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Glossary47

• AGB: Above Ground Biomass48

• ALOS-PALSAR: Advanced Land Observing Satellite - Phased Array type L-49

band Synthetic Aperture Radar50

• AWGLCA: Ad Hoc Working Group on Long Term Cooperative Action51

• BCI: Berbak Carbon Initiative. This is the case study for the thesis. It is52

comprised of Berbak national park and adjacent protected and production53

forests.54

• COP: Conference of the Parties to the UNFCCC55

• DEM: Digital Elevation Model: a representation of the height and structures56

of the surface of the earth57

• Lidar: Light Detection and Ranging58

• LULUCF: Land Use, Land Use Change and Forestry59

• MODIS: The Moderate Resolution Imaging Spectroradiometer60

• NASA: National Aeronautics and Space Administration61

• REDD+: Reducing Emissions from Deforestation and Degradation in develop-62

ing countries, and the sustainable management, conservation and enhancement63

of forest carbon stocks.64

• VEM: Vegetation Elevation Model: an approximation of the vegetation across65

the surface of the earth; e.g. where SRTM data does not fully penetrate the66

forests canopy.67

• SRTM: Shuttle Ranging and Topography Mission. NASA mission to map the68

Earth’s topography.69

• QANS: Quick Assessment and Nationwide Screening. A programme to model70

peatland extent and depth across Indonesia.71

• UNFCCC: United Nations Framework Convention on Climate Change72

• ZSL: Zoological Society of London73
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0.1 SI Units74

SI Units are used throughout the thesis.75

Pg Peta: 1015
76

Mg Mega: 106
77

Gg Giga: 109
78

0.2 Assorted Indonesian terms used regularly79

• Hutan lindung: Protected forest class managed by provincial forestry offices.80

Often used to protected ecosystem services e.g. watershed protection.81

• Hutan produksi: production forests. Used for exploitation for timber or con-82

version to other land uses (which is called hutan produksi konversi). Hutan83

produksi terbatas is limited production forest, where conversion to other land84

use types is not permitted.85

• TAHURA; Taman Hutan Raya: Forest Park. Another protected forest cate-86

gory.87

• Suaka Margasatwa: Wildlife reserve.88

• Taman Nasional: National Park.89

• Uani piro (n.b. this is Javanese language rather than the Lingua Franca of90

Bahasa Indonesia): This means approximately ’money for looking the other91

way’, ignoring illegal activity.92

• Kabupaten: a spatial political division, a ’regency’. Several kabupaten make93

up one propinsi.94

• Propinsi: a province. Multiple provinces constitute the Indonesian state.95

• DINAS Kehutanan Propinsi: provincial forestry service.96
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Abstract97

Tropical forests are being cleared rapidly, causing between 12 and 20% of all anthro-98

pogenic CO2 emissions. This process drives climate change and biodiversity loss. A99

new mechanism called REDD+ is being developed to pay tropical forest countries to100

reduce deforestation, and thereby to reduce these negative externalities. To be able101

to do this, maps of forest carbon stocks and change are fundamental. Policy impact102

analysis is essential too since REDD+ payments are performance-based. Quantify-103

ing biodiversity benefits of REDD+ is important too for carbon credit buyers. This104

thesis addresses these needs on Sumatra. As of 2007, a 7.2Mha study area holds 503105

± 105 x 106 Mg of forest biomass, with the largest stocks in protected and production106

forests. Other land classes have much lower biomass, suggesting legally exploitable107

forests are already depleted. What forest remains is being cleared rapidly. Between108

2007 and 2009, 229 x 103 ha of forest were cleared, a rate of 1.6% yr−1, and loss109

of >6% of the 2007 forest biomass, creating emissions of 58 ±12.1 x 106 Mg CO2e.110

Yet the deforestation is not uniform. On average protected forests reduce defor-111

estation. However at the extreme, one protected forest area had virtually no forest112

remaining at all by 2007. By contrast the Berbak Carbon Initiative REDD+ pilot113

project has significant stocks (34.7 ± 17.3 ±3.5 x 106 Mg forest carbon; 380 x 106
114

Mg peat carbon). It also supports a population of critically endangered Sumatran115

tigers (occupancy Ψ=0.14; 95% CI= 0.05:0.33). The project developers hope to con-116

serve tigers and carbon simultaneously. However, following the first year of project117

activities, compared against control sites, deforestation appears to have increased.118
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Chapter 1119

Introduction120

1.1 Policy background: Deforestation and121

degradation, climate change and biodiversity122

loss123

Tropical forests provide multiple ecosystem services such as atmospheric regulation,124

carbon storage, biodiversity provision and fresh water supply. Yet they continue to125

be cleared and degraded. Deforestation and degradation in developing countries ac-126

counts for a large proportion of anthropogenic CO2 emissions, estimated at between127

7 and 20% of the total: 20% (Solomon et al., 2007); 15% with range 8-20% (van der128

Werf et al., 2009) 7-14% (Harris, 2012), ultimately with between 0.9 2Pg C yr−1
129

(Houghton, 2010) and 1.0 Pg C yr−1 (Baccini et al., 2012) being transferred to the130

atmosphere (Pg is petagrammes; 1015grammes; see SI units section in glossary).131

Preventing dangerous climate change will therefore be much more difficult if132

tropical deforestation is not reduced or reversed. This emphasises the importance133

of improved forest management, which is at the top of the list of global environmen-134

tal concerns for reasons other than climate change. At the time of writing, news135

headlines globally are dominated by reports of Indonesian forest fires filling the air136

over Singapore with a pall of thick smog. Walking the island-state’s streets has137

become hazardous: in June 2013 Singapore’s Pollutants Standards Index rose to138

370 thereby exceeding the ”hazardous designation” of over 300 (Gaveau, 2013). Air139

transport has been hampered by reduced visibility leading to unquantified produc-140

tivity losses. Whilst these stories make compelling headlines when rich countries are141

affected, the underlying processes which ultimately lead to these fires continue each142

year across the Indonesian archipelago, causing not just dangerous particulate pol-143

lution locally for Indonesians, but also a slew of other negative externalities across144

scales. Locally, the clearance of forest causes the loss of ecosystem services: Locally,145

reduced forest cover and fragmentation is associated with micro-climatic changes;146

the degradation of water supplies; and loss of biodiversity (Soares et al., 2006; Gib-147

13



son et al., 2013; Koh and Sodhi, 2010). Globally, increased carbon emissions forces148

anthropogenic climate change. The effects of biodiversity loss are felt internationally149

too. In hypothetical markets at least, people in rich countries value the existence150

of forests and other species (Baranzini et al., 2010; Bienabe and Hearne, 2006).151

The Sumatran tiger Panthera tigiris sumatrae is now classified as Critically En-152

dangered by the International Union for the Conservation of Nature (IUCN, 2013).153

Greater commitment at the government level e.g. Ministry of Forestry (2010) and154

more generally greater exploitation of non-use values (Alexander, 2000) are required155

to prevent their extinction, such as linking their conservation to carbon payment156

schemes (Dinerstein et al., 2013).157

1.1.1 The significance of peat swamps for carbon storage158

and emissions159

Tropical peat swamp forests are of crucial importance for REDD+ because they160

store huge quantities of carbon. Jaenicke et al. (2008) explains how this may be up161

to one order of magnitude more carbon than tropical forests on mineral soils (up162

to 10 x 103Mg C ha−1) and therefore one of the richest terrestrial carbon stores163

(Jaenicke et al., 2008). Furthermore, in-tact peat swamps continually sequester164

carbon, meaning they are a natural net carbon sinks when undisturbed (Sorensen,165

1993). Within the context of climate change, carbon storage is important to avoid166

future emissions, but the fact that peat swamps also sequester carbon means that167

if they were to be managed wisely, they could actually contribute to removing CO2168

from the atmosphere. The current potential annual carbon sequestration of tropical169

peatlands is estimated at 35 x 1012 Mg yr−1. However, the crucial caveat is ’if they170

are managed wisely’. However,under the pressures of growing, and more affluent171

populations, these peatlands are being rapidly drained and cleared of forest. Damage172

to the system undermines its stability, and the loss of the sequestration potential173

until the peat becomes a net source of emissions (Hooijer et al., 2010, 2012).174

More than half the world’s tropical peatlands are found in S.E.Asia (Hooijer175

et al., 2012). An estimated 65% (22 million ha) of S.E. Asia’s peatland is found in176

Indonesia in coastal and sub-coastal regions on Sumatra, Borneo and West Papua.177

It covers 13.9% Indonesia’s land area (Page et al., 2007, 2011). In an assessment of178

the entire archipelago Jaenicke et al. (2008) estimated that Indonesia’s peatlands179

together store 55 x 106 Gg carbon. However, with the pressures of the world’s fourth-180

largest population of at least 230 million people (World Bank, 2011), and a growing181

economy based on the mass exploitation of its natural resource base, Indonesia’s182

remaining peat forests are being extensively cleared for their timber and for land to183

create new palm oil and pulpwood plantations (Hansen et al., 2009). Hooijer et al.184

(2010) highlights that as of 2006, approximately half of all Indonesia’s peatland185

forest had been cleared. What remains is largely degraded and being cleared at an186
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Figure 1.1: A map of Indonesia showing the main islands, and highlighting the
position of Berbak National Park. This is the site of the Berbak Carbon Initiative,
a pilot REDD+ project developed by the Zoological Society of London.

extremely fast pace. Miettinen et al. (2011) describes how even with a part of the187

world renowned for its rapid land cover change, the changes in areas where peat is188

found are very high. By 2010, the eastern lowlands of Sumatra had lost half of the189

peatland forest cover that they had in 2000 (Miettinen et al., 2011), a loss rate of190

5% yr−1 over the ten year period.191

Whilst peatland conversion produces short term financial benefits for land own-192

ers, it creates negative externalities. Specifically, the conversion process involves193

the construction of canals to drain the waterlogged peat and to provide land ac-194

cess. This causes consolidation and compaction of the peat. As the drained peat195

dries, the constituent part-decayed organic matter oxidises due to microbial activity.196

Oxidation of the carbon releases CO2 to the atmosphere and causes subsidence as197

the organic material decomposes. In coastal swamps subsidence may even lead to198

sea water intrusion. Evidence suggests that these changes occur even if the water199

table is maintained at a high level by land managers. This means that subsidence200

and greenhouse gas (GHG) emissions from peat is an inevitable consequence of201

converting tropical peat swamp forests to other land uses even with management202

programme in place (Hooijer et al., 2012). Drying caused by drainage also increases203

peat’s flammability. So when fires are used by land owners to clear the above ground204

vegetation, the peat also ignites. The peat may then burn for extended periods, and205

can even continue to smoulder underground during the wet season, and reignite in206
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the following dry season. This further accelerates carbon emissions.207

The huge size of these peat carbon stocks, and the pace of their destruction208

paints a dire picture for the global climate. Even if a land manager attempts to209

maintain high water levels in peatlands that are being used for plantations, the210

evidence shows that it will still collapse and cause emissions (Hooijer et al., 2012).211

There is therefore a need to manage peat to mitigate damage from these processes.212

In the context of REDD+ and climate change this is even more important.213

At its most basic, peat management requires information on the depth and214

distribution of peat. Yet whilst peat distribution maps do currently exist globally215

(Joosten, 2009) and for Indonesia (Jaenicke et al., 2008) the accuracy of these has216

been contested and therefore need to be critically examined (Stahlhut and Rieley,217

2007). Peat swamps are extremely hard to access, so estimations of peat extent and218

volume are made with limited field data sets. In addition to this lack of detailed219

information on peat thickness, there is variation in definitions of peat, leading to220

greater uncertainty in the quantity of peat in a given location (Page et al., 2007).221

1.1.2 The development of REDD+ as a climate change222

mitigation mechanism223

Forests have historically been excluded as a means to mitigate climate change for224

several reasons. Rich countries have questioned whether reductions in deforestation225

could be secured over the long term (permanence); and whether the interventions226

and payments made to forested countries would lead to reductions in deforestation227

over and above the changes that might have been expected to occur anyway (ad-228

ditionality) (Baker et al., 2010a; Santilli et al., 2005). Poor countries with large229

forests have expressed concern that new finance for forest management would lead230

to a loss of sovereignty over their land, resources and development strategies. A231

further concern raised was that paying poorer unindustrialised countries to reduce232

deforestation would simply become a huge multi-lateral carbon offsetting project233

that would crowd out efforts to reduce carbon emissions in rich industrialised coun-234

tries instead of supplementing them (supplementarity). Finally, one of the main235

concerns of trying to implement spatially explicit programmes to reduce deforesta-236

tion is that in a dynamic international market, reductions in deforestation in one237

area would simply be met with equivalent increases in deforestation in another area238

(leakage).239

Consequently only re-forestation and afforestation were incorporated into the240

Clean Development Mechanism of the Kyoto Protocol as valid activities to generate241

carbon credits from forestry under the umbrella category of Land Use, Land Use242

Change and Forestry (LULUCF). The reduction of deforestation and degradation243

or the conservation of standing forests was excluded. However in 2007 the idea of244

compensated reductions in emissions from deforestation (RED) as a climate change245
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mitigation strategy was established. This followed the 13th Conference of the Par-246

ties to the United Nations Framework Convention on Climate Change (UNFCCC)247

in Bali (COP13) and the development of the Bali Action Plan. Here, a group of248

forested tropical countries calling themselves the Coalition for Rainforest Nations249

(CfRN) lobbied for the inclusion of RED as a way for them to meaningfully par-250

ticipate in climate change mitigation and to access funds from the international251

community. This mirrored continued academic proposals for forests’ inclusion un-252

der the UNFCCC and a post-Kyoto Protocol climate change agreement (Santilli253

et al., 2005). RED is a climate change mitigation strategy to address the failure254

of markets to price the negative externality of carbon emissions from deforesta-255

tion, involving international transfers from rich country governments and private256

sector actors, to forest-rich but financial resource-poor countries. The definition257

of RED subsequently expanded to include degradation, that is Reduced Emissions258

from Deforestation and Degradation (REDD). Then, at the 15th conference to the259

parties of the United Nations Framework Convention on Climate Change (COP15,260

UNFCCC) the Ad Hoc Working Group on Long Term Cooperative Action (AWG-261

LCA) expanded the definition to include the Sustainable Management of Forests and262

the Conservation and the Enhancement of Forest Stocks, which gives the acronym263

its ’+’. In summary, REDD+ includes (a) Reducing emissions from deforestation264

(RED); b) Reducing emissions from forest degradation (REDD); c) Conservation265

of forest carbon stocks (REDD+); d) Sustainable management of forests(REDD+);266

e)Enhancement of forest carbon stocks (REDD+) (AWG-LCA, 2009).267

1.1.3 REDD+ activity268

Following the development of the Bali action plan there has been extensive devel-269

opment of REDD+ action, at both national and international levels. This includes270

passing of laws and developments of policies in tropical forest counties to facilitate271

the development of REDD+, including in national plans and laws in Indonesia,272

Ghana, Brazil and Vietnam, (Townshend et al., 2013). These laws and policies273

have been developed in order to enable the development of both small scale project274

development and national schemes which can access funds available from the inter-275

national community. Of the multilateral projects the United Nations Programme on276

Reducing Emissions from Deforestation and Degradation (UN REDD Programme)277

scheme has been important in bringing together forested countries and support-278

ing national REDD+ schemes, drawing on the experience of work of the Food and279

Agriculture Organisation and the UN Environment and Development Programmes280

(UNEP;UNDP). Currently the UN-REDD programme has 47 partner countries with281

16 receiving direct support to their National Programmes. In particular it has been282

instrumental in orchestrating the development of the National Forest Monitoring,283

Reporting and Verification systems (MRV); the development of Free, Prior and In-284
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formed consent for people upon whom REDD will impact, such as subsistence users285

of forest products (’local people’); and the development of REDD+ Safeguards and286

Social and Environmental Standards (REDDStandards.org, 2012).287

In addition, the World Bank has its own mechanism, called the World Bank288

Forest Carbon Partnership Facility (FCPF) which has selected six partner countries289

in Africa (Democratic Republic of Congo, Gabon, Ghana, Kenya, Liberia, Mada-290

gascar); five in Latin America (Bolivia, Costa Rica, Guyana, Mexico, Panama); and291

three in Asia (Nepal, Lao PDR, and Vietnam). The goal of the partnership is to292

build the capacity of each of the partner countries to implement activities to reduce293

deforestation and forest degradation; monitor, report and verify these activities; and294

participate in nascent carbon markets.295

1.1.3.1 REDD+ and biodiversity conservation296

The possibility of carbon-based financing for forest conservation has lead to a great297

deal of excitement in the academic conservation biology literature at least, with298

carbon credits being perceived as a new way to fund conservation activities, partic-299

ularly in places where there is overlap between high biodiversity and carbon values300

e.g. Venter et al. (2009a,b) though there has been concern that the focus on carbon301

values will lead to the bias in the conservation of peat swamp forests which are302

less biologically diverse and have lower abundance of threatened (and charismatic)303

mammal species than forests on mineral soils (Paoli et al., 2010).304

One such charismatic species is the Sumatran tiger. Indeed the funding and305

opportunity for this PhD research derived from the establishment of the Berbak306

Carbon Initiative in Jambi province, the case study for the thesis. The initiative307

is a pilot REDD+ project established by the Zoological Society of London to ex-308

plore whether REDD+ could contribute to tiger conservation. In Jambi, some of309

Indonesia’s and indeed the world’s last tigers remain in increasingly isolated blocks310

of forests. These forests are the target of exploitation by plantation and logging311

companies on the one hand, and the focus of carbon mitigation and biodiversity312

conservation schemes on the other. Some of these forests have been included in a313

forest logging moratorium imposed by the Indonesian government as a part of a bi-314

lateral deal with the Government of Norway under the banner of Reduced Emissions315

from Deforestation and Degradation (REDD+) (Murdiyarso et al., 2011a).316

1.2 Problem statement317

There are significant data and methodological requirements for the implementation318

of REDD+. At the most fundamental level it is required to know the location and319

amount of biomass across the landscape, in both the above (vegetation) and below-320

ground (soils) stores. Since there is interest in exploring whether the implementation321
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of REDD+ can simultaneously address climate change and biodiversity loss, it is also322

required to estimate the biodiversity attributes of forests under REDD+ schemes.323

Whilst this information is necessary, it is not sufficient. REDD+ implementation324

requires an understanding of the socio-economic, political and legal conditions which325

regulate land use. This requires not only qualitative understanding, but also the326

quantification both of the drivers of deforestation, and the impact of past policies327

designed to reduce deforestation such as national parks. Finally, when new policies328

are created, there is a need for causal inference in order to be able understand what329

works in forest conservation, and where it works.330

1.3 Aims of the data chapters331

Three natural science chapters form the first half of the data-driven component of332

the thesis. The aims of these were to estimate the occupancy of tigers and their333

potential prey species (chapter 5); estimate biomass and carbon stocks below-ground334

in the peat soils (chapter 6) and above-ground in the forest (chapter 7. Next, three335

social science chapters complete the data-driven section of the thesis. The aims of336

these were to analyse the patterns of biomass distribution estimated for 2007 with337

reference to institutional conditions, specifically the official land use designations338

(chapter 8). Then, by exploiting the estimation of the change in forest cover over339

time, the next aim was to assess the impact of protected areas on forest loss (chapter340

9. For the final data chapter of the thesis, the aim was to assess the impact of one341

year of REDD+ project activities on deforestation rates at Berbak national park.342

The specific objectives of each chapter are discussed in the following section.343

1.4 Objectives of the data chapters344

1.4.1 Establishing a biodiversity baseline: tiger and prey345

occupancy analysis using camera trap data346

Since the Berbak Carbon Initiative (BCI) was initiated in order to conserve tigers, a347

crucial piece of research is to quantify aspects of the tiger population at the site. The348

objective of this chapter was therefore to estimate tiger occupancy at Berbak, using349

camera trapping data. A second objective was to use the same camera-trapping350

estimate the occupancy of the tiger’s prey at the site.351

1.4.2 Estimating the quantity of peat biomass and carbon352

at the Berbak Carbon Initiative353

The BCI project site is important for Indonesian REDD+ because it is largely354

comprised of peat swamp forest, which is known to store huge quantities of carbon355
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(Page et al., 2002). A nationwide-wide effort was recently conducted to estimate356

the quantity of peat, but for an unknown reason the models developed could not357

deal with the data gathered at Berbak, rendering the area a ’blank spot’ on the peat358

map. This presents a significant problem for the project, and an interesting applied359

research question. The aim was therefore to use geo-spatial methods to quantify the360

volume of below-ground biomass at the site, and from this to estimate the quantity361

of carbon stored.362

1.4.3 Estimating above ground biomass using integrated363

L-band Radar and Lidar data364

The objective of this chapter was to provide the most accurate estimation possible365

of the biomass in the forests of the study area surrounding the Berbak project site.366

A secondary objective was to quantify the changes of the biomass over time.367

1.4.4 An analysis of forest biomass with respect to368

Indonesian land use classes369

The purpose of this chapter was to take the findings of the forest biomass estimation,370

and to explore these in the context of Indonesia’s official land use classes. This was371

done in order to understand which land use classes still held the largest amounts372

of forest biomass and as such which would potentially contribute the most to the373

conservation of forest carbon stocks, and which had already lost their forest. It asks:374

what are the relationships between the levels biomass and the land use classes in the375

study area? Are there significant differences between the distributions of biomass376

in each forest class? Which forest class had the lowest mean forest biomass per377

hectare, and which the highest?378

1.4.5 Assessment of the impact of protected areas on379

deforestation between 2007 and 9380

The purpose of this chapter is to understand to what degree the protected areas381

have reduced deforestation during the study period. Specifically, did the protected382

areas provide additional forest protection when contrasted with the other land use383

classes in the study area?384

1.4.6 Seeking additionality: an impact assessment of the385

impact of a year of REDD+ intervention386

The objective of this chapter was to quantify the impact of one year of the imple-387

mentation of conservation activities under the name of REDD+. Specifically, how388
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did the risks of deforestation inside the protected area change after the project be-389

gan conservation activities there? This was in response to the challenge set out in390

the literature for the impact of projects to be rigorously assessed. Additionally it391

sought to test a hypothesis that the mere presence of researchers in the field was392

sufficient to reduce the risks of deforestation.393

1.5 Novelty and research contributions of the394

thesis395

The research provides novel contributions to the literature on monitoring of trop-396

ical forests and the impact of policies to conserve them. At the most basic level,397

the research provides novel baseline information about a data poor region which398

has enormous potential to contribute to climate change mitigation and biodiver-399

sity conservation. It then provides new methodological contributions through400

the development of forest monitoring technologies, and new policy contributions401

through the assessment of forest conservation activities. These are discussed in turn:402

1.5.0.1 Baseline data403

1. To the knowledge of the author, this is the first study to have quantified peat404

volume and carbon stored in the Berbak ecosystem. A recent collaboration405

between multiple NGOs led by an international environmental consultancy406

tried to develop a nation-wide model of peatland distribution, but the model407

did not fit the Berbak region. As such the estimate provided here is the sole408

estimation to date of the huge quantities of carbon stored.409

2. This is the first study to provide systematic baseline information on the mam-410

mal fauna at Berbak; and to quantify this biodiversity in a robust ecological411

monitoring framework that accounts for detectability and the environmental412

co-variates of site occupancy. The development of population statistics will413

allow future analysis to assess not only the state of tiger prey at a given point,414

but also the change in the status of the prey since 2009.415

3. The baseline biomass estimation for 2007 across the 7.2Mha study area pro-416

vides a rich data set to explore the relationship between land use classes and417

forest biomass and carbon stocks.418

1.5.1 Methodological contributions419

1. The main methodological contributions were made in the work to calculate420

the forest biomass and the change in that biomass over time. The value of421

a method was demonstrated for the first time in Indonesia, showing how the422
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perennial problem of cloud and smoke obscuring forest could be overcome423

using a combination of active radar and lidar sensing. It further showed how424

by using relative normalisation and threshold-limited differencing of annually425

gathered radar data, it was possible to measure change against the baseline of426

forest biomass. This allowed estimates not only of the total area cleared during427

the study period, but also of the total emissions arising from the process.428

1.5.2 Policy contributions429

1. The assessment of the impact of protected areas during the study period pro-430

vides important contribution to the understanding of land use change in a431

region undergoing some of the fastest change in the world. Only one other432

analysis has addressed this question before on Sumatra but using a much older433

data set. Nonetheless, this more recent analysis supports the conclusions of434

the earlier work, and suggests that even matching pixels for the predictors of435

deforestation, that the protected areas are contributing to forest conservation.436

This has important implications for the way in which forest is managed in437

Indonesia and particularly for how REDD+ is implemented: empirical assess-438

ments of what actually works in conservation interventions has increasingly439

been called for in the literature.440

2. It was increasing demand to see quantitative assessment of the policy inter-441

ventions that also motivated the final empirical chapter, which provides the442

first quantification of the performance of one year of a REDD+ pilot project.443

This provides the most significant policy contribution.444

1.5.3 Interdisciplinarity445

This thesis represents the first institutional collaboration between the Institute of446

Zoology at the Zoological Society of London, and the London School of Economics447

and Political Science in order to develop a PhD. As such it incorporates a range of448

ideas, research methodologies and concepts.449

1.6 Overview and structure of the thesis450

The thesis is broken down into 1. a background section, 2. a data-driven section451

and 3. a discussion. The data-driven section is in turn divided into three natural452

science and three social science chapters. An outline of the thesis is provided at the453

beginning of each chapter, highlighting the reader’s position in the text.454

The thesis begins with a review of the methodological context that reviews the455

key relevant literature (chapter 2). The next chapter then reviews the literature of456

the history of the socio-economic conditions which led to contemporary patterns of457
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forest distribution and deforestation (chapter 3). In particular it focuses on land use458

policy and governance, and the trend towards the centralisation and monopolisation459

of resources. This begins with the Dutch colonial period, through to independence460

and more recently reformasi and multi-party democracy. Following this, chapter461

(4) draws on this background but focuses on Jambi province in Sumatra, where the462

general patterns described across Indonesia are grounded in case study of the Berbak463

Carbon Initiative (BCI). This is a REDD+ pilot project centred on Berbak National464

Park and established by the Zoological Society of London to support the conserva-465

tion of the Critically Endangered Sumatran Tiger. This concludes the background466

information section.467

The following chapters are empirical, and based on the analysis of a series of468

different data sets. First (chapter 5) is the quantification of attributes of biodiver-469

sity at the project site using a six month camera trapping survey analysed in an470

occupancy modelling framework. This ultimately provides an occupancy estimate471
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for both tigers and their prey at the study site, which is an estimate of the proba-472

bility of occurrence of a species, accounting for detection probability. Next, chapter473

6 quantifies the below ground biomass stocks within the boundaries of the Berbak474

project site using spatial statistics (kriging). This provides a total volume estima-475

tion for the amount of peat biomass and carbon at the site. The following chapter476

7 quantifies a) a baseline of the forest biomass in a 7.2 M ha swathe of Jambi and477

South Sumatra provinces, and b) the changes in this biomass and the associated478

emissions between 2007 and 2009. Next, chapter 8 explores the distribution of the479

forest biomass in 2007 with respect to the government’s land use classes, and ex-480

plores whether there are any differences between the different designations in order481

to provide a descriptive analysis of the study area.482

The next section of the thesis examines the deforestation data. First, the entire483

7.2Mha study area is examined in chapter 9 in order to test whether protected area484

status had any effect on the risk of deforestation between 2007 and 2009. Once again,485

this study then focusses down onto the case study area surrounding Berbak National486

Park (chapter 10). Deforestation in Berbak is compared with the deforestation in487

control sites before and after the implementation of one year of REDD+ pilot project488

activities. The final chapter summarises the key findings of the thesis and discusses489

the limitations of the work, before providing suggestions for future research.490
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This thesis is multidisciplinary, drawing on both the natural and social sciences493

in order to make a contribution to understanding changing patterns of forest cover494

in Indonesia: why deforestation is occurring; how to measure deforestation; estab-495

lishing indices of forest biodiversity; and assessing the impact of policies designed496

to reduce deforestation. As such, a review of the literature is challenging in that it497

must span several disciplines, and broach multiple topics. Because of this the re-498

view is broken down as follows. First there is a review of the state of the art in the499

quantification of environmental indicators. These are the quantification of peat car-500

bon stocks; the quantification of forest biomass and carbon stocks and change over501

time; and options for measuring biodiversity. Second, there is a review of impact502

assessment evaluation to measure the performance of policy interventions.503

2.0.1 Quantification of environmental indicators504

The environmental indicators of concern to this thesis are first, the biomass and505

hence carbon stored in a) peat and b) in forests; and second, the biodiversity of506

those forests. These are now addressed in order.507

2.0.1.1 Peat volume estimation508

Peat soils form in shallow basins on the landscape over thousands of years when509

the production of organic matter exceeds the decomposition rate in waterlogged510

anaerobic conditions (Stahlhut and Rieley, 2007). The soil accumulates faster at511

points furthest from rivers in what is termed an ’accumulation zone’. Near major512

rivers, and near the shallow margins of the depression which it forms, the accumu-513

lation rate decreases and the peat becomes shallower. This leads to the formation514

of the classic peat dome shape, which forms the core of the physical geography515

theory (Moore and Bellamy, 1947). This theory underpins the analysis used by516

contemporary researchers to estimation peat dome volume.517

S.Page in particular has been influential in highlighting the importance of peat518

for ecosystem service provision and its potential to adversely affect the climate when519

damaged. Probably the single most important research finding in this regard was520

the calculation that between 2.4 and 6.8 M ha peatland burned in Indonesia during521

the el nino ’fire seasons’ of 1996 and 1997; and that as a consequence which between522

0.81 and 2.57 x 106 Gg C were released to the atmosphere(Page et al., 2002). This523

finding was more remarkable though when put into context: the authors claim that524

these emissions from just two years of fires in Indonesian peatlands are525

equivalent of 18-57 years of successful Kyoto climate change protocol526

implementation . However this research came on the back of a historical dearth of527

work on peatlands. The authors of an albeit grey literature review for an EU project528

called Carbopeat (Page et al., 2007) lament that in the two decades after 1985 when529

relative ignorance of tropical peatlands was raised as a concern, research had still530
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not greatly progressed. Page et al. (2007) explain how fundamental concepts like531

precisely what constitutes ’peat’ and ’tropical peat’ are still being contested, with532

the main issues of concern being the proportion of organic matter, and the thickness533

of the peat itself. If today there is still a lack of consensus even over what constitutes534

peat, then it is perhaps less surprising that research did not progress during those535

twenty years after 1985.536

Page et al. (2007) highlight the problems of determining the extent of peat-537

land in Indonesia. This country has the single largest store of peat carbon in the538

tropics (Page et al., 2011). Sari et al. (2007) highlight how the destruction of peat-539

land ecosystems has brought Indonesia the dubious distinction of being the third540

largest emitter of CO2 and other greenhouses gases (GHGs) after the mass energy541

consumers USA and China. However these emissions are not constant; they tend542

to occur in quite dramatic events. Gaveau (2013) explains how the fires of 2013543

caused enormous forest losses in peatland areas, recording 140,000 ha burned down544

in a 3.5M ha study area in the month of June alone. In 2008 Indonesia was by545

far the largest emitter of CO2 from degrading peat of any country, releasing some546

500 x 106 Mg CO2 from the process. This is over three times more than the next547

largest source of emissions, Russia, at 139 x 106 Mg CO2 (Joosten, 2009). However548

at least prior to 2007 estimates of the extent of the peatland varied significantly,549

from a minimum of 160,000km2 to a maximum of 270,000km2. Evidently there are550

significant problems in being able to measure the distribution of, and the quantity551

of carbon in, peatlands. In particular, their extent is huge, and they are found in552

remote locations, which means it is difficult to get into the field and take direct553

measures of thickness using drilling equipment (Page et al., 2011). A large prob-554

lem in trying to resolve these differences in estimates of peatland extent is the fact555

that during the same period that the estimates were being made, huge land cover556

changes occurred in Indonesia (Miettinen et al., 2011). This is important since when557

the forests covering peat are cleared, and the land drained, large amounts of the558

peat is lost through oxidation of the organic material. So these systems are rapidly559

changing under anthropogenic pressure even as researchers attempt to define and560

measure them.561

A further variable is that both the carbon and bulk density of peat varies across562

different peat ecosystems (Page et al., 2007). So even when the extent, depth and563

hence peat volume can be estimated, the final carbon stock ultimately estimated564

depends on bulk density and carbon content. These uncertainties in each of these565

values contribute to the propagation of errors that together lead to great uncertainty566

in the estimations of peat volumes and in turn emissions (Shimada et al., 1999).567

The most widely-cited estimate is that emissions from tropical peat leads to568

approximately 3% of all emissions from anthropogenic activity (van der Werf et al.,569

2009). The combination of the huge emissions but with large uncertainties means570

that there is a great need for research in this area, to better characterise peat571
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and estimate storage and emissions. This is all the more pressing in the context572

of REDD+, as policy makers seek to meet commitments to reduce emissions (e.g.573

Indonesia has committed to reduce emissions by 26% by 2020, see chapter 3 for574

details), there is a need to identify the most effective and efficient means to do this.575

A recent approach has been to use three dimensional modelling to estimate peat576

volumes. This was driven by the PhD research of Jaenicke et al. (2008), subsequently577

published as Jaenicke et al. (2010). The essence of this technique is to focus on a578

specific peatland area, and integrate various pieces of data in order to estimate579

a) the surface and b) the base of the peat deposit. In theory the peat should be580

shallower at its margins, and then get deeper further towards the centre of the zone581

of accumulation (Moore and Bellamy, 1947). This depth should be reflected both582

in the depth of the deposit (deeper areas forming in the centre of a river basin),583

but also in terms of the height of the peat. Whereas the depth of the dome has584

to be measured by going into the field and drilling into the ground - a laborious585

process - the height of the land can be measured using remote sensing data. If the586

relationship suggested from theory between the height of the peat dome and the587

sampled depth of the deposit is sufficiently strong, then the depth can be modelled588

across the entire deposit without need for further depth samples. Jaenicke et al.589

(2008, 2010) successfully exploited this relationship to create a 3D model for several590

Indonesian peat domes and estimate a total peat carbon stock of 55Gt for all of591

Indonesia.592

Yet there are some problems with this approach. One is arbitrariness when593

identifying peatland margins from space: it is surprising that the state of the art in594

estimating this huge stock of terrestrial carbon ultimately comes down to drawing595

a line by hand around a satellite photograph of the study site. Yet the problems of596

working in these remote environments are huge. A further problem is that the re-597

mote sensing technology (C-band radar from the Shuttle Ranging and Topography598

Missions; SRTM) used to estimate the terrain (which is called a Digital Elevation599

Model; DEM) does not fully penetrate the forest canopy. This is because the radar600

interacts with the tree limbs and trunks. Hence the SRTM-derived DEM is accu-601

rate on bare land but overestimates height in areas with in-tact forest. Jaenicke602

et al. (2010) resolved this problem by using a different remote sensing technology (a603

laser pulsing system called Light Detection and Ranging; Lidar) to estimate forest604

height across the study sites. These forest height estimates can then be subtracted605

from the DEM, to create a ’virtual deforestation’ model. However, Lidar data is606

very expensive to gather and process, requiring commissioning an aeroplane with607

the specialised equipment mounted to fly over the study area. One of Jaenicke’s608

co-authors runs a remote sensing consultancy and had access to such a data set.609

However, most REDD+ project developers, NGOs and government bodies man-610

aging these resources would likely struggle fund this expensive data collection and611

processing. This sets a research challenge: are there ways of developing virtual612
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deforestation digital elevation models for peat modelling without need-613

ing to commission Lidar overflights? This was the first research motivation for614

chapter 6.615

Even where this problem can be resolved, the extent of tropical peatlands means616

that there is an urgency to develop methods to develop peatland models on a land-617

scape scale without having to take a case-by-case approach. One means to do this is618

to model the peat depth against the geomorphological features which are theorised619

to determine peatland depth, such as distance from rivers. This approach was set620

out on a local scale by Shimada et al. (1999). To take such an approach on a nation-621

wide basis would however require a huge amount of data for the entire area for which622

modelling were to be attempted. This, along with the accelerating destruction of623

Indonesia’s peatlands, but the promise of at least a partial solution via REDD+,624

was behind a recent large collaboration of NGOs in Indonesia to try to and develop625

the best model possible for peatland development. This effort was called Quick626

Assessment and Nationwide Screening for REDD+ (QANS). Data from sites across627

the archipelago was gathered together for the first time, providing a data set that628

would be extremely expensive for any one organisation to gather. As of the time629

of writing, the results of this assessment are not officially available. However, the630

headline results are that the project has been successful in modelling peat distribu-631

tion and depth across the archipelago but crucially not for the Berbak peninsular.632

This is the location of ZSL’s REDD+ pilot project called the Berbak Carbon Ini-633

tiative, which is the case study for this thesis. The lack of success with the QANS634

model at the Berbak site therefore provided an interesting applied research problem:635

what other methods could be used to estimate peat volume at the site to636

help with the REDD+ project. This was the second motivation for undertaking637

research in this area.638

2.0.2 Spatial statistics639

The below ground biomass chapter draws heavily on spatial statistics, and partic-640

ularly on kriging (it is important to note that these statistical techniques are not641

unique to the analysis of peat). The fundamental assumption behind kriging is642

that is that things which are closer together are more similar than things which643

are further apart, that is they are spatial auto-correlated. In some cases this can644

prove a problem. For instance in chapters 9 and 10, spatial correlation in regression645

model error terms violates assumptions about error distribution, and so needs to be646

controlled for. However, spatial correlation can also be useful: where a parameter647

is sampled across a landscape (e.g. peat depth), the degree of spatial correlation648

can be used to make estimates of that parameter between sampled sites and at un-649

sampled sites. This idea underpins kriging, which derives from regionalised variable650

theory, which was originally developed for use in mining (Matheron, 1971). Kriging651
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models estimate the relationship between values based both in the distance and652

direction between sampled points.653

The first stage in kriging is to construct a semivariogram. This provides infor-654

mation on the spatial auto-correlation of the data, which is how much the difference655

in the data varies with distance. It is measured in the terms of half the distance656

squared, hence ’semi-variogram’. Kriging takes spatial autocorrelation information657

from the sampled sites and uses this to create the weights used to created predicted658

values at unsampled sites as a function of distance and direction from sampled sites.659

In the production of the semi-variogram, pairs of sampled sites are binned together660

to reduce the number of combinations of different data points measuring variation.661

A regression model is then estimated for the semi-variance and distance. This is662

best understood with reference to figure 2.1.663

Figure 2.1: A semivariogram showing the range,sill and nugget. The data taken
from the peat depth kriging exercise.

The larger the first derivative of the semi-variogram nearer the origin, the larger664

the influence the nearest data point will have on the value of the prediction of a665

value for the unknown point. Other key properties of the semi-variogram which666

affect the ultimate outcome of the kriging exercise are the range, the nugget and667

the sill. The range is the point in the variogram where the fitted model line flattens668

out i.e. where the first derivative approaches zero. Any samples separated by a669

distance greater than the range are not spatially autocorrelated. The sill is the670

value on the y axis which the variogram reaches at the range (see figure 2.1). In671

theory points which are separated by 0 units distance have 0 difference (because672

they are at the same location) however in reality the difference is greater than 0673

due to measurement errors either in the sampling device, in the methods (e.g. peat674

core sampling may involve hitting still-hard trees in the mire and provide false675

bottoms (Page et al., 2011), or variations in measurements at finer resolution than676
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the units of measurement in the production of the semi-variogram. For instance677

one may consider peat depth at 1000m intervals across the landscape, and whilst678

the mean difference indeed changes as a linear function of distance from rivers,679

the first data bin of 0-1000m might itself contain a large degree of variance. This680

could be because, for instance, of the nature of the bedrock on which the peat681

forms; anthropogenic disturbance of the peat; and finally simply because there is682

more unexplained variation in reality than idealised models of the formation of683

the ombrogenous peat dome would suggest. The difference (as measured on the684

Y axis) found at the variogram’s nominal distance of zero is called the nugget. A685

final issue regards trends in the data. Ordinary kriging assumes that the constant686

mean of the data is unknown, or, that there is no trend in the data. Where there687

are theoretical geophysical reasons for a trend, trends can be estimated (through a688

polynomial function in universal kriging) and subtracted from the data, leaving the689

deterministic element to be calculated from the random errors.690

2.0.2.1 Forest biomass quantification691

Emissions from tropical peat are extremely important, but carbon stores in forests692

are in aggregate even more important to the global climate, hence the development693

of REDD+. Measuring above ground biomass (AGB), the carbon within it, and694

changes over time is a central challenge for REDD+ implementation. Remote sens-695

ing using satellite data is absolutely fundamental to be able to do this. Satellite data696

allows the observation of huge areas of land and the development of relationships697

with other data sets, such as data from field measurements, like direct measurement698

of trees (Woodhouse, 2013; Mitchard et al., 2009b). This allows the modelling and699

estimation of forest attributes across the landscape in a way which would not be700

possible using field data alone. For the assessment of AGB and change for REDD+,701

researchers would ideally have high resolution maps made for each year, allowing702

assessments of the impact of policies to reduce deforestation and forest degradation.703

Yet there are major challenges to doing this since no satellite sensor directly mea-704

sures biomass (Woodhouse et al., 2012). Further, the relationships between remote705

sensing data and biomass tend to break down at medium to high biomass levels.706

This means there is a loss of sensitivity for high biomass forest (Mitchard et al.,707

2009a). However, direct calibration from optical imagery has been performed by708

Baccini et al. (2012). Detecting biomass change is a more sophisticated challenge709

still, since this requires repeat estimates across time with well-understood uncer-710

tainties and error propagation.711

Mitchard et al. (2012) characterized the options available for AGB mapping712

as (a) the classification of forest into landcover types, which are then attributed a713

mean AGB value based upon field or remote sensing measurements; or (b) the direct714

regression between AGB measurements from the field and a remote sensing variable.715
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There are different standards for monitoring established under the UNFCCC for716

reporting carbon emissions reduction activities, which have varying levels of rigour.717

These standards are called Tiers and numbered 1 to 3, where 1 is the least rigorous718

and 3 the most. Tier 1 involves the use of default parameter values such as global719

or country-level land cover maps. Tier 2 requires country-level data at a higher720

resolution, whilst tier 3 involves the use of high resolution country or region-specific721

data and models. Approach (a) largely maps onto the less rigorous Tier 1 and Tier722

2 approaches, whilst Tier 3, involving local modelling, probably requires approach723

(b) (Arino et al., 2009). In Indonesia, approach a) has been followed most often724

in efforts to map deforestation and degradation. Most of the current research in725

this area uses optical imagery to do this, which involves the detection of visible726

wavelengths of the sun’s light reflected from the surface of vegetation. Since it relies727

on reflected light, it is referred to as passive sensing.728

The most commonly-used sensors to do this have been on NASA satellites,729

namely LANDSAT and MODIS (Moderate Resolution Imaging Spectroradiome-730

ter). For instance, in an assessment of the projected impacts of REDD+ in north-731

ern Sumatra, Gaveau et al. (2009c) used composite LANDSAT images to estimate732

forest loss. More recent for forest monitoring on Sumatra efforts integrate MODIS733

data in addition to LANDSAT. Broich et al. (2011a) used this combination to map734

forest change across both Sumatra and Kalimantan. However the latter work high-735

lighted one of the central challenges of identifying forest type from remote sensing736

imagery: in areas with persistent cloud cover like the humid tropics, it is rare for737

the satellite sensors to record completely cloud free images. This means that im-738

ages from several years often have to be stitched together in composites in order739

to provide the final images for analysis. This is a frustrating challenge in itself.740

However, a more substantive problem is that multi-year composites mask deforesta-741

tion and regrowth occurring during the time period over which the composite was742

created (Hansen et al., 2009). This is a major concern in Indonesia where forest is743

cleared very rapidly (Miettinen et al., 2011) and being replaced with plantations:744

forest that appears not to have changed in the few years during which the maps745

are produced could in fact have been cleared in that time and replaced with a fast746

growing plantation e.g. Acacia, or an oil palm plantation. The implication is that747

loss of the original forest cover and associated emissions is underestimated in the748

subsequent analysis. One solution to this was developed by Broich et al. (2011b)749

who used algorithms to develop pixel forest histories. However this still only mea-750

sures biomass indirectly. In an island-wide study of Sumatra using LANDSAT and751

LiDAR, Margono et al. (2012) re-iterate these monitoring challenges of high cloud752

cover and rapid regrowth.753

Change is occurring very rapidly in Indonesia and particularly in Sumatra (Mi-754

ettinen et al., 2011), cloud cover is high, and smoke from the fires plagues Sumatra755

and Kalimantan, which causes extensive damamge to forest and peat and obscures756
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optical remote sensing imagery (Page et al., 2002). Somewhat ironically this makes757

the areas experiencing the most dramatic environmental change the most difficult758

to monitor. The need for high temporal resolution forest biomass and change data759

for REDD+ implementation presented an interesting research gap for the PhD re-760

search: what other technologies could measure both forest cover and changes in a761

way that would not be affected by cloud cover and smoke?762

The only operational technology that can do this in high biomass tropical for-763

est is LiDAR, which can produce maps of AGB (Lefsky, 2010; Asner et al., 2010).764

Other operational sensors, such as radar, saturate at some level of biomass (Lu,765

2006; Mitchard et al., 2009b). So Lidar data across the entire landscape is the ideal766

data set in principle. However, coverage of the landscape is only available from767

aircraft (Asner et al., 2010). As noted with respect to peatland analysis, both this768

and the data processing requirements make Lidar data acquisition prohibitively ex-769

pensive for REDD+ projects and government agencies managing natural resources.770

Yet there are limited Lidar data samples from the Ice, Cloud and land Elevation771

Satellite (ICESat). The Geoscience Laser Altimeter System (GLAS) sensor provided772

dispersed Lidar transects across the earth’s surface, which serendipitously included773

tropical forests. Crucially these data are available to researchers without charge,774

and in Sumatra have already been exploited by Margono et al. (2012). These Lidar775

data do not span the landscape, and it is little use to have estimates of biomass in776

transects across a study area. However, Shugart et al. (2010) explained how these777

transect data can can be statistically related to, and used in conjunction with, other778

freely-available remote sensing data which do provide full coverage of the landscape,779

like radar. This relationship can be extrapolated across the second data set with780

full coverage in order to provide a landscape-wide estimate of Lidar readings.781

Mitchard et al. (2009b) showed that whilst the relationship between radar and782

biomass does saturate at high biomass levels, a crucial advantage is its long wave-783

length relative to visible light penetrates cloud and smoke. This means that each784

data set collected can be used without needing to create composites with other785

images. This is a huge advantage, because in principle it allows the production of786

annual maps of forest cover which can be differenced to produce deforestation maps:787

precisely the kind of data that would be required for REDD+ assessment. More-788

over radar relies upon the reflection of energy emitted (and is thus active sensing)789

for sensing purposes rather than passive reflected light from the sun (Woodhouse,790

2013). Synthetic Aperture Radar (SAR) sends out a beam of energy from a sen-791

sor mounted on a satellite, and then measures the intensity of echoes returning to792

that sensor (Ryan et al., 2012). This backscattered energy detected at the sensor793

is a ratio of the power of the energy returned to the energy emitted to the ground.794

The medium wavelength (λ=0.23 m) of L-band radar used by the Japanese Space795

Agency’s ALOS-PALSAR is of the same order of magnitude as the limbs and trunks796

of forest trees (Woodhouse, 2005). This results in more diffuse scattering than would797
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be the case if the emitted energy were incident with bare ground, and so results in798

higher backscatter (ibid.). This means that in principle it is possible also to make799

estimates of biomass per pixel, rather than classifying forest into different type (pri-800

mary, secondary etc.) and then attributing a mean value of biomass per forest801

class. Nonetheless radar technology is no silver bullet, due to changes in backscat-802

ter caused by seasonal variations in moisture in the study scene independent of real803

changes in the condition of the forest, and steep terrain causing radar ’shadows’ on804

hill and mountainsides facing away from the sensor (Mitchard et al., 2012). This805

is clearly a major issue in rainforests and swamps. In addition there are problems806

associated with sideways-looking radar and topography. Radio ’shadows’ appear807

over steep terrain, meaning that the far side of steep slopes from the sensor cannot808

reflect the emitted energy (negative bias), whilst the slopes facing the sensor reflect809

larger amounts than would otherwise be expected (positive bias). These challenges810

and opportunities provided the central motivation for the remote sensing compo-811

nent of the thesis: could freely-available data be integrated for Indonesia812

in order to provide per-pixel estimates of biomass, and change detection813

unencumbered by cloud cover and the problems of terrain in the study814

site in Sumatra?815

2.0.3 Forest biodiversity estimation816

Tropical deforestation is probably the most important driver of biodiversity loss817

globally (Koh and Sodhi, 2010). Because of this, REDD+ has been seen as having818

the potential to address climate change and biodiversity conservation. As such there819

has been a profusion of research which explores the potential synergies and tradeoffs820

between the two objectives (Harvey et al., 2010; Phelps et al., 2012a; Grainger et al.,821

2009), and even new financial mechanisms deriving from carbon credits to generate822

conservation funding (Busch et al., 2011; Dinerstein et al., 2013). In particular823

the spatial relationships between carbon stocks and biodiversity has been widely824

explored. Strassburg et al. (2010) found high spatial congruence between carbon825

stocks and species diversity globally; and Venter et al. (2009a) highlighted that in826

Asia, it was actually more cost effective to undertake REDD+ activities in areas827

with higher abundance of threatened mammals. More recently, De Barros et al.828

(2013) have identified locations in Brazilian municipalities which appear to offer829

large additional benefits to both carbon emissions reductions and the conservation of830

Jaguar conservation. Some authors have sought to emphasise that more biologically831

diverse forests will probably be more resilient and so provide more permanence of832

carbon stocks, especially in the face of continuing environmental change (Miles et al.,833

2010).834

However despite the positive potential of identifying sites where in principle car-835

bon and biodiversity could be conserved together, there are substantial concerns836
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about tradeoffs (Phelps et al., 2012a). For instance Paoli et al. (2010) explained837

how REDD+ development in Indonesia was focussing on peatland areas due to the838

amount of carbon stored in this ecosystem, and the huge potential environmen-839

tal benefits of improving management here. However, the authors provide data840

that suggest that these swamps are not as important for threatened mammals as841

dry forests on mineral soils, and that as such there is a potential tradeoff between842

biodiversity and carbon management. There is possibly a degree of taxonomic chau-843

vinism underlying this, since peat swamp forests contain interesting species in their844

own right such as highly specialised peat swamp fish (stenotopic acidophilic icthy-845

ofauna). Nonetheless, for the purposes of mammal conservation, the data do seem846

to suggest that peatlands are probably less important for biodiversity conservation.847

Worse is that the authors hypothesised that restricted development in peatlands848

will simply displace activities into forests on mineral soils which are highly threat-849

ened (few such forests now remain in lowland Sumatra) but which support a higher850

abundance of endangered mammals. This is the problem of ’leakage’, where defor-851

estation reduced in one place simply increases elsewhere. However this argument852

about whether or not there is an overlap between biodiversity and carbon misses the853

point that REDD+ was never designed to be a biodiversity conservation scheme: it854

is a climate change mitigation scheme that could also provide positive externalities855

for biodiversity. Moreover, Collins et al. (2011b) pointed out that even if there there856

is a simple spatial relationships between high biodiversity and high carbon values857

in areas facing deforestation, REDD+ alone is not sufficient for biodiversity conser-858

vation: wildlife can be hunted to extinction in perfectly in-tact forests, leading to859

’empty forest syndrome’. As such, they proposed that the idea of supplementary860

funding for carbon credits generated from REDD+ implemented in places which861

are particularly important for biodiversity. However, Phelps et al. (2012b) warned862

that internalising the costs of biodiversity within REDD+ risks raising the costs863

of REDD+ and ultimately undermining its chances of implementation at all. The864

same author has warned that there are more general risks with linking so much of865

the future of biodiversity conservation with carbon finance (Phelps et al., 2011),866

especially if it does not ever materialise on the scale anticipated. Moreover, these867

discussions about biodiversity and conservation often ignore the institutional con-868

ditions which are likely to be required to actually implement REDD+ in a given869

country (Collins et al., 2011a). In addition, there has been a strong focus on the870

opportunity costs of land use as a measure of the cost of REDD+ implementation,871

however this approach may fail to account for what Ghazoul et al. (2010) call down-872

stream effects, such as the wealth generated through employment and associated873

service industry demand generation i.e. multiplier effects.874

These are broader and fundamental questions about the development of REDD+.875

They could themselves be the focus of several PhD theses. For the purposes of876

the present thesis, it is an important motivation that within existing voluntary877
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carbon markets there are certification schemes that assure credit buyers that forest878

carbon credits are real and provide additional benefits against the business-as-usual879

scenario. This certification therefore provides a ’badge of quality’, and is carried880

out by independent auditors using the criteria of certification organisations, such881

as the Verified Carbon Standard (www.v-c-s.org). In addition to these standards,882

biodiversity conservation organisations have created standards that aim to ensure883

that forest carbon projects also provide biodiversity benefits (economists call these884

benefits positive externalities, but they are called ’co-benefits’ in REDD+ jargon).885

Most prominent of the biodiversity certification schemes is the Climate, Community,886

and Biodiversity Alliance standard (CCBA)(Niles et al., 2005). These standards887

require the quantification of forest biodiversity, and evidence of its change over888

time. One of the reasons carbon credit buyers choose forest carbon credits is that889

expect they biodiversity benefits to be generated by conserving forest. As such they890

often require CCBA certification to ensure the credits do generate these benefits891

(See Diaz et al. (2011) for a full report of the voluntary carbon marketplace, and892

the current evidence for demand for biodiversity conservation within forest carbon893

schemes). This provided the motivation for the biodiversity component of the thesis:894

how can a REDD+ pilot project in a remote tropical swamp forest that supports895

a crucial tiger population demonstrate a positive biodiversity impact? Because896

from the project principal’s perspective (ZSL) the focus of the project is on tiger897

conservation the options for monitoring forest mammals are now reviewed.898

Monitoring forest mammals In forests where animals use trails and leave899

impressions in the substrate, presence/absence data can be generated by repeatedly900

walking transects and recording whether the footprints of the target species are901

found in an area (Wibisono et al., 2011). However, in environments where access902

is limited and long transects not possible, or where the substrate is too wet, this903

record of presence is obscured. This is the case in tropical peat swamp forest. The904

forest floor is regularly inundated, or otherwise the substrate is deep and footprints905

of animals are impossible to identify. The problem of recording species in such906

environments has increasingly been solved by using camera traps (O’Brien et al.,907

2003; Wibisono et al., 2009; Rowcliffe and Carbone, 2008; Ahumada et al., 2013).908

These are cameras with a sensor unit that is triggered by body heat and/or motion.909

These are set up in the forest and left running for weeks at a time. The resulting910

data can be interpreted in different ways. At the most basic level, species lists can911

be compiled for rapid biodiversity assessments. This provides rudimentary baseline912

information, but it would not be possible to attribute the presence of an additional913

species new to the activities of the project (it may have previously been present914

but undetected). As such it would be unlikely an auditor would deem this sufficient915

evidence for certification.916

Another approach is to examine species richness across the different types of en-917

vironments at the site, which serve as quasi-treatments. For instance, analyses of the918
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rates of photographs of each species can be used to make Relative Abundance Indices919

(RAI), a measure of how relatively common species are. For an impact assessment,920

these could be used to measure the differences between mature and degraded forest921

at the site. Then, if an intervention were able to ensure that the degraded forest922

regenerated, it might be reasonable to hypothesise that during the lifetime of the923

project the mature forest species would begin to recolonise the degraded forest. This924

may demonstrate some biodiversity co-benefit against the original conditions. How-925

ever, the use of camera trap rate derived analysis and RAI has become one of the926

most contentious issues amongst wildlife researchers (O’Connell et al., 2011; Jennelle927

et al., 2002; Carbone et al., 2002, 2001). This is largely because a researcher must928

make the assumption that species detectability is constant across the variable of929

interest, such as habitat condition. Yet detectability varies across such dimensions930

(Sollmann et al., 2013). As a simple example, consider that it is more likely that931

a researcher is able to observe a deer crossing a patch of open grassland between932

patches of forest, than in the thick undergrowth of a swamp forest: this is the essence933

of heterogeneous detectability. The fundamental problem arising is that failing to934

account for detectability conflates variation in the ecosystem with variation in the935

system used to observe it (Archaux et al., 2012). Ultimately, apparent changes in936

a simple RAI may therefore be attributable to changes in detectability rather than937

changes in abundance of the species under study. This can cause large differences938

in RAI for a species even from the same study site. One experiment showed that a939

detectability difference of 4-8% can create a 50-90% risk of falsely concluding there940

was a real difference between treatments (Archaux et al., 2012), depending on sur-941

vey details. However, non-calibrated RAI is still often applied because of the ease942

of the calculations involved. This is despite the risk of erroneous conclusions from943

intra and inter-specific comparisons for which constant detection and abundance944

is implicitly assumed (Archaux et al. 2012). Because of these uncertainties, this945

approach is similarly unlikely to convince a project auditor.946

A different method is to take presence and absence data for target species and947

explore these against environmental variables using binary logistic regression mod-948

elling. This is more sophisticated than the previous approach because it acknowl-949

edges that abundance is spatially heterogeneous. This approach would allow for950

predictive species modelling across the site. The probability of presence could be951

then used as baseline data, and if the data collection were repeated at a later date,952

it may be possible to show how the probability of occurrence of target species953

changed following the implementation of the project. However, establishing suf-954

ficiently strong and precise relationships with environmental variables is a challenge955

in macro-ecology since the relationships are complex (Karanth et al., 2004). More-956

over, simple logistic regression still assumes constant detectability of species across957

space. However a solution to this problem arises where researchers undertake re-958

peated detection/non-detection surveys. These time series data can be exploited to959
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calculate the detectability p̂ of species at a site (MacKenzie et al., 2002). This is used960

in conjunction with the records of presence or absence to generate the probability961

Ψ̂ that a species is present at any site. This approach is called occupancy modelling962

(ibid.). The ultimate aim is to produce an estimate of the occupancy of the target963

species across the study site, where occupancy is an estimate of probability of the964

presence of a species, accounting for heterogeneous detectability. As such occupancy965

modelling actually involves the specification of two sub-models: 1. a model for the966

the probability of detection given the species is present, and 2. the probability of967

presence. The two parameters are estimated simultaneously using Maximum Like-968

lihood Estimation (MLE). Ahumada et al. (2013) recently assessed mammals in a969

Central American forest using occupancy modelling applied to camera trap data,970

and demonstrated changes in the populations over time which were hypothesised971

to reflect the impact of increased human hunting in the area. This provided an972

additional motivation for developing these statistics for the Berbak Carbon Initia-973

tive (BCI) site, on the basis that their development could be used in the future as974

baselines against which to compare future population statistics as part of an impact975

assessment. This topic is discussed in the next section.976

2.1 Policy impact assessment977

Policy interventions need to be properly assessed to ensure resources are spent ef-978

ficiently (Andam et al., 2010; Ferraro and Pattanayak, 2006; Ferraro, 2009; Miteva979

et al., 2012; Andam et al., 2008; Angrist and Pischke, 2009; Nelson and Chomitz,980

2011; Sanchez-Azofeifa et al., 2007; Baker, 2000). Assessments must properly ac-981

count for biases. This is particularly the case for the selection of protected forest982

areas’ locations. Joppa and Pfaff (2009) showed that protected areas are more likely983

to be found in remote places far from the drivers of deforestation. However, deter-984

mining the impact of a policy is fraught with difficulty. This is due to a series of985

issues arising from the use of observational data. Observational studies differ in a986

number of ways from experimental data (Angrist and Pischke, 2009). In the latter,987

such as in a stylised laboratory experiment, subjects which are as similar as possible988

are identified, such as mice from the same brood. The subjects are then randomly as-989

signed into control and treatment groups. The control groups and treatment groups990

are then kept in identical conditionals, except for exposure in the treatment group991

to the treatment (e.g. mice to a chemical suspected of being carcinogenic). The992

comparison of the mean of outcomes (e.g. the presence of tumours) in the treatment993

and control groups (a between-groups estimator) is then interpreted as the treat-994

ment effect. This is justifiable since the randomisation of the subjects across groups995

ensures that there is no systematic difference between the groups prior to the treat-996

ment. However these conditions cannot be replicated in the case of observational997

data. This presents considerable problems for causal inference. Forest conservation998
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interventions present a good example of such observational data and the problems999

arising, which leads to discussion of the present study of tropical forest management1000

under REDD+.1001

Consider a further hypothetical example: a coffee firm aims to improve sustain-1002

ability in the agroforestry farms which provide them with coffee beans. This is be-1003

cause unsustainable production involving increased deforestation on farms presents1004

a risk to the brand’s reputation. To mitigate the risk, the firm develops an incen-1005

tive scheme for farmers to retain more trees on their plots, with the intention of1006

improving forest cover and providing habitat for an endangered forest bird. The1007

rate of deforestation is measured before the incentive scheme (the treatment) is1008

implemented. The deforestation rate is measured again three years after the imple-1009

mentation of the scheme. The rate of deforestation is found to have decreased, and1010

therefore the company deems the project a success. However this näıve pre-post1011

within-subject estimation is flawed, since it does not take into account the changes1012

in deforestation that would have occurred in the treated farms in the absence of1013

the treatment. Deforestation may have decreased in the treated farms anyway, due1014

to a fall in the price of gas canisters which provides a substitute for timber as a1015

fuel source. In order to be able to detect the impact of the project, the analyst1016

must therefore control for time-varying factors in the economy which affect project1017

outcomes but which are not themselves influenced by the project, such as changes1018

in agricultural conditions (Ferraro, 2009; Angrist and Pischke, 2009).1019

An apparent solution is to establish comparison sites where the farms are not1020

themselves treated. These are expected to experience the trend in deforestation1021

that would be experienced also in the treated site, in the counter-factual situation1022

where there is no treatment. Under this set up, the between-subjects difference1023

in deforestation between the treated and the comparison sites before and after the1024

incentive scheme would be interpreted as the treatment effect. Yet, this set up could1025

still be vulnerable to confounding effects: Näıve comparisons between the treated1026

and comparison sites which fail to adjust for any systematic differences between the1027

two could provide flawed estimates of the treatment effect. Both farms and protected1028

forests tend to be non-randomly distributed (Joppa and Pfaff, 2009). For instance,1029

the farms in the comparison site may have had a higher prior deforestation risk1030

anyway due to their proximity to a local town with a large market for farm output.1031

As such, deforestation may have been higher in the control than the treated site. In1032

practice this issue has presented a problem in the analysis of success of national parks1033

established to protected forest. Apparent success attributed to parks in reducing1034

deforestation has been shown in some cases to simply reflect the choice of poor1035

comparators, and the fact that protected areas are often located in remote areas and1036

are therefore simply further from the drivers of deforestation (Nelson and Chomitz,1037

2011). Such biases likely occur because of development trade-offs: land with high1038

private opportunity costs in production (e.g. for high oil palm profits) is expensive1039
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not to exploit, and moreover prices do not include the negative externalities of1040

deforestation. On the other hand protected areas provide public goods and are1041

allocated without the positive externalities being priced in, and so are more likely1042

to be located on marginal land than agriculture with high private profits (Pfaff and1043

Robalino, 2012).1044

A solution to this problem is to use quasi-experimentation methods. One ap-1045

proach is the use of exact matching methods (Angrist and Pischke, 2009). These1046

are used to pair treated subjects with untreated but near-identical subjects. In1047

the hypothetical case described here, the treated farms would be matched in terms1048

of deforestation predictor variables to untreated farms (Nelson and Chomitz, 2011;1049

Ferraro et al., 2011). The difference between the matched control site and the1050

treated site would then be interpreted as the treatment effect. Nonetheless, ex-1051

act comparators can be extremely difficult to find in practice. If this is true, then1052

other quasi-experimentation techniques can be used. Quasi-control sites can estab-1053

lished by selecting untreated areas which match as far as possible the attributes of1054

the treated area (Angrist and Pischke, 2009). Because the treated and quasi-control1055

sites are not exactly matched in their attributes, then systematic differences between1056

must be dealt with. In the case of deforestation, this can be done by controlling for1057

the drivers of deforestation in each site (Nelson and Chomitz, 2011) (see chapter 31058

for a full discuss on the determinants of deforestation). Further, because the treat-1059

ment and quasi-control sites are not identically matched, then it would still not be1060

justifiable to make a direct comparison in the outcomes between the two. However1061

a solution arises when data are available over time. This is because it is reasonable1062

to assume that controlling for the drivers of deforestation, the trends of deforesta-1063

tion in each site are the same over time. Further it is reasonable to assume that in1064

the absence of an intervention, and controlling for the drivers of deforestation, that1065

the difference between the trends in the treatment and control site would remain1066

the same over time. This difference between the treatment and control groups can1067

therefore be interpreted as a fixed effect. If this assumption is reasonable, then any1068

observed differences in the differences between the treated and control site following1069

the treatment can be interpreted as the treatment effect. Under this set-up, the null1070

hypothesis is that the difference in the deforestation rate between the two sites is1071

constant over time following the treatment.1072

Whilst this seems convoluted, these issues are absolutely fundamental to robust1073

impact assessment and policy evaluation, particularly in development economics1074

(Baker, 2000). Here evaluation is used to determine what works and what doesn’t,1075

and in the latter case to cancel programmes (Essama-Nssah, 2006). It was the1076

realisation that biodiversity conservationists were not using robust inference tech-1077

niques that caused Ferraro and Pattanayak (2006) to write a paper called ’Money for1078

nothing’ calling for empirical testing of the performance of biodiversity conservation1079

investments. This applies equally to the present context of the tropical forest sector.1080
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This has long been the subject of management interventions, through the creation of1081

national parks; supplier certification (e.g. Forest Stewardship Council certification);1082

or projects which seek to intervene in the management of a pre-existing national1083

park, such as the World Bank’s Integrated Conservation and Development Projects1084

(ICDPs). REDD+ comes on the heels of these various initiatives. However the1085

stakes for correct causal inference under REDD+ are arguably higher, due to the1086

incentive structure proposed under this system. That is, REDD+ payments are1087

proposed to be structured upon measured performance in reducing deforestation.1088

As such, incorrectly estimating the treatment effects of a REDD+ implementation1089

would lead to the wrong amount of carbon credits being attributed, and ultimately1090

to an inefficient policy that did not contribute optimally to climate change miti-1091

gation. One quite recent paper by Nagendra (2008) for instance concluded that1092

parks globally had been successful in reducing land cover change, albeit with re-1093

gional variations such as losses in Asia. However, this assessment was problematic1094

methodologically because it simply compared change rates inside and outside the1095

park, and then pre-post creation of the national park, without controlling for the1096

predictors of deforestation. By contrast, in a more robust assessment Joppa and1097

Pfaff (2009) demonstrated that in fact there is a considerable bias in the location1098

of protected areas which tend to be biased towards higher altitude areas that tend1099

to be distant from the drivers of deforestation. This means that the average conser-1100

vation impact of these interventions is likely to be low (Pfaff and Robalino, 2012).1101

In an assessment of protected area impact in Costa Rica, Pfaff et al. (2009) find1102

that avoided deforestation impacts are greatest when the areas are under greatest1103

threat, although by contrast Sims (2010) found that protected areas near cities had1104

less of an effect in Thailand.1105

Yet there are more nuances still to the effects of location upon policy impacts.1106

As set out above, policy impacts can vary by location because of the baseline condi-1107

tions in each location: baseline deforestation is low in an area which is distant from1108

the drivers of deforestation for instance. However Pfaff and Robalino (2012) explain1109

how in addition, different mixes of political-economic pressures drive the location of1110

different policies, and that policies can cause spillover effects which differ by loca-1111

tion. In theory, transport costs imply that ceteris paribus profits from agricultural1112

products for sale in a city will fall the further a parcel of land is from the city (Pfaff1113

and Robalino, 2012). In Indonesia, one of the most relevant studies to this review1114

was undertaken by Gaveau et al. (2009a) who used matching techniques to test the1115

effectiveness of protected areas in reducing deforestation on Sumatra. They found1116

that between 1990 and 2000, despite continued deforestation inside protected areas,1117

they were nonetheless effective in reducing deforestation against matched pixels out-1118

side the protected areas. The call for robust assessment of conservation policy, and1119

the availability of the data set created in chapter 9 provides for a re-assessment of1120

this finding, whether deforestation seven years after the end of the study period1121
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defined by Gaveau et al. (2009a) still conformed to the same patterns, and whether1122

deforestation was still reduced regulated by protected areas. An additional remote1123

sensing data set for 2010 overlapped the first stage of implementation of a REDD+1124

pilot project. This provided the opportunity for what may be the first assessment1125

ever undertaken on the impact of REDD+ in practice.1126
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3.0.1 Introduction and chapter objectives1131

Deforestation is a multi-faceted phenomenon driven by formal and informal insti-1132

tutions, incentives and organisations across scales (Angelsen and Kaimowitz, 1999;1133

Brown and Pearce, 1994; Kaimowitz and Angelsen, 1998; Jepson et al., 2001; Smith1134

et al., 2003). It involves different agents in multiple contexts, from forest clearance1135

by multi-national corporations for the establishment of industrial plantations at one1136

extreme, to small-scale clearance for subsistence agriculture at the other (Geist and1137

Lambin, 2002; Lambin et al., 2003). Understanding the drivers of deforestation and1138

the various contexts in which they operate is fundamental to the implementation of1139

an environmental policy which seeks to influence the level of that deforestation, such1140

as REDD+. The underlying drivers of deforestation may in turn influence policy-1141

makers, whose decisions are influenced by socio-political institutions and histori-1142

cal context (Lindayati, 2002). Moreover, socio-political institutions regulate policy1143

makers preferences (ibid).As such it would be difficult indeed to understand either1144

how REDD+ fits into Indonesian forest policy or its potential to mitigate CO21145

emissions in practice, without considering the socio-economic history of forestry,1146

the drivers of deforestation, and the choices of policy makers in that country. A1147

study of REDD+ in Indonesia would therefore be incomplete without a background1148

description of the drivers of deforestation and the specific socio-economic and in-1149

stitutional conditions that have resulted in contemporary patterns of deforestation1150

and land use, and the policy developments which have both influenced and been1151

influenced by them. These factors in turn provide the background to how Indonesia1152

interacts with the international community and efforts to mitigate and adapt to1153

climate change. This chapter therefore seeks to provide both that socio-economic1154

background, and the recent developments in Indonesian policy on climate change1155

and the environment.1156

First, the chapter takes a wider perspective and describes research on the de-1157

terminants of deforestation from studies across the tropics. It then focuses in on1158

the study country of Indonesia to discuss the specific contexts of deforestation and1159

land use here. The geographical; political; socio-economic and institutional aspects1160

of forest management are addressed. This is done from the Dutch colonial period,1161

through to independence and the control of Suharto’s military autocracy; and then1162

through reformasi to contemporary multi-party democracy. Finally, this history is1163

used as a backdrop to describe Indonesia’s engagement with the international cli-1164

mate change policy regime and REDD+. The issues are considered at a national1165

scale, but there is also focus on Jambi province in Sumatra. This is because Jambi1166

is where the case study of the Zoological Society of London’s REDD+ project, the1167

Berbak Carbon Initiative (BCI), is located. This project is the subject of a dedicated1168

case study in chapter 4.1169
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3.1 Characterising deforestation1170

Under the United Nations Marrakesh Accords, forests are defined as ”a minimum1171

area of land of 0.05-1.0 hectares with tree crown cover (or equivalent stocking level) of1172

more than 10-30 per cent with trees with the potential to reach a minimum height of1173

2-5 metres at maturity in situ. A forest may consist either of closed forest formations1174

where trees of various storeys and undergrowth cover a high proportion of the ground1175

or open forest. Young natural stands and all plantations which have yet to reach a1176

crown density of 10-30 per cent or tree height of 2-5 metres are included under forest,1177

as are areas normally forming part of the forest area which are temporarily unstocked1178

as a result of human intervention such as harvesting or natural causes but which are1179

expected to revert to forest” p.58 Annex A.1.a (UNFCCC, 2001). This definition of1180

forest essentially refers to land with trees on it, and ignores biological processes such1181

as succession, which underlies the concern that the definition fails to acknowledge1182

the complexity of forest ecosystems and their biodiversity (Sasaki and Putz, 2009).1183

Similarly, as Angelsen (1995) points out, there is no single definition of deforestation;1184

and defining it as a simple binary process whereby trees are removed from the land1185

over the long term risks oversimplifying a complex process: forest clearance for palm1186

oil production by a multi-national agri-commodity business is very different from1187

deforestation caused by traditional shifting swidden agriculture. Nonetheless, this1188

chapter is not intended as a discussion on the appropriate definitions of forest and1189

deforestation, and as such the definitions from the Marrakesh Accords are followed1190

here.1191

At the broadest level, in characterising researchers’ attempts to understand de-1192

forestation, Lambin et al. (2003) describe how two ’camps’ have emerged: one cites1193

single factor causation, whilst the second emphasises the ’irreducible complexity’ of1194

the phenomenon. Yet the authors argue that such a distinction is not really neces-1195

sary, and that in fact there are factors which do emerge from studies across scales1196

which show consistency in their contribution to deforestation.1197

These common factors are used to estimate deforestation models. These do make1198

some simplifying assumptions about nature of the processes involved. However, this1199

is true of any modelling exercise, and moreover the use of models provides a logical1200

and conceptual framework to analyse and more rigorously consider deforestation1201

(Angelsen and Kaimowitz, 1999). When considered sufficiently robust, models also1202

provide means to assess the potential impacts of policy interventions on deforestation1203

rates, which is of course fundamental to the design of policies and activities to reduce1204

deforestation under REDD+.1205

Forest clearance is driven by factors relating to the physical environment, pol-1206

itics, and the economy; and involves different types of actors, incentives and in-1207

stitutional conditions (Kaimowitz and Angelsen, 1998; Ikenberry, 1988; Angelsen1208

and Kaimowitz, 1999, 2001; Barbier et al., 1995; Lambin et al., 2003; North, 1990).1209

45



Angelsen and Kaimowitz (1999) characterise the variables affecting deforestation1210

as a) the underlying causes of deforestation, such as macroeconomic variables and1211

policy instruments; b) the immediate causes of deforestation, which are the parame-1212

ters that directly affect deforestation including institutions, infrastructure, markets,1213

physical conditions, and technology; and c) the sources of deforestation, which con-1214

stitute the agents of deforestation themselves, such as firms and households. On the1215

other hand Lambin et al. (2003) characterise the drivers of deforestation as either1216

proximate causes (constituting agricultural expansion, wood extraction and expan-1217

sion of infrastructure), or underlying causes (constituting demographic, economic1218

technological, policy/institutional, and cultural or socio-political factors). They add1219

to these causes the biophysical ’pre-disposing events and drivers’, such as the qual-1220

ity of the soils underlying the forest. However they assert that such biophysical1221

properties only ever moderate the level of deforestation rather than fundamentally1222

altering the deforestation process.1223

It is particularly important to note that these various drivers do not act in1224

isolation. Multiple factors and processes interact with one another, meaning that1225

a combination of the physical and socio-economic properties of a landscape will1226

determine how much deforestation occurs and for what reasons (Brown and Pearce,1227

1994). This means that both the physical and economic landscapes need to be1228

understood together in order to begin to understand deforestation. Specific drivers1229

and their inter-relationships are therefore now discussed.1230

3.1.1 The determinants of deforestation1231

In the physical realm, there are several factors which affect the ease with which1232

agents can clear forest, and the value of the land underneath. Whilst Lambin et al.1233

(2003) state that these merely moderate the rate of deforestation rather than drive1234

it, these factors are nonetheless worthy of attention for a study concerning REDD+,1235

which has as its ultimate goal the moderation of deforestation rate against a baseline.1236

These physical factors include the steepness of the terrain; the quality of the soils;1237

whether soils are waterlogged; the navigability of rivers and their direction of flow;1238

and the distance of a patch of forest to the nearest forest edge. On average, forest1239

on steep terrain is more difficult to clear than flat lowland forests, which raises costs1240

to agents of deforestation. This means that all other factors held constant, forests1241

on hilly and mountainous terrain are less likely to be cleared than forests on flat1242

ground (Chomitz and Gray, 1999; Newton, 2007). Nonetheless, on Sumatra, some1243

of the last remaining forest is found in the mountains, and so by definition a lot1244

of deforestation is currently occurring here (Gaveau et al., 2009b). The fertility of1245

the soils underlying the cleared forest has been shown to be generally important in1246

moderating deforestation since this determines the revenues from alternative land1247

uses: Holding other factors constant, soils with higher fertility are associated with1248
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increased deforestation rates (Newton, 2007).1249

The amount of drainage also affects deforestation rates, since well-drained soils1250

are more likely subsequently to be of higher value for agriculture than boggy envi-1251

ronments, such as peat swamps (see chapter 6). Such ecosystems require extensive1252

drainage via the construction of canals before they can be used for agriculture. This1253

increases costs to the agents of deforestation (Joppa and Pfaff, 2009). The costs of1254

deforestation are also raised by the distance of any patch of forest to the forest edge,1255

and to the markets where timber and agricultural products from newly-cleared fields1256

can be traded. This edge effect, whereby deforestation itself reduces the costs to1257

access the remaining forests, means that there is a degree of endogeneity in defor-1258

estation: where deforestation occurs, there is likely to be deforestation. This is due1259

to the reduction of transport costs, which all else being equal, will increase profits1260

from agricultural outputs and lead to increased deforestation (Pfaff and Robalino,1261

2012). This partly explains the expansion of agriculture along an ’arc of deforesta-1262

tion’ in Amazonia (Coe et al., 2013). Here, the pattern of deforestation also often1263

follows navigable rivers. Where these flow in the direction of towns and markets,1264

rivers can be used for transportation of sawn wood and forest products: The prox-1265

imity of a forest patch to a navigable river has been shown to be positively related1266

to the probability of deforestation (Newton, 2007).1267

The same is also true of roads which reduce costs to economic agents and so1268

forests nearer to them tend to experience higher rates of deforestation (Angelsen1269

and Kaimowitz, 1999; Lambin et al., 2003; Newton, 2007). Such locations with1270

better access are often chosen for conversion to plantations of high value crops such1271

as palm oil, which in turn involves building a larger and better network of roads.1272

Road building and surface improvements act in synergy with other factors, further1273

reducing the costs of accessing the newly-revealed forest frontier and improving ac-1274

cess to markets, creating a further endogenous process (Gaveau et al., 2009c; Venter1275

et al., 2009a). A synergistic process of road building and improved market access1276

has been shown to strongly affect the probability of commercial forest exploitation1277

in Belize (Chomitz and Gray, 1999) and more generally (Marcoux, 2000). This pro-1278

cess of the building of roads which then allows new agricultural development is an1279

example of what Lambin et al. (2003) would call ’chain-logics’ causation, whereby1280

one socio-economic development process interacts with and enhances another.1281

However such interactions and feedbacks can also occur between natural and1282

socio-economic systems. For instance selectively logged moist forests experience an1283

increased incidence of fire compared to unlogged forests (Soares-Filho et al., 2012),1284

which in turn further accelerates the rates of land use change. Fire is a particularly1285

noteworthy driver: it has recently been the most important proximate drivers of1286

deforestation in Indonesia. In the Amazon, there appear to be feedbacks between1287

deforestation and local environmental changes. There is evidence for large scale1288

changes in fire and drought regimes across the region, which have occurred even in1289
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the presence protected forests, which suggests that localised forest protection is in-1290

sufficient to achieve forest conservation without addressing changes at the landscape1291

level (Coe et al., 2013).1292

In Indonesia, studies estimate that fire caused as much as 89 % of all Indonesian1293

deforestation between 1989 and 2008 (Dennis et al., 2005; Carlson et al., 2012). In1294

recognition of this, following the extensive forest fires of 1997/8, the Association of1295

Southeast Asian Nations (ASEAN) Regional Haze Technical Task Force (HTTF)1296

developed a Regional Haze Action Plan (RHAP) in partnership with the US Forest1297

Service. However, 15 years later fires are still the scourge of Indonesian forests: At1298

the time of writing in 2013, Indonesian forest fires dominate the news headlines,1299

with huge palls of smoke billowing across the Malacca straights, causing levels of1300

particulate concentrations that are hazardous for human health, and even grounding1301

international flights in Singapore. Embarrassingly for the Indonesian government,1302

many of these fires were recorded by remote sensing in forests protected by the1303

REDD+ moratorium which has nonetheless bee met with strenuous denials by the1304

plantation companies alleged to be using fire to clear land illegally (Bloomberg,1305

2013).1306

Intuitively, logging would seem a source of deforestation, and in the 1980s at least1307

was the bane of the environmental movement. However there is some evidence that1308

suggests that timber production per se is not actually a major cause of deforestation,1309

at least in the case of Indonesia (Barbier et al., 1995). This is because selective1310

logging only involves the removal of target tree species and not the complete removal1311

of the vegetation and the destruction of the seed bank. However, deforestation can1312

result where forests are subject to clear-cutting and are prevented from regenerating.1313

In addition, the finding of Barbier et al. (1995) ignores the way in which logging can1314

reduce costs to other agents of deforestation, such as palm oil producers in Indonesia1315

(Palmer and Engel, 2009). This demonstrates the problem of considering each driver1316

of deforestation in isolation. Logging plays a key enabling role (Marcoux, 2000) by1317

creating roads, which as described above reduce access and transport costs to agents1318

seeking land, for example when logged forest is subsequently cleared and burned for1319

agriculture (Marcoux, 2000).1320

This suggests that the impact of each driver of deforestation in isolation is highly1321

variable. The context-specific nature of the impact of logging is highlighted by the1322

experience of one of Indonesia’s neighbours, the Philippines, whose forests were1323

largely cleared through widespread logging (Casson and Obidzinski, 2002). In such1324

cases, farmers move in to the forest following logging, creating a two-step process1325

whereby the loggers create the initial clearings, and farmers clear the remaining veg-1326

etation which prevents forest regrowth. Lambin et al. (2003) call this the ’logging-1327

agriculture tandem’, and an instance of ’concomitant occurrence’, but what might1328

more simply be called a synergy.1329

Nonetheless the historical perception of logging as driving excessive deforestation1330
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led to the development of policies to control it, but which may have ultimately had a1331

perverse impact: In the 1990s there were a series of bans on the import of Indonesian1332

timber by concerned consumer nations, in addition to new domestic taxation on the1333

export of sawn wood (Barbier et al., 1995). The authors claim that in practice, the1334

net effect of these policies may have in fact been to reduce incentives to maintain1335

timber production forests by raising the costs of producing timber relative to other1336

land uses. If this interpretation is correct, then when considered in combination with1337

the increasing returns from other land uses such as ’fast-wood’ Acacia plantations,1338

policies designed to protect forests may have led to increases in the substitution1339

of natural production forests with other land uses. There is evidence from other1340

countries for the importance of changes in relative prices and costs in driving land-1341

use change, having been shown to be important in the expansion of agriculture1342

in countries as different as Sudan (Elnagheeb and Bromley, 1994) and Thailand1343

(Panayotou, 1993). Underlying these changes in relative prices, and indeed many1344

of the other above mentioned processes, is the ultimate driver of increased demand1345

for food and raw materials from a growing human population which is increasing1346

consumption levels.1347

Human population density generally has been shown in Latin America to be pos-1348

itively related with deforestation (Newton, 2007). Yet caution is needed with the1349

generalisation of such localised studies, since the relationship between population1350

and deforestation is actually quite complicated. It manifests itself in different ways1351

and is moderated by multiple other processes (Lambin et al., 2003). As Marcoux1352

(2000) points out there is a fundamental difference between the static and dynamic1353

aspects of human population density. That is, high human population at a point1354

in time should be expected on average to be inversely related to the level of forest1355

cover, simply because larger numbers of people tend need to clear more land to1356

build settlements and develop agriculture. However the role of population dynamics1357

is much less clear, due to what Marcoux (2000) calls the ’diversity of population-1358

forest linkages’. These are context dependent, depending upon initial conditions,1359

such as whether the population is growing in an area which already has low forest1360

cover. The linkages themselves are also moderated by economic and institutional1361

factors, such as relative wealth of the population, type of agricultural development1362

and the efficacy and enforcement of land-use regulations and policies. This complex1363

relationship has been partially illustrated in a study across countries containing1364

biodiversity ’hot spots’. Jha and Bawa (2006) found that the impact of human1365

population growth on deforestation is significantly moderated by the Human Devel-1366

opment Index, providing further evidence for the hypothesis that the level of human1367

development is an important dimension of deforestation. For instance Alix-Garcia1368

et al. (2012) found that the impact of PES schemes in Mexico depended on the1369

relative wealth of participants. The poorer groups increased deforestation, possibly1370

due to release of a credit constraint, whereas wealthier groups appeared to reduce1371
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deforestation.1372

Finally, the dynamics of the political economy have also been shown to affect1373

deforestation rates. In Indonesia the electoral cycle has been linked to increases1374

in forest clearance, because incumbent politicians seeking re-election need to raise1375

campaign funds, and they often do this by leasing new logging concessions to increase1376

licensing revenue (Burgess et al., 2012).1377

Notwithstanding the evidence presented here which suggest an understanding of1378

deforestation processes, there are still gaps in knowledge. For instance Angelsen and1379

Kaimowitz (1999) state that there is still uncertainty over how input prices, land1380

tenure and technological advances affect deforestation. But according to a later1381

paper by the same authors (Angelsen and Kaimowitz, 2001), what evidence that1382

does exist suggests that improvements in agricultural technology and intensification1383

of production increases deforestation. Nonetheless, this assertion is contested, with1384

Harrison (1992) stating that improvements in agricultural technology can reduce1385

and offset the increases in deforestation pressures caused by rising human popu-1386

lation. Between these apparently polarised views, Lambin et al. (2003) present a1387

much more varied picture, where agricultural intensification is balanced by extensifi-1388

cation, which means increasing areas of lands coming under agricultural production.1389

This can occur where technological advance is non-uniform and where technological1390

involution’ (a regression in technological capacity) occurs and agriculture expands1391

with low technological inputs.1392

Despite these apparent uncertainties and gaps in knowledge, researchers have1393

nonetheless attempted to attribute degrees of significance to the individual drivers1394

of deforestation. Angelsen and Kaimowitz (1999) suggest that one of the most im-1395

portant variables in both theoretical, empirical and simulation models is the level of1396

off-farm employment. This is thought to be the case because in theory this reduces1397

the pool of labour available to the agricultural sector: Assuming a fixed supply1398

of labour, and the absence of large changes in the development and application of1399

technology, increased off-farm employment therefore raises costs in the agricultural1400

sector and reduces the returns to forest clearance and agricultural expansion. Yet1401

the way that agents respond to these incentives of increased wages in non-farm1402

sectors is moderated by institutions and attitudes (Lambin et al., 2003). For in-1403

stance, labour market flexibility is likely to be lower for a highly regulated societies.1404

As an example, a correspondent from rural Jambi province told the author that a1405

Surat Jalan (a travel permit) from the local government was still required in 20041406

by Indonesians to move even between regency (kabupaten, one of Indonesia’s small-1407

est political divisions) borders. So even if wages were higher in a neighbouring1408

province or regency, workers movements may be restricted. Inter-province migra-1409

tion is still regulated according to forestry officials in Jambi, who further state that1410

illegal deforestation is being driven by illegal migrants. This is discussed in the1411

next chapter, number 4. In practice however, technology can offset increased labour1412
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costs: mechanisation can also reduces the demand for unskilled labour in agricul-1413

ture, as classically occurred in the agricultural development of western European1414

countries. However this interaction does not appear to have been quantified in the1415

context of tropical deforestation, likely because the tropics are still going through1416

this intensification process.1417

Against this general background on the drivers of deforestation, the next stage1418

is to turn specifically to Indonesia and examine the history of forestry and land use;1419

the local determinants of deforestation and the socio-economic conditions which1420

have driven the process in this country.1421

3.2 Indonesia’s forests and their management1422

Indonesia is a vast archipelago, comprising some 17,000 islands spanning the sea1423

between the Malay peninsular and Australia. It is the world’s 4th most populous1424

country, with at least 230 million people (World Bank, 2011). The following section1425

contains a summary of the modern political history of the country from the Dutch1426

colonial period through to the modern day, and how the political-economic and1427

institutional context influenced contemporary forest management regimes. This1428

is followed by a discussion of how Indonesia is now fitting into the international1429

climate change management regime through its participation in REDD+, and how1430

new regulations, laws and policies designed to implement it are being challenged by1431

actors and organisations whose interests are not aligned with forest conservation.1432

3.2.1 A summary of the modern political history of1433

Indonesia1434

In contemporary Indonesia, the central government is based in Jakarta and headed1435

by the President of the Republic. The Republic is divided into 34 provinces, each1436

headed by a governor. Each province is itself sub-divided into areas called Kabu-1437

paten, each of which are headed by a regent called a Bupati. However, the islands1438

that today comprise Indonesia have historically been administered under a range1439

of different systems. Rule by religious kingdoms and regional chiefs gave way to1440

European domination in the 17th century. The colonial period was followed by1441

independence and the development of a military dictatorship which constituted a1442

kleptocracy, and which lasted up until 1998. This was followed by a period of social1443

and economic chaos and the ’reformation’ (reformasi), which precipitated the rela-1444

tively peaceful multi-party democracy which continues to the present day. Each of1445

these periods is discussed below.1446
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3.2.2 The colonial period1447

Indonesia was governed by the Dutch as an extractive colony by the Dutch East1448

India company from the 17th century through to 1947, with only a brief inter-1449

lude of British rule at the beginning of the 19th century. After 1830 when the1450

Dutch regained control they implemented a quasi-feudal cultivation system under1451

the administration of village officials (Szcezepanski, 2002). In the outer lying is-1452

lands, Indonesians carried on farming in their traditional manner, which involved1453

communities making land use decisions based on customary law called the adat.1454

Although varying across the archipealgo, this was essentially a communal system1455

of sustainable forest management. This created a dual legal system: one for the1456

colonial Dutch and employees, and one for Indonesians as yet largely outside Dutch1457

influence. However a new 1870 law called the Agrarische Wet heralded a shift in1458

the way in which all land was managed in Indonesia. This law introduced European1459

land titling and registration across all Indonesia’s islands. Any land which could1460

not be proven to be owned with formal western-style titular documents became the1461

property of the state to be rented out. The Indonesian peasantry and indigenous1462

groups operating under Adat were unfamiliar with such western-style legal docu-1463

ments and could not prove ownership (Szcezepanski, 2002). Because of this the1464

Agrarische Wet served as a legal means to expropriate land from huge numbers of1465

Indonesians, and centralise control and rents for a colonial kleptocracy operating un-1466

der a western legal institutional framework. It represented a direct conflict between1467

the communal land systems of the Indonesians and the individual land ownership1468

regimes operating under the institutional norms of a western European colonialist1469

state.1470

3.2.3 Independence and the New Order period1471

Indonesia secured independence from Holland in 1949 following the second world war1472

and the brief period of Japanese occupation. Indonesia’s constitution was drafted1473

during this period. It is based on Dutch law, and is still in place today, re-iterated by1474

Law 10/2004. Iskandar (2004) sets out the heirarchy of Indonesian laws as follows,1475

with the Constitution taking primacy, and regional regulations having the lowest1476

significance.1477

• 1945 Constitution (Undang undang dasar 1945)1478

• MPR Resolution1479

• Law (Undang undang)1480

• Government Regulation Substituting a Law (Peraturan Pemerintah Pengganti1481

Undang undang)1482

• Government Regulation (Peraturan Pemerintah)1483
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• Presidential Decree (Keputusan Presiden)1484

• Regional Regulation (Peraturan Daerah)1485

Early independence saw the development of a domestic Communist movement,1486

which was brutally crushed, with as many as 700,000 suspected communists mur-1487

dered across the country. Following this crack down, Indonesia fell under the control1488

of the military strongman General Suharto in 1966. Suharto was the head of the1489

New Order regime (Orde Baru) which was called as such to contrast it with the1490

old order of Sukarno, who was Indonesia’s first post-independence President. Gen-1491

eral Suharto ruled for 32 years until 1998 with a powerful centralised and militarised1492

bureaucracy, running on a system of crony capitalism dominated by client-patron re-1493

lationships amongst the inseparable political and business elite (Smith et al., 2003).1494

This elite undermined the independence of the judiciary (Lindayati, 2002) and set1495

about influencing law-making and policy directly for private gain, finally creating a1496

highly centralised kleptocracy focussing on natural resources (Palmer, 2005; Ross,1497

2003; Jepson et al., 2001). Dunggio, an Indonesian researcher, described this con-1498

text as one of ’Collusion, Corruption and Nepotism’ (KKN: Kongkalikong, Korupsi1499

dan Nepotisme (Collins et al., 2011a). This period is extremely important for the1500

history of forestry since Suharto’s regime continued the process of centralisation of1501

the control of forest management and natural resource rents which had begun in the1502

colonial period, and now progressively excluded communities operating small scale1503

logging and natural resource extraction operations.1504

The legal basis of New Order resource management was Article 33(3) of the1505

1945 constitution which states that ”Land and water and the natural riches therein1506

shall be controlled by the State and shall be exploited for the greatest welfare of1507

the people” (Szcezepanski, 2002). However up until 1960 the dual legal system1508

(based on civil law and Agrarische Wet for the Dutch colonialists, and adat for1509

Indonesians) persisted, with 95% of the archipelago still operating under the various1510

regional forms of adat (Szcezepanski, 2002). This predominance of adat was eroded1511

by the passing of the Basic Forestry Law UU5/1967 which supported central state1512

sovereignty over resources rather than community ownership (Szcezepanski, 2002).1513

Sovereignty was declared over ’unowned land’ which in practice was actually often1514

under traditional adat community management. Adat is a form of common property1515

management. Under these new laws this land could then be legally seized and1516

rights management transferred to bureaucrats in Jakarta. These extraction rights1517

were then redistributed in the form of 20 year Hak Pengusaha Hutan licences to1518

multinational logging firms via links with the Suharto family and to the army. The1519

connection with military force (Tentara Nasional Angkatan Darat ; TNI-AD) was1520

used to ensure that nobody else logged the forest (Casson and Obidzinski, 2002).1521

Indeed as part of a process of paying off the powerful players in Suharto’s kelptocratic1522

game, logging firms were in many cases actually even operated by the military and1523
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police (Lindayati, 2002), via Yayasan, foundations set up to channel income from1524

the ’private interests’ of the military and police.1525

The 1960 Basic Agrarian Law, supplemented by the Basic Forestry Laws of 19671526

and 1999, and the 1992 Spatial Planning Law, were intended to unify all land law1527

into a single system. The 1967 Basic Forestry Law brought 70% of all Indonesia’s1528

land under the control of the Ministry of Forestry and Estate Crops; and allowed for1529

concessions run by state and private conglomerates (Casson and Obidzinski, 2002;1530

Szcezepanski, 2002). This was done in a way which again, as per the Agrarische Wet,1531

focussed on individual land title and did not genuinely accommodate the communal1532

system of adat. Whilst it gave some formal recognition to adat it did so in a way1533

which made it difficult to be seen as legitimate. Specifically, adat was restricted1534

to instances where it did not conflict with religious laws; agrarian laws; was not1535

contrary to Indonesian socialism, or run against the interests of the state: but since1536

these concepts were not defined, these guidelines were meaningless (Szcezepanski,1537

2002). Communities therefore continued to engage with the large logging firms1538

in order to be able to secure some income from the forests which in many cases1539

they once had the rights to themselves (Casson and Obidzinski, 2002). To some1540

extent this represents a parallel with the employment of peasant farmers under the1541

Agrarische Wet: resource ownership was lost to rural Indonesians who then needed1542

some way to regain a livelihood.1543

Accordingly, and conforming to the pattern of the centralisation of power and1544

resources by an elite, logging became an increasingly oligopolistic affair. By 19951545

only five multi-national and national timber conglomerates controlled almost one1546

third (30%) of the Indonesia’s timber concession holdings (Casson and Obidzinski,1547

2002). This prioritisation of the large companies meant further marginalisation still1548

of the small firms and people with fewer political connections actually living near1549

the forests. Moreover the disenfranchisement of the rural poor and the centralised1550

pooling of resource rents to develop crony networks became Indonesia’s natural1551

resource management strategy. Indonesians across the archipelago finally became1552

trespassers on their own land: in 1967 between 40 and 60 million people lived in1553

areas which then fell under the Basic Forest Law that prohibited communal and1554

individual ownership (Szcezepanski, 2002), whilst a handful of logging companies1555

had now secured the legal rights exploit the land and forests under the protection1556

of the military and police that in some cases were even running their own logging1557

operations.1558

The Production, Protection and Conservation forest classes seen on contempo-1559

rary maps of Indonesia are therefore the final outcome of centuries of centralisation1560

of resource control which ultimately led to the expropriation of land. However a1561

new version of the Basic Forest Law was created in 1999 after the resignation of1562

Suharto, in the democratic reform period, and so it is to this era which this chapter1563

turns now.1564
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3.2.4 Post-Suharto: reformasi and regional autonomy1565

Suharto’s three decades in power came to an end in 1998 when the Asian financial1566

crisis hit. This external shock created widespread economic chaos. The Indonesian1567

currency, the Rupiah, went into freefall, creating unemployment and ultimately1568

undermining any remaining support for Suharto as President. The pressure release1569

of his resignation combined with the financial crisis led to a period of intense social,1570

political and economic upheaval called ’The Chaos’ (Kingsbury and Aveling, 2003).1571

This period was followed by the development of a movement for reform and change1572

in Indonesia called the reformation (reformasi).1573

One aspect of change demanded was increased local control over natural capital1574

in the outlying islands: the representatives of these resource-rich provinces had now1575

realised they were no longer in thrall to the military strongman in Jakarta (ibid.)1576

In the most extreme case this served as an opportunity for provinces and islands1577

to seek independence. Ultimately only East Timor achieved this, albeit at great1578

human cost. To resolve these demands for increased access to rents and political1579

power and quell the desires for independence, a system of regional autonomy was1580

developed. Both Papua and Aceh at the extreme west and east of the archipelago1581

achieved special autonomy status,called Otonomi Daerah Istimewa. Under regional1582

autonomy, administrative powers were devolved to the kabupaten level under Law1583

No.22/1999. The roll-back of centralised power led to a ’blossoming’ (pemakeran)1584

of regional government, and the number of kabupaten grew by 65% from 298 to 4831585

(Burgess et al., 2012). Whilst regional autonomy provided a means for resource-1586

rich regions to take a larger share of revenues, the decentralising laws themselves1587

nonetheless stated that conservation and exploitation of natural resources were to1588

remain a national concern, meaning that Jakarta still retained ultimate control of1589

all land classes in principle.1590

3.2.4.1 Indonesian land classes under regional autonomy1591

Indonesia’s land classes are today are separated into non-forest, protection forests1592

and production forests, but with sub-categories of each. Forests designated for1593

extractive industry fall under the umbrella term of Production Forest (Hutan pro-1594

duksi). Production forest in turn constitutes Limited Production Forest (Hutan1595

Produksi Terbatas); Conversion Production Forest (Hutan Produksi Konversi); or1596

Permanent Production Forests, (Hutan Produksi). Limited production forests is a1597

class for low-intensity logging, often on sloping land where the forest is used to pre-1598

vent erosion. Conversion forest is designated for clearance and conversion into other1599

uses such as agriculture. Permanent production forest is designated to remain a per-1600

manent part of the forest estate and not converted to other land uses. Protection1601

Forest (Hutan Lindung) is a class of protected forest. It does not enjoy the same1602

level of legal protection as national parks, and does not have dedicated protected1603
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area offices like national parks. Protection forests are often used to protect particu-1604

lar ecosystems and ecosystem services such as watersheds. Natural Protected Forest1605

which include national parks Taman Nasional, are typically larger than Protection1606

Forests, and are located in places that protect unique landscape values including1607

the mountainous habitat of Sumatra’s Kerinci Seblat and Gunung Leuser which1608

hold some of the last populations of Sumatran tigers and rhinos. A final category1609

is non-forest land called Areal Pengunaan Lain (lit.’land for other uses’). Whilst1610

all forests are owned ultimately by the state and, different forest classes at different1611

scales fall under different management organisations under the system of regional1612

autonomy.1613

The majority of forest classes are administered by the Ministry of Forestry (MoF)1614

in Jakarta, but protection forest, and all production forest, are administered by re-1615

gency (kabupaten) forestry departments (DINAS Kehutanan Kabupaten). However1616

in the case that either of these classes overlaps the boundary of two or more dis-1617

tricts, the provincial government gains management authority under the provincial1618

forestry service (DINAS Kehutanan Propinsi) (Collins et al., 2011).1619

Nonethless, the decentralisation laws were vague about the extent of regional1620

autonomy for resource planning and control. The report of a World Bank official1621

working on a Sumatran forest conservation project during the period summarises1622

the effect of decentralisation and regional autonomy on forestry: ’Law enforcement1623

with respect to park protection was poor even before reformation [reformasi] and1624

decentralization. After decentralization, the break-down in law and order, illegal1625

logging and encroachment have proceeded unchecked and are uncheckable. Illegal1626

logging is a major national problem. Conservation cannot work in a situation where1627

there is no effective governance’ (WorldBank, 2003) p.18.1628

This reference provides an interpretation of the events of this time from a quite1629

narrow perspective. That is, it does not consider where the laws that created the1630

protected areas originated in the first instance; and whether these were a fair and1631

just approach to land management. In practice, what reformasi meant for forests1632

and land management was that the local communities and entrepreneurs which had1633

long been excluded from forest resources under first the colonialist Agrarische Wet,1634

followed by Suharto’s Hak Pengusaha Hutan and protected area system, suddenly1635

realised that finally there were now few repercussions from entering prohibited forest1636

areas. This was especially the case following President Habibie’s efforts to reduce1637

the influence of the Indonesian military after he was elected as Indonesia’s third1638

post-Independence President, albeit briefly (Casson and Obidzinski, 2002). This1639

realisation of reduced restrictions is what forest protection officers operating in In-1640

donesia today call being berani, meaning brave, when describing people’s behaviour1641

following reformasi (author’s conversation with Pak Ragil, a forestry officer in Air1642

Hitam Dalam, on the border of protected forest and Berbak National Park): the1643

climate of fear, reprisals and punishment which had kept people out of forests had1644
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now evaporated. Whereas in the previous three decades only those people with the1645

closest connections to Suharto and the military were allowed into protected areas to1646

access resources, people and officials in the regions suddenly now saw and took the1647

opportunity to take a larger share of resource revenues locally. Under new autonomy1648

regulations, local officials at the kabupaten level were now legally entitled to licence1649

concessions of 100ha (Casson and Obidzinski, 2002). This included the issuance of1650

logging licences by Bupatis (the heads of Kabupaten government) in land set aside1651

by Jakarta for conservation (Jepson et al., 2001), or otherwise simply to a profusion1652

of logging concession licences at the local level under fixing agreements (Palmer,1653

2005) with collusion between local officials and loggers (Smith et al., 2003).1654

However, because of the sudden novelty of regional autonomy and the new powers1655

at the kabupaten level, the distinction between what was ’legal’ and ’illegal’ became1656

blurred. For the World Bank official cited above in their report on the Kerinci Seblat1657

ICDP, illegal logging was simply the result of a collapse in law and order following1658

the drastic changes of central government. Yet these events represented a reversal of1659

a long history of local dispossession, and moreover ’illegal’ action under national law1660

was actually now being legalised by the permissions granted at the local kabupaten1661

level.1662

The headline-capturing explosion in illegal logging was therefore more nuanced1663

than a one-dimensional collapse in governance. And as a nuanced process, it would1664

also not be true to say that what happened in forestry during this period was1665

simply a romantic tale of dispossessed Indonesians regaining title to ancestral lands1666

and rents historically seized first by colonialists and then a military kleptocracy.1667

The history has multiple threads, and there does also persist an institutionalised1668

culture of corruption which was established during Shuarto’s tenure and which em-1669

anated from the very top of Indonesian society (Palmer, 2005). This has meant1670

that many problems such as the ’illegal’ logging and timber smuggling have per-1671

sisted after reformasi and into the democratic period (Smith et al., 2003; Indrarto1672

and Murharjanti, 2012). These problems continued even after the re-elevation of1673

many decision making powers to the to the provincial level under Law 32/2004. For1674

instance, Palmer (2005) describes ’wet positions’ in the Indonesian bureaucracy,1675

(so-called since they provide access to a ’pool’ of rents), giving the example of a1676

border crossing between Indonesia and Malaysia where there are even bidding wars1677

for official positions. At the national level the reforestation fund created in 19891678

to support reforestation and rehabilitation, and ensure long-term wealth creation1679

for Indonesia was subject to very high levels of corruption (Barr, 2006). This per-1680

sistence of corruption in norms of behaviour despite the seismic shifts of reformasi1681

and regional autonomy is consistent with the path-dependency which North (1990)1682

explains is characteristic of institutional change.1683

Despite the costs to logging firms of having to pay bribes to rent-seeking local1684

officials in these wet positions, there are still large incentives to enter the forestry1685
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sector because of super-normal profits. This has undermined demand side regulation1686

such as through certification schemes, where illegally cut Indonesian timber has1687

simply been re-constituted through smuggling networks (Obidzinski et al., 2006)1688

as legal timber in Malaysia (Palmer, 2005). However, despite the fact that illegal1689

logging in Indonesia continues at a rate of approximately 40 million m3 per year1690

(with associated loss of $US600m tax revenue yr−1 ) it has nonetheless declined1691

since the reformasi period. According to Obidzinski et al. (2006) it is much less1692

of a problem per se than the abuse of licences by the road building and plantation1693

industries which now have huge interests across the country. It is to this industry1694

that the chapter now turns.1695

3.2.4.2 The substitution of forests for oil palm1696

One of the largest changes to have occurred during the reformasi period was that1697

land managed for timber production has become relatively less lucrative following1698

the increased global demand for crude palm oil derived from the African oil palm1699

(Elaeis guineensis). The fruit of this species is energy rich and has a wide range of1700

uses from cooking oil through to biofuel. Indonesia is already the world’s largest1701

producer and was able to meet 57% of the increase in global demand in the decade1702

2000-2009 (Rianto, 2010). To achieve this, between 2000 and 2009, the area of1703

mature palm oil was expanded at an average annual rate of 10%, leading to an1704

increase in production of 17.4% annually (ibid). On Sumatra this has amounted1705

to 600,000 hectares being planted in that period, a growth rate of 6% (Shean,1706

2009). Overall in the decade 1999 to 2009 the area of palm oil plantations in1707

Indonesia grew 87%, from 3.9 to 7.3m ha with 65% of these on Sumatra (Rianto,1708

2010). This includes 748,118ha (10% total) in South Sumatra, and 484,671 ha1709

(7% total) in Jambi province in 2009 (ibid). Aside from the decentralisation of1710

land use management, this palm oil expansion was possible due to the government’s1711

provision of subsidised credit through discounted loans and even cash grants, funded1712

by Indonesia’s reforestation fund Dana Reboisasi (Barr, 2006). This helped to foster1713

an environment conducive to investment from international firms with the capital to1714

increase production (Shean, 2009). Furthermore the export market was encouraged1715

by establishing progressive export duties (Rianto, 2010). As with the periods of1716

control under Dutch colonialists and General Suharto, the expansion of the palm1717

oil industry has been linked with allegations of corruption and land grabbing and1718

wealth transfer from local land users to more politically powerful and capital-rich1719

multinational corporations. As with the ’illegal’ logging discussion however, this1720

may provide an incomplete picture. Rianto (2010) claims that small land holders1721

make up as much as 47% of plantation areas, whilst Fadil Hasan, the director of1722

the Indonesian Oil Palm Association is cited as claiming that more than a third of1723

Indonesia’s oil palm comes from smallholders (McClanahan, 2013).1724
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Regardless, creation of these plantations is driving land use change across In-1725

donesia. Huge CO2 emissions are created in the process, particularly where the1726

development occurs on peat. Approximately 80% of Indonesia’s Greenhouse Gas1727

(GHG) emissions are from Land Use Land Use Change and Forestry (LULUCF)1728

which now makes Indonesia infamous as the third largest emitter of carbon after1729

China and the USA (Sari et al., 2007). It is these emissions that have brought1730

the country into the international spotlight in the drive to mitigate climate change,1731

particulaly through REDD+.1732

3.3 Deforestation, climate change and REDD+1733

Indonesia’s third place in global emissions rankings is due largely to deforestation1734

and degradation and the burning of peat (Sari et al., 2007). Approximately 50%1735

of the world’s peatland, or 22 million ha, are in Indonesia, in coastal and sub-1736

coastal regions on Sumatra, Borneo and West Papua (Page et al., 2007). With such1737

high levels of emissions from land use change, the potential for REDD+ emissions1738

reductions is huge. So in response to these rising emissions, Indonesia is taking1739

action at the national level and cooperating with international donors.1740

Indonesia is already a party to the UNFCCC and the Kyoto Protocol, ratified1741

through Act No. 6/1994 and Act No. 17/2004. Indonesia has signalled the inten-1742

tion to take a central role in climate change mitigation, and in particular REDD+1743

under the incumbent President Susilo Bambang Yudhoyono (SBY). At the G-201744

Summit in Pittsburgh in September 2009, SBY pledged to voluntarily reduce In-1745

donesia’s emissions by 26% by 2020 in relation to the business as usual scenario.1746

This reduction would be increased further to 41% with international support. In1747

addition to international commitment and pledges, Indonesia has opened pathways1748

to implement domestic activities including the launch of the National Action Plan -1749

Addressing Climate Change when it hosted COP13 in Bali in 2007. The presidential1750

decree on the National Action Plan to Reduce Greenhouse Emissions (RAN-GRK)1751

signed in 2011 under PerPres 61.2011, is intended as a framework document to plan1752

Nationally Appropriate Management Activities (NAMAs). This is a national guide-1753

line document designed for guiding emissions reduction. The broad cross-sectoral1754

plan addresses agriculture, forestry, industry, energy, and infrastructure as well as1755

instruments like taxation, investment policies, and awareness raising. It covers1756

70 programmes, to be conducted by government and local and regional levels in1757

conjunction with the private sector and civil society. The Plan was officially incor-1758

porated into the country’s national development strategy under the coordination of1759

the Ministry of Planning in 2008.1760

In 2008 SBY also established a National Council on Climate Change (Dewan Na-1761

sional Perubuhan Iklim; DNPI). The Council, formed by 17 Ministers and chaired1762

by the President, is in charge of coordinating Indonesia’s climate change policies.1763
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Land Use, Land Use Change and Forestry is thought to be one of the cheapest1764

ways of mitigating climate change if one uses the McKinsey abatement cost curve,1765

which indeed heavily influences the DNPI’s own abatement cost estimations (DNPI,1766

2010). The DNPI claims that Indonesia could reduce emissions by 2.1 Gt by 2030,1767

which if achieved would mean that emissions would be 67% lower in two decades1768

time than they were in 2005, representing an enormous 7% of the total global emis-1769

sions reductions thought to be required by the IPCC to mitigate the worst effects of1770

climate change by 2030. Significantly for this thesis, since LULUCF is the largest1771

contributor to Indonesian emissions reductions, the DNPI aims to achieve 87% of1772

emissions reductions through reductions in deforestation and peatland conversion.1773

In an attempt to start this process, Indonesia’s REDD+ demonstration activities1774

regulations were published in 2008 (Permenhut no.68 Menhut II/2008). Addition-1775

ally, P. 30/Menhut-II/2009; PP6 and PP. 30/Menhut-II/2009 outline the areas in1776

which REDD+ activities may be developed, and procedures required to implement1777

activities (Collins et al., 2011a).1778

Nonetheless there are problems with this approach. The actual implementation1779

of REDD+ is a huge challenge in a dynamic economy where it is also government1780

policy to increase the production of agricultural commodities which are largely be-1781

ing developed on deforested land. In particular the government seeks to double1782

the production of palm oil by 2020 from 2009 levels: this would mean Indonesia1783

producing 40m tonnes of crude palm oil in 2020 and becoming the world’s largest1784

producer (Austin et al., 2012). There therefore appears to be a direct contradiction1785

between the DNPI carbon emissions reduction commitments, and the government1786

objectives on expansion of industrial palm oil expansion. However, the two goals do1787

not necessarily need to be opposed to one another. There are already large areas of1788

degraded land in Indonesia that could be planted on. These are already cleared of1789

forest, but are not being used for agriculture and therefore have low biodiversity, car-1790

bon and productive values e.g. Alang-alang grasslands Imperata cylindrica). This1791

could potentially supply the demand for land for increased palm oil production, and1792

in recognition, the World Resources Institute has created an online degraded land1793

mapping system, which has already identified 14m ha of this land on Kalimantan1794

(Stolle et al., ated), which these authors are quoted as estimating is sufficient for 201795

years of production (McClanahan, 2013). Nonetheless, a fundamental problem with1796

this strategy surround the base assumption that all of these areas are unused by1797

local people and have little or no agricultural value. Adjusting the blanket ’abun-1798

dant degraded land hypothesis’, a cautionary note is that some ’degraded lands’1799

may in fact already be used by local small holder farmers or be otherwise culturally1800

or socially important, and as such palm-oil development in these areas could lead1801

to social conflicts and increased poverty (Gingold et al., 2012).1802

There are other potential problems of focussing solely on land use conversion to1803

reduce emissions: it assumes that past trends will predict the future, yet as GDP1804
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per capita rises, an increasingly wealthy Indonesian populace is likely to increase1805

consumption. Indonesia now constitutes the largest car market in Asia pacific for1806

instance, with 940,000 vehicles purchased in 2012 (Wibisono, 2012). Suzuki Indone-1807

sia is also reported as planning a two year $800m investment in Indonesia, and1808

General motors is investing $150m to reopen a factory on Java (ibid.). Thus the1809

investment of two car companies alone will match in two years the total amount of1810

Norway’s REDD+ funding for 7 years from 2014. In addition the aviation sector1811

has undergone enormous growth: it has doubled in size from 37.4m passengers in1812

2008 to 72.5m in 2013 (CAPA, 2013). As Indonesia’s economy grows, these struc-1813

tural changes will continue, along with different sectors’ relative contribution to the1814

country’s GHG emissions. Nonetheless, current strategies focus on land use change1815

which for the moment do remain the main source of emissions. The main driver of1816

action currently is an agreement between the Governments of Indonesia and Norway.1817

3.3.1 A Letter of Intent with the government of Norway1818

and a forestry moratorium: first steps in1819

implementing REDD+1820

In 2010 the governments of Indonesia and Norway signed a Letter of Intent (LOI)1821

under a climate change partnership. The purpose of the LoI is to achieve emissions1822

reductions from deforestation, forest degradation and peatland conversion through1823

a) the development of a policy dialogue on climate change policy and REDD+; and1824

b) to collaborate in the development and implementation of Indonesia’s REDD+1825

strategy. This partnership will mean the Indonesian Government receives $1bn1826

over seven years from 2014, based on ’contributions-for-delivery’, which means the1827

payments are to be conditional upon results (Solheim and Natalegawa, 2010).1828

The partnership is broken down into three phases, which are 1. Preparation; 2.1829

Transformation; and 3. Contributions for verified emissions reductions (Solheim and1830

Natalegawa, 2010). The preparation stage involves the creation of domestic organi-1831

sations and institutions, specifically a REDD+ strategy; the creation of a REDD+1832

agency; and the development of an independent organisation for the monitoring,1833

reporting and verification of the emissions from LULUCF. A REDD+ agency was1834

created under Decree 62/2013 with the mandate of developing a national REDD+1835

strategy; forming REDD+ safeguards and coordinating law enforcement with re-1836

gards REDD+ activities. The agency will also develop the standards and method-1837

ologies for measuring GHG emissions. The final element of the preparation stage1838

of the partnership is the selection of a national REDD+ pilot province, which was1839

chosen as Central Kalimantan.1840

The second phase of the partnership scheduled for January 2011 is called ’trans-1841

formation’, with the aim of preparing Indonesia to receive results-based funding,1842

whereas the third and final phase is planned to start in 2014 and is focussed on1843
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Figure 3.1: A map of Indonesia showing the indicative forest moratorium map

providing the financial contributions for verified emissions reductions from 2013.1844

The focus in the transformation stage is on national level capacity building, policy1845

development; and legal reform and law enforcement. One of the requirements was1846

that Indonesia implement a two-year suspension on all new concessions for conver-1847

sion of peat and natural forest. One of the first actions of President Yudhoyono1848

after the LoI was signed was the development of a moratorium on the issue of new1849

extractive concession licences in Indonesian forests and on peatlands for two years1850

from summer 2011 under Presidential Instruction 10/2011 on ’The postponement1851

of issuance of new licences and improving governance of primary natural forest and1852

peat land’. The moratorium covered the issuance of new licenses across 65m hectares1853

of forest, but excluded existing licences. It was extended for another two years in1854

2013 under Presidential Instruction Inpres 6/2013. As with the first moratorium,1855

the second iteration prohibits new licenses for the conversion of what is defined1856

as Primary Natural Forests and peatlands. This includes primary natural forests1857

within protected areas and in production forests. But it excludes secondary forests,1858

and also activities deemed to be of ’strategic interest’ including such as geothermal1859

energy and gas exploration. This is significant since 80% of geothermal sources are1860

found in conservation forests (Townshend et al., 2013; Indah, 2011). These excep-1861

tions account for some 3.5m ha of land which are otherwise inside the moratorium1862

map boundaries (Austin et al., 2012).1863

That the moratorium has faced stiff resistance from the oil palm industry in1864
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particular reflects both the incentives to enter the palm oil and timber industries1865

but more generally the Indonesian economy’s (over) reliance on natural resources1866

(Harvard Kennedy School, 2010). Representatives of the sector cite the moratorium1867

as a barrier to Indonesia remaining the world’s largest palm oil producer. Further,1868

representatives of the Indonesian Oil Palm Association (GAKPI) have highlighted1869

the restriction on economic growth more generally, against the employment benefits1870

from expanding palm oil production: GAKPI states the industry employs 6.7m1871

people and contributes $600m per year to Indonesian GDP (Lubis, 2013b). This1872

reasoning is probably behind the decision to exclude projects of national importance1873

such as geothermal energy from the moratorium (Murdiyarso et al., 2011a)1874

Whilst it has been opposed by the oil palm industry, the moratorium has also1875

not been without controversy for organisations concerned with forest conservation.1876

Many of the forests covered by the moratorium were already protected under the1877

1999 Basic Forestry Law anyway. The moratorium covers protected areas thereby1878

providing what Agus Purnomo (SBY’s special aide on climate change and the1879

secretary-general of the DNPI) calls the ’double protection’ of Indonesian law (Jakar-1880

taPost, 2011). From one perspective, if existing laws enacted to protect forest cannot1881

be successfully implemented, it seems rather disingenuous to simply produce more1882

laws rather than operationalise existing legislation. This could be interpreted as a1883

reflection of the sense of imperiousness that continues to pervade the bureaucracy1884

post reformasi (Harvard Kennedy School, 2010). However, as described above, the1885

story over law, legality and forest classification is not straightforward, especially1886

following regional autonomy. Even if the moratorium achieves Purnomo’s ’double1887

protection’, forests could still be cleared for projects of national importance: as will1888

be explained in the next section, REDD+ legislation appears to have incentivised1889

competing land use legislation to circumvent the new restrictions on forest clear-1890

ance. REDD+ is clearly introducing further layers of legal complexity in system1891

which is already byzantine.1892

3.3.2 Legislation to convert the status of protected forest1893

There appear to be struggles in Indonesia between the organisations which have1894

historically controlled forest resources and the new organisations created to manage1895

and implement REDD+, in particular the REDD+ Task Force (which became the1896

REDD+ agency in late 2013 under Presidential Decree 62/2013). The REDD+1897

programme threatens to reduce access of the Ministry of Forestry to the forestry1898

licensing fees which have historically been the source of its power (Barr, 2006). It is1899

worth re-iterating that the 1967 Basic Forest Law brought 70% of Indonsia’s land1900

under control of this single ministry. The REDD+ programme further threatens to1901

reduce the access of the palm oil and timber industry to new concessions and profits.1902

Indicative of this struggle are new regulations which appear to run counter to the1903
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goals of the moratorium: new decrees provide new legal means for forests’ status1904

to be changed and even exempted from the moratorium. In particular Law No.101905

of 2010 is designed to change the status of conservation forest and protected areas;1906

whilst the Minister of Forestry Decree No. SK.292/Menhut-II/2011 was specifically1907

designed to change the status and functions of designated forestland in East Kali-1908

mantan. Indeed eleven days after the first moratorium was declared in 2011, SK.2921909

was used to convert 1.67 m ha of ’conservation area forestland’ to ’non-forestland’;1910

34,497 ha of conservation area into convertible production forest (hutan produksi1911

konversi); 9,048 ha of conservation area into permanent production forest (hutan1912

produksi); 4,867 hectares of ’conservation area’ into limited production forest (hutan1913

produksi terbatas); and 33,078 hectares of ’protection forest’ (hutan lindung) to lim-1914

ited production forest. In summary SK292 is thought to have converted on paper a1915

total of 1.67 million hectares of forestland to non-forestland, in addition to changing1916

the functions of 690,000 ha of forests (Greenomics, 2011). A less cynical interpreta-1917

tion than this representing the in-fighting between the REDD+ Taskforce and the1918

Ministry of Forests is that the forest areas in question had actually been degraded1919

anyway, and were no longer in reality primary forests requiring moratorium protec-1920

tion. As such the SK292 was simply making an adjust on paper to update a land1921

use classification which also existed mainly on paper and was not followed in the1922

first place. Nonetheless a further 240,000 ha of forest in east Kalimantan may be1923

re-designated in this way as a part of a complete re-design of the spatial plan (Tata1924

ruang) for the province, involving further conversion of protection into production1925

forest (ibid). As of the time of writing, the decision to authorise these changes1926

to provincial spatial plans are still with the House of Representatives (Dewan Per-1927

wakilan Rakyat; DPR), not only for the East Kalimantan, but for all Indonesian1928

provinces.1929

Both SK292 and Law No.10 could partially undermine REDD+ goals by fa-1930

cilitating the clearance of forest which is currently legally protected. However in1931

addition to this, further clearance of forested land can now be facilitated by an-1932

other new MoF regulation called Permenhut No.18/2011. This provides for the1933

expansion of development activities in both production and protected forests for1934

the following development (pertambangan) activities, which are broad and varied:1935

plantations; mining; forest industry; transportation; energy exploration; telecom-1936

munications; infrastructure; climatology stations; defence and security; temporary1937

disaster evacuation; construction of places of religious worship (Dr Iswan Dunggio,1938

Email, 4/3/2013). Of particular interest to REDD+ is where these laws have been1939

used in practice for the conversion of protected forest. Two cases involve east Kali-1940

mantan as mentioned above, but also the Sumatran province of Aceh, which was1941

involved in some of the first REDD+ developments in Indonesia.1942
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3.3.3 The application of the new land use change laws in1943

Aceh and east Kalimantan, and implications1944

Aceh is the most heavily forested province of Sumatra, and is the site of the am-1945

bitious Ulu Masen project developed by Carbon Conservation Ltd. and supported1946

by the American investment bank Merrill Lynch. This was supposed to have been1947

one of the world’s first and largest REDD+ projects under the voluntary carbon1948

market. This was strongly supported by the then-governor Irwandi Yusuf, a former1949

Acehenese separatist fighter who came to power amongst other things on the back1950

of ’green’ credentials aiming to protect Aceh’s forests. The end of his governorship1951

was marred by allegations of granting concession rights to an oil palm company in1952

the Tripa swamps, one of the last remaining blocks of forest on Sumatra support-1953

ing orang utans. However this pales in its impact compared to events under the1954

incumbent, Zaini Abdullah.1955

As of April 2013, the Ministry of Forestry was reported as being close to accept-1956

ing a new spatial plan (Tata ruang) which would see 1.2m ha of protection forest1957

re-zoned into production forest. If approved the new spatial plan would grant an ad-1958

ditional one-million hectares of land for mining, 416,086 ha for logging, and 256,2501959

ha for palm oil. This includes the development of Miwah, a 6000ha open-cut gold1960

mining pit in the heart of protected forest by a company called East Asia Minerals.1961

As primary natural forest, this should not be permitted under the REDD+ Mora-1962

torium. However Law No. 10 and Permenhut No.18 2011 are being deftly used to1963

circumvent it. If this interpretation of the law is true, then this finding has im-1964

portant implications for Indonesia’s deforestation baseline, since it suggests that far1965

more forest could be cleared in the future than is currently anticipated. Particularly1966

concerning for the development of Indonesian trust in REDD+ as a genuine and le-1967

gitimate new form of income, East Asia Minerals has been able to access the Miwah1968

area after having bought into the ownership of Carbon Conservation Ltd., the very1969

company which had developed the Ulu Masen REDD+ project purporting to be1970

the saviour of Aceh’s forests. At worst this has led to suspicions in the Ministry1971

of Forestry that Carbon Conservation had simply been speculating and taking the1972

opportunity to arbitrage land rights when the mining company made an attractive1973

offer to the Carbon Conservation’s owners (Bachelard 2012).1974

3.3.3.1 Land use classification on Kalimantan1975

In the case of East Kalimantan, the MoF’s justification was that the changes in1976

forest had already happened on the ground anyway, such that the designated forest1977

areas no longer had primary forest cover which warranted protection under the1978

moratorium. As such their argument was that land status needed to be changed, and1979

the moratorium maps updated. However an alternative response was available to the1980

MoF. It could have instead recognised the failure to properly manage forest resources1981
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on the ground in accordance with the original land status, and implemented a plan1982

to restore these forests rather than allow them to continue to be degraded and1983

converted to other uses. But instead it simply allocated the land to other uses.1984

The implication is that MoF passively accepts unauthorised changes of land use,1985

and tacitly grants immunity for transgressors. Furthermore, the MoF will actually1986

officially re-designate the land post-hoc to the new use to which it has been illegally1987

converted. If this analysis is correct, then it is difficult to see how these laws do not1988

present an incentive for further illegal deforestation. However, this process may be1989

occurring because the central Ministry of Forestry has lost much of its power under1990

decentralisation and regional autonomy, and the regents (Bupatis) have already1991

made decisions about land use locally that differ from the on paper classifications of1992

central government. So if this interpretation is correct, then many of the changes on1993

the ground which appear to represent illegal deforestation were actually authorised1994

for instance under the small scale logging permits system.1995

Nonetheless, in light of additional laws that facilitate extractive industries and in-1996

frastructure development including within protected forests, Agus Purnomo’s ’dou-1997

ble protection’ for forests seems an increasingly logical approach. Indeed it high-1998

lights the challenges of managing the government’s stated goal of economic growth1999

through expansion of infrastructure, extractive industry and agriculture on the one2000

hand, and the reduction in forest conversion for mitigation of climate change on the2001

other. Indeed, as a recent review of the World Bank’s Forest Carbon Partnership2002

Facility states: ”REDD+ is a more expensive, complex, and protracted undertaking2003

than was anticipated at the time of the FCPF’s launch” p. XIX (World Bank Inde-2004

pendent Evaluation Group). Many of these complexities are due to multiple drivers2005

of deforestation; complications of forest management on the ground; lack of existing2006

capacity and entrenched illegal behaviour from both corporations and government.2007

This perspective reflects the findings of a Collins et al. (2011a), who suggested2008

that fundamental institutional problems presented huge problems to the narrative2009

of a simple transaction to stop countries cutting trees. With a long history of2010

unconditional donor development money flowing into tropical countries, there is a2011

possibility that the notion of conditionality and payments for performance has not2012

been fully appreciated in Indonesia. Certainly, if deforestation continues at a fast2013

rate, there is a possibility that Indonesia will not receive much of the money which2014

has been offered by the Norwegian Government. On the other hand, as mentioned2015

previously even relative to the investments of car companies the amounts being2016

offered are relatively small and must be discounted since the income is to be received2017

over 7 years based on performance, whereas other land use options like expansion2018

of palm oil offer short term benefits.2019

In order to provide a window onto the realities of these issues in practice, they2020

are now explored in detail in the context of Jambi province and the case study site2021

at the Berbak Carbon Initiative.2022

66



Chapter 42023

Case study: the Berbak Carbon2024

Initiative2025

8. An analysis of  forest 
biomass with respect to 

Indonesian land use classes

10. Seeking additionality: An 
impact assessment of  one year
of  REDD+ project activities

9. Assessing the impact of
 protected areas on 

deforestation between 
2007 & 2009

2. Methodological context

1. Introduction

3. The socio-economic and 
political context of

deforestation in Indonesia

1. Thesis context, 
motivation and 
question 
formulation

5. Establishing a biodiversity 
baseline at Berbak National Park: 

tiger and prey occupancy 
assessment using camera trap data

6. Estimating the quantity of
 peat biomass and carbon at the 

Berbak Carbon Initiative

4. Case study: The Berbak 
Carbon Initiative

2. Methods 
and data 
analysis

11. Discussion, limitations 
and conclusions

Quantification of  
environmental indicators

Socio-eonomic assessment of
environmental indicators

7. Estimating above Ground
Biomass using integrated L band 

Radar and Lidar data

3. Synthesis

67



4.1 Introduction2026

Chapter 3 provided an overview on the drivers of deforestation and the history2027

of forest management in Indonesia. This chapter provides a detailed summary2028

of the conditions at the case study site, the Berbak Carbon Initiative in Jambi2029

province, Sumatra. It discusses the local drivers of deforestation and degradation2030

and the responses of the provincial offices of the Ministry of Forestry. These were2031

informed by a field trip to Indonesia. This trip provided insight into the conditions2032

at the site, particularly through in-depth conversations and informal interviews with2033

Pak Nuksman (Head of Berbak National Park); Pak Wahyu Widodo (head of the2034

Minstry of Forestry’s Jambi office Dinas kehutanan Provinsi); Pak Mulya Shakti2035

(Jambi Project Manager, ZSL); Pak Ragil (Forest Ranger at Air Hitam Laut); two2036

additional forest rangers (names withheld); and an employee from a local NGO2037

whose name was withheld due to the sensitivity of the allegations he made. A2038

problem with a small sample size and unstructured informal interviews is a potential2039

bias in the opinions of the respondents and the ultimate impression given. However,2040

these were not intended to be formal data collection procedures, rather to help in2041

building a picture of the conditions in the region and provide specific examples of2042

the issues generalised in the previous chapter.2043

4.1.1 Berbak Carbon Initiative Site description2044

The Berbak Carbon Initiative (BCI; 104 20’E 1 27’S; figure 4.1) is a pilot REDD+2045

project in Jambi province, Sumatra established by the Zoological Society of London2046

(ZSL) in 2009 and funded by the UK Darwin Initiative.2047

The project area comprises 238,608 ha of forest in four different land use classes.2048

These are Berbak National Park, which is under the control of central government in2049

Jakarta; a Forest Park Taman Hutan Raya; TAHURA and a Protection Forest Hutan2050

Lindung which are both under the control of the Jambi provincial government;2051

and two limited production forests concessions Hutan Produksi Terbatas which are2052

administered by the provincial government and licensed to concessionaires. The2053

area of each forest class is summarised in table 4.1.2054

The BCI area is covered largely by late successional forest on a combination of2055

ombrogenous (rain-fed) tropical peat swamp and mineral soils. Large areas of forest2056

in the centre of the park were burned in the fires of the 1996/7 ’el nino’ event, and2057

these areas now harbour low-lying scrubby swamp vegetation. The main river flow-2058

ing through the park is the Air Hitam (’black water’) river which is highly acidic,2059

and typical of peat swamp forests at pH 4.5.(A full description of the nature of the2060

development of the peat at the site, and the quantification of its volume are set2061

out in chapter 6).The Berbak ecosystem is one of the largest remaining freshwa-2062

ter swamps in SE Asia, providing important habitat for the critically endangered2063

Sumatran tiger (Panthera tigris sumatrae) and the endangered false gharial (Tomis-2064
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Figure 4.1: A map of the Berbak Carbon Initiative, a pilot REDD+ project which
includes Berbak national park and the adjacent hutan linding protection forest;
protected TAHURA forest park; and production forest concessions

.

toma schlegelii) (IUCN, 2013). Twenty three species of palms have been found here,2065

making the site the most palm-rich peatland swamp known in SE Asia. It is also2066

a site of particular importance for highly specialised air-breathing peat swamp fish2067

(stenotopic acidophilic icthyofauna), particularly of the family Osphronemidae and2068

the genus Betta, one species of which Betta splendens is popularly kept as a pet2069

under the name ’Siamese Fighting Fish’. (A description of the biodiversity sys-2070

tematically recorded at the site is provided in chapter 5). The rich biodiversity2071

of the site led to Berbak being declared a RAMSAR site and Wetland of Interna-2072

tional Importance in 1992 (Ramsar, 2013), when it was upgraded from a Wildlife2073

Refuge (Suaka Margasatwa to a national park by the Minister of Forestry under SK2074

No.285/Kpts-II/1992.2075

On the north and east of BCI (principally along the Batang Hari river, and2076

along the coast) are 32 villages. There are no indigenous people living in the area,2077

although one woman in the coastal village of Cemara was claimed by a community2078

member to be the last surviving member of an ethnic group that once did. However2079

this could not be substantiated.2080

The landscape surrounding the BCI is a matrix of coconut palm plantations2081

along the coast to the east, and logging concessions, remnants patches of forest,2082

and palm oil plantations to the west and south west. The land continues to be2083

drained and cleared for access to timber and land for legal and illegal agricultural2084

expansion. To the North, the BCI is bounded by the Batang Hari river. To the2085
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Site Zoning Area, ha
Berbak National Park National Park TN 140,204

Hutan Lindung Protected Forest Area HL 18,700
Taman Hutan Raya Forest Reserve TAHURA 17,593

Total Production Forest Zone Limited Production Forest HPT 62,102
PT. Putraduta Indah Wood Production Forest TPTI/THPB 34,730

PT. Pesona Belantara Persada Production Forest TPTI 20,826
Total 238,601

Table 4.1: The components of the Berbak Carbon Initiative

south, and contiguous with Berbak is the Sembilang National Park, a mangrove2086

forest.2087

This matrix of different land use is a microcosm of Jambi province. Pak Wahyu2088

Widodo, the head of the Ministry of Forestry’s regional forestry office (Dinas ke-2089

hutanan Propinsi), said that according to his figures, 42.1% of the land in Jambi is2090

classified as forest land, with 57% being set aside for other use which includes agri-2091

culture and urban areas (Areal Pengunahan Lain; APL). However he was aware that2092

what was classified forest land on his maps did not necessarily reflect the biological2093

conditions on the ground because of the pace of formal and informal land use change.2094

Multiple processes are causing extensive deforestation and forest degradation across2095

the province.2096

4.1.2 Proximate drivers of deforestation and biodiversity2097

loss in the project area2098

Local drivers of deforestation in the BCI area comprise a combination of illegal2099

and legal activities. On the north, south and west of the park there is evidence of2100

anthropogenic disturbance through illegal canal creation to drain the land in order2101

to expand agriculture. There are no roads in the park, however there are railway2102

tracks leading into the production forest, which were used to extract timber from a2103

previous cutting cycle in the concession.2104

Pak Wahyu Widido asserted that immigration was a fundamental problem for2105

forest degradation in Jambi. He said that immigration was largely informal, whereas2106

officially migration permits were required to be issued by the local government. Yet2107

due to poor enforcement, he claimed immigration was now out of control with entire2108

families moving (instead of single economic migrants), and largely from neighbouring2109

Riau province. He claimed the migrants were occupying and clearing Jambi’s forests,2110

and further protesting for land rights in his province. Pak Wahyu emphasised that2111

this was illegal and that moreover many migrants were not really the landless poor,2112

but rather land speculators that would want to sell land that they claimed rights2113

to. Unfortunately he was not able to provide any statistics on the actual numbers2114

of people moving into Jambi province, nor the area of land they had cleared. By2115
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contrast, the evidence from the literature suggests there is no single clear impact of2116

immigration on deforestation (Lambin et al., 2003), and moreover a common theme2117

throughout modern history has been to blame outsiders or immigrants for socio-2118

economic problems (Ferguson, 2006), a process which may be being replicated here2119

given the lack of evidence. In conclusion, without data it is not possible to verify2120

the assertion that immigration was one of the main drivers of land use conversion2121

in Jambi, nor indeed the levels of migration.2122

Logging and agricultural expansion One of the main drivers of forest degra-2123

dation in the BCI project area is logging. The two concessions on the western side2124

of the project both have had permits to undertake selective logging only. Howevever2125

neither concession is active as of 2013 due to financial problems in one firm, and the2126

lack of proper management plan being written by the other. No formal agreements2127

have yet been made between the concessionaires and ZSL over the inclusion of the2128

concessions into the BCI area. So without a change in land use class, for instance2129

to become a protected area, these forests will be logged again in the future. With2130

REDD+ funding, they could be logged less intensively, generating carbon credits as2131

an Improved Forest Management component to the project. Further, canals have2132

been built into the nominally protected hutan lindung and TAHURA forest to the2133

north and west of Berbak as a precursor to agricultural development, and possibly2134

to facilitate timber removal, since sporadic cases of illegal logging do continue to2135

occur inside the park (see figure 4.2 and 4.6). According to Citra N. (a field coor-2136

dinator for ZSL Indonesia), in the most severe cases this had led to officers from2137

Dinas Kehutanan being attacked by machete-wielding loggers. Yet in terms of rela-2138

tive importance, even these dramatic cases are insignificant compared to fire which2139

has already destroyed a large part of Berbak’s forests.2140

Fire is one of the major drivers of deforestation in Indonesia (Dennis et al.,2141

2005). It is used by land owners to clear the land of vegetation, but these are2142

normally poorly managed and can spread out of control and create enormous forest2143

destruction. In addition, where peatland forests are burned, the dried and oxidised2144

and hence highly flammable organic matter also ignites. These fires can release huge2145

amounts of carbon, since peatland store up to one 1000Mg C ha−1 (see chapter 6 for2146

a full discussion of the importance of peat). At Berbak, between 2001 and 2012, the2147

MODIS satellite detected 3213 fire ’hotspots’ within the BCI borders (data from2148

NASA/FIRMS: https://earthdata.nasa.gov/data/near-real-time-data/firms). The2149

distribution of fires is shown in figure 4.3. The fires are highly concentrated in the2150

areas of forest which have already been burned down, particularly in the western2151

part of the project area. The 127km2 ’hole’ in the middle of the national park2152

is the result of a huge fire in the 1997/8 season. There was speculation amongst2153

the ZSL Jambi team that the fishermen who had moved into the national park2154

were responsible for starting the fires which ultimately caused the huge destruction2155

in 1997/8. There is no evidence that this is the case however. Nonetheless the2156
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Figure 4.2: The forest classes of the BCI, showing villages and canals

fishermen have the most visible profile at the site, which is having an unquantified2157

effect on the aquatic biodiversity of the site.2158

Fishing and the communities neighbouring BCI Fisherman have a well-2159

established presence inside Berbak national park, and have established riverside2160

buildings well inside the park borders which are used as staging posts to launch2161

fishing expeditions, and as processing centres for the fish. The principal wild tar-2162

get species appears to be the ’snakeheads’ from the family Channidae (author’s2163

observation). In addition, fish breeding ponds have been established on the north2164

western border of the park near Air Hitam Dalam in the canals dug to drain the2165

peat swamp. These ponds were still being used in 2011 to meet the demand for2166

catfish of the genus Clarius which is used to make the Indonesian street food called2167

Pecel lele. This was clearly therefore not just occasional subsistence level fishing. In2168

Figure 4.4 snakehead fish are being dried in the sun in an artisanal fish processing2169

centre inside the park.2170

Presently there does not appear to be any attempt to regulate fishing by the2171

park authorities. On the contrary, field observation suggest the opposite is true.2172

The author was obliged to pay a forest policeman (POLHUT) to accompany his2173

expedition into the forest, ostensibly to enforce park regulations and laws. However,2174

the officer actively participated in fish extraction from the park. Specifically, the2175

officer a) confronted the author over the release of fish caught during a biodiversity2176

survey, since he wanted to eat them; b) ate cooked fish from a fisherman working well2177
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Figure 4.3: Fire hotspots at the BCI between 2001 and 2012 as recorded by MODIS.

inside the park boundaries, and c) insisted that the expedition help a fisherman tow2178

his unmotorised boat and catch from a small tributary to the main river channel.2179

The ranger received a small bucket of fish in return for the transport. See figure 4.52180

for image of the forest police officer eating fish from national park. This put the2181

author in the perverse position of using ZSL and research council funding to directly2182

subsidise biodiversity loss from the park under the pretence of law enforcement.2183

Pak Nuksman, the head of the park said that fishing in the park was widely2184

known about but was accepted by the authorities since the fishing was ’sustainable’.2185

However, he was unable to provide any evidence for this apart from a ’feeling’ or2186

’sense’ (rasa) that it was quite low level. By contrast, the author’s conversations2187

with fishermen in Air Hitam Dalam suggest that in fact big fish were now becoming2188

rarer, and they were having to travel further into the park to catch fish. If this2189

anecdote is true, this suggests a significant biodiversity conservation problem for2190

the site, not just for the fish populations but also the dependent species such as the2191

False Gharial Tomistoma schlegelii. The problem is not currently being addressed2192

but will need to be under CCBA requirements for REDD+ project development (see2193

chapter 5). It would also provide interesting and novel questions for future research.2194

Citra Novalina, tiger survey co-ordinator for ZSL in Berbak, said that she was2195

frustrated by this attitude of disregarding fish extraction, since to her fish were an2196

important part of the ecosystem too, and should not be ignored. Pak Nuksman2197

was unable to explain why fish were treated differently qualitatively from the other2198
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components of biodiversity at the site: This is probably a case of the prioritisation2199

of ’cute and furry’ species which people prioritise for conservation (see Kontoleon2200

and Swanson (2003) for further references on this topic). It would be inconceivable2201

that commercial hunting of large mammals or birds from the park would be officially2202

tolerated in such a way, if only the off take were sustainable. The very fact that2203

people are travelling into the centre of the park of to find fish may suggest that2204

fishing elsewhere is not sustainable; and the existence of large fish stocks at the site2205

is probably due to the fact that Berbak is a protected area and the forest ecosystem2206

has not been damaged or completely removed as it has elsewhere in the region.2207

Yet there is ongoing hunting in the park, primarily through the use of snares2208

which are placed along animal trails. This is a major conservation problem which2209

is a main focus of conservation effort. Nonetheless it was in one of these snares in2210

which the carcass of a large male tiger named ’King Arthur’ was found rotting in2211

June 2012 by a joint ZSL-POLHUT patrol.2212

It may be that the fishing is accepted not only to keep peace with the local2213

communities for whom fishing represents a profitable activity, but also because the2214

forest rangers can also top-up their salaries by participating in fishing in this way.2215

Pak Nuksman confirmed that national parks used visiting researchers to supplement2216

salaries, which illustrates the entrepreneurial nature of people in government posi-2217

tions, who supplement their wages with side businesses. The author has observed2218

this elsewhere in Indonesia, including Wildlife Protection Officers (KSDA) in Su-2219

lawesi taking ’day jobs’ instead of being at their posts (Collins et al., 2011a). Pak2220

Nuksman (who received a net monthly income of Rp3,617,675/ US$360 as of a pay2221

slip dated July 2011) stated that his salary was insufficient to live well on, and that2222

he and his wife owned a travel business on the side in order to supplement his wages.2223

This suggests that not only is there insufficient budget available to send officers into2224

the field very often, but that the salaries paid are insufficient to demand the full2225

attention of employees, leading in some cases to moonlighting (Collins et al., 2011a).2226

Where employment opportunities are limited such as in coastal areas of Jambi, one2227

obvious additional source of income is to work with the local communities to take2228

a proportion of the natural resources being extracted as a payment to ignore illegal2229

behaviour. This practice is called asking for uani piro in the Javanese language: a2230

payment to ’look the other way’. Nonetheless the only evidence of something like2231

this being true at the site is the present example of opportunistically working with2232

fishermen. However this is more like active assistance than simply looking the other2233

way.2234
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4.1.3 Contested land tenure2235

4.1.3.1 Local communities adjacent to Berbak national park2236

Land tenure arrangements are fundamental to understanding land use change. With-2237

out understanding what processes are occurring at both the landscape scale and the2238

local level, it will be difficult to develop project activities that bring a solution to2239

the forest degradation at the site, and achieve the goals of the project. As shown in2240

figure 4.2, there are numerous villages surrounding the project area. Many of the2241

fishermen described above are from these villages, and it is with these communi-2242

ties that ZSL is expected to work under the Climate, Community and Biodiversity2243

Alliance (CCBA) standards (Niles et al., 2005) in order to demonstrate net social2244

benefits. (See chapter 5 for biodiversity aspects of CCBA certification). However,2245

thus far there is relatively little information available about the socio-economic sta-2246

tus of the people in these villages. So as part of the project’s community engagement2247

programme, ZSL hired a consultant to performed surveys of the people living in the2248

32 villages directly adjacent to the park itself. Unfortunately there were problems2249

with implementing the survey, and as such it is not possible to provide much sum-2250

mary information about these communities. However, it was possible to derive2251

some anecdotal information from the consultant whilst he was still working with2252

the project. One case which has potentially large implications is the case of a com-2253

munity living near a village called Sungai Rambut. The inhabitants claimed that2254

when the park was gazetted in 1992, it included 2000ha of their land. As such, the2255

consultant claimed that the community is now seeking to excise this land from the2256

park and convert it for agriculture. Whilst this would provide benefits to the com-2257

munity from increased agricultural productivity, it would also contradict the goals2258

of the project of reducing deforestation. It could also set a precedent for re-zoning2259

the protected area, which concerned Pak Nuksman. He referred to ongoing work2260

to document what he called ’enclaves’ (in English) inside the park boundaries that2261

were created when Berbak was designated a Wildlife Refuge (Suarka Margasatwa)2262

before becoming a national park. He felt that his office did not have the right to2263

eject people from the land in these areas since they they were already occupied when2264

the national park was created. Yet he felt the presence of enclaves were a potential2265

problem in that it seemed from the outside to set a precedent for people to live inside2266

the protected area. As discussed in the previous chapter, the post-Suharto era has2267

been characterised by increasing local control of forest resources, and people becom-2268

ing more ’brave’ in their transgression of Suharto era land use classifications, whilst2269

the authorities have been increasingly unwilling to enforce these laws by ejecting2270

small farmers from national parks e.g. coffee farmers from Bukit Barisan Selatan2271

(Gaveau et al., 2009b)2272

A correspondent from a local NGO who wished to remain anonymous said that2273

in his opinion local people would only accept a REDD+ project at Berbak if it2274
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recognised their commitment to protecting and using the forests, and that it was2275

difficult to explain to them the concept of additionality or the necessity of national2276

parks: the local people believed they were best placed to protect the forest. He2277

also felt that REDD+ incentives were incorrect since they rewarded destructive2278

companies rather than local people who acted as forest stewards. (However in the2279

literature, the effect of local land tenure on deforestation is uncertain (Angelsen and2280

Kaimowitz, 1999)). When asked about the Berbak enclave and the Sungai Rambut2281

situation he suggested that one solution may be to bring the enclave and villages2282

surrounding the park into the broader REDD+ project by involving them in a2283

Community Based Forest Management (CBFM) system under regulation P6/2007.2284

The options to do this would be to create either ’village forests’ (Hutan desa),2285

’social forest’ ( Hutan kemasyarakatan) or ’community plantation’ (Hutan tanaman2286

rakyat). An important precedent was that first ever hutan desa licence issued in2287

Indonesia was in Jambi province, in nearby kabupaten Bungo.2288

However he immediately provided several caveats to this strategy. The bureau-2289

cracy involved in developing these land classes is challenging, particularly obtaining2290

the permissions letters required to change the land class. The letter which had been2291

issued in Jambi and which set the important precedent took six months to obtain,2292

but this does not complete the process: the final stage is the receipt of a verifica-2293

tion letter providing use rights (hak mengelola), which must be then signed by the2294

minister of forestry. According to the anonymous correspondent, due to these time2295

delays there were only 82,000ha of hutan desa in all Indonesia in 2011. In Jambi2296

there were at least 17 villages in Jambi province that were currently waiting for2297

a hutan desa licence and who had been waiting for over one year to hear about2298

their applications. This underscores the uncertainty of land tenure for Indonesians2299

generally, but also of the difficulties of using different land classes to participate in2300

REDD+, and of doing so at Berbak.2301

This demonstrates that not only are there unresolved land tenure issues in the2302

project area, but also that there are different options for their resolution which offer2303

quite different futures for the management of the park. On the one hand, a flat re-2304

fusal to allow the development of enclaves in the park could in principle retain more2305

forest for the project and achieve greater reduced deforestation. However if the local2306

community can demonstrate uncompensated expropriation of land for the creation2307

of the park, the REDD+ project could be interpreted as reinforcing and repeat-2308

ing the inequities of land tenure arrangements as described in the socio-economic2309

background chapter. This could possibly be a barrier to achieving the CCBA certifi-2310

cation under social benefits criteria. The CBFM option may provide a solution, and2311

co-management solutions have been developed in other places in Indonesia, particu-2312

larly where the ’fences and fines’ model of protected area management fails anyway2313

because the park is ineffective (Engel et al., 2010; Kaimowitz, 2003).2314
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4.1.3.2 Land use management decision making2315

An additional complication of obtaining the land use tenure is that great uncertainty2316

also surrounds the taxation of these land classes. The NGO correspondent explained2317

how if these new land classes create REDD+ income then the central government2318

would tax this income, but that there was uncertainty about taxation in the case2319

in which it generated no carbon revenues. This latter case seems a likely outcome2320

since the community forest schemes in Jambi that the correspondent referred to were2321

extremely small-scale, between 2 and 5ha, which would not be viable as REDD+2322

projects in their own right and would therefore require some form of pooling to2323

create a larger project that would reduce transaction costs.2324

The correspondent claimed that the potential government revenue was the most2325

important factor in making land use decisions rather than the benefits to local peo-2326

ple, and that if there was no income due from community forest schemes, then this2327

makes them less attractive to government than high-revenue agro-forestry planta-2328

tions. To illustrate this, the correspondent provided more detail on the situation for2329

the 17 Jambi villages waiting for their community forest licences. He said that they2330

were facing competition from a single large agro-forestry company who had already2331

obtained a licence to operate in the same area of forest to develop oil palm, which2332

crop has been a central feature in the conversion of natural forests in Indonesia over2333

the past decade (see socio-economic background chapter 3) At the time of the inter-2334

view, the decision had not been made on whether the land would be granted to the2335

local community or to the agro-forestry company. According to the correspondent,2336

in practice this decision centred around power; the returns to government; and the2337

agro-forestry company’s interactions with officials.2338

The correspondent compared the incentives to the local government and the2339

Minister from the 17 communities seeking hutan desa licences on the one hand and2340

the agro-forestry company on the other. He described how the the agro-forestry2341

company would be obliged to pay a US$5 per hectare stumpage fee retribusi for the2342

Ministry of Forestry’s reforestation and regeneration fund. This has been subject to2343

large levels of mismanagement and corruption in the past and allegedly still provides2344

extra income for some forestry officials (Barr, 2010). In addition, he alleged that2345

a US$1 per hectare would be paid to the head of the local government (Bupati) if2346

the agroforestry company got the right decision, as a form of upeti, which is the2347

Indonesian word for tribute, harking back to the client-patron relationships of the2348

Suharto era.2349

The respondent said that where the forest in question overlapped two kabupaten2350

that a further unofficial fee of $2 ha−1 was paid to the provincial governor. To2351

further encourage a decision in favour of the agro-forestry company, the correspon-2352

dent alleged the company had an ’entertainment’ budget of some Rp 450,000,0002353

( US$500,000 ) available to provide local officials with lifestyle gifts such as expensive2354
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hotels and travel, which he called ’uang jalan-jalan’.(Incentives are summarised in2355

table 4.2. On the other hand, the only revenue that could be generated by creating2356

the new hutan desa and other CBFM forest classes was the possibility of earning2357

carbon credits, at some point in the future, which therefore provided little incentive.2358

He set this lack of potential income against the regents’ (Bupati) requirements2359

for ’fresh money’ to spend on election campaigns, which was the destination of2360

the the unofficial fees. The correspondent said that the case demonstrated how2361

the local government could be bought (’bisa dibeli’). Because of this, and that2362

the scale of the upeti and entertainment budget was so impressive, exposure of the2363

findings needed to be well-managed for maximum impact and to ensure personal2364

safety of the investigators involved, hence the masking of this correspondent’s name2365

and organisation.2366

Yet these claims of unofficial payments remain unproven allegations and the story2367

cannot be verified, and should therefore be read cautiously. Yet the description2368

is supported by Indonesia-wide studies that demonstrate the close link between2369

elections and logging, and the increase in logging associated with the pemakeran era2370

expansion in local government (Burgess et al., 2012). In addition illegal payments2371

being made for local logging permits have been well-documented in other parts of2372

Indonesia (Smith et al., 2003).2373

Incentive from agro-forestry com-
pany

17 villages in
Jambi seeking
hutan desa li-
cences

Area ha 83,000 49,000
Reforestation
fees

US 5 per ha, Total US$415,000 Total US$0 plus
any REDD+ re-
turns

Unofficial
(alleged)

Rp10,000 per ha ( US$ 1) to Bupati.
Plus ( US$ 2) to the governor if the
forest class is spread over two regencies

Total US$0

Table 4.2: Competing incentives to local government for alternative land uses

4.2 Responses to deforestation and biodiversity2374

loss2375

Forest law enforcement in Jambi2376

There are clearly multiple drivers of land use change in Jambi and in the Berbak2377

area, which the Ministry of Forestry is trying to tackle. However, one of the main2378

barriers to achieving this is sufficient management capacity in Jambi, as Pak Widodo2379

explained. Across Jambi’s 2.1m ha of forest, he commanded 200 forest police in2380

regency-level forestry offices (POLHUT in Dinas Kehutanan Kabupaten). Of these2381
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he estimated that 40 individuals were ineffective or too old to work in the field. Of2382

the remainder, he explained that only half the team could be deployed to the field2383

at any point, meaning there were only 5 rangers at any time in the field in each of2384

Jambi’s 16 kabupaten.2385

Figure 4.4: Forest police officer (POL-

HUT) eating the national park’s wildlife.

However, these are supplemented by2386

40 POLHUT in the provincial forestry2387

offices (Dinas Kehutanan Propinsi) and2388

further 200 special police (SPORS ;2389

POLHUT Khusus). In summary he2390

said that there were some 400 active2391

forest police in Jambi, which on av-2392

erage means they are managing 5,0002393

hectares each. This area of land per2394

ranger has also been reported in 2013 as2395

the Ministry of Forestry’s planned man-2396

agement strategy (Lubis, 2013a), and2397

at Nantu Forest in Gorontalo province2398

during the author’s previous research2399

there (see Collins et al. (2011a) for de-2400

tails). Crucially though, Pak Widodo2401

said that budget was only available for2402

paying wages rather than the operating costs to send people into the field for en-2403

forcement activities (penegakam hukum). This meant that people were employed as2404

forest rangers would come to the office, but rarely achieved their purpose of actu-2405

ally enforcing the law in the field. This leads to questions about the efficacy of the2406

Indonesia civil services, since if indeed 20% of the forest police were incapable of2407

fulfilling their job requirements properly, the budget currently spent on their wages2408

would be better spent on actually sending the capable officers into the field. This is2409

party of a broader problem of bureaucratic reform in Indonesia. President Yudhono2410

is keen to institute reform, yet to do this, the government has established a new2411

Ministry, called the Ministry for Bureaucratic Reform: PAN Kemeng.2412

4.2.1 Addressing the underlying causes of deforestation:2413

Sustainable development in Jambi province2414

Pak Wahyu Widodo described how Jambi was taking a proactive stance on sus-2415

tainable forestry and land use practices, irrespective of the development of REDD+2416

and the Letter of Intent with Norway (see chapter 3. In particular there were plans2417

to undertake reforestation in two regencies: Sarolangun and Merangin. Of central2418

interest was a new forest land class called village forest (Hutan desa) which had2419

been mentioned by the anonymous correspondent. However Pak Widodo was able2420
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to provide more detail. Principally these forest classes were intended to be in ar-2421

eas where forests protected the watershed, and where hydroelectric power could be2422

generated. He said that in addition to the management of water and forests, his2423

team was attempting to develop areas (lubuk larangan) and seasons where fishing2424

was disallowed, in order to let stocks recover. The local people enforce the rules,2425

and if people take fish out of season, they had to pay a fine (Pak Wahyu referred2426

specifically to killing a goat or other livestock). He also highlighted the Wanatani2427

community programme where people ran agroforestry activities on the margins of2428

officially protected forest. In return for deriving the benefits of using this border2429

forest, the farmers acted as guardians which prevented people from cutting wood2430

inside the forest. This approaches appeared to integrate ecosystem service provi-2431

sion, and incorporate local informal institutions into management, which is similar2432

to the adat form of forest management (see chapter 3). Pak Wahyu said that Jambi2433

was the only province in Indonesia running this system, and the spatial plan (tata2434

ruang) for a more ambitious expansion of the system across Jambi was in review in2435

Jakarta as of 2011.2436

Furthermore he described a Jambi-wide programme of agricultural intensification2437

rather than extensification. This focussed on a four year programme of rubber2438

plantation development and an eight year programme of plantation development2439

using Jelutung, a native timber species Dyera costulata. He explained how this2440

would be supplemented with aloe-wood for export to the Middle East (Gaharu of2441

which there 16 species in Jambi).2442

Figure 4.5: The park ranger assists with

the transport of fish caught inside the

park. Fish stored in white bucket.

Finally he described Community Re-2443

forestation Gardens (KBR; Kebun bibit2444

rakyat) which were being developed to2445

reforest land critical for the economy2446

(lahan kritis). He said the forest de-2447

partment was planning 200 KBR, with2448

50 million seedlings each, meaning up2449

to a billion seedlings planted on critical2450

lands.2451

He emphasised this was a ’bottom-2452

up’ programme, with the species chosen2453

by the local communities, reflecting a2454

move towards community-led land man-2455

agement. Overall, Pak Wahyu said that2456

the hope was that these programmes2457

would provide a better living environ-2458

ment for local communities than palm2459

oil plantations. He saw a future for In-2460

donesia in wood plantations, and that it was better for Indonesia if native species2461
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were chosen.2462

Moreover he emphasised that these programmes existed outside of REDD+,2463

though he thought that REDD+ funding could support the activities already estab-2464

lished and planned, and further could support macro-economic change that reduced2465

direct dependency (jasa, literally ’service’) on the land and agriculture. In this con-2466

text he said that the Governor of Jambi sought to invest heavily in human resources2467

in Jambi, and get 60 people into PhD (S3) programmes, and 200 people on master’s2468

degree programmes (S2) as a part of SBY’s basics of growth: Progrowth, Pro-2469

poor, Pro-employment, Pro-environment. However in the opinion of Pak Wahyu2470

this should also include Pro-justice. By this he meant that historically only big2471

companies could get access to the forest whereas now the poor were gaining access2472

too via the Hutan desa licence. However, as explained above, obtaining the hutan2473

desa licences seems to actually be quite difficult in practice. If the case described by2474

the anonymous respondent is true, aspirant small land holders face stiff competition2475

by well-financed and allegedly unscrupulous agro-forestry firms, a history in which2476

Indonesia is steeped (Smith et al., 2003).2477

Furthermore, whilst these forestry plans seem to offer a more sustainable path2478

than oil palm, they are mostly still plans. To be implemented, the plan requires2479

public funding via the Ministry of Forestry, which appears to already be struggling2480

to meet current budget commitments. Meanwhile, despite the plans for expansion2481

of sustainable plantations with native species, the palm oil sector continues to grow2482

(see chapter 3). As an example, in an image from June 2013 taken by the new2483

earth-observing satellite called LANDSAT 8, a huge new clearcut of 54.9km2 has2484

been made up to the border of the BCI (see figure 4.6. Clearcutting is not permitted2485

in production forests indicating this is clearance for a new plantation).2486

So whilst at Berbak, some form of community management could prove a pro-2487

ductive avenue to explore, actually implementing this more generally across the2488

province and creating a more sustainable future for Jambi’s forests means address-2489

ing the long-standing patterns of land use management, and corrupted decision2490

making processes.2491

4.2.2 Law enforcement in Berbak National Park2492

The BCI faces increasing pressures including, the reformasi-era social de-legitimisation2493

of protected areas (see chapter 3 and the reluctance to enforce land use laws against2494

the rural poor (Gaveau et al., 2009b); huge areas of swamp forest with difficult2495

access; restricted budgets and poor staff incentives, which are now discussed.2496

The easiest way to access Berbak’s core forest is to enter the Air Hitam river by2497

the sea yet the park does not own a functioning boat. Due to the the large scale of2498

the park and the inaccessibility of its swamps, the park owns a light aircraft, however2499

it does not have the funds to maintain it, or pay for fuel or a pilot. This immediately2500
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Figure 4.6: A false colour Landsat 8 image (composite bands 753) of eastern Jambi
from June 2013, showing the BCI project area. A new clearcut has been created
just south of the BCI. The BCI is outlined in red

places constraints on the forest police POLHUT, who have to use public transport2501

to access guard posts.2502

Communications are a basic requirement for field operations. However the field2503

radio has a limited range, and mobile telephone signals are not available. As such2504

field patrols have to return to base if they needed to make a report, or call for2505

backup if they needed to arrest people. By comparison, Pak Nuksman gave the2506

case of the Alas Purwo park in eastern Java, where the Resort Based Management2507

(RBM) system was developed (a ’resort’ is a local field base in a sub-division of a2508

park). At Alas Purwo, phone signal was available through much of the park, along2509

with internet access, which allowed the reporting of illegal activities directly to base2510

and for teams to take immediate action. He claimed Alas Purwo was more successful2511

at combating illegal activities because of the ease of communication. However this2512

problem could also be interpreted as a management issue, combined with a lack of2513

field team autonomy with hierarcy and bureaucracy taking precedence over actually2514

taking action in the field. This seems to be an instance of ’empowerment failure’,2515

which is an interruption of work that occurs due to waiting for approval from a2516

manager.2517

Berbak’s National Park’s swamps are vast (140,000ha) and difficult to navigate.2518

Yet as of July 2011, only three rangers patrol the park for only four days per month.2519

A ZSL wildlife biologist visiting the site observed that: ”...currently [park staff are]2520

struggling to [manage the park]. They have only received a third of the operating2521

budget they requested for 2009-10 and received...$30 from tourism revenue in 2007.2522
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They have...15 forest police to patrol an area of 1600 sq. km. and the operating2523

budget only allows one patrol per section of the park per month, for...six months of2524

the year. On ZSL’s last visit to the park the National Park’s only boat was broken2525

meaning access to the park was only possible by...hiring boats.” (Maddox, 2008).2526

Pak Naksman thought this current management capacity was about ’40% effective’,2527

although this assessment was not based on formal analysis. To rectify the situation2528

he aspired to implement RBM to create a larger number of more manageable units2529

of forest. The park would be divided up into 11 areas (resorts), of approximately2530

15,000ha allocated per resort. However the precise size of each resort depends on2531

field conditions such as levels of human disturbance and conflict.2532

Yet again, the budget was the major constraint on this change, since Pak Nuks-2533

man had only Rp 1,800,000 ( $180) per resort per month. He stated that with2534

this current resource it was simply ’not possible’ to protect the national park. To2535

him, looking after the park was like looking after a house: ’if you don’t secure the2536

house, you’ll get robbed’. He concluded from his previous experience working at2537

Tesso Nilo park in neighboring Riau that the most important factor in protecting2538

and controlling a park was consistency and regularly being in the field. To gain2539

control of Berbak he wanted to put rangers in the field for 12 days per month,2540

requiring a tripling of his budget. This would mean an additional Rp475,200,0002541

( US$47,500)yr−1 for protection of the entire park.2542

However, this resource-constraint reasoning was rejected by Pak Beebach, a2543

project manager for the Wildlife Conservation Society (WCS). He stated that the re-2544

sults achieved in the Bukit Barisan Selatan (BBS) National Park in south-western2545

Sumatra demonstrated this. He claimed that the Indonesian Rhino Foundation2546

(Yayasan Badak Indonesia) had achieved great success in reducing poaching and2547

deforestation by implementing new systems of training, leadership, project man-2548

agement and incentives rather than increasing park funding. He considered that it2549

wasn’t low wages, but the structuring of salaries and incentives in the forest service2550

that were crucial. He said that current forestry department promotion structures2551

based on the accumulation of credit points (Angka kredit) was a problem that led2552

only to ever more bureaucratic systems. An officer needs 20 credit points to increase2553

his pay grade. He highlighted how each report is worth 0.041 credit points, and that2554

this was more credit than for actually going into the field to patrol. Officers were2555

incentivised to reduce patrolling work, and instead generate reports, often based on2556

dubious information. According to Pak Beebach, this leads to under-reporting of2557

illegal activity. Thus senior management would believe that there were in fact fewer2558

problems in the park than was really the case. Pak Beebach’s solution revolved2559

around implementation of a new management system called MIST, a spatially ex-2560

plicitly management system that records when and where teams actually patrol2561

using GPS logs. He had observed that in the past, office-based training had simply2562

been followed by participants seeking certificates to prove their participation so that2563
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they could gain more angka kredit, rather than actually implementing their training2564

in the field.2565

In addition, Pak Beebach emphasised the problem of officers willing to receive2566

payment to ignore illegal behaviour or release suspects (wani piro), which needed2567

to be stamped out. The randomisation of patrols under the MIST system meant2568

that even the police officers on the patrol did not know their patrol route until the2569

last minute, reducing the possibility for corrupt individuals to forewarn hunters or2570

loggers of the impending patrol.2571

These accounts present quite different interpretations of the true nature of the2572

problems facing Berbak. The first suggests that the park is underfunded and that2573

the only way to secure it is provide large sums of additional finance. The alternative2574

suggests the core problem is the structure of existing incentives. The truth is prob-2575

ably a combination of these two. The huge areas of swamp are often inaccessible on2576

foot, requiring access by boat, yet the park officers have to rely on public transport.2577

At least one case of wani piro was observed on a field trip, which was facilitated by2578

being at a location without any communication with the park office. So with the2579

ongoing threats of fire; illegal land conversion and hunting for fish and setting of2580

snares for ungulate meat and tigers; there is a need for both an increase in budgets2581

and improved management. This provided the basis for ZSL’s project intervention.2582

4.3 ZSL’s intervention2583

Berbak is one of the few large remaining blocks of forest on Sumatra. Yet as this2584

chapter has described, the park has limited funding from the Ministry of Forestry2585

to undertake even basic management tasks to counter the increasing deforestation2586

and degradation pressure, in addition to the direct threats to biodiversity from2587

snares and commercial fishing in the park itself. T.Maddox, a tiger biologist who2588

was working for ZSL beween 2008 and 2010, decided to intervene by developing2589

the Berbak Carbon Initiative. The goal was to reverse the trends of deforestation2590

and degradation in the Berbak ecosystem, and save the tigers. According to the2591

application to the Darwin Committee, park officials ’initiated (the BCI) project in2592

early 2008 by requesting help from ZSL in finding a way to conserve the park and2593

its species’ (Maddox, 2008), p.3).2594

At this time there was a great deal of excitement about how REDD+ could2595

generate billions of dollars for forest conservation (Baker et al., 2010b) and even2596

internalise the costs of biodiversity conservation (Collins et al., 2011b). So, because2597

of the large amounts of carbon in the peat swamp forests of Berbak, ZSL’s Darwin2598

proposal to support Berbak national park was based upon potential revenue genera-2599

tion from REDD+ activities. Yet the fact that the park should already be protected2600

under Indonesian law and the UN Convention on Biological Diversity meant that in2601

principle there was no marginal carbon emission mitigation benefit in setting up a2602
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project (called ’additionality’ in REDD+ jargon). This is why the logging conces-2603

sions to the west of the park needed to be included in the BCI area, to provide a2604

credibly high baseline of deforestation against which to generate carbon credits.2605

The development of an ambitious forest carbon project comprising a national2606

park and other land use classes requires significant investment in order to model2607

the projected deforestation; establish a management body; pay for activities and2608

market the credits. In order to raise these funds, ZSL applied to the UK Darwin2609

Initiative. This fund, managed at the UK’s Department for Environment, Food2610

and Rural Affairs (DEFRA) seeks to meet the UK’s commitments to the United2611

Nations Convention on Biodiversity (CBD), to support conservation in biodiversity-2612

rich but financially- poor countries, and has distributed 88.5m to 781 projects in2613

155 countries since 1992 (http://darwin.defra.gov.uk/dec/). ZSL’s application was2614

accepted and awarded £298,068 for three years from 1 April 2009 to 31 March 20122615

under grant number 17-029 entitled ’Berbak to the Future: Harnessing carbon to2616

conserve biodiversity’, with the stated purpose: ’To create a financial incentive to2617

landscape stakeholders in eastern Sumatra to conserve peat swamp habitat and thus2618

the biodiversity, carbon potential and other services it contains’ (Maddox, 2008) p.3.2619

The BCI has now been established officially as a pilot REDD+ project, and2620

in Jakarta in 2011 signed a Memorandum of Understanding with the Ministry of2621

Forestry to co-manage the national park. However, there are not yet agreements2622

in place with the other land managers involved in the BCI project area. Crucially2623

this includes the concessionaires to the west of the park, from where the project’s2624

REDD+ additionality derives. As such there are still fundamental challenges to2625

overcome before the project is ready to market credits. This thesis makes sev-2626

eral applied contributions to overcome some of these hurdles, including addressing2627

aspects of the CCBA requirements for ensuring biodiversity benefits in REDD+2628

projects, which is covered in the next chapter.2629
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5.1 Abstract2634

Forest carbon projects are certified to assure buyers their emissions reductions are2635

genuine. Parallel certification schemes such as the the Climate, Community and2636

Biodiversity Alliance standard (CCBA) exist to assure buyers that projects pro-2637

vide biodiversity benefits. A core requirement of these certification schemes is that2638

the project provides net positive biodiversity benefits. This requires a biodiversity2639

baseline at the outset of the project against which to measure future benefits. This2640

chapter uses existing modelling techniques to develop estimates of the probability2641

of occupancy Ψ for tigers and their potential prey species (e.g. Macaques, wild2642

boar) to be used as such baseline. These species were chosen due to the focus of2643

the project on harnessing carbon payments to ensure tiger conservation. To make2644

the occupancy estimates, a camera trap was survey run in Berbak National Park in2645

2009, with cameras to detect large mammals for a total of 1627 camera days at 362646

sites. Models were selected using a combination of Aikake’s Information Criterion2647

to assess relative model quality, and parametric bootstrapping to estimate model2648

fit.2649

Forest biomass was the only clear covariate of occupancy for potential tiger prey2650

species occupancy. Using this variable produced an estimate of Ψ̂=0.71 (95% CI=2651

0.52:0.84). For tigers, a total of 21 photographs were recorded in 5 of 36 sites during2652

the survey, producing a näıve occupancy of 0.14. The final model used to estimate2653

tiger occupancy used forest biomass to estimate both occupancy and detectability2654

sub-models. The fitted occupancy when using the minimum level of biomass was2655

Ψ̂=0.27, 95% CI=0.14:0.45. Continued data collection and occupancy modelling2656

over time may be used to measure project performance in biodiversity conservation2657

and potentially as a means to measure the impact of ZSL’s project for CCBA audit.2658

More generally, such longitudinal occupancy studies using camera trapping may2659

also provide a framework for assessing other certification schemes that incorporate2660

biodiversity.2661

5.2 Introduction2662

Carbon credit buyers on the voluntary carbon market choose forest carbon credits2663

inter alia because they perceive that they will also be conserving biodiversity (Diaz2664

et al., 2011). To ensure that forest carbon projects do provide this benefit, there2665

is an organisation called the Climate, Community and Biodiversity Alliance which2666

produces procedural standards (Niles et al., 2005) designed to ensure projects also2667

provide positive biodiversity externalities; ’co-benefits’, in the REDD+ jargon. Car-2668

bon credit buyers often demand this certification (Diaz et al., 2011). In this case2669

there is a need to develop robust measures of these benefits, particularly for species2670

of conservation concern which attract greater public attention and may be somehow2671

87



linked to carbon market value e.g. Dinerstein et al. (2013). These methods need to2672

be both sufficiently robust to detect change over time and also be be effective with2673

respect to logistical and financial constraints that conservation projects operate un-2674

der. That is, there is also a need to recognise that these high profile species are2675

often rare, cryptic and live in environments which are very difficult to access and2676

work in (like peat swamp forests), which makes the required population assessments2677

extremely challenging.2678

The criteria of the CCBA that are used to ensure performance in biodiversity2679

conservation are comprehensive, and it would neither be academically interesting2680

nor feasible to address all of these in a single PhD chapter. As such this chapter2681

focuses on a single criterion: B1 Net positive biodiversity impacts. This criterion2682

states that ’The project must generate net positive impacts on biodiversity within2683

the project zone and within the project lifetime, measured against baseline condi-2684

tions’. To demonstrate this, the project developer should ”use appropriate method-2685

ologies...to estimate change in biodiversity as a result of the project. This estimate2686

must be based on clearly defined and defensible assumptions. The scenario with the2687

project should then be compared with the baseline without project biodiversity sce-2688

nario...The difference...must be positive”. The objective of this chapter is therefore2689

to establish a biodiversity baseline for the project site. This should be able to be2690

used by the project in the future in order to demonstrate a positive biodiversity2691

impact.2692

Figure 5.1: A Sumatran tiger photographed at Berbak Na-

tional Park. Image supplied by ZSL Indonesia.

Camera trapping of-2693

fers considerable op-2694

portunities to monitor2695

rare and cryptic for-2696

est mammal popula-2697

tions (Sunarto et al.,2698

2013; Wibisono et al.,2699

2011; Ahumada et al.,2700

2013; O’Brien et al.,2701

2010; O’Connell et al.,2702

2011; Rowcliffe and Car-2703

bone, 2008; Linkie and2704

Ridout, 2011; Jenks2705

et al., 2011; Sharma2706

et al., 2010). Method-2707

ologically, occupancy2708

modelling is a popular2709

option to assess tiger2710

populations. This is because it uses robust statistics that account not only for2711

the observations of the presence of a species, but also heterogeneous detection prob-2712
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ability across sites. This is explained formally below. On Sumatra this occupancy2713

analysis has recently been used to make an assessment of the tiger’s conservation2714

status in Riau province (Sunarto et al., 2013); and across the entire island (Wibisono2715

et al., 2011). More recently, a multi-year camera trapping project in Costa Rica has2716

been used to show changes in mammal occupancy over time (Ahumada et al., 2013).2717

These authors demonstrated that even over a relatively short period of five years,2718

occupancy declined for some species in the study site, hypothesising this to be due2719

to the impact of increased human hunting. This kind of wildlife population infor-2720

mation could be used to satisfy monitoring for CCBA criterion B1 for the Berbak2721

project, because it can show changes over time using a standardised methodology.2722

If the causal mechanism were clear (such as reducing the number of snares in the2723

park) changes in tiger occupancy Ψ̂ over time may in principle be attributed to the2724

project activities. To do this requires baseline occupancy against which to compare2725

future occupancy. This chapter sets out to establish this baseline for tigers and their2726

prey using six months of camera trapping data.2727

5.3 Methods2728

5.3.1 Camera trapping2729

Camera traps were operated at Berbak national park from May until October 2009,2730

with a total of 1627 trap days. The cameras were placed in a grid of 36 2.5 x2731

2.5km cells in the core forest area (see figure 5.2). Sampling areas of this size2732

have been used in Malaysia to estimate tiger populations (Kawanishi and Sunquist,2733

2004). The grid covered a matrix of swamp bush, and primary and secondary forest.2734

However due to limited number of cameras available to the project, the grid cells2735

were sampled progressively rather than simultaneously. That is, after being left2736

running in the field for several weeks, the field team returned to the camera sites,2737

changed the digital memory cards and the batteries and then moved them to the2738

next unsampled grid cell and set running again. The camera trap operational history2739

is set out in figure 5.4. Within each grid cell, the specific camera site was chosen2740

after having surveyed the area for animal trails. At each location the cameras were2741

attached to trees at a height to maximise the chance of capturing tigers and their2742

prey (O’Connell et al., 2011). The camera units themselves were a combination of2743

DLC and Cuddeback models, which were placed in steel cages to protect against2744

animal damage and theft.2745

5.3.2 Analysis: Occupancy modelling2746

Whilst no novel aspects of occupancy modelling are developed here, in order to aid2747

the comprehension of the chapter, the formal basis of occupancy modelling is now2748
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Figure 5.2: The location of the camera trapping grid placed in 2009. Berbak national
park is outlined in light grey

set out. Occupancy is the probability of a species or set of species being present in a2749

given year at a site, corrected by estimated detection probability p̂ (Ahumada et al.,2750

2013). A site may be occupied with a probability Ψ̂ or unoccupied with a probability2751

1-Ψ̂. If a site is occupied, there is a probability p of detecting a target species, and2752

a chance of not detecting it (1-p). The ultimate probability of the presence of a2753

species being detected is the product of the probability that the site is occupied2754

and the probability that the cameras can detect the species given that it’s present.2755

Hence if there is a species detection history of 1,0,0,0,1, then the probability of the2756

capture history is calculated as:2757

Ψ ∗ p1 ∗ (1− p2) ∗ (1− p3) ∗ (1− p4) ∗ p5. (5.1)

where the pi is the probability of detection in period i. Maximum likelihood es-2758

timation is used to estimate the values of the parameters which best explain the2759

observed data. MacKenzie et al. (2002) set the model out as follows:2760

Likelihood(Ψ, p | hj, hj, ...hj) =
S∏

i=1

Pr(hi) (5.2)

where hi are vectors of the detection histories at the ith site. This equation therefore2761

describes the product of all the possible outcomes of the camera trapping, accounting2762

for where the species is present, absent, present but not detected, and absent. This2763

aggregates to:2764

=

[
ΨSD

K∏
j=1

p
Sj

i (1− pj)SD−Sj

][
Ψ

K∏
j=1

(1− pj) + (1−Ψ)

]S−SD

(5.3)
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In equation 5.3, the first term in square brackets calculates the likelihood for2765

the sites where it is known that the study species is present. This means that it is2766

possible to say that Ψ is 1, and that the occupancy estimate is therefore moderated2767

by the product of the detection probabilities where the species was (p
Sj

i ), and was2768

not (1 − pj)
SD−Sj found. The term in the second set of square brackets is the2769

likelihood for the sites for which it is unknown whether the species is present or2770

absent. In this case, the lack of detection could be due to either a) the species not2771

actually being present at the site; or b) the species being present but never detected.2772

Because of this, the likelihood calculation uses the sum of the probability of both2773

conditions. In the case of five surveys, the detection history is [0,0,0,0,0]. If the2774

species is present but not detected, then the site occupancy probability history is2775

Ψ(1− p1)(1− p2)(1− p3)(1− p4)(1− p5). The additional superscript S − SD is the2776

total number of sites minus the sites where the species was detected. In the case2777

that the species is in fact absent from the site, the probability is simply (1-Ψ̂).2778

The most simple approach to occupancy modelling is to use a single-species,2779

single-season occupancy model with survey-specific detection probabilities p̂ (MacKen-2780

zie et al., 2002). These models can be calculated using the code library called ’un-2781

marked’ and its ’occu’ function, written in R language (Fiske and Chandler, 2011).2782

The detection probability and occupancy are modelled using logistic regression sub-2783

models, which means that the occupancy model has a double right-hand side. These2784

can incorporate observation and environmental detection co-variates. The results2785

are then estimated in a Maximum Likelihood framework, which maximises the prob-2786

ability of the model given the data.2787

5.3.2.1 Treatment of the data2788

Since trapping rates were low in this study, this caused the estimates of p̂ to be2789

low, which can affect the subsequent modelling (Ahumada et al., 2013). As such2790

the camera data were aggregated into periods of 10 days. This manipulation only2791

affects p̂ and not the final occupancy estimates, and is an established approach to2792

deal with low detection probabilities (Ahumada et al., 2013; Sunarto et al., 2013).2793

Additionally, the overall number of detections was low for each species identified2794

in the study. Having few data points causes poor model performance and large2795

uncertainties in the estimation of occupancy. This is a distinct problem for tigers2796

which are the focal species of the project. However, since the concern in the current2797

exercise is the conservation status of the tiger, those species which make up its2798

prey base can be aggregated in order to develop more robust occupancy models and2799

estimates. The precedent in the literature for doing this is Ahumada et al. (2013)2800

who grouped sparse photographs of different species of cats into one group in order2801

to make a ’cat occupancy’ estimate. Species considered as tiger prey in this study2802

were the medium-sized ungulates Bearded Pig (Sus barbatus, wild pig (Sus Scrofa),2803
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Greater Mouse Deer (Tragulus napu) the ground-dwelling primates pig and short2804

tailed macaques (Macaca fascicularis and nemestrina), and one Perissodactyla, the2805

Malayan tapir (Tapirus indicus).2806

5.3.3 Independent variables2807

Detection was modelled against variates which were hypothesised a priori to affect2808

the probability of a photograph being taken. These were the distance to rivers,2809

which has an influence on the type of vegetation; and the quantity of biomass2810

which, as demonstrated in chapter 7 is directly related to the condition of the2811

forest. Higher biomass forest is more mature, with a more well-developed canopy.2812

A more intact canopy absorbs more of the light incident upon the forest, and hence2813

reduces the amount available to the vegetation of the under-storey. This more open2814

environment was hypothesised to increase the detection probability. Occupancy Ψ̂2815

was similarly modelled against a combination of environmental covariates. These2816

were the estimates of distances to: rivers (which determines the suitability of habitat2817

for terrestrial mammals); and the forest edge (hypothesised to have an impact due2818

to ’edge effects’ e.g. Sunarto et al. (2013)). The estimate of biomass in 2007 was2819

also added, with higher biomass forest hypothesised to be less disturbed and better2820

quality habitat for forest mammals.2821

The mean biomass at the sites where cameras were located was 151 Mg ha−1;2822

the mean distance to rivers was 1.6km, and the mean distance to forest edge was2823

1.4km. The summary statistics for the independent variables extracted for the sites2824

at which the cameras were located are set out in table 5.1.2825

Distance to rivers m Distance to forest edge m Biomass Mg ha−1

Min. : 6711 Min. : 107.8 Min. : 0.37

1st Qu.: 364.5 1st Qu.: 138.4 1st Qu.:112.09

Median : 885.9 Median : 923.5 Median :180.44

Mean :1653.9 Mean :1473.3 Mean :151.36

3rd Qu.:2734.9 3rd Qu.:2355.6 3rd Qu.:215.58

Max. :7603.4 Max. :5212.0 Max. :235.90

Table 5.1: Summary statistics for the independent variables for camera trapping

5.3.4 Model specification and selection2826

All modelling was then performed using the unmarked package (Fiske and Chan-2827

dler, 2011). In order to select the final models to make the occupancy assessment2828

for both tigers and their prey, saturated models were first fitted for both the de-2829

tection and occupancy sub-models. The saturated models included the main effects2830

(distance from rivers, forest edge and the estimated 2007 forest biomass), and also2831

two-way interaction terms between the distance to rivers, forest edge and biomass.2832
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The candidate models are listed in table 5.2. Of these candidate models, the rela-2833

tive values of Aikake’s Information Criterion (Burnham and Anderson, 2002) were2834

explored using the modSel function in unmarked (Fiske and Chandler, 2011) which2835

summarises model values. The AIC value provides an estimate of the relative qual-2836

ity of the different models in terms of the goodness of fit of the model to the data2837

and the complexity of that model.2838

Then, in order to test the absolute fit of individual models to the observed data2839

a parametric bootstrapping procedure was used. Sampling with replacement was2840

simulated 10,000 times for each model. Specifically, this was done using the parboot2841

function which is included in the unmarked package. This bootstrapping function2842

simulates datasets based on the predicted values from the fitted model and then2843

evaluates a fit-statistic for each of the simulations. The fit statistic used was χ2,2844

which is used to investigate whether distributions of categorical variables differ from2845

one another. The R code for the χ2 function was provided by Stolen (2012). In this2846

case it was used to test the null hypothesis that there is a significant difference2847

between the distributions of the observed data and the data from the fitted model.2848

In this case p values smaller than the critical value of p=0.05 implied that there was2849

a significant difference between the distributions and hence that the model did not2850

fit.2851
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0. p(.) psi(Riv + (Riv2)+Bio+Edge+(Edge2) )

1. p(.) psi(Riv+(riv2)+Edge+(Edge2)+ Bio + (Riv*Edge))

2. p(.) psi(Riv+(riv2)+Edge+(Edge2)+ Bio + (Riv*Bio))

3. p(.) psi(Riv+Edge+Bio+(Riv*Bio))

4. p(.) psi(Riv+Bio+(Riv*Bio))

5. p(.) psi(Riv+Edge+Bio)

6. p(.) psi(Edge+(Edge2)+Bio)

7. p(.) psi(Riv+(riv2))

8. p(.) psi(Bio)

9. p(.) psi(Edge)

10. p(Bio) psi(Riv+(Riv2))

11. p(Bio) psi(Riv+(Riv2)+ Edge+(Edge2)+Bio+(Riv*Edge))

12. p(Bio) psi(Riv+(Riv2)+ Edge+(Edge2)+Bio+Riv*Bio))

13. p(Bio) psi(Riv+ Edge+ Bio + (Riv*Bio))

14. p(Bio) psi(Riv+ Bio + (Riv*Bio))

15. p(Bio) psi(Riv+Edge+Bio)

16. p(Bio) psi(Edge+(Edge2)+Bio)

17. p(Bio) psi(Bio)

18. p(Bio) psi(Edge)

Constant p(.) psi(.)

Table 5.2: The candidate models used for tiger and prey occupancy. Riv=distance

from rivers. Bio=biomass estimated in 2007. Edge=distance from forest edge

5.4 Results2852

5.4.1 Camera trap history2853

In the data frame for the final tiger prey analysis there were a total of 138 periods (of2854

10 days) with no recorded capture. There were 76 periods which recorded at least2855

one capture, and 326 periods with NAs which are caused when the cameras are not2856

operating concurrently. This explanation is more readily understood by examining2857

the visual operational history of the cameras as shown in figures 5.3 and 5.4. The 1s2858

indicate where a camera was placed and recorded the target species, the 0s where2859

cameras were operational but did not record the study species and the gaps where2860

no camera was running.2861

Thirteen mammal species were recorded during the survey. The highest numbers2862

of photographs of any tiger prey species were taken of the Greater Mouse Deer,2863

Wild Pig and the ground-dwelling Pig-tailed Macaque. These data are summarised2864

in table 5.3. The maximum number of prey observations per site was 15; mean=3.7;2865

and number of sites with at least one detection=22. The naıve occupancy estimate2866
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was therefore 0.61 (detections in n sites / total n sites surveyed). For tigers, a2867

total of 21 photographs were recorded in 5 of 36 sites, producing a näıve occupancy2868

of 0.14. In the next sub-sections, the rationale for the selection of the tiger prey2869

detection and occupancy sub-models is set out.2870

Figure 5.3: The operational history, and the detection/non-detection history of tiger

prey. This is an automated graphical output from the unmarked package. The 1

(blue) signifies a detection, whereas the 0 (pink) signifies non-detection. Where the

space is blank, no camera was in operation. The observations on the X axis are

the number of trapping periods. The graphic is split into four panels in order to

accommodate the detection histories from the 36 camera sites.
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Figure 5.4: The operational history, and the detection/non-detection history of tiger

prey. This is an automated graphical output from the unmarked package. The 1

(blue) signifies a detection, whereas the 0 (pink) signifies non-detection. Where the

space is blank, no camera was in operation. The observations on the X axis are

the number of trapping periods. The graphic is split into four panels in order to

accommodate the detection histories from the 36 camera sites.

English name Latin name Total events

N

Binturong Arctictis binturong 1

Bearded Pig Sus barbatus 5

Greater Mouse Deer Tragulus napu 72

Leopard Cat Prionailurus bengalensis 1

Long-tailed Macaque Macaca fascicularis 4

Long-tailed Porcupine Trichys fasciculata 1

Mongoose-Short-tailed Herpestes brachyura 2

Pig-tailed Macaque Macaca nemestrina 87

Porcupine Hystrix bracyura 1

Sun Bear Helarctos malayanus 3

Malayan tapir Tapirus indicus 19

Sumatran Tiger Panthera tigris sumatrae 21

Wild Pig Sus scrofa 89

Table 5.3: A list of mammals photographed in Berbak National Park during the

two camera trapping grids
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Tiger prey

Model K AIC ∆AIC AICwt C.Wt χ2

Constant p(.)ψ(.) 2 259.06 0.00 0.43075 0.43 0.055

8. p(.)ψ(B) 3 260.01 0.95 0.26770 0.70 0.13

17. p(B)ψ(B) 4 261.57 2.51 0.12253 0.82 0.154

9. p(.)ψ(E) 3 262.84 3.79 0.06490 0.89 0.048

18. p(B)ψ(E) 4 264.52 5.46 0.02812 0.91 0.04

7. p(.)ψ(E) 4 264.58 5.53 0.02718 0.94 0.057

10. p(B)ψ(R+R2) 5 266.58 7.53 0.010 0.95 0.06

4. p(.)ψ(R+E+B) 5 266.99 7.93 0.00817 0.98 .08

5. p(.)ψ(E+E2+B) 5 268.01 8.95 0.00490 0.98 1.7

6. p(.)ψ(R+E+B+(R*B)) + R+ E+ B 6 268.63 9.57 0.00360 0.99 0.014

3. p(B)ψ(R+B+(R*B)) 6 268.69 9.63 0.00350 0.99 0.068

14. p(B)ψ(R+E+B) 6 268.80 9.74 0.00331 0.99 0.76

15. p(B)ψ(E+E2+B) 6 270.01 10.95 0.00180 1.00 0.12

16. p(.)ψ(R+R2+E+B) 7 270.44 11.38 0.00146 1.00 0.32

0. p(B)ψ(R+E+B+(R*B)) 7 270.63 11.57 0.00132 1.00 0.038

13. p(.)ψ(R+R2+E+E2+B+(B*R)) 8 272.44 13.39 0.00053 1.00 0.07

2. p(.)ψ(R+R2+B+E+E2) 8 273.13 14.07 0.00038 1.00 0.033

1. p(B)ψ(R+R2+E+E2+B+R*B) 9 274.44 15.39 0.00020 1.00 0.039

12. p(B)ψ(R+R2+E+E2+B+(R*E)) 9 275.13 16.07 0.00014 1.00 0.05

11. p(B)ψ(R+R2+E+E) 9 275.13 16.07 0.00014 1.00 0.05

Table 5.4: Candidate models for tiger prey occupancy sub-models ranked by AIC,

and reporting χ2 for model fit. K =number of parameters; C.Wt = cumulative

weight. B=forest biomass 2007. R=distance from nearest river. E=distance from

forest edge.
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Tigers

Model K AIC ∆AIC AICwt C.Wt χ2

15. p(B)psi(E+E2+B) 6 48.30 0.00 7.3e-01 0.73 0.07

17. p(B)ψ(B) 4 51.87 3.58 1.2e-01 0.85 0.29

18. p(B)ψ(E) 4 53.41 5.12 5.7e-02 0.91 0.4

5. p(.)ψ(E+E2+B) 5 54.45 6.16 3.4e-02 0.94 0.24

Constant p(.)ψ(.) 2 54.60 6.31 3.1e-02 0.98 0.41

8. p(.)ψ(B) 3 56.27 7.97 1.4e-02 0.99 0.05

9. p(.)ψ(E) 3 56.69 8.39 1.1e-02 1.00 0.6

7. p(.)ψ(E) 4 80.52 32.23 7.3e-08 1.00 0.99

4. p(.)ψ(R+E+B) 5 82.52 34.23 2.7e-08 1.00 0.99

6. p(.)ψ(R+E+B+(R*B)) 5 82.52 34.23 2.7e-08 1.00 0.99

10. p(B)ψ(R+R2) 5 82.52 34.23 2.7e-08 1.00 0.99

3. p(B)ψ(R+B+(R*B)) 6 84.52 36.23 9.9e-09 1.00 0.99

14. p(B)ψ(R+E+B) 6 84.52 36.23 9.9e-09 1.00 0.99

16. p(.)ψ(R+R2+E+B) 6 84.52 36.23 9.9e-09 1.00 0.99

13. p(.)ψ(R+R2+E+E2+B+(B*R)) 7 86.52 38.23 3.7e-09 1.00 0.99

0. p(B)ψ(R+E+B+(R*B)) 7 86.52 38.23 3.7e-09 1.00 0.99

1. p(B)ψ(R+R2+E+E2+B+R*B) 8 88.52 40.23 1.3e-09 1.00 0.99

2. p(.)ψ(R+R2+B+E+E2) 8 88.52 40.23 1.3e-09 1.00 0.99

11. p(B)ψ(R+R2+E+E) 9 90.52 42.23 5.0e-10 1.00 0.99

12. p(B)ψ(R+R2+E+E2+B+(R*E)) 9 90.52 42.23 5.0e-10 1.00 0.99

Table 5.5: Candidate tiger detection sub-models ranked by AIC, and reporting χ2

for model fit. K =number of parameters; C.Wt = cumulative weight. B=forest

biomass 2007. R=distance from nearest river. E=distance from forest edge.

5.4.2 Occupancy modelling for tigers and their prey2871

The results of the model selection process are shown in the tables 5.4 and 5.5. The2872

results are ordered by the results of the AIC ranking. The final model selected2873

for predicting occupancy for tiger prey was constant detection p(.) and occupancy2874

dependent upon the forest biomass. The top AIC-based model was the constant2875

model p(.)ψ(.). However, this was rejected based upon the results of the χ2 test,2876

which at 0.55 suggested that the modelled results and the original data were from2877

different distributions. On the other hand, the χ2 for the fitted values of the next2878

best model, p(.)ψ(B), was 0.13. This suggested that the null hypothesis that the2879

fitted values were from the same distributions should not be rejected, and thus2880

that the model fitted the data. In order to obtain predicted values for occupancy2881

probability, the mean of the biomass was used. The final estimate for prey occupancy2882

probability was Ψ̂=0.71, 95% CI=0.52:0.85. The final selected model for tigers was2883

98



p(biomass)ψ(B). The first model suggested by the AIC value alone was p(.)ψ(.),2884

but as with the tiger prey, this final model was selected based upon both the AIC2885

value, and also the χ2 value. The p(.)ψ(.) model χ2 value was 0.07 suggesting that2886

the model’s predictions and the observed data were from different distributions.2887

Both the tiger prey and tiger occupancy models were fitted using the site-specific2888

biomass values. The predicted values were then derived by using the mean values2889

of the biomass. The χ2 for the simulated dataset from this model was 0.29. The2890

fitted occupancy value when using the minimum level of biomass was Ψ̂=0.27, 95%2891

CI=0.14:0.45.2892

5.5 Discussion2893

Implications for project impact assessment and causal inference.2894

These results provide the project’s first quantified biodiversity baseline, which2895

could be used for an assessment of project performance. To do this, ideally the same2896

camera sites would need to be resampled following ZSL’s intervention to standardise2897

the environmental covariate fixed effects; and the analysis would need to use the2898

same definition of a time period for each camera (10 days) in order to standardise2899

the estimates of p̂. Wibisono et al. (2011) suggest a period of five years between2900

repeat occupancy surveys, although there is no data presented as to why this period2901

should be chosen. On the contrary, there is evidence that annual estimates of2902

change can be made (Ahumada et al., 2013). If there is an increase in occupancy,2903

if analysed robustly, this could be attributed to the actions of the project. To be2904

robust in this assessment, a future analysis would need to control for variations2905

in the population due to unobservable factors, for instance site specific differences2906

in food supply. Ideally to do this the results would be considered alongside the2907

trend in a control site without a policy intervention. In practice, the probability2908

of being able to do this will increase as the costs of cameras falls. New cameras2909

can be left running for months at a time, which further reduces the costs of data2910

collection. Nonetheless, this assumes that suitable control sites can be found easily.2911

As is shown in chapter 10, a fundamental barrier to estimating change in the site2912

is finding suitable comparators for the site receiving the additional policy. Because2913

of the extensive habitat loss across Sumatra, there are now only a few tigers left2914

in pockets of forest surrounded by a sea of humanity - see chapter 9 for images of2915

extensive deforestation. This means that it is unlikely that there will be a good2916

match for Berbak: the forest here is one of the last remaining blocks of habitat in2917

this part of the island. Furthermore, whilst monitoring the tigers is important for2918

attempting to measure the project impact, at some point there is a tradeoff between2919

refining methods of causal inference for project impact on tiger populations which2920

can only ever be indirectly regulated, versus the measurement of other correlates of2921

tiger statues, principally the evidence of human efforts to kill them (Sommerville2922
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et al., 2011), and which can be directly regulated through enforcement activities.2923

Model performance and future impact assessment.2924

Significant changes of the tiger and prey occupancy would need to be greater2925

than the confidence intervals of the original and post-project estimates. Continuing2926

data collection and model development will therefore be a crucial part of project2927

activities, in order to demonstrate to potential credit buyers and to a CCBA audi-2928

tor that the project can provide biodiversity benefits. Nonetheless, mathematicians2929

have begun to question whether occupancy modelling is necessarily the gold stan-2930

dard to measure population attributes in wildlife ecology (Welsh et al., 2013). These2931

authors highlight how when abundance varies across space and when detection is2932

dependent upon abundance, occupancy models can suffer bias which is as bad as2933

if detection probability was ignored in the first instance. In their simulations, even2934

in ideal conditions, occupancy estimates are variable, because of multiple solutions2935

arising to equations under maximum likelihood estimation. This may present a2936

challenge to the approach of Ahumada et al. (2013) measuring occupancy change2937

over time. Moreover, because individual tigers can be recognisable in photographs,2938

given sufficient data, other methods to determine population attributes are available.2939

Specifically, capture-mark-recapture exercises can allow abundance and density es-2940

timates (Karanth et al., 2006; Sharma et al., 2010), which option should be explored2941

if more data becomes available.2942

Research and development yields tools that provide valuable information in an2943

applied setting that help inform decision making processes. However the methods2944

used will continue to be refined over time. Having credible windows onto attributes2945

of tigers at a site should provide more than sufficiently convincing for an auditor2946

and credit buyers, which is one main objective of the work. Nonetheless, some au-2947

thors have questioned the idea per se of trying to measure the status of rare animals2948

(Sommerville et al., 2011). They instead propose that changes in the rates of anthro-2949

pogenic drivers of species loss be used as more powerful indicators of conservation2950

project impacts than the species population statistics themselves. At Berbak, repeat2951

detection/non-detection surveys for tiger snares could be used for instance. This2952

could provide an interesting direction for future applied research, and the results2953

considered with data from other sources.2954

Triangulation with other data sources.2955

From a broader perspective, tiger and prey occupancy probability estimates2956

could be also triangulated with other research in order to develop a more holis-2957

tic picture of biodiversity and tiger conservation at Berbak. This perspective is2958

based on the notion that evidence from multiple sources is more likely to provide2959

a true picture of the nature of a system than choosing one piece of evidence such2960

as habitat loss alone. First, from the camera trap data, it is possible to say that2961

tigers are present and breeding at the site: video footage from cameras in 20132962

revealed a parent with two cubs. Second, it is possible currently to estimate tiger2963
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prey occupancy probability. This is important because there is a direct relation-2964

ship between tiger population status and prey status (Karanth et al., 2004), and2965

more generally between prey biomass and carnivore density (Carbone and Gittle-2966

man, 2002). Third, there is direct relationship between anthropogenic pressures and2967

species status (Sommerville et al., 2011); in this case hunting and the number of2968

tigers. Incidental encounters with tiger snares are being recorded by the project,2969

but a more systematised approach coordinated with park rangers could allow for2970

quantification of occupancy probability of snares for instance. This statistic would2971

be directly correlated with hunting effort, and allow measurement of change against2972

a baseline, and therefore provide another piece of information for project impact2973

assessment. Fifth, there is a relationship between habitat quality, extent, and loss,2974

and tiger density/occupancy in Sumatra (Sunarto et al., 2013; Wibisono et al., 2011;2975

Sunarto et al., 2012). Chapter 7, of this thesis shows how it is possible to use the2976

most recent technologies to quantify forest attributes including change even in cloud-2977

covered regions. By considering these five distinct pieces of information together,2978

even in the absence of an occupancy statistic for tigers with narrower confidence2979

intervals, it is possible to quantify changes in the correlates of tiger occupancy.2980

Baseline conditions.2981

Once the baseline occupancy for tigers is considered robust for Berbak, the next2982

stage will be to consider the change in that occupancy (Ahumada et al., 2013).2983

This raises questions over whether change can necessarily be negative or positive.2984

This is because if tigers are already at the current maximum carrying capacity for2985

the park, it would be unlikely for occupancy to increase. On the other hand it2986

is certainly possible for future change to be negative: (the tigers could go locally2987

extinct). Yet, it is not known whether present occupancy reflects carrying capacity.2988

This is a crucial point for impact detection. To re-iterate, if the Berbak fauna is2989

currently in-tact, then it would not be likely to see occupancy increase following2990

the project intervention. Rather, occupancy may be expected to remain constant or2991

decline at a less steep rate than the surrounding landscape. This would represent2992

’biodiversity additionality’, analogous to REDD+ additionality. To continue the2993

analogy, the area of forest cannot greatly increase at Berbak, because most of the2994

park is still forest, but it could be deforested at a slower rate than the surrounding2995

landscape. Once again, this serves to highlight the importance of selecting credible2996

counter-factuals.2997

Uncertainty in ranging responses to density changes2998

Additional uncertainty derives from unquantified relationships between the rang-2999

ing behaviour of carnivores when the population is reduced independently of prey3000

depletion. So, whilst it is known for instance that carnivore density is constrained by3001

the amount of energy available in the prey biomass (Carbone and Gittleman, 2002),3002

carnivore density also co-varies with exogenously imposed constraints on abundance3003

such as human hunting. Yet it is unknown currently whether tiger ranges covary3004
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with abundance, controlling for prey availability. Following removal of tigers from3005

a population the remaining individuals could a) retain the smaller ranges from3006

the previous equilibrium, therefore leaving unoccupied ’gaps’ without tigers in the3007

landscape, or b) expand their territories to include those of the now-removed indi-3008

viduals. The implication for monitoring is that if people were hunting tigers from a3009

site, then in situation a) we would expect to see reductions in occupancy in the cells3010

where tigers had been killed, but no change in occupancy of other cells. However,3011

in situation b) we might expect to continue to see similar occupancy rates across3012

the landscape as the remaining individuals expand their range, but a reduction in3013

detection probability. Given this uncertainty, any significant changes in detection3014

probability at a site over time larger than the confidence intervals of both estimates3015

should perhaps be of equal importance for assessing the population status of tigers3016

as the changes in the level of occupancy. Clearly if both occupancy and detection3017

probability decrease, it is unlikely that the status of the tiger population is improv-3018

ing. However if occupancy remains high but detection falls significantly there is3019

the possibility of a population reduction. This provides interesting questions for3020

future research, and whilst it remains unanswered, the problem needs at least to be3021

acknowledged here.3022

A further potential problem with the camera trapping analysis presented here3023

concerns the tiger prey species. Multiple species were aggregated in order to provide3024

an estimate of the occupancy of tiger prey overall. This was because the species3025

of principal concern to the project and probably for carbon credit investors, is the3026

sumatran tiger rather than any of the prey species individually. However a problem3027

may arise if there are changes of the composition of the prey group over time, for3028

instance if there is increased human hunting pressure on deer and the population3029

falls, but the number of wild pig increases. If the changes in the status of these3030

species were approximately equal but with different signs, then the occupancy model3031

would not record and changes in the prey status. For an assessment of biodiversity3032

more generally then, individual occupancy models could be created for each of the3033

prey species individually if sufficient data is available.3034

Project certification and credit pricing.3035

It is likely that the Berbak project will require CCBA certification in order to gain3036

market access for its credits, since so many buyers demand this quality control (Diaz3037

et al., 2011). This means that the Berbak project needs to measure its performance3038

not only reducing emissions but in conserving its most charismatic species. This3039

chapter has tested an approach to do this, and provided a baseline against which3040

future changes can be measured. Moreover this chapter has demonstrated that the3041

approach can work in a peat swamp environment which is very difficult to work in.3042

The efficiency of this approach can also be expected to increase as camera technology3043

improves, meaning that the camera units can be left for longer in the field and the3044

price per camera unit falls. This should reduce the costs to the project of monitoring3045
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biodiversity: if more cameras can be left operating in the field for longer, the costs3046

of hiring teams to run expeditions into the forest to change camera batteries and3047

cards can be reduced.3048

Whilst monitoring costs could fall, there are some reasons for anticipating a3049

higher carbon price for credits which are associated with tiger conservation. In3050

experiments to estimate the value of different species, respondents regularly state3051

preferences for large, powerful and dangerous mammals with binocular vision e.g.3052

Kontoleon and Swanson (2003). Tigers are a prime example of a powerful species3053

that are used as a ’flagship’ to raise conservation funds and attention internationally.3054

ZSL hopes that by simultaneously conserving tigers and reducing carbon emissions,3055

they will attract a higher price for carbon credits generated from Berbak. Un-3056

fortunately to date there is no evidence in the voluntary market of a biodiversity3057

premium price being paid (Diaz et al., 2011). Nonetheless, the voluntary market3058

on which that report is based is very small, and moreover the report emphasises3059

that voluntary trades are made over-the-counter between willing buyer and willing3060

seller, rather than in a liquid dynamic market place with spot prices that might re-3061

veal a price premium. This suggests that tiger conservation may be able to generate3062

higher carbon credit prices if the right credit buyer can be found who values tiger3063

conservation.3064

However, some of the problems described here surrounding causal inference and3065

uncertainties in occupancy analysis are, with respect to the CCBA criteria, literally3066

academic. This is because even producing a single photograph of a tiger at Berbak3067

qualifies the project for ’Gold Standard’ certification meaning that the project pro-3068

vides ’Exceptional Biodiversity Benefits’ (CCB criterion GL3). This means it is3069

not even strictly necessary to monitor changes in tiger population status to receive3070

CCBA certification. Nonetheless, the risk of not doing so is that a decline in the3071

population of the species the project was established to protect may go undetected.3072

Detecting such declines early is probably the only hope for being able to act and3073

prevent extinction, and hence loss of the Gold Standard. In addition, Berbak con-3074

stitutes a key part of the landscape for conservation of the Sumatran tiger, and so3075

ZSL and Berbak national park have responsibilities to maintain the tiger population3076

under national law and Indonesia’s national tiger recovery programme (Ministry of3077

Forestry, 2010). Because of the importance of the tiger to Indonesia’s biodiversity3078

conservation goals, and their potential value to the project to raise at least the3079

marketability if not the price of the credits, the rationale for focussing monitoring3080

efforts on this species is clear.3081

Finally, as a REDD+ project the core activities still need to focus on the re-3082

duction of carbon emissions from the site resulting from deforestation and forest3083

degradation, and from the draining and drying of peat. So it is to the quantification3084

of carbon stocks that the thesis now turns: first to the quantification of peat carbon3085

in the next chapter, and then to the quantification of forest carbon stocks in chapter3086
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6.1 Abstract3092

Peat swamp soils contain huge amounts of carbon. Drainage of peat swamp to access3093

land leads to huge carbon dioxide emissions. Climate change mitigation strategies3094

such as REDD+ are set to address emissions from this source in places like Indonesia3095

which holds the largest stock of tropical peat soils. However the extent and volume3096

of peat are still uncertain, which makes their management all the more difficult.3097

REDD+ projects such as at Berbak need to quantify their peat carbon stocks and3098

potential emissions in order to generate carbon credits. A consultancy company was3099

tasked with developing a model to quantify peat stocks across the entire Indonesian3100

archipelago. Yet did not perform well in the Berbak landscape. This left a large3101

information gap for Indonesia and the Berbak project. To fill this gap, two options3102

were explored, both based on 3D modelling. The approach was based on a classical3103

model in which peat forms a dome shape on the landscape, which is deepest where3104

its elevation is highest. So a relationships between 289 measured peat depth samples3105

from Berbak and three different models of the surface of the earth were estimated to3106

test for such a classical relationship at Berbak. However no distinct peat domes were3107

apparent in the models of the earth’s surface. Further, the relationships between the3108

peat depth and the three earth surface models were poor (R2 = 0.03,0.17,0.21). This3109

directly contrasting findings in the literature. Because these relationships were weak,3110

the geostatistical technique kriging was used instead to create a 3D model of the3111

peat. This model was cross-validated with leave-one-out comparisons, estimating3112

6,554 x 106 m3 peat within the border of the Berbak Carbon Initiative site, holding3113

380 x 106 Mg C.3114

6.2 Introduction3115

Tropical peatlands are a major store and sink of carbon (Sorensen, 1993; Page et al.,3116

2002; Page, 2009; Page et al., 2007, 2011) They can store up to an order of magnitude3117

more carbon than forest on mineral soils (Jaenicke et al., 2008). Indonesia has the3118

largest area of tropical peatland within the borders of any country (Hooijer et al.,3119

2012). However, these areas are now being exploited to provide access to timber and3120

land for agricultural development (Miettinen et al., 2011). When they are drained3121

and cleared, huge amounts of carbon are released to the atmosphere (Hooijer et al.,3122

2012; Page et al., 2002). Peatland drainage, oxidation and fires now account for up3123

to 3% of all anthropogenic carbon emissions(van der Werf et al., 2009). Accordingly3124

peatlands have taken centre stage in Indonesia’s climate mitigation plans through3125

REDD+ (Austin et al., 2012; Paoli et al., 2010). For REDD+ and sustainable land3126

management plans more generally, information on peatland extent and depth is3127

essential. However there is a great deal of uncertainty in both of these metrics, since3128

peat cannot be directly measured through remote sensing. The areas where the peat3129
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is found are also vast, remote and difficult to work in. The most recent method to3130

estimate peatland extent and depth across Indonesia used regression models based3131

on the position of rivers and other geomorphological landscape features to predict3132

peat presence and depth across the landscape, in a programme called the Quick3133

Assessment and Nationwide Screening; (QANS).3134

QANS involved the collaboration of NGOs working across Indonesia, contribut-3135

ing data to a Dutch environmental consultancy called Deltares, which built the final3136

model for peatland extent and volume estimation. However, the approach was not3137

successful in eastern Jambi and the area where the Berbak carbon initiative is lo-3138

cated. This leaves a gap in Indonesia’s inventory of peatland. This also presents a3139

problem for the development of ZSL’s pilot REDD+ project at the site: reductions3140

in emissions from the peat at the site could generate large amounts of carbon cred-3141

its. But without a credible baseline of peat carbon stocks, this will not be possible.3142

This chapter addresses this information gap. The objectives are therefore to: 1. to3143

estimate the quantity of total amount peat and carbon in the landscape surround3144

the Berbak project; and 2. to calculate a potential emissions estimate that accounts3145

for the fact that only that peat above the physical drainage limit is likely to be3146

oxidised.3147

6.3 Methods3148

In order to calculate the volume at the Berbak site, the depth of the peat needs to3149

be modelled across the landscape using the fragmentary data from point sampling3150

of the peat soils. There are three different approaches to model the peat depth:3151

1. With the use of co-variates, develop a regression model and apply this across3152

the landscape. This is the essence of the QANS approach: using landscape3153

features such as distance to rivers and topography to predict peat depth.3154

2. By estimating of a relationship between the height of the surface of the earth3155

(Digital Elevation Model;DEM) and measured peat depth e.g. (Jaenicke et al.,3156

2008)). The depth can then be extrapolated across the landscape from the3157

DEM to produce a 3D model. This requires the production of DEMs which3158

control for the height of the forest vegetation over the surface of the earth.3159

3. Finally, by exploiting spatial autocorrelation in the depth data in order to3160

make predictions by either a) kriging or b) inverse distance weighting (IDW),3161

and thereby similarly producing a 3D model.3162

As set out in the introduction, the principal motivation for this chapter was that3163

the QANS estimation for the depth and extent of peatland was not successful for the3164

landscape surrounding. The remaining options are therefore 2 and 3 above, which3165

are the focus of this chapter and addressed in order. Option 2 uses models of the3166
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earth’s surface (Digital Elevation Models; DEMs) to determine the upper surface3167

of the peat. If a robust correlation can be established between the peat depth and3168

the DEM, then the remaining unobserved depth values can be predicted from the3169

DEM. However, in the absence of a strong relationship between depth and the DEM,3170

the remaining option 3) is to use Geostatistics such as kriging or Inverse Distance3171

Weighting to model the unsampled peat depth.3172

Multiple steps were required in order to decide which option to take, and to3173

achieve finally the chapter’s two objectives. For clarity, the entire process is enu-3174

merated below, and set out in the flowchart 6.1.3175

1. Collect peat depth cores from the Berbak field site3176

2. Estimate the margins of the peatland using a combination of remotely sensed3177

optical imagery and field data, where the peat depth was measured as 0m.3178

Create a digital elevation model (DEM) for the Berbak site using three different3179

methods:3180

3. The raw SRTM data;3181

4. Spatial interpolation of the patches of bare earth revealed where the forest3182

was burned (the bare earth krig DEM); and3183

5. A novel method developed for this thesis which involves estimating the vege-3184

tation height and subtracting it from raw Shuttle Radar Topography Mission3185

(SRTM) data (a ’virtual deforestation’ DEM).3186

Then estimate the volume of the peat at the site using:3187

6. The relationship between the DEM and peat depth if the relationship is robust3188

(following (Jaenicke et al., 2008)), or3189

7. spatial interpolation (kriging) of the peat depth readings.3190

Then quantify the total amount of carbon stored in the peat by:3191

8. multiplying the volume estimate by the peat bulk density and the proportion3192

of carbon in the peat.3193

Each of the numbered steps and are now discussed in detail.3194

6.3.1 Peat depth sampling3195

Peat depth samples were collected by ZSL at 211 separate sites across the Berbak3196

landscape. To do this a 10m long soil core sampler was drilled into ground and3197

through the peat soil layer until the mineral soil pan or bedrock was reached. The3198

sampling locations were chosen by the Berbak project manager, and were intended3199
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Figure 6.1: Peatland estimation processing chain

to provide a representative sample of the landscape. These ZSL data were sup-3200

plemented with a further 78 depth samples provided by an environmental research3201

company called Deltares Consultants, giving a total of 289 peat core readings.3202

6.3.1.1 Processing the optical remote sensing data3203

In order to identify the extent of the peatland, optical remote sensing data was3204

used. These are essentially photographs of the surface of the earth from space.3205

These data are freely available from NASA’s LANDSAT programme. Data from3206

the LANDSAT 7 was used by Jaenicke et al. (2008) to identify the peatland extent3207

in their 3D modelling exercise. However, the imagery from this satellite is now3208

degraded following the failure of a component called the Scan Line Corrector, which3209

results in black data-less bands across the downloaded images. These gaps can be3210

filled with other cloud-free imagery from a different time period. However such3211

cloud free imagery is very rare because Berbak experiences high cloud cover in the3212

wet season, and is shrouded by smoke from forest burning in the dry season. As3213

such, even after attempting gap filling, the image quality was too low for peatland3214

identification. Because it was not possible to fill the Landsat 7 gaps, data from3215

a older satellite (Landsat 5) was used instead. Landsat 5 does not have any such3216

problems with missing data.3217
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The Berbak site is at the intersection of two paths of the Landssat satellite over3218

the surface of the earth (Landsat paths 124 061 and 125 061). This means that3219

two cloud-free images needed to be sourced and stitched together to create a mosaic3220

of the entire study area. The only relatively smoke and cloud-free images were3221

from 31 May 2009 for scene 125 061 (the western half of the mosaic) and from 203222

August 2006 for scene 124 061 (the eastern side of the mosiac). These raw images3223

were downloaded from the USGS website (http://glovis.usgs.gov/), and processed3224

in PANCROMA software (http://www.pancroma.com/). Subsets of image bands3225

5,4 and 3 were created for both scenes at the area overlapping Berbak. Since the3226

two images were taken by the satellite at different dates, there are differences in the3227

spectral properties of each of them. Because of this it was necessary to normalise3228

the data in the two images against one another to ensure that the final mosaic3229

was consistent and so that peatland features could be identified. This relative3230

normalisation was performed manually by extracting a selection of pixels from both3231

scenes where the images overlapped. A relationship was then established between3232

these extracted values using Reduced Major Axis regression, since which minimises3233

the errors on both axes (as opposed to those on the Y axis as in ordinary least3234

square regression), which is appropriate given that neither variables are controlled3235

experimentally (Sokal and Rohlf, 1995; Legendre, 2013; R Core Team, 2013). The3236

resulting relationships were then applied to the target scene (124 061) to normalise3237

it.3238

6.3.2 Identifying the peat margins3239

At the border between peatland and mineral soils, called the ’frontier of accumula-3240

tion’, the peat is not expected to accumulate to levels above the mineral soils (Moore3241

and Bellamy, 1947). This means that it was necessary to use multiple independent3242

data sources to identify the peat margin, because height alone cannot provide in-3243

formation on the border. The hydrological characteristics (river networks) of the3244

study region were an important indicator, since the basic model of peat formation3245

requires shallow basins near rivers. Away from the zone of accumulation, elevation3246

data from the DEM should indicate raised areas of peat accumulation in otherwise3247

flat lowland plains, which is characteristic of the classic peat dome. In addition, the3248

presence of mineral levees was also used as an indicator of peat margins. These are3249

mineral deposits formed near the banks of rivers through repeated flooding of the3250

river. Finally, blackwater rivers and lakes were searched for by eye in the imagery3251

in the optical imagery (Jaenicke et al., 2008, 2010). However this approach was3252

undermined in the present study by the fact that Berbak has already experienced3253

significant human disturbance over a long period. As such many of these natural3254

features have already been modified. Given this, anthropogenic features were also3255

assessed as proxies for the presence of peat. For instance, canals are used to drain3256
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waterlogged peat and can be identified from the optical imagery as straight line3257

features extending from fields into the main river channels. Nonetheless, this was3258

still an arbitrary approach and ultimately it was more parsimonious to simply draw3259

a minimum convex polygon using QGIS (QGIS Development Team, 2009) around3260

peat depth measurements which were either a) at the point where depth readings3261

changed from 0m to >0m, or b) were the outermost recording of any peat depth3262

>0m.3263

6.3.3 Creating a digital elevation model (DEM) of the3264

project area3265

Radar data from NASA’s Shuttle Radar Topography Mission(SRTM) provided the3266

initial digital elevation model (DEM). However the radar used by SRTM does not3267

fully penetrate the forest canopy. As such it would be more accurate to say the3268

SRTM data actually estimates a vegetation elevation model (VEM). Using this3269

VEM to estimate peatland volume would introduce errors as peat elevation would3270

be biased upwards. This presents a further problem for peat volume analyses, as3271

well as to other remote sensing applications which require the use of a DEM derived3272

from SRTM data. This problem can be resolved by using kriging on the areas of3273

earth exposed by forest clearance and fires, or by subtracting independent estimates3274

of forest height from the SRTM data in order to ’virtually deforest’ the landscape.3275

Both of these options are tested here, in addition to the use of the raw SRTM data3276

unadjusted for vegetation height. i.e.:3277

1. using the raw SRTM data;3278

2. perform kriging on areas of the bare earth where forest has been burned or3279

otherwise cleared (bare earth kriging DEM);3280

3. estimate forest height across the site and subtract this from the VEM (creating3281

a virtual deforestation model).3282

6.3.3.1 Estimating a DEM by kriging the bare earth patches in SRTM3283

data3284

To create the bare earth kriging DEM, a fishnet of points at 1000m intervals was cre-3285

ated in QGIS across those areas which appeared as burned in the Landsat imagery.3286

The SRTM values at each of these points was extracted using R. These height sam-3287

ples were then interpolated using kriging in the GeoR package (Ribeiro and Diggle,3288

2001) with a OLS model fitted to determine semivariogram parameters of sill and3289

range.3290
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6.3.3.2 Estimating an vegetation height layer to substract from the3291

SRTM data3292

A raster of estimated forest height was produced across the landscape by using a3293

novel integration of ALOS-PALSAR L-band radar data, Lidar transects from the3294

GLAS ICESat mission. The full production process of the vegetation model is3295

the focus of chapter 7 of this thesis as a component of the above forest biomass3296

estimation. This vegetation model, which predicted forest heights of between 03297

and 25m was directly substrated from the raw SRTM data to poduce the ’virtual3298

deforestation’ model.3299

6.3.3.3 Normalisation of the vegetation model and the SRTM data3300

Since the SRTM data and the vegetation model were produced using different tech-3301

nologies (C and L band radar respectively, which have different wavelengths) there3302

was variation in the estimation of vegetation height for the same pixels between3303

the two data sets. In order to be able to subtract the estimated vegetation layer3304

from the VEM (thereby virtually deforesting the site), the vegetation layer needed3305

to be relatively normalised to the VEM such that the estimated forest heights in3306

each raster approximated one another. Both the PALSAR radar and SRTM data3307

had already been warped in chapter 7 to ensure that the pixels directly overlapped3308

one antother. Then, 1000 pixel values were randomly extracted from each raster3309

using the sampleRandom command in R(Hijmans, 2013; R Core Team, 2013). This3310

function takes a random sample from the pixel values of a Raster object without3311

replacement. A linear regression was then performed on these data producing the3312

equation Lorey = 2.79+ (0.4*SRTM). This equation was then applied to the Lorey’s3313

height estimate raster such that SRTM-12.79/0.40=Lorey to normalise the two lay-3314

ers. In order to test the normalisation procedure, a further 1000 pixel values were3315

extracted from the normalised Lorey’s height raster, and a futher a regression model3316

was then run on these values to confirm the linear dependence upon the SRTM data.3317

Finally, this normalised vegetation layer was from the DEM to provide the ’virtual3318

deforestation’ model.3319

6.3.4 Testing the three DEMs for dome-shaped structures3320

In order to assess the extent to which there was the classic dome-shaped surface3321

at the site, the raw SRTM DEM; the bare earth kriged DEM; and the virtual3322

deforestation DEM were sampled by creating ’virtual transects’ across the rasters. In3323

practice this involved drawing polylines in QGIS (QGIS Development Team, 2009)3324

and extracting pixel values. These values were then plotted against distance along3325

the transect and the scatter fitted with a smooth line in ggplot2 in R (Wickham,3326

2009; R Core Team, 2013) in order to test for the shape of an idealised domed3327

surface.3328
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6.3.5 The relationship between the three DEMs and the3329

peat depth3330

For the next stage of this analysis data was extracted from the raw SRTM data; the3331

bare earth DEM; and the virtual deforestation model at the 289 sites where peat-3332

depth data had been taken. As a first stage of data analysis, the two DEMs were3333

explored for dome-like features in the landscape which might indicate the presence3334

of a classic peat dome. To do this, virtual transects were run across the surface3335

of the two DEMs. In practice, this meant creating a vectors in QGIS along which3336

points were made every 100m. Data was then extracted at these points from the3337

two DEMs. These were then explored visually for the presence of a distinct dome3338

shape. The next step was to attempt to establish a relationship between the height3339

estimates from the DEMs and the point samples of the peat depth. To do this,3340

values from both DEMs were extracted at the 289 locations where the peat had3341

been sampled. To do this regressions using ordinary least square were performed to3342

test the relationship between elevation from the three DEMs and the 289 measured3343

peat depths.3344

6.3.6 Kriging the peat depth readings to create a 3D3345

depth model3346

The final step was to using kriging to develop a 3D model of the peat depth, which3347

would be independent of the surface modelling described above. This was done3348

by using the GeoR package in R (Ribeiro and Diggle, 2001). This has pre-coded3349

functions to make semivariograms and to produce predictive models based upon3350

these. First, the peat depth readings were loaded into R, and a semivariogram was3351

created from of the data using the variog function in GeoR. These were produced3352

with a maximum distance of 20km, since this was on the order of magnitude of a3353

peat dome (Jaenicke et al., 2008). The variograms allowed the estimation by eye of3354

the values for range, sill, nugget and partial sill (see the background and literature3355

review chapter for further details on these values). These were used for the initial3356

values for an empirical variogram created using a function called ’variofit’ in GeoR,3357

programmed to determine a function using Ordinary Least Squares. This model3358

provided the final empirical parameter values which were then used to fit the final3359

spatial model and to predict values across the landscape, making a 3D model. Visual3360

representations of the model were created using the rgdal package (Bivand et al.,3361

2013).3362

6.3.6.1 Model diagnostics3363

Model diagnostics were performed by using a pre-built cross-validation procedure3364

from GeoR package called xvalid (Ribeiro and Diggle, 2001). This function validates3365
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the model by comparing observed values with those predicted from kriging. The3366

leave-one-out option was chosen, whereby each of the 289 data locations is removed3367

in turn, and the depth at that location is predicted using the remaining 297 data3368

points. The validation reports the errors between the estimated and observed values.3369

6.3.7 Calculating the volume of peat3370

For this final stage the total quantity of peat and carbon contained therein were3371

calculated. First, the extent of the final 3D model was clipped to the extent of the3372

minimum convex polygon created around the depth readings. The volume of this3373

clipped model was then estimated by taking the sum of the depths per metre2 across3374

the model. The volume of carbon was calculated by multiplying the depth of the3375

peat under the interpolated depth surface by dry bulk density:3376

ζ = γ ∗ β ∗ ϕ (6.1)

where ζ is the total quantity of carbon, γ is the volume of peat, β is the bulk density3377

and ϕ is the proportion of carbon in the soil.3378

The literature widely uses a generic carbon content of 0.58, along with a dry bulk3379

density of (0.1g cm −3, which equates to 58kg m−3 e.g.(D et al., date). However site-3380

specific data for Berbak suggests a carbon density of 73.8 Kg Cm−3 (data collected3381

by Jenny Farmer/CIFOR), so this value was used for the carbon stock estimation.3382

6.4 Results3383

The 289 peat core samples were approximately normally distributed (see figure 6.23384

with probability density curves plotted). The deepest peat recorded was 12m in the3385

south west of the site, and the minimum was 0 in the mineral soils outside the peat3386

formation zone. The mean depth was 5.5m.3387

6.4.1 The peat margins3388

Both the optical and topographical imagery derived from the remote sensing data3389

were used to determine the estimate of the peat extent. Figure 6.3 provides Landsat3390

5 imagery showing the lattice of access roads and drainage canals used to drain3391

water-logged soils in the region to the west of Berbak whilst 6.4 shows the broader3392

landscape and the position of the peat core samples. The cores in the south west3393

of this scene were amongst the deepest in the entire data set at depths up to 12m.3394

However on the east and northern borders of Berbak the maximum extent of mineral3395

soils in the core samples was located i.e. peat depths of 0m. Because the final3396

analysis estimates the peatland border where the peat is still deep (because that is3397

the last recorded data point), it is likely that the analysis underestimates the actual3398

extent of the peatland.3399
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Figure 6.2: Histogram of the peat core data

6.4.2 Creation of a DEM for the project area3400

The bare earth kriging DEM produced a smooth surface estimate for the surface of3401

the earth. These data were loaded into the R environment as the first DEM. The3402

next approach for estimating the DEM was to create a virtual deforestation model.3403

This required the normalisation of the SRTM and vegetation height models via3404

regression upon extracted values from both datasets. The normalisation equation is3405

summarised in table 6.1. The verification regression is provided in 6.2, which shows3406

that following normalisation, the coefficient for the SRTM data regressed against3407

the vegetation height was 1 (p<0.001).3408

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7898 0.7755 3.60 0.0003

SRTM2 0.4071 0.0295 13.82 0.0000

Table 6.1: Results of the Normalisation of the vegetation height model and SRTM

data

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0240 1.9055 0.01 0.9899

SRTM2 1.0003 0.0724 13.82 0.0000

Table 6.2: Verification of the normalisation of the SRTM and Lorey’s height estimate

As such, this virtual deforestation model was loaded into R as the second DEM. It3409

produced a more noisy image than the smooth surface of the kriging (see figure 6.6),3410
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Figure 6.3: Outline of the Berbak project drawn in pink and peat core sample as
blue points

because the kriging depends upon functional relationships between values of points3411

in space, whereas the vegetation height model has independent per-pixel estimates of3412

forest height. In addition, the SRTM data was collected in 2000, whereas the ALOS3413

PALSAR data which was used to create the vegetation height model was collected3414

in 2007. As such there may have also been real changes in the forest cover in the3415

interceding time between the collection of the two datasets. A 3D representation3416

of the results of the virtual deforestation process are shown in figure 6.5. The flat3417

area in the centre of the model is the result of fire damage from the fires from the3418

’El Nino’ seasons of 1996/7.3419

6.4.3 The peat surfaces and their relationships with peat3420

depth3421

Following the creation of the DEMs, the next stage was to explore whether a dome-3422

like shape was present, using the virtual transects across the surface of the DEMs3423

shown in figure 6.6. Overall it was difficult to identify by eye any particularly distinct3424

dome shapes in either raw SRTM data; the kriged surface DEM, or the the virtual3425

deforestation DEM. The next stage of the analysis involved assessing a statistical3426

relationship between the three DEMs and the peat depth readings (Jaenicke et al.,3427

2008, 2010). There was little evidence of a relationship between peat depth readings3428

and the raw SRTM DEM; the bare earth krig DEM; nor the virtual deforestation3429
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Figure 6.4: Lattice of canals draining the peatland

DEM. The R2 values were 0.03, 0.17 and 0.21 respectively for the OLS regressions on3430

peat depth. In the absence of a strong relationships it was not possible to emulate3431

the methodology from Jaenicke et al. (2008, 2010) for the estimation of a 3D volume3432

of peat for the Berbak area. Instead it was necessary to rely upon kriging of depth3433

readings to make an estimation of the volume of peat.3434

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.1572 0.6839 10.46 0.0000
Peat depth -0.0678 0.0264 -2.57 0.0107

R2 = 0.03. N=297.

Table 6.3: Results of the regression between peat depth and the digital elevation
model created directly with the SRTM data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6651 0.5487 3.03 0.0027
Peat depth 0.2908 0.0404 7.21 0.0000

R2 = 0.17. N=297.

Table 6.4: Results of the regression between peat depth and the surface model made
by kriging the patches of bare earth in the SRTM data.
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Figure 6.5: The ’virtual deforestation’ model, with vegetation height subtracted
from the srtm data

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5211 0.1527 36.16 0.0000
Peat depth 0.0684 0.0082 8.35 0.0000

R2 = 0.21. N=297.

Table 6.5: Results of the regression between peat depth and the surface model made
by ’virtually deforesting’ the project site.

6.4.4 Results of the Geo-statistics to estimate the peat3435

volume3436

The empirical semivariogram estimated σ2 (the partial sill) as 9.4 and φ (the range)3437

as 8385.3. As shown in the diagnostics plot 6.8, the errors appear to be normally3438

distributed, with the predicted values clustered around the predicted values.3439
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Figure 6.6: From top to bottom: Transects A,B,C,D

Figure 6.7: Semivariogram for the peat depth data
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Figure 6.8: Model validation for the kriging of the peat depth data

The 3D model in figure 6.9 shows an undulating surface with particularly deep3440

peat (marked in darker shades of green) in the south west of the image, and shallower3441

(pink) peat towards the north. In order to compare the image with the other maps3442

and diagrams in this thesis, the location of the burn scar is also highlighted.3443
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Figure 6.9: 3D model of the peat at Berbak

The final total volume estimated using the 3D model developed by kriging3444

was 6,554 x 106 m3 peat. Using the peat carbon content estimate of J.Farmer3445

(CIFOR/University of Aberdeen/unpublished data), this total volume of peat within3446

the borders of the Berbak Carbon Initiative stores 380 x 106 Mg C.3447

6.5 Discussion3448

The estimation of the height of the peat surface led to the development of a new3449

technique to ’virtually deforest’ the study site. This may be useful in other contexts,3450

and in other case study sites in the future. However, it is moreover a demonstration3451

of the potential of technique, since future applications this will also depend upon3452

future data availability, since the SRTM, ALOS PALSAR and Lidar data used to3453

do this are not currently being collected. In the present applied context, it was not3454

possible to establish a strong relationship with the the measured peat depth and the3455

virtual deforestation model (nor for the bare earth kriged estimate or raw SRTM3456

data). This directly contrasts with the work of Jaenicke et al. (2008, 2010) who3457

found a strong relationship between the surface layer height and the peat depth,3458

with correlations >r=0.8, r2=0.64. In this case, with a weaker relationship, to3459

extrapolate the relationship across the peat surface to establish peat depth. The3460

weak relationships between the peat depth and peat surface height, and the poor3461
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performance of the QANS model in the Berbak area raises questions about the3462

nature of the peat at the site, since it does not appear to be distributed in a similar3463

way to other peatlands. In the virtual transects that were set across the surface3464

of the three DEMs, no distinct dome shapes were apparent. This may be part of3465

the explanation. In addition, there may have been issues with the peat depth data3466

collected from the Berbak site. In particular with biased selection of the soil depth3467

sites. Because of the logistical problems associated with field work in a tropical3468

peat swamp forests, the field team collected depth readings near to rivers, but3469

according to theory Moore and Bellamy (1947), the deep peat forms in the centre3470

of accumulation zones which are furthest from rivers. This means that the depth3471

readings may consistently underestimate the depth of the peat across the study site.3472

This would be expected to reduce the volume of the peat estimated in the kriging3473

exercise, compared to measurements in the middle of the accumulation zone. More3474

data from the centre of the accumulation zone may address this problem, however3475

in practice this is difficult given extremely limited access to the core forest zones at3476

Berbak.3477

Kriging does not account for the theory behind the formation of peat, such as the3478

distance to rivers, which are included as co-variates in the QANS model. However,3479

given this approach did not work for the site, kriging does present a means to use an3480

established geo-statistical technique to estimate a model. Moreover, the estimation3481

of the volume of the peat also depends on the determination of the extent of the3482

peat across the landscape, which introduces further errors into the process.3483

6.5.1 Errors3484

6.5.1.1 Peat margin estimation3485

Multiple sources of information were used to demarcate the peatland extent, includ-3486

ing anthropogenic evidence (drainage canals), and observed peat depths of 0m. It3487

was not possible to easily identify blackwater rivers and lakes from landsat imagery,3488

as suggested by Jaenicke et al. (2008, 2010). This may have been due to the fact3489

that those authors used Landsat 7 imagery instead of Landsat 5 as in the present3490

study, or physical differences between the study areas. A minimum convex polygon3491

was therefore the most parsimonious means to determine the peatland extent. How-3492

ever, some of the points used to make the polygon had recorded large depths, but3493

were used since they were the outermost available data points to make the polygon.3494

This is likely have resulted in an underestimate of the extent of the peatland in the3495

Berbak area. Yet in the absence of additional data points it is not justifiable to3496

expand the estimate of peat extent.3497
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6.5.2 Implications for REDD+3498

The quantity of carbon estimated here represents a significant store of carbon. In3499

the absence of an intervention in the area, continued deforestation and forest degra-3500

dation (see chapter 7) will cause the peat’s carbon to oxidise and be transferred3501

to the atmosphere. This serves to highlight the importance of developing land use3502

management strategies that correctly price the emissions associated with land use3503

change. However, despite the Indonesian government’s first efforts at implement-3504

ing REDD+ under the Norway agreement, the drainage and conversion of peatland3505

continues apparently unabated. LANDSAT 8 imagery from 28 June 2013 (shown in3506

chapter 4) shows that a huge new clear cut of 55km2 has been created on Berbak’s3507

southern border. This is likely to have significant impacts on the hydrology of the3508

area, and of course Berbak itself. In addition it will increase the ease of access for3509

the area, presenting further challenges to achieving REDD+.3510

6.5.2.1 Future research3511

Were more data collection possible these could be used to refine the kriging models,3512

and also to re-running the QANS models for the area. To achieve a better under-3513

standing of regional stocks, future research could aim to collect depth samples from3514

the mangrove swamps of Sembilang National Park which is contiguous to the south3515

of Berbak. Mangrove forests also form store large amounts of carbon, which is ’com-3516

prised of rootlets and soft (parenchymatous) parts of larger roots’...collect[ing] al-3517

lochtonous peat-like sediments’ (Joosten, 2009). been shown to store larger amounts3518

of carbon than soils on mineral soils, at up to 1000 t C ha−1 (Donato et al., 2011).3519
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7.1 Abstract3524

This chapter integrates Radar and Lidar data from earth-observing satellites to cre-3525

ate an estimate of forest biomass in 2007. A total of 503±105 x 106 Mg are estimated3526

in above ground biomass across a 7.2 Mha study area, which encompasses Jambi3527

and South Sumatra provinces. By using a time series of radar data, it was possible3528

to estimate annual changes in this biomass. A total of 229,760 ha of the study3529

area were estimated to have been deforested between 2007 and 2009, a deforestation3530

rate of 1.6% yr−1. In the first year between 2007 and 2008, 18.5 ±3.9 x 106 Mg of3531

biomass were cleared (3.6 % of the 2007 total), leading to estimated emissions of 343532

±7.1 x 106 Mg CO2e. In the second year between 2008 and 2009, 13.1 ±2.7 x 106
3533

Mg of biomass were cleared (2.6% of the 2007 total), leading to emissions of 24 ±5.03534

x 106 Mg CO2e. The results demonstrate the suitability of time-series of medium3535

wavelength (L-band) radar data for forest change detection. It provides a contri-3536

bution to research and development for remote sensing of forests in a region that is3537

both undergoing rapid forest loss. Crucially, radar is able to penetrate smoke and3538

cloud which normally obscure both forest and land cover change. This approach is3539

a promising development for the monitoring of Indonesia’s forests, including under3540

REDD+.3541

7.2 Introduction3542

This chapter has two aims. The first is to establish a baseline estimate of above3543

ground biomass of the study area using integrated analysis of radar backscatter and3544

Lidar data. The second objective is to determine whether this technology can be3545

used effectively for annual change detection in tropical forests, and could contribute3546

to monitoring REDD+ activities. Measuring above ground biomass (AGB) loss3547

is central to assessing REDD+ performance, and ideally analysts would have high3548

resolution maps made for each year to detect annual change in AGB. Yet no satel-3549

lite sensor directly measures biomass (Woodhouse et al., 2012), and relationships3550

between remote sensing data and biomass tend to break down at medium to high3551

biomass levels. Because of this, there there is a loss of sensitivity to high biomass3552

forest (Mitchard et al., 2009a). This is a major issue when the objective of the3553

monitoring exercise is to monitor high biomass tropical forest.3554

When optical data is used, cloud cover is a significant problem, because it ob-3555

scures the target (the forest) from view. This means that researchers resort to3556

making composite images from multiple years. However, in areas where land cover3557

change is occurring rapidly, mature natural forest may be lost and rapidly replaced3558

with secondary regrowth or a plantation, which ultimately looks similar to the nat-3559

ural forest. Where this happens, forest loss is masked (Hansen et al., 2009; Margono3560

et al., 2012).3561

125



This is the central challenge of the chapter: to quantify forest biomass and short3562

term change obscured by cloud. Lidar data can be used to produced biomass maps3563

(Lefsky, 2010; Asner et al., 2010) but these are expensive to obtain. However Lidar3564

samples are available from the (ICESat) Geoscience Laser Altimeter System (GLAS)3565

sensor, which can be used in conjunction with secondary data sets that do span the3566

landscape (Shugart et al., 2010).3567

Radar data has already been used to measure biomass in Kalimantan, Indonesia3568

(Morel et al., 2011), but by using direct regression between backscatter and field3569

biomass measurements without incorporating LiDAR. The novel approach presented3570

here for Indonesia is to integrate three years of L-band Synthetic Aperture Radar3571

(Phased Array L-band Synthetic Aperture Radar, PALSAR, wavelength 23cm; on3572

board the Advanced Land Observing Satellite, ALOS) with four years of data from3573

the space-borne LiDAR sensor (ICEsat GLAS; 10,944 footprints from 2003-2007),3574

in order to greatly supplement a small biomass field dataset of 56 field plots. Using3575

these data measure the quantity, extent and change in biomass over two years (20073576

& 9) in eastern Sumatra, Indonesia.3577

7.3 Methods3578

7.3.1 Field plot data3579

A carbon stock assessment was performed during the initial phase of the ZSL project,3580

which included AGB estimation using field plots. Plot locations were chosen through3581

stratified random sampling, based upon a habitat classification map using 20083582

SPOT V imagery analysed by ZSL Indonesia. In the field, plot locations were verified3583

with a Garmin 60CsX handheld GPS unit. A total of 56 plots were sampled, with 363584

in primary swamp forest, 14 in swamp bush and 6 in secondary peat swamp forest.3585

In each plot, trees were sampled in a series of five nested sub-plots for different3586

stem size classes. Specifically these were: a 10 x 10m subplot recording every tree3587

between 15 and 30cm circumference; nested in a 20 x 20m subplot recording every3588

stem between 30 and 105cm circumference; nested in a 20 x 125m plot recording3589

every stem of 105cm circumference and above. The AGB for each tree in each sub-3590

plot was then calculated using an allometric equation for wet tropical forests, where:3591

3592

AGB = exp(−2.557 + 0.940 ∗ ln(ρδ2η)) (7.1)

Where ρ= oven-dry wood over green volume (wood density), δ=diameter at breast3593

height (1.3 m), η= tree height (Chave et al., 2005). Wood densities were collected3594

from the literature for Indonesia peat swamp trees (Murdiyarso et al., 2011b). Where3595

trees are not individually identifiable in the field plots, the Food and Agriculture3596

Organisation recommends an arithmetic mean for tree wood density. This is 0.57g3597

cm−3 for Asia (Reyes et al., 1992), or a generic 0.58 g cm−3 (Chave et al., 2004)3598
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This was done for a total of 1.3% stems in the 10 x 10m sub plots, 0.87% stems in3599

the 20 x 20m, and 44% of stems in the 20 x 125m plots.3600

7.3.1.1 Calculating tree height3601

Tree height data was not recorded from the forest plots by the field team. Equations3602

published by Morel et al. (2011) were therefore used to relate tree height to DBH3603

for S.E. Asian trees, whereby height η:3604

For stems where δ < 20cm:3605

η = 8.61 ∗ ln(δ) + (−8.85) (7.2)

(r2 = 0.16; p < 0.01)3606

and where δ > 20cm:3607

η = 16.41 ∗ ln(δ) + (−33.22) (7.3)

(r2 = 0.62; p = 0.001)3608

where δ is diameter at breast height. The estimated height for each stem was3609

then used to calculate Lorey’s height for each of the plots. Lorey’s height weighs3610

the contribution of trees to the stand height by their basal area. It is calculated by3611

multiplying tree height η by its basal-area α, and dividing the sum of this by the3612

total stand basal area.3613

Lorey′sheight =

∑
(η × α)∑

(α)
(7.4)

7.3.1.2 Estimating the relationship between the measured biomass and3614

height3615

The next step was to calibrate the relationship between plot-level AGB estimates3616

and Lorey’s height (L) estimated in the steps above. This involved following the3617

approach of (Mitchard et al., 2012) and Saatchi et al. (2011), which is to estimate a3618

non-linear least-squares regression: y = a ∗ (xb). This was estimated using the NLS3619

function in R (R Core Team, 2013).3620

7.3.2 Radar and LiDAR data3621

The Radar data are ALOS-PALSAR mosaics from 2007, 2008 and 2009 downloaded3622

from the Japanese Aerospace Exploration Agency (JAXA) Kyoto and Carbon web-3623

site. The Polarimetric L-band Synthetic Aperture Radar (PALSAR) data is col-3624

lected in two polarisations: Horizontal-send Horizontal-receive (HH) and Horizontal-3625

send Vertical-receive (HV), and is provided at a 50m resolution. Lidar data is taken3626

from the ICESat GLAS sensor. These data were collected between 2003-2007, and3627
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provide waveforms for transects across the earth’s surface. The final data used here3628

were the estimates of Lorey’s height from each waveform derived from coincident3629

tropical ground data, as processed by Sassan Saatchi (Saatchi et al., 2011). The3630

data already has some cloud filtering applied, but on examining the data visually3631

there were clearly many points over areas that were known to be covered in forest3632

(from field observations) but that were influenced by smoke and cloud cover because3633

they had low lorey’s height values. To deal with this the Lidar footprints were fil-3634

tered for any false negatives. To do this an independent land cover data set from3635

the European Space Agency (ESA) called GLOBCover was used (Bicheron et al.,3636

2009). This provides estimated land cover type across the study area, and at 300m3637

resolution it is the highest resolution land cover data available. Lidar footprints3638

were removed from the dataset which had Lorey’s height values of 0m but which3639

were over forest in the GLOBECover data. By this process 11,031 Lidar footprints3640

were removed that had a Lorey’s height value of 0m and yet were over forest in the3641

ESA dataset. This left 10,944 points remaining for calibrating the radar data.3642

The PALSAR DN data in both HH and HV polarisations at each of the Lidar3643

points were extracted using IDL-ENVI 4.7 (EXCELIS). Since the Lidar footprints3644

are 70m in diameter and therefore overlapped the 50m PALSAR pixels, the mean3645

values of the four 50m pixels in the radar HV and HH data was extracted.3646

7.3.3 Calibration of the biomass, Lidar and radar data3647

7.3.3.1 Calibration of radar and Lidar data3648

For 2007 the cloud-filtered Lidar dataset was calibrated with the value of backscatter3649

of the pixels in which the footprints fell. In practice, since the Lidar footprints3650

are 70m in diameter and therefore overlap the 50m radar pixels, a mean the four3651

coincident radar pixels was taken. The digital number (DN) PALSAR data values3652

were converted into decibels (dB) using:3653

dB = 10× log(DN2)− 83 (7.5)

In order to estimate the functional relationship between the Lorey’s height read-3654

ings from the Lidar data, and the PALSAR backscatter data, Reduced Major Axis3655

(RMA) regression was used. This method minimizes the error on both the X and3656

Y axes, which is pertinent to this case where errors exist on both axes and since3657

neither variable is controlled experimentally (Sokal and Rohlf, 1995; Ryan et al.,3658

2012).3659

The data was then ’binned’, whereby the mean backscatter was calculated at3660

each height using the ’aggregate’ function in R (R Core Team, 2013; Hijmans, 2013).3661

This was necessary because for an ideal regression a similar number of Lorey’s height3662

estimates are necessary at all radar backscatter levels. However Lidar data over this3663

type of mixed and degraded forest landscape typically contains far more data points3664
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at lower values of Lorey’s height, with very few readings greater than 30m. The3665

relationships using the HV backscatter were superior to those developed using the3666

HH backscatter, and the experiment was continued using this polarisation.3667

A physical limitation of the L-band radar data is that it does not fully pene-3668

trate the forest canopy, and the signal saturates at higher biomass levels. This is3669

demonstrated by a collapse in the functional relationship between the Lorey’s height3670

measurement from Lidar and the backscatter, which occurs at approximately 25m3671

Lorey’s height in this instance, corresponding to 190.6 Mg ha−1, and as shown in3672

figure 7.3. To account for the collapse of the functional relationship at this point,3673

the modelled biomass was limited to 190.6 Mg ha−1. For any pixel with a predicted3674

value greater than this limit, a mean biomass value was attributed. This value3675

was taken from the Berbak field plots which had values of over 25m Lorey’s height,3676

which was 236Mg ha−1 (n=9; s.d.=75 Mg ha−1). This is more conservative than the3677

generic 350Mg ha−1 for Asian forests as suggested by the IPCC (Eggleston et al.,3678

2006; Penman et al., 2003).3679

The functional relationships between backscatter and Lorey’s height was then3680

applied to the 2007 HV backscatter raster 7.2. This created a raster which estimated3681

Lorey’s height per pixel.3682

7.3.4 Radiometric normalisation of the HV backscatter3683

rasters and additional processing3684

Annual variations in measurement conditions, such as moisture on the ground and3685

in vegetation introduces variance in backscatter between years which does not con-3686

stitute changes in forest cover that may be attributed to anthropogenic disturbance.3687

In the wet tropics these changes can be large. For change analysis this represents a3688

problem because any differencing between data sets over time to detect change could3689

lead to errors whereby backscatter change actually reflects differences in measure-3690

ment rather than actual changes in the properties of the attribute being measured,3691

such as the forest in the present case. In order to correct for this, remote sensing3692

data needs to be radiometrically normalised such that the measured properties of a3693

pixel in year x approximate the properties of the pixel in year y where no land use3694

change has occurred. In order to do this with the radar data, 500,000 pixels were3695

sampled from each year of HV backscatter data. These data were used them to3696

develop a linear relationship between each pixel over time, using Ranged Major Re-3697

gression in R (Legendre, 2013), and assuming that the pixels which were deforested3698

during the study period would constitute errors in the regression. The resulting3699

relationship was then applied to the 2009 data such that the pixels in 2009 and3700

2008 approximated those in 2007.3701
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7.3.4.1 Local terrain slope calculation3702

PALSAR backscatter is affected by topography. Because the sensor is sideways-3703

looking, any slope facing the sensor will reflect more energy than slopes facing away3704

from the sensor. This introduces errors into the data, since a deforested sensor-3705

facing slope could reflect more energy than a forest-covered slope facing away from3706

the sensor. The Kyoto & Carbon PALSAR mosaics have undergone some correction3707

for geo-location errors caused by slopes, but are not radiometrically corrected for3708

slopes, that is to say the brightness difference between slopes facing towards and3709

away from the sensor still exist.3710

In order to remove areas of the radar scene which would have been affected by3711

topography, a Local Terrain Slope (LTS) raster was created. The LTS is created3712

as a function of the slope and aspect of the earth’s surface. Slope and aspect3713

were derived from a gap-filed Shuttle Ranging and Topography Mission (SRTM)3714

data set processed and gap-filled by CGIAR (90m resolution; (Jarvis et al., 2008).3715

Specifically, LTS is calculated for east-looking radar as:3716

LTS = tan−1(tanφ)× cos(ω − 90) (7.6)

where φ is slope and ω is aspect. Using this LTS layer any pixels for which the LTS3717

was greater than 5 degrees were excluded from analysis, since this is when radar3718

data is heavily affected by terrain and radar ’shadows’.3719

7.3.5 Creating the 2007 biomass layer3720

In order to create the final biomass map for 2007, the functional relationship between3721

Lorey’s height and HV backscatter (reported in table 7.2) was applied to the HV3722

backscatter raster. This produced a raster of estimated Lorey’s height. Then the3723

relationship between Lorey’s height and biomass (eqn. 7.8) was applied to the3724

Lorey’s height raster. The resulting biomass estimation rasters were processed at3725

UTM projection (48S) at 100m resolution in order to allow stocks to be readily3726

calculated per hectare.3727

Since this analysis concerns with the loss of natural forest, only pixels which had3728

at least 53Mg biomass ha−1 in 2007 were considered in the change analysis. This is3729

because in a study of forest classes in neighbouring Borneo using ALOS PALSAR3730

data, Morel et al. (2011), found that this was the mean biomass of plantations,3731

whereas values above this on average were remaining natural forests. This was also3732

deemed to be in keeping with the definition of ’forest’ under the Marrakesh Accords,3733

as set out in chapter 3. This process excluded the creation of zero-probability3734

zeroes when the differences in backscatter were calculated between years. In order3735

to reduce any noise in the estimation of what constituted natural forest, a bespoke3736

majority value moving window was programmed in R and applied to the natural3737

forest estimate raster.3738
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Next, flooded forest pixels were excluded. This was done by excluding any3739

natural forest pixel, which had a ratio of HV / HH backscatter of less than 0.5.3740

This is because in the HH polarisation, there is a double bounce of the radar signal3741

between the water surface and the structure of the forest which increases the HH3742

backscatter value relative to HV. By definition, pixels which were estimated in 20073743

as having low levels of biomass cannot subsequently lose a great deal of biomass.3744

Näıve differences in backscatter between years which include pixels with low biomass3745

will therefore produce estimates of pixels that have experienced no change, but3746

crucially which had a low or zero probability of losing biomass.3747

7.3.5.1 Exclusion of flooded areas3748

Seasonal flooding can cause changes in radar backscatter that could subsequently be3749

misinterpreted as deforestation. Flooded forest has high backscatter values in the3750

Horizontal send, Horizontal receive (HH) polarisation relative to the Horizontal send3751

Vertical Receive (HV) polarisation. So flooded forest can be detected by looking at3752

changes across space in the ratio of these two polarisations.A separate raster file was3753

therefore calculated for HH/HV ratio. Any areas which were deemed to be natural3754

forest (as calculated in the section above; >53 Mg ha−1 but which had an HH/HV3755

ratio of <0.5 were excluded from the analysis. These areas are shown in figure 7.1.3756

In order to reduce noise in the flooded forest and non-forest/forest layers, a3757

bespoke 5*5 pixel majority-value moving window was programmed in R based on3758

the focal function from the raster package (R Core Team, 2013; Hijmans, 2013) and3759

passed over each raster. This removed individual outlying pixels speckling the data.3760

7.3.6 Change detection: the determination of deforestation3761

Whilst there is small-scale degradation in addition to deforestation at the study3762

site, we are concerned here with land use change as a binary, exclusive event. The3763

threshold used to define change between years represents a tradeoff between sen-3764

sitivity and uncertainty. The lower the threshold for change detection, the more3765

sensitive the process is. Equally, the more sensitive the process is, then the greater3766

the chances that errors in the normalisation process are detected as false positives.3767

A level of 1.5dB was chosen since a change of this magnitude in what was assessed3768

to be both natural and non-flooded forest (as defined above) would necessarily con-3769

stitute a reduction in backscatter per pixel from a high value associated with high3770

lorey’s height and high biomass (relatively in-tact forest) to a low value associated3771

with low lorey’s height and biomass (deforested). This explanation is more read-3772

ily understood with reference to figure 7.2.In order to detect change, each of the3773

normalised scenes were subtracted from the preceding year. This provided change3774

maps between 2007 and 8; between 2008 and 9 (and also between 2009 and 10 in3775

chapter 10).3776
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Figure 7.1: This map shows a close-up of the study area around Berbak national
park. The light grey lines are rivers running through the area. The green pixels are
those estimated to be natural flooded forest. These are pixels with an estimated
biomass of > 53 Mg ha−1 but with HH/HV ratio of less than 0.5. This provides
visual verification of the accuracy of the process, because the flooded pixels are
clustered around the rivers

.

In summary, a pixel was only classified as having lost forest if it originally had3777

a value of greater than 53 Mg ha−1 in 2007 and was not flooded (did not have3778

a HH/HV value of greater than 0.5) and whose backscatter value was reduced by3779

greater >1.5dB in the subsequent year.3780

7.3.7 Calculating errors and uncertainties3781

In a study estimating biomass there are a combination of random and systematic3782

errors propagating throughout the calculations. Mitchard et al. (2011) characterises3783

the errors as those concerning a) accuracy and b) precision. Accuracy concerns3784

the distance of the mean from the true value and hence systematic biases, whereas3785

precision concerns the distance of a measurement from the mean of multiple mea-3786

surements of the same attribute and is this due to random errors. In a comprehensive3787

review of errors in biomass estimations, Chave et al. (2004) highlight how in practice3788
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Figure 7.2: Linear relationship between backscatter and Lorey’s height. This di-
agram demonstrates the logic behind the selection of the 1.5dB threshold for the
definition of deforestation.

these errors can occur when for instance taking the measurements of the individual3789

trees themselves; random errors in the identification of tree species; spatial errors3790

relating to geo-location.3791

Each of the potential sources of error were considered in turn, namely those de-3792

riving from the binary forest map from the ESA; the tree species identification, and3793

height and AGB estimations; errors in the Lidar data and Lorey’s height estimates;3794

and the relationships estimated between Lidar and radar backscatter. In order to3795

combine these multiple errors, which are assumed to be uncorrelated, the following3796

formula was used:3797

Utotal =
√
U2

1 + .....+ U2
n (7.7)

7.4 Results3798

7.4.1 The relationships between Lorey’s height and3799

biomass; and HV Backscatter with Lorey’s height3800

The non-linear regression on the Lorey’s height and forest plot biomass estimate3801

resulted in the power relationship in equation 7.8. The model results are summarised3802
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Figure 7.3: Non-linear relationship between Lorey’s height and biomass

in 7.1, and a chart of the relationship shown in table 7.3. The modelled relationship3803

between HV backscatter and Lorey’s height is summarised in table 7.2. A plot of3804

this relationship is provided in figure 7.4.3805

AGB = 0.37L1.94 (7.8)

AGB and Lorey’s height
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3660 0.3357 1.090 0.28
Lorey exponent 1.9416 0.2840 6.838 p<0.001

Residual standard error: 55.76 on 40 degrees of freedom
Number of iterations to convergence: 3

Achieved convergence tolerance: 4.079e-06

Table 7.1: Results of the non-linear regression between Lorey’s height and the above
ground biomass in the forest plots.

Data set RMA Regres-
sion: PALSAR
dB HV to Loreys
height

RMSE R2

2007 HV dB -12.7 + 0.068 2.6 0.94

Table 7.2: Regression equations for relationship between HV backscatter and Lorey’s
height
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Figure 7.4: Linear relationship between backscatter and Lorey’s height

7.4.2 Biomass stocks3806

In summary, integrating the field plot data, the Lorey’s height data and the HV3807

backscatter data; and excluding pixels with a terrain slope of greater than 5o, and3808

summing the stocks across all the 100m x 100m pixels produces an estimate of a3809

total of 503±105 x 106 Mg of above ground biomass across the 7.2M ha study area3810

for 2007.3811

7.4.3 Change detection3812

The data indicate rapid changes in biomass associated with large scale forest clear-3813

ances over a two year period. A total of 229,760 pixels of 1ha were estimated to3814

have been deforested over this period 2007-8; 2008-9.3815

• 2007:8 change is 18.5 ±3.9 x 106 Mg biomass and emissions of 34 ±7.1 x 106
3816

Mg CO2e.3817

• 2008:9 change is 13.1 x ±2.7 x 106 Mg biomass and emissions of 24 x ±5.0 x3818

106 Mg CO2e.3819

For both the total biomass estimation and for the change in this, there are3820

uncertainties. Their estimation is discussed below.3821
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a) Sumatra 

Extent of  radar 
scene in yellow

Deforested pixels in red.  Pixels 
with over 53 Mg ha-1 in 2007 are 
dark green. Pixels of  less than 53 
Mg ha-1 in 2007 are excluded from 
the analysis,  hence shown as white.

b) Biomass in 2007.

Berbak

Berbak

c) Deforestation 
2007 to 2009

The strips of  white pixels 
running through Berbak are the  
seasonally flooded pixels next to 
rivers.

Figure 7.5: This diagram sets out: a) The location of the study area in Sumatra
for this chapter as defined by the radar data. b) A map of the estimation of above
ground biomass in 2007. The dark green pixels have the highest biomass, up to
the maximum detectable limit using this technology of 236 Mg ha−1. The relatively
in-tact nature of Berbak national park is obvious since as a block of dark green in
the image, except for the large white patch in the centre which is the area which
burned down in the 1996/7 fires. c) The estimate of deforestation between 2007 and
2009. The red pixels show the areas which are estimated to have been deforested,
which in this image are largely at the edge of the remaining high biomass forest,
which is shown in dark green.
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7.4.4 Errors and Uncertainties3822

7.4.4.1 Binary forest map from ESA3823

A binary forest/non-forest map from the 2005 ESA Globcover (MERIS) which was3824

used to remove Lidar points which suffered cloud and smoke interference. This3825

causes three potential problems: 1. this land cover classification contains errors,3826

which are introduced into Lidar-backscatter relationships for non-forest vegetation.3827

Indeed the classification’s creators describe forest area overestimation where data is3828

poor (Bicheron et al., 2009); 2. The Lidar data was collected between 2003 and 2007,3829

and so overlap the MERIS dataset. Nonetheless, given the rate of change observed3830

in this study, land cover change could have occurred between the collection of the3831

two datasets; 3. The GLOBCOVER data has a relatively coarse resolution of 300m,3832

meaning some non-forest areas will have been classified incorrectly as forest and vice3833

versa. Artefacts relating to these errors will increase noise in the relationship shown3834

in figure 7.4, but should not change the absolute relationship which is dominated3835

by the signal in the data.3836

7.4.4.2 Tree species identification, height estimations and AGB3837

estimations on forest plots3838

There were problems identifying tree species in some plots, which is a problem3839

working in Indonesian peat swamp forests where tree identification is an ongoing3840

scientific endeavour. This meant that it was not possible to specify wood densities3841

for 1.3% stems in the 10 x 10m sub plots, 0.87% stems in the 20 x 20m, and 44% of3842

stems in the 20 x 125m plots. Moreover the plot data did not contain tree height3843

measurements, requiring using a published height to DBH relationship for S.E. Asia3844

from Morel et al. (2011). Yet morphological differences between peat swamp trees3845

and those measured by may introduce errors into our biomass estimations. In ad-3846

dition the model for stems where δ <20cm was poor with an R2 value of only 0.16.3847

This means that the predictions for the smaller stems are likely to have quite low3848

accuracy, which is expected to have introduced further errors into the estimates of3849

height. Another problem is that in order to calculate AGB, it was necessary to3850

use pan-tropical rather than regional allometric equations. In order to account for3851

these errors, a 20.3% error is ascribed to potential differences in regional estimates3852

of biomass (Djomo et al., 2010).3853

7.4.4.3 Lidar and Lorey’s height estimates3854

The relationship that was used to develop estimates of Lorey’s height from Lidar3855

returns is based upon field plots in the Amazon Lefsky (2010). To deal with the3856

errors that this will create, a 5% error is ascribed to potential differences in regional3857

137



estimates of Lorey’s height from the waveforms as suggested by Mitchard et al.3858

(2012).3859

7.4.4.4 Relationship between Lidar and radar backscatter3860

There are errors in the estimated relationship between the estimated Lorey’s height3861

and radar backscatter. The Root Mean Squared Error was used to quantify this,3862

which is a measure of the difference between the values implied by an estimator in3863

a statistical relationship and the true value of the parameter being estimated. For3864

2007 RMSE is 2.56Mg ha−1 (2.29 m).3865

7.4.4.5 Combining uncertainties3866

With 20.3% error for the biomass calculations for the trees and 5% Loreys height3867

errors, this equates to 20.9% total uncertainty using the formula set out in equation3868

7.7.3869

7.4.4.6 Land cover change occurring in the time between the Lidar3870

and radar data collection3871

Despite cleaning the Lidar data to account for interference from cloud and smoke,3872

there were still anomalous results in variation in the backscatter plotted against3873

Lorey’s height measurements. This was particularly the case at higher measure-3874

ments of Lorey’s height. This may be due to the forest clearance occurring in the3875

period between the beginning of the collection of the Lidar data (2003-2007) and the3876

collection of the radar data (2007-2009). If an area of in tact forest had been mea-3877

sured by Lidar and subsequently cleared before measured by the radar, this would3878

result in anomalous high Lorey’s height values for low radar backscatter. Without3879

contemporaneous Lidar data collection this will be the major limitation in studies3880

using this approach.3881

7.4.5 Calibration over space3882

The radar data were calibrated using ground plots from Berbak. However, this3883

limits the relationship to this ecosystem type, and so the analysis may be enhanced3884

by having calibrations in different areas by partitioning the backscatter data and3885

using sub-regional plots. However, in the absence of additional plot data sets this3886

was not possible.3887

7.4.5.1 Detecting biomass in mangrove swamps3888

Not all ecosystems are equally well detected by Radar. An extensive mangrove forest3889

south of Berbak (Sembilang Park) appeared to have low biomass in the biomass map.3890

This is because Mangrove forest’s low, open canopy and extensive root networks3891
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absorbs much of the L band radiation, causing weaker backscatter signals. The3892

study therefore likely underestimated biomass in Sembilang. In order to correctly3893

represent these systems a separate Radar backscatter to biomass regression equation3894

would be required, based on field data that is currently unavailable. This would3895

present useful avenues for future research.3896

7.4.5.2 Underestimation of biomass loss overall3897

The biomass loss and emissions estimates provided are conservative. First, the3898

maximum biomass estimate of mature forest is limited, due to Radar backscatter3899

saturation. Second, pixels on steeper terrain LTS were excluded (> 5o). This neces-3900

sarily excludes mountainous regions that are a last refuge for a lot on intact forest3901

in Sumatra, because it is some of the hardest and costliest to clear and farm, and3902

also because many such areas are protected (like Kerinci-Seblat and Bukit Barisan3903

National Parks). Third, mangrove forest biomass is underestimated. Fourth, the3904

large below ground biomass emissions associated with the clearance of forest on peat3905

soils are not included (Page et al., 2002), and see chapter 6.3906

7.4.6 Discussion3907

Whilst the changes recorded in this study seem very high over such a short time3908

period, the results confirm the results of other researchers. For instance in the3909

month of June 2013 alone, 140,000ha were estimated to have been destroyed by3910

fire in a 3.5M ha study area in Riau province (Gaveau, 2013). Indeed, even within3911

the country with the some of the highest deforestation rates anywhere, the east-3912

ern lowlands of Sumatra have experienced have experienced the highest rates of3913

change. By 2010, the eastern lowlands of Sumatra lost approximately half of their3914

peat swamp forests existing a decade earlier, which is an extremely high loss rate of3915

5 % year−1(Miettinen et al., 2011). The results of this study substantiate the con-3916

cern that multi-year optical composites used to deal with cloud cover may mask the3917

changes that the researcher intends to detect in the first place(Hansen et al., 2008,3918

2009). The change maps provide very high spatial and temporal resolution data3919

for the direct estimates of biomass in each pixel, thereby contributing to the call3920

for accurate forest monitoring data for Indonesia to contribute to REDD+ mon-3921

itoring (Broich et al., 2011a). These maps are also valuable to a range of other3922

stakeholders interested in forest carbon, tropical forest biodiversity and agricultural3923

development. Being able to directly map biomass at 100m spatial resolution unen-3924

cumbered by cloud or atmospheric particulates represents a significant advance in3925

the ability to monitor Indonesia’s forests. Further, the active sensing approach is3926

able to estimate biomass directly per pixel rather than being based on forest classifi-3927

cation, representing a methodological deviation from the work to map deforestation3928

in Indonesia using optical data.3929
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Nonetheless there are some technical barriers to continued efforts using the3930

methodology set out here. Principally, since the failure of the ALOS-PALSAR3931

senor, L band Radar data is not currently being collected, which will lead to large3932

gaps in future data sets should these technologies be deployed again in the future.3933

Finally, the estimation of per-pixel biomass requires contemporaneous Lidar sam-3934

ples, but the only freely available data set (ICESat) stopped collecting data in 2007.3935

As such this study contributes to research and development in the use of Radar3936

technology and the integration of additional datasets, which should prove useful to3937

space agencies considering the development of new space based monitoring tools.3938
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8.1 Abstract3943

The objective of this chapter is to explore the results of the forest biomass quantifi-3944

cation for 2007 with respect to land use classifications. This analysis is a first step in3945

exploring forest management performance in the region. Contrary to expectations,3946

areas classified as protected forest did not contain the highest quantities of forest3947

biomass (98Mg ha−1), which was instead found in the Limited Production Forest3948

Class (104Mg ha−1). The lowest forest biomass was found in community forest (393949

Mg ha−1), however this forest class covered less than 1% of the study area (1,9873950

ha). By comparison, the mean forest biomass of Berbak Carbon Initiative forest3951

was 147 Mg ha−1). This demonstrates the significance and potential of the Berbak3952

Carbon Initiative project for forest carbon storage and conservation.3953

8.2 Introduction3954

Indonesian forests have undergone large changes over the past decades, with exten-3955

sive logging and more recently with the development of plantations of ’fastwood’3956

(Acacia sp) and Oil Palm (Elais guineensis) plantations (see socio-economic back-3957

ground chapter 3). These changes have had caused enormous carbon emissions (Sari3958

et al., 2007; van der Werf et al., 2009), and unquantified impacts on biodiversity;3959

ecosystem services and livelihoods. Chapter 4 sought to examine these issues in the3960

specific case of the Sumatran province of Jambi and the Berbak Carbon Initiative,3961

drawing upon qualitative information derived from informal interviews and a visit3962

to the project site. By contrast, the objective of this chapter is to harness the results3963

of forest biomass estimation (chapter 7), and develop a quantitative analysis of the3964

results within the context of Indonesian land use classifications.3965

Across the 7.2 M ha study area it describes the proportion of the land area and3966

biomass accounted for by each land use class, and provides the mean forest biomass3967

per hectare. This is the amount of woody vegetation detected in the remote sensing3968

analysis: high biomass is more in-tact forest, with low value representing cleared3969

and degraded forest. Frequency distributions of the biomass in each class is then3970

used to describe differences between each. These data are then examined within3971

the context of Indonesia’s natural resource management strategies and laws, and3972

in particular REDD+ policy and the associated moratorium concessions in forest3973

and peatland areas (see chapter 3. As such provides a detailed background of the3974

conditions and context for REDD+ in Sumatra and in particular the development3975

of ZSL’s pilot REDD+ project at the Berbak Carbon Initiative (BCI).3976

The chapter aims to provide an assessment of the result of Indonesian land use3977

classification and enforcement on forest. This allows the development of formal3978

hypotheses about the biomass in each of forest classes. The core assumption of this3979

chapter is that on average, the differences in the relationship between land use class3980
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and biomass density is correlated with institutional performance. This means that3981

if the null hypotheses are rejected using data from across the entire study area,3982

then this may indicate ineffective enforcement of land use and forest management3983

regulations by the Ministry of Forestry. Finally, in addition the biomass statistics3984

were extracted for both the BCI area and the area in the study scene covered by the3985

REDD+ Moratorium Indicative Map. In terms of contribution to the overall thesis,3986

these tests are intended to contribute to the discussion of REDD+ additionality and3987

implementation for Jambi in general, and more specifically for the case of the BCI.3988

8.3 Methods3989

8.3.1 Hypotheses3990

A key determinant in the success of REDD+ implementation is the state’s ability3991

to implement and enforce land use laws and regulations. Since REDD+ has only3992

been implemented thus far via the development of sub-national projects such as the3993

BCI, and via a recent moratorium, the options for testing the ability of the state3994

to implement REDD+ are limited. The impact of the BCI is tested in chapter 10.3995

However the remote sensing radar data used in this study does not cover the time3996

period when the moratorium was implemented. Whilst the caveat remains that past3997

performance is no indication of future performance, this chapter first takes a static3998

perspective to examine whether the historical designation of forest as protected has3999

resulted in differences in the quality of the forest remaining in that class. The4000

quality of forest is assumed to be correlated with the quantity of biomass estimated4001

in chapter 7. If the Indonesian state had historically been an effective manager of4002

forest resources, then it would be reasonable to expect to see that the forests which4003

are classed as protected by the Ministry of Forestry had either:4004

• the same amount of forest biomass as production forest classes, in the case4005

that the other forest classes had not been exploited or;4006

• more biomass than other forest classes, in the case that the other forest classes4007

had been depleted at a higher rate on average than the protected areas.4008

This allows the statement of a formal hypothesis that: H10 Protected forests4009

have equal or higher biomass on average than permanent production forests. Evi-4010

dence that leads to rejection of this hypothesis is therefore evidence to suggest that4011

the state has not been successful historically in ensuring the protection of forests4012

which are officially designated as protected. The size of the difference is therefore4013

a quantification of the relative success of the state, and is proposed an instrument4014

for institutional quality.4015
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8.3.2 Data processing and descriptive statistics4016

Forest biomass was estimated across a study area which comprised a section of4017

Sumatra across Jambi and South Sumatra provinces. Full details on the process4018

of the generation of this data are provided in chapter 7. Shape files (polygons)4019

for Indonesian land use classes (Tata ruang) were provided by the ZSL Indonesia4020

Programme, which had in turn obtained from the Indonesian governments planning4021

agency, called BAPPENAS. Specifically, these land use categories are:4022

• Community Forest. Forest land designated specifically for the use of local4023

communities, thus there is the expectation that timber and NTFPs will be4024

removed from the forest on this land.4025

• Limited Production Forest. Forest land intended to be retained as forested4026

over the long-term, with cycles of logging anticipated to cause forest degrada-4027

tion and regrowth.4028

• Production Conversion Forest. Forest land intended for logging and clear-4029

ance before conversion to another use e.g. palm-oil plantations. Hence this4030

land use class is expected to undergo forest degradation followed by complete4031

deforestation.4032

• Permanent Production Forest. Forest land intended to be maintained as forest4033

indefinitely, with cycles of logging. This land class is expected to experience4034

intermittent forest degradation and regrowth.4035

• Non-forest. Land that is not designated for the retention of any forest, and4036

may be used for development projects, agriculture, and infrastructure. This4037

land class is expected to undergo complete deforestation.4038

• Protected forest: Forest land that is designated for permanent protection4039

under either provincial or national jurisdiction. Under the former, this in-4040

cludes Hutan Lindung/watershed protection forests and Taman Hutan Raya4041

(TAHURA)/forest parks. Under the latter this includes Taman Nasional Na-4042

tional Parks (also see Collins et al. (2011a)). These forests are not intended4043

for conversion nor exploitation and so should not be expected legally to be4044

exploited. Therefore no forest degradation or deforestation is expected in this4045

land class.4046

These shape files are shown overlaying the 2007 forest biomass estimate in figure4047

8.2 illustrating how the data was extracted per land class. In addition, the shape4048

files for the Indicative Map for the REDD+ forest moratorium (see chapter 3 for4049

details); and the BCI were also provided by ZSL Indonesia. The shape files for the4050

land use classes and the pan-Indonesian moratorium were then clipped to the study4051

area as defined by the extent of the biomass map as set out in chapter 7.4052

The estimates of biomass from 2007 were then extracted in each of these poly-4053

gons, and summary statistics for each extracted dataset created using R and the4054
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Raster package (R Core Team, 2013; Hijmans, 2013). Specifically, these statistics4055

were: the total area for each forest class; the area proportion of the total study area;4056

the mean biomass per hectare; total biomass in the land class; and the biomass per4057

class as a proportion of the total biomass in the study scene.

Figure 8.1: The different land classes in Jambi and South Sumatra provinces

4058

However, whilst these summary statistics are useful to provide an overview of4059

the carbon stocks of the forest in each class, it obscures variation within that class.4060

In order to begin to explain the variation within each class, the data was tested for4061

normality, in order to check the validity of using subsequent statistical tests. To4062

do this, Shapiro-Wilks tests were performed on the biomass data from each forest4063

class using the base package from R (R Core Team, 2013). Where there were too4064

many data points for the function to operate on, 5000 individual points were then4065

randomly sampled from that class of data using the sampleRandom function from4066

the raster package (Hijmans, 2013). This function takes a random sample from the4067

cell values of a raster file (in this case the forest biomass) without replacement, and4068

of a size determined by the programmer. However, Shapiro-Wilks tests should not be4069

taken to be absolutely correct, and the visual examination of data is also encouraged4070

(Sokal and Rohlf, 1995). Accordingly, frequency distributions of the biomass in each4071

forest class were plotted to allow a visual examination of the data. These were then4072

supplemented with empirical cumulative distribution functions (eCDFs) for each of4073

the land use classes and for the BCI and REDD+ Moratorium area.4074

In order to compare the data from the different forest classes and test the hy-4075

pothesis, Kolmogorov-Smirnov equality of distribution tests were performed. This4076

test explores differences in shape and location of the distributions (Sokal and Rohlf,4077

1995). It is a non-parametric test that compares the empirical cumulative proba-4078

bility functions to test for significant differences in distributions, in this case the4079
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Figure 8.2: Extracting the data by land use class polygon in R

biomass data in each forest classes. It returns the maximum difference (D-statistic)4080

between the eCDFs, and calculates a p value based on that and the sample sizes.4081

The null hypothesis for this test is that the two samples are from the same dis-4082

tribution, and addresses the question: if the two samples are randomly sampled4083

from identical populations, what is the probability that the two eCDFs would be as4084

distant (in terms of median, variability or shape of the distribution) as observed?4085

What is the probability that D statistic would be as large as produced by the test?4086

Hence small P values indicate that the population distributions are different.4087

Kolmogorov-Smirnov tests for more deviations from the null than the Mann-4088

Whitney test, having less power to detect a change in the median but with more4089

statistical power to detect the changes in the distributions’ shape (Lehmann and4090

D’Abrera, 2006). However Sokal and Rohlf (1995) suggest that ’the Kolmogorov-4091

Smirnov test is less powerful powerful than the Mann-Whitney U-test’ with respect4092

to differences in location (p.436). Statistics of location describe the position of a4093

sample along a given dimension representing a sample, and yields a representative4094

value of that sample, such as the arithmetic mean. This is in contrast to measures4095

of dispersion such as standard deviation. As such Mann-Whitney U tests were also4096

performed to compare distributions between selected classes. Similarly this is a4097

non-parametric test. As such this is appropriate for the present data which are4098
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subsequently demonstrated to be non-normally distributed by the Shapiro-Wilks4099

test and the frequency distribution graphs in the next section. It is the equivalent4100

of a non-parametric t-test, wherein the null hypothesis for this test is that the true4101

location shift is equal to 0.4102

Finally, having established whether or note there are significant differences be-4103

tween the distributions of biomass in each of the forest classes, the skewness of each4104

distribution was tested using the skewness function implemented in R (Meyer et al.,4105

2012). This quantifies how symmetrical the distribution is, such that a symmetrical4106

distribution as a skewness of zero; an asymmetrical distribution with a long tail to4107

the right in the higher values has a positive skew; and an asymmetrical distribution4108

with a long tail to the left in the lower values has a negative skew.4109

8.4 Results: Descriptive statistics of biomass in4110

each land use class4111

Community forests cover the smallest area in the study area at 1,987 ha, comprising4112

one small forest unit. This forest class held an estimated 39 Mg biomass ha−1, which4113

is less than 0.1% of the estimated biomass across the entire study area. Limited4114

production forests cover a much larger area of 295,284 hectares, 4% of the total, and4115

with a mean biomass per pixel of 104 Mg ha−1, with an estimated total biomass of4116

20 x 106Mg. Conversion production forests cover a slightly larger area of 342,1574117

hectares, but with a much lower mean density of 57 Mg ha−1, holding a lower total4118

biomass of 19 x 106Mg. Finally the Permanent Production Forest, covers 1.28 M4119

ha at a mean biomass value per pixel of 78 Mg ha−1, and a total of 100 x 106Mg of4120

biomass. This accounts for 19% of the total biomass in the study area.4121

Protected forests cover 697,283 ha, or 10% of the total study area. These have4122

a mean biomass per hectare of 98 Mg ha−1, with a total of 69 x 106Mg of biomass4123

and hence 14% of the total biomass. However, one notable exception was detected.4124

This was a hutan lindung forest to the north-west of Berbak, which appeared in4125

the to be entirely devoid of biomass, as shown in figure 8.7. The final category,4126

non-forest, covers 4.3M ha, 62% of the total area, with a mean 62 Mg biomass ha−1,4127

which equates to a total of 4.5 x 106Mg biomass. This accounts for 54% of the total4128

biomass in the study area (see table 8.3).4129

8.4.1 Descriptive statistics of the biomass in forests4130

targeted for REDD+: the Moratorium area and4131

Berbak Carbon Initiative4132

Following the signing of a deal between the governments of Indonesia and Norway to4133

develop REDD+, the Indonesian government issued a moratorium on the exploita-4134
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Figure 8.3: Mean Biomass per pixel by forest class

Forest
class

Mean
biomass
ha−1 by
class

Area ha σ Proportion
area %

Total
biomass
Mg

Proportion
of total
biomass in
scene%

Community
forest

39 1,987 64 0 78 x 103 0

Limited
Produc-
tion Forest

104 312,334 73 4 32 x 106 6

Conversion
Produc-
tion Forest

57 352,157 72 4 20 x 106 5

Permanent
Produc-
tion Forest

78 1,286,958 76 18 100 x 106 18

Protected
Forest

98 697,283 92 10 69 x 106

Non-forest 62 4,468,162 78 62 278 x 106 55
BCI 147 236,674 83 2 35 x 106 5
Total 7,216,879 503 x 106

Table 8.1: Summary statistics of biomass distribution in the study area by land
class
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tion of natural primary forests(see chapter 3). The moratorium map covers 1.3m4135

ha over the study area, and holds mean forest biomass of 95 Mg ha−1, and a total4136

of 120 x 106 Mg biomass, which is 24% of the total in the study area.4137

The BCI, incorporating the National Park, TAHURA, Hutan Lindung and Hutan4138

Produksi (see chapter 4 for a full description of the site) covers 236,674 ha, with a4139

mean of 147 Mg ha−1, and a total of 35 x 106 Mg biomass. Despite only covering4140

3% of the study area, the BCI accounts for 7% of the total biomass in the study4141

area. Berbak national park itself covers only 2% of the study area but contains 5%4142

of its total biomass, due to its much higher mean value of 166 Mg ha−1.4143

8.4.1.1 Tests for normality: Shapiro Wilks4144

• Community Forest: W = 0.6672, p<0.0014145

• Limited Production Forest: W = 0.9361, p<0.0014146

• Conversion Production Forest: W = 0.7848, p<0.0014147

• Permanent Production Forest: W = 0.8697, p<0.0014148

• Protected Forest: W = 0.8389, p<0.0014149

• Non-Forest: W = 0.772, p<0.0014150

• BCI: W = 0.8729, p<0.0014151

• Moratorium: W = 0.8249, p<0.0014152

8.4.1.2 Summary descriptions of the empirical Cumulative4153

Distribution Functions4154

The summary descriptions of the of the eCDfs all have identical minimum and4155

maximum values, since these were imposed as a property of the modelling exercise4156

in chapter 7. The variation is thus demonstrated in the remainder of the statistics.4157

8.4.2 Frequency distributions of the biomass per forest4158

class4159

All forest classes exhibit a positive or right-skewed distribution (the distribution is4160

asymmetrical and the tail is on the right hand side) except the limited production4161

forest which is more normally distributed (see 8.4). Protected forest has large num-4162

bers of pixels with the highest biomass class of 230-240 Mg ha−1. The substantive4163

interpretation is that most of the forests in the study are already heavily disturbed,4164

or indeed are already plantations, with only 0.007% of the study area retaining the4165

highest biomass estimate, which is characteristic of late succession forests. This is4166

defined here as having at least 236 Mg biomass ha−1, and which is the highest level4167

of sensitivity of the biomass mapping in chapter 7). The frequency distribution of4168

the entire study scene (figure 8.6) reveals that the majority of pixels in the scene4169
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Figure 8.4: Cumulative Distribution Functions of each land use class,including
Berbak and the Moratorium

have low biomass, which contrasts strongly with those for the moratorium area and4170

Berbak national park. The former shows a greater number of higher biomass pix-4171

els, whilst Berbak national park shows a far fewer low than higher biomass pixels,4172

reflecting the relatively in-tact nature of the park forest.4173

8.4.2.1 Kolmogov-Smirnov tests for differences between distributions4174

The tests of the distributions of the protected forest against all other forest classes4175

suggested that the biomass in the protected forest was significantly different to all4176

other classes using both the Kolmogorov-Smirnov and Mann-Whitney tests.4177

These tests indicate that the null hypotheses that the data are drawn from the4178

same distribution should be rejected. The skewness of each distribution was then4179

tested. The biomass in all forest classes was right skewed, with the most extremely4180

skewed being the community forest, whilst the least positive skew was the limited4181

production forest. By contrast the isolated case study site, the BCI had a negative4182

skew of -0.49 which relfects the relatively in-tact nature of the forest here compared4183

to the other forest in the scene. The results are summarised in table 8.2.4184
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Figure 8.5: Frequency distributions of biomass. X axis is 2007 biomass Mg ha−1

8.4.3 Errors associated with values per forest class4185

There are errors associated with each forest class due to the problems associated4186

with non-uniform capacity to detect biomass across different ecosystem types, and4187

due to lack of sensitivity to high biomass forests in the biomass mapping process. Of4188

particular note is that the open canopy and web of roots which constitute mature4189

mangrove forest are not well accounted for in the study, due to the lack of field4190

calibration data. This means that the biomass in the Sembilang system to the south4191

of BCI is underestimated which will in turn affect the descriptive statistics used here4192

for the protected forest class. As described in chapter 7, the radar backscatter signal4193

saturates at higher forest biomass values and had to be related to an additional4194

independent data set (Lidar) in order to be able to estimate forest biomass up4195

to 196Mg ha−1, at which point the relationship between the lidar and radar data4196

appeared to degrade. As such any forest with a estimated Lorey’s height value4197
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Figure 8.6: Frequency distributions of biomass per pixel in the entire study area,
Berbak National Park, Berbak Carbon Initiative and the REDD+ Moratorium

greater than 25m was attributed a uniform value of 236Mg ha−1 (hence providing4198

an upper bound to the data) which was taken from the mean value of the forest4199

plots at BCI, but which is nonetheless lower than mean biomass values typically4200

used for the region for mature forest (see chapter 7). This means that there is4201

further underestimation of the biomass in the remaining mature forests, and hence4202

lower per hectare values.4203

This degradation of the Lidar/Radar relationship and imposition of an upper4204

bound provides an explanation for the apparent and abrupt drop-off in biomass4205

distributions in the classes over 190 Mg ha−1, and the spike in the largest class4206

230-240 Mg ha−1. That is, we lose sensitivity in the accuracy of the forest biomass4207

estimate somewhere above 190 Mg ha−1, and whilst it is likely to be mature late4208

succession forest, over-estimations are avoided by placing an upper bound of 236Mg4209
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Compared
with Pro-
tected forest

Kolmogorov-
Smirnov

Mann-Whitney

Community For-
est

D = 0.3149, p<
0.001

W = 7059365, p<
0.001

Limited Produc-
tion Forest

D = 0.1814, p<
0.001

W = 11857618, p<
0.001

Conversion Pro-
duction Forest

D= 0.2176, p<
0.001

W = 15849922, p<
0.001

Permanent Pro-
duction Forest

D = 0.156, p <
0.001

W = 13795893, p<
0.001

Non-Forest D = 0.195, p <
0.001

W = 15719543, p<
0.001

Land class Skewness
Community Forest 1.733272
Limited Production 0.1752367

Conversion Production 1.155228
Protected Forest 0.3274264

Permanent Production 0.695537
Non Forest 1.095246

BCI -0.49699
Moratorium 0.4428593

Table 8.2: Assessing the skewness of the biomass distribution

ha−1 .4210

8.5 Discussion4211

8.5.0.1 Differences in distribution of biomass per forest class4212

The comparisons between the different forest classes were striking: two different4213

statistical tests indicated that distribution of biomass in the protected forest land4214

use class was significantly different to the other classes. The small area of community4215

forest had the lowest mean biomass, followed by the non-forest class, which itself4216

constituted the majority of the study area. However, contrary to expectations, the4217

protected forest did not have the highest mean biomass content, which was instead4218

found to be in the limited production forest. This led to the null hypothesis set up4219

for this chapter being rejected. The community; conversion production; permanent4220

production; non-forest areas and protected forest classes all appeared to have tails4221

to skewed to the right, rather than normally distributed. This may reflect (a) the4222

way in which larger trees have been selectively removed from across these forests,4223

meaning that across much of this region of Sumatra, only immature forest remains;4224

and (b) the reduced sensitivity of the Radar data to the higher-biomass forests,4225

which results in non-uniform detection across forest classes (and which is the reason4226
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Figure 8.7: The above map shows three hutan lindung protected forests from west
to east, with Berbak national park on the eastern-most extent of the map. The
third hutan lindung from the left/west is appears to have very little above ground
biomass remaining in 2007.

for the imposition of the upper bound of 236Mg ha−1 for maximum sensitivity as4227

described above.4228

8.5.0.2 The importance of Berbak and production forests for carbon4229

storage4230

By comparison, whilst it is not an Indonesian land class, the BCI had a higher left4231

skew still. It also had the highest mean biomass per hectare of the any of the sampled4232

areas. One possible explanation is that the on average, the Indonesian authorities4233

have been less successful at managing protected areas than they have at managing4234

the production forests in Jambi province. Another explanation is that the highest4235

biomass forests has been earmarked for logging precisely because it has the most4236

timber in it. That is the logging concessions and protected areas are not randomly4237

distributed across the landscape. There are therefore major problems in using cross4238

sectional data for anything more than a descriptive analysis. Attributing present4239

forest condition to a policy requires longitudinal data, which sets the scene for the4240

next chapter, where the impact of protected areas on deforestation is explored.4241

Despite this, the findings in this descriptive analysis are still significant. The4242

generalities of the carbon stock distributions between different forest classes mask4243
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other interesting stories. One is that BCI retains much more forest biomass than4244

the surrounding landscape, demonstrating the importance of the site for carbon4245

stocks. It also suggests that Berbak national park may have been more successful4246

than other protected areas in conserving forest, which allows the formulation of a4247

hypothesis to be tested in the next chapter. A further interesting finding was the4248

case of the hutan lindung peat forests to the north-west of the BCI. The contrast4249

between three of these different management units is demonstrated in figure 8.7. As4250

labelled in the figure, the westernmost protected area appears to be covered in high4251

biomass forest. However the protected area to the east by contrast appears to be4252

entirely cleared of biomass.4253

8.5.0.3 The case of the deforested hutan lindung and implications for4254

REDD+4255

As described in chapter 3, the quality and efficacy of land use management in In-4256

donesia is such that the land use in practice often does not match that designated4257

by central bureaucracy. In the case of East Kalimantan described in that chap-4258

ter, what had been de jure forest land but were de facto heavily degraded, were4259

subsequently being reclassified to fit their new condition. The case presented here4260

of the two adjacent hutan lindung areas suggests that similar processes of land4261

(mis)management may have occurred here. The hutan lindung which appears to4262

have been entirely deforested has production forest to both the east and west of4263

it. This may have left it vulnerable to conversion by the managers of the adjoining4264

concessions over-extending the spatial extent of their licenses, combined with insuf-4265

ficient field capacity of DINAS kehutanan to control this on the ground. However4266

there is no evidence for this having happened currently and more local research4267

would be required in order to develop a history and the reasons for deforestation at4268

the site.4269

This would be an interesting avenue for research, not least due to the implica-4270

tions for REDD+. These implications are interesting because a) despite the lack of4271

forest biomass in this site, it should still contain a large quantity of carbon in the4272

peat (see chapter 6; and b) as an existing de jure protected area, it could poten-4273

tially be reforested using existing mechanisms from the Ministry of Forestry, and4274

would therefore not require any land use designation change for additional carbon4275

removals to be achieved. It also suggests that REDD+ could be achieved simply by4276

implementing existing laws.4277

With regards the peat carbon stock at of the hutan lindung, the physical stabil-4278

ity of this stock will now depend upon the management in place at the site, such4279

as the presence of drainage canals. However, were the area to be re-designated as a4280

production forest following precedents in east Kalimantan, it is likely to be drained4281

to make the land suitable for plantation development, thereby leading to peat oxi-4282
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dation and additional carbon emissions. Future research could determine the land4283

use status and de facto management of this site, but should it remain officially4284

hutan lindung, then it offers potential for REDD+ action, and additional carbon4285

emissions through peatland restoration and reforestation. Yet it may be optimistic4286

to expect reforestation here: domestic institutions existed well before REDD+ to4287

enable forest restoration. A fund created to pay for reforestation and restoration4288

(Dana Reboisasi) established in 1989 under Suharto generated $5.8bn over 20 years,4289

financed by a timber volume-based levy on concessionaires. Yet the fund was under-4290

mined by corruption, making it unlikely that funds could have be secured to perform4291

restoration: weak financial management and inefficient administration of revenues4292

by government institutions at all levels undermined effective use of the Reforestation4293

Fund. Major public investments in ... rehabilitation of degraded forest lands have4294

repeatedly fallen well short of their objectives...large sums... have been lost to fraud,4295

diverted for other uses or wasted on poorly managed projects (Barr, 2010).4296

Moreover, since these hutan lindung are managed by the regional governments,4297

local priorities may differ from the goals of the national government. Whilst national4298

initiatives such as the REDD+ moratorium satisfy the Government of Norway, local4299

Indonesian governments at the regency level are mandated to foster economic de-4300

velopment, create employment, and generate revenue. For deforested hutan lindung4301

there are strong incentives for submissions to be made for the area to be reclassified4302

for production forest rather than restored. Production forest generates known sums4303

of retribusi, rather than uncertain (if any) finance to be received under REDD+4304

initiatives. Moreover if REDD+ is managed by the same organisations responsible4305

for the Dana Reboisasi then without systemic reform and oversight there is a large4306

risk that funds may be similarly be mismanaged, and at worst fraudulently spent.4307
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9.1 Abstract4312

This chapter uses the changes in biomass estimated between 2007:2009 to address4313

the question of the efficacy of protected areas (PAs) in reducing deforestation on4314

Sumatra. By using matching methods, I was able to narrow the covariate distance4315

between PAs and the unprotected areas (control for selection bias in the location4316

PAs). Following this, a difference in means suggested a Sample Average Treatment4317

Effect of deforestation being 1.8% (0.9% per year) lower in PAs than in similar4318

areas under other use. Based on the assumption that the protected areas would4319

have been designated as other land uses in the counterfactual scenario this suggests4320

a) that PA designation works to protect forest in this part of Sumatra, but b) that4321

deforestation nevertheless continues in those PAs at a lower rate. This supports4322

previous findings on deforestation on Sumatra. The work also underscores the need4323

for the development of robust causal impact methods for assessing the effectiveness4324

of environmental policy, particularly in the context of development of REDD+.4325

Finally it demonstrates the utility of analyses of time-series of Radar data to be4326

able to provide data on changes in forest over a short time period.4327

9.2 Introduction4328

9.2.1 Summary of issues4329

The next two chapters concern policy impact assessment. This chapter addresses an4330

assessment of the success of Protected Areas (PAs) in Sumatra in reducing defor-4331

estation, whilst the following chapter 10 addresses the marginal change in protection4332

of a PA, following a REDD+ intervention.4333

There are several core issues to address in the introduction. 1. The need for4334

good questions, and the justification for undertaking policy impact assessment. This4335

provides the research motivation. 2. The background to the impact assessment4336

literature which explores how the theory and techniques have developed in disciplines4337

outside environmental economics. This should highlight the key differences between4338

experiments designed using randomised controlled trials (RCTs) and observational4339

studies exploring the impact of events which have already occurred, or for which4340

randomisation is infeasible. Since this work is an observational study, I focus on4341

this topic.4342

Before the researcher starts analysing data, it is useful 3. to establish a con-4343

ceptual model which sets out the key actors, resources, dynamics and interactions4344

within the system and context of interest e.g ARDI (Etienne et al., 2011). The4345

next stage 4. is to choose whether to undertake either or both of i) a theoretical4346

approach to impact assessment, which examines how a policy impact affects the4347

theorised process in the system (a theory of change approach) or ii) a data-driven4348
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approach involving the use of an empirical model which allows a researcher to try4349

to test how a change in the system affects the outcome variable of interest. At4350

this stage the researcher should be aware of the assumptions and limitations of the4351

identification strategies, which are the research approaches which used to address4352

the well-chosen question. The chosen approach should ideally ‘lend (itself) to a sim-4353

ple explanation of empirical methods and a straightforward presentation of results’4354

(Angrist and Pischke, 2010). If the researcher chooses the empirical path, then4355

the next stage is 5. to address the methods which are ultimately used to estimate4356

the parameter of interest. This stage will reveal the central issue of observational4357

studies, which is 6. bias, its sources, and the methods available for dealing with it.4358

This stage includes assessing the basic empirical models that may be used, and the4359

approaches to estimating the parameter of interest (e.g. covariate matching covari-4360

ates and taking the difference in mean outcomes). When bias has been addressed,4361

and an impact calculated, the results 7. need to be interpreted in terms of internal,4362

external and construct validity.4363

I discuss now these issues in turn, first considering the issues in the abstract4364

sense, and then in the context of this thesis and the assessment of the impact of4365

forest conservation policy.4366

9.2.2 Motivation4367

Understanding what works in public policy is a fundamental task since it may in-4368

crease the future likelihood of achieving policy objectives, whilst projects which4369

fail to meet their objectives may be cancelled (Essama-Nssah, 2006). Impact as-4370

sessment findings can influence future policy such as the decision to continue to4371

deploy training programmes for the unemployed (Ashenfelter, 1978). Within the4372

context of forest management policy, governments aim to achieve targets such as4373

the sustainable management of forests and their associated ecosystem services in-4374

cluding the supply of biodiversity, non-timber forest products, soil fertility, fresh4375

water and climatic regulation e.g. Pattanayak et al. (2010). Within the context of4376

REDD+, outright conservation of forests under new PAs is an option e.g. Guyana4377

has recently developed legislation to create a network of PAs influenced by its low4378

carbon development strategy and financed with $250m from the Norwegian gov-4379

ernment (Nachmany et al., 2014). Since REDD+ involves conditional payments4380

upon demonstrable reductions in deforestation, assessing what works in reducing4381

deforestation is important for the government and agents seeking financial transfers4382

under the mechanism (Pattanayak et al., 2010). Unsuccessful strategies will reduce4383

potential REDD+ income and hence a) local welfare benefits in the recipient coun-4384

try and b) gains to global welfare in terms of the further loss of forests and their4385

ecosystem services, particularly carbon storage and biodiversity.4386
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9.2.3 Good Questions vs. Good Methods4387

Deaton (2010) is critical as to what he perceives as the increase in the development4388

of empirical methodologies which focus on how to answer the question of whether a4389

policy or project worked, increasingly at the expense of asking the correct, interest-4390

ing and useful questions, including why a project succeeded or not. However Angrist4391

and Pischke (2010) argue that the issue of methodology becoming the driving force4392

of research is actually less of a problem than Deaton argues, and instead emphasise4393

that with the ‘con’ taken out of econometrics, good interesting questions can be4394

answered in increasingly robust ways. In the present context of forest management,4395

the question of whether parks have provided forest protection can be supplemented4396

with a why, which can refer back to the previous chapters on forest management in4397

Indonesia and also to a conceptual model and broader economic theory. This means4398

it is possible to retain the focus on a well-motivated question, but underpin it with4399

robust techniques.4400

Ensuring the quality of research in this area is important since the development4401

of PAs to conserve parts of the world’s forest involves the investment of large sums4402

of money and political capital, and can be controversial especially given they have4403

sometimes been associated with forced evictions (Brockington and Igoe, 2006). De-4404

spite these large investments and risks, researchers have highlighted over the past4405

decade both the absence of, and the need for, rigorous assessment of policy interven-4406

tions to determine the extent to which they are actually achieving their objectives4407

e.g. (Ferraro and Pattanayak, 2006; Miteva et al., 2012; Arriagada et al., 2012; Pat-4408

tanayak et al., 2010), and the extent to which they cause externalities as moderating4409

poverty (Andam et al., 2010). In Similarly, in a review assessments of Payments for4410

Ecosystem services programmes, Pattanayak et al. (2010) do not find much work4411

with what Angrist and Pischke (2010) call credible research designs. Identifying4412

credible approaches therefore is clearly of paramount importance, and in order to4413

clarify what determines work as such, I now discuss some of the core differences4414

between research approaches.4415

9.2.4 Experimental data vs. Observational studies4416

In other branches of science where researchers are interested in treatment effects4417

e.g. medicine and the effect of a new drug, it is standard practice for researchers4418

to randomise treatment across subjects to create control and treatment groups,4419

in order that any systematic differences between these groups and the outcome is4420

minimised. As such the effect of the treatment can be isolated and calculated. More4421

precisely, due to the random assignment, the treatment and control groups should4422

be statistically identical on all dimensions except the exposure to the treatment4423

(Greenstone and Gayer, 2009; Imbens, 2004). These are also called the ‘confounders’;4424

‘factors or events that also affect the measured outcomes and are correlated with the4425
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intervention’ (Pattanayak et al., 2010) (p.8). Hence both the control and the groups4426

or observations which receive the treatment can be manipulated. This is called a4427

randomised controlled trial (RCT). Succinctly, the ultimate goal of experiment is4428

to calculate an unbiased estimate of the true evaluation parameter or estimand,4429

the Average Treatment Effect (ATE). The randomisation of the treatment across4430

observations is assumed to eliminates any potential bias (which subject I discuss4431

in more detail below). The fact that the treatment effect is the average across4432

observations has and allows for the fact that there is variation in the treatment4433

effect (Ho et al., 2011).4434

Since the RCT can remove bias, it is tempting to envisage this as the solution to4435

estimating treatment effects in economics. Indeed Angrist and Pischke (2010) cite4436

Zvi Grilriches’ maxim that ‘if the data were perfect, collected from well-designed4437

randomised experiments, then there would hardly be room for a separate field of4438

econometrics’. Further, Ashenfelter (1978) argued that in the absence of a robust4439

specification that RCTs were the route of choice for calculating treatment effects.4440

Frondel and Schmidt (2005) also argue that the RCT is the most desirable empirical4441

strategy. Yet whilst Deaton (2010) counters that the evidence from RCTs is not4442

automatically superior to evidence from other sources, having ‘no special place in4443

the hierarchy of evidence’ (p.426), nor any greater ability to generate knowledge4444

than other methods, Angrist and Pischke (2010) state that the increasing awareness4445

of the need for improved study quality has meant that there has been an increase4446

in the number of designed studies which have “ ‘prima facie’ credibility” (p.3).4447

Yet unfortunately, in many cases, it is simply not possible to use RCTs to deal4448

with bias. The issues include ethics (e.g. withhold medical funding from some4449

villages in a poor country, but funding others), or simply that the question motivat-4450

ing the research concerns events which have already happened, and did not occur4451

randomly, as it typically the case in economics. Due to non-random assignment,4452

observational studies may suffer from a lack of reliability compared with those gen-4453

erating true experimental data (Greenstone and Gayer, 2009). In the case of this4454

chapter, the research interest is in determining the impact of PAs on deforestation4455

on Sumatra. The PAs were established decades before this research began. In such4456

a case the treatment status (forest subject to PA or not) is determined by factors4457

beyond the control of researchers (Greenstone and Gayer, 2009). This is the realm4458

of observational study. Since the treatment (protected) and control groups (un-4459

protected but potentially protected forests) are not randomised as in an RCT, this4460

raises the possibility that the PAs have some attribute that increases the probability4461

that they were protected (Pattanayak et al., 2010) (indeed this has been demon-4462

strated by Joppa and Pfaff (2009), discussed below). Hence the major problem in4463

observational studies becomes one of dealing dealing with bias. I now discuss this4464

issue in more detail, before moving on to more details on various approaches in how4465

to deal with it.4466
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9.2.5 Bias4467

Bias is at the heart of the matter of impact assessment. It greatly complicates causal4468

inference, or more strongly ‘plagues the successful estimation of average causal ef-4469

fects’ (Greenstone and Gayer, 2009). There are many ways in which bias can man-4470

ifest itself. To take a hypothetical example, if a market research firm were to issue4471

online surveys to discover more about customer satisfaction regarding a firm’s prod-4472

ucts, the respondents are likely to be those with sufficient time. These people may4473

be clustered in other attributes, such as age e.g. older retired people have more4474

time to fill in surveys. This is a response bias, which means that the population has4475

not been adequately sampled. Equally, people over 65 living in rural areas may be4476

less likely to respond because of poor internet connections Such a non- probability4477

sample does not therefore adequately represent the population, since retirees may4478

be over-represented, whilst much older cohorts, and rural people may be excluded4479

largely from the samples.4480

In environmental economics, there has been a blossoming of interest in impact4481

evaluation for forestry policy and dealing with bias e.g. due to the need to assess4482

Payments for Ecosystem Services (PES) schemes (Pattanayak et al., 2010), and4483

more recently the development of forest carbon conservation projects and REDD+.4484

Selection biases may occur in the allocation of treatment, or policy subjects. Re-4485

search has shown that this is indeed for the case for PAs, which tend to be biased4486

towards locations that are far from sources of anthropogenic disturbance and least4487

productive. i.e. in those areas which are of least value for human use (Joppa and4488

Pfaff, 2009; Pfaff and Robalino, 2012). Hence the distance to sources of disturbance4489

(e.g. towns) and determinants of land productivity (e.g. elevation) are omitted4490

variables that confound näıve assessments of PA success e.g. (Nagendra, 2008). In4491

forest conservation direct payments schemes, people who are less likely to cause en-4492

vironmental damage anyway may be more likely than others to participate in a PES4493

scheme (Arriagada et al., 2012). Land owners may be more likely to offer up land4494

for conservation payments schemes that they were less likely to convert to other uses4495

anyway, for other reasons than the payment (Pattanayak et al., 2010). Areas which4496

are far from the drivers of environmental disturbance are less likely to be damaged.4497

Yet if these sources of bias are not dealt with appropriately, then a researcher is4498

likely to over-estimate the impact of the programme in question.4499

Dealing with non-experimental data and bias in practice With his crit-4500

icisms of both the focus on methodology rather than good questions, and the focus4501

on whether policies work whether than why they succeed or fail, Deaton (2010)4502

argues for a more theoretical than empirical basis for impact assessment. This is4503

a ‘theory of change’ approach. This is summarised by Carvalho and White (2004)4504

who explore the case of social funds and provide a framework for analysis. The core4505

of this approach is on theorising and conceptualising processes. Core issues include4506

162



understanding the how and why of a series of cause and effects within a given socio-4507

economic system. The identifying assumption of this approach is that theoretical4508

processes operate correctly in practice to produce the outcomes intended. On the4509

other hand Frondel and Schmidt (2005) argue that wherever possible one should4510

consider empirical study over theoretical approaches. Yet this discrete-alternatives4511

approach to impact assessment may be misleading, and the approaches may be in-4512

tegrated: Recent work in evaluation studies have shown investigators ‘making both4513

an institutional and data-driven case for causality’ (Angrist and Pischke, 2010) (p3).4514

Nonetheless in their survey of PES assessment Pattanayak et al. (2010) found4515

few cases of robust survey design in practice. This is probably what Greenstone4516

and Gayer (2009) as the surfeit of ‘associational evidence’ in environmental policy4517

making, which has meant that many environmental policies either fail or are inef-4518

ficient. They therefore argue for quasi-experimental and experimental techniques4519

that ‘identify exogenous variation in the variable of interest’ ibid. p22. Ultimately,4520

what we would like to achieve from observational data in an impact evaluation study4521

is to use ex-post information to determine the unbiased ATE, which is the ‘true’4522

evaluation parameter (Frondel and Schmidt, 2005; Imbens, 2004). The key finding4523

is normally the difference in the mean values of the outcomes between the treated4524

and control groups of observations following treatment (Angrist and Pischke, 2010,4525

2009).4526

To re-iterate the intuition, this means we would like to observe the outcome4527

of the treated group, but in the counterfactual case that it was not treated. Of4528

course we cannot do that since observations cannot be simultaneously treated and4529

not so e.g. Angrist and Pischke (2009); Imbens (2004); Dawid (2000). As such4530

we need to identify plausible observations which are as similar as possible to the4531

treated observations, but which are not themselves treated (Frondel and Schmidt,4532

2005; Ferraro, 2009; Pattanayak et al., 2010). If counterfactuals can be identified,4533

then the difference in the outcome between the treated and the control groups in4534

principle can be interpreted as the causal effect (Imbens, 2004; Rubin, 1974).4535

9.2.6 Basic empirical models4536

There are different basic empirical models available to the researcher, and different4537

estimators to calculate estimates in practice. The first basic empirical model is4538

simply the differences between treated and control group means. This is called the4539

Rubin causal model, wherein the causal effect is the difference between an observed4540

outcome and its counterfactual (Rubin, 1974). Imbens (2004) argues that this is4541

both the ‘natural starting point for programme evaluation’ and that ’almost any4542

evaluation of a treatment involves comparisons of units who received the treatments4543

with units who did not’ (p.7). This is suitable for cases in which there is only time4544

period.4545
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Where there is more than one time period of data available, there arises the4546

possibility of using the differences in differences (DD) as the basic empirical model.4547

The key identifying assumption of DD is that the trends in outcome of the control4548

and the treated group are parallel prior to the policy intervention, but that the4549

absolute values may be different. e.g. deforestation is higher in one area than in4550

another, but the trend in deforestation across both areas is constant over time. This4551

is called the parallel trends assumption (Mora and Reggio, 2012). The principle can4552

be demonstrated with a simple diagram as in figure 9.1.4553
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Figure 9.1: The chart provides a basic illustration of an idealised DD approach to
causal inference. Deforestation is the outcome variable measured on the Y axis,
with time on the X axis. There are two trends marked: the upper trend is for a
control site, whilst the lower trend is for the forest which received the treatment.
The treated and control groups have parallel paths, with differences in the absolute
rates (a) of deforestation. At the point marked ’Intervention’ on the X axis, a shock
occurs, e.g. a team of rangers is employed to protect a park forest. This constitutes
a treatment. The risk of being caught and fined reduces incentives to illegal loggers
to cut wood in the forest, hence fewer people transgress the park rules and there
is a concomitant reduction in deforestation. In T2, following the intervention the
trends in deforestation in the treatment and control sites are still parallel, however
the new difference between as measured by (c) them is greater than in T1. The
difference in the differences, DD, measured by (b) is attributed to the effects of the
intervention.

As with all models there are reasons for caution when using DD. Despite using4554

appropriate techniques to identify controls that exhibit the trajectory of the treated4555

group outcome in the absence of treatment, the results of the analysis may still4556

be misleading if there are omitted variables. One of the canonical examples of4557

the problems involved in estimating causal impacts even when a control group is4558
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available derives from labour economics. Ashenfelter (1978) examined the effect of4559

training programmes in the USA upon workers’ wages. Näıvely, the programmes4560

appeared to increase wages for participants. However, the programme managers4561

tended to enrol those workers with a recent history of trouble finding work. This4562

means that for those individuals who were enrolled in the program had experienced4563

downward bias on their earnings prior to enrolment. This means that some part4564

of the increase in wages which occurred following the intervention were due to the4565

earnings of those workers returning to the level which they were at prior to their4566

employment troubles that led them to be enrolled in the training programme in4567

the first instance. This phenomenon is known as ‘Ashenfelter’s dip’ (Ashenfelter,4568

1978). In the context of forest policy, one can envisage how this effect may manifest4569

itself in the opposite direction: if a forest policy was established in order to reduce4570

deforestation in an area which was the result of a temporary spike in demand for4571

wood, then the impact of protection could be over-estimated when the deforestation4572

rate returned to its previous level. This was a major concern in the Indonesian4573

province of Aceh following the destruction of coastal cities following the Indian-4574

Ocean Tsunami (Ross, 2005).4575

9.2.7 Statistical techniques to control for bias4576

In order to control for bias in practice, we can use selection on observable charac-4577

teristics to decide which observations of treated and untreated to compare. Imbens4578

(2004) sets out the means with which this can be achieved, through: 1. regression.4579

2. Matching and 3. Propensity score methods (and also 4. Instrumental Variables).4580

Matching approaches have a strong theoretical basis (Ho et al., 2007). The4581

theory is that the control group is identified using selection upon observables, which4582

is assumed to remove the bias between it and the treated group. The causal impact,4583

or treatment effect is calculated as the the differences in means in the outcome4584

between groups (Ho et al., 2007), as is done in RCTs. More specifically, the aim of4585

using matching is to maximise the similarity of the distributions of the observable4586

characteristics, the covariates of the treated and the untreated groups (Frondel and4587

Schmidt, 2005; Imbens, 2004). If this can be done well, it means that the treatment4588

and control groups effectively become interchangeable because the differences in4589

confounding covariates between treated and control sites tend towards zero. This4590

allows the researcher to behave as if the treatment were in fact randomised, and for4591

average treatment effects to be estimated by differencing the expected outcomes in4592

the treatment and control groups (Ho et al., 2007; Angrist and Pischke, 2010).4593

One of the most appealing aspects of a properly-performed matching procedure4594

is the reduction in the dependence of the final treatment effects on subsequent sta-4595

tistical model (mis)specification, in the case that a statistical model is employed4596

post-matching to analyse the data instead of a simple difference in means. Combi-4597
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nations of approaches e.g. matching followed by regression to estimate the between-4598

group differences is what Ho et al. (2011) call a ‘doubly robust approach’ (although4599

Imbens (2004) (p.12) attributes this phrase to Robins and Ritov,1997). Further,4600

these methods are increasingly more easy to implement because of the availability4601

of code libraries in languages like R (Sekhon, 2011; Ho et al., 2011).4602

The assumptions of the matching approach are the in-principle un-testable as-4603

sumption of unconfoundedness, and appropriate overlap of the variable space for4604

the covariates of the control and treatment observations, called together the strong4605

ignorability assumption (Imbens, 2004). In the case that there is not sufficient over-4606

lap, there is a clear challenge to validity, hence Imbens (2004) suggests limiting4607

inference to that space where there is sufficient overlap. Further, where data is not4608

representative of the population, we can claim only a Sample Average Treatment4609

Effect (specific to the sample), but if the data represents a good population, then4610

we would have a Population Average Treatment Effect (applicable to other samples4611

drawn from the population).4612

Ho et al. (2007) are at pains to point out that matching in itself is a control4613

strategy, not strictly an estimator as other authors state (e.g. Clements et al.4614

(2010)) including the most influential and heavily-cited literature (Imbens, 2004)).4615

They say it is not strictly a method of estimation since a further step is required4616

after matching to estimate the treatment effect, which is most often the difference4617

in mean outcome (Ho et al., 2007, 2011; Imbens, 2004).4618

Matching is increasingly being used in the literature. In a study to determine the4619

impact of Costa Rica’s renowned Pagos por Servicios Ambientales (PES) scheme,4620

Arriagada et al. (2012) used pre-matching to identify as a counter-factual group4621

those farms that were not subject to the policy intervention, but which were nonethe-4622

less eligible, and then selected farms based on geographical rules. Nonetheless, they4623

found that there were still systematic differences between control and treated farms.4624

They therefore subsequently used further matching methods to identify those pre-4625

matched sites that were similar in other attributes such as slope, farm size, par-4626

ticipation in previous farm schemes to create more precise matches. In a slightly4627

different context, Clements et al. (2010) used matching methods to measure the4628

impacts of conservation and development projects in Cambodia.4629

9.2.8 Matching: further technical details4630

With matching methods, treated observations are matched with untreated observa-4631

tions which are as near as possible to the treated with regards all other observable4632

covariates. This contrasts with regression methods, where a linear model is created4633

instead to control for the effects of the covariates. Yet whilst matching is a referred4634

to as a single estimator (or control technique vis Ho et al. (2007)), there are mul-4635

tiple ways in which it can be implemented. One may either match on a matrix4636
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of covariates, or otherwise condense these into a vector of probabilities of receiv-4637

ing the treatment conditional upon those covariates. This is called the propensity4638

score. The matching methods using either the matrix or the propensity score then4639

include full; optimal; genetic; nearest neighbour; and coarsened exact matching (Ho4640

et al., 2011). Within each of these there are different options, including whether4641

to match with replacement, and then the tolerance of the distances between each4642

of the matches (Ho et al., 2011; Imbens, 2004). In addition the researcher can4643

use callipers to determine the acceptable difference between the treated and con-4644

trol samples (Sekhon, 2011). This can improve matching, but it also means that4645

matches which do not meet the criterion are excluded, resulting in a reduced sample4646

size (Ho et al., 2011). These options control the rigour of the matching processes,4647

with a tradeoff between the sensitivity to distance between pairs of chosen treated4648

and control observations, and the probability of obtaining suitable matches under4649

tightening constraints.4650

With the evolutionary algorithms (EAs) used in Genetic Matching as imple-4651

mented by Sekhon (2011), the options include the number of bootstraps used to4652

evaluate balance (via Kolmogorov Smirnoff [KS] tests). The package author states4653

that bootstrapping the results ‘provides correct coverage (of the KS tests) even when4654

there are point masses in the distributions being compared’ (p.10). This means that4655

by using bootstrapping a researcher can improve confidence in the ultimate tests4656

of difference in covariate distributions to assess the success of the matching out-4657

comes. With such EAs, one can pass a matrix of covariates to the main algorithm,4658

or a propensity model (to limit the searches in the variable space to those combina-4659

tions with higher propensities). Hence it can search the variable space to maximise4660

covariate balance with or without input information from the user.4661

The intuition for the evolutionary approach is that at each iteration (or gen-4662

eration) of optimisation, the algorithm seeks to minimise the maximum observed4663

difference between the matched and control variables (Sekhon, 2011) which genera-4664

tion is in turn selected upon to produce the best match, hence ‘evolutionary’. Sekhon4665

(2011) states that the theorems proving that EAs find good matches are asymptotic4666

i.e. that we get closer to the final match as input n generations increases. This4667

means there is a tradeoff based on asymptotic properties of EA solution and the4668

computational power available to the user.4669

9.2.9 Validity4670

Following the estimation of the value of a parameter of interest it is essential to4671

consider the extent to which that estimate is valid. Greenstone and Gayer (2009)4672

and the widely-cited Meyer (1995) set out the challenges to validity of observational4673

studies. Most broadly there are three types of validity: Internal validity, External4674

validity; and Construct validity. 1. Internal validity concerns whether it is possi-4675
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ble to draw the inference that any differences in the dependent variable is in fact4676

due to the explanatory variable(s) of research interest, rather than other factors4677

(Greenstone and Gayer, 2009). 2. External validity concerns how generalisable the4678

result is. Since a value for an estimator is estimated by using a given set of data, its4679

extrapolation to new cases relies upon speculation, because the data derives from a4680

particular location at a time (Angrist and Pischke, 2010). In the present case, the4681

parks may be shown to protect Sumatra’s forest between 2007 and 2009, but this4682

does not mean by extension that all of Indonesia’s work effectively. 3. Construct4683

validity concerns whether the investigator correctly understands the treatment it-4684

self (Greenstone and Gayer, 2009). As Meyer (1995) states, without being able to4685

experimentally manipulate the treatment, then one must understand the source of4686

the variation. Tests for bias include testing the balance of observable covariates4687

against treatment and control groups (Greenstone and Gayer, 2009) and looking4688

for group-specific trends that can invalidate the comparison between control and4689

treatment groups of observations (Angrist and Pischke, 2010).4690

9.2.10 Assessing Sumatra’s PA success in reducing4691

deforestation4692

Deforestation in Sumatra continues apace, as quantified for a section of Sumatra4693

in Chapter 7, driven by multiple underlying factors and immediate causes set out4694

in chapter 3, including fires and the expansion of oil palm plantations (Palmer and4695

Engel, 2009; Dennis et al., 2005; Carlson et al., 2012) Since Indonesia is a focus of4696

international efforts to implement REDD+, it is important to establish what has4697

worked and may work in the future to reduce deforestation. One approach histor-4698

ically has been the development of PAs, and which is a potential approach under4699

REDD+. The motivating question for this chapter is therefore whether deforesta-4700

tion has been reduced in PAs relative to similar unprotected areas, and consideration4701

of why.4702

First though, there are complexities surrounding the question of Indonesian4703

parks’ success to be addressed. As highlighted in the introductory chapters, the4704

history of Indonesian forest management is riddled with intrigue, corruption, and4705

periods of kleptocratic rule. This means that there are certainly normative issues4706

concerning whether there should be national parks and PAs implemented in their4707

current form in Indonesia, with local communities generally excluded from forest re-4708

sources. However, these are different issues to the positive economic approach taken4709

here which asks, given the parks are established in fact, what has their impact been4710

on deforestation?4711

Once the argument for why to measure environmental policy impact has been4712

made (we need to make better use of scarce resources; (Ferraro and Pattanayak,4713

2006)) and once the distinction between normative and positive economic thought4714
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has been clarified (the parks have been created-so what impact have they had?),4715

the third and final issue is to address the not-inconsiderable issue of exactly how to4716

measure the impact of park creation on Sumatra in practice. There are only limited4717

examples of researchers having done this.4718

The most comprehensive study of the effects of PAs on deforestation on Sumatra4719

was undertaken by Gaveau et al. (2009a). They used optical imagery from Landsat4720

processed at 25km2 resolution for the ten years between 1990 to 2000. They used4721

matching procedures to ensure that sites used to compare with the PAs were as4722

similar as possible in their attributes to the control sites in ‘unprotected’ areas.4723

They found that PAs had indeed reduced deforestation, even when compared with4724

matched unprotected forests. Further analyses have been conducted on deforestation4725

in Sumatra in the following decade (2000 onwards), such as Broich et al. (2011a,b).4726

However, this work focus more on remote sensing and forest change detection rather4727

than on analyses of the performance of PAs.4728

As such this chapter provides a novel contribution to the literature in that it4729

assesses PA performance during a period of recent land cover change in Sumatra.4730

Methodologically it is novel because it uses the remote sensing techniques developed4731

in chapter 7. However this also means that the results from this chapter cannot4732

provide a direct comparison with the main other assessment of PAs in Sumatra by4733

Gaveau et al. (2009a). This is because the two studies are processed at different a)4734

time periods (Gaveau 1990:2000 vs 2007:2009 this study) and b) covers a different4735

extent (Gaveau all Sumatra vs. swathe of Jambi and South Sumatra this study); c)4736

using a different technology (passive optical satellite imagery vs. active microwave4737

radar imagery in this study). Nonetheless, overall substantive result of whether PAs4738

reduced deforestation can be compared.4739

9.3 Methods4740

9.3.1 Basic conceptual model4741

An important first stage in the analytical process is to develop a conceptual model4742

to characterise the system of interest (Etienne et al., 2011). This helps to frame4743

how and why an intervention may have an effect (Dawid, 2000). In Indonesia,4744

deforestation is being driven by a range of factors as discussed comprehensively in4745

chapter 3. These include competition for land (e.g. the expansion of small-holder4746

agriculture and an increasing human population; expansion of palm oil plantations,4747

expansion of pulp and paper industry); and demand for the timber which constitutes4748

the forest itself and may be extracted unsustainably. Hence some of the main4749

Resources in demand are land and timber. However, forests provides many other4750

goods such as non-timber forest products (NTFPs) and biodiversity; in addition4751

to services such as carbon storage and sequestration. These goods and services4752

169



are valued locally and globally e.g. people sell mushrooms from the forest; people4753

buy forest carbon as offsets in the voluntary carbon market. The Actors are4754

i) those who want to convert the forest land to other uses including large multi-4755

national agri-businesses through to small-scale subsistence farmers ii) those who4756

derive benefits from the forest and would in seek to ensure its conservation in the4757

long term, including the national and local governments, and their agencies e.g.4758

the regional forestry offices DINAS Kehutanan; and people who use the forest for4759

NTFPs, and who otherwise derive benefits from forests including. The Dynamics4760

are that increasing international and domestic demand for land and forest products,4761

and products derived from non-forest land use like oil palm plantations, has driven4762

deforestation across the island (Broich et al., 2011a,b; Gaveau et al., 2009b; Linkie4763

et al., 2009). Because the costs to these activities are lower when land access is4764

easier, this provides the conceptual basis for the choice of independent variables to4765

use in the subsequent estimation strategy.4766

These represent some of the immediate or ‘proximate’ causes of deforestation4767

(Angelsen and Kaimowitz, 1999; Lambin et al., 2003). Controlling for other fac-4768

tors, forests in mountainous areas are less likely to be deforested than forests on4769

flat lands (Chomitz and Gray, 1999; Newton, 2007). Areas closer to markets re-4770

duce transport times and hence costs, the effect of which is to increase profitability4771

of alternative land use and increase the risk of deforestation (Pfaff and Robalino,4772

2012). Where rivers flow in the direction of towns and markets, they can be used4773

for transportation of sawn wood and forest products to markets. The same effect4774

applies in that increases the profitability of the land and hence likelihood of defor-4775

estation: the proximity of a forest patch to a navigable river has been shown to4776

be positively related to the probability of forest conversion by Newton (2007). The4777

proximity of a road has a similar effect on the likelihood of deforestation (Angelsen4778

and Kaimowitz, 1999; Lambin et al., 2003). These factors may all then interact4779

to increase deforestation (Chomitz and Gray, 1999; Marcoux, 2000; Gaveau et al.,4780

2009c; Venter et al., 2009a). Hence we would expect remaining forest land closest4781

to roads, rivers and markets to be cleared more quickly than more remote areas,4782

which by contrast are more likely to be designated as PAs away from the drivers of4783

deforestation (Joppa and Pfaff, 2009). Hence by controlling for as far as is possible4784

for these factors, it becomes more likely to identify the impact of policy interven-4785

tions. The decisions of the actors in the non-protected areas are therefore assumed4786

to surround short-term profit maximisation from all land uses options, whether that4787

be applying for licences to undertake logging; plantation establishment.4788

Whilst such permissions continue to be given in order to foster economic growth,4789

the Indonesian government also wishes to retain a certain proportion of forest in4790

order to meet national goals and international targets e.g. under the United Nations4791

Convention on Biological Diversity. (Note that understanding the process of the4792

allocation of the treatment is important since it helps for the subsequent control of4793
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bias). The government has therefore established a series of PAs across the country,4794

which cannot be exploited for uses other than the conservation of natural forests.4795

Since the government is balancing short-term economic development objectives and4796

conservation policy, it chooses areas for conservation of less economic value than4797

others due to distance from markets etc., as described above and as argued by4798

Joppa and Pfaff (2009). Hence in the subsequent estimation strategy we need to4799

control for these selection biases. Crucially, I assume that in the counterfactual case4800

that the PAs were not created, then those forest areas would be designated for the4801

other uses that we observe today on Sumatra.4802

The essential Interactions of the system are that in the PAs, it becomes ille-4803

gal to exploit the forest, and these laws are enforced in principle through the use of4804

ranger patrols, and prosecutions for individuals and corporations transgressing these4805

limits. The decisions at play here then for the actors are whether the disincentives4806

associated with being caught are greater in than the the benefits of exploiting land4807

and resources in de jure PAs. As set out in the background chapters, during refor-4808

masi there was contest over land rights and the issuance of small-scale permanence4809

in PAs designated during central government. However by 2007, the assumption4810

of the conceptual model is that this situation had stabilised following Indonesia’s4811

socio-political stabilisation and transformation into a relatively peaceful multi-party4812

democracy. This is the conceptual basis for the PAs having a treatment effect on4813

deforestation.4814

Findings published in the literature provide prior expectations about what we4815

may observe in this basic model, which may in turn be used to develop hypothesis4816

about the performance of PAs in the present study. Given the extensive land cover4817

change has been observed in the region during the past two decades (Broich et al.,4818

2011a,b; Gaveau et al., 2009b; Linkie et al., 2009), and given that (Gaveau et al.,4819

2009a) found that PAs were having an impact between 1990 and 2000, it is reason-4820

able to expect that deforestation is reduced in national parks as measured against4821

comparable unprotected areas. The effect may have become more pronounced since4822

2000, especially since the forest outside the PAs has continued to be extensively4823

cleared recently (Broich et al., 2011a,b). More generally, evidence from the litera-4824

ture suggests that secure land title and PAs are expected to reduce deforestation4825

and forest degradation (Southgate et al., 1991; Krutilla et al., 1995; Ferraro et al.,4826

2011; Nelson and Chomitz, 2011) in countries as diverse as Costa Rica and Thailand4827

(Andam et al., 2010, 2008).4828

This leads to two hypotheses. Greenstone and Gayer (2009) state that a causal4829

hypothesis should have a ’manipulable treatment that can be applied to a subject4830

an outcome that may or may not respond to the treatment’....‘that can be subject4831

to a meaningful test’ wherein ‘all other determinants of the outcome can be held4832

constant’ (p.22). Whilst it is not possible to manipulate the treatment of protection4833

on forests experimentally, as explained in the introduction it should be possible4834
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to emulate the randomisation to some degree through matching on covariates to4835

remove selection bias. Further, it is possible to subject deforestation (outcome that4836

could respond to protection treatment) across Sumatra to meaningful tests, that4837

hold constant the factors which have been shown to influence deforestation.4838

• H01: Deforestation in the PAs is lower than in other land classes areas between4839

2007:9, controlling for the bias in the location of PAs.4840

• H02: The perceived protective effect will be reduced by contrasting the näıve4841

comparison group with pixels matched on covariates.4842

The alternative hypotheses are that, due to increasing pressures on remaining forests,4843

and the changes in land management and attitudes towards forestry following re-4844

formasi (see Chapter 3), even protected forests have been deforested. As such there4845

will be no effect of comparing the PAs with matched unprotected pixels.4846

9.3.2 The dependent variable4847

In Chapter 7a threshold of 1.5dB change in backscatter between years was used4848

to create binary deforestation/no-deforestation raster files with a 1 or 0 for each4849

100m X 100m pixel across the 7.2Mha study area. Pixels with a biomass value <4850

53Mg ha−1 in 2007 were excluded as either non-forest or plantation (Morel et al.,4851

2011). This reduced the likelihood of inadvertently measuring the cropping cycles4852

of plantations such as oil palm Elaeis guineensis in addition to clearance of natural4853

forest. In addition, seasonally flooded forest was excluded using the process in4854

chapter 7). This reduced the chances of false-positive deforestation detection caused4855

by flooding. I then aggregated the dependent variable into landscape-scale grids of4856

pixels such that each observation covered 5km x 5km. I took the sum of the 100m4857

x 100m (1,0) change pixels and converted that into the percent deforestation in4858

the two year period (sum deforested pixels/2500) x 100. For protected areas, only4859

grids which were entirely within protected areas were considered, and hence only4860

areas that were entirely outside of protected areas were considered ‘unprotected’.4861

This aggregation approach has with precedents in the literature from (Gaveau et al.,4862

2009a; Laurance et al., 2002). The 5km x 5km resolution is the same as employed4863

by Gaveau et al. (2009a) for Sumatra.4864

9.3.3 The control (confounding) variables processing and4865

data extraction4866

Independent variables were created as confounders in accordance with the theory4867

and evidence from the literature on the drivers of deforestation set out in the socio-4868

economic background Chapter 3; and the basic conceptual model described above4869

for the processes of deforestation. For instance the costs to exploit forests and land4870
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near roads is lower than the costs to do the same far from roads (Angelsen and4871

Kaimowitz, 1999; Lambin et al., 2003; Newton, 2007). Along with the elevation,4872

these variables also affect the probability of forest areas being treated as a PA4873

(Joppa and Pfaff, 2009). So I created rasters of distance to roads, rivers, and towns.4874

To create these, shape files of roads, towns, and rivers were provided by the4875

ZSL Indonesia office. These came originally from the Indonesian government land4876

management department called BIPHUT. I rasterised these shapefiles using the4877

vector to raster conversion tool in the open source GIS software called QGIS (QGIS4878

Development Team, 2009). This was done using a raster template with 100 x 100m4879

pixels set to UTM 48S. The next stage was to rasterize the shapefiles for all the4880

PAs in the scene, with a 1 coded for pixels inside PAs and 0 for those pixels outside.4881

Then, I used the raster analysis proximity tool in QGIS to create a proximity raster4882

file. This proximity tool estimates the distance of any given pixel in the raster from4883

the rasterised shape outline, for instance the shape of the roads. In this way the4884

distance from the nearest road, river and town were estimated for each pixel in the4885

study scene. An example of the production of the variables is shown in figure 9.2.4886

Finally, I included the estimate of above ground biomass in 2007, in order to control4887

for the initial level of forest at the beginning of the study period. This is because4888

the largest changes in biomass are likely to occur where there is still enough forest4889

to clear.4890

9.3.4 The basic empirical model4891

Overall I wish to determine the effect of the PA status on deforestation. For this4892

experiment only one time step of deforestation is available, i.e. deforestation occur-4893

ring between 2007 and 2009, as calculated in chapter 7. Hence time periods t=1,4894

and we can only ever observe the post-treatment condition, and not the deforesta-4895

tion prior to the creation of the PAs, the pre-treatment condition indicated as T14896

in the figure 9.1. I retain the identifying assumption of parallel paths remain for4897

one time period. The basic model is therefore to calculate the differences between4898

deforestation inside the PAs and compare these with similar areas based upon their4899

covariates, but which are designated for other land uses, in the single time period.4900

These areas which serve as the counterfactual scenario i.e. in the case where the4901

treated observations are not treated (Greenstone and Gayer, 2009). This is based4902

on the assumption that the bias in the location of PAs (Joppa and Pfaff, 2009) can4903

be eliminated using the matching methods described below. More specifically, the4904

identifying assumption here is that the sole source of omitted variables bias comes4905

from a covariates which are correlated with the treatment. I assume that the PAs4906

would be designated as other land uses in the absence of treatment.4907

In summary my basic formulation is to measure the difference in means between4908

the post-treatment deforestation outcomes for treated (PA) pixels and untreated4909
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Figure 9.2: The creation of the distance from road as an independent variable. In
the left hand panel the roads are highlighted in blue, and the distance from the
road per pixel is shown by the shading in the underlying raster file. Lighter colours
indicate the pixel is further from the road, and darker grey indicates the pixel is
closer.

(unprotected) matched control pixels in one time period. The estimand is the Sam-4910

ple Average Treatment Effect (SATE) (Imbens, 2004; Rubin, 1974) calculated with4911

difference between group means of deforestation rate in the treated and matched,4912

but untreated groups:4913

ζ = (Ŷ After
treat − Ŷ

After
control) (9.1)

where the outcome variable of interest Ŷ is deforestation,and ζ is the SATE.4914

This is based on the strong ignorability assumption that the matching procedure4915

removes any conditional dependence of the treatment on the observed covariates4916

which I identify in the basic conceptual model, and hence any selection bias.4917

9.3.5 Estimation in practice: matching on covariates,4918

testing balance, and calculating the difference in4919

mean outcome4920

Matching In order to control for the bias in location of PAs, I used Genetic match-4921

ing (function GenMatch(...)) to balance observation covariates, implemented in the4922

Matching package for R (Sekhon, 2011). This addressed the question of which obser-4923
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vations should be compared (Imbens, 2004) to estimate the SATE. Genetic matching4924

provided the best results compared against the other options of full matching, and4925

optimal matching, using propensity score sub-models. The options I used were:4926

ratio=1 (the number of control matches per treated observation); number of boot-4927

straps=500 (determines the number of bootstraps used for the Kolmogorov-Smirnoff4928

tests between distributions of the covariates in the matched data; the minimum for4929

publication quality p-values is 500 (Sekhon, 2011)); and finally with population size4930

= 500. This last argument controls the number of generations that the evolutionary4931

algorithm (EA) uses find the matching solution. I retained the default setting of4932

sampling with replacement.4933

Testing matching procedure success It is crucial to test the covariate bal-4934

ance in the matched treatment and control groups in order to test how well the4935

matching procedure worked, prior to making the final estimation of SATE. This4936

is because on the one hand the matching should reduce the covariate differences4937

towards zero; on the other balance can actually worsen, resulting in inference that4938

will be less accurate than if matching had been undertaken at all (Sekhon, 2011). I4939

tested balance by using pre/post-matching quantile-quantile plots; and the outputs4940

from the Matching package’s summary() function. This provides distributional test4941

statistics from Kolmogorov-Smirnoff (KS) tests. Whilst Gaveau et al. (2009a) used4942

t tests to check for the differences between covariates, Ho et al. (2011) are explicit4943

that one t-tests should never be used to test for balance. I followed the advice of4944

the package author, focussing on distributional tests.4945

Estimating the estimand, the SATE In order to calculate the SATE, I4946

again referred to the output from the summary() function. This calculates SATE,4947

and assesses its significance with standard errors, a T-test, and associated p-value.4948

The null hypothesis is that the outcomes of the matched and the counterfactual are4949

from identical populations.4950

9.3.6 The experimental(observational) variable of interest:4951

PAs4952

The PAs in the study scene included a range of formally PAs, including water-4953

shed protection forests (hutan lindung), wildlife reserves (Suaka Margasatwa), for-4954

est parks (TAHURA), and national parks (Taman nasional). The national parks4955

included were Berbak national park and the south-eastern portion of Kerinci Seblat.4956

There are a total of 984,010 1ha protected pixels in the 7.2Mh pixel study area. The4957

distribution of these PAs across the landscape is shown in figure 9.3. In none of4958

these PAs is any deforestation or forest degradation allowed by law. The hutan lin-4959

dung areas are designated to protected ecosystem services like watersheds, national4960

parks are designated to protected unique biodiversity features and ecosystems, as4961

are the wildlife reserves.4962
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Figure 9.3: PAs (blue, diagonal lines) superimposed on in-tact forest (green) and
deforestation that occurred between 2007 and 2009

9.3.7 Vegetation-dependent measurement bias4963

Whilst the use of radar has advantages over passive optical sensing, there are prob-4964

lems. As explained in chapter 7, the radar microwave energy is scattered differently4965

by the open canopy and small tangled roots of mangrove forests than in swamp or4966

mineral soil forests (e.g. forests dominated by trees of the family Dipterocarpaceae).4967

This cannot be controlled for since no field data from mangrove forests was available4968

for calibration. Sembilang national park (south of Berbak national park) was there-4969

fore excluded from this analysis, because it was not possible to accurately measure4970

change here. In addition, PAs in the south-west of the scene included mountainous4971

terrain. These were excluded from the analysis if the local terrain slope was greater4972

than 5o as per chapter 7. Figure 9.3 shows the location of the PAs (outline in blue)4973

in the study scene overlaying the forest biomass estimate from 2007 (light green)4974

and the change estimated for 2007 to 2009 (red).4975
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9.4 Results4976

9.4.1 Covariate balancing4977

A summary of the covariate balance is provided in the table 9.1. The genetic4978

matching algorithm succeeded in balancing the distributions in four of the five the4979

variables, as measured by the KS statistics following matching. The quantile plots4980

of the covariates in the control and treated areas are shown in figures 9.4. The fifth4981

variable which was apparently difficult to match upon was the distance to rivers,4982

which reflects a current absence of unprotected forest areas which are distant from4983

rivers. Whilst the overall balancing of the elevation was successful, the qqplot shows4984

that there remains some outlying high-elevation values in the treated PAs. Similarly4985

this reflects the bias in the location of parks to the high altitude areas in Suma-4986

tra, and the relative absence of high altitude areas for other uses. Nevertheless4987

these outlying treated observations did not prevent the selection of a set of con-4988

trol observations whose distribution was not significantly different from the treated4989

observations at the 5% level (KS bootstrap p value=0.57).4990
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Elevation Rivers
Before matching After Matching Before matching After Matching

Mean treatment 223.74 223.74 4158.7 4158
Mean control 70.713 185.5 3025.8 3525.1
Std mean diff 32.953 8.23 33.474 18.72

Mean raw eQQ diff 157.34 40.81 1110.5 666.78
med raw eQQ diff 5 2 1019.9 449.38
max raw eQQ diff 1533 1353 4273.7 6221.3
mean eCDF diff 0.10 0.148 0.10319 0.055
med eCDF diff 0.11 0.011 0.11018 0.0454
max eCDF diff 0.16 0.06 0.15874 0.14

var ratio (Tr/Co) 12.38 1.81 1.7047 1.5756
T-test p-value 0.00 0.00 0.000 0.00

KS Bootstrap p-value 0.00 0.57 0.000 0.004
KS Naive p-value 0.00 0.64 0.00 0.0063

KS Statistic 0.16 0.06 0.158 0.14

Roads Towns
Before matching After Matching Before matching After Matching

Mean treatment 7673.1 7673.1 21137 21137
Mean control 2175.8 7027.3 10614 20080
Std mean diff 87.076 10.23 68.09 6.8392

Mean raw eQQ diff 5465.4 651.75 10445 1438.4
med raw eQQ diff 5423.4 376.36 6043.4 930.77
max raw eQQ diff 12263 3970.5 28898 9191.4
mean eCDF diff 0.36502 0.025 0.2362 0.029667
med eCDF diff 0.40777 0.022 0.26215 0.022727
max eCDF diff 0.47294 0.068 0.33384 0.083333

var ratio (Tr/Co) 4.7068 1.194 4.326 1.1329
T-test p-value 0.00 0.00 0.00 0.00

KS Bootstrap p-value 0.00 0.53 0.00 0.295
KS Naive p-value 0.00 0.57 0.00 0.318

KS Statistic 0.47 0.068 0.333 0.083

Biomass
Before matching After Matching

Mean treatment 110.54 110.54
Mean control 72.395 108.35
Std mean diff 44.221 2.53

Mean raw eQQ diff 38.042 5.527
med raw eQQ diff 48.202 4.577
max raw eQQ diff 76.419 18.27
mean eCDF diff 0.15003 0.023146
med eCDF diff 0.15921 0.022727
max eCDF diff 0.19728 0.079545

var ratio (Tr/Co) 1.3783 1.0719
T-test p-value 0.00 0.26508

KS Bootstrap p-value 0.00 0.357
KS Naive p-value 0.00 0.37382

KS Statistic 0.197 0.079545

Table 9.1: Results of the covariate matching procedure using the Genetic Matching
in the R Matching package. Note the size of the Kolmogorov-Smirnoff statistic
before and after matching, and its associated p-value. This shows how the mean
treatment and control values converged following matching, as represented in the
convergence of their distributions in the qqplots.
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Figure 9.4: The quantile-quantile plots show the distribution of the treatment and
control sites pre- and post-matching. In the näıve pre-matching comparison the
control sites are any other observations than the treated. The post-matching control
observations should be more similar in their distributions to the treated observations,
than are the ‘any other’ observations in the näıve comparison.

9.4.2 Matching procedure estimate of SATE4991

Of a data set of 2638 observations of 5 x 5 km pixels, the 264 observations which cov-4992

ered the PAs were matched with 264 areas in other non-protected land classes. This4993

provided an SATE of -1.74%, i.e. that PA status reduced deforestation by 1.74%4994

compared to other land classes, controlling for biases in PA location. Note that this4995

is the change of a two-year period (2007-9), hence an annualised average difference4996

would be 1.74/2=-0.87%. The (Abadie & Imbens (Sekhon, 2011)) Standard Errors,4997

were 0.61, with a T-statistic of -2.9, p=0.004, hence the difference was significant at4998

the 5% level. The deforestation outcomes in the protected and unprotected areas4999

before and after matching are shown in 9.5.5000
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Figure 9.5: These boxplots show deforestation 2007-9 before and after the Genetic
Matching procedure. The Y axis is % deforestation per year, log transformed. Fol-
lowing matching, the outliers in the control sites are reduced, and there is crucially
a convergence of the observed outcomes due to selection of pairs of observations
which are more similar in terms of the values which the literature suggests affects
deforestation. This shows neatly how a näıve comparison between unprotected and
protected areas would produce a biased result, and how improving covariate balance
between comparisons addresses this.

180



9.5 Discussion5001

9.5.0.1 Controlling for biases: success of the genetic matching methods5002

. The matching procedure performed well in controlling for much of the bias in5003

PAs location in this region of Sumatra. The success of the matching procedure was5004

confirmed by the examination of the quantile-quantile plots, and the KS tests on5005

the distributions of variables before and after the matching procedure. One variable5006

was not well accounted for however - distance from rivers. This probably reflects5007

the large number of PAs in the scene in the Bukit-Barisan mountain range, where5008

there are fewer large rivers as recorded in the GIS files provided by ZSL Indonesia.5009

This may also conforms to the finding of Joppa and Pfaff (2009) that PAs tend to5010

be biased in elevation and distance from drivers of deforestation. Hence some bias5011

remains since it is not possible to find perfectly matched pixels in river-distance5012

variable space. This highlights the difficulty of robust causal inference in practice,5013

and is expected to have introduced a small amount of bias into the final result.5014

9.5.0.2 The substantive finding5015

. During the two year study period it appears that the PAs have on average reduced5016

the amount of deforestation relative to all other land uses by 1.8%. Hence, defor-5017

estation would be 1.8%/2 =0.9% per year higher in the PAs if they were designated5018

as another land class. The magnitude of the protective effect is reduced by con-5019

trasting PAs with unprotected pixels that were matched based on their covariates.5020

In terms of the direction of the finding, there is no evidence to cause the rejection5021

of the second hypothesis. In addition this finding is consistent with other studies5022

from elsewhere in the tropics that have found that the effect of PAs is reduced when5023

used matched unprotected pixels (Andam et al., 2008). That the effect was not5024

dramatic suggests that even Sumatra’s more remote unprotected forests are now5025

being cleared. Indeed the maps produced in Chapter 7 suggest that there is now5026

relatively little high biomass forest outside Sumatra’s PAs, and that only Berbak5027

clearly stands out as a complete block of relatively in-tact forest. This is supported5028

by the finding from Chapter 8 that the mean above ground biomass was higher5029

in Berbak than any of the other forest classes. So as forest resources become in-5030

creasing scarce, the last pockets of unprotected forests will also be cleared. This is5031

supported by figure 4.6 in Chapter 4 which shows a very large new forest clearance5032

on the borders of Berbak in 2013.5033

Overall, the results support the only other available estimation of the effect of5034

Sumatra’s PAs, (Gaveau et al., 2009a), and does not provide evidence to reject the5035

first hypothesis.That the deforestation rate is lower in the PAs than elsewhere re-5036

quires explanation. Referring back to the basic conceptual model, the government’s5037

policy in the creation of PAs was to retain certain areas of Indonesia as permanently5038
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forested to conserve biodiversity and other ecosystem services. Whilst on the one5039

hand Indonesia has experienced severe problems with law enforcement in forestry5040

(Collins et al., 2011a; Gaveau et al., 2009b), on the other hand policy implementa-5041

tion imperfection does not imply zero implementation. It remains illegal for people5042

to degrade and clear protected forests and there are still sanctions for those caught5043

breaking land use laws, including fines and imprisonment. These continue act as a5044

disincentive to undertake activities that cause forest loss. Indeed the presence of5045

law enforcement officials has been suggested to have an effect on the reduction of5046

deforestation elsewhere in Indonesia (Macdonald et al., 2011). We may be observing5047

this effect in aggregate, and were enforcement to be improved we could expect this5048

effect to increase in size, such that deforestation approaches zero in the PAs.5049

In direct contrast with the protected areas, we expect to see a certain amount5050

of deforestation in the non-protected areas. In conversion production forests for in-5051

stance, we should expect there to be continued forest degradation and deforestation5052

over time as logging takes place, followed by complete removal of the forest before5053

new plantations are established. In the limited and permanent production forests,5054

we should expect forest degradation to continue sporadically as the concessionaires5055

undertake logging rotations, however in the absence of permission to change the5056

land class to a conversion forest, we should expect there to be no deforestation.5057

This means that we are observing the impact of creating PAs as measured against5058

any other land class: it is not possible strictly to observe the effect of protection5059

on forests, because there is no Indonesian forest class which is simply ’unprotected’5060

and not under another designation.5061

9.5.0.3 Validity and limitations5062

Whilst the results make intuitive sense, there are reasons for caution. First, the5063

study area is limited to a swathe of South Sumatra and Jambi provinces only, as5064

determined by the availability of Radar data (see chapter 7). This means that many5065

PAs on Sumatra are excluded from the study. Hence the results must be interpreted5066

within this study area, and as the Sample Average Treatment Effect, rather than5067

the Population of PAs across Sumatra (external validity). With respect to the5068

matching exercise, the restriction of the size of the study area may also mean reduced5069

internal validity: This is because other more suitable matches may exist elsewhere5070

on Sumatra, but which I do not observe, e.g. large areas of unprotected mountain5071

forest. Nevertheless, the counter-argument for choosing more remote matches is that5072

the further other matched sites are physically from the study area, the more likely it5073

is that other unobservable region-specific factors are affecting deforestation, which5074

are difficult to control for. These include governance levels; migration; cultural5075

differences in land use; forest fires and rates of plantation expansion (Gaveau et al.,5076

2009a).5077
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A further limitation of the study which may limit internal validity is the time5078

period examined. The study covers only two years of deforestation 2007:2009. There5079

are two problems associated with this. The first is that this raises the chances of5080

detecting a snapshot of random noise rather than longer-term differences in defor-5081

estation attributable to land use regulation. The second is that with only one time5082

period the cross sectional approach has to assume that the trends in deforestation5083

between the treated and the untreated areas were the same prior to the creation of5084

the park: the trends cannot be tested empirically. As such the effects of forest pro-5085

tection may be both stronger in future studies that use the same technologies over5086

longer time periods, and also more robust if the identifying assumption of parallel5087

paths can be justified.5088

Finally, the demonstration here of the fact that deforestation can be detected5089

over short periods is important because it will allow more direct feedback between5090

REDD+ payment mechanisms and actual deforestation reduction results achieved.5091

This high temporal resolution is exploited in the next chapter, to test the impact of5092

ZSL’s activities at Berbak national park.5093
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10.1 Abstract5098

This chapter is a project evaluation that assesses the marginal change in the perfor-5099

mance of Berbak national park in reducing deforestation following one year of pilot5100

REDD+ activities. Between 2009 and 2010 The Zoological Society of London (ZSL)5101

built a new field base that was staffed permanently by forest police and ZSL staff.5102

Prior to this there was no operational field base at the site. The raw deforestation5103

data suggest that prior to the intervention in 2007:8, mean deforestation in Berbak5104

was 0.037%; falling to 0.003% in 2008:9; and then in the year of the intervention5105

rising to 0.049%. This suggests deforestation increased following the intervention.5106

However, the variation may have been caused by factors unrelated to the project,5107

hence I attempted an analysis within a robust causal inference framework. I pre-5108

selected two protected (Hutan lindung) forests to use as control sites to estimate5109

deforestation in the absence of deforestation. I ran a matching routine on the in-5110

dependent variables on pixels within those control sites in order to match control5111

and treated observations with minimised covariate differences, yet the procedure did5112

not improve balance. I therefore used unmatched data with a differences in differ-5113

ences (DD) model estimated with linear regression to calculate the impact of the5114

project. This suggested that deforestation had increased by 0.05% following ZSL’s5115

intervention, however this was not significant statistically (p=0.37; heteroskedastic-5116

ity robust standard errors). More problematically, the trends in the control sites5117

and at Berbak did not meet the key identifying assumption of DD, that of parallel5118

paths. The chapter highlights the difficulties of finding appropriate control sites5119

with which to undertake robust causal inference in practice. Given these problems5120

it is difficult to determine whether the apparent (näıve) increase in deforestation in5121

Berbak is due to changes that would have happened in the site in the absence of5122

the intervention, or to the effects of the intervention.5123

10.2 Introduction5124

The implementation of REDD+ faces multiple challenges. A central issue is how to5125

actually create additional reductions in deforestation, and thus allow the payments-5126

for-results envisaged under the mechanism. In order to be able to determine whether5127

a given intervention implemented in the name of REDD+ has had any impact, the5128

agents that would make payments for results require robust evidence that deforesta-5129

tion has actually been reduced against a counterfactual situation in which REDD+5130

was not being implemented. Activities failing to reduce deforestation may need to5131

be discontinued(Essama-Nssah, 2006). This creates a strong motivation, and basis5132

for a good research question (Deaton, 2010): do activities implemented in the name5133

of REDD+ create additional conservation? This is a novel and topical question,5134

requiring robust causal inference methods. A major distinction from the previous5135
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chapter is that a new policy under REDD+ could be in principle randomised, creat-5136

ing a controlled trial (RCT). However, since this is not the situation in present case,5137

I once again return to the challenges of using observational data to make causal5138

inferences (Angrist and Pischke, 2009; Imbens and Wooldridge, 2014).5139

As set out in the previous chapter, there is a range of options to consider when5140

addressing such a question. These include the establishment of a basic conceptual5141

model for the Actors, Resources, Dynamics and Interactions within a system (Eti-5142

enne et al., 2011); deciding whether to draw more heavily upon a theory of change5143

approach or the use of empirical data, or both (Carvalho and White, 2004; Deaton,5144

2010; Angrist and Pischke, 2010); establishing an appropriate empirical model for5145

testing the putative impact; and deciding how to address the central issue of selec-5146

tion bias e.g. Miteva et al. (2012); Angrist and Pischke (2010, 2009). This involves5147

understanding why the given REDD+ activity was implemented in the manner that5148

it was, and where (analogous to the selection of certain areas as PAs (Joppa and5149

Pfaff, 2009; Pfaff and Robalino, 2012)), which underpins the choice of controls that5150

serve as plausible counterfactual scenarios (Angrist and Pischke, 2009; Ferraro, 2009)5151

to reflect what would have happened in the absence of the REDD+ intervention.5152

Finally there is then the consideration of appropriate statistical methods to estimate5153

the empirical model.5154

On a broader level, environmental policy impact assessment is an important aca-5155

demic research issue, since externalities are at the heart of environmental economics5156

(Greenstone and Gayer, 2009). So too are the development and implementation of5157

appropriate methodologies to assess policy impact (Ho et al., 2007; Baker, 2000;5158

Imbens, 2004; Frondel and Schmidt, 2005; Ferraro and Pattanayak, 2006; Angrist5159

and Pischke, 2009; Pattanayak et al., 2010; Miteva et al., 2012; Steventon et al.,5160

2011; Arriagada et al., 2012; Greenstone and Gayer, 2009; Sekhon, 2011). The de-5161

velopment in research methods and also the appreciation of the issues involved in5162

impact estimation is a process (Angrist and Pischke, 2010) which allows refinement5163

and re-evaluation of previous findings e.g. in the labour market Ashenfelter (1978)5164

and optimistically, better policy prescriptions. Within the past decade environmen-5165

tal economists have been looking over the shoulders of conservation scientists and5166

managers with the growing realisation that a lot of conservation investment has5167

occurred without either consideration of its actual impact and without use of the5168

robust methods that have been developed in other fields (Ferraro and Pattanayak,5169

2006; Pattanayak et al., 2010). Where work has been undertaken to estimate the5170

impact of policies to conserve forest, the analyses have often been overly-simplistic.5171

Extreme examples include basic inside-outside comparisons of deforestation rates in5172

an attempt to estimate the impact of protected areas (PAs) on deforestation rates5173

e.g. Nagendra (2008). Such approaches do not take the crucial issue of selection bias5174

into account, which has been identified as the central issue in observational studies5175

in other fields for decades e.g. Ashenfelter (1978). I have described bias in more5176
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detail in the previous chapter, but since it is fundamental to the present question,5177

I repeat aspects here.5178

To focus I turn to the concern of the present chapter. This aim is to understand5179

whether a conservation intervention implemented under the name of REDD+ by5180

ZSL in Berbak national park on Sumatra in Indonesia has had any effect on the5181

deforestation rate outcomes at that site. Chapters 3 and 4 set out the detailed5182

conditions at Berbak park and the basis for REDD+ intervention. However in5183

summary the context is one of continuing deforestation in an area rich in terrestrial5184

carbon stores, which is also in the Sundaland biodiversity hotspot (Myers et al.,5185

2000) whose forests provide the last habitat for the some of the last populations of5186

Indonesia’s last sub-species of tiger. Reducing deforestation and forest degradation5187

in this region should contribute to climate change mitigation and the conservation5188

of one of the world’s most charismatic species.5189

Deforestation is continuing rapidly in the face of inter alia new plantation and5190

farmland development (see chapter 3), whilst forest degradation and clearance oc-5191

curs even within conservation areas (Macdonald et al., 2011; Jepson et al., 2001;5192

Gaveau et al., 2009b,a; Linkie et al., 2009); and as demonstrated in the previous5193

chapter. This includes losses of forest at Berbak due to illegal logging, fires, and5194

ecosystem damage arising from draining peat inside and outside the park border,5195

increasing the risk of fires and carbon loss from peat soils (see chapter 6). With5196

the prospect of funding becoming available via REDD+, ZSL saw the opportunity5197

to try to both reduce deforestation, conserve the peat carbon stocks, and conserve5198

Berbak’s remaining tigers. ZSL sourced UK government funding to start a spatially-5199

explicit REDD+ project here. The pilot phase involved building a field base, and5200

running patrols into the forest to reduce the various threats to the forest, which is5201

the treatment we would like to evaluate the effect of. The project thus in effect5202

subsidised the Indonesian state in support of its management of Berbak national5203

park, presumably based on the (unstated) assumption that this would not crowd5204

out either present or future funding from the Indonesian government.5205

In this context there are multiple sources of bias, principally surrounding the5206

selection bias in the allocation of treatments. Plural because, more specifically,5207

Berbak is subject both to 1. treatment as a PA, and 2. a subsequent REDD+5208

treatment within that PA. In order to tease apart the implications of this, I first5209

consider only the bias in PA designation, and then the bias surrounding REDD+5210

site selection.5211

10.2.0.4 The first treatment: the creation of Berbak national park5212

Protected areas tend to be non-randomly located in places which were unlikely to5213

have been deforested anyway (Joppa and Pfaff, 2009; Pfaff and Robalino, 2012).5214

Berbak is a peat swamp forest, which is of less value for conversion to other uses5215
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than dryland forests on mineral soils. Therefore this suggests that in the counter-5216

factual situation that Berbak was not a PA it would have experienced nonetheless a5217

lower likelihood of conversion to another use than easily neighbouring forests on dry5218

mineral soil. Furthermore, the forests of Berbak are located on the eastern coast5219

of Sumatra which has previously been difficult to access until the creation of new5220

roads and plantations in the past two decades. Hence Berbak may also have been5221

historically protected by having poor access which increased the costs to any poten-5222

tial agent of deforestation (Pfaff and Robalino, 2012). This also meant that there5223

would have been fewer settlers in the region: communities in the region have histor-5224

ically been concentrated along the major Batang Hari river upon which Jambi city5225

is founded, and along the coast. With lower population density than in the more5226

readily accessible and valuable mineral soil forest areas, this would have similarly5227

led to lower local demand for wood and Non-Timber Forest Products (NTFPs).5228

These factors would have meant lower deforestation probability even in the absence5229

of protection from PA status. This illustrates that PA status (treatment) is not5230

independent of its attributes (a vector of covariates): This is selection bias. This is5231

essential to appreciate, since a direct comparison between the deforestation rate in5232

Berbak and neighbouring unprotected forests on easily-cleared mineral soils which5233

suggested lower deforestation in the PA could be interpreted näıvely as PA suc-5234

cess(Joppa and Pfaff, 2009; Pfaff and Robalino, 2012). In order to account for this5235

spatial selection bias in Berbak’s location, we therefore need to identify suitable con-5236

trols which reflect as far as is possible the counterfactual situation whereby Berbak5237

was not a PA, which in practice means finding other peat forest areas as similar as5238

possible along a vector of covariates that determined its location, but which are not5239

protected.5240

Finding suitable unprotected control sites to serve as counterfactuals for Berbak,5241

and then estimating an empirical model to estimate the protective effect of the PA5242

status e.g. via covariate matching would be appropriate if the objective were to5243

estimate the effect of PA status, assuming that the counterfactual is that Berbak5244

would have been otherwise allocated to any other land class than conservation.5245

However, the assessment of PA impacts on deforestation was the goal of the previous5246

chapter. There are two major differences in the present chapter. First, the aim is5247

to examine the marginal change in the effectiveness of an existing PA following a5248

REDD+ intervention. Second, there are three time periods of deforestation data5249

available meaning that different economic models can be used to than those in the5250

previous chapter. I now discuss these issues in turn.5251
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10.2.0.5 The second treatment: the establishment of the Berbak5252

Carbon Initiative REDD+ project5253

I described above the reasons that Berbak may have been designated as a PA origi-5254

nally. According to Imbens and Wooldridge (2014) the available literature on causal5255

inference mostly focuses on such cases where there are binary treatments (treated5256

or untreated). Yet in this case the treated (Berbak) has actually been treated twice:5257

first as a PA, second as an existing PA plus ZSL’s REDD+ project. Hence there is5258

a two-stage selection process of PA(1,0), then if PA=1, REDD(1,0). This raises a5259

series of issues in parallel with those relating to the selection of Berbak as a PA in5260

the first instance, and hence another layer of complexity for causal inference. First5261

there is the issue of why ZSL chose Berbak from a population of other protected and5262

unprotected forests across Sumatra that could potentially have been the subject of5263

a REDD+ project. In this case the location incentive (Pfaff and Robalino, 2012)5264

for ZSL was the spatial correlation of large quantities of carbon in Berbak’s peat5265

soils and forest, which is at risk of release to the atmosphere; and a population of5266

Sumatran tigers, the conservation of which species is one of ZSL’s objective func-5267

tions. In addition the selection of a pre-existing PA seems to have allowed ZSL5268

to fit into an existing Indonesian organisational and institutional framework, hence5269

reducing costs (but also crucially the potential additional conservation benefits, see5270

Discussion).5271

A following question is why there are still tigers and relatively large areas of forest5272

at Berbak compared to any other area. This is some combination of the protective5273

effect of the properties of Berbak (peat swamp forest, difficulty of access etc) and5274

the protective effect of PA status. Hence the choice of location of the REDD+5275

project provides another layer of selection bias: the intervention is focused on an5276

area that was originally less likely to be deforested anyway due to its attributes,5277

and was also more likely to receive PA status, which in turn meant it was more5278

likely to be conserved. Following this, Berbak was then chosen amongst any other5279

unprotected area or PA as the subject of a REDD+ project, driven largely by the5280

presence of tigers. However the tigers are present because of the remoteness of the5281

site and its protected area status: a series of compounded biases.5282

In order to deal with this, we need to be very careful in the selection of plausible5283

counterfactuals observations. Since Berbak is already a PA, it is necessary to first5284

‘pre-match’ in order to generate a subset of data which includes only PAs. From this5285

we could subsequently draw observations (Arriagada et al., 2012) using matching5286

techniques to narrow the distance between a vector of covariates in the Berbak site5287

and the pre-matched sites (Sekhon, 2011). In principle doing this should allow the5288

creation of (a) counterfactual control group(s) which are virtually interchangeable5289

with observations from Berbak along that vector of covariates which includes PA5290

status=1.5291
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10.2.1 The Differences in Differences model5292

Where there is more than one time period of data available, there arises the possi-5293

bility of the use differences in differences (DD) as the basic empirical model. This5294

model acknowledges that the absolute values of the outcomes of interest in control5295

and treatment groups are not identical, but that the trends are the same over time.5296

For instance a PA may be being deforested at a low rate, whilst the forest outside5297

is being deforested at a higher rate, but it is assumed that these rates are constant5298

over time. That the differences between the treated and control groups stay the5299

same over time in the absence of an intervention, hence creating parallel paths, is5300

the key identifying assumption of this model (Mora and Reggio, 2012). This is illus-5301

trated in figure 9.1 in the previous chapter, along with a more detailed description.5302

The DD estimator is the final difference between differences between the treatment5303

and control groups following the shock (Angrist and Pischke, 2009). Following the5304

intervention, it is assumed that any difference in differences can be attributed to5305

that intervention; which is the effect of the treatment on the treated.5306

In order to estimate this in practice, one can use matching to remove as far as5307

is possible the differences in the confounding covariates. Another another approach5308

is to use linear regression which controls for the differences in the covariates, and5309

whereby the parameter of interest is the β on the interaction term between a dummy5310

variable for the treated and the treatment time period.5311

Finally, estimation techniques may also be combined, such that a control data5312

set is defined by matching, but instead of the simple difference in mean outcome5313

being taken before and after the intervention, the DD can be estimated with the5314

β on the interaction between treatment time period and treated observations in5315

a linear regression, performed upon a dataset produced by a matching procedure.5316

Indeed this approach has been suggested to be one of the most robust available5317

(as being ‘doubly robust’). This has been used in the present context of forest5318

conservation by Arriagada et al. (2012) to estimate the impacts of deforestation5319

on farms participating in Costa Rica’s famous PES programme. This approach is5320

suitable where there are not perfect matches for treatment and control groups.5321

10.3 Methods5322

Informing the basic conceptual model. Berbak is a national park bordered to5323

the east by the sea (the Malacca straights) and a narrow strip of land with coastal5324

villages. The local economy is based upon coastal marine and inland freshwater5325

fishing within the national park and the surrounding canals and rivers; coconut5326

plantations; and non-timber and timber extraction from Berbak itself (both of which5327

are illegal, although the first is overlooked in practice). This is based upon my own5328

visits to the site; having spent 8 months in Indonesia over the course of my PhD,5329
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and from surveys conducted by ZSL as a part of the project development.5330

The Actors in this case are the Indonesian central government which sees a low-5331

cost way to participate in REDD+, and develop experience with the mechanism,5332

and gain ‘face’ (Hofstede et al., 2010) with the international community for address-5333

ing climate change, deforestation and tiger conservation. This project involves no5334

setting aside of any additional land for conservation or non-extractive use, minimis-5335

ing opportunity costs, and can potentially save money for the government if the5336

income from ZSL crowds out the normal government funds for managing the park.5337

ZSL is the project proponent, which instigated the REDD+ project after having5338

observed the lack of facilities at the park offices, and noting the continued presence5339

of a tiger population (see case study chapter for further details). The Berbak PA of-5340

fice in Jambi city stands to see improved funding, status, training and incomes from5341

the REDD+ project. Officers supporting researchers receive per-diem payments in5342

addition to their salaries. Additional training provides PA officers with points, the5343

accumulation of which leads to higher salary. The local DINAS Kehutanan (regional5344

forestry office) is responsible for the conservation of the watershed protection ( Hutan5345

Lindung) and the TAHURA that I considered as candidate pre-match control sites.5346

Other actors are interested in exploiting forest resources largely irrespective of land5347

status designated in Jakarta. People from the local communities regularly access5348

the forest to catch and process fish for market (see photographs in case study chap-5349

ter). Conversations with people who lived near the park also revealed that there5350

was small scale illegal timber extraction from Berbak, whilst the ZSL office in Jambi5351

confirmed larger-scale illegal logging operations in the south of the park that had led5352

to a Forest Police (POLHUT) office being attached with a parang (Indonesian forest5353

knife/machete). Thus in summary the actors are the government agencies, and an5354

NGO on the one hand; and local communities and illegal logging gangs competing5355

over the Resources of timber, carbon, biodiversity and land. The former group5356

of actors is trying to ‘protect’ the resources from illegal use by the latter. Their5357

impact upon the site will depend upon the ease of access the forest as regulated by5358

the presence of roads and rivers, and these will also facilitate the removal of timber.5359

Moreover those areas which have more timber are more likely to be targeted for5360

logging, and this is reflected in the measurement of the biomass from 2007. Hence5361

the Interactions are either direct conflict in the case of the illegal loggers, turning5362

a blind eye in the case of fishing, and cooperation between the NGO and the Berbak5363

office to improve conservation. The Dynamics of the system are that because of5364

the imperfect enforcement of PA rules (e.g. ignoring people inside the park, and5365

not being able to tackle the illegal logging), deforestation has continued, albeit at a5366

lesser rate than comparable surrounding areas as described in the previous chapters.5367

Hence ZSL has intervened to supply the resources to reduce the illegal activities in5368

the park.5369

ZSL’s first annual project report to the Darwin Committee explains how a joint5370
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ZSL/Berbak National Park field base was built during the first year of the project5371

in 2009, using a donation from KPMG, a consultancy company (see chapter 3 for5372

the project background, and ZSL (2010)). The staff who built the base were all5373

paid with the Darwin grant funding. According to this report, during 2009, the5374

post was permanently staffed by ZSL and National Park rangers. In addition it5375

hosted researchers from a forestry research organisation called CIFOR; and the5376

Universities of Aberdeen, Brighton and IPB Indonesia (ibid.). The wooden building5377

is built at Simpang Malaka, at the confluence of two rivers which drain the park, and5378

which provides the major access into the core forest. It provides lodging facilities5379

such as a electricity generator; kitchen, and rainwater collection (essential since the5380

acidic peat swamp water is non-potable). Prior to this intervention there was no5381

serviceable base at the site, and there was insufficient money to send rangers into5382

the field often (ZSL, 2008). The increase frequency of patrolling in theory increases5383

the probability of detection of illegal activities, and better support and training of5384

rangers should enable them to deal with the subsequent law enforcement situation5385

arising when illegal activities are encountered. Thus in theory the increased activity5386

and patrolling instigated by the project is an intervention in the system (Dawid,5387

2000) that should reduce deforestation relative to the deforestation observed in the5388

similar PAs which did not receive the additional funding for patrols.5389

10.3.0.1 Hypotheses for the treatment effect5390

The construction of the new based and additional park rangers constituted the5391

experimental treatment or shock, with a new highly visible disincentive to undertake5392

illegal activities in the park. The presence of additional researchers would also have5393

raised the probability of detection of illegal activities. So the motivating question5394

here is whether this had any effect on deforestation. The hypotheses is that:5395

• H01 The first year of pilot REDD+ activities at Berbak reduced deforestation5396

compared to other similar PAs that did not receive the REDD+ intervention.5397

10.3.1 The basic empirical model5398

The basic empirical model is DD, with the expectation that this controls for time-5399

invariant unobservable characteristics. The model used to estimate the average5400

treatment effect (ATE) at Berbak following the intervention is as follows:5401

Let: Ȳ before
i be the outcome before the intervention for each 500m x 500m forest5402

parcel i.5403

And: Ȳ after
i be the outcome before the intervention for each 500m x 500m forest5404

parcel i.5405
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The DD estimator is:5406

βDID = (Ȳ treat,after − Ȳ treat,before)− (Ȳ control,after − Ȳ control,before) (10.1)

βDID = ∆Ȳ treat −∆Ȳ Control
5407

where Ȳ is the population mean for deforestation.5408

10.3.2 Estimating the DD: data processing5409

10.3.2.1 Processing the dependent variable5410

The radar data used in chapters 7 and 9 cover a large swathe of southern Sumatra,5411

encompassing the eastern half of Jambi province and the majority of South Sumatra5412

province. However, instead of an entire mosaic which covered the whole area anal-5413

ysed in Chapters 7,8 and 9, JAXA provided five smaller scenes covering the area5414

around Berbak national park only. The extent of this data is shown in figure 10.1,5415

and reduces the geographical scope of this piece of work, including the selection of5416

potential pre-matched controls sites.5417

These additional scenes were provided as raw data so needed to be processed5418

to form a composite image. To do this, the raw data were processed first with the5419

Alaska Satellite Facility’s Map Ready Package(Alaska Satellite Facility, 2013), cali-5420

brated with Sigma geometry with output scaled to decibels, and at 30m resolution.5421

Second, the five individual scenes were merged into a single raster using the merge5422

function in the Raster package in R (R Core Team, 2013; Hijmans, 2013). Third,5423

the 2007,8 & 9 backscatter data were clipped to the smaller extent of the 2010 data,5424

also using the raster package. The 2010 data were then warped to the 2007 data5425

using ENVI to ensure that all pixels overlapped to ensure maximum accuracy in5426

the subsequent deforestation estimates. Pixels interpreted as non-forest areas or as5427

forests that were flooded were excluded from the analysis following the procedures5428

set out in Chapter 7. Only pixels with an estimated biomass of 53Mg ha−1 in 2007,5429

and which were not determined to have experienced flooding were considered in the5430

analysis.5431

Following the approach outlined in the last chapter, I aggregated the original5432

30m x 30m pixels 17 times to form 510m x 510m pixels, in which of each I cal-5433

culated the proportion of the 289 pixels deforested (sum deforested pixels/289) x5434

100. I processed the data such that only grids which were entirely inside the Berbak5435

protected area, or entirely within the hutan lindung areas were considered in the5436

analysis, addressing any potential issues from overlapping land boundaries. Baccini5437

et al. (2012) has produced global estimates of biomass using 500m resolution; Mor-5438

ton et al. (2006) analysed deforestation patterns and drivers in the Amazon using5439

MODIS optical satellite data at 250m resolution (though mentions using products5440

193



up to 1km resolution); Pfeifer et al. (2013) used MODIS at 500m resolution to anal-5441

yse deforestation in east Africa; and the Global Forest Watch website (For, 2014)5442

provides deforestation data at 500m resolution. Hence treating the dependent vari-5443

able in this manner a) both creates an intuitive outcome for interpretation, b) at a5444

resolution with multiple precedents in the literature.5445

a) The extent of  the
 2007 to 2009 radar 
data. Image shows
deforestation in this two 
year period in red. 
Stable forest over 53 Mg 
ha-1 is shown in green.

b) The reduced extent of  
the 2010 extent radar 
data, showing 
deforestation between 
2009 and 2010. 
Stable forest over 53 Mg 
ha-1 is shown in green.

Berbak

The control sites
(hutan lindung).

The area outlined in blue 
is the reduced extent of  
the 2010 data, shown in 
the image above.

Figure 10.1: This diagram shows the reduced extent of the 2010 data and associated
analysis. The bottom image (a) shows the extent of the radar data, and deforestation
between 2007 and 2009. This is the extent of the data that was used in Chapters
7,8 and 9. The top image (b) shows the reduced extent of the 2010 data, and
deforestation between 2009 and 2010. This is the extent of the data analysed in this
chapter. Whilst on the one hand the additional data facilitated a novel analysis, it
restricted the possibilities for the selection of potential counterfactual control sites.
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10.3.2.2 Creating the independent variables5446

The independent variables were chosen based upon their significance in influenc-5447

ing the likelihood of deforestation (Kaimowitz and Angelsen, 1998; Ikenberry, 1988;5448

Angelsen and Kaimowitz, 1999, 2001; Barbier et al., 1995; Lambin et al., 2003)).5449

and as described above confounding the spatial selection of PAs (Joppa and Pfaff,5450

2009), introducing bias. The independent variables were created using the process5451

described in the methods section of the previous chapter, including the distances to5452

rivers, villages, roads and forest biomass in 2007. These variables were clipped down5453

to the reduced size of the study area determined by the 2010 radar data. However5454

some additional variables were created specifically for this analysis. Dummy vari-5455

ables were coded for pixels that were protected, matched (see below) and in Berbak5456

National Park. In addition, a distance to village raster was created in which each5457

pixel had an estimate of the geographical distance from the nearest village. This dis-5458

tance was measured using the proximity analysis tool in QGIS (QGIS Development5459

Team, 2009). One important limitation to note is that a road map was available5460

from 2005, two years before the start of the impact study. It is likely however that5461

the road network expanded during the period 2005-10, as forest was cleared, and5462

new plantations developed. This variation of a driver of deforestation over time5463

and space cannot be captured in the present analysis therefore, which will introduce5464

some small errors (the marginal changes in the road network 2005-2010 into the cal-5465

culations of causal effects in this paper. This is because those areas which become5466

in effect closer to the road (of course the contrary explains the actual dynamic) over5467

those years will experience an increasing likelihood of deforestation over time which5468

is not accounted for.5469

10.3.3 Estimating the DD: statistical methods5470

10.3.3.1 Summary5471

I now describe in summary the approaches I used to make the final estimation of the5472

DD, before moving on to explaining each step in detail. I undertook several steps.5473

First I re-visited the key identifying assumption of the DD model which is parallel5474

paths: that the trend in the selected control sites and the treated sites are the same.5475

To do this I examined the data graphically, plotting the trends in mean deforestation5476

outcomes in Berbak, compared against those sites which had the potential to serve5477

as counterfactual control sites within the geographical constraints of the available5478

remote sensing data. Upon examining the results, I then used a Genetic matching5479

algorithm to try to identify pairs of data which were as similar as possible upon a5480

vector of covariates known to influence deforestation and confound the location of5481

protected areas, hence to attempt to control for selection bias. In this chapter I do5482

not include elevation, since we are now dealing with a subset of data which focuses5483
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on the eastern coast of eastern Sumatra only, and not the hills and mountains which5484

rise up in the centre and west of the island. This also reduced the complexity of the5485

matching procedures (the ‘irreducible complexity’ of matching on multiple variables5486

referred to by Sekhon (2011)). In order to create the covariate data set, I created5487

a series of rasterised images that calculated the distance from roads, rivers, villages5488

and forest biomass in 2007, which are shown in the literature as those variables5489

influencing deforestation and the site selection bias for PAs (Joppa and Pfaff, 2009).5490

I then again examined the assumption of the DD model using these new matched5491

data using graphical analysis. Based on the balance statistics the matching was5492

ineffective, and the parallel trends assumption again could not be met following the5493

matching. Nonetheless to provide an indicative result, I performed a least squares5494

dummy variable regression on the unmatched data, to provide an imperfect estimate5495

of the treatment effect. This was with the data from pre-matched controls merged5496

together to produce a synthetic control, because the graphical analysis suggested5497

that this synthetic control had the most constant deforestation rate over time.5498

There were two time periods that could have served as the contrast for the5499

treatment time period: 2007 to 2008, and 2008 to 2009. I chose the former. This5500

was because even though the field base was built in 2009, some preliminary scientific5501

research activities in 2008, including the collection of the forest carbon data. Whilst5502

the purposes of these surveys was scientific research, there is a possibility that5503

this could have been confused with forest protection by local people. Because the5504

objective of the study was to compare deforestation before and after the REDD+5505

activities started, it is therefore better to use deforestation from the earlier period,5506

before any ZSL activities at all had started at the site.5507

10.3.3.2 Pre-matching the control sites5508

The aim is to assess the marginal change in the efficacy of Berbak following an inter-5509

vention. As set out above, in effect this means that Berbak has been treated twice,5510

first as a PA and then as the recipient of a REDD+ project. A plausible coun-5511

terfactual would therefore be a site (or sites to create a synthetic control) which5512

was also a PA that was as similar as possible to Berbak but which had not been5513

the subject of a REDD+ project. Ideally, such sites would have included strict5514

national parks i.e. of precisely the same institutional status as Berbak), experienc-5515

ing the same pressures from the proximate drivers of deforestation due to having5516

experienced the same spatial selection bias in their location. Further, these vari-5517

ables would correlate with unobservable factors such as local cultural differences in5518

attitudes towards forest management, and regional economic development e.g. the5519

same demand for timber from saw mills. If the perfectly matched sites experienced5520

the same deforestation rates over time prior to the intervention then any differences5521

in deforestation rates following the intervention might then be ascribed to that in-5522
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tervention. If the counterfactual sites had higher levels of deforestation, then the5523

DD between the sites following the intervention might indicate the causal impact of5524

the new REDD+ policy. However this was not the case in practice: the 2010 Radar5525

data provided by JAXA which facilitated this analysis covered only a restricted area5526

of eastern Sumatra. In turn this implied a major prior restriction on the possibilities5527

for selecting PAs that could serve as the counterfactual controls.5528

As such I followed the approach of Arriagada et al. (2012) by pre-matching5529

any sites that were PAs within the restricted dataset, and hence similarly potential5530

REDD+ project sites. Unfortunately there were no other strict national parks5531

available. There are five other protected areas than Berbak national park in the5532

study area. I immediately discounted three. The first was the Hutan Lindung5533

forest to the north of Berbak which I revealed in chapter 8 as being entirely devoid5534

of forest: one could not compare Berbak with a site which had a zero-probability5535

of any further deforestation. The next two sites are directly adjacent to Berbak5536

national park, a forest park (Taman Hutan Raya; TAHURA) and another Hutan5537

Lindung forest. I discounted both of these areas, because they technically fall into5538

ZSL’s area of interest (see case study chapter for details and map), and are hence5539

subject to the treatment of increased patrols in the REDD+ pilot. The final two5540

remaining PAs were two hutan lindung areas to the north west of Berbak as shown5541

in figure 10.2 which I chose as the pre-matched control sites. However doing so5542

already introduces an imperfection in the comparison: national parks are managed5543

by the Ministry of Forestry in Jakarta and have dedicated local offices and a staff to5544

manage them; whilst the hutan lindung areas are of lower conservation value, and5545

managed under regional forestry offices Dinas kehutanan which manage a portfolio5546

of forests (Collins et al., 2011a).5547

In the graphical analysis I plotted the mean deforestation rates over time in each5548

of these two pre-matched sites; and then also merged the data from both sites to5549

create a synthetic control, also plotting the mean deforestation over time from this5550

data set5551
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Figure 10.2: A map of the study area showing Berbak National Park and the two
pre-matched hutan lindung control sites to the north-west

Control HLa
Villages Rivers Biomass Roads

Min. 6878 109 12.44 63
1st Qu. 13253 428 109 731
Median 15238 919 154 1641.5
Mean 14862 1039 137 1784

3rd Qu. 16839 1450 168 2712
Max. Qu. 19354 3541 192 5177

Control HLb
Villages Rivers Biomass Roads

Min. 8251 885 3 94.08
1st Qu. 11903 4870 140 678
Median 13450 7168 149 1509
Mean 13523 6905 142 1628

3rd Qu. 15362 8937 156 2432
Max. Qu. 17622 11342 188 4431

Berbak
Villages Rivers Biomass Roads

in. 668.6 89 1 117
1st Qu. 7779 1724 138 3827
Median 11317 3398 148 6337
Mean 12103 3775 140 6655

3rd Qu. 16022 5632 156 9249
Max. Qu. 26511 11159 191 16087

.

Table 10.1: The descriptive statistics for the for the two Hutan Lindung control
sites and the treated Berbak national park.
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10.3.4 Matching the pre-matched sites; testing covariate5552

balance5553

Following the pre-matching procedure, I then used the Matching package in R5554

(Sekhon, 2011) in order to find matched pairs of observations that balanced the5555

covariates of the observations in the treated and untreated groups, producing sum-5556

mary statistics of the balance and graphical representations in the form of QQ plots.5557

Specifically I used GenMatch, with nboots=500, and with a population size of 50,5558

and with the default of sampling with replacement retained. I used the Balance-5559

Match function to provide the final balance statistics.5560

10.3.5 Regression modelling to estimate the DD5561

In order to estimate the DD, I used linear regression modelling, where the DD is the5562

β on the interaction between a time dummy and treated observation dummy. This5563

approach does not compare the levels of outcomes between treated and control, just5564

outcome and trends. In terms of the functional form, I assume that the effect of the5565

treatment is linear and additive. The DD estimator is the ATE, deriving from the5566

assumed exogenous variation imposed by the project intervention. Since DD deals5567

with sample means it can be estimated equally well using panel data (repeated ob-5568

servations of the same individuals; pixels) or with repeated cross-sections (repeated5569

samples from the same population).5570

The dependent variable was the deforestation (Def) rate in each 510m x 510m5571

pixel. The control variables were the distance to villages (Vill), roads (Road), and5572

rivers (Riv), and the amount of forest biomass in 2007 (Bio). The variables of5573

interest are the dummy variable for the treatment time period (TreatT); the dummy5574

variable for the treated observations at Berbak (Berb); and their interaction. The5575

synthetic control of the combined HLa and HLb set as the reference category with5576

respect to the Berbak treatment dummy; whereas the time period 2007:8 is set as5577

the reference time period to the treatment time period of 2009:10.5578

Yit = α + δ0Xi + δXit + δ2Ti + βXi ∗ Ti + εit (10.2)

Since there are only two time periods in this study (2007:8 and 2009:10) and only5579

two sites (Berbak and the synthetic control group of the merged Hutan Lindung5580

areas), the dummy variables included in the model for the treatment time period5581

and the treated observations at Berbak act to estimate fixed effects, specifically,5582

least squares dummy variables estimation. The dummy variable for Berbak or the5583

control site thereby represents all the unobserved factors that vary across Berbak5584

and the control sites (such as cultural factors) but are constant over time. The5585

dummy variable for the synthetic control site is the referent for the treated Berbak5586
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pixels. In practice the equation that I estimated in R was as follows:5587

Defit = δBioit+δ2Roadit+δ3Rivit+δ4V illit+δ5Berbt+δ5TreatTi+βBerb∗TreatTi+εit
(10.3)

As diagnostic tools, I used the outlierTest function from the car library for R5588

(Fox and Weisberg, 2011), and removed any outlying points with unusually high stu-5589

dentised residuals over 4 from the data set, before re-running the regression. I then5590

plotted the relationship between the independent variables and residuals to check5591

for evidence of omitted variables bias and changes to the mean model. I then plotted5592

the fitted values against the model residuals to check for evidence of non-constant5593

error variance, violating the central assumption of homoskedasticity. Following this5594

I checked results for a log-transformed dependent variable and the error variance;5595

before using heteroskedastic-robust standard errors to correct for heteroskedasticity.5596

To do this I used code attributed to Dr. Ott Toomet (Goulding, 2011) implemented5597

in R, which Goulding (2011) claims replicates the more commonly-known STATA5598

‘Robust’ command results.5599

10.4 Results5600

10.4.1 Testing DD model assumptions using data from the5601

pre-matched sites5602

The trends in deforestation in Berbak were different to those in the pre-matched5603

control sites. The location of the control sites is illustrated in 10.2, and the trends5604

in deforestation shown in figure 10.3. Berbak exhibited a fairly flat mean trend5605

at an absolutely low level of 0.1%, which fell below 0.1% in 2008:9, and then rose5606

towards 0.1% again in the time step of the intervention 2009:10. Control site HLa5607

showed a marked spike in deforestation in period 2008:9 at over two percent per5608

year, before falling below one percent in the following time step 2009:10. Control5609

site HLb showed quite a dramatic trend whereby deforestation rose from 0.2% in5610

2007:8, to 0.25% in 2008:9 before rising steeply to 1.1% in 2009:10. The synthetic5611

control produced a value which ran between the two extremes, rising from 0.75% in5612

2007:8, to a hump of 1.25% in 2008:9; and then falling to just over 1.0% in 2009:10.5613

As such none of the unmatched data satisfied the identifying assumptions of the5614

DD model. Of the three, the synthetic control had the flattest trend. Yet since it5615

was not parallel I then searched within the synthetic group for matches to a subset5616

of Berbak pixels, in order to better be able to identify an untreated counter-factual5617

group of observations. Descriptive statistics for the two pre-matched sites and the5618

treated Berbak site are provided below.5619

200



0.0

0.5

1.0

1.5

2.0

2007:8 2008:9 2009:10
Time period

D
ef

or
es

ta
tio

n 
ra

te
 %

 in
 5

00
m

 x
 5

00
m

 p
ix

el

Site

Control.HLa

Control.HLb

Control.synthetic.HLa.HLb

Treat.Berbak

Deforestation trends pre-matching

Figure 10.3: Trends in deforestation at Berbak and pre-matched control sites at
Hutan Lindung a,b (HLa,b) and a synthesised group formed by combining data
from both these sites, and thereby treating them as an individual control. The
trend lines are formed from the mean deforestation rate in each site.

10.4.2 Genetic Matching results5620

The matching procedure performed poorly to identify observations in the synthetic5621

control groups, as reflected in the Kolmogorov-Smirnoff test statistics, which sug-5622

gested that the covariate distributions for all of the covariates were still significantly5623

different following the matching procedure. The results are summarised in the table5624

10.2 below.5625
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Villages Biomass
Before matching After Matching Before matching After Matching

Mean treatment 14233 14233 139.3 139.3
Mean control 12082 13623 139.6 134.14
Std mean diff 87.3 24.7 -0.85 14.7

Mean raw eQQ diff 3427.9 2552.9 7.47 7.58
med raw eQQ diff 3670.4 1782.7 28.3 20.6
max raw eQQ diff 7157.9 5035.7 0.08 0.13
mean eCDF diff 0.19 0.16 0.16 0.32
med eCDF diff 0.174 0.176 0.11018 0.0454
max eCDF diff 0.38 0.27 0.15975 0.32

var ratio (Tr/Co) 0.19 0.28 1.42 1.41
T-test p-value 0.00 0.00 0.80 0.00

KS Bootstrap p-value 0.00 0.00 0.00 0.00
KS Naive p-value 0.00 0.00 0.00 0.00

KS Statistic 0.37 0.27 0.159 0.32

Rivers Roads
Before matching After Matching Before matching After Matching

Mean treatment 3796.6 3796.6 1710.7 1710.7
Mean control 3781.1 3724.3 6629.3 2122.7
Std mean diff 0.44 2.09 -418.8 -35.1

Mean raw eQQ diff 963.08 188.5 4918.1 412
med raw eQQ diff 1002.8 140.9 4736.9 406.2
max raw eQQ diff 1914.6 1210 10910 846.49
mean eCDF diff 0.098 0.02 10910 846.49
med eCDF diff 0.1 0.016 0.414 0.10
max eCDF diff 0.19 0.07 0.44 0.06

var ratio (Tr/Co) 1.88 1.02 0.70 0.29
T-test p-value 0.88 0.00 0.11 1.26

KS Bootstrap p-value 0.00 0.02 0.00 0.0
KS Naive p-value 0.00 0.2 0.00 0.0

KS Statistic 0.19 0.07 0.70 0.29

Table 10.2: Results of the covariate matching procedure using the Genetic Matching
in the R Matching package. Note the size of the Kolmogorov-Smirnoff statistic
before and after matching, and its associated p-value. This shows how the mean
treatment and control values following matching, which was not successful in that
the algorithm could not find observations balanced the covariates in the treated and
untreated groups such that the difference as measured by the Kolmogorov-Smirnoff
statistic was no longer significant. This reflects the variable space of the data and
the issues of finding suitable controls.
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Figure 10.4: The quantile-quantile plots show the distribution of the treatment
and control sites entitled pre- and post- the matching procedure. In the näıve pre-
matching comparison the control sites are any observations in the two pre-matched
control sites. The post-matching control observations should be more similar in
their distributions to the treated observations, than are the ‘any other’ observations
in the näıve comparison. However, the matching procedure was not as effective as
in the previous chapter, as demonstrated in the balance statistics.
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10.4.3 Testing DD model assumptions using the matched5626

data5627

Following the matching of the co-variates the above procedure, I explored the trends5628

in deforestation in the imperfectly matching data, illustrated in figure 10.5. The5629

trends reflect the poverty of matching results presented above, because the trends5630

appear almost as extreme as pre-matched site HLa in the pre-matching trend anal-5631

ysis, hence there does not appear to have been any benefit in matching either for5632

achieving balance in the covariates or in satisfying the parallel trends assumption.5633
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Figure 10.5: The trends in deforestation in Berbak and in the synthetic control
group following the matching procedure. The matching procedure was unsuccessful
with regards to moving systematic differences between the control and treated sites.
Similarly it had no effect on the identification of pixels which were undergoing the
same rate of deforestation as at Berbak. Hence the core identifying assumption of
the DD method could not be satisfied.
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10.4.4 Regression modelling5634

The regression model results are tabulated below in table 10.3. The reference cat-5635

egory for the Berbak dummy was the synthetic control of the combined HLa and5636

HLb datasets without the unsuccessful matching applied, and the time period 2007:85637

as the reference time period compared to the intervention of 2009:10. Overall the5638

model explains very little of the variation in the data, with an R2 of <0.1. However,5639

the concern here is not to create a predictive model, rather to understand the signif-5640

icance and effect size and sign for the variables for the β on the interaction between5641

the treatment time period and the treated observations at Berbak. These analysis5642

suggests that deforestation increased by 0.08% in Berbak following the inception of5643

the project, holding other variables constant, assuming no omitted variables; yet5644

this finding is not statistically significant (p=0.5).5645

Whilst there did not appear to be correlations between the independent variables5646

and the residuals, the residual and fitted values suggested heteroskedasticity, with5647

variance increasing in a ‘funnel’ with increasing fitted values. The log transformation5648

of the dependent variable, deforestation, did not appear to correct for this. As such5649

I used the results from heteroskedastic robust standard errors. In the table below5650

I present both the results from the normal regression summary output, followed5651

then by those from the robust standard errors. This latter correction reduced the5652

apparent increase in deforestation following the intervention from 0.08 to 0.05%,5653

and decreased the p value, yet not to a significant level, from 0.5 to 0.37.5654
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6419 0.1398 11.74 0.0000

biomass -0.0021 0.0007 -2.85 0.0044
rivers -0.0000 0.0000 -4.56 0.0000
roads 0.0000 0.0000 2.35 0.0187

factor(T910)1 -0.0604 0.1172 -0.51 0.6067
villages -0.0000 0.0000 -4.57 0.0000

factor(class)Berbak -1.0220 0.0877 -11.66 0.0000
factor(T910)1:factor(class)Berbak 0.0843 0.1289 0.65 0.5132

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.50 0.06 8.76 0.00

biomass -0.00 0.00 -3.48 0.00
rivers -0.00 0.00 -4.22 0.00
roads 0.00 0.00 3.59 0.00

factor(T910)1 -0.03 0.06 -0.62 0.53
villages -0.00 0.00 -5.58 0.00

factor(class)Berbak -0.32 0.04 -8.70 0.00
factor(T910)1:factor(class)Berbak 0.05 0.06 0.90 0.37

Table 10.3: Regression model results for Berbak national park, with the synthetic
control of the combined HLa and HLb set as the reference category, and the time
period 2007:8 as the reference time period. The upper table is the result with unad-
justed errors, whilst the lower table is the result of using heteroskedasticity robust
standard errors. Overall the model explains very little of the variation in the data,
with an R2 of <0.1. The interaction between the treatment time period and the
treated pixels at Berbak suggests that deforestation increased by 0.05% following
the inception of the project, using robust standard errors. However, this finding is
not statistically significant, and furthermore the basis for the DD approach is un-
dermined by the lack of a control site which exhibits the same trend in deforestation
as the treated site.
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Figure 10.6: Model analysis to check for omitted variables. In the four charts above
are the model residuals plotted against the explanatory variables used in the final
model.
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10.5 Discussion5655

10.5.1 Selection of counterfactual(s)5656

In the graphical analysis of the trends in deforestation in Berbak park itself, and the5657

two pre-matched untreated sites, it was immediately clear that the sites were expe-5658

riencing very different trends in deforestation over time. Two aspects of the data5659

are striking. The first is that the deforestation in the untreated sites peaked very5660

noticeably in the 2008:9 period, which was the run-up to the 2009 legislative elec-5661

tions in Indonesia. This is intriguing given that Burgess et al. (2012) suggested that5662

deforestation in Indonesia followed election cycles, whereby local officials increased5663

the number of logging permits in order to increase revenues to finance re-election5664

campaigns. This may include areas designated for protection and yet managed at5665

the provincial level such as hutan lindung forests. A related observation is that5666

Berbak experienced no increase in deforestation during this time period. As such I5667

hypothesise that the peak observed in the Hutan Lindung forests -which are man-5668

aged at the provincial level-may reflect the political logging identified by Burgess5669

et al. (2012).5670

The second substantive observation is that Berbak has a low absolute level of5671

deforestation overall during the study period, at < 0.1%. This suggests that there5672

is little additional forest conservation benefit to be gained at Berbak currently, espe-5673

cially when compared with the hutan linung forests used as control sites. However,5674

these data cover a very short time period of only three years, which is still in practice5675

only a snapshot of what is happening to the forests in the region. For instance, the5676

large ‘hole’ in the middle of Berbak was created by fires in the late 1990s. Hence if5677

longer-term data were available over Berbak, then extremely large spikes in defor-5678

estation would be observable in the protected area, making a stronger case for an5679

intervention in park management.5680

Most importantly the lack of suitable counterfactual sites against which to com-5681

pare deforestation in Berbak presents a considerable challenge for causal inference.5682

Of five potential candidate sites, three had to be discounted immediately since they5683

were either devoid of forest biomass at the beginning of the study or were actually a5684

component of the Berbak REDD+ project and so not independent. This meant that5685

the two controls were the only available control sites rather than the best available.5686

In an ideal setting there would have been an identical national park adjacent to5687

Berbak with a simililar distribution of covariates to match upon, but the reality is5688

less accommodating here.5689

The matching procedure was unable to improve this situation: it produced disap-5690

pointing results, being unable to balance covariates amongst treated and untreated5691

observations, and in direct contrast to the previous chapter. These results proba-5692

bly reflect the fact that the data used in this chapter deals with a much narrower5693
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geographical area and hence provides a smaller variable space within which to find5694

suitable matches. This illustrates a broader point that whilst robust techniques are5695

certainly required to measure policy impacts, it can be rather difficult to find the5696

idealised counterfactuals in practice. This places increased emphasis on a discussion5697

concerning more theoretical aspects of impact detection at the site.5698

10.5.2 Regression analysis5699

The key identifying assumption of the DD approach is parallel paths of treatment5700

and control groups. However as described above, in neither the pre- or post-5701

matching data was it possible to identify suitable counterfactual cases that exhibited5702

exactly the same paths as Berbak. This illustrates one of the major problems of5703

this model, which undermines the subsequent econometric analysis and estimation5704

procedure. The estimate produced in the regression for the DD, i.e. the β on the5705

interaction between the treatment observations and treated time period was 0.055706

%, controlling for other variables, yet statistically insignificant at 0.37%, using het-5707

eroskedasticity robust standard errors. As such the estimation of the parameter in5708

the regression should certainly not be treated as conclusive.5709

Finally, one potential source of error that should be acknowledged is that I5710

assumed that there are only time-invariant independent variables in the system of5711

interest, since we are examining such a short time period. However with a longer5712

time period it is likely that some of the independent variables will be time-varying,5713

principally the distance of a patch of forest from the road network, which will change5714

as large amounts of deforestation occur, and as the road network expands. However,5715

obtaining timely maps of road networks on the forest frontier in Indonesia is not5716

easy. At the very least, the most up-to-date road maps should be used for a new5717

analysis, to avoid inaccurate estimates of the effect of the distance to roads upon5718

deforestation rates.5719

10.5.3 A more theoretical perspective5720

Due to the problems with the core assumptions of DD, and the insignificance of5721

the effect estimated, it may be better to acknowledge other strategies to evaluation,5722

including theoretical approaches. The absolute value of deforestation in Berbak5723

overall is very low during the short study period. However, that the absolute amount5724

of deforestation increased in Berbak is interesting. It is a protected area and so in5725

theory should not be deforested at all. Referring back to the basic conceptual model5726

set out in the methods, I hypothesise that the people surrounding the national park5727

may have had their expectations about the use of the park and its resources altered5728

by the project. Informal discussions with people living near Berbak revealed that5729

the national park served as a source of timber, albeit illegal. When the project was5730

initiated, the consultants sent out into the communities neighbouring the park and5731

209



public information campaigns (‘socialisasi ’) would have alerted illegal wood cutters5732

to a future of more frequent and efficient park law enforcement. I hypothesise that5733

this moderated the discount rate of loggers, who brought forward timber cutting5734

today in anticipation of lost future benefits.5735

However in the intervention period, increased patrols should have also raised the5736

risk of illegal loggers being captured and facing sanctions. Yet whilst the REDD+5737

project has initiated more patrols, these may be inefficient in the first period of5738

implementation, and beset by inexperience in patrolling tropical peat swamp forest.5739

One experience from the field supports this: Whilst undertaking a biodiversity5740

survey, I joined a team of researchers who were accompanied by a team of local5741

people acting as guides, and a ranger from the forest police armed with a machine5742

gun. He fired a round upon debarking from the boat, apparently in an act of bravado.5743

However, after having trekked through a kilometer of peat swamp forest, which5744

involves at times sicking knee or waist-deep into black mud and water, the ranger5745

became fatigued and handed his firearm to one of the local men to carry. Hence5746

whilst the extrapolation of anecdote is not data, such experience of enforcement with5747

armed rangers in practice may not provide the disincentive that one may imagine5748

from a distance.5749

These hypotheses may serve as a basis for future research which could be under-5750

taken alongside the implementation of the project itself, along with some randomi-5751

sation of interventions to simultaneously address the problems of causal inference.5752

In the meantime, a further note of caution is that whilst deforestation increases5753

in 2009:10 following the REDD+ intervention, it is only a small absolute increase,5754

and interpretation of the trends in deforestation should be done carefully, since the5755

trend is only in fact three time points. Without longer time series and with low5756

absolute amounts of deforestation, it is difficult to determine the extent to which5757

changes in deforestation are simply random variations rather than observations of5758

the effects of increased conservation upon the strategic decisions concerning resource5759

use. For instance we know that historically very large areas of forest have been lost5760

inside Berbak. Since this chapter has assessed only the first year of a pilot REDD+5761

project it is too soon to assess the overall impact of the intervention on deforesta-5762

tion at Berbak, which can only be assessed over the longer term. The analysis may5763

soon be continued following the launch of the ALOS-2 mission which will provide5764

continued L-band data collection, as used in this analysis.5765

10.5.4 Implications5766

In the previous chapter I demonstrated that forest loss is greater outside PAs than5767

inside in this region of Sumatra. This suggests that there is greater potential for5768

additional forest conservation benefits from acting to address deforestation outside5769

PAs. Indeed, in the literature,Pfaff and Robalino (2012) find that marginal conser-5770
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vation benefits are highest in areas that are most at risk of ecosystem degradation.5771

Hence there are probably decreasing marginal returns to conservation effort when5772

the area of interest is already protected under law, and already subject to location5773

selection bias as an area with a low risk of deforestation.5774

Nonetheless, in this instance, ZSL’s interest in developing the project was really5775

the conservation of tigers. This suggests that the location incentive to work with5776

a remnant tiger population was greater than the additional forest conservation and5777

carbon benefits that may have been accrued from acting elsewhere. As such perhaps5778

it is indeed optimal for ZSL to develop a REDD+ project in Berbak, conserving the5779

remaining tigers and still deriving some smaller marginal forest carbon conservation5780

benefits from REDD+. In addition, it should be re-iterated that a component of the5781

Berbak Carbon Initiative is actually addressing the deforestation and degradation5782

occurring in the concessions adjoining the PA (falling into the Area of Interest; see5783

the Case Study chapter for details). Hence the project does address this question5784

of additionality in areas at greater risk of deforestation.5785

Yet in the spirit of the past two chapters, one should consider the counterfactual5786

with regards to tigers as well. It may be the case that analogous principles of non-5787

linear marginal returns to conservation effort are also at play in their conservation.5788

Tigers are able to survive in a wide range of different environments, including those5789

that are heavily degraded by humans, as long as there is sufficient cover, prey,5790

and limited human persecution e.g. (Sunarto et al., 2012). In fact areas that are5791

more heavily disturbed tend to have higher ungulate density than in in-tact forests,5792

which means that one could envisage the creation of a new tiger conservation project5793

area on degraded land near to an existing PA with tigers present, which could be5794

restored to at least low scrub vegetation and pioneer tree species within a few years.5795

In principle this could provide additional habitat for tigers to expand into, thus5796

increasing the population. A question for future research then surrounds whether5797

this might be a possibility for the Hutan Lindung area which I identified as being5798

entirely devoid of forest biomass in 2007.5799

There is precedent for such a project: In 2004, the Ministry of Forestry passed a5800

Decree on Forest Utilization Permits for Natural Forest in Production Forests which5801

allowed the creation of ecosystem restoration concessions (IUPHHK-RE) (ERC) in5802

Indonesia’s Production Forest land use class, with the specific objective of allowing5803

these forests to be managed for the restoration and provision of ecosystem services.5804

This has allowed the creation of the ‘Forests of Hope’ (Hutan Harapan) in Sumatra5805

by an NGO called ‘Burung (Bird) Indonesia’, the international arm of the Royal5806

Society for the Prevention of Cruelty to Birds. Other ERCs are also being developed5807

across Indonesia including in Gorontalo in Sulawesi (see Collins et al. (2011a) for5808

background on the conservation in this area). With this in mind, ZSL could have5809

chosen an area of forest outside an existing PA, and worked to form a new ERC.5810

This could be one option for the forest concessions in the area of interest, and5811
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remain an option in the future for areas of remaining forest outside Berbak which5812

are logged over. I now place these issues within the larger context of the thesis in5813

the conclusion.5814
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11.1 Summary5817

This chapter considers the main conclusions of the thesis within the broader context5818

of REDD+ and discusses the implications both for policy and methodology. It also5819

addresses the strengths and weaknesses of the thesis and considers avenues for future5820

research. It tries then to synthesise the various findings and consider how these relate5821

to the original research questions which motivated the research. These questions5822

evolved from the continued destruction of forests in developing countries, and the5823

importance of this process in contributing to both carbon dioxide emissions and5824

hence climate change, and to the loss of other ecosystem services such as biodiversity5825

provision. Together these present two of the most serious environmental challenges5826

we face.5827

11.2 Achieving the objectives of the thesis5828

The challenge for this thesis was to address challenges whose resolution could help5829

improve tropical forest management, and facilitate the implementation of REDD+.5830

This required an understanding of the socio-economic background of Indonesia and5831

its history of natural resource exploitation, provided in Chapter 3). The focus then5832

shifted to indicators of the condition of the environment relevant to REDD+. Car-5833

bon credit buyers in the voluntary market state a preference for forest projects5834

because they perceive that they support biodiversity. So the next objective was5835

to ask how biodiversity could be quantified in the remote peat swamp forests of5836

Berbak national park. The sumatran tiger is an international and national prior-5837

ity for conservation, and a highly charismatic and valued species, which formed a5838

natural choice for this assessment in (chapter 5). However tiger conservation is a5839

possible positive externality from REDD+. The objective of REDD+ is to reduce5840

carbon dioxide emissions. So a significant challenge is estimating biomass and car-5841

bon stocks and change in these over time. Peat biomass was quantified in Chapter5842

6). Then forest carbon stocks and change were quantified in (Chapter 7 using a new5843

methodology. The next objectives were to quantify how the forest carbon stocks in5844

Indonesia were distributed with respect to land use classes (chapter 8). The next ob-5845

jective was to assess how changes in forest biomass were affected by the designation5846

of protected area status, focussing on protected areas in Jambi and South Sumatra5847

provinces between 2007 and 2009, which was achieved in (chapter 9). Finally the5848

analysis then turned to the case study of the pilot REDD+ project at the Berbak5849

Carbon Initiative. The performance of the project relative to best available control5850

sites was assessed in (chapter 10).5851
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11.3 Summary of key findings5852

The results of the thesis broadly fall into two categories. The first is the quan-5853

tification of the environmental indicators, and the change in those indicators. The5854

second is the assessed impact of policies designed to manage change in the forest5855

use, specifically the impact of national parks on deforestation in the study area.5856

11.3.1 Quantification of environmental indicators5857

The thesis quantified the forest biomass of a swathe of the provinces of Jambi and5858

South Sumatra using integrated space-based radar, lidar and field plot data. A total5859

of 503±105 x 106 Mg biomass were estimated in forest biomass across a 7.2 Mha5860

study area in 2007. Contrary to expectations, protected forest areas did not contain5861

the highest amounts of forest biomass (98 Mg ha−1). Rather the highest biomass5862

stocks were found in the Limited Production Forest class (104Mg ha−1). The lowest5863

forest biomass was found in community forest (39 Mg ha−1), however this covered5864

less than 1% of the study area (1,987 ha). The mean forest biomass at the Berbak5865

Carbon Initiative site was 147 Mg ha−1. Whilst this is not a land use class per se,5866

this finding did underscore the significance of Berbak for forest carbon conservation,5867

and shows it to be the last remaining block of relatively in-tact forest in this part5868

of Sumatra. The significance of the site is likely to become more pronounced over5869

time as what little forest remaining outside protected forest is cleared at 1.6% yr−1.5870

By using a time series of radar data, it was possible to estimate changes in this5871

biomass stock over the periods 2007 to 2008 and 2008 to 2009. Using a change of5872

1.5dB per pixel between years as the threshold for deforestation, a total of 229 x5873

103 ha were estimated to have been deforested between 2007 and 2009. Because5874

the medium wavelength L band radar can ’see’ through clouds and smoke this is a5875

significant advantage over optical methods, which have to use multi-year composite5876

images that may mask annual changes occurring in this era of rapid deforestation.5877

Between 2007 and 2008, 18.5 ±3.9 x 106 Mg of forest biomass were cleared, leading5878

to estimated emissions of 34 ±7.1 x 106 t CO2e. Between 2008 and 2009, 13.1 ±2.7 x5879

106 Mg of forest biomass were cleared, leading to emissions of 24 ±5.0 x 106 t CO2e.5880

However, a huge quantity of biomass and carbon is stored in the peat soils. Within5881

the boundaries of the Berbak Carbon Initiative, there are an estimated 6,554 *106
5882

m3 of peat, holding 380 x 106 Mg C.5883

In addition to the carbon and biomass stored at the Berbak site, the ecosystem5884

constitutes a crucial area for the Sumatran tiger and biodiversity generally. Indeed5885

the presence of tigers at the site was the main reason for ZSL establishing the5886

Berbak project. In a six month camera trapping study in 2009 in the centre of5887

Berbak National Park, 13 mammal species were recorded. Occupancy modelling5888

was used to estimate the tiger prey species and for tigers. For the prey species this5889

produced an occupancy estimate of Ψ̂=0.71 (95% CI= 0.52:0.84). For tigers, the5890
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näıve occupancy was 0.14. The final model used to estimate tiger occupancy used5891

forest biomass to estimate both occupancy and detectability sub-models. The fitted5892

occupancy was Ψ̂=0.27, 95% CI=0.14:0.45.5893

11.3.2 Impacts of policy interventions5894

By using the time series of radar data, the impact of protected areas on deforestation5895

in Jambi and South Sumatra was estimated using matching techniques. In the näıve5896

comparison, Between 2007:9, the odds of deforestation inside protected areas were5897

70% (p <0.01) lower than in unprotected areas. However, when contrasted with5898

matched pixels that were selected using propensity score matching, the odds of5899

deforestation were 68% lower. The same experiment was also carried out using the5900

raw change in backscatter values rather than a threshold value for deforestation.5901

Controlling for other predictors of deforestation these results also indicated that5902

the protected areas were providing a protective effect as measured both against any5903

other land use type, and also against the matched pixels, and when adjusting for5904

spatial correlation in the mode disturbance term.5905

Obtaining an additional year of radar data for Berbak and the surrounding5906

area allowed what is possibly the first ever impact assessment of a REDD+ pilot5907

project. During this year, a new field base was created and permanently staffed5908

by forest police and ZSL employees. This constituted the intervention. Protected5909

Hutan lindung forest areas were used as contrasts for the assessment of deforestation5910

in Berbak in a difference in difference model. The results were counter-intuitive:5911

deforestation appears to have increased following the intervention.5912

11.4 Methodological contributions5913

11.4.1 Forest monitoring using radar data5914

The thesis underscores the power of radar data to be able to ’see through’ cloud5915

and other atmospheric particulates. It demonstrates that because of this, the data5916

generated has great value for monitoring rapid land cover change in an area typically5917

covered by smoke and cloud. This ability has important implications for land use5918

management. In principle it allows governments to be able to measure the degree to5919

which their land use designations are adhered to over the short term. By contrast,5920

assessments using optical data from the Landsat and MODIS satellites typically5921

require several years of data in this part of the world in order to be able to generate5922

analyses because of the constant cloud cover. With land use change being so rapid5923

here, this is a particularly important feature, especially with the growth in the5924

development of REDD+ in Indonesia. An additional advantage of the approach5925

developed in this thesis is that the radar data actively senses the environment:5926
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optical data depends upon reflected light from the sun, whereas radar monitoring5927

involves the emission of microwave energy and recording the backscatter of that5928

microwave energy, the wavelength of which is the same order of magnitude as the5929

tree limbs and trunks. As such the backscatter reading can be directly to another5930

data set (lidar) which is directly related to the amount of biomass. Analyses using5931

optical data rely on classification of different land cover types across the landscape5932

which are then attributed a mean biomass value. However, using the radar data, a5933

biomass value can be attributed to each of the individual pixels in the study area,5934

therefore providing much finer resolution of forest biomass.5935

11.5 Limitations of the thesis5936

This thesis makes a number of contributions to empirical study of tropical forests5937

and monitoring methods. Yet the work is not without its limitations. These are5938

now addressed generally, and then with respect to each individual chapter.5939

11.5.1 General limitations5940

One of the main limitations of the thesis is that it uses a short time scale to assess5941

changes in deforestation rates in both the assessment of all the protected areas across5942

Jambi and South Sumatra, and for the assessment of the impact of the first year of5943

activities at the Berbak project site. This raises the risk that the changes observed5944

are due to random annual variations. A further issue is that the study area was5945

restricted by the spatial extent of the PALSAR radar data. So only a sub-section5946

of Sumatra’s forest was analysed. This reduces the extent to which the findings5947

can be generalised. This applies in particular to the assessment of the performance5948

of protected areas: only a subset of Sumatra’s protected areas are included in the5949

analysis.5950

11.5.2 Biodiversity assessment5951

The camera trapping data presented the first comprehensive assessment of the mam-5952

malian diversity at the Berbak Carbon Initiative. This provides a baseline against5953

which project performance can be measured in the future. The assessment of tiger5954

population provided very low occupancy estimates however. Only 21 photographs5955

were taken of tigers during the study period. One problem may be the be the dis-5956

tribution of the cameras in the study area. Grid cells of 2.5 x 2.5 km were used5957

to space the cameras out. However other studies have used 17 x 17km grid cells5958

(Wibisono et al., 2011), which means that the sampling grid used may have been5959

too small to capture the home ranges of animals ranging in other parts of the forest.5960
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11.5.3 Below ground biomass5961

In the below ground biomass estimation, the Berbak Carbon Initiative was treated5962

as discrete landscape. Whilst this appropriate from the project development per-5963

spective in terms of quantifying the carbon stored at the site, this is probably invalid5964

from an ecological perspective. The peat may constitute a hydrologically connected5965

’blanket’ across the alluvial plains of eastern Sumatra, and so parts of that cannot5966

be managed in isolation. However, the most comprehensive approach to measuring5967

peatland in Indonesia (the QANS assessment) was unable to model the distribution5968

of peat around Berbak. This provided the justification for the spatial interpolation5969

used in this thesis simply to make a baseline estimate. Finally, the fact that Berbak5970

is a part of broader landscape of peatland means that changes in ecology of peat5971

neighbouring, but not under the control of the project could have major impacts on5972

the ecology of Berbak itself.5973

11.5.4 Forest Biomass5974

Issues with the above ground biomass estimation derived from the technology used,5975

and from the field plot data. On the technological side, one of the most significant5976

limitations is the fact that the radar signal saturates at higher biomass levels. The5977

solution provided here was to integrate lidar data into the analysis, the signal from5978

which does not saturate until much higher biomass levels. Yet this solution has its5979

own limitations, because there is only one available lidar data set that intersects5980

with this area, and so which can be used for calibration: the GLAS Ice data. This5981

means that the further the in time each successive radar data set is in time from5982

collection of the lidar data (2003 to 2007), the greater the possibility that the li-5983

dar reading of Lorey’s height no longer reflects the actual situation on the ground,5984

because of deforestation. This will cause increased errors in the regression relation-5985

ships. Nonetheless, this is research and development work: these limitations can be5986

overcome given continued investment in technology and availability of new data.5987

In the field plot data, a first problem was that tree heights were not measured5988

by the field team, so these had to be modelled using relationships from elsewhere in5989

Indonesia. Yet the morphology of trees in peat swamp forests is less well known than5990

for terra firme forests because there has historically been less research in this ecosys-5991

tem. This will have introduced further errors into the final biomass calculations.5992

In addition, the field plot data from Berbak was used to developed a relationships5993

between the lidar data, then radar backscatter, which was extrapolated across the5994

whole landscape. Not all the forests in the landscape are peat swamp forests, but5995

the relationships established at Berbak do not reflect the heterogeneous ecologies5996

of the island. One solution might be to partition the study area into known forest5997

types and develop discrete relationships for each forest type. However, this would5998

have required the establishment of forest plots across the island, each requiring the5999
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establishment of new research relationships with local authorities: the bureaucratic6000

requirements of which made this infeasible in the scope of a PhD thesis.6001

11.5.5 Assessment of the performance of protected areas6002

in Jambi and South Sumatra6003

This chapter provided an opportunity to assess the extent to which protected areas6004

had actually been effective in reducing deforestation. The results produced here6005

confirmed the findings of the only other study to make an assessment of Sumatra’s6006

protected areas: they do appear to be working, as measured against matched un-6007

protected pixels. However there are three key issues with this conclusion. The first6008

is that study area only covers a sub-section of Sumatra and hence only a sample6009

of Sumatra’s protected areas. The interpretation should be limited to the pro-6010

tected areas in the study scene. Second, the problem with the limited extent of6011

the study area constrains the selection of pixels to match against. For instance,6012

better comparisons may have been found further to the north of the Berbak in Riau6013

province, where extensive peat forests are also still found. This means that selection6014

of matched pixels only from within the boundaries may give a false degree of confi-6015

dence. In addition, the short study period (2007:2009) provides only a small sample6016

of the changes which are occurring over the medium term. As such, the underlying6017

trend in deforestation may be obscured by the short term annual fluctuations in6018

deforestation. Nonetheless, the collection of the radar data used in this study was6019

only started in 2007, which limits its utility for analysing historical deforestation,6020

as compared against optical LANDSAT data for example.6021

11.5.6 Assessment of project impact6022

. The chapter on the assessment of the project impact provided an exciting empirical6023

analysis since it is probably the first assessment of a pilot REDD+ project. The6024

potential limitations relate to both the analytical approach and to the actual events6025

on the ground. On the analytical side, the same criticisms of the limitations of the6026

matching procedure described above equally apply to this chapter: the matched6027

pixels may not represent ideal matches for the study site: there are no other such6028

large peat swamp forests in the study scene. Nonetheless, that is a constraint of the6029

available data. Other limitations relate to the nature of the intervention and the6030

time frame involved: building the new ranger base and providing permanent staffing6031

is only the first step in the implementation of the pilot REDD+ project. It would6032

be too ambitious to conclude that the changes observed in the study period are6033

an end result of REDD+ implementation: this is why the chapter is careful to set6034

out that the analysis is of one year of project implementation. In addition, it is not6035

possible know what processes are occurring socially without new data collection from6036
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the villages bordering the park. However, interviewing people about the REDD+6037

project for PhD research was deemed too sensitive by the project manager, so this6038

option was not available. Nonetheless, lack of information on the social processes6039

in the area does not of course change the results measured by the remote sensing.6040

A more fundamental problem with the assessment is that it is hard to distinguish6041

the protective effect of the national park from the impact of the NGO intervention6042

in the national park. Since the park was protected anyway, and appeared in the6043

analysis to be reducing deforestation then the final estimation of the project impact6044

is actually the change in protection performance of the national park, which is quite6045

convoluted. This is likely to continue to remain a problem for REDD+ projects6046

which are established in areas which are already protected.6047

11.6 Synthesis and implications: Deforestation6048

on Sumatra6049

Whilst Indonesia’s high deforestation rate has been documented recently by Mar-6050

gono et al. (2012), the change observed during two years period is nonetheless very6051

high. Forest conversion has major impacts on natural and human systems. In the-6052

ory, forest clearance and plantation development can provide jobs and infrastructure6053

for the rural poor; foreign exchange from timber, pulp and oil palm; and tax revenue.6054

Yet this is näıve: three decades ago, a researcher wrote: ’if one could argue that the6055

people of Sumatra had benefited, especially those who once used and lived near those6056

resources, maybe the [forest] loss would be felt less acutely (Whitten et al., 1984).6057

Little seems to have changed: murky business and corruption blight Indonesia’s6058

forestry sector (Palmer, 2005; Obidzinski et al., 2006; Indrarto and Murharjanti,6059

2012). These entrenched institutional problems complicate the implementation of6060

mitigation activities like REDD+ (Collins et al., 2011a). A striking case in point6061

is the legally protected forest described in (hutan lindung) in which little biomass6062

remains (see chapter 8). Unfortunately, the clearance of Indonesia’s legally pro-6063

tected forests is not uncommon, as shown for example in Sulawesi by Macdonald6064

et al. (2011). The loss of these forests imposes costs not measured in price systems.6065

These externalities include the loss of vital ecosystem services, crucial for climate6066

change adaptation. Forests provide inter alia: local and global climate regulation;6067

soil fertility and clean water supplies. Furthermore, Sumatra is in the Sundaland6068

hotspot, one of earth’s most species-rich regions (Myers et al., 2000). Some of the6069

world’s last tigers (Panthera tigris sumatrae) are found here (Chapter 5). In ad-6070

dition the world’s tallest and largest flowers are found here (Amorphophallus sp.6071

and Rafflesia sp. respectively). Reducing deforestation and forest degradation here6072

is necessary to help conserve forest-dependent species, though it is not sufficient6073

(Collins et al., 2011b). In addition, this thesis has demonstrated that the imple-6074
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mentation of REDD+ activities may lead to perverse outcomes, including increases6075

in deforestation locally. This in turn has implications for the implementation of the6076

carbon project at Berbak national park.6077

11.7 Implications for the Berbak project6078

For project-level REDD+ implementation need to be aware of both of the physical6079

and the institutional landscape in which they operate (Collins et al., 2011a). Aside6080

from the presence of tigers in Berbak which drew ZSL to the site in the first instance,6081

the fact that the core of the project is Berbak national park is significant. National6082

parks are managed by the Ministry of Forestry in Jakarta. Notwithstanding the6083

threat of Law 10 of 2010, National Parks contain the forests least likely to be legally6084

converted to production forest, and as such have the lowest opportunity cost for the6085

Ministry of Forestry in terms of Retribusi, the fees, charges and levies which the6086

MoF can charge on new forestry operations. Simultaneously, it allows the Ministry6087

to publicly ’buy-in’ to REDD+; most of the areas covered by the forest moratorium6088

are in areas which are already protected e.g. Austin et al. (2012). In addition, sup-6089

porting REDD+ in a national park allows the Ministry to support other goals such6090

as the the plan to support the recovery of the Sumatran tiger population (Ministry6091

of Forestry, 2010). This may have underpinned the success that ZSL has experi-6092

enced so far in developing the pilot REDD+ project in Berbak National Park: it6093

is supported by the Presidential instruction on the moratorium; allows buy-in from6094

the MoF at little cost; and moreover is already protected on paper, meaning that6095

multiple institutions and organisations have incentives to support project activities6096

and the enforcement of existing laws. However the Berbak Carbon Initiative in-6097

cludes other forest classes outside the park: hutan lindung, forest park (TAHURA)6098

and limited production forests, and these are the forest classes that fall under the6099

control of local Bupatis. The protected forest classes have less infrastructure for6100

protection (having no park office for instance), whilst the production forest is des-6101

ignated for commercial exploitation. Chapter 8 highlights how this land use class6102

has on average the highest forest biomass in the study area. The excision of these6103

forests from Jambi’s productive forest estate for REDD+ purposes therefore has6104

much higher opportunity costs than authorising the already-protected Berbak na-6105

tional park. From the perspective of the state, not only is there a loss of retribusi for6106

the DINAS Kehutanan (the district and provincial-level MoF offices which admin-6107

ister production forests under autonomy) in addition to MoF in Jakarta, but also6108

the reduction in employment by concessionaires and associated multiplier effects.6109

From the perspective of the concessionaires with licences to exploit the pro-6110

duction forest next to Berbak, there is the loss of revenues from the timber and6111

loss of the opportunity to cover the fixed costs of acquiring the concession. Further-6112

more, the concessionaires are aware that ZSL wishes to incorporate their concessions6113
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within a REDD+ project. Yet agreement on how or whether this will happen has6114

not been made. The options include ZSL subsidising reduced impact logging in the6115

concessions, or even taking over management of the concessions directly, in which6116

case they could either be logged at sustainable levels or retired under PP6/20076117

as an Ecosystem Restoration Concession (REKI). These were created under law6118

PP6/2007 and allow for appropriate entities to manage logged land under a 99 year6119

lease with the objective of regenerating forest. The NGOs Royal Society for the6120

Protection of Birds (RSPB) and Birdlife International used this licence to create6121

the Harapan forest in South Sumatra province (Collins et al., 2011a).6122

In either case the concessionaires should be expected to behave rationally, such6123

that they incur no net loss from the transaction and are able to cover the costs listed6124

above include profits foregone. Yet, over and above these costs, the firms may also6125

seek a surplus on any transaction with ZSL. That is, the concessionaires originally6126

bid for their licences since they saw a viable commercial opportunity in exploiting6127

those forests and will continue to gain from holding their licences. On the other6128

hand ZSL does not gain from the existence of active concessions adjacent to Berbak6129

National Park. Indeed it stands to lose: canals dug into the peat for drainage and6130

access will also affect the water levels and hence carbon stability of Berbak national6131

park. Logging up to the border of Berbak national park in order to fully exploit the6132

concessions will necessitate building more canals and railway tracks to extract logs.6133

These will reduce the transport costs of illegal loggers and individuals hoping to6134

exploit forest resources inside the park, thereby increasing the costs of maintaining6135

the park and carbon stocks. Finally, with the relatively low levels of deforestation6136

at Berbak in comparison with the surrounding landscape, a major component of6137

the additional carbon benefits from the project derive from the inclusion of the pro-6138

duction forests. This could put the concessionaires in quite a strong position, and6139

may explain may explain why negotiations between the NGO and concessionaires6140

are moribund. Even aside from the costs and potential speculative behaviour of the6141

firms, the reality of the machinations of the forestry department need also to be6142

addressed: an Indonesian working in the field of REDD+ and who asked not to be6143

named, stated that the reality of getting the MoF to alter forest designations in-6144

volved extra-legal direct payments to officials involved (see chapter 3 for a discussion6145

of rent-seeking in official positions).6146

The opportunity costs of allowing ZSL to manage the hutan lindung areas (man-6147

aged by the district forest office (DINAS kehutanan) have also risen in light of Law6148

No.10, SK292, and Permenhut No.18, 2011. Since the legal precedents have now6149

been set for protected areas to be re-zoned for production in east Kalimantan and6150

Aceh, land managers have an incentive to emulate this in their own district and6151

provinces. In practice, this means that forest which agents wish to exploit must6152

seek the support of the Bupati (the political head of the regency kabupaten, i.e. a6153

’regent’) and the governor, the head of the province before a representation is made6154
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to MoF in Jakarta. This is because, whilst hutan lindung is administered by the6155

district government, only MoF in Jakarta may change land use status.6156

Whilst the question over the performance of protected areas in chapter 9 ad-6157

dressed questions about the non-random location of protected area, this chapter6158

also raises second-order questions about the non-random location of conservation6159

interventions in protected areas. ZSL was drawn to the Berbak project site because6160

of the presence of tigers. However, the presence of forest and tigers may be due in6161

large part to how remote Berbak is, rather than how effective the national park has6162

been historically in reducing deforestation and conserving biodiversity. That is, that6163

the additional conservation effect of creating a national park will be lowest where6164

there is the lowest risk of deforestation. If this is true then it also suggests that6165

ZSL’s intervention follows that bias, that it is making an intervention in an area6166

which was already protected to a large degree by its remoteness and low suitability6167

for agriculture in the first place. Then a park was created at Berbak because of the6168

need to create protected areas to meet international targets under the Convention6169

on Biological Diversity. ZSL is therefore also making a non-random selection on the6170

intervention in this area, because the tigers are present at the site.6171

On the outset this seems quite logical. Yet it is important to remember the6172

call for novel thinking in environmental economics and impact evaluation (Ferraro,6173

2009). Consider that Pfaff et al. (2009) found that marginal avoided deforestation6174

impacts are greatest in areas which are under the highest threat. Since biodiversity6175

and habitat conservation are correlated (Collins et al., 2011b), this provides a good6176

reason to believe that intervening in places with the highest loss rates of biodiversity6177

also offer the highest marginal benefits for biodiversity conservation too. So in6178

practice at Berbak, this may mean that greater marginal benefits for both tiger6179

and carbon conservation may be achieved by biasing conservation activities towards6180

those areas with the highest risk of deforestation, rather than inside the national6181

park.6182

This is not to suggest abandoning law enforcement in the park. In addition6183

there is evidence that conserving forest outside the protected area could help the6184

protected area itself anyway, which is called a conservation spillover effects (Pfaff and6185

Robalino, 2012), a form of a positive spatial externality. However, there is of course6186

the possibility that by increasing conservation activities outside the current project6187

area could simply displace deforestation elsewhere. This is often called ’leakage’,6188

and is conversely a negative spatial externality. Yet where this has actually been6189

tested, there is evidence that these leakage effects are negligible Andam et al. (2008).6190

Choosing the areas of forest at highest risk of deforestation rather than the lowest6191

may therefore offer greater marginal benefits to carbon and biodiversity conserva-6192

tion. However, the challenge is to demonstrate this to funders and land managers6193

who decide where conservation activities are targeted. This is because in the same6194

way that näıve comparisons can lead to the conclusion that intervention in a low6195
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deforestation risk area is working, a näıve examination of intervention performance6196

in a high-risk area would suggest that projects are failing.6197

11.7.1 Concluding remarks6198

Finally, this thesis was motivated by the ongoing destruction of the world’s tropical6199

forests and the associated negative externalities of biodiversity loss and climate6200

change. It demonstrates a range of techniques in an applied setting that allow the6201

quantification of fundamental information required to improve forest management.6202

The results provide a robust basis upon which to build support for the continued6203

conservation of the forests of the Berbak Carbon Initiative. Not only does this6204

thesis show that Berbak’s forests supports a population of one of the world’s most6205

charismatic and threatened species, the Sumatran tiger. It also shows that the6206

Berbak Carbon Initiative is extremely important for the conservation of above and6207

below ground carbon stocks. In the forest biomass maps, Berbak stands out clearly6208

as one of the last remaining areas of in-tact forest in this part of Sumatra. However6209

its future is not certain, with large scale forest clearance now at the very edge of6210

the borders of the project area, and new laws in place that can - and are - being6211

used to convert the status of protected forests to allow exploitation and land use6212

conversion. The thesis very clearly demonstrates the pace of the change of the6213

region’s forests. The methodology used to do this contributes a new approach to6214

monitoring tropical forests that are often covered by cloud and smoke. This may6215

reduce costs for REDD+ implementation, but more optimistically, could contribute6216

to improved tropical forest management, and the support of the protected areas6217

which have contributed to additional forest conservation. Yet the implementation6218

of additional support for protected areas should be undertaken carefully, since the6219

results presented here suggest that over the short run at least an intervention may6220

have an opposite effect to the one desired. Testing whether this effect holds true6221

for the period after 2010 is of paramount importance for the success of the Berbak6222

Carbon Initiative. The possibility to do this may depend on the availability of new6223

data from new satellites being launched by the European Space Agency in 2014,6224

which will provide multiple new opportunities for research on deforestation and6225

forest degradation. So it is exciting then that the analysis of this very data is the6226

focus of the author’s first job following the completion of this thesis.6227
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