design: (1) The provision of features such as natural

language dialogue handling. (2) The formalisation and integration of some of

the features of the simulation package into a knowledge-base such that some of

the decision making tasks can be taken by the IFE ra th er than by the user.

ECO is an example of such a system and is essentially an in telligent front-end

designed to help ecologists construct and experim ent w ith simulation models of

ecological systems. The ECO dialogue handler is designed to accept both

prompted input and unprompted natural language input though problems with

the la tte r are identified by M uetzelfeldt et a l. [1985]. The author also highlights

the d ifficu lties in generating models of re lative ly simple systems that require

lis t or tre e -lik e data structures. The generated code, in th is case FORTRAN,

needs to be able to iterate over n-dimensional arrays and handle pointer types.

2 .5 .4 A I languages & tools in simulation.

The sim ilarities between techniques used in simulation modelling and

expert systems have been highlighted by several authors including

0'Keefe[1986] and D oukidis[1987]. The commonalties are sufficiently great to

have led to attem pts, using a variety of techniques, to develop simulation

models en tire ly w ithin an A I environment and doing away with the classical

simulation methods. Such systems, typ ically re ferred to by those working in

47

A I as 'Knowledge Based Simulation' (KBS) models, are implemented without the

direct use of sequential processing techniques. Models developed using the KBS

approach d iffe r s ign ificantly from models developed using conventional methods.

The principal difference lies in the use of rules in representing knowledge.

Such knowledge can be classified into two broad categories: heuristics that

govern decision making and knowledge that acts as a representation of physical

processes and th e ir in terp lay . KBS models typ ically provide no fa c ility fo r

separately defining these forms of knowledge. Nevertheless, the

control/inference component of the model is represented as a separate and

distinct en tity from the data component perm itting e ither to be altered

independently from the other (L avery [1986]) .

O ther peculiarities of Knowledge Based Systems are specific to given

modelling approaches. For instance, some researchers have chosen to represent

the tim e-flow mechanism through alteration of the languages inference strategy

whilst others have added rules to the knowledge-base to achieve the same ends.

Another approach adopted by some researchers, known as goal directed

sim ulation, is based on taking a d iffe ren t view of model representation (Prakash

and Shannon[1989]). Use is made of the goal directed inference strategy

common in most expert systems in guiding the simulation process. Model process

cycles are then represented as goals, the achievement of which necessitate the

achievement of sub-goals. For example, in the case of the port model (C hapter

f iv e) , one could represent a ship crane as having a top level goal of depositing

a container on the ship deck. A loaded ship crane and the presence of a ship

with spare capacity in the berth are necessary sub-goals. In tu rn , a loaded

ship crane w ill have necessitated an idle crane, a d riv e r, and an export

container. Thus, each object in the system can be specified in terms of series

48

o f g o a ls a n d re la te d s u b -g o a ls r a th e r th a n s a y , e v e n ts a n d a c t iv i t ie s as in

d is c re te e v e n t s im u la t io n .

TOP
LEVEL
GOAL

SUB-GOAL
LEVEL 1

SUB-GOAL
LEVEL 2

CRANE DEPOSITS CONTAINER ON SHIP

CRANE LIFTS
CONTAINER

SHIP ARRIVES
AT BERTH

RANE BECOMES
IDLE

\

 , \
; IMV ARRIVES WITH
EXPORT CONTAINER

SUB-GOAL
LEVEL 3

FIGURE 5 SH/P CPA/VE GOAL

T h e e xam p le in f ig u r e 5 sh o w s th a t in goa l d r iv e n s im u la t io n , th e to p

le v e l goa l is n e v e r re s o lv e d . T h e in fe re n c e p ro c e s s c o n s is ts o f a c i r c u la r

re fe re n c e w h ic h d r iv e s th e s im u la tio n u n t i l a tim e o r s ta tu s a c t iv a te d r u le

f in a l ly in t e r r u p t s m odel e x e c u t io n .

49

There are three common approaches to using A I in developing and

implementing simulation models: Expert Systems shells which provide a high

leve l, preprogrammed in frastru ctu re consisting of an inference engine and

language construct fo r the definition of the knowledge-base. The second method

consists of using A I knowledge engineering tools such as Knowledge C ra ft

(Sathi e t a l. [1 9 8 6]), ART (McFall & K lahr[1986]) , and KEE (Langen[1985], Jain

and O sterfeld [1989]) which provide the necessary code fo r the representation

of knowledge and the implementation of an inference and control process. A I

tools provide a greater degree of fle x ib ility as compared to ES shells but at the

expense of g reater com plexity. The th ird technique makes use of A I languages

the most common of which are LISP and PROLOG. A I languages are designed to

handle symbolic processing and have b u ilt-in features that lend themselves to

the development of knowledge-based systems. A I languages are only suitable

fo r use by programmers and in this respect are, in terms of com plexity, on a

par with conventional h igh-level languages such as PASCAL and FORTRAN.

1 .Using ES shells in developing simulation models: Some attem pts have been

made at using or adapting expert systems shells in developing simulation

models. The lim itations of such an approach are numerous and are centered

around the generality of the inference processes coupled with v e ry sim plistic

and non adaptable knowledge representation techniques. ES Shells are designed

solely fo r the implementation of expert systems and do not lend themselves

easily to any other type of application.

Moser[1986] describes the use of EXSYS, an expert system shell, in the

development of 'business simulation' models. EXSYS was specifically developed

50

with a view to simulation which it is claimed, perm itted many of the inherent

lim itations of the approach to be overcome. Moser's approach does however have

a number of shortcomings. The core simulation model consists of a simple

FORTRAN program used to solve series of simultaneous equations and is in fact

an in tegral part of the expert system which is its e lf coded in FORTRAN. The

role of the knowledge-base is not one of model representation but ra th er that

of describing rules th a t establish the value of the model resu lts. Hence, the use

of the ES is of no d irect consequence to the accuracy and completeness of the

model.

Robertson [1986] also adopts a rule-based approach in developing an

expert simulation environm ent. As with Moser, the expert system was

specifically developed with a view to simulation. Consequently, the inference

engine has a tim e-keeping fac ility which, at each time step, scans the rules

using a forward chaining strategy. The time advances are achieved by keeping

a record of scheduled events and advancing the system clock to the next

chronological e n try . Model representation is achieved through the use of

'in telligent agents'. In te llig en t agents are associated with sets of rules that

define th e ir behaviour and an 'agenda' that stipulates the desired goal. Once

the goal is achieved, the in telligent agent is 'destroyed '. A goal specified in

the agenda can be defined in terms of sub-goals, thus perm itting the

representation of a sequence of events. Such a sequence is essentially identical

to the definition of a cycle of activities in three-phase discrete event

simulation. I f one fu rth e r considers the in telligent agents as model en tities , the

distinction between Roberton's approach and that of Tocher's (Tocher[1962])

three-phase approach becomes b lu rre d , justify ing the argument put forw ard in

section 2 .4 .1 that forw ard chaining production ru le systems are functionally

51

v ery similar to th e ex ecu tiv e in th ree-p h a se m odels.

2 .LISP based system and Object Oriented Programming: The m ajority of

simulation environments developed in LISP utilise the Object Oriented modelling

approach and are implemented on workstations which provide the benefit of

powerful graphics facilities fo r the use of iconics and animated displays. Few

environments are coded d irectly in LISP but ra th er make use of fram e-based

knowledge engineering tools which lend themselves particu larly well to the

object oriented paradigm and provide powerful tools fo r data input and

'on-screen' model specification. Indeed, some knowledge engineering tools are

so appropriate to Object Oriented Programming (OOP) approach that simulation

environment have been developed in a fraction of the time that would norm ally

be required . For instance, ART-ROSS (McFall and K lahr[1986]) , a clone of the

ROSS environm ent, (M cA rthur et a l.[1 9 8 6]) was developed using a commercial

tool known as ART in under two days and, it is claimed, is an improvement on

the orig inal.

O bject-O riented programming is a loose term used to describe a method

of knowledge representation based on the description of objects and th e ir

in terrelationships. The technique originates from the A I fie ld where it is used

in developing expert systems, though a similar construct was used in designing

the simulation language, SIMULA, in the 1960's (B irtw istle et a l. [1 9 7 9]). Being

based on the Expert System (ES) paradigm , object-oriented simulation provides

an effective environm ent fo r the specification of domain knowledge.

In constructing an object-oriented sim ulation, the user firs t creates a set

of objects that broadly correspond to real-w orld objects. The characteristics of

52

these objects are then defined; the inputs they respond to , and the actions

they carry out in response. The in terp lay between objects is represented by

the passing of messages. In other words, the action carried out by one object

may lead to a message being transm itted to another object specifying that an

action should be carried out.

Another im portant aspect of object-oriented simulation is the concept of

'inheritance' which is derived from the semantic networks knowledge

representation scheme used in many expert systems. Inheritance is useful in

creating hierarchies of objects, each of which can in h erit characteristics from

a higher ranking set (Figure 6).

The applicability of the object-oriented paradigm very much depends on

the targ et problem fo r which a model is to be developed. The OOP approach to

modelling is dependent on the entities in the model having a suffic iently close

relationship as to be able to establish a hierarchy in which inheritance of

characteristics can play a p a rt. The use of inheritance is a key factor in

reducing the com plexity of the model by lim iting the duplication of facts and

rules about objects. I t is also desirable fo r the problem domain to be of a type

that can be natura lly broken down into constituent 'objects' or 'actors' and in

which communication plays a significant ro le. These characteristics are not v ita l

to the model development process, but sim plify the overall task by allowing a

more natural visualisation of the real world system, that the model is meant to

represent. Such considerations are behind the su itab ility of the object-oriented

approach to the simulation of tactical w arfare problems to which the ROSS

(K lah r[1985]) , BLOBS (Middleton and Zanconato[1985]) and SLICE (Gosling and

O kseniuk[1986]) languages specifically address themselves.

53

CRANES

STACK GANTRY
CRANES SHIP CRANES

GANTRY CRANES HOIST CRANES

SINGLE CONTAINER
GANTRY CRANES

DOUBLE CONTAINER
GANTRY CRANES__

FIGURE 6 INHERITANCE TREE FOR CRANES

In m i l i ta r y a p p lic a t io n s , a i r c r a f t s , ta n k s e tc . a re e f fe c t iv e ly d e s c r ib e d

u s in g in h e r ita n c e . F u r th e rm o re , th e use o f m essage p a s s in g as a fo rm o f

c o m m u n ica tio n b e tw e e n o b je c ts in a ta c t ic a l w a r fa re p ro b le m is a n a tu r a l m eans

o f re p re s e n t in g th e r e a l-w o r ld in te r p la y . A n a i r c r a f t w is h in g to la n d a t an

a i r f ie ld can f o r e xa m p le be d e s c r ib e d as s e n d in g a m essage to th e c o n t ro l to w e r

re q u e s t in g p e rm is s io n . T h e la n d in g a c t iv i t y w i l l th e n com m ence, c o n d it io n a l on

th e a i r s t r ip o b je c t b e in g a v a ila b le .

54

Even in the case of applications th a t would seem suitable targets fo r an

object oriented approach there can be problems such as those identified by

M cArthur et a l.[1 9 8 6]. Of particu lar concern is the dependence on message

passing fo r communication and activation of events. Consider the example of two

enemy a irc ra ft which are about to go in to battle . For one a irc ra ft to recognise

and attack the other a irc ra ft, messages need to be transm itted between the two

which obviously contradicts the real-w orld rules of engagement. Another

common problem results from the need to represent messages in terms of a

lim ited number of variable values. In most cases, and particu larly in m ilitary

applications, real-w orld messages are fa r more complex than can effectively be

modelled.

As with expert systems, models developed using the OOP approach are

based on a re la tive ly unstructured search algorithm . Furtherm ore, the desire

to allow the user to develop the model increm entally by defining the

characteristics of objects as and when they are identified also leads to problems

in maintaining a s tru ctu re . Consequent d ifficu lties also arise because of the

problem of ensuring that the defined model is complete and is not ambiguous or

inconsistent. Lack of a formal s tructu re also tends to mean that execution is

slow for large models which is a problem aggravated by the in terp re tive nature

of the Lisp environment w hich, as mentioned, tends to be the language used in

developing and implementing object-oriented models. This problem was

highlighted during the development of I-N E T (Reddy et a l. [1983]), a corporate

distribution and inventory system, using Simulation C ra ft (Sathi et a l. [1986]).

The loss in speed is nevertheless p artia lly offset by the advantages of being

able to test the effect of changes in the code without having to compile and

55

being able to trace and debug th e model in teractively .

The use of inheritance can be advantageous in terms of code size by

reducing the repetition of characteristics of objects. However, problems can

arise when values are inherited unexpectedly. Hence, the characteristics of

each member of the object hierarchy has to be carefu lly defined with particu lar

attention to the possible values that may be inherited from parent classes.

Sim ilar care is needed in OOP languages in which rules can be in herited . A set

of rules may be spread across a number of object classes making it d ifficu lt to

trace potential actions and increasing the risk of rules being m istakenly

inherited in satisfying a goal. Such problems aggravate the d ifficu lties in

specifying the characteristics of the components of the model and particu larly

in cases where the concept of objects and messages do not seem to be a natural

structure fo r the formalisation process. An investigation of Object Oriented

tools and techniques was made as part of the research and is reported in

appendix F.

3 .PROLOG based systems: PROLOG (Clocksin and M ellish[1984]) is a h igh-level

declarative programming language based on symbolic logic (See section 2 .3 .1) .

Facts about objects involved in a problem and rules affecting these objects, are

declared and then used in finding a solution without the need to exp lic itly

define a lis t of instructions.

Prolog's ab ility at handling rules and representing logical relationships

between entities makes it a potential candidate fo r the implementation of

simulation programs. In developing a three-phase discrete event model, rules

and facts have to be defined that describe events, entities, and th e ir

56

relationships. Additional rules are then required to handle time advances and

storing fu tu re scheduled events. Researchers have shown that Prolog can

successfully be used in developing simulation models, though the generality of

the inference process (and in fact the language as a whole) imposes limitations

th at remove much of the value of the approach.

Futo, recognising the benefits of using the Prolog approach, has

attempted to develop a bespoke version of the language which incorporates

w ithin the inference strategy a capacity for combined discrete and continuous

time handling. The product of Futo's research, TS-Prolog, uses message

passing techniques rath er than shared variables for communication between

processes. Furtherm ore, Prolog's backward chaining inference strategy is put

to fu ll use by perm itting backtracking through time in order to investigate

alternative paths through the solution space. Such a goal directed search,

which in the case of TS-Prolog, relies on constant ac tiv ity durations has been

criticised by researchers such as O'Keefe and Roach[1987] who argue that the

goal of experimentations tends to be unknown or too complex to capture.

C leary (C leary et a l.[1985]) takes a d iffe ren t approach to Futo in

developing T -C P , a modified version of Concurrent Prolog. T-CP attempts to

use concurrency in solving m ultiple goals (asynchronous processes)

simultaneously. Each 'process' has its own curren t state with the T-CP

in terp re ter m aintaining a global simulation tim e. T-C P rules incorporate a

'delay' clause in the form of an arithm etic expression that prevent the rules

from reactivating un til a point 'delay' units a fte r the last activation of the ru le .

Cleary has developed, and gives examples of simple models developed using

T-CP. These can serve to h ighlight the drawbacks of using Prolog fo r

57

simulation modelling.

Prolog does not lend itse lf p articu larly well to the development of

substantial simulation programs. Clocksin and M ellish[1984], (amongst others)

argue that Prolog programs are easily understood by the novice. " Novice

programmers find that Prolog programs seem to be more comprehensive than

equivalent programs in conventional languages.". The stated argument is that

Prolog code consists uniquely of logical statements describing a problem without

the addition of complex and confusing algorithms that specify how the problem

is to be solved. O ther researchers, notably M uller[1986], argue against this by

claiming that declarative programs have to be executed in one way or another

giving Prolog a procedural context. "Knowledge of the procedural semantics of

Prolog is absolutely necessary fo r w riting correct and efficient programs".

Indeed, it is th is lack of any explicit definition of what Prolog is going to do

with the defined knowledge that makes the creation of substantive simulation

model a complex and erro r prone process.

Prolog, was designed fo r automatic translation but la te r used fo r other

natural language applications. Prolog's syntax is based on the notation of

predicate logic and uses computational techniques geared towards query

handling. Prolog commands are not in an ideal form fo r the specification of a

model, particu larly in cases where mathematical operations form a substantial

computational overhead. Prolog is being used in an increasing number of A I

applications but its design is s till geared to closed systems in which inferences

are made from defined knowledge with little communication with either the user

or the underlying computer system. The consequent support fo r inpu t/o u tpu t

operations, graphics and external code invocation are lim ited. Such restrictions

58

reduce Prolog's su itab ility fo r simulation modelling given the increasing use of

Visual In teractive Simulation, iconic displays, customised device d rivers (e .g

fo r mouse co n tro l), and mixed language programming.

Another lim itation of the Prolog paradigm th at applies to the declarative

programming approach in general, is speed of execution. Prolog replaces the

customised algorithms used in conventional programming languages by a

generalised backward chaining inference strategy that seeks to draw inferences

and confirm queries using stored inform ation. Prolog therefore spends much

time searching fo r solutions in what may be a substantial unstructured search

space. The theoretical sim plicity of the declarative programming style is

consequently offset by slow execution and lack of control over the inference

process. (Shannon et a l. [1985])

2 .5 .5 In terfac ing expert systems and simulation models.

Figure 7, identifies the various ways of unifying expert systems and

simulation.

Much of the current research in program generators (section 2 .5 .1) ,

model verification and validation (section 2 .5 .2) , and in telligent front-ends

(section 2 .5 .3) involves some form of cooperative existence between simulation

model and expert system.

Another form of expert system/simulation collaboration, in which a

conventional model and ES communicate during model execution, necessitates

a fa r greater level of synergy. The remainder of th is section is dedicated to

59

a discussion on such systems.

C O M B I N E D

P A R A L L E L
P R O C E S S I N G

EMBEDDED SIMULATION
FUNCTIONS

USER INTERFACE

EXPERT SYSTEM

EXPERT SYSTEM

*

OR
EMBEDDED EXPERT
SYSTEM FUNCTIONS I

SIMULATION

r ~
USER INTERFACE

SIMULATION

I
USER INTERFACE

C O O P E R A T I V E

SIMULATIONEXPERT SYSTEM

USER INTERFACE

r SIMULATION EXPERT SYSTEM

♦
F R O N T E N D EXPERT SYSTEM OR SIMULATION

i
USER INTERFACE USER INTERFACE

FIGURE 7 COMBINING EXPERT SYSTEMS AND SIMULATION

R e s e a rc h e rs in c lu d in g S haw a n d G a in e s [1 9 8 6] h a ve h ig h l ig h te d th e

re la t io n s h ip s b e tw e e n s im u la tio n a n d e x p e r t s y s te m s . " . . . A n ES ca n be

c o n s id e re d as th e s im u la t io n o f th e m in d o f a p e rs o n w h e re a s m ost s im u la t io n is

th a t o f th e p h y s ic a l w o r ld " . O ne o f th e a d v a n ta g e s in l in k in g a s im u la t io n m odel

60

with an expert system ensues from the ES's ab ility at providing a model of the

experts that communicate and in teract w ith the processes that comprise the

physical w orld. The conventional procedural approach to sim ulation, based on

the use of customised algorithms for the control of the model cannot effectively

handle in tricate representations of knowledge and decision making. Conversely,

expert systems fo r which knowledge is defined declaratively, and which make

use of the generalised deductive capabilities of an inference engine, are not

ideal fo r the representation and definition of physical processes and the ir

in teraction . Consequently, simulation and expert systems can be considered as

complementary technologies, which, if developed and implemented in parallel,

could provide fu tu re systems with power " . . much greater than the sum of each

used separately." (Shaw and Gaines[1986]).

Simulating complex systems such as the port described in chapter five

highlights the d ifficu lties in reproducing management decision making tasks that

have to be embedded in a model. In some real world situations, expert systems

are already in use, assisting management in making operational decisions.

Perm itting the simulation model to submit queries to the relevant ES, thus

bypassing the need to encode the knowledge d irec tly , is of obvious benefit

(O'Keefe[1986]). Even in cases where the ES did not form erly ex is t, benefit

would s till be derived from developing an appropriate ES in parallel w ith the

development of the simulation model. Once the simulation study completed, the

ES could be used separately in assisting in decision making tasks.

Validation of an expert system using simulation forms another class of

application fo r which separate development of expert system and simulation

model proves necessary. Stewart and Surgenor[1987] describe the use of a

61

process simulator as a test-bed in the development and validation of an 'on-line'

ES for fau lt diagnosis and crisis management in a production p lant. Such an

approach to ES validation is conceptually simple requ iring an alteration to the

ES, changing the source of input from that of sensors to that of simulation

output. Stewart and Surgenor implement the simulation and expert system on

separate computers, linked via a communications cable. Such a pragm atic

approach removes the need fo r even the most minor modification to the ES

since, in any case, input via data cable is the medium used fo r signal

transmission by the sensors. Simulator validation of an ES is more complex in

situations where the ES is responsible for managing the safe shutdown of

production plant processes in crisis situations by sending appropriate signals

to control instrum ents. In such cases, the simulation model has to be able to

respond to input from the expert system, thus necessitating two-w ay

communication.

Flitman and H urrion[1987] take the same purposeful approach as Stew art

and Surgenor and use two computer systems in creating a physical b a rrie r

between a Fortran based simulation model and an advisory expert system w ritten

in Prolog. The resulting system is used to investigate the possibility of

developing an expert system using the method of parameter adjustm ent. The

firs t stage consists of running the model under user control, allowing the

operator to assume the role of a real-w orld e x p e rt. The response actions of

the user, triggered by changes in queue lengths, are recorded, formalised as

rules, and then stored in the knowledge-base as facts. In subsequent simulation

ru n s , the expert system monitors the simulation output and responds according

to the past user in terventions.

62

Reliance on unmanned operations based on the use of robotics and

Automatic Guided Vehicles (AGVs) fo r process automation w ill inevitab ly lead

to increased in terest in expert systems as key components of the

Num erical-Control systems (N C) . This leads to another potential application for

the jo int use of expert systems and simulation which, as yet, has not received

the level of attention it m erits. The ES could benefit from forw ard projections

through time in making a choice between multiple conflicting strategies. Using

a simulation model to investigate potential side-effects of a given policy could

be of great benefit to expert systems, perm itting a higher level of faithfulness

with human decision making through the introduction of the added dimension of

temporal reasoning.

2 .6 CONCLUSION

Simulation is a process that assists a modeller in experim enting w ith real

world situations. Existing simulation structures are well adapted fo r the

purpose of representing the physical structures and associated activities that

take place in the real-w orld . Much of simulation model experimentation is

therefore based on assessing the impact of alterations in physical aspects of the

system being represented. Existing simulation languages can and are used for

the purpose of experim enting with operational decision policies but the

difficu lties in introducing complex rules and subsequently modifying these rules

is a drawback.

The work undertaken by other researchers and reported in th is chapter

lends credence to the assertion that A I techniques could play an im portant role

63

J

in simulation modelling in the context of model experim entation based on changes

to complex operational decision policies. I t has already been shown by Flitman

and H urrion [1987] that a lin k between simulation model and an A I language is

possible and that such a configuration has a number of practical advantages.

In particu lar, the expert system "declarative approach" to knowledge

defin ition would seem to have potential in the context of the representation of

operational decision making problems in simulation modelling. The apparent

advantages relate to the fact th at operational policies could be defined in terms

of rules without any explicit need to pre-define a ll program execution paths.

A second potential advantage would resu lt from the use of a h igh-level language

which would remove from the modeller the need to delve in to complex program

code.

The following chapter w ill focus on examining the nature of decision

making and will attem pt to analyze what is entailed in the representation of

operational staff and production management. Aspects of decision making such

as "joint" problem solving w ill be examined and it's impact on the requirem ents

of a simulation modelling environm ent considered.

64

CHAPTER THREE

REQUIREMENTS OF A DECISION ORIENTED SIMULATION ENVIRONMENT

3.1 INTRO DUCTIO N

The design of the proposed simulation environm ent is dependent on how

decision related knowledge can best be in tegrated with a corresponding

simulation model depicting physical activ ities . A firs t step in establishing the

most appropriate design is to investigate the d ifficu lties in representing

decision tasks. Section one therefore consists of an analysis of decision making

w ith emphasis placed on the classification of decision types according to position

in an employee/management h ierarch y . Although such a hierarchy is not typical

of all problem areas investigated using sim ulation, the environment is one of the

most complex types to represent. The section concludes with a study of the

data analysis tools used by decision-m akers. For accuracy, some of these tools

may have to be represented as p art of a model.

Simulation models presently depict decision processes by either

sim plifying decision rules or by replacing the logical steps involved by

probability d istributions based on p rio r sampling. In cases where the actions

taken by decision-makers are h ighly predictable, and where experimentation

using a lternative decision rules is not deemed necessary, existing simulation

environments operate satisfactorily . In other cases, such approximations are

considered to affect the accuracy of the simulation and lim it the potential of

the model as a tool fo r experim enting w ith alternative decision c rite ria . Present

simulation environments do not have the capacity to represent aspects of

65

decision making to the level of detail described in section one. Section two

consequently considers the lim itations of simulation in representing

decision-m akers and investigates Visual In teractive Simulation (V IS) as a means

of overcoming such problems.

An expert system is used as a supportive tool in reproducing an expert's

solutions to a range of problems. In contrast to simulation m odelling, little

emphasis is given to the accuracy of the in ternal representation. Many expert

systems use production rules which do not necessarily re flect the kind of

deductive reasoning that the expert applies. Secondly, such rules are often

randomly ordered making the knowledge-base harder to maintain and reducing

the efficiency of the search process. Such problems, coupled w ith an in ab ility

to define the knowledge of several decision makers in the form of an employee

hierarchy, lim it the value of expert systems both generally and in the context

of simulation applications. Section three considers the impact of such lim itations

in more deta il. Isolating the potential problems in using existing expert system

methodologies is necessary in determining the most appropriate approach to

developing the proposed simulation environm ent.

Whereas greater detail is necessary in the representation of

decision-m akers, a careful balance must s till be maintained between accuracy

and development overheads. For instance, inclusion of representations of high

level management may be unnecessary given that decisions taken at th is level

tend to apply to overall company policy or strategies and tend to only take

effect in the lo n g -ru n . Section four is devoted to an analysis of such

considerations in isolating the requirem ents of the proposed simulation

environm ent. Potential system designs are then discussed re la ting to the

66

simulation language, the expert system, and th e ir possible amalgamation.

3 .2 DECISION MAKING.

Decision making generally involved making a choice from a range of

alternatives based on a specific selection crite ria (Nestman and Windsor [1985]).

The selection process typ ically involves the comparison and analysis of

operational data and may necessitate substantive sk ill and experience.

Decision making activities take place at a ll levels w ithin an organisation,

from the chairman of a company down to shop floor employees. In general, the

decision making activ ities and goals pursued by senior management are hard to

iden tify and can be defined as being unstructured whereas decisions and goals

made by low ranking employees tend to involve operational activities th at are

easier to describe, are well s tru ctu red , and most often well documented.

Furtherm ore, the range and d ivers ity of data used by senior management tends

to be fa r greater than at the production line level where, fo r instance, an

operator bases his decisions on machine data and instructions obtained from the

line manager. The passing of data to a more senior colleague and the response

obtained is a c ritica l aspect of decision-making th at occurs at all levels in an

organisation. The communicative aspect of decision-making is represented

diagrammatically in fig ure 8.

Decision domains have been classified by Nestman and Windsor [1985] as

belonging to one of four categories: C orrelative, strateg ic, tactical, or

operational. C orrelative and strategic decision domains are investigated solely

67

b y h ig h r a n k in g m anagem ent in th e p ro ce sse s o f p la n n in g a n d goa l s e t t in g .

A n a ly t ic a l to o ls u se d a re o f a 'q u a l i ta t iv e ' n a tu re a n d a re e i th e r h e u r is t ic o r

d e d u c t iv e in n a tu r e . H e u r is t ic to o ls in c lu d e fu z z y s e t t h e o r y , in te l l ig e n t d e lp h i

a n d c a ta s tro p h e th e o r y . D e d u c t iv e to o ls c o n s is t a m o n g s t o th e rs o f , s im u la t io n ,

c o n t in g e n c y p la n n in g , a n d m a rk o v p ro c e s s e s . Q u a lita t iv e to o ls a re im p re c is e in

n a tu re b u t a re th e o n ly e f fe c t iv e te c h n iq u e s a v a ila b le to th e m a n a g e r. In

c o n t r a s t , ta c t ic a l a n d o p e ra t io n a l d e c is io n s te n d to be ta k e n b y m id d le

m anagem ent a n d o p e ra t io n s s ta f f u s in g 'q u a n t i ta t iv e ' to o ls . Q u a n t ita t iv e to o ls

a re e i th e r s ta t is t ic a l o r a lg o r ith m ic in n a tu re a n d a re s u f f ic ie n t ly p re c is e to be

o f c o n s id e ra b le use in d e c is io n m a k in g a c t iv i t ie s .

CORPORATE MANAGEMENT

PRODUCTION MANAGEMENT

SHOP FLOOR MANAGEMENT

F/GURE 8 RULE RASE MANAGEMENT HIERARCHY

68

Decisions can fu rth e r be categorised as e ither being of a pre-em ptive or

corrective type. Pre-em ptive decisions are applied in ensuring that undesirable

situations do not occur. They act as physical constraints, e .g . machines

overheating, dangerous power consumption levels e tc . . In contrast, corrective

decisions are only applied a fte r an undesirable event has occurred. Both

Pre-em ptive and corrective decisions tend to be applied by operations staff and

consequently tend to make use of the quantitative tools described.

3 .3 DECISION MAKING W ITHIN SIMULATION

In section 2 .2 .5 and 2 .5 , the impact of simulation on decision making in

terms of decision support systems was considered. A d ifferen t viewpoint w ill

now be taken by investigating what decision making activities need be

represented as part of the model and how these can effectively be incorporated

in to the logic fram ework.

According to Rozenblit and Z e ig ler[1985], 'conventional simulation

languages are lim ited by the necessity to settle on fixed , simplistic resolutions

to a number of complex tradeoff decisions'. This observations is also reflected

in a discussion of the comparative m erits of simulation and gaming in decision

support systems by Gray and Borovitz[1986] where simulation is characterised

as appropriate in cases where the systems involved only limited or highly

predictable human behaviour.

A common approach in simulation is to model behaviour using probabilities

based on p rio r observation and sampling. A lte rn ative ly , simplification is

69

achieved by using crude and simple decision rules th at scarce do justice to the

complex and adaptive behaviour being applied in the real world system. In

contrast, physical components of such systems are typ ically represented to

high levels of accuracy. O'Keefe and Roach[1987] believe that th is in ab ility to

effective ly model in telligent behaviour is one of the major drawbacks of

trad itional simulation modelling. The argument is th at if the representation of

potential decision processes is crude and inadequate, then any comparison of

decision alternatives w ill inevitab ly be restricted to a range much narrower than

that available to the decision-maker in practice. Such a drawback is particu larly

restric tive in tactical simulations (e .g w arfare) in which the main purpose of

the simulation is to make such comparisons.

Researchers who have considered the need to improve the methods used

in defining simulation models have tended to investigate the possibility of

developing a lternative model building techniques. The prim ary concern has

been to sim plify the model building process ra th er than add to its complexity

by increasing the detail with which decision-tasks are represented. One

approach th at has attempted to compromise model detail w ith modelling

complexity and th a t seems to have had some degree of success is Visual

In teractive Simulation (V IS) . V IS represents changes in the state of the model

in pictorial form during the simulation runs (see O'Keefe and Roach[1987]) . The

user is able to in te rru p t the simulation, a lter a restricted range of model

characteristics, and then continue the run using the modified model. By

appropriate interventions in response to observed model behaviour, decision

mechanisms of a rb itra ry complexity may be achieved. However, th is achievement

is at the cost of not being able to secure the benefits of replication and

statistical analysis of performance. V IS modelling is essentially a hybrid of

70

simulation and gaming, sharing a measure of the advantages and disadvantages

of each.

The approach adopted in th is thesis is a more d irect and obvious

response than V IS to the challenge that simulation models do not adequately

represent in telligen t behaviour. The area of a rtific ia l intelligence has been a

natural focal point in the search fo r an appropriate representation of in telligent

behaviour fo r incorporation in models. This investigation of the fie ld of A I, and

in particu lar expert systems, has led to a number of possible designs fo r the

implementation of the proposed simulation environm ent. These w ill be discussed

in some detail in section 3 .5 .

3.4 REPRESENTING DECISION MAKING USING EXPERT SYSTEMS.

C learly , the principle demand on the nature and structu re of an expert

system in representing human decision-makers is that it should be capable of

an adequate representation of the individual decision-making processes

exploiting such information as would norm ally be available to the individual.

This inform ation is both current and historical and fo r instance, may be based

on an investigation into the fu tu re using a stochastic tool such as simulation as

was described in section 3 .2 . Consequently, i f a decision-m aker has access to

a simulation model, then an expert system that is to adequately represent the

decision-m aker must have access to the same source of inform ation. An expert

system may have to be able to represent time fo r other reasons. For example,

decisions taken in a dynamic system must take in to account delays both in the

information flows on which decisions are based and in the actions taken under

71

those decisions. The use of temporal reasoning in expert systems has been

discussed by M iller [1986] and researched in a more practical context by Fox

and Sm ith[1984] during the development of IS IS . IS IS is an expert system fo r

scheduling in job-shops and makes use of heuristics in generating alternative

schedules. IS IS , it is claimed, has a performance level superior to that of its

human counterpart.

A number of other characteristics of decision making lim it the

effectiveness of existing expert systems. For instance, the satisfactory

representation of individual decision-makers cannot be easily separated from the

need to represent th e ir in teraction . One cannot sensibly represent the decision

making activ ities of an employee without reference to the contributions made by

others which may influence the outcome of the decision. Even senior management

decision making may in d irectly influence the outcome of decisions taken by

low -ranking employees through the modification of global goals or through

alteration of the methodological aspects of the decision making process. Baimer

et a l.[1988] recognise th is problem and suggest a methodology based on the

defin ition of 'E p i-ru les' that reflect the influence th at management rules have

on other decision making processes (see section 3 .5) . C urrent expert systems

ignore the impact of senior management and take a simplified view of even the

most basic decision making processes. A modified expert system paradigm th at

takes into account the existence of a hierarchical management s tru ctu re would

in some sense complicate the representation of management expertise, though

the resu ltan t expert system should benefit from it .

Expert systems take a simplistic view of decision making which can

partia lly be attrib u ted to a number of factors associated with the design of ES

72

development tools. Most expert systems are poor at handling arithm etic and

algorithm ic computations which complicates the representation of the

'quantitative' tools used in making tactical and operational decisions. As

mentioned in section 3 .2 , middle management and operations s ta ff make use of

such statistical and algorithm ic tools in decision-m aking, and any d ifficu lties

in representing these clouds the effectiveness of the expert system paradigm .

Expert systems also lack the necessary s tru ctu ra l formalism that would

perm it the representation of individual decision-makers and th e ir in teraction.

The development of expert systems fo r medical diagnosis such as Mycin and

In te rn is t owe much of th e ir success to the restric ted , 'one man' view they take

of the real w orld . An expert system to aid decision making in a m anufacturing

environment may necessitate a fa r greater level of complexity given that

employees ranging from machine operators to line managers contribute to the

decision making process. Existing expert systems encourage an incremental

process of knowledge-base development with elicited rules added in a random

fashion. There is a lack of any formal methodology facilitating the physical

separation of logically distinct rules attribu tab le to individual decision-m akers.

The maintenance and validation of large rule-bases is consequently made more

d iffic u lt, w ith the addition or deletion of rules potentially leading to unexpected

resu lts .

3.5 LINKING SIM ULATION AND EXPERT SYSTEMS - A SUGGESTED APPROACH

In section 3 .3 , the drawbacks of trad itional simulation were highlighted

in terms of the inevitab ly simplistic nature of modelling resulting from

73

difficu lties associated with representing the process of decision-m aking. In

section 3 .4 , expert systems were shown to lack the s tru ctu ra l formalism and

algorithm handling capabilities necessary in representing decision-makers and

th e ir interactions. In th is section, suggestions are made as to ways of

overcoming, these problems. The proposed methodology is based on the

in tegration of expert systems and simulation to form the backbone of a system

devoted to decision support. The suggested approach is intended to help

in tegrate management decision rules in the simulation by fac ilita ting the

representation of the dynamic aspect of decision-m aking, and the modelling of

the in terp lay between individuals during decision taking activ ities . The

resulting methodology should provide a composite technical base fo r a decision

support environment in which experim ents can be carried out based on the

analysis of the effects of d ifferin g responses to decision making tasks.

Adequately representing decision-m akers and employee hierarchies is an

in tractable problem fo r those cu rren tly working in the area of simulation

(sections 2 .2 .4 and 3 .4) . Increased faithfulness to the real world is required

perm itting the individual specification of employee decision rules and the

sharing of such defined knowledge. The management hierarchy in a

m anufacturing environm ent w ill include many persons whose role in

decision-making is crucial but who are not norm ally represented in a simulation

model which will usually concern its e lf only with those actively engaged with

machine operations. The modelling of decision-making must extend to this

hierarchy and w ill sensibly re flect its s tru c tu re . The immediate effects of

higher level management decisions may be seen in terms of modifying e ith er the

goals or the decision making processes used by those a t lower levels ra th er

than acting directly on the system.

74

The representation of corporate management decision m aking, fo r the most

p a rt, is not crucial to the sim ulation. Decisions taken a t th is level mostly apply

to the long-run and do not tend to have a direct influence on the day-to -day

operation of the system. Production line management are most like ly to be the

hardest to model as communication w ith lower ranking employees is like ly to play

a major ro le. Decisions, though not instantaneous, are typ ica lly carried out

within the duration of a simulation run and consequently effect the outcome.

Decision making in the real-w orld is a dynamic process and not

instantaneously as represented in expert systems. The delays are particu larly

critica l when methods of communication are lim ited. The representation of time

delays in the expert system may therefore be of im portance. The ES should be

able to represent time in two way:

Decisions th at are made now but only take effect at some time in the

fu tu re . Hence, the decision-m aker is using inform ation cu rren tly available

to him. B ut as the actions only take place at some point in the fu tu re , the

data available w ill have changed when these take place.

Decisions th at are made now, to make decisions at some point in the

fu tu re . Hence, when the action(s) fin ally take place, the decisions are

based on cu rren tly valid data. For instance, a manager may say to an

employee that he should apply certain rules at a given point in the

fu tu re .

75

In section 3 .4 , it was noted that from the expert system perspective, that

the representation of decision-makers relied in part on an adequate description

of the decision making processes coupled with access to such information as

would norm ally be available to the individual. As we have seen, the process of

decision making may involve the use of statistical and algorithm ic tools which

are not easily defined using the declarative style of knowledge representation.

Id ea lly , the expert system should have access to code w ritten in a conventional

high-level language in achieving a greater faithfulness to real world decision

taking tasks and giving the expert system a combined declarative/procedural

context. The other aspect of accurately representing decision-m akers, namely,

providing the expert system with information normally accessible to the

decision-m aker is achievable by treating the simulation model of the environment

in which the individual operates as a form of data generator. In tu rn , the

expert system may effect an appropriate series of actions by retu rn ing any

decision reached to the simulation model. The inform ation available to the expert

system could derive from the current and historic data of the simulation model

and be made accessible by some sharing of data structu res. However, access

to data by the decision-makers represented in the expert system must be

restricted according to the range of data accessible in the real w orld. Modelling

must include the definition of the data which should be made accessible to the

expert system components and that which must remain p rivy to the sim ulation.

For instance, the simulation structures w ill typ ically include some fu tu re event

lis t . C learly w hilst access to information concerning model fu tures could be most

useful, decision rules depending on such 'clairvoyance' could not be regarded

as legitim ate and should be form ally excluded.

76

Increasing the level of detail in a simulation model may complicate its use

as a basis fo r experimentation and lim it its applicability in the context of

decision support. Consequently, the developed environm ent must provide the

necessary tools and be structured in such a way as to sim plify the development

of a model. The process of validating and using a model, and in terp re tin g

results obtained must aiso be aided through the use of appropriate tools, l'he

expert system component of the model may be used to improve the

user-friendliness of the environment by controlling the user in terface or by

encapsulating the necessary logic fo r the analysis of the simulation resu lts ,

l'he expert system should aiso improve the m aintainability of the model by

sim plifying alterations to the model logic, fo r instance, the environm ent should

support modification of rules applied by decision-makers w ithout a

corresponding need to adapt model ac tiv ity cycle representations. Model

m aintainability is fu rth e r discussed in the next section.

3.5.1 in teg ratin g expert system and simulation methodologies.

Several techniques have been adopted by researchers m attem pting to use

simulation and A i to mutual benefit dunng the modelling process. These

approaches were described m chapter two. l'he ments and disadvantages of

each will now be re-considered with the aim of id en tify ing the most appropriate

design for the intended decision support environm ent, 'l'he desired

characteristics of the simulation language outlined in the last section are taken

as major factors influencing the design of the eventual system.

i.u s in g expert system shells: in section 2 .5 .4 , the use of an exp ert system

shell as a form of simulation model development environment was considered.

The main argument put forward m suggesting tnat an expert system sneLL may

oe suitable fo r simulation is based on the sim ilarities between simulation and

expert systems identified oy shaw and uaines[i986] and L)oukidis[i987] #

amongst others, l ’he likeness between the three-phase simulation executive'

and the expert system forw ard-chaining inference engine are considerable.

Indeed, Robertson[1986] and Moser[1986] have shown th at an expert system

can be adapted fo r simulation. The fact that the expert system and simulation

paradigms are sim ilar is not however sufficient to argue that an ES shell

provides an improved environment fo r simulation. Using a shell would only be

of benefit if the inference engine could be made to handle both the simulation

and the conventional expert system task of representing decision-m aking. The

inference engine is not capable of th is dual role and the language syntax used

in shells is not su ffic ien tly flexib le to perm it the separate specification of

knowledge relating to decision-making and knowledge specific to the definition

of activities and th e ir relationships. O ther lim itations of the approach are listed

in fig ure 9.

ADVANTAGES DISADVANTAGES

Simple, declarative structure. Limited/non-existant algorithm handling capability.

Intelligible language syntax. Limited arithmetic and data handling facilities.

Traceable inference. Unstructured language syntax.

Facilitates incremental development. Slow code execution.

F/GURE 9 ADVANTAGES/D/SADVANTAGES OF EXPERT SYSTEM SHELLS

78

2 .Creating a new simulation language: Concepts borrowed from expert

systems and simulation can be brought together using a common language

syntax, representing another possible methodology fo r in terfacing a model w ith

a representation of decision-makers and th e ir h ierarchy. The main advantage

with th is approach is in the fle x ib ility afforded by the creation of a bespoke

language. Commands can be structured to match a given purpose, data

structures are compatible, and facilities can be provided fo r m anipulating stored

information in a way consistent w ith the task in hand. Examples include

modelling environments based on Object Oriented Programming (OOP) and

modified versions of Prolog (section 2 .5 .4) . In OOP, a d ifferen t view of

simulation is adopted in which knowledge of the real world is defined in terms

of objects and th e ir in terrelationships. No distinction is drawn between

knowledge concerning the physical objects that make up the real world

environm ent and knowledge specific to the process of decision m aking. In Prolog

based environm ents, the forw ard chaining inference process can be modified so

as to represent discrete advances in tim e. The basic Prolog syntax however

remains unchanged with the advantages of a common language syntax

consequently being lost.

One of the drawback with using a single bespoke language in specifying

the expert system and simulation model results from d ifficu lties in merging

knowledge concerning model activ ities with knowledge specific to

decision-m akers. The physical actions or processes that constitute a major part

of existing models are best defined using sequentially executed code. On the

other hand, decision related knowledge is ideally specified using a declarative

language. The two language types cannot effectively be merged without

compromising on the effectiveness of e ith er the simulation or expert system.

79

The creation of a single bespoke language is also undesirable from the

perspective of code m aintainability. For instance, the simulation model of the

port described in chapter five is of a size that lim its the practicality of making

changes to the model logic. The individual cycles of the model are defined in

separate modules to ease the in terpretation and handling of the code. Had it

been possible to add complex management decision rules to the same program ,

the m aintainability and leg ib ility of the code would have been lost. Indeed, the

difference in nature between the two types of knowledge would have provided

the incentive to place the decision rules in a separately identifiable module. The

benefits and lim itations of creating a bespoke simulation language are

summarised in fig ure 10.

ADVANTAGES DISADVANTAGES

Code may execute faster. ES not separable.

Code modification limited to one file. Logical separation is lost.

May be easier to debug. Risk of inconsistencies.

Bespoke language syntax.

Figure 1Q Advantages/disadvantages o f a bespoke simulation language

3 .In terfac ing an expert system and simulation model: In section 2 .5 .5 , an

analysis was made of systems developed by Stewart & Surgenor[1987] and

Flitman & Hurrion[1987] in which it was seen that lim ited interaction was

possible between a separately implemented simulation model and expert system.

Both environments were designed using the pragmatic approach of separating

the simulation model and expert system using two microcomputers. Data transfer

was achieved using a general communications protocol. The same principle could

be applied in separately specifying knowledge pertaining to model activities and

decision-m aking. Not only would the code be easier to in te rp re t but the logical

separation would enable the physical model to be modified independently from

any changes made to the decision making activ ities. The b a rrie r between the

software modules would encourage parallel development and testing using tools

that d iffe r in characteristics and would help in retaining some logical structure

to the implemented model. In many respects, separation of the knowledge from

the physical implementation follows the expert system paradigm and corresponds

to the concept of keeping the inference engine separate from the ru le-base.

Stewart and Surgenor's approach is lim iting in the sense of having to use

two microcomputers. A part from the physical restrictions imposed, the need to

transm it relevant data over a communications cable removes much of the

potential value of in terfacing a simulation model and expert system. For

instance, the expert system module must transm it a request to the simulation

model in order to examine an item of data. The data returned is lim ited in terms

of volume and must be preceded by a message identifying the request. An

alternative method of communication is based on the simulation model

transm itting of its own accord data deemed to be of in terest to the expert

system. The 'broadcast' approach is lim iting in terms of the volume of data that

81

need to be transm itted. Further requests fo r data may also be necessary if

information is found to be lacking. Extreme care is also necessary in ensuring

that data held by the simulation model is identical to that being used by the

expert system. Any inconsistencies th a t may occur would invalidate model

output. The problems would obviously be compounded if two-way data

transmission were to be introduced.

The benefit of using communicating microcomputers is in the fle x ib ility

afforded by being able to use existing software w ith re la tive ly minor

adaptations. In practice, incom patibilities in data types and variab le storage

structures impose considerable restrictions on the practicality of the approach.

Alterations to data formats are necessary fo r every item of inform ation sent

from one computer to the o ther. More c ritic a lly , computations based on values

stored in data structures such as arrays or series of records are rendered

impracticable by the necessity to tran sfer all relevant data item s. The process

is fu rth e r complicated if the data structures used on each computer d iffe r. For

instance, Prolog's use of Lists which can contain mixed data types does not

have a direct equivalent in procedural languages such as Pascal, Fortran , and

C .

A more satisfactory approach than using two microcomputers is to create

an environment en tire ly based on a single machine. Two potential methodologies

have been considered and w ill now be discussed in tu rn .

A simulation language could be interfaced to an expert system by keeping

both modules memory resident and using pre-defined routines fo r tran sfer of

control. The simulation would then call the expert system when particular

82

decisions needed to be made. The expert system could e ither be based on a

shell such as X i, an A I tool (e .g . OPS5), or an A I language such as Lisp or

Prolog. The principle benefit of the approach would be that existing software

could be used that has already been extensively developed and tested, thus

lim iting implementation overheads. Using a single computer has clear functional

advantages over Stewart and Surgenor's approach. Nevertheless,

incom patibilities in data types and storage structures could not be overcome,

and some form of communications strategy would s till have to be established. A t

the outset of the research, the approach was considered a possibility as it was

found that the language specification of Borland’s Turbo-Prolog appeared to

allow linking to Pascal and C . Turbo-Prolog produces object code which should

be linkable to other object code modules produced using other language

compilers. Thus mixed model programming should have been achievable bringing

together elements of A I and simulation code w ritten in a conventional procedural

languages. Borland's claims to produce Microsoft compatible object code could

not however be born out in practice and the idea had to be abandoned.

The second potential methodology, is to w rite an expert system shell in

a h igh-level procedural language. The creation of a bespoke expert system

would mean that the software could d irectly be developed fo r use with a

simulation model. The main drawback of the approach would be the time

overhead necessary in developing the expert system. Nevertheless, the benefits

to be derived are clearly substantial w ith problems such as the incom patibility

of data structures potentially being solvable. Com patibility in data types and

variable storage structures could be achieved by using a common language in

the development of the expert system and simulation environm ent. Extensive

research has already been carried out at the LSE in the creation of Pascal

83

routines fo r discrete-event simulation. Hence, if these routines were to be

used, the expert system shell would also have to be w ritten in Pascal.

The development of a simulation environment and separate expert system

w ritten in the same language would help relieve the problem of data

com patibility. Nevertheless, the greatest obstacle to the creation of an effective

system would remain. Namely, the need to m ultitask the programs and

physically tran sfer data between the systems as and when required during the

execution of the programs. The only apparent way of overcoming such

lim itations would be to create a single executable program combining aspects

of the simulation environment and expert system. The simulation and ES could

then share variables and other relevant data via the stack, heap, or any

commonly agreed memory locations. The independence of the units would

nevertheless need to be retained to perm it separate development of the model

and knowledge-base. This requirem ent linked with the fact that the eventual

system is potentially considerable in s ize, points to the need to adopt a modular

approach. A programming language that permits the creation of independent

object code modules would satisfy these requirem ents, allowing a single

executable program to be created by linking the individual modules together.

Figure 7 and 11 summarise the alternative ways in which an expert system

and simulation model can be in terfaced.

84

SIMULATION
COMMS LINK

SYSTEM

MULTI PROCESSOR APPROACH

SIMULATION
COMMS ;

4 LINK *
EXPERT
>YSTEM

MULTI-TASKING APPROACH

MODULAR APPROACH (SINGLE PROGRAM)

F/GURE 11 AL TERN A T/VE APPROACHES TO SIMULA T/ON / ES INTEGRA T/O/V

3 . 5 . 2 F a c il i t ie s th a t s h o u ld be p ro v id e d b y th e e x p e r t s y s te m .

In s e c tio n 2 . 3 . 3 , th e l im ita t io n s o f e x p e r t s ys te m s w e re c o n s id e re d . T hese

a re n e c e s s a r ily r e le v a n t to th e p ro b le m o f in te r fa c in g a s im u la t io n m ode l a n d

e x p e r t s y s te m , a n d a re c u r r e n t ly m a jo r is s u e s in a r t i f ic ia l in te l l ig e n c e re s e a rc h .

T h e scope o f th e th e s is c a n n o t in c lu d e th e im p ro v e m e n t o f th e e x p e r t s y s te m

p a ra d ig m . N e v e r th e le s s , some p ro g re s s m ay be a c h ie v e d in d i r e c t ly th r o u g h th e

in te g r a t io n o f s im u la t io n a n d A I te c h n iq u e s , a n d th e need to re p re s e n t m u lt ip le

d e c is io n -m a k e rs w ith in th e k n o w le d g e -b a s e .

85

The use of an o ff-th e -sh e lf expert system shell would be lim iting in a

number of respects:

1. Many of the facilities provided would be redundant.

2. The shell could not be customised.

3. In terfacing the expert system to other code would be a complex

process and would inevitab ly effect the usability of the

end-product.

4. Commercial shells produce screen ou tp u t. This would in terfe re with

the output produced by the simulation model. (Another reason

justify ing the use two computers)

5. Expert system shells provide poor support fo r arithm etic

computations and most often do not support execution of procedural

code.

The proposed development of a bespoke expert system would help in

overcoming these problems.

Only those facilities considered necessary would be implemented as part

of the expert system. The compactness of the resulting code would help improve

the efficiency of the inference strategy and reduce the problem of lim ited

Random Access Memory (RAM). Code size is particu larly critica l if the system

is to implemented on an microcomputer.

A bespoke expert system can of course be customised. The form at used

for the specification of rules can be adapted to the specific needs of the

86

simulation environm ent. Most c ritic a lly , the ES could be made to share variables

and data structures with the simulation model.

The use of Pascal as the base-language fo r the expert system is helpful

in respect of taking fu ll advantage of the facilities provided by the underlying

computer hardw are. Transfer of control between the ES and simulation model

should be greatly simplified as should be the necessary task of accessing

memory locations.

The bespoke expert system permits fu ll control of the screen display.

Hence, output produced by the simulation model could be windowed with output

generated by the expert system. A ltern atively , each system could be prevented

from sending information to the monitor simultaneous to the other.

The arithm etic support could be customised as necessary. Furtherm ore,

the expert system should be capable of calling Pascal procedures and functions.

This would give the ES the added benefit of being able to execute procedural

code. Any complex algorithms used in decision-making problems could be

defined using functions.

The development of a bespoke expert system would also perm it the

customisation of the language syntax. Using the ES in a simulation context

imposes requirem ents on the system that d iffe r from those that would be

encountered in developing a conventional ES. For instance, the knowledge-base

has to be capable of representing several decision-makers whilst keeping some

form of logical separation between the sets of ru les. Ways of overcoming the

problem include using individual files to represent each decision-m aker, or

87

creating blocks of rules w ithin one file . In section 3.4, the issue was taken a

step fu rth e r by pointing out that decisions are not always taken by lone

individuals but often by two or more people in consultation with each o th er. A

potential way of lim iting such representational problems would be to perm it each

block of rules to 'in h erit' rules from other blocks. Hence, if the rules used by

one expert were not sufficient to solve a given problem, another expert's block

of rules could also be used.

F inally , the adequacy of the expert system relies in g re a t-p a rt on the

design of the inference strategy. Expert systems either use a methods based

on forw ard-chaining, backward-chaining, or a combination of the two. These

were described in section 2 .3 .1 . Forw ard-chaining inference strategies are

d ata-d riven . In other words, the application of values to the premises of rules

is what trig g ers th e ir execution. Consequently, if forw ard-chaining was to be

used in the proposed system, the ES would have to assume the role of a

'd a ta-an alyser'. Whenever a change in state occurred in the sim ulation, the ES

module would be activated and all rules verified to see if th e ir premise could

be satisfied. In a sense, the use of forw ard-chaining would help in creating a

realistic representation of methods used in the real-w orld . For instance,

managers at the control of a m anufacturing plant are continuously m onitoring

the production lin e , taking appropriate action when undesirable events occur.

The main disadvantage with the approach is the computational overheads

incurred in having to scan all rules stored in the knowledge-base at every time

advance. The process is time consuming and inefficient as the m ajority of rules

will not apply. The alternative backward chaining strategy is goal-d irected .

The expert system is presented with a goal which it then attempts to prove or

disprove. The simulation model has to in itia te the inference process and specify

88

the goal to be resolved. For instance, during the C-phase of the three-phase

approach, a search is made fo r activities that can commence. The conditions

th a t dictate whether the activities can s tart could include references to the

expert system. In the manufacturing plant example, the closest analogy would

be a machine operator checking whether he could s ta rt a particu lar process.

The strategy is more effic ient in th at the search is directed with irre levan t

rules being ignored. The division of rules in to blocks should also help by

fu rth e r reducing the search space.

3 .5 .3 Facilities that should be provided by the simulation component.

As w ith the expert system, modifications need to be made to the

simulation language in providing a capacity to communicate w ith other softw are.

Access to source code is therefore indispensable. Research at Lancaster

university and subsequently at the LSE lead to the creation of the Extended

Lancaster Simulation Environment (eLSE), a set of lib ra ry routines fo r the

development of discrete event three-phase simulation models (Chew[1986]). The

routines are w ritten in Pascal, are well tested, and fu lly documented. The eLSE

lib raries could be modified, thereby by-passing the need to create a new

environm ent.

One of the most basic requirem ents of the simulation module w ill be to

support models that are substantial in size. The addition of an expert system

w ill place substantial burdens on the simulation environm ent. The eLSE lib raries

are cu rren tly implemented in Turbo-Pascal which imposes a lim it of 64K on code

size and is consequently inadequate. The lib raries therefore have to be

89

tran sferred to another version of Pascal. O ther necessary changes include the

addition of routines to transfer control to the expert system module. These

lib ra ry routines have to be capable of passing inform ation over to the ES and

receiving instructions in re tu rn . In the case of a backward-chaining system,

such information would include a definition of the goal to be solved. The

instructions which are subsequently received from the ES, such as an indication

as to whether an ac tiv ity should commence, have to be in terpreted and carried

out.

3 .6 CONCLUSION.

The problems that would be encountered in creating a formal

representation of decision related knowledge were highlighted by considering

the nature of decision making. The employee hierarchy in an organisation was

taken as an example. The knowledge applied and goals pursued by senior

management were shown to be d ifficu lt to isolate given the unstructured nature

of the decision activ ities. In contrast, decisions made by machine operators

were identified as being well structured and consequently fa r easier to formalise

as program code. Decision types classified by Nestman and Windsor[1985] were

then discussed. The tools used in decision-making were also examined and

categorised according to th e ir precision. In conclusion, it could be seen that

p art of the d ifficu lty in representing the decision-making activities of

management was the underlying need to reproduce the characteristics of the

heuristic or deductive tools being used. In contrast, form alising the tactical and

operational decisions taken by operations staff would be facilitated by the well

defined statistical or algorithmic tools being applied.

90

The lim itations of simulation techniques in form alising decision-making

processes were then considered. Simulation was characterised as supporting a

detailed representation of the physical components of real-w orld systems but

could not effectively be used to model in telligen t behaviour. Techniques that

are applied in representing decision tasks include simple rules that only

p artia lly re flect the underlying logic and sampling from probability

distributions. Such approximations, if reasonably accurate, need not invalidate

results concluded from simulation experim ents. However, if the decision-making

process is complex and d ifficu lt to approxim ate, the output obtained may be

inaccurate and bring into doubt the value of the model. Sim plifying the model

logic also effects the fle x ib ility of the sim ulation. The potential range of

experiments that could be carried out in comparing decision alternatives is

inevitab ly restricted to a range much narrow er than would be possible if the

model depicted decision-making in deta il. Visual In teractive Simulation (VIS) is

a technique that helps overcome the drawbacks of lim ited model detail in the

representation of decision alternatives. V IS allows the user to in te rru p t and

modify a model during a simulation ru n , thus reflecting the decision-makers

action. Such a benefit is however secured at the expense of not being able to

replicate experiments or carry out statistical analysis of performance.

Section 3 .4 then considered the appropriateness of the expert system

paradigm in representing decision-m akers. Expert systems were identified as

being in su ffic ien tly powerful to represent the in tricacies of the decision-related

knowledge of h igh-level management. This was seen as being largely due to the

difficu lties in representing the heuristic and deductive tools used by

management as part of the knowledge-base. Expert systems were also seen as

91

imposing a lim it on the representation of m ultiple decision-m akers. In the

real-w orld , decisions are frequently taken by groups of people ra th er than by

individual in isolation. Sharing knowledge consequently forms an im portant part

of the process of taking an action. Expert system shells tend to be developed

with a view, to representing a single expert and do not have the necessary

structure to represent several experts each contributing in some way to a given

decision task. F inally , expert systems were seen to impose some lim itations in

situations where mathematical computations were involved. In the context of

decision m aking, operations staff may use statistical or algorithm ic tools as aids

in deciding on an appropriate course of action. These tools may be d ifficu lt to

represent as part of the knowledge-base.

A lternative designs were then considered in bringing together aspects

of simulation modelling and expert systems. The main concern was to id en tify

the most appropriate approach to adding decision related knowledge to the

model. The firs t step consisted of review ing the implications of having to

represent the employee hierarchy and the consequent sharing of inform ation.

Formalising the techniques applied by senior management in solving decision

related problems had been identified in section 3 .2 as a major problem. A fte r

careful consideration, it was concluded that th is in ab ility to effectively

represent corporate management would not adversely effect the va lid ity of the

simulation model. Decisions taken by corporate management tend to consist of

long-term strategy related problems which would not typ ically take place w ithin

the time span of a simulation run and could not consequently effect the

outcome. The techniques used in developing the s ta te -o f-th e -a rt modelling

environments described in section 2 .5 were then discussed. I t was concluded

that the approach that presented most promise, consisted in being able to

92

specify decision rules in a knowledge-base, separate from the rest of the model.

Having focused on th is approach, alternative designs were considered for

in terfacing the simulation and expert system. Stew art and Surgenor's[1987]

research in validating expert systems was then examined in evaluating the

potential of. th e ir approach of using two in teracting microcomputers fo r

implementing each of the software modules. The need fo r a complex

communications protocol and the consequent d ifficu lties in sharing common data

were found to be critica l lim iting factors. The ensuing conclusion was that the

simulation and expert system components had to be implemented on a single

computer and that the modules had to effectively be combined. The last section

of the chapter highlighted the desirable features of the expert system and

simulation model components, finalising the broad definition of requirem ents for

the proposed environm ent.

93

CHAPTER FOUR

ESSIM - AN ENVIRONMENT FOR SIMULATION

4.1 INTRO DUCTIO N

Previous chapters have served to define the requirem ents of an advanced

modelling environment encompassing aspects of simulation and A I. This chapter

w ill describe the development of a number of prototype designs that culminated

in the development of the final system named ESSIM (Expert System

SIM ulation) .

The firs t system, developed in co-operation w ith the 'In stitu to Nacional

de Tecnologia', B razil was intended to be used in assessing the effect of

variances in jobbing and batch production structures in a typical job-shop

environm ent. This firs t system is described in appendix A . The experience

gained in implementing the job-shop model was used as a basis fo r the

development of ESSIM. Though the main design decisions had been taken prior

to the s ta rt of the coding process, practical experience led to many revisions

of the original plan. These are discussed in section 4 .2 .2 .

ESSIM, in the form in which it presently stands, is designed on a modular

basis. In section 4.3 , the role of the individual modules and th e ir interaction

is explained.

The expert system module was specifically developed fo r the purpose of

simulation modelling. The module can nevertheless be used on a stand-alone

94

basis and has a number of novel design features that should be of in terest to

researchers working in A I. Section 4 .4 describes the language syntax of the

ES and explains how the facilities were implemented. Particu lar emphasis is

placed on how the module accesses external variables and Pascal procedures and

functions.

The discrete event simulation module of ESSIM is based on the

three-phase world view . A lib ra ry of Pascal routines used fo r teaching

simulation at the LSE has been modified and extended to perm it calls to the

expert systems and sharing of data structures. Section 4 .5 describes the

development of the lib ra ry and explains how the module in teracts with the

expert system.

The expert system and simulation modules must share data values using

common variables and data stru ctu res. Replicating data would be ineffic ient in

terms of speed and memory capacity, and would lead to the risk of

inconsistencies in stored inform ation. The communications interface linking the

expert system and simulation module is consequently of critical im portance.

Section 4 .6 explains the role of the expert system 'Communications In terface

generator' (C l-g en erato r) and describes how the variables are shared.

Simulation modelling and expert systems re ly on effective communication

of inform ation. An individual creating a model must expend significant e ffo rt

in the creation of a u ser-frien d ly in terface and output displays fo r relaying

critical data in an effective form . Microsoft Pascal in which ESSIM is

implemented has no facilities fo r output control or graphics. A lib ra ry of

routines was consequently developed, based on s ta te -o f-th e -a rt techniques

95

including m ulti-level windowing, iconics, and mouse control. Though useful,

the routines were found to be time consuming to use and the process of

designing a screen display laborious. An additional module called DESIGNER

was therefore created that permits screen designs to be created in teractively

and the corresponding code generated autom atically. Section 4 .7 describes the

development of the man-machine in terface routines and the role of DESIGNER

in the development of a simulation model.

4 .2 RESEARCH STAGES

P rior to the development of ESSIM, an experim ental system was developed

which was designed solely fo r job-shop scheduling problems (See Goodman et

a l . [1987]) . The experience gained in developing th is specific application was

essential in helping to specify the required features of a generalised simulation

environm ent encompassing characteristics of both simulation and A I. This

conceptual design led to the creation of ESSIM.

4 .2 .1 Simulation of a job-shop.

The job-shop application was developed as a generalised model which

could be adapted to d ifferen t m anufacturing environm ents. The recursive

nature of product manufacturing in job-shops perm itted the specification of a

generalised assembly process based on a number of work centres and products.

Each product is made up of a number of components which are in tu rn

constructed from a number of sub-components. Components can either be

assembled at work centres or brought in as raw m aterial stock from external

96

suppliers. Raw materials have to be re-ordered at in tervals to ensure that

bottlenecks are not created by the lack of a component. Each assembly process

can only take place at specific work centres were the appropriate machinery is

available. When an order is received fo r a quantity 'x ' of a product, the

m anufacturing of the appropriate quantity of each of the sub-components is

scheduled. Items assembled at w ork-centres are e ither placed in stock ready fo r

delivery to a customer or transferred to another w o rk-cen tre , ready fo r the

next phase in an assembly process.

The specification of the products being m anufactured, the characteristics

of the jobs being performed, re -o rd ering procedures fo r raw m aterials, and

details of orders received are specified in teractively and stored in a database.

The provision of a robust and flexib le user interface was seen as being critical

given the intended role of the system as a tool fo r decision support. The

in terface enables the modeller to a lte r entries in the database and modify

features of the production process. Hence, the modeller can define the

characteristics of the environment to be modelled and can c arry out experiments

without the need to modify the physical code.

One of the problems in experim enting with the job-shop model was the

modellers ab ility at in terpreting the generated model output. A graphics based

in terface was seen as the most appropriate means of perm itting the depiction of

the dynamic behaviour of the simulated job-shop. Queue build -ups and

stock-levels can be scrutinised though high resolution graphs of a selected set

of work centres. Other display formats include a diagrammatic representation

of the job-shop depicting the flow of jobs between work centres, (see figures

12 and 13). Data can also be displayed in a textual form at. For instance, details

97

o f o r d e r s co m p le te d a n d th o s e s t i l l o u ts ta n d in g can be v ie w e d on re q u e s t e i th e r

d u r in g o r fo l lo w in g th e e x e c u tio n o f th e s im u la tio n p ro g ra m . S u ch fa c i l i t ie s ,

g iv e th e m o d e lle r a v ie w o f th e r e a l-w o r ld a n d p e rm it s im p le a n a ly s is o f th e

r e la t iv e p e r fo rm a n c e o f a l te rn a t iv e m ode l d e s ig n s w ith o u t re c o u rs e to an

e x p e r ie n c e d m o d e lle r .

X Z9S

F I C U R E 1 2 H U L T I - G R A P H AY OF QUEUE

S p e e d 94*/.

UC 1

UC 2

UC 3

UC 4

S TO C K

FIGU RE 1 3 ACD TYPE D IS PL AY FOR J OB SHOPS

O ne o f th e l im ita t io n s o f th e jo b -s h o p m o d e llin g e n v iro n m e n t w as th e

r e s t r ic t io n s im p o se d on th e ra n g e o f e x p e r im e n ts th a t c o u ld be c a r r ie d o u t .

W hereas i t w as p o s s ib le to e x p e r im e n t w ith th e a d d it io n o f w o r k - c e n t r e s , o r

th e m a n u fa c tu r in g o f new p ro d u c ts a n d s u b -c o m p o n e n ts , no in v e s t ig a t io n was

p o s s ib le in to th e e f fe c t o f a l te r n a t iv e p ro d u c t io n s t ra te g ie s w ith o u t re c o u rs e to

a p ro g ra m m e r. T h e c o n c e p t o f c re a t in g a s e p a ra te k n o w le d g e -b a s e a llo w in g th e

m o d e lle r to a l te r a n d e x p e r im e n t w ith p ro d u c t io n re la te d d e c is io n ru le s w as

th e re fo re f e l t to be ju s t i f ie d .

98

The addition of a ru le based expert system to the existing job-shop

application could not be achieved w ithin the constrained development

environm ent provided by the Turbo-Pascal compiler. The decision to use

Turbo-Pascal fo r the firs t stage of the research was made on the basis th at the

language supported rapid prototyping. A comprehensive graphics lib ra ry is

provided, easing the development of the man-machine in terface. Secondly, code

compilation is completed in seconds ra th er than minutes. Turbo-Pascal was not

appropriate fo r the la ter stages of the research because of the lim it of 64K on

code size. A language that would allow the separate compilation of modules into

object code was required . The simulation model, expert system, and interface

could then be developed independently and linked together to produce the final

program . Microsoft Pascal fu lfilled these requirem ents and had the benefit of

perm itting mixed language programming. Hence, lib ra ry routines from the

Microsoft C and Fortran compilers could be used. However, two major lim itations

had to be accepted. Compiling a single module and then linking the code could

take up to 10 minutes. Secondly, no cursor control and graphics drawing

facilities were provided. Translating the existing code from Turbo-Pascal was

consequently a complex process necessitating both code modification and the

creation of a lib ra ry of graphics routines. Turbo-Pascal command names were

retained enabling research students to upgrade th e ir simulation programs to the

Microsoft compiler.

Having implemented the job-shop model in Microsoft Pascal, the next stage

of developing the expert system began. The firs t version of the inference

engine was based on a simple forward chaining inference s tra teg y . This enabled

rapid development of the expert system and required only lim ited modification

99

o f th e s im u la tio n m o d e l's th re e -p h a s e e x e c u t iv e . A t each tim e a d v a n c e , c o n t ro l

w o u ld be passed to th e e x p e r t s y s te m m o du le a n d th e c u r r e n t v a r ia b le v a lu e s

u se d as in p u t f o r th e in fe re n c e p ro c e s s (see f ig u r e 1 4) . T h is f i r s t p ro to ty p e

w as u se d as a b a s is f o r th e d e v e lo p m e n t o f th e ru le -b a s e e d i to r a n d th e

n e c e s s a ry ro u t in e s th a t w o u ld e n a b le th e s h a r in g o f v a r ia b le s a n d d a ta

s t r u c tu r e s b e tw e e n th e s im u la tio n a n d E S . S im p le ru le s w e re u se d in te s t in g th e

fu n c t io n a l i t y o f th e s y s te m .

SIMULATION

EXPERT SYSTEM

FINISHED ?

INITIALISATION

B PHASE

C PHASE

A PHASE

FINALISATION

INFERENCE
ENGINE

KNOWLEDGE
BASE

F/GURE 14 A F/RST PROTOTYPE SYSTEM

100

4 . 2 . 2 The developm ent of ESSIM

Having established that a simulation model and expert system could be

made to in terac t, the development of the ESSIM environm ent began. The

functionality of the job-shop environment was to be retained whilst allowing

the modeller to develop his own simulation application. One apparent problem

was the considerable work that the programmer would have to undertake in

implementing an effective man-machine in terface. The relevant routines fo r

menu selection, windowing and mouse control would be available in a lib ra ry

of routines but considerable expertise would be needed in making use of them.

The problem was resolved by developing a separate program called DESIGNER

which allows the modeller to develop the in terface in teractive ly and then

automatically generate the corresponding program code. The mouse is used to

position and scale the necessary windows and menus. DESIGNER can also be

used for accessing pre-declared software modules such as the knowledge-base

ed ito r, and listing the content of output files in specified windows. (See

appendix E .)

During the development of ESSIM, the expert system was re -w ritte n using

a more complex backward chaining inference strategy. The syntax used in the

knowledge-base was altered and extended. Facilities were then created fo r

accessing Pascal procedures and functions. Though developing the expert

system (ES) was by no means a simple problem, creating the in terface between

the simulation model and ES proved to be the most challenging and complex

problem to solve. The difficu lties mainly arose because of the difference in

nature between the simulation and expert system. The simulation model is

w ritten using the Pascal language syntax and compiled. In contrast, the expert

101

system is a development language, itse lf w ritten in Pascal. The knowledge-base

is in terpreted and consequently cannot d irectly access compiled variables

declared in the simulation model. The problem was overcome by developing a

'Communications In terface' (C l) between simulation model and expert system

knowledge base. Requests fo r variable values are passed to the C l which

retu rns the address at which the appropriate value is stored. Calls to

procedures and functions from the knowledge-base are also handled by the C l.

When new variables are defined which are to be shared between expert

system and simulation model, modifications have to be made to the C l. Such

changes are handled automatically by the 'Communications In terface generator'

(C I-g en era to r) which scans the knowledge-base, and generates Pascal code

which forms the lin k between the simulation model and ES data stru ctu res. The

functionality of the C l and C I-generator is described in section 4 .6 .

The development of ESSIM also led to changes having to be made to the

simulation module. The use of DESIGNER in creating the in terface meant that

output could no longer be w ritten d irectly to the screen but had to be directed

to specified windows. A ltering the expert systems inference engine to a

backward-chaining goal directed strategy also led to modifications of the

simulation module. Routines had to be developed, enabling the ES to be

activated by a call from the simulation module. Such calls, detail the goal to

be solved and the location of the relevant ru les . The simulation routines that

establish the calls are also designed to re tu rn any resu lt obtained from the

inference process. The characteristics of the simulation module are discussed

in detail in section 4.5.

102

4 . 3 O V E R A L L S Y S T E M D E S IG N

PASCAL
LANGUAGE
COMPILER

GRAPHICS DISPLAY MODULE
KNOWLEDGE-BASE

PART COMPILER

GENERATOR

UNKERMODEL CODE KNOWLEDGE-BASESIMULATION
LIBRARY

COM MS
INTERFACE

MODULE

EXPERTSYSTEM
MODULE

SIMULATION
MODULE

EXECUTIVE INFERENCE ENGINE

SCREEN
HANDLING
LIBRARY

MAN / MACHINE FRONT-END MODULE

DESIGNER

F/GURE15 DES/GN OVERV/EW

F ig u re 15 is a d ia g ra m m a tic re p re s e n ta t io n o f th e ESSIM m odel

d e ve lo p m e n t e n v iro n m e n t. A s we h a ve se e n , th e s im u la tio n m odu le a n d e x p e r t

sys te m m odu le in te r a c t v ia an in te rm e d ia ry c o m m u n ica tio n s in te r fa c e m o d u le .

T h e co m m u n ica tio n s m odu le is d e p e n d e n t on code g e n e ra te d b y th e

'C I-g e n e ra to r'. The simulation and expert system modules are both divided

into two components. The simulation module consists of an 'executive' and a

set of user-defined files which contains the formal definition of the model

events. The executive maintains a d iary of pre-scheduled events and controls

the execution of the sim ulation. The user-defined model is w ritten in Pascal and

is compiled to object code. The expert system module consists of an inference

engine and a user defined knowledge-base containing the decision rules th a t are

used in the real-w orld . The content of the knowledge-base is translated into

more compact and usable code by the 'knowledge-base part-com piler'.

Part-com pilation is necessary each time a change is made to the knowledge-base

and immediately precedes invocation of the expert system. (The difference

between a part-com piler and traditional compiler w ill be explained in section

4 .4 .3)

The 'graphic display module' (fig u re 15) consists of the necessary

routines fo r the dynamic display of run-tim e output and fo r the creation and

manipulation of windows. The module is controlled by calls from the simulation

model and /or the expert system knowledge-base. Relevant data may be passed

as parameters to the graphic display routines or accessed d irectly from the

database of the communications interface module. The database contains

references to all shared variables and data s tru ctu res.

The 'man-machine front-end module' (fig u re 15) has a dual ro le . In itia tin g

the simulation run and controlling the exchange of data between the end-user

and relevant software. Requests fo r user input are displayed in windows and

so there is a close association between the man-machine front-end and the

graphics display module. Extensive use is made of mouse controlled m ulti-level

104

menus fo r the selection of run-tim e options and fo r the activation of pre-defined

routines. These routines control such aspects as the input of data into the

knowledge-base editor and the invocation of DOS facilities such as d irectory

lis tin g s .

A ll the modules described were designed so as to be usable on a

stand-alone basis. A simulation model can be developed without an expert

system or v ice-versa . The graphics display and man-machine interface routines

can also be used with other Pascal program s. Giving the software engineer such

fle x ib ility may nevertheless give rise to problems. D ifficu lties could fo r instance

be encountered in making use of the lib ra ry routines or linking the relevant

modules together. Two programs were consequently developed to help sim plify

the development process. A program generator called ’Designer' (appendix E)

is used in teractive ly in creating pull-down menus and windows fo r the display

of te x t and graphs. The code produced corresponds to the required graphics

display and man-machine front-end modules. The other program , named 'L inker'

takes the modeller through the necessary steps in compiling and linking the

relevant modules. 'L inker identifies the Pascal lib raries that are needed in

generating the fin a l program from the object code modules and is also

responsible fo r activating the C I-generato r. The C I-generator scans the

knowledge-base and generates code fo r the communications interface module

which is then compiled.

105

4 .4 DESIGN OF THE EXPERT SYSTEM COMPONENT

The characteristics of the expert system module w ill now be discussed by

considering in tu rn the design of the knowledge-base and inference engine.

4 .4 .1 The knowledge-base

The expert system knowledge-base is an A S C II te x t file consisting of a

declarations part and separately identifiable sets of production ru les.

The knowledge-base can share variables with the simulation model or make use

of local variables. The structure of the declarations is intentionally sim ilar to

the Pascal syntax. (See figure 16).

VARIABLE DECLARATION - * • IDENTIFIER LIST - ► : — ► TYPE

t t
i

EXTERNAL ExportsLeftForShip, NumbFreeBerths, Duration: INTEGER;
_LoadShip: BOOLEAN;
Count, Speed: REAL;

LOCAL StartDockAtberth, StartShipLeave: BOOLEAN;
ShipCode: CHAR;
ContainerCode: LSTRING(20)

FIGURE 16 VAR/ABLE DECLARATIONS

106

The variable declaration 'EXTERNAL' is used to id en tify variables that

are to be accessible by all modules. The corresponding id en tifie r lis t must

consist of variable names that have been, or w ill be declared as shared

'PUBLIC' variables in e ither the simulation module or any of the other modules

being used.. The declaration 'LO CAL', denotes variable th at can only be used

by the expert system. The types that can be associated with the variables are

identical to those available in Microsoft Pascal but exclude double precision and

user defined types.

Local and external variables referenced in expressions and statements are

fu lly compatible. However, the inference engine handles the values d iffe ren tly .

External variables have an associated value, whether defined in the expert

system or in another module. The only exception are external variables

preceded by the symbol '_'. These are reset to being 'undefined' at the end of

each call to the expert system. In contrast, local variables are in itiated as

being undefined and are set to given values by the execution of statements.

Furtherm ore, local variables have th e ir value reset to being 'unknown' at the

end of each call to the expert system.

Pascal Procedures and Functions declared in an object code lib ra ry or program

module can be called from the expert system, (fig u re 17)

The file name must be that of a Microsoft Pascal module. The procedures

and functions defined in the file can then be accessed from the expert system

knowledge-base. The only restriction is that parameter passing cannot be used.

The equivalent effect can nevertheless be achieved using shared variables.

Parameter passing was omitted from the expert system specification because of

107

the development overheads that would have been incurred.

; INSTRUCTION IDENTIFIER FILE NAME

PASCAL FILE ’Rules.pas’ ;

F/GURE 17 DEFINING PASCAL PROCEDURES & FUNCTIONS

V e r i f ic a t io n o f th e ru le s d e f in e d in th e k n o w le d g e -b a s e is a com p lex

p ro b le m because o f d i f f ic u l t ie s in k n o w in g e x a c t ly w h a t th e in fe re n c e e n g in e is

g o in g to d o . T h e e x p e r t s ys te m s c o n s e q u e n tly has a t ra c e f a c i l i t y th a t l is t s th e

in d iv id u a l s te p s ta k e n d u r in g th e in fe re n c e p ro c e s s . (See f ig u r e 1 8) .

i-------------------------------
TRACE INSTRUCTION OUTPUT DESTINATION

Example 1
Example 2
Example 3
Example 4

TRACE TO FILE ’Trace.txt’;
TRACE TO HIRES 5,7,50,20;
TRACE TO TEXT WINDOW 2,3,70,15;
TRACE TO DESIGNER 9;

FIGURE 18 INFERENCE ENGINE TRACE FAC/L/TY

T h e o u tp u t p ro d u c e d b y th e tra c e ca n be d ire c te d to a n u m b e r o f

d e s t in a t io n s . I f th e s c re e n d is p la y is a lre a d y c lu t te r e d , o u tp u t can be s e n t to

a t e x t f i le (e xa m p le 1, f ig u r e 1 8) . T h e te x t f i le can th e n be in s p e c te d b y

te m p o ra r i ly in t e r r u p t in g th e s im u la tio n o r b y w a it in g u n t i l th e e n d o f th e r u n .

108

T h e tra c e can a l te r n a t iv e ly be d ire c te d to a w in d o w o f d e f in e d s iz e in e i th e r

g ra p h ic s o r t e x t m odes (E xa m p le s 1 a n d 2 , f ig u r e 1 8) . T h e c o n te n t o f th e

w in d o w s c ro l ls as th e in fo rm a t io n g e ts g e n e ra te d . F in a l ly , c o m p a t ib i l i ty w ith

th e D E S IG N ER in te r fa c e g e n e ra to r is m a in ta in e d b y a llo w in g o u tp u t to be

d ire c te d to a n y p re -d e f in e d w in d o w (e xa m p le 4 , f ig u r e 1 8) .

T h e re m a in d e r o f th e k n o w le d g e -b a s e c o n s is ts o f a n u m b e r o f ' r u le - s e t s ' .

(see f ig u r e 19)

RULESET DECLARATION RULESET NAME

C INHERIT COMMAND RULESET NAME

RULESET CraneManager (INHERIT ImvManager, ShipManager);
rulel
rule2
rule3

RULESET ShipManager;
rulel
rule2
rule3

FIGURE 19 RULESET DECLARATIONS

109

T h e r u le - s e ts each c o n s is t o f a n u m b e r o f p ro d u c t io n r u le s . R u le -s e ts

t y p ic a l ly id e n t i f y p a r t o r a l l o f th e d e c is io n ru le s a p p lie d b y in d iv id u a ls

re p re s e n te d in th e s im u la tio n m ode l. T h e e n d o f a r u le - s e t is id e n t i f ie d as b e in g

th e s t a r t o f th e n e x t r u le - s e t th u s e lim in a t in g th e need f o r f i le m a rk e rs . A

r u le - s e t ca n ' in h e r i t ' ru le s fro m a n o th e r r u le - s e t , th u s a l le v ia t in g th e p ro b le m

o f r u le r e p l ic a t io n . W hen a r u le in a r u le - s e t c a n n o t be r e s o lv e d , th e in fe re n c e

e n g in e c h e c k s f o r th e p re s e n c e o f an 'IN H E R IT ' s ta te m e n t. T h e r u le - s e ts

s p e c if ie d a re th e n sca n n e d in t u r n in a t te m p t in g to s a t is fy th e r u le .

T h e s y n ta x o f th e p ro d u c t io n ru le s is as fo llo w s : (F ig u re 20)

RULE [RULE NNUMBER STATEMENT

E STATEMENTrj
— ►WHEN—I

EXPRESSION

[*] NumberOfBerths = 2 ; {Maximum Number of Berths is 2}
[1] ShipNumber = ShipCode ;
[2] ShipJobsLeft = True WHEN (ShiplmportJobs > 0) OR (ShipExportJobs > 0);
[3] BerthedShip = True WHEN (ShiplnBerthOne = True) OR (ShiplnBerthTwo = True);
[4] ShipFullOfExports = True WHEN ExportsLeftShip = 0 ;
[5] MovegantryToLandSide = True IF

((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND (PriorityToShipJobs = False));
[6] (STARTSHIPARRIVE = True) AND (_Time = 1200) ~ (STARTSHIPARRIVE = False) IF

(NumberOfShipsAtSea > 0) AND (ShipArrivalDue = True);

FIGURE 20 ESS/M KNOWLEDGE-BASE RULES

110

T h e e x p re s s io n s m u s t y ie ld a r e s u l t o f th e s ta n d a rd ty p e 'b o o le a n '. I f an

e x p re s s io n p ro d u c e s th e v a lu e 'T r u e ' , th e n th e s ta te m e n t d e f in e d as th e f i r s t

p a r t o f th e r u le is e x e c u te d . T h e fo llo w in g ru le s o f p re c e d e n c e id e n t i f y th e

o r d e r in w h ic h o p e ra t io n s a re p e r fo rm e d , (f ig u r e 21)

O PER A TO R PR EC E D E N C E

* / AND 1
+ - OR) 2
(3
= < > < < = > > = 4

FIGURE 21 OPERATOR PRECEDENCE
I___

T h e b a s ic ru le s o f p re c e d e n c e a re a p p lie d as in s ta n d a rd P a sca l. A n

o p e ra n d w h ic h is lo c a te d b e tw e e n tw o o p e ra to rs o f d i f f e r e n t p re c e d e n c e is

a lw a y s b o u n d to th e o p e ra to r o f h ig h e r p re c e d e n c e . S e c o n d ly , i f th e o p e ra n d

is lo c a te d b e tw e e n tw o o p e ra to rs o f th e same p re c e d e n c e , th e n th e o p e ra n d is

b o u n d to th e o p e ra to r s itu a te d to i t s le f t . T h i r d ly , e x p re s s io n s w ith in

p a re n th e s e s a re a lw a y s e v a lu a te d f i r s t .

B y u s in g c o m b in a tio n s o f th e boo lean o p e ra to rs in th e 'e x p re s s io n ', ru le s

o f c o n s id e ra b le c o m p le x ity can be d e f in e d . B oo lean o p e ra to rs o th e r th a n 'O R '

can a lso be u se d in th e 's ta te m e n t' p a r t o f th e r u le . T h e re is no l im it to th e

le n g th o f a r u le .

B o th lo c a l a n d e x te rn a l v a r ia b le s ca n h a ve t h e i r v a lu e s s e t b y a s s o c ia tio n

w ith P asca l fu n c t io n s . P asca l fu n c t io n s can be u se d in e i th e r th e e x p re s s io n s

111

or statement part of ru les. The Pascal functions can be used as a way of

circum venting the problem of setting variables to values computed from , or

stored in , files , a rrays , and records. Procedure calls can be made by

specifying the procedure name in the statement part of ru les. Procedures can

be used in specifying algorithms or as a means of executing low -level commands

(e .g . w riting to files , manipulating the display e t c . .) .

As shown in ru le 1 of figure 20, the condition section of a ru le can be

om itted. The statement is then executed unconditionally if the value of

'ShipNumber' is required during the inference process. As shown in the firs t

ru le of fig u re 20, the ru le number can be replaced by an asterisk. The effect

is tw o-fo ld . F irs tly , the statement is executed on activation of the expert

system. Secondly, the variable 'Num berOfBerths' defined in the statement

retains its value un til the end of the simulation ru n .

In ru le 3 of fig ure 20, the reserved word 'WHEN' is used to separate the

conditional statement from the 'action' part of the ru le . I f the conditional part

of the ru le is satisfied, the variable 'BerthedShip' is set to the value T ru e .

Conversely, if the condition statement cannot be satisfied the value of

'BerthedShip' is set to False. The reserved word 'WHEN' can only be used

where a single boolean statement is used in the action part of a ru le .

In ru le 5 of fig ure 20, the reserved word 'IF ' is used. I f the conditional

part of the ru le is satisfied, the variable '_MoveGantryToLandSide' is set to

T ru e . However, if the conditional statement cannot be satisfied the action part

of the ru le does not execute.

112

In ru le 6 of fig ure 20, the reserved word 'IF 1 is again used. The syntax

is however s lightly d ifferen t from th at of ru le 5 in that the symbol '“ ' is used

in the action statem ent. I f the conditional part of the ru le is satisfied, the

statements preceding the '" ' symbol are executed. I f the conditional part of the

ru le cannot be satisfied, the variable 'S tartS h ipA rrive' that follows the '"'

symbol is set to the value False.

4 .4 .2 Modelling "Cooperative Decision M aking".

As we have seen in section 4 .4 .1 , the concept of ru le-sets was introduced into

the ESSIM expert system in order to segregate the rules applied by each

decision maker. The use of ru le-sets permits decision rules to be grouped

according to the name of the decision maker or by job function.

When resolving a goal, the expert system inference engine is lim ited to

searching through the rules contained w ithin a given ru le -s e t. The ru le -se t to

be used in resolving a goal is passed from the simulation model to the expert

system as a parameter along with the details of the goal to be resolved. In many

cases, the rules applied by a given decision maker are insuffic ient fo r the

purpose of resolving the defined goal. In the real-w orld situation, operational

policies are often enacted by more than one ind iv idual. (A concept th at w ill be

referred to in this thesis as "Cooperative decision m aking"). For instance, one

individual may consult another or several individuals may work together in

resolving a problem. In other cases, a line manager may always have a final

veto over a decision taken by a more junior member of s ta ff. In order to reflect

the involvement of multiple decision makers in resolving an operational "Goal",

the concept of inheritance was introduced. In the event that a goal cannot be

113

resolved using the rules applied by a given decision maker, the expert system

inference engine may consult one or more fu rth e r ru le -sets .

An in teresting point about "Cooperative decision making" is th a t the

grouping of. rules is by decision maker and not by a c tiv ity . In attem pting to

resolve a given goal, the search space may be extended to those rules used

by decision makers involved in operations described by other activities in any

of the a c tiv ity cycles.

The use of ru le-sets introduces a concept of ru le m odularity. This

m odularity can potentially be used to reflect simple hierarchical management

structures. Consider the simple case where there are two ru le -se ts , one

relating to a shop-floor operator and the other to a line manager. There are two

ways in which the influences of management can be represented w ithin the

model. F irs tly , the ru le -set associated with the operator may re flect the

operators in ab ility to resolve certain problems. By using inheritance to lin k the

two ru le -se ts , the manager's expertise or authority can be brought into play

in resolving the goal. In this example, the rules associated with the operator

are given a higher p rio rity . The manager's ru le -se t is only used in the event

that the goal cannot be resolved. The second way in which the influences of

management can be reflected in the model is by defining a sub-goal w ithin the

operator's ru le -s e t. Consider the case in which the operator is able to resolve

a given problem but is unable to proceed with an action un til authorisation has

been sought. By introducing a sub-goal into the operator's ru le -s e t, control

can be tran sferred into the manager's ru le -se t. In th is example, the rules

applied by the manager have a higher p rio rity than the rules associated w ith

the operator. Although the top level goal may have been resolved by the

114

operator, the manager's rules may be applied in overrid ing the operator's

planned actions.

4 .4 .3 The knowledge-base part-com piler

The part-com piler is activated prio r to the s tart of the simulation ru n .

The responsibilities of the part-com piler include memory management fo r the

defined variables, the handling of calls to function and procedures, the

optimisation of the knowledge-base code, and the detection of syntax e rro rs .

Whereas these are the traditional functions of a language compiler, the rules

remain in terpreted and hence the term 'Part-com piler'.

1 .Memory management: The firs t step taken by the part-com piler is to extract

references in the knowledge-base to local and external variab les. The variable

names, associated type and memory location, are then added to a tree using the

following record s tru ctu re . (F igure 22)

PointerToVarNode = ~VarNode ;

VarNode = RECORD
Lower_Branch, Upper_Branch : PointerToVarNode ;

VarName: String;
VarType: CodeNum ;
VarAddr: ADS OF Byte ;
Local: Boolean;
Undefined: Boolean;
Perm : Boolean;

END;

FIGURE 22 RECORD DECLARATION FOR THE VARIABLE TREE

115

The boolean variable 'Local' specifies whether the 'VarName' variable is

specific to the expert system or whether its value is defined as a public

variable in Pascal and consequently shareable with the simulation module.

A ll variables defined as being local in the declaration part of the

knowledge-base have no associated value at the s ta rt of the inference process.

Variables defined as 'External' in the knowledge-base may have had th e ir values

set in the simulation module and consequently the 'Undefined' fie ld is set to

False. The only exception are 'External' variables which s ta rt w ith the

underscore character Such variables are in itia lly set to the 'Undefined'

status. I f the conditional part of a ru le contains an 'Undefined' variab le, the

ru le cannot be executed until a value has been associated w ith the variab le.

At the end of an inference process, local variables have th e ir status reset

to 'U ndefined'. The 'Perm' fie ld is used to id en tify those local variables which

should retain th e ir value throughout the duration of the simulation ru n . In

figure 20, the firs t ru le has neither a conditional clause nor an associated ru le

number but the asterisk character instead. This indicates that the declared

variables should have th e ir values set by the part_compiler and that the 'Perm'

fie ld should be set to T ru e .

'VarA ddr' is the address of the memory location containing the firs t byte

of the variable value. In the case of local variables, a memory request is made

fo r RAM space corresponding to the number of bytes needed in storing the

variable. The address of the allocated memory is then placed in the tre e . I f the

variable is external to the expert system module, the memory space needed in

storing the value is allocated by the module in which the variable is declared.

116

The memory space is only allocated at run-tim e and the location of th is memory

space w ill d iffe r each time the module is executed. The problem of finding the

variable address is fu rth e r aggravated by the fact that the modules are

compiled whereas the knowledge-base is in terp reted . Id en tify ing the relevant

addresses can only be achieved from within a compiled routine linked to the

relevant module. This routine is located w ithin the 'Communications In terface'

(C l) . The creation of the C l is undertaken by the C l-g en era to r, the

functionality of which is described in section 4 .6 .1 . The C l re tu rn s the

run-tim e address of the external variables which are then added to the

knowledge-base variable tre e . During the execution of the expert system,

references to a given variable value is achieved by scanning the tree fo r the

relevant variable name and d irectly accessing the content of the corresponding

memory address. Knowing the address of the variable is not however sufficient

to ex trac t the associated value. The Type of the variable is also requ ired . The

'V arType' fie ld is a one byte code identify ing the type of the variab le . The

variable type determines the format used fo r the storage of the value a t the

specified address.

2 .Function and Procedure calls: One of the d ifficu lties in developing the

inference engine was the implementation of the fa c ility allowing calls to compiled

Pascal or C functions from within the knowledge-base. The ab ility to

incorporate compiled 3GL code into the otherwise in terpreted expert system

ru le -s e t, permits the creation and use of complex algorithm s.

Pascal, in which the expert system is w ritten , does not support calls to

procedures or functions using id en tifie r names stored as tex t s trin g s . The

problem was overcome by treating the compiled functions in a sim ilar way to

117

the expert system variables. P rio r to the execution of the expert system, the

memory addresses of all procedures and functions contained in the file defined

by the 'Pascal File' instruction (fig u re 22) are added to the variable tre e . The

type code (V arT yp e) used in the variable tree record structure (fig u re 22)

identifies the addresses as being related to compiled code.

A t run tim e, the procedure or function addresses are used to tran sfer

control from the expert system to the compiled routine. Pascal does not support

function calls using addresses, though this fac ility is available is C . The

problem was overcome by taking advantage of the m ixed-language programming

fac ility available with Microsoft compilers. A t run-tim e, the inference engine

passes the address of the relevant code to a C function contained in a compiled

module. In tu rn , the C function passes control to the code stored a t the

specified address. When th is segment finishes executing, control re tu rn s to the

inference engine via the C function.

3 .Code optimisation: The part-com piler converts the rules contained in the

ru le-sets into a structure optimised fo r code in terp reta tio n . The firs t step is

to check fo r IN H ER IT commands. The lis t of ru le -sets names defined as

parameters to IN H ER IT instructions are then placed in record lis ts . These lists

are attached to the nodes of a tree indexed according to the names of all

ru le -se ts . The records structures are: (F igure 23)

The functionality of the IN H ER IT command is fu rth e r discussed in section

4 .4 .4 .

118

PointerToVarNode = ~ InheritTreeNode ;
PointerToList = ~ InheritListNode ;

lnheritTreeNode= RECORD
Lower_Branch, Upper_Branch : PointerToNode ;

SideBranch : PointerToList;
RuleSetNum : Integer;

END;

InheritListNode = RECORD
Side_Branch : PointerToList;
RuleSetNum : Integer;

END;

RuleSet Code j RuleSet Code

RuleSet Code

RuleSet CodeRuleSet Code

INHERIT LISTS

F/GURE 23 RECORD DECLARATION FOR THE RULESET TREE
i_ _

T h e p a r t - c o m p ile r th e n sca n s th e c o n te n t o f each r u le - s e t a n d c re a te s a

c o r re s p o n d in g n u m b e r o f 'c o m p ile d ' f i le s . T h e se te m p o ra ry f i le s re s id e on th e

d is k a n d c o n ta in th e o p tim is e d code u s e d d u r in g th e in fe re n c e s . T h e fa c t th a t

th e f i le s re s id e on a p e rm a n e n t s to ra g e m ed ium , th u s l im i t in g th e ne e d f o r

R AM , m eans th a t th e p o te n t ia l s ize o f th e k n o w le d g e -b a s e is o n ly l im ite d b y

119

the capacity of the d isk. I f execution speed is found to be unsatisfactory, and

RAM space is available above the 640K DOS lim it, a v irtu a l drive can be used

to remove the need fo r physical 'reads and w rites' to and from disk.

The part-com piler creates the 'compiled' files by scanning and optimising

the rules contained in the ru le -se t. The rules are in -tu rn read from disk and

copied into a linked lis t. (F igure 24)

PntrToBuffer = ^RuleBuffer ;

RuleBuffer = RECORD
RuleTxt: LineOfCode;
AddrNextLine: PntrToBuffer;

END;

F/GURE 24 LINKED L/ST STRUCTURE FOR MEMORY RES/DENT RULES

I f a ru le is unconditional, a check is made to see whether an asterisk

precedes the statem ent. The asterisk indicates that the statement should not

be added to the ru le file but should be executed immediately and that the status

of any variables used should be set to 'perm anent'. (See figure 20).

The rules which are in tu rn added to the linked lis t are optimised by

replacing the IF or WHEN condition, Boolean operators, and dual character

operators (<= , >= , <>) by single byte instructions. Statements and

expressions defined in in fix notation are then translated into 'Reverse Polish'

ready fo r execution. Variables are replaced by tw o-byte codes. (See fig u re 25) .

120

INFIX NOTATION: JobDuration = ((10 + 5) / Total + WorkTime) * 17 IF
(JobLeft > = 10 + SpareJobs) AND (CraneAvail = True);

REVERSE POLISH: JobDuration 10 5 + Total / WorkTime + 17 * = IF
JobsLeft > = 1 0 SpareJobs + AND CraneAvail = True ;

5+AB/AC + 17*=AD#10AE+AF=1!

’IF’ Code End of line marker

FIGURE 25 THE PART-COMP/LATION OF ESS/M RULES

T h e k n o w le d g e -b a s e p a r t - c o m p ile r a p p lie s D i jk s t r a 's m e thod f o r

t r a n s la t in g fro m in f i x n o ta t io n to re v e rs e p o lis h . A n e xa m p le is g iv e n in f ig u r e

26, based on th e r u le d e s c r ib e d in f ig u r e 25. A s t r in g a n d L a s t - I n - F i r s t - O u t

(L IF O) s ta c k a re u s e d , a n d th e o p e ra to r p re c e d e n c e d e f in e d in f ig u r e 21 is

a p p l ie d .

ORIGINAL STRING: JobDuration = ((10 + 5) / Total + WorkTime) * 17

STR IN G STACK

10 (
10 ((
10 5 ((+
10 5 + ((+
10 5 + (
10 5 + Total (/
10 5 + Total/ (/
10 5 + Total / WorkTime (+
10 5 + Total / WorkTime + (+
10 5 + Total / WorkTime + *
10 5 + Total / WorkTime + 17 *
10 5 + Total / WorkTime + 17 *

OPTIMISED ESS/M CODE: AA10

Result variable

FIGURE 26 D/JKSTRAS METHOD FOR TRANSLATING TO REVERSE POLISH

4 . E r r o r d e te c t io n & r e c o v e ry : T h e k n o w le d g e -b a s e p a r t - c o m p ile r is re s p o n s ib le

f o r th e d e te c t io n o f s y n ta x e r r o r s a n d in c o n s is te n c ie s in th e v a r ia b le

d e c la ra t io n s . T h e p a r t - c o m p ile r p ro d u c e s a s c re e n -b a s e d t r a c e , as s h o w n in

f ig u r e 27. T h e u p p e r -m o s t w in d o w s c ro l ls d u r in g th e c o m p ila t io n p ro c e s s ,

d is p la y in g th e c o n te n t o f th e k n o w le d g e -b a s e . I f an e r r o r o c c u rs , th e m o d e lle r

is a w a re th a t th e p ro b le m m a n ife s te d i t s e l f d u r in g th e c o m p ila t io n o f th e la s t

l in e o f code sh o w n in th e w in d o w . T h e c e n tre w in d o w is u s e d to d is p la y th e

v a r ia b le s th a t h a ve been e x tra c te d fro m th e k n o w le d g e -b a s e a n d a d d e d to th e

v a r ia b le t r e e . T h e lo w e r w in d o w is used f o r th e d is p la y o f u s e r m essages

in c lu d in g e x p la n a t io n o f e r r o r s . M ore co m p le te d ia g n o s t ic s ca n be o b ta in e d b y

s p e c ify in g th e 'T ra c e T o F ile ' com m and in th e k n o w le d g e -b a s e (See s e c tio n

4 . 4 . 1) .

B 8 3 * I M i lUHBMLA1IUH IM S

NOUEEHPWOSTACk ,H 0U E E H P M 6S TA C kF R (M A TE ,M0UEEXP0RTT0STACk,
LOADIMPORTFROMIMU dJNLOADEXPORTTOIMU: BOOLEAN I

PASCAL FILE ’RULES.PAS' I
LOCAL STARTLANDSIDEWORK<STARTSHORESIDEWORK.STARTNEWOOB,ST ART MOUEFROHSSIDE,

ST ART MOUEFROMLSIDEjHOUETOBAX.BAVFREEJRUCkWAITING JRUCkOUTSIDE,
WAITINGFORTRUCk,SHIP00BSLEFT,LET TRUCkINPORT,BERTHEDSHIP ,CRANE00BS,

wAIIIHGFORTRUCk.SHIPOOBSLEFT,LETTRUCkINPORT.BERTHEDSHIP,CRANE00BS,

Messages
Declaring EXTERNAL uarial>les
Declaring LOCAL uarialles

FIGURE 27 PART-COMPILER SCREEN BASED TRACE

122

V erify in g the va lid ity of the variables defined in the knowledge-base is

achieved by checking for duplicate entries in the tree of variable names and

corresponding memory addresses (see fig u re 22). The use of reserve words is

also detected. Other erro rs involving variable names are harder to isolate. For

instance, variables declared as 'external' in the knowledge-base must also be

defined as being 'public' in one of the Pascal modules. In correct spelling leads

to an inconsistency that cannot be detected by the part-com piler. The e rro r is

instead detected by the 'L inker' (see section 4 .8) which checks for

discrepancies between modules.

Syntax errors such as the omission of ru le numbers and end of line

markers are detected and reported by the part-com piler. The invalid use of

variables is also easily id en tified . Some other erro rs may not be reported by the

part-com piler but may nevertheless be identified visually from a trace produced

during the variable declaration and ru le optimisation processes. The

part-com piler is also responsible fo r establishing the run-tim e trace by creating

the necessary output file or window calls.

4 .4 .4 The inference engine

Calls to the expert system are in itia ted by the invocation of a function

from any Pascal module. The goal to be resolved and the ru le -se t to be used

are passed as parameters to the function. (F igure 28)

The GOAL function is part of the expert system inference engine. In

figure 28, the rules declared in the 'CraneManager' ru le -se t will be used in

try in g to solve the goal 'CraneJobs'. The goal is to id en tify whether there are

123

jobs fo r the crane to carry out and which of these should take p rio rity . The

GOAL function retu rns the address of the resu lt. Consequently, the

programmer must be aware of the data format used fo r the storage of the

resu lt. The benefit of using an address is that the function can re tu rn any

data type. The address returned by the GOAL function is not the only way of

return ing a resu lt. Any number of shared variables can be used fo r the same

purpose.

RESULT ADDRESS —►: = GOAL(’ — ► RULESET NAME GOAL NAME

ResAddr := GOAL(’CRANEMANAGER' , ’CRANEJOBS’);

F/GURE 28 SYNTAX OF CALLS TO THE EXPERT SYSTEM

Having received the relevant instructions, the inference engine opens the

'compiled' file corresponding to the ru le -s e t. External variables commencing

with the underscore character and all local variables are then in itialised to the

'undefined' status (fig u re 22). The backward chaining strategy used by the

expert system makes use of a stack in directing the inference process. The

firs t record of the stack contains a reference to the goal to be solved.

Subsequent records lis t the sub-goals that need to be considered before a

solution can be found for the main goal. The record structure is shown in

figure 29.

124

RecPointer = ~GoalSearch ;

GoalSearch = RECORD
NextRec: RecPointer;
LastRec: RecPointer;

Goal: SymbolSting ;
FileNumber: Integer;
Line: Integer;

END;

SUB-GOAL 3 File
Number

Line
Number

SUB-GOAL 2 File
Number

Line
Number

SUB-GOAL 1 File
Number

Line
Number

GOAL FROM SIMULATION MODEL

F/GURE 29 THE INFERENCE ENG/NE GOAL CALL STACK

L e t u s now c o n s id e r th e e xa m p le in f ig u r e 28 . A t th e s t a r t o f th e

in fe re n c e p ro c e s s , th e go a l 'C ra n e J o b s ' is e n te re d as th e f i r s t re c o rd o f th e

L IF O s ta c k . T h e 'c o m p ile d ' f i le c o r re s p o n d in g to th e 'C ra n e M a n a g e r ' r u le - s e t

is th e n sca n n e d f o r an o c c u r re n c e o f th e goa l in th e a c t io n p a r t o f one o f th e

125

ru les. I f a ru le is located that could potentially resolve the goal, the reverse

polish condition expression is evaluated. Consider the following rule as an

example: (F igure 30)

INFIX NOTATION:

[1] CraneJobs = True IF (Crane = ’Idle’) AND
(JobDuration + 0.5 < = (DayEnd - TimeNow) * 1.1 + 1);

REVERSE POLISH NOTATION:

[1] CraneJobs True = IF Crane ’Idle’ = AND
JobDuration 0.5 + < = DayEnd TimeNow - 1.1 * 1 + ;

F/GURE 30 REVERSE POLISH RULE NOTATION

When searching through the knowledge-base, rules are loaded in tu rn

into a ’linked lis t' data s tru ctu re . The linked lis t permits the expert system

to handle rules of an indefin ite length . The linked lis t is also used as a

tem porary storage area fo r interm ediate resu lts . For instance, when evaluating

a rules conditional expression, the constituent statements are evaluated and

replaced by the corresponding boolean results (see fig u re 31). The conditional

expression, now consisting uniquely of boolean values and operators can be

resolved.

I f the ru le condition is satisfied, the goal has been resolved and control

returns to the calling module. I f the ru le condition retu rn s a boolean ’False',

the ru le -set file is searched for another occurrence of a ru le statement that

could be used to resolve the goal. I f no rules can be found that w ill satisfy a

goal or sub-goal, the files identified in the IN H ER IT lis t are searched in the

126

o r d e r in w h ic h th e y a re l is te d . I f th e G O A L c a n n o t be re s o lv e d , a w a rn in g

m essage is d is p la y e d on th e b o tto m l in e o f th e d is p la y . T h e m o d e lle r th e n has

th e o p t io n o f in t e r r u p t in g th e s im u la t io n a n d u p d a t in g th e k n o w le d g e -b a s e o r

ig n o r in g th e w a rn in g .

Example : (JobDuration = 1, DayEnd = 8, TimeNow = 4)

Crane
’Idle’ — TRUE (1) TRUE (1) TRUE (1)

AND AND AND AND
JobDuration
0.5 — 1.5 1.5 1.5
+
< = < = < = < =
Dayend
TimeNow — 4

- _ 4.4
1.1 1.1
★ ★ —* 5.5
1 1 1
+ + +

TRUE (1)

•TRUE (1)

FIGURE 31 EVALUATING REVERSE POL/SH RULES

I f one o f th e lo c a l v a r ia b le s u sed in th e c o n d it io n a l e x p re s s io n does n o t

h a ve a v a lu e , th e n th e lo c a t io n o f th e r u le is a p p e n d e d to th e la s t r e c o rd in

th e s ta c k . A new re c o rd is th e n a d d e d to th e s ta c k w ith th e v a r ia b le s e t as a

s u b -g o a l. I f a s o lu t io n is fo u n d to th e s u b -g o a l, th e la s t re c o rd in th e s ta c k

is re m o v e d . A se co n d a tte m p t is th e n m ade a t s o lv in g th e p re v io u s g o a l,

s ta r t in g w ith th e r u le fo u n d a t th e lo c a t io n s p e c if ie d in th e r e c o r d . A s o lu t io n

has been fo u n d to th e m ain g o a l w h e n th e re a re n o lo n g e r a n y r e c o rd s le f t in

127

the stack. The solution is then returned to the calling module as an address.

T h e lo g ic a p p lie d b y th e in fe re n c e e n g in e can be s c ru t in is e d a t th e e n d

o f th e s im u la tio n r u n b y l is t in g th e c o n te n t o f a t e x t f i le d e c la re d in th e

k n o w le d g e -b a s e u s in g th e T R A C E com m and (see f ig u r e 1 8) . A l te r n a t iv e ly , th e

same in fo rm a t io n ca n be d is p la y e d in te r a c t iv e ly in a s c ro l l in g w in d o w d u r in g th e

s im u la tio n r u n (f ig u r e 3 2) . T h e t ra c e is a lso in v a lu a b le in is o la t in g lo g ic a l

e r r o r s in th e r u le s .

Shipcrane 4 is now idle Shipcrane I is now idle
Shipcrane 3 is now idleShipcrane l is now idle
Retrieving I HU From pool of idle imvsShipcrane 5 is loading imu 1
Retrieving IMU from pool of idle imvs
Shipcrane 4 is loading imu z
Retrieving IMU from pool of idle imvs Shipcrane z is loading IMU 3

Day Hr Min 0 fl Z4

IMPORTS 1 ~> Z
EXPORTS 1 - > 0
IMPORTS Z~> 3
EXPORTS Z ~> 0

search through subsequent files
Goal Found
Calling function backchaining with parameter MO
Ualue of parameter so Found to Le missing in expression
Goal SD missing & placed on stack

GOAl CraneJobs
StartLoadlmv
WrEnt
WrEnt
goal CraneJobs

FIGURE 32 REAL-TIME EXPERT SYSTEM TRACE DISPLAYED IN A WINDOW

4 .5 DESIG N OF T H E S IM U L A T IO N CO M PO NENT

T h e s im u la t io n m odel is w r i t te n in P asca l u s in g p ro c e d u re s a n d fu n c t io n s

128

provided in a lib ra ry of routines. The form of modelling used is based on the

discrete event three phase approach due to Tocher [1962]. Changes in state in

discrete event models take place at time in tervals re ferred to as events. The

three phase world view provides a framework fo r defining model dynamics in

terms of events which may be categorised as being e ith er time or state

dependent. Model execution is controlled through a three phase executive which

performs a time-advance in the A phase, executes all cu rren t tim e-dependent

events in the B phase and examines and executes where appropriate all

state-dependent events in the C phase (See fig ure 4). These three phases are

well represented using the Pascal programming language because of the reliance

on modularity in specifying model dynamics.

The suite of Pascal routines used in the simulation module are a

modification of routines which were used for teaching simulation at the LSE.

The routines, known as eLSE (Extended Lancaster Simulation Environm ent) are

themselves a modification of Pascal routines developed at Lancaster U n iversity .

The firs t stage in the development of the simulation module was to

transfer the eLSE routines to run under Microsoft Pascal. Students at the LSE

were using the eLSE routines under Turbo-Pascal V .3 , which imposes an

unacceptable b a rrie r of 64K on code size. Some modifications were necessary

since Turbo-Pascal does not fu lly abide to the A N SI/IEEE standard (IEEE

[1984]). Conversely, Microsoft Pascal does not support the use of graphics.

Consequently, the necessary low -level routines had to be w ritten to duplicate

the functionality of Turbo-Pascal. The size of the eLSE routines was then

reduced by removing unnecessary display related code.

129

The eLSE routines have been used in creating re la tive ly small

experim ental models based on imagined real-w orld environm ents. Experience

gained in developing the job-shop model showed th at the use of an expert

system would be of little practical benefit unless the simulation was sufficiently

detailed as to w arrant the creation of a separate knowledge-base. The use of

a compiler supporting the creation of substantive programs was seen as a

prerequisite to the development of simulation models under ESSIM. The creation

of large models also requires the use of modular development techniques in

keeping the code manageable and m aintainable.

The existing eLSE routines impose structure on the modelling process by

providing a model executive (the A phase) which controls the calls to the B

and C phase procedures. The model framework assumes a single logical file

containing all B and C routines, w ith the eLSE specific code stored separately

w ithin an 'include' file . In order to use the eLSE routines in a modular

programming environm ent, the B and C phase procedures have to be

appropriately grouped in modules. In terfaces then have to be created, allowing

procedure and function calls between the separately compiled files and

perm itting the sharing of common data.

The eLSE routines make use of the CAUSE procedure to schedule the

execution of a B phase event. The syntax of the procedure call is shown in

figure 33. The in teger parameter 'nb' identifies the B event procedure to be

executed a fter a delay of 't ' time u n its . During the execution of the A phase,

(tim e advance) the scheduled B -events are activated through a call to the

'Call_For_Next_B_Event' procedure. A CASE statement is used to map between

the procedure code and the event name (See fig u re 33).

130

SYNTAX OF B-EVENT CALLS USING ELSE

CAUSE(Nb: Integer; Ent: EName; T: Integer);

PROCEDURE Call_For_Next_B_Event;
Begin

CASE No_NextB OF
1: B1;
2: B2;
3: B3;
4: B4;

End;
End;

SYNTAX OF B-EVENT CALLS USING ESSIM

SCHEDULE(B_EventName: Address; Ent: EName; T: Integer);

F/GURE 33 S/MULAT/ON MODEL B-EVENT CALLS

The eLSE routines required the definition of a procedure called

'Call_For_Next_B_Eventl which contained the names of a ll B -events. This

procedure had to be updated each time new B-events were added to the model.

A simple modification was made to ESSIM which elim itated the need fo r the

,Call_For_Next_B_Eventl routine. In ESSIM, descriptive names can be given to

B -event routines. Instead of using the 'Nb' parameter to the CAUSE procedure,

ESSIM expects to be passed the s tart address of the B -event procedure. During

the execution of the A phase, the physical address of the B event is used to

activate the procedure.

131

T h e eLSE e n v iro n m e n t m akes use o f th e 'G o _ T h ru _ C _ E v e n ts ' r o u t in e in

a c t iv a t in g th e m ode ls C -e v e n t p ro c e d u re s (See f ig u r e 3 4) . I n ESS IM , a c a ll in g

p ro c e d u re f o r C -e v e n ts is lo c a te d in each code m odu le (see f ig u r e 3 5) . I f a C -

e v e n t is a d d e d to a m o d u le , th e n th e m o d e lle r s im p ly a lte r s th e c a ll in g

p ro c e d u re lo c a te d in th a t m o d u le . S u c h a s t r u c tu r e e lim in a te s th e need to

re -c o m p ile m u lt ip le se g m e n ts o f co d e .

PROCEDURE Module1_Cs;
Begin

1

2
3
3

PROCEDURE Module2_Cs;
Begin

PROCEDURE Module3_Cs;
Begin

: C11; 1: C21; 1; C31;
: C12; 2: C22; 2: C32;
: C13; 3: C23; 3: C33;
: C13; 3: C23; 3: C33;

End; End; End;

PROCEDURE Module_C_Calls;
Begin

1: Module1_Cs;
2: Module2_Cs;
3: Module3 Cs;

End;

F/GURE 35 C -EVENT CALLS /N ESS/M

132

PROCEDURE Go_Thru_C_Events;
Begin

C1;
C2;
C3;
C4;

End;

F/GURE 34 C-EVENT CALLS US/NG ELSE

The use of modules in w riting simulation code necessitates some caution

in the management of variables. The program design should reflect the natural

m odularity of a simulation model, depicted by its constituent activ ity cycles

(H ills [1971]). Variables and associated data structures should then, as fa r

as possible, be declared locally to each module. This minimised the size of the

resulting program and improves the m aintainability of the code.

The sharing of data between modules and the expert system should

preferably be effected through interm ediary interfaces (see figure 36). A

programmer may fo r instance modify the data structures used in one module

and neglect to reflect these modifications in other modules. The use of

interfaces also forces the programmers developing the system to form ally define

the data accessible to individuals in the real-w orld . Consequently, the

133

p ro g ra m m e r(s) c o d in g each o f th e m o d u le s o n ly h a v e access to d a ta s p e c if ie d

in th e c o r re s p o n d in g in te r fa c e . A n a c t iv i t y com m on to tw o a c t iv i t y c y c le s m us t

be p la ce d in ju s t one o f th e c o r re s p o n d in g code m o d u le s .

MODULE 1 MODULE 2

If changes are made to variables in module 1, corresponding
alternations are required in module 2.

VARIABLE &
CODE EXECUTION

INTERFACE

MODULE 2MODULE 1

If changes are made to variables in module 1, changes are
required to the interface, but not necessarily module 2.

F/GURE 36 /NTER FA C/NG MODULES

T h e need to d e v e lo p th e e x p e r t sys te m k n o w le d g e -b a s e in p a ra lle l w ith

th e s im u la tio n code s ig n i f ic a n t ly a l te r s th e d e v e lo p m e n t p ro c e s s u s u a lly

a sso c ia te d w ith m o d e llin g . T h e d is c ip lin e s r e q u ir e d a re d e s c r ib e d in c h a p te r

f iv e s p e c if ic a lly in th e c o n te x t o f th e d e v e lo p m e n t o f th e p o r t m ode l.

4 .6 DESIG N OF T H E C O M M U N IC A T IO N S IN T E R F A C E

T he re s p o n s ib i l i t ie s o f th e c o m m u n ica tio n s in te r fa c e in c lu d e th e

m anagem ent o f p ro c e d u re a n d fu n c t io n c a lls fro m th e e x p e r t s y s te m , a n d th e

134

sharing of data betw een the ex p ert system and other m odules.

The communications in terface provides the necessary links between the

compiled simulation code and the in terpreted expert system. The incom patibility

between compiled and in terpreted code arises from the string oriented nature

of the in te rp re te r. For instance, the expert system scans the knowledge-base

and finds that in order to solve the desired goal, a call has to be made to a

function called 'JobDuration1. The function name has been extracted from the

knowledge-base as a string and is consequently not recognisable by the Pascal

compiler as a function name. The problem could be overcome by find ing the

s ta rt address of the function and then tran sferring control using the C routines

which have been w ritten (see section 4 .4 .3) . U nfortunately, the address of a

function cannot be identified unless the function name is 'hard-coded' in a

compiled file . Using a Microsoft Pascal routine fo r determining the address of

'JobDuration' results in a re tu rn value corresponding to the address of the

string and not the function. The same problem applies in making procedure

calls and in determ ining the address of variables declared in a compiled module.

A second problem in linking the in terpreted expert system with other

compiled modules results from the syntax requirem ents of the Microsoft Pascal

compiler. For instance, a procedure defined in one module can be called from

another module provided that the procedure name is declared in the calling

module as being 'ex te rn a l'. The same requirem ent exists fo r function calls and

fo r sharing a variable between modules. Consequently, finding the s ta rt

address of a procedure is not in itse lf sufficient fo r tran sferring control to th at

procedure. The procedure name must also be defined at the top of the module

as being 'ex tern a l'.

135

SIMULATION MODULE COMMUNICATIONS EXPERT SYSTEM
INTERFACE

TREE OF VARIABLE,
PROCEDUREAND

FUNCTION ADDRESSES

SCAN TREE
AND RETURN
AN ADDRESS

PASS ADDRESSES
BETWEEN ES

AND SIMULATION

INFERENCE
ENGINE

EXECUTIVE

SHARED VARIABLES

LOCAL VARIABLES

PROCEDURES

FUNCTIONS

RULES

USING

AND RETURNING

AN ADDRESS

PARAMETERS

GOAL CALL

PASSING

GENERATED INTERFACE CODE

F/GURE 37 INTERFACE BETWEEN SIMULATION MODEL AND EXPERT SYSTEM

S h o r t o f w r i t in g ones ow n P asca l c o m p ile r , th e p ro b le m o f c re a t in g th e

in te r fa c e c o u ld n o t e a s ily be o ve rco m e . A p o s s ib i l i t y th a t e v e n tu a l ly p ro v e d to

be th e m ost s a t is fa c to r y was to d e v e lo p a p ro g ra m g e n e ra to r th a t w o u ld c re a te

th e co m m u n ica tio n s in te r fa c e m o d u le . T h e co m m u n ic a tio n s in te r fa c e m odu le

c o n ta in s a ll th e n e c e s s a ry ' in te r -m o d u le ' d e c la ra t io n s a n d r e tu r n s th e a d d re s s e s

o f p ro c e d u re s , fu n c t io n s , o r v a r ia b le s w hen pa sse d to th e in te r fa c e as te x t

s t r in g s (see f ig u r e 3 7) .

136

4 . 6 . 1 The C l-gen erator

The C l-generator was developed as a means of creating the

communications in terface module. The C l-generator is activated by the 'L in ker1

program (see section 4.8) and need only be executed when additional

procedures, functions, or external variables are added to the declarations part

of a given knowledge-base.

When the C l-generator is activated, a template file is created using the

same file name as the knowledge-base but with a d ifferen t file name extension.

The generator then adds code to the template file by directing output to

'Include' files . The generated code can be classified as follows:

1 .Variable declarations: External variables declared in the knowledge-base are

extracted and added to the template file , (fig u re 38)

Cl-Generator
KNOWLEDGE BASE +■ COMMUNICATIONS INTERFACE

EXTERNAL Time : Integer;
Dur : R eal;

VAR Time[Extern] : Integer;
Dur [Extern] : R eal;

FIGURE 38 MAPPING BETWEEN SIMULATION AND ES VARIABLES

137

2 . R o u tin e d e c la ra t io n s : P ro c e d u re s a n d fu n c t io n s c a lle d fro m w ith in th e

k n o w le d g e -b a s e m u s t be d e c la re d as 'e x te rn a l ' to th e co m m u n ica tio n s in te r fa c e

m o d u le . T h e C l- g e n e r a to r e x t r a c ts th e p ro c e d u re a n d fu n c t io n nam es b y

s c a n n in g th e m odu le in w h ic h th e y a re d e c la re d . T h e nam e o f th e m odu le is

i t s e l f e x t ra c te d fro m th e k n o w le d g e -b a s e b y s e a rc h in g f o r th e 'P a sca l F ile '

com m and (see s e c tio n 4 . 4 . 1) .

USER DEFINED PASCAL
M O D U LE

COMMUNICATIONS INTERFACE
TEM PLA TE

MODULE Name ;

Procedure ... ;
Begin

End;

Procedure ... ;
Begin

End;

Function ... : ... ;
Begin

End;

END;

C l Generator

MODULE Commlnterface;

Procedure ... ; Extern;
Procedure ... ; Extern;
Function ; Extern;

Function VarAddress(Strng):Address;
Begin

{Generated ’include’ file}
End;

Function ProcCall(Strng);Result;
Begin

{Generated ’include’ file}
End;

Function FuncCall(Strng):Address;
Begin

{Generated ’include’ file}
End;

END;

F/GURE 39 THE COMMUNICATIONS INTERFACE CODE GENERATOR

138

3 . C ode f o r r e tu r n in g v a r ia b le a d d re s s e s : T h e C l- g e n e r a to r c re a te s th e code f o r

th e 'V a r A d d re s s ' fu n c t io n u s in g th e v a r ia b le nam es a n d ty p e s id e n t i f ie d fro m

th e d e c la ra t io n s e c tio n o f th e k n o w le d g e -b a s e (f ig u r e 3 9) . A v a r ia b le name is

passed to th e fu n c t io n as a t e x t s t r in g p a ra m e te r . T h e fu n c t io n th e n r e tu r n s

th e m em ory a d d re s s a t w h ic h th e v a lu e o f th e v a r ia b le is s to re d . W hen th e

ESSIM e x p e r t s y s te m is f i r s t a c t iv a te d , th e 'e x te r n a l ' v a r ia b le nam es a re in t u r n

passed to th e 'V a rA d d re s s ' fu n c t io n a n d th e v a r ia b le a d d re s s e s r e t u r n e d , a d d e d

to th e a d d re s s t r e e (s e c t io n 4 . 4 . 1) . T h e in fe re n c e e n g in e ca n th e n g a in access

to v a r ia b le v a lu e s b y s e a rc h in g th e t r e e f o r th e re le v a n t m em ory a d d re s s . T h e

c o n te n t o f th e m em ory a d d re s s can s u b s e q u e n t ly be e i th e r re a d o r o v e r w r i t t e n .

4 . C ode f o r p ro c e d u re c a lls : T h e C l- g e n e r a to r c re a te s th e code f o r th e

'P ro c _ C a ll' fu n c t io n th a t e n a b le s p ro c e d u re s to be a c t iv a te d fro m ru le s d e f in e d

in th e k n o w le d g e -b a s e (see f ig u r e 4 0) . T h e 'P ro c _ C a ll' fu n c t io n re c e iv e s th e

p ro c e d u re nam e as a p a ra m e te r a n d passes c o n t r o l to th e p ro c e d u re . T h e

'P ro c _ C a ll’ fu n c t io n th e n r e tu r n s a boo lea n v a lu e to th e e x p e r t s ys te m in d ic a t in g

w h e th e r th e p ro c e d u re w as fo u n d to e x is t . T h e 'P roc_ C aU ' code is based on th e

p ro c e d u re d e c la ra t io n s e x tra c te d fro m th e P asca l f i le d e c la re d in th e

k n o w le d g e -b a s e .

’ProcCaU’
Function

EXECUTE
PROCEDURE

TRANSLATE TO
PROCEDURE ADDRESS

PROCEDURE
NAME EXPERT

PASCAL
CODE

SYSTEM
INFERENCE

ENGINE

RETURN
CONTROL

FIGURE 40 CALLING PASCAL PROCEDURES FROM ESS/M’s EXPERT SYSTEM

139

5 . C ode f o r fu n c t io n c a lls : T h e ' F u n c A d d r e s s ' r o u t in e re c e iv e s a fu n c t io n name

as a p a ra m e te r fro m th e e x p e r t s y s te m , c a lls th e fu n c t io n , a n d th e n r e tu r n s th e

a d d re s s a t w h ic h th e fu n c t io n r e s u l t is s to re d (see f ig u r e 4 1) . I f th e p a ra m e te r

to th e r o u t in e is in v a l id , a 'n u l l ' a d d re s s is r e tu r n e d . T h e use o f a d d re s s e s

p e rm its th e fu n c t io n r e s u l t to be o f a n y ty p e . T h e v a lu e r e tu r n e d b y th e

fu n c t io n is t y p ic a l ly u se d in a c a lc u la t io n in th e c o n d it io n s e c tio n o f a r u le .

E n s u r in g th a t a ll v a r ia b le ty p e s u se d a re c o m p a tib le is th e r e s p o n s ib i l i t y o f th e

m o d e lle r .

EXPERT
SYSTEM

INFERENCE
ENGINE

PASCAL
CODE

TRANSLATE TO
FUNCTION ADDRESS

'FuncCair
Function

MAP TO
AN ADDRESS

F/GURE 41 CALL/NG PASCAL FUNCT/ONS FROM ESS/M’s EXPERT SYSTEM

EXECUTE
FUNCTION

RETURN
RESULT

RETURN
ADDRESS

FUNCTION
NAME

4 .7 T H E M A N -M A C H IN E IN T E R F A C E

T h e p ro v is io n o f p o w e r fu l g ra p h ic h a n d lin g fa c i l i t ie s on c u r r e n t

m ic ro c o m p u te rs h a s le a d to a s ig n if ic a n t p ro p o r t io n o f s o f tw a re d e v e lo p m e n t

re s o u rc e s b e in g p la c e d on th e c re a t io n o f e f fe c t iv e m a n -m a ch in e in te r fa c e s . A

la rg e n u m b e r o f s o ftw a re p ro d u c ts now m ake use o f w in d o w s as a m eans o f

s t r u c tu r in g m enu d is p la y s o r as a to o l f o r d is p la y in g lo g ic a l ly d is t in c t o u tp u t

s im u lta n e o u s ly on th e same s c re e n . T h e d e v e lo p m e n t o f w in d o w in g e n v iro n m e n ts

s tem s fro m a d v a n c e s in p a ra lle l c o m p u tin g a n d m u lt i ta s k in g o p e ra t in g sys te m s

140

which often require the simultaneous display of unrelated data.

The job-shop modelling environm ent, the predecessor to ESSIM (appendix

A), made significant use of a window based display, the lay-ou t of which was

based on the Turbo-Prolog in terface. The interface was designed to enable the

modeller to adapt the job-shop model to d ifferen t m anufacturing environments

by altering the specification of the products being manufactured and other

characteristics of the production p lan t. Windows were also used fo r the

graphical display of simulation output and fo r the summarisation of model

performance in terms of orders outstanding and orders completed. The job-shop

modelling environment was seen to gain significantly from the provision of an

effective window based man-machine in terface. These gains mostly arose

because of the intended role of the system as a tool fo r dedsion-support and

the consequent need fo r a means of effectively communicating inform ation.

ESSIM was designed as an tool fo r the creation of complex modelling

environments such as the job-shop in which the modeller has the added benefit

of being able to represent and experim ent with a lternative decision ru les. The

analyst/program m er using ESSIM consequently needs to develop a man-machine

in terface that perm its the modeller to implement model changes and analysis

model output with minimum d iffic u lty . The development of a user frien d ly

in terface based on the use of windows is time consuming and necessitates of the

programmer significant sk ill in low -level hardware control. The problem is

compounded by the need to use Microsoft Pascal in creating the simulation code.

MS-Pascal is a straightforw ard implementation of ANSI Pascal with no facilities

provided fo r cursor control, colour selection, or graphics.

141

4 . 7 . 1 ESSIM lib rary of low -level routin es

The firs t step in developing the man-machine in terface was to w rite the

necessary low -level routines fo r the manipulation of textual output and fo r the

creation of high-resolution graphs. These routines are available to the ESSIM

user in a lib ra ry and are linked to the developed code a fte r compilation. The

names used fo r the routines, wherever possible, are identical to Turbo-Pascal

commands thus im proving language com patibility and easing the translation of

program code.

4 .7 .2 The graphics display module

ESSIM's Graphics Display Module (GDM) is accessible from the simulation

model, expert system, or any other linkable program module. The GDM provides

the necessary code fo r the development of the man-machine in terface and makes

use of the lib ra ry of low -level video display routines. The routines can be

characterised as followed:

1 .Windowing routines: The GDM supports the creation of multiple overlapping

windows in e ither tex t or graphics mode. A window is created by specifying

screen coordinates and an associated name. The window routine then calculates

the number of eight b it memory locations needed in storing the content of the

display area immediately beneath the window. A request is made fo r the

necessary amount of memory space, and the content of the screen area affected

by the window, copied to the reserved RAM. When removing the window from

the d isplay, the reverse process is carried ou t, and the allocated memory space

fin a lly released. The GDM also provides routines fo r moving windows around the

142

screen, scrolling the content of windows, and re -d irectin g input and output

operations to specified window locations.

2 .Iconics: The popularity of the operating system used in the Apple Macintosh

range of microcomputers has rested on the power and sim plicity of it's mouse

and icon driven in terface. The GDM consequently provides facilities fo r the

creation and display of user defined shapes, symbols, and character sets.

Iconics can easily be combined with mouse handling routines in creating a

powerful man-machine in terface. For instance, a mouse routine can be used in

detecting the position of the mouse 'pointer1. I f the pointer is located

immediately above a specified icon, the display a ttrib u te of the screen area in

which the icon is displayed is reversed, and the routine associated with the

icon is activated.

3 .Graphics: The GDM supports graph drawing facilities which are designed to

be used in combination with high-resolution window displays. The lowest level

routines are designed fo r drawing individual pixels, lines, and circles. These

drawing routines can be used in either of two modes. The firs t mode ensures

com patibility with the underlying operating system by using the low -level BIOS

routines that reside on a ROM chip. A program developed using ESSIM will

consequently run on any fu tu re versions of the DOS operating system released

by IBM or M icrosoft. The BIOS mode also ensures ESSIM's com patibility with

OS/2 and enables ESSIM to be used concurrently w ith other softw are. The

second mode is designed to maximise the speed at which lines are drawn by

by-passing the BIOS routines and w riting d irectly to the video display. This

prevents the use of ESSIM as a concurrent process because the screen output

cannot be controlled by the underlying operating system. H igh-level routines

143

are also provided fo r creating graph axes, drawing line graphs and bar charts,

extending existing graphs, and re-scaling or sh ifting images. Graph lines that

exceed the lim its of the axes are clipped using an algorithm based on Cohen's

method. (An example screen display is given on page 59)

4 .7 .3 The man-machine fro n t-en d module

The front-end module controls the activation of the ESSIM modules. The

design and coding of the fro n t-en d is carried out by the analyst/program m er

using routines from the graphics display module and ESSIM lib ra ry of low -level

routines. The fron t-end is typ ica lly window based and may provide facilities fo r

selecting files from directories, in itia lis ing files , and setting parameters to the

simulation ru n . A typical screen display is shown in figures 57, 58 and 59.

The creation of the man-machine front-end is nevertheless a complex

process requiring repeated compilation of the module in achieving the desired

screen lay -o u t. The process is fu rth e r complicated when pull-down menus are

used in combination with the mouse or when windows are designed to overlap.

A program generator for creating the front-end menus and defining the

location, size and content of the windows was consequently thought to be a

desirable and necessary feature of ESSIM.

4 .7 .4 Designer

Though useful, the lib ra ry routines were found to be time consuming to

use and the process of designing a screen display laborious. A program

generator, 'Designer1, was therefore developed which permits screen designs

144

to be created and the corresponding code generated autom atically. The concept

behind 'Designer' was not just to provide a conventional in terface definition

language, but to le t the modeller create an in terface in teractive ly . 'Designer'

is a form of 4GL in which 'in teractive programming' is used to generate PASCAL

program code. Once created, the in terface lay-ou t can be 'edited' and new code

produced. Furtherm ore, the eventual user of the program can be d irectly

involved with the setting out of the interface and the presentation of the

output.

The standard 'Designer' interface is based on the use of high-resolution

graphics. Characters shapes are user defined and options are selected using

a mouse. A ll input and output, whether in graphic or character form at, is

displayed in 'pull-dow n' or 'pop-up' windows. The top two lines of the screen

are reserved fo r default menu options. The bottom line is used fo r the display

of instructions.

The default menu options are specified by simply typ ing the appropriate

text. Two or more spaces indicates the s tart of a new option. The position of

the menu options is automatically adjusted such th at an even lay-ou t is always

obtained. Pointing the mouse icon at an options results in its display

characteristics being reversed.

Windows can be created using the mouse. Once created, windows can be

re-positioned and adjusted in size. Pull-down menus are simply created by

typing te x t into existing windows. The pull-down menus are immediately

functional perm itting the screen design to be evaluated p rio r to generating the

in terface code. Pull-down windows can be also be stacked. Hence selecting an

145

en try in one window results in another pull-down menu being displayed.

m sm m - m m m m m
OPTION 1
OPTION Z
OPTION 3
OPTION 4

SUB-OPTION 1
SUB-OPTION I
SUB-OPTION 3

SUB-SUB-OPTION 1

-OPTION 3

a prograw
FIGURE 42 GENERATING APPLICATION INTERFACES USING ' DESIGNER '

'D e s ig n e r ' s u p p o r ts th e c re a t io n o f P o p -u p w in d o w s . P o p -u p w in d o w s

a re n o t u se d f o r th e d is p la y o f m enus b u t r a th e r f o r th e d is p la y o f f r e e - fo r m

t e x t , re q u e s ts f o r u s e r in p u t , a n d th e c re a t io n o f g ra p h ic a l fo rm s . Each w in d o w

is id e n t i f ie d b y a u n iq u e code s u c h th a t th e s e can la te r be m a n ip u la te d b y th e

p ro g ra m m e r(s) d e v e lo p in g th e s im u la tio n o r e x p e r t s y s te m m o d u le s .

E x te rn a l p ro g ra m s can be a c t iv a te d b y a s s o c ia t in g a f i le name w ith a m enu

o p t io n . S e v e ra l ty p e s o f p ro g ra m c a lls a re p o s s ib le . T h e m o d e lle r can 'c h a in ' o r

's p a w n ' a p ro g ra m , w i th , o r w ith o u t th e use o f p a ra m e te rs . A l te r n a t iv e ly DOS

com m ands ca n be a c t iv a te d , a g a in w ith th e p o s s ib i l i t y o f p a ra m e te rs p a s s in g .

146

O utput generated by external programs can either be displayed on a clear

screen (in text-m ode) or re-d irected to a specified pop-up window. 'Designer'

permits the program calls can be tested s tra ight away w ithout having to

generate and compile the code. Designer's ab ility at executing DOS commands

is particu larly useful in the context of providing the modeller w ith facilities

such as directory listings (possibly to a window), file copying/backup,

changing default d irectories, and so on.

Having designed the in terface, the corresponding program can be

generated. The user is prompted for a file name. 'Designer' then generates the

PASCAL code and compiles it to 'EXE' form at. A 'screen design' file is also

generated which can be used to re-load a previously designed in terface. There

are two ways of modifying 'Designer' files . Re-loading the screen design file

or altering the Pascal code. The Pascal code can be customised by modifying the

'Designer' interface module. The module consists of a single procedure

containing a CASE statement. The CASE statement entries relate to window and

menu options. By inserting lib ra ry commands and /or procedure and function

calls, particu lar menu options can be made to activate given tasks.

Having designed an in terface, the modeller has to place the necessary

calls in the simulation code and/or expert system knowledge base to activate

the appropriate windows. The read and w rite statements used in the model also

have to be altered so as to redirect the I/O to the appropriate windows. Graphs

can also be produced within windows using the appropriate lib ra ry functions.

147

4 .8 THE CODE LINKER

The use of modules complicates the process of generating the executable

program . The expert system module has to be linked to the simulation code,

'Designer' in terface, and appropriate lib raries . To sim plify the process and

perm it the inexperienced programmer to implement changes to the model, a

separate code linking program was w ritten .

The user is firs t prompted to specify the simulation model file name, the

expert system knowledge base name, and the 'Designer' in terface file name.

The in terface file name can be omitted if 'Designer' is not being used. The

user has the option of specifying additional lib ra ry names which may have been

created fo r use with the model. The files can also be compiled during the

execution of the program if this has not already been done. The code lin ker

generates the appropriate commands fo r the Microsoft compiler, generates the

executable program and then offers the modeller the option of immediately

running the model.

4 .9 CONCLUSION

The development of the job-shop application in co-operation with the

'In stitu to Nacional de Tecnologia' provided essential practical experience in the

difficu lties associated with the alteration of model logic. The system also

highlighted the necessity for a user frien d ly in terface perm itting the

inexperienced modeller to use the model unaided and in te rp re t output through

summary reports and dynamic graphical displays. The job-shop model was

148

implemented as an adaptable system that could be tailored fo r used in a range

of job-shop based m anufacturing concerns.

Though designed as a re-usable system, the job-shop model did not

achieve the desired level of generality . To be of use in a w ider context, the

simulation environment had to be applicable to any real-w orld situation.

Such requirem ent spurred the development of ESSIM, in which an expert

system is used fo r the specification of the logic applied by key individuals

involved in the control of the real-w orld environm ent. ESSIM is a development

environm ent fo r use by experienced modellers. ESSIM perm its the creation of

models sim ilar to that of the Job-Shop, with added fle x ib ility given to the

modeller by perm itting model changes through alteration of the expert system

knowledge-base.

The use of a commercial o ff-th e -sh e lf expert system did not satisfy the

requirem ents of ESSIM because of the lack of adequate interfaces to 3rd

generation languages and the in ab ility to customise the structure of the

knowledge-base. ESSIM's expert system module operates on the principle of a

purely backward chaining inference strategy in which the goal to be resolved

is defined using a Pascal function. The structure of the knowledge-base d iffers

radically from that of existing expert systems in that 'ru le -sets ' are used to

'localise' knowledge. Rule-sets typ ically define the knowledge pertaining to a

specified individual and improve the in terp re ta b ility of the knowledge-base by

imposing lim ited s tru ctu rin g . The use of Rule-sets also improves the

performance of the expert system by lim iting the search space during the

inference process. ESSIM's expert system provides other features essential to

149

the simulation task. Namely the sharing of variables with compiled Pascal code,

the ab ility to incorporate procedural code, and the output of inference traces.

ESSIM's simulation component makes use of the discrete event three-phase

approach to model development and is derived from the eLSE routines used fo r

teaching simulation at the LSE. To w arrant the use of an expert system, ESSIM

models are necessarily substantial in size. The model 'template' used in

conjunction with the eLSE routines was consequently modified so as to perm it

model development on a modular basis (see section 4 .5) . Additional functions

were also devised perm itting calls to the expert system. The development of

substantive models requires the use of d ifferen t model building techniques,

particu larly in the management of variables. The necessary disciplines in

in terfacing the constituent code modules were consequently iden tified . The

changes made to the eLSE routines and the ab ility to construct models on a

modular basis represent a significant improvement on the existing model

development techniques.

The creation of an in terface between compiled simulation code and an

in terpreted expert system knowledge-base represented a considerable

challenge. The in terface had to perm it the sharing of common variables and

the transfer of control between procedural and declarative code. The necessary

generality of the in terface resulted in the need fo r a code generator (the

C I-G enerator) which would scan the declarations section of the knowledge-base,

id en tify the procedures and functions called from the expert system, and

thereby construct the necessary in terface module in Pascal. The in terfacing of

expert system and simulation model represents a significant improvement in the

power and fle x ib ility of trad itional simulation m odelling. The development of the

150

in terface should also be of in terest to those working in A I. For instance, an

expert system could be tested using realistic input data generated by a

simulation model. More generally, the development of applications based on a

combination of declarative and procedural code could be of benefit to a range

of disciplines in which 3rd generation languages have trad itio nally been used.

The development of the Job-Shop application highlighted the need fo r an

effective means of communication between application and modeller. The

development of the man-machine in terface was found to be a complex process

requiring considerable expertise in low -level programming. S ta te -o f-th e -a rt

techniques such as windowing, icon handling, and mouse control were complex

to re-produce and d ifficu lt to make use of during the development of models.

One of the aims in developing the ESSIM environm ent was to go fu rth e r than

simply providing necessary libraries of routines but to actually help in the

almost equally complex process of using the code. The ’Designer' in terface code

generator was consequently developed which allows the screen design to be

produced in teractive ly . 'Designer' reduces the time normally associated with

creating complex user interfaces and permits the programmer to create a

graphical fron t-end to a simulation model with re la tive ly little d iffic u lty .

The development of ESSIM would have been d iffic u lt to achieve without

a practical context to which the developed theories could be applied. This

practical context was firs t provided by the job-shop application and la te r by

the container port model described in some detail in the following chapter.

151

CHAPTER FIVE

VALIDATION OF ESSIM USING A CONTAINER PORT MODEL

5.1 INTRODUCTION

Chapter four sought to describe the research steps undertaken in the

development of ESSIM and provided a detailed explanation of the physical design

of the eventual system. Chapter five w ill describe the process applied in

validating the ESSIM approach to modelling. These are broadly outlined in

figure 45(a) .

(1) Development of a model of a computer controlled container port using
conventional discrete event modelling tools.

(2) Implementation of the container port model using ESSIM with decision rules
segregated within the expert system knowledge-base.

(3) Validation of the ESSIM port model output by means of comparison with the
model output from the conventional model developed as part of step one.

(4) Implementation and execution of a range of experiments to be used in
evaluating the ESSIM system.

(5) Development of a further version of the container port model using conventional
programming techniques to replicate the functionality of the expert system.

(6) The experiments identified and carried out in step four are repeated using the
different versions of the port model developed in steps one and six.

(7) Formalisation of the conclusions drawn from the research stages and
experiments carried out in steps four and six.

FIGURE 45 (a) Stages in the validation of the ESS/M design

The sections of this chapter broadly follow the research and validation

stages identified in diagram 45(a).

152

In section 5 .2 . , the design and operational characteristics of the

container port to be modelled using ESSIM is described. The container port was

used in preference to the Job-Shop environment in assessing the ESSIM design

as there was a lack of operational knowledge on jobbing techniques. The Job-

Shop had been used in building the prototype system described in section 4.2

which used a forw ard chaining expert system in representing jobbing rules.

Appendix A provides a fu lle r explanation of the functionality of the Job-Shop

system .

The details relating to the design and operational characteristics of the

container port were provided by a company called Highland Participants PLC.

Highland Participants wished to develop a model of a computer controlled, and

in parts un-manned container port which was to be constructed on the Is le of

G rain. The aim of the simulation study was to simulate the expected

performance of the port using alternative designs, equipment of varying

specification, and alternative control procedures. Once form alised, control

procedures could be extracted and la te r be integrated w ithin the port's

computer control system. The container port project provided a factual re a l-

world modelling problem which could be used to realistically assess the ESSIM

approach.

Conventional modelling techniques were used in the development of the

firs t version of the container port model. Decision rules were la te r stripped out

and embedded w ithin ESSIM's expert system knowledge base. By using constant

activ ity durations, the conventional model was then used as a means of

validating the output from the ESSIM version of the port model. E rrors in the

153

ESSIM program code which would otherwise have been d ifficu lt to detect were

identified in this way.

The development of the second version of the port model under ESSIM

is described in section 5.3 . In th is section, particu lar emphasis is placed on the

describing the modular code construct which had to be adopted in implementing

the container port model which is particu larly substantive in size. Section 5.4

describes the knowledge-base component of the port model. Also described, are

the alterations made to the expert system which resulted from d ifficu lties in

implementing certain management ru les. The structure of the expert system

inference engine, itse lf and the syntax of the associated rules were explained in

chapter four.

The th ird major component of the ESSIM port model, the graphical user

in terface, is described in section 5.5 . The process applied in generating the

in terface using the 'Designer' program is explained and the resulting modeller's

tools which include graphs, textual displays and pull-down menus are

described. In the context of the ESSIM container port model, the graphical user

in terface is used in controlling the execution of the model, displaying simulation

results during model execution and in allowing the modeller to edit the expert

system rule-base.

Once the ESSIM version of the port model was complete, rigorous testing

was required to ensure th a t, fo r instance, the expert system inference process

was being executed correctly . Model validation was achieved by comparing the

output from the ESSIM model with th at of the original port model which had

been entire ly coded in Pascal. Constant a c tiv ity durations were used to ensure

154

th a t at every time step, the behaviour of both models could be expected to be

identical. The validation of the ESSIM port model is explained in section 5 .6 .

Having completed and validated the ESSIM version of the container port

model, work commenced on form ally evaluating the cooperative simulation and

expert system approach to modelling as encompassed in the ESSIM design. The

firs t step undertaken was to devise a range of experim ents which could be used

in assessing the impact of introducing changes to the expert system knowledge

base and simulation modules. These experiments can broadly be classed as

follows:

(1) Experiments involving changes to knowledge-base ru le param eters.

(2) Experiments based on changes to variable values within knowledge­

base ru les.

(3) Introducing model changes which requ ire the re-organisation of

existing decision rules or the introduction of new decision ru les.

(4) Experiments requiring major model changes with specific reference

to the introduction of new en tity cycles.

Section 5 .7 is sub-divided to cover each of these class of experim ents. Each

individual experim ent is explained in detail and in itia l findings are reported

relating to the ease or d ifficu lty with which model changes were implemented.

Defining and carrying out experiments using the ESSIM version of the

container port model is insufficient fo r the purpose of fu lly assessing the value

of the ESSIM approach to modelling. Further evidence was therefore sought by

comparing the results of the experiments with those obtained by repeating the

155

experim ents using alternative modelling techniques. A fu rth e r version of the

container port model was therefore developed in which the rules associated

with each port manager were hard-coded w ithin individual Pascal functions.

These pascal functions were isolated from the main body of the simulation

program in order to replicate the concept of a knowledge-base representing

decision m akers, independent from the simulation component depicting physical

entities, activ ities and th e ir in ter-re lationsh ips. This new version of the

container port model is fu lly described in section 5.8 .

The experim ents described in section 5.7 which had been applied to the

ESSIM port model were repeated using the new version of the container port

models. The experiments were also applied to the firs t port model which had

been developed en tire ly using conventional three-phase discrete event routines.

The conclusions from these fu rth e r experiments are reported in section 5 .8 .1 .

The conclusions are based on a comparison of the accuracy, adaptability and

m aintainability of the model representations.

From the comparison of the characteristics of each individual version of

the port model, conclusions are drawn as to the m erits and lim itations of each

of ESSIM's components. The Pascal simulation routines themselves are firs t

examined. Some unusual concepts had been introduced such as the use of

individual modules in representing each en tity cycle. The value and lim itation

of these new modelling concepts are discussed and reported in section 5 .9 .1 .

A similar approach is taken in evaluating the benefits and lim itations of the

expert system. The development of the expert system knowledge-base and

inference engine were based on existing theories in terms of the core principles

such as backward chaining. With respect to functionality, a number of fa irly

156

radical design features were implemented, particu larly in terms of the interface

to the Pascal language and the use of ru le -sets . The benefits and lim itations of

the expert system are discussed in section 5 .9 .2 . The impact of the

user-in terface and the benefit conveyed by the 'Designer' code generator are

sim ilarly debated in section 5 .9 .3 .

The conclusions to th is chapter are presented in section 5.10.

5.2 DESIGN OF THE CONTAINER PORT

Several a lternative port designs were considered by Highland Participants

fo r the Is le of Grain s ite . One of these designs was eventually used in creating

the ESSIM model and w ill now be described.

The following numerical data are averages used in the model. These

constants were used to sim plify the validation of the model output.

A ship reaches each of the port's berths every 24 hours. The impending

a rriva l of a ship is notified to the port authorities 4 hours in advance. Each

ship takes 2 hours to dock and two hours to leave the p o rt. There are two

b erth s .

Cranes are used to unload containers from the ships onto waiting In tern a l

Movement Vehicles (IM V s) . One of the ship berths is served by two cranes, and

the other by three cranes. A crane takes 40 seconds to load a container from

a ship onto an IMV or from an IM V onto a ship.

157

OUTSIDE WORLD

GATE

GV

GVl GV IGV GV GV GV

GV

GV

GV

GV

CENTRAL IMV DEPOT

n

1i

■ m1

ST
AC

K
1 CM

o
<
1—
</} ST

AC
K

3

•
" ■ ST

AC
K

5
^

ST
AC

K
6

■
"
__

■

CO
X .
O
<
h -
<f) ST

A
C

K
9

1 S
TA

C
K

10
□
□

D -
IMV IMV IMV IMV

BERTH 1 BERTH 2

SEA

FIGURE 43 LA YOUT OF THE CONTAINER PORT

Each s h ip is e x p e c te d to c a r r y th e m axim um lo a d o f 500 c o n ta in e rs . 500

im port containers are unloaded from each ship, these being replaced by 500

export containers. In some cases, ships may a rrive empty to collect a

consignment. On a rriv a l of a ship, all cranes are set to 'im port1, and the

process of unloading containers begins. Once all im port containers have been

unloaded, the cranes switch to 'export' mode and the loading of export

containers onto the berthed ship s ta rts . In the case of the berth which has

three ship cranes, only two of the cranes can work at any one time in 'export'

mode. There are other loading/unloading scenarios which provide management

with options in the optimisation of the ports operations. The scenario which is

investigated in th is thesis is one in which import and export operations occur

in parallel. As space is cleared in the ship's hold, it becomes possible to load

export containers before all im port containers have been unloaded. This is

represented in the expert system knowledge-base by rules which set the

number of ship cranes operating on im ports/exports to being proportional to the

remaining workload. Hence, in the case of two ship cranes, the s ta rt condition

is that both cranes work on imports on ly. I f the number of remaining import

containers falls below half the total im port workload, one of the cranes is

shifted over to working on exports. When no import containers remain, both

cranes work uniquely on exports.

There are 100 IMVs that can transport im port containers from a berth

to the storage area, and export containers from the storage area to a b erth .

IMVs that are not cu rren tly in the system wait in a central depot. Once an IM V

leaves the depot, i t becomes allocated to servicing one of the berths. An IMV

that has just delivered a container to a ship w ill e ither re tu rn empty to the

storage area or w ill wait its tu rn to collect an im port container. I f the cranes

are all working on exports, the IM V retu rns empty to the stack. In some

159

circumstances the relative number of IMVs servicing the berths may v a ry . For

instance, if no empty IMVs are available at one of the berths, an id le IM V may

be transferred from the other b erth . I f neither berth has any empty IM Vs, an

allocation is made from the central depot. In both cases, the tran sfer of an IMV

takes 40 seconds. IMVs re tu rn to the central depot when both berths are

unoccupied.

A loaded IM V takes 60 seconds to trav e l from a berth to the storage area.

When em pty, the same journey takes 30 seconds. An IM V takes 60 seconds to

trav e l empty from the storage area to a b erth . When loaded, the IM V takes 120

seconds.

The storage area is divided into 10 sub-areas, each re ferred to as a

stack. An empty IM V return ing to the storage area must collect containers for

the ship to which it has been allocated. Export containers are typ ically

scattered across all of the storage area. Consequently the IM V moves to the

stack at which the most export containers rem ain. I f the ship is fu lly loaded or

no export containers can be found in the storage area, the IM V retu rns to the

central depot. Full IMVs moving towards the storage area are allocated

uniform ly between the stacks.

An IM V which arrives empty at a stack may be re-allocated to service

another berth . This could happen in a situation where the export workload

fo r the ship curren tly being serviced is lower than the export workload of the

ship in the other b erth . In such a situation, the empty IM V may be transferred

to another stack in order to maintain a balance in the number of export

containers per stack. Occasionally, empty IMVs waiting in the storage area may

160

re tu rn to a berth w ithout collecting an export container. This may happen if

the total number of ship cranes working on imports exceeds the number of ship

cranes working on exports. Furtherm ore, the IM V may re tu rn to a d iffe ren t

ship if there happens to be an imbalance in the im port workload at the two

berths.

A loaded IM V which arrives at a stack, waits in a queue to unload. Once

fre e , the IM V w ill e ither re tu rn to the berth to which it has previously been

allocated, or wait its tu rn at the stack to collect an export container. The la tte r

tends to be the case, if the number of cranes working on exports exceeds the

total number of-cranes working on im ports.

Gate Vehicles (GVs) are trucks which enter the port to either deposit

export containers or collect im port containers. GVs move from the entrance to

the port to either one of ten bays associated with each of the stacks. GVs

begin a rriv in g with export containers 4 hours p rio r to the a rriva l of a ship.

(Simultaneous to the a rriva l advance warning given by the s h ip). The a rriva l

process continues at approxim ately 12 minute in tervals u n til the allocation of 500

export containers per ship is received. Only once all export containers have

been received do the empty GVs s ta rt a rriv in g . Each a rriv in g GV is associated

with a specific ship and is allocated to either an im port or export task.

GVs carry ing export containers trave l to bays allocated random ly. An

empty GV moves to the bay of a stack where a container is known to be located.

When there are several bays to chose from , a selection is made which ensures

th at the distribution of import containers remains balanced. A GV takes one

minute to move to a bay.

161

Each stack is serviced by a single Rail Mounted G antry crane (RMG).

The RMG unloads im port containers from IMVs and transfers these to free

positions in the stack area. A t some la te r tim e, the RMG collects the same

container and deposits it on a w aiting gate vehicle. The GV then leaves the

po rt. Exports are handled in a sim ilar way. The containers are removed from

incoming GVs and transferred to free positions in the stack. When the ship is

ready to accept export containers, the RMG collects the appropriate containers

and deposits these one at a time on waiting IM Vs.

IMVs and GVs compete fo r the allocation of RMGs. I f im port and export

jobs are both pending, then p rio rity is given to the IM V . When id le , an RMG

waits in a position mid-way along the ra il track . I f a loaded IM V arrives at the

stack, the RMG moves from the id le position to the 'shore side' of the stack in

40 seconds. The container is then loaded onto the RMG in 60 seconds. The RMG

subsequently deposits the container in an available position in the stack, the

average time taken being 60 seconds (th is includes the time taken to re tu rn to

the idle position) . I f an empty IM V arrives at the stack, the RMG collects the

allocated export container and moves to the 'shore side' of the stack in a mean

time of 60 seconds. The RMG then off-loads the container onto the w aiting IM V

in 60 seconds and subsequently re tu rn s to the id le position in 40 seconds. The

converse situation is almost identical. I f a loaded GV arrives at a bay, the RMG

moves from the id le position in a mean time of 40 seconds. The container is then

loaded onto the RMG in 60 seconds. The RMG subsequently deposits the

container in an available position in the stack, the average time taken being 60

seconds. I f an empty GV arrives at the stack, the RMG collects the allocated

export container and moves to the 'shore side' of the stack in a mean time of 60

s e c o n d s . T h e RMG th e n o f f - lo a d s th e c o n ta in e r o n to th e w a it in g G V in 60

s e c o n d s a n d s u b s e q u e n t ly r e tu r n s to th e id le p o s it io n in 40 s e c o n d s .

5 .3 S T R U C T U R E OF T H E S IM U L A T IO N M O DEL

SHIP

MODULE
IMV

MODULE
GATE VEHICLE

MODULE MODULE

STACK

_I

SIMULATION EXECUTIVE TOP-LEVEL’

MODULE

FIGURE 44 REPRESENTA T/ON OF MODEL CYCLES US/NG MODULES

T h e ESSIM m odel o f th e p o r t is s t r u c tu r e d on a m o d u la r b a s is w h ic h

eases th e p ro c e s s o f w r i t in g th e s im u la t io n b y e n a b lin g th e lo g ic a l s e p a ra t io n

o f code s e g m e n ts . Each m odu le can be co m p ile d s e p a ra te ly a n d te s te d u s in g

d a ta em bedde d in a 'd u m m y ' m o d u le . F u r th e rm o re , in a PC e n v iro n m e n t, th e

u se o f a m o d u la r c o n s t r u c t p e rm its p ro g ra m s to be c re a te d w h ic h e xc e e d th e

64K l im i t im p o se d b y th e M S -D O S o p e ra t in g s y s te m .

T h e c h a ra c te r is t ic s o f th e p o r t in te rm s o f se q u e n ce s o f e v e n ts and

e s tim a te d d u r a t io n s , w e re id e n t i f ie d th r o u g h re p e a te d in te r v ie w s w ith s e n io r

163

m anagem e n t. Some o f th e c o lle c te d in fo rm a t io n w as s u b s e q u e n t ly fo rm a lis e d

u s in g an A c t iv i t y C y c le D ia g ra m (A C D) (H il ls [1 9 7 1] a n d C le m e n ts o n [1 9 8 2]) .

T h e co m p o n e n ts o f th e A C D , in te rm s o f in te r r e la te d l i f e c y c le s , re p re s e n te d

a n id e a l s t r u c tu r e f o r th e m o d u la r is a t io n o f th e m ode l. C o n s e q u e n tly th e ESSIM

p o r t m odel c o n s is ts o f m odu les c o r re s p o n d in g to th e l i f e c y c le o f th e m ain e n t i t y

ty p e s . N a m e ly , th e s h ip , In te r n a l M ovem ent V e h ic le (IM V) , R a il M o u n te d

G a n try (R M G) , a n d G ate V e h ic le (G V) c y c le s .

PROCEDURE C Phase ;
Begin

Ship_Module_Cs;
Gate Module Cs ;
IMV_Module_Cs;
Stack_Module_Cs ;

End;

PROCEDURE lnitialise_Model ;
Begin

lnit_Ship_Module ;
lnit_Gate_Module ;
lnit_IMV_Module;
lnit_Stack_Module ;

End;

FIGURE 45 SIMULAT/ON EXECUT/VE MODULE CALLS
i____ ________________ _ ____________________________ __________

T h e p o r t m odel is c o n tro lle d th r o u g h a 'to p - le v e l ' m odu le w h ic h in i t ia l is e s

sy s te m v a r ia b le s a n d s u b s e q u e n t ly m anages th e c a lls to C -e v e n ts . U n le s s m a jo r

c h a n g e s a re made to th e lo g ic o f th e m ode l th ro u g h th e a d d it io n o r re m o v a l o f

e n t i t y l i f e c y c le s , th e re s h o u ld be no need to a l te r th e code c o n ta in e d in th e

164

t o p - le v e l m o d u le . T h e c o n te n t o f th e m a in r o u t in e s a re sh o w n in f ig u r e 45 . C a lls

to th e C -P h a se p ro c e d u re s a re m anaged b y th e s im u la t io n e x e c u t iv e c o n ta in e d

in a s e p a ra te l ib r a r y o f co d e .

T h e s h ip c y c le b e in g one o f th e s im p le s t m odu les w i l l now be d is c u s s e d

in g re a te r d e ta il. T h e g e n e ra l s t r u c tu r e o f th e m odu le is d e f in e d in f ig u r e 50.

T h e use o f th e eLSE ro u t in e s f o r d is c re te e v e n t th re e -p h a s e m o d e llin g a re w e ll

do cu m e n te d in C hew [1 9 8 6]. T h e se w i l l c o n s e q u e n t ly n o t be d e s c r ib e d .

Each m odu le ha s a d e c la ra t io n o f c o n s ta n ts w h ic h d e f in e th e u p p e r b o u n d s

o f a r r a y s u sed f o r th e s to ra g e o f s im u la t io n d a ta (f ig u r e 4 6) . T h e se c o n s ta n ts

ty p ic a l ly r e fe r to th e m axim um p e rm is s ib le n u m b e r o f v a r io u s e n t i t y ty p e s . In

p ra c t ic e , th e a c tu a l e n t i t y c o u n t is d e f in e d b y th e m o d e lle r in th e e x p e r t sys te m

k n o w le d g e base (see s e c tio n 5 . 4) . T h e use o f d y n a m ic d a ta s t r u c tu r e s s u c h as

l in k e d l is t s w o u ld h a v e e lim in a te d th e need f o r th e d e f in i t io n o f u p p e r l im its and

w o u ld in m any cases h a ve re d u c e s th e a m o u n t o f m em ory u s e d . C o n v e rs e ly , th e

use o f a r r a y s t r u c tu r e s s im p lif ie s r e t r ie v a l o f d a ta , a n d im p ro v e s m odel

p e r fo rm a n c e .

C O NST
Max_Berths = 4 ;
Max_Ships = 9 ;

FIGURE 46 CONSTANT DECLARATIONS |

165

TYPE
Ship_Details = ARRAY[1..Max_Ships] OF RECORD ;

ImportLoad : Integer;
ExportLoad : Integer;
Berthed_At : Entity ;

End;

VAR [EXTERN]

Time : Integer4 ;

VAR [PUBLIC]
Address_For_Ship_Details : ADS OF Ship_Details ;
Ship_Cycle_lntertace : RECORD

Q Berths Occupied : Queue ;
Q Berths Completed: Queue ;

End;

VAR {Local variables}
Q_Ship_At_Sea, Q_Ship_At_Berth, Q_Free_Berth : Queue ;

FIGURE 47 MODULE DECLARATIONS

T h e in t r o d u c t io n o f a m o d u la r s t r u c tu r e to th e s im u la t io n m odel re s u lte d

in a need to a l te r th e w a y in w h ic h th e p ro g ra m s w o u ld n o rm a lly be w r i t t e n .

T h e in d iv id u a l m odu les th a t m a k e -u p th e s im u la tio n m ode l a re p h y s ic a l ly

in d e p e n d e n t fro m each o th e r . I n o th e r w o rd s , s im u la t io n d a ta is lo c a l to a

m odu le u n le s s s te p s a re ta k e n to m ake c e r ta in d a ta v a lu e s s h a re a b le . T h is

im poses on th e m o d e lle r a f a r g re a te r le v e l o f d is c ip l in e in s t r u c tu r in g co d e a n d

d a ta th a n w o u ld n o rm a lly be r e q u ire d in a c o n v e n tio n a l d is c re te e v e n t s im u la t io n

e n v iro n m e n t. F o r in s ta n c e , in f ig u r e 47 , a r r a y s in th e s h ip c y c le m odu le w h ic h

166

need to be accessed by other modules need to be referenced using memory

addresses. In fig ure 47, the variable 'Address_For_Ship_Details' is an address

pointing to the s ta rt of an array defined as the 'Ship_Details' data typ e . This

address can then be used from within any of the simulation modules to access

the content.of the a rra y .

The external variable command in figure 47 is used in specifying the

name of variables accessed w ithin the module but declared in another module.

Finally, queues are defined as data structures which are local to individual

modules. This helps to minimise the amount of memory space used and prevents

accidental changes to queue structures from w ithin other modules. The only

exception to this ru le are queues which are defined w ithin an in terface. For

instance, in fig ure 47, two queues are defined w ithin a record referenced by

the 'Ship_Cycle_Interface' variab le. These queues are required by the IM V

cycle module. The use of an interface in defining the link between major

activ ity cycles clarifies the relationship between modules and serves to highlight

the queues which are modifiable from w ithin m ultiple code segments.

A t the s tart of the simulation ru n , data structures relating to the ship

cycle are in itialised through a call to the ,Init_Ship_Modulel procedure (fig u re

48). THEREARE and MAKEQ are standard eLSE routines whereas FILLQUEUE

is specific to ESSIM. FILLQUEUE is used to add entities to a specified queue.

In terface definitions are also in itialised at th is stage. In the example of fig ure

48, the queues defined in the interface record are set equal to two equivalent

queues which are local to the ship module. The 'Queue1 type is in fact the s tart

address of a linked lis t. Consequently, changes made to one of the 'queues' is

automatically reflected in the other 'queue'.

167

PROCEDURE lnit_Ship_Module ;
Begin

lnitialise_Ships ; {Initialisation of arrays}
lnitialise_Berths ; {Initialisation of arrays}
Thereare(N_Berths, Berths, ’Berths’) ;
MakeQ(QFreeBerth, ’QFreeBerth’, Berth) ;
MakeQ(QBusyBerth, ’QBusyBerth’, Berth) ;
FillQueue(Berth, N_Berths, QFreeBerth) ;
WITH Ship_Cycle_lnterface DO
Begin

Q_Berths_Occupied := QBusyBerth ;
Q Berths Completed := QBerthDone ;

End;

End;

FIGURE 48 MODULE /WT/AL/SAT/ON

T h e s y n ta x o f B -E v e n ts a n d C -E v e n ts th a t c o m p ris e th e b o d y o f each

m odu le a re in t r in s ic a l ly th e same as th o s e u se d in d e v e lo p in g c o n v e n tio n a l

th re e -p h a s e m ode ls u s in g th e eLSE ro u t in e s . T h e p r in c ip a l d if fe re n c e s a re th e

use o f a d d re s s e s in in i t ia t in g B -E v e n ts u s in g th e ’S c h e d u le ' com m and, (see

s e c tio n 4 . 5) a n d th e use o f c a lls to th e e x p e r t s y s te m . F ig u re 49 c o n s is ts o f a

l is t in g o f th e code th a t c o m p ris e s a t y p ic a l C -e v e n t in th e s h ip c y c le m o d u le .

T h e b o d y o f th e p ro c e d u re c o n s is ts o f a s in g le 'S c h e d u le ' in s t r u c t io n w h ic h is

e x e c u te d as lo n g as th e W HILE c o n d it io n is s a t is f ie d . I n a c o n v e n tio n a l eLSE

m ode l, th e c o n d it io n a l s ta te m e n t w o u ld h a ve c o n s is te d o f a c o m b in a tio n o f

e x p re s s io n s w h ic h w o u ld be use d in d e te rm in in g w h e th e r th e e v e n t s h o u ld

o c c u r . I n th e case o f th e ESSIM e x a m p le , 'S ta r tS h ip A r r iv e ' is a fu n c t io n w h ic h

r e tu r n s a boo lea n v a lu e . T h e G O A L com m and w ith in th e fu n c t io n is u se d in

t r a n s fe r r in g c o n t r o l to th e e x p e r t s y s te m (see s e c tio n 4 . 4 . 3) . T h e p a ra m e te rs

168

to th e fu n c t io n id e n t i f y th e goa l to be re s o lv e d as 'S ta r t s h ip A r r iv e ' a n d th e

in d iv id u a l re s p o n s ib le f o r th e d e c is io n as b e in g th e 'S h ip M a n a g e r '. T h e r e s u l t

r e tu rn e d is lo ca te d a t a m em ory a d d re s s id e n t i f ie d b y th e v a r ia b le 'R e s ' . T h e

u se o f an a d d re s s f o r th e fu n c t io n e n a b le s th e e x p e r t s y s te m to r e t u r n a n y

s ta n d a rd Pasca l o r u s e r d e f in e d d a ta ty p e as th e goa l r e s u l t .

i--I
PROCEDURE START_Ship_Arrive_At_Sea ;

FUNCTION StartShipArrive : Boolean ;
VAR Res: ADS OF Boolean ;
VAR[Public] NumberOfShipsAtSea : Integer ;

ShipArrivalDue : Boolean ;
Begin

NumberOfShipsAtSea := QSIZE(QatSea) ;
IF QSIZE(QSeaOpen) > 0 THEN ShipArrivalDue := True ;

ELSE ShipArrivalDue := False ;
Res := GOAL(’ShipManager\ StartShipArrive) ;
StartShipArrive := Res~ ;

End;

Begin
WHILE StartShipArrive DO

SCHEDULE(ADS END_Ship_Arrive_at_Sea, BEHEAD(QatSea), _Time);
End;

FIGURE 49 EXAMPLE C-EVENT

A lth o u g h th e e x p e r t sys te m k n o w le d g e -b a s e is in te r p r e te d a n d th e

s im u la tio n m odu le is c o m p ile d , v a r ia b le v a lu e s ca n s t i l l be s h a re d as i f th e

co m p le te m odel was coded in one la n g u a g e . C o n s e q u e n t ly , th e tw o v a r ia b le s

w h ic h a re d e fin e d as " P u b lic " in f ig u r e 49 ca n be accessed fro m th e e x p e r t

169

system knowledge-base as if these had been locally defined.

PROCEDURE START_Ship_Arrive_At_Sea ; {C-Event}
Check with the expert system if a ship arrival is due.
Add to queue ’AdvanceWarning’.

PROCEDURE START_Move_To_Port; {C-Event}
Give advance warning of arrival of ship.
Move towards the port.

PROCEDURE START_Dock_At_Berth ; {C-Event}
Check with expert system if a berth is free.
Start docking process by allocating the ship to a berth.

PROCEDURE START_Leave_Berth ; {C-Event}
Check with expert system that work has been completed.

Ship starts to leave for the open sea.

PROCEDURE END_Ship_Arrive_At_Sea ;
PROCEDURE END_Move_To_Port ;
PROCEDURE END_Dock_At_Berth_For_Ship ;
PROCEDURE END_Dock_At_Berth_For_Berth ;
PROCEDURE END_Leave_Berth_For_Ship ;
PROCEDURE END_Leave_Berth_For_Berth ;

PROCEDURE Display_Ship_Module_Output
PROCEDURE Ship_Module_Cs

FIGURE 50 C & B EVENTS IN THE SHIP CYCLE MODULE

F ig u re 50 l i s t s th e p ro c e d u re s th a t c o n s t i tu te th e s h ip c y c le m odu le .

P ro c e d u re nam es b e g in n in g w ith th e 'S ta r t ' k e y -w o r d a re C -E v e n ts th a t

re p re s e n t th e s t a r t o f an a c t iv i t y . P ro c e d u re nam es w h ic h b e g in w ith th e w o rd

'E n d ' a re tim e d e p e n d e n t B -E v e n ts w h ic h c o r re s p o n d to th e e n d o f a c t iv i t ie s .

170

{B-Event}
{B-Event}
{B-Event}
{B-Event}
{B-Event}
{B-Event}

{Update screen display}
{C-Event calls}

WRITE TO WINDOW - (— WINDOW NUMBER — * X COORDINATE

Y COORDINATE TEXT

TEXT STRING

EXAMPLES: WRITE_WINDOW_POS(3, 10, 4, ’IMPORTS') ;
WRITE_WINDOW_POS(3, 18, 4, ImportNumber) ;

FIGURE 51 PROCEDURE FOR OUTPUT D/SPLAY TO WINDOWS

Each o f th e e n t i t y l i f e c y c le m odu les a lso has a p ro c e d u re re s p o n s ib le

f o r th e d is p la y o f o u tp u t (e . g . D is p la y _ S h ip _ M o d u le _ O u tp u t in f ig u r e 5 0) . Each

o f th e s e p ro c e d u re s is e x e c u te d once d u r in g th e C p h a s e . T h e s c re e n d is p la y

is u p d a te d u s in g com m ands fro m th e D e s ig n e r l i b r a r y w h ic h p e rm it th e

r e d ir e c t io n o f t e x t to w in d o w s a n d th e c re a t io n o f g ra p h ic a l o u tp u t . A ty p ic a l

com m and is sh o w n in f ig u r e 51.

PROCEDURE Ship_Module_Cs ;
Begin

Write_Window(2, ’SHIP_MODULE_Cs') ;
START_Ship_arrive_at_Sea ;
START_Move_To_Port ;
START_Dock_At_Berth ;
START Leave Berth ;
IF ShipTrace THEN Display_Ship_Module_Output ;

End;

F/GURE 52 MODULE C-EVENT CALLING PROCEDURE

171

Each e n t i t y l i f e c y c le m odu le h a s a p ro c e d u re w h ic h c a lls th e C -E v e n t

r o u t in e s in s e q u e n c e , (e . g . S h ip _ M o d u le _ C s in f ig u r e 5 2) . T h e c o n te n t o f a

C -P h a se p ro c e d u re o f th e s h ip l i f e c y c le m odu le is sh o w n in f ig u r e 49.

5 .4 S T R U C T U R E OF T H E E X P E R T SY S TE M KNOW LEDGE B A S E

H ADDITION OF A ’GOAL’ COMMAND AND OTHER RELATED CODE TO THE
SIMULATION MODEL

H DEFINITION OF ’PUBLIC’ VARIABLES IN THE SIMULATION CODE.

HU DEFINITION OF ’EXTERNAL' VARIABLES IN THE KNOWLEDGE BASE.

E l DEFINITION OF ’LOCAL’ VARIABLES IN THE KNOWLEDGE BASE.

13 DEFINITION OF PROCEDURES AND FUNCTIONS CALLED FROM WITHIN THE
KNOWLEDGE BASE.

EU DEFINITION OF KNOWLEDGE BASE RULES.

l? i ALLOCATION OF RULES TO APPROPRIATE ’RULE SETS’.

EU TESTING OF RULE LOGIC.
j

FIGURE 53 DEFINITION OF NEW GOALS.

A s d e s c r ib e d in s e c tio n 4 . 4 . 1 o f c h a p te r f o u r , th e e x p e r t s y s te m

k n o w le d g e -b a s e is d iv id e d in to " r u le - s e t s " . I n th e c o n te x t o f th e c o n ta in e r p o r t

m o d e l, th e s e r u le - s e ts a re u se d to g ro u p to g e th e r m anagem ent ru le s r e la t in g to

a p a r t ic u la r a c t iv i t y . T h e e n d r e s u l t is a n u m b e r o f r u le - s e ts w h ic h

172

conceptually m irror the modular structure of the simulation model. There are

consequently ru le-sets fo r the 'Crane manager', 'IM V m anager', etc . .

The expert system knowledge base was developed on an incremental

basis. Sets of rules were created and the effect of these tested against the

original model. The additional of fu rth e r sets of rules required the actions

identified in fig ure 53 to be carried out. These steps w ill now be described in

greater detail.

Write_Window(2, ’GOAL CraneJobs’) ;
ResultAddr := GOAL(’CraneManager\ ’CraneJobs’) ;
CraneWork := ResultAddr^ ;

FIGURE 54 GOAL CALL TO EXPERT SYSTEM

The syntax of the GOAL command which is used to tran sfer control from

the simulation module to the expert system was described in section 4.3. An

example in the context of the port model is given in fig u re 54. Let us now

consider the GOAL instruction in fig ure 54 which forms part of the IM V cycle

module, and its corresponding expert system ru les. The expert system goal,

'CraneJobs', identifies whether there is any outstanding work fo r a specific

crane. I f the crane is id le , the expert system selects the next job to be carried

out and returns to the simulation model the necessary instruction and any

relevant data such as the duration of the a c tiv ity . The expert system also

reports whether the crane should be re-allocated from working on import

173

containers to loading the ship with export containers.

There is no work to be carried out by the crane when the crane is non-operational.

There is work to be carried out by the crane when there is an IMV which can be
loaded or unloaded or a ship which can be loaded or unloaded and when the
crane is operational and in the correct mode.

The crane is in the correct mode when there is an IMV which can be loaded or a
ship which can be unloaded and the crane is currently allocated to working on
import containers.

The crane is in the correct mode when there is an IMV which can be unloaded or
a ship which can be loaded and the crane is currently allocated to working on
export containers.

There is an IMV which can be loaded by the crane when the crane has finished
picking-up an import containers and there is an empty IMV waiting.

There is an IMV which can be unloaded by the crane when the crane is not
carrying a load and is waiting idle and there is a loaded IMV waiting.

There is a ship which can be loaded by the crane when the crane has finished
picking-up an export container and there is a ship waiting.

There is a ship which can be unloaded by the crane when the crane is not carrying
a load and is waiting idle, but only on the condition that loading export containers
onto the ship is not a more urgent task.

The crane should give priority to loading export containers onto the ship when
there are no further containers to unload from the ship or when there were no
containers to unload in the first place. In the case of ship berth No.2, one crane
must always remain allocated to working on import containers.

Authorisation should always be sought prior to changing a crane’s mode of
operation from ’Imports’ to ’Exports’.

There is always a five minute delay in obtaining authorisation unless the current
time is between 1pm and 2pm in which case there is a 60 minute delay in
gaining authorisation.

FIGURE 55 (a) Samp/e operational ru/es.

o p e ra t io n a l ru le s in f ig u r e 5 5 (a) . T h e ru le s a re g e n e r ic to a ll s h ip b e r th

174

c ra n es .

The rules in fig u re 55(a) are insuffic iently detailed fo r the purpose of

resolving the top level goal which is whether or not a given crane can commence

work on a particu lar a c tiv ity . The rules listed are only those associated w ith

the 'Crane manager'. However, the activation of the crane requires a degree of

interaction with the IM V and SHIP cycles. Consequently, in practice, some of

the rules contained w ithin the 'Crane Manager' ru le -se t are linked to other

rules in the 'IM V Manager' and 'Ship Manager' ru le -sets . For instance, the

process of loading an IM V with a container from a crane may require a level of

decision making by the 'IM V manager'. In certain situations, a decision may be

taken by the IM V manager to transfer an IM V from another queue or to re trieve

an IM V from a depot of idle IM Vs. The fu ll ESSIM knowledge-base is listed in

appendix B.

In some cases it may be best to place certain rules w ithin the Pascal code

ra th er than the expert system knowledge-base. Certain rules which are

associated with physical constraints are one such example. With respect to the

rules listed in fig u re 55(a), it is best to check whether a crane is id le w ithin

the Pascal code ra th er than determining this w ithin the expert system. For

instance, a crane must always be idle before it can be allocated a new task and

so th is basic fact may as well be hard coded as a condition to the execution of

the 'C' event in the Pascal model. Embodying this simple ru le as part of the 'C'

event procedure eliminates the need to call the expert system when the crane

is busy, thereby improving the performance of the model.

175

RULESET CraneManager (INHERIT ImvManager, ShipManager)

[*] NumberOfShipCranes = 5 ; {Total number of ship cranes}

[*] TimeToLoadShip = 40 ;

[*] TimeTollnloadShip = TimeToUnloadCalc ; {Call to Pascal functiion}

[1] CRANEJOBS = False IF CraneOperational = False ;

[2] CRANEJOBS = True WHEN ((_Loadlmv = True) OR (JJnloadlmv = True)
OR (_LoadShip = True) or (JJnloadShip = True))
AND (CranelnCorrectMode = True) ;

[3] CranelnCorrectMode = True WHEN (CraneOperational = True)
AND ((CraneOnlmports = True)

AND ((_Loadlmv = True) OR (JJnloadShip = True)))
OR ((CraneOnlmports = False)
AND ((_Unloadlmv = True) OR (_LoadShip = True)));

[4] Loadlmv = True WHEN (CraneLoaded = True) AND (EmptylmvToLoad = True) ;

[5] _Unloadlmv = True WHEN (CraneLoaded = False) AND (_FulllmvToUnload = True) ;

[6] LoadShip = True WHEN (CraneLoaded = True) AND (ShiptoLoad = true) ;

[7] _UnloadShip = True WHEN (_ChangeACraneToExports = False)
AND (CraneLoaded = False) AND (ShipToUnload = True) ;

[8] (_ChangeACraneToExports = True) AND (GetAuthorisation = True)
AND (TimeToGetAuthorisation = CalcFromCurrentTime) {Pascal}

AND (CraneOperational = False)
~ (_ChangeACraneToExports = False)

AND (GetAuthorisation = False)
IF (CurrentShipberth = 1) AND (NumCranesOnlmports > 0))
OR ((CurrentShipberth = 2) AND (NumCranesOnlmports > 1))
AND (NumlmportsRemaining = 0) AND (NumTotallmportJobs > 0);

[9] (AUTHORISECRANETOEXPORT = True) AND (CraneOperational = True)
AND (CraneOnlmports = False)
~ (AuthoriseCraneToExport = False)
IF ((CurrentShipBerth = 1) AND (NumCranesOnlmports > 0))
OR ((CurrentShipBerth = 2) AND (NumCranesOnlmports >1))
AND (NumlmportsRemaining = 0) AND (NumTotallmportJobs > 0);

FIGURE55 THE CraneManaaer’ RULESET

176

Figure 55 is a listing of the expert system rules which are used in

determ ining the next job to which a B erth crane is to be allocated. The rules

are equivalent to those listed in fig ure 5 5 (a) . The goal to be resolved is defined

w ithin the 'CraneManager' Ruleset as the boolean variable 'CraneJobs'. The firs t

three statements in the CraneManager R ule-set, which have no associated ru le

number, could have been defined w ithin the Pascal code. The Advantage in

declaring certain variables w ithin the knowledge-base is th a t the values can be

changed during repeated executions of the model without having to edit and re ­

compile the Pascal simulation code. The same benefits can be achieved using a

Pascal data file , though in practice maintaining the values w ithin the

knowledge-base is somewhat neater, (e .g . No additional coding is required in

declaring values in the knowledge-base and the expert system also validates the

syntax of any e n trie s). The second statement in fig ure 55 defines the time

taken by a crane to load a container onto a berthed ship in seconds. The time

value can be changed manually prio r to each new execution of the model or the

modeller can define rules which w ill have the effect of modifying the time value

based on the outcome of specific decisions.

The firs t step in defining the rules associated w ith the goal 'cranejobs'

in figure 55, was to id en tify the variables that the expert system would require

in carrying out the inference. These variables, if not already accessible across

multiple code modules had to be defined as shared variable using the Microsoft

Pascal 'Public' id en tifie r. Correspondingly, the same variables had to be defined

as external to the expert system using ESSIM's 'External' variable id en tifie r

(see fig ure 38 in chapter 4). A ll other variables required during the inference

process were declared as 'Local' to the expert system. Algorithm s that could not

be defined using ESSIM's restricted syntax were w ritten using Pascal

177

procedures and/or algorithms and declared to the expert system using the

'Pascal rule' command (see fig ure 56). O ther rules are necessary in resolving

the goal but are defined in the ImvManager and ShipManager ru le -sets .

| EXTERNAL
I

NumberOfShipCranes, TimeToLoadShip, TimeTollnloadShip, CurretnShipBerth,
* NumCranesOnlmports,...........: INTEGER ;

CraneOperational, Imvsldle, _LoadShip, JJnloadShip, _Loadlmv, JJnloadlmv,
! CraneOnlmports........... : BOOLEAN ;

j LOCAL
Cranejobs : BOOLEAN ;

PASCAL FILE ’Rules.pas’ ;

| FIGURE 56 EXPERT SYSTEM DECLARA T/ONS

In figure 55, ru le 1 specifies that there are no 'CraneJobs' if the crane

is non-operational. The IF ra th er than the THEN condition is used. This is

because one could not deduce from the fact that a crane was operational that

there was consequently work fo r the crane to do. The inference engine attempts

to execute ru le 2 if the goal cannot be resolved. Rule 2 specified that there is

work fo r the crane if an IM V or ship can be loaded or unloaded. A crane is

either allocated to im port containers or export containers and so it is also

necessary to determine whether the crane is in the correct mode of operation

to permit it to carry out the next specified job. Rule 3 verifies if the crane is

in the correct mode of operation. The use of a WHEN type ru le results in the

178

'CraneJobs' goal re tu rn ing the value FALSE if the conditional statement cannot

be satisfied. The variables used in the conditional statement are declared as

'External' perm itting the simulation model to determine th e ir value. The use of

an underscore as the firs t character of the variable names indicates th at the

variables should in itia lly be set to have an undefined value. Consequently, in

attem pting to satisfy ru le 2, the inference engine in tu rn sets '_LoadIm v',

'_UnloadIm v', '_LoadShip', 'U n loadS hip ' and 'CranelnCorrectMode' as

sub-goals.

Rule 4 attem pts to determine whether an IM V can or cannot be loaded.

The crane has to be working on imports and loaded with a container. N aturally ,

an empty IM V must also be available. The 'EmptylmvtoLoad' variable is defined

as being local to the expert system. The inference engine cannot resolve the

ru le un til a value has been associated w ith the variab le. Consequently, the

inference engine sets 'EmptyImvToLoad' as the th ird level sub-goal. IM Vs are

the responsibility of the IM V manager and not the crane manager.

Consequently, the rules necessary in resolving the sub-goal are located in

another ru le -s e t. To summarise these, an empty IM V can be loaded if an empty

IM V is id le in the queue at the b e rth , if an empty IM V can be tran sferred from

the other ship b erth , or if an id le IM V is available in the central depot.

Having resolved the th ird level sub-goal 'Em ptylm vToLoad', the inference

engine returns to the second level sub-goal which was '_LoadIm v'. This sub­

goal can now also be resolved. Nevertheless the top level goal s till cannot be

satisfied as a value is required fo r the '_UnloadImv' boolean variab le. The

inference engine identifies ru le 5 as a potential means of satisfying the new

sub-goal. Once again, the rules concerned are the responsibility of the IMV

179

manager and are located in another r u le -se t .

The remaining sub-goals of ru le 2, namely '_LoadShip', '_UnloadShip' and

'CranelnCorrectM ode1 are resolved by rules 6, 7 and 3 respectively. Rule 6

specifies that a ship can be loaded if the crane has already lifted a container

from an IM V and the ship is waiting in the berth . The duration fo r the loading

process is set in the second statement of the ruleset by associating a value w ith

a public variab le. Rule 7 specifies th at a ship can be unloaded if the crane is

waiting id le and is not carrying a load, the ship is at the berth and the crane

is not about to be re-allocated to exports. The last of these conditions is

resolved by rules 8. Rule 8 specifies that a crane working on imports should

change to working on exports once all import containers have been unloaded

from the holds of the sh ip . In the case of berth 2, only two of the three cranes

can work at any one time on export containers.

Rule 8 is an example implementation of a delayed decision. A crane can only be

re-allocated to export work once authorization has been obtained from a

manager. The crane operator establishes in principle that the crane should be

re-allocated. The shared boolean variable '_GetAuthorization' is then set to

tru e . The crane operator has to leave the crane booth to obtain authorization

from the manager and during th is time the crane becomes non-operational. This

is achieved by setting the shared boolean variable 'CraneOperational' to False.

The time taken to obtain authorization is defined by the shared in teger variable

'Tim eToGetAuthorization' and is determined by the time of day. Hence, the

variable 'Tim eToGetAuthorization' is set by calling the Pascal function

'CalcFrom CurrentTime' which returns the appropriate duration by checking the

current simulation tim e. When control is returned to the simulation model from

180

the expert system, if the '_GetAuthorization' boolean variable was set to 'T ru e '#

a 'B' event is scheduled to occur a fte r a time period equal to

'Tim eToGetAuthorization'. U ntil th is time is reached, the fact that the boolean

variable 'CraneOperational' was set to 'False' ensures that the crane remains

idle and prevents the process of authorization from re -o ccu rrin g . On execution

of the 'B ' event, control is returned to the expert system and an attem pt made

to satisfy the goal 'AuthorizeCraneToExport' which is represented by ru le

number nine in fig u re 55. In ru le n ine, the manager simply verifies the same

model data as the crane operator and therefore always gives authorization. A

simple alternative is to introduce a random element to the crane operators

decision ru les, thereby ensuring that a mistake is occasionally made in seeking

authorization from the manager. The manager would then overrule the in itia l

decision taken by the crane operator.

Rules are classified into ru le-sets to increase the 'leg ib ility ' of the

knowledge-base and to improve expert system performance by lim iting the

search space. In the case of the 'CraneManager' ru le -s e t, the 'In h e rit' command

has been used to define two other ru le-sets which can be used if the inference

engine cannot resolve the goal. The ru le-sets correspond to each of the en tity

life cycles to which a manager has been allocated. As the number of rules

increases and performance of the model degrades, the existing ru le-sets can be

sub-divided into smaller un its.

When rules are added to the knowledge-base, erro rs are typ ically made.

Syntax errors are trapped and reported by the part-com piler. Logical erro rs

are often detected when a goal cannot be resolved, through unusual behaviour

of the model, or through e rro r messages generated by the simulation code

181

lib ra ry . The validation of the model is described fu rth e r in section 5.6

5 .5 D E S IG N OF T H E M A N /M A C H IN E IN T E R F A C E

ES knowledge-Base Filename

Run Length : 1000.

FIGURE 57 STARTUP MENU OPTIONS FOR THE PORT MODEL

A u s e r f r ie n d ly in te r fa c e f o r th e p o r t m ode l w as seen as b e in g e s s e n tia l

in v is u a l ly v a l id a t in g m odel o u tp u t a n d p r o v id in g a comm on f r o n t - e n d f o r th e

s im u la t io n a n d e x p e r t sys te m co m p o n e n ts . T h e c re a t io n o f th e in te r fa c e was

g r e a t ly eased th r o u g h th e use o f th e 'D e s ig n e r ' p ro g ra m w h ic h e n a b le d th e

182

display to be generated from an in teractive user session. The basic screen

designs were produced and the associated code generated in under an hour.

Once the screens have been produced, the generated user in terface has to be

linked to the simulation model. This is achieved by replacing the Pascal 'Readin'

and 'W riteln' commands with 'Designer1 specific commands which re-rou te output

in to specific windows. The process undertaken in producing a model's user

in terface using 'Designer' is fu lly described in appendix E.

The in terface is purely graphical with a set of user options displayed

on the top line (see fig ure 57). The mouse is used to point at one of the

options. Pressing the le ft mouse button results in e ither the display of a

pull-down menu or a pop-up window. When the port program is firs t in itia ted ,

the modeller typ ically selects the 'Run simulation' option which resu lt in the

successive display of two pop-up windows. The firs t of these is used in

specifying the desired duration of the simulation ru n , and the second fo r the

selection of the expert system knowledge-base. Several knowledge-bases can

be created fo r a single model, thus easing the process of experim entation.

The in itiation of the simulation run activates the knowledge-base part

compiler. Variable declarations are extracted and procedure or function calls

id en tified . The rules declared in each of the ru le-sets are then translated to

reverse polish and optimised as was described in section 4 .4 .3 . A t th is stage,

any erro rs in syntax are reported to the modeller and an option displayed

allowing him to load the tex t ed ito r. The display is divided into three windows

in which the appropriate tex t scrolls, the upper-m ost window lists the content

of the knowledge-base with additional te x t being revealed during the scanning

process. This ensures that errors are quickly identified as any syntax problems

183

w i l l be lo c a te d in th e la s t l in e o f th e w in d o w . T h e c e n tre w in d o w l i s t s th e

v a r ia b le s e x t ra c te d fro m th e k n o w le d g e -b a s e . A n y in te r r u p t io n in th is p ro c e s s

in d ic a te s an e r r o r in m em ory a llo c a tio n e i th e r r e s u l t in g fro m th e re p e a te d

d e c la ra t io n o f a v a r ia b le nam e, o r fro m th e a la c k o f R A M . S u c h e r r o r s , a n d th e

s ta tu s o f th e p a r t - c o m p ile r a re l is te d in th e lo w e r w in d o w .

mms

Hr MirIMU 36
IMU 38
IMU 33
IMU 33
IMU 3
StackRmgStacKRllJ
Shipcrane
Shipcrane
Shipcrane

roes FULL to store
to return EMPTY to ship
to return EMPTY to ship
to return empty to ship
goes FULL to store

9Finishing at IMU side6Finishing at imu side
5 is now idle
l is now idle
4 is now idle

son
1Z 1Z

IMPORTS 1 - > 10& EXPORTS 1 - >
IMPORTS Z - > 15
EXPORTS Z ~>

WrEntcailForNext&Event
B41
WrEnt
Display.Options

FIGURE 58 DEFAULT OUTPUT DISPLAY FOR THE PORT MODEL

I f th e p a r t - c o m p ila t io n p ro c e s s e n d s w ith o u t e r r o r , th e s im u la t io n b e g in s

a n d th e s c re e n d is p la y c h a n g e s to th a t sh o w n in f ig u r e 58 . T h e u p p e r - le f t

w in d o w is a g e n e ra l d is p la y f o r th e s ta tu s o f th e s im u la t io n . T h e tw o lo w e r

w in d o w s a re g ra p h ic a l d is p la y s o f q u e u e le n g th s f o r a r r iv in g t r u c k s . T h e

184

c u r r e n t s im u la t io n tim e is sh o w n in th e u p p e r r ig h t w in d o w . Im m e d ia te ly be low

th is is sh o w n th e n u m b e r o f im p o r t c o n ta in e rs w h ic h h a v e been u n lo a d e d fro m

th e s h ip s in b e r th s one a n d t w o , a n d th e c o r re s p o n d in g n u m b e r o f e x p o r t

c o n ta in e rs w h ic h h a ve been p la ce d in th e h o ld s . T h e w in d o w in th e lo w e r r ig h t

h a n d c o rn e r is a t ra c e o f th e C -E v e n t p ro c e d u re s a n d g o a ls th a t h a ve been

re s o lv e d b y th e e x p e r t s y s te m . T h e t ra c e f a c i l i t y is a u s e fu l m eans o f

d e te rm in in g th e lo c a t io n o f e r r o r s w h ic h ESSIM does n o t r e p o r t . T h e b o tto m lin e

o f th e s c re e n d is p la y is u se d fo r d is p la y in g u s e r in s t r u c t io n s .

mmmumamm
TIME
TRACF
CONTAINERS
GLOBAL TRACE
SHIP ARRIUALS

STACK DISPLAy Z
IMU DISPLAY
GRAPH DISPLAyS 1
GRAPH DISPLAyS Z
ES INFERENCE TRACE
ES TRACE TO FILE

IMPORTS 1 -> 96 EXPORTS 1 - > 0
IMPORTS Z ~> 144
EXPORTS Z - > 0

EIS 0 0
FIS O 0
EIL 0 0
FIL 1 1
IMUidle
shipcidleM l i w t o S h i p
emptyiiwtoship
Mliirotostore
emptyinvtostore

50 BO

1Z 1Z

callForMextBEuent
W
caiiForNextBEuent
B41
Display.Options

elect Menu option
FIGURE 59 SELECTING ALTERNATIVE DISPLAYS FOR PORT MODEL OUTPUT

T h e m o d e lle r m ay chose to a n a ly s e th e e f fe c t iv e n e s s o f a lte rn a t iv e p o r t

185

designs or management rules through a visual comparison of system behaviour.

Graphical displays which attem pt to depict the flow of m aterials are of general

in terest but cannot provide the required level of detail. The approach used in

the port model was to make use of the window based displays to depict the

model in terms of queue lengths, e n tity status, and knowledge-base traces.

Pointing the mouse and clicking on the 'windows' menu option in terru p ts the

simulation and results in the display of a pull-down menu (see fig ure 59). The

status of the various options is displayed on the rig h t hand side of the window.

Menu entries perm it the display of fu rth e r windows fo r the analysis of output

from the ship, gate vehicle, stack, and IMV cycles. Typical output is shown in

appendix G. Two of the menu options relate to the expert system. The 'ES

inference trace' menu option permits a trace produced by the expert system to

be displayed and updated dynamically during the simulation ru n .

The 'ES trace to file ' options is used in conjunction with the expert

system 'Trace' command (section 4 .4 .1) . A large amount of data is produced

by the expert system trace. The 'ES trace to file ' option was therefore provided

to enable the user to switch the trace on and off during the simulation ru n .

The 'delay' option in fig ure 59 is used in slowing down the simulation in

situations where output is displayed too rap id ly . The 'ed itor' option permits a

tex t editor to be used in modifying the expert system knowledge-base. With

experience, minor modifications can be made to rules during the simulation run

in assessing the effects of changes in policy.

186

5 .6 MODEL VALIDATION

In creating the model of the automated container p o rt, no real-w orld

system was available fo r the purpose of comparison and validation. The model

was consequently developed on an increm ental basis such th a t system behaviour

could be validated by experienced port managers at each stage of the

implementation process. Tables relating to resources levels and ac tiv ity status

were displayed during the simulation run such th at the port managers were able

to visually id en tify abnorm alities. A simulation output trace was also used in

checking th at scheduled events were occurring and that entities were correctly

added to queues. A trace of procedure names enabled the location of fa ta l

errors to be determ ined. Constant durations were also used in easing the

process of output validation. Many logic erro rs were detected through fa ta l

errors such as attem pting to remove entities from empty queues.

Having created the standard three-phase model of the p o rt, a new version

was implemented using ESSIM and its associated expert system. The firs t stage

consisted of re -creating the original model in terms of its apparent behaviour.

Rules that had been defined in Pascal were extracted and re-created using

ESSIM's knowledge-base syntax. This process highlighted the lim itations of the

firs t version of ESSIM, and so modifications were made to improve the

functionality of the system. This a b ility to customise the expert system was

naturally of great benefit. The original model was then used in ensuring the

correctness of the ESSIM version.

187

Shipcrane 4 is now idleShipcrane l is now idleShipcrane 3 is now idleShipcrane l is now idleRetrieving IMU from pool of idle imvs Shipcrane s is loading IMU l Retrieving IMU from pool of idle imvs Shipcrane 4 is loading IMU z Retrieving IMU from pool of idle imvs Shipcrane Z is loading IMU 3

Day Hr Min D 0 Z4

IMPORTS 1 - > Z EXPORTS 1 ~ > 0 IMPORTS Z ~ > 3 EXPORTS Z - > 0

search through subsequent Piles Goal Foundcalling function backchaining with parameter XD Ualue of parameter SD Found to be missing in expression Goal SD missing & placed on stack

GOAL CraneJobs StartLoadlmv WrEnt WrEntGOAL cranejobs
FIGURE 60 REAL-TIME EXPERT SYSTEM TRACE IN A DISPLAY WINDOW

T h e ESSIM k n o w le d g e -b a s e c o n s is ts o f in d iv id u a l r u le s w h ic h a re d e f in e d

in a n y o r d e r , a n d w h ic h m ay o r m ay n o t b e , in some w a y re la te d . T h e e x p e r t

s ys te m in fe re n c e s t r a te g y fo llo w s a s im p le r e c u r s iv e b a c k w a rd -c h a in in g p a t te rn

w h ic h in p ra c t ic e is d i f f i c u l t to t ra c e g iv e n th e la c k o f a n y v is ib le s e q u e n tia l

c o d in g s t r u c tu r e . T h e s im p le s t m eans o f v e r i f y in g th e lo g ic a p p lie d b y th e

e x p e r t sys te m is to s c ru t in is e th e tra c e s th a t a re p ro d u c e d a n d to c o n s e q u e n tly

c o n f irm th a t th e c o n c lu s io n s re a c h e d f o r each r u le a re c o r r e c t , based on th e

in p u t d a ta b e in g u s e d . H a v in g v a lid a te d th e ESSIM v e rs io n o f th e m ode l,

188

subsequent modification of the knowledge-base through the modification of

existing rules or the addition of fu rth e r constraints was com paratively simple.

Once again, inference traces were the simplest means of confirm ing the

correctness of conclusions reached (see fig ure 60).

The process of model validation was eased following a reduction in the

expected number of erro rs consequent to the application of s tric t standards in

the structuring of code. For instance, the use of modular programming

techniques perm itted the isolation of blocks of code corresponding to each of

the major en tity life -cycles . The localisation of variables by direct association

with specific modules minimised the risks of misusing data stored in other

modules. The use of interfaces between modules also helped in form alising the

perm itted interaction of queues used in d ifferen t lif e-cycles. Hence,

modifications made to a life-cycle defined in one module were less like ly to have

an undesirable effect on another module (see section 5 .3) .

The isolation of management rules within a knowledge-base, which were

previously embedded in pascal code, also eased the process of model validation .

Previously, all simulation code had to be read in finding and then checking the

coded logic. In the case of the ESSIM model, management rules are

appropriately grouped and can easily be checked against stipulated management

practices.

5 .7 MODEL EXPERIMENTATION

One of the purposes in developing a simulation environment based on the

189

use of an expert system was to ease the process of refin ing management rules

through experim entation. Im proved accuracy, m aintainability, and adaptability

were seen as some of the eventual goals of the research.

The ESSIM model of the container port was used as a basis fo r fu rth e r

experimentation through the enhancement and modification of management ru les.

A lterations to rules were also made in changing process durations and assessing

the effect of changes in the number of entities w ithin life cycles.

The complexity in implementing changes to expert system rules is largely

dependent on the impact these have on the Pascal simulation code. Modifications

to decision making rules which only involve the expert system are generally

simple to implement. Conversely, changes which involve major modification to

the life-cycle s tructure of the Pascal model are necessarily complex. In order

to adequately compare the process of implementing changes in conventional

three-phase simulation models and ESSIM, a number of experiments were staged

which gradually increased in com plexity. These are fu lly reported in the

following sections.

5.7 .1 Experim enting with ru le param eters.

The easiest experiments to carry out consist of a ltering the parameters

to existing ru les . No modification to variables need to be made other than a

possible re-classification of a variable from an in teger to a real type. The

simulation experim ent can then be in itiated without the need to re-compile the

simulation code. The modeller can also repeat the experim ent using d ifferent

ru le parameters without ever leaving the ESSIM program . ESSIM incorporates

190

a t e x t e d i to r w h ic h p e rm its th e m o d e lle r to m o d ify th e in te r p r e te d e x p e r t sys te m

ru le -b a s e a n d th e n im m e d ia te ly com m ence a new m odel e x e c u t io n . I t is a lso

p o s s ib le w ith a good k n o w le d g e o f E S S IM , to in t e r r u p t a s im u la t io n r u n , m o d ify

r u le p a ra m e te rs a n d re -co m m e n ce m odel e x e c u t io n fro m th e p o in t o f

i n t e r r u p t io n .

OLD RULE

[1] (Imvsldle = True) AND (ReturnlmvsToldle = True) ~ (Imvsldle = False)
IF (BerthedShip = False) AND (NumEmptylmvAtShip >= 5) ;

NEW RULE

[1] (Imvsldle = True) AND (ReturnlmvsToldle = True) ~ (Imvsldle = False)
IF (BerthedShip = False) AND (NumEmptylmvAtShip > 0);

FIGURE 61 EXPERIMENTATION US/NG RULE PARAMETERS

T h e e xa m p le in f ig u r e 61 s p e c if ie s th a t IM V s s h o u ld r e tu r n to th e c e n t ra l d e p o t

w hen f iv e o r m ore e m p ty IM V s a re w a it in g a t a b e r th w h ic h is no lo n g e r

o c c u p ie d b y a s h ip . T h e m o d ifie d r u le s t ip u la te s th a t IM V s s h o u ld r e t u r n to th e

c e n t ra l d e p o t re g a rd le s s o f th e n u m b e r o f id le IM V s w a it in g a t th e b e r th . T h is

s im p le e x p e r im e n t is v e r y e a s ily c o n d u c te d u s in g th e ESSIM e x p e r t s y s te m . In

a c o n v e n t io n a l th re e -p h a s e m o d e llin g e n v iro n m e n t th e m o d e lle r w o u ld h a v e h a rd ­

coded th e r u le w ith in th e P asca l m o d e l. I n th e case o f a m odel w h ic h is

191

substantial in size and spread over several code modules, the modeller would

firs t have to locate the ru le , re-com pile the code module, re -lin k the modules

into an executable and then recommence the simulation ru n . A conventional

model could of course be designed to read data files which are loaded at run ­

tim e, but unlike ESSIM, the modeller would have to decide in advance the exact

experim ents which would be carried out such that the appropriate variables

were defined w ithin the data files .

5 .7 .2 Experim enting w ith variable values w ithin ru les.

Another class of experiment which was also performed consisted of

altering characteristics of the model such as process durations and number of

entities in a cycle. I f the simulation model is appropriately structu red , more

major modifications can be made through the alteration of appropriate variable

values. Three examples are given in fig ure 62. The firs t of these statements

belongs to the ’ImvManager1 ru le -se t and is used in defining the total number

of IMVs th at can be operational in the IM V cycle at any one tim e. The modeller

can experim ent with alternative upper lim its on the number of IM Vs by

modifying the statement and re -s ta rtin g the sim ulation. No compilation of code

is requ ired . Rule seven in the 'StackManager' ruleset defines the condition

under which the gantry crane in a stack should move empty to the ship side of

the storage area. The ru le retu rns to the simulation model the activ ity

duration. Rule seven stipulates th at the gantry crane can move from the id le

position to the ship side of the storage area in 40 seconds. A cheaper gantry

crane can however be purchased which takes 80 seconds to cover the same

distance. The ESSIM user can experim ent w ith a lternative durations without

resorting to altering and re-com piling Pascal code. Hence the effect on the

192

model of using the cheaper gantry cranes can easily be assessed. The modeller

can also define the ac tiv ity duration as being subject to the outcome of a

decision ru le . The th ird example consists of a definition of the number of stacks

in the storage area. A ll data structures used in the Pascal model are defined

using upper-lim its which are set using variables. Such variables can be altered

from w ithin the expert system knowledge-base. A ltering the number of stacks

results in a physical change to the model in that appropriate queues are e ith er

added or removed according to the value associated with the 'Number Of Stores'

variab le. Once again, re-compilation is not required.

RULESET ImvManager (INHERIT ShipManager, StackManager) ;
: |

[*] NumberOflmvs = 100 ; I
; |

i RULESET Stackmanager ; !
J :

! [7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)
| AND (MoveGantryToLandSide = False) AND (TimeToMoveToShipEmpty = 40) |
I IF (MoveGantryToShipSide = True) AND (NextShipJoblsAnlmport = True) ;
j i

| [*] NumberOfStores = 10 ; {Number of stores is 10}
!...................................... I

i i

| FIGURE 62 EXPERIMENTING WITH RULES

5.7 .3 Experim enting w ith ru le structures.

The types of experiments which we have so fa r examined have simply

193

consisted of alterations to variable values or ru le parameters which could have

been accomplished, although with re la tive ly less ease and neatness, using a

conventional modelling environm ent. The benefits of the ESSIM approach to

modelling really emerge when one considers modifications of greater complexity

which involve the replacement of existing decision rules or the introduction of

new ru les. In this context, the benefit of the ESSIM approach are centred on

the fact that decision rules are isolated from the rest of the model and

encapsulated w ithin an expert system knowledge-base. Therefore, many

experiments based on decision rules can be conducted without recourse to often

substantive volumes of detailed low -level code relating to the description of the

physical components of the model and th e ir in teraction.

The modeller can a lter the s tru ctu re of a ru le or group of rules without

having to modify the Pascal code so long as the changes are lim ited to one of

the following:

1. Sim plifying a ru le by removing some of the variables.

2. A ltering the combination of operators used.

3. Adding additional external variables as conditions to existing ru les ,

on the condition that these variables are already declared w ithin

the expert system knowledge-base.

4. Adding local variables which are unique to the expert system to

existing decision rules.

5. Creating new decision rules using local or external variables which

have already been defined w ithin the expert system knowledge­

base.

194

OLD RULE:
j

I [8] (ChangeACraneToExport = True) AND (GetAuthorization = True) AND j
(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational = False) ~
(_ChangeACraneToExport = False) AND (GetAuthorization = False)

IF ((CurrentShipBerth = 1) AND (NumCranesOnlmports > 0))
OR ((CurrentShipBerth = 2) AND (NumCranesOnlmports > 1)) j
AND (NumlmportsRemaining = 0) AND (NumTotallmportJobs > 0) ; I

NEW RULES: j

[8] (ChangeACraneToExports = True) AND (GetAuthorization = True) AND i
i

(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational = False) |
IF (CurrentShipBerth = 1) AND ((Numlmportsremaining < (NumTotallmportJobs / 2)) I
AND (NumCranesOnlmports = 2)) OR ((NumlmportsRemaining = 0) '
AND (NumCranesOnlmports = 1)) ;

[9] (ChangeACraneToExports = True) AND (GetAuthorization = True) AND
(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational = False) ~
(ChangeACraneToExport = False) AND (GetAuthorization = False)

IF (CurrentShipBerth = 2) AND ((NumlmportsRemaining < (2 * NumTotallmportJobs / 3)) ;
AND (NumlmportsRemaining > (NumTotallmportJobs / 3)) AND (NumlmportsRemaining > 0) i
AND (NumCranesOnlmports = 2)) OR ((NumlmportsRemaining = 0)
AND (NumCranesOnlmports = 1)) ;

FIGURE 63 ALTERING RULE LOGIC

The modeller can modify groups of rules without corresponding alteration

of the Pascal code on the condition that the defined goals can s till be resolved.

In some cases, the expert system retu rns additional values such as process

durations that the simulation model requires. The modeller must ensure that

such values are not omitted. On the condition that no new shared variables

are defined, or pascal functions added, re-com pilation of code can be avoided

and the modeller need not access the Pascal model code. C ertain abnormalities

195

such as syntax erro rs in the knowledge-base are reported to the modeller

immediately p rio r to the execution of the model. Other inconsistencies, such as

the in ab ility to resolve a goal are reported during model execution. The

modeller is then able to edit the knowledge-base or re -ru n the model in 'trace'

mode which reports on the results of each of the expert system's inference

steps.

The example ru le given in figure 63 is taken from the 'CraneManager'

ruleset which was described in section 5.4 . A complete listing of the rules can

also be found in fig ure 55. The ru le operates in conjunction with the other

rules in the 'CraneManager' Ruleset and orig inally stipulated that all im port

containers should be unloaded from the holds of the ship prio r to loading the

consignment of export containers. In the case of the second berth which has

three cranes, only two of the cranes can operate on export containers at any

one tim e. An alternative scenario that was investigated was the possibility of

allowing im port containers to be unloaded from the ship whilst other cranes

carried out the reverse operation of loading export containers from a rriv in g

IM Vs. In th is case, all three cranes working at berth 2 were allowed to operate

simultaneously on loading ships with export containers. A t the s ta rt of the

simulation, all cranes are allocated to im ports. The number of cranes

subsequently re-allocated to exports is in proportion to the remaining workload.

In the case of the berth with two cranes, once half the ships consignment of

import containers remains, one of the cranes is re-allocated to exports and the

loading process begins. Once all import containers have been unloaded from the

ship, the remaining crane changes to working on exports. Two additional rules

were introduced into the 'CraneManager' ruleset in implementing the a lternative

scenario and are shown in figure 63. No modification of the simulation code was

196

required and the experim ent was consequently carried out w ithout having to

re-compile any of the modules or indeed accessing any of the Pascal model code.

Model changes may be in itiated that require both the introduction of

fu rth e r rules and associated modifications to the simulation code. For instance,

the modeller may wish to add fu rth e r decision rules to a knowledge-base

ru leset, the conditional statements of which contain simulation model variables

which have not previously been accessed by the expert system. Such changes

are re latively simple to implement. The modeller must declare the necessary

Pascal variables relating to the required model data as being of type 'Public '.

This permits the data values to be accessed from other Pascal code modules and

the expert system. The Pascal module containing the variable declarations is

then re-com piled. By adding the variable name to the lis t of variables declared

in the expert system, the modeller may then make use of the new variable

values within ru les.

A more complex task is the introduction of new en tity cycles w ithin the

simulation model and the corresponding addition of model logic through the use

of fu rth e r expert system ru les . Modifying the structure of a simulation model

is a testing task and was highlighted as a lim itation of existing modelling

techniques in section 2 .2 .4 .

A complex experim ent was carried out to evaluate the consequence of

having to introduce detailed changes into the ESSIM simulation model of the Port

and corresponding ru le-sets . In the original port model the lay-out of which

was depicted diagrammatically in figure 43, Rail Mounted G antry cranes are

used in transporting containers within the Stacks in the port storage area.

197

RMGs have the lim ited ab ility to load and off-load waiting In tern a l Movement

Vehicles (IM Vs) and Gate Vehicles (G V s) , moving containers to and from the ir

storage positions. Export containers allocated to specific ships and im port

containers are sent at random to one of the stacks w ithin the storage area.

Whereas the workload at each of the stacks is roughly balanced, the spread of

containers may be inefficient if the m ajority of containers fo r one ship end-up

in one stack and those fo r another ship in another stack. The RMGs can only

handle one container at a time and so the more evenly spread across the storage

stacks are the containers fo r a specific ship, the more effic ient is the ship

loading process as the movement of containers may then take place in parallel.

The new experiment to which the ESSIM port model was subjected, consisted in

the addition of fu rth e r en tity cycles with the aim of redressing the problem of

optimising the spread of containers between stack storage areas. A new type

of vehicle, known as a lateral Movement Vehicle (LMV) was added to the model.

An LMV operates in each of the storage area stacks and has the ab ility to sh ift

containers from one stack to either of the two immediately adjacent stacks.

VAR QStackVehicleldle : ADS OF ARRAY[1 ..MaxStores] OF QUEUE ;

e2 : Entity ;

QStackVehicleldle := ALLMQQ(Wrd(MaxStores*2)); {Allocate RAM}

e2 := StackVehicle ;

FOR i := 1 TO NumberOfStores DO

BEGIN

MakeQ(QStackVehicleldle'N [i], ’QStackVehicleldle’,e2);

FillQueue(e2,1 .QStackVehicleldle^ [i]);

e2 := e2"\next ;

END;

F/GURE 64 DEF/N/NG QUEUE STRUCTURES FOR LMVs

198

Queues relating to each of the LMVs were defined within the Stack module

o f th e P asca l s im u la t io n p ro g ra m . A C o r re s p o n d in g C a n d B e v e n t w e re a lso

a d d e d d e s c r ib in g th e p ro c e s s o f s h i f t in g c o n ta in e rs b e tw e e n a d ja c e n t s ta c k s .

T h e f i r s t s te p w as to d e f in e th e q u e u e s t r u c tu r e s a n d in i t ia l is e th e s e b y

re q u e s t in g th e n e c e s s a ry m em ory a n d f i l l i n g th e q u e u e s . T h e re le v a n t code is

show in f ig u r e 64.

PROCEDURE START_LMV_MOVE ;
BEGIN

Write_Window(2,’Start_Lmv_Move’);
FOR i := 1 TO NumberOfStores DO
BEGIN

FOR ShipCode := 1 TO NumberOfShips DO
IF BalanceStacks THEN
BEGIN

IF TransfExpToRhtStack THEN TransferExportToRightStack ;
IF TransfExpToLftStack THEN TransferExportToLeftStack ;
IF TransflmpToRhtStack THEN TransferlmportToRightStack ;
IF _TransflmpTol_ftStack THEN TransferlmportToLeftStack ;

END;
END;

END;

PROCEDURE END LMV MOVE ;
BEGIN

Write_Window(2,’End_Lmv Move’);
IF GlobTrace THEN
BEGIN

OutTxt := Wrent(Current);
CONCAT(OutTxt,’Stack Vehicle is now idle’);
Write Window(3,OutTxt);

END;
Addto(Back,QStackVehicleldle~ [Current ~ .attrl,Current);

END;

FIGURE 65 C & B EVENT ROUTINE FOR THE LMV CYCLE

T he C a n d B ty p e e v e n ts th a t w e re a d d e d to th e s ta c k m odu le a re sh o w n

in f ig u r e 65 . 'B a la n c e S ta c k s ' is a P asca l fu n c t io n fro m w h ic h th e c a ll to th e

199

expert system knowledge-base is in itia ted . Actions that need to be taken are

then passed back to the simulation model by the expert system and are

described in the form of boolean shared variables (e .g ._T ran sfE xp T o R h tS tack).

FUNCTION BalanceStacks : Boolean ;
BEGIN

Write_Window(2,’GOAL BalanceStacks’);
ResultAddr := GOAL(’StackManager’,’BalanceStacks’);
BalanceStacks := ResultAddr ~ ;

END;

F/GURE 66 GOAL CALL TO THE EXPERT SYSTEM

The content of the 'BalanceStacks' function is shown in fig ure 66. The

'Goal' function is used to call the expert system 'StackManager' ruleset and

check whether the appropriate LMV should be activated. The re tu rn value is

in the form of an address which is read and associated w ith the boolean function

re tu rn value. The corresponding expert system rules are listed in appendix C .

An addition ruleset known as 'LMVmanager' was created which is linked with

the 'StackManager' ruleset through the use of the 'In h e rit' command (see section

4 .4 .1) . The use of a separate ruleset eases the in terpretation of the

knowledge-base rules whilst retaining the association between LMVs and Stacks.

As was demonstrated, the actions necessary in modifying the simulation

and expert system code are re la tively simple. Having in itia ted the changes,

the modeller can carry out fu rth e r experim entation by altering the expert

200

system rules. These fu rth e r experiments may no longer require of the modeller

to access the Pascal code.

Had the modeller been introducing the LMV cycles into a conventional

three-phase mode, the complexity of the work would have been aggravated as

a consequence of the lack of code m odularity. Code m odularity is introduced at

two levels w ithin the ESSIM port model. The Pascal code is its e lf broken down

into individual modules representing each of the major en tity cycles. Secondly,

the expert system knowledge-base is itse lf a code module into which decision

rules are isolated. A dditionally, what proves to be of significant benefit in the

ESSIM model is the fact that the process of introducing changes follows a s tric t

sequence with the layout of the code s tric tly controlled through the segregation

of logic between simulation model and expert system knowledge base. This has

a clear impact on the m aintainability of the model and the subsequent

adaptability in altering rule conditions during the experimentation phase.

5 .8 THE ALTERNATIVE PORT MODELS.

Prior to the implementations of the ESSIM version of the port model, a

simplified model was developed solely using Pascal code. Rules specifying the

conditions under which activities should s ta rt were defined using IF -TH E N

conditions and boolean statements. These rules were specified as part of each

of the C event procedures. The example in figure 67 shows the structure of one

such typical procedure.

The ESSIM port model was then implemented by firs t extracting the rules

from the pascal code and replacing these with calls to the expert system. The

201

is o la te d ru le s w e re a d d e d to th e e x p e r t s ys te m k n o w le d g e -b a s e a n d la te r

e n h a n ce d th ro u g h th e s p e c if ic a t io n o f m ore d e ta ile d c o n d it io n s . C o m p a riso n o f

th e tw o m odels in d ic a te d th a t m o d ify in g th e e x p e r t s y s te m k n o w le d g e -b a s e w as

in m any cases s im p le r th a n a lte r in g P asca l c o d e . T h e se c o m p a ris o n s a re

d is c u s s e d in s e c tio n 6 .3 .

i
FUNCTION Decision: ReturnVal;
Begin

End;

PROCEDURE C1 ; PROCEDURE C1;

Begin Begin

IF Condition THEN IF Decision THEN

Begin Begin

End; End;

End; End;

Fiaure 67 Reoresentina decision tasks in Pascal
i

T h e c o n v e n tio n a l P asca l based m ode l o f th e p o r t a n d th e ESSIM v e rs io n

a re based on d i f fe r e n t p r in c ip le s . T h e p u r e ly P asca l based v e rs io n p e rm its th e

d e ve lo p m e n t o f s ig n i f ic a n t ly s ize d m ode ls b u t p ro v id e s th e u s e r w ith l im ite d

scope fo r th e s p e c if ic a t io n o f th e c o n d it io n s a s s o c ia te d w ith th e s t a r t o f an

a c t iv i t y . T h e ESSIM p o r t m odel r e c t i f ie s th e b a la n ce b y p r o v id in g a m eans o f

s p e c ify in g goa ls w h ic h can be re s o lv e d u s in g a b e sp o ke e x p e r t s y s te m s h e ll.

Some re s e a rc h e rs in c lu d in g A l ty [1 9 8 4] , h a v e v o ic e d d o u b t as to th e

202

effectiveness of the expert system approach, arguing that a similar level of

functionality could be achieved using a conventional 3rd generation language.

A th ird version of the port model was consequently developed with the aim of

providing a sim ilar level of functionality as the ESSIM model, but coded en tire ly

in Pascal. The work involved in developing th is fu rth e r example was fe lt to be

justified given th at a more detailed comparison of the approaches could then be

made.

The principle applied in developing the new model was to replace defined

goals by Pascal functions which would re tu rn values to the simulation model in

a similar way to. the expert system. These functions were then placed together

in a single module, thus providing a sim ilar logical separation as was achieved

between the Pascal model and expert system knowledge-base. The content of the

ESSIM knowledge-base can be found in appendix B . The Code fo r the Pascal

version of the expert system knowledge-base is included in Appendix D . The

variables used in the Pascal implementation are the same as those that were

used in the expert system knowledge-base. This was possible because of the

implementation of Pascal data types as part of the knowledge-base syntax. The

Conversion of rules to Pascal was in itse lf a re la tive ly simple task given that

ESSIM's production ru le syntax was replaced by the Pascal IF-TH EN -ELSE

instruction. The sequential nature of code execution in Pascal represented a fa r

greater problem. The rules were consequently sequenced such that the premises

to each ru le could always be resolved. The lack of an equivalent to ESSIM's

'In h e rit' command also meant that rep etitive ly used rules had to e ither be

duplicated across the code or placed ind iv idually in functions.

203

5.8 .1 EXPERIMENTING WITH THE MODELS.

The port model developed purely in Pascal using the eLSE routines w ill

be re ferred to as the 'O riginal model1. The other two versions w ill be described

as the ESSIM and 'Function1 based models respectively.

The experiments described in section 5 .7 were repeated using the other

model versions in order to iden tify the merits and lim itations of each of the

approaches. The experiences in developing each of the models and the results

of the model comparisons were then used in assessing the thesis proposition.

The conclusions drawn from the experiments carried out using each of the three

modelling environments are reported in the following sections.

Comparing the adaptability of the model representations:

I t has been proposed that combining simulation and expert system

techniques could provide the modeller w ith a simulation environment which is

better suited to the task of experim enting with a lternative operational policies.

Evidence was sought by carrying out a number of model experiments on each

of the three versions of the port model. These experiments can broadly be

described as follows: 1) Changes to ru le param eters. 2) Changes in operational

policies reflected through the introduction of new or modified ru les . 3)

Modifications to the model representation of the real-w orld involving the

introduction of a new activ ity cycle and related operational policies.

In carry ing out the experiments discussed in section 5.7 , it was found

that the port model w ritten using ESSIM was generally the easiest to modify fo r

204

the purpose of evaluating alternative operational policies. There are several

reasons fo r th is , but the single most predominant factor is th a t in ESSIM, the

decision rules th at form part of operational policies are defined in a highly

structured fashion.

In the orig inal Pascal model, operational policies were represented as multi­

level conditional statements which preceded each of the "C" events. The rules

which in the real-w orld would have been applied by d iffe ren t decision makers

were combined and sequenced such that all eventualities could be considered.

Sequencing decision rules in th is way made it very d iffic u lt fo r the modeller to

introduce changes which reflected alternative operational policies.

In the ESSIM version of the port model, a statement was inserted prior

to each "C" event which effectively transferred control to the expert system

module. Within the expert system knowledge-base, decision rules were grouped

into ru le-sets which were named according to the job function of the decision

maker. Rule-sets were then linked together using "Inheritance", in order to

either re flect hierarchical management structures or situations in which multiple

decision makers would act together. Operational policies of th is nature were

termed as "Cooperative decision making" and discussed in section 4 .4 .2 .

Deducing conclusions from the defined rules was achieved using an inference

engine which eliminated the need to pre-sequence and in terlin k individual ru les.

The experiments carried out in section 5 .6 showed how stra igh t forw ard it could

be to a lte r operational policies. F irs tly , the decision rules were isolated from

the rest of the model. Secondly, a ltering an operational policy could be as

simple as id en tify ing the appropriate ru le-sets and adding or replacing ru les.

In contrast, implementing the same changes to the conventional Pascal model

205

could require the modeller to a lte r the sequence of rules in a m ulti-level

conditional statements which in some cases could extend to over three pages

of code.

The "Function" based version of the port model was bu ilt in an attem pt to

overcome the lim itations of the conventional Pascal model. Pascal functions were

used in an attem pt to re-create the functionality of the ru le-sets used in

ESSIM. The "Knowledge-base" w ritten using Pascal functions is listed in

Appendix D. The approach failed in three key respects. 1) The language

syntax was unnecessarily complex. 2) The need fo r complex m ulti-level

conditional statements could not be elim inated. 3) Each defined function could

require as many "Begin" and "End" statements as there were actual ru les. In

many cases it was simpler to repeat a ru le ra th er than enclose it w ithin a

function statement.

The th ird class of model experiment to which the three versions of the

port model were subjected, consisted in introducing a new activ ity cycle and

related operational policies. The complexity of carrying out such drastic model

changes was of in teres t, as ESSIM was only designed fo r the purpose of

experimentation w ith operational policies. I t was concluded in section 5 .7 .3 that

ESSIM simplified in only some small respects the introduction of the additional

"Lateral Movement Vehicle" en tity cycle. The main benefit was that the

separation of operational policies from the rest of the model representation acted

as an additional level of code m odularity. The introduction of fu rth e r m odularity

forced the modeller to take a more structured approach to the alteration of the

model. The firs t step was to create the Pascal representation of the ac tiv ity

cycle. Only once this had been completed would the modeller tu rn to the

206

definition of the operational policies within the ex p ert system kn ow led ge-base.

Comparing the accuracy of the model representations:

The ESSIM environment is used fo r the purpose of developing models of

real-w orld systems in which complex operational policies need to be

represented. The ESSIM approach is meant to support th is task by providing

a modelling technique which results in a better representation of the rea l-

world problem.

The experiments which were reported in section 5 .7 highlighted the fact

that the problem of representational accuracy is in fact very closely related to

that of model adaptability. As was reported in the previous section, the

experiments served to demonstrate that ESSIM decision rules were re la tively

adaptable because the ESSIM knowledge-base was a better representation of

operational policies than the m ulti-level conditional statements used in the

equivalent Pascal model.

The ESSIM development environment was designed specifically to address

the issue of representing complex operational policies which could in tu rn

necessitate the modelling of "Cooperative decision m aking". The conventional

Pascal modelling approach catered fo r the representation of operational policies

only by providing a general purpose 3rd generation programming language. The

key differences between ESSIM and the Pascal and Function based models w ill

now be discussed in tu rn .

The firs t fundamental s tructura l difference between the modelling

207

approaches is that ESSIM groups decision rules into ru le-sets according to the

job function of the decision maker. In the Pascal model, no distinction is made

between the rules applied by one decision maker from another.

The second major difference is that ESSIM attem pts to mimic the way

real-w orld decision makers can act together in instigating an operational policy.

The term , "Cooperative decision making" has been used in this thesis to

reference such an approach. The rules defined w ithin a given ru le -se t may be

a representation of the to ta lity of a decision makers knowledge in the context

of a given job function. In practice, the decision maker's "Knowledge" may

prove insufficient fo r the purpose of resolving a given problem. In the same

way, the rules contained w ithin a ru le -set may prove inadequate during an

attem pt to resolve a goal. In the real-w orld , the decision maker may consult

another decision maker and thus bring into play a fu rth e r base of operational

expertise. In ESSIM, "Inheritance" is used to bring together otherwise

disassociated ru le-sets and thus represent this interaction between decision

m akers.

There are other ways in which Inheritance can be used to represent

real-w orld situations. For instance, a ru le-set may contain sufficient information

fo r a given goal to be resolved. However, in the real-w orld a manager may

oversee the decisions taken by a decision maker and o ver-ru le or influence the

course of actions. In ESSIM, the ru le -set associated with the decision maker can

be linked using Inheritance to the manager's ru le -s e t. Under the normal course

of events, a given goal would be resolved without the inference engine scanning

the manager's ru le -s e t. In order to represent the manager's influence w ithin the

ESSIM model, a sub-goal can be associated with the main goal. Once the main

208

goal has been resolved, the sub-goal is trig g ered . The sub-goal also needs to

be resolved before control returns to the simulation model. The sub-goal can

only be resolved by a set of rules defined by the manager, the purpose of

which is to validate and possibly modify the intended actions of the decision

maker.

Comparing the m aintainability of the model representations:

The m aintainability of a model is related to the ease w ith which changes

that have occurred in the real-w orld system can be reflected w ithin existing

code. The m aintainability of the model is of particu lar importance in situations

where changes are expected in the real-w orld environm ent during the life of the

model. Such changes may encompass modifications to physical aspects of the

real-w orld such as plant lay-ou ts , or may simply consist in changes to

operational policies.

The key differences between the ESSIM model and the two alternative

Pascal models in the context of code m aintainability, is that ESSIM places

greater emphasis on m odularity and the representation of operational policies.

The concept of m odularity extends to several of the ESSIM components.

A t the broadest level, ESSIM introduces m odularity by sp litting the

representation of operational policies from the rest of the model. Changes in

operational policy can then be introduced with potentially little or no effect on

the simulation model component. Conversely, some situations perm it

modifications to be made to physical aspects of the model without effecting the

expert system knowledge-base.

209

The expert system knowledge-base is also based on a modular s tru ctu re ,

w ith ru le-sets being used to encapsulate the decision rules applied by each

decision m aker. Once again, changes may be made to the rules applied by one

decision maker without there being any parallel requirem ent to modify the rules

applied by another decision maker. In the context of the Pascal model,

operational policies are stipulated in the form of m ulti-level conditional

statements and may consist of decision rules applied by several decision m akers.

Making model changes that reflect long-term modifications in operational policies

may consequently be more complex to introduce.

The simulation model component of ESSIM was also divided into separate

modules. Rather than create a single block of code, a modular version of the

Pascal programming language was used so that the individual model activ ity

cycles could be isolated from each other with appropriate interfaces defining

th e ir in teraction. The introduction of code m odularity to Pascal based th ree-

phase simulation modelling was found to be of benefit in the context of code

maintenance as the overall s tructure of the model was im proved.

The experim ent detailed in section 5 .7 .3 . sought to evaluate the impact

of introducing a new activ ity cycle and related operational policies to the

existing versions of the port model. This experiment required modifications to

be made to both the ESSIM simulation module and expert system knowledge­

base . As was discussed earlier in this section, the use of a modular construct,

allowed the introduction of a major model change using a highly structured

approach. The firs t step consisted in the creation of a new simulation module

containing the code representation fo r the "Lateral Movement Vehicle" (LMV).

210

T h is new m odu le w as th e n in te r fa c e d to th e r e s t o f th e m ode l. T h e f in a l s te p

w as to c re a te th e a p p ro p r ia te e x p e r t s y s te m r u le - s e ts w h ic h w e re to re p re s e n t

th e o p e ra t io n a l p o lic ie s r e la t in g to th e L M V .

T o su m m a rise , th e b e n e f its a n d l im ita t io n s o f each o f th e m odel

re p re s e n ta t io n s a re g iv e n in f ig u r e 68.

Fastest code execution.
Single language syntax.

LIMITATIONS
Operational policies represented as multi-level conditional statements
Difficult to read the code used to represent the operational policy
May be difficult to alter the code relating to an operational policy
Difficult to code rules which span across multiple activity cycles.

BENEFITS

Rule-sets permit operational policies to be defined using a modular construct
Inheritance permits the representation of Cooperative decision making
Incremental development of logic is easier to achieve.
Modelling environment well suited for experimentation with operational policies
The ESSIM expert system provides a better representation of operational policies.
The expert system was relatively easier to use than the Pascal representation

LIMITATIONS
Slowest code execution.
Expert System syntax is limited
For simple groups of rules, the expert system is an overhead

FUNC T/ON BASED MODEL

BENEFITS
Fast code execution
Implemented entirely in Pascal.
Single module used for the specification of decision rules.

LIMITATIONS

Difficult to code decision rules.
Hard to alter decision rules.
Need to compile and link code.
Additional variables required.

F ig u re 68 C om parision o f m o d e llin g techniques.

BENEFITS

211

5 .9 CONCLUDING THOUGHTS ON THE ESSIM MODULES

5.9 .1 OBSERVATIONS ON ESSIM'S SIMULATION MODULE.

The template which is used fo r developing Pascal models fo r ESSIM was

specifically designed fo r use in a modular coding environm ent. The development

of the port model highlighted the benefits of adopting a structured modular

approach. The port model is a realistic replica of a potential real-w orld

environment but is by no means an exceptionally complex and detailed

representation. The port model consists of approxim ately 3000 line of code which

points to the need fo r a modular coding approach. The use of modules was

found to ease the development of the port model by allowing the implementation

process to be broken down into the creation of a series of sub-models each

representing one of the major en tity cycles. The use of interfaces between

modules was seen as a means of form alising the interaction between en tity cycles

through common queues. ESSIM's modular construct supports the development

of a model by a team of programmer working simultaneously on the

implementation of each of the en tity cycles. Once the model has been coded, the

modular approach is found to sim plify the validation and correction of the

models behaviour by easing the process of identify ing the location of logic

erro rs . Experimentation with the model is also sim plified because of the greater

ease with which model changes can be implemented. F inally , ESSIM's modular

approach permits the creation of models which exceed the lim it of 64K on code

size imposed by the DOS operating system (In ESSIM, each module can be 64K

in size, with FAR addressing being used to extend the addressable memory to

1Mb).

212

The Pascal simulation routines provided with ESSIM are based on those

provided in the eLSE simulation lib ra ry (Chew[1986]). Modifications were made

to reduce the size of the lib ra ry and improve the performance of the routines.

In p articu la r, the use of addresses ra th er than numbered B event routines was

found to both improve the leg ib ility of the code and sim plify the structure of

the simulation executive.

The provision of dynamic displays is a particu larly useful feature of

ESSIM models, perm itting a modeller to gain some insight into the potential

behaviour of the real-w orld system without having to necessarily resort to

output analysis techniques. These dynamic displays are created using a lib ra ry

of screen handling functions which are used by the programmer during the

development process. The graphics routines, coupled with the 'Designer'

program were found to reduce the time scale required to complete the model by

lim iting the e ffo rt required in coding the user in terface. In the case of the port

model, the dynamic output displays were found to ease the process of locating

errors in the simulation code and provided a useful focal point in discussing the

behaviour of the model with port management. During the experim entation

process, the output displays provide the modeller and potentially the actual

managers with an easy to understand summary of the status of queues and

processes in each of the ports constituent en tity cycles.

The ESSIM approach to modelling has some minor lim itations. In

particu lar, the use of a modular approach results in a processing overhead

during the compiling and linking of the code. For the la rg er modules, the

process of creating an executable image can take up to 10 minutes. However,

when changes are made to a single module, other modules need not be

213

re-com piled. The e rro r reporting capabilities of the Microsoft compiler are also

fa irly crude compared to the Turbo Pascal compiler. The use of a th ird

generation language also results in some inconvenience given the additional

complexity of the language syntax over a bespoke modelling tool. Conversely,

the use of Pascal does confer some benefit resulting from the additional

fle x ib ility conveyed by a general purpose language. This is particu larly

apparent when considering the range of data structures available.

The development overhead in using a th ird generation language in

specifying model logic could be overcome using a sim ilar approach to curren t

CASE (Computer Aided Software Engineering) tools fo r database design. The

programmer specifies the model design by using a graphical drawing tool to

create an A ctiv ity Cycle Diagram. The design is validated in real-tim e by rules

which, fo r instance, check that queues are always separated by activ ities .

Queue names and ac tiv ity durations are specified by using a mouse to select the

appropriate screen icons. The simulation model code is then generated by

following the basic principles that perm it the translation of ACDs into Pascal

code.

ESSIM as an environment is a re la tive ly complex system which would

benefit from a more powerful development environm ent. A mainframe based

system, w hilst potentially im proving perform ance, would not provide the degree

of flex ib ility in terms of windowed and graphical output as is possible w ith the

current generation of PCs. However, workstations which provide the benefits

of both processing power and enhanced graphical output would resolve many

of the lim itations of the curren t ESSIM system in terms of execution speed and

memory capacity.

214

F in a l ly , an im p ro v e d means o f in te r fa c in g to E S S IM 's e x p e r t s y s te m c o u ld

be o f b e n e f i t . P re s e n t ly , th e e x p e r t s y s te m r e tu r n s to th e P asca l m ode l v a lu e s

a s s o c ia te d w ith s o lu t io n to goa ls th r o u g h in te rm e d ia te P asca l v a r ia b le s . No

m eans c u r r e n t ly e x is ts to e n s u re th a t a l l e x p e c te d v a lu e s a re r e tu r n e d . T h is

r e s u lts in a d d it io n a l v a l id a t io n w o rk to e n s u re th a t th e m odel b e h a v e s as

e x p e c te d . A p o te n t ia l m eans o f o v e rc o m in g th is p ro b le m w o u ld be to a sso c ia te

w ith each g o a l, a l i s t o f v a r ia b le s nam es th r o u g h w h ic h goa l r e s u l t s a re

r e tu r n e d . T h e s im u la t io n m odel w o u ld s to p a n d a w a rn in g g iv e n i f a r e t u r n

v a lu e w as fo u n d to be m is s in g .

BENEFITS
Model template specifically developed for modular programming.
Use of modules necessary for large simulation models.
Interface between modules formalises the interaction between cycles.
Memory addresses used for the activation of B procedures.
Library of graphics routines for the creation of dynamic displays.

LIMITATIONS
Modular approach results in a processing overhead.
The use of a 3GL reduces productivity during model creation.

|
Figure 69ESSIM's Simulation modu/e.

T h e b e n e f its a n d l im ita t io n s r e la t in g to E S S IM 's s im u la tio n m odu le a re

s u m m a rise d in f ig u r e 69.

5 . 9 . 2 O B S E R V A T IO N S ON ESSIM 'S E X P E R T S Y S T E M .

T h e d e v e lo p m e n t o f th e ESSIM e x p e r t s y s te m w as a c o n s id e ra b le ta s k

g iv e n th e need f o r c lose in te g ra t io n w ith th e co m p ile d s im u la t io n c o d e .

215

O rig inally , the use of a commercial o ff-th e -s h e lf product had been envisaged

which would have considerably sim plified the creation of the modelling

environm ent. I f an existing product had been used, the in ab ility to customise

the expert system would have lim ited the functionality of the environment and

reduced the benefits that ESSIM confers over conventional modelling

techniques.

The ESSIM expert system is customised fo r simulation modelling. The key

differences are as follows:

1) The ESSIM expert system supports the definition of local and "Public"

variables. Public variables are variables which can be shared with other

programs, in th is case a Pascal simulation program . This sharing of data was

an essential p re-requ isite to the development of models involving a simulation

model and an expert system. The integration of the ESSIM expert system with

the Pascal language is not lim ited to the sharing of variables, but also extends

to the ab ility to activate Pascal procedures and functions. C and Fortran

routines can also be called through the use of interm ediate Pascal functions.

During the development of the port model, th is feature was found to be

particu larly useful as arithm etic computation is more effectively carried out

using a procedural language.

2) Rule-sets are used to group decision rules according to the function

of the decision maker. The use of ru le-sets brought about a number of

fundamental changes to the way in which operational policies are represented

within a simulation model. In conventional Pascal models, decision rules applied

by d ifferen t decision makers are linked together as part of a m ulti-level

216

conditional statem ent. In ESSIM, the use of ru le-sets perm it a fa r more

structured definition of operational policies and hence, supports the modeller

in building complex representations. Chapter th ree highlighted the complexities

of representing operational policies. The new term , "Cooperative decision

making" was then introduced as a means of describing operational policies which

are enacted through the participation of two or more decision makers. The

ESSIM expert system uses the concept of "Inheritance" to support the modelling

of cooperative decision making.

3) "Inheritance" is a technique used in the ESSIM expert system

knowledge-base to lin k together otherwise unrelated sets of rules relating to

each of the decision m akers. In section 5 .8 .1 , we saw that Inheritance could be

used as a simple method of representing hierarchical management structures.

There are other in teresting benefits to using Inheritance. For instance, an

operational policy may require the involvement of more than one decision m aker,

each represented by a d ifferen t ru le -se t and each responsible fo r the

management of activities in d ifferent parts of the real-w orld system. In

conventional three-phase discrete event m odelling, the modeller is encouraged

to represent the real-w orld system as individual but nevertheless in terlinked

activ ity cycles. In ESSIM, the modeller is encouraged to represent operational

policies as individual but nevertheless in terlinked ru le-sets which together may

span across multiple ac tiv ity cycles.

There are other peripheral benefits to the ESSIM expert system. For

instance, in the context of ESSIM, the simulation model typ ically submits goals

to the expert system on an almost continuous basis. Consequently, the expert

system had to be capable of resolving goals w ithin a short time delay if the

217

simulation is to operate w ithin real-tim e. The implementation of ru le-sets

reduced the search space in resolving goals submitted by the simulation model.

This dram atically improved the performance of the expert system.

Much time was devoted to the development of the expert system.

Nevertheless, some weaknesses ex is t. For instance, Pascal procedures and

functions can be activated from the knowledge-base but parameters can only be

passed by creating common variables. The integration of Pascal routines into

knowledge-base rules would have been sim plified had it been possible to use the

Pascal language syntax fo r the passing of param eters. More generally,

comprehensive e rro r reporting would have helped in the detection of some

erro rs which manifested themselves in unusual ways.

F inally , it must be said that the original aim was to produce an expert

system which used a very simple syntax. In the context of the modelling of

operational policies, a simple syntax helps greatly in understanding the effect

of the constituent decision ru les. The need to create an effective in terface with

the Pascal language and the gradual addition of fu rth e r functionality to the

expert system resulted in a syntax considerably more complex than had

orig inally been intended. A revision of the language syntax would partia lly

alleviate the problem. The use of a N atural Language Programming (NLP)

approach could also be considered.

The benefits and lim itations of ESSIM's expert system module are

summarised in fig ure 70.

218

BENEFITS
Expert system customised for simulation.

Expert system highly modularised using ’Rule-sets’

’Inheritance’ used to model ’Cooperative Decision Making’

Decision rules may pan across multiple activity cycles.

The use of rule-sets limits the search space during the inference process.

The expert system is highly integrated with the Pascal language.

LIMITATIONS

Fewer functions available than in commercial expert systems.

The expert system syntax is more complex than originally intended.

F/aure 70 ESS/M’s expert system modu/e.

5.9 .3 BENEFITS AND LIM ITA TIO N S OF THE USER INTERFACE.

ESSIM's user in terface development tools were fe lt to be of significant

benefit in the implementation of the port model and the subsequent

in terpretation of the output produced. Models produced using ESSIM are

intended to produce output which can be scrutinised at run-tim e by managers,

who, with the assistance of the modeller may evaluate the effectiveness of

alternative operating procedures. Consequently, the displays must provide

an adequate means of visualising the changes in status through time of the

real-w orld system being modelled.

The creation of a user frien d ly interface which provides facilities fo r

219

the graphical representation of model output is a time consuming and complex

process. The 'Designer' interface generator was found to be useful means of

creating an in itia l lay-ou t fo r the menus and windows. The benefit of using

'Designer' was th at the interface could be created in teractive ly which perm itted

the visualisation of the screen design without the need to re-com pile code when

changes were made.

At the programming leve l, the provision of a lib ra ry of window and graph

manipulation routines was found to aid the modeller by removing the need to

consider the low -level screen manipulation code norm ally associated w ith the

development of applications fo r PCs. Combined with the use of 'D esigner', the

routines help to minimize the overhead of controlling screen output.

As fa r as the modeller is concerned, the simulation models developed

using ESSIM and exemplified by the port model, are easy to use and effective

as a means of communicating inform ation. In particu lar, the concurrent updating

of windows enables d ifferen t parts of a model to be displayed simultaneously.

The use of the mouse was also found to sim plify the selection of menu options

and was noted as being particu larly useful in the context of ESSIM models in

th a t the modeller typ ically continuously switches between alternative displays.

Whereas ESSIM eases the process of developing an effective user

in terface, there remains a significant overhead in code w riting and the

subsequent validation of output. The use of batch runs in which output is

restricted to printed tex t remains a cruder but simpler means of producing a

trace of a simulation ru n .

220

A c o n c e p t w h ic h e x te n d e d b e y o n d th e scope o f t h is th e s is a n d y e t w o u ld

h a ve been in te r e s t in g to e x p lo re is th e p o s s ib i l i t y o f u s in g a p ro c e s s r e fe r r e d

to as ' I n te r a c t iv e P ro g ra m m in g 1 in s p e c ify in g th e s c re e n d e s ig n a n d th e

a sso c ia te d s im u la t io n c o d e . T h e p r in c ip le s a p p lie d in c re a t in g 'D e s ig n e r ' c o u ld

have been ta k e n a s te p f u r t h e r b y p r o v id in g a m eans o f g e n e ra t in g s im u la tio n

p s e u d o -c o d e fro m an A C D d e s ig n . T h is code c o u ld th e n h a v e been in te g ra te d

in to th e w in d o w in g e n v iro n m e n t a n d te s te d on an in te r p r e t iv e b a s is . Once

s a t is f ie d w ith th e f in a l p r o to ty p e , th e a s s o c ia te d P asca l code c o u ld th e n have

been g e n e ra te d .

T h e b e n e f its a n d l im ita t io n s o f E S S IM 's u s e r in te r fa c e a re su m m a rise d in

f ig u r e 71.

BENEFITS
Ease of use.
Provision of code generator.
Mouse support.
Multiple windowed output.
Customisable.
Support for graphics.
Speeds up development of interface.

LIMITATIONS
Requires programmer for interfacing work.
Additional flexibility would be useful.
Overhead in code size and overhead compared to batch runs.

Figure 71 ESSIM’s user interface.

221

5 .10 CONCLUSION

The container port project provided a suitably complex problem to which

the ESSIM model development environment could be applied. The three-phase

discrete event approach was found to be ideal fo r the implementation of a model

of a container port given the natural breakdown of operations into constituent

entities, queues, and activ ities. The involvement of a company which had an

in terest in providing suitably experienced managers, enabled realistic scenarios

to be enacted through the addition and modification of knowledge-base ru les.

The details of the port were obtained through a series of inform al meetings in

which the design principles and expected management procedures were re layed .

Subsequent documents were provided which listed expected performance

fig ures. In terms of providing a realistic test-bed fo r the ESSIM environm ent,

the involvement of a company with a real problem to resolve proved of major

benefit.

Because of the number of entities, queues, and activities required in

the model, and the overhead resulting from the use of an expert system, a

module based version of Pascal was used which enabled the implementation of

a program 1Mbyte in size. The use of a modular construct led to the need to

modify the three-phase simulation routines and to create a new model template

in which life-cycles are represented in separate modules. The use of a modular

language also led to the need to introduce new disciplines in code w ritin g . For

instance, module interfaces were seen as a necessity in preventing changes

introduced in one module from adversely effecting the logic defined in another

module. The definition of shared variable also had to be handled with care in

preventing illegal use or modification of defined values. The implementation of

222

a simulation environment based on Pascal object modules is considered as being

essential to the creation of effective models of real-w orld problems using PCs.

I t is unlikely that sufficient detail could be b u ilt into a model which is lim ited

by the 64K DOS b a rrie r. In the case of ESSIM in which the Pascal model is

supplemented by a knowledge-base in terpreted by an expert system inference

engine, the use of modules is essential given the amount of code that need to

be introduced. Indeed, fu rth e r detail could not be added to the port model

without moving to an alternative operating system on PCs, or by shifting

development to a workstation environm ent.

In section 5 .4 , the structure and content of the expert system

knowledge-base was described. Examples were also given as to the steps

required in adding new rules to the system. The 'CraneManager' ru le -se t was

then examined in some detail, tracing the inference process and conclusions

drawn by the expert system. The process of developing the knowledge-base

fo r the port model highlighted design erro rs in the original system. These

erro rs , such as numerical overflows were trapped and corrected by comparing

the ESSIM model w ith the original model in which rules were integrated w ithin

the Pascal code. The expert system trace fac ility was also used in isolating

erro rs by manually scrutinising the logic applied by the inference engine.

Visual inspection of the behaviour of the container port is one of the

means available to the modeller in carry ing out his analysis. The display is

window-based, experience in the manipulation of output having been gained

from investigating s ta te -o f-th e -a rt techniques in the handling of graphics on

PCs. The use of windows and pull-down menus eases the process of

manipulating the model and permits the switching of screen output to visually

223

inspect the behaviour of components of each of the port's en tity life -cyc les . In

the past, the benefit of creating windowed user interfaces had to be offset

against the overhead in designing screen lay-outs and w riting the necessary

code. The provision of lib raries of standard routines went some way towards

sim plifying the process, but the need to repeatedly compile and modify a

program to achieve the correct re lative positioning of screen output s till

represented a major overhead. With ESSIM, the use of the 'Designer' program

generator was found to perm it the creation of an effective windowed interface

w ithin a time span normally associated w ith producing simple textual output.

The process of validating the port model was described in section 5.6 .

Validation is particu larly essential in the context of simulation given that a

model can behave as would have been expected and yet contain invalid

assumptions. The lack of a real-w orld container port with which model

behaviour could be compared complicated the validation process. Given the size

of the model, many errors had been expected. In practice, the use of a modular

construct combined with the s tric t rules that had been imposed during the

development process had lim ited the scope for e rro rs . The source of the errors

that were made and which were detected from unexpected model behaviour were

however often d ifficu lt to locate. This is because an e rro r in one module can

manifest itse lf as unexpected behaviour in another module and the process of

tracing the source can often be quite complex. In th is respect, the trace

facilities that were integrated into the port model proved to be of significant

use. Validating the expert system knowledge-base was simpler than had been

expected. Expert systems use hidden inference strategies which make the

normal process of manually tracing through code impossible. Nevertheless, the

fact that the rules were isolated from any other code sim plified th e ir individual

224

verification on a one-by-one basis. The conclusions drawn by the inference

engine, and the results returned to the Pascal model were also easily checked

from the output trace which to some extent can be considered as an automation

of the manual trace.

In section 5 .7 , the process of experim enting w ith the port model was

described. The types of experiments that could be conducted were broadly

divided into four types: 1) Modification of ru le param eter. 2) A ltering

characteristics of the model such as the defined number of entities and process

durations. 3) A ltering the structure of existing ru le (s) and /or adding fu rth e r

rules associated with existing goals. 4) Adding new goals fo r which new rules

have to be defined. The examples that were given demonstrated that the types

of changes listed in 1-3 could, in many cases, be carried with ease and without

modification of the Pascal code. The fourth type of change, consisting of adding

new goals was fa r more complex and required a detailed understanding of the

underlying simulation code.

In section 5 .8 , the ESSIM model was compared to two alternative versions

of the Port model. The firs t of these consisted of a straight-forw ard
\

three-phase model. The second was a version of ESSIM in which the expert

system knowledge-base was replaced by a 3GL module in which rule-sets were

represented as Pascal functions. The experiments described in section 5 .7 were

then repeated which demonstrated that the ESSIM model generally offered

superior functionality over the alternative approaches.

225

F inally , section 5 .9 reviewed the benefits and lim itations of the individual

constituents of the ESSIM modelling environm ent, namely, the three-phase

component, the expert system and the graphical user in terface.

226

CHAPTER SIX

CONCLUSION

6.1 REVIEW OF THE THESIS PROPOSITION

The proposition put forward in th is thesis was th at the use of expert system

techniques in the context of simulation, may provide an improved means of

structuring the representation of operational policies as enacted by the re a l-

world decision makers. Such operational policies may requ ire the involvement

of multiple decision makers, each working at d iffe ren t levels w ithin a

hierarchical management s tru ctu re .

6 .2 THE RESEARCH RATIONALE

Discrete event simulation languages predom inantly focus on the model

representation of physical entities and associated activ ities. O'Keefe, Belton &

Ball [1986] amongst others have noted that there exist lim itations in using such

languages in representing and subsequently experim enting w ith the decision

tasks normally associated with the management and control of a real-w orld

system.

The use of A rtific ia l Intelligence in the context of simulation modelling

has been investigated from a number of angles by several researchers. For

instance, attempts have been made at using expert systems during the model

227

building process and fo r the purpose of in terp retin g model output. (Such work

is of great in terest in the context of th is thesis and is discussed in chapter

two). Flitman & H urrion [1987] undertook an ambitious project to create a two

way lin k between a simulation model and an A I language. This thesis has

followed on from th is innovative work by examining the possibility of using an

expert system in the representation of complex operational policies and fo r the

use of th is representation in subsequent experim entation.

6 .3 REVIEW OF THE RESEARCH STRATEGY

The methodology applied to the research described in this thesis has

encompassed the following stages:

A lite ra tu re review .

The formalisation of the proposed approach.

The implementation of a prototype system.

The development of experim ental models using the prototype

environm ent.

The evaluation of the thesis proposition using the experim ental

models.

In chapter two, a review was conducted of the two areas of research

applicable to th is thesis, simulation and a rtific ia l intelligence. In the firs t part

of the chapter, simulation modelling and a rtific ia l intelligence were examined

separately. The second half of the chapter examined the relationship between

simulation and A I and subsequently explored the practical work carried out by

228

other research ers.

The lite ra tu re review was an essential firs t step in developing an in -

depth understanding of the two fields of study and of the work that had

already been carried out by other researchers in linking simulation and A I.

Having completed the lite ra tu re study, attention returned to resolving the core

issues relating to the thesis proposal. Chapter three consequently began with

an analysis of the nature of decision making and sought to address such issues

as the representation of hierarchical management structu res. Having assessed

the problem of representing operational policies w ithin a simulation model, the

chapter continued by proposing a potential approach to the implementation of

a simulation environment in which the issue of representing operational decision

making is specifically addressed.

Chapter four reported the development of a prototype simulation

environment (ESSIM) which explores and addresses the technical problems of

a linkage between a simulation model and expert system.

The prototype system was used to create a model of an un-manned

container port and a number of experiments then carried out based on

alternative management rules of varying com plexity. Two equivalent models

were also developed, one based on a standard simulation fram ework, and the

other seeking to replicate the functionality of the expert system within a purely

procedural context. The experiments using a lternative management rules which

were carried out using the prototype model were repeated using these new

models and evidence sought in respect of the suggested potential benefits of

the prototype system. The suggested potential benefits identified in the early

229

stages of the thesis can be summarised as follows:

Model A daptability: I t has been proposed that the use of an expert

system in the context of simulation modelling, may provide an improved

means of representing operational decision making. Furtherm ore, i t has

been suggested that the expert system approach could provide the

modeller w ith a simulation environment which is better suited to the task

of experim enting with alternative operational policies.

Model accuracy: The ESSIM modelling environment was developed fo r the

purpose of experim enting w ith operational policies. In doing so, the

modeller is expected to define decision making tasks with greater

attention to detail than would normally have been expected during a

conventional modelling exercise. Consequently one could expect th at the

modeller's work w ill resu lt in a model which is a better representation

of the real-w orld problem.

Segregating modelling activities between two modules, one representing

the physical system components and the other operational management, was seen

as potentially providing fu rth e r advantages. Such a division could be achieved

by retain ing a separation between the simulation language and A rtific ia l

Intelligence components and implementing a general communications interface

between the two. The possible peripheral benefits of a conceptual division were

identified to be as follows:

230

Ease of use: Expert Systems use a high level language syntax akin to

fourth generation languages. In addition to th is , expert systems use a

declarative approach to the definition of rules which removes from the

modeller the need to pre-define an execution path. Instead, the expert

system uses a generalised inference strategy to control execution. Expert

systems have consequently been re ferred to as being "Easy to use".

M aintainability: The m aintainability of a model is related to the ease with

which changes that have occurred in the real-w orld system can be

reflected w ithin existing code. The m aintainability of the model is of

particu lar importance in situations where changes are expected in the

real-w orld environment during the life of the model. Sp litting the model

representation between a conventional simulation language and an expert

system can be viewed as an extension of the concept of code m odularity.

The introduction of a fu rth e r level of m odularity may ease the process

of making model changes, which in tu rn could have an impact on the

m aintainability of the model.

6 .4 CONCLUSIONS FROM THE MODEL EXPERIMENTATION

In chapter f ive, a number of experiments were described which sought

to compare the functionality of a model bu ilt using ESSIM with th at of a

conventional Pascal model. The experiments were la te r repeated using another

Pascal model in which an attempt was made at replicating the functionality of the

expert system by encapsulating decision rules w ithin Pascal functions. The

conclusions from these experiments can be summarised as follows:

231

Model adaptability: As was reported in section 5 .8 , it was found th a t the

model w ritten using ESSIM was generally the one which was the easiest

to modify fo r the purpose of evaluating alternative operational policies.

The principal reason fo r th is was that decision rules in ESSIM were

defined in a fa r more structured fashion. This s tru ctu ring of operational

decision rules has been re ferred to in th is thesis as "Cooperative decision

m aking". I t is assumed in ESSIM that operational policies may be enacted

by more than one decision m aker. Decision rules are consequently

grouped together and identified by the name or function of the decision

m aker. For the purpose of instigating an operational policy, the rules

applied by each of the decision makers may then be brought together.

The most senior decision maker may potentially have a veto over any final

decision and so his rules would override those of the other decision

m akers. Such a stru ctu ra l formalism fo r the representation of operational

decision making was d ifficu lt to replicate using e ither of the alternative

Pascal models. An example of the type of code which would resu lt from

such an attem pt is shown in Appendix D.

Model accuracy: As was discussed in section 6 .3 , it was hoped that the

use of ESSIM would resu lt in models which were better representations

of the real-w orld problem. In fact, the issue of model accuracy turns out

to be closely related to that of model adaptab ility . In the previous

paragraph, the point was made that the adaptability of the ESSIM model

was a consequence of the fact that in ESSIM, decision rules are defined

in a fa r more structured fashion. This s tru ctu ring of decision rules is

what provides an improved representation of the problem being modelled.

232

The key differences between the ESSIM model of the port and the two

equivalent Pascal models are as follows: 1) Decision rules relating to

d iffe ren t decision makers are isolated w ithin separate "R ule-sets". 2)

Associations may be established between "Rule-sets" in order to reflect

the influence of management in the process of decision making, (e .g . A

manager may override or simply contribute to the decision taken by a

lower ranking em ployee). 3) Decision rules are defined ind ividually w ith

an inference engine providing the mechanism by which problems are

resolved. In the case of the Pascal models, decision rules had to be

defined as m ulti-level conditional statements.

Ease of use: The ease of use of a model is principally related to the

language syntax. The expert system used in ESSIM was specifically

w ritten fo r the purpose of simulation modelling. A fourth generation

language was used and additional concepts introduced such as "Rule-

sets" and "Inheritance" which were aimed at providing a clearer and more

structured code la y -o u t. With respect to the model experiments detailed

in Chapter five, such factors gave ESSIM a clear advantage over the

equivalent Pascal models in the context of the "Ease of use" of the

modelling environm ent. This advantage was of course lim ited to model

experim ents carried out using the expert system knowledge-base. There

were a number of other peripheral benefits in using the expert system;

1) The in terpreted nature of the system meant that re-com pilation could

often be avoided. 2) Unlike the Pascal models, decision rules could be

defined individually and the problem of resolving a goal le ft to the

in ference engine. 3) The isolation of the decision rules into a separate

knowledge-base helped in providing a clearer understanding of the

233

fu nction of th e ru le s .

M aintainability: As was discussed in section 6 .2 , the m aintainability of a

model is related to the ease w ith which changes that have occurred in the

real-w orld system can be reflected w ithin existing code. In conventional

3GL programming, the issue of m aintainability is in part related to the

structure of the code in terms of m odularity and syntactic sim plicity. I t

was concluded in section 5 .8 th at those same issues have an effect on the

m aintainability of a simulation model. ESSIM extends the concept of code

m odularity to simulation modelling in a number of respects. 1) In ESSIM,

the conventional Pascal model is separated from the decision rules which

are located in an expert system knowledge-base. 2) The ESSIM expert

system knowledge-base is itse lf divided into "Rule-sets" which contain

the rules applied by individual decision m akers. 3) The Pascal simulation

code used in ESSIM is divided into separate code modules each containing

the code relating to the major en tity cycles. The model experim ent

described in section 5 .7 .4 required the introduction of a new en tity cycle

and associated decision ru les . Implementing the same changes to each of

the three port models highlighted the benefit of a high degree of code

m odularity. In troducing the model changes was re latively easier to

achieve using the ESSIM version. The reason fo r th is is that the use of

code m odularity in ESSIM introduced a requirem ent fo r a higher level of

discipline in carry ing out the model changes in a step-by-step fashion.

In the case of the Pascal models, i t was fa r easier to make a mistake in

introducing the model change and subsequently much harder to find

where the e rro r had been made.

234

6 .5 SUMMARY OF THE RESEARCH ACHIEVEMENTS

6 .5 .1 Principal achievements

The research presented in th is thesis sought to create a modelling

environment in which the principle emphasis is on an adequate representation

of operational policies fo r the purpose of model experim entation. Therefore, the

key issues were as follows: F irs tly , to id en tify which aspects of the decision

making process had to be represented w ithin the model. Secondly, to id en tify

a modelling approach which was well adapted fo r the purpose of representing

operational decision making problems and which would be appropriate fo r the

purpose of model experim entation. These two steps were successfully completed

and as a resu lt, a number of im portant contributions were made in th is fie ld of

study.

The key contribution of the research was the introduction of the concept

of "Cooperative decision making" which was fu lly described and discussed in

chapters four and fiv e . The expert system knowledge-base is used as a

repository fo r the decision rules applied by selected operational decision makers

involved in the day to day running of the real-w orld system . The research

study identified that operational policies often required the cooperation of

several decision makers, each controlling a d iffe ren t real-w orld a c tiv ity . In

other cases, the existence of a hierarchical management s tru ctu re could mean

that a decision taken by one individual could be overridden by another decision

m aker. Such issues were addressed through the creation of "Rule-sets" and the

use of "Inheritance". "Rule-sets" were used fo r the purpose of segregating the

235

rules applied by each decision maker. The use of "Inheritance", perm itted the

creation of a logical lin k between otherwise separate groups of ru les.

The introduction of the concept of "Cooperative decision making" brings

about a number of fundamental changes to the way in which the modeller builds

and subsequently uses the simulation model. F irs tly , decision rules are no

longer represented as a sequence of conditional statements but require the

modeller to represent each operational policy in terms of a goal and related sub­

goals. Secondly, the modeller is encouraged to view decision making problems

as potentially panning across several activities w ithin a cycle or across m ultiple

activities w ithin d ifferen t cycles. For instance, an operational policy may

require the involvement of more than one decision maker, each represented by

a d ifferent ru le -se t and each responsible fo r the management of entities in

d ifferen t ac tiv ity cycles.

The testing of the thesis proposition required a comparison to be carried

out between the proposed approach and a conventional modelling environm ent.

The research consequently encompassed the development of a prototype

simulation environm ent. This prototype system called ESSIM was successfully

developed and consisted of two closely in terlinked components, a three-phase

discrete event module and expert system. Two code generators were also

provided to ease the process of model build ing. The firs t of these was used to

in teractively specify the graphical user in terface. The second generator scans

the expert system knowledge-base and creates the necessary 3GL code to perm it

variable sharing between the simulation and expert system modules.

236

6 . 5 . 2 Subsid iary achievem ents

O ther more minor achievements ensued during the course of th is thesis. These

can be classified into four categories:

6 .5 .2 .1 New approaches to expert system design

As we have seen, the rule-based expert system developed as part of

ESSIM, incorporates the concepts of "Rule-sets" and "Inheritance". The use of

ru le-sets perm itted decision rules to be grouped according to the name of the

decision maker or by job function. "Inheritance" perm itted the inference engine

search space to be extended across more than one ru le -s e t. In d ire c tly , these

features helped alleviate two of the classic criticism s of expert systems which

are: (1) that the random ordering of rules significantly reduces the leg ib ility

and consequent in terpretation of the content of the knowledge-base. (2) that

expert systems execute slowly. By lim iting the backward-chaining search to the

rules contained in a specific ru le -se t, it was possible to substantially improve

the speed with which the inference process could be carried out.

The level of integration achieved between a 3GL program and in terpreted

expert system should be of in terest to A I researchers. Again, one of the

criticism s of expert systems is that th e ir lack of ab ility at operating in a

procedural context and carrying out complex arithm etical operations prevents

th e ir use in a w ider context. The ESSIM expert system physically shares the

same variable addresses as are defined in the 3GL code, thereby perm itting fu ll

use of the 3GL variable definitions and providing almost seamless in tegration .

237

By being able to trace the addresses of 3GL procedures and functions, the

ESSIM expert system is also able to call 3GL code thereby providing the

necessary procedural context.

6 .5 .2 .2 Improvements to the three-phase routines

Modifications were made to the lib ra ry of Pascal simulation routines fo r

three-phase discrete event simulation which help to improve the leg ib ility of the

code. For instance, B -event calls are now achieved by placing the s ta rt address

of the procedure in the executives' tim ing tre e . Hence, at each time advance,

B-Events can be activated d irectly by the executive, w ithout having to firs t

pass control to the 'CallNextBevent' procedure which had to be updated by the

modeller to include references to a ll new B routines.

The application of simulation to the evaluation of a lternative decision

rules w ill typ ically entail the creation of a substantive and complex model. In

the case of ESSIM, the development process is fu rth e r complicated by the use

of a th ird generation language. In order to ease the process of developing large

models, the simulation routines used at the LSE were adapted fo r use in a

modular environment based on Object code. Hence, in ESSIM, the modeller is

provided with a means of encapsulating each en tity cycle w ithin a separate

module.

6 .5 .2 .3 Additional software developments

'D esigner', the program generator used in creating the graphical user

interface was designed using a new approach which again should be of in terest

238

to researchers in information technology. The program generator was

implemented in such a way that pop-up windows could be created, menus

specified and links to external programs defined on an in teractive basis. The

screen design could then be tested without needing to firs t generate the

underlying code. Most im portantly, a generated model can la te r be modified and

subsequently re -lin ked to the existing program.

6 .5 .2 .4 Peripheral benefits of the ESSIM approach

The linkage of the expert system to a simulation model in conjunction with

the implementation of ru le-sets has provided a means of 'paralleling' the

management s tructures. In ESSIM m ultiple decisions may be taken by d ifferen t

individuals at a particu lar point in tim e. This ideal is loosely linked to the

concept of temporal reasoning and should be of in terest to A I researchers.

Another unexpected achievement is the generality of the ESSIM design

which could perm it the modeller to derive alternative benefits from the linkage

of the simulation model and expert system. For instance, one could envisage the

simulation model acting under the control of the expert system in order to

explore a simulated fu tu re as part of a decision making process. The

investigation of such possibilities was outside the scope of the thesis but could

form the basis of fu tu re research work based on ESSIM.

239

6 .6 FUTURE WORK

In it's present state, the ESSIM simulation modelling environm ent is

essentially a prototype system. ESSIM is a complex program which was

necessarily developed by a single ind iv idual. Limited time was therefore spent

on developing such facilities as e rro r handling which would have to be fu rth e r

enhanced if the system was to be used by other researchers. Consequently,

it would be desirable as a firs t step to resolve such problems in order to build

a stable system fo r fu tu re research w ork.

The research presented in th is thesis has highlighted the considerable

potential that simulation modelling offers in the context of the evaluation of

alternative operational policies. I t is the author's opinion that there are yet

major advances to be made in th is area which could resu lt in a fa r greater

acceptance of simulation modelling as a management tool. Of all the possible

research projects that could be established based on ESSIM, the greatest

potential possibly lies in developing a system like ESSIM along the lines of a

management decision support system. The work presented in th is thesis has

already served to demonstrate that by isolating the model representation of the

physical components of a real-w orld system from operational decision ru les,

model experiments could be carried out by solely altering defined decision

rules. Two essential steps would be required in bringing th is kind of modelling

into the realms of d irect end-user decision support. F irs tly , fu rth e r advances

would be required in the development of tools fo r the automated in terpretation

of model output. Secondly, the creation and subsequent modification of decision

rules would need to be fu rth e r sim plified, possibly through the introduction of

menuing systems or natural language in terfaces.

240

APPENDIX A

241

CONTENTS - APPENDIX A

It e

A . 1 In troduction . 243

A .2 O verall system design. 244

A .3 The simulation model. 246

A .4 The user in terface. 247

A .5 The expert system and interfaces w ith the simulation model 249

242

APPENDIX A

JOB-SHOP PRODUCTION SCHEDULING USING ESSIM

A .l INTRODUCTION

Mathematical modelling has been used in the context of the job-shop, in

evaluating proposed heuristics and in generating alternatives which may be

shown to be 'optimal' in some sense. Such mathematical modelling has inevitab ly

been based on ra th er simple descriptions of the job shop environm ent.

Consequently, discrete event simulation modelling has often been used fo r rule

evaluation in more realistic contexts (Arum ugam [1985], B arre tt & Barman [1986]

and Kiran & Sm ith[1983]).

Simulation models have been used extensively in job-shop production

environments in evaluating d ifferen t scheduling ru les, in developing scheduling

rules under a given set of param eters, and in analysing the sensitivity of

job-shop models to changes in scheduling ru les . Such simulations require access

to relevant databases and must reflect the complex decision-making of the job

shop. I f this is to be achieved without demanding extensive intervention from

the production controller then the decision-making capacity must be

accommodated w ithin the simulation model.

A production controller in a typ ical engineering job shop relies in great

measure on his own personal experience and judgement in scheduling workloads.

These decisions cannot be made without a detailed knowledge of the curren t

state of m aterial stocks, outstanding orders and w ork-in -progress. O n-line

243

decision support systems fo r job shop scheduling have been introduced to

provide such necessary information through the implementation or in terfacing

of appropriate database systems. More recently, the provision of information

has been supplemented by the addition of rule-based expert systems which

seek to encapsulate exp lic itly , in a collection of scheduling rules or heuristics,

the experience and knowledge of the production controller (Fox and

Sm ith[1984]). The rule-base appropriate to a particu lar job shop context w ill

typ ically be complex and requires painstaking development in collaboration with

production management.

Consequently, the potential synergy of simulation and expert system

would seem a logical step forw ard in the context of the job shop. ESSIM, in

th is respect appears to be an appropriate development tool. The remaing

sections describe the development of a job-shop model in itia lly based on

experiences gained from two m anufacturing concerns operating from Rio de

Janeiro, Brasil (Costa and Jardim[1986]).

A .2 OVERALL SYSTEM DESIGN

Figure A72 shows the overall structure of the system. The simulation

model progresses the job-shop operations through tim e. The expert system

manages the scheduling of tasks w ithin the simulated system. User defined

databases are used fo r the storage of data relating to product descriptions and

outstanding orders. The user in terface system is used fo r the control of output

displays.

244

RULE
BASE

ORDER &
PRODUCT

DATABASE

INFERENCE
ENGINE

GRAPHICS
DISPLAY MODULE USER INTERFACE

EXPERT SYSTEM

SIMULATION
MODEL

Figure A 72 System overview for the Job-shop mode/

T h e d e s c r ip t io n o f th e jo b s h o p is in te rm s o f a n u m b e r o f ’w o rk c e n t r e s '.

Each w o rk c e n tre is c o m p ris e d o f a n u m b e r o f c o lla b o ra t iv e fa c i l i t ie s , s u c h as

m ach ines a n d a s s o c ia te d o p e ra t iv e s , w h ic h r e g u la r ly w o rk to g e th e r as a u n i t

in th e p e r fo rm a n c e o f in d iv id u a l p ro d u c t io n o p e ra t io n s . A w o rk c e n tre is

c h a ra c te r is e d b y th e ra n g e o f o p e ra t io n s o f w h ic h i t is c a p a b le a n d p a ra m e te rs ,

s u c h as c o s t, q u a l i t y o r s p e e d , o f i t s p e r fo rm a n c e o f th e s e .

A 'p ro d u c t ' m ay be c h a ra c te r is e d b y i t s m a te r ia l co m p o n e n ts a n d th e

p o s s ib le se q u e n ce s o f o p e ra t io n s , s u c h as m a c h in in g , a ss e m b ly , p a in t in g e t c . ,

a n d th e a sso c ia te d w o rk c e n tre s on w h ic h th e s e o p e ra t io n s m ig h t be p e r fo rm e d .

245

The technical analysis of a given physical product into the characterising

sequences of production possibilities is a task le ft by the present system to

the production engineer. Product descriptions are maintained in the 'Product

Database1 of Figure A72 and referenced by the expert system in determ ining

scheduling possibilities. Supply of materials from inventory is considered as

the function of a particu lar work centre which must also manage an inventory

control policy.

An 'order' is characterised by the iden tity of the customer, the product

and quantity requested, the time of placement, due date and p rio rity ra ting

accorded by sales staff. A file of orders received, in -progress and completed

is maintained as a specification of the work requirem ent of the shop and a

measure of performance.

A .3 THE SIMULATION MODEL

The job-shop model uses ESSIMs simulation module which is structured

according to the Three Phase system (see section 2 .4 .1) . The A phase searches

a diary of prescheduled events, such as the completion of an operation by a

work centre, fo r the earliest scheduled event and advances the model clock to

th is tim e. The B phase manages the execution of all events scheduled to occur

at the current clock time and the C phase explores the resu lting model state

to determine what new events might be scheduled. This la tte r phase is typ ica lly

where the decision is made to start work on a particu lar task and hence enter

into the diary the scheduled time of its completion.

246

The principal system entities are the work centres which follow a simple

life cycle alternating between periods of processing jobs and idleness. Each

work centre has a lis t of allocated tasks, some of which may be suspended

pending the a rriv a l of necessary components, from which a next task may be

selected.

The a rriva l of orders and consequent inflow of fu rth e r jobs may either

be on the specific intervention of the user, from a predefined file of orders or

according to a randomised a rriva l mechanism. On receipt each order is

translated into its components and incorporated into the job shop schedule.

A .4 THE USER INTERFACE

The job-shop model makes use of an in terface which is largely

m enu-driven from a m ulti-window screen. The in terface design was manually

created rath er than using the ESSIM interface generator, and so output is

largely text based. The ESSIM interface design was developed following from

the experiences gained from implementing the job-shop model in terface.

The basic screen is shown in Figure A73. The various windows contain

the main menu offering options, 'Simulate1, 'Edit Product F ile ', 'Edit Rule Base'

and 'View Orders'. Subsidiary pull-down menus allow a fu rth e r range of

options. Selection of options is effected under cursor control, by in itia l le tte r

or using a mouse. Figure A73 actually shows some of the sub-menus which are

presented to the user before the simulation begins.

247

Edit Data GRAPHICS

NONE
LINE
HI-RES
ACD
CANCEL

Rule Base View orders Quit

-Dialog-

RUNNIN: FILENAME : *.EXP

DURATION: 600__

LFT=0K / RGT=CANCEL

ESS1.EXP
ESS2.EXP
ESS.EXP
ESSIM.EXP

-Message- “T race-

FIGURE A73 THE JOB-SHOP APPLICATION INTERFACE

T h e w in d o w s p ro v id e f u r t h e r a re a s f o r s ys te m 'M e ssa g e s ', te x tu a l

'O u tp u t ' d u r in g th e e x e c u tio n o f th e s im u la t io n , u s e r-m a c h in e 'D ia lo g ' and

e x e c u tio n 'T r a c e '. S im p le , d ire c te d e d ito r s p e rm it th e e x a m in a t io n , a d d it io n

a n d d e le t io n o f e n t r ie s in p ro d u c t a n d o r d e r f i le s a n d ru le -b a s e .

T h e d y n a m ic b e h a v io u r o f th e s im u la te d jo b sh o p m ay be s tu d ie d th r o u g h

a l te rn a t iv e d is p la y fo rm a ts . T h e u s e r m ay s e le c t fro m a te x tu a l d is p la y , a

d ia g ra m m a tic re p re s e n ta t io n o f th e jo b s h o p th r o u g h th e l i f e c y c le o f th e w o rk

c e n tre s o r th r o u g h h ig h re s o lu t io n g ra p h s o f th e a c c u m u la tin g w o rk lo a d s o f

a s e le c te d s e t o f w o rk c e n t re s , (see F ig u re s A74 a n d A 75)

248

T I H i : Z ? 0 ' Speed 94'/.

WC 1

HC 2

WC 3

WC 4

STOCK

N C 2 — I IC 3 — M C 4 — MC5 3 0 0
FJ.CURh A 1 GRAPH OF WORK-CENTRE QUEUE LENCTHSI Cl;ijri F I GURE A 7 * AGP TYPE p J S flA Y OF WORK. CENTRf yU£UE§

D e ta ils o f th e o rd e rs c o m p le te d a n d th o s e s t i l l o u ts ta n d in g can be v ie w e d

on re q u e s t e i th e r d u r in g o r fo l lo w in g th e e x e c u tio n o f th e s im u la tio n p ro g ra m .

A .5 THE EXPERT SYSTEM AND INTERFACES WITH THE SIMULATION MODEL

D u r in g th e e x e c u t io n o f th e s im u la tio n m ode l, th e C -p h a s e o f e v e ry c y c le

re q u ire s th a t d e c is io n s be made as to w h ic h a c t iv i t y , i f a n y s h o u ld s ta r t a t

th a t tim e . W hen a w o rk c e n tre f in is h e s i t s c u r r e n t ta s k , i t m u s t s e le c t th e n e x t

jo b fro m th o s e p o s s ib le . W hen a new o r d e r a r r iv e s , i t m u s t e i th e r be re je c te d

o r th e co m p o n e n t ta s k s m u s t be a llo c a te d a m o n g s t th e a p p ro p r ia te w o rk c e n t r e s .

T h e s im u la tio n e x e c u t iv e lo o k s to th e a sso c ia te d e x p e r t s y s te m to s p e c ify su ch

s e le c tio n s a n d a llo c a t io n s . T h e c u r r e n t s ta te o f th e s im u la tio n m odel p ro v id e s

th e c o n te x t w i th in w h ic h th e e x p e r t s y s te m a p p lie s i t s k n o w le d g e a n d th u s th e

e x p e r t s y s te m is a b le to access th e s im u la t io n s ta te v a r ia b le s .

T h e k n o w le d g e base o f th e e x p e r t s y s te m is d e f in e d in te rm s o f a

249

structured file of IF -TH E N production rules. The structure reflects the

intrinsic hierarchical structure of production planning processes and is

described in detail in section 3 .2 (see figure 8 and Bitran et a l. [1982], Erschler

et a l.[1 9 8 6]/ and Bullers & Schultz[1986]).

The decision as to which job to s tart at a given work centre may be made

with reference to the local environment of that work centre, i .e . the job may

be selected from the list of possible jobs currently available according to local

operating constraints and sequencing rules. These may include specific

management direction as to which rules to apply at particular times or with

respect to particular jobs.

The job-shop application was developed as a means of gaining

understanding of the requirement of the simulation modeller. A lack of detailed

rules relating to the operation of the production plant made the implementation

of a realistic knowledge-base d ifficu lt. The job-shop application was

consequently used for the validation of the expert system and its links to the

simulation model. This formed the basis for the development of the ESSIM

environment and its subsequent validation using the port model.

250

APPENDIX B

251

APPENDIX B

THE PORT MODEL KNOWLEDGE-BASE UNDER ESSIM

EXTERNAL {declaration of integer variables to be shared with the simulation

model}

NumbStackRmgldle, NumbMoveToShipJob, NumbMoveToExitJob,

NumbRmgAtSSide, NumbRmgAtLSide, RmgToLeaveSSide,

RmgToLeaveLSide, NumbTruckToBay, BayPos,

NumTruckOutside,ShipImportJobs, ShipEx port Jobs, NumShipCranesIdle,

NumTotallmportJobs, NumCranesOnlmports, CurrentShipBerth,

NumberOf GateVehicles, NumberOf Jobs, Number Of Berths, NumberOflmvs,

NumberOfShipCranes, NumbFullImvsToStore, _Time,

NumbEmptylmvsToStore Exports Left For Ship ;StoreNumWithExpContainer,

NumberOf Ships, Number Of Stores, NumbEmptylmvToShip,

NumbFullImvToShip, NumberOfShipsAtSea, NumEmptylmvAtShip,

NumEmptylmvAtBerth, NumEmptylmvAtOtherBerth,

Numldlelmvs, NumFullImv At B erth , NumlmportsRemaining,

NumbShipsWaitingToBerth, NumbFreeBerths, TimeToUnloadFullImv,

TimeToFetchlmvFromShipQ, TimeToUnLoadShip, TimeToLoadShip,

TimToGetlmvFromOtherShipQ, TimeToFetchlmvFromldleQ,

TimeToMoveToShipEmpty, TimeToMoveToShipFull,

TimeToMoveToLandEmpty, TimeToMoveToLandFull,

TimeToGetAuthorization : INTEGER ;

252

{declaration of boolean variables to be shared with the simulation model}

CraneOperational, ShipInBerthOne, ShipInBerthTw o, CraneOnlmports,

CraneLoaded, Loadlmv, _UnLoadImv, LoadShip, _Un LoadShip,

GetAuthorization, AuthorizeCraneToExport, Retum lm vsToIdle,

FetchlmvFromShipQ, FetchlmvFromOtherShipQ , FetchlmvFromldleQ,

FulllmvToUnload, ChangeACraneToExports, Makelmvldle,

Ship A rrival Due, WorkAtBerthCompleted, MoveGantryToShipSide,

_MoveGantryToLandSide, MoveGantryToShipEmpty,

MoveGantryToLandEmpty, NextShipJoblsAnlmport,

NextLandJoblsAnlmport, LoadVehicleWithlmport,

UnLoadExportFromVehicle, Next JoblsAnlmport, MovelmportToStack,

MoveEmptyToStack, MoveEmptyToStackFromGate, MoveExportToStack,

LoadlmportFromlmv, UnloadExportToImv: BOOLEAN ;

PASCAL FILE 'Rules.pas' ; {File of Pascal routines to be called from within

the expert system.}

LOCAL {declaration of local expert system boolean variables}

StartlandSideWork, StartShoreSideWork, StartNewJob,

StartMoveFromSSide, StartMoveFromLSide, MoveToBay, Bay Free,

TruckWaiting, TruckOutside, W aitingForTruck, ShipJobsLeft,

LetTrucklnPort, BerthedShip, CraneJobs, NoExportsInStore,

SendFullImvToStore, SendEmptylmvToShip, SendFullImvToShip,

StartShipA rrive, StartShipLeave, StartDockAtBerth, ShipFullOfExports,

Im vsldle, SendEmptylmvToStore, EmptylmvToLoad, JobToBeDone,

JobToDo, P riority ToShipjobs, JobOutstanding, Next Job,

JobFound, CranelnCorrectMode, ShipToLoad, ShipToUnload : Boolean;

253

{Declaration of local ex p ert system in ten ger variables}

Bay : INTEGER ;

RULESET StackManager ;

[*] Number Of Stores = 10; {number of stores is 10}

[*] NumberOf Jobs = 50 ; {number of jobs is 50}

[1] STARTNEWJOB = True WHEN (NumbStackRmgldle > 0)

AND (JobToBeDone = True) ;

[2] PriorityToShipJobs = GantryToShipSide ; {enquiry to rules.pas}

[3] MoveGantryToShipSide = True

IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)

AND (PriorityToShipJobs = T ru e)) ;

[4] _MoveGantryToLandSide = True

IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)

AND (PriorityToShipJobs = False)) ;

[5] _MoveGantryToShipSide = True WHEN NumbMoveToShipJob > 0 ;

[6] _MoveGantryToLandSide = True WHEN NumbMoveToExitJob > 0 ;

254

[7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND (TimeToMoveToShipEmpty = 40)

IF (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = True) ;

[8] (MoveGantryToShipEmpty = False) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND (TimeToMoveToShipFull = 60)

IF (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = False);

[9] (MoveGantryToLandEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToShipSide = False)

AND (TimeToMoveToLandEmpty = 40)

IF (_MoveGantryToLandSide = True)

AND (NextLandJoblsAnlmport = False) ;

[10] (MoveGantryToLandEmpty = False) AND (JobToBeDone = True)

AND (MoveGantryToShipSide = False)

AND (TimeToMoveToLandFull = 60) (JobToBeDone = False)

IF (MoveGantryToLandSide = True)

AND (NextLandJoblsAnlmport = True) ;

255

[11] (JobOutstanding = True) AND (LoadlmportFromlmv = True)

AND (UnloadExportToImv = False) AND (_Time = 60)

~ (JobOutstanding = True) AND (UnloadExportToImv = True)

AND (Time = 60) AND (LoadlmportFromlmv = False)

IF NextJoblsAnlmport = True;

[12] STARTSHORESIDEWORK = True WHEN (NumbRmgAtSSide > 0)

AND (JobOutstanding = T ru e);

[13] (JobToDo = True) AND (LoadVehicleWithlmport = True)

AND (UnloadExportFromVehicle = False) AND (Time = 60)

(JobToDo = True) AND (UnloadExportFromVehicle = True)

AND (_Time = 60) AND (LoadVehicleWithlmport = False)

IF NextJoblsAnlmport = True;

[14] STARTLANDSIDEWORK = True WHEN (NumbRmgAtLSide > 0)

AND (JobToDo = T ru e);

[15] (NextJob = True) AND (MovelmportToStack = True)

AND (MoveEmptyToStack = False) AND (_Time = 60)

(NextJob = True) AND (MoveEmptyToStack = True)

AND (_Time = 40) AND (MovelmportToStack = False)

IF NextJoblsAnlmport = True;

[16] STARTMOVEFROMSSIDE = True WHEN (RmgToLeaveSSide > 0)

AND (NextJob = T ru e);

256

[17] (JobFound = True) AND (MoveEmptyToStackFromGate = True)

AND (MoveExportToStack = False) AND (_Time = 40)

(JobFound = True)

AND (MoveEmptyToStackFromGate = False) AND (_Time = 60)

AND (MoveExportToStack = True)

IF NextJoblsAnlmport = True;

[18] STARTMOVEFROMLSIDE = True WHEN (RmgToLeaveLSide > 0)

AND (JobFound = T ru e);

[19] Bay = WhichBay ;

[20] (bayFree = True) AND (BayPos = Bay) ~ (bayFree = False) IF Bay > 0 ;

[21] NoExportsInStore = True WHEN StoreNumWithExpContainer = 0 ;

RULESET GateManager (INHERIT StackManager,Shipmanager) ;

[*] NumberOfGateVehicles = 50 ; {Number of gate vehicles is 50}

[1] (TruckOutSide = True) ~ (TruckOutside = False)

AND (waitingForTruck = False)

IF NumTruckOutside > 0 ;

[2] waitingForTruck = True WHEN shipJobsLeft = True;

257

[3] (truckW aiting = True) ~ (truckW aiting = False) AND (bayFree = False)

IF NumbTruckToBay > 0 ;

[4] LETTRUCKINPORT = True WHEN (truckOutside = True)

AND (waitingForTruck = T ru e);

[5] (MOVETOBAY = True) AND (_Time = 0) ~ (MOVETOBAY = FALSE)

IF (truckWaiting = T rue) and (bayFree = True) ;

RULESET ShipManager ;

[*] NumberOfShips = 9 ; {maximum number of ships is 9}

[*] Number Of Berths = 2 ; {maximum number of berths is 2}

[1] shipJobsLeft = True WHEN (ShipImportJobs > 0)

OR (ShipEx port Jobs > 0) ;

[2] berthedShip = True WHEN (ShipInBerthOne = True)

OR (ShipInBerthTwo = T ru e);

[3] shipFullOfExports = True WHEN ExportsLeftForShip = 0 ;

258

[4] (STARTSHIPARRIVE = T rue) AND (_Time = 1200)

~ (STARTSHIPARRIVE = False)

IF (Number Of Ships AtSea > 0)

AND (ShipArrivalDue = True) ;

[5] (STARTDOCKATBERTH = True) AND (_Time = 120)

~ (STARTDOCKATBERTH = False)

IF (NumbShipsWaitingToBerth > 0)

AND (NumbFreeBerths > 0) ;

[6] (STARTSHIPLEAVE = T rue) AND (_Time = 3600)

“ (STARTSHIPLEAVE = False)

IF WorkAtBerthCompleted = True ;

[7] ShipToload = True WHEN ((CurrentShipBerth = 1)

AND (ShipInBerthOne = T ru e))

OR ((CurrentShipBerth = 2) AND (ShipInBerthTwo = T ru e)) ;

[8] ShipToUnload = True WHEN ((CurrentShipB erth = 1)

AND (ShipInBerthOne = T ru e))

OR ((CurrentShipBerth = 2) AND (ShipInBerthTwo = T ru e));

RULESET ImvManager (IN H ERIT ShipManager, StackManager) ;

[*] NumberOflmvs = 100 ; {maximum number of imvs is 100}

259

[1] (imvsldle = T rue) AND (ReturnlmvsToIdle = T rue) ~ (imvsldle = False)

IF (berthedShip = False) AND (NumEmptylmvAtShip > 0);

[2] (emptyImvToLoad = True) AND (FetchlmvFromShipQ = True)

AND (FetchlmvFromOtherShipQ = False)

AND (FetchlmvFromidleQ = False)

AND (TimeToFetchlmvFromShipQ = 40)

IF NumEmptylmvAtBerth > 0 ;

[3] (emptylmvToLoad = True) AND (FetchlmvFromOtherShipQ = True)

AND (FetchlmvFromShipQ = False)

AND (FetchlmvFromidleQ = False)

AND (TimToGetlmvFromOtherShipQ = 40)

IF NumEmptylmvAtOtherBerth > 0 ;

[4] (emptylmvToLoad = True) AND (FetchlmvFromidleQ = True)

AND (FetchlmvFromShipQ = False)

AND (FetchlmvFromOtherShipQ = False)

AND (TimeToFetchlmvFromldleQ = 40)

(emptylmvToLoad = False) IF Numldlelmvs > 0 ;

[5] (FulllmvToUnLoad = True) AND (TimeToUnloadFullImv = 40)

~ (FullimvToUnload = False) IF NumFullImvAtBerth > 0 ;

260

[6] (SENDEMPTYIMVTOSTORE = True) AND (_Time = 30)

~ (SENDEMPTYIMVTOSTORE = False)

IF (NumbEmptylmvsToStore > 0)

AND (_MakeImvIdle = False) ;

{SENDEMPTYIMVTOSTORE Must re tu rn _MakeImvIdle}

[7] Makelmvldle = True WHEN (shipFulIOfExports = True)

OR (noExportsInStore = True) ;

[8] (SENDFULLIMVTOSTORE = T rue) AND (_Time = 60)

~ (SENDFULLIMVTOSTORE = False)

IF (NumbFullImvsToStore > 0);

[9] (SENDEMPTYIMVTOSHIP = True) AND (_Time = 60)

“ (SENDEMPTYIMVTOSHIP = False)

IF (NumbEmptylmvToShip > 0) ;

[10] (SENDFULLIMVTOSHIP = True) AND (_Time =120)

~ (SENDFULLIMVTOSHIP = False)

IF (NumbFullImvToShip > 0) ;

261

RULESET CraneManager (INHERIT Im vM anager,ShipM anager);

(CRANEJOBS must return Loadlmv, _Un Loadlmv, LoadShip, UnloadShip,

FetchlmvFromShipQ , FetchlmvFromOtherShipQ, FetchlmvFromidleQ,

FulllmvToUnload, Returnlm vsToIdle, ChangeACraneToExports,

Get Authorization }

[*] Number Of ShipCranes = 5 ; {Total No. of ship cranes}

[*] TimeToLoadShip = 40 ;

[*] TimetoUnloadShip = TimeToUnloadCalc ; {Call to Pascal function}

[1] CRANEJOBS = False IF CraneOperational = False ;

[2] CRANEJOBS = True WHEN ((Loadlmv = True) OR (_UnLoadImv = True)

OR (_LoadShip = T ru e) OR (_UnLoadShip = T ru e))

AND (CranelnCorrectMode = True) ;

[3] CranelnCorrectMode = True WHEN (CraneOperational = True)

AND ((CraneOnlmports = True) AND ((_LoadImv = True)

OR (_UnloadShip = T ru e))) OR ((CraneOnlmports = False)

AND ((_UnLoadImv = True) OR (_LoadShip = T r u e))) ;

[4] Loadlmv = True WHEN (CraneLoaded = True)

AND (emptylmvToLoad = True) ;

262

[5] _UnLoadlmv = True WHEN (CraneLoaded = False)

AND (FulllmvToUnLoad = T ru e);

[6] LoadShip = True WHEN (CraneLoaded = True) AND (ShipToLoad = T ru e);

[7] _UnLoadShip = True WHEN (_ChangeACraneToExports = False)

AND (CraneLoaded = False) AND (ShipToUnload = T rue) ;

[8] (_ChangeACraneToExports = True) AND (GetAuthorization = True)

AND (TimeToGetAuthorization = CalcFromCurrentTime)

{Call to Pascal function}

AND (CraneOperational = False)

~ (ChangeACraneToExports = False)

AND (GetAuthorization = False)

IF ((CurrentShipB erth = 1)

AND (NumCranesOnlmports > 0))

OR ((CurrentShipB erth = 2)

AND (NumCranesOnlmports > 1))

AND (Numlm ports Remaining = 0)

AND (NumTotallmportJobs > 0);

263

[9] (AUTHORIZECRANETOEXPORT = True) AND (CraneOperational = True)

AND (CraneOnlmports = False)

(AuthorizeCraneToExport = False)

IF ((CurrentShipBerth = 1)

AND (NumCranesOnlmports > 0))

OR ((C urrentShipB erth = 2)

AND (NumCranesOnlmports > 1))

AND (NumlmportsRemaining = 0)

AND (NumTotallmportJobs > 0) ;

END.

264

APPENDIX C

265

APPENDIX C

ADDITION OF A RULE-SET TO THE KNOWLEDGE-BASE

RULESET StackManager (IN H ER IT LMVmanager) ;

[*] Number Of Stores = 10 ; (maximum number of stores is 10}

[*] NumberOfJobs = 50 ; (maximum number of jobs is 50}

[1] STARTNEWJOB = True WHEN (NumbStackRmgldle > 0)

AND (JobToBeDone = True) ;

[2] PriorityToShipJobs = GantryToShipSide ; (enquiry to rules.pas}

[3] MoveGantryToShipSide = True

IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)

AND (PriorityToShipJobs = T ru e)) ;

[4] MoveGantryToLandSide = True

IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)

AND (PriorityToShipJobs = False)) ;

[5] MoveGantryToShipSide = True WHEN NumbMoveToShipJob > 0 ;

[6] MoveGantryToLandSide = True WHEN NumbMoveToExitJob > 0 ;

266

[7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND (TimeToMoveToShipEmpty = 40)

IF (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = True) ;

[8] (MoveGantryToShipEmpty = False) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND (TimeToMoveToShipFull = 60)

IF (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = False);

[9] (MoveGantryToLandEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToShipSide = False)

AND (TimeToMoveToLandEmpty = 40)

IF (_MoveGantryToLandSide = True)

AND (NextLandJoblsAnlmport = False) ;

[10] (MoveGantryToLandEmpty = False) AND (JobToBeDone = True)

AND (_MoveGantryToShipSide = False)

AND (TimeToMoveToLandFull = 60)

~ (JobToBeDone = False) IF (_MoveGantryToLandSide = True)

AND (NextLandJoblsAnlmport = True) ;

267

[11] (JobOutstanding = True) AND (LoadlmportFromlmv = True)

AND (UnloadExportToImv = False) AND (_Time = 60)

" (JobOutstanding = True) AND (UnloadExportToImv = True)

AND (_Time = 60) AND (LoadlmportFromlmv = False)

IF Next JoblsAnlmport = True;

[12] STARTSHORESIDEWORK = True WHEN (NumbRmgAtSSide > 0)

AND (JobOutstanding = T ru e);

[13] (JobToDo = T rue) AND (LoadVehicleWithlmport = True)

AND (UnloadExportFromVehicle - False) AND (_Time = 60)

(JobToDo = True) AND (UnloadExportFromVehicle = True)

AND (_Time = 60) AND (LoadVehicleWithlmport = False)

IF Next JoblsAnlmport = True;

[14] STARTLANDSIDEWORK = True WHEN (NumbRmgAtLSide > 0)

AND (JobToDo = T ru e);

[15] (NextJob = True) AND (MovelmportToStack = True)

AND (MoveEmptyToStack = False) AND (_Time = 60)

(NextJob = True) AND (MoveEmptyToStack = True)

AND (_Time = 40) AND (MovelmportToStack = False)

IF Next JoblsAnlmport = True;

[16] STARTMOVEFROMSSIDE = True WHEN (RmgToLeaveSSide > 0)

AND (NextJob = T ru e);

268

[17] (JobFound = True) AND (MoveEmptyToStackFromGate = True)

AND (MoveExportToStack = False) AND (_Time = 40)

(JobFound = True)

AND (MoveEmptyToStackFromGate = False) AND (_Time = 60)

AND (MoveExportToStack = True)

IF Next JoblsAnlmport = True;

[18] STARTMOVEFROMLSIDE = True WHEN (RmgToLeaveLSide > 0)

AND (JobFound = T ru e);

[19] Bay = WhichBay ;

[20] (bayFree = True) AND (BayPos = Bay) ~ (bayFree = False) IF Bay > 0 ;

[21] NoExportsInStore = True WHEN StoreNumWithExpContainer = 0 ;

[22] (BALANCESTACKS = True) AND (_Time = 60)

“ (BALANCESTACKS = FALSE)

IF (_TransfExpToRhtStack = True)

OR (_TransfExpToLftStack = True)

OR (_TransfImpToRhtStack = True)

OR (_TransfImpToLftStack = True)

AND (IdleStackVehicles = T ru e) ;

269

RULESET LMVmanager ;

[1] MoreExptsInLeftStack = True

WHEN (ExportsInStackLeft - ExportsInStackRight) > 0 ;

[2] _TransfExpToRhtStack = True WHEN (MoreExptsInLeftStack = True)

AND (ExportsInStackRight < ExportsInCurrentStack) ;

[3] _TransfExpToLftStack = True WHEN (MoreExptsInLeftStack = False)

AND (ExportsInStackLeft < ExportsInCurrentStack) ;

[4] MorelmptsInLeftStack = True

WHEN (ImportsInStackLeft - Im portsInStackRight) > 0 ;

[5] _TransfImpToRhtStack = True WHEN (MorelmptsInLeftStack = True)

AND (ImportsInStackRight < Im portsInCurrentStack) ;

[6] TransflmpToLftStack = True WHEN (MorelmptsInLeftStack = False)

AND (ImportsInStackLeft < Im portsInCurrentStack) ;

270

APPENDIX D

271

APPENDIX D

CODING THE PORT MODEL KNOWLEDGE-BASE IN PASCAL

MODULE expertrules ;

VAR [External] {Variables shared with the simulation module}

NumbStackRmgldle, NumbMoveToShipJob, NumbMoveToExitJob,

NumbRmgAtSSide, NumbRmgAtLSide, RmgToLeaveSSide,

RmgToLeaveLSide, NumbTruckToBay, BayPos, NumTruckOutside,

ShipImportJobs, ShipExportJobs, NumShipCranesIdle,

NumTotallmportJobs, NumCranesOnlmports, CurrentShipBerth,

NumberOfGateVehicles, NumberOf Jobs, NumberOfBerths, NumberOflmvs,

NumberOfShipCranes, NumbFullImvsToStore, _Time,

NumbEmptylmvsToStore ,ExportsLeftForShip 3toreNumWithExpContainer,

Number Of Ships, Number Of Stores, NumbEmptylmvToShip,

NumbFullImvToShip, NumberOfShipsAtSea, NumEmptylmvAtShip,

NumEmptylmvAtBerth, NumEmptylmvAtOtherBerth, Numldlelmvs,

NumFullImvAtBerth, NumlmportsRemaining, NumbShipsWaitingToBerth,

NumbFreeBerths, TimeToUnloadFulIImv, TimeToFetchlmvFromShipQ,

TimeToUnLoadShip, TimeToLoadShip, TimToGetlmvFromOtherShipQ,

TimeToFetchlmvFromldleQ, TimeToMoveToShipEmpty,

TimeToMoveToShipFull, TimeToMoveToLandEmpty,

TimeToMoveToLandFull : INTEGER ;

CraneOperational, ShipInBerthOne, ShipInBerthTwo, CraneOnlmports,

CraneLoaded, _LoadImv, _UnLoadImv, _LoadShip, _UnLoadShip,

272

Returnlm vsToIdle, FetchlmvFromShipQ, FetchlmvFromOtherShipQ,

FetchlmvFromldleQ, FulllmvToUnload, ChangeACraneToExports,

Makelmvldle, ShipArrivalDue, WorkAtBerthCompleted,

_MoveGantryToShipSide , MoveGantryToLandSide,

MoveGantryToShipEmpty, MoveGantryToLandEmpty,

NextShipjoblsAnlm port, NextLand JoblsAnlmport, LoadVehicleWithlmport,

UnLoadExportFromVehicle, Next JoblsAnlmport, MovelmportToStack,

MoveEmptyToStack, MoveEmptyToStackFromGate, MoveExportToStack,

LoadlmportFromlmv, UnloadExportToImv: BOOLEAN ;

VAR {variables local to this module}

Bay Free, TruckW aiting, TruckOutside, W aitingForTruck, ShipJobsLeft,

BerthedShip, NoExportsInStore, ShipFullOfExports, Im vsldle,

EmptylmvToLoad, JobToBeDone, PriorityToShipjobs, JobOutstanding,

Next Job, JobFound: Boolean;

Bay : INTEGER ;

FUNCTION GantryToShipSide : Boolean; Extern;

FUNCTION WhichBay: In teger ; Extern;

273

FUNCTION StartNewJob : Boolean ;

BEGIN

PriorityToShipJobs := GantryToShipSide ; {enquiry to rules.pas}

IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND

(PriorityToShipJobs = T ru e)) THEN

BEGIN

MoveGantryToShipSide := True;

MoveGantryToLandSide := False ;

END ELSE

IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND

(PriorityToShipJobs = False)) THEN

BEGIN

_MoveGantryToLandSide := True;

MoveGantryToShipSide := False ;

END ELSE

IF NumbMoveToShipJob > 0 THEN

BEGIN

MoveGantryToShipSide := True ;

MoveGantryToLandSide := False;

END ELSE

IF NumbMoveToExitJob > 0 THEN

BEGIN

MoveGantryToLandSide := True ;

MoveGantryToShipSide := False ;

END ELSE

BEGIN

_MoveGantryToLandSide := False ;

274

_MoveGantryToShipSide := False ;

END;

IF (_MoveGantryToShipSide = True) AND (NextShipjoblsAnlmport = True)

THEN

BEGIN

MoveGantryToShipEmpty := True;

JobToBeDone := True;

_MoveGantryToLandSide := False;

TimeToMoveToShipEmpty := 40;

END ELSE

IF (_MoveGantryToShipSide = True) AND (NextShipjoblsAnlmport = False)

THEN

BEGIN

MoveGantryToShipEmpty := False;

JobToBeDone := True;

_MoveGantryToLandSide := False;

TimeToMoveToShipFull := 60;

END ELSE

IF (MoveGantryToLandSide = True) AND (NextLand JoblsAnlmport = False)

THEN

BEGIN

MoveGantryToLandEmpty := True;

JobToBeDone := True;

_MoveGantryToShipSide := False;

TimeToMoveToLandEmpty := 40;

END ELSE

275

IF (MoveGantryToLandSide = T rue) AND (NextLand JoblsAnlmport = True)

THEN

BEGIN

MoveGantryToLandEmpty := False;

JobToBeDone := True;

_MoveGantryToShipSide := False;

TimeToMoveToLandFull := 60;

END

ELSE JobToBeDone := False;

IF (NumbStackRmgldle > 0) AND (JobToBeDone = True) THEN

STARTNEWJOB := True ELSE StartNewJob := False ;

END;

FUNCTION StartShoreSideWork : Boolean;

BEGIN

IF NextJoblsAnlmport = True THEN

BEGIN

JobOutstanding := True;

LoadlmportFromlmv := True;

UnloadExportToImv := False;

Time := 60;

END ELSE

BEGIN

JobOutstanding := True;

276

UnloadExportToImv := True;

Time := 60;

LoadlmportFromlmv := False;

END;

IF (NumbRmgAtSSide > 0) AND (JobOutstanding = True) THEN

STARTSHORESIDEWORK := True ELSE StartShoreSideWork := False;

END;

FUNCTION StartLandSideWork : Boolean;

BEGIN

IF Next JoblsAnlmport = True THEN

BEGIN

JobToBeDone := True;

LoadVehicleWithlmport := True;

UnloadExportFromVehicle := False;

_Time := 60 ;

END ELSE

BEGIN

JobToBeDone := True;

UnloadExportFromVehicle := True;

Time := 60;

LoadVehicleWithlmport := False;

END;

IF (NumbRmgAtLSide > 0) AND (JobToBeDone = True) THEN

STARTLANDSIDEWORK := True ELSE StartLandSideWork := False ;

END;

277

FUNCTION StartMoveFromSSide : Boolean;

BEGIN

IF NextJoblsAnlmport = True THEN

BEGIN

Next Job := True;

MovelmportToStack := True;

MoveEmptyToStack := False;

Time := 60;

END ELSE

BEGIN

Next Job := True;

MoveEmptyToStack := True;

Time := 40;

MovelmportToStack := False;

END;

IF (RmgToLeaveSSide > 0) AND (NextJob = True) THEN

STARTMOVEFROMSSIDE := True ELSE StartMoveFromSSide := False ;

END;

FUNCTION StartMoveFromLSide : Boolean;

BEGIN

IF NextJoblsAnlmport = True THEN

BEGIN

JobFound := True;

MoveEmptyToStackFromGate := True;

MoveExportToStack := False;

278

Time := 40;

END ELSE

BEGIN

JobFound := True;

MoveEmptyToStackFromGate := False;

Time := 60;

MoveExportToStack := True;

END;

IF (RmgToLeaveLSide > 0) AND (JobFound = T ru e) THEN

STARTMOVEFROMLSIDE := True ELSE StartMoveFromLSide := False ;

END;

FUNCTION LetTrucklnP ort : Boolean;

BEGIN

IF Num TruckOutside > 0 THEN TruckOutSide := True ELSE

TruckO utside := False;

IF (ShiplmportJobs > 0) OR (ShipExportJobs > 0) THEN

shipJobsLeft := True ELSE ShipJobsLeft := False ;

IF shipJobsLeft = True THEN w aitingForTruck := True ELSE

W aitingForTruck := False ;

IF (truckO utside = T rue) AND (w aitingForTruck = T ru e) THEN

LetTrucklnP ort := True ELSE LetTrucklnP ort := False ;

END;

279

FUNCTION MoveToBay : Boolean ;

BEGIN

IF Num bTruckToBay > 0 THEN

BEGIN

truckW aiting := True;

Bay := WhichBay ;

END ELSE

BEGIN

truckW aiting := False;

bay Free := False;

Bay := 0 ;

END;

IF Bay > 0 THEN

BEGIN

bayFree := True;

BayPos := Bay;

END ELSE bayFree := False;

IF (truckW aiting = T rue) AND (bayFree = T ru e) THEN

BEGIN

MOVETOBAY := True;

_Time := 0;

END ELSE MOVETOBAY := FALSE ;

END;

280

FUNCTION StartShipA rrive : Boolean ;

BEGIN

IF (NumberOfShipsAtSea > 0) AND (ShipA rrivalD ue = T ru e) THEN

BEGIN

STARTSHIPARRIVE := True ;

Time := 1200 ;

END ELSE STARTSHIPARRIVE := False;

END;

FUNCTION StartD ockA tBerth : Boolean;

BEGIN

IF (NumbShipsWaitingToBerth > 0) AND (Num bFreeBerths > 0) THEN

BEGIN

STARTDOCKATBERTH := True;

_Time := 120;

END ELSE STARTDOCKATBERTH := False;

END;

FUNCTION StartShipLeave: Boolean ;

BEGIN

IF WorkAtBerthCompleted = True THEN

BEGIN

STARTSHIPLEAVE := True;

Time := 3600;

END ELSE STARTSHIPLEAVE : = False;

END;

281

FUNCTION SendEm ptylm vToStore : Boolean;

BEGIN

IF StoreNumWithExpContainer = 0 THEN noExportsInStore := True ELSE

NoExportsInStore := False ;

IF ExportsLeftForShip = 0 THEN shipFuIIO fExports := True ELSE

ShipFuIIO fExports := False;

IF (shipFuIIO fExports = T rue) OR (noExportsInStore = T ru e) THEN

_MakeIm vIdle := True ELSE _MakeIm vIdle := False ;

IF (NumbEmptylmvsToStore > 0) AND (_M akeIm vIdle = False) THEN

BEGIN

SENDEMPTYIMVTOSTORE := True;

Time := 30;

END ELSE SENDEMPTYIMVTOSTORE := False;

(SENDEMPTYIMVTOSTORE Must re tu rn _MakeIm vIdle}

END;

FUNCTION SendFullIm vToStore : Boolean ;

BEGIN

IF NumbFullImvsToStore > 0 THEN

BEGIN

SENDFULLIMVTOSTORE := True;

Time := 60;

END ELSE SENDFULLIMVTOSTORE := False;

END;

282

FUNCTION SendEm ptylm vToShip: Boolean;

BEGIN

IF (NumbEmptylmvToShip > 0) THEN

BEGIN

SENDEMPTYIMVTOSHIP := True;

Time := 60;

END ELSE SENDEMPTYIMVTOSHIP := False;

END;

FUNCTION SendFullIm vToShip : Boolean ;

BEGIN

IF (Num bFullIm vToShip > 0) THEN

BEGIN

SENDFULLIMVTOSHIP := True;

Time :=120;

END ELSE SENDFULLIMVTOSHIP := False;

END;

283

{CRANEJOBS must re tu rn Loadlmv, UnLoadlmv, LoadShip, UnloadShip,

FetchlmvFromShipQ, Fetchlm vFrom OtherShipQ, Fetchlm vFrom ldleQ,

FuIIIm vToUnload, R eturnlm vsToIdle, ChangeACraneToExports}

FUNCTION CraneJobs : Boolean;

BEGIN

IF (ShipInBerthOne = True) OR (ShipInBerthTw o = T ru e) THEN

berthedShip := True

ELSE BerthedShip := False ;

IF (berthedShip = False) AND (NumEmptylmvAtShip > 0) THEN

BEGIN

im vsldle := True;

Returnlm vsToIdle := True;

END ELSE im vsldle := False;

IF BerthedShip = True THEN

BEGIN

IF NumEmptylmvAtBerth > 0 THEN

BEGIN

emptylmvToLoad := True;

FetchlmvFromShipQ := True;

FetchlmvFromOtherShipQ := False;

FetchlmvFromidleQ := False;

TimeToFetchlmvFromShipQ := 40;

END ELSE

IF Num Emptylm vAtOtherBerth > 0 THEN

BEGIN

emptylmvToLoad := True;

284

FetchlmvFromOtherShipQ := True;

FetchlmvFromShipQ := False;

FetchlmvFromldleQ := False;

TimToGetlmvFromOtherShipQ := 40;

END ELSE

IF Numldlelmvs > 0 THEN

BEGIN

emptylmvToLoad := True;

FetchlmvFromldleQ := True;

FetchlmvFromShipQ := False;

FetchlmvFromOtherShipQ := False;

TimeToFetchlmvFromldleQ := 40;

END ELSE emptylmvToLoad := False;

END;

IF BerthedShip = True THEN

IF Num FullIm vAtBerth > 0 THEN

BEGIN

_FullImvToUnLoad := True;

TimeToUnloadFullImv := 40;

END ELSE

FullimvToUnload := False;

IF BerthedShip AND (CraneOnlmports = T rue)

AND (CraneLoaded = T ru e) AND (emptylmvToLoad = T ru e)

THEN Loadlmv := True

ELSE Loadlmv := False ;

IF BerthedShip AND (CraneOnlm ports = False)

AND (CraneLoaded = False) AND (_FullIm vToUnLoad = T rue)

285

THEN UnLoadlmv := True

ELSE UnLoadlmv := False ;

IF BerthedShip AND (CraneOnlm ports = False) AND

(CraneLoaded = T ru e) THEN

BEGIN

LoadShip := True;

TimeToLoadShip := 40;

END ELSE LoadShip := False;

IF (C urrentShipB erth = 1) AND

((NumlmportsRemaining < (NumTotallmportJobs / 2)) AND

(NumCranesOnlmports = 2)) OR

((NumlmportsRemaining = 0) AND

(NumCranesOnlmports = 1)) THEN

BEGIN

changeACraneToExports := True;

CraneOnlmports := False;

END;

IF (C urrentShipB erth = 2) AND

((NumImportsRemaining< (2*N um TotalIm portJobs/3)) AND

(NumImportsRemaining> (NumTotallmport Jobs/3)) AND

(Num CranesOnImports=3)) OR

((NumImportsRemaining< (NumTotallmport Jobs/3)) AND

(Numlmports Remaining > 0) AND

(NumCranesOnImports=2)) OR

((NumlmportsRemaining = 0) AND

(NumCranesOnlmports = 1)) THEN

BEGIN

286

changeACraneToExports := True;

CraneOnlmports := False;

END ELSE

changeACraneToExports := False;

IF BerthedShip AND (ChangeACraneToExports = False) AND

(CraneOnlm ports = T ru e) AND

(CraneLoaded = False) THEN

BEGIN

_UnLoadShip := True;

TimeToUnloadShip := 40;

END ELSE Unload Ship := False;

IF ((CraneOperational = False) AND (im vsldle = T ru e)) OR

(CraneOperational = False) THEN CRANEJOBS := False;

IF ((Loadlmv = T ru e) OR (U nLoadlm v = T ru e) OR

(_LoadShip = T ru e) OR (_UnLoadShip = T ru e)) AND

(NumShipCranesIdle > 0) THEN CRANEJOBS := True ELSE

Crane Jobs := False ;

END;

END.

287

APPENDIX E

288

CONTENTS - APPENDIX E

E . 1 In troduction . 290

E .2 Using Designer. 290

E.2 .1 Creating pull-down windows. 292

E .2 .2 Pop-Up windows. 293

E .2 .3 External program calls. 294

E .2 .4 Code G enerator. 294

E .3 Modifying Designer files . 295

E .3 .1 Using the generated files . 295

289

APPENDIX E

DESIGNER - An in teractive approach to man/machine

in terface development.

E .l INTRODUCTION

Designer was created as a tool fo r use with the ESSIM simulation language

and expert system, allowing programmers to add a graphic/windowing in terface

fo r the presentation of output. The concept behind Designer was not ju st to

provide a lib ra ry of p re -w ritten routines, but to le t the user create an

in terface in teractive ly . Designer is a form of 4GL in which 'in teractive

programming1 is used to generate PASCAL program code. Once created, the

in terface layout can be 'edited' and new code produced. Simulation models which

in itia lly provide a crude form of in put/o utput and screen design can be

transform ed by replacing 'read' and 'w rite ' commands. Furtherm ore, the

eventual user of the model can be d irectly involved with the setting out of the

in terface and the presentation of the output.

E .2 USING DESIGNER

The standard Designer interface is based on the use of high-resolution

in verse-video graphics (black characters on a white background). Characters

shapes are user defined and options are selected using a mouse. A ll input and

output, whether in graphic or character form at, is displayed in 'pull-dow n' or

'pop-up' windows. The top two lines of the screen are reserved fo r default

290

menu options. The bottom line is used for the display of instructions.

The d efau lt m enu o p tion s are sp e c if ie d b y sim ply ty p in g th e ap p rop ria te

t e x t . Two or more sp a c e s in d ica te s th e s ta r t of a new o p tio n . T he p osition of

th e menu op tion s is autom atically ad ju sted su c h th a t an e v e n la y o u t i s a lw ays

o b ta in ed . P ointing th e m ouse icon at an o p tio n s r e s u lt s in i t s d isp la y

c h a r a c te r is t ic s b e in g r e v e r s e d .

FIGURE E7 6 DEFINING MENU OPTIONS USING ’DESIGNER'

291

E . 2 . 1 CREATING PULL-DOWN WINDOWS - P ointing th e m ouse icon at a d efa u lt

option and c lic k in g th e le f t m ouse b u tton r e su lt s in th e crea tion of a p u ll-d ow n

w indow . T he w idth of th e window is s e t to be th e sam e as th a t of th e d isp la y ed

o p tio n . The h e ig h t o f th e d efau lt window is su ff ic ie n t fo r a s in g le window

op tion . Window o p tio n s are en tered b y sim ply ty p in g th e ap p rop ria te t e x t . If

th e w idth of th e te x t e x c e e d s th e w idth of th e w indow , th e w indow s iz e is

a d ju s te d . P r e ss in g th e e n te r k e y e x p a n d s th e window dow nw ards and p o sitio n s

th e c u rso r on th e fo llow in g lin e . T ex t in p u t to th e w indow is term in ated b y

p r e ss in g th e ESC k e y . P oin ting th e m ouse icon at a w indow op tion r e v e r s e s

th e d isp la y c h a r a c te r is t ic s of th e t e x t . T he window i s rem oved from th e sc r e e n

b y m oving th e m ouse icon to a point o u ts id e th e window a rea .

M W1UI $ l: M il 21!| a ff f lM W flh S m

SUB-OPTION 1. SUB-OPTION Z.
i SUB-OPTION 3.

m w m > \ i n ■ 1 1 i i i i T - r ^ n t ink to a prograM
FIGURE E7 7 CREATING PULL-DOWN MENU TYPE WINDOWS USING ' DESIGNER'

292

Pull-dow n w indow s can be s ta c k e d . P o in ting at a new window option and

c lick in g th e le ft m ouse b u tton r e s u lt s in th e crea tion of a d efa u lt w indow .

Window op tion s and fu r th e r su b -w in d o w s can be sp e c if ie d a s b e fo re .

E . 2 . 2 POP-UP WINDOWS - P op -u p w indow s d iffe r from p u ll-d ow n w indow s in

th a t th e y are in d ep en d en t from an y s p e c if ic menu o p t io n . F u rth erm ore , p op -u p

w indow s are not u se d for th e d isp la y of m enus b u t ra th er for th e d isp la y of

free-form t e x t , r e q u e s ts for u se r in p u t , and th e crea tion of grap h ica l form s.

itTir.mm?
FIGURE E78 CREATING POP-UP WINDOWS FOR SIMULATION OUTPUT USING ' DESIGNER ’

293

Pop-up windows are created by clicking the rig h t mouse button. The

window can be positioned by moving the mouse, and the size of the window

altered using the arrow keys. A code unique to the new window is displayed

at the bottom of the screen. The window 'editing' session is term inated by

pressing the ESC key . Several pop-up windows can be displayed simultaneously

to make it simpler to sort out re lative positioning problems.

E .2 .3 EXTERNAL PROGRAM CALLS - External programs can be activated by

associating a file name with a menu option. Designer remains memory resident

until term ination of the sub-process. To specify a file name, the mouse icon

has to be positioned over a given window option. Typing C TR L-L leads to the

user being guided through a series of questions. Several types of program

calls are possible. The user can 'chain' or 'spawn' a program , w ith , or w ithout

the use of param eters. A lternatively DOS commands can be activated, again

with the possibility of parameters passing. Output generated by external

programs can e ither be displayed on a clear screen (in text-m ode) or re -d irected

to a specified pop-up window. What is particu larly unusual with Designer is

that the program calls can be tested stra ight away without having to generate

and compile the code. Designer's ab ility at executing DOS commands is

particu larly useful in the context of providing the eventual user, facilities

such as directory listings (possibly to a window), file copying/backup,

changing default directories, and so on.

E .2 .4 CODE GENERATOR - Having designed the in terface, the corresponding

program can be produced by typing CTRL-Q . The user is prompted fo r a file

name. Designer then generates the PASCAL code and compiles it to EXE form at.

A 'screen design' file is also generated which can be used to re-load a

294

previously designed in terface.

E .3 MODIFYING DESIGNER FILES

There are two ways of modifying Designer files . Re-loading the screen

design file or a ltering the PASCAL code. The PASCAL code is sp lit into

modules. Only one of these modules is accessible by the user and consists of

a single procedure. The procedure consists of a CASE statement re lating to

window and menu options. By inserting lib ra ry commands and /or procedure

and function calls , particu lar menu options can be made to activate given tasks.

The file must then be re-compiled using the RERUN batch file to analyse the

effect of the changes.

E .3.1 USING THE GENERATED FILES - Having designed an in terface, the

user's program has to be modified. The firs t step is to a lter the heading of

the program code from PROGRAM FileName to MODULE FileName. The second

step consists in enclosing the program body w ithin a procedure. This procedure

must then be called by one of the menu options. This can be done by modifying

the CASE statement as described above. The procedure must also be declared

as being EXTERNAL before LINKING the modules. The read and w rite

statements in the user's program w ill also need changing. These can be

replaced by READWIN and WRITEWIN lib ra ry functions th at re -d ire c t I/O

commands to specified windows. Graphs can also be produced w ithin windows

using the appropriate lib ra ry functions. A ll the ESSIM port model interfaces

were created using Designer.

295

APPENDIX F

296

CONTENTS - APPENDIX F

Ffaae

F . 1 In troduction. 298

F .2 What is object oriented programming. 299

F .3 Examples of languages based on the object oriented approach. 300

F.3.1 Sm allTalk-80. 300

F .3 .2 ROSS. 302

F .3 .3 KBS / Simulation C ra ft. 310

F .3 .4 BLOBS. 315

F .3 .5 SLICE. 317

F .3 .6 SIMYON. 320

F .4 Applying the object-oriented approach to model development. 325

297

APPENDIX F

OBJECT-ORIENTED SIMULATION

F . l INTRODUCTION

Knowledge Base Systems (KBS) and Expert Systems (ES) have been

receiving increasing attention as potential components of a new generation of

simulation models. The in terest in amalgamating the two techniques has resulted

predom inantly out of the d ifficu lties in representing human expertise using

present simulation modelling methods. Furtherm ore, ESs have increasingly been

applied to problems of m anufacturing control in real-tim e which has resulted

in the need to represent the same ES components in a simulation model of the

real-w orld system.

A number of approaches have been used in combining expert system and

simulation methodologies in creating an environment fo r decision support. The

method th at w ill be discussed is that of Object Oriented Programming (OOP)

in which human expertise in the form of rules depicting decision making is

represented as an in tegral part of the simulation model.

The next section w ill consider the general features of Object Oriented

languages. In section F .3 , the application of the object oriented approach will

be considered with respect to a number of developments which have use the

OOP concept in developing simulation models (other than F .3 .1 which discusses

the Smalltalk language). In section F .4 , the advantages and disadvantages of

the OOP approach are considered and compared to alternative methodologies.

298

Some brief concluding rem arks are g iven in section F .5 .

F .2 WHAT IS OBJECT ORIENTED PROGRAMMING

O bject-O riented programming is a fa irly loose term to describe a method

of knowledge representation based on the description of objects and th e ir

in terrelationships. The technique originates from the A I fie ld where it is used

in developing Expert Systems most often using LISP as a basis fo r the language

construct. I t was not long before it was noticed that the Object-O riented

approach would be suitable fo r the development of simulation models. Being

based on the Expert System (ES) paradigm, object-oriented simulation provides

an effective environment fo r the specification of domain knowledge.

In constructing an object-oriented sim ulation, the user firs t creates a set

of objects that broadly correspond to real-w orld objects. The characteristics

of these objects are then defined; the inputs they respond to , and the actions

they carry out in response. The in terp lay between objects is represented by

the passing of messages. In other words, the action carried out by one object

may lead to a message being transm itted to another object specifying that an

action should be carried out.

Another im portant aspect of object-oriented simulation is the concept of

'inheritance' which is derived from the semantic networks knowledge

representation scheme used in many expert systems. Inheritance is useful in

creating hierarchies of objects, each of which can in h erit characteristics from

a higher ranking set.

299

F .3 EXAMPLES OF LANGUAGES BASED ON THE OBJECT ORIENTED APPROACH

F .3 .1 SMALLTALK-80 (Reference Ulgen and Thomasma[1986])

The Sm alltalk-80 language was developed about 15 years ago to provide

an alternative to the procedural programming techniques. Sm alltalk-80 replaces

the procedural concept of operators and operands by th a t of messages and

objects. A good example described by Ulgen and Thomasma[1986] # is a

comparison of a mathematical operation using a procedural and object-oriented

language. In the case of a procedural language, an operation such as S IN (X)

would be carried out by applying the SIN operator on the operand. The

operand remains passive whereas the operator is active and carries out a

calculation based on the value of the operator. The in te g rity of the operation

is maintained by insuring that the operand is of the correct data-type.

In contrast, the object-oriented approach defines the operator (X) as

being an object. The object can then perform the operation (S IN) on its e lf.

Consequently, a more logical way of w riting the command would be X SIN in

which SIN is a message sent by the object (X) asking fo r the operation to be

perform ed. In Sm alltalk-80, messages that do not have arguments are referred

to as unary messages. Conversely, messages that have one or more arguments

are known as keyword messages. The syntax of a typical message that has two

arguments would be as follows:

Machine acquire: 1 Resource: 'replacement g rin d er1

Machine is the object that receives the message. The two arguments are

1 and 'replacement g rin d e r'.

300

Inheritance also plays a role in such a simple operation. Sm alltalk-80

supports a tree like structure fo r the classification of objects and operations.

For example, X may belong to a predefined 'Class' of objects known as

'Num ber1. 'Number' is in tu rn known to consist of three subclasses; Float,

Fraction and In te g e r. The class 'In teg er' in tu rn has three subclasses;

Sm alllnteger, LargePositivelnteger, and LargeN egativelnteger. These classes

are arranged in a hierarchical order in which a subclass is contained en tire ly

w ithin its superclass. Consequently, an instance of a specific class must also

be an instance in the corresponding superclass. Operations are also defined

as part of classes.

The same class systems applies to operations. For example, Factorial

belongs to the class In teg er. I f the message Factorial is sent to an instance of

the class Sm alllnteger (say X), then a search fo r the Factorial operation w ill

firs t be made in the Sm alllnteger class and if it is not found, then in its

superclass, In te g e r. I f th is were also to be unsuccessful the backward search

would continue u n til no more superclasses were le ft (The top class is 'Object'

and is the only class not to have a superclass).

Sm alltalk-80 is a general purpose object-oriented language and is

therefore not specifically designed fo r sim ulation. As w ith any high level

procedural language such as Pascal or C , the simulation control framework has

to be defined. Indeed, Sm alltalk-80 can be used to create models that use any

of the well known methodologies such as activ ity scanning, process interaction

o r event scheduling. Furtherm ore, the language can be used to model time

using the methods of discrete changes, continuous changes or combined

301

discrete/continuous changes.

ADVANTAGES DISADVANTAGES

Compact code. Code d iffic u lt to understand.

Supports inheritance. Not designed fo r simulation.

graphical output possible. D ifficu lt to debug.

Data structures lim ited.

In flexib le (sim ilar to 4GL)

F .3 .2 ROSS (K lah r[1984], K lahr[1985], K lahr & Faught[1980], M cA rthur[1986],

ROSS (Rand O bject-oriented Simulation System) is an object-oriented

simulation language that uses an English like syntax which is supposed to make

the code easier to read and in tellig ib le to non-programmer s. ROSS is

implemented in LISP (MacLisp, In te rlis p -2 0 , V a x -In te rlis p , In te rlis p -D ,

Franzlisp and Zetalisp) and is therefore in terp reted . Th is , RAND claim, is an

advantage since it permits in terruption of the simulation run (fo r queries &

code m odification), removes the need fo r compilation (hence easier & quicker

modification/experim entation cycle), and simplifies the debugging process.

ROSS also provides textual simulation output designed fo r tracing purposes

and graphics facilities fo r animated presentations.

Adelsberger [1986])

302

ROSS d iffers from Sm alltalk-80 in that it is specifically designed fo r

sim ulation, but the general concept of programming using objects and message

passing is retained. The syntax fo r a message being passed from one object

to another is as follows:

(ASK <object> <message>)

fo r example:

(ASK operatorl send re p a irte a m l to machine3)

<message> is a sequence of LISP ATOMS. In the example, 'operatorl' is

sent the message 'send repair teaml to machine3'.

Having sent a message to an object, the object has to have a way of

responding. In ROSS, the response to the message w ill also take the form of

messages and has the following syntax:

(ASK <object> WHEN RECEIVING <message-template> <body>

<message-template> is a sequence of Lisp atoms uses in detecting the

message being received. <Body> is a lis t of ROSS commands or LISP code. An

example object response would be:

303

ASK operator WHEN RECEIVING (send >repair_team to >machine)

(ASK I myself add ! rep a irteam to lis t of busy_teams)

(ASK !myself remove !repair_team from lis t of

repair_team s_available)

In ROSS, the concept of global functions is not supported and so each

object in the system must have a behaviour defined (it is assumed th at all

objects in the system are un ique). In the above example, when operatorl

receives a message, it gets compared to the message tem plate. The symbol >

which is used as a p refix in the message template indicates the use of a

variable. For example, >repair_team is a variable and w ill be bound to its value

'rep air_team l'. Variables in <body> are prefixed by the character ! which

indicates that the value of the variable should be used ra th er than its name.

Also notice the use of the variable !m yself. This indicates that a message

should be passed to the curren tly active object (a form of looping with a ra th er

strange syntax). Hence, a typical lis t of actions carried out by an object

consist of a complex chain of subsequent message transmissions (which include

messages passed from an object to its e lf) .

As with Sm alltalk, ROSS supports the concepts of object hierarchies and

inheritance. To syntax fo r creating a new object is as follows:

304

(ASK <objectl> CREATE GENERIC <object2>)

for example:

(ASK operator CREATE GENERIC o p erato rl)

'O p erato rl' is created as being an instance of 'operator'. In th is case,

'operator' can be in terpreted as a class of object while 'operatorl' represents

a member of that class, 'operatorl' inherits the attribu tes of its parent which

is why in the firs t example a message was sent to the object 'operatorl' and yet

in the subsequent example, the behaviour of the object was attributed to the

object 'operator'. However, the fact that 'operator' is a subclass of 'operatorl'

does not mean that th e ir behaviour must be identical. During code execution,

ROSS firs t checks whether 'operatorl' has any behavioural responses attached

to it . I f none can be found, the parent class of which the object is an instance

is searched.

A simulation model known as SWIRL, developed using the ROSS language

(M cA rthur[1986]) is a good example of the use of inheritance structures. When

an instance of an object of the hierarchy receives a message, a search is made

through the hierarchy to find an object th at has a behaviour a ttribu ted to it

th a t matches the message received. So fo r example, if the object 'fig h ter-b ase l'

receives a message, a successive search is done through the defined object

behaviours fo r ' fig h te r-b a s e l', ' fig h ter-base ', 'fixed-object' and fin a lly

'sim ulator' (top class in the h iera rch y). The objects or classes of object can

305

also have values associated w ith them. For example, in creating 'figh ter-base1

the following CREATE command could be used:

(ASK fixed-object CREATE GENERIC fighter-base WITH

Position (0 0)

Status active

F ighters-avail n il

Scram ble-delay 10

A le rt- duration 1800

some of the values such as 'A lert-d uration ' are taken as being defaults

fo r all instances of 'fig h ter-b ase '. On the other hand attribu tes such as

'F igh ter-ava il' are given a N IL value meaning that each individual instance of

'F ighter-base' may have its own value fo r the specified a ttrib u te . The values

of a ttrib u tes , as with variables in general, can be manipulated as follows using

messages:

(ASK F ighter-basel RECALL YOUR a lert-d u ratio n)

(ASK F ighter-basel SET YOUR status TO destroy)

(ASK F ighter-basel INCREMENT YOUR alert-duration BY 100)

306

In the second and th ird example, if 'status' or 'a lert-d uration ' do not

exist fo r the specified object, then the a ttrib u te is automatically created. In

the th ird example, if 'a lert-d uration ' does not exist its value is inherited from

the 'figh ter-base' class, the a ttrib u te created under 'fig h ter-b a s e l' and the

value 100 added to its present value (1800).

ROSS provides commands that are specific to simulation. Time handling

is of course one of the most critica l aspects of simulation and is handled by

commands of the following form:

(ASK operator3 PLAN AFTER 20 SECONDS

TELL Machine2 to term inate)

the 'PLAN AFTER' command ensures that the following message is only

sent a fte r the specified delay in simulated time has elapsed. To advance clock

time, ROSS provides the following command:

(ASK nclock T ICK)

'nclock' has an a ttrib u te 'ticksize' which determines the clock time

increm ent. Advancing the clock by a specified number of time units does not

mean than an event that should have occurred before the new clock time does

not get executed. The events that have been 'missed' are carried out u n til the

307

new clock time has been reached. This simply perm its in terruption of the

simulation at set time in tervals fo r analysis of resu lts.

ADVANTAGES AND DISADVANTAGES OF ROSS

ADVANTAGES:

1. English like syntax increases the readability of the code.

2. Some simulation problems can naturally be expressed in term s of

objects and messages. In particu lar human communication, which

explains why object-oriented programming originates from A rtific ia l

Intelligence research.

3. High level code which simplifies the programming task.

4. Good fo r rapid prototyping because of the in terpreted natures of

the code.

5. ROSS uses just a few commands which simplifies the programming

process (ASK & TELL are the most common in structions). In this

respect the language resembles LISP, in which ROSS is itse lf

w ritte n .

6. 'Inheritance' can sim plify the programming task if objects in the

system have sim ilar characteristics.

308

DISADVANTAGES:

1. The user has very little control over variable structures and data

types.

2. ROSS assumes that the messages th at are going to be sent are

simple consisting of just a few variable values. In most cases,

real-w orld messages are fa r more complex than can be modelled.

3. 'Inheritance' though useful in many cases, can make tracing

execution of the model d iffic u lt. Complications are fo r example,

inevitable when variables can assume values without there being

any d irect instruction from the programmer.

4. Some ROSS commands are unnecessary, messy and confusing. For

example, the need fo r an object to sent itse lf messages in modifying

variable values.

5. The in terp re tive nature of the code combined with the pattern

matching characteristics of the message passing system, mean that

large sections of simulation code are very slow to execute, though

adm ittedly, quicker to m odify.

6. ROSS has limited app licab ility . There would be little point in using

ROSS in simulating problems which do not have the characteristics

of inheritance.

7. Some simulation processes can be identified with objects and

messages. This is not however always the case and it can become

somewhat confusing to call some hypothetical process an 'object'.

Furtherm ore, a message is often not what one can visualise an

object as sending, particu larly when the 'object' is not really an

object in the firs t place!

309

8. A point mentioned by M cArthur [1986] is that ROSS cannot deal

effectively with 'non-intentional' events. The example given is of

a plane entering the range of a rad ar. The plane is hard ly going

to announce its position to the radar by sending it a message! The

plane entering the radar range is a side effect of it fly in g its

course and can therefore be categorises as a non-intentional side

effect.

F .3 .3 KBS / SIMULATION CRAFT (Reddy E t. A l.[1 9 8 6], Baskaran E t.

A l.[1986])

KBS (recently renamed as SIMULATION CRAFT) was developed at

Cam egie-Mellon U niversity and resembles ROSS in design. KBS is w ritten in

a Schema Representation Language (SRL) which is itse lf implemented in Franz

Lisp. Objects in a KBS model are represented by 'Schemata1 which are made

up of 'Slots1. The slots contain data corresponding to physical lim itations,

event behaviour e tc . . An example schema fo r a d istribution centre would be as

follows:

310

{ {d is trib u tio n -cen tre :

CAPACITY:

INVENTORY:

SH IPM EN T-TR A N SIT-TIM E:

RECEIVE-ORDER-EVENT: "receive-order-ru le"

R ange:(TYPE instance even t-ru le)

RECEIVE-SHIPM ENT-EVENT: "Receive-shipm ent-rule"

Range: (TYPE instance even t-ru le)

ADMINISTRATOR

Range:(TYPE instance adm inistrator)

O R D ER -TR A N SIT-TIM E:

Default :0

BACKORDERS:

TOTAL-ORDERS:

INVENTORY-COST } }

The entries in capital le tters represent the slots whereas the entries,

’Range' and 'Default' are known as Facets. The range facet defines the type

of value that may fill the slot. The default facet is used in providing a default

value if a specified slot is em pty.

The schemata th at describe the model can be in terrelated to form a

network by using slot values as lin ks . Furtherm ore, slots may in h erit values

from slots in other schemata.

311

{{even t-24

IN ST ANCE :event-notice

FOCUS :D1

comment:Focus of even t,the en tity

EVENT: "receive-order-event"

comment: event-slot in event-schema

TIM E: "21 A p ril 1985 11:00:00"

comment:time of execution

PR E-A C TIO N : nil

comment: Action to be taken before event execution

POST-ACTION :n il

comment: Action to be taken a fte r event execution

EVENT-PARAMETER: orderlO

comment: Event parameters

R UN -EVEN T: run-event

comment: method to execute event

}}

The above example is of a schema known as an event-notice. The event

to take place at the specified time is the a rriva l of an order focused around

the distribution centre D l. The "receive-order-event" en try is a cross

reference to a slot in the 'focus' schema. The content of the slot may be a

reference to a LISP function.

KBS uses the discrete event approach to sim ulation. Event behaviour can

be expressed in the form of rules to be executed when the event occurs. The

312

following example rule links with the d istribution cen tre schem a.

{ {receive-o rder-ru le

IN ST ANCE: even t-ru le

IF : (som ething-in-in ven tory)

THEN: (schedule-transport)(deduct from inventory)

}}

There are other facilities provided by KBS which are meant to sim plify

the model build ing, experimentation and analysis stages. The user may build

a rule base which can then be used in automatically selecting new experiments

at the end of a simulation ru n . Furtherm ore, a fac ility exists fo r detecting

causal relationships and defining these as part of the domain ru le base.

Simulation C ra ft is a successor to KBS and is implemented using a

knowledge engineering tool fo r the development of expert systems known as

Knowledge c ra ft. The underlying code in the system is w ritten in Common Lisp.

Although the kernel of simulation C ra ft is almost identical to that of KBS,

Simulation C raft d iffers from KBS in a number of respects.

A Model Building Expert System can be used in assisting the user to

create a graphical representation of the problem. The expert system also checks

fo r model completeness and identifies inconsistencies. A Model Execution Expert

is intended to help in deciding on s ta rt and end times fo r the simulation run as

well as identify ing the number of runs needed and the alternatives that should

313

be evaluated. F inally , a Model Analysis Expert helps in evaluating the results

of a simulation ru n .

Simulation C ra ft provides a fu rth e r fac ility fo r automating the simulation

life cycle. The Dynamic Planner is a ru le based expert system th at can be used

in identify ing a possible system configuration that could potentially be used to

attain a desired goal. The expert system rule base consists of knowledge on

cause and effect relations and on desirable system configurations.

ADVANTAGES & DISADVANTAGES OF KBS / SIMULATION CRA FT.

Because of the sim ilarities between KBS and ROSS, the two environment

have many of the same lim itations. Where KBS d iffers is in the degree of

background support provided to the user in developing and analysing the

simulation. This additional support is based on the use of expert system

knowledge-bases to analyse the available inform ation. In th is respect, the

advice or decisions that are made automatically by KBS can only be as good as

the coded knowledge. Whereas good advice given to the inexperienced simulation

model user is unquestionably useful, one must also consider th at bad advice

is confusing and can be worse than providing no assistance at a ll. In the case

of KBS/simulation c ra ft, the problem is aggravated because of the degree to

which the processes are automated.

314

F .3 .4 BLOBS (REFERENCE: Middleton & Zanconato[1985])

As in the case of ROSS, BLOBS (B Lack board OBjectS) is an

object-oriented language fo r simulation which was specifically developed fo r

m ilitary a irc ra ft control applications. BLOBS was developed using the POPLOG

environment which is based on the A I language POP-11.

Middleton claims th at it was orig inally intended to develop an environment

based on an expert system that would obtain data from an existing radar

sim ulator. The idea was abandoned in favour of an in tegrated approach because

of the potential d ifficu lties in sharing data from d ifferen t sources and of

modifying the behaviour of the simulation in response to a flig h t controllers

decision represented by the expert system. The firs t system to be subsequently

developed consisted of a blackboard system fo r modelling the a irc ra ft controller

and an object-oriented message passing system fo r representing the a ircrafts

and radars. Problems did however arise because the blackboard model held all

data centrally with no possible restriction on access. There was therefore no

way of ensuring consistency.

Objects in the model are described as sets of declarations and definitions

each known as a BLOB. A BLOB may consist of local variable declarations,

procedure definitions, behavioural responses (procedure-like) and an

inheritance lis t.

Communication between BLOBS is possible in a number of ways: One

BLOB may interrogate the public variables of another BLOB, a message may

be sent to a BLOB, or demons may activate a behavioural response. Demons

315

are attached to variables and may be activated by a change in the value of the

variab le . Demons can also monitor the creation and removal of BLOB instances.

The following is an example of the representation of an a irc ra ft under

BLOBS:

Dynamic blob a irc ra ft;

public vars position heading speed clim b_rate;

private vars target_heading target_height target_speed;

on_message change_course

with new_heading -> my target_heading do

; ; ; In itia te change in heading

enddo;

on message climb

with new height -> my target_height

climb_rate -> my climb rate do

; ; ; In itia te climb

enddo;

; ; ; Other behaviours

endblob;

ADVANTAGES & DISADVANTAGES OF BLOBS

The author of the BLOBS system claims that the language has several

advantages over the ROSS implementation: The distinction between local and

316

global variables in defining objects, the use of demons in trig g erin g behaviours

when variables are updated, s tric te r type checking of messages and the

possibility of deleting objects during the simulation ru n . On the other hand,

the author also recognises certain p itfa lls in the BLOBS language: A BLOB that

is a recipient of a message requires p rio r knowledge of the id en tity of the

sender. A BLOB that is created during the simulation run cannot have demons

attached to it . And fin a lly , the restrictions imposed by the type checking (and

consequently the in ab ility to apply a rb itra ry expressions), are said to cause

problems with the generalisation of methods.

F .3 .5 SLICE (Reference: Gosling & O kseniuk[1986])

SLICE (Simulation in Lisp of Continuous Events) is a LISP program code

generator that is based on the object-oriented message passing paradigm . SLICE

was orig inally developed fo r modelling a ir tra ffic control systems. SLICE

represents the objects of the model as 'actors' and allows the user to define

th e ir behaviour in terms of continuous or discrete events. Inform ation can be

passed between actors in the form of messages and communication w ith a central

database is also possible.

SLICE allows an expert system rule-base to in teract w ith the model. This

may be achieved by defining the expert system as an actor, or by representing

it as a separate e n tity , invokable by the behaviour routines of actors.

SLICE can be used as a program generator using a 'scrip t' file fo r the

definition of the problem. A ltern atively , SLICE functions can be embedded in

317

ex istin g LISP code.

Other SLICE properties are as follows:

Data is local to an actor. Remote access is not possible other than

by sending and receiving messages.

A central database can be used by any of the processes, using

messages to gain access, en try to specific areas of the database

can be restric ted .

messages sent between actors contain certain specific inform ation.

A unique identification code, sender identification , recipient

identification, s ta rt time, duration and content.

Objects (and more specifically th e ir defined behaviours) have

different p rio rity levels. In establishing the event queue, the

system considers both the p rio rity level and the scheduled time

fo r activation. Messages are always taken as having the highest

p rio rity .

Processes (known as T-processes) in SLICE contain data structures

and function defin itions. Furtherm ore, these processes may have

many 'instances' of actors of the same type . These instances

contain the same data and function defin itions, but the value of

the data items may d iffe r. T-Processes are organised hierarchically

and can in herit the characteristics of higher ranking processes

(the structure is identical to that used in ROSS).

318

Each T-process consists of a stack (stores information on the execution

s ta te), a lis t of pointers linking variable names with th e ir values, a reference

to the message type expected, and a pointer to the t-process that is one level

higher in the hierarchy of processes. The behaviour of a T-process is

described by a set of IF -TH E N type ru les. The action part of the rules re fe r

to functions that have the effect of advancing the simulation clock, sending

messages e tc . .

The behaviour of actors may be in h erited . Vehicles fo r example have some

characteristics that apply to all vehicles, but also have features that are unique

to a particular type of vehicle. In SLICE, T-processes are organised

hierarchically w ith each sub-process being able to in h e rit the characteristics

of its parent. This relieves the user from the burden of having to define

general characteristics fo r every occurrence of a particu lar type of acto r. Both

data and rules can be in herited . The total data set fo r a specific T-process is

made of the data specific to the T-process and the data values inherited from

T-processes fu rth e r up the h ierarchy. However, when specific variables occur

several times in d ifferen t T-processes, the value corresponding to the lowest

member of the hierarchy gets p rio rity . In the case of ru les , inheritance works

slightly d iffe re n tly . Rules in d ifferen t T-processes belonging to the same class

of actor are combined. This leads to a risk of inconsistencies in the ru les.

However, rules may also be inconsistent fo r other reasons and so an algorithm

is used in resolving the conflicts.

319

ADVANTAGES & DISADVANTAGES OF SLICE.

SLICE is d iffe ren t from the object-oriented languages previously

discussed in that the systems is in fact a LISP code generator. Th is , from the

perspective of fle x ib ility is an advantage. Another im portant benefit of SLICE

is the importance attribu ted to modelling human behaviour in terms of IF -TH E N

type rules. The ab ility of accessing external rule-bases is also particu larly

a ttrac tive .

Facilities th a t are lacking include the ab ility to attach weights to d ifferen t

rules and the capability of seeking a goal in a ru le-base.

F .3 .6 SIMYON (References: R uiz-M ier E t. A l.[1985,1987])

SYMION is a network simulation environm ent developed using the CAYENE

language which is said to be based on a combination of object-oriented

programming, logic programming and the discrete event approach to system

modelling.

A SYMION model is created by unifying a number of CAYENE objects.

These objects, are arranged hierarchically and can in h erit the characteristics

of objects in a parent class. SYMION also supports the use of DEMONS which

are evaluated if an attem pt is made at re triev in g a specific value. For each

defined object in the model, there exists a set of ru les . When an object receives

a message, a search is made of the rules to find a premise that matches the

message type . The action part of the ru le may then be carried out which

320

typ ically involves sending messages to other objects. Consider the following

message and ru le as an example:

(send1 C R E A T E '(S tart)) Message

(S ta rt) <== (Send_at >tim e_to_start MYSELF '(N e x t_ a rriv a l)) RULE

CREATE is the name of the object to which the message 'S tart' is being

sent. One of the rules which form part of the object definition has a premise

that matches the message. CAYENE w ill now take the action part of the ru le

as a sub-goal. This results in a message 'N ext_arriva lf being sent to the object

CREATE (represented by the MYSELF clause) at the time given by the constant

'tim e_to_start'. This new message also has a matching ru le defined as part of

the CREATE object:

(N ext_arriva l) <== (send_at TNOW >next_node

(newsym >transaction_name))

(send_at (+ TNOW >time_bet_creation)

MYSELF ' (N ext_arriva l))

The action part of the ru le now results in the creation of two fu rth e r

sub-goals which also take the form of messages. The use of >next_node in the

f irs t of two rules activates a demon requesting user in p u t. A message is then

321

sent to another object. The second ru le is a next a rriv a l scheduling mechanism

which operates by scheduling the sending of a message by the object to itse lf

(a t time TNOW + tim e_bet_creation) .

SYMION has a ru le structu re that is p articu larly a ttrac tive in the context

of manufacturing problems. Consider the following object description:

(defob SCHEDULE

: properties:

(machines (M l M2 M 3 ..Mn))

: ru les:

(Move ?Part ?Mach) <==

(find ?Mach)

(available ?Mach)

(can_process ?Mach ?Part)

(not(fu ll(queue ?M ach)))

(send_at TNOW ?Mach ?Part)

(Available ?Mach) <==

(not (overloaded ?Mach))

(not (down ?Mach))

(Down ?Mach) <==

(maintenance ?Mach ?T1 ?T2)

(lessp ?T1 TNOW ?T2)

(Down ?Mach) <==

(needs_repair ?Mach)

322

The machines M l. . Mn are objects that are defined as part of a class

known as a SCHEDULE. The defined riiles are used to check if a part (?PA rt)

should be moved to a particu lar machine (?M ach). The firs t ru le represents

the highest level of abstractions in the decision making process and can be

translated as follows: Move part P to machine M if and only if M exists, M is

available, M can process P, and if M's queue is not fu ll. Each condition in the

premise of the ru le are treated as sub-goals and can be solved by other defined

ru les. For example, the availab ility of machine M is determined by checking if

M is not cu rren tly overloaded and that it is not cu rren tly out of action. The

search fo r solutions to sub-goals is not lim ited to the curren t object. For

example, the ru le fo r solving the 'Needs_repair' condition is defined as part

of the object definitions:

(defob M l

: properties:

(a_Kind_of MACHINE)

(queue Q l)

(operator O p erato rl)

(output_rate (/ ?Num_parts ?Tim e))

(noise_level (sample_detector ? D et_ l))

: ru le s :

(Needs_repair) <==

(lessp >output_rate 13)

(lessp 30 >noise_level)

323

The rule identifies machine M l as needing repa ir if the output rate falls

to below 13 and the noise level rises to above 13db.

ADVANTAGES & DISADVANTAGES OF SIMYON

SIMYON is a flexib le language in terms of the use of ru les. As Ruiz-M ier

points out, changes to the logic of the simulation can be very simple to make.

I t would fo r example be very simple to include a ru le that stipulates that an

operator w ill stop working between certain times during the day:

(Busy Operator <== (lessp T1 TNOW T2)

U nfortunately, SIMYON does lack in power in processing defined ru les.

The inference strategy is purely backward chaining and as a consequence, the

search fo r a solution w ill sometimes be very slow (when many sub-goals are

id e n tifie d). The provision of a forw ard chaining strategy would have been

desirable. Other lim itations exist but are less serious:

1 . The syntax of the language is complex, in particu lar when defining

mathematical statements.

2 . Variable declarations are not required and so the ris k of syntax

errors in variable names are high.

3 . Reading the code can be d iffic u lt as rules can be defined as part

of d ifferen t objects.

324

F .4 APPLYING THE OBJECT-ORIENTED APPROACH TO MODEL DEVELOPMENT

From the examples, one can see that the applicability of the

object-oriented paradigm very much depends on the targ et problem fo r which

a model is to be developed. The approach to modelling is dependent on the

entities in the model having a suffic iently close relationship as to be able to

establish a hierarchy in which inheritance of characteristics can play a p a rt.

The use of inheritance is a key factor in reducing the complexity of the model

by lim iting the duplication of facts and rules about objects. I t is also desirable

fo r the problem domain to be of a type that can be naturally broken down into

constituent 'objects' or 'actors' and in which communication plays a significant

ro le. These characteristics are not v ita l to the model development process, but

sim plify the overall task by allowing a more natural visualisation of the real

world system, that the model is meant to represent. Such considerations are

behind the su itab ility of the object-oriented approach to the simulation of

tactical warfare problems to which the ROSS, BLOBS and SLICE languages

specifically address themselves. In m ilitary applications, a irc ra fts , tanks etc.

are effectively described using inheritance. In the case of a ircrafts one could

have a class inheritance hierarchy th at would be as follows:

325

TRANSPORT

VEHICLE AIRCRAFT

AIRCRAFT TYPE

NON-JET

COMMERCIAL MILITARY

SURVEYANCEBOMBER

AWACS

Figure F8Q /NHER/TENCE /N OBJECT ORIENTED ENVIRONMENTS

Some of th e c h a r a c te r is t ic s of an AWACS p lane are s p e c if ic and can n ot be

fou n d in an y o th er e x is t in g m ilitary a ir c r a ft . T h ese are th e re fo r e d efin ed a s

part of th e AWACS ob ject d escr ip tio n at th e bottom of th e h ie r a r c h y . H ow ever,

som e of th e c h a r a c te r is t ic s o f an AWACS are more g en era l and can th e re fo r e

be in h er ited from c la s s e s o f o b jects h ig h e r up in th e h ie r a r c h y . F urtherm ore,

an AWACS is u sed for su r v e y a n c e o p era tio n s and can th e re fo r e in h e r it

c h a r a c te r is t ic s from a sep a ra te h iera rch y d e fin in g th e c a p a b ilit ie s of radar

s y s te m s . Communication betw een ob ject in a ta ctica l w arfare problem a lso p la y s

an im portant role fo r w hich th e o b je c t-o r ie n ted paradigm i s well s u ite d . An

a ircra ft w ish in g to land at an a irfie ld can for exam ple be d e sc r ib e d a s se n d in g

326

a message to the control tower requesting permission. The landing ac tiv ity w ill

then commence, conditional on the a irs trip object being available.

Even in the case of applications that would seem suitable targets fo r an

object oriented approach there can be problems such as those identified by

M cA rthur [1986] . Of particu lar concern is the dependence on message passing

fo r communication and activation of events. Consider the example of two enemy

a irc ra ft which are about to go into battle . For one a irc ra ft to recognise and

attack the other a irc ra ft, messages need to be transm itted between the two

which obviously contradicts the real-w orld rules of engagement.

As with expert systems, models developed using the OOP approach are

based on a re latively unstructured search algorithm . Furtherm ore, the desire

to allow the user to develop the model increm entally by defining the

characteristics of objects as and when they are identified also leads to problems

in m aintaining a s tru ctu re . Consequent d ifficu lties also arise because of the

problem of ensuring that the defined model is complete and is not ambiguous or

inconsistent. Lack of a formal structure also tends to mean that execution is

slow fo r large models which is a problem aggravated by the in terp re tive nature

of the Lisp environment which tends to be the language used in developing

and implementing object-oriented models. The loss in speed is however offset

by the advantages of being able to test the effect of changes in the code

without having to compile and being able to trace and debug the model

in te ra c tiv e ly .

The use of inheritance can be advantageous in terms of code size by

reducing the repetition of characteristics of objects. However, problems can

327

arise when values are inherited unexpectedly. Hence, the characteristics of

each member of the object hierarchy has to be carefu lly defined with particu lar

attention to the possible values that may be inherited from parent classes.

Similar care is needed in OOP languages in which rules can be in herited . A set

of rules may be spread across a number of object classes making it d iffic u lt to

trace potential actions and increasing the risk of rules being mistakenly

inherited in satisfying a goal. Such problems aggravate the d ifficu lties in

specifying the characteristics of the components of the model and particu larly

in cases where the concept of objects and messages do not seem to be a natural

structure fo r the formalisation process.

328

APPENDIX G

329

A P P E N D IX G

ESSIM OUTPUT DISPLAYS FOR THE PORT MODEL

OR ortirue

KULESET CRANEMANAGER (INHERIT IMUMANAGERjSHIPNANAGER)i
{M NUHBEROFSHIPCRAHES = 5 I { Cl] CRANEOOBS = FALSE IF ((CRANEOPERATIONA(CRAHEOPERATIORAL : FALSE) ;
[ZD CRANEOOBS = TRUE WHEN (CLOAOIMU = TRUE) OR CUNLOADIMU = TRUE) ORCLOADSHIP : TRUE) OR OJNLOADSHIP = TRUE)) AND

00B0UTST ANDING ,NEXTU0B ,U0BF0UND ,BA7,
Messages

Opening File: IMUNANAG.TEM Opening File: CRAHEMAH.TEM
FIGURE G81 TRACE OF ESSIM COMPILATION OF RULE-SETS

330

^ ^ iw W A w W w w X v AV/XXvivXvXvX; ̂ I >. !\\ IXvXvlvivVAV.'.V.VA! XI as XiXv XXsAS XvavX XvXX'aXsXv XX Oelav (0..100)

Berthl BerthZ
Z 1

I 500 I 500
E 500 E 500

Number Ships waiting to berth: 7
IMPORTS 1 - > 154
EXPORTS 1 - > 0
IMPORTS Z - > Z09
EXPORTS Z - > 0

SO

i
0z 14 1Z

GOAL StartShipArrcz
StartDockAtBerth
StartShipLeaue
C4

fHi jfljxiirM'iii
FIGURE G82 TRACE DISPLAY OF SHIP CYCLE IPOFUP 'DELAY OPTION ALSO SHOWNI

RDM TuTDOwS i M M W "h'sm:
>I I 1 ' ■ 1 ■ • 1 • •

. a .■.•x. vxXvaXw . w x : - as, a a w ^ aaavmv/.v* /.v/.

Gate Uehicles at stack
4 1 3 4 0

Number of Us outsideNumber of os waitin
Humber of Us in svs
GUI) 13 44 Z6 3Z
Bav 1 Z 3 4
Shp 1 1 6 8
exp l l l l

1 Z S 3 3
13to fce ^lioc^ted/move to a hay

i l U Z6
6 Z4 7
8 9 10
3 S 4
1 1 1

16
7
3
1

Dav
0

Hr Min
Z 6

1S6IMPORTS 1 - >
EXPORTS 1 ~>
IMPORTS Z - > Zll
EXPORTS Z ~> 01

0

SO

0z 14

SO

0
1Z

goal sendEmptylmu
GOAL SendEmptVlfDU
GOAL SendEoptvlfDu
C37
GOAL SendFUlllDlUT

FIGURE G83 TRACE DISPLAY OF GATE VEHICLE CYCLE

331

1111111111111111 m 11111v.' | 'f \F7I' .' .•' . ' .' .' .' IV1 1 '

s\sXv:-.v>.:v; M ft ;■■■. a .■, . ■ ■.: •, •:: ̂ • •. •

EIS 1 3
FIS 1 0
EIL 0 0FIL 3
IMuidle
Shi icidle
fullinutoship
enptyimutoship
fullimutostore
emptyimutostore

HINDOOS; O E I I ! m 3 * i * : : S : E IS a i«

64
1 L
0 L
0 L
0 L
0 U

I 0
I 0
I 0
I 0
E 0

14

e lec t nenu option

MIM'II ■ I I I I I I I I II II Mil IlfHU

.\ \ /. :mA.wAA

1

Da: Hr HiM
i 1Z

IMPORTS 1 ~> 164
EXPORTS 1 - > 0
IMPORTS Z - > Z19I
EXPORTS Z - > 1

goal StartShipArr
CZ
StartDockAtBerth
StartShipLeaue
C4

FIGURE G84 TRACE DISPLAY OF IMV CYCLE

T^MIHDOgSi M IR D E

1
imp 7 3 3 z 6 7 5 4 S 5 47exp 0 0 0 0 0 0 0 0 0 0 0
imp 3 4 9 z 1 3 4 4 4 4 33
exp 0 0 0 0 0 1 0 0 1 0 Z
imp 0 0 0 6 0 0 0 3 0 0 9exp 0 0 0 0 1 0 0 0 0 0 1
imp 0 0 0 0 z 0 0 0 0 Z 4exp 0 0 0 0 1 0 0 0 0 0 1
imp 0 0 0 0 0 0 0 0 0 0 0
exp 0 0 0 0 0 0 0 0 0 0 0
imp 0 0 0 0 0 0 0 0 0 0 0exp 0 0 0 0 0 0 0 0 0 0 0
imp 0 0 0 0 0 0 0 0 0 0 0
exp 0 0 0 0 0 0 0 0 0 0 0
imp 0 0 0 0 0 0 0 0 0 0 0exp 0 0 0 0 0 0 0 0 0 0 0
imp 0 0 0 0 0 0 0 0 0 0 0
exp G 0 0 0 0 G G G G G 0

H m H I H i H I
FIGURE G8 5 TRACE DISPLAY SHOWING NUMBER OF CONTAINERS IN THE STACK AREAS

332

APPENDIX H

333

APPENDIX H

REFERENCES

A delsberger, H . H . [1984], "Prolog As A Simulation Language", Proceedings Of

The 1984 Winter Simulation Conference. B ritish Computer Society.

A delsberger,H .H . [1986], "Rule Based Object Orientated Simulation Systems",

Proceedings Of The Conference On In te llig en t Simulation Environments.

A lty ,J .L . and Coombs, M. J . [1984], "Expert Systems - Concepts and Examples",

NCC Publications, The National Computing Centre L td , Oxford Road,

Manchester M l 7ED, England. ISBN 0-85012-399-2.

A lty ,J .L . [1985], "The Limitations of Rule Based Expert Systems",

in Knowledge-Based Expert Systems In In d u s try , Chapter 2.

Arum ugam ,V. [1985], "P rio rity Sequencing In A Real World Job Shop

Simulation", Simulation 45:4, pp l79-186.

B a lc i,0 . [1986], "Requirements fo r Model Development Environments",

Computers and Operations Research, 13:1.

B a lc i,0 . and N ance,R .E . [1987], "Simulation Support: Prototyping. The

Automation Based Paradigm ", Technical Report 87-20, Department Of Computer

Science. V irg in ia Tech. U n iversity.

334

Balm er, D . W. , Goodman, D . H . , and Doukidis, G . I . , [1988] , " Knowledge Based

Management Support System s.” , Ed. D o u k id is ,G .I., Land, F . , and M iller, G.

Ellis Horwood L td , Chichester.

B alm er,D .W ., and P a u l,R .J . [1986], 11CASM - The R ight Environment For

Simulation” , Journal of the Operational Research Society, Vol. 37, N . 5,

p p 4 4 3 -4 5 2 .

B a rre tt,R .T . and Barm an,S. [1986], "A SLAM I I Simulation Study Of A

Simplified Flow Shop", Simulation 47:5, pp l81-189.

B askaran ,V . Fox,M . S a th i,N . and B ouer,J. [1986], "Simulation C ra ft: An A I

Approach To Simulation Model C reation", Proceedings Of the IASTED

Conference, June 4-6,1986, Vancouver, Canada.

Bassett, G and K ochar,A .K . [1 9 8 5] , "Decision Support For Material

Requirements Planning Systems Using Computer Sim ulation", Proceedings Of

The 1985 Summer Computer Simulation Conference, July 2 2 -24 ,C hicago,Illinois,

P P 5 7 3 -5 7 8 .

B irtw is tle , G . M. [1979], "Discrete Event Modelling on SIM ULA", MacMillan,

London.

B itra n ,G .R ., H ass,E .A . and H a x ,A .C . [1982], "Hierarchical Production

Planning: A Two-Stage System", Operations Research, 30:2 , pp232-251.

335

B rooks,R . et a l. [1979], "The Acronym Model Based Vision System",

Proceedings Of The In ternational Joint Conference On A rtific ia l In telligence.

Volume 6 , pp l05-113.

Brown, T . A lexander, S . and Jagannathan, V . [1985], " Demonstration Of An

Expert System For M anufacturing Process Control", A I, Graphics And

Sim ulation, (B irtw is tle , G . E d), The Society For Computer Simulation, San

Diego, C alifo rn ia .

B uchanan,B .G . and S h o rtliffe , E . H . [1984], "Rule-Based Expert Systems: The

MYCIN Experiments Of The Stanford Heuristics Programming Project",

Addison-Wesley Publishing Company, Reading, MA.

B u lle rs ,W .I. and S h u ltz ,C .R . [1986], "Pprduction Rule-Based Simulation For

Job Shop Scheduling", Proceedings of the Summer Simulation Conference. Reno,

Nevada. pp718-723.

C h e w ,S .T . [1986], "Program Generators For Discrete Event D igital Simulation

Modelling", P h .d . Thesis, London School of Economics and Political Science.

C leary , J . Goh, K . and U nger, B . [1985], "Discrete Event Simulation In Prolog",

A I, Graphics & Simulation, The Society For Computer Simulation.

Clementson,A . T . [1982], "Extended Control And Simulation Language",

CLE.COM L td , Birmingham."

336

Clementson, A . T . [1978], "Extended Control And Simulation Language/Computer

Aided Programming System .", Reference Manual, University Of Birmingham,

Birmingham, England.

Clocksin, W. F . and M ellish,C .S . [1984], "PROGRAMMING IN PROLOG", 2nd

Edition, S pringer-Verlag.

Costa, R . S . and Jardim, E . G . M . [1986] , " Ouso da Simulacao Computational no

Plahejamento e Controle da Producao", Sao Paulo, 6th ANAIS, Sotiedade

Brasileira de Comando Numerio. SOBRACOM.

Crookes, J .G . and Valentine,B . [1982], "Simulation In Microcomputers", Journal

of the Operational Research Society, N .33, pp855-858.

Doukidis, G .I . [1987], "An Anthology On The Homology Of Simulation With

A rtificial Intelligence", Journal Of The Operational Research Society Vol 38,

N .8, pp701-712.

Doukidis, G . I . and P au l,R .J . [1991], "SIPDES", Expert Systems with

Applications, V o l.2, N o .2 /3 , pp 153-165.

D u d a ,R ., Gaschnig,J. and H a rt,P ., [1979], "Model Design In The Prospector

Consultant System For Mineral Exploration", Expert Systems In The Micro

Electronic Age (D.Michie ed). Edinburgh University Press.

337

Erschler, J . , Fontan. G . and Merce, M. [1986], "Consistency Of The

Disaggregation Process In Hierarchical Planning", Operations Research, 34:3,

pp464-469.

Feigenbaum,F.A. [1982], "Knowledge Engineering For The 1980's."

, Department Of Computer Science, Stanford U niversity, Stanford, California.

Fishman,G.S. [1973], "Concepts And Methods In Discrete Event Digital

Simulation", Wiley Press, New York.

Fjellheim, R .A . [1985], "A Knowledge Based Interface To Process Simulation",

A I Applied To Simulation, Simulation Series, VOL. 18 N . I .

Flitm an,A.M . [1986], "Towards the Application of A rtific ia l Intelligence

Techniques for Discrete Event Simulation". P h .d . Thesis, University of

Warwick, School of Industria l and Business Studies.

Flitm an,A.M . H u rrio n ,R .D . [1987], "Linking Discrete-Event Simulation Models

With Expert Systems", Journal Of The Operational Research Society, V o l.38

N .8 .

Fox,M .S . And Sm ith ,S .F . [1984], "ISIS - A Knowledge Based System For

Factory Scheduling", Expert Systems, Volume 1, No 1, pp25-47.

F u to ,I. [1985], "Combined Discrete/Continuous Modeling And Problem Solving" ,

A I, Graphics And Simulation. The Society For Computer Simulation.

338

Goodman, D . H . Balmer, D . W. and Doukidis, G .I . [1987], "Interfacing Expert

Systems And Simulation For Job-Shop Production Scheduling", Proceedings Of

The 3rd International Expert System Conference. Learned Information, Oxford.

ppl27-134, 2-4 JUNE 1987.

Gordon,G. [1981], "The Development Of The General Purpose Simulation System

(GPSS)" , History Of Programming Languages", (Wexelblat, R . L . Ed.) , Academic

Press, pp403-426.

Gosling,G .D. and Okseniuk,A . M. [1986], "SLICE - A System For Simulation

Through A Set Of Cooperating Expert Systems", Applications Of A I In

Engineering Problems, 1st International Conference, Southampton U niversity.

G ray ,P . and B orovits ,I. [1986], "The Contrasting Roles Of Monte Carlo

Simulation And Gaming In decision Support Systems", Simulation, 47:6,

pp233-239.

G re ig ,I.D . [1979], "Validation, Statistical Testing And The Decision To Model",

Simulation, 33:2.

Harmon,P. and K ing ,D . [1985], "EXPERT SYSTEMS: A rtific ial Intelligence in

Business", John Wiley & Sons, Inc.

Helm an,D.H. and Bahuguna,A. [1986], "Explanation System For Simulation",

Proceedings Of The 1986 Winter Simulation Conference.

339

H ill, T . R . and Roberts, S . D . [1987], "A Prototype Knowledge-Based Simulation

Support System", Simulation 48:4 ppl52-161.

H ills ,P .R . [1971]. HOCUS P .E . Group, Egham, S urrey.

H u rrio n ,R .D . [1978], "An Investigation Of Visual In teractive Simumlation

Methods Using The Job-Shop Scheduling Problem", Journal of the Operational

Research Society, V O L .39, No. 11, ppl085-1093.

IEEE [1984], "American National Standard for the Pascal Computer Programming

Language", ISBN 0-471-88944-X, published by the IEEE, N Y).

Jain,S. and O sterfeld ,D . [1989], "Expert Simulation for On-Line Scheduling",

1989 Winter Simulation Conference, 4th-6th December 1989, The Capital Hilton

Hotel, Washington D .C .

K h e ir,N .A . and Holmes,W.M. [1978], "On Validating Simulation Models Of

Missile Systems", Simulation, 30:4.

K iran ,A .S and Sm ith,M .L. [1983], "Simulation Studies In Job Shop Scheduling:

A Survey", Ed. Haluk Bekiroglu, Simulation in Inventory and Production

Control, Proceedings of the Conference on Simulation in Inventory and

Production Control.

K lahr,P . [1984], " A rtific ia l Intelligence Approaches To Simulation ", Proceedings

of the 1984 UKSC Conference On Computer Simulation, Published By

Butterworth, Bath.

340

K lahr,P . [1985], "Expressibility In ROSS: An Object-Orientated Simulation

System” , A I Applied To Simulation, Simulation Series, VOL. 18, N . I .

K lahr,P . and Faught,W .S. [1980], "Knowledge Based Simulation", Proceedings

Of The First Annual National Conference On A I, California, ppl81-183.

Koskossidis,D.A. and Davies.B. [1987], "Validation And Verification Of Job

Shop Simulation Models"

Langen,P .A . [1985], "Application Of Artificial Intelligence Techniques To

Simulation", Simulation and A I, Simulation Series, VOL. 18, N .3 .

L avery ,R .G . [1986], "Artificial Intelligence And Simulation: An Introduction" ,

Proceedings Of The 1986 Winter Simulation Conference.

Markowitz, H . M. Hausner,B. and K a rr ,H . [1963], "SIMSCRIPT: A Simulation

Programming Language", RAND Corporation RM-3310-PR, Prentice Hall,

Englewood C liffs, New Jersey.

Matthewson, S . C . [1975] , " Interactive Simulation Program Generators ",

Proceedings Of The European Computing Conference On In teractive Systems,

Brunei University.

M cA rthur,D . J . , K lahr,P . Narain,S . [1986], "ROSS: An Object Orientated

Language For Constructing Simulations", Expert Systems Techniques, Tools

And Applications, PP70-94, Adisson Wesley, Reading, Masechussets.

341

McFall,M .E. and K lahr,P . [1986], "Simulation With Rules And Objects",

Proceedings Of the 1986 Winter Simulation Conference.

McRoberts,M. Fox,M. and Hussain,N. [1986], "Generating Model Abstraction

Scenarios In KBS", A I Graphics And Simulation. SCS, San Diego, California.

Meadows,R. [1988], "Simulation - You Can Fake The Real Thing",

Port Development International.

Mellichamp, J . K w on,0. and Wahab,A. [1987], "Desiging Flexible Manufacturing

Systems With Expert System Technology", 1987 Summer Computer Simulation

Conference.

Middleton, S. and Zanconato,R. [1985], "BLOBS: An Object Orientated

Language For Simulation And Reasoning", A rtific ia l Intelligence Applied To

Simulation. ppl30-135. The Society For Computer Simulation, VOL. 18, N . I .

Mihran,G .A . [1972], "Some Practical Aspects Of The Verification And Validation

Of Simulation Models", Operational Research Quartely, 23:1.

M ille r,D .P . [1986], "Temporal Reasoning", Proceedings Of The 1986 Winter

Simulation Conference.

Moser,J.G. [1986], "Integration Of A I And Simulation In A Comprehensive

Decision-Support System", Simulation, 47:6, pp223-229.

342

M uetzelfeldt,R . B undy,A . Uschold,M. and Robertson,D. [1985], "ECO - "An

In telligent Front End For Ecological Modelling", A I Applied To Simulation,

Simulation Series, The Society For Computer Simulation, VOL. 18, N . I .

M uller,C . [1986], "MODULA—PROLOG- A Programming Environment For

Building Knowledge Systems", Knowledge-Based Expert Systems In In d u stry .

M uller,C . [1986], "MODULA-PROLOG: A Software Development To o l.", IEEE

Software.

N ance,R .E . [1981], "The Time and State Relationships In Simulation Modelling",

Communication Of The ACM, 24:4, ppl73-179.

N athan ,D .L . and Sokol,D .Z . [1986], "A Decision Support Framework For

Manufacturing Simulation Models", The Proceedings Of The 1986 Summer

Simulation Conference, July 28-30, Reno, Nevada, pp737-740.

N ay lo r,T .M . and F inger,J .M . [1967], "Verification Of Computer Simulation

Models", Management Science, 14:2.

Nestm an,C.H. and W indsor,J.C. [1985], "Decision Support Systems: A

Perspective For Industria l Enginners", HE Transactions, 17:1, pp38-46.

O 'Keefe,R. [1986], "Simulation And Expert Systems - A Taxonomy And Some

Examples", Simulation, 46:1, pplO-16.

343

O'Keefe,R.M . [1986], "The 3-P Approach: A Comment On S trategy-R elated

C haracteristics Of DIS Languages and Models", Sim ulation, 47:5 , pp208-211.

O'Keefe,R.M . BalcL,0. and Smith,E. [1986], "Validating Expert System

Performance", IEEE Expert, Winter 1987, pp81-90.

O'Keefe,R.M . and Roach,J.W. [1987], "Artificial Intelligence Approaches To

Simulation", Journal Of The Operational Research Society, Volume 38, N .8 .

O verstreet, C . M. and N ance,R .E. [1985], "A Specification Language To Assist

In Analysis Of Discrete Event Simulation Models", Communications Of The ACM.

V O L .28 No.2.

Paul,R .J . and Doukidis, G . I . [1986], "Further Development In The Use of

A rtificial Intelligence Which formulate Simulation Problems", Journal of the

Operational Research Society, N o.37, pp787-810.

Pidd,M. [1992], "Computer Simulation In Management Science", 3rd Edition,

John Wiley & Sons.

Prakash,S. and Shannon[1989], "Intelligent Back End of a Goal Directed

Simulation Environment For D iscrete-Part Manufacturing", 1989 Winter

Simulation Conference, 4th-6th December 1989, The Capital Hilton Hotel,

Washington D .C .

Pratt,W .K . [1978], "Digital Image Processing", J.Wiley & Sons, New York,

1978.

344

R eddy,R . [1987], "Epistomology Of Knowledge Based Simulation",

Simulation, 48:8, ppl62-166.

R ed d y ,Y .V . and Fox,M. [1986], "The Knowledge-Based Simulation System",

IEEE Software, 3:2 , pp26-37.

R e d d y ,Y .V ., F o x ,M .S ., D o y le ,K ., A rnold ,J. [1983], "INET: A Knowledge

Based Simulation Model Of A Corporate Distribution System", Proceedings Of

The IEEE Conference On Trends And Applications, Gaithersburg, MD.

Robertson, P. [1986], "A Rule Based Expert Simulation Environment",

Proceedings Of The Conference On Intelligent Simulation Environments.

Rozenblit, J . W. and Ze ig le r,B .P . [1985], "Concepts For Knowledge-Based

System Design Environments", Proceedings Of The 1985 Winter Simulation

Conference (San Francisco, California). IEEE, pp223-231.

R uiz-M ier,S . and Talavage,J. [1987], "A Hybrid Paradigm For Modeling Of

Complex Systems", Simulation, 48:4, ppl35-141.

R u iz-M ier,S . Talavage,J. and B en-A rieh ,D . [1985], "Towards A

Knowledge-Based Network Simulation Environment", Proceedings Of The 1985

Winter Simulation Conference, pp232-236.

345

Sathi, N . and B auer,J. [1986] Simulation C raft: An A I Approach To The

Simulation Life C ycle", Proceedings Of The 1986 Summer Computer Simulation

Conference, July 28-30, Reno,Nevada. pp773-778.

Schlesinger [1974], "Developing Standard Procedures For Simulation Validation

And Verification", Proceedings Of The 1974 Summer Computer Simulation

Conference, V O L .l.

Schruben,L.W . [1980], "Establishing The C redibility Of Simulations",

Simulation, 34:3.

Shannon,R.E. [1986], "Intelligent Simulation Environments", Proceedings Of

The Conference On In telligent Simulation Environments.

Shannon,R.E. M ayer,R . and Adelsberger, H . [1985], "Expert Systems And

Simulation", Simulation, 44:6, pp275-284.

Shaw,M .L. and G aines,B .R . [1986], "A Framework For Knowledge-Based

Systems Unifying Expert Systems And Simulation", Proceedings Of The

Conference On In telligent Simulation Environments.

Shortlif f e , E . H . [1976], "Computer-Based Medical Consultant: MYCIN",

Elsevier, New York.

Stew art,D . and Surgenor,B . [1987], "Simulation Validation Of An Expert

System For Process Fault Diagnosis", 1987 Summer Computer Simulation

Conference pp663-667.

346

T alavage, J . J . [1978], "Models For The Automatic Factors", Simulation, 30 :3 .

To ch er,K .D . [1962], "The A rt Of Simulation", English U niversity Press .

Tu ring , A .M . [1950], "Computer Machinery And Intelligence", Mind, Volume 59,

pp433-460.

U lgen,O .M . and Thomasma,T. [1986], "Simulation Modeling In An

Object-Oriented Environment Using Smalltalk-80", Proceedings Of The 1986

Winter Simulation Conference.

Van Horn, R .L . [1971], "Validation Of Simulation Results", Management Science,

17:5.

Vujosevic,R. [1990], "Object Oriented Visual In teractive Simulation", 1990

Winter Simulation Conference, 9th-12th December 1990, The Fairmont Hotel,

New Orleans, Louisiana.

W inograd,T. [1972], "Understanding Natural Language", Academic Press, New

York.

Z e ig le r,B .P . [1976], "Theory Of Modeling And Simulation", Wiley, New Y ork.

347

APPENDIX I

348

APPENDIX I

BIBLIOGRAPHY

A delsberger, H . H . and Neumann, G. [1985], "Goal Orientated Simulation

Modeling Using Prolog", Modeling And Simulation On Microcomputers, pp42-47.

San Diego, California

A ggarval,R . [1981], "A Simulation Model For Managing Foreign Exchange In A

Multinational Company", Simulation In Business Planning And Decision Making

(N a y lo r,T .H . E d .)* Simulation Proceedings Series. SCS. pp49-57.

A lte r, S. L. [1980], "Decision Support Systems: C urrent Practice And

Continuing Challenge", Addison-Wesley Publishing Co. Reading, Massechussets.

A ria v ,G . and Ginzberg,M. J . [1985], "DSS Design: A Systemic View Of Decision

Support", Communications Of The ACM, 28:10, ppl045-1052.

A rons,H . and De Swann [1983], "Expert Systems In The Simulation Domain",

Mathematics And Computers In Simulation X X V , North Holland.

B aker, C . T . and Dzielinski, B . P . [1960], "Simulation Of A Simplified Job Shop",

Management Science, 6:3 , pp311-323.

349

B ell,R . and B ila lis ,N . G . [1982], "Loading And Control Strategies For An FMS

For Rotational Parts", Proceedings Of The First International Conference On

FMS, Brighton, U .K .

B e rry ,W .L . [1972], "Priority Scheduling And Inventory control In Job Lot

Manufacturing Systems", A IIE Transactions, 4 :4 , pp267-276.

Blackwell,R. [1986], "A Discrete Event Scheduler In A Dynamic Production

System", Proceedings Of The 1986 Winter Simulation Conference.

B ra tk o ,I. [1986], "PROLOG Programming For A rtific ia l Intelligence",

Addison-Wesley, Reading, Mass.

B roda,K . and G regory,S. [1984], "PARLOG For Discrete Event Simulation",

Research Report Document 84/4 . Department OfF Computing, Imperial College

Of Science & Technology, University Of London.

B rookes,C .H .P . [1985], "A Framework For DSS Development", Transactions Of

The Fifth International Conference On Decision Support Systems. Institu te Of

Management Sciences.

B row n,R .G . [1968], "Simulation To Explore A lternative Sequencing Rules",

Naval Research Logical Quartely, 15, pp281-286.

Brow n,T A lexander,S. and Jagamathan, V . [1985], "Demonstration Of An Expert

System For Manufacturing Process C ontro l.", A I, Graphics And Simulation, The

Society For Computer Simulation.

350

Browne,J. and D avies,B .J. [1984], "The Design & Validation Of A Digital

Simulation Model For Job Shop Control", Internation Journal For Production

Research, V o l.22, N o.2, pp335-357.

B u lk in ,M .H . Colley,J. and Steinhoff,H . [1966], "Load Forecasting, Priority

Sequencing, and Simulation In A Job Shop Control System", Management

Science, 13, B29-B51.

B u llers ,W .I. Et. A I. [1980], "Artificial Intelligence In Manufacturing Planning

and Control", A IIE Transactions, 12:4, p p .351-363.

B uxton ,J.N . and Lask i,J .G . [1962], "Control and Simulation Language",

Computer Journal 5, ppl94-199.

C alu,J. Et. A I. [1984], "Knowledge-Base Aspects in Advance Modelling and

Simulation", Proceedings of the 1984 Summer Computer Conference.

C ash ,C .R . and Wilhelm,W.E. [1986], "A Simulation Modeling Approach For

Analysing Robotic Assembly Cells." , Proceedings of the 1986 Winter Simulation

Conference.

Cheng, T .C .E . [1985], "Simulation of Flexible manufacturing Systems",

Simulation 45:6, p p .299-302.

C o lley ,J .L . [1968], "Implementing A Job Shop Scheduling System", System

Procedures Journal, 19, p p .28-33.

351

Conway, R.W. [1965], "Priority Dispatching and Work-in-Progress Inventory in

a Job-Shop", Journal Of Industria l Engineering, 16:2, pp. 123-130.

Conway,R.W . [1965], "Priority Dispatching and Job Lateness In a Job Shop",

Journal Of Industrial Engineering, 16, p p .228-237.

Conway,R.W. Et. A I. [1967], "Theory Of Scheduling", Addison-Wesley.

C o x ,J .F . and Adam s,F.P. [1981], "Manufacturing Resource Planning: An

Integrated Decision-Support System", Simulation In Business Planning And

Decision Making. (Ed. N aylor,T . H .) , Simulation Proceedings Series. SCS.

p p .1-7.

Crookes, J .G . [1987], "Generators, Generic Models Ans Methodology." , Journal

of the Operational Research Society, 38:8, p p .765-768.

Crookes,J . G . , B alm er,D .W ., Chew,S. and P au l,R .J . [1986], "A Three-Phase

Simulation System Written In Pascal", Journal Of The Operational Research

Society, 37, p p .603-618.

Davies, R. [1980], "Meta-Rules: Reasoning About Control", A rtific ia l

Intelligence, 15:3, pp. 179-222.

D av is ,D .A . [1986], "Modeling AGV Systems", Proceedings Of The 1986 Winter

Simulation Conference.

352

Deliyanni, A . and Kowalski, R .A . [1979], "Logic and Semantic Netw orks.",

Communications of the ACM, 22:3, pp. 184-192.

Dogramaci,A. and Adam ,N.R. [1979], "Current Issues In Computer

Simulation." , Academic Press.

Eilon,S. and C otterill, D . J . [1968], "Modified SI Rule On Job Shop Scheduling",

International Journal Of Production Research, 7 :2 , pp. 135-145.

Eilon,S. and Hodgson, R .M. , [1967], "Job Shop Scheduling With Due Dates",

International Journal Of Production Research, 6 :1 , pp. 1-13.

Elmaghraby,S . E. and C o le ,R .T . [1963], "On The Control Of Production In

Small Job Shops", Journal Of Industria l Engineering, 14:4, pp. 168-196.

E lvers ,D .A . [1973], "Job Shop Dispatching Rules Using Various Delivery Date

Setting C rite ria ." , Production And Inventory Management, 14 :4 ,p p .62-80.

Em ery,J.C . [1969], "Job Shop Scheduling By Means Of Simulation And An

Optimum Seaking Search", Proceedings Of The Conference On Simulation, Los

Angeles.

Evans,J .B . [1984], "Simulation, An In telligence", Technical Report TR -A 5-84,

Centre Of Computer Studies And Applications, University Of Hong Kong.

F u to ,I. Gergely,T and Deutsch,T. [1985], "Logic Modelling", A I Applied To

Simulation, Simulation Series, The Society For Computer Simulation, 18:1.

353

F u to ,I. and Szeredi,J. [1982], "A Discrete Simulation System Based On

A rtific ia l Intelligence Techniques", Discrete Simulation And Related Fields.

(J a v o r,I. E d .) pp. 135-150. North-Holland.

G arz ia ,R .F . [1986], "Simulation With GPSS/PC", Proceedings Of The 1986

Winter Simulation Conference.

Gere,W .S. [1966], "Heuristics In Job Shop Scheduling", Management Science,

13:3.

Goldberg,A. and Robson,D. [1983], "Smalltalk-80: The Language And Its

Implementation", Addison-Wesley, Reading, Massachusetts.

Goyal Et. A I. [1985], "COMPASS", Expert Systems, 2:3.

Henriksen, J . O . and Schriber, T . J . [1986], "Simplified Approaches To Modeling

Accumulating And Nonaccumulating Conveyor Systems", Proceddings Of The

1986 Winter Simulation Conference.

Hershauer, J .C . and E b ert,R .J . [1975] /'Search And Simulation Selection Of a

Job-Shop Sequencing Rule", Management Science, 2:7.

H o llie r,R .H . [1968], "A Simulation Study Of Sequencing In Batch Production" ,

Operational Research Quartely, 19, p p .338-407.

354

Holloway,C. A . and N elson,R .T . [1974], "Job Shop Scheduling With Due Dates

And Overtime Capability", Management Science, 21:1.

Holloway, C .A . and N elson,R .T . [1974], "Job Shop Scheduling With Due Dates

And Variable Processing Times", Management Science, 20:9.

Holloway, C .A . and N elson,R .T . [1973], "Alternative Formulation Of The Job

Shop Problem With Due Dates", Management Science, 20:1.

Hottenstein, M. P . [1970], "Expediting In Job-order-Control Systems: A

Simulation Study", A IIE Transactions, 2 :1 .

H u rrio n ,R .D . and S eeker,R .J .R . [1978], "Visual Interactive Simulation: An

AID To Decision Making", OMEGA 6, p p .419-426.

Jones,C.H. [1973], "An Economic Evaluation Of Job Shop Dispatching Rules",

Management Science, 20, p p .293-307.

Jones,D.W. [1986], "Concurrent Simulation: An A lternative To Distributed

Simulation", Proceedings Of The 1986 Winter Simulation Conference".

Kerckhoffs, E . Et. A I. [1985], "General Considerations On A I Applied To

Simulation", A I Applied To Simulation, Simulation Series, 18:1.

K lahr,P . E llis,J. Giarla,W. Narain ,S . Cesar,E . and T u rn er,S . [1986], "TWIRL:

Tactical Warfare In The ROSS Language.", Expert Systems: Techniques, Tools

And Applications, p p .70-94. Addison-Wesley.

355

K lahr, P . M cA rthur,D . and N arain ,S . [1982], "SWIRL: An Object-Oriented A ir

Battle Sim ulator.", Proceedings Of The 2ND Annual National Conference On

A rtific ia l Intelligence. P ittsburgh, p p .331-334.

Knapp, V . [1986], "The Smalltalk Simulation Environm ent." , Proceedings Of The

1986 Winter Simulation Conference.

Kowalski,R. [1979], "Algorithm = Logic + Control", Communications Of The

ACM, 22:7, p p .424-436.

Kum ar,D. [1986], "A Novel Approach To Sequential Simulation.", IEEE

Software.

Legrande,E. [1963], "The Development Of A Factory Simulation Using Actual

Operating Data", Management Technology, 8:1 , pp. 1-19.

L iro v ,Y . Rodin,E. McElhaney,B. and W ilbur,L. [1988], "Artificial Intelligence

Modelling Of Control Systems" , Simulation, 50:1, pp. 12-24 ., ISBN 0037-5497/88.

Mamalis,A.G. B ila lis ,N . and Konstantinidis, M. [1987], "On Simulation Modeling

For FMS", Simulation, 48:1, p p . 19-23.

M a rtin ,D .L . [1986], "Simulation Analysis Of An FMS During Implementation",

Proceedings Of The 1986 Winter Simulation Conference.

356

M a y e r,R ., Young,R. and MamaIis,A. [1984], "An Assessment Of A I Applications

To Manufacturing." , Industrial Automation Laboratory, Industria l Department,

Texas A&M U niversity.

Moore,J.M. and WisonN,R.G. [1967], "A Review Of Simulation Research In Job

Shop Scheduling", Journal Of Production Inventory Management, 8, pp. 1-10.

Moreira Da S ilva,C . [1985], "The Use Of Decision Mechanisms In Visual

Simulation For FMS Modelling", A I Applied To Simulation, Simulation Series,

18:1, The Society For Computer Simulation.

N elson,R .T . [1967], "Labor And Machine Limited Production Systems",

Management Science, 13:9.

N o f,S .Y . Whinston,A. and Bullers,W. [1980], "Control And Decision Support

In Automatic Manufacturing Systems", A IIE Transactions, 12:2, pp. 156-169.

Nolan,P.J. and M cCarthy,M .A . [1986], "AI Frame-Based Simulation In System

Dynamics.", Applications Of A I In Engineering Problems, 1st International

Conference, Southampton University.

N orm an,T.A . and Norm an,V.B . [1986], "Interactive Factory Scheduling Using

Discrete Event Simulation." , Proceedings Of The 1986 Winter Simulation

Conference.

O 'Keefe,R.M . [1986], "Experiences With Using Expert Systems In O R .", Journal

Of The Operational Research Society, Number 37, p p .657-668.

357

O'Keefe,R.M . [1985], "Expert Systems And Operational Research - Mutual

B enefits .", Journal Of The Operational Research Society, Number 36,

p p .125-130.

Orciuch,E. and Frost, J. [1984], "ISA: In telligent Scheduling Assistant", IEEE.

O re n ,T .I. [1986], "Knowledge Bases For An Advanced Simulation

Environment.", Proceedings Of The Conference On Intelligent Simulation

Environments.

O re n ,T .I. [1985], "Artificial Intelligence and Simulation.", A I Applied To

Simulation, Simulation Series, 18:1.

O re n ,T .I. and Z e ig le r,B .P . [1979], "Concepts For Advanced Simulation

Methodologies.", Simulation, 32:3, p p .69-82.

O verstreet, C . M. Nance,R. B a lc i,0 . and B arger,L . [1986], "Specification

Languages Understanding Their Role In Simulation Model Development.",

Technical Report SRC-87-001, Department Of Computer Science, V irg in ia Tech.

U niversity .

Panwalkar, S . S . and Iskander.W . [1977], "A Survey Of Scheduling Rules.",

Operations Research, 25:1.

Radzikowski,P . [1983], "Perspectives Of The Business Decision Support Expert

System .", TIMS/ORSA.

358

Raghunath,S. and P e rry ,R . and C ullinance,T. [1986], "Interactive Simulation

Modelling Of Automated Storage Retrieval Systems", Proceedings Of The 1986

Winter Simulation Conference.

Rochette, R . and Sadowski, R . P . [1976], "Statistical Comparison Of The

Performance Of Simple Dispatching Rules", International Journal Of Production

Research, 14:1.

R ossley,T .R . [1983], "Simulation Of A FMS For The Manufacture Of Sheet Metal

Components", Annals Of The CIRP, 32:1, p p .427-431.

Rothenberg,J . [1986], "Object-Oriented Simulation: Where Do We Go From

Here?", Proceedings Of The 1986 Winter Simulation Conference.

Sargent,R .G . [1986], "Joining Existing Simulation Program s.", Proceedings Of

The 1986 Winter Simulation Conference.

Sprague,R .H . and C arlson,E .D . [1982], "Building Effective Decision Support

Systems", Prentice-Hall In c . , Englewood C liffs , N .J .

Stecke,K .E . and Solberg ,J.J. [1981], "Loading And Control Policies For A

Flexible Manufacturing System", International Journal Of Production Research,

19:5, p p .481-490.

Subrahmanyam,P.A. [1985], "The Software Engineering Of Expert Systems: Is

Prolog Appropriate?", IEEE Transactions, Software Engineering, Vol. SE-11,

No. 11, p p .370-386.

359

Symankiewizk, J . , McDonald,J. and T u rn e r,K . [1988], "Solving Business

Problems by Simulation", 2nd Edition, Me G raw -H ill, London.

U nger,B .W . [1986], "Object Oriented Simulation - ADA, C++, SIMULA",

Proceedings Of The 1986 Winter Simulation Conference.

V e re ,S .A . [1983], "Planning In Time: Windows And Durations For Activities

And Goals,", IEEE Transactions On Pattern Analysis And Machine Intelligence,

5 :3 , p p .246-267.

W ilbrecht,J .K . and Prescott,W. [1969], "The Influence Of Setup Time On Job

Shop Performance", Management Science, 16:4.

W right,M . Et. A I. [1986], "An Expert System For Real-Time C ontro l.11, IEEE

Software, March 1986.

Y a n ,J .C . and Lundstrom,S . F . [1986], ""AXE": A Simulation Environment For

Actor-Like Computations On Ensemble A rchitectures.", Proceedings Of The

1986 Winter Simulation Conference.

Y oung,R .E . and M eyer,R . [1984], "History And Introduction To A rtific ial

Intelligence And Expert Systems." , Working Paper, Industria l Automation

Laboratory, Industria l Engineering Department, Texas A&M U niversity.

360

