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ABSTRACT

This thesis investigates the representation of operational decision makers 

w ithin simulation modelling.

A rtific ia l Intelligence concepts, such as expert systems focus on the  

problem of representing, in  h igh-level code, complex real-w orld  decision making 

problems.

The author therefore proposes that the use of expert system technology 

may provide an improved means of representing operational decision tasks and 

th a t as a consequence, aprio ri possibilities may exist in  the context of model 

experim entation based on alternative operational policies.

The thesis fu rth e r investigates the nature of operational decision making 

and the potential need to represent w ithin a model, inter-dependencies between 

decision makers.

A prototype system called ESSIM is developed which comprises of two 

in terlinked  components, a discrete event simulation module and expert system  

module. The benefits of the proposed approach are then assessed by comparing 

the functionally of ESSIM with conventional modelling techniques. The 

comparison is carried out by developing three alternative models of an 

automated container po rt, one of these using ESSIM. Experiments were then  

devised and executed which seek to draw conclusions on the thesis proposal.
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CHAPTER ONE 

INTRO DUCTIO N

1-1 THE THESIS PROPOSITION

This thesis w ill investigate possible approaches in  using A rtific ia l 

In telligence techniques in  im proving the representation of operational decision 

makers w ithin simulation models.

The thesis proposition is  th a t expert systems techniques may provide an 

improved means of representing w ithin the model, operational policies which in  

the real-w orld  dictate the course of events. Such operational policies may 

require  the involvement of m ultiple decision makers and may potentially involve 

the representation of some form of hierarchical management s tru c tu re .

The belief that expert system technology may have a role to play w ithin  

conventional simulation modelling is a consequence of the fact that much of 

A rtific ia l Intelligence research is focused on providing tools fo r the resolution 

of complex real-w orld  decision making tasks.

There are a number of potential benefits which could be derived from  

using A rtific ia l Intelligence techniques in  the detailed representation of 

operational decision makers and th e ir in ter-re la tionsh ips. The main advantage 

is like ly  to resu lt from the ease w ith which model experiments could be carried  

out based on a lternative operational policies. (In  the context of th is thesis, the
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term  "Model Adaptability" w ill be used to describe th is  b e n e fit). A second 

derivative  benefit is that adding model detail in  the context of operational 

decision making, may ultim ately resu lt in  a model which is  a b e tte r 

representation of the real-w orld problem. The term , "Model Accuracy" w ill be 

used in  th is thesis to describe th is benefit.

Observations similar to the above have already been made by a number 

of authors including Fishman [ 1973 ] .  They assert th at conventional simulation 

languages are not well suited to the representation of decision tasks. Several 

authors have identified the potential of A rtific ia l Intelligence (A I)  approaches 

to overcoming these d ifficu lties . The possibility of in tegrating  a model of 

operational decision-making in  the form of an expert system and a conventional 

simulation model has been envisaged by O'Keefe and Roach[1987]. Flitman and 

Hurrion [1987] then provide the firs t practical insight in to the potential of 

linking an A rtific ia l Intelligence tool w ith a simulation model by building a 

system based on two inter-com m unicating m icro-com puters. The research  

presented in  this thesis follows on and builds upon Flitm an's [1986] pioneering  

work by concentrating on two key problems: (1 ) The representation of 

operational policies which are reflected by the real-w orld  operational s ta ff and 

th e ir cooperative actions. (2 ) The need to create a "practical" modelling 

environment in which the lin k  between simulation model and expert system is 

almost seamless.

1.2 THE RESEARCH STRATEGY

The firs t stage of the research involves a detailed lite ra tu re  study
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covering both simulation modelling and a rtific ia l intelligence. The emphasis of 

the lite ra tu re  study is in  iden tify ing  appropriate s ta te -o f-th e -a rt technology 

which could be applied in  creating a simulation environment incorporating  

a rtific ia l intelligence techniques. Of particu lar in terest are the various A rtific ia l 

In telligence approaches to the representation of "Knowledge" and the inference  

of conclusions from this knowledge. These can broadly be divided into A I 

languages (e .g . Lisp & Prolog) and A I Tools (e .g . Expert Systems and Object 

Oriented environm ents). Another im portant aspect of the lite ra tu re  study, is 

to learn what other researchers have achieved or proposed in  the context of 

combining a rtific ia l intelligence and simulation modelling techniques. F inally , 

much of th is thesis is concerned with the representation of decision making 

activ ities and the in ter-re lationsh ip  between decision makers during the process 

of enacting operational policies. Consequently, background research was 

necessary into the nature of decision making and the implications of hierarchical 

management structures.

The approach adopted in  th is thesis, was to build upon earlie r work 

undertaken by Flitman [1986] and to investigate through the development of a 

number of prototype systems, the implications of in tegrating  an expert system 

model of operational decision making and a conventional simulation model.

The development of the prototype environment involves the identification  

and resolution of the many practical d ifficu lties in  bringing together expert 

system and conventional simulation modelling techniques. The firs t  

implementation of a prototype environment principally served the purpose of 

iden tify ing  these practical d ifficu lties and defining the specification of a second 

implementation. This second implementation seeks to overcome the problems

3



identified  in  the firs t version and form s the basis of a generic simulation 

modelling environment w ithin which the practical modelling experience could be 

obtained.

A research strategy based on th e  development of prototypes is  only 

effective if  one is able to define a means of comparing the value of the new 

simulation technique with a more conventional modelling approach. The research  

therefore includes the development of th ree  simulation models of a container 

p o rt. One using the proposed approach,, another using conventional simulation 

techniques, and a th ird  using Pascal functions to replicate some of the  

characteristics of an expert system. A number of experim ents are then devised 

which seek to assess the functionality of the three models against the identified  

potential benefits of the proposed modelling environm ent.

1 .3  RESEARCH BACKGROUND

The motivation fo r the proposed research orig inally  arose from the  

author's involvement in  the Computer Aided Simulation Modelling (C .A .S .M )  

group at the London School of Economics which brought together a number of 

research studies in  simulation techniques.

One such project which was subsequently to provide a practical modelling 

context fo r th is thesis was a jo in t project between the London School of 

Economics (L .S .E . )  and the In s titu te  Nacional de Tecnologia ( I . N . T . ) ,  a 

Brazilian research C entre. The intention was to produce computer simulation 

models fo r production planning and control which were to be used in  assessing

4



the consequences of d iffe ren t jobbing and batch production structures in  a 

typ ical job-shop environm ent. I . N . T .  were to provide the necessary expertise  

in  production engineering w hilst in  the fin a l stage of the research, two 

m anufacturing concerns, NATEC LTDA and DANCOR S . A . , were to provide the  

practical context. The computer systems used a t the proposed sites were to be 

in tegrated with the models in  providing a decision support system which was to 

aid management to schedule and control production.

The rationale in  providing such a decision support tool was based on the  

fact th a t in  a typical batch m anufacturing environm ent, more than 90% of time 

is spent idle in  queues awaiting processing. Consequently, i t  was fe lt that 

there was considerable room fo r improvements in  productivity  by rationalising  

the m aterial flows.

R egrettably, geographical b a rrie rs  led to d ifficu lties in  maintaining close 

contact with our B razilian counterparts. The firs t prototype system 

encompassing an expert system and conventional simulation model was developed 

with the job-shop modelling requirem ents specifically in  mind. However, the  

subsequent d ifficu lty  in  gaining access to real-w orld  experts meant th a t a 

differen t model had to be developed fo r th e  evaluation of the second prototype  

system. The new model was that of an automated and p artia lly  un-manned 

container port which was to be b u ilt by Highland Participants PLC on the Is le  

of G rain. The real-w orld  container p o rt was to be controlled by a software 

application, the core of which would consist of decision rules formalised w ithin  

a 'knowledge-base*.
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1 .4  STRUCTURE OF THE THESIS

C hapter two consists of a review  of the two areas of research appropriate  

to th is thesis, simulation modelling and A rtific ia l In telligence. The chapter 

begins w ith an analysis of simulation modelling covering its  purpose, lim itations 

and applicability w ithin decision support systems. A sim ilar approach is  taken  

in  investigating the area of A rtific ia l Intelligence though particu lar emphasis is  

placed on knowledge representation, a topic p articu larly  pertinent to th is  

thesis. A study of recent papers follows, outlin ing what are cu rren tly  

considered to be "advanced" systems in  the area of co-operative systems 

involving both simulation and A I.

Chapter three focuses on the characteristics of decision making and seeks 

to id en tify  the possible ways of representing these w ithin simulation modelling 

and A rtific ia l In telligence. The possible ways of combining simulation and 

A rtific ia l Intelligence knowledge representations are identified  and the benefits 

and lim itations c ritica lly  compared. A choice is ultim ately made as to the  

approach to be selected fo r the purpose of building a prototype system.

Chapter four describes the process applied in  developing the prototype  

system re fe rred  to as ESSIM (E xpert System S IM ulation). The firs t prototype  

system which consisted of a model of a Job-shop is described and the  

conclusions drawn from th is in itia l investigation outlined. The general design 

of the second prototype system is then explained followed by an in -d ep th  

definition of the function of the various modules of the system.
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Chapter fiv e  outlines the development of the un-manned container port 

model already re ferred  to in  section 1 .3 . The implementation of th is  model forms 

the basis of the validation of the proposed methodology based on the lin k  

between simulation system and expert system . The structure of the simulation 

system component of the port model is explained followed by the expert system 

knowledge-base component. The process of experim enting w ith the port model 

is assessed with respect to the introduction of modifications to knowledge base 

and simulation system code. P articu lar emphasis is placed during th is  

assessment process on the impact of the expert system approach on modelling 

aspects including model "Accuracy" and "A daptab ility". The value of the new 

modelling process as encompassed in  ESSIM is then compared w ith more 

conventional approaches through the implementation of the same port model code 

using existing modelling tools. The benefits and lim itations of the ESSIM 

approach to modelling are then summarised.

Chapter six concludes the thesis by summarising the work undertaken  

and conclusions presented. The achievements of the research are formalised and 

suggestions made as to fu tu re  work which could be undertaken in  order to build  

upon the experiences that resulted from  the research encompassed in  th is  

thesis.
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CHAPTER TWO

RESEARCH CONTEXT

2.1 INTRO DUCTIO N

The research presented in  this thesis covers two distinct areas of 

knowledge, simulation and a rtific ia l intelligence. The background lite ra tu re  

study presented and discussed in th is chapter therefore commences w ith a 

review  of the nature, goals and lim itations of each of these technologies.

The lite ra tu re  study revealed that there existed some degree of overlap  

between simulation modelling and expert systems approaches. A number of 

published papers were also found which argued th is  case. Chapter two 

therefore continues to investigate the sim ilarities between simulation modelling 

and expert systems and explores the work of other researchers who have 

attempted to carry  out simulation modelling using a rtific ia l intelligence  

languages and tools.

Researchers have fo r some time been investigating the potential of using 

simulation and A I to mutual benefit. From the simulation perspective, A I 

provides the necessary tools fo r creating advisory systems to assist the user 

in  all stages of the process of developing and experim enting w ith simulation 

models. From the A I perspective, simulation provides the required framework 

fo r handling problems involving temporal reasoning (tim e h a n d l i n g )  and gives 

advisory systems the capability of investigating the fu tu re . Such research, 

may provide valuable experience and insight in to  knowledge representation
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techniques and methods used in b rin g in g  together simulation and A I. The 

chapter therefore concludes with a review  of research studies which have 

investigated the in terfacing of simulation models and A I languages and tools.

2 .2  SIMULATION MODELLING

Computer simulation modelling dates back to the early  days of computers. 

Nance [1981] and Shannon [1986] broadly divide the development of simulation 

into five  stages. Up until the 1960's, simulation models were mostly coded 

directly in  FORTRAN. In  the early 60's, the concept of simulation modelling 

attracted much in terest which spurred on the development of simulation specific 

languages (themselves using FORTRAN as the base language) including GPSS, 

CSL, SIMSCRIPT (Markowitz et a l . ,  [1963]) and SIMULA. In  the late 60's, 

revised versions of these languages appeared including GPSS I I / I I I ,  SIMULA 

67 and ECSL ( Clementson, 1982). The 1970's was a period of slow development 

fo r simulation in  which new languages were introduced th a t perm itted the  

combination of discrete and continuous components in  one model. D uring the  

fifth  stage which spans from the late  1970's to the present day, attention  

shifted from adding more powerful functions to existing languages to one of 

providing a more formalised modelling approach which could be used as a basis 

from improved productivity  in  code creation. The CASM (Computer Aided 

Simulation Modelling) project at the LSE as described by Baimer and Paul[1986] 

is one such example. The CASM concept centered around the use of an 

In teractive Simulation Program Generator (ISPG) and a suite of PASCAL 

simulation routines based on systems developed a t Lancaster u n ivers ity . The 

formalism of an A ctiv ity  Cycle Diagram (ACD) is  used as a basis fo r in pu t into

9



the  generator. Also under the umbrella of the CASM project, was work 

undertaken by Doukidis (See Paul and D oukidis[1986]) on automating the  

process of model form ulation using a N atural Language Understanding System  

(NLUS). The Pascal simulation routines used in  the CASM projects are well 

documented and tested and are consequently of potential benefit to the research  

in  th is thesis. These routines form part of the Extended Lancaster Simulation 

Environment (eLSE) and are well described by Chew [1986].

The terms 'simulation' and 'modelling' have a widespread and varied  

usage. Consequently, th e ir meaning in  the context of the thesis requires some 

clarification .

2 .2 .1  What is Simulation Modelling?

In  general term s, 'Modelling' re fers  to the process of constructing a 

scaled down version of an existing or proposed real world system. The intention  

in  building a model is to create e ith er a physical replica such as a three  

dimensional object or to generate an alternative system which does not have the  

same physical connotations but can nevertheless be used in  investigating the  

properties of the system being modelled. In  th is second category one can 

include computer programs used in  implementing various types of simulation and 

mathematical models consisting of series of equations or logical propositions. A 

prime example is mathematical programming in  which a set of linear equations 

and inequalities are used in  creating a model which has no direct equivalence 

in  the real world system being modelled.
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Each form of modelling has its  strengths and weaknesses. Mathematical 

or analytic models are powerful w ith respect to the level of generality of th e ir 

associated solution techniques. However, such an advantage leads to  the  

converse disadvantage of making it  d ifficu lt to make model behaviour match 

th a t of the real w orld. In  the case of simulation models, where the analogy 

between the model representation and the real world are th a t much g reater, 

there is a singular lack of generality , power and elegance as compared to the  

compact mathematical solution technique. On the other hand, considerable 

benefit is to be gained by greater faithfulness to detail in  th at investigation by  

experimentation is made possible by allowing analogical relationships w ith the  

real world to be maintained.

2 .2 .2  What is the purpose of simulation modelling?

A simulation model is simply a statement of the way in  which the various 

components of a real world system in teract to produce a behavioural pattern . 

The implementation of the model on a computer permits time scales to be reduced 

to a manageable level and hence perm its the program code to be used as a basis 

fo r experim entation. Pidd[1992] and M cArthur et al[1986] id en tify  a number 

of reasons fo r justify ing  the cost in  time and e ffo rt of developing a model:

Repeatability: In  the case of d irect experim entation on a real world 

system, replication using d iffe rin g  parameters is often e ither impossible 

or undesirable. Take a m anufacturing plant as an example. Managers and 

customers alike would be ra th er unhappy if  'live ' experim entation led to 

a sharp deterioration in  delivery lead tim es.
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Danger: D irect experimentation on a real world process can be

dangerous. Experim enting, fo r example, w ith the operating  

characteristics of a nuclear power station or a irc ra ft may be unwise.

Time: Specifying the logic of a model and implementing i t  as program code 

can take an inordinate amount of tim e. On the other hand, once 

implemented, the model can be used to run  innumerable experiments on 

a time scale drastically reduced from th at of real tim e, ( e .g . ,  economic 

systems could not possibly be experimented on d irec tly  because of the  

time fa c to r .)

In ev itab ility : Some real world systems, such as the solar system cannot 

be manipulated d irec tly .

Cost: Simulation models are typ ica lly  expensive to develop given that 

skilled analysts and programmers are required over a significant period 

of tim e. Nevertheless a rash decision implemented as an operating policy 

on the real world system can tu rn  out to be more costly.

In  deciding whether or not to develop a simulation model, the eventual 

goal(s) have to be id en tified . As pointed out by Shannon et a l.[1985],  

experim enting w ith a lternative operating policies or procedures is not the only 

potential use of a model. A simulation model perm its the acceptability of the  

corresponding real world system to be evaluated, e ither in  terms of robustness 

or performance, and in accordance with a given set of c rite ria . S ensitivity  

analysis can be used in  id en tify ing  the factors which are most significant in

12



a f fe c t in g  s y s te m  p e r fo rm a n c e . O p tim is in g  p ro c e d u re s  ca n  be  u se d  to  f in e - tu n e  

s y s te m  p e r fo rm a n c e . A n  in v e s t ig a t io n  can  be m ade in to  e s ta b l is h in g  th e  

fu n c t io n a l re la t io n s h ip s  th a t  e x is t  b e tw e e n  one o r  m ore  p a ra m e te rs  in  th e  

s y s te m . F in a l ly ,  a m ode l e n a b le s  t r a n s ie n t  b e h a v io u r  s u c h  as q u e u e  b u i ld u p s ,  

b o tt le n e c k s ,  a n d  u t i l is a t io n  le v e ls  to  be  id e n t i f ie d .

2 .2 .3  S im u la tio n  m ode l d e ve lo p m e n t a n d  e x p e r im e n ta t io n .

1. Definition of the problem based on an analysis of the actual or proposed 
real-world system.

\
2. Assessment of the feasibility of the simulation, drawing on relevant experience 

in solution techniques.

I
3. Identification of objectives and critical system components.

\
4. Formulation of a conceptual model followed by its representation as a

communicative model.

i
5. Creation of a programmed model.

1
6. Design of experiments leading to the validation of the model and the

presentation of model results. Return to previous stages in developing modified 
versions of the model.

I
7. Transfer of the model conclusions to the real world application.

F/GURE 1 STAGES OF THE SIMULATION LIFE CYCLE
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In  b ro a d  te rm s ,  th e  d e v e lo p m e n t o f  a s im u la t io n  m odel in v o lv e s  th e  

im p le m e n ta tio n  o f  th e  m odel o f  th e  re a l w o r ld  s y s te m  u s in g  e i th e r  a g e n e ra l 

p u rp o s e  h ig h  le v e l la n g u a g e  o r  s im u la t io n  s p e c if ic  p ro g ra m m in g  la n g u a g e , 

fo llo w e d  b y  an  in v e s t ig a t io n  o f  th e  m ode l th r o u g h  e x p e r im e n ta t io n .

PROBLEM 
DEFINITION 

PHASES

DECISION SUPPORT 
PHASES

DECISION MAKERS

i  1
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A proposed simulation model life  cycle is defined by Nance [1981] & 

Balci[1986] and is illustrated  in  fig ure  2. The basic stages are listed in fig ure  

1.

As with conventional program development life  cycles, the process must 

be treated as ite ra tiv e , particu larly  in  the model validation stage, where 

through display of output, e rro rs  or omissions in  the logic of the model 

typ ically  become apparent. Furtherm ore, experim entation requires a re-analysis  

of the logic of the model and implementation of such changes through  

modification of the program code.

2 .2 .4  Limitations of the simulation modelling approach.

Simulation model formulation and implementation forms part of a 

challenging and complex process that demands of the modeller considerable 

analytic skills . The experimentation stage that follows the construction of the 

model also exacts specialised skills in  statistical design and analysis of 

experim ents. Another point noted by Moser[1986] is th a t the experts needed 

in in terpreting  simulation results do not all come from a simulation background 

and include specialists from the fie ld  being investigated. The potential scarcity  

and cost of such expert advice fo r output in terpretation  can n u llify  the 

advantages of simulation as a management planning tool. Such lim itations linked  

with the fact that the process of simulation modelling requires long and complex 

computer programs have lead to the reputation of simulation as a costly and 

time-consuming process. Pidd[1986] claims th a t such factors are serious 

limitations and consequently that ’computer simulation should be regarded as a
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last resort -  to be used if  all else fa ils '. Indeed, many see the prim ary  

contribution of simulation to decision support as being lim ited to areas of high 

risk  strategic decision making in which physical danger or capital investments 

are major factors.

Simulation modellers face a number of other lim itations that cannot easily 

be overcome and these are typ ically  acknowledged as shortcomings which are 

offset by the benefits that the model occasions (See Koskossidis & Davies[1987] 

and Fishman[1973]). Some such lim itations can be classified as follows: (The  

firs t two have also been discussed in  chapter one)

Accuracy: Accurate representation of the real world tends to be a 

d ifficu lt goal to reach, p articu larly  in cases where extensive use is made 

of simple approximations based on prio r observation and sampling ra th er 

than modelling actual behaviour. Many systems include the presence of 

one or more decision makers who typically  have considerable influence 

over the activities th at take place. The complexity of decision making 

tasks sometimes mean that sim plification or omission are necessary in  

creating the model. As O'Keefe and Roach[1987] explain , the d ifficu lties  

in using present modelling structures fo r the representation of decision 

making leads to an inclination on the part of the modeller to lim it the level 

of detail. This lim itation in  the the level of detail with which decision 

tasks are represented may have the effect of restric tin g  the scope fo r 

experim entation. Another problem sited by the authors is that much 

critical knowledge can also get lost or m isinterpreted during the 

translation to computer code. I t  should however be noted th at the reverse

16



situation can be just as much of a problem. The gains achieved by an 

overly detailed model may be to ta lly  outweighed by the development 

overheads incurred and the d ifficu lties that ensue in  modifying the model 

logic. Consequently, a careful balance is required between the level of 

detail and the investment necessary in achieving the degree of 

representational accuracy.

A daptability: As we have seen, the scope fo r the application of simulation 

is lim ited. O ther modelling techniques may be more appropriate or there  

may exist inherent problems in creating a fa ith fu l representation of the  

real w orld. Given that the simulation model has been created, the modeller 

may, (at the experimentation stage, and sometimes earlie r if  systems 

analysis and design methodologies are not adhered t o , ) be faced with the 

need to a lte r the logic of the model. Meadows[1988] highlights th is  

problem in terms of incomplete or incorrect problem specification which 

results in a need to make m ultiple alterations to the code simply to 

incorporate one modification. M cArthur et al.[1986] state that these 

lim itations resu lt from difficu lties in  structuring  knowledge. They also 

maintain that any structure achieved in the in itia l model typ ically  becomes 

lost as more complexity is added or modifications made, w ith embedded 

assumptions being 'hidden, scattered, and fragmented throughout the  

program . 1. Such problems are exasperated by the complex interaction of 

model entities and the d ifficu lties in  maintaining consistency in  the data 

th at reflects curren t system status. Such a problem is highlighted in  the  

port application described in  chapter five.
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M aintainability: Simulation modelling is p artia lly  a cyclical process 

requiring  the modeller to switch between experim enting with the model 

and modifying the code in testing alternatives. The need to repeatedly 

a lte r the model imposes intolerable burdens on the structure and 

m aintainability of the code.

Ease of use: As pointed out e arlie r, experim entation necessitates 

modification which means that the analyst and programmer have to be 

involved throughout the duration of the model life -c y c le .

Speed: Even at the best of times, long simulation runs are time 

consuming. Consequently, repeat runs necessary in  investigating a range 

of alternative parameter settings can be a problem. In  some cases, 

simulations run slower than real time potentially eradicating any gain in  

developing and using the model. (See M cArthur et a l.[1 9 8 6 ])

Validation: According to M cArthur et a l. [1986], '  there is no assurance

that the simulation embeds an accurate or complete model of the dynamic 

system .1. Consequently, the modeller cannot have total fa ith  in  any 

results obtained from the model and can only attempt to gain an 

acceptable level of confidence through 'verification ' of the computer 

program and by demonstrating an acceptable correspondence between the  

output of the model and any actual or historic data. (See G reig[1979], 

Kheir & Holmes[1978], M ihran[1972], Naylor & F inger[1967], 

Schlesinger[1974], Schruben[1980], Van Horn[1971] and Koskossidis & 

Davies [1987 ]).
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In terp re ta tio n : Simulation models typ ically  produce a mass of data. I f  the  

modelling exercise is to be of any value, the data has to be correctly  

in terpreted  which is an e rro r prone and time consuming process. 

M cArthur et a l.[1986] give m ilitary simulations as an example, 

emphasising the d ifficu lties in isolating the critica l behavioural properties  

from ’hundreds of pages of numerical o u tp u t'.

2 .2 .5  The relationship between simulation and Decision Support Systems.

Decision Support Systems (DSS) are flexib le computer based systems that 

help the decision maker u tilise available resources in reaching a specific 

decision in  an unstructured environm ent such as management and operational 

control or strategic planning. As stressed by Gray and B orovits[1986], the  

role of a DSS should not be misunderstood. The intention is to provide support 

rath er than generate specific solutions which the user accepts as a fin al 

decision.

Simulation modelling, by providing an insight into the functionality of the  

real world system, is itse lf fundam entally a tool fo r the support of 

decision-m aking. Where simulation modelling d iffers  from the concept of a 

decision support system, is in the level of support provided to the user. 

According to Nathan and Sokol [1986], simulation neither relates the simulation 

results to a manager's m ultiple and conflicting objectives, nor does it  d irectly  

assist the manager in identify ing  the best solution. Simulation models have a 

number of other lim itations in the context of decision support; Large amounts 

of output are produced with no d irect means fo r comparing the effects of 

changes to the model parameters in  d ifferen t runs. Furtherm ore, an ind iv id ual,
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when experim enting with the model, needs to be guided ra th er than le ft to the  

slow process of 'tr ia l and e rro r'. This problem is fu rth e r compounded by the  

fact th at the analysis of the output of a stochastic simulation requires a deal of 

statistical expertise and cannot sensibly be le ft to a busy manager faced with  

an urgent decision. Even if  such statistical analysis could be reduced to a 

simple routine and the whole embedded w ithin an optimising algorithm , the  

execution of the multiple replications of each of the alternative decision 

scenarios required by such a process may pose intolerable computational 

burdens fo r an on-line decision support system.

Taking an alternative view point, simulation modelling can be seen to make 

significant contributions to decision support systems. For example, The actual 

process of developing a simulation model may occasion w ithin the user an 

enhanced appreciation of the operation of the system modelled. This may, in  

itself prove useful in  supporting decision making or may contribute in d irectly  

to the process of creating a DSS. Another possibility is th at the model produced 

could be used in  a formal series of experiments which potentially culminate in  

a rule or set of rules that are then used as part of the DSS. For instance, a 

regression model could be fitted  to the simulation output which then adequately 

summarises the effects of changes in certain input param eters. The changes to  

the input parameters could represent alternative decisions on the operation and 

management of the real world system and consequently, the regression equation 

could be incorporated in the DSS which then requires no fu rth e r reference back 

to the simulation model. (See Nathan and Sokol[1986])

Another common approach has been to embed the model w ithin the DSS 

thus allowing the simulation to play a d irect role in decision support. A system
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developed by Basset and K ochhar[1985], provides data analysis and report 

generation routines but does not provide the user w ith any degree of fle x ib ility  

and the problems of using simulation fo r decision support highlighted in  the  

previous paragraphs remain unresolved. Other w riters  such as Moser[1986] take  

a sim ilar approach but re ly  on a rule-based expert system fo r the in terpretation  

of the simulation output. This expert system is developed in  parallel w ith the  

simulation and embodies the knowledge of both simulation analyst and domain 

experts used in the in terpretation of output. Another system form erly known 

as KBS and now named Simulation C ra ft takes a fa r more ambitious approach 

(McRoberts et a l.[1 9 8 6 ], Reddy et a l.[1 9 8 6 ]/ R eddy[1987], and Sathi et 

a l.[1 9 8 6 ]). I t  is proposed th at Simulation C ra ft be capable of iden tify ing  

appropriate sets of scenarios, automatically generating a number of experim ents 

such th at the stated 'goal1 be attained and producing a report explaining the  

scenario selected. Such a system offers a functionality w hich, if  fu lly  realised, 

reserves fo r simulation a place w ithin the realm of on-line DSS.

The next section w ill provide an overview to the area of A I and in 

particu lar, expert systems, p rio r to investigating the research that has been 

undertaken in  combining characteristics of simulation and A I.

2 .3  A R T IF IC IA L  INTELLIG ENCE.

The roots of A rtific ia l Intelligence are w idely accepted as dating back to 

1950 when T u rin g [1950] wrote his speculative paper on computer machinery 

and intelligence. (In  comparison, the firs t commercial computer, the IBM 705, 

appeared in  1954 and the firs t programming language, FORTRAN, in  1957). In
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1956, a conference at Dartmouth college on symbolic computation paved the way 

fo r the development of practical applications. However, it  was not u n til the  

1970's that the concept of A I was to find acceptance outside research  

environm ents. U nfortunately, in terest dwindled because the A I applications 

were too slow coupled with high development costs and small practical re tu rn s  

(Harmon and K ing[1 985 ]). I t  was not un til the 1980's th a t A I was fin a lly  to gain 

acceptance, and not so much because of any significant theoretical advances, 

but because developments in chip technology led to the introduction of a new 

generation of substantially more powerful computers at re la tive ly  lower costs.

A I is concerned with how humans 'acquire, organize, and use knowledge' 

(Shannon et a l.[1 9 8 5 ]). The constituent areas of A I are not clearly defined 

but broadly fa ll into three classes. N atural language processing, robotics, and 

knowledge based systems.

Natural Language Processing (NLP) is prim arily  concerned w ith the  

development of computer applications that can read documents, speak, 

and recognise spoken words (speech recognition). The in terest in  NLP 

is spearheaded by a need to provide a more powerful means of 

communication between man and computer, coupled with the commercial 

availability in recent years o f, tex t scanners, speech synthesisers and 

speech recognition equipment. (See Winograd[1972] fo r a more detailed 

coverage of N L P ).

Robotics is concerned with how robots can be given tactile and visual 

senses. Dramatic advances have been made in  recent years, resu lting in
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wide usage of such technologies in in dustry , prim arily in the context of 

Automated Guided Vehicles (A G V s), image recognition (e .g  fin g erp rin t 

id en tifica tio n ), and machine guidance (e .g . welding and cutting in  the  

car m anufacturing in d u s try ). The scope for the use of robotics is 

substantial as businesses cut overheads in  s triv ing  to remain com petitive. 

(See P ra tt[1978] and Brooks et a l.[1979] fo r a more detailed discussion 

of the topic) .

Knowledge based systems include Expert Systems and Neural Networks, 

a new area of research mainly dedicated to machine learn ing. Expert 

Systems (ESs) are concerned with the automation of mental tasks th a t are  

normally undertaken by an expert in a specific application area. Expert 

systems d iffe r significantly from other A I applications, namely NLP and 

robotics, in that the underlying goal is not that of gaining an insight into  

how human experts reach a given conclusion, but ra th e r, that of devising 

methods by which such conclusions may effectively be duplicated 

(Shannon et a l. [19 85 ]). The research presented in  th is thesis is prim arily  

concerned with the contributions that expert systems can make to 

sim ulation, and consequently, the following sections w ill focus exclusively  

on ES theories.

2 .3 .1  What are Expert systems and how do they work?

According to Feigenbaum [1982], expert systems are in telligent computer 

programs that use '...kn o w led g e  and inference procedures to solve problems 

that are d ifficu lt enough to require significant human expertise fo r th e ir 

solution.' Expert systems d iffe r from conventional problem solving techniques
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both in terms of the development process and architecture of the implemented 

end product. The procedural approach used in  conventional high level 

languages is abandoned in favour of an architecture which is typ ica lly  based 

on the use of three distinct modules that represent the knowledge of the 

system. The three components are:

A database (or equivalent) for the storage of data corresponding to the  

'declarative knowledge' to be used by the ES, and run-tim e data 

representing the curren t status of the system. ( declarative knowledge is 

data, specified before the s tart of the inference process).

A knowledge-base which encapsulates the facts and rules th at embody the  

expert's  domain knowledge.

An inference engine that consists of deductive strategies th a t define the  

problem solving approach to be used. The inference engine analyses 

available facts and rules and attempts to draw conclusions which get 

added to the database or are used to modify curren t database en tries. 

The inference engine is fu rth e r responsible fo r instigating order in the  

pattern of in q u iry .

1 .Knowledge representation: Expert system shells which are high level tools 

fo r the creation of expert systems typically  provide a language construct, data 

structures, a generalised inference engine, and a u ser-frien d ly  in terface. 

There exists several forms of representation fo r the facts and knowledge stored 

in  the database and knowledge-base. The most common of these are: Semantic 

networks, fram es, ob ject-attribu te-value trip le ts , and predicate calculus. O ther
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forms of representation including program code, ru les , conditional probabilities, 

and firs t-o rd e r logic which are used almost exclusively in representing domain 

specific knowledge in  the knowledge-base.

Semantic networks are one of the oldest and most general representation  

schemes fo r declarative knowledge (Harmon and K ing [1985]). Objects to 

be represented are symbolised by nodes and relationships denoted by 

arcs that link the objects together. The advantage of such a 

representation is the clear image th at can be obtained as to relationships  

between objects through graphical representation compared to lines of 

code in  a classical program . Semantic networks are flexible inasmuch as 

new nodes and arcs can be added as needed and have the benefit of 

perm itting objects to in h e rit the a ttrib u te  values of other objects through  

the creation of additional arcs.

Frames are a form of representation fo r objects which contains slots for 

the storage of facts about the object. The slots may contain values or 

pointers. A pointer may point to another frame or a lternatively  to a 

procedure or set of rules th at re tu rn  a value. Consequently, frames are 

capable of both procedural and declarative representational form s. As 

with semantic networks, frames can in h e rit the a ttrib u te  values of other 

objects. (See A lty  and Coombs[1984])

O b ject-attribu te-value trip le ts  are sim ilar in concept to semantic 

networks. The arcs used in  semantic networks to symbolise relationships 

are sim plified by only allowing two kinds of relationships. Namely, "is-a" 

and "has-a" arcs. O -A -V  trip le ts  were used in the MYCIN medical

25



diagnosis expert system (see Buchanan and S h o rtliffe [1984]) .

Predicate calculus is a simple language fo r the definition of objects and 

facts (predicates) relating to these objects. The form at of statements in  

predicate calculus consist of a fact followed by one or more object names 

between parentheses. For example, "Is-Assem bly Machine (Mach_A)" is  

equivalent to the statement that "machine A is a machine fo r the assembly 

process". Such an assertion can either be TRUE or FALSE. Predicate 

calculus has the advantage of being fa ir ly  English like  and yet has a 

simple and lim ited syntax. (See A lty  and Coombs[1984])

Program code is often used in conjunction with other knowledge 

representation structures in  defining the domain specific knowledge. A 

procedure may be called when a given set of conditions are satisfied. A 

number of expert system shells provide facilities fo r in terfacing to 

conventional high level languages though data sharing is often impossible 

or awkward to use.

Rules (production ru les) typ ically  have an IF -TH E N  type stru ctu re  

consisting of a premise and conclusion which can be grouped together 

using logical operators. The premise is used to check the curren t state  

and if  satisfied, results in a modification of the curren t state through  

activation of the statements declared in the conclusion. Some production 

ru le languages provide facilities fo r conditional probabilities which perm it 

rules to conclude results that only have a certain probability of being 

correct given that the premise has been satisfied, (see Buchanan and 

S hortliffe[1984] fo r a description of reasoning about uncertainty in
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M Y C IN ).

F irs t-o rd er logic, or more specifically, Horn clauses can be used in  

defining knowledge in e ither a declarative or procedural sense (See 

Futo[.1985], Bullers & S chultz[ 1986], C leary et a l.[1985] and 

A delsberger[1984]) . For example, B A I , . .  ,A n . can be in terpreted as 

a logical statement that says th at B is tru e  if  A I to An are tru e . 

A ltern ative ly , in the procedural sense, the statement can be in terpreted  

as being th at the problem of evaluating B is reduced to the sub-problem  

of evaluating A I to A n. A more detailed evaluation of firs t-o rd e r  

predicate logic is reserved fo r a la te r section in a discussion of the 

facilities provided by Prolog.

2 .In ference & control strategies: The inference engine is the part of the

expert system that embodies the strategies that are used to draw inferences 

from the facts and rules declared in  the database and knowledge-base, and 

that controls the reasoning process. The inference engine also acts as an 

in terface between the end-user and the stored knowledge, effectively  

conducting a consultation whilst drawing on the knowledge to provide solutions.

A t the simplest level, the inference strategies used by expert systems 

simply consists of statements that say that if  the premise of a ru le  is tru e , 

that the conclusions can then be accepted. Modification of th is principle also 

exist such that a basic statement of the type IF  A THEN B can also be taken  

as meaning that i f  A is NOT true then that B cannot also be tru e . Another 

possibility is that i f  the value of B can be evaluated (b u t not that of A ), that 

we can then derive the value of A w ithout the need to exp lic itly  code this fact
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using another ru le . As mentioned in the section on ru les , probabilities can also 

be associated with statements that re flect the uncertainty of the va lid ity  of 

given inform ation.

A t the control leve l, the inference engine must organise the steps taken  

in  solving a problem. The inference engine is also responsible fo r the following 

tasks:

1. Selecting a position from which the reasoning process can begin.

2. Resolving conflicts in  logic between ru les.

3. Choosing, a ru le  from a set of rules that can all be evaluated.

4. In te rru p tin g  the inference process in order to obtain missing 

information from the operator.

The two most common control strategies are forw ard chaining and 

backward chaining, the use of which w ill depend on the problem domain. 

Furtherm ore, forw ard and backward chaining can either be carried out using 

a d e p th -firs t or b re ad th -firs t searching strategy.

A forw ard chaining or data-driven  strategy is usually employed when 

the desired goal is not in itia lly  known. This is typ ically  the case in monitoring 

systems in  which there is no goal to commence the inference from . In  forw ard  

chaining, the s ta rt conditions consist of the current entries in the database and 

the inference proceeds by identify ing  those rules that have premises th a t can 

be satisfied . The action part of the statements are executed resulting in  fu rth e r  

facts being added to the database. The process is then repeated u n til e ith er a
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desired state is reached or un til no remaining premises can be satisfied. The 

d iffic u lty  with the forw ard chaining strategy is that a t each step in  the cycle, 

a choice has to be made between a number of rules that have premises that are  

satisfied. As the number of such rules increases, a noticeable deterioration in  

performance is fe lt consequent to the increased complexity of the selection 

process.

A backward chaining or goal-directed strategy is used in circumstances 

where the desired end goal is known. The goal is evaluated by searching fo r 

a ru le  (o r ru les) that has an action that satisfies the premise of the goal. This  

ru le  is then defined as a sub-goal and the process repeated un til the premise 

of the original goal is satisfied or u n til no more sub-goals can be iden tified . I f  

the search strategy is 'irrevocable' and the goal is unresolved, the inference 

engine can proceed no fu rth e r (see Shannon et a l.[1 9 8 5 ]). A lternative paths 

through the solution space can only be attempted by re-commencing the 

inference process. I f  the search strategy is 'ten ta tive ', the inference engine 

can backtrack to an earlie r sub-goal, select a new ru le , and again endeavour 

to find a solution.

In  D ep th -firs t searching, p rio rity  is given to producing sub-goals. 

Hence, alternative paths through the solution space are only considered once 

a particu lar path reaches a dead-end. I f  the expert system interrogates the 

operator fo r in p u t, the feeling given is one of a search which results in  

questions of ever-g rea ter detail.

In  b re a d th -firs t searching using a backward chaining inference s tra teg y , 

consideration is given firs t to alternative sub-goals. In  other words, all paths
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th a t  c o u ld  le a d  to  th e  s o lu t io n  a re  in v e s t ig a te d  s im u lta n e o u s ly . T h e  e f f ic ie n c y  

o f b r e a d t h - f i r s t  s e a rc h in g  is  d e p e n d e n t on  how  q u ic k ly  a r u le  p re m ise  ca n  be 

fo u n d  th a t  s a t is f ie s  th e  g o a l. B r e a d th - f i r s t  s e a rc h in g  te n d s  to  be u n p o p u la r  in  

s y s te m s  th a t  r e q u ir e  s u b s ta n t ia l u s e r  in te ra c t io n  c o n s e q u e n t to  th e  o p e ra to r  

fe e lin g  u n e a s y  a b o u t h a v in g  to  a n s w e r q u e s tio n s  th a t  seem to  be  o rd e re d  a t  

ra n d o m .
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GOALS O  ---------►

GOALS
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FIGURE 3 INFERENCE ENGINE SEARCH STRA TEG/ES

30



2 .3 .2  What is the purpose of an expert system?

The principle underlining the expert system approach, is to enable the 

representation of the knowledge of one or more experts w ithin a specific 

domain. For example, in Fox and Sm ith[1984] the pertinent expert knowledge 

is concerned with the scheduling of jobs w ithin a machine shop. This 

knowledge-base is searched to provide answers to questions such as which 

jobs should be given p rio rity  if  a goal of ensuring th a t contractual agreements 

on delivery dates has to be met.

In  many cases, the knowledge represented in  the developed system 

relates to some complicated decision-making process but cannot be described 

as an expert's  knowledge. Consequently, expert systems can be used in a 

method akin to conventional programming in situations where the inference 

strategy and incremental development process of a knowledge-base are deemed 

advantageous.

Expert system shells often attem pt to provide fac ilities  that in some ways 

resemble the approach taken by human experts. For example, experts often 

need to consult others in solving problems and consequently the expert system 

may incorporate facilities fo r in terrogating the operator. The user can typically  

skip questions or associate an uncertainty factor w ith an answer. The expert 

system can usually explain a line of reasoning and ju s tify  conclusions, though 

the fac ility  is lim ited in that the output obtained is typ ically  a trace of the  

inference through the knowledge-base.
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The most common use of expert systems is as advisory systems in  which 

some form of in teractive consultation takes place. Two of the best known 

examples are MYCIN (Shortliffe[1976] and Buchanan & S h o rtliffe [1984]) fo r 

medical diagnosis and PROSPECTOR (Duda et a l.[1 9 7 9 ]) fo r the analysis of 

geological data. Another common use fo r expert systems is fo r tra in in g  and 

educational purposes, e ither through modification of an existing ES (Buchanan 

& S h o rtliffe [1984]) , or by using an approach that 'customises1 the teaching 

session according to past attainm ent. Research is also being carried out into the  

use of expert systems as in tegral modules in software fo r on-line decision 

making fo r m anufacturing process control (Brown et a l.[1 9 8 5 ]) and as 

in te llig en t front-ends (Muetzelfeldt et a l.[1 9 8 5 ]).

2 .3 .3  Limitations of expert systems.

Many researchers (and particu larly  those not working in A I) have cast 

doubt on the effectiveness of the expert system approach whereas others have 

stopped just short of heralding its  discovery as the dawn to a new era . The 

main argument put forward by the sceptics is that the ES approach is to 

produce a system which externally  manifests the behaviour of the relevant 

expert but that in tern a lly , uses an unnatural format fo r the representation of 

the experts knowledge and uses an inference strategy that is a crude 

sim plification of the way the expert th inks. The knowledge of an expert in  a 

diagnostic domain is believed to consist of both a mental model of the problem  

and rules of thumb which are used to guide the diagnostics process. This 

mental model is flexib le in that it  is adaptable to similar problem domains by  

perm itting analogical reasoning. A lty[1985] points to the deficiency of using 

IF -TH E N  type rules (production rules) by exem plifying the d ifficu lties  in

32



tran sferrin g  knowledge represented in  th is form at to other applications. 

Production rules are an ideal representation fo r the rules of thumb used by the  

exp ert, but otherwise necessitate a considerable amount of domain knowledge 

to be discarded at the expense of the addition of extraneous computational 

knowledge. .

The use of production rules leads to a tendency to expand the  

knowledge-base increm entally as rules are elicited from the exp ert. This can 

lead to an scattering of rules which inevitab ly results in  a system which is  

either incomplete, ambiguous or inconsistent. Poor performance of the ES 

results from difficu lties in maintaining order in the knowledge-base which would 

otherwise benefit the re la tive ly  simplistic search and pattern matching 

procedures of the inference engine (M uller[1 9 86 ]).

Maintenance of a knowledge-base is frau ght with d ifficu lties resulting  

from an inab ility  to manually trace through the logic of the system consequent 

to the scattering of the production rules and the lack of an explicit definition  

of the expert systems inference strategy. Most expert systems consequently 

incorporate an 'explanation’ fac ility  that lists the rules that are activated at 

each step in the inference process.

Most expert systems are poor at incorporating algorithm ic approaches to 

supplement the rule-based reasoning and many have no facilities fo r executing  

procedural code.

Expert systems handle decision making as an instantaneous process, 

whereas time may be a critical facto r. An ES controlling a production line using
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on-line data may fo r example have to c a rry  out forw ard projections in  reaching 

a decision. The incorporation of time into the inference mechanism blurs the 

distinction between expert systems and simulation models. (M iller[ 1986])

2 .4  A I AND SIMULATION MODELLING -  MUTUAL SUPPORT.

Previous sections have identified  the general characteristics of both 

simulation and expert systems, as well as the shortcomings and benefits of 

each approach. The sim ilarities between simulation and expert systems are now 

considered with emphasis being placed on the possibility of adapting an expert 

system to carry  out the role of a simulation model (and v ice -versa ). The 

possible ways of in tegrating simulation and A I techniques are then considered.

2 .4 .1  Expert systems and simulation -  Is  there a difference?

Operational sim ilarities between simulation and expert systems, have been 

noted by several w riters . As pointed out by Shaw and Gaines [1986], an expert 

system can be considered as the simulation of the external manifestations of the  

knowledge processes of a person. A more subtle relationship also exists in th a t 

simulation and expert systems are both aids to individuals in  coping with the  

real w orld. Simulation does not provide d irect advice b u t, through the use of 

a model, permits experiments to be carried out giving the user a greater 

understanding of the system being modelled and perm itting the investigation of 

ideas before implementation in  the real w orld. S im ilarly, expert systems can be 

seen, through advice giving and explanation fac ilities , as providing a means of 

gaining an increased appreciation of the c rite ria  applied in  reaching a decision.
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Advice provided by the ES may then be applied in  the real w orld.

Sim ilarities between simulation and expert systems have also been 

identified  at a methodological leve l. For instance, Doukidis[1987] argues that

a "  three-phase simulation system can be seen as a production system ", his

reasoning being that the three essential components are present: Data memory, 

production model, and inference engine. In  discrete event simulation, model 

execution is effected through a three-phase executive which performs a 

tim e-advance in  the A phase, executes all curren t tim e-dependent events in  the 

B phase and examines and executes where appropriate a ll state-dependent 

events in  the C phase (Tocher[ 1962]). The executive can be compared to a 

forward chaining inference engine, which, at each tim e-advance, scans the 

state-dependent C events (the production ru les) in  search of routines th a t can 

be activated. The definition of the model logic, separate from the executive 

controlling model execution, gives three-phase simulation some of the 

characteristics of a declarative language. A diagrammatic representation of the 

three-phase approach is shown in fig ure  4.

Though the general structure of a discrete event simulation model and an 

expert system are quite clearly sim ilar, the strategies applied during the 

inference processes are significantly d iffe re n t. D iscrete event simulation is 

prim arily concerned with time handling and the representation of the activities  

that constitute the model. L ittle  consideration is given to the representation of 

decision making. Conversely, expert systems re ly  on a detailed description of 

decision rules with no consideration being given to the effects of tim e. The 

expert system inference strategy is a general one th at permits the application 

of expert systems to a varie ty  of problems. Hence, a simulation model can be
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s p e c if ie d  u s in g  a d e c la ra t iv e  e x p e r t  s y s te m  a p p ro a c h  in  w h ic h  th e  tim e  h a n d lin g  

c a p a b il i t y  is  d e f in e d  in  te rm s  o f p ro d u c t io n  r u le s .  A lth o u g h  fe a s ib le ,  e x p e r t  

s y s te m  p ro d u c t io n  ru le s  a re  n o t  an  id e a l m ed ium  f o r  th e  re p re s e n ta t io n  o f 

s im u la t io n  e n t i t ie s  a n d  a c t iv i t ie s  a n d  th e  a p p ro a c h  is  c o n s e q u e n tly  o f  no 

s ig n if ic a n t  b e n e f i t .  A n  a l te r n a t iv e  a p p ro a c h  is  to  a d a p t th e  s t r a te g y  u s e d  b y  

th e  in fe re n c e  e n g in e  to  r e p re s e n t  d is c re te  a d v a n c e s  in  tim e  b y  m a in ta in in g  a 

d ia r y  o f s c h e d u le d  e v e n ts .  T h e  n e c e s s a ry  a lte ra t io n s  a re  s ig n i f ic a n t  and  

p re v e n t  t h e r e a f te r  th e  use  o f  th e  in fe re n c e  e n g in e  in  i t s  t r a d i t io n a l  r o le .  T h e  

a p p ro a c h  ha s  been  in v e s t ig a te d  b y  R o b e r ts o n  [1 9 8 6 ] a n d  is  d e s c r ib e d  in  m ore 

d e ta il in  s e c t io n  2 . 5 . 4 .

NO
FINISHED

YES

FIN A LISA TIO N

B PHASE

C PHASE

IN IT IALISA TIO N

A PHASE

FIGURE 4: THREE PHASE SIMULATION

36



2 .4 .2  Simulation and expert systems -  Complementary techniques.

Many applications have been developed th at in some way make use of both 

a simulation model and an expert system. Such applications have evolved from  

a realisation that the strengths of simulation complement the weaknesses of 

expert systems and vice-versa. The potential fo r interaction between both 

technologies has been noted by many w riters (O 'Keefe et a l.[1 9 8 6 ], Helman & 

Bahuguna[1986], Flitman & H urrion [1987], H ill & Roberts [ 1987 ] ,  and Shannon 

et a l. [1 9 85 ]).

Researchers including Fox & Smith[1984] and Brown et a l.[1985 ] are 

investigating the use of expert systems as core elements in  decision support 

systems. In  such systems, simulation can be used to the benefit of A I, by 

using a model fo r the generation of test data which would normally be accessible 

to the DSS. Thus simulation is being used to reduce the effect of one of the 

shortcomings of ES methodologies, namely validation of the knowledge-base. 

Brown et a l. use the ES fo r the detection of tool wear and fix tu re  fau lts  in  a 

hypothetical d rillin g  process. The v iab ility  of the approach is being 

investigated using simulation modelling in re-creating  the operational 

environm ent. Stewart and Surgenor[1987] follow a sim ilar principle by using 

a simulation model fo r the validation of a prototype ES fo r fau lt diagnosis in  a 

production p lan t. The simulation model and expert system are implemented on 

separate microcomputers with simulation output being transm itted fo r diagnosis 

to the expert system. Consequently, the ES can be validated using a wide 

range of realistic data reflecting potentially ra re  occurrences such as m ultiple 

simultaneous fau lts .
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Expert systems can also be of benefit to simulation modellers. One of the  

shortcomings of simulation mentioned in  section 2 .2 .4  is the necessity fo r 

considerable expertise in  producing the model and analysing the generated 

output. Advisory expert systems th at provide support to the user by 

embodying the knowledge of experienced simulation modellers are cu rren tly  

being considered by several researchers. Doukidis and Paul [1991] describe 

SIPDES, a system which helps users to discover the location of compilation 

erro rs  occurring w ithin th e ir simulation program and proposes possible 

solutions. S im ilarly, the experim entation and analysis phases of simulation 

modelling are being supported by automatic systems such as th at embodied in  

the 'model execution1 and 'model analysis' modules of Simulation C ra ft (Sathi 

et a l.[1 9 8 6 ]). The model execution expert is prim arily responsible fo r 

determ ining the necessary experiments and the corresponding number of runs  

that are required . The model analysis expert is claimed to evaluate experim ents, 

generate alternatives, and provide explanation facilities using statistical 

routines.

Such mutual support activities are clearly beneficial and do not 

necessitate any d irect interaction between expert system and simulation model 

other than fo r the sharing of data. Another area fo r mutual co-operation is in  

the marriage of ES and simulation techniques in  providing a simulation 

environment that perm its the modelling of in telligent behaviour, the handling  

of events over tim e, and the representation of algorithm ic components of the 

model.

For instance, in the modelling of a m anufacturing fa c ility , the  

decision-making activ ities of employees, whether machine operators or top-level
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management, can be considered as a particu lar form of expertise. This expertise  

may be represented in the form of rules which may be clearly-stated  

instructions, rules of plausible reasoning, or rules of thumb (h eu ris tics ). The 

knowledge of employees is fu rth e r supplemented by "facts" which may have 

been acquired through job experience and data which may be publicly available.

The basic functions and performance of machines including durations of 

operations and the basic processing sequences of product are well described by  

the conventional data structures and are well handled in  conventional 

procedural languages usually used in  simulation. Any m aterial requirem ents 

planning functions depending on orders outstanding and curren t cost data can 

also be well accommodated w ithin a procedural fram ework.

In  contrast, decision tasks of any significant complexity may be d iffic u lt 

to in tegrate with the discrete event model. This is because decision tasks are  

often broken down into a significant number of related rules which are d ifficu lt 

to define in the sequential order required by a procedural language. In  forcing  

a procedural context, rules have to be repeated w ithin the code and the  

associated between such rules formalised through the use of logical operators. 

In  contrast, the declarative programming approach as used in expert systems, 

permits the formalisation of decision tasks through the definition of component 

rules but w ithout any requirem ent fo r order and without the need to lin k  the  

rules through logical operators. Instead, the expert system inference engine 

embodies an inference strategy which is used to scan the defined rules in an 

attempt to satisfy the conditional statem ents.
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Various methods have been considered in combining the functionality of 

ESs and simulation. Some researchers, and often those w ith a strong  

background in  a rtific ia l intelligence have opted fo r using A I languages, usually 

LISP or PROLOG. In  the United States, LISP is the main language used in A I 

and so there is a natural inclination towards its  use in th is context. Most LISP 

based simulation environments operate according to the object oriented  

programming paradigm . In  Europe and Japan, government sponsored research 

has given the PROLOG approach the leading edge. In  some cases, modified 

versions of standard PROLOG have been used th at are tailored to simulation. 

Another approach, though usually discussed ra th er than attem pted, is to 

in terface a simulation model with an expert system. The d ifficu lties with this  

approach consist of implementing an adequate form of communication between 

functionally incompatible softw are. An approach which has been used in  

overcoming th is problem is to implement the simulation model and expert system 

on separate computers and achieve data sharing through a generalised 

communication protocol (see section 2 .5 .5 ).

2 .5  WIDER ASPECTS OF A I SUPPORT OF SIM ULATION MODELLING.

In  recent years, much research has been carried  out on im proving the 

performance of simulation models by confronting the problems highlighted in  

section 2 .2 .4 . Such research, coupled w ith improvements in  hardware and 

falling prices in the area of personal computers and workstations has resulted  

in  the possibility of applying simulation modelling techniques to a fa r wider 

range of applications.
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The level of capital investment necessary in  undertaking a simulation 

study is now less of an issue, particu larly  in the context of microcomputer 

based systems where the presence of easily accessible, colour graphics has 

promoted the growth of windowing environments and iconic displays. The 

overall e ffect has been that researchers have focused th e ir in terest on 

developing tools that enable the re la tive ly  inexperienced simulation modeller to 

define and develop models, devise experiments and then analyse simulation 

output w ithout the need to call on the resources of more experienced  

practitioners.

2 .5 .1  Simulation program generators.

Researchers have invested considerable time and e ffo rt in  the  

development of simulation program generators with a view to reducing the  

necessary time span in the model creation stage of the simulation modelling 

life -cycle  (see Clem entson[1982]) . A second consideration has been to attem pt 

to devise flex ib le  and u ser-frien d ly  systems that guide the inexperienced user 

through a model specification process.

Sathi e t a l.[1986] place most emphasis on the second consideration and 

use an expert system that encapsulates the knowledge of simulation experts  

fo r an in teractive  model specification session based on the use of graphics fo r 

the description of model components. The ES is also responsible fo r consistency 

and completeness checks. Shannon[1986] describes a hypothetical system which 

is sim ilarly based on the use of icons fo r model specification and templates fo r 

the definition of the actions relating to components.
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The use of graphical depictions as a means of form alising the behaviour 

of a system is a long standing approach to modelling (See Clem entson[1978], 

Matthewson[1975], Gordon[1981], and Zeig ler[1976]) . Such an approach has 

the benefit of providing a simple vehicle fo r discussion between client and 

analyst and. perm its the detection of potential logic e rro rs . The main lim itation  

associated with graphical depictions is the d iffic u lty  in  representing complex 

real-w orld systems in which the paths between queues and activ ities are  

numerous and often ambiguous. Furtherm ore, graphical representations omit 

all references to decision making including conditional branching and batch 

processing of queue entities. Such problems re s tric t the value of using 

graphical model representations as input to program generators as only the 

simplest of modelling tasks can be dealt w ith.

A few researchers including Doukidis[1987] take a d ifferen t approach and 

re ly  on a tentative method based on techniques derived from N atural Language 

Understanding Systems (N LU S ). The client and analyst are expected to go 

through the consultation session together, the end product being a logic model 

which can in tu rn  be used as input to a program generator.

In  O verstreet & Nance [1985] and Balci & Nance [1987], the prototype of 

a discrete-event Simulation Model Development Environment (SMDE) is  

described. SMDE includes a model specification and documentation generator 

as well as a model analyser. The model generator is used in  creating a formal 

model specification which is domain independent and can la te r be converted into  

executable code. The advantage w ith such an approach is that erro rs  detected 

in  the model specification are fa r easier to correct that errors in  source code 

because of a lack of any stringent syntactic and semantic elements.
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Furtherm ore, the model specification is defined in  terms of a simple language 

re fe rred  to as the Conditional Specification (C S ). According to Nance and 

O verstreet, CS strikes a balance between 'descriptive generality and an 

in stru ctive  formalism' which permits the analyst to fu rth e r develop and test 

the model before generating the source code.

2 .5 .2  Model verification and validation.

The curren t trend in creating development environments has naturally  led 

to research into ways of automating the process of model verification and 

validation.

V erification is the process of debugging the simulation code and checking 

th a t the model operates as intended (See Koskossidis & Davies[1 9 87 ]). The 

Simulation Model Development Environment (SMDE) as described in the previous 

section includes a model analyzer that diagnoses the model specification created 

by the model generator. The intention is to help id en tify  mistakes, in particu lar 

conceptual and descriptive e rro rs , to suggest alternative model configurations 

that may prove to be more e ffic ien t, and to provide general guidance during the 

modelling e ffo rt. The approach taken in SIMULATION CRAFT (Sathi et 

a l.[1 9 8 6 ]) is sim ilar though this time, the embedded model building ES is 

responsible fo r consistency and completeness checks during the graphical model 

input process. O ther research projects have also used the expert system 

approach to model verification . SIPDES (D oukid is[1987]) and TIM  (H ill & 

Roberts[1987]) re ly  on an in teractive session with the user in identify ing  the 

potential source of compilation and run-tim e erro rs .
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The generation of execution errors during the model building and 

experim entation processes are a considerable help to model verification and 

tend to form the basis fo r the diagnosis processes in  simulation support 

softw are. In  contrast, the validation of a model is a complex process, 

necessitating from the analyst considerable sk ill and experience. The 

form alisation of such knowledge in the development of an expert system is 

rendered im practicable by the problem-dependent nature of the validation  

process (Van H orn [1971]).

Validation consists of ensuring that a model is a realistic representation  

of the real world and that results obtained and conclusions drawn from 

experim ents can safely be applied to the real w orld. According to Van 

H orn[1971], validation is "the process of building an acceptable level of 

confidence that an inference about a simulated process is a correct or valid  

in ference fo r the actual process." . Van Horn also claims that a simulation model 

can seldom, if  ever, be proved to be a "true" representation of the real 

process. The problem of validating a model is compounded by concealed and 

questionable assumptions that are embedded in the code and result in a 

tendency to trea t the model as a 'black box' that transform s inputs into  

outputs.

Consequent to model complexities, the validation process only partia lly  

relies on an in -depth  perusal of the in ternal model representations. Reliance 

is instead placed on the use of historical data in  comparing model output with 

observations from the real world. Some researchers have taken the view that 

involvement of the client in  the modelling and testing stages of the simulation 

life  cycle is of considerable help to the validation process. Talavage[1978]
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describes the development of one such model fo r which only a small amount of 

historical data was available. Confidence in the valid ity  of the model was 

nevertheless attained by involving the client in  the analysis of the models 

behaviour compared to that observed in  the real world.

Improvements in  graphics and the increased used of iconic displays has 

led to the growth of Visual In teractive  Simulation (V IS ) modelling in which 

changes in  the state of the model through time are represented in pictorial form 

during the simulation runs (Crookes & Valentine [1982 ] ,  H urrion [1978], 

Vujosevic[1990]) . The use of animated displays eases the problem of client 

involvement in the model validation process and improves management confidence 

in  the modelling analogy.

Simulation models do not embody the tru e  complexities of human decision 

making with the consequent need fo r simplifications that complicate the 

validation process. V IS  can be seen to represent some response to this problem 

by perm itting the user to intervene in response to observed model behaviour, 

a lter characteristics of the model, and then continue the run with the modified 

model. By appropriate in terventions, decision mechanisms of a rb itra ry  

complexity may be achieved. However, this achievement is at the cost of not 

being able to secure the benefits of replication and statistical analysis of 

performance.

2 .5 .3  In te llig en t fro n t-en d s.

The complexity of certain software solutions, which includes simulation 

environments, has led to research into ways of using expert systems fo r ease
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of communication and information presentation. A technically complex system 

is  wasted unless the user can have confidence in  its  operations. Such 

confidence can only be attained if  the operator finds the system comprehensible 

and usable.

An In te llig en t Front-End (IF E ) is an in terface that sits between the  

software package and the operator and shields the user from complex application 

specific operational tasks. Through consultation with the user, the IFE  

generates the necessary instructions to operate the program .

In  the context of comprehensive and unavoidably complex simulation 

environm ents, In te llig en t front-ends provide the potential of maximising on the  

productive use of the model. The flex ib le  nature of expert systems permits the  

customisation of the environm ent, and in particu lar the dialogue management, 

to suit the requirem ents and level of expertise of individual users.

Some researchers have extended the role of the in telligen t front-end  to 

encapsulate both the generation of simulation code and the analysis of simulation 

resu lts. Such facilities go beyond the idea of an IFE  as an in terface fo r dialogue 

handling and make of the fron t-end  an integrated part of the simulation 

package. Simulation C raft (Sathi et a l.[1 9 8 6 ]) is probably the most advanced 

system so fa r produced and is prim arily intended fo r use in  m anufacturing  

domains. Simulation C raft attempts somewhat ambitiously to automate all stages 

of the modelling process and consequently has three embedded expert systems 

fo r model build ing, model execution, and model analysis respectively. KIPS 

(Knowledge based In terface to Process Simulation) is a conceptually sim ilar 

system, implemented on a LISP workstation th at acts as a fron t-end  to a
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mainframe simulation program used in  petrochemical process plants. The KIPS 

prototype is principally  a program generator based on the use of a graphical 

flowsheet editor fo r input and a so fa r p artia lly  completed knowledge-base fo r 

user interaction and guidance (Fjellheim [1985]) .

O ther researchers have concentrated th e ir e ffo rts  on two aspects of 

in telligen t fron t-end  design: (1 ) The provision of features such as natural 

language dialogue handling. (2 ) The formalisation and integration of some of 

the features of the simulation package into a knowledge-base such that some of 

the decision making tasks can be taken by the IFE  ra th er than by the user. 

ECO is an example of such a system and is essentially an in telligent front-end  

designed to help ecologists construct and experim ent w ith simulation models of 

ecological systems. The ECO dialogue handler is designed to accept both 

prompted input and unprompted natural language input though problems with  

the la tte r are identified by M uetzelfeldt et a l. [1985]. The author also highlights  

the d ifficu lties in  generating models of re lative ly  simple systems that require  

lis t or tre e -lik e  data structures. The generated code, in  th is case FORTRAN, 

needs to be able to iterate  over n-dimensional arrays and handle pointer types.

2 .5 .4  A I languages & tools in simulation.

The sim ilarities between techniques used in simulation modelling and 

expert systems have been highlighted by several authors including  

0'Keefe[1986] and D oukidis[1987]. The commonalties are sufficiently great to 

have led to attem pts, using a variety  of techniques, to develop simulation 

models en tire ly  w ithin an A I environment and doing away with the classical 

simulation methods. Such systems, typ ically re ferred  to by those working in
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A I as 'Knowledge Based Simulation' (KBS) models, are implemented without the  

direct use of sequential processing techniques. Models developed using the KBS 

approach d iffe r s ign ificantly from models developed using conventional methods. 

The principal difference lies in  the use of rules in representing knowledge. 

Such knowledge can be classified into two broad categories: heuristics that 

govern decision making and knowledge that acts as a representation of physical 

processes and th e ir in terp lay . KBS models typ ically  provide no fa c ility  fo r 

separately defining these forms of knowledge. Nevertheless, the  

control/inference component of the model is represented as a separate and 

distinct en tity  from the data component perm itting e ither to be altered  

independently from the other (L avery [1986]) .

O ther peculiarities of Knowledge Based Systems are specific to given 

modelling approaches. For instance, some researchers have chosen to represent 

the tim e-flow mechanism through alteration of the languages inference strategy  

whilst others have added rules to the knowledge-base to achieve the same ends. 

Another approach adopted by some researchers, known as goal directed  

sim ulation, is based on taking a d iffe ren t view of model representation (Prakash 

and Shannon[ 1989]). Use is made of the goal directed inference strategy  

common in most expert systems in guiding the simulation process. Model process 

cycles are then represented as goals, the achievement of which necessitate the  

achievement of sub-goals. For example, in the case of the port model (C hapter 

f iv e ) , one could represent a ship crane as having a top level goal of depositing 

a container on the ship deck. A loaded ship crane and the presence of a ship 

with spare capacity in the berth are necessary sub-goals. In  tu rn , a loaded 

ship crane w ill have necessitated an idle crane, a d riv e r, and an export 

container. Thus, each object in the system can be specified in  terms of series
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o f  g o a ls  a n d  re la te d  s u b -g o a ls  r a th e r  th a n  s a y , e v e n ts  a n d  a c t iv i t ie s  as in  

d is c re te  e v e n t s im u la t io n .

TOP
LEVEL
GOAL

SUB-GOAL 
LEVEL 1

SUB-GOAL 
LEVEL 2

CRANE DEPOSITS CONTAINER ON SHIP

CRANE LIFTS 
CONTAINER

SHIP ARRIVES 
AT BERTH

RANE BECOMES 
IDLE

\

 , \ .....................
; IMV ARRIVES WITH 
EXPORT CONTAINER

SUB-GOAL 
LEVEL 3

FIGURE 5 SH/P CPA/VE GOAL

T h e  e xam p le  in  f ig u r e  5 sh o w s  th a t  in  goa l d r iv e n  s im u la t io n ,  th e  to p  

le v e l goa l is  n e v e r  re s o lv e d . T h e  in fe re n c e  p ro c e s s  c o n s is ts  o f  a c i r c u la r  

re fe re n c e  w h ic h  d r iv e s  th e  s im u la tio n  u n t i l  a tim e  o r  s ta tu s  a c t iv a te d  r u le  

f in a l ly  in t e r r u p t s  m odel e x e c u t io n .
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There are three common approaches to using A I in  developing and 

implementing simulation models: Expert Systems shells which provide a high 

leve l, preprogrammed in frastru ctu re  consisting of an inference engine and 

language construct fo r the definition of the knowledge-base. The second method 

consists of using A I knowledge engineering tools such as Knowledge C ra ft 

(Sathi e t a l. [1 9 8 6 ]), ART (McFall & K lahr[1986]) , and KEE (Langen[1985], Jain 

and O sterfeld [1989]) which provide the necessary code fo r the representation  

of knowledge and the implementation of an inference and control process. A I 

tools provide a greater degree of fle x ib ility  as compared to ES shells but at the  

expense of g reater com plexity. The th ird  technique makes use of A I languages 

the most common of which are LISP and PROLOG. A I languages are designed to  

handle symbolic processing and have b u ilt-in  features that lend themselves to 

the development of knowledge-based systems. A I languages are only suitable 

fo r use by programmers and in this respect are, in terms of com plexity, on a 

par with conventional h igh-level languages such as PASCAL and FORTRAN.

1 .Using ES shells in  developing simulation models: Some attem pts have been 

made at using or adapting expert systems shells in  developing simulation 

models. The lim itations of such an approach are numerous and are centered 

around the generality of the inference processes coupled with v e ry  sim plistic 

and non adaptable knowledge representation techniques. ES Shells are designed 

solely fo r the implementation of expert systems and do not lend themselves 

easily to any other type of application.

Moser[1986] describes the use of EXSYS, an expert system shell, in  the 

development of 'business simulation' models. EXSYS was specifically developed
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with a view to simulation which it  is claimed, perm itted many of the inherent 

lim itations of the approach to be overcome. Moser's approach does however have 

a number of shortcomings. The core simulation model consists of a simple 

FORTRAN program used to solve series of simultaneous equations and is in  fact 

an in tegral part of the expert system which is its e lf coded in  FORTRAN. The 

role of the knowledge-base is not one of model representation but ra th er that 

of describing rules th a t establish the value of the model resu lts. Hence, the use 

of the ES is of no d irect consequence to the accuracy and completeness of the 

model.

Robertson [1986] also adopts a rule-based approach in developing an 

expert simulation environm ent. As with Moser, the expert system was 

specifically developed with a view to simulation. Consequently, the inference  

engine has a tim e-keeping fac ility  which, at each time step, scans the rules  

using a forward chaining strategy. The time advances are achieved by keeping 

a record of scheduled events and advancing the system clock to the next 

chronological e n try . Model representation is achieved through the use of 

'in telligent agents'. In te llig en t agents are associated with sets of rules that 

define th e ir behaviour and an 'agenda' that stipulates the desired goal. Once 

the goal is achieved, the in telligent agent is 'destroyed '. A goal specified in 

the agenda can be defined in  terms of sub-goals, thus perm itting the 

representation of a sequence of events. Such a sequence is essentially identical 

to the definition of a cycle of activities in  three-phase discrete event 

simulation. I f  one fu rth e r considers the in telligent agents as model en tities , the 

distinction between Roberton's approach and that of Tocher's ( Tocher[ 1962]) 

three-phase approach becomes b lu rre d , justify ing  the argument put forw ard in  

section 2 .4 .1  that forw ard chaining production ru le  systems are functionally
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v ery  similar to th e  ex ecu tiv e  in th ree-p h a se  m odels.

2 .LISP based system and Object Oriented Programming: The m ajority of 

simulation environments developed in  LISP utilise the Object Oriented modelling 

approach and are implemented on workstations which provide the benefit of 

powerful graphics facilities fo r the use of iconics and animated displays. Few 

environments are coded d irectly  in LISP but ra th er make use of fram e-based 

knowledge engineering tools which lend themselves particu larly  well to the  

object oriented paradigm and provide powerful tools fo r data input and 

'on-screen' model specification. Indeed, some knowledge engineering tools are  

so appropriate to Object Oriented Programming (OOP) approach that simulation 

environment have been developed in  a fraction of the time that would norm ally 

be required . For instance, ART-ROSS (McFall and K lahr[1986]) ,  a clone of the  

ROSS environm ent, (M cA rthur et a l.[1 9 8 6 ]) was developed using a commercial 

tool known as ART in under two days and, it  is claimed, is an improvement on 

the orig inal.

O bject-O riented programming is a loose term used to describe a method 

of knowledge representation based on the description of objects and th e ir 

in terrelationships. The technique originates from the A I fie ld  where it  is used 

in  developing expert systems, though a similar construct was used in  designing 

the simulation language, SIMULA, in the 1960's (B irtw istle  et a l. [1 9 7 9 ]). Being 

based on the Expert System (ES) paradigm , object-oriented simulation provides 

an effective environm ent fo r the specification of domain knowledge.

In  constructing an object-oriented sim ulation, the user firs t creates a set 

of objects that broadly correspond to real-w orld  objects. The characteristics of
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these objects are then defined; the inputs they respond to , and the actions 

they carry  out in  response. The in terp lay  between objects is represented by 

the passing of messages. In  other words, the action carried out by one object 

may lead to a message being transm itted to another object specifying that an 

action should be carried  out.

Another im portant aspect of object-oriented simulation is the concept of 

'inheritance' which is derived from the semantic networks knowledge 

representation scheme used in many expert systems. Inheritance is useful in  

creating hierarchies of objects, each of which can in h erit characteristics from  

a higher ranking set ( Figure 6 ).

The applicability of the object-oriented paradigm very  much depends on 

the targ et problem fo r which a model is to be developed. The OOP approach to 

modelling is dependent on the entities in the model having a suffic iently  close 

relationship as to be able to establish a hierarchy in  which inheritance of 

characteristics can play a p a rt. The use of inheritance is a key factor in  

reducing the com plexity of the model by lim iting the duplication of facts and 

rules about objects. I t  is also desirable fo r the problem domain to be of a type  

that can be natura lly  broken down into constituent 'objects' or 'actors' and in  

which communication plays a significant ro le. These characteristics are not v ita l 

to the model development process, but sim plify the overall task by allowing a 

more natural visualisation of the real world system, that the model is meant to 

represent. Such considerations are behind the su itab ility  of the object-oriented  

approach to the simulation of tactical w arfare problems to which the ROSS 

(K lah r[1985]) , BLOBS (Middleton and Zanconato[1985]) and SLICE (Gosling and 

O kseniuk[1986]) languages specifically address themselves.
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CRANES

STACK GANTRY 
CRANES SHIP CRANES

GANTRY CRANES HOIST CRANES

SINGLE CONTAINER 
GANTRY CRANES

DOUBLE CONTAINER 
GANTRY CRANES__

FIGURE 6 INHERITANCE TREE FOR CRANES

In  m i l i ta r y  a p p lic a t io n s ,  a i r c r a f t s ,  ta n k s  e tc .  a re  e f fe c t iv e ly  d e s c r ib e d  

u s in g  in h e r ita n c e .  F u r th e rm o re ,  th e  use  o f m essage p a s s in g  as a fo rm  o f 

c o m m u n ica tio n  b e tw e e n  o b je c ts  in  a ta c t ic a l w a r fa re  p ro b le m  is  a n a tu r a l  m eans 

o f  re p re s e n t in g  th e  r e a l-w o r ld  in te r p la y .  A n  a i r c r a f t  w is h in g  to  la n d  a t  an 

a i r f ie ld  can  f o r  e xa m p le  be d e s c r ib e d  as s e n d in g  a m essage to  th e  c o n t ro l to w e r  

re q u e s t in g  p e rm is s io n . T h e  la n d in g  a c t iv i t y  w i l l  th e n  com m ence, c o n d it io n a l on  

th e  a i r s t r ip  o b je c t b e in g  a v a ila b le .
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Even in  the case of applications th a t would seem suitable targets fo r an 

object oriented approach there can be problems such as those identified  by 

M cArthur et a l.[1 9 8 6 ]. Of particu lar concern is the dependence on message 

passing fo r communication and activation of events. Consider the example of two 

enemy a irc ra ft which are about to go in to  battle . For one a irc ra ft to recognise 

and attack the other a irc ra ft, messages need to be transm itted between the two 

which obviously contradicts the real-w orld  rules of engagement. Another 

common problem results from the need to represent messages in  terms of a 

lim ited number of variable values. In  most cases, and particu larly  in m ilitary  

applications, real-w orld  messages are fa r  more complex than can effectively  be 

modelled.

As with expert systems, models developed using the OOP approach are  

based on a re la tive ly  unstructured search algorithm . Furtherm ore, the desire 

to allow the user to develop the model increm entally by defining the 

characteristics of objects as and when they are identified also leads to problems 

in maintaining a s tru ctu re . Consequent d ifficu lties also arise because of the  

problem of ensuring that the defined model is complete and is not ambiguous or 

inconsistent. Lack of a formal s tructu re also tends to mean that execution is 

slow for large models which is a problem aggravated by the in terp re tive  nature  

of the Lisp environment w hich, as mentioned, tends to be the language used in  

developing and implementing object-oriented models. This problem was 

highlighted during the development of I-N E T  (Reddy et a l. [1983]), a corporate 

distribution and inventory system, using Simulation C ra ft (Sathi et a l. [1986]). 

The loss in speed is nevertheless p artia lly  offset by the advantages of being 

able to test the effect of changes in  the code without having to compile and
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being able to trace and debug th e model in teractively .

The use of inheritance can be advantageous in terms of code size by 

reducing the repetition of characteristics of objects. However, problems can 

arise when values are inherited unexpectedly. Hence, the characteristics of 

each member of the object hierarchy has to be carefu lly  defined with particu lar 

attention to the possible values that may be inherited from parent classes. 

Sim ilar care is needed in  OOP languages in which rules can be in herited . A set 

of rules may be spread across a number of object classes making it  d ifficu lt to 

trace potential actions and increasing the risk  of rules being m istakenly 

inherited  in satisfying a goal. Such problems aggravate the d ifficu lties in  

specifying the characteristics of the components of the model and particu larly  

in  cases where the concept of objects and messages do not seem to be a natural 

structure fo r the formalisation process. An investigation of Object Oriented  

tools and techniques was made as part of the research and is reported in  

appendix F.

3 .PROLOG based systems: PROLOG (Clocksin and M ellish[1984]) is a h igh-level 

declarative programming language based on symbolic logic (See section 2 .3 .1 ) .  

Facts about objects involved in  a problem and rules affecting these objects, are  

declared and then used in  finding a solution without the need to exp lic itly  

define a lis t of instructions.

Prolog's ab ility  at handling rules and representing logical relationships 

between entities makes it  a potential candidate fo r the implementation of 

simulation programs. In  developing a three-phase discrete event model, rules 

and facts have to be defined that describe events, entities, and th e ir
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relationships. Additional rules are then required to handle time advances and 

storing fu tu re  scheduled events. Researchers have shown that Prolog can 

successfully be used in developing simulation models, though the generality of 

the inference process (and in  fact the language as a whole) imposes limitations 

th at remove much of the value of the approach.

Futo, recognising the benefits of using the Prolog approach, has 

attempted to develop a bespoke version of the language which incorporates 

w ithin the inference strategy a capacity for combined discrete and continuous 

time handling. The product of Futo's research, TS-Prolog, uses message 

passing techniques rath er than shared variables for communication between 

processes. Furtherm ore, Prolog's backward chaining inference strategy is put 

to fu ll use by perm itting backtracking through time in  order to investigate 

alternative paths through the solution space. Such a goal directed search, 

which in the case of TS-Prolog, relies on constant ac tiv ity  durations has been 

criticised by researchers such as O'Keefe and Roach[1987] who argue that the  

goal of experimentations tends to be unknown or too complex to capture.

C leary (C leary et a l.[1985]) takes a d iffe ren t approach to Futo in  

developing T -C P , a modified version of Concurrent Prolog. T-CP attempts to 

use concurrency in solving m ultiple goals (asynchronous processes) 

simultaneously. Each 'process' has its  own curren t state with the T-CP  

in terp re ter m aintaining a global simulation tim e. T-C P rules incorporate a 

'delay' clause in the form of an arithm etic expression that prevent the rules 

from reactivating un til a point 'delay' units a fte r the last activation of the ru le . 

Cleary has developed, and gives examples of simple models developed using 

T-CP. These can serve to h ighlight the drawbacks of using Prolog fo r
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simulation modelling.

Prolog does not lend itse lf p articu larly  well to the development of 

substantial simulation programs. Clocksin and M ellish[1984], (amongst others)

argue that Prolog programs are easily understood by the novice. "  Novice

programmers find  that Prolog programs seem to be more comprehensive than 

equivalent programs in conventional languages.". The stated argument is that 

Prolog code consists uniquely of logical statements describing a problem without 

the addition of complex and confusing algorithms that specify how the problem 

is to be solved. O ther researchers, notably M uller[1986], argue against this by 

claiming that declarative programs have to be executed in  one way or another 

giving Prolog a procedural context. "Knowledge of the procedural semantics of 

Prolog is absolutely necessary fo r w riting  correct and efficient programs". 

Indeed, it  is th is lack of any explicit definition of what Prolog is going to do 

with the defined knowledge that makes the creation of substantive simulation 

model a complex and erro r prone process.

Prolog, was designed fo r automatic translation but la te r used fo r other 

natural language applications. Prolog's syntax is based on the notation of 

predicate logic and uses computational techniques geared towards query  

handling. Prolog commands are not in an ideal form fo r the specification of a 

model, particu larly  in cases where mathematical operations form a substantial 

computational overhead. Prolog is being used in  an increasing number of A I 

applications but its  design is s till geared to closed systems in which inferences 

are made from defined knowledge with little  communication with either the user 

or the underlying computer system. The consequent support fo r inpu t/o u tpu t 

operations, graphics and external code invocation are lim ited. Such restrictions
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reduce Prolog's su itab ility  fo r simulation modelling given the increasing use of 

Visual In teractive  Simulation, iconic displays, customised device d rivers  (e .g  

fo r mouse co n tro l), and mixed language programming.

Another lim itation of the Prolog paradigm th at applies to the declarative  

programming approach in general, is speed of execution. Prolog replaces the 

customised algorithms used in conventional programming languages by a 

generalised backward chaining inference strategy that seeks to draw inferences 

and confirm queries using stored inform ation. Prolog therefore spends much 

time searching fo r solutions in  what may be a substantial unstructured search 

space. The theoretical sim plicity of the declarative programming style is 

consequently offset by slow execution and lack of control over the inference  

process. (Shannon et a l. [ 1985 ])

2 .5 .5  In terfac ing  expert systems and simulation models.

Figure 7, identifies the various ways of unifying expert systems and 

simulation.

Much of the current research in  program generators (section 2 .5 .1 ) ,  

model verification and validation (section 2 .5 .2 ) ,  and in telligent front-ends  

(section 2 .5 .3 )  involves some form of cooperative existence between simulation 

model and expert system.

Another form of expert system/simulation collaboration, in which a 

conventional model and ES communicate during model execution, necessitates 

a fa r greater level of synergy. The remainder of th is section is dedicated to
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a discussion on such systems.

C O M B I N E D

P A R A L L E L
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C O O P E R A T I V E

SIMULATIONEXPERT SYSTEM
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r SIMULATION EXPERT SYSTEM

♦
F R O N T  E N D EXPERT SYSTEM OR SIMULATION

i
USER INTERFACE USER INTERFACE

FIGURE 7 COMBINING EXPERT SYSTEMS AND SIMULATION

R e s e a rc h e rs  in c lu d in g  S haw  a n d  G a in e s [1 9 8 6 ] h a ve  h ig h l ig h te d  th e  

re la t io n s h ip s  b e tw e e n  s im u la tio n  a n d  e x p e r t  s y s te m s . " . . . A n  ES ca n  be 

c o n s id e re d  as th e  s im u la t io n  o f  th e  m in d  o f a p e rs o n  w h e re a s  m ost s im u la t io n  is  

th a t  o f th e  p h y s ic a l w o r ld " . O ne o f th e  a d v a n ta g e s  in  l in k in g  a s im u la t io n  m odel
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with an expert system ensues from the ES's ab ility  at providing a model of the 

experts that communicate and in teract w ith the processes that comprise the 

physical w orld. The conventional procedural approach to sim ulation, based on 

the use of customised algorithms for the control of the model cannot effectively  

handle in tricate  representations of knowledge and decision making. Conversely, 

expert systems fo r which knowledge is defined declaratively, and which make 

use of the generalised deductive capabilities of an inference engine, are not 

ideal fo r the representation and definition of physical processes and the ir 

in teraction . Consequently, simulation and expert systems can be considered as 

complementary technologies, which, if  developed and implemented in  parallel, 

could provide fu tu re  systems with power " . .  much greater than the sum of each 

used separately." (Shaw and Gaines[1986]).

Simulating complex systems such as the port described in chapter five  

highlights the d ifficu lties in reproducing management decision making tasks that 

have to be embedded in  a model. In  some real world situations, expert systems 

are already in  use, assisting management in making operational decisions. 

Perm itting the simulation model to submit queries to the relevant ES, thus 

bypassing the need to encode the knowledge d irec tly , is of obvious benefit 

(O'Keefe[ 1986]). Even in cases where the ES did not form erly ex is t, benefit 

would s till be derived from developing an appropriate ES in  parallel w ith the 

development of the simulation model. Once the simulation study completed, the  

ES could be used separately in  assisting in  decision making tasks.

Validation of an expert system using simulation forms another class of 

application fo r which separate development of expert system and simulation 

model proves necessary. Stewart and Surgenor[1987] describe the use of a
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process simulator as a test-bed in the development and validation of an 'on-line' 

ES for fau lt diagnosis and crisis management in  a production p lant. Such an 

approach to ES validation is conceptually simple requ iring  an alteration to the  

ES, changing the source of input from that of sensors to that of simulation 

output. Stewart and Surgenor implement the simulation and expert system on 

separate computers, linked via a communications cable. Such a pragm atic 

approach removes the need fo r even the most minor modification to the ES 

since, in  any case, input via data cable is the medium used fo r signal 

transmission by the sensors. Simulator validation of an ES is more complex in  

situations where the ES is responsible for managing the safe shutdown of 

production plant processes in crisis situations by sending appropriate signals 

to control instrum ents. In  such cases, the simulation model has to be able to  

respond to input from the expert system, thus necessitating two-w ay 

communication.

Flitman and H urrion[1987] take the same purposeful approach as Stew art 

and Surgenor and use two computer systems in  creating a physical b a rrie r 

between a Fortran based simulation model and an advisory expert system w ritten  

in  Prolog. The resulting system is used to investigate the possibility of 

developing an expert system using the method of parameter adjustm ent. The 

firs t stage consists of running the model under user control, allowing the  

operator to assume the role of a real-w orld  e x p e rt. The response actions of 

the user, triggered by changes in queue lengths, are recorded, formalised as 

rules, and then stored in  the knowledge-base as facts. In  subsequent simulation 

ru n s , the expert system monitors the simulation output and responds according  

to the past user in terventions.
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Reliance on unmanned operations based on the use of robotics and 

Automatic Guided Vehicles (AGVs) fo r process automation w ill inevitab ly  lead 

to increased in terest in  expert systems as key components of the 

Num erical-Control systems (N C ) . This leads to another potential application for 

the jo int use of expert systems and simulation which, as yet, has not received 

the level of attention it  m erits. The ES could benefit from forw ard projections 

through time in making a choice between multiple conflicting strategies. Using 

a simulation model to investigate potential side-effects of a given policy could 

be of great benefit to expert systems, perm itting a higher level of faithfulness  

with human decision making through the introduction of the added dimension of 

temporal reasoning.

2 .6  CONCLUSION

Simulation is a process that assists a modeller in experim enting w ith real 

world situations. Existing simulation structures are well adapted fo r the 

purpose of representing the physical structures and associated activities that 

take place in  the real-w orld . Much of simulation model experimentation is 

therefore based on assessing the impact of alterations in physical aspects of the 

system being represented. Existing simulation languages can and are used for 

the purpose of experim enting with operational decision policies but the 

difficu lties in  introducing complex rules and subsequently modifying these rules 

is a drawback.

The work undertaken by other researchers and reported in  th is chapter 

lends credence to the assertion that A I techniques could play an im portant role
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in  simulation modelling in the context of model experim entation based on changes 

to complex operational decision policies. I t  has already been shown by Flitman 

and H urrion [1987] that a lin k  between simulation model and an A I language is  

possible and that such a configuration has a number of practical advantages.

In  particu lar, the expert system "declarative approach" to knowledge 

defin ition would seem to have potential in  the context of the representation of 

operational decision making problems in  simulation modelling. The apparent 

advantages relate to the fact th at operational policies could be defined in terms 

of rules without any explicit need to pre-define a ll program execution paths. 

A second potential advantage would resu lt from the use of a h igh-level language 

which would remove from the modeller the need to delve in to  complex program  

code.

The following chapter w ill focus on examining the nature of decision 

making and will attem pt to analyze what is entailed in  the representation of 

operational staff and production management. Aspects of decision making such 

as "joint" problem solving w ill be examined and it's impact on the requirem ents 

of a simulation modelling environm ent considered.
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CHAPTER THREE

REQUIREMENTS OF A DECISION ORIENTED SIMULATION ENVIRONMENT

3.1 INTRO DUCTIO N

The design of the proposed simulation environm ent is dependent on how 

decision related knowledge can best be in tegrated with a corresponding 

simulation model depicting physical activ ities . A firs t step in  establishing the  

most appropriate design is to investigate the d ifficu lties in  representing  

decision tasks. Section one therefore consists of an analysis of decision making 

w ith emphasis placed on the classification of decision types according to position 

in  an employee/management h ierarch y . Although such a hierarchy is not typical 

of all problem areas investigated using sim ulation, the environment is one of the 

most complex types to represent. The section concludes with a study of the  

data analysis tools used by decision-m akers. For accuracy, some of these tools 

may have to be represented as p art of a model.

Simulation models presently depict decision processes by either 

sim plifying decision rules or by replacing the logical steps involved by 

probability d istributions based on p rio r sampling. In  cases where the actions 

taken by decision-makers are h ighly predictable, and where experimentation 

using a lternative decision rules is not deemed necessary, existing simulation 

environments operate satisfactorily . In  other cases, such approximations are  

considered to affect the accuracy of the simulation and lim it the potential of 

the model as a tool fo r experim enting w ith alternative decision c rite ria . Present 

simulation environments do not have the capacity to represent aspects of
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decision making to the level of detail described in section one. Section two 

consequently considers the lim itations of simulation in  representing  

decision-m akers and investigates Visual In teractive  Simulation (V IS ) as a means 

of overcoming such problems.

An expert system is used as a supportive tool in reproducing an expert's  

solutions to a range of problems. In  contrast to simulation m odelling, little  

emphasis is given to the accuracy of the in ternal representation. Many expert 

systems use production rules which do not necessarily re flect the kind of 

deductive reasoning that the expert applies. Secondly, such rules are often 

randomly ordered making the knowledge-base harder to maintain and reducing  

the efficiency of the search process. Such problems, coupled w ith an in ab ility  

to define the knowledge of several decision makers in  the form of an employee 

hierarchy, lim it the value of expert systems both generally and in the context 

of simulation applications. Section three considers the impact of such lim itations 

in more deta il. Isolating the potential problems in using existing expert system 

methodologies is necessary in  determining the most appropriate approach to 

developing the proposed simulation environm ent.

Whereas greater detail is necessary in the representation of 

decision-m akers, a careful balance must s till be maintained between accuracy 

and development overheads. For instance, inclusion of representations of high 

level management may be unnecessary given that decisions taken at th is level 

tend to apply to overall company policy or strategies and tend to only take 

effect in  the lo n g -ru n . Section four is devoted to an analysis of such 

considerations in  isolating the requirem ents of the proposed simulation 

environm ent. Potential system designs are then discussed re la ting  to the
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simulation language, the expert system, and th e ir possible amalgamation.

3 .2  DECISION MAKING.

Decision making generally involved making a choice from a range of 

alternatives based on a specific selection crite ria  (Nestman and Windsor [1985]). 

The selection process typ ically  involves the comparison and analysis of 

operational data and may necessitate substantive sk ill and experience.

Decision making activities take place at a ll levels w ithin an organisation, 

from the chairman of a company down to shop floor employees. In  general, the 

decision making activ ities and goals pursued by senior management are hard to 

iden tify  and can be defined as being unstructured whereas decisions and goals 

made by low ranking employees tend to involve operational activities th at are 

easier to describe, are well s tru ctu red , and most often well documented. 

Furtherm ore, the range and d ivers ity  of data used by senior management tends 

to be fa r greater than at the production line level where, fo r instance, an 

operator bases his decisions on machine data and instructions obtained from the 

line manager. The passing of data to a more senior colleague and the response 

obtained is a c ritica l aspect of decision-making th at occurs at all levels in  an 

organisation. The communicative aspect of decision-making is represented  

diagrammatically in  fig ure  8.

Decision domains have been classified by Nestman and Windsor [1985] as 

belonging to one of four categories: C orrelative, strateg ic, tactical, or 

operational. C orrelative and strategic decision domains are investigated solely
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b y  h ig h  r a n k in g  m anagem ent in  th e  p ro ce sse s  o f  p la n n in g  a n d  goa l s e t t in g .  

A n a ly t ic a l  to o ls  u se d  a re  o f a 'q u a l i ta t iv e ' n a tu re  a n d  a re  e i th e r  h e u r is t ic  o r  

d e d u c t iv e  in  n a tu r e . H e u r is t ic  to o ls  in c lu d e  fu z z y  s e t t h e o r y , in te l l ig e n t  d e lp h i 

a n d  c a ta s tro p h e  th e o r y .  D e d u c t iv e  to o ls  c o n s is t a m o n g s t o th e rs  o f ,  s im u la t io n , 

c o n t in g e n c y  p la n n in g , a n d  m a rk o v  p ro c e s s e s . Q u a lita t iv e  to o ls  a re  im p re c is e  in  

n a tu re  b u t  a re  th e  o n ly  e f fe c t iv e  te c h n iq u e s  a v a ila b le  to  th e  m a n a g e r. In  

c o n t r a s t ,  ta c t ic a l a n d  o p e ra t io n a l d e c is io n s  te n d  to  be ta k e n  b y  m id d le  

m anagem ent a n d  o p e ra t io n s  s ta f f  u s in g  'q u a n t i ta t iv e ' to o ls .  Q u a n t ita t iv e  to o ls  

a re  e i th e r  s ta t is t ic a l  o r  a lg o r ith m ic  in  n a tu re  a n d  a re  s u f f ic ie n t ly  p re c is e  to  be 

o f c o n s id e ra b le  use  in  d e c is io n  m a k in g  a c t iv i t ie s .

CORPORATE MANAGEMENT

PRODUCTION MANAGEMENT

SHOP FLOOR MANAGEMENT

F/GURE 8 RULE RASE MANAGEMENT HIERARCHY
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Decisions can fu rth e r be categorised as e ither being of a pre-em ptive or 

corrective type. Pre-em ptive decisions are applied in ensuring that undesirable 

situations do not occur. They act as physical constraints, e .g . machines 

overheating, dangerous power consumption levels e tc . . In  contrast, corrective  

decisions are only applied a fte r an undesirable event has occurred. Both 

Pre-em ptive and corrective decisions tend to be applied by operations staff and 

consequently tend to make use of the quantitative tools described.

3 .3  DECISION MAKING W ITHIN SIMULATION

In  section 2 .2 .5  and 2 .5 , the impact of simulation on decision making in  

terms of decision support systems was considered. A d ifferen t viewpoint w ill 

now be taken by investigating what decision making activities need be 

represented as part of the model and how these can effectively be incorporated 

in to the logic fram ework.

According to Rozenblit and Z e ig ler[1985], 'conventional simulation 

languages are lim ited by the necessity to settle on fixed , simplistic resolutions 

to a number of complex tradeoff decisions'. This observations is also reflected  

in  a discussion of the comparative m erits of simulation and gaming in decision 

support systems by Gray and Borovitz[1986] where simulation is characterised 

as appropriate in  cases where the systems involved only limited or highly 

predictable human behaviour.

A common approach in  simulation is to model behaviour using probabilities 

based on p rio r observation and sampling. A lte rn ative ly , simplification is
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achieved by using crude and simple decision rules th at scarce do justice to the  

complex and adaptive behaviour being applied in  the real world system. In  

contrast, physical components of such systems are typ ically  represented to 

high levels of accuracy. O'Keefe and Roach[1987] believe that th is in ab ility  to 

effective ly  model in telligent behaviour is one of the major drawbacks of 

trad itional simulation modelling. The argument is th at if  the representation of 

potential decision processes is crude and inadequate, then any comparison of 

decision alternatives w ill inevitab ly be restricted  to a range much narrower than  

that available to the decision-maker in practice. Such a drawback is particu larly  

restric tive  in  tactical simulations (e .g  w arfare) in  which the main purpose of 

the simulation is to make such comparisons.

Researchers who have considered the need to improve the methods used 

in defining simulation models have tended to investigate the possibility of 

developing a lternative  model building techniques. The prim ary concern has 

been to sim plify the model building process ra th er than add to its  complexity 

by increasing the detail with which decision-tasks are represented. One 

approach th at has attempted to compromise model detail w ith modelling 

complexity and th a t seems to have had some degree of success is Visual 

In teractive  Simulation (V IS ) .  V IS  represents changes in  the state of the model 

in  pictorial form during the simulation runs (see O'Keefe and Roach[1987]) .  The 

user is able to in te rru p t the simulation, a lter a restricted  range of model 

characteristics, and then continue the run using the modified model. By 

appropriate interventions in  response to observed model behaviour, decision 

mechanisms of a rb itra ry  complexity may be achieved. However, th is achievement 

is at the cost of not being able to secure the benefits of replication and 

statistical analysis of performance. V IS  modelling is essentially a hybrid  of
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simulation and gaming, sharing a measure of the advantages and disadvantages 

of each.

The approach adopted in  th is thesis is a more d irect and obvious 

response than V IS  to the challenge that simulation models do not adequately 

represent in telligen t behaviour. The area of a rtific ia l intelligence has been a 

natural focal point in  the search fo r an appropriate representation of in telligent 

behaviour fo r incorporation in models. This investigation of the fie ld  of A I, and 

in particu lar expert systems, has led to a number of possible designs fo r the 

implementation of the proposed simulation environm ent. These w ill be discussed 

in some detail in section 3 .5 .

3.4 REPRESENTING DECISION MAKING USING EXPERT SYSTEMS.

C learly , the principle demand on the nature and structu re of an expert 

system in representing human decision-makers is that it  should be capable of 

an adequate representation of the individual decision-making processes 

exploiting such information as would norm ally be available to the individual. 

This inform ation is both current and historical and fo r instance, may be based 

on an investigation into the fu tu re  using a stochastic tool such as simulation as 

was described in section 3 .2 . Consequently, i f  a decision-m aker has access to 

a simulation model, then an expert system that is to adequately represent the 

decision-m aker must have access to the same source of inform ation. An expert 

system may have to be able to represent time fo r other reasons. For example, 

decisions taken in a dynamic system must take in to account delays both in  the 

information flows on which decisions are based and in the actions taken under
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those decisions. The use of temporal reasoning in  expert systems has been 

discussed by M iller [1986] and researched in a more practical context by Fox 

and Sm ith[1984] during the development of IS IS . IS IS  is an expert system fo r  

scheduling in  job-shops and makes use of heuristics in generating alternative  

schedules. IS IS , it  is claimed, has a performance level superior to that of its  

human counterpart.

A number of other characteristics of decision making lim it the  

effectiveness of existing expert systems. For instance, the satisfactory  

representation of individual decision-makers cannot be easily separated from the  

need to represent th e ir in teraction . One cannot sensibly represent the decision 

making activ ities of an employee without reference to the contributions made by  

others which may influence the outcome of the decision. Even senior management 

decision making may in d irectly  influence the outcome of decisions taken by  

low -ranking employees through the modification of global goals or through  

alteration of the methodological aspects of the decision making process. Baimer 

et a l.[1988] recognise th is problem and suggest a methodology based on the  

defin ition of 'E p i-ru les' that reflect the influence th at management rules have 

on other decision making processes (see section 3 .5 ) .  C urrent expert systems 

ignore the impact of senior management and take a simplified view of even the  

most basic decision making processes. A modified expert system paradigm th at 

takes into account the existence of a hierarchical management s tru ctu re  would 

in some sense complicate the representation of management expertise, though 

the resu ltan t expert system should benefit from it .

Expert systems take a simplistic view of decision making which can 

partia lly  be attrib u ted  to a number of factors associated with the design of ES
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development tools. Most expert systems are poor at handling arithm etic and 

algorithm ic computations which complicates the representation of the 

'quantitative' tools used in  making tactical and operational decisions. As 

mentioned in  section 3 .2 , middle management and operations s ta ff make use of 

such statistical and algorithm ic tools in  decision-m aking, and any d ifficu lties  

in representing these clouds the effectiveness of the expert system paradigm .

Expert systems also lack the necessary s tru ctu ra l formalism that would 

perm it the representation of individual decision-makers and th e ir in teraction. 

The development of expert systems fo r medical diagnosis such as Mycin and 

In te rn is t owe much of th e ir success to the restric ted , 'one man' view they take 

of the real w orld . An expert system to aid decision making in  a m anufacturing 

environment may necessitate a fa r greater level of complexity given that 

employees ranging from machine operators to line managers contribute to the 

decision making process. Existing expert systems encourage an incremental 

process of knowledge-base development with elicited rules added in a random 

fashion. There is  a lack of any formal methodology facilitating  the physical 

separation of logically distinct rules attribu tab le  to individual decision-m akers. 

The maintenance and validation of large rule-bases is consequently made more 

d iffic u lt, w ith the addition or deletion of rules potentially leading to unexpected 

resu lts .

3.5 LINKING SIM ULATION AND EXPERT SYSTEMS -  A SUGGESTED APPROACH

In  section 3 .3 , the drawbacks of trad itional simulation were highlighted  

in terms of the inevitab ly simplistic nature of modelling resulting from
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difficu lties associated with representing the process of decision-m aking. In  

section 3 .4 , expert systems were shown to lack the s tru ctu ra l formalism and 

algorithm  handling capabilities necessary in  representing decision-makers and 

th e ir interactions. In  th is section, suggestions are made as to ways of 

overcoming, these problems. The proposed methodology is based on the 

in tegration of expert systems and simulation to form the backbone of a system 

devoted to decision support. The suggested approach is intended to help 

in tegrate management decision rules in  the simulation by fac ilita ting  the 

representation of the dynamic aspect of decision-m aking, and the modelling of 

the in terp lay between individuals during decision taking activ ities . The 

resulting methodology should provide a composite technical base fo r a decision 

support environment in  which experim ents can be carried  out based on the 

analysis of the effects of d ifferin g  responses to decision making tasks.

Adequately representing decision-m akers and employee hierarchies is an 

in tractable problem fo r those cu rren tly  working in the area of simulation 

( sections 2 .2 .4  and 3 .4 ) .  Increased faithfulness to the real world is required  

perm itting the individual specification of employee decision rules and the 

sharing of such defined knowledge. The management hierarchy in a 

m anufacturing environm ent w ill include many persons whose role in  

decision-making is crucial but who are not norm ally represented in a simulation 

model which will usually concern its e lf only with those actively engaged with 

machine operations. The modelling of decision-making must extend to this  

hierarchy and w ill sensibly re flect its  s tru c tu re . The immediate effects of 

higher level management decisions may be seen in terms of modifying e ith er the 

goals or the decision making processes used by those a t lower levels ra th er 

than acting directly  on the system.
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The representation of corporate management decision m aking, fo r the most 

p a rt, is not crucial to the sim ulation. Decisions taken a t th is  level mostly apply  

to the long-run and do not tend to have a direct influence on the day-to -day  

operation of the system. Production line management are most like ly  to be the  

hardest to model as communication w ith lower ranking employees is like ly  to play  

a major ro le. Decisions, though not instantaneous, are typ ica lly  carried out 

within the duration of a simulation run and consequently effect the outcome.

Decision making in the real-w orld  is a dynamic process and not 

instantaneously as represented in expert systems. The delays are particu larly  

critica l when methods of communication are lim ited. The representation of time 

delays in the expert system may therefore be of im portance. The ES should be 

able to represent time in two way:

Decisions th at are made now but only take effect at some time in  the 

fu tu re . Hence, the decision-m aker is using inform ation cu rren tly  available 

to him. B ut as the actions only take place at some point in  the fu tu re , the  

data available w ill have changed when these take place.

Decisions th at are made now, to make decisions at some point in  the  

fu tu re . Hence, when the action(s) fin ally  take place, the decisions are 

based on cu rren tly  valid data. For instance, a manager may say to an 

employee that he should apply certain rules at a given point in  the 

fu tu re .
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In  section 3 .4 ,  it  was noted that from the expert system perspective, that 

the representation of decision-makers relied in  part on an adequate description 

of the decision making processes coupled with access to such information as 

would norm ally be available to the individual. As we have seen, the process of 

decision making may involve the use of statistical and algorithm ic tools which 

are not easily defined using the declarative style of knowledge representation. 

Id ea lly , the expert system should have access to code w ritten  in a conventional 

high-level language in  achieving a greater faithfulness to real world decision 

taking tasks and giving the expert system a combined declarative/procedural 

context. The other aspect of accurately representing decision-m akers, namely, 

providing the expert system with information normally accessible to the 

decision-m aker is achievable by treating  the simulation model of the environment 

in which the individual operates as a form of data generator. In  tu rn , the 

expert system may effect an appropriate series of actions by retu rn ing  any 

decision reached to the simulation model. The inform ation available to the expert 

system could derive from the current and historic data of the simulation model 

and be made accessible by some sharing of data structu res. However, access 

to data by the decision-makers represented in  the expert system must be 

restricted according to the range of data accessible in  the real w orld. Modelling 

must include the definition of the data which should be made accessible to the 

expert system components and that which must remain p rivy  to the sim ulation. 

For instance, the simulation structures w ill typ ically  include some fu tu re  event 

lis t . C learly w hilst access to information concerning model fu tures could be most 

useful, decision rules depending on such 'clairvoyance' could not be regarded  

as legitim ate and should be form ally excluded.
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Increasing the level of detail in a simulation model may complicate its  use 

as a basis fo r experimentation and lim it its  applicability in the context of 

decision support. Consequently, the developed environm ent must provide the  

necessary tools and be structured in  such a way as to sim plify the development 

of a model. The process of validating and using a model, and in terp re tin g  

results obtained must aiso be aided through the use of appropriate tools, l'he 

expert system component of the model may be used to improve the  

user-friendliness of the environment by controlling the user in terface or by 

encapsulating the necessary logic fo r the analysis of the simulation resu lts , 

l'he expert system should aiso improve the m aintainability of the model by 

sim plifying alterations to the model logic, fo r  instance, the environm ent should 

support modification of rules applied by decision-makers w ithout a 

corresponding need to adapt model ac tiv ity  cycle representations. Model 

m aintainability is fu rth e r discussed in  the next section.

3.5.1 in teg ratin g  expert system and simulation methodologies.

Several techniques have been adopted by researchers m attem pting to use 

simulation and A i to mutual benefit dunng the modelling process. These 

approaches were described m chapter two. l'he ments and disadvantages of 

each will now be re-considered with the aim of id en tify ing  the most appropriate  

design for the intended decision support environm ent, 'l'he desired 

characteristics of the simulation language outlined in  the last section are taken  

as major factors influencing the design of the eventual system.

i.u s in g  expert system shells: in  section 2 .5 .4 ,  the use of an exp ert system  

shell as a form of simulation model development environment was considered.



The main argument put forward m  suggesting tnat an expert system sneLL may 

oe suitable fo r simulation is based on the sim ilarities between simulation and 

expert systems identified  oy shaw and uaines[i986] and L)oukidis[i987] # 

amongst others, l ’he likeness between the three-phase simulation executive' 

and the expert system forw ard-chaining inference engine are considerable. 

Indeed, Robertson[1986] and Moser[1986] have shown th at an expert system 

can be adapted fo r simulation. The fact that the expert system and simulation 

paradigms are sim ilar is not however sufficient to argue that an ES shell 

provides an improved environment fo r simulation. Using a shell would only be 

of benefit if  the inference engine could be made to handle both the simulation 

and the conventional expert system task of representing decision-m aking. The 

inference engine is not capable of th is dual role and the language syntax used 

in shells is not su ffic ien tly  flexib le to perm it the separate specification of 

knowledge relating to decision-making and knowledge specific to the definition  

of activities and th e ir relationships. O ther lim itations of the approach are listed  

in fig ure  9.

ADVANTAGES DISADVANTAGES

Simple, declarative structure. Limited/non-existant algorithm handling capability.

Intelligible language syntax. Limited arithmetic and data handling facilities.

Traceable inference. Unstructured language syntax.

Facilitates incremental development. Slow code execution.

F/GURE 9 ADVANTAGES/D/SADVANTAGES OF EXPERT SYSTEM SHELLS
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2 .Creating a new simulation language: Concepts borrowed from expert

systems and simulation can be brought together using a common language 

syntax, representing another possible methodology fo r in terfacing a model w ith  

a representation of decision-makers and th e ir h ierarchy. The main advantage 

with th is approach is in the fle x ib ility  afforded by the creation of a bespoke 

language. Commands can be structured to match a given purpose, data

structures are compatible, and facilities can be provided fo r m anipulating stored

information in  a way consistent w ith the task in hand. Examples include 

modelling environments based on Object Oriented Programming (OOP) and 

modified versions of Prolog (section 2 .5 .4 ) .  In  OOP, a d ifferen t view of 

simulation is adopted in which knowledge of the real world is defined in  terms 

of objects and th e ir in terrelationships. No distinction is drawn between

knowledge concerning the physical objects that make up the real world

environm ent and knowledge specific to the process of decision m aking. In  Prolog 

based environm ents, the forw ard chaining inference process can be modified so 

as to represent discrete advances in  tim e. The basic Prolog syntax however 

remains unchanged with the advantages of a common language syntax  

consequently being lost.

One of the drawback with using a single bespoke language in  specifying  

the expert system and simulation model results from d ifficu lties in  merging 

knowledge concerning model activ ities with knowledge specific to 

decision-m akers. The physical actions or processes that constitute a major part 

of existing models are best defined using sequentially executed code. On the  

other hand, decision related knowledge is ideally specified using a declarative  

language. The two language types cannot effectively be merged without 

compromising on the effectiveness of e ith er the simulation or expert system.
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The creation of a single bespoke language is also undesirable from the  

perspective of code m aintainability. For instance, the simulation model of the 

port described in chapter five  is of a size that lim its the practicality  of making 

changes to the model logic. The individual cycles of the model are defined in 

separate modules to ease the in terpretation and handling of the code. Had it  

been possible to add complex management decision rules to the same program , 

the m aintainability and leg ib ility  of the code would have been lost. Indeed, the 

difference in  nature between the two types of knowledge would have provided 

the incentive to place the decision rules in  a separately identifiable module. The 

benefits and lim itations of creating a bespoke simulation language are  

summarised in  fig ure  10.

ADVANTAGES DISADVANTAGES

Code may execute faster. ES not separable.

Code modification limited to one file. Logical separation is lost.

May be easier to debug. Risk of inconsistencies.

Bespoke language syntax.

Figure 1Q Advantages/disadvantages o f a  bespoke simulation language



3 .In terfac ing  an expert system and simulation model: In  section 2 .5 .5 ,  an

analysis was made of systems developed by Stewart & Surgenor[1987] and 

Flitman & Hurrion[1987] in  which it  was seen that lim ited interaction was 

possible between a separately implemented simulation model and expert system. 

Both environments were designed using the pragmatic approach of separating  

the simulation model and expert system using two microcomputers. Data transfer 

was achieved using a general communications protocol. The same principle could 

be applied in separately specifying knowledge pertaining to model activities and 

decision-m aking. Not only would the code be easier to in te rp re t but the logical 

separation would enable the physical model to be modified independently from  

any changes made to the decision making activ ities. The b a rrie r between the  

software modules would encourage parallel development and testing using tools 

that d iffe r in characteristics and would help in retaining some logical structure  

to the implemented model. In  many respects, separation of the knowledge from 

the physical implementation follows the expert system paradigm and corresponds 

to the concept of keeping the inference engine separate from the ru le-base.

Stewart and Surgenor's approach is lim iting in the sense of having to use 

two microcomputers. A part from the physical restrictions imposed, the need to 

transm it relevant data over a communications cable removes much of the  

potential value of in terfacing a simulation model and expert system. For 

instance, the expert system module must transm it a request to the simulation 

model in order to examine an item of data. The data returned is lim ited in  terms 

of volume and must be preceded by a message identifying the request. An 

alternative method of communication is based on the simulation model 

transm itting of its  own accord data deemed to be of in terest to the expert 

system. The 'broadcast' approach is lim iting in  terms of the volume of data that
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need to be transm itted. Further requests fo r data may also be necessary if  

information is found to be lacking. Extreme care is also necessary in  ensuring  

that data held by the simulation model is identical to that being used by the 

expert system. Any inconsistencies th a t may occur would invalidate model 

output. The problems would obviously be compounded if  two-way data 

transmission were to be introduced.

The benefit of using communicating microcomputers is  in  the fle x ib ility  

afforded by being able to use existing software w ith re la tive ly  minor 

adaptations. In  practice, incom patibilities in data types and variab le storage 

structures impose considerable restrictions on the practicality  of the approach. 

Alterations to data formats are necessary fo r every item of inform ation sent 

from one computer to the o ther. More c ritic a lly , computations based on values 

stored in data structures such as arrays or series of records are rendered  

impracticable by the necessity to tran sfer all relevant data item s. The process 

is fu rth e r complicated if  the data structures used on each computer d iffe r. For 

instance, Prolog's use of Lists which can contain mixed data types does not 

have a direct equivalent in procedural languages such as Pascal, Fortran , and 

C .

A more satisfactory approach than using two microcomputers is to create 

an environment en tire ly  based on a single machine. Two potential methodologies 

have been considered and w ill now be discussed in tu rn .

A simulation language could be interfaced to an expert system by keeping 

both modules memory resident and using pre-defined routines fo r tran sfer of 

control. The simulation would then call the expert system when particular
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decisions needed to be made. The expert system could e ither be based on a 

shell such as X i, an A I tool (e .g .  OPS5), or an A I language such as Lisp or 

Prolog. The principle benefit of the approach would be that existing software 

could be used that has already been extensively developed and tested, thus 

lim iting implementation overheads. Using a single computer has clear functional 

advantages over Stewart and Surgenor's approach. Nevertheless, 

incom patibilities in  data types and storage structures could not be overcome, 

and some form of communications strategy would s till have to be established. A t 

the outset of the research, the approach was considered a possibility as it  was 

found that the language specification of Borland’s Turbo-Prolog appeared to 

allow linking  to Pascal and C . Turbo-Prolog produces object code which should 

be linkable to other object code modules produced using other language 

compilers. Thus mixed model programming should have been achievable bringing  

together elements of A I and simulation code w ritten in a conventional procedural 

languages. Borland's claims to produce Microsoft compatible object code could 

not however be born out in  practice and the idea had to be abandoned.

The second potential methodology, is to w rite an expert system shell in  

a h igh-level procedural language. The creation of a bespoke expert system 

would mean that the software could d irectly  be developed fo r use with a 

simulation model. The main drawback of the approach would be the time 

overhead necessary in developing the expert system. Nevertheless, the benefits 

to be derived are clearly substantial w ith problems such as the incom patibility 

of data structures potentially being solvable. Com patibility in data types and 

variable storage structures could be achieved by using a common language in 

the development of the expert system and simulation environm ent. Extensive 

research has already been carried out at the LSE in the creation of Pascal
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routines fo r discrete-event simulation. Hence, if  these routines were to be 

used, the expert system shell would also have to be w ritten  in  Pascal.

The development of a simulation environment and separate expert system 

w ritten  in the same language would help relieve the problem of data 

com patibility. Nevertheless, the greatest obstacle to the creation of an effective  

system would remain. Namely, the need to m ultitask the programs and 

physically tran sfer data between the systems as and when required during the  

execution of the programs. The only apparent way of overcoming such 

lim itations would be to create a single executable program combining aspects 

of the simulation environment and expert system. The simulation and ES could 

then share variables and other relevant data via the stack, heap, or any 

commonly agreed memory locations. The independence of the units would 

nevertheless need to be retained to perm it separate development of the model 

and knowledge-base. This requirem ent linked with the fact that the eventual 

system is potentially considerable in  s ize, points to the need to adopt a modular 

approach. A programming language that permits the creation of independent 

object code modules would satisfy these requirem ents, allowing a single 

executable program to be created by linking  the individual modules together.

Figure 7 and 11 summarise the alternative ways in  which an expert system 

and simulation model can be in terfaced.
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MODULAR APPROACH (SINGLE PROGRAM)

F/GURE 11 AL TERN A T/VE APPROACHES TO SIMULA T/ON /  ES INTEGRA T/O/V

3 . 5 . 2  F a c il i t ie s  th a t  s h o u ld  be p ro v id e d  b y  th e  e x p e r t  s y s te m .

In  s e c tio n  2 . 3 . 3 ,  th e  l im ita t io n s  o f  e x p e r t  s ys te m s  w e re  c o n s id e re d . T hese  

a re  n e c e s s a r ily  r e le v a n t  to  th e  p ro b le m  o f in te r fa c in g  a s im u la t io n  m ode l a n d  

e x p e r t  s y s te m , a n d  a re  c u r r e n t ly  m a jo r is s u e s  in  a r t i f ic ia l  in te l l ig e n c e  re s e a rc h . 

T h e  scope  o f th e  th e s is  c a n n o t in c lu d e  th e  im p ro v e m e n t o f  th e  e x p e r t  s y s te m  

p a ra d ig m . N e v e r th e le s s ,  some p ro g re s s  m ay be a c h ie v e d  in d i r e c t ly  th r o u g h  th e  

in te g r a t io n  o f  s im u la t io n  a n d  A I  te c h n iq u e s , a n d  th e  need  to  re p re s e n t  m u lt ip le  

d e c is io n -m a k e rs  w ith in  th e  k n o w le d g e -b a s e .
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The use of an o ff-th e -sh e lf expert system shell would be lim iting in a 

number of respects:

1. Many of the facilities provided would be redundant.

2. The shell could not be customised.

3. In terfacing  the expert system to other code would be a complex 

process and would inevitab ly effect the usability of the 

end-product.

4. Commercial shells produce screen ou tp u t. This would in terfe re  with 

the output produced by the simulation model. (Another reason 

justify ing  the use two computers)

5. Expert system shells provide poor support fo r arithm etic 

computations and most often do not support execution of procedural 

code.

The proposed development of a bespoke expert system would help in  

overcoming these problems.

Only those facilities considered necessary would be implemented as part 

of the expert system. The compactness of the resulting code would help improve 

the efficiency of the inference strategy and reduce the problem of lim ited 

Random Access Memory ( RAM). Code size is particu larly  critica l if  the system 

is to implemented on an microcomputer.

A bespoke expert system can of course be customised. The form at used 

for the specification of rules can be adapted to the specific needs of the
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simulation environm ent. Most c ritic a lly , the ES could be made to share variables  

and data structures with the simulation model.

The use of Pascal as the base-language fo r the expert system is helpful 

in  respect of taking fu ll advantage of the facilities provided by the underlying  

computer hardw are. Transfer of control between the ES and simulation model 

should be greatly simplified as should be the necessary task of accessing 

memory locations.

The bespoke expert system permits fu ll control of the screen display. 

Hence, output produced by the simulation model could be windowed with output 

generated by the expert system. A ltern atively , each system could be prevented  

from sending information to the monitor simultaneous to the other.

The arithm etic support could be customised as necessary. Furtherm ore, 

the expert system should be capable of calling Pascal procedures and functions. 

This would give the ES the added benefit of being able to execute procedural 

code. Any complex algorithms used in decision-making problems could be 

defined using functions.

The development of a bespoke expert system would also perm it the  

customisation of the language syntax. Using the ES in a simulation context 

imposes requirem ents on the system that d iffe r from those that would be 

encountered in  developing a conventional ES. For instance, the knowledge-base 

has to be capable of representing several decision-makers whilst keeping some 

form of logical separation between the sets of ru les. Ways of overcoming the  

problem include using individual files  to represent each decision-m aker, or
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creating blocks of rules w ithin one file . In  section 3.4,  the issue was taken a 

step fu rth e r by pointing out that decisions are not always taken by lone 

individuals but often by two or more people in consultation with each o th er. A 

potential way of lim iting such representational problems would be to perm it each 

block of rules to 'in h erit' rules from other blocks. Hence, if  the rules used by  

one expert were not sufficient to solve a given problem, another expert's  block 

of rules could also be used.

F inally , the adequacy of the expert system relies in g re a t-p a rt on the  

design of the inference strategy. Expert systems either use a methods based 

on forw ard-chaining, backward-chaining, or a combination of the two. These 

were described in  section 2 .3 .1 .  Forw ard-chaining inference strategies are  

d ata-d riven . In  other words, the application of values to the premises of rules  

is what trig g ers  th e ir execution. Consequently, if  forw ard-chaining was to be 

used in the proposed system, the ES would have to assume the role of a 

'd a ta-an alyser'. Whenever a change in state occurred in  the sim ulation, the ES 

module would be activated and all rules verified  to see if  th e ir premise could 

be satisfied. In  a sense, the use of forw ard-chaining would help in  creating a 

realistic representation of methods used in the real-w orld . For instance, 

managers at the control of a m anufacturing plant are continuously m onitoring 

the production lin e , taking appropriate action when undesirable events occur. 

The main disadvantage with the approach is the computational overheads 

incurred in having to scan all rules stored in the knowledge-base at every  time 

advance. The process is time consuming and inefficient as the m ajority of rules  

will not apply. The alternative backward chaining strategy is goal-d irected . 

The expert system is presented with a goal which it  then attempts to prove or 

disprove. The simulation model has to in itia te  the inference process and specify
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the goal to be resolved. For instance, during the C-phase of the three-phase  

approach, a search is made fo r activities that can commence. The conditions 

th a t dictate whether the activities can s tart could include references to the  

expert system. In  the manufacturing plant example, the closest analogy would 

be a machine operator checking whether he could s ta rt a particu lar process. 

The strategy is more effic ient in th at the search is directed with irre levan t 

rules being ignored. The division of rules in to blocks should also help by 

fu rth e r reducing the search space.

3 .5 .3  Facilities that should be provided by the simulation component.

As w ith the expert system, modifications need to be made to the  

simulation language in  providing a capacity to communicate w ith other softw are. 

Access to source code is therefore indispensable. Research at Lancaster 

university  and subsequently at the LSE lead to the creation of the Extended 

Lancaster Simulation Environment (eLSE),  a set of lib ra ry  routines fo r the  

development of discrete event three-phase simulation models (Chew[1986]).  The 

routines are w ritten  in Pascal, are well tested, and fu lly  documented. The eLSE 

lib raries  could be modified, thereby by-passing the need to create a new 

environm ent.

One of the most basic requirem ents of the simulation module w ill be to 

support models that are substantial in  size. The addition of an expert system  

w ill place substantial burdens on the simulation environm ent. The eLSE lib raries  

are cu rren tly  implemented in Turbo-Pascal which imposes a lim it of 64K on code 

size and is consequently inadequate. The lib raries  therefore have to be
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tran sferred  to another version of Pascal. O ther necessary changes include the  

addition of routines to transfer control to the expert system module. These 

lib ra ry  routines have to be capable of passing inform ation over to the ES and 

receiving instructions in  re tu rn . In  the case of a backward-chaining system, 

such information would include a definition of the goal to be solved. The 

instructions which are subsequently received from the ES, such as an indication  

as to whether an ac tiv ity  should commence, have to be in terpreted  and carried  

out.

3 .6  CONCLUSION.

The problems that would be encountered in  creating a formal 

representation of decision related knowledge were highlighted by considering 

the nature of decision making. The employee hierarchy in  an organisation was 

taken as an example. The knowledge applied and goals pursued by senior 

management were shown to be d ifficu lt to isolate given the unstructured nature  

of the decision activ ities. In  contrast, decisions made by machine operators 

were identified  as being well structured and consequently fa r easier to formalise 

as program code. Decision types classified by Nestman and Windsor[1985] were 

then discussed. The tools used in  decision-making were also examined and 

categorised according to th e ir precision. In  conclusion, it  could be seen that 

p art of the d ifficu lty  in representing the decision-making activities of 

management was the underlying need to reproduce the characteristics of the 

heuristic or deductive tools being used. In  contrast, form alising the tactical and 

operational decisions taken by operations staff would be facilitated by the well 

defined statistical or algorithmic tools being applied.
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The lim itations of simulation techniques in  form alising decision-making 

processes were then considered. Simulation was characterised as supporting a 

detailed representation of the physical components of real-w orld  systems but 

could not effectively be used to model in telligen t behaviour. Techniques that 

are applied in  representing decision tasks include simple rules that only 

p artia lly  re flect the underlying logic and sampling from probability  

distributions. Such approximations, if  reasonably accurate, need not invalidate  

results concluded from simulation experim ents. However, if  the decision-making 

process is complex and d ifficu lt to approxim ate, the output obtained may be 

inaccurate and bring into doubt the value of the model. Sim plifying the model 

logic also effects the fle x ib ility  of the sim ulation. The potential range of 

experiments that could be carried out in  comparing decision alternatives is 

inevitab ly  restricted  to a range much narrow er than would be possible if  the 

model depicted decision-making in deta il. Visual In teractive  Simulation (VIS) is 

a technique that helps overcome the drawbacks of lim ited model detail in  the 

representation of decision alternatives. V IS  allows the user to in te rru p t and 

modify a model during a simulation ru n , thus reflecting the decision-makers 

action. Such a benefit is however secured at the expense of not being able to 

replicate experiments or carry  out statistical analysis of performance.

Section 3 .4  then considered the appropriateness of the expert system 

paradigm in representing decision-m akers. Expert systems were identified  as 

being in su ffic ien tly  powerful to represent the in tricacies of the decision-related  

knowledge of h igh-level management. This was seen as being largely  due to the 

difficu lties in  representing the heuristic and deductive tools used by 

management as part of the knowledge-base. Expert systems were also seen as

91



imposing a lim it on the representation of m ultiple decision-m akers. In  the  

real-w orld , decisions are frequently  taken by groups of people ra th er than by 

individual in  isolation. Sharing knowledge consequently forms an im portant part 

of the process of taking an action. Expert system shells tend to be developed 

with a view, to representing a single expert and do not have the necessary 

structure to represent several experts each contributing in  some way to a given 

decision task. F inally , expert systems were seen to impose some lim itations in  

situations where mathematical computations were involved. In  the context of 

decision m aking, operations staff may use statistical or algorithm ic tools as aids 

in  deciding on an appropriate course of action. These tools may be d ifficu lt to 

represent as part of the knowledge-base.

A lternative designs were then considered in bringing together aspects 

of simulation modelling and expert systems. The main concern was to id en tify  

the most appropriate approach to adding decision related knowledge to the  

model. The firs t step consisted of review ing the implications of having to 

represent the employee hierarchy and the consequent sharing of inform ation. 

Formalising the techniques applied by senior management in  solving decision 

related problems had been identified in  section 3 .2  as a major problem. A fte r 

careful consideration, it  was concluded that th is in ab ility  to effectively  

represent corporate management would not adversely effect the va lid ity  of the 

simulation model. Decisions taken by corporate management tend to consist of 

long-term  strategy related problems which would not typ ically  take place w ithin  

the time span of a simulation run and could not consequently effect the 

outcome. The techniques used in  developing the s ta te -o f-th e -a rt modelling 

environments described in  section 2 .5  were then discussed. I t  was concluded 

that the approach that presented most promise, consisted in  being able to
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specify decision rules in a knowledge-base, separate from the rest of the model. 

Having focused on th is approach, alternative designs were considered for 

in terfacing the simulation and expert system. Stew art and Surgenor's[ 1987] 

research in validating expert systems was then examined in  evaluating the 

potential of. th e ir approach of using two in teracting microcomputers fo r 

implementing each of the software modules. The need fo r a complex 

communications protocol and the consequent d ifficu lties  in sharing common data 

were found to be critica l lim iting factors. The ensuing conclusion was that the 

simulation and expert system components had to be implemented on a single 

computer and that the modules had to effectively  be combined. The last section 

of the chapter highlighted the desirable features of the expert system and 

simulation model components, finalising the broad definition of requirem ents for 

the proposed environm ent.
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CHAPTER FOUR

ESSIM -  AN ENVIRONMENT FOR SIMULATION

4.1  INTRO DUCTIO N

Previous chapters have served to define the requirem ents of an advanced 

modelling environment encompassing aspects of simulation and A I. This chapter 

w ill describe the development of a number of prototype designs that culminated 

in  the development of the final system named ESSIM ( Expert System 

SIM ulation) .

The firs t system, developed in co-operation w ith the 'In stitu to  Nacional 

de Tecnologia', B razil was intended to be used in  assessing the effect of 

variances in  jobbing and batch production structures in a typical job-shop  

environm ent. This firs t system is described in  appendix A . The experience 

gained in implementing the job-shop model was used as a basis fo r the 

development of ESSIM. Though the main design decisions had been taken prior 

to the s ta rt of the coding process, practical experience led to many revisions 

of the original plan. These are discussed in section 4 .2 .2 .

ESSIM, in the form in which it  presently stands, is designed on a modular 

basis. In  section 4.3 ,  the role of the individual modules and th e ir interaction  

is explained.

The expert system module was specifically developed fo r the purpose of 

simulation modelling. The module can nevertheless be used on a stand-alone
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basis and has a number of novel design features that should be of in terest to 

researchers working in A I. Section 4 .4  describes the language syntax of the  

ES and explains how the facilities were implemented. Particu lar emphasis is 

placed on how the module accesses external variables and Pascal procedures and 

functions.

The discrete event simulation module of ESSIM is based on the  

three-phase world view . A lib ra ry  of Pascal routines used fo r teaching 

simulation at the LSE has been modified and extended to perm it calls to the 

expert systems and sharing of data structures. Section 4 .5  describes the 

development of the lib ra ry  and explains how the module in teracts with the 

expert system.

The expert system and simulation modules must share data values using 

common variables and data stru ctu res. Replicating data would be ineffic ient in 

terms of speed and memory capacity, and would lead to the risk  of 

inconsistencies in stored inform ation. The communications interface linking  the  

expert system and simulation module is consequently of critical im portance. 

Section 4 .6  explains the role of the expert system 'Communications In terface  

generator' (C l-g en erato r) and describes how the variables are shared.

Simulation modelling and expert systems re ly  on effective communication 

of inform ation. An individual creating a model must expend significant e ffo rt 

in  the creation of a u ser-frien d ly  in terface and output displays fo r relaying  

critical data in an effective form . Microsoft Pascal in which ESSIM is 

implemented has no facilities fo r output control or graphics. A lib ra ry  of 

routines was consequently developed, based on s ta te -o f-th e -a rt techniques
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including m ulti-level windowing, iconics, and mouse control. Though useful, 

the routines were found to be time consuming to use and the process of 

designing a screen display laborious. An additional module called DESIGNER 

was therefore created that permits screen designs to be created in teractively  

and the corresponding code generated autom atically. Section 4 .7  describes the  

development of the man-machine in terface routines and the role of DESIGNER 

in  the development of a simulation model.

4 .2  RESEARCH STAGES

P rior to the development of ESSIM, an experim ental system was developed 

which was designed solely fo r job-shop scheduling problems (See Goodman et 

a l . [1987]) .  The experience gained in developing th is specific application was 

essential in helping to specify the required features of a generalised simulation 

environm ent encompassing characteristics of both simulation and A I. This  

conceptual design led to the creation of ESSIM.

4 .2 .1  Simulation of a job-shop.

The job-shop application was developed as a generalised model which 

could be adapted to d ifferen t m anufacturing environm ents. The recursive  

nature of product manufacturing in  job-shops perm itted the specification of a 

generalised assembly process based on a number of work centres and products. 

Each product is made up of a number of components which are in tu rn  

constructed from a number of sub-components. Components can either be 

assembled at work centres or brought in as raw m aterial stock from external
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suppliers. Raw materials have to be re-ordered at in tervals  to ensure that 

bottlenecks are not created by the lack of a component. Each assembly process 

can only take place at specific work centres were the appropriate machinery is  

available. When an order is received fo r a quantity 'x ' of a product, the 

m anufacturing of the appropriate quantity  of each of the sub-components is  

scheduled. Items assembled at w ork-centres are e ither placed in  stock ready fo r 

delivery to a customer or transferred  to another w o rk-cen tre , ready fo r the  

next phase in an assembly process.

The specification of the products being m anufactured, the characteristics  

of the jobs being performed, re -o rd ering  procedures fo r raw m aterials, and 

details of orders received are specified in teractively  and stored in  a database. 

The provision of a robust and flexib le user interface was seen as being critical 

given the intended role of the system as a tool fo r decision support. The 

in terface enables the modeller to a lte r entries in  the database and modify 

features of the production process. Hence, the modeller can define the  

characteristics of the environment to be modelled and can c arry  out experiments 

without the need to modify the physical code.

One of the problems in  experim enting with the job-shop model was the 

modellers ab ility  at in terpreting  the generated model output. A graphics based 

in terface was seen as the most appropriate means of perm itting the depiction of 

the dynamic behaviour of the simulated job-shop. Queue build -ups and 

stock-levels can be scrutinised though high resolution graphs of a selected set 

of work centres. Other display formats include a diagrammatic representation  

of the job-shop depicting the flow of jobs between work centres, (see figures  

12 and 13). Data can also be displayed in  a textual form at. For instance, details
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o f o r d e r s  co m p le te d  a n d  th o s e  s t i l l  o u ts ta n d in g  can  be  v ie w e d  on  re q u e s t  e i th e r  

d u r in g  o r  fo l lo w in g  th e  e x e c u tio n  o f  th e  s im u la tio n  p ro g ra m . S u ch  fa c i l i t ie s ,  

g iv e  th e  m o d e lle r  a v ie w  o f  th e  r e a l-w o r ld  a n d  p e rm it  s im p le  a n a ly s is  o f  th e  

r e la t iv e  p e r fo rm a n c e  o f a l te rn a t iv e  m ode l d e s ig n s  w ith o u t  re c o u rs e  to  an 

e x p e r ie n c e d  m o d e lle r .

X Z9S

F I C U R E  1 2  H U L T I - G R A P H AY OF QUEUE

S p e e d  94*/.

UC 1

UC 2

UC 3

UC 4

S TO C K

FIGU RE 1 3  ACD TYPE D IS PL AY  FOR J OB SHOPS

O ne o f th e  l im ita t io n s  o f th e  jo b -s h o p  m o d e llin g  e n v iro n m e n t w as th e  

r e s t r ic t io n s  im p o se d  on  th e  ra n g e  o f  e x p e r im e n ts  th a t  c o u ld  be c a r r ie d  o u t .  

W hereas i t  w as p o s s ib le  to  e x p e r im e n t w ith  th e  a d d it io n  o f w o r k - c e n t r e s , o r  

th e  m a n u fa c tu r in g  o f new  p ro d u c ts  a n d  s u b -c o m p o n e n ts , no  in v e s t ig a t io n  was 

p o s s ib le  in to  th e  e f fe c t  o f  a l te r n a t iv e  p ro d u c t io n  s t ra te g ie s  w ith o u t  re c o u rs e  to  

a p ro g ra m m e r. T h e  c o n c e p t o f  c re a t in g  a s e p a ra te  k n o w le d g e -b a s e  a llo w in g  th e  

m o d e lle r to  a l te r  a n d  e x p e r im e n t w ith  p ro d u c t io n  re la te d  d e c is io n  ru le s  w as 

th e re fo re  f e l t  to  be ju s t i f ie d .
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The addition of a ru le based expert system to the existing job-shop 

application could not be achieved w ithin the constrained development 

environm ent provided by the Turbo-Pascal compiler. The decision to use 

Turbo-Pascal fo r the firs t stage of the research was made on the basis th at the 

language supported rapid prototyping. A comprehensive graphics lib ra ry  is  

provided, easing the development of the man-machine in terface. Secondly, code 

compilation is completed in seconds ra th er than minutes. Turbo-Pascal was not 

appropriate fo r the la ter stages of the research because of the lim it of 64K on 

code size. A language that would allow the separate compilation of modules into  

object code was required . The simulation model, expert system, and interface  

could then be developed independently and linked together to produce the final 

program . Microsoft Pascal fu lfilled  these requirem ents and had the benefit of 

perm itting mixed language programming. Hence, lib ra ry  routines from the 

Microsoft C and Fortran compilers could be used. However, two major lim itations 

had to be accepted. Compiling a single module and then linking the code could 

take up to 10 minutes. Secondly, no cursor control and graphics drawing 

facilities were provided. Translating the existing code from Turbo-Pascal was 

consequently a complex process necessitating both code modification and the  

creation of a lib ra ry  of graphics routines. Turbo-Pascal command names were 

retained enabling research students to upgrade th e ir simulation programs to the 

Microsoft compiler.

Having implemented the job-shop model in  Microsoft Pascal, the next stage 

of developing the expert system began. The firs t version of the inference  

engine was based on a simple forward chaining inference s tra teg y . This enabled 

rapid development of the expert system and required only lim ited modification
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o f th e  s im u la tio n  m o d e l's  th re e -p h a s e  e x e c u t iv e .  A t  each  tim e  a d v a n c e , c o n t ro l 

w o u ld  be passed  to  th e  e x p e r t  s y s te m  m o du le  a n d  th e  c u r r e n t  v a r ia b le  v a lu e s  

u se d  as in p u t  f o r  th e  in fe re n c e  p ro c e s s  (see  f ig u r e  1 4 ) .  T h is  f i r s t  p ro to ty p e  

w as u se d  as a b a s is  f o r  th e  d e v e lo p m e n t o f  th e  ru le -b a s e  e d i to r  a n d  th e  

n e c e s s a ry  ro u t in e s  th a t  w o u ld  e n a b le  th e  s h a r in g  o f  v a r ia b le s  a n d  d a ta  

s t r u c tu r e s  b e tw e e n  th e  s im u la tio n  a n d  E S . S im p le  ru le s  w e re  u se d  in  te s t in g  th e  

fu n c t io n a l i t y  o f th e  s y s te m .

SIMULATION

EXPERT SYSTEM

FINISHED ?

INITIALISATION

B PHASE

C PHASE

A PHASE

FINALISATION

INFERENCE
ENGINE

KNOWLEDGE
BASE

F/GURE 14 A F/RST PROTOTYPE SYSTEM
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4 . 2 . 2  The developm ent of ESSIM

Having established that a simulation model and expert system could be 

made to in terac t, the development of the ESSIM environm ent began. The 

functionality of the job-shop environment was to be retained whilst allowing 

the modeller to develop his own simulation application. One apparent problem  

was the considerable work that the programmer would have to undertake in  

implementing an effective man-machine in terface. The relevant routines fo r 

menu selection, windowing and mouse control would be available in  a lib ra ry  

of routines but considerable expertise would be needed in  making use of them. 

The problem was resolved by developing a separate program called DESIGNER 

which allows the modeller to develop the in terface in teractive ly  and then  

automatically generate the corresponding program code. The mouse is used to  

position and scale the necessary windows and menus. DESIGNER can also be 

used for accessing pre-declared software modules such as the knowledge-base 

ed ito r, and listing  the content of output files in specified windows. (See 

appendix E .)

During the development of ESSIM, the expert system was re -w ritte n  using 

a more complex backward chaining inference strategy. The syntax used in  the  

knowledge-base was altered and extended. Facilities were then created fo r 

accessing Pascal procedures and functions. Though developing the expert 

system (ES) was by no means a simple problem, creating the in terface between 

the simulation model and ES proved to be the most challenging and complex 

problem to solve. The difficu lties mainly arose because of the difference in  

nature between the simulation and expert system. The simulation model is 

w ritten using the Pascal language syntax and compiled. In  contrast, the expert
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system is  a development language, itse lf w ritten  in  Pascal. The knowledge-base 

is in terpreted  and consequently cannot d irectly  access compiled variables 

declared in  the simulation model. The problem was overcome by developing a 

'Communications In terface' (C l )  between simulation model and expert system  

knowledge base. Requests fo r variable values are passed to the C l which 

retu rns the address at which the appropriate value is stored. Calls to 

procedures and functions from the knowledge-base are also handled by the C l.

When new variables are defined which are to be shared between expert 

system and simulation model, modifications have to be made to the C l. Such 

changes are handled automatically by the 'Communications In terface generator' 

( C I-g en era to r) which scans the knowledge-base, and generates Pascal code 

which forms the lin k  between the simulation model and ES data stru ctu res. The 

functionality of the C l and C I-generator is described in  section 4 .6 .

The development of ESSIM also led to changes having to be made to the 

simulation module. The use of DESIGNER in creating the in terface meant that 

output could no longer be w ritten  d irectly  to the screen but had to be directed  

to specified windows. A ltering the expert systems inference engine to a 

backward-chaining goal directed strategy also led to modifications of the 

simulation module. Routines had to be developed, enabling the ES to be 

activated by a call from the simulation module. Such calls, detail the goal to 

be solved and the location of the relevant ru les . The simulation routines that 

establish the calls are also designed to re tu rn  any resu lt obtained from the 

inference process. The characteristics of the simulation module are discussed 

in  detail in  section 4.5.
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4 . 3  O V E R A L L  S Y S T E M  D E S IG N

PASCAL
LANGUAGE
COMPILER

GRAPHICS DISPLAY MODULE
KNOWLEDGE-BASE 

PART COMPILER

GENERATOR

UNKERMODEL CODE KNOWLEDGE-BASESIMULATION
LIBRARY

COM MS 
INTERFACE 

MODULE

EXPERTSYSTEM
MODULE

SIMULATION
MODULE

EXECUTIVE INFERENCE ENGINE

SCREEN
HANDLING
LIBRARY

MAN / MACHINE FRONT-END MODULE

DESIGNER

F/GURE15 DES/GN OVERV/EW

F ig u re  15 is  a d ia g ra m m a tic  re p re s e n ta t io n  o f th e  ESSIM  m odel 

d e ve lo p m e n t e n v iro n m e n t.  A s  we h a ve  se e n , th e  s im u la tio n  m odu le  a n d  e x p e r t  

sys te m  m odu le  in te r a c t  v ia  an  in te rm e d ia ry  c o m m u n ica tio n s  in te r fa c e  m o d u le . 

T h e  co m m u n ica tio n s  m odu le  is  d e p e n d e n t on  code  g e n e ra te d  b y  th e



'C I-g e n e ra to r'. The simulation and expert system modules are both divided  

into two components. The simulation module consists of an 'executive' and a 

set of user-defined files which contains the formal definition of the model 

events. The executive maintains a d iary  of pre-scheduled events and controls 

the execution of the sim ulation. The user-defined model is w ritten  in  Pascal and 

is compiled to object code. The expert system module consists of an inference  

engine and a user defined knowledge-base containing the decision rules th a t are 

used in the real-w orld . The content of the knowledge-base is translated into  

more compact and usable code by the 'knowledge-base part-com piler'. 

Part-com pilation is necessary each time a change is made to the knowledge-base 

and immediately precedes invocation of the expert system. (The difference  

between a part-com piler and traditional compiler w ill be explained in  section 

4 .4 .3 )

The 'graphic display module' (fig u re  15) consists of the necessary 

routines fo r the dynamic display of run-tim e output and fo r the creation and 

manipulation of windows. The module is controlled by calls from the simulation 

model and /or the expert system knowledge-base. Relevant data may be passed 

as parameters to the graphic display routines or accessed d irectly  from the 

database of the communications interface module. The database contains 

references to all shared variables and data s tru ctu res.

The 'man-machine front-end  module' (fig u re  15) has a dual ro le . In itia tin g  

the simulation run and controlling the exchange of data between the end-user 

and relevant software. Requests fo r user input are displayed in  windows and 

so there is a close association between the man-machine front-end  and the  

graphics display module. Extensive use is  made of mouse controlled m ulti-level
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menus fo r the selection of run-tim e options and fo r the activation of pre-defined  

routines. These routines control such aspects as the input of data into the  

knowledge-base editor and the invocation of DOS facilities such as d irectory  

lis tin g s .

A ll the modules described were designed so as to be usable on a 

stand-alone basis. A simulation model can be developed without an expert 

system or v ice-versa . The graphics display and man-machine interface routines  

can also be used with other Pascal program s. Giving the software engineer such 

fle x ib ility  may nevertheless give rise to problems. D ifficu lties could fo r instance 

be encountered in  making use of the lib ra ry  routines or linking the relevant 

modules together. Two programs were consequently developed to help sim plify 

the development process. A program generator called ’Designer' (appendix E) 

is used in teractive ly  in creating pull-down menus and windows fo r the display 

of te x t and graphs. The code produced corresponds to the required graphics 

display and man-machine front-end modules. The other program , named 'L inker' 

takes the modeller through the necessary steps in compiling and linking  the 

relevant modules. 'L inker identifies the Pascal lib raries  that are needed in  

generating the fin a l program from the object code modules and is also 

responsible fo r activating the C I-generato r. The C I-generator scans the  

knowledge-base and generates code fo r the communications interface module 

which is then compiled.
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4 .4  DESIGN OF THE EXPERT SYSTEM COMPONENT

The characteristics of the expert system module w ill now be discussed by  

considering in  tu rn  the design of the knowledge-base and inference engine.

4 .4 .1  The knowledge-base

The expert system knowledge-base is an A S C II te x t file  consisting of a 

declarations part and separately identifiable sets of production ru les.

The knowledge-base can share variables with the simulation model or make use 

of local variables. The structure of the declarations is intentionally sim ilar to 

the Pascal syntax. (See figure 16).

VARIABLE DECLARATION - * • IDENTIFIER LIST - ►  : — ► TYPE

t t
i

EXTERNAL ExportsLeftForShip, NumbFreeBerths, Duration: INTEGER; 
_LoadShip: BOOLEAN;
Count, Speed: REAL;

LOCAL StartDockAtberth, StartShipLeave: BOOLEAN;
ShipCode: CHAR;
ContainerCode: LSTRING(20)

FIGURE 16 VAR/ABLE DECLARATIONS
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The variable declaration 'EXTERNAL' is used to id en tify  variables that 

are to be accessible by all modules. The corresponding id en tifie r lis t must 

consist of variable names that have been, or w ill be declared as shared 

'PUBLIC' variables in  e ither the simulation module or any of the other modules 

being used.. The declaration 'LO CAL', denotes variable th at can only be used 

by the expert system. The types that can be associated with the variables are  

identical to those available in  Microsoft Pascal but exclude double precision and 

user defined types.

Local and external variables referenced in expressions and statements are 

fu lly  compatible. However, the inference engine handles the values d iffe ren tly . 

External variables have an associated value, whether defined in the expert 

system or in another module. The only exception are external variables 

preceded by the symbol '_'. These are reset to being 'undefined' at the end of 

each call to the expert system. In  contrast, local variables are in itiated as 

being undefined and are set to given values by the execution of statements. 

Furtherm ore, local variables have th e ir value reset to being 'unknown' at the  

end of each call to the expert system.

Pascal Procedures and Functions declared in an object code lib ra ry  or program  

module can be called from the expert system, (fig u re  17)

The file  name must be that of a Microsoft Pascal module. The procedures 

and functions defined in the file  can then be accessed from the expert system 

knowledge-base. The only restriction is that parameter passing cannot be used. 

The equivalent effect can nevertheless be achieved using shared variables. 

Parameter passing was omitted from the expert system specification because of
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the development overheads that would have been incurred.

; INSTRUCTION IDENTIFIER FILE NAME

PASCAL FILE ’Rules.pas’ ;

F/GURE 17 DEFINING PASCAL PROCEDURES & FUNCTIONS

V e r i f ic a t io n  o f th e  ru le s  d e f in e d  in  th e  k n o w le d g e -b a s e  is  a com p lex  

p ro b le m  because  o f  d i f f ic u l t ie s  in  k n o w in g  e x a c t ly  w h a t th e  in fe re n c e  e n g in e  is  

g o in g  to  d o . T h e  e x p e r t  s ys te m s  c o n s e q u e n tly  has  a t ra c e  f a c i l i t y  th a t  l is t s  th e  

in d iv id u a l  s te p s  ta k e n  d u r in g  th e  in fe re n c e  p ro c e s s . (See f ig u r e  1 8 ) .

i-------------------------------
TRACE INSTRUCTION OUTPUT DESTINATION

Example 1 
Example 2 
Example 3 
Example 4

TRACE TO FILE ’Trace.txt’;
TRACE TO HIRES 5,7,50,20;
TRACE TO TEXT WINDOW 2,3,70,15; 
TRACE TO DESIGNER 9;

FIGURE 18 INFERENCE ENGINE TRACE FAC/L/TY

T h e  o u tp u t  p ro d u c e d  b y  th e  tra c e  ca n  be  d ire c te d  to  a n u m b e r o f 

d e s t in a t io n s .  I f  th e  s c re e n  d is p la y  is  a lre a d y  c lu t te r e d ,  o u tp u t  can  be  s e n t to  

a t e x t  f i le  (e xa m p le  1, f ig u r e  1 8 ) . T h e  te x t  f i le  can  th e n  be in s p e c te d  b y  

te m p o ra r i ly  in t e r r u p t in g  th e  s im u la tio n  o r  b y  w a it in g  u n t i l  th e  e n d  o f th e  r u n .
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T h e  tra c e  can  a l te r n a t iv e ly  be  d ire c te d  to  a w in d o w  o f d e f in e d  s iz e  in  e i th e r  

g ra p h ic s  o r  t e x t  m odes (E xa m p le s  1 a n d  2 , f ig u r e  1 8 ) . T h e  c o n te n t  o f  th e  

w in d o w  s c ro l ls  as th e  in fo rm a t io n  g e ts  g e n e ra te d . F in a l ly ,  c o m p a t ib i l i ty  w ith  

th e  D E S IG N ER  in te r fa c e  g e n e ra to r  is  m a in ta in e d  b y  a llo w in g  o u tp u t  to  be 

d ire c te d  to  a n y  p re -d e f in e d  w in d o w  (e xa m p le  4 , f ig u r e  1 8 ) .

T h e  re m a in d e r  o f th e  k n o w le d g e -b a s e  c o n s is ts  o f a n u m b e r o f ' r u le - s e t s ' . 

(see  f ig u r e  19)

RULESET DECLARATION RULESET NAME

C INHERIT COMMAND RULESET NAME

RULESET CraneManager (INHERIT ImvManager, ShipManager);
rulel
rule2
rule3

RULESET ShipManager;
rulel
rule2
rule3

FIGURE 19 RULESET DECLARATIONS
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T h e  r u le - s e ts  each c o n s is t  o f  a n u m b e r o f  p ro d u c t io n  r u le s .  R u le -s e ts  

t y p ic a l ly  id e n t i f y  p a r t  o r  a l l  o f  th e  d e c is io n  ru le s  a p p lie d  b y  in d iv id u a ls  

re p re s e n te d  in  th e  s im u la tio n  m ode l. T h e  e n d  o f  a r u le - s e t  is  id e n t i f ie d  as b e in g  

th e  s t a r t  o f th e  n e x t  r u le - s e t  th u s  e lim in a t in g  th e  need  f o r  f i le  m a rk e rs .  A  

r u le - s e t  ca n  ' in h e r i t '  ru le s  fro m  a n o th e r  r u le - s e t ,  th u s  a l le v ia t in g  th e  p ro b le m  

o f r u le  r e p l ic a t io n . W hen a r u le  in  a r u le - s e t  c a n n o t be  r e s o lv e d , th e  in fe re n c e  

e n g in e  c h e c k s  f o r  th e  p re s e n c e  o f an 'IN H E R IT ' s ta te m e n t. T h e  r u le - s e ts  

s p e c if ie d  a re  th e n  sca n n e d  in  t u r n  in  a t te m p t in g  to  s a t is fy  th e  r u le .

T h e  s y n ta x  o f  th e  p ro d u c t io n  ru le s  is  as fo llo w s : (F ig u re  20)

RULE [RULE NNUMBER STATEMENT

E STATEMENTrj
— ►WHEN—I

EXPRESSION

[*] NumberOfBerths = 2 ; {Maximum Number of Berths is 2}
[1] ShipNumber = ShipCode ;
[2] ShipJobsLeft = True WHEN (ShiplmportJobs > 0) OR (ShipExportJobs > 0);
[3] BerthedShip = True WHEN (ShiplnBerthOne = True) OR (ShiplnBerthTwo = True);
[4] ShipFullOfExports = True WHEN ExportsLeftShip = 0 ;
[5] MovegantryToLandSide = True IF

((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND (PriorityToShipJobs = False));
[6] (STARTSHIPARRIVE = True) AND (_Time = 1200) ~ (STARTSHIPARRIVE = False) IF

(NumberOfShipsAtSea > 0) AND (ShipArrivalDue = True);

FIGURE 20 ESS/M KNOWLEDGE-BASE RULES

110



T h e  e x p re s s io n s  m u s t y ie ld  a r e s u l t  o f th e  s ta n d a rd  ty p e  'b o o le a n '. I f  an 

e x p re s s io n  p ro d u c e s  th e  v a lu e  'T r u e ' , th e n  th e  s ta te m e n t d e f in e d  as th e  f i r s t  

p a r t  o f th e  r u le  is  e x e c u te d . T h e  fo llo w in g  ru le s  o f p re c e d e n c e  id e n t i f y  th e  

o r d e r  in  w h ic h  o p e ra t io n s  a re  p e r fo rm e d , ( f ig u r e  21)

O PER A TO R  PR EC E D E N C E

* / AND 1
+ - OR ) 2
( 3
= < > < < = >  > =  4

FIGURE 21 OPERATOR PRECEDENCE
I_________________________________________________________

T h e  b a s ic  ru le s  o f p re c e d e n c e  a re  a p p lie d  as in  s ta n d a rd  P a sca l. A n  

o p e ra n d  w h ic h  is  lo c a te d  b e tw e e n  tw o  o p e ra to rs  o f  d i f f e r e n t  p re c e d e n c e  is  

a lw a y s  b o u n d  to  th e  o p e ra to r  o f h ig h e r  p re c e d e n c e . S e c o n d ly , i f  th e  o p e ra n d  

is  lo c a te d  b e tw e e n  tw o  o p e ra to rs  o f th e  same p re c e d e n c e , th e n  th e  o p e ra n d  is  

b o u n d  to  th e  o p e ra to r  s itu a te d  to  i t s  le f t .  T h i r d ly ,  e x p re s s io n s  w ith in  

p a re n th e s e s  a re  a lw a y s  e v a lu a te d  f i r s t .

B y  u s in g  c o m b in a tio n s  o f th e  boo lean  o p e ra to rs  in  th e  'e x p re s s io n ', ru le s  

o f  c o n s id e ra b le  c o m p le x ity  can  be  d e f in e d .  B oo lean  o p e ra to rs  o th e r  th a n  'O R ' 

can  a lso  be u se d  in  th e  's ta te m e n t' p a r t  o f th e  r u le .  T h e re  is  no  l im it  to  th e  

le n g th  o f a r u le .

B o th  lo c a l a n d  e x te rn a l v a r ia b le s  ca n  h a ve  t h e i r  v a lu e s  s e t b y  a s s o c ia tio n  

w ith  P asca l fu n c t io n s .  P asca l fu n c t io n s  can  be  u se d  in  e i th e r  th e  e x p re s s io n s
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or statement part of ru les. The Pascal functions can be used as a way of 

circum venting the problem of setting variables to values computed from , or 

stored in , files , a rrays , and records. Procedure calls can be made by 

specifying the procedure name in the statement part of ru les. Procedures can 

be used in  specifying algorithms or as a means of executing low -level commands 

(e .g .  w riting  to files , manipulating the display e t c . . ) .

As shown in  ru le 1 of figure 20, the condition section of a ru le  can be 

om itted. The statement is then executed unconditionally if  the value of 

'ShipNumber' is required during the inference process. As shown in  the firs t 

ru le  of fig u re  20, the ru le number can be replaced by an asterisk. The effect 

is tw o-fo ld . F irs tly , the statement is executed on activation of the expert 

system. Secondly, the variable 'Num berOfBerths' defined in  the statement 

retains its  value un til the end of the simulation ru n .

In  ru le  3 of fig ure  20, the reserved word 'WHEN' is used to separate the  

conditional statement from the 'action' part of the ru le . I f  the conditional part 

of the ru le  is satisfied, the variable 'BerthedShip' is set to the value T ru e . 

Conversely, if  the condition statement cannot be satisfied the value of 

'BerthedShip' is set to False. The reserved word 'WHEN' can only be used 

where a single boolean statement is used in the action part of a ru le .

In  ru le  5 of fig ure  20, the reserved word 'IF ' is used. I f  the conditional 

part of the ru le is satisfied, the variable '_MoveGantryToLandSide' is set to  

T ru e . However, if  the conditional statement cannot be satisfied the action part 

of the ru le  does not execute.
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In  ru le  6 of fig ure  20, the reserved word 'IF 1 is again used. The syntax 

is however s lightly  d ifferen t from th at of ru le 5 in  that the symbol '“ ' is used 

in the action statem ent. I f  the conditional part of the ru le  is satisfied, the  

statements preceding the '" ' symbol are executed. I f  the conditional part of the  

ru le cannot be satisfied, the variable 'S tartS h ipA rrive' that follows the '"' 

symbol is set to the value False.

4 .4 .2  Modelling "Cooperative Decision M aking".

As we have seen in  section 4 .4 .1 ,  the concept of ru le-sets  was introduced into  

the ESSIM expert system in order to segregate the rules applied by each 

decision maker. The use of ru le-sets permits decision rules to be grouped 

according to the name of the decision maker or by job function.

When resolving a goal, the expert system inference engine is lim ited to 

searching through the rules contained w ithin a given ru le -s e t. The ru le -se t to 

be used in resolving a goal is passed from the simulation model to the expert 

system as a parameter along with the details of the goal to be resolved. In  many 

cases, the rules applied by a given decision maker are insuffic ient fo r the 

purpose of resolving the defined goal. In  the real-w orld  situation, operational 

policies are often enacted by more than one ind iv idual. (A  concept th at w ill be 

referred to in  this thesis as "Cooperative decision m aking"). For instance, one 

individual may consult another or several individuals may work together in  

resolving a problem. In  other cases, a line manager may always have a final 

veto over a decision taken by a more junior member of s ta ff. In  order to reflect 

the involvement of multiple decision makers in  resolving an operational "Goal", 

the concept of inheritance was introduced. In  the event that a goal cannot be
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resolved using the rules applied by a given decision maker, the expert system  

inference engine may consult one or more fu rth e r ru le -sets .

An in teresting point about "Cooperative decision making" is th a t the  

grouping of. rules is by decision maker and not by a c tiv ity . In  attem pting to 

resolve a given goal, the search space may be extended to those rules used 

by decision makers involved in  operations described by other activities in  any 

of the a c tiv ity  cycles.

The use of ru le-sets introduces a concept of ru le  m odularity. This  

m odularity can potentially be used to reflect simple hierarchical management 

structures. Consider the simple case where there are two ru le -se ts , one 

relating to a shop-floor operator and the other to a line manager. There are two 

ways in which the influences of management can be represented w ithin the  

model. F irs tly , the ru le -set associated with the operator may re flect the 

operators in ab ility  to resolve certain problems. By using inheritance to lin k  the  

two ru le -se ts , the manager's expertise or authority  can be brought into play 

in  resolving the goal. In  this example, the rules associated with the operator 

are given a higher p rio rity . The manager's ru le -se t is only used in the event 

that the goal cannot be resolved. The second way in which the influences of 

management can be reflected in the model is by defining a sub-goal w ithin the  

operator's ru le -s e t. Consider the case in  which the operator is able to resolve 

a given problem but is unable to proceed with an action un til authorisation has 

been sought. By introducing a sub-goal into the operator's ru le -s e t, control 

can be tran sferred  into the manager's ru le -se t. In  th is example, the rules  

applied by the manager have a higher p rio rity  than the rules associated w ith  

the operator. Although the top level goal may have been resolved by the
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operator, the manager's rules may be applied in overrid ing the operator's  

planned actions.

4 .4 .3  The knowledge-base part-com piler

The part-com piler is activated prio r to the s tart of the simulation ru n . 

The responsibilities of the part-com piler include memory management fo r the 

defined variables, the handling of calls to function and procedures, the 

optimisation of the knowledge-base code, and the detection of syntax e rro rs . 

Whereas these are the traditional functions of a language compiler, the rules 

remain in terpreted  and hence the term  'Part-com piler'.

1 .Memory management: The firs t step taken by the part-com piler is to extract 

references in the knowledge-base to local and external variab les. The variable  

names, associated type and memory location, are then added to a tree using the 

following record s tru ctu re . (F igure 22)

PointerToVarNode = ~VarNode ;

VarNode = RECORD
Lower_Branch, Upper_Branch : PointerToVarNode ; 

VarName: String;
VarType: CodeNum ;
VarAddr: ADS OF Byte ;
Local: Boolean;
Undefined: Boolean;
Perm : Boolean;

END;

FIGURE 22 RECORD DECLARATION FOR THE VARIABLE TREE
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The boolean variable 'Local' specifies whether the 'VarName' variable is  

specific to the expert system or whether its  value is defined as a public 

variable in  Pascal and consequently shareable with the simulation module.

A ll variables defined as being local in  the declaration part of the 

knowledge-base have no associated value at the s ta rt of the inference process. 

Variables defined as 'External' in  the knowledge-base may have had th e ir values 

set in the simulation module and consequently the 'Undefined' fie ld  is set to 

False. The only exception are 'External' variables which s ta rt w ith the  

underscore character Such variables are in itia lly  set to the 'Undefined' 

status. I f  the conditional part of a ru le contains an 'Undefined' variab le, the  

ru le  cannot be executed until a value has been associated w ith the variab le.

At the end of an inference process, local variables have th e ir status reset 

to 'U ndefined'. The 'Perm' fie ld  is used to id en tify  those local variables which 

should retain  th e ir value throughout the duration of the simulation ru n . In  

figure 20, the firs t ru le  has neither a conditional clause nor an associated ru le  

number but the asterisk character instead. This indicates that the declared 

variables should have th e ir values set by the part_compiler and that the 'Perm' 

fie ld  should be set to T ru e .

'VarA ddr' is the address of the memory location containing the firs t byte 

of the variable value. In  the case of local variables, a memory request is made 

fo r RAM space corresponding to the number of bytes needed in storing the  

variable. The address of the allocated memory is then placed in the tre e . I f  the 

variable is external to the expert system module, the memory space needed in  

storing the value is allocated by the module in  which the variable is declared.
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The memory space is only allocated at run-tim e and the location of th is memory 

space w ill d iffe r each time the module is executed. The problem of finding the 

variable address is fu rth e r aggravated by the fact that the modules are  

compiled whereas the knowledge-base is in terp reted . Id en tify ing  the relevant 

addresses can only be achieved from within a compiled routine linked to the 

relevant module. This routine is located w ithin the 'Communications In terface' 

( C l ) .  The creation of the C l is undertaken by the C l-g en era to r, the  

functionality of which is described in  section 4 .6 .1 .  The C l re tu rn s  the 

run-tim e address of the external variables which are then added to the  

knowledge-base variable tre e . During the execution of the expert system, 

references to a given variable value is achieved by scanning the tree  fo r the  

relevant variable name and d irectly  accessing the content of the corresponding 

memory address. Knowing the address of the variable is not however sufficient 

to ex trac t the associated value. The Type of the variable is also requ ired . The 

'V arType' fie ld  is a one byte code identify ing  the type of the variab le . The 

variable type determines the format used fo r the storage of the value a t the 

specified address.

2 .Function and Procedure calls: One of the d ifficu lties in  developing the 

inference engine was the implementation of the fa c ility  allowing calls to compiled 

Pascal or C functions from within the knowledge-base. The ab ility  to 

incorporate compiled 3GL code into the otherwise in terpreted expert system 

ru le -s e t, permits the creation and use of complex algorithm s.

Pascal, in which the expert system is w ritten , does not support calls to 

procedures or functions using id en tifie r names stored as tex t s trin g s . The 

problem was overcome by treating the compiled functions in a sim ilar way to
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the expert system variables. P rio r to the execution of the expert system, the  

memory addresses of all procedures and functions contained in  the file  defined 

by the 'Pascal File' instruction (fig u re  22) are added to the variable tre e . The 

type code (V arT yp e) used in  the variable tree  record structure (fig u re  22) 

identifies the addresses as being related to compiled code.

A t run tim e, the procedure or function addresses are used to tran sfer 

control from the expert system to the compiled routine. Pascal does not support 

function calls using addresses, though this fac ility  is available is C . The 

problem was overcome by taking advantage of the m ixed-language programming 

fac ility  available with Microsoft compilers. A t run-tim e, the inference engine 

passes the address of the relevant code to a C function contained in  a compiled 

module. In  tu rn , the C function passes control to the code stored a t the 

specified address. When th is segment finishes executing, control re tu rn s  to the  

inference engine via the C function.

3 .Code optimisation: The part-com piler converts the rules contained in  the  

ru le-sets  into a structure optimised fo r code in terp reta tio n . The firs t step is 

to check fo r IN H ER IT commands. The lis t of ru le -sets  names defined as 

parameters to IN H ER IT instructions are then placed in  record lis ts . These lists  

are attached to the nodes of a tree indexed according to the names of all 

ru le -se ts . The records structures are: (F igure 23)

The functionality of the IN H ER IT command is fu rth e r discussed in  section

4 .4 .4 .
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PointerToVarNode = ~ InheritTreeNode ;
PointerToList = ~ InheritListNode ;

lnheritTreeNode= RECORD
Lower_Branch, Upper_Branch : PointerToNode ; 

SideBranch : PointerToList;
RuleSetNum : Integer;

END;

InheritListNode = RECORD
Side_Branch : PointerToList;
RuleSetNum : Integer;

END;

RuleSet Code j RuleSet Code

RuleSet Code

RuleSet CodeRuleSet Code

INHERIT LISTS

F/GURE 23 RECORD DECLARATION FOR THE RULESET TREE
i_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

T h e  p a r t - c o m p ile r  th e n  sca n s  th e  c o n te n t o f each  r u le - s e t  a n d  c re a te s  a 

c o r re s p o n d in g  n u m b e r o f 'c o m p ile d ' f i le s .  T h e se  te m p o ra ry  f i le s  re s id e  on  th e  

d is k  a n d  c o n ta in  th e  o p tim is e d  code u s e d  d u r in g  th e  in fe re n c e s .  T h e  fa c t  th a t  

th e  f i le s  re s id e  on  a p e rm a n e n t s to ra g e  m ed ium , th u s  l im i t in g  th e  ne e d  f o r  

R AM , m eans th a t  th e  p o te n t ia l s ize  o f  th e  k n o w le d g e -b a s e  is  o n ly  l im ite d  b y
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the capacity of the d isk. I f  execution speed is found to be unsatisfactory, and 

RAM space is available above the 640K DOS lim it, a v irtu a l drive  can be used 

to remove the need fo r physical 'reads and w rites' to and from disk.

The part-com piler creates the 'compiled' files by scanning and optimising 

the rules contained in the ru le -se t. The rules are in -tu rn  read from disk and 

copied into a linked lis t. (F igure 24)

PntrToBuffer = ^RuleBuffer ;

RuleBuffer =  RECORD
RuleTxt: LineOfCode;
AddrNextLine: PntrToBuffer;

END;

F/GURE 24 LINKED L/ST STRUCTURE FOR MEMORY RES/DENT RULES

I f  a ru le  is unconditional, a check is made to see whether an asterisk  

precedes the statem ent. The asterisk indicates that the statement should not 

be added to the ru le file  but should be executed immediately and that the status 

of any variables used should be set to 'perm anent'. (See figure 20).

The rules which are in tu rn  added to the linked lis t are optimised by 

replacing the IF  or WHEN condition, Boolean operators, and dual character 

operators (<= , >= , <>) by single byte instructions. Statements and

expressions defined in  in fix  notation are then translated into 'Reverse Polish' 

ready fo r execution. Variables are replaced by tw o-byte codes. (See fig u re  25) .
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INFIX NOTATION: JobDuration = ((10 + 5) / Total + WorkTime) * 17 IF
(JobLeft > =  10 + SpareJobs) AND (CraneAvail = True);

REVERSE POLISH: JobDuration 10 5 + Total / WorkTime + 17 * = IF
JobsLeft > = 1 0  SpareJobs + AND CraneAvail = True ;

5+AB/AC + 17*=AD#10AE+AF=1!

’IF’ Code End of line marker

FIGURE 25 THE PART-COMP/LATION OF ESS/M RULES

T h e  k n o w le d g e -b a s e  p a r t - c o m p ile r  a p p lie s  D i jk s t r a 's  m e thod  f o r  

t r a n s la t in g  fro m  in f i x  n o ta t io n  to  re v e rs e  p o lis h .  A n  e xa m p le  is  g iv e n  in  f ig u r e  

26, based on th e  r u le  d e s c r ib e d  in  f ig u r e  25. A  s t r in g  a n d  L a s t - I n - F i r s t - O u t  

(L IF O )  s ta c k  a re  u s e d , a n d  th e  o p e ra to r  p re c e d e n c e  d e f in e d  in  f ig u r e  21 is  

a p p l ie d .

ORIGINAL STRING: JobDuration = ((10 + 5) / Total + WorkTime) * 17

STR IN G  STACK

10 (
10 ((
10 5 ((  +
10 5 + ((  +
10 5 + (
10 5 + Total ( /
10 5 + Total/ ( /
10 5 + Total / WorkTime ( +
10 5 + Total / WorkTime + ( +
10 5 + Total / WorkTime + *
10 5 + Total / WorkTime + 17 *
10 5 + Total / WorkTime + 17 *

OPTIMISED ESS/M CODE: AA10

Result variable

FIGURE 26 D/JKSTRAS METHOD FOR TRANSLATING TO REVERSE POLISH



4 . E r r o r  d e te c t io n  & r e c o v e ry :  T h e  k n o w le d g e -b a s e  p a r t - c o m p ile r  is  re s p o n s ib le  

f o r  th e  d e te c t io n  o f  s y n ta x  e r r o r s  a n d  in c o n s is te n c ie s  in  th e  v a r ia b le  

d e c la ra t io n s . T h e  p a r t - c o m p ile r  p ro d u c e s  a s c re e n -b a s e d  t r a c e ,  as s h o w n  in  

f ig u r e  27. T h e  u p p e r -m o s t w in d o w  s c ro l ls  d u r in g  th e  c o m p ila t io n  p ro c e s s , 

d is p la y in g  th e  c o n te n t  o f th e  k n o w le d g e -b a s e . I f  an  e r r o r  o c c u rs ,  th e  m o d e lle r  

is  a w a re  th a t  th e  p ro b le m  m a n ife s te d  i t s e l f  d u r in g  th e  c o m p ila t io n  o f th e  la s t  

l in e  o f  code  sh o w n  in  th e  w in d o w . T h e  c e n tre  w in d o w  is  u s e d  to  d is p la y  th e  

v a r ia b le s  th a t  h a ve  been  e x tra c te d  fro m  th e  k n o w le d g e -b a s e  a n d  a d d e d  to  th e  

v a r ia b le  t r e e .  T h e  lo w e r  w in d o w  is  used  f o r  th e  d is p la y  o f  u s e r  m essages 

in c lu d in g  e x p la n a t io n  o f e r r o r s .  M ore co m p le te  d ia g n o s t ic s  ca n  be o b ta in e d  b y  

s p e c ify in g  th e  'T ra c e  T o  F ile ' com m and in  th e  k n o w le d g e -b a s e  (See s e c tio n  

4 . 4 . 1 ) .

B 8 3 * I  M i lUHBMLA1IUH IM S

NOUEEHPWOSTACk ,H 0U E E H P M 6S TA C kF R (M A TE  ,M0UEEXP0RTT0STACk, 
LOADIMPORTFROMIMU dJNLOADEXPORTTOIMU: BOOLEAN I

PASCAL FILE ’RULES.PAS' I
LOCAL STARTLANDSIDEWORK<STARTSHORESIDEWORK.STARTNEWOOB,ST ART MOUEFROHSSIDE, 

ST ART MOUEFROMLSIDEjHOUETOBAX.BAVFREEJRUCkWAITING JRUCkOUTSIDE, 
WAITINGFORTRUCk,SHIP00BSLEFT,LET TRUCkINPORT,BERTHEDSHIP ,CRANE00BS,

wAIIIHGFORTRUCk.SHIPOOBSLEFT,LETTRUCkINPORT.BERTHEDSHIP,CRANE00BS,

Messages
Declaring EXTERNAL uarial>les 
Declaring LOCAL uarialles

FIGURE 27 PART-COMPILER SCREEN BASED TRACE
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V erify in g  the va lid ity  of the variables defined in  the knowledge-base is 

achieved by checking for duplicate entries in  the tree of variable names and 

corresponding memory addresses (see fig u re  22).  The use of reserve words is 

also detected. Other erro rs involving variable names are harder to isolate. For 

instance, variables declared as 'external' in  the knowledge-base must also be 

defined as being 'public' in  one of the Pascal modules. In correct spelling leads 

to an inconsistency that cannot be detected by the part-com piler. The e rro r is 

instead detected by the 'L inker' (see section 4 .8 )  which checks for 

discrepancies between modules.

Syntax errors such as the omission of ru le  numbers and end of line  

markers are detected and reported by the part-com piler. The invalid  use of 

variables is also easily id en tified . Some other erro rs may not be reported by the 

part-com piler but may nevertheless be identified visually from a trace produced 

during the variable declaration and ru le  optimisation processes. The 

part-com piler is also responsible fo r establishing the run-tim e trace by creating  

the necessary output file  or window calls.

4 .4 .4  The inference engine

Calls to the expert system are in itia ted  by the invocation of a function  

from any Pascal module. The goal to be resolved and the ru le -se t to be used 

are passed as parameters to the function. (F igure 28)

The GOAL function is part of the expert system inference engine. In  

figure 28, the rules declared in the 'CraneManager' ru le -se t will be used in  

try in g  to solve the goal 'CraneJobs'. The goal is to id en tify  whether there are
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jobs fo r the crane to carry  out and which of these should take p rio rity . The 

GOAL function retu rns the address of the resu lt. Consequently, the 

programmer must be aware of the data format used fo r the storage of the 

resu lt. The benefit of using an address is that the function can re tu rn  any 

data type. The address returned by the GOAL function is not the only way of 

return ing  a resu lt. Any number of shared variables can be used fo r the same 

purpose.

RESULT ADDRESS —►: = GOAL(’ — ► RULESET NAME GOAL NAME

ResAddr := GOAL(’CRANEMANAGER' , ’CRANEJOBS’); 

F/GURE 28 SYNTAX OF CALLS TO THE EXPERT SYSTEM

Having received the relevant instructions, the inference engine opens the 

'compiled' file  corresponding to the ru le -s e t. External variables commencing 

with the underscore character and all local variables are then in itialised to the 

'undefined' status (fig u re  22). The backward chaining strategy used by the 

expert system makes use of a stack in directing the inference process. The 

firs t record of the stack contains a reference to the goal to be solved. 

Subsequent records lis t the sub-goals that need to be considered before a 

solution can be found for the main goal. The record structure is shown in  

figure 29.
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RecPointer =  ~GoalSearch ;

GoalSearch = RECORD
NextRec: RecPointer; 
LastRec: RecPointer; 

Goal: SymbolSting ; 
FileNumber: Integer; 
Line: Integer;

END;

SUB-GOAL 3 File
Number

Line
Number

SUB-GOAL 2 File
Number

Line
Number

SUB-GOAL 1 File
Number

Line
Number

GOAL FROM SIMULATION MODEL

F/GURE 29 THE INFERENCE ENG/NE GOAL CALL STACK

L e t u s  now  c o n s id e r  th e  e xa m p le  in  f ig u r e  28 . A t  th e  s t a r t  o f  th e  

in fe re n c e  p ro c e s s , th e  go a l 'C ra n e J o b s ' is  e n te re d  as th e  f i r s t  re c o rd  o f  th e  

L IF O  s ta c k .  T h e  'c o m p ile d ' f i le  c o r re s p o n d in g  to  th e  'C ra n e M a n a g e r ' r u le - s e t  

is  th e n  sca n n e d  f o r  an  o c c u r re n c e  o f  th e  goa l in  th e  a c t io n  p a r t  o f  one  o f  th e
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ru les. I f  a ru le is located that could potentially resolve the goal, the reverse  

polish condition expression is evaluated. Consider the following rule as an 

example: (F igure 30)

INFIX NOTATION:

[1] CraneJobs = True IF (Crane = ’Idle’) AND
(JobDuration + 0.5 <  =  (DayEnd - TimeNow) * 1.1 + 1);

REVERSE POLISH NOTATION:

[1] CraneJobs True =  IF Crane ’Idle’ =  AND
JobDuration 0.5 +  < =  DayEnd TimeNow - 1.1 * 1 + ;

F/GURE 30 REVERSE POLISH RULE NOTATION

When searching through the knowledge-base, rules are loaded in tu rn  

into a ’linked lis t' data s tru ctu re . The linked lis t permits the expert system 

to handle rules of an indefin ite length . The linked lis t is also used as a 

tem porary storage area fo r interm ediate resu lts . For instance, when evaluating  

a rules conditional expression, the constituent statements are evaluated and 

replaced by the corresponding boolean results (see fig u re  31).  The conditional 

expression, now consisting uniquely of boolean values and operators can be 

resolved.

I f  the ru le condition is satisfied, the goal has been resolved and control 

returns to the calling module. I f  the ru le condition retu rn s a boolean ’False', 

the ru le -set file  is searched for another occurrence of a ru le  statement that 

could be used to resolve the goal. I f  no rules can be found that w ill satisfy a 

goal or sub-goal, the files identified in the IN H ER IT lis t are searched in  the
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o r d e r  in  w h ic h  th e y  a re  l is te d .  I f  th e  G O A L c a n n o t be  re s o lv e d ,  a w a rn in g  

m essage is  d is p la y e d  on  th e  b o tto m  l in e  o f  th e  d is p la y .  T h e  m o d e lle r  th e n  has 

th e  o p t io n  o f in t e r r u p t in g  th e  s im u la t io n  a n d  u p d a t in g  th e  k n o w le d g e -b a s e  o r  

ig n o r in g  th e  w a rn in g .

Example : (JobDuration = 1, DayEnd = 8, TimeNow = 4)

Crane
’Idle’ —  TRUE (1) TRUE (1) TRUE (1)

AND AND AND AND
JobDuration
0.5 —  1.5 1.5 1.5
+
< = < = < = < =
Dayend
TimeNow —  4

- _  4.4
1.1 1.1
★ ★ —* 5.5
1 1 1
+ + +

TRUE (1)

•TRUE (1)

FIGURE 31 EVALUATING REVERSE POL/SH RULES

I f  one o f th e  lo c a l v a r ia b le s  u sed  in  th e  c o n d it io n a l e x p re s s io n  does n o t 

h a ve  a v a lu e , th e n  th e  lo c a t io n  o f  th e  r u le  is  a p p e n d e d  to  th e  la s t  r e c o rd  in  

th e  s ta c k .  A  new  re c o rd  is  th e n  a d d e d  to  th e  s ta c k  w ith  th e  v a r ia b le  s e t as a 

s u b -g o a l.  I f  a s o lu t io n  is  fo u n d  to  th e  s u b -g o a l,  th e  la s t  re c o rd  in  th e  s ta c k  

is  re m o v e d . A  se co n d  a tte m p t is  th e n  m ade a t  s o lv in g  th e  p re v io u s  g o a l, 

s ta r t in g  w ith  th e  r u le  fo u n d  a t  th e  lo c a t io n  s p e c if ie d  in  th e  r e c o r d .  A  s o lu t io n  

has  been fo u n d  to  th e  m ain  g o a l w h e n  th e re  a re  n o  lo n g e r  a n y  r e c o rd s  le f t  in
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the stack. The solution is then returned to the calling module as an address.

T h e  lo g ic  a p p lie d  b y  th e  in fe re n c e  e n g in e  can  be s c ru t in is e d  a t th e  e n d  

o f th e  s im u la tio n  r u n  b y  l is t in g  th e  c o n te n t o f  a t e x t  f i le  d e c la re d  in  th e  

k n o w le d g e -b a s e  u s in g  th e  T R A C E  com m and (see  f ig u r e  1 8 ) .  A l te r n a t iv e ly ,  th e  

same in fo rm a t io n  ca n  be  d is p la y e d  in te r a c t iv e ly  in  a s c ro l l in g  w in d o w  d u r in g  th e  

s im u la tio n  r u n  ( f ig u r e  3 2 ) .  T h e  t ra c e  is  a lso  in v a lu a b le  in  is o la t in g  lo g ic a l 

e r r o r s  in  th e  r u le s .

Shipcrane 4 is now idle Shipcrane I is now idle 
Shipcrane 3 is now idleShipcrane l is now idle
Retrieving I HU From pool of idle imvsShipcrane 5 is loading imu 1
Retrieving IMU from pool of idle imvs 
Shipcrane 4 is loading imu z 
Retrieving IMU from pool of idle imvs Shipcrane z is loading IMU 3

Day Hr Min 0 fl Z4

IMPORTS 1 ~> Z 
EXPORTS 1 - >  0 
IMPORTS Z~> 3 
EXPORTS Z ~> 0

search through subsequent files 
Goal Found
Calling function backchaining with parameter MO 
Ualue of parameter so Found to Le missing in expression 
Goal SD missing & placed on stack

GOAl CraneJobs 
StartLoadlmv 
WrEnt 
WrEnt
goal CraneJobs

FIGURE 32 REAL-TIME EXPERT SYSTEM TRACE DISPLAYED IN A WINDOW

4 .5  DESIG N OF T H E  S IM U L A T IO N  CO M PO NENT

T h e  s im u la t io n  m odel is  w r i t te n  in  P asca l u s in g  p ro c e d u re s  a n d  fu n c t io n s
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provided in a lib ra ry  of routines. The form of modelling used is based on the 

discrete event three phase approach due to Tocher [1962]. Changes in  state in  

discrete event models take place at time in tervals re ferred  to as events. The 

three phase world view provides a framework fo r defining model dynamics in  

terms of events which may be categorised as being e ith er time or state 

dependent. Model execution is controlled through a three phase executive which 

performs a time-advance in the A phase, executes all cu rren t tim e-dependent 

events in  the B phase and examines and executes where appropriate all 

state-dependent events in the C phase (See fig ure  4 ). These three phases are 

well represented using the Pascal programming language because of the reliance 

on modularity in  specifying model dynamics.

The suite of Pascal routines used in the simulation module are a 

modification of routines which were used for teaching simulation at the LSE. 

The routines, known as eLSE (Extended Lancaster Simulation Environm ent) are 

themselves a modification of Pascal routines developed at Lancaster U n iversity .

The firs t stage in the development of the simulation module was to 

transfer the eLSE routines to run under Microsoft Pascal. Students at the LSE 

were using the eLSE routines under Turbo-Pascal V .3 ,  which imposes an 

unacceptable b a rrie r of 64K on code size. Some modifications were necessary 

since Turbo-Pascal does not fu lly  abide to the A N SI/IEEE standard (IEEE  

[1984]). Conversely, Microsoft Pascal does not support the use of graphics. 

Consequently, the necessary low -level routines had to be w ritten  to duplicate 

the functionality of Turbo-Pascal. The size of the eLSE routines was then 

reduced by removing unnecessary display related code.
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The eLSE routines have been used in  creating re la tive ly  small 

experim ental models based on imagined real-w orld  environm ents. Experience 

gained in developing the job-shop model showed th at the use of an expert 

system would be of little  practical benefit unless the simulation was sufficiently  

detailed as to w arrant the creation of a separate knowledge-base. The use of 

a compiler supporting the creation of substantive programs was seen as a 

prerequisite to the development of simulation models under ESSIM. The creation 

of large models also requires the use of modular development techniques in 

keeping the code manageable and m aintainable.

The existing eLSE routines impose structure on the modelling process by 

providing a model executive (the  A phase) which controls the calls to the B 

and C phase procedures. The model framework assumes a single logical file  

containing all B and C routines, w ith the eLSE specific code stored separately 

w ithin an 'include' file . In  order to use the eLSE routines in a modular 

programming environm ent, the B and C phase procedures have to be 

appropriately grouped in  modules. In terfaces then have to be created, allowing 

procedure and function calls between the separately compiled files and 

perm itting the sharing of common data.

The eLSE routines make use of the CAUSE procedure to schedule the 

execution of a B phase event. The syntax of the procedure call is shown in  

figure 33. The in teger parameter 'nb' identifies the B event procedure to be 

executed a fter a delay of 't ' time u n its . During the execution of the A phase, 

(tim e advance) the scheduled B -events are activated through a call to the 

'Call_For_Next_B_Event' procedure. A CASE statement is used to map between 

the procedure code and the event name (See fig u re  33).
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SYNTAX OF B-EVENT CALLS USING ELSE

CAUSE(Nb: Integer; Ent: EName; T: Integer);

PROCEDURE Call_For_Next_B_Event; 
Begin

CASE No_NextB OF 
1: B1;
2: B2;
3: B3;
4: B4;

End;
End;

SYNTAX OF B-EVENT CALLS USING ESSIM

SCHEDULE(B_EventName: Address; Ent: EName; T: Integer);

F/GURE 33 S/MULAT/ON MODEL B-EVENT CALLS

The eLSE routines required the definition of a procedure called 

'Call_For_Next_B_Eventl which contained the names of a ll B -events. This 

procedure had to be updated each time new B-events were added to the model. 

A simple modification was made to ESSIM which elim itated the need fo r the 

,Call_For_Next_B_Eventl routine. In  ESSIM, descriptive names can be given to 

B -event routines. Instead of using the 'Nb' parameter to the CAUSE procedure, 

ESSIM expects to be passed the s tart address of the B -event procedure. During  

the execution of the A phase, the physical address of the B event is used to 

activate the procedure.
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T h e  eLSE e n v iro n m e n t m akes use  o f th e  'G o _ T h ru _ C _ E v e n ts ' r o u t in e  in  

a c t iv a t in g  th e  m ode ls  C -e v e n t  p ro c e d u re s  (See f ig u r e  3 4 ) .  I n  ESS IM , a c a ll in g  

p ro c e d u re  f o r  C -e v e n ts  is  lo c a te d  in  each  code  m odu le  (see  f ig u r e  3 5 ) .  I f  a C -  

e v e n t is  a d d e d  to  a m o d u le , th e n  th e  m o d e lle r  s im p ly  a lte r s  th e  c a ll in g  

p ro c e d u re  lo c a te d  in  th a t  m o d u le . S u c h  a s t r u c tu r e  e lim in a te s  th e  need to  

re -c o m p ile  m u lt ip le  se g m e n ts  o f co d e .

PROCEDURE Module1_Cs;
Begin

1

2 
3 
3

PROCEDURE Module2_Cs; 
Begin

PROCEDURE Module3_Cs; 
Begin

: C11; 1: C21; 1; C31;
: C12; 2: C22; 2: C32;
: C13; 3: C23; 3: C33;
: C13; 3: C23; 3: C33;

End; End; End;

PROCEDURE Module_C_Calls; 
Begin

1: Module1_Cs;
2: Module2_Cs;
3: Module3 Cs;

End;

F/GURE 35 C -EVENT CALLS /N  ESS/M
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PROCEDURE Go_Thru_C_Events;
Begin

C1;
C2;
C3;
C4;

End;

F/GURE 34 C-EVENT CALLS US/NG ELSE

The use of modules in  w riting simulation code necessitates some caution 

in the management of variables. The program design should reflect the natural 

m odularity of a simulation model, depicted by its  constituent activ ity  cycles 

(H ills [1971]).  Variables and associated data structures should then, as fa r  

as possible, be declared locally to each module. This minimised the size of the  

resulting program and improves the m aintainability of the code.

The sharing of data between modules and the expert system should 

preferably be effected through interm ediary interfaces (see figure 36).  A 

programmer may fo r instance modify the data structures used in one module 

and neglect to reflect these modifications in other modules. The use of 

interfaces also forces the programmers developing the system to form ally define 

the data accessible to individuals in  the real-w orld . Consequently, the
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p ro g ra m m e r(s )  c o d in g  each  o f  th e  m o d u le s  o n ly  h a v e  access  to  d a ta  s p e c if ie d  

in  th e  c o r re s p o n d in g  in te r fa c e .  A n  a c t iv i t y  com m on to  tw o  a c t iv i t y  c y c le s  m us t 

be p la ce d  in  ju s t  one o f th e  c o r re s p o n d in g  code m o d u le s .

MODULE 1 MODULE 2

If changes are made to variables in module 1, corresponding 
alternations are required in module 2.

VARIABLE & 
CODE EXECUTION 

INTERFACE

MODULE 2MODULE 1

If changes are made to variables in module 1, changes are 
required to the interface, but not necessarily module 2.

F/GURE 36 /NTER FA C/NG MODULES

T h e  need  to  d e v e lo p  th e  e x p e r t  sys te m  k n o w le d g e -b a s e  in  p a ra lle l w ith  

th e  s im u la tio n  code  s ig n i f ic a n t ly  a l te r s  th e  d e v e lo p m e n t p ro c e s s  u s u a lly  

a sso c ia te d  w ith  m o d e llin g . T h e  d is c ip lin e s  r e q u ir e d  a re  d e s c r ib e d  in  c h a p te r  

f iv e  s p e c if ic a lly  in  th e  c o n te x t  o f th e  d e v e lo p m e n t o f th e  p o r t  m ode l.

4 .6  DESIG N OF T H E  C O M M U N IC A T IO N S  IN T E R F A C E

T he  re s p o n s ib i l i t ie s  o f  th e  c o m m u n ica tio n s  in te r fa c e  in c lu d e  th e  

m anagem ent o f p ro c e d u re  a n d  fu n c t io n  c a lls  fro m  th e  e x p e r t  s y s te m , a n d  th e
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sharing of data betw een the ex p ert system  and other m odules.

The communications in terface provides the necessary links between the 

compiled simulation code and the in terpreted  expert system. The incom patibility 

between compiled and in terpreted  code arises from the string  oriented nature  

of the in te rp re te r. For instance, the expert system scans the knowledge-base 

and finds that in  order to solve the desired goal, a call has to be made to a 

function called 'JobDuration1. The function name has been extracted from the  

knowledge-base as a string  and is consequently not recognisable by the Pascal 

compiler as a function name. The problem could be overcome by find ing  the  

s ta rt address of the function and then tran sferring  control using the C routines  

which have been w ritten  (see section 4 .4 .3 ) .  U nfortunately, the address of a 

function cannot be identified  unless the function name is 'hard-coded' in  a 

compiled file . Using a Microsoft Pascal routine fo r determining the address of 

'JobDuration' results in a re tu rn  value corresponding to the address of the 

string  and not the function. The same problem applies in making procedure 

calls and in determ ining the address of variables declared in a compiled module.

A second problem in linking  the in terpreted  expert system with other 

compiled modules results from the syntax requirem ents of the Microsoft Pascal 

compiler. For instance, a procedure defined in one module can be called from  

another module provided that the procedure name is declared in  the calling  

module as being 'ex te rn a l'. The same requirem ent exists fo r function calls and 

fo r sharing a variable between modules. Consequently, finding the s ta rt 

address of a procedure is not in  itse lf sufficient fo r tran sferring  control to th at 

procedure. The procedure name must also be defined at the top of the module 

as being 'ex tern a l'.
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F/GURE 37 INTERFACE BETWEEN SIMULATION MODEL AND EXPERT SYSTEM

S h o r t  o f w r i t in g  ones ow n P asca l c o m p ile r ,  th e  p ro b le m  o f c re a t in g  th e  

in te r fa c e  c o u ld  n o t  e a s ily  be o ve rco m e . A  p o s s ib i l i t y  th a t  e v e n tu a l ly  p ro v e d  to  

be th e  m ost s a t is fa c to r y  was to  d e v e lo p  a p ro g ra m  g e n e ra to r  th a t  w o u ld  c re a te  

th e  co m m u n ica tio n s  in te r fa c e  m o d u le . T h e  co m m u n ic a tio n s  in te r fa c e  m odu le  

c o n ta in s  a ll th e  n e c e s s a ry  ' in te r -m o d u le ' d e c la ra t io n s  a n d  r e tu r n s  th e  a d d re s s e s  

o f  p ro c e d u re s , fu n c t io n s ,  o r  v a r ia b le s  w hen  pa sse d  to  th e  in te r fa c e  as te x t  

s t r in g s  ( see f ig u r e  3 7 ) .
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4 . 6 . 1  The C l-gen erator

The C l-generator was developed as a means of creating the 

communications in terface module. The C l-generator is activated by the 'L in ker1 

program (see section 4.8)  and need only be executed when additional 

procedures, functions, or external variables are added to the declarations part 

of a given knowledge-base.

When the C l-generator is activated, a template file  is created using the 

same file  name as the knowledge-base but with a d ifferen t file  name extension. 

The generator then adds code to the template file  by directing output to  

'Include' files . The generated code can be classified as follows:

1 .Variable declarations: External variables declared in the knowledge-base are 

extracted and added to the template file , (fig u re  38)

Cl-Generator
KNOWLEDGE BASE +■ COMMUNICATIONS INTERFACE

EXTERNAL Time : Integer;
Dur : R eal;

VAR Time[Extern] : Integer; 
Dur [Extern] : R eal;

FIGURE 38 MAPPING BETWEEN SIMULATION AND ES VARIABLES
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2 . R o u tin e  d e c la ra t io n s :  P ro c e d u re s  a n d  fu n c t io n s  c a lle d  fro m  w ith in  th e  

k n o w le d g e -b a s e  m u s t be d e c la re d  as 'e x te rn a l ' to  th e  co m m u n ica tio n s  in te r fa c e  

m o d u le . T h e  C l- g e n e r a to r  e x t r a c ts  th e  p ro c e d u re  a n d  fu n c t io n  nam es b y  

s c a n n in g  th e  m odu le  in  w h ic h  th e y  a re  d e c la re d . T h e  nam e o f th e  m odu le  is  

i t s e l f  e x t ra c te d  fro m  th e  k n o w le d g e -b a s e  b y  s e a rc h in g  f o r  th e  'P a sca l F ile ' 

com m and ( see s e c tio n  4 . 4 . 1 ) .

USER DEFINED PASCAL 
M O D U LE

COMMUNICATIONS INTERFACE  
TEM PLA TE

MODULE Name ;

Procedure ... ; 
Begin

End;

Procedure ... ; 
Begin

End;

Function ... : ... ; 
Begin

End;

END;

C l Generator

MODULE Commlnterface;

Procedure ... ; Extern;
Procedure ... ; Extern;
Function ... ... ; Extern;

Function VarAddress(Strng):Address; 
Begin

{Generated ’include’ file}
End;

Function ProcCall(Strng);Result; 
Begin

{Generated ’include’ file}
End;

Function FuncCall(Strng):Address; 
Begin

{Generated ’include’ file}
End;

END;

F/GURE 39 THE COMMUNICATIONS INTERFACE CODE GENERATOR
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3 . C ode  f o r  r e tu r n in g  v a r ia b le  a d d re s s e s : T h e  C l- g e n e r a to r  c re a te s  th e  code  f o r  

th e  'V a r  A d d re s s ' fu n c t io n  u s in g  th e  v a r ia b le  nam es a n d  ty p e s  id e n t i f ie d  fro m  

th e  d e c la ra t io n  s e c tio n  o f  th e  k n o w le d g e -b a s e  ( f ig u r e  3 9 ) .  A  v a r ia b le  name is  

passed  to  th e  fu n c t io n  as a t e x t  s t r in g  p a ra m e te r .  T h e  fu n c t io n  th e n  r e tu r n s  

th e  m em ory  a d d re s s  a t  w h ic h  th e  v a lu e  o f th e  v a r ia b le  is  s to re d .  W hen th e  

ESSIM  e x p e r t  s y s te m  is  f i r s t  a c t iv a te d ,  th e  'e x te r n a l ' v a r ia b le  nam es a re  in  t u r n  

passed  to  th e  'V a rA d d re s s ' fu n c t io n  a n d  th e  v a r ia b le  a d d re s s e s  r e t u r n e d , a d d e d  

to  th e  a d d re s s  t r e e  (s e c t io n  4 . 4 . 1 ) .  T h e  in fe re n c e  e n g in e  ca n  th e n  g a in  access 

to  v a r ia b le  v a lu e s  b y  s e a rc h in g  th e  t r e e  f o r  th e  re le v a n t  m em ory a d d re s s .  T h e  

c o n te n t o f th e  m em ory  a d d re s s  can  s u b s e q u e n t ly  be  e i th e r  re a d  o r  o v e r w r i t t e n .

4 . C ode f o r  p ro c e d u re  c a lls :  T h e  C l- g e n e r a to r  c re a te s  th e  code  f o r  th e  

'P ro c _ C a ll' fu n c t io n  th a t  e n a b le s  p ro c e d u re s  to  be a c t iv a te d  fro m  ru le s  d e f in e d  

in  th e  k n o w le d g e -b a s e  (see  f ig u r e  4 0 ) .  T h e  'P ro c _ C a ll' fu n c t io n  re c e iv e s  th e  

p ro c e d u re  nam e as a p a ra m e te r  a n d  passes c o n t r o l  to  th e  p ro c e d u re .  T h e  

'P ro c _ C a ll’ fu n c t io n  th e n  r e tu r n s  a boo lea n  v a lu e  to  th e  e x p e r t  s ys te m  in d ic a t in g  

w h e th e r  th e  p ro c e d u re  w as fo u n d  to  e x is t .  T h e  'P roc_ C aU ' code  is  based  on  th e  

p ro c e d u re  d e c la ra t io n s  e x tra c te d  fro m  th e  P asca l f i le  d e c la re d  in  th e  

k n o w le d g e -b a s e .

’ProcCaU’
Function

EXECUTE
PROCEDURE

TRANSLATE TO 
PROCEDURE ADDRESS

PROCEDURE
NAME EXPERT

PASCAL
CODE

SYSTEM
INFERENCE

ENGINE

RETURN
CONTROL

FIGURE 40 CALLING PASCAL PROCEDURES FROM ESS/M’s EXPERT SYSTEM
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5 . C ode  f o r  fu n c t io n  c a lls :  T h e  ' F u n c A d d r e s s '  r o u t in e  re c e iv e s  a fu n c t io n  name 

as a p a ra m e te r fro m  th e  e x p e r t  s y s te m , c a lls  th e  fu n c t io n ,  a n d  th e n  r e tu r n s  th e  

a d d re s s  a t w h ic h  th e  fu n c t io n  r e s u l t  is  s to re d  ( see f ig u r e  4 1 ) .  I f  th e  p a ra m e te r 

to  th e  r o u t in e  is  in v a l id ,  a 'n u l l '  a d d re s s  is  r e tu r n e d .  T h e  use  o f  a d d re s s e s  

p e rm its  th e  fu n c t io n  r e s u l t  to  be o f  a n y  ty p e .  T h e  v a lu e  r e tu r n e d  b y  th e  

fu n c t io n  is  t y p ic a l ly  u se d  in  a c a lc u la t io n  in  th e  c o n d it io n  s e c tio n  o f a r u le .  

E n s u r in g  th a t  a ll  v a r ia b le  ty p e s  u se d  a re  c o m p a tib le  is  th e  r e s p o n s ib i l i t y  o f th e  

m o d e lle r .

EXPERT
SYSTEM

INFERENCE
ENGINE

PASCAL
CODE

TRANSLATE TO 
FUNCTION ADDRESS

'FuncCair
Function

MAP TO 
AN ADDRESS

F/GURE 41 CALL/NG PASCAL FUNCT/ONS FROM ESS/M’s EXPERT SYSTEM

EXECUTE
FUNCTION

RETURN
RESULT

RETURN
ADDRESS

FUNCTION
NAME

4 .7  T H E  M A N -M A C H IN E  IN T E R F A C E

T h e  p ro v is io n  o f  p o w e r fu l g ra p h ic  h a n d lin g  fa c i l i t ie s  on  c u r r e n t  

m ic ro c o m p u te rs  h a s  le a d  to  a s ig n if ic a n t  p ro p o r t io n  o f  s o f tw a re  d e v e lo p m e n t 

re s o u rc e s  b e in g  p la c e d  on  th e  c re a t io n  o f e f fe c t iv e  m a n -m a ch in e  in te r fa c e s .  A  

la rg e  n u m b e r o f s o ftw a re  p ro d u c ts  now  m ake use  o f  w in d o w s  as a m eans o f 

s t r u c tu r in g  m enu d is p la y s  o r  as a to o l f o r  d is p la y in g  lo g ic a l ly  d is t in c t  o u tp u t  

s im u lta n e o u s ly  on  th e  same s c re e n . T h e  d e v e lo p m e n t o f w in d o w in g  e n v iro n m e n ts  

s tem s fro m  a d v a n c e s  in  p a ra lle l c o m p u tin g  a n d  m u lt i ta s k in g  o p e ra t in g  sys te m s

140



which often require  the simultaneous display of unrelated data.

The job-shop modelling environm ent, the predecessor to ESSIM (appendix 

A ), made significant use of a window based display, the lay-ou t of which was 

based on the Turbo-Prolog in terface. The interface was designed to enable the 

modeller to adapt the job-shop model to d ifferen t m anufacturing environments 

by altering the specification of the products being manufactured and other 

characteristics of the production p lan t. Windows were also used fo r the 

graphical display of simulation output and fo r the summarisation of model 

performance in  terms of orders outstanding and orders completed. The job-shop 

modelling environment was seen to gain significantly from the provision of an 

effective window based man-machine in terface. These gains mostly arose 

because of the intended role of the system as a tool fo r dedsion-support and 

the consequent need fo r a means of effectively  communicating inform ation.

ESSIM was designed as an tool fo r the creation of complex modelling 

environments such as the job-shop in which the modeller has the added benefit 

of being able to represent and experim ent with a lternative decision ru les. The 

analyst/program m er using ESSIM consequently needs to develop a man-machine 

in terface that perm its the modeller to implement model changes and analysis 

model output with minimum d iffic u lty . The development of a user frien d ly  

in terface based on the use of windows is time consuming and necessitates of the 

programmer significant sk ill in  low -level hardware control. The problem is 

compounded by the need to use Microsoft Pascal in  creating the simulation code. 

MS-Pascal is a straightforw ard implementation of ANSI Pascal with no facilities  

provided fo r cursor control, colour selection, or graphics.
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4 . 7 . 1  ESSIM lib rary of low -level routin es

The firs t step in  developing the man-machine in terface was to w rite  the 

necessary low -level routines fo r the manipulation of textual output and fo r the 

creation of high-resolution graphs. These routines are available to the ESSIM 

user in  a lib ra ry  and are linked to the developed code a fte r compilation. The 

names used fo r the routines, wherever possible, are identical to Turbo-Pascal 

commands thus im proving language com patibility and easing the translation of 

program code.

4 .7 .2  The graphics display module

ESSIM's Graphics Display Module (GDM) is accessible from the simulation 

model, expert system, or any other linkable program module. The GDM provides 

the necessary code fo r the development of the man-machine in terface and makes 

use of the lib ra ry  of low -level video display routines. The routines can be 

characterised as followed:

1 .Windowing routines: The GDM supports the creation of multiple overlapping  

windows in e ither tex t or graphics mode. A window is created by specifying  

screen coordinates and an associated name. The window routine then calculates 

the number of eight b it memory locations needed in storing the content of the  

display area immediately beneath the window. A request is made fo r the  

necessary amount of memory space, and the content of the screen area affected  

by the window, copied to the reserved RAM. When removing the window from  

the d isplay, the reverse process is carried ou t, and the allocated memory space 

fin a lly  released. The GDM also provides routines fo r moving windows around the
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screen, scrolling the content of windows, and re -d irectin g  input and output 

operations to specified window locations.

2 .Iconics: The popularity of the operating system used in  the Apple Macintosh 

range of microcomputers has rested on the power and sim plicity of it's  mouse 

and icon driven in terface. The GDM consequently provides facilities fo r the 

creation and display of user defined shapes, symbols, and character sets. 

Iconics can easily be combined with mouse handling routines in  creating a 

powerful man-machine in terface. For instance, a mouse routine can be used in  

detecting the position of the mouse 'pointer1. I f  the pointer is located 

immediately above a specified icon, the display a ttrib u te  of the screen area in  

which the icon is displayed is reversed, and the routine associated with the 

icon is activated.

3 .Graphics: The GDM supports graph drawing facilities which are designed to 

be used in combination with high-resolution window displays. The lowest level 

routines are designed fo r drawing individual pixels, lines, and circles. These 

drawing routines can be used in either of two modes. The firs t mode ensures 

com patibility with the underlying operating system by using the low -level BIOS 

routines that reside on a ROM chip. A program developed using ESSIM will 

consequently run on any fu tu re  versions of the DOS operating system released 

by IBM or M icrosoft. The BIOS mode also ensures ESSIM's com patibility with 

OS/2 and enables ESSIM to be used concurrently w ith other softw are. The 

second mode is designed to maximise the speed at which lines are drawn by 

by-passing the BIOS routines and w riting  d irectly  to the video display. This 

prevents the use of ESSIM as a concurrent process because the screen output 

cannot be controlled by the underlying operating system. H igh-level routines

143



are also provided fo r creating graph axes, drawing line graphs and bar charts, 

extending existing graphs, and re-scaling or sh ifting  images. Graph lines that 

exceed the lim its of the axes are clipped using an algorithm based on Cohen's 

method. (An example screen display is given on page 59)

4 .7 .3  The man-machine fro n t-en d  module

The front-end  module controls the activation of the ESSIM modules. The 

design and coding of the fro n t-en d  is  carried out by the analyst/program m er 

using routines from the graphics display module and ESSIM lib ra ry  of low -level 

routines. The fron t-end  is typ ica lly  window based and may provide facilities fo r 

selecting files from directories, in itia lis ing  files , and setting parameters to the 

simulation ru n . A typical screen display is shown in  figures 57, 58 and 59.

The creation of the man-machine front-end is nevertheless a complex 

process requiring repeated compilation of the module in  achieving the desired 

screen lay -o u t. The process is fu rth e r complicated when pull-down menus are 

used in combination with the mouse or when windows are designed to overlap. 

A program generator for creating the front-end menus and defining the 

location, size and content of the windows was consequently thought to be a 

desirable and necessary feature of ESSIM.

4 .7 .4  Designer

Though useful, the lib ra ry  routines were found to be time consuming to 

use and the process of designing a screen display laborious. A program  

generator, 'Designer1, was therefore developed which permits screen designs
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to be created and the corresponding code generated autom atically. The concept 

behind 'Designer' was not just to provide a conventional in terface definition  

language, but to le t the modeller create an in terface in teractive ly . 'Designer' 

is  a form of 4GL in  which 'in teractive programming' is used to generate PASCAL 

program code. Once created, the in terface lay-ou t can be 'edited' and new code 

produced. Furtherm ore, the eventual user of the program can be d irectly  

involved with the setting out of the interface and the presentation of the 

output.

The standard 'Designer' interface is based on the use of high-resolution  

graphics. Characters shapes are user defined and options are selected using 

a mouse. A ll input and output, whether in graphic or character form at, is 

displayed in 'pull-dow n' or 'pop-up' windows. The top two lines of the screen 

are reserved fo r default menu options. The bottom line is used fo r the display 

of instructions.

The default menu options are specified by simply typ ing the appropriate  

text.  Two or more spaces indicates the s tart of a new option. The position of 

the menu options is automatically adjusted such th at an even lay-ou t is always 

obtained. Pointing the mouse icon at an options results in  its  display 

characteristics being reversed.

Windows can be created using the mouse. Once created, windows can be 

re-positioned and adjusted in size. Pull-down menus are simply created by 

typing te x t into existing windows. The pull-down menus are immediately 

functional perm itting the screen design to be evaluated p rio r to generating the  

in terface code. Pull-down windows can be also be stacked. Hence selecting an
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en try  in one window results in another pull-down menu being displayed.

m sm m  - m  m m m m
OPTION 1 
OPTION Z 
OPTION 3 
OPTION 4

SUB-OPTION 1 
SUB-OPTION I  
SUB-OPTION 3

SUB-SUB-OPTION 1

-OPTION 3

a prograw
FIGURE 42 GENERATING APPLICATION INTERFACES USING ' DESIGNER '

'D e s ig n e r ' s u p p o r ts  th e  c re a t io n  o f  P o p -u p  w in d o w s . P o p -u p  w in d o w s  

a re  n o t u se d  f o r  th e  d is p la y  o f  m enus b u t  r a th e r  f o r  th e  d is p la y  o f  f r e e - fo r m  

t e x t ,  re q u e s ts  f o r  u s e r  in p u t ,  a n d  th e  c re a t io n  o f g ra p h ic a l fo rm s . Each w in d o w  

is  id e n t i f ie d  b y  a u n iq u e  code s u c h  th a t  th e s e  can  la te r  be  m a n ip u la te d  b y  th e  

p ro g ra m m e r(s )  d e v e lo p in g  th e  s im u la tio n  o r  e x p e r t  s y s te m  m o d u le s .

E x te rn a l p ro g ra m s  can be a c t iv a te d  b y  a s s o c ia t in g  a f i le  name w ith  a m enu 

o p t io n .  S e v e ra l ty p e s  o f p ro g ra m  c a lls  a re  p o s s ib le . T h e  m o d e lle r  can  'c h a in ' o r  

's p a w n ' a p ro g ra m , w i th ,  o r  w ith o u t  th e  use  o f p a ra m e te rs . A l te r n a t iv e ly  DOS 

com m ands ca n  be a c t iv a te d ,  a g a in  w ith  th e  p o s s ib i l i t y  o f p a ra m e te rs  p a s s in g .
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O utput generated by external programs can either be displayed on a clear 

screen (in  text-m ode) or re-d irected to a specified pop-up window. 'Designer' 

permits the program calls can be tested s tra ight away w ithout having to 

generate and compile the code. Designer's ab ility  at executing DOS commands 

is particu larly  useful in  the context of providing the modeller w ith facilities  

such as directory listings (possibly to a window), file  copying/backup, 

changing default d irectories, and so on.

Having designed the in terface, the corresponding program can be 

generated. The user is prompted for a file  name. 'Designer' then generates the  

PASCAL code and compiles it  to 'EXE' form at. A 'screen design' file  is also 

generated which can be used to re-load a previously designed in terface. There  

are two ways of modifying 'Designer' files . Re-loading the screen design file  

or altering the Pascal code. The Pascal code can be customised by modifying the  

'Designer' interface module. The module consists of a single procedure 

containing a CASE statement. The CASE statement entries relate to window and 

menu options. By inserting lib ra ry  commands and /or procedure and function  

calls, particu lar menu options can be made to activate given tasks.

Having designed an in terface, the modeller has to place the necessary 

calls in the simulation code and/or expert system knowledge base to activate  

the appropriate windows. The read and w rite statements used in  the model also 

have to be altered so as to redirect the I/O  to the appropriate windows. Graphs 

can also be produced within windows using the appropriate lib ra ry  functions.
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4 .8  THE CODE LINKER

The use of modules complicates the process of generating the executable 

program . The expert system module has to be linked to the simulation code, 

'Designer' in terface, and appropriate lib raries . To sim plify the process and 

perm it the inexperienced programmer to implement changes to the model, a 

separate code linking  program was w ritten .

The user is firs t prompted to specify the simulation model file  name, the 

expert system knowledge base name, and the 'Designer' in terface file  name. 

The in terface file  name can be omitted if  'Designer' is not being used. The 

user has the option of specifying additional lib ra ry  names which may have been 

created fo r use with the model. The files can also be compiled during the 

execution of the program if  this has not already been done. The code lin ker 

generates the appropriate commands fo r the Microsoft compiler, generates the 

executable program and then offers the modeller the option of immediately 

running the model.

4 .9  CONCLUSION

The development of the job-shop application in  co-operation with the 

'In stitu to  Nacional de Tecnologia' provided essential practical experience in  the  

difficu lties associated with the alteration of model logic. The system also 

highlighted the necessity for a user frien d ly  in terface perm itting the  

inexperienced modeller to use the model unaided and in te rp re t output through  

summary reports and dynamic graphical displays. The job-shop model was
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implemented as an adaptable system that could be tailored fo r used in  a range 

of job-shop based m anufacturing concerns.

Though designed as a re-usable system, the job-shop model did not 

achieve the desired level of generality . To be of use in  a w ider context, the  

simulation environment had to be applicable to any real-w orld  situation.

Such requirem ent spurred the development of ESSIM, in  which an expert 

system is used fo r the specification of the logic applied by key individuals  

involved in  the control of the real-w orld environm ent. ESSIM is a development 

environm ent fo r use by experienced modellers. ESSIM perm its the creation of 

models sim ilar to that of the Job-Shop, with added fle x ib ility  given to the 

modeller by perm itting model changes through alteration of the expert system 

knowledge-base.

The use of a commercial o ff-th e -sh e lf expert system did not satisfy the 

requirem ents of ESSIM because of the lack of adequate interfaces to 3rd 

generation languages and the in ab ility  to customise the structure of the 

knowledge-base. ESSIM's expert system module operates on the principle of a 

purely backward chaining inference strategy in which the goal to be resolved 

is defined using a Pascal function. The structure of the knowledge-base d iffers  

radically from that of existing expert systems in  that 'ru le -sets ' are used to 

'localise' knowledge. Rule-sets typ ically define the knowledge pertaining to a 

specified individual and improve the in terp re ta b ility  of the knowledge-base by 

imposing lim ited s tru ctu rin g . The use of Rule-sets also improves the 

performance of the expert system by lim iting the search space during the 

inference process. ESSIM's expert system provides other features essential to
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the simulation task. Namely the sharing of variables with compiled Pascal code, 

the ab ility  to incorporate procedural code, and the output of inference traces.

ESSIM's simulation component makes use of the discrete event three-phase  

approach to model development and is derived from the eLSE routines used fo r 

teaching simulation at the LSE. To w arrant the use of an expert system, ESSIM 

models are necessarily substantial in  size. The model 'template' used in  

conjunction with the eLSE routines was consequently modified so as to perm it 

model development on a modular basis (see section 4 .5 ) .  Additional functions  

were also devised perm itting calls to the expert system. The development of 

substantive models requires the use of d ifferen t model building techniques, 

particu larly  in the management of variables. The necessary disciplines in  

in terfacing the constituent code modules were consequently iden tified . The 

changes made to the eLSE routines and the ab ility  to construct models on a 

modular basis represent a significant improvement on the existing model 

development techniques.

The creation of an in terface between compiled simulation code and an 

in terpreted expert system knowledge-base represented a considerable 

challenge. The in terface had to perm it the sharing of common variables and 

the transfer of control between procedural and declarative code. The necessary 

generality of the in terface resulted in the need fo r a code generator (the  

C I-G enerator) which would scan the declarations section of the knowledge-base, 

id en tify  the procedures and functions called from the expert system, and 

thereby construct the necessary in terface module in  Pascal. The in terfacing of 

expert system and simulation model represents a significant improvement in  the  

power and fle x ib ility  of trad itional simulation m odelling. The development of the
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in terface should also be of in terest to those working in A I. For instance, an 

expert system could be tested using realistic  input data generated by a 

simulation model. More generally, the development of applications based on a 

combination of declarative and procedural code could be of benefit to a range 

of disciplines in which 3rd generation languages have trad itio nally  been used.

The development of the Job-Shop application highlighted the need fo r an 

effective means of communication between application and modeller. The 

development of the man-machine in terface was found to be a complex process 

requiring considerable expertise in low -level programming. S ta te -o f-th e -a rt 

techniques such as windowing, icon handling, and mouse control were complex 

to re-produce and d ifficu lt to make use of during the development of models. 

One of the aims in developing the ESSIM environm ent was to go fu rth e r than 

simply providing necessary libraries of routines but to actually help in  the  

almost equally complex process of using the code. The ’Designer' in terface code 

generator was consequently developed which allows the screen design to be 

produced in teractive ly . 'Designer' reduces the time normally associated with 

creating complex user interfaces and permits the programmer to create a 

graphical fron t-end  to a simulation model with re la tive ly  little  d iffic u lty .

The development of ESSIM would have been d iffic u lt to achieve without 

a practical context to which the developed theories could be applied. This 

practical context was firs t provided by the job-shop application and la te r by  

the container port model described in some detail in  the following chapter.
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CHAPTER FIVE

VALIDATION OF ESSIM USING A CONTAINER PORT MODEL

5.1 INTRODUCTION

Chapter four sought to describe the research steps undertaken in  the 

development of ESSIM and provided a detailed explanation of the physical design 

of the eventual system. Chapter five  w ill describe the process applied in  

validating the ESSIM approach to modelling. These are broadly outlined in  

figure 45(a) .

(1) Development of a model of a computer controlled container port using 
conventional discrete event modelling tools.

(2) Implementation of the container port model using ESSIM with decision rules 
segregated within the expert system knowledge-base.

(3) Validation of the ESSIM port model output by means of comparison with the 
model output from the conventional model developed as part of step one.

(4) Implementation and execution of a range of experiments to be used in 
evaluating the ESSIM system.

(5) Development of a further version of the container port model using conventional 
programming techniques to replicate the functionality of the expert system.

(6) The experiments identified and carried out in step four are repeated using the 
different versions of the port model developed in steps one and six.

(7) Formalisation of the conclusions drawn from the research stages and 
experiments carried out in steps four and six.

FIGURE 45 (a) Stages in the validation of the ESS/M design

The sections of this chapter broadly follow the research and validation  

stages identified in  diagram 45(a).

152



In  section 5 .2 . ,  the design and operational characteristics of the  

container port to be modelled using ESSIM is described. The container port was 

used in preference to the Job-Shop environment in  assessing the ESSIM design 

as there was a lack of operational knowledge on jobbing techniques. The Job- 

Shop had been used in  building the prototype system described in  section 4.2  

which used a forw ard chaining expert system in  representing jobbing rules. 

Appendix A provides a fu lle r explanation of the functionality of the Job-Shop 

system .

The details relating to the design and operational characteristics of the 

container port were provided by a company called Highland Participants PLC. 

Highland Participants wished to develop a model of a computer controlled, and 

in  parts un-manned container port which was to be constructed on the Is le  of 

G rain. The aim of the simulation study was to simulate the expected 

performance of the port using alternative designs, equipment of varying  

specification, and alternative control procedures. Once form alised, control 

procedures could be extracted and la te r be integrated w ithin the port's  

computer control system. The container port project provided a factual re a l- 

world modelling problem which could be used to realistically assess the ESSIM 

approach.

Conventional modelling techniques were used in  the development of the 

firs t version of the container port model. Decision rules were la te r stripped out 

and embedded w ithin ESSIM's expert system knowledge base. By using constant 

activ ity  durations, the conventional model was then used as a means of 

validating the output from the ESSIM version of the port model. E rrors in  the
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ESSIM program code which would otherwise have been d ifficu lt to detect were 

identified in this way.

The development of the second version of the port model under ESSIM 

is described in section 5.3 .  In  th is section, particu lar emphasis is placed on the 

describing the modular code construct which had to be adopted in  implementing 

the container port model which is particu larly  substantive in  size. Section 5.4  

describes the knowledge-base component of the port model. Also described, are 

the alterations made to the expert system which resulted from d ifficu lties in  

implementing certain management ru les. The structure of the expert system 

inference engine, itse lf and the syntax of the associated rules were explained in  

chapter four.

The th ird  major component of the ESSIM port model, the graphical user 

in terface, is described in section 5.5 .  The process applied in generating the 

in terface using the 'Designer' program is explained and the resulting modeller's 

tools which include graphs, textual displays and pull-down menus are 

described. In  the context of the ESSIM container port model, the graphical user 

in terface is used in  controlling the execution of the model, displaying simulation 

results during model execution and in allowing the modeller to edit the expert 

system rule-base.

Once the ESSIM version of the port model was complete, rigorous testing  

was required to ensure th a t, fo r instance, the expert system inference process 

was being executed correctly . Model validation was achieved by comparing the 

output from the ESSIM model with th at of the original port model which had 

been entire ly  coded in Pascal. Constant a c tiv ity  durations were used to ensure
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th a t at every time step, the behaviour of both models could be expected to be 

identical. The validation of the ESSIM port model is explained in section 5 .6 .

Having completed and validated the ESSIM version of the container port 

model, work commenced on form ally evaluating the cooperative simulation and 

expert system approach to modelling as encompassed in  the ESSIM design. The 

firs t step undertaken was to devise a range of experim ents which could be used 

in assessing the impact of introducing changes to the expert system knowledge 

base and simulation modules. These experiments can broadly be classed as 

follows:

(1 ) Experiments involving changes to knowledge-base ru le param eters.

(2 ) Experiments based on changes to variable values within knowledge­

base ru les.

(3) Introducing model changes which requ ire  the re-organisation of 

existing decision rules or the introduction of new decision ru les.

(4) Experiments requiring major model changes with specific reference  

to the introduction of new en tity  cycles.

Section 5 .7  is sub-divided to cover each of these class of experim ents. Each 

individual experim ent is explained in  detail and in itia l findings are reported  

relating to the ease or d ifficu lty  with which model changes were implemented.

Defining and carrying  out experiments using the ESSIM version of the 

container port model is insufficient fo r the purpose of fu lly  assessing the value 

of the ESSIM approach to modelling. Further evidence was therefore sought by 

comparing the results of the experiments with those obtained by repeating the
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experim ents using alternative modelling techniques. A fu rth e r version of the 

container port model was therefore developed in  which the rules associated 

with each port manager were hard-coded w ithin individual Pascal functions. 

These pascal functions were isolated from the main body of the simulation 

program in  order to replicate the concept of a knowledge-base representing  

decision m akers, independent from the simulation component depicting physical 

entities, activ ities and th e ir in ter-re lationsh ips. This new version of the 

container port model is fu lly  described in section 5.8 .

The experim ents described in section 5.7 which had been applied to the 

ESSIM port model were repeated using the new version of the container port 

models. The experiments were also applied to the firs t port model which had 

been developed en tire ly  using conventional three-phase discrete event routines. 

The conclusions from these fu rth e r experiments are reported in section 5 .8 .1 .  

The conclusions are based on a comparison of the accuracy, adaptability and 

m aintainability of the model representations.

From the comparison of the characteristics of each individual version of 

the port model, conclusions are drawn as to the m erits and lim itations of each 

of ESSIM's components. The Pascal simulation routines themselves are firs t 

examined. Some unusual concepts had been introduced such as the use of 

individual modules in representing each en tity  cycle. The value and lim itation 

of these new modelling concepts are discussed and reported in  section 5 .9 .1 .  

A similar approach is taken in evaluating the benefits and lim itations of the 

expert system. The development of the expert system knowledge-base and 

inference engine were based on existing theories in  terms of the core principles 

such as backward chaining. With respect to functionality, a number of fa irly
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radical design features were implemented, particu larly  in  terms of the interface  

to the Pascal language and the use of ru le -sets . The benefits and lim itations of 

the expert system are discussed in section 5 .9 .2 .  The impact of the 

user-in terface and the benefit conveyed by the 'Designer' code generator are 

sim ilarly debated in  section 5 .9 .3 .

The conclusions to th is chapter are presented in section 5.10.

5.2 DESIGN OF THE CONTAINER PORT

Several a lternative port designs were considered by Highland Participants  

fo r the Is le of Grain s ite . One of these designs was eventually used in  creating  

the ESSIM model and w ill now be described.

The following numerical data are averages used in the model. These 

constants were used to sim plify the validation of the model output.

A ship reaches each of the port's berths every 24 hours. The impending 

a rriva l of a ship is notified to the port authorities 4 hours in  advance. Each 

ship takes 2 hours to dock and two hours to leave the p o rt. There are two 

b erth s .

Cranes are used to unload containers from the ships onto waiting In tern a l 

Movement Vehicles ( IM V s ) . One of the ship berths is served by two cranes, and 

the other by three cranes. A crane takes 40 seconds to load a container from  

a ship onto an IMV or from an IM V onto a ship.
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FIGURE 43 LA YOUT OF THE CONTAINER PORT

Each s h ip  is  e x p e c te d  to  c a r r y  th e  m axim um  lo a d  o f  500 c o n ta in e rs .  500



im port containers are unloaded from each ship, these being replaced by 500 

export containers. In  some cases, ships may a rrive  empty to collect a 

consignment. On a rriv a l of a ship, all cranes are set to 'im port1, and the  

process of unloading containers begins. Once all im port containers have been 

unloaded, the cranes switch to 'export' mode and the loading of export 

containers onto the berthed ship s ta rts . In  the case of the berth which has 

three ship cranes, only two of the cranes can work at any one time in 'export' 

mode. There are other loading/unloading scenarios which provide management 

with options in  the optimisation of the ports operations. The scenario which is 

investigated in  th is thesis is one in which import and export operations occur 

in  parallel. As space is cleared in the ship's hold, it  becomes possible to load 

export containers before all im port containers have been unloaded. This is 

represented in the expert system knowledge-base by rules which set the 

number of ship cranes operating on im ports/exports to being proportional to the  

remaining workload. Hence, in the case of two ship cranes, the s ta rt condition 

is that both cranes work on imports on ly. I f  the number of remaining import 

containers falls below half the total im port workload, one of the cranes is 

shifted over to working on exports. When no import containers remain, both 

cranes work uniquely on exports.

There are 100 IMVs that can transport im port containers from a berth  

to the storage area, and export containers from the storage area to a b erth . 

IMVs that are not cu rren tly  in the system wait in  a central depot. Once an IM V  

leaves the depot, i t  becomes allocated to servicing one of the berths. An IMV  

that has just delivered a container to a ship w ill e ither re tu rn  empty to the  

storage area or w ill wait its  tu rn  to collect an im port container. I f  the cranes 

are all working on exports, the IM V retu rns empty to the stack. In  some
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circumstances the relative number of IMVs servicing the berths may v a ry . For 

instance, if  no empty IMVs are available at one of the berths, an id le IM V may 

be transferred  from the other b erth . I f  neither berth has any empty IM Vs, an 

allocation is made from the central depot. In  both cases, the tran sfer of an IMV  

takes 40 seconds. IMVs re tu rn  to the central depot when both berths are 

unoccupied.

A loaded IM V takes 60 seconds to trav e l from a berth to the storage area. 

When em pty, the same journey takes 30 seconds. An IM V takes 60 seconds to 

trav e l empty from the storage area to a b erth . When loaded, the IM V takes 120 

seconds.

The storage area is divided into 10 sub-areas, each re ferred  to as a 

stack. An empty IM V return ing  to the storage area must collect containers for 

the ship to which it  has been allocated. Export containers are typ ically  

scattered across all of the storage area. Consequently the IM V moves to the 

stack at which the most export containers rem ain. I f  the ship is fu lly  loaded or 

no export containers can be found in  the storage area, the IM V retu rns to the  

central depot. Full IMVs moving towards the storage area are allocated 

uniform ly between the stacks.

An IM V which arrives empty at a stack may be re-allocated to service 

another berth . This could happen in  a situation where the export workload 

fo r the ship curren tly  being serviced is lower than the export workload of the 

ship in the other b erth . In  such a situation, the empty IM V may be transferred  

to another stack in  order to maintain a balance in the number of export 

containers per stack. Occasionally, empty IMVs waiting in  the storage area may
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re tu rn  to a berth w ithout collecting an export container. This may happen if  

the total number of ship cranes working on imports exceeds the number of ship 

cranes working on exports. Furtherm ore, the IM V may re tu rn  to a d iffe ren t 

ship if  there happens to be an imbalance in the im port workload at the two 

berths.

A loaded IM V which arrives at a stack, waits in a queue to unload. Once 

fre e , the IM V w ill e ither re tu rn  to the berth to which it  has previously been 

allocated, or wait its  tu rn  at the stack to collect an export container. The la tte r  

tends to be the case, if  the number of cranes working on exports exceeds the 

total number of-cranes working on im ports.

Gate Vehicles (GVs) are trucks which enter the port to either deposit 

export containers or collect im port containers. GVs move from the entrance to 

the port to either one of ten bays associated with each of the stacks. GVs 

begin a rriv in g  with export containers 4 hours p rio r to the a rriva l of a ship. 

(Simultaneous to the a rriva l advance warning given by the s h ip ). The a rriva l 

process continues at approxim ately 12 minute in tervals u n til the allocation of 500 

export containers per ship is received. Only once all export containers have 

been received do the empty GVs s ta rt a rriv in g . Each a rriv in g  GV is associated 

with a specific ship and is allocated to either an im port or export task.

GVs carry ing  export containers trave l to bays allocated random ly. An 

empty GV moves to the bay of a stack where a container is known to be located. 

When there are several bays to chose from , a selection is made which ensures 

th at the distribution of import containers remains balanced. A GV takes one 

minute to move to a bay.
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Each stack is serviced by a single Rail Mounted G antry crane ( RMG).  

The RMG unloads im port containers from IMVs and transfers these to free  

positions in the stack area. A t some la te r tim e, the RMG collects the same 

container and deposits it  on a w aiting gate vehicle. The GV then leaves the  

po rt. Exports are handled in  a sim ilar way. The containers are removed from  

incoming GVs and transferred  to free  positions in  the stack. When the ship is 

ready to accept export containers, the RMG collects the appropriate containers 

and deposits these one at a time on waiting IM Vs.

IMVs and GVs compete fo r the allocation of RMGs. I f  im port and export 

jobs are both pending, then p rio rity  is given to the IM V . When id le , an RMG 

waits in a position mid-way along the ra il track . I f  a loaded IM V arrives at the  

stack, the RMG moves from the id le position to the 'shore side' of the stack in  

40 seconds. The container is then loaded onto the RMG in  60 seconds. The RMG 

subsequently deposits the container in  an available position in  the stack, the 

average time taken being 60 seconds (th is  includes the time taken to re tu rn  to  

the idle position) . I f  an empty IM V arrives at the stack, the RMG collects the  

allocated export container and moves to the 'shore side' of the stack in a mean 

time of 60 seconds. The RMG then off-loads the container onto the w aiting IM V  

in  60 seconds and subsequently re tu rn s to the id le position in  40 seconds. The 

converse situation is almost identical. I f  a loaded GV arrives at a bay, the RMG 

moves from the id le position in a mean time of 40 seconds. The container is then  

loaded onto the RMG in 60 seconds. The RMG subsequently deposits the  

container in an available position in  the stack, the average time taken being 60 

seconds. I f  an empty GV arrives at the stack, the RMG collects the allocated 

export container and moves to the 'shore side' of the stack in a mean time of 60



s e c o n d s . T h e  RMG th e n  o f f - lo a d s  th e  c o n ta in e r  o n to  th e  w a it in g  G V in  60 

s e c o n d s  a n d  s u b s e q u e n t ly  r e tu r n s  to  th e  id le  p o s it io n  in  40 s e c o n d s .

5 .3  S T R U C T U R E  OF T H E  S IM U L A T IO N  M O DEL

SHIP
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FIGURE 44 REPRESENTA T/ON OF MODEL CYCLES US/NG MODULES

T h e  ESSIM  m odel o f th e  p o r t  is  s t r u c tu r e d  on  a m o d u la r b a s is  w h ic h  

eases th e  p ro c e s s  o f  w r i t in g  th e  s im u la t io n  b y  e n a b lin g  th e  lo g ic a l s e p a ra t io n  

o f  code  s e g m e n ts . Each m odu le  can  be co m p ile d  s e p a ra te ly  a n d  te s te d  u s in g  

d a ta  em bedde d  in  a 'd u m m y ' m o d u le . F u r th e rm o re ,  in  a PC e n v iro n m e n t,  th e  

u se  o f a m o d u la r  c o n s t r u c t  p e rm its  p ro g ra m s  to  be  c re a te d  w h ic h  e xc e e d  th e  

64K l im i t  im p o se d  b y  th e  M S -D O S  o p e ra t in g  s y s te m .

T h e  c h a ra c te r is t ic s  o f  th e  p o r t  in  te rm s  o f  se q u e n ce s  o f e v e n ts  and  

e s tim a te d  d u r a t io n s ,  w e re  id e n t i f ie d  th r o u g h  re p e a te d  in te r v ie w s  w ith  s e n io r

163



m anagem e n t. Some o f th e  c o lle c te d  in fo rm a t io n  w as s u b s e q u e n t ly  fo rm a lis e d  

u s in g  an  A c t iv i t y  C y c le  D ia g ra m  (A C D ) (H il ls [1 9 7 1 ] a n d  C le m e n ts o n [1 9 8 2 ]) .  

T h e  co m p o n e n ts  o f  th e  A C D , in  te rm s  o f  in te r r e la te d  l i f e  c y c le s ,  re p re s e n te d  

a n  id e a l s t r u c tu r e  f o r  th e  m o d u la r is a t io n  o f  th e  m ode l. C o n s e q u e n tly  th e  ESSIM 

p o r t  m odel c o n s is ts  o f  m odu les  c o r re s p o n d in g  to  th e  l i f e  c y c le  o f th e  m ain  e n t i t y  

ty p e s .  N a m e ly , th e  s h ip ,  In te r n a l  M ovem ent V e h ic le ( IM V ) ,  R a il M o u n te d  

G a n try (R M G ) ,  a n d  G ate  V e h ic le (G V )  c y c le s .

PROCEDURE C Phase ; 
Begin

Ship_Module_Cs; 
Gate Module Cs ; 
IMV_Module_Cs; 
Stack_Module_Cs ; 

End;

PROCEDURE lnitialise_Model ;
Begin

lnit_Ship_Module ; 
lnit_Gate_Module ; 
lnit_IMV_Module; 
lnit_Stack_Module ;

End;

FIGURE 45 SIMULAT/ON EXECUT/VE MODULE CALLS
i____ ________________ _ ____________________________ __________

T h e  p o r t  m odel is  c o n tro lle d  th r o u g h  a 'to p - le v e l ' m odu le  w h ic h  in i t ia l is e s  

sy s te m  v a r ia b le s  a n d  s u b s e q u e n t ly  m anages th e  c a lls  to  C -e v e n ts .  U n le s s  m a jo r 

c h a n g e s  a re  made to  th e  lo g ic  o f th e  m ode l th ro u g h  th e  a d d it io n  o r  re m o v a l o f 

e n t i t y  l i f e  c y c le s ,  th e re  s h o u ld  be no  need  to  a l te r  th e  code  c o n ta in e d  in  th e
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t o p - le v e l m o d u le . T h e  c o n te n t o f  th e  m a in  r o u t in e s  a re  sh o w n  in  f ig u r e  45 . C a lls  

to  th e  C -P h a se  p ro c e d u re s  a re  m anaged  b y  th e  s im u la t io n  e x e c u t iv e  c o n ta in e d  

in  a s e p a ra te  l ib r a r y  o f co d e .

T h e  s h ip  c y c le  b e in g  one o f  th e  s im p le s t m odu les  w i l l  now  be d is c u s s e d  

in  g re a te r  d e ta il.  T h e  g e n e ra l s t r u c tu r e  o f  th e  m odu le  is  d e f in e d  in  f ig u r e  50. 

T h e  use  o f th e  eLSE ro u t in e s  f o r  d is c re te  e v e n t th re e -p h a s e  m o d e llin g  a re  w e ll 

do cu m e n te d  in  C hew  [1 9 8 6 ].  T h e se  w i l l  c o n s e q u e n t ly  n o t be  d e s c r ib e d .

Each m odu le  ha s  a d e c la ra t io n  o f  c o n s ta n ts  w h ic h  d e f in e  th e  u p p e r  b o u n d s  

o f a r r a y s  u sed  f o r  th e  s to ra g e  o f  s im u la t io n  d a ta  ( f ig u r e  4 6 ) .  T h e se  c o n s ta n ts  

ty p ic a l ly  r e fe r  to  th e  m axim um  p e rm is s ib le  n u m b e r o f v a r io u s  e n t i t y  ty p e s .  In  

p ra c t ic e ,  th e  a c tu a l e n t i t y  c o u n t is  d e f in e d  b y  th e  m o d e lle r  in  th e  e x p e r t  sys te m  

k n o w le d g e  base (see  s e c tio n  5 . 4 ) .  T h e  use  o f  d y n a m ic  d a ta  s t r u c tu r e s  s u c h  as 

l in k e d  l is t s  w o u ld  h a v e  e lim in a te d  th e  need  f o r  th e  d e f in i t io n  o f u p p e r  l im its  and  

w o u ld  in  m any cases h a ve  re d u c e s  th e  a m o u n t o f m em ory u s e d . C o n v e rs e ly ,  th e  

use  o f a r r a y  s t r u c tu r e s  s im p lif ie s  r e t r ie v a l  o f d a ta , a n d  im p ro v e s  m odel 

p e r fo rm a n c e .

C O NST
Max_Berths =  4 ;
Max_Ships =  9 ;

FIGURE 46 CONSTANT DECLARATIONS |
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TYPE
Ship_Details = ARRAY[1..Max_Ships] OF RECORD ;

ImportLoad : Integer; 
ExportLoad : Integer; 
Berthed_At : Entity ; 

End;

VAR [EXTERN]

Time : Integer4 ;

VAR [PUBLIC]
Address_For_Ship_Details : ADS OF Ship_Details ; 
Ship_Cycle_lntertace : RECORD

Q Berths Occupied : Queue ;
Q Berths Completed: Queue ;

End;

VAR {Local variables}
Q_Ship_At_Sea, Q_Ship_At_Berth, Q_Free_Berth  : Queue ;

FIGURE 47 MODULE DECLARATIONS

T h e  in t r o d u c t io n  o f  a m o d u la r s t r u c tu r e  to  th e  s im u la t io n  m odel re s u lte d  

in  a need  to  a l te r  th e  w a y  in  w h ic h  th e  p ro g ra m s  w o u ld  n o rm a lly  be w r i t t e n .  

T h e  in d iv id u a l  m odu les  th a t  m a k e -u p  th e  s im u la tio n  m ode l a re  p h y s ic a l ly  

in d e p e n d e n t fro m  each o th e r .  I n  o th e r  w o rd s , s im u la t io n  d a ta  is  lo c a l to  a 

m odu le  u n le s s  s te p s  a re  ta k e n  to  m ake c e r ta in  d a ta  v a lu e s  s h a re a b le . T h is  

im poses  on  th e  m o d e lle r  a f a r  g re a te r  le v e l o f d is c ip l in e  in  s t r u c tu r in g  co d e  a n d  

d a ta  th a n  w o u ld  n o rm a lly  be  r e q u ire d  in  a c o n v e n tio n a l d is c re te  e v e n t s im u la t io n  

e n v iro n m e n t.  F o r  in s ta n c e , in  f ig u r e  47 , a r r a y s  in  th e  s h ip  c y c le  m odu le  w h ic h
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need to be accessed by other modules need to be referenced using memory 

addresses. In  fig ure  47, the variable 'Address_For_Ship_Details' is an address 

pointing to the s ta rt of an array  defined as the 'Ship_Details' data typ e . This  

address can then be used from within any of the simulation modules to access 

the content.of the a rra y .

The external variable command in  figure 47 is used in specifying the 

name of variables accessed w ithin the module but declared in  another module. 

Finally, queues are defined as data structures which are local to individual 

modules. This helps to minimise the amount of memory space used and prevents 

accidental changes to queue structures from w ithin other modules. The only 

exception to this ru le  are queues which are defined w ithin an in terface. For 

instance, in fig ure  47, two queues are defined w ithin a record referenced by 

the 'Ship_Cycle_Interface' variab le. These queues are required by the IM V  

cycle module. The use of an interface in defining the link  between major 

activ ity  cycles clarifies the relationship between modules and serves to highlight 

the queues which are modifiable from w ithin m ultiple code segments.

A t the s tart of the simulation ru n , data structures relating to the ship 

cycle are in itialised through a call to the ,Init_Ship_Modulel procedure (fig u re  

48). THEREARE and MAKEQ are standard eLSE routines whereas FILLQUEUE 

is specific to ESSIM. FILLQUEUE is used to add entities to a specified queue. 

In terface definitions are also in itialised at th is stage. In  the example of fig ure  

48, the queues defined in the interface record are set equal to two equivalent 

queues which are local to the ship module. The 'Queue1 type is in  fact the s tart 

address of a linked lis t. Consequently, changes made to one of the 'queues' is 

automatically reflected in the other 'queue'.
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PROCEDURE lnit_Ship_Module ;
Begin

lnitialise_Ships ; {Initialisation of arrays}
lnitialise_Berths ; {Initialisation of arrays}
Thereare(N_Berths, Berths, ’Berths’) ; 
MakeQ(QFreeBerth, ’QFreeBerth’, Berth) ; 
MakeQ(QBusyBerth, ’QBusyBerth’, Berth) ; 
FillQueue(Berth, N_Berths, QFreeBerth) ;
WITH Ship_Cycle_lnterface DO 
Begin

Q_Berths_Occupied := QBusyBerth ;
Q Berths Completed := QBerthDone ; 

End;

End;

FIGURE 48 MODULE /WT/AL/SAT/ON

T h e  s y n ta x  o f  B -E v e n ts  a n d  C -E v e n ts  th a t  c o m p ris e  th e  b o d y  o f  each 

m odu le  a re  in t r in s ic a l ly  th e  same as th o s e  u se d  in  d e v e lo p in g  c o n v e n tio n a l 

th re e -p h a s e  m ode ls  u s in g  th e  eLSE ro u t in e s .  T h e  p r in c ip a l d if fe re n c e s  a re  th e  

use  o f a d d re s s e s  in  in i t ia t in g  B -E v e n ts  u s in g  th e  ’S c h e d u le ' com m and, (see 

s e c tio n  4 . 5 )  a n d  th e  use  o f c a lls  to  th e  e x p e r t  s y s te m . F ig u re  49 c o n s is ts  o f a 

l is t in g  o f th e  code  th a t  c o m p ris e s  a t y p ic a l  C -e v e n t  in  th e  s h ip  c y c le  m o d u le . 

T h e  b o d y  o f th e  p ro c e d u re  c o n s is ts  o f  a s in g le  'S c h e d u le ' in s t r u c t io n  w h ic h  is  

e x e c u te d  as lo n g  as th e  W HILE c o n d it io n  is  s a t is f ie d .  I n  a c o n v e n tio n a l eLSE 

m ode l, th e  c o n d it io n a l s ta te m e n t w o u ld  h a ve  c o n s is te d  o f a c o m b in a tio n  o f 

e x p re s s io n s  w h ic h  w o u ld  be use d  in  d e te rm in in g  w h e th e r  th e  e v e n t s h o u ld  

o c c u r .  I n  th e  case o f th e  ESSIM  e x a m p le , 'S ta r tS h ip A r r iv e ' is  a fu n c t io n  w h ic h  

r e tu r n s  a boo lea n  v a lu e . T h e  G O A L com m and w ith in  th e  fu n c t io n  is  u se d  in  

t r a n s fe r r in g  c o n t r o l  to  th e  e x p e r t  s y s te m  (see s e c tio n  4 . 4 . 3 ) .  T h e  p a ra m e te rs
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to  th e  fu n c t io n  id e n t i f y  th e  goa l to  be re s o lv e d  as 'S ta r t s h ip A r r iv e ' a n d  th e  

in d iv id u a l  re s p o n s ib le  f o r  th e  d e c is io n  as b e in g  th e  'S h ip M a n a g e r '.  T h e  r e s u l t  

r e tu rn e d  is  lo ca te d  a t  a m em ory a d d re s s  id e n t i f ie d  b y  th e  v a r ia b le  'R e s ' .  T h e  

u se  o f an  a d d re s s  f o r  th e  fu n c t io n  e n a b le s  th e  e x p e r t  s y s te m  to  r e t u r n  a n y  

s ta n d a rd  Pasca l o r  u s e r  d e f in e d  d a ta  ty p e  as th e  goa l r e s u l t .

i--------------------------------------------------------------------------------------------------I
PROCEDURE START_Ship_Arrive_At_Sea ;

FUNCTION StartShipArrive : Boolean ;
VAR Res: ADS OF Boolean ;
VAR[Public] NumberOfShipsAtSea : Integer ;

ShipArrivalDue : Boolean ;
Begin

NumberOfShipsAtSea := QSIZE(QatSea) ;
IF QSIZE(QSeaOpen) > 0 THEN ShipArrivalDue := True ;

ELSE ShipArrivalDue := False ;
Res := GOAL(’ShipManager\ StartShipArrive) ;
StartShipArrive := Res~ ;

End;

Begin
WHILE StartShipArrive DO 

SCHEDULE(ADS END_Ship_Arrive_at_Sea, BEHEAD(QatSea), _Time);
End;

FIGURE 49 EXAMPLE C-EVENT

A lth o u g h  th e  e x p e r t  sys te m  k n o w le d g e -b a s e  is  in te r p r e te d  a n d  th e  

s im u la tio n  m odu le  is  c o m p ile d , v a r ia b le  v a lu e s  ca n  s t i l l  be  s h a re d  as i f  th e  

co m p le te  m odel was coded  in  one la n g u a g e . C o n s e q u e n t ly ,  th e  tw o  v a r ia b le s  

w h ic h  a re  d e fin e d  as " P u b lic "  in  f ig u r e  49 ca n  be  accessed  fro m  th e  e x p e r t

169



system knowledge-base as if  these had been locally defined.

PROCEDURE START_Ship_Arrive_At_Sea ; {C-Event}
Check with the expert system if a ship arrival is due.
Add to queue ’AdvanceWarning’.

PROCEDURE START_Move_To_Port; {C-Event}
Give advance warning of arrival of ship.
Move towards the port.

PROCEDURE START_Dock_At_Berth ; {C-Event}
Check with expert system if a berth is free.
Start docking process by allocating the ship to a berth.

PROCEDURE START_Leave_Berth ; {C-Event}
Check with expert system that work has been completed. 

Ship starts to leave for the open sea.

PROCEDURE END_Ship_Arrive_At_Sea ;
PROCEDURE END_Move_To_Port ;
PROCEDURE END_Dock_At_Berth_For_Ship ;
PROCEDURE END_Dock_At_Berth_For_Berth ;
PROCEDURE END_Leave_Berth_For_Ship ;
PROCEDURE END_Leave_Berth_For_Berth ;

PROCEDURE Display_Ship_Module_Output 
PROCEDURE Ship_Module_Cs

FIGURE 50 C & B EVENTS IN  THE SHIP CYCLE MODULE

F ig u re  50 l i s t s  th e  p ro c e d u re s  th a t  c o n s t i tu te  th e  s h ip  c y c le  m odu le . 

P ro c e d u re  nam es b e g in n in g  w ith  th e  'S ta r t ' k e y -w o r d  a re  C -E v e n ts  th a t  

re p re s e n t  th e  s t a r t  o f an  a c t iv i t y .  P ro c e d u re  nam es w h ic h  b e g in  w ith  th e  w o rd  

'E n d ' a re  tim e  d e p e n d e n t B -E v e n ts  w h ic h  c o r re s p o n d  to  th e  e n d  o f  a c t iv i t ie s .
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WRITE TO WINDOW -  ( — WINDOW NUMBER — * X COORDINATE

Y COORDINATE TEXT

TEXT STRING

EXAMPLES: WRITE_WINDOW_POS( 3, 10, 4, ’IMPORTS') ;
WRITE_WINDOW_POS( 3, 18, 4, ImportNumber) ;

FIGURE 51 PROCEDURE FOR OUTPUT D/SPLAY TO WINDOWS

Each o f  th e  e n t i t y  l i f e  c y c le  m odu les  a lso  has  a p ro c e d u re  re s p o n s ib le  

f o r  th e  d is p la y  o f o u tp u t  ( e . g .  D is p la y _ S h ip _ M o d u le _ O u tp u t in  f ig u r e  5 0 ) .  Each 

o f th e s e  p ro c e d u re s  is  e x e c u te d  once  d u r in g  th e  C p h a s e . T h e  s c re e n  d is p la y  

is  u p d a te d  u s in g  com m ands fro m  th e  D e s ig n e r l i b r a r y  w h ic h  p e rm it  th e  

r e d ir e c t io n  o f t e x t  to  w in d o w s  a n d  th e  c re a t io n  o f g ra p h ic a l o u tp u t .  A  ty p ic a l  

com m and is  sh o w n  in  f ig u r e  51.

PROCEDURE Ship_Module_Cs ;
Begin

Write_Window(2, ’SHIP_MODULE_Cs') ; 
START_Ship_arrive_at_Sea ;
START_Move_To_Port ;
START_Dock_At_Berth ;
START Leave Berth ;
IF ShipTrace THEN Display_Ship_Module_Output ;

End;

F/GURE 52 MODULE C-EVENT CALLING PROCEDURE
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Each e n t i t y  l i f e  c y c le  m odu le  h a s  a p ro c e d u re  w h ic h  c a lls  th e  C -E v e n t  

r o u t in e s  in  s e q u e n c e , ( e . g .  S h ip _ M o d u le _ C s  in  f ig u r e  5 2 ) .  T h e  c o n te n t o f  a 

C -P h a se  p ro c e d u re  o f  th e  s h ip  l i f e  c y c le  m odu le  is  sh o w n  in  f ig u r e  49.

5 .4  S T R U C T U R E  OF T H E  E X P E R T SY S TE M  KNOW LEDGE B A S E

H  ADDITION OF A ’GOAL’ COMMAND AND OTHER RELATED CODE TO THE 
SIMULATION MODEL

H  DEFINITION OF ’PUBLIC’ VARIABLES IN THE SIMULATION CODE.

HU DEFINITION OF ’EXTERNAL' VARIABLES IN THE KNOWLEDGE BASE.

E l  DEFINITION OF ’LOCAL’ VARIABLES IN THE KNOWLEDGE BASE.

13  DEFINITION OF PROCEDURES AND FUNCTIONS CALLED FROM WITHIN THE 
KNOWLEDGE BASE.

EU DEFINITION OF KNOWLEDGE BASE RULES.

l? i ALLOCATION OF RULES TO APPROPRIATE ’RULE SETS’.

EU TESTING OF RULE LOGIC.
j

FIGURE 53 DEFINITION OF NEW GOALS.

A s  d e s c r ib e d  in  s e c tio n  4 . 4 . 1  o f c h a p te r  f o u r ,  th e  e x p e r t  s y s te m  

k n o w le d g e -b a s e  is  d iv id e d  in to  " r u le - s e t s " . I n  th e  c o n te x t  o f th e  c o n ta in e r  p o r t  

m o d e l, th e s e  r u le - s e ts  a re  u se d  to  g ro u p  to g e th e r  m anagem ent ru le s  r e la t in g  to  

a p a r t ic u la r  a c t iv i t y .  T h e  e n d  r e s u l t  is  a n u m b e r o f r u le - s e ts  w h ic h
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conceptually m irror the modular structure of the simulation model. There are 

consequently ru le-sets  fo r the 'Crane manager', 'IM V m anager', etc . .

The expert system knowledge base was developed on an incremental 

basis. Sets of rules were created and the effect of these tested against the  

original model. The additional of fu rth e r sets of rules required the actions 

identified  in  fig ure  53 to be carried out. These steps w ill now be described in  

greater detail.

Write_Window(2, ’GOAL CraneJobs’) ;
ResultAddr := GOAL(’CraneManager\ ’CraneJobs’) ; 
CraneWork := ResultAddr^ ;

FIGURE 54 GOAL CALL TO EXPERT SYSTEM

The syntax of the GOAL command which is used to tran sfer control from  

the simulation module to the expert system was described in section 4.3.  An 

example in the context of the port model is given in fig u re  54. Let us now 

consider the GOAL instruction in fig ure  54 which forms part of the IM V cycle 

module, and its  corresponding expert system ru les. The expert system goal, 

'CraneJobs', identifies whether there is any outstanding work fo r a specific 

crane. I f  the crane is id le , the expert system selects the next job to be carried  

out and returns to the simulation model the necessary instruction and any 

relevant data such as the duration of the a c tiv ity . The expert system also 

reports whether the crane should be re-allocated from working on import
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containers to loading the ship with export containers.

There is no work to be carried out by the crane when the crane is non-operational.

There is work to be carried out by the crane when there is an IMV which can be 
loaded or unloaded or a ship which can be loaded or unloaded and when the 
crane is operational and in the correct mode.

The crane is in the correct mode when there is an IMV which can be loaded or a 
ship which can be unloaded and the crane is currently allocated to working on 
import containers.

The crane is in the correct mode when there is an IMV which can be unloaded or 
a ship which can be loaded and the crane is currently allocated to working on 
export containers.

There is an IMV which can be loaded by the crane when the crane has finished 
picking-up an import containers and there is an empty IMV waiting.

There is an IMV which can be unloaded by the crane when the crane is not 
carrying a load and is waiting idle and there is a loaded IMV waiting.

There is a ship which can be loaded by the crane when the crane has finished 
picking-up an export container and there is a ship waiting.

There is a ship which can be unloaded by the crane when the crane is not carrying 
a load and is waiting idle, but only on the condition that loading export containers 
onto the ship is not a more urgent task.

The crane should give priority to loading export containers onto the ship when 
there are no further containers to unload from the ship or when there were no 
containers to unload in the first place. In the case of ship berth No.2, one crane 
must always remain allocated to working on import containers.

Authorisation should always be sought prior to changing a crane’s mode of 
operation from ’Imports’ to ’Exports’.

There is always a five minute delay in obtaining authorisation unless the current 
time is between 1pm and 2pm in which case there is a 60 minute delay in 
gaining authorisation.

FIGURE 55 (a) Samp/e operational ru/es.

o p e ra t io n a l ru le s  in  f ig u r e  5 5 ( a ) .  T h e  ru le s  a re  g e n e r ic  to  a ll s h ip  b e r th
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c ra n es .

The rules in  fig u re  55(a) are insuffic iently  detailed fo r the purpose of 

resolving the top level goal which is whether or not a given crane can commence 

work on a particu lar a c tiv ity . The rules listed are only those associated w ith  

the 'Crane manager'. However, the activation of the crane requires a degree of 

interaction with the IM V and SHIP cycles. Consequently, in  practice, some of 

the rules contained w ithin the 'Crane Manager' ru le -se t are linked to other 

rules in the 'IM V Manager' and 'Ship Manager' ru le -sets . For instance, the  

process of loading an IM V with a container from a crane may require  a level of 

decision making by the 'IM V manager'. In  certain situations, a decision may be 

taken by the IM V manager to transfer an IM V from another queue or to re trieve  

an IM V from a depot of idle IM Vs. The fu ll ESSIM knowledge-base is listed in  

appendix B.

In  some cases it  may be best to place certain rules w ithin the Pascal code 

ra th er than the expert system knowledge-base. Certain rules which are 

associated with physical constraints are one such example. With respect to the  

rules listed in fig u re  55(a),  it  is best to check whether a crane is id le w ithin  

the Pascal code ra th er than determining this w ithin the expert system. For 

instance, a crane must always be idle before it  can be allocated a new task and 

so th is basic fact may as well be hard coded as a condition to the execution of 

the 'C' event in the Pascal model. Embodying this simple ru le  as part of the 'C' 

event procedure eliminates the need to call the expert system when the crane 

is busy, thereby improving the performance of the model.
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RULESET CraneManager (INHERIT ImvManager, ShipManager)

[*] NumberOfShipCranes = 5 ; {Total number of ship cranes}

[*] TimeToLoadShip = 40 ;

[*] TimeTollnloadShip =  TimeToUnloadCalc ; {Call to Pascal functiion}

[1] CRANEJOBS = False IF CraneOperational = False ;

[2] CRANEJOBS = True WHEN ((_Loadlmv = True) OR (JJnloadlmv =  True)
OR (_LoadShip =  True) or (JJnloadShip =  True))
AND (CranelnCorrectMode = True) ;

[3] CranelnCorrectMode = True WHEN (CraneOperational =  True)
AND ((CraneOnlmports =  True)

AND ((_Loadlmv = True) OR (JJnloadShip = True)))
OR ((CraneOnlmports =  False)
AND ((_Unloadlmv = True) OR (_LoadShip =  True)));

[4] Loadlmv = True WHEN (CraneLoaded = True) AND (EmptylmvToLoad = True) ;

[5] _Unloadlmv = True WHEN (CraneLoaded = False) AND (_FulllmvToUnload = True) ;

[6] LoadShip =  True WHEN (CraneLoaded = True) AND (ShiptoLoad = true) ;

[7] _UnloadShip = True WHEN (_ChangeACraneToExports = False)
AND (CraneLoaded = False) AND (ShipToUnload = True) ;

[8] (_ChangeACraneToExports = True) AND (GetAuthorisation = True)
AND (TimeToGetAuthorisation = CalcFromCurrentTime) {Pascal} 

AND (CraneOperational = False)
~ (_ChangeACraneToExports =  False)

AND (GetAuthorisation =  False)
IF (CurrentShipberth = 1) AND (NumCranesOnlmports > 0))
OR ((CurrentShipberth = 2) AND (NumCranesOnlmports > 1))
AND (NumlmportsRemaining = 0) AND (NumTotallmportJobs > 0);

[9] (AUTHORISECRANETOEXPORT = True) AND (CraneOperational =  True)
AND (CraneOnlmports =  False)
~ (AuthoriseCraneToExport = False)
IF ((CurrentShipBerth =  1) AND (NumCranesOnlmports > 0))
OR ((CurrentShipBerth =  2) AND (NumCranesOnlmports >1 ) )  
AND (NumlmportsRemaining = 0) AND (NumTotallmportJobs > 0);

FIGURE55 THE CraneManaaer’ RULESET
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Figure 55 is a listing  of the expert system rules which are used in  

determ ining the next job to which a B erth crane is to be allocated. The rules  

are equivalent to those listed in  fig ure  5 5 (a ) . The goal to be resolved is defined 

w ithin the 'CraneManager' Ruleset as the boolean variable 'CraneJobs'. The firs t 

three statements in  the CraneManager R ule-set, which have no associated ru le  

number, could have been defined w ithin the Pascal code. The Advantage in  

declaring certain  variables w ithin the knowledge-base is th a t the values can be 

changed during repeated executions of the model without having to edit and re ­

compile the Pascal simulation code. The same benefits can be achieved using a 

Pascal data file , though in practice maintaining the values w ithin the 

knowledge-base is  somewhat neater, (e .g .  No additional coding is required in  

declaring values in  the knowledge-base and the expert system also validates the 

syntax of any e n trie s ). The second statement in fig ure  55 defines the time 

taken by a crane to load a container onto a berthed ship in  seconds. The time 

value can be changed manually prio r to each new execution of the model or the 

modeller can define rules which w ill have the effect of modifying the time value 

based on the outcome of specific decisions.

The firs t step in defining the rules associated w ith the goal 'cranejobs' 

in  figure 55, was to id en tify  the variables that the expert system would require  

in  carrying out the inference. These variables, if  not already accessible across 

multiple code modules had to be defined as shared variable using the Microsoft 

Pascal 'Public' id en tifie r. Correspondingly, the same variables had to be defined 

as external to the expert system using ESSIM's 'External' variable id en tifie r 

( see fig ure  38 in chapter 4 ). A ll other variables required during the inference 

process were declared as 'Local' to the expert system. Algorithm s that could not 

be defined using ESSIM's restricted  syntax were w ritten  using Pascal
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procedures and/or algorithms and declared to the expert system using the  

'Pascal rule' command (see fig ure  56).  O ther rules are necessary in  resolving  

the goal but are defined in  the ImvManager and ShipManager ru le -sets .

| EXTERNAL
I

NumberOfShipCranes, TimeToLoadShip, TimeTollnloadShip, CurretnShipBerth,
* NumCranesOnlmports,...........: INTEGER ;

CraneOperational, Imvsldle, _LoadShip, JJnloadShip, _Loadlmv, JJnloadlmv,
! CraneOnlmports........... : BOOLEAN ;

j LOCAL
Cranejobs : BOOLEAN ;

PASCAL FILE ’Rules.pas’ ;

| FIGURE 56 EXPERT SYSTEM DECLARA T/ONS

In  figure 55, ru le  1 specifies that there are no 'CraneJobs' if  the crane 

is non-operational. The IF  ra th er than the THEN condition is used. This is 

because one could not deduce from the fact that a crane was operational that 

there was consequently work fo r the crane to do. The inference engine attempts 

to execute ru le 2 if  the goal cannot be resolved. Rule 2 specified that there is 

work fo r the crane if  an IM V or ship can be loaded or unloaded. A crane is 

either allocated to im port containers or export containers and so it  is also 

necessary to determine whether the crane is in  the correct mode of operation 

to permit it  to carry  out the next specified job. Rule 3 verifies  if  the crane is 

in the correct mode of operation. The use of a WHEN type ru le results in  the
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'CraneJobs' goal re tu rn ing  the value FALSE if  the conditional statement cannot 

be satisfied. The variables used in the conditional statement are declared as 

'External' perm itting the simulation model to determine th e ir value. The use of 

an underscore as the firs t character of the variable names indicates th at the  

variables should in itia lly  be set to have an undefined value. Consequently, in  

attem pting to satisfy ru le 2, the inference engine in tu rn  sets '_LoadIm v', 

'_UnloadIm v', '_LoadShip', 'U n loadS hip ' and 'CranelnCorrectMode' as 

sub-goals.

Rule 4 attem pts to determine whether an IM V can or cannot be loaded. 

The crane has to be working on imports and loaded with a container. N aturally , 

an empty IM V must also be available. The 'EmptylmvtoLoad' variable is defined 

as being local to the expert system. The inference engine cannot resolve the 

ru le un til a value has been associated w ith the variab le. Consequently, the  

inference engine sets 'EmptyImvToLoad' as the th ird  level sub-goal. IM Vs are 

the responsibility of the IM V manager and not the crane manager. 

Consequently, the rules necessary in resolving the sub-goal are located in  

another ru le -s e t. To summarise these, an empty IM V can be loaded if  an empty 

IM V is id le in the queue at the b e rth , if  an empty IM V can be tran sferred  from 

the other ship b erth , or if  an id le IM V is available in the central depot.

Having resolved the th ird  level sub-goal 'Em ptylm vToLoad', the inference 

engine returns to the second level sub-goal which was '_LoadIm v'. This sub­

goal can now also be resolved. Nevertheless the top level goal s till cannot be 

satisfied as a value is required fo r the '_UnloadImv' boolean variab le. The 

inference engine identifies ru le  5 as a potential means of satisfying the new 

sub-goal. Once again, the rules concerned are the responsibility of the IMV
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manager and are located in another r u le -se t .

The remaining sub-goals of ru le 2, namely '_LoadShip', '_UnloadShip' and 

'CranelnCorrectM ode1 are resolved by rules 6, 7 and 3 respectively. Rule 6 

specifies that a ship can be loaded if  the crane has already lifted  a container 

from an IM V and the ship is waiting in  the berth . The duration fo r the loading 

process is set in the second statement of the ruleset by associating a value w ith  

a public variab le. Rule 7 specifies th at a ship can be unloaded if  the crane is 

waiting id le and is not carrying a load, the ship is at the berth  and the crane 

is not about to be re-allocated to exports. The last of these conditions is 

resolved by rules 8. Rule 8 specifies that a crane working on imports should 

change to working on exports once all import containers have been unloaded 

from the holds of the sh ip . In  the case of berth 2, only two of the three cranes 

can work at any one time on export containers.

Rule 8 is an example implementation of a delayed decision. A crane can only be 

re-allocated to export work once authorization has been obtained from a 

manager. The crane operator establishes in  principle that the crane should be 

re-allocated. The shared boolean variable '_GetAuthorization' is then set to 

tru e . The crane operator has to leave the crane booth to obtain authorization  

from the manager and during th is time the crane becomes non-operational. This  

is achieved by setting the shared boolean variable 'CraneOperational' to False. 

The time taken to obtain authorization is defined by the shared in teger variable  

'Tim eToGetAuthorization' and is determined by the time of day. Hence, the  

variable 'Tim eToGetAuthorization' is set by calling the Pascal function  

'CalcFrom CurrentTime' which returns the appropriate duration by checking the  

current simulation tim e. When control is returned to the simulation model from
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the expert system, if  the '_GetAuthorization' boolean variable was set to 'T ru e '# 

a 'B' event is scheduled to occur a fte r a time period equal to 

'Tim eToGetAuthorization'. U ntil th is time is reached, the fact that the boolean 

variable 'CraneOperational' was set to 'False' ensures that the crane remains 

idle and prevents the process of authorization from re -o ccu rrin g . On execution  

of the 'B ' event, control is returned to the expert system and an attem pt made 

to satisfy the goal 'AuthorizeCraneToExport' which is represented by ru le  

number nine in  fig u re  55. In  ru le  n ine, the manager simply verifies the same 

model data as the crane operator and therefore always gives authorization. A 

simple alternative is to introduce a random element to the crane operators 

decision ru les, thereby ensuring that a mistake is occasionally made in  seeking 

authorization from the manager. The manager would then overrule the in itia l 

decision taken by the crane operator.

Rules are classified into ru le-sets  to increase the 'leg ib ility ' of the 

knowledge-base and to improve expert system performance by lim iting the 

search space. In  the case of the 'CraneManager' ru le -s e t, the 'In h e rit' command 

has been used to define two other ru le-sets  which can be used if  the inference  

engine cannot resolve the goal. The ru le-sets  correspond to each of the en tity  

life  cycles to which a manager has been allocated. As the number of rules  

increases and performance of the model degrades, the existing ru le-sets can be 

sub-divided into smaller un its.

When rules are added to the knowledge-base, erro rs are typ ically  made. 

Syntax errors are trapped and reported by the part-com piler. Logical erro rs  

are often detected when a goal cannot be resolved, through unusual behaviour 

of the model, or through e rro r messages generated by the simulation code
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lib ra ry . The validation of the model is described fu rth e r in section 5.6

5 .5  D E S IG N  OF T H E  M A N /M A C H IN E  IN T E R F A C E

ES knowledge-Base Filename

Run Length : 1000.

FIGURE 57 STARTUP MENU OPTIONS FOR THE PORT MODEL

A  u s e r  f r ie n d ly  in te r fa c e  f o r  th e  p o r t  m ode l w as seen as b e in g  e s s e n tia l 

in  v is u a l ly  v a l id a t in g  m odel o u tp u t  a n d  p r o v id in g  a comm on f r o n t - e n d  f o r  th e  

s im u la t io n  a n d  e x p e r t  sys te m  co m p o n e n ts . T h e  c re a t io n  o f th e  in te r fa c e  was 

g r e a t ly  eased th r o u g h  th e  use  o f th e  'D e s ig n e r ' p ro g ra m  w h ic h  e n a b le d  th e
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display to be generated from an in teractive user session. The basic screen 

designs were produced and the associated code generated in  under an hour. 

Once the screens have been produced, the generated user in terface has to be 

linked to the simulation model. This is achieved by replacing the Pascal 'Readin' 

and 'W riteln' commands with 'Designer1 specific commands which re-rou te  output 

in to specific windows. The process undertaken in  producing a model's user 

in terface using 'Designer' is fu lly  described in  appendix E.

The in terface is purely graphical with a set of user options displayed 

on the top line (see fig ure  57). The mouse is used to point at one of the 

options. Pressing the le ft mouse button results in e ither the display of a 

pull-down menu or a pop-up window. When the port program is firs t in itia ted , 

the modeller typ ically  selects the 'Run simulation' option which resu lt in  the 

successive display of two pop-up windows. The firs t of these is used in  

specifying the desired duration of the simulation ru n , and the second fo r the 

selection of the expert system knowledge-base. Several knowledge-bases can 

be created fo r a single model, thus easing the process of experim entation.

The in itiation of the simulation run activates the knowledge-base part 

compiler. Variable declarations are extracted and procedure or function calls 

id en tified . The rules declared in each of the ru le-sets are then translated to 

reverse polish and optimised as was described in  section 4 .4 .3 .  A t th is stage, 

any erro rs in  syntax are reported to the modeller and an option displayed 

allowing him to load the tex t ed ito r. The display is divided into three windows 

in  which the appropriate tex t scrolls, the upper-m ost window lists the content 

of the knowledge-base with additional te x t being revealed during the scanning 

process. This ensures that errors are quickly identified as any syntax problems
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w i l l  be lo c a te d  in  th e  la s t  l in e  o f th e  w in d o w . T h e  c e n tre  w in d o w  l i s t s  th e  

v a r ia b le s  e x t ra c te d  fro m  th e  k n o w le d g e -b a s e . A n y  in te r r u p t io n  in  th is  p ro c e s s  

in d ic a te s  an  e r r o r  in  m em ory a llo c a tio n  e i th e r  r e s u l t in g  fro m  th e  re p e a te d  

d e c la ra t io n  o f a v a r ia b le  nam e, o r  fro m  th e  a la c k  o f R A M .  S u c h  e r r o r s ,  a n d  th e  

s ta tu s  o f  th e  p a r t - c o m p ile r  a re  l is te d  in  th e  lo w e r  w in d o w .

mms

Hr MirIMU 36 
IMU 38 
IMU 33
IMU 33 
IMU 3
StackRmgStacKRllJ
Shipcrane
Shipcrane
Shipcrane

roes FULL to store 
to return EMPTY to ship 
to return EMPTY to ship 
to return empty to ship 
goes FULL to store 

9Finishing at IMU side6Finishing at imu side 
5 is now idle 
l is now idle 
4 is now idle

son
1Z 1Z

IMPORTS 1 - >  10& EXPORTS 1 - >  
IMPORTS Z - >  15 
EXPORTS Z ~>

WrEntcailForNext&Event
B41
WrEnt
Display.Options

FIGURE 58 DEFAULT OUTPUT DISPLAY FOR THE PORT MODEL

I f  th e  p a r t - c o m p ila t io n  p ro c e s s  e n d s  w ith o u t  e r r o r ,  th e  s im u la t io n  b e g in s  

a n d  th e  s c re e n  d is p la y  c h a n g e s  to  th a t  sh o w n  in  f ig u r e  58 . T h e  u p p e r - le f t  

w in d o w  is  a g e n e ra l d is p la y  f o r  th e  s ta tu s  o f  th e  s im u la t io n .  T h e  tw o  lo w e r  

w in d o w s  a re  g ra p h ic a l d is p la y s  o f q u e u e  le n g th s  f o r  a r r iv in g  t r u c k s .  T h e
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c u r r e n t  s im u la t io n  tim e  is  sh o w n  in  th e  u p p e r  r ig h t  w in d o w . Im m e d ia te ly  be low  

th is  is  sh o w n  th e  n u m b e r o f  im p o r t  c o n ta in e rs  w h ic h  h a v e  been u n lo a d e d  fro m  

th e  s h ip s  in  b e r th s  one  a n d  t w o ,  a n d  th e  c o r re s p o n d in g  n u m b e r o f e x p o r t  

c o n ta in e rs  w h ic h  h a ve  been  p la ce d  in  th e  h o ld s .  T h e  w in d o w  in  th e  lo w e r  r ig h t  

h a n d  c o rn e r  is  a t ra c e  o f  th e  C -E v e n t p ro c e d u re s  a n d  g o a ls  th a t  h a ve  been 

re s o lv e d  b y  th e  e x p e r t  s y s te m . T h e  t ra c e  f a c i l i t y  is  a u s e fu l m eans o f 

d e te rm in in g  th e  lo c a t io n  o f  e r r o r s  w h ic h  ESSIM  does n o t r e p o r t .  T h e  b o tto m  lin e  

o f th e  s c re e n  d is p la y  is  u se d  fo r  d is p la y in g  u s e r  in s t r u c t io n s .

mmmumamm
TIME
TRACF
CONTAINERS 
GLOBAL TRACE 
SHIP ARRIUALS

STACK DISPLAy Z 
IMU DISPLAY 
GRAPH DISPLAyS 1 
GRAPH DISPLAyS Z 
ES INFERENCE TRACE 
ES TRACE TO FILE

IMPORTS 1 ->  96 EXPORTS 1 - >  0 
IMPORTS Z ~> 144 
EXPORTS Z - >  0

EIS 0 0
FIS O 0
EIL 0 0
FIL 1 1
IMUidle
shipcidleM l i w t o S h i p
emptyiiwtoship
Mliirotostore
emptyinvtostore

50 BO

1Z 1Z

callForMextBEuent
W
caiiForNextBEuent
B41
Display.Options

elect Menu option
FIGURE 59 SELECTING ALTERNATIVE DISPLAYS FOR PORT MODEL OUTPUT

T h e  m o d e lle r  m ay chose  to  a n a ly s e  th e  e f fe c t iv e n e s s  o f a lte rn a t iv e  p o r t
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designs or management rules through a visual comparison of system behaviour. 

Graphical displays which attem pt to depict the flow of m aterials are of general 

in terest but cannot provide the required level of detail. The approach used in  

the port model was to make use of the window based displays to depict the 

model in terms of queue lengths, e n tity  status, and knowledge-base traces. 

Pointing the mouse and clicking on the 'windows' menu option in terru p ts  the 

simulation and results in  the display of a pull-down menu (see fig ure  59).  The 

status of the various options is displayed on the rig h t hand side of the window. 

Menu entries perm it the display of fu rth e r windows fo r the analysis of output 

from the ship, gate vehicle, stack, and IMV cycles. Typical output is shown in  

appendix G. Two of the menu options relate to the expert system. The 'ES 

inference trace' menu option permits a trace produced by the expert system to 

be displayed and updated dynamically during the simulation ru n .

The 'ES trace to file ' options is used in conjunction with the expert 

system 'Trace' command (section 4 .4 .1 ) .  A large amount of data is produced 

by the expert system trace. The 'ES trace to file ' option was therefore provided 

to enable the user to switch the trace on and off during the simulation ru n .

The 'delay' option in fig ure  59 is used in  slowing down the simulation in  

situations where output is displayed too rap id ly . The 'ed itor' option permits a 

tex t editor to be used in modifying the expert system knowledge-base. With 

experience, minor modifications can be made to rules during the simulation run  

in  assessing the effects of changes in  policy.
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5 .6  MODEL VALIDATION

In  creating the model of the automated container p o rt, no real-w orld  

system was available fo r the purpose of comparison and validation. The model 

was consequently developed on an increm ental basis such th a t system behaviour 

could be validated by experienced port managers at each stage of the  

implementation process. Tables relating to resources levels and ac tiv ity  status 

were displayed during the simulation run  such th at the port managers were able 

to visually id en tify  abnorm alities. A simulation output trace was also used in  

checking th at scheduled events were occurring and that entities were correctly  

added to queues. A trace of procedure names enabled the location of fa ta l 

errors to be determ ined. Constant durations were also used in  easing the  

process of output validation. Many logic erro rs were detected through fa ta l 

errors such as attem pting to remove entities from empty queues.

Having created the standard three-phase model of the p o rt, a new version  

was implemented using ESSIM and its  associated expert system. The firs t stage 

consisted of re -creating  the original model in terms of its  apparent behaviour. 

Rules that had been defined in Pascal were extracted and re-created using 

ESSIM's knowledge-base syntax. This process highlighted the lim itations of the  

firs t version of ESSIM, and so modifications were made to improve the  

functionality of the system. This a b ility  to customise the expert system was 

naturally  of great benefit. The original model was then used in ensuring the  

correctness of the ESSIM version.
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Shipcrane 4 is now idleShipcrane l is now idleShipcrane 3 is now idleShipcrane l is now idleRetrieving IMU from pool of idle imvs Shipcrane s is loading IMU l Retrieving IMU from pool of idle imvs Shipcrane 4 is loading IMU z Retrieving IMU from pool of idle imvs Shipcrane Z is loading IMU 3

Day Hr Min D 0 Z4

IMPORTS 1 - >  Z EXPORTS 1 ~ >  0 IMPORTS Z ~ >  3 EXPORTS Z - >  0

search through subsequent Piles Goal Foundcalling function backchaining with parameter XD Ualue of parameter SD Found to be missing in expression Goal SD missing & placed on stack

GOAL CraneJobs StartLoadlmv WrEnt WrEntGOAL cranejobs
FIGURE 60 REAL-TIME EXPERT SYSTEM TRACE IN A DISPLAY WINDOW

T h e  ESSIM  k n o w le d g e -b a s e  c o n s is ts  o f in d iv id u a l  r u le s  w h ic h  a re  d e f in e d  

in  a n y  o r d e r ,  a n d  w h ic h  m ay o r  m ay n o t b e , in  some w a y  re la te d .  T h e  e x p e r t  

s ys te m  in fe re n c e  s t r a te g y  fo llo w s  a s im p le  r e c u r s iv e  b a c k w a rd -c h a in in g  p a t te rn  

w h ic h  in  p ra c t ic e  is  d i f f i c u l t  to  t ra c e  g iv e n  th e  la c k  o f  a n y  v is ib le  s e q u e n tia l 

c o d in g  s t r u c tu r e .  T h e  s im p le s t m eans o f v e r i f y in g  th e  lo g ic  a p p lie d  b y  th e  

e x p e r t  sys te m  is  to  s c ru t in is e  th e  tra c e s  th a t  a re  p ro d u c e d  a n d  to  c o n s e q u e n tly  

c o n f irm  th a t  th e  c o n c lu s io n s  re a c h e d  f o r  each  r u le  a re  c o r r e c t ,  based  on  th e  

in p u t  d a ta  b e in g  u s e d . H a v in g  v a lid a te d  th e  ESSIM  v e rs io n  o f  th e  m ode l,
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subsequent modification of the knowledge-base through the modification of 

existing rules or the addition of fu rth e r constraints was com paratively simple. 

Once again, inference traces were the simplest means of confirm ing the  

correctness of conclusions reached (see fig ure  60).

The process of model validation was eased following a reduction in  the  

expected number of erro rs consequent to the application of s tric t standards in  

the structuring  of code. For instance, the use of modular programming 

techniques perm itted the isolation of blocks of code corresponding to each of 

the major en tity  life -cycles . The localisation of variables by direct association 

with specific modules minimised the risks of misusing data stored in  other 

modules. The use of interfaces between modules also helped in form alising the  

perm itted interaction of queues used in d ifferen t lif  e-cycles. Hence, 

modifications made to a life-cycle  defined in one module were less like ly  to have 

an undesirable effect on another module (see section 5 .3 ) .

The isolation of management rules within a knowledge-base, which were 

previously embedded in pascal code, also eased the process of model validation . 

Previously, all simulation code had to be read in  finding and then checking the  

coded logic. In  the case of the ESSIM model, management rules are  

appropriately grouped and can easily be checked against stipulated management 

practices.

5 .7  MODEL EXPERIMENTATION

One of the purposes in  developing a simulation environment based on the
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use of an expert system was to ease the process of refin ing  management rules  

through experim entation. Im proved accuracy, m aintainability, and adaptability  

were seen as some of the eventual goals of the research.

The ESSIM model of the container port was used as a basis fo r fu rth e r 

experimentation through the enhancement and modification of management ru les. 

A lterations to rules were also made in  changing process durations and assessing 

the effect of changes in the number of entities w ithin life  cycles.

The complexity in  implementing changes to expert system rules is largely  

dependent on the impact these have on the Pascal simulation code. Modifications 

to decision making rules which only involve the expert system are generally 

simple to implement. Conversely, changes which involve major modification to 

the life-cycle  s tructure of the Pascal model are necessarily complex. In  order 

to adequately compare the process of implementing changes in conventional 

three-phase simulation models and ESSIM, a number of experiments were staged 

which gradually increased in com plexity. These are fu lly  reported in the  

following sections.

5.7 .1  Experim enting with ru le  param eters.

The easiest experiments to carry  out consist of a ltering  the parameters 

to existing ru les . No modification to variables need to be made other than a 

possible re-classification of a variable from an in teger to a real type. The 

simulation experim ent can then be in itiated  without the need to re-compile the 

simulation code. The modeller can also repeat the experim ent using d ifferent 

ru le parameters without ever leaving the ESSIM program . ESSIM incorporates

190



a t e x t  e d i to r  w h ic h  p e rm its  th e  m o d e lle r  to  m o d ify  th e  in te r p r e te d  e x p e r t  sys te m  

ru le -b a s e  a n d  th e n  im m e d ia te ly  com m ence a new  m odel e x e c u t io n .  I t  is  a lso 

p o s s ib le  w ith  a good k n o w le d g e  o f  E S S IM , to  in t e r r u p t  a s im u la t io n  r u n , m o d ify  

r u le  p a ra m e te rs  a n d  re -co m m e n ce  m odel e x e c u t io n  fro m  th e  p o in t  o f 

i n t e r r u p t io n .

OLD RULE

[1] (Imvsldle = True) AND (ReturnlmvsToldle = True) ~ (Imvsldle = False) 
IF (BerthedShip = False) AND (NumEmptylmvAtShip >= 5) ;

NEW RULE

[1] (Imvsldle = True) AND (ReturnlmvsToldle = True) ~ (Imvsldle = False) 
IF (BerthedShip = False) AND (NumEmptylmvAtShip > 0);

FIGURE 61 EXPERIMENTATION US/NG RULE PARAMETERS

T h e  e xa m p le  in  f ig u r e  61 s p e c if ie s  th a t  IM V s  s h o u ld  r e tu r n  to  th e  c e n t ra l d e p o t 

w hen  f iv e  o r  m ore e m p ty  IM V s  a re  w a it in g  a t  a b e r th  w h ic h  is  no  lo n g e r  

o c c u p ie d  b y  a s h ip .  T h e  m o d ifie d  r u le  s t ip u la te s  th a t  IM V s  s h o u ld  r e t u r n  to  th e  

c e n t ra l d e p o t re g a rd le s s  o f  th e  n u m b e r  o f  id le  IM V s  w a it in g  a t th e  b e r th .  T h is  

s im p le  e x p e r im e n t is  v e r y  e a s ily  c o n d u c te d  u s in g  th e  ESSIM  e x p e r t  s y s te m . In  

a c o n v e n t io n a l th re e -p h a s e  m o d e llin g  e n v iro n m e n t th e  m o d e lle r  w o u ld  h a v e  h a rd ­

coded  th e  r u le  w ith in  th e  P asca l m o d e l. I n  th e  case o f a m odel w h ic h  is
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substantial in  size and spread over several code modules, the modeller would 

firs t have to locate the ru le , re-com pile the code module, re -lin k  the modules 

into an executable and then recommence the simulation ru n . A conventional 

model could of course be designed to read data files which are loaded at run ­

tim e, but unlike ESSIM, the modeller would have to decide in  advance the exact 

experim ents which would be carried out such that the appropriate variables 

were defined w ithin the data files .

5 .7 .2  Experim enting w ith variable values w ithin ru les.

Another class of experiment which was also performed consisted of 

altering  characteristics of the model such as process durations and number of 

entities in  a cycle. I f  the simulation model is appropriately structu red , more 

major modifications can be made through the alteration of appropriate variable 

values. Three examples are given in fig ure  62. The firs t of these statements 

belongs to the ’ImvManager1 ru le -se t and is used in defining the total number 

of IMVs th at can be operational in the IM V cycle at any one tim e. The modeller 

can experim ent with alternative upper lim its on the number of IM Vs by  

modifying the statement and re -s ta rtin g  the sim ulation. No compilation of code 

is  requ ired . Rule seven in the 'StackManager' ruleset defines the condition 

under which the gantry crane in a stack should move empty to the ship side of 

the storage area. The ru le retu rns to the simulation model the activ ity  

duration. Rule seven stipulates th at the gantry crane can move from the id le  

position to the ship side of the storage area in  40 seconds. A cheaper gantry  

crane can however be purchased which takes 80 seconds to cover the same 

distance. The ESSIM user can experim ent w ith a lternative durations without 

resorting to altering  and re-com piling Pascal code. Hence the effect on the
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model of using the cheaper gantry cranes can easily be assessed. The modeller 

can also define the ac tiv ity  duration as being subject to the outcome of a 

decision ru le . The th ird  example consists of a definition of the number of stacks 

in  the storage area. A ll data structures used in the Pascal model are defined 

using upper-lim its which are set using variables. Such variables can be altered  

from w ithin the expert system knowledge-base. A ltering the number of stacks 

results in  a physical change to the model in that appropriate queues are e ith er 

added or removed according to the value associated with the 'Number Of Stores' 

variab le. Once again, re-compilation is not required.

RULESET ImvManager (INHERIT ShipManager, StackManager) ;
: |

[*] NumberOflmvs = 100 ; I
;   |

i RULESET Stackmanager ; !
J  . . . .  :

! [7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)
| AND ( MoveGantryToLandSide = False) AND (TimeToMoveToShipEmpty = 40) |
I IF ( MoveGantryToShipSide = True) AND (NextShipJoblsAnlmport = True) ;
j . . . . . . . . . . . . . . . . . . .  i

| [*] NumberOfStores = 10 ; {Number of stores is 10}
!...................................... I

i i

| FIGURE 62 EXPERIMENTING WITH RULES

5.7 .3  Experim enting w ith ru le structures.

The types of experiments which we have so fa r examined have simply
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consisted of alterations to variable values or ru le parameters which could have 

been accomplished, although with re la tive ly  less ease and neatness, using a 

conventional modelling environm ent. The benefits of the ESSIM approach to 

modelling really  emerge when one considers modifications of greater complexity 

which involve the replacement of existing decision rules or the introduction of 

new ru les. In  this context, the benefit of the ESSIM approach are centred on 

the fact that decision rules are isolated from the rest of the model and 

encapsulated w ithin an expert system knowledge-base. Therefore, many 

experiments based on decision rules can be conducted without recourse to often 

substantive volumes of detailed low -level code relating to the description of the 

physical components of the model and th e ir in teraction.

The modeller can a lter the s tru ctu re  of a ru le  or group of rules without 

having to modify the Pascal code so long as the changes are lim ited to one of 

the following:

1. Sim plifying a ru le  by removing some of the variables.

2. A ltering  the combination of operators used.

3. Adding additional external variables as conditions to existing ru les , 

on the condition that these variables are already declared w ithin  

the expert system knowledge-base.

4. Adding local variables which are unique to the expert system to 

existing decision rules.

5. Creating new decision rules using local or external variables which 

have already been defined w ithin the expert system knowledge­

base.
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OLD RULE:
j

I [8] ( ChangeACraneToExport =  True) AND (GetAuthorization = True) AND j
(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational =  False) ~  
(_ChangeACraneToExport =  False) AND (GetAuthorization = False)

IF ((CurrentShipBerth =  1) AND (NumCranesOnlmports > 0))
OR ((CurrentShipBerth =  2) AND (NumCranesOnlmports > 1 ))  j
AND (NumlmportsRemaining = 0) AND (NumTotallmportJobs > 0) ; I

NEW RULES: j

[8] (ChangeACraneToExports = True) AND (GetAuthorization = True) AND i
i

(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational = False) | 
IF (CurrentShipBerth =  1) AND ((Numlmportsremaining < (NumTotallmportJobs / 2)) I 
AND (NumCranesOnlmports = 2)) OR ((NumlmportsRemaining = 0) '
AND (NumCranesOnlmports = 1)) ;

[9] (ChangeACraneToExports =  True) AND (GetAuthorization = True) AND
(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational = False) ~
( ChangeACraneToExport = False) AND (GetAuthorization = False)

IF (CurrentShipBerth = 2) AND ((NumlmportsRemaining < (2 * NumTotallmportJobs / 3)) ; 
AND (NumlmportsRemaining > (NumTotallmportJobs / 3)) AND (NumlmportsRemaining > 0) i 
AND (NumCranesOnlmports =  2)) OR ((NumlmportsRemaining = 0)
AND (NumCranesOnlmports =  1)) ;

FIGURE 63 ALTERING RULE LOGIC

The modeller can modify groups of rules without corresponding alteration  

of the Pascal code on the condition that the defined goals can s till be resolved. 

In  some cases, the expert system retu rns additional values such as process 

durations that the simulation model requires. The modeller must ensure that 

such values are not omitted. On the condition that no new shared variables  

are defined, or pascal functions added, re-com pilation of code can be avoided 

and the modeller need not access the Pascal model code. C ertain abnormalities
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such as syntax erro rs  in the knowledge-base are reported to the modeller 

immediately p rio r to the execution of the model. Other inconsistencies, such as 

the in ab ility  to resolve a goal are reported during model execution. The 

modeller is then able to edit the knowledge-base or re -ru n  the model in  'trace' 

mode which reports on the results of each of the expert system's inference 

steps.

The example ru le given in figure 63 is taken from the 'CraneManager' 

ruleset which was described in  section 5.4 .  A complete listing  of the rules can 

also be found in fig ure  55. The ru le operates in conjunction with the other 

rules in the 'CraneManager' Ruleset and orig inally stipulated that all im port 

containers should be unloaded from the holds of the ship prio r to loading the  

consignment of export containers. In  the case of the second berth which has 

three cranes, only two of the cranes can operate on export containers at any 

one tim e. An alternative scenario that was investigated was the possibility of 

allowing im port containers to be unloaded from the ship whilst other cranes 

carried out the reverse operation of loading export containers from a rriv in g  

IM Vs. In  th is case, all three cranes working at berth 2 were allowed to operate 

simultaneously on loading ships with export containers. A t the s ta rt of the 

simulation, all cranes are allocated to im ports. The number of cranes 

subsequently re-allocated to exports is in proportion to the remaining workload. 

In  the case of the berth with two cranes, once half the ships consignment of 

import containers remains, one of the cranes is re-allocated to exports and the 

loading process begins. Once all import containers have been unloaded from the  

ship, the remaining crane changes to working on exports. Two additional rules 

were introduced into the 'CraneManager' ruleset in implementing the a lternative  

scenario and are shown in figure 63. No modification of the simulation code was

196



required and the experim ent was consequently carried out w ithout having to 

re-compile any of the modules or indeed accessing any of the Pascal model code.

Model changes may be in itiated that require both the introduction of 

fu rth e r rules and associated modifications to the simulation code. For instance, 

the modeller may wish to add fu rth e r decision rules to a knowledge-base 

ru leset, the conditional statements of which contain simulation model variables 

which have not previously been accessed by the expert system. Such changes 

are re latively  simple to implement. The modeller must declare the necessary 

Pascal variables relating  to the required model data as being of type 'Public '. 

This permits the data values to be accessed from other Pascal code modules and 

the expert system. The Pascal module containing the variable declarations is  

then re-com piled. By adding the variable name to the lis t of variables declared 

in the expert system, the modeller may then make use of the new variable  

values within ru les.

A more complex task is the introduction of new en tity  cycles w ithin the 

simulation model and the corresponding addition of model logic through the use 

of fu rth e r expert system ru les . Modifying the structure of a simulation model 

is a testing task and was highlighted as a lim itation of existing modelling 

techniques in section 2 .2 .4 .

A complex experim ent was carried out to evaluate the consequence of 

having to introduce detailed changes into the ESSIM simulation model of the Port 

and corresponding ru le-sets . In  the original port model the lay-out of which 

was depicted diagrammatically in figure 43, Rail Mounted G antry cranes are 

used in transporting containers within the Stacks in the port storage area.
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RMGs have the lim ited ab ility  to load and off-load waiting In tern a l Movement 

Vehicles (IM Vs) and Gate Vehicles (G V s ) , moving containers to and from the ir 

storage positions. Export containers allocated to specific ships and im port 

containers are sent at random to one of the stacks w ithin the storage area. 

Whereas the workload at each of the stacks is roughly balanced, the spread of 

containers may be inefficient if  the m ajority of containers fo r one ship end-up  

in  one stack and those fo r another ship in another stack. The RMGs can only 

handle one container at a time and so the more evenly spread across the storage 

stacks are the containers fo r a specific ship, the more effic ient is the ship 

loading process as the movement of containers may then take place in parallel. 

The new experiment to which the ESSIM port model was subjected, consisted in 

the addition of fu rth e r en tity  cycles with the aim of redressing the problem of 

optimising the spread of containers between stack storage areas. A new type  

of vehicle, known as a lateral Movement Vehicle (LMV) was added to the model. 

An LMV operates in  each of the storage area stacks and has the ab ility  to sh ift 

containers from one stack to either of the two immediately adjacent stacks.

VAR QStackVehicleldle : ADS OF ARRAY[1 ..MaxStores] OF QUEUE ; 

e2 : Entity ;

QStackVehicleldle := ALLMQQ(Wrd(MaxStores*2)); {Allocate RAM} 

e2 := StackVehicle ;

FOR i := 1 TO NumberOfStores DO 

BEGIN

MakeQ(QStackVehicleldle'N [i], ’QStackVehicleldle’,e2); 

FillQueue(e2,1 .QStackVehicleldle^ [i]); 

e2 := e2"\next ;

END;

F/GURE 64 DEF/N/NG QUEUE STRUCTURES FOR LMVs
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Queues relating to each of the LMVs were defined within the Stack module

o f th e  P asca l s im u la t io n  p ro g ra m . A  C o r re s p o n d in g  C a n d  B e v e n t w e re  a lso

a d d e d  d e s c r ib in g  th e  p ro c e s s  o f s h i f t in g  c o n ta in e rs  b e tw e e n  a d ja c e n t s ta c k s .

T h e  f i r s t  s te p  w as to  d e f in e  th e  q u e u e  s t r u c tu r e s  a n d  in i t ia l is e  th e s e  b y  

re q u e s t in g  th e  n e c e s s a ry  m em ory a n d  f i l l i n g  th e  q u e u e s . T h e  re le v a n t  code  is

show  in  f ig u r e  64.

PROCEDURE START_LMV_MOVE ;
BEGIN

Write_Window(2,’Start_Lmv_Move’);
FOR i := 1 TO NumberOfStores DO 
BEGIN

FOR ShipCode := 1 TO NumberOfShips DO
IF BalanceStacks THEN
BEGIN

IF TransfExpToRhtStack THEN TransferExportToRightStack ; 
IF TransfExpToLftStack THEN TransferExportToLeftStack ;
IF TransflmpToRhtStack THEN TransferlmportToRightStack ; 
IF _TransflmpTol_ftStack THEN TransferlmportToLeftStack ;

END;
END;

END;

PROCEDURE END LMV MOVE ;
BEGIN

Write_Window(2,’End_Lmv Move’);
IF GlobTrace THEN 
BEGIN

OutTxt := Wrent(Current);
CONCAT(OutTxt,’Stack Vehicle is now idle’);
Write Window(3,OutTxt);

END;
Addto(Back,QStackVehicleldle~ [Current ~ .attrl,Current); 

END;

FIGURE 65 C & B EVENT ROUTINE FOR THE LMV CYCLE

T he  C a n d  B ty p e  e v e n ts  th a t  w e re  a d d e d  to  th e  s ta c k  m odu le  a re  sh o w n  

in  f ig u r e  65 . 'B a la n c e S ta c k s ' is  a P asca l fu n c t io n  fro m  w h ic h  th e  c a ll to  th e
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expert system knowledge-base is in itia ted . Actions that need to be taken are 

then passed back to the simulation model by the expert system and are 

described in  the form of boolean shared variables (e .g ._T ran sfE xp T o R h tS tack).

FUNCTION BalanceStacks : Boolean ;
BEGIN

Write_Window(2,’GOAL BalanceStacks’);
ResultAddr := GOAL(’StackManager’,’BalanceStacks’); 
BalanceStacks := ResultAddr ~ ;

END;

F/GURE 66 GOAL CALL TO THE EXPERT SYSTEM

The content of the 'BalanceStacks' function is shown in  fig ure  66. The 

'Goal' function is used to call the expert system 'StackManager' ruleset and 

check whether the appropriate LMV should be activated. The re tu rn  value is 

in  the form of an address which is read and associated w ith the boolean function  

re tu rn  value. The corresponding expert system rules are listed in appendix C . 

An addition ruleset known as 'LMVmanager' was created which is linked with 

the 'StackManager' ruleset through the use of the 'In h e rit' command (see section 

4 .4 .1 ) .  The use of a separate ruleset eases the in terpretation  of the 

knowledge-base rules whilst retaining the association between LMVs and Stacks.

As was demonstrated, the actions necessary in modifying the simulation 

and expert system code are re la tively  simple. Having in itia ted  the changes, 

the modeller can carry  out fu rth e r experim entation by altering the expert
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system rules. These fu rth e r experiments may no longer require of the modeller 

to access the Pascal code.

Had the modeller been introducing the LMV cycles into a conventional 

three-phase mode, the complexity of the work would have been aggravated as 

a consequence of the lack of code m odularity. Code m odularity is introduced at 

two levels w ithin the ESSIM port model. The Pascal code is its e lf broken down 

into individual modules representing each of the major en tity  cycles. Secondly, 

the expert system knowledge-base is itse lf a code module into which decision 

rules are isolated. A dditionally, what proves to be of significant benefit in  the 

ESSIM model is the fact that the process of introducing changes follows a s tric t 

sequence with the layout of the code s tric tly  controlled through the segregation 

of logic between simulation model and expert system knowledge base. This has 

a clear impact on the m aintainability of the model and the subsequent 

adaptability in altering rule conditions during the experimentation phase.

5 .8  THE ALTERNATIVE PORT MODELS.

Prior to the implementations of the ESSIM version of the port model, a 

simplified model was developed solely using Pascal code. Rules specifying the 

conditions under which activities should s ta rt were defined using IF -TH E N  

conditions and boolean statements. These rules were specified as part of each 

of the C event procedures. The example in  figure 67 shows the structure of one 

such typical procedure.

The ESSIM port model was then implemented by firs t extracting the rules  

from the pascal code and replacing these with calls to the expert system. The
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is o la te d  ru le s  w e re  a d d e d  to  th e  e x p e r t  s ys te m  k n o w le d g e -b a s e  a n d  la te r  

e n h a n ce d  th ro u g h  th e  s p e c if ic a t io n  o f m ore  d e ta ile d  c o n d it io n s .  C o m p a riso n  o f 

th e  tw o  m odels in d ic a te d  th a t  m o d ify in g  th e  e x p e r t  s y s te m  k n o w le d g e -b a s e  w as 

in  m any cases s im p le r  th a n  a lte r in g  P asca l c o d e . T h e se  c o m p a ris o n s  a re  

d is c u s s e d  in  s e c tio n  6 .3 .

i
FUNCTION Decision: ReturnVal;
Begin

End;

PROCEDURE C1 ; PROCEDURE C1;

Begin Begin

IF Condition THEN IF Decision THEN

Begin Begin

End; End;

End; End;

Fiaure 67 Reoresentina decision tasks in Pascal
i

T h e  c o n v e n tio n a l P asca l based m ode l o f th e  p o r t  a n d  th e  ESSIM  v e rs io n  

a re  based on d i f fe r e n t  p r in c ip le s .  T h e  p u r e ly  P asca l based  v e rs io n  p e rm its  th e  

d e ve lo p m e n t o f s ig n i f ic a n t ly  s ize d  m ode ls  b u t  p ro v id e s  th e  u s e r  w ith  l im ite d  

scope  fo r  th e  s p e c if ic a t io n  o f th e  c o n d it io n s  a s s o c ia te d  w ith  th e  s t a r t  o f  an 

a c t iv i t y .  T h e  ESSIM p o r t  m odel r e c t i f ie s  th e  b a la n ce  b y  p r o v id in g  a m eans o f 

s p e c ify in g  goa ls  w h ic h  can  be  re s o lv e d  u s in g  a b e sp o ke  e x p e r t  s y s te m  s h e ll.  

Some re s e a rc h e rs  in c lu d in g  A l ty [1 9 8 4 ] ,  h a v e  v o ic e d  d o u b t  as to  th e
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effectiveness of the expert system approach, arguing that a similar level of 

functionality could be achieved using a conventional 3rd generation language. 

A th ird  version of the port model was consequently developed with the aim of 

providing a sim ilar level of functionality as the ESSIM model, but coded en tire ly  

in  Pascal. The work involved in  developing th is fu rth e r example was fe lt to be 

justified  given th at a more detailed comparison of the approaches could then be 

made.

The principle applied in developing the new model was to replace defined  

goals by Pascal functions which would re tu rn  values to the simulation model in  

a similar way to. the expert system. These functions were then placed together 

in  a single module, thus providing a sim ilar logical separation as was achieved 

between the Pascal model and expert system knowledge-base. The content of the  

ESSIM knowledge-base can be found in  appendix B . The Code fo r the Pascal 

version of the expert system knowledge-base is included in Appendix D . The 

variables used in  the Pascal implementation are the same as those that were 

used in the expert system knowledge-base. This was possible because of the  

implementation of Pascal data types as part of the knowledge-base syntax. The 

Conversion of rules to Pascal was in itse lf a re la tive ly  simple task given that 

ESSIM's production ru le syntax was replaced by the Pascal IF-TH EN -ELSE  

instruction. The sequential nature of code execution in Pascal represented a fa r  

greater problem. The rules were consequently sequenced such that the premises 

to each ru le could always be resolved. The lack of an equivalent to ESSIM's 

'In h e rit' command also meant that rep etitive ly  used rules had to e ither be 

duplicated across the code or placed ind iv idually  in functions.
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5.8 .1  EXPERIMENTING WITH THE MODELS.

The port model developed purely in  Pascal using the eLSE routines w ill 

be re ferred  to as the 'O riginal model1. The other two versions w ill be described 

as the ESSIM and 'Function1 based models respectively.

The experiments described in  section 5 .7  were repeated using the other 

model versions in  order to iden tify  the merits and lim itations of each of the  

approaches. The experiences in  developing each of the models and the results  

of the model comparisons were then used in assessing the thesis proposition. 

The conclusions drawn from the experiments carried out using each of the three  

modelling environments are reported in  the following sections.

Comparing the adaptability of the model representations:

I t  has been proposed that combining simulation and expert system 

techniques could provide the modeller w ith a simulation environment which is  

better suited to the task of experim enting with a lternative operational policies. 

Evidence was sought by carrying out a number of model experiments on each 

of the three versions of the port model. These experiments can broadly be 

described as follows: 1) Changes to ru le param eters. 2) Changes in  operational 

policies reflected through the introduction of new or modified ru les . 3) 

Modifications to the model representation of the real-w orld  involving the  

introduction of a new activ ity  cycle and related operational policies.

In  carry ing  out the experiments discussed in  section 5.7 ,  it  was found 

that the port model w ritten  using ESSIM was generally the easiest to modify fo r
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the purpose of evaluating alternative operational policies. There are several 

reasons fo r th is , but the single most predominant factor is th a t in  ESSIM, the 

decision rules th at form part of operational policies are defined in  a highly  

structured fashion.

In  the orig inal Pascal model, operational policies were represented as multi­

level conditional statements which preceded each of the "C" events. The rules 

which in  the real-w orld  would have been applied by d iffe ren t decision makers 

were combined and sequenced such that all eventualities could be considered. 

Sequencing decision rules in  th is way made it  very  d iffic u lt fo r the modeller to 

introduce changes which reflected alternative operational policies.

In  the ESSIM version of the port model, a statement was inserted prior 

to each "C" event which effectively transferred  control to the expert system 

module. Within the expert system knowledge-base, decision rules were grouped 

into ru le-sets  which were named according to the job function of the decision 

maker. Rule-sets were then linked together using "Inheritance", in  order to 

either re flect hierarchical management structures or situations in  which multiple 

decision makers would act together. Operational policies of th is nature were 

termed as "Cooperative decision making" and discussed in section 4 .4 .2 .  

Deducing conclusions from the defined rules was achieved using an inference  

engine which eliminated the need to pre-sequence and in terlin k  individual ru les. 

The experiments carried out in section 5 .6  showed how stra igh t forw ard it  could 

be to a lte r operational policies. F irs tly , the decision rules were isolated from  

the rest of the model. Secondly, a ltering  an operational policy could be as 

simple as id en tify ing  the appropriate ru le-sets  and adding or replacing ru les. 

In  contrast, implementing the same changes to the conventional Pascal model
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could require the modeller to a lte r the sequence of rules in  a m ulti-level 

conditional statements which in some cases could extend to over three pages 

of code.

The "Function" based version of the port model was bu ilt in an attem pt to  

overcome the lim itations of the conventional Pascal model. Pascal functions were 

used in an attem pt to re-create  the functionality of the ru le-sets used in  

ESSIM. The "Knowledge-base" w ritten  using Pascal functions is listed in  

Appendix D. The approach failed in three key respects. 1) The language 

syntax was unnecessarily complex. 2) The need fo r complex m ulti-level 

conditional statements could not be elim inated. 3) Each defined function could 

require as many "Begin" and "End" statements as there were actual ru les. In  

many cases it  was simpler to repeat a ru le ra th er than enclose it  w ithin a 

function statement.

The th ird  class of model experiment to which the three versions of the  

port model were subjected, consisted in  introducing a new activ ity  cycle and 

related operational policies. The complexity of carrying  out such drastic model 

changes was of in teres t, as ESSIM was only designed fo r the purpose of 

experimentation w ith operational policies. I t  was concluded in section 5 .7 .3  that 

ESSIM simplified in  only some small respects the introduction of the additional 

"Lateral Movement Vehicle" en tity  cycle. The main benefit was that the  

separation of operational policies from the rest of the model representation acted 

as an additional level of code m odularity. The introduction of fu rth e r m odularity 

forced the modeller to take a more structured approach to the alteration of the  

model. The firs t step was to create the Pascal representation of the ac tiv ity  

cycle. Only once this had been completed would the modeller tu rn  to the
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definition of the operational policies within the ex p ert system  kn ow led ge-base.

Comparing the accuracy of the model representations:

The ESSIM environment is used fo r the purpose of developing models of 

real-w orld systems in which complex operational policies need to be 

represented. The ESSIM approach is meant to support th is  task by providing  

a modelling technique which results in  a better representation of the rea l- 

world problem.

The experiments which were reported in  section 5 .7  highlighted the fact 

that the problem of representational accuracy is in  fact very  closely related to 

that of model adaptability. As was reported in  the previous section, the 

experiments served to demonstrate that ESSIM decision rules were re la tively  

adaptable because the ESSIM knowledge-base was a better representation of 

operational policies than the m ulti-level conditional statements used in  the 

equivalent Pascal model.

The ESSIM development environment was designed specifically to address 

the issue of representing complex operational policies which could in tu rn  

necessitate the modelling of "Cooperative decision m aking". The conventional 

Pascal modelling approach catered fo r the representation of operational policies 

only by providing a general purpose 3rd generation programming language. The 

key differences between ESSIM and the Pascal and Function based models w ill 

now be discussed in  tu rn .

The firs t fundamental s tructura l difference between the modelling
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approaches is that ESSIM groups decision rules into ru le-sets  according to the 

job function of the decision maker. In  the Pascal model, no distinction is made 

between the rules applied by one decision maker from another.

The second major difference is that ESSIM attem pts to mimic the way 

real-w orld decision makers can act together in instigating an operational policy. 

The term , "Cooperative decision making" has been used in  this thesis to 

reference such an approach. The rules defined w ithin a given ru le -se t may be 

a representation of the to ta lity  of a decision makers knowledge in  the context 

of a given job function. In  practice, the decision maker's "Knowledge" may 

prove insufficient fo r the purpose of resolving a given problem. In  the same 

way, the rules contained w ithin a ru le -set may prove inadequate during an 

attem pt to resolve a goal. In  the real-w orld , the decision maker may consult 

another decision maker and thus bring into play a fu rth e r base of operational 

expertise. In  ESSIM, "Inheritance" is used to bring together otherwise 

disassociated ru le-sets and thus represent this interaction between decision 

m akers.

There are other ways in  which Inheritance can be used to represent 

real-w orld situations. For instance, a ru le-set may contain sufficient information 

fo r a given goal to be resolved. However, in the real-w orld  a manager may 

oversee the decisions taken by a decision maker and o ver-ru le  or influence the 

course of actions. In  ESSIM, the ru le -set associated with the decision maker can 

be linked using Inheritance to the manager's ru le -s e t. Under the normal course 

of events, a given goal would be resolved without the inference engine scanning 

the manager's ru le -s e t. In  order to represent the manager's influence w ithin the  

ESSIM model, a sub-goal can be associated with the main goal. Once the main
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goal has been resolved, the sub-goal is trig g ered . The sub-goal also needs to  

be resolved before control returns to the simulation model. The sub-goal can 

only be resolved by a set of rules defined by the manager, the purpose of 

which is to validate and possibly modify the intended actions of the decision 

maker.

Comparing the m aintainability of the model representations:

The m aintainability of a model is related to the ease w ith which changes 

that have occurred in  the real-w orld  system can be reflected w ithin existing  

code. The m aintainability of the model is of particu lar importance in  situations 

where changes are expected in the real-w orld  environm ent during the life  of the  

model. Such changes may encompass modifications to physical aspects of the 

real-w orld such as plant lay-ou ts , or may simply consist in changes to 

operational policies.

The key differences between the ESSIM model and the two alternative  

Pascal models in  the context of code m aintainability, is that ESSIM places 

greater emphasis on m odularity and the representation of operational policies.

The concept of m odularity extends to several of the ESSIM components. 

A t the broadest level, ESSIM introduces m odularity by sp litting  the  

representation of operational policies from the rest of the model. Changes in  

operational policy can then be introduced with potentially little  or no effect on 

the simulation model component. Conversely, some situations perm it 

modifications to be made to physical aspects of the model without effecting the 

expert system knowledge-base.
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The expert system knowledge-base is also based on a modular s tru ctu re , 

w ith ru le-sets being used to encapsulate the decision rules applied by each 

decision m aker. Once again, changes may be made to the rules applied by one 

decision maker without there being any parallel requirem ent to modify the rules 

applied by another decision maker. In  the context of the Pascal model, 

operational policies are stipulated in  the form of m ulti-level conditional 

statements and may consist of decision rules applied by several decision m akers. 

Making model changes that reflect long-term  modifications in operational policies 

may consequently be more complex to introduce.

The simulation model component of ESSIM was also divided into separate 

modules. Rather than create a single block of code, a modular version of the 

Pascal programming language was used so that the individual model activ ity  

cycles could be isolated from each other with appropriate interfaces defining  

th e ir in teraction. The introduction of code m odularity to Pascal based th ree- 

phase simulation modelling was found to be of benefit in  the context of code 

maintenance as the overall s tructure of the model was im proved.

The experim ent detailed in section 5 .7 .3 .  sought to evaluate the impact 

of introducing a new activ ity  cycle and related operational policies to the 

existing versions of the port model. This experiment required modifications to 

be made to both the ESSIM simulation module and expert system knowledge­

base . As was discussed earlier in this section, the use of a modular construct, 

allowed the introduction of a major model change using a highly structured  

approach. The firs t step consisted in the creation of a new simulation module 

containing the code representation fo r the "Lateral Movement Vehicle" (LMV).
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T h is  new  m odu le  w as th e n  in te r fa c e d  to  th e  r e s t  o f  th e  m ode l. T h e  f in a l  s te p  

w as to  c re a te  th e  a p p ro p r ia te  e x p e r t  s y s te m  r u le - s e ts  w h ic h  w e re  to  re p re s e n t  

th e  o p e ra t io n a l p o lic ie s  r e la t in g  to  th e  L M V .

T o  su m m a rise , th e  b e n e f its  a n d  l im ita t io n s  o f  each  o f  th e  m odel 

re p re s e n ta t io n s  a re  g iv e n  in  f ig u r e  68.

Fastest code execution.
Single language syntax.

LIMITATIONS
Operational policies represented as multi-level conditional statements 
Difficult to read the code used to represent the operational policy 
May be difficult to alter the code relating to an operational policy 
Difficult to code rules which span across multiple activity cycles.

BENEFITS

Rule-sets permit operational policies to be defined using a modular construct 
Inheritance permits the representation of Cooperative decision making 
Incremental development of logic is easier to achieve.
Modelling environment well suited for experimentation with operational policies 
The ESSIM expert system provides a better representation of operational policies. 
The expert system was relatively easier to use than the Pascal representation

LIMITATIONS
Slowest code execution.
Expert System syntax is limited
For simple groups of rules, the expert system is an overhead

FUNC T/ON BASED MODEL 

BENEFITS
Fast code execution 
Implemented entirely in Pascal.
Single module used for the specification of decision rules.

LIMITATIONS

Difficult to code decision rules.
Hard to alter decision rules.
Need to compile and link code.
Additional variables required.

F ig u re  68  C om parision o f m o d e llin g  techniques.

BENEFITS
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5 .9  CONCLUDING THOUGHTS ON THE ESSIM MODULES

5.9 .1  OBSERVATIONS ON ESSIM'S SIMULATION MODULE.

The template which is used fo r developing Pascal models fo r ESSIM was 

specifically designed fo r use in a modular coding environm ent. The development 

of the port model highlighted the benefits of adopting a structured modular 

approach. The port model is a realistic replica of a potential real-w orld  

environment but is by no means an exceptionally complex and detailed 

representation. The port model consists of approxim ately 3000 line of code which 

points to the need fo r a modular coding approach. The use of modules was 

found to ease the development of the port model by allowing the implementation 

process to be broken down into the creation of a series of sub-models each 

representing one of the major en tity  cycles. The use of interfaces between 

modules was seen as a means of form alising the interaction between en tity  cycles 

through common queues. ESSIM's modular construct supports the development 

of a model by a team of programmer working simultaneously on the  

implementation of each of the en tity  cycles. Once the model has been coded, the 

modular approach is found to sim plify the validation and correction of the 

models behaviour by easing the process of identify ing  the location of logic 

erro rs . Experimentation with the model is also sim plified because of the greater 

ease with which model changes can be implemented. F inally , ESSIM's modular 

approach permits the creation of models which exceed the lim it of 64K on code 

size imposed by the DOS operating system (In  ESSIM, each module can be 64K 

in  size, with FAR addressing being used to extend the addressable memory to 

1Mb).
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The Pascal simulation routines provided with ESSIM are based on those 

provided in the eLSE simulation lib ra ry  ( Chew[ 1986]). Modifications were made 

to reduce the size of the lib ra ry  and improve the performance of the routines. 

In  p articu la r, the use of addresses ra th er than numbered B event routines was 

found to both improve the leg ib ility  of the code and sim plify the structure of 

the simulation executive.

The provision of dynamic displays is a particu larly  useful feature of 

ESSIM models, perm itting a modeller to gain some insight into the potential 

behaviour of the real-w orld system without having to necessarily resort to 

output analysis techniques. These dynamic displays are created using a lib ra ry  

of screen handling functions which are used by the programmer during the  

development process. The graphics routines, coupled with the 'Designer' 

program were found to reduce the time scale required to complete the model by 

lim iting the e ffo rt required in coding the user in terface. In  the case of the port 

model, the dynamic output displays were found to ease the process of locating 

errors in the simulation code and provided a useful focal point in  discussing the  

behaviour of the model with port management. During the experim entation 

process, the output displays provide the modeller and potentially the actual 

managers with an easy to understand summary of the status of queues and 

processes in each of the ports constituent en tity  cycles.

The ESSIM approach to modelling has some minor lim itations. In  

particu lar, the use of a modular approach results in  a processing overhead 

during the compiling and linking of the code. For the la rg er modules, the 

process of creating an executable image can take up to 10 minutes. However, 

when changes are made to a single module, other modules need not be
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re-com piled. The e rro r reporting capabilities of the Microsoft compiler are also 

fa irly  crude compared to the Turbo Pascal compiler. The use of a th ird  

generation language also results in  some inconvenience given the additional 

complexity of the language syntax over a bespoke modelling tool. Conversely, 

the use of Pascal does confer some benefit resulting from the additional 

fle x ib ility  conveyed by a general purpose language. This is particu larly  

apparent when considering the range of data structures available.

The development overhead in  using a th ird  generation language in  

specifying model logic could be overcome using a sim ilar approach to curren t 

CASE (Computer Aided Software Engineering) tools fo r database design. The 

programmer specifies the model design by using a graphical drawing tool to  

create an A ctiv ity  Cycle Diagram. The design is validated in real-tim e by rules  

which, fo r instance, check that queues are always separated by activ ities . 

Queue names and ac tiv ity  durations are specified by using a mouse to select the  

appropriate screen icons. The simulation model code is then generated by 

following the basic principles that perm it the translation of ACDs into Pascal 

code.

ESSIM as an environment is a re la tive ly  complex system which would 

benefit from a more powerful development environm ent. A mainframe based 

system, w hilst potentially im proving perform ance, would not provide the degree 

of flex ib ility  in  terms of windowed and graphical output as is possible w ith the  

current generation of PCs. However, workstations which provide the benefits  

of both processing power and enhanced graphical output would resolve many 

of the lim itations of the curren t ESSIM system in  terms of execution speed and 

memory capacity.
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F in a l ly ,  an im p ro v e d  means o f in te r fa c in g  to  E S S IM 's  e x p e r t  s y s te m  c o u ld  

be  o f  b e n e f i t .  P re s e n t ly ,  th e  e x p e r t  s y s te m  r e tu r n s  to  th e  P asca l m ode l v a lu e s  

a s s o c ia te d  w ith  s o lu t io n  to  goa ls  th r o u g h  in te rm e d ia te  P asca l v a r ia b le s .  No 

m eans c u r r e n t ly  e x is ts  to  e n s u re  th a t  a l l  e x p e c te d  v a lu e s  a re  r e tu r n e d .  T h is  

r e s u lts  in  a d d it io n a l v a l id a t io n  w o rk  to  e n s u re  th a t  th e  m odel b e h a v e s  as 

e x p e c te d . A  p o te n t ia l m eans o f o v e rc o m in g  th is  p ro b le m  w o u ld  be to  a sso c ia te  

w ith  each  g o a l, a l i s t  o f v a r ia b le s  nam es th r o u g h  w h ic h  goa l r e s u l t s  a re  

r e tu r n e d .  T h e  s im u la t io n  m odel w o u ld  s to p  a n d  a w a rn in g  g iv e n  i f  a r e t u r n  

v a lu e  w as fo u n d  to  be m is s in g .

BENEFITS
Model template specifically developed for modular programming.
Use of modules necessary for large simulation models.
Interface between modules formalises the interaction between cycles.
Memory addresses used for the activation of B procedures.
Library of graphics routines for the creation of dynamic displays.

LIMITATIONS
Modular approach results in a processing overhead.
The use of a 3GL reduces productivity during model creation.

|
Figure 69ESSIM's Simulation modu/e.

T h e  b e n e f its  a n d  l im ita t io n s  r e la t in g  to  E S S IM 's  s im u la tio n  m odu le  a re  

s u m m a rise d  in  f ig u r e  69.

5 . 9 . 2  O B S E R V A T IO N S  ON ESSIM 'S  E X P E R T S Y S T E M .

T h e  d e v e lo p m e n t o f th e  ESSIM e x p e r t  s y s te m  w as a c o n s id e ra b le  ta s k  

g iv e n  th e  need  f o r  c lose  in te g ra t io n  w ith  th e  co m p ile d  s im u la t io n  c o d e .
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O rig inally , the use of a commercial o ff-th e -s h e lf product had been envisaged 

which would have considerably sim plified the creation of the modelling 

environm ent. I f  an existing product had been used, the in ab ility  to customise 

the expert system would have lim ited the functionality of the environment and 

reduced the benefits that ESSIM confers over conventional modelling 

techniques.

The ESSIM expert system is customised fo r simulation modelling. The key  

differences are as follows:

1) The ESSIM expert system supports the definition of local and "Public" 

variables. Public variables are variables which can be shared with other 

programs, in  th is case a Pascal simulation program . This sharing of data was 

an essential p re-requ isite  to the development of models involving a simulation 

model and an expert system. The integration of the ESSIM expert system with 

the Pascal language is not lim ited to the sharing of variables, but also extends 

to the ab ility  to activate Pascal procedures and functions. C and Fortran  

routines can also be called through the use of interm ediate Pascal functions. 

During the development of the port model, th is feature was found to be 

particu larly  useful as arithm etic computation is more effectively carried out 

using a procedural language.

2) Rule-sets are used to group decision rules according to the function  

of the decision maker. The use of ru le-sets  brought about a number of 

fundamental changes to the way in which operational policies are represented  

within a simulation model. In  conventional Pascal models, decision rules applied 

by d ifferen t decision makers are linked together as part of a m ulti-level
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conditional statem ent. In  ESSIM, the use of ru le-sets  perm it a fa r more 

structured definition of operational policies and hence, supports the modeller 

in  building complex representations. Chapter th ree highlighted the complexities 

of representing operational policies. The new term , "Cooperative decision 

making" was then introduced as a means of describing operational policies which 

are enacted through the participation of two or more decision makers. The 

ESSIM expert system uses the concept of "Inheritance" to support the modelling 

of cooperative decision making.

3) "Inheritance" is a technique used in the ESSIM expert system 

knowledge-base to lin k  together otherwise unrelated sets of rules relating to 

each of the decision m akers. In  section 5 .8 .1 ,  we saw that Inheritance could be 

used as a simple method of representing hierarchical management structures. 

There are other in teresting benefits to using Inheritance. For instance, an 

operational policy may require the involvement of more than one decision m aker, 

each represented by a d ifferen t ru le -se t and each responsible fo r the 

management of activities in  d ifferent parts of the real-w orld  system. In  

conventional three-phase discrete event m odelling, the modeller is encouraged 

to represent the real-w orld  system as individual but nevertheless in terlinked  

activ ity  cycles. In  ESSIM, the modeller is encouraged to represent operational 

policies as individual but nevertheless in terlinked  ru le-sets  which together may 

span across multiple ac tiv ity  cycles.

There are other peripheral benefits to the ESSIM expert system. For 

instance, in the context of ESSIM, the simulation model typ ically  submits goals 

to the expert system on an almost continuous basis. Consequently, the expert 

system had to be capable of resolving goals w ithin a short time delay if  the
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simulation is to operate w ithin real-tim e. The implementation of ru le-sets  

reduced the search space in  resolving goals submitted by the simulation model. 

This dram atically improved the performance of the expert system.

Much time was devoted to the development of the expert system. 

Nevertheless, some weaknesses ex is t. For instance, Pascal procedures and 

functions can be activated from the knowledge-base but parameters can only be 

passed by creating common variables. The integration of Pascal routines into  

knowledge-base rules would have been sim plified had it  been possible to use the 

Pascal language syntax fo r the passing of param eters. More generally, 

comprehensive e rro r reporting would have helped in  the detection of some 

erro rs  which manifested themselves in  unusual ways.

F inally , it  must be said that the original aim was to produce an expert 

system which used a very  simple syntax. In  the context of the modelling of 

operational policies, a simple syntax helps greatly  in  understanding the effect 

of the constituent decision ru les. The need to create an effective in terface with 

the Pascal language and the gradual addition of fu rth e r functionality to the 

expert system resulted in  a syntax considerably more complex than had 

orig inally  been intended. A revision of the language syntax would partia lly  

alleviate the problem. The use of a N atural Language Programming (NLP) 

approach could also be considered.

The benefits and lim itations of ESSIM's expert system module are 

summarised in  fig ure  70.
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BENEFITS
Expert system customised for simulation.

Expert system highly modularised using ’Rule-sets’

’Inheritance’ used to model ’Cooperative Decision Making’

Decision rules may pan across multiple activity cycles.

The use of rule-sets limits the search space during the inference process.

The expert system is highly integrated with the Pascal language.

LIMITATIONS

Fewer functions available than in commercial expert systems.

The expert system syntax is more complex than originally intended.

F/aure 70 ESS/M’s expert system modu/e.

5.9 .3  BENEFITS AND LIM ITA TIO N S OF THE USER INTERFACE.

ESSIM's user in terface development tools were fe lt to be of significant 

benefit in the implementation of the port model and the subsequent 

in terpretation of the output produced. Models produced using ESSIM are 

intended to produce output which can be scrutinised at run-tim e by managers, 

who, with the assistance of the modeller may evaluate the effectiveness of 

alternative operating procedures. Consequently, the displays must provide 

an adequate means of visualising the changes in status through time of the 

real-w orld system being modelled.

The creation of a user frien d ly  interface which provides facilities fo r
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the graphical representation of model output is a time consuming and complex 

process. The 'Designer' interface generator was found to be useful means of 

creating an in itia l lay-ou t fo r the menus and windows. The benefit of using 

'Designer' was th at the interface could be created in teractive ly  which perm itted 

the visualisation of the screen design without the need to re-com pile code when 

changes were made.

At the programming leve l, the provision of a lib ra ry  of window and graph  

manipulation routines was found to aid the modeller by removing the need to 

consider the low -level screen manipulation code norm ally associated w ith the  

development of applications fo r PCs. Combined with the use of 'D esigner', the 

routines help to minimize the overhead of controlling screen output.

As fa r as the modeller is concerned, the simulation models developed 

using ESSIM and exemplified by the port model, are easy to use and effective  

as a means of communicating inform ation. In  particu lar, the concurrent updating  

of windows enables d ifferen t parts of a model to be displayed simultaneously. 

The use of the mouse was also found to sim plify the selection of menu options 

and was noted as being particu larly  useful in the context of ESSIM models in  

th a t the modeller typ ically  continuously switches between alternative displays.

Whereas ESSIM eases the process of developing an effective user 

in terface, there remains a significant overhead in code w riting  and the 

subsequent validation of output. The use of batch runs in  which output is  

restricted to printed tex t remains a cruder but simpler means of producing a 

trace of a simulation ru n .
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A  c o n c e p t w h ic h  e x te n d e d  b e y o n d  th e  scope  o f  t h is  th e s is  a n d  y e t  w o u ld  

h a ve  been in te r e s t in g  to  e x p lo re  is  th e  p o s s ib i l i t y  o f u s in g  a p ro c e s s  r e fe r r e d  

to  as ' I n te r a c t iv e  P ro g ra m m in g 1 in  s p e c ify in g  th e  s c re e n  d e s ig n  a n d  th e  

a sso c ia te d  s im u la t io n  c o d e . T h e  p r in c ip le s  a p p lie d  in  c re a t in g  'D e s ig n e r ' c o u ld  

have  been ta k e n  a s te p  f u r t h e r  b y  p r o v id in g  a m eans o f g e n e ra t in g  s im u la tio n  

p s e u d o -c o d e  fro m  an  A C D  d e s ig n . T h is  code  c o u ld  th e n  h a v e  been in te g ra te d  

in to  th e  w in d o w in g  e n v iro n m e n t a n d  te s te d  on  an  in te r p r e t iv e  b a s is . Once 

s a t is f ie d  w ith  th e  f in a l  p r o to ty p e ,  th e  a s s o c ia te d  P asca l code  c o u ld  th e n  have  

been g e n e ra te d .

T h e  b e n e f its  a n d  l im ita t io n s  o f E S S IM 's  u s e r  in te r fa c e  a re  su m m a rise d  in  

f ig u r e  71.

BENEFITS
Ease of use.
Provision of code generator.
Mouse support.
Multiple windowed output.
Customisable.
Support for graphics.
Speeds up development of interface.

LIMITATIONS
Requires programmer for interfacing work.
Additional flexibility would be useful.
Overhead in code size and overhead compared to batch runs. 

Figure 71 ESSIM’s user interface.
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5 .10  CONCLUSION

The container port project provided a suitably complex problem to which 

the ESSIM model development environment could be applied. The three-phase  

discrete event approach was found to be ideal fo r the implementation of a model 

of a container port given the natural breakdown of operations into constituent 

entities, queues, and activ ities. The involvement of a company which had an 

in terest in providing suitably experienced managers, enabled realistic scenarios 

to be enacted through the addition and modification of knowledge-base ru les. 

The details of the port were obtained through a series of inform al meetings in  

which the design principles and expected management procedures were re layed . 

Subsequent documents were provided which listed expected performance 

fig ures. In  terms of providing a realistic test-bed fo r the ESSIM environm ent, 

the involvement of a company with a real problem to resolve proved of major 

benefit.

Because of the number of entities, queues, and activities required in  

the model, and the overhead resulting from the use of an expert system, a 

module based version of Pascal was used which enabled the implementation of 

a program 1Mbyte in size. The use of a modular construct led to the need to 

modify the three-phase simulation routines and to create a new model template 

in  which life-cycles are represented in  separate modules. The use of a modular 

language also led to the need to introduce new disciplines in  code w ritin g . For 

instance, module interfaces were seen as a necessity in  preventing changes 

introduced in one module from adversely effecting the logic defined in another 

module. The definition of shared variable also had to be handled with care in  

preventing illegal use or modification of defined values. The implementation of
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a simulation environment based on Pascal object modules is considered as being 

essential to the creation of effective models of real-w orld  problems using PCs. 

I t  is  unlikely that sufficient detail could be b u ilt into a model which is lim ited  

by the 64K DOS b a rrie r. In  the case of ESSIM in which the Pascal model is 

supplemented by a knowledge-base in terpreted  by an expert system inference  

engine, the use of modules is essential given the amount of code that need to 

be introduced. Indeed, fu rth e r detail could not be added to the port model 

without moving to an alternative operating system on PCs, or by shifting  

development to a workstation environm ent.

In  section 5 .4 , the structure and content of the expert system 

knowledge-base was described. Examples were also given as to the steps 

required in adding new rules to the system. The 'CraneManager' ru le -se t was 

then examined in  some detail, tracing the inference process and conclusions 

drawn by the expert system. The process of developing the knowledge-base 

fo r the port model highlighted design erro rs in the original system. These 

erro rs , such as numerical overflows were trapped and corrected by comparing 

the ESSIM model w ith the original model in which rules were integrated w ithin  

the Pascal code. The expert system trace fac ility  was also used in  isolating  

erro rs by manually scrutinising the logic applied by the inference engine.

Visual inspection of the behaviour of the container port is one of the 

means available to the modeller in carry ing  out his analysis. The display is  

window-based, experience in  the manipulation of output having been gained 

from investigating s ta te -o f-th e -a rt techniques in  the handling of graphics on 

PCs. The use of windows and pull-down menus eases the process of 

manipulating the model and permits the switching of screen output to visually

223



inspect the behaviour of components of each of the port's en tity  life -cyc les . In  

the past, the benefit of creating windowed user interfaces had to be offset 

against the overhead in designing screen lay-outs and w riting  the necessary 

code. The provision of lib raries of standard routines went some way towards 

sim plifying the process, but the need to repeatedly compile and modify a 

program to achieve the correct re lative positioning of screen output s till 

represented a major overhead. With ESSIM, the use of the 'Designer' program  

generator was found to perm it the creation of an effective windowed interface  

w ithin a time span normally associated w ith producing simple textual output.

The process of validating the port model was described in section 5.6 . 

Validation is particu larly  essential in the context of simulation given that a 

model can behave as would have been expected and yet contain invalid  

assumptions. The lack of a real-w orld container port with which model 

behaviour could be compared complicated the validation process. Given the size 

of the model, many errors had been expected. In  practice, the use of a modular 

construct combined with the s tric t rules that had been imposed during the 

development process had lim ited the scope for e rro rs . The source of the errors  

that were made and which were detected from unexpected model behaviour were 

however often d ifficu lt to locate. This is because an e rro r in  one module can 

manifest itse lf as unexpected behaviour in  another module and the process of 

tracing the source can often be quite complex. In  th is respect, the trace 

facilities that were integrated into the port model proved to be of significant 

use. Validating the expert system knowledge-base was simpler than had been 

expected. Expert systems use hidden inference strategies which make the 

normal process of manually tracing through code impossible. Nevertheless, the 

fact that the rules were isolated from any other code sim plified th e ir individual
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verification on a one-by-one basis. The conclusions drawn by the inference 

engine, and the results returned to the Pascal model were also easily checked 

from the output trace which to some extent can be considered as an automation 

of the manual trace.

In  section 5 .7 , the process of experim enting w ith the port model was 

described. The types of experiments that could be conducted were broadly 

divided into four types: 1) Modification of ru le  param eter. 2) A ltering  

characteristics of the model such as the defined number of entities and process 

durations. 3) A ltering  the structure of existing ru le (s ) and /or adding fu rth e r  

rules associated with existing goals. 4) Adding new goals fo r which new rules 

have to be defined. The examples that were given demonstrated that the types  

of changes listed in  1-3 could, in many cases, be carried with ease and without 

modification of the Pascal code. The fourth  type of change, consisting of adding 

new goals was fa r more complex and required a detailed understanding of the 

underlying simulation code.

In  section 5 .8 , the ESSIM model was compared to two alternative versions

of the Port model. The firs t of these consisted of a straight-forw ard
\

three-phase model. The second was a version of ESSIM in which the expert 

system knowledge-base was replaced by a 3GL module in  which rule-sets were 

represented as Pascal functions. The experiments described in  section 5 .7  were 

then repeated which demonstrated that the ESSIM model generally offered  

superior functionality over the alternative approaches.
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F inally , section 5 .9  reviewed the benefits and lim itations of the individual 

constituents of the ESSIM modelling environm ent, namely, the three-phase  

component, the expert system and the graphical user in terface.
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CHAPTER SIX

CONCLUSION

6.1  REVIEW OF THE THESIS PROPOSITION

The proposition put forward in  th is thesis was th at the use of expert system 

techniques in the context of simulation, may provide an improved means of 

structuring the representation of operational policies as enacted by the re a l- 

world decision makers. Such operational policies may requ ire  the involvement 

of multiple decision makers, each working at d iffe ren t levels w ithin a 

hierarchical management s tru ctu re .

6 .2  THE RESEARCH RATIONALE

Discrete event simulation languages predom inantly focus on the model 

representation of physical entities and associated activ ities. O'Keefe, Belton & 

Ball [1986] amongst others have noted that there exist lim itations in using such 

languages in representing and subsequently experim enting w ith the decision 

tasks normally associated with the management and control of a real-w orld  

system.

The use of A rtific ia l Intelligence in  the context of simulation modelling 

has been investigated from a number of angles by several researchers. For 

instance, attempts have been made at using expert systems during the model
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building process and fo r the purpose of in terp retin g  model output. (Such work 

is of great in terest in  the context of th is thesis and is discussed in  chapter 

two). Flitman & H urrion [1987] undertook an ambitious project to create a two 

way lin k  between a simulation model and an A I language. This thesis has 

followed on from th is  innovative work by examining the possibility of using an 

expert system in  the representation of complex operational policies and fo r the  

use of th is representation in  subsequent experim entation.

6 .3  REVIEW OF THE RESEARCH STRATEGY

The methodology applied to the research described in  this thesis has 

encompassed the following stages:

A lite ra tu re  review .

The formalisation of the proposed approach.

The implementation of a prototype system.

The development of experim ental models using the prototype

environm ent.

The evaluation of the thesis proposition using the experim ental

models.

In  chapter two, a review was conducted of the two areas of research  

applicable to th is thesis, simulation and a rtific ia l intelligence. In  the firs t part 

of the chapter, simulation modelling and a rtific ia l intelligence were examined 

separately. The second half of the chapter examined the relationship between 

simulation and A I and subsequently explored the practical work carried out by
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other research ers.

The lite ra tu re  review was an essential firs t step in developing an in -  

depth understanding of the two fields of study and of the work that had 

already been carried out by other researchers in  linking  simulation and A I. 

Having completed the lite ra tu re  study, attention returned to resolving the core 

issues relating to the thesis proposal. Chapter three consequently began with  

an analysis of the nature of decision making and sought to address such issues 

as the representation of hierarchical management structu res. Having assessed 

the problem of representing operational policies w ithin a simulation model, the  

chapter continued by proposing a potential approach to the implementation of 

a simulation environment in which the issue of representing operational decision 

making is specifically addressed.

Chapter four reported the development of a prototype simulation 

environment (ESSIM) which explores and addresses the technical problems of 

a linkage between a simulation model and expert system.

The prototype system was used to create a model of an un-manned 

container port and a number of experiments then carried out based on 

alternative management rules of varying com plexity. Two equivalent models 

were also developed, one based on a standard simulation fram ework, and the  

other seeking to replicate the functionality of the expert system within a purely  

procedural context. The experiments using a lternative management rules which 

were carried out using the prototype model were repeated using these new 

models and evidence sought in  respect of the suggested potential benefits of 

the prototype system. The suggested potential benefits identified  in  the early
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stages of the thesis can be summarised as follows:

Model A daptability: I t  has been proposed that the use of an expert

system in the context of simulation modelling, may provide an improved 

means of representing operational decision making. Furtherm ore, i t  has 

been suggested that the expert system approach could provide the 

modeller w ith a simulation environment which is better suited to the task 

of experim enting with alternative operational policies.

Model accuracy: The ESSIM modelling environment was developed fo r the 

purpose of experim enting w ith operational policies. In  doing so, the 

modeller is expected to define decision making tasks with greater 

attention to detail than would normally have been expected during a 

conventional modelling exercise. Consequently one could expect th at the 

modeller's work w ill resu lt in a model which is a better representation  

of the real-w orld  problem.

Segregating modelling activities between two modules, one representing  

the physical system components and the other operational management, was seen 

as potentially providing fu rth e r advantages. Such a division could be achieved 

by retain ing a separation between the simulation language and A rtific ia l 

Intelligence components and implementing a general communications interface  

between the two. The possible peripheral benefits of a conceptual division were 

identified to be as follows:
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Ease of use: Expert Systems use a high level language syntax akin to 

fourth generation languages. In  addition to th is , expert systems use a 

declarative approach to the definition of rules which removes from the  

modeller the need to pre-define an execution path. Instead, the expert 

system uses a generalised inference strategy to control execution. Expert 

systems have consequently been re ferred  to as being "Easy to use".

M aintainability: The m aintainability of a model is related to the ease with 

which changes that have occurred in  the real-w orld  system can be 

reflected w ithin existing code. The m aintainability of the model is of 

particu lar importance in situations where changes are expected in  the 

real-w orld environment during the life  of the model. Sp litting  the model 

representation between a conventional simulation language and an expert 

system can be viewed as an extension of the concept of code m odularity. 

The introduction of a fu rth e r level of m odularity may ease the process 

of making model changes, which in tu rn  could have an impact on the 

m aintainability of the model.

6 .4  CONCLUSIONS FROM THE MODEL EXPERIMENTATION

In  chapter f ive, a number of experiments were described which sought 

to compare the functionality of a model bu ilt using ESSIM with th at of a 

conventional Pascal model. The experiments were la te r repeated using another 

Pascal model in  which an attempt was made at replicating the functionality of the 

expert system by encapsulating decision rules w ithin Pascal functions. The 

conclusions from these experiments can be summarised as follows:
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Model adaptability: As was reported in  section 5 .8 , it  was found th a t the 

model w ritten  using ESSIM was generally the one which was the easiest 

to modify fo r the purpose of evaluating alternative operational policies. 

The principal reason fo r th is was that decision rules in  ESSIM were 

defined in  a fa r more structured fashion. This s tru ctu ring  of operational 

decision rules has been re ferred  to in  th is thesis as "Cooperative decision 

m aking". I t  is assumed in  ESSIM that operational policies may be enacted 

by more than one decision m aker. Decision rules are consequently 

grouped together and identified by the name or function of the decision 

m aker. For the purpose of instigating an operational policy, the rules  

applied by each of the decision makers may then be brought together. 

The most senior decision maker may potentially have a veto over any final 

decision and so his rules would override those of the other decision 

m akers. Such a stru ctu ra l formalism fo r the representation of operational 

decision making was d ifficu lt to replicate using e ither of the alternative  

Pascal models. An example of the type of code which would resu lt from  

such an attem pt is shown in  Appendix D.

Model accuracy: As was discussed in  section 6 .3 , it  was hoped that the 

use of ESSIM would resu lt in  models which were better representations 

of the real-w orld  problem. In  fact, the issue of model accuracy turns out 

to be closely related to that of model adaptab ility . In  the previous 

paragraph, the point was made that the adaptability of the ESSIM model 

was a consequence of the fact that in  ESSIM, decision rules are defined 

in a fa r more structured fashion. This s tru ctu ring  of decision rules is 

what provides an improved representation of the problem being modelled.
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The key differences between the ESSIM model of the port and the two 

equivalent Pascal models are as follows: 1) Decision rules relating  to 

d iffe ren t decision makers are isolated w ithin separate "R ule-sets". 2) 

Associations may be established between "Rule-sets" in  order to reflect 

the influence of management in  the process of decision making, (e .g .  A  

manager may override or simply contribute to the decision taken by a 

lower ranking em ployee). 3) Decision rules are defined ind ividually  w ith  

an inference engine providing the mechanism by which problems are  

resolved. In  the case of the Pascal models, decision rules had to be 

defined as m ulti-level conditional statements.

Ease of use: The ease of use of a model is principally related to the  

language syntax. The expert system used in ESSIM was specifically  

w ritten  fo r the purpose of simulation modelling. A fourth  generation 

language was used and additional concepts introduced such as "Rule- 

sets" and "Inheritance" which were aimed at providing a clearer and more 

structured code la y -o u t. With respect to the model experiments detailed  

in  Chapter five, such factors gave ESSIM a clear advantage over the  

equivalent Pascal models in the context of the "Ease of use" of the  

modelling environm ent. This advantage was of course lim ited to model 

experim ents carried out using the expert system knowledge-base. There  

were a number of other peripheral benefits in  using the expert system; 

1) The in terpreted  nature of the system meant that re-com pilation could 

often be avoided. 2) Unlike the Pascal models, decision rules could be 

defined individually  and the problem of resolving a goal le ft to the  

in ference engine. 3) The isolation of the decision rules into a separate 

knowledge-base helped in providing a clearer understanding of the
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fu nction  of th e ru le s .

M aintainability: As was discussed in  section 6 .2 , the m aintainability of a 

model is related to the ease w ith which changes that have occurred in  the  

real-w orld  system can be reflected w ithin existing code. In  conventional 

3GL programming, the issue of m aintainability is in  part related to the  

structure of the code in  terms of m odularity and syntactic sim plicity. I t  

was concluded in  section 5 .8  th at those same issues have an effect on the 

m aintainability of a simulation model. ESSIM extends the concept of code 

m odularity to simulation modelling in  a number of respects. 1) In  ESSIM, 

the conventional Pascal model is separated from the decision rules which 

are located in  an expert system knowledge-base. 2) The ESSIM expert 

system knowledge-base is itse lf divided into "Rule-sets" which contain 

the rules applied by individual decision m akers. 3) The Pascal simulation 

code used in  ESSIM is divided into separate code modules each containing 

the code relating to the major en tity  cycles. The model experim ent 

described in  section 5 .7 .4  required the introduction of a new en tity  cycle 

and associated decision ru les . Implementing the same changes to each of 

the three port models highlighted the benefit of a high degree of code 

m odularity. In troducing the model changes was re latively  easier to 

achieve using the ESSIM version. The reason fo r th is is that the use of 

code m odularity in  ESSIM introduced a requirem ent fo r a higher level of 

discipline in  carry ing  out the model changes in a step-by-step fashion. 

In  the case of the Pascal models, i t  was fa r easier to make a mistake in  

introducing the model change and subsequently much harder to find  

where the e rro r had been made.
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6 .5  SUMMARY OF THE RESEARCH ACHIEVEMENTS

6 .5 .1  Principal achievements

The research presented in  th is thesis sought to create a modelling 

environment in which the principle emphasis is on an adequate representation  

of operational policies fo r the purpose of model experim entation. Therefore, the  

key issues were as follows: F irs tly , to id en tify  which aspects of the decision 

making process had to be represented w ithin the model. Secondly, to id en tify  

a modelling approach which was well adapted fo r the purpose of representing  

operational decision making problems and which would be appropriate fo r the  

purpose of model experim entation. These two steps were successfully completed 

and as a resu lt, a number of im portant contributions were made in th is fie ld  of 

study.

The key contribution of the research was the introduction of the concept 

of "Cooperative decision making" which was fu lly  described and discussed in  

chapters four and fiv e . The expert system knowledge-base is used as a 

repository fo r the decision rules applied by selected operational decision makers 

involved in the day to day running of the real-w orld  system . The research 

study identified that operational policies often required the cooperation of 

several decision makers, each controlling a d iffe ren t real-w orld  a c tiv ity . In  

other cases, the existence of a hierarchical management s tru ctu re  could mean 

that a decision taken by one individual could be overridden by another decision 

m aker. Such issues were addressed through the creation of "Rule-sets" and the 

use of "Inheritance". "Rule-sets" were used fo r the purpose of segregating the
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rules applied by each decision maker. The use of "Inheritance", perm itted the  

creation of a logical lin k  between otherwise separate groups of ru les.

The introduction of the concept of "Cooperative decision making" brings  

about a number of fundamental changes to the way in which the modeller builds 

and subsequently uses the simulation model. F irs tly , decision rules are no 

longer represented as a sequence of conditional statements but require the  

modeller to represent each operational policy in  terms of a goal and related sub­

goals. Secondly, the modeller is encouraged to view decision making problems 

as potentially panning across several activities w ithin a cycle or across m ultiple 

activities w ithin d ifferen t cycles. For instance, an operational policy may 

require the involvement of more than one decision maker, each represented by 

a d ifferent ru le -se t and each responsible fo r the management of entities in  

d ifferen t ac tiv ity  cycles.

The testing of the thesis proposition required a comparison to be carried  

out between the proposed approach and a conventional modelling environm ent. 

The research consequently encompassed the development of a prototype 

simulation environm ent. This prototype system called ESSIM was successfully 

developed and consisted of two closely in terlinked  components, a three-phase  

discrete event module and expert system. Two code generators were also 

provided to ease the process of model build ing. The firs t of these was used to 

in teractively  specify the graphical user in terface. The second generator scans 

the expert system knowledge-base and creates the necessary 3GL code to perm it 

variable sharing between the simulation and expert system modules.

236



6 . 5 . 2  Subsid iary achievem ents

O ther more minor achievements ensued during the course of th is thesis. These 

can be classified into four categories:

6 .5 .2 .1  New approaches to expert system design

As we have seen, the rule-based expert system developed as part of 

ESSIM, incorporates the concepts of "Rule-sets" and "Inheritance". The use of 

ru le-sets  perm itted decision rules to be grouped according to the name of the 

decision maker or by job function. "Inheritance" perm itted the inference engine 

search space to be extended across more than one ru le -s e t. In d ire c tly , these 

features helped alleviate two of the classic criticism s of expert systems which 

are: (1 ) that the random ordering of rules significantly reduces the leg ib ility  

and consequent in terpretation of the content of the knowledge-base. (2 ) that 

expert systems execute slowly. By lim iting the backward-chaining search to the 

rules contained in  a specific ru le -se t, it  was possible to substantially improve 

the speed with which the inference process could be carried out.

The level of integration achieved between a 3GL program and in terpreted  

expert system should be of in terest to A I researchers. Again, one of the 

criticism s of expert systems is that th e ir lack of ab ility  at operating in  a 

procedural context and carrying out complex arithm etical operations prevents 

th e ir use in a w ider context. The ESSIM expert system physically shares the  

same variable addresses as are defined in  the 3GL code, thereby perm itting fu ll 

use of the 3GL variable definitions and providing almost seamless in tegration .
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By being able to trace the addresses of 3GL procedures and functions, the  

ESSIM expert system is also able to call 3GL code thereby providing the 

necessary procedural context.

6 .5 .2 .2  Improvements to the three-phase routines

Modifications were made to the lib ra ry  of Pascal simulation routines fo r 

three-phase discrete event simulation which help to improve the leg ib ility  of the 

code. For instance, B -event calls are now achieved by placing the s ta rt address 

of the procedure in the executives' tim ing tre e . Hence, at each time advance, 

B-Events can be activated d irectly  by the executive, w ithout having to firs t 

pass control to the 'CallNextBevent' procedure which had to be updated by the 

modeller to include references to a ll new B routines.

The application of simulation to the evaluation of a lternative decision 

rules w ill typ ically  entail the creation of a substantive and complex model. In  

the case of ESSIM, the development process is fu rth e r complicated by the use 

of a th ird  generation language. In  order to ease the process of developing large  

models, the simulation routines used at the LSE were adapted fo r use in a 

modular environment based on Object code. Hence, in ESSIM, the modeller is 

provided with a means of encapsulating each en tity  cycle w ithin a separate 

module.

6 .5 .2 .3  Additional software developments

'D esigner', the program generator used in creating the graphical user 

interface was designed using a new approach which again should be of in terest
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to researchers in  information technology. The program generator was 

implemented in  such a way that pop-up windows could be created, menus 

specified and links to external programs defined on an in teractive basis. The 

screen design could then be tested without needing to firs t generate the 

underlying code. Most im portantly, a generated model can la te r be modified and 

subsequently re -lin ked  to the existing program.

6 .5 .2 .4  Peripheral benefits of the ESSIM approach

The linkage of the expert system to a simulation model in  conjunction with 

the implementation of ru le-sets has provided a means of 'paralleling' the 

management s tructures. In  ESSIM m ultiple decisions may be taken by d ifferen t 

individuals at a particu lar point in tim e. This ideal is loosely linked to the 

concept of temporal reasoning and should be of in terest to A I researchers.

Another unexpected achievement is the generality of the ESSIM design 

which could perm it the modeller to derive alternative benefits from the linkage 

of the simulation model and expert system. For instance, one could envisage the  

simulation model acting under the control of the expert system in  order to 

explore a simulated fu tu re  as part of a decision making process. The 

investigation of such possibilities was outside the scope of the thesis but could 

form the basis of fu tu re  research work based on ESSIM.
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6 .6  FUTURE WORK

In  it's present state, the ESSIM simulation modelling environm ent is  

essentially a prototype system. ESSIM is a complex program which was 

necessarily developed by a single ind iv idual. Limited time was therefore spent 

on developing such facilities as e rro r handling which would have to be fu rth e r 

enhanced if  the system was to be used by other researchers. Consequently, 

it  would be desirable as a firs t step to resolve such problems in order to build  

a stable system fo r fu tu re  research w ork.

The research presented in  th is thesis has highlighted the considerable 

potential that simulation modelling offers in  the context of the evaluation of 

alternative operational policies. I t  is the author's opinion that there are yet 

major advances to be made in th is area which could resu lt in a fa r greater 

acceptance of simulation modelling as a management tool. Of all the possible 

research projects that could be established based on ESSIM, the greatest 

potential possibly lies in developing a system like  ESSIM along the lines of a 

management decision support system. The work presented in  th is thesis has 

already served to demonstrate that by isolating the model representation of the 

physical components of a real-w orld  system from operational decision ru les, 

model experiments could be carried out by solely altering defined decision 

rules. Two essential steps would be required in  bringing th is kind of modelling 

into the realms of d irect end-user decision support. F irs tly , fu rth e r advances 

would be required in  the development of tools fo r the automated in terpretation  

of model output. Secondly, the creation and subsequent modification of decision 

rules would need to be fu rth e r sim plified, possibly through the introduction of 

menuing systems or natural language in terfaces.
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APPENDIX A

JOB-SHOP PRODUCTION SCHEDULING USING ESSIM

A .l  INTRODUCTION

Mathematical modelling has been used in the context of the job-shop, in  

evaluating proposed heuristics and in  generating alternatives which may be 

shown to be 'optimal' in  some sense. Such mathematical modelling has inevitab ly  

been based on ra th er simple descriptions of the job shop environm ent. 

Consequently, discrete event simulation modelling has often been used fo r rule  

evaluation in more realistic contexts (Arum ugam [1985], B arre tt & Barman [1986] 

and Kiran & Sm ith[ 1983]).

Simulation models have been used extensively in job-shop production 

environments in evaluating d ifferen t scheduling ru les, in developing scheduling 

rules under a given set of param eters, and in  analysing the sensitivity of 

job-shop models to changes in  scheduling ru les . Such simulations require access 

to relevant databases and must reflect the complex decision-making of the job 

shop. I f  this is to be achieved without demanding extensive intervention from 

the production controller then the decision-making capacity must be 

accommodated w ithin the simulation model.

A production controller in  a typ ical engineering job shop relies in great 

measure on his own personal experience and judgement in scheduling workloads. 

These decisions cannot be made without a detailed knowledge of the curren t 

state of m aterial stocks, outstanding orders and w ork-in -progress. O n-line
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decision support systems fo r job shop scheduling have been introduced to 

provide such necessary information through the implementation or in terfacing  

of appropriate database systems. More recently, the provision of information 

has been supplemented by the addition of rule-based expert systems which 

seek to encapsulate exp lic itly , in  a collection of scheduling rules or heuristics, 

the experience and knowledge of the production controller ( Fox and 

Sm ith[ 1984]). The rule-base appropriate to a particu lar job shop context w ill 

typ ically  be complex and requires painstaking development in collaboration with 

production management.

Consequently, the potential synergy of simulation and expert system 

would seem a logical step forw ard in  the context of the job shop. ESSIM, in  

th is respect appears to be an appropriate development tool. The remaing 

sections describe the development of a job-shop model in itia lly  based on 

experiences gained from two m anufacturing concerns operating from Rio de 

Janeiro, Brasil (Costa and Jardim[1986]).

A .2 OVERALL SYSTEM DESIGN

Figure A72 shows the overall structure of the system. The simulation 

model progresses the job-shop operations through tim e. The expert system 

manages the scheduling of tasks w ithin the simulated system. User defined  

databases are used fo r the storage of data relating to product descriptions and 

outstanding orders. The user in terface system is used fo r the control of output 

displays.
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Figure A 72 System overview for the Job-shop mode/

T h e  d e s c r ip t io n  o f th e  jo b  s h o p  is  in  te rm s  o f a n u m b e r o f ’w o rk  c e n t r e s '. 

Each w o rk  c e n tre  is  c o m p ris e d  o f a n u m b e r o f  c o lla b o ra t iv e  fa c i l i t ie s ,  s u c h  as 

m ach ines  a n d  a s s o c ia te d  o p e ra t iv e s ,  w h ic h  r e g u la r ly  w o rk  to g e th e r  as a u n i t  

in  th e  p e r fo rm a n c e  o f  in d iv id u a l  p ro d u c t io n  o p e ra t io n s .  A  w o rk  c e n tre  is  

c h a ra c te r is e d  b y  th e  ra n g e  o f  o p e ra t io n s  o f  w h ic h  i t  is  c a p a b le  a n d  p a ra m e te rs , 

s u c h  as c o s t,  q u a l i t y  o r  s p e e d , o f i t s  p e r fo rm a n c e  o f th e s e .

A  'p ro d u c t ' m ay be c h a ra c te r is e d  b y  i t s  m a te r ia l co m p o n e n ts  a n d  th e  

p o s s ib le  se q u e n ce s  o f  o p e ra t io n s ,  s u c h  as m a c h in in g , a ss e m b ly , p a in t in g  e t c . ,  

a n d  th e  a sso c ia te d  w o rk  c e n tre s  on  w h ic h  th e s e  o p e ra t io n s  m ig h t be p e r fo rm e d .
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The technical analysis of a given physical product into the characterising  

sequences of production possibilities is a task le ft by the present system to 

the production engineer. Product descriptions are maintained in  the 'Product 

Database1 of Figure A72 and referenced by the expert system in  determ ining 

scheduling possibilities. Supply of materials from inventory is considered as 

the function of a particu lar work centre which must also manage an inventory  

control policy.

An 'order' is characterised by the iden tity  of the customer, the product 

and quantity requested, the time of placement, due date and p rio rity  ra ting  

accorded by sales staff. A file  of orders received, in -progress and completed 

is maintained as a specification of the work requirem ent of the shop and a 

measure of performance.

A .3 THE SIMULATION MODEL

The job-shop model uses ESSIMs simulation module which is structured  

according to the Three Phase system (see section 2 .4 .1 ) .  The A phase searches 

a diary of prescheduled events, such as the completion of an operation by a 

work centre, fo r the earliest scheduled event and advances the model clock to 

th is tim e. The B phase manages the execution of all events scheduled to occur 

at the current clock time and the C phase explores the resu lting model state  

to determine what new events might be scheduled. This la tte r phase is typ ica lly  

where the decision is made to start work on a particu lar task and hence enter 

into the diary the scheduled time of its  completion.
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The principal system entities are the work centres which follow a simple 

life  cycle alternating between periods of processing jobs and idleness. Each 

work centre has a lis t of allocated tasks, some of which may be suspended 

pending the a rriv a l of necessary components, from which a next task may be 

selected.

The a rriva l of orders and consequent inflow of fu rth e r jobs may either 

be on the specific intervention of the user, from a predefined file  of orders or 

according to a randomised a rriva l mechanism. On receipt each order is 

translated into its  components and incorporated into the job shop schedule.

A .4 THE USER INTERFACE

The job-shop model makes use of an in terface which is largely  

m enu-driven from a m ulti-window screen. The in terface design was manually 

created rath er than using the ESSIM interface generator, and so output is 

largely text based. The ESSIM interface design was developed following from  

the experiences gained from implementing the job-shop model in terface.

The basic screen is shown in Figure A73. The various windows contain 

the main menu offering options, 'Simulate1, 'Edit Product F ile ', 'Edit Rule Base' 

and 'View Orders'. Subsidiary pull-down menus allow a fu rth e r range of 

options. Selection of options is effected under cursor control, by in itia l le tte r 

or using a mouse. Figure A73 actually shows some of the sub-menus which are 

presented to the user before the simulation begins.
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FIGURE A73 THE JOB-SHOP APPLICATION INTERFACE

T h e  w in d o w s  p ro v id e  f u r t h e r  a re a s  f o r  s ys te m  'M e ssa g e s ', te x tu a l 

'O u tp u t ' d u r in g  th e  e x e c u tio n  o f th e  s im u la t io n ,  u s e r-m a c h in e  'D ia lo g ' and  

e x e c u tio n  'T r a c e '.  S im p le , d ire c te d  e d ito r s  p e rm it  th e  e x a m in a t io n , a d d it io n  

a n d  d e le t io n  o f  e n t r ie s  in  p ro d u c t  a n d  o r d e r  f i le s  a n d  ru le -b a s e .

T h e  d y n a m ic  b e h a v io u r  o f  th e  s im u la te d  jo b  sh o p  m ay be s tu d ie d  th r o u g h  

a l te rn a t iv e  d is p la y  fo rm a ts .  T h e  u s e r  m ay s e le c t fro m  a te x tu a l  d is p la y ,  a 

d ia g ra m m a tic  re p re s e n ta t io n  o f th e  jo b  s h o p  th r o u g h  th e  l i f e  c y c le  o f  th e  w o rk  

c e n tre s  o r  th r o u g h  h ig h  re s o lu t io n  g ra p h s  o f  th e  a c c u m u la tin g  w o rk  lo a d s  o f 

a s e le c te d  s e t o f w o rk  c e n t re s ,  (see F ig u re s  A74 a n d  A 75 )
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D e ta ils  o f  th e  o rd e rs  c o m p le te d  a n d  th o s e  s t i l l  o u ts ta n d in g  can  be v ie w e d  

on re q u e s t  e i th e r  d u r in g  o r  fo l lo w in g  th e  e x e c u tio n  o f  th e  s im u la tio n  p ro g ra m .

A .5 THE EXPERT SYSTEM AND INTERFACES WITH THE SIMULATION MODEL

D u r in g  th e  e x e c u t io n  o f  th e  s im u la tio n  m ode l, th e  C -p h a s e  o f e v e ry  c y c le  

re q u ire s  th a t  d e c is io n s  be made as to  w h ic h  a c t iv i t y ,  i f  a n y  s h o u ld  s ta r t  a t 

th a t  tim e . W hen a w o rk  c e n tre  f in is h e s  i t s  c u r r e n t  ta s k ,  i t  m u s t s e le c t th e  n e x t 

jo b  fro m  th o s e  p o s s ib le . W hen a new  o r d e r  a r r iv e s ,  i t  m u s t e i th e r  be re je c te d  

o r  th e  co m p o n e n t ta s k s  m u s t be  a llo c a te d  a m o n g s t th e  a p p ro p r ia te  w o rk  c e n t r e s . 

T h e  s im u la tio n  e x e c u t iv e  lo o k s  to  th e  a sso c ia te d  e x p e r t  s y s te m  to  s p e c ify  su ch  

s e le c tio n s  a n d  a llo c a t io n s . T h e  c u r r e n t  s ta te  o f  th e  s im u la tio n  m odel p ro v id e s  

th e  c o n te x t  w i th in  w h ic h  th e  e x p e r t  s y s te m  a p p lie s  i t s  k n o w le d g e  a n d  th u s  th e  

e x p e r t  s y s te m  is  a b le  to  access  th e  s im u la t io n  s ta te  v a r ia b le s .

T h e  k n o w le d g e  base o f  th e  e x p e r t  s y s te m  is  d e f in e d  in  te rm s  o f a
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structured file  of IF -TH E N  production rules. The structure reflects the 

intrinsic hierarchical structure of production planning processes and is 

described in detail in section 3 .2  (see figure 8 and Bitran et a l. [1982], Erschler 

et a l.[1 9 8 6 ]/ and Bullers & Schultz[ 1986]).

The decision as to which job to s tart at a given work centre may be made 

with reference to the local environment of that work centre, i .e . the job may 

be selected from the list of possible jobs currently available according to local 

operating constraints and sequencing rules. These may include specific 

management direction as to which rules to apply at particular times or with 

respect to particular jobs.

The job-shop application was developed as a means of gaining 

understanding of the requirement of the simulation modeller. A lack of detailed 

rules relating to the operation of the production plant made the implementation 

of a realistic knowledge-base d ifficu lt. The job-shop application was 

consequently used for the validation of the expert system and its links to the 

simulation model. This formed the basis for the development of the ESSIM 

environment and its  subsequent validation using the port model.
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APPENDIX B

THE PORT MODEL KNOWLEDGE-BASE UNDER ESSIM

EXTERNAL {declaration of integer variables to be shared with the simulation 

model}

NumbStackRmgldle, NumbMoveToShipJob, NumbMoveToExitJob, 

NumbRmgAtSSide, NumbRmgAtLSide, RmgToLeaveSSide, 

RmgToLeaveLSide, NumbTruckToBay, BayPos,

NumTruckOutside,ShipImportJobs, ShipEx port Jobs, NumShipCranesIdle, 

NumTotallmportJobs, NumCranesOnlmports, CurrentShipBerth, 

NumberOf GateVehicles, NumberOf Jobs, Number Of Berths, NumberOflmvs, 

NumberOfShipCranes, NumbFullImvsToStore, _Time,

NumbEmptylmvsToStore Exports Left For Ship ;StoreNumWithExpContainer, 

NumberOf Ships, Number Of Stores, NumbEmptylmvToShip, 

NumbFullImvToShip, NumberOfShipsAtSea, NumEmptylmvAtShip,

NumEmptylmvAtBerth, NumEmptylmvAtOtherBerth,

Numldlelmvs, NumFullImv At B erth , NumlmportsRemaining, 

NumbShipsWaitingToBerth, NumbFreeBerths, TimeToUnloadFullImv, 

TimeToFetchlmvFromShipQ, TimeToUnLoadShip, TimeToLoadShip, 

TimToGetlmvFromOtherShipQ, TimeToFetchlmvFromldleQ, 

TimeToMoveToShipEmpty, TimeToMoveToShipFull, 

TimeToMoveToLandEmpty, TimeToMoveToLandFull, 

TimeToGetAuthorization : INTEGER ;
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{declaration of boolean variables to be shared with the simulation model} 

CraneOperational, ShipInBerthOne, ShipInBerthTw o, CraneOnlmports, 

CraneLoaded, Loadlmv, _UnLoadImv, LoadShip, _Un LoadShip, 

GetAuthorization, AuthorizeCraneToExport, Retum lm vsToIdle, 

FetchlmvFromShipQ, FetchlmvFromOtherShipQ , FetchlmvFromldleQ, 

FulllmvToUnload, ChangeACraneToExports, Makelmvldle,

Ship A rrival Due, WorkAtBerthCompleted, MoveGantryToShipSide, 

_MoveGantryToLandSide, MoveGantryToShipEmpty, 

MoveGantryToLandEmpty, NextShipJoblsAnlmport,

NextLandJoblsAnlmport, LoadVehicleWithlmport,

UnLoadExportFromVehicle, Next JoblsAnlmport, MovelmportToStack, 

MoveEmptyToStack, MoveEmptyToStackFromGate, MoveExportToStack, 

LoadlmportFromlmv, UnloadExportToImv: BOOLEAN ;

PASCAL FILE 'Rules.pas' ; {File of Pascal routines to be called from within

the expert system.}

LOCAL {declaration of local expert system boolean variables} 

StartlandSideWork, StartShoreSideWork, StartNewJob, 

StartMoveFromSSide, StartMoveFromLSide, MoveToBay, Bay Free, 

TruckWaiting, TruckOutside, W aitingForTruck, ShipJobsLeft, 

LetTrucklnPort, BerthedShip, CraneJobs, NoExportsInStore, 

SendFullImvToStore, SendEmptylmvToShip, SendFullImvToShip, 

StartShipA rrive, StartShipLeave, StartDockAtBerth, ShipFullOfExports, 

Im vsldle, SendEmptylmvToStore, EmptylmvToLoad, JobToBeDone, 

JobToDo, P riority  ToShipjobs, JobOutstanding, Next Job,

JobFound, CranelnCorrectMode, ShipToLoad, ShipToUnload : Boolean;
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{Declaration of local ex p ert system  in ten ger  variables}

Bay : INTEGER ;

RULESET StackManager ;

[* ]  Number Of Stores = 10; {number of stores is 10}

[* ]  NumberOf Jobs = 50 ; {number of jobs is 50}

[1] STARTNEWJOB = True WHEN (NumbStackRmgldle > 0)

AND (JobToBeDone = True) ;

[2] PriorityToShipJobs = GantryToShipSide ; {enquiry to rules.pas}

[3] MoveGantryToShipSide = True

IF  ( (NumbMoveToShipJob *  NumbMoveToExitJob > 0) 

AND (PriorityToShipJobs = T ru e )) ;

[4] _MoveGantryToLandSide = True

IF  ((NumbMoveToShipJob *  NumbMoveToExitJob > 0) 

AND (PriorityToShipJobs = False)) ;

[5] _MoveGantryToShipSide = True WHEN NumbMoveToShipJob > 0 ;

[6] _MoveGantryToLandSide = True WHEN NumbMoveToExitJob > 0 ;
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[7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND ( TimeToMoveToShipEmpty = 40)

IF  (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = True) ;

[8] (MoveGantryToShipEmpty = False) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND ( TimeToMoveToShipFull = 60)

IF  (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = False);

[9] ( MoveGantryToLandEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToShipSide = False)

AND ( TimeToMoveToLandEmpty = 40)

IF  (_MoveGantryToLandSide = True)

AND (NextLandJoblsAnlmport = False) ;

[10] (MoveGantryToLandEmpty = False) AND (JobToBeDone = True)

AND ( MoveGantryToShipSide = False)

AND (TimeToMoveToLandFull = 60) (JobToBeDone = False) 

IF  ( MoveGantryToLandSide = True)

AND (NextLandJoblsAnlmport = True) ;
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[11] (JobOutstanding = True) AND ( LoadlmportFromlmv = True)

AND (UnloadExportToImv = False) AND (_Time = 60)

~ (JobOutstanding = True) AND (UnloadExportToImv = True) 

AND ( Time = 60) AND (LoadlmportFromlmv = False)

IF  NextJoblsAnlmport = True;

[12] STARTSHORESIDEWORK = True WHEN ( NumbRmgAtSSide > 0)

AND (JobOutstanding = T ru e );

[13] (JobToDo = True) AND ( LoadVehicleWithlmport = True)

AND (UnloadExportFromVehicle = False) AND ( Time = 60) 

(JobToDo = True) AND (UnloadExportFromVehicle = True) 

AND (_Time = 60) AND (LoadVehicleWithlmport = False)

IF  NextJoblsAnlmport = True;

[14] STARTLANDSIDEWORK = True WHEN (NumbRmgAtLSide > 0)

AND (JobToDo = T ru e );

[15] (NextJob = True) AND (MovelmportToStack = True)

AND (MoveEmptyToStack = False) AND (_Time = 60) 

(NextJob = True) AND (MoveEmptyToStack = True)

AND (_Time = 40) AND (MovelmportToStack = False)

IF  NextJoblsAnlmport = True;

[16] STARTMOVEFROMSSIDE = True WHEN ( RmgToLeaveSSide > 0)

AND (NextJob = T ru e );
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[17] (JobFound = True) AND (MoveEmptyToStackFromGate = True)

AND (MoveExportToStack = False) AND (_Time = 40) 

(JobFound = True)

AND (MoveEmptyToStackFromGate = False) AND (_Time = 60) 

AND (MoveExportToStack = True)

IF  NextJoblsAnlmport = True;

[18] STARTMOVEFROMLSIDE = True WHEN ( RmgToLeaveLSide > 0)

AND (JobFound = T ru e );

[19] Bay = WhichBay ;

[20] (bayFree = True) AND (BayPos = Bay) ~ (bayFree = False) IF  Bay > 0 ;

[21] NoExportsInStore = True WHEN StoreNumWithExpContainer = 0 ;

RULESET GateManager (INHERIT StackManager,Shipmanager) ;

[ * ]  NumberOfGateVehicles = 50 ; {Number of gate vehicles is 50}

[1] (TruckOutSide = True) ~ ( TruckOutside = False)

AND (waitingForTruck = False)

IF  NumTruckOutside > 0 ;

[2] waitingForTruck = True WHEN shipJobsLeft = True;
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[3] (truckW aiting = True) ~ (truckW aiting = False) AND (bayFree = False) 

IF  NumbTruckToBay > 0 ;

[4] LETTRUCKINPORT = True WHEN (truckOutside = True)

AND (waitingForTruck = T ru e );

[5] (MOVETOBAY = True) AND (_Time = 0) ~ (MOVETOBAY = FALSE)

IF  (truckWaiting = T rue) and (bayFree = True) ;

RULESET ShipManager ;

[* ]  NumberOfShips = 9 ; {maximum number of ships is 9}

[ * ]  Number Of Berths = 2 ; {maximum number of berths is 2}

[1] shipJobsLeft = True WHEN (ShipImportJobs > 0 )

OR (ShipEx port Jobs > 0) ;

[2] berthedShip = True WHEN (ShipInBerthOne = True)

OR (ShipInBerthTwo = T ru e );

[3] shipFullOfExports = True WHEN ExportsLeftForShip = 0 ;
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[4] (STARTSHIPARRIVE = T rue) AND (_Time = 1200)

~ (STARTSHIPARRIVE = False)

IF  ( Number Of Ships AtSea > 0 )

AND (ShipArrivalDue = True) ;

[5] (STARTDOCKATBERTH = True) AND (_Time = 120)

~ (STARTDOCKATBERTH = False)

IF  (NumbShipsWaitingToBerth > 0)

AND (NumbFreeBerths > 0) ;

[6] (STARTSHIPLEAVE = T rue) AND (_Time = 3600)

“ (STARTSHIPLEAVE = False)

IF  WorkAtBerthCompleted = True ;

[7] ShipToload = True WHEN ( (CurrentShipBerth = 1)

AND (ShipInBerthOne = T ru e ))

OR ( (CurrentShipBerth = 2) AND (ShipInBerthTwo = T ru e )) ;

[8] ShipToUnload = True WHEN ((CurrentShipB erth = 1 )

AND (ShipInBerthOne = T ru e ))

OR ( (CurrentShipBerth = 2) AND (ShipInBerthTwo = T ru e ));

RULESET ImvManager (IN H ERIT ShipManager, StackManager) ;

[* ]  NumberOflmvs = 100 ; {maximum number of imvs is 100}
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[1] (imvsldle = T rue) AND ( ReturnlmvsToIdle = T rue) ~ (imvsldle = False) 

IF  (berthedShip = False) AND ( NumEmptylmvAtShip > 0 );

[2] (emptyImvToLoad = True) AND ( FetchlmvFromShipQ = True)

AND ( FetchlmvFromOtherShipQ = False)

AND ( FetchlmvFromidleQ = False)

AND ( TimeToFetchlmvFromShipQ = 40)

IF  NumEmptylmvAtBerth > 0 ;

[3] (emptylmvToLoad = True) AND (FetchlmvFromOtherShipQ = True)

AND (FetchlmvFromShipQ = False)

AND (FetchlmvFromidleQ = False)

AND ( TimToGetlmvFromOtherShipQ = 40)

IF  NumEmptylmvAtOtherBerth > 0 ;

[4] (emptylmvToLoad = True) AND (FetchlmvFromidleQ = True)

AND (FetchlmvFromShipQ = False)

AND (FetchlmvFromOtherShipQ = False)

AND ( TimeToFetchlmvFromldleQ = 40)

(emptylmvToLoad = False) IF  Numldlelmvs > 0 ;

[5] ( FulllmvToUnLoad = True) AND (TimeToUnloadFullImv = 40)

~ ( FullimvToUnload = False) IF  NumFullImvAtBerth > 0 ;
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[6] (SENDEMPTYIMVTOSTORE = True) AND (_Time = 30)

~ (SENDEMPTYIMVTOSTORE = False)

IF  (NumbEmptylmvsToStore > 0)

AND (_MakeImvIdle = False) ;

{SENDEMPTYIMVTOSTORE Must re tu rn  _MakeImvIdle}

[7] Makelmvldle = True WHEN ( shipFulIOfExports = True)

OR (noExportsInStore = True) ;

[8] (SENDFULLIMVTOSTORE = T rue) AND (_Time = 60)

~ (SENDFULLIMVTOSTORE = False)

IF  (NumbFullImvsToStore > 0);

[9] (SENDEMPTYIMVTOSHIP = True) AND (_Time = 60)

“ (SENDEMPTYIMVTOSHIP = False)

IF  ( NumbEmptylmvToShip > 0) ;

[10] (SENDFULLIMVTOSHIP = True) AND (_Time =120)

~ (SENDFULLIMVTOSHIP = False)

IF  (NumbFullImvToShip > 0) ;
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RULESET CraneManager (INHERIT Im vM anager,ShipM anager);

(CRANEJOBS must return  Loadlmv, _Un Loadlmv, LoadShip, UnloadShip, 

FetchlmvFromShipQ , FetchlmvFromOtherShipQ, FetchlmvFromidleQ, 

FulllmvToUnload, Returnlm vsToIdle, ChangeACraneToExports,

Get Authorization }

[* ]  Number Of ShipCranes = 5 ; {Total No. of ship cranes}

[ * ]  TimeToLoadShip = 40 ;

[ * ]  TimetoUnloadShip = TimeToUnloadCalc ; {Call to Pascal function}

[1] CRANEJOBS = False IF  CraneOperational = False ;

[2] CRANEJOBS = True WHEN ( ( Loadlmv = True) OR (_UnLoadImv = True)

OR (_LoadShip = T ru e) OR (_UnLoadShip = T ru e ))

AND (CranelnCorrectMode = True) ;

[3] CranelnCorrectMode = True WHEN (CraneOperational = True)

AND ( (CraneOnlmports = True) AND ( (_LoadImv = True) 

OR (_UnloadShip = T ru e )))  OR ((CraneOnlmports = False) 

AND ((_UnLoadImv = True) OR (_LoadShip = T r u e )) ) ;

[4] Loadlmv = True WHEN (CraneLoaded = True)

AND (emptylmvToLoad = True) ;
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[5] _UnLoadlmv = True WHEN (CraneLoaded = False)

AND ( FulllmvToUnLoad = T ru e );

[6] LoadShip = True WHEN (CraneLoaded = True) AND (ShipToLoad = T ru e );

[7] _UnLoadShip = True WHEN (_ChangeACraneToExports = False)

AND (CraneLoaded = False) AND (ShipToUnload = T rue) ;

[8] (_ChangeACraneToExports = True) AND (GetAuthorization = True)

AND ( TimeToGetAuthorization = CalcFromCurrentTime) 

{Call to Pascal function}

AND (CraneOperational = False)

~ ( ChangeACraneToExports = False)

AND (GetAuthorization = False)

IF  ((CurrentShipB erth = 1)

AND (NumCranesOnlmports > 0 ) )

OR ((CurrentShipB erth = 2)

AND (NumCranesOnlmports > 1 ) )

AND ( Numlm ports Remaining = 0)

AND (NumTotallmportJobs > 0 );
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[9] (AUTHORIZECRANETOEXPORT = True) AND ( CraneOperational = True) 

AND ( CraneOnlmports = False)

(AuthorizeCraneToExport = False)

IF  ( ( CurrentShipBerth = 1)

AND (NumCranesOnlmports > 0 ) )

OR ((C urrentShipB erth = 2)

AND (NumCranesOnlmports > 1 ) )

AND (NumlmportsRemaining = 0)

AND (NumTotallmportJobs > 0 ) ;

END.
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APPENDIX C

ADDITION OF A RULE-SET TO THE KNOWLEDGE-BASE

RULESET StackManager (IN H ER IT LMVmanager) ;

[* ]  Number Of Stores = 10 ; (maximum number of stores is 10}

[* ] NumberOfJobs = 50 ; (maximum number of jobs is 50}

[1] STARTNEWJOB = True WHEN ( NumbStackRmgldle > 0)

AND (JobToBeDone = True) ;

[2] PriorityToShipJobs = GantryToShipSide ; (enquiry to rules.pas}

[3] MoveGantryToShipSide = True

IF ( (NumbMoveToShipJob *  NumbMoveToExitJob > 0) 

AND (PriorityToShipJobs = T ru e )) ;

[4] MoveGantryToLandSide = True

IF ((NumbMoveToShipJob *  NumbMoveToExitJob > 0) 

AND (PriorityToShipJobs = False)) ;

[5] MoveGantryToShipSide = True WHEN NumbMoveToShipJob > 0 ;

[6] MoveGantryToLandSide = True WHEN NumbMoveToExitJob > 0 ;
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[7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND ( TimeToMoveToShipEmpty = 40)

IF  (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = True) ;

[8] (MoveGantryToShipEmpty = False) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False)

AND (TimeToMoveToShipFull = 60)

IF  (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnlmport = False);

[9] (MoveGantryToLandEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToShipSide = False)

AND (TimeToMoveToLandEmpty = 40)

IF  (_MoveGantryToLandSide = True)

AND ( NextLandJoblsAnlmport = False) ;

[10] (MoveGantryToLandEmpty = False) AND (JobToBeDone = True)

AND (_MoveGantryToShipSide = False)

AND (TimeToMoveToLandFull = 60)

~ (JobToBeDone = False) IF  (_MoveGantryToLandSide = True) 

AND (NextLandJoblsAnlmport = True) ;
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[11] (JobOutstanding = True) AND (LoadlmportFromlmv = True)

AND (UnloadExportToImv = False) AND (_Time = 60)

" (JobOutstanding = True) AND (UnloadExportToImv = True) 

AND (_Time = 60) AND (LoadlmportFromlmv = False)

IF  Next JoblsAnlmport = True;

[12] STARTSHORESIDEWORK = True WHEN (NumbRmgAtSSide > 0)

AND (JobOutstanding = T ru e );

[13] (JobToDo = T rue) AND ( LoadVehicleWithlmport = True)

AND (UnloadExportFromVehicle -  False) AND (_Time = 60) 

(JobToDo = True) AND (UnloadExportFromVehicle = True) 

AND (_Time = 60) AND (LoadVehicleWithlmport = False)

IF  Next JoblsAnlmport = True;

[14] STARTLANDSIDEWORK = True WHEN (NumbRmgAtLSide > 0)

AND (JobToDo = T ru e );

[15] (NextJob = True) AND ( MovelmportToStack = True)

AND (MoveEmptyToStack = False) AND (_Time = 60)

(NextJob = True) AND (MoveEmptyToStack = True)

AND (_Time = 40) AND (MovelmportToStack = False)

IF  Next JoblsAnlmport = True;

[16] STARTMOVEFROMSSIDE = True WHEN ( RmgToLeaveSSide > 0)

AND (NextJob = T ru e );
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[17] (JobFound = True) AND (MoveEmptyToStackFromGate = True)

AND (MoveExportToStack = False) AND (_Time = 40) 

(JobFound = True)

AND (MoveEmptyToStackFromGate = False) AND (_Time = 60) 

AND (MoveExportToStack = True)

IF  Next JoblsAnlmport = True;

[18] STARTMOVEFROMLSIDE = True WHEN ( RmgToLeaveLSide > 0)

AND (JobFound = T ru e );

[19] Bay = WhichBay ;

[20] (bayFree = True) AND (BayPos = Bay) ~ (bayFree = False) IF  Bay > 0 ;

[21] NoExportsInStore = True WHEN StoreNumWithExpContainer = 0 ;

[22] (BALANCESTACKS = True) AND (_Time = 60)

“ (BALANCESTACKS = FALSE)

IF  (_TransfExpToRhtStack = True)

OR (_TransfExpToLftStack = True)

OR (_TransfImpToRhtStack = True)

OR (_TransfImpToLftStack = True)

AND (IdleStackVehicles = T ru e) ;
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RULESET LMVmanager ;

[1] MoreExptsInLeftStack = True

WHEN (ExportsInStackLeft -  ExportsInStackRight) > 0 ;

[2] _TransfExpToRhtStack = True WHEN (MoreExptsInLeftStack = True)

AND (ExportsInStackRight < ExportsInCurrentStack) ;

[3] _TransfExpToLftStack = True WHEN (MoreExptsInLeftStack = False)

AND (ExportsInStackLeft < ExportsInCurrentStack) ;

[4] MorelmptsInLeftStack = True

WHEN ( ImportsInStackLeft -  Im portsInStackRight) > 0 ;

[5] _TransfImpToRhtStack = True WHEN (MorelmptsInLeftStack = True)

AND (ImportsInStackRight < Im portsInCurrentStack) ;

[6] TransflmpToLftStack = True WHEN (MorelmptsInLeftStack = False)

AND (ImportsInStackLeft < Im portsInCurrentStack) ;
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APPENDIX D

CODING THE PORT MODEL KNOWLEDGE-BASE IN PASCAL

MODULE expertrules ;

VAR [External] {Variables shared with the simulation module}

NumbStackRmgldle, NumbMoveToShipJob, NumbMoveToExitJob, 

NumbRmgAtSSide, NumbRmgAtLSide, RmgToLeaveSSide, 

RmgToLeaveLSide, NumbTruckToBay, BayPos, NumTruckOutside, 

ShipImportJobs, ShipExportJobs, NumShipCranesIdle, 

NumTotallmportJobs, NumCranesOnlmports, CurrentShipBerth, 

NumberOfGateVehicles, NumberOf Jobs, NumberOfBerths, NumberOflmvs, 

NumberOfShipCranes, NumbFullImvsToStore, _Time,

NumbEmptylmvsToStore ,ExportsLeftForShip 3toreNumWithExpContainer, 

Number Of Ships, Number Of Stores, NumbEmptylmvToShip, 

NumbFullImvToShip, NumberOfShipsAtSea, NumEmptylmvAtShip, 

NumEmptylmvAtBerth, NumEmptylmvAtOtherBerth, Numldlelmvs, 

NumFullImvAtBerth, NumlmportsRemaining, NumbShipsWaitingToBerth, 

NumbFreeBerths, TimeToUnloadFulIImv, TimeToFetchlmvFromShipQ, 

TimeToUnLoadShip, TimeToLoadShip, TimToGetlmvFromOtherShipQ, 

TimeToFetchlmvFromldleQ, TimeToMoveToShipEmpty, 

TimeToMoveToShipFull, TimeToMoveToLandEmpty, 

TimeToMoveToLandFull : INTEGER ;

CraneOperational, ShipInBerthOne, ShipInBerthTwo, CraneOnlmports, 

CraneLoaded, _LoadImv, _UnLoadImv, _LoadShip, _UnLoadShip,
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Returnlm vsToIdle, FetchlmvFromShipQ, FetchlmvFromOtherShipQ, 

FetchlmvFromldleQ, FulllmvToUnload, ChangeACraneToExports, 

Makelmvldle, ShipArrivalDue, WorkAtBerthCompleted, 

_MoveGantryToShipSide , MoveGantryToLandSide, 

MoveGantryToShipEmpty, MoveGantryToLandEmpty, 

NextShipjoblsAnlm port, NextLand JoblsAnlmport, LoadVehicleWithlmport, 

UnLoadExportFromVehicle, Next JoblsAnlmport, MovelmportToStack, 

MoveEmptyToStack, MoveEmptyToStackFromGate, MoveExportToStack, 

LoadlmportFromlmv, UnloadExportToImv: BOOLEAN ;

VAR {variables local to this module}

Bay Free, TruckW aiting, TruckOutside, W aitingForTruck, ShipJobsLeft, 

BerthedShip, NoExportsInStore, ShipFullOfExports, Im vsldle, 

EmptylmvToLoad, JobToBeDone, PriorityToShipjobs, JobOutstanding, 

Next Job, JobFound: Boolean;

Bay : INTEGER ;

FUNCTION GantryToShipSide : Boolean; Extern;

FUNCTION WhichBay: In teger ; Extern;
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FUNCTION StartNewJob : Boolean ;

BEGIN

PriorityToShipJobs := GantryToShipSide ; {enquiry to rules.pas} 

IF  ((NumbMoveToShipJob *  NumbMoveToExitJob > 0 )  AND 

(PriorityToShipJobs = T ru e )) THEN 

BEGIN

MoveGantryToShipSide := True; 

MoveGantryToLandSide := False ;

END ELSE

IF  ((NumbMoveToShipJob *  NumbMoveToExitJob > 0 )  AND 

(PriorityToShipJobs = False)) THEN 

BEGIN

_MoveGantryToLandSide := True; 

MoveGantryToShipSide := False ;

END ELSE 

IF  NumbMoveToShipJob > 0 THEN 

BEGIN

MoveGantryToShipSide := True ; 

MoveGantryToLandSide := False;

END ELSE 

IF  NumbMoveToExitJob > 0 THEN 

BEGIN

MoveGantryToLandSide := True ; 

MoveGantryToShipSide := False ;

END ELSE 

BEGIN

_MoveGantryToLandSide := False ;
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_MoveGantryToShipSide := False ;

END;

IF (_MoveGantryToShipSide = True) AND (NextShipjoblsAnlmport = True) 

THEN

BEGIN

MoveGantryToShipEmpty := True;

JobToBeDone := True;

_MoveGantryToLandSide := False;

TimeToMoveToShipEmpty := 40;

END ELSE

IF  (_MoveGantryToShipSide = True) AND (NextShipjoblsAnlmport = False) 

THEN

BEGIN

MoveGantryToShipEmpty := False;

JobToBeDone := True;

_MoveGantryToLandSide := False;

TimeToMoveToShipFull := 60;

END ELSE

IF  (MoveGantryToLandSide = True) AND ( NextLand JoblsAnlmport = False) 

THEN

BEGIN

MoveGantryToLandEmpty := True;

JobToBeDone := True;

_MoveGantryToShipSide := False;

TimeToMoveToLandEmpty := 40;

END ELSE
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IF  (MoveGantryToLandSide = T rue) AND (NextLand JoblsAnlmport = True) 

THEN

BEGIN

MoveGantryToLandEmpty := False;

JobToBeDone := True;

_MoveGantryToShipSide := False;

TimeToMoveToLandFull := 60;

END

ELSE JobToBeDone := False;

IF  ( NumbStackRmgldle > 0) AND (JobToBeDone = True) THEN 

STARTNEWJOB := True ELSE StartNewJob := False ;

END;

FUNCTION StartShoreSideWork : Boolean;

BEGIN

IF  NextJoblsAnlmport = True THEN 

BEGIN

JobOutstanding := True;

LoadlmportFromlmv := True;

UnloadExportToImv := False;

Time := 60;

END ELSE 

BEGIN

JobOutstanding := True;
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UnloadExportToImv := True;

Time := 60;

LoadlmportFromlmv := False;

END;

IF  (NumbRmgAtSSide > 0 )  AND (JobOutstanding = True) THEN

STARTSHORESIDEWORK := True ELSE StartShoreSideWork := False;

END;

FUNCTION StartLandSideWork : Boolean;

BEGIN

IF Next JoblsAnlmport = True THEN 

BEGIN

JobToBeDone := True;

LoadVehicleWithlmport := True;

UnloadExportFromVehicle := False;

_Time := 60 ;

END ELSE 

BEGIN

JobToBeDone := True;

UnloadExportFromVehicle := True;

Time := 60;

LoadVehicleWithlmport := False;

END;

IF  (NumbRmgAtLSide > 0) AND (JobToBeDone = True) THEN

STARTLANDSIDEWORK := True ELSE StartLandSideWork := False ;

END;
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FUNCTION StartMoveFromSSide : Boolean;

BEGIN

IF  NextJoblsAnlmport = True THEN 

BEGIN

Next Job := True;

MovelmportToStack := True;

MoveEmptyToStack := False;

Time := 60;

END ELSE 

BEGIN

Next Job := True;

MoveEmptyToStack := True;

Time := 40;

MovelmportToStack := False;

END;

IF  ( RmgToLeaveSSide > 0) AND (NextJob = True) THEN

STARTMOVEFROMSSIDE := True ELSE StartMoveFromSSide := False ;

END;

FUNCTION StartMoveFromLSide : Boolean;

BEGIN

IF  NextJoblsAnlmport = True THEN 

BEGIN

JobFound := True; 

MoveEmptyToStackFromGate := True; 

MoveExportToStack := False;
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Time := 40;

END ELSE 

BEGIN

JobFound := True;

MoveEmptyToStackFromGate := False;

Time := 60;

MoveExportToStack := True;

END;

IF  ( RmgToLeaveLSide > 0) AND (JobFound = T ru e) THEN

STARTMOVEFROMLSIDE := True ELSE StartMoveFromLSide := False ;

END;

FUNCTION LetTrucklnP ort : Boolean;

BEGIN

IF  Num TruckOutside > 0 THEN TruckOutSide := True ELSE 

TruckO utside := False;

IF  (ShiplmportJobs > 0 ) OR (ShipExportJobs > 0) THEN 

shipJobsLeft := True ELSE ShipJobsLeft := False ;

IF  shipJobsLeft = True THEN w aitingForTruck := True ELSE 

W aitingForTruck := False ;

IF  ( truckO utside = T rue) AND (w aitingForTruck = T ru e) THEN 

LetTrucklnP ort := True ELSE LetTrucklnP ort := False ;

END;
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FUNCTION MoveToBay : Boolean ;

BEGIN

IF  Num bTruckToBay > 0 THEN 

BEGIN

truckW aiting := True;

Bay := WhichBay ;

END ELSE 

BEGIN

truckW aiting := False; 

bay Free := False;

Bay := 0 ;

END;

IF  Bay > 0 THEN 

BEGIN

bayFree := True;

BayPos := Bay;

END ELSE bayFree := False;

IF  (truckW aiting = T rue) AND (bayFree = T ru e) THEN 

BEGIN

MOVETOBAY := True;

_Time := 0;

END ELSE MOVETOBAY := FALSE ;

END;
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FUNCTION StartShipA rrive : Boolean ;

BEGIN

IF  (NumberOfShipsAtSea > 0) AND (ShipA rrivalD ue = T ru e) THEN 

BEGIN

STARTSHIPARRIVE := True ;

Time := 1200 ;

END ELSE STARTSHIPARRIVE := False;

END;

FUNCTION StartD ockA tBerth : Boolean;

BEGIN

IF  (NumbShipsWaitingToBerth > 0 ) AND (Num bFreeBerths > 0 ) THEN 

BEGIN

STARTDOCKATBERTH := True;

_Time := 120;

END ELSE STARTDOCKATBERTH := False;

END;

FUNCTION StartShipLeave: Boolean ;

BEGIN

IF  WorkAtBerthCompleted = True THEN 

BEGIN

STARTSHIPLEAVE := True;

Time := 3600;

END ELSE STARTSHIPLEAVE : = False;

END;
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FUNCTION SendEm ptylm vToStore : Boolean;

BEGIN

IF  StoreNumWithExpContainer = 0 THEN noExportsInStore := True ELSE 

NoExportsInStore := False ;

IF  ExportsLeftForShip = 0 THEN shipFuIIO fExports := True ELSE 

ShipFuIIO fExports := False;

IF  (shipFuIIO fExports = T rue) OR (noExportsInStore = T ru e) THEN 

_MakeIm vIdle := True ELSE _MakeIm vIdle := False ;

IF  (NumbEmptylmvsToStore > 0) AND (_M akeIm vIdle = False) THEN 

BEGIN

SENDEMPTYIMVTOSTORE := True;

Time := 30;

END ELSE SENDEMPTYIMVTOSTORE := False; 

(SENDEMPTYIMVTOSTORE Must re tu rn  _MakeIm vIdle}

END;

FUNCTION SendFullIm vToStore : Boolean ;

BEGIN

IF  NumbFullImvsToStore > 0 THEN 

BEGIN

SENDFULLIMVTOSTORE := True;

Time := 60;

END ELSE SENDFULLIMVTOSTORE := False;

END;
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FUNCTION SendEm ptylm vToShip: Boolean;

BEGIN

IF  (NumbEmptylmvToShip > 0 ) THEN 

BEGIN

SENDEMPTYIMVTOSHIP := True;

Time := 60;

END ELSE SENDEMPTYIMVTOSHIP := False;

END;

FUNCTION SendFullIm vToShip : Boolean ;

BEGIN

IF  (Num bFullIm vToShip > 0) THEN 

BEGIN

SENDFULLIMVTOSHIP := True;

Time :=120;

END ELSE SENDFULLIMVTOSHIP := False;

END;
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{CRANEJOBS must re tu rn  Loadlmv, UnLoadlmv, LoadShip, UnloadShip, 

FetchlmvFromShipQ, Fetchlm vFrom OtherShipQ, Fetchlm vFrom ldleQ, 

FuIIIm vToUnload, R eturnlm vsToIdle, ChangeACraneToExports}

FUNCTION CraneJobs : Boolean;

BEGIN

IF  (ShipInBerthOne = True) OR (ShipInBerthTw o = T ru e) THEN 

berthedShip := True  

ELSE BerthedShip := False ;

IF  (berthedShip = False) AND (NumEmptylmvAtShip > 0) THEN 

BEGIN

im vsldle := True;

Returnlm vsToIdle := True;

END ELSE im vsldle := False;

IF  BerthedShip = True THEN 

BEGIN

IF  NumEmptylmvAtBerth > 0 THEN 

BEGIN

emptylmvToLoad := True;

FetchlmvFromShipQ := True;

FetchlmvFromOtherShipQ := False;

FetchlmvFromidleQ := False;

TimeToFetchlmvFromShipQ := 40;

END ELSE

IF  Num Emptylm vAtOtherBerth > 0 THEN 

BEGIN

emptylmvToLoad := True;
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FetchlmvFromOtherShipQ := True;

FetchlmvFromShipQ := False;

FetchlmvFromldleQ := False; 

TimToGetlmvFromOtherShipQ := 40;

END ELSE

IF  Numldlelmvs > 0 THEN 

BEGIN

emptylmvToLoad := True;

FetchlmvFromldleQ := True;

FetchlmvFromShipQ := False;

FetchlmvFromOtherShipQ := False; 

TimeToFetchlmvFromldleQ := 40;

END ELSE emptylmvToLoad := False;

END;

IF  BerthedShip = True THEN

IF  Num FullIm vAtBerth > 0 THEN 

BEGIN

_FullImvToUnLoad := True;

TimeToUnloadFullImv := 40;

END ELSE

FullimvToUnload := False;

IF  BerthedShip AND ( CraneOnlmports = T rue)

AND (CraneLoaded = T ru e) AND (emptylmvToLoad = T ru e) 

THEN Loadlmv := True  

ELSE Loadlmv := False ;

IF  BerthedShip AND (CraneOnlm ports = False)

AND (CraneLoaded = False) AND (_FullIm vToUnLoad = T rue)
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THEN UnLoadlmv := True  

ELSE UnLoadlmv := False ;

IF  BerthedShip AND (CraneOnlm ports = False) AND 

(CraneLoaded = T ru e) THEN

BEGIN

LoadShip := True;

TimeToLoadShip := 40;

END ELSE LoadShip := False;

IF  (C urrentShipB erth  = 1) AND

( (NumlmportsRemaining < ( NumTotallmportJobs /  2 )) AND 

(NumCranesOnlmports = 2 )) OR 

( (NumlmportsRemaining = 0) AND 

(NumCranesOnlmports = 1 )) THEN

BEGIN

changeACraneToExports := True;

CraneOnlmports := False;

END;

IF  (C urrentShipB erth = 2) AND

( (NumImportsRemaining< (2*N um TotalIm portJobs/3)) AND 

(NumImportsRemaining> ( NumTotallmport Jobs/3)) AND 

(Num CranesOnImports=3)) OR

( (NumImportsRemaining< ( NumTotallmport Jobs/3))  AND 

( Numlmports Remaining > 0) AND 

( NumCranesOnImports=2))  OR 

( (NumlmportsRemaining = 0) AND 

(NumCranesOnlmports = 1 )) THEN

BEGIN
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changeACraneToExports := True;

CraneOnlmports := False;

END ELSE

changeACraneToExports := False;

IF  BerthedShip AND (ChangeACraneToExports = False) AND 

(CraneOnlm ports = T ru e) AND 

(CraneLoaded = False) THEN

BEGIN

_UnLoadShip := True;

TimeToUnloadShip := 40;

END ELSE Unload Ship := False;

IF  ( (CraneOperational = False) AND (im vsldle = T ru e )) OR

(CraneOperational = False) THEN CRANEJOBS := False;

IF  ( ( Loadlmv = T ru e) OR (U nLoadlm v = T ru e) OR

(_LoadShip = T ru e) OR (_UnLoadShip = T ru e )) AND 

( NumShipCranesIdle > 0) THEN CRANEJOBS := True ELSE 

Crane Jobs := False ;

END;

END.
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APPENDIX E

DESIGNER -  An in teractive approach to man/machine 

in terface development.

E .l  INTRODUCTION

Designer was created as a tool fo r use with the ESSIM simulation language 

and expert system, allowing programmers to add a graphic/windowing in terface  

fo r the presentation of output. The concept behind Designer was not ju st to 

provide a lib ra ry  of p re -w ritten  routines, but to le t the user create an 

in terface in teractive ly . Designer is a form of 4GL in  which 'in teractive  

programming1 is used to generate PASCAL program code. Once created, the 

in terface layout can be 'edited' and new code produced. Simulation models which 

in itia lly  provide a crude form of in put/o utput and screen design can be 

transform ed by replacing 'read' and 'w rite ' commands. Furtherm ore, the 

eventual user of the model can be d irectly  involved with the setting out of the 

in terface and the presentation of the output.

E .2  USING DESIGNER

The standard Designer interface is based on the use of high-resolution  

in  verse-video graphics (black characters on a white background). Characters 

shapes are user defined and options are selected using a mouse. A ll input and 

output, whether in  graphic or character form at, is displayed in  'pull-dow n' or 

'pop-up' windows. The top two lines of the screen are reserved fo r default
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menu options. The bottom line is used for the display of instructions.

The d efau lt m enu o p tion s are  sp e c if ie d  b y  sim ply ty p in g  th e  ap p rop ria te  

t e x t .  Two or more sp a c e s  in d ica te s  th e  s ta r t  of a new o p tio n . T he p osition  of 

th e  menu op tion s is  autom atically  ad ju sted  su c h  th a t an e v e n  la y o u t i s  a lw ays  

o b ta in ed . P ointing  th e  m ouse icon  at an o p tio n s r e s u lt s  in  i t s  d isp la y  

c h a r a c te r is t ic s  b e in g  r e v e r s e d .

FIGURE E7 6 DEFINING MENU OPTIONS USING ’DESIGNER'
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E . 2 . 1  CREATING PULL-DOWN WINDOWS -  P ointing  th e  m ouse icon  at a d efa u lt  

option  and c lic k in g  th e  le f t  m ouse b u tton  r e su lt s  in  th e  crea tion  of a p u ll-d ow n  

w indow . T he w idth  of th e  window is  s e t  to  be th e  sam e as th a t of th e  d isp la y ed  

o p tio n . The h e ig h t o f th e  d efau lt window is  su ff ic ie n t  fo r  a s in g le  window  

op tion . Window o p tio n s  are en tered  b y  sim ply ty p in g  th e  ap p rop ria te  t e x t .  If  

th e  w idth of th e  te x t  e x c e e d s  th e  w idth  of th e  w indow , th e  w indow s iz e  is  

a d ju s te d . P r e ss in g  th e  e n te r  k e y  e x p a n d s  th e  window dow nw ards and p o sitio n s  

th e  c u rso r  on th e  fo llow in g  lin e . T ex t in p u t to  th e  w indow is  term in ated  b y  

p r e ss in g  th e  ESC k e y .  P oin ting  th e  m ouse icon  at a w indow op tion  r e v e r s e s  

th e  d isp la y  c h a r a c te r is t ic s  of th e  t e x t .  T he window i s  rem oved from  th e  sc r e e n  

b y  m oving th e  m ouse icon  to  a point o u ts id e  th e  window a rea .

M  W1UI $ l: M il 21!| a ff f lM W flh S m

SUB-OPTION 1. SUB-OPTION Z. 
i SUB-OPTION 3.

m w m > \  i n  ■  1 1  i i i  i T - r ^ n t ink to a prograM
FIGURE E7 7 CREATING PULL-DOWN MENU TYPE WINDOWS USING ' DESIGNER'
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Pull-dow n w indow s can  be s ta c k e d . P o in ting  at a new  window option  and  

c lick in g  th e  le ft  m ouse b u tton  r e s u lt s  in  th e  crea tion  of a d efa u lt  w indow . 

Window op tion s and fu r th e r  su b -w in d o w s can  be sp e c if ie d  a s  b e fo re .

E . 2 . 2 POP-UP WINDOWS -  P op -u p  w indow s d iffe r  from p u ll-d ow n  w indow s in  

th a t th e y  are in d ep en d en t from an y  s p e c if ic  menu o p t io n . F u rth erm ore , p op -u p  

w indow s are not u se d  for th e  d isp la y  of m enus b u t ra th er  for  th e  d isp la y  of 

free-form  t e x t ,  r e q u e s ts  for  u se r  in p u t , and th e  crea tion  of grap h ica l form s.

itTir.mm?
FIGURE E78 CREATING POP-UP WINDOWS FOR SIMULATION OUTPUT USING ' DESIGNER ’
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Pop-up windows are created by clicking the rig h t mouse button. The 

window can be positioned by moving the mouse, and the size of the window 

altered using the arrow keys. A code unique to the new window is displayed 

at the bottom of the screen. The window 'editing' session is term inated by  

pressing the ESC key . Several pop-up windows can be displayed simultaneously 

to make it  simpler to sort out re lative positioning problems.

E .2 .3 EXTERNAL PROGRAM CALLS -  External programs can be activated by  

associating a file  name with a menu option. Designer remains memory resident 

until term ination of the sub-process. To specify a file  name, the mouse icon 

has to be positioned over a given window option. Typing C TR L-L leads to the  

user being guided through a series of questions. Several types of program  

calls are possible. The user can 'chain' or 'spawn' a program , w ith , or w ithout 

the use of param eters. A lternatively  DOS commands can be activated, again 

with the possibility of parameters passing. Output generated by external 

programs can e ither be displayed on a clear screen (in  text-m ode) or re -d irected  

to a specified pop-up window. What is particu larly  unusual with Designer is  

that the program calls can be tested stra ight away without having to generate 

and compile the code. Designer's ab ility  at executing DOS commands is  

particu larly  useful in  the context of providing the eventual user, facilities  

such as directory listings ( possibly to a window), file  copying/backup, 

changing default directories, and so on.

E .2 .4 CODE GENERATOR -  Having designed the in terface, the corresponding 

program can be produced by typing CTRL-Q  . The user is prompted fo r a file  

name. Designer then generates the PASCAL code and compiles it  to EXE form at. 

A 'screen design' file  is also generated which can be used to re-load a
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previously designed in terface.

E .3  MODIFYING DESIGNER FILES

There are two ways of modifying Designer files . Re-loading the screen 

design file  or a ltering  the PASCAL code. The PASCAL code is sp lit into 

modules. Only one of these modules is accessible by the user and consists of 

a single procedure. The procedure consists of a CASE statement re lating  to 

window and menu options. By inserting lib ra ry  commands and /or procedure 

and function calls , particu lar menu options can be made to activate given tasks. 

The file  must then be re-compiled using the RERUN batch file  to analyse the 

effect of the changes.

E .3.1  USING THE GENERATED FILES -  Having designed an in terface, the 

user's program has to be modified. The firs t step is to a lter the heading of 

the program code from PROGRAM FileName to MODULE FileName. The second 

step consists in enclosing the program body w ithin a procedure. This procedure 

must then be called by one of the menu options. This can be done by modifying 

the CASE statement as described above. The procedure must also be declared 

as being EXTERNAL before LINKING the modules. The read and w rite  

statements in the user's program w ill also need changing. These can be 

replaced by READWIN and WRITEWIN lib ra ry  functions th at re -d ire c t I/O  

commands to specified windows. Graphs can also be produced w ithin windows 

using the appropriate lib ra ry  functions. A ll the ESSIM port model interfaces  

were created using Designer.
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APPENDIX F 

OBJECT-ORIENTED SIMULATION

F . l  INTRODUCTION

Knowledge Base Systems (KBS) and Expert Systems (ES) have been 

receiving increasing attention as potential components of a new generation of 

simulation models. The in terest in amalgamating the two techniques has resulted  

predom inantly out of the d ifficu lties in  representing human expertise using 

present simulation modelling methods. Furtherm ore, ESs have increasingly been 

applied to problems of m anufacturing control in  real-tim e which has resulted  

in  the need to represent the same ES components in  a simulation model of the 

real-w orld  system.

A number of approaches have been used in  combining expert system and 

simulation methodologies in creating an environment fo r decision support. The 

method th at w ill be discussed is that of Object Oriented Programming (OOP) 

in  which human expertise in  the form of rules depicting decision making is 

represented as an in tegral part of the simulation model.

The next section w ill consider the general features of Object Oriented  

languages. In  section F .3 , the application of the object oriented approach will 

be considered with respect to a number of developments which have use the 

OOP concept in  developing simulation models (other than F .3 .1  which discusses 

the Smalltalk language). In  section F .4 ,  the advantages and disadvantages of 

the OOP approach are considered and compared to alternative methodologies.
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Some brief concluding rem arks are g iven  in section  F .5 .

F .2  WHAT IS  OBJECT ORIENTED PROGRAMMING

O bject-O riented programming is a fa irly  loose term to describe a method 

of knowledge representation based on the description of objects and th e ir 

in terrelationships. The technique originates from the A I fie ld  where it  is  used 

in  developing Expert Systems most often using LISP as a basis fo r the language 

construct. I t  was not long before it  was noticed that the Object-O riented  

approach would be suitable fo r the development of simulation models. Being 

based on the Expert System (ES) paradigm, object-oriented simulation provides 

an effective environment fo r the specification of domain knowledge.

In  constructing an object-oriented sim ulation, the user firs t creates a set 

of objects that broadly correspond to real-w orld objects. The characteristics  

of these objects are then defined; the inputs they respond to , and the actions 

they carry  out in  response. The in terp lay between objects is represented by 

the passing of messages. In  other words, the action carried out by one object 

may lead to a message being transm itted to another object specifying that an 

action should be carried out.

Another im portant aspect of object-oriented simulation is the concept of 

'inheritance' which is derived from the semantic networks knowledge 

representation scheme used in  many expert systems. Inheritance is useful in  

creating hierarchies of objects, each of which can in h erit characteristics from  

a higher ranking set.
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F .3  EXAMPLES OF LANGUAGES BASED ON THE OBJECT ORIENTED APPROACH

F .3 .1  SMALLTALK-80 (Reference Ulgen and Thomasma[1986])

The Sm alltalk-80 language was developed about 15 years ago to provide 

an alternative to the procedural programming techniques. Sm alltalk-80 replaces 

the procedural concept of operators and operands by th a t of messages and 

objects. A good example described by Ulgen and Thomasma[1986] # is a 

comparison of a mathematical operation using a procedural and object-oriented  

language. In  the case of a procedural language, an operation such as S IN (X )  

would be carried  out by applying the SIN operator on the operand. The 

operand remains passive whereas the operator is active and carries out a 

calculation based on the value of the operator. The in te g rity  of the operation 

is maintained by insuring that the operand is of the correct data-type.

In  contrast, the object-oriented approach defines the operator (X ) as 

being an object. The object can then perform  the operation (S IN ) on its e lf. 

Consequently, a more logical way of w riting  the command would be X SIN in  

which SIN is a message sent by the object (X ) asking fo r the operation to be 

perform ed. In  Sm alltalk-80, messages that do not have arguments are referred  

to as unary messages. Conversely, messages that have one or more arguments 

are known as keyword messages. The syntax of a typical message that has two 

arguments would be as follows:

Machine acquire: 1 Resource: 'replacement g rin d er1

Machine is the object that receives the message. The two arguments are 

1 and 'replacement g rin d e r'.
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Inheritance also plays a role in  such a simple operation. Sm alltalk-80 

supports a tree  like  structure fo r the classification of objects and operations. 

For example, X may belong to a predefined 'Class' of objects known as 

'Num ber1. 'Number' is  in  tu rn  known to consist of three subclasses; Float, 

Fraction and In te g e r. The class 'In teg er' in  tu rn  has three subclasses; 

Sm alllnteger, LargePositivelnteger, and LargeN egativelnteger. These classes 

are arranged in a hierarchical order in which a subclass is contained en tire ly  

w ithin its  superclass. Consequently, an instance of a specific class must also 

be an instance in  the corresponding superclass. Operations are also defined 

as part of classes.

The same class systems applies to operations. For example, Factorial 

belongs to the class In teg er. I f  the message Factorial is sent to an instance of 

the class Sm alllnteger (say X ), then a search fo r the Factorial operation w ill 

firs t be made in  the Sm alllnteger class and if  it  is not found, then in  its  

superclass, In te g e r. I f  th is were also to be unsuccessful the backward search 

would continue u n til no more superclasses were le ft (The top class is 'Object' 

and is the only class not to have a superclass).

Sm alltalk-80 is a general purpose object-oriented language and is 

therefore not specifically designed fo r sim ulation. As w ith any high level 

procedural language such as Pascal or C , the simulation control framework has 

to be defined. Indeed, Sm alltalk-80 can be used to create models that use any 

of the well known methodologies such as activ ity  scanning, process interaction  

o r event scheduling. Furtherm ore, the language can be used to model time 

using the methods of discrete changes, continuous changes or combined
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discrete/continuous changes.

ADVANTAGES DISADVANTAGES

Compact code. Code d iffic u lt to understand.

Supports inheritance. Not designed fo r simulation.

graphical output possible. D ifficu lt to debug.

Data structures lim ited.

In flexib le  (sim ilar to 4GL)

F .3 .2 ROSS (K lah r[1984], K lahr[1985], K lahr & Faught[1980], M cA rthur[1986],

ROSS (Rand O bject-oriented Simulation System) is an object-oriented  

simulation language that uses an English like  syntax which is supposed to make 

the code easier to read and in tellig ib le to non-programmer s. ROSS is 

implemented in  LISP (MacLisp, In te rlis p -2 0 , V a x -In te rlis p , In te rlis p -D , 

Franzlisp and Zetalisp) and is therefore in terp reted . Th is , RAND claim, is an 

advantage since it  permits in terruption  of the simulation run (fo r queries & 

code m odification), removes the need fo r compilation (hence easier & quicker 

modification/experim entation cycle ), and simplifies the debugging process. 

ROSS also provides textual simulation output designed fo r tracing purposes 

and graphics facilities fo r animated presentations.

Adelsberger [1986])
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ROSS d iffers  from Sm alltalk-80 in  that it  is specifically designed fo r 

sim ulation, but the general concept of programming using objects and message 

passing is retained. The syntax fo r a message being passed from one object 

to another is as follows:

(ASK <object> <message>) 

fo r example:

(ASK operatorl send re p a irte a m l to machine3)

<message> is a sequence of LISP ATOMS. In  the example, 'operatorl' is

sent the message 'send repair teaml to machine3'.

Having sent a message to an object, the object has to have a way of 

responding. In  ROSS, the response to the message w ill also take the form of 

messages and has the following syntax:

(ASK <object> WHEN RECEIVING <message-template> <body>

<message-template> is a sequence of Lisp atoms uses in  detecting the  

message being received. <Body> is a lis t of ROSS commands or LISP code. An 

example object response would be:
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ASK operator WHEN RECEIVING (send >repair_team to >machine)

(ASK I myself add ! rep a irteam  to lis t of busy_teams)

(ASK !myself remove !repair_team  from lis t of 

repair_team s_available)

In  ROSS, the concept of global functions is not supported and so each 

object in the system must have a behaviour defined ( it  is  assumed th at all 

objects in  the system are un ique). In  the above example, when operatorl 

receives a message, it  gets compared to the message tem plate. The symbol > 

which is used as a p refix  in  the message template indicates the use of a 

variable. For example, >repair_team is  a variable and w ill be bound to its  value 

'rep air_team l'. Variables in  <body> are prefixed by the character ! which 

indicates that the value of the variable should be used ra th er than its  name. 

Also notice the use of the variable !m yself. This indicates that a message 

should be passed to the curren tly  active object (a form of looping with a ra th er 

strange syntax). Hence, a typical lis t of actions carried  out by an object 

consist of a complex chain of subsequent message transmissions (which include 

messages passed from an object to its e lf ) .

As with Sm alltalk, ROSS supports the concepts of object hierarchies and 

inheritance. To syntax fo r creating a new object is as follows:
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(ASK <objectl> CREATE GENERIC <object2>)

for example:

(ASK operator CREATE GENERIC o p erato rl)

'O p erato rl' is created as being an instance of 'operator'. In  th is case, 

'operator' can be in terpreted  as a class of object while 'operatorl' represents 

a member of that class, 'operatorl' inherits  the attribu tes of its  parent which 

is why in  the firs t example a message was sent to the object 'operatorl' and yet 

in  the subsequent example, the behaviour of the object was attributed  to the 

object 'operator'. However, the fact that 'operator' is a subclass of 'operatorl' 

does not mean that th e ir behaviour must be identical. During code execution, 

ROSS firs t checks whether 'operatorl' has any behavioural responses attached 

to it .  I f  none can be found, the parent class of which the object is an instance 

is searched.

A simulation model known as SWIRL, developed using the ROSS language 

( M cA rthur[1986]) is a good example of the use of inheritance structures. When 

an instance of an object of the hierarchy receives a message, a search is made 

through the hierarchy to find  an object th at has a behaviour a ttribu ted  to it  

th a t matches the message received. So fo r example, if  the object 'fig h ter-b ase l' 

receives a message, a successive search is done through the defined object 

behaviours fo r ' fig h te r-b a s e l', ' fig h ter-base ', 'fixed-object' and fin a lly

'sim ulator' (top class in  the h iera rch y ). The objects or classes of object can
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also have values associated w ith them. For example, in  creating 'figh ter-base1 

the following CREATE command could be used:

(ASK fixed-object CREATE GENERIC fighter-base WITH

Position (0 0)

Status active

F ighters-avail n il

Scram ble-delay 10

A le rt- duration 1800

some of the values such as 'A lert-d uration ' are taken as being defaults 

fo r all instances of 'fig h ter-b ase '. On the other hand attribu tes such as 

'F igh ter-ava il' are given a N IL value meaning that each individual instance of 

'F ighter-base' may have its  own value fo r the specified a ttrib u te . The values 

of a ttrib u tes , as with variables in general, can be manipulated as follows using 

messages:

(ASK F ighter-basel RECALL YOUR a lert-d u ratio n )

(ASK F ighter-basel SET YOUR status TO destroy)

(ASK F ighter-basel INCREMENT YOUR alert-duration  BY 100)
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In  the second and th ird  example, if  'status' or 'a lert-d uration ' do not 

exist fo r the specified object, then the a ttrib u te  is automatically created. In  

the th ird  example, if  'a lert-d uration ' does not exist its  value is inherited  from  

the 'figh ter-base' class, the a ttrib u te  created under 'fig h ter-b a s e l' and the  

value 100 added to its  present value (1800).

ROSS provides commands that are specific to simulation. Time handling  

is of course one of the most critica l aspects of simulation and is handled by  

commands of the following form:

(ASK operator3 PLAN AFTER 20 SECONDS 

TELL Machine2 to term inate)

the 'PLAN AFTER' command ensures that the following message is only 

sent a fte r the specified delay in simulated time has elapsed. To advance clock 

time, ROSS provides the following command:

(ASK nclock T ICK )

'nclock' has an a ttrib u te  'ticksize' which determines the clock time 

increm ent. Advancing the clock by a specified number of time units does not 

mean than an event that should have occurred before the new clock time does 

not get executed. The events that have been 'missed' are carried out u n til the
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new clock time has been reached. This simply perm its in terruption  of the 

simulation at set time in tervals fo r analysis of resu lts.

ADVANTAGES AND DISADVANTAGES OF ROSS 

ADVANTAGES:

1. English like  syntax increases the readability of the code.

2. Some simulation problems can naturally  be expressed in  term s of

objects and messages. In  particu lar human communication, which 

explains why object-oriented programming originates from A rtific ia l 

Intelligence research.

3. High level code which simplifies the programming task.

4. Good fo r rapid prototyping because of the in terpreted natures of

the code.

5. ROSS uses just a few commands which simplifies the programming 

process (ASK & TELL are the most common in structions). In  this  

respect the language resembles LISP, in  which ROSS is itse lf 

w ritte n .

6. 'Inheritance' can sim plify the programming task if  objects in  the 

system have sim ilar characteristics.
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DISADVANTAGES:

1. The user has very  little  control over variable structures and data 

types.

2. ROSS assumes that the messages th at are going to be sent are  

simple consisting of just a few variable values. In  most cases, 

real-w orld messages are fa r more complex than can be modelled.

3. 'Inheritance' though useful in many cases, can make tracing  

execution of the model d iffic u lt. Complications are fo r example, 

inevitable when variables can assume values without there being 

any d irect instruction from the programmer.

4. Some ROSS commands are unnecessary, messy and confusing. For 

example, the need fo r an object to sent itse lf messages in  modifying 

variable values.

5. The in terp re tive  nature of the code combined with the pattern  

matching characteristics of the message passing system, mean that 

large sections of simulation code are very  slow to execute, though 

adm ittedly, quicker to m odify.

6. ROSS has limited app licab ility . There would be little  point in using 

ROSS in  simulating problems which do not have the characteristics 

of inheritance.

7. Some simulation processes can be identified  with objects and 

messages. This is not however always the case and it  can become 

somewhat confusing to call some hypothetical process an 'object'. 

Furtherm ore, a message is often not what one can visualise an 

object as sending, particu larly  when the 'object' is not really an 

object in the firs t place!
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8. A point mentioned by M cArthur [1986] is that ROSS cannot deal 

effectively with 'non-intentional' events. The example given is of 

a plane entering the range of a rad ar. The plane is hard ly going 

to announce its  position to the radar by sending it  a message! The 

plane entering the radar range is  a side effect of it  fly in g  its  

course and can therefore be categorises as a non-intentional side 

effect.

F .3 .3 KBS /  SIMULATION CRAFT (Reddy E t. A l.[1 9 8 6 ], Baskaran E t.

A l.[1986])

KBS (recently  renamed as SIMULATION CRAFT) was developed at 

Cam egie-Mellon U niversity  and resembles ROSS in  design. KBS is w ritten  in  

a Schema Representation Language (SRL) which is itse lf implemented in  Franz 

Lisp. Objects in a KBS model are represented by 'Schemata1 which are made 

up of 'Slots1. The slots contain data corresponding to physical lim itations, 

event behaviour e tc . .  An example schema fo r a d istribution centre would be as 

follows:
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{ {d is trib u tio n -cen tre :

CAPACITY:

INVENTORY:

SH IPM EN T-TR A N SIT-TIM E:

RECEIVE-ORDER-EVENT: "receive-order-ru le"

R ange:(TYPE instance even t-ru le ) 

RECEIVE-SHIPM ENT-EVENT: "Receive-shipm ent-rule"

Range: (TYPE instance even t-ru le )

ADMINISTRATOR

Range:(TYPE instance adm inistrator) 

O R D ER -TR A N SIT-TIM E:

Default :0 

BACKORDERS:

TOTAL-ORDERS:

INVENTORY-COST } }

The entries in capital le tters  represent the slots whereas the entries, 

’Range' and 'Default' are known as Facets. The range facet defines the type  

of value that may fill the slot. The default facet is used in  providing a default 

value if  a specified slot is em pty.

The schemata th at describe the model can be in terrelated to form a 

network by using slot values as lin ks . Furtherm ore, slots may in h erit values 

from slots in  other schemata.
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{{even t-24

IN ST ANCE :event-notice  

FOCUS :D1

comment:Focus of even t,the  en tity  

EVENT: "receive-order-event"

comment: event-slot in  event-schema 

TIM E: "21 A p ril 1985 11:00:00"

comment:time of execution 

PR E-A C TIO N : nil

comment: Action to be taken before event execution 

POST-ACTION :n il

comment: Action to be taken a fte r event execution 

EVENT-PARAMETER: orderlO

comment: Event parameters 

R UN -EVEN T: run-event

comment: method to execute event

}}

The above example is of a schema known as an event-notice. The event 

to take place at the specified time is the a rriva l of an order focused around 

the distribution centre D l. The "receive-order-event" en try  is a cross 

reference to a slot in  the 'focus' schema. The content of the slot may be a 

reference to a LISP function.

KBS uses the discrete event approach to sim ulation. Event behaviour can 

be expressed in the form of rules to be executed when the event occurs. The
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following example rule links with the d istribution cen tre schem a.

{ {receive-o rder-ru le

IN ST ANCE: even t-ru le

IF : (som ething-in-in ven tory)

THEN: (schedule-transport)(deduct from inventory)

}}

There are other facilities provided by KBS which are meant to sim plify 

the model build ing, experimentation and analysis stages. The user may build  

a rule base which can then be used in  automatically selecting new experiments 

at the end of a simulation ru n . Furtherm ore, a fac ility  exists fo r detecting  

causal relationships and defining these as part of the domain ru le  base.

Simulation C ra ft is a successor to KBS and is implemented using a 

knowledge engineering tool fo r the development of expert systems known as 

Knowledge c ra ft. The underlying code in  the system is w ritten  in Common Lisp. 

Although the kernel of simulation C ra ft is almost identical to that of KBS, 

Simulation C raft d iffers  from KBS in a number of respects.

A Model Building Expert System can be used in assisting the user to 

create a graphical representation of the problem. The expert system also checks 

fo r model completeness and identifies inconsistencies. A Model Execution Expert 

is intended to help in  deciding on s ta rt and end times fo r the simulation run as 

well as identify ing the number of runs needed and the alternatives that should
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be evaluated. F inally , a Model Analysis Expert helps in  evaluating the results  

of a simulation ru n .

Simulation C ra ft provides a fu rth e r fac ility  fo r automating the simulation 

life  cycle. The Dynamic Planner is a ru le  based expert system th at can be used 

in  identify ing  a possible system configuration that could potentially be used to  

attain  a desired goal. The expert system rule base consists of knowledge on 

cause and effect relations and on desirable system configurations.

ADVANTAGES & DISADVANTAGES OF KBS /  SIMULATION CRA FT.

Because of the sim ilarities between KBS and ROSS, the two environment 

have many of the same lim itations. Where KBS d iffers  is in  the degree of 

background support provided to the user in  developing and analysing the 

simulation. This additional support is based on the use of expert system 

knowledge-bases to analyse the available inform ation. In  th is respect, the  

advice or decisions that are made automatically by KBS can only be as good as 

the coded knowledge. Whereas good advice given to the inexperienced simulation 

model user is unquestionably useful, one must also consider th at bad advice 

is confusing and can be worse than providing no assistance at a ll. In  the case 

of KBS/simulation c ra ft, the problem is aggravated because of the degree to 

which the processes are automated.
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F .3 .4  BLOBS (REFERENCE: Middleton & Zanconato[1985])

As in the case of ROSS, BLOBS (B Lack board OBjectS) is an 

object-oriented language fo r simulation which was specifically developed fo r 

m ilitary a irc ra ft control applications. BLOBS was developed using the POPLOG 

environment which is based on the A I language POP-11.

Middleton claims th at it  was orig inally intended to develop an environment 

based on an expert system that would obtain data from an existing radar 

sim ulator. The idea was abandoned in favour of an in tegrated approach because 

of the potential d ifficu lties in  sharing data from d ifferen t sources and of 

modifying the behaviour of the simulation in  response to a flig h t controllers 

decision represented by the expert system. The firs t system to be subsequently 

developed consisted of a blackboard system fo r modelling the a irc ra ft controller 

and an object-oriented message passing system fo r representing the a ircrafts  

and radars. Problems did however arise because the blackboard model held all 

data centrally with no possible restriction on access. There was therefore no 

way of ensuring consistency.

Objects in the model are described as sets of declarations and definitions  

each known as a BLOB. A BLOB may consist of local variable declarations, 

procedure definitions, behavioural responses (procedure-like) and an 

inheritance lis t.

Communication between BLOBS is possible in  a number of ways: One 

BLOB may interrogate the public variables of another BLOB, a message may 

be sent to a BLOB, or demons may activate a behavioural response. Demons
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are attached to variables and may be activated by a change in  the value of the  

variab le . Demons can also monitor the creation and removal of BLOB instances.

The following is an example of the representation of an a irc ra ft under 

BLOBS:

Dynamic blob a irc ra ft;

public vars position heading speed clim b_rate; 

private vars target_heading target_height target_speed; 

on_message change_course

with new_heading -> my target_heading do 

; ; ;  In itia te  change in heading

enddo;

on message climb

with new height ->  my target_height 

climb_rate ->  my climb rate do 

; ; ;  In itia te  climb 

enddo;

; ; ;  Other behaviours 

endblob;

ADVANTAGES & DISADVANTAGES OF BLOBS

The author of the BLOBS system claims that the language has several 

advantages over the ROSS implementation: The distinction between local and
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global variables in  defining objects, the use of demons in  trig g erin g  behaviours 

when variables are updated, s tric te r type checking of messages and the 

possibility of deleting objects during the simulation ru n . On the other hand, 

the author also recognises certain p itfa lls  in  the BLOBS language: A BLOB that 

is a recipient of a message requires p rio r knowledge of the id en tity  of the  

sender. A BLOB that is created during the simulation run cannot have demons 

attached to it .  And fin a lly , the restrictions imposed by the type checking (and 

consequently the in ab ility  to apply a rb itra ry  expressions), are said to cause 

problems with the generalisation of methods.

F .3 .5  SLICE (Reference: Gosling & O kseniuk[1986])

SLICE (Simulation in Lisp of Continuous Events) is a LISP program code 

generator that is based on the object-oriented message passing paradigm . SLICE 

was orig inally developed fo r modelling a ir tra ffic  control systems. SLICE 

represents the objects of the model as 'actors' and allows the user to define 

th e ir behaviour in terms of continuous or discrete events. Inform ation can be 

passed between actors in  the form of messages and communication w ith a central 

database is also possible.

SLICE allows an expert system rule-base to in teract w ith the model. This 

may be achieved by defining the expert system as an actor, or by representing  

it  as a separate e n tity , invokable by the behaviour routines of actors.

SLICE can be used as a program generator using a 'scrip t' file  fo r the 

definition of the problem. A ltern atively , SLICE functions can be embedded in
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ex istin g  LISP code.

Other SLICE properties are as follows:

Data is local to an actor. Remote access is not possible other than  

by sending and receiving messages.

A central database can be used by any of the processes, using 

messages to gain access, en try  to specific areas of the database 

can be restric ted .

messages sent between actors contain certain specific inform ation. 

A unique identification code, sender identification , recipient 

identification, s ta rt time, duration and content.

Objects (and more specifically th e ir defined behaviours) have 

different p rio rity  levels. In  establishing the event queue, the 

system considers both the p rio rity  level and the scheduled time 

fo r activation. Messages are always taken as having the highest 

p rio rity .

Processes (known as T-processes) in  SLICE contain data structures  

and function defin itions. Furtherm ore, these processes may have 

many 'instances' of actors of the same type . These instances 

contain the same data and function defin itions, but the value of 

the data items may d iffe r. T-Processes are organised hierarchically  

and can in herit the characteristics of higher ranking processes 

(the structure is identical to that used in ROSS).
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Each T-process consists of a stack (stores information on the execution 

s ta te ), a lis t of pointers linking variable names with th e ir values, a reference  

to the message type expected, and a pointer to the t-process that is one level 

higher in  the hierarchy of processes. The behaviour of a T-process is 

described by a set of IF -TH E N  type ru les. The action part of the rules re fe r 

to functions that have the effect of advancing the simulation clock, sending 

messages e tc . .

The behaviour of actors may be in h erited . Vehicles fo r example have some 

characteristics that apply to all vehicles, but also have features that are unique 

to a particular type of vehicle. In  SLICE, T-processes are organised 

hierarchically w ith each sub-process being able to in h e rit the characteristics  

of its  parent. This relieves the user from the burden of having to define 

general characteristics fo r every occurrence of a particu lar type of acto r. Both 

data and rules can be in herited . The total data set fo r a specific T-process is 

made of the data specific to the T-process and the data values inherited  from  

T-processes fu rth e r up the h ierarchy. However, when specific variables occur 

several times in d ifferen t T-processes, the value corresponding to the lowest 

member of the hierarchy gets p rio rity . In  the case of ru les , inheritance works 

slightly  d iffe re n tly . Rules in d ifferen t T-processes belonging to the same class 

of actor are combined. This leads to a risk  of inconsistencies in the ru les. 

However, rules may also be inconsistent fo r other reasons and so an algorithm  

is used in  resolving the conflicts.
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ADVANTAGES & DISADVANTAGES OF SLICE.

SLICE is d iffe ren t from the object-oriented languages previously 

discussed in that the systems is in fact a LISP code generator. Th is , from the  

perspective of fle x ib ility  is an advantage. Another im portant benefit of SLICE 

is the importance attribu ted  to modelling human behaviour in  terms of IF -TH E N  

type rules. The ab ility  of accessing external rule-bases is also particu larly  

a ttrac tive .

Facilities th a t are lacking include the ab ility  to attach weights to d ifferen t 

rules and the capability of seeking a goal in a ru le-base.

F .3 .6  SIMYON (References: R uiz-M ier E t. A l.[1985,1987])

SYMION is a network simulation environm ent developed using the CAYENE 

language which is said to be based on a combination of object-oriented  

programming, logic programming and the discrete event approach to system 

modelling.

A SYMION model is created by unifying a number of CAYENE objects. 

These objects, are arranged hierarchically and can in h erit the characteristics 

of objects in a parent class. SYMION also supports the use of DEMONS which 

are evaluated if  an attem pt is made at re triev in g  a specific value. For each 

defined object in the model, there exists a set of ru les . When an object receives 

a message, a search is made of the rules to find  a premise that matches the 

message type . The action part of the ru le may then be carried out which
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typ ically  involves sending messages to other objects. Consider the following 

message and ru le as an example:

(send1 C R E A T E '(S tart)) Message

(S ta rt) <== (Send_at >tim e_to_start MYSELF '(N e x t_ a rriv a l)) RULE

CREATE is the name of the object to which the message 'S tart' is being 

sent. One of the rules which form part of the object definition has a premise 

that matches the message. CAYENE w ill now take the action part of the ru le  

as a sub-goal. This results in  a message 'N ext_arriva lf being sent to the object 

CREATE (represented by the MYSELF clause) at the time given by the constant 

'tim e_to_start'. This new message also has a matching ru le defined as part of 

the CREATE object:

(N ext_arriva l) <== (send_at TNOW >next_node

(newsym >transaction_name))

(send_at (+ TNOW >time_bet_creation)

MYSELF ' (N ext_arriva l))

The action part of the ru le  now results in  the creation of two fu rth e r 

sub-goals which also take the form of messages. The use of >next_node in  the 

f irs t of two rules activates a demon requesting user in p u t. A message is then

321



sent to another object. The second ru le is a next a rriv a l scheduling mechanism 

which operates by scheduling the sending of a message by the object to itse lf 

(a t time TNOW + tim e_bet_creation) .

SYMION has a ru le structu re that is p articu larly  a ttrac tive  in  the context 

of manufacturing problems. Consider the following object description:

(defob SCHEDULE 

: properties:

(machines (M l M2 M 3 ..Mn))

: ru les:

(Move ?Part ?Mach) <==

(find ?Mach)

(available ?Mach)

(can_process ?Mach ?Part)

(not(fu ll(queue ?M ach)))

(send_at TNOW ?Mach ?Part)

(Available ?Mach) <==

(not (overloaded ?Mach))

(not ( down ?Mach))

(Down ?Mach) <==

(maintenance ?Mach ?T1 ?T2)

(lessp ?T1 TNOW ?T2)

(Down ?Mach) <==

(needs_repair ?Mach)
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The machines M l. .  Mn are objects that are defined as part of a class 

known as a SCHEDULE. The defined riiles  are used to check if  a part (?PA rt) 

should be moved to a particu lar machine (?M ach). The firs t ru le  represents 

the highest level of abstractions in  the decision making process and can be 

translated as follows: Move part P to machine M if  and only if  M exists, M is  

available, M can process P, and if  M's queue is not fu ll. Each condition in  the  

premise of the ru le are treated as sub-goals and can be solved by other defined 

ru les. For example, the availab ility  of machine M is determined by checking if  

M is not cu rren tly  overloaded and that it  is not cu rren tly  out of action. The 

search fo r solutions to sub-goals is not lim ited to the curren t object. For 

example, the ru le fo r solving the 'Needs_repair' condition is defined as part 

of the object definitions:

(defob M l

: properties:

(a_Kind_of MACHINE)

(queue Q l)

(operator O p erato rl)

(output_rate ( /  ?Num_parts ?Tim e))

(noise_level (sample_detector ? D et_ l))

: ru le s :

(Needs_repair) <==

(lessp >output_rate 13)

(lessp 30 >noise_level)
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The rule identifies machine M l as needing repa ir if  the output rate  falls  

to below 13 and the noise level rises to above 13db.

ADVANTAGES & DISADVANTAGES OF SIMYON

SIMYON is a flexib le  language in  terms of the use of ru les. As Ruiz-M ier 

points out, changes to the logic of the simulation can be very  simple to make. 

I t  would fo r example be very  simple to include a ru le  that stipulates that an 

operator w ill stop working between certain times during the day:

(Busy Operator <== (lessp T1 TNOW T2)

U nfortunately, SIMYON does lack in power in processing defined ru les. 

The inference strategy is purely backward chaining and as a consequence, the 

search fo r a solution w ill sometimes be very slow (when many sub-goals are 

id e n tifie d ). The provision of a forw ard chaining strategy would have been 

desirable. Other lim itations exist but are less serious:

1 . The syntax of the language is complex, in  particu lar when defining  

mathematical statements.

2 . Variable declarations are not required and so the ris k  of syntax 

errors in  variable names are high.

3 . Reading the code can be d iffic u lt as rules can be defined as part 

of d ifferen t objects.
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F .4  APPLYING THE OBJECT-ORIENTED APPROACH TO MODEL DEVELOPMENT

From the examples, one can see that the applicability of the 

object-oriented paradigm very  much depends on the targ et problem fo r which 

a model is to be developed. The approach to modelling is dependent on the 

entities in the model having a suffic iently  close relationship as to be able to  

establish a hierarchy in which inheritance of characteristics can play a p a rt. 

The use of inheritance is a key factor in  reducing the complexity of the model 

by lim iting the duplication of facts and rules about objects. I t  is also desirable 

fo r the problem domain to be of a type that can be naturally  broken down into  

constituent 'objects' or 'actors' and in  which communication plays a significant 

ro le. These characteristics are not v ita l to the model development process, but 

sim plify the overall task by allowing a more natural visualisation of the real 

world system, that the model is meant to represent. Such considerations are 

behind the su itab ility  of the object-oriented approach to the simulation of 

tactical warfare problems to which the ROSS, BLOBS and SLICE languages 

specifically address themselves. In  m ilitary applications, a irc ra fts , tanks etc. 

are effectively described using inheritance. In  the case of a ircrafts  one could 

have a class inheritance hierarchy th at would be as follows:

325



TRANSPORT

VEHICLE AIRCRAFT

AIRCRAFT TYPE

NON-JET

COMMERCIAL MILITARY

SURVEYANCEBOMBER

AWACS

Figure F8Q /NHER/TENCE /N  OBJECT ORIENTED ENVIRONMENTS

Some of th e  c h a r a c te r is t ic s  of an AWACS p lane are  s p e c if ic  and can n ot be  

fou n d  in  an y  o th er  e x is t in g  m ilitary a ir c r a ft . T h ese  are th e re fo r e  d efin ed  a s  

part of th e  AWACS ob ject d escr ip tio n  at th e  bottom  of th e  h ie r a r c h y . H ow ever, 

som e of th e  c h a r a c te r is t ic s  o f an AWACS are  more g en era l and can th e re fo r e  

be in h er ited  from c la s s e s  o f o b jects  h ig h e r  up  in  th e  h ie r a r c h y . F urtherm ore, 

an AWACS is  u sed  for  su r v e y a n c e  o p era tio n s and can  th e re fo r e  in h e r it  

c h a r a c te r is t ic s  from a sep a ra te  h iera rch y  d e fin in g  th e  c a p a b ilit ie s  of radar  

s y s te m s . Communication betw een  ob ject in  a ta ctica l w arfare problem  a lso  p la y s  

an im portant role fo r  w hich th e  o b je c t-o r ie n ted  paradigm  i s  well s u ite d . An 

a ircra ft w ish in g  to  land  at an a irfie ld  can  for  exam ple be d e sc r ib e d  a s  se n d in g
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a message to the control tower requesting permission. The landing ac tiv ity  w ill 

then commence, conditional on the a irs trip  object being available.

Even in  the case of applications that would seem suitable targets fo r an 

object oriented approach there can be problems such as those identified by 

M cA rthur [1986 ] . Of particu lar concern is the dependence on message passing 

fo r communication and activation of events. Consider the example of two enemy 

a irc ra ft which are about to go into battle . For one a irc ra ft to recognise and 

attack the other a irc ra ft, messages need to be transm itted between the two 

which obviously contradicts the real-w orld  rules of engagement.

As with expert systems, models developed using the OOP approach are 

based on a re latively  unstructured search algorithm . Furtherm ore, the desire 

to allow the user to develop the model increm entally by defining the  

characteristics of objects as and when they are identified also leads to problems 

in  m aintaining a s tru ctu re . Consequent d ifficu lties also arise because of the 

problem of ensuring that the defined model is complete and is not ambiguous or 

inconsistent. Lack of a formal structure also tends to mean that execution is 

slow fo r large models which is a problem aggravated by the in terp re tive  nature  

of the Lisp environment which tends to be the language used in  developing 

and implementing object-oriented models. The loss in speed is however offset 

by the advantages of being able to test the effect of changes in the code 

without having to compile and being able to trace and debug the model 

in te ra c tiv e ly .

The use of inheritance can be advantageous in  terms of code size by 

reducing the repetition of characteristics of objects. However, problems can
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arise when values are inherited unexpectedly. Hence, the characteristics of 

each member of the object hierarchy has to be carefu lly  defined with particu lar 

attention to the possible values that may be inherited  from parent classes. 

Similar care is needed in OOP languages in  which rules can be in herited . A set 

of rules may be spread across a number of object classes making it  d iffic u lt to 

trace potential actions and increasing the risk  of rules being mistakenly 

inherited in satisfying a goal. Such problems aggravate the d ifficu lties in  

specifying the characteristics of the components of the model and particu larly  

in  cases where the concept of objects and messages do not seem to be a natural 

structure fo r the formalisation process.
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A P P E N D IX  G

ESSIM OUTPUT DISPLAYS FOR THE PORT MODEL

OR ortirue

KULESET CRANEMANAGER (INHERIT IMUMANAGERjSHIPNANAGER)i
{M  NUHBEROFSHIPCRAHES = 5 I { Cl] CRANEOOBS = FALSE IF ((CRANEOPERATIONA(CRAHEOPERATIORAL : FALSE) ;
[ZD CRANEOOBS = TRUE WHEN (CLOAOIMU = TRUE) OR CUNLOADIMU = TRUE) ORCLOADSHIP : TRUE) OR OJNLOADSHIP = TRUE)) AND

00B0UTST ANDING ,NEXTU0B ,U0BF0UND ,BA7,
Messages

Opening File: IMUNANAG.TEM Opening File: CRAHEMAH.TEM
FIGURE G81 TRACE OF ESSIM COMPILATION OF RULE-SETS
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