


Study of New Models for Insider
Trading and Impulse Control

[SE

Pucheng Shi

Department of Mathematics

London School of Economics and Political Science

A thesis submitted for the degree of
Doctor of Philosophy

September 2013



Declaration

I certify that the thesis I have presented for examination for the PhD degree of the
London School of Economics and Political Science is my own work, other than where I have
clearly indicated that it is the work of others (in which case the extent of any work carried

out jointly by me and any other person is clearly identified in it).



Abstract

This thesis presents the development and study of two stochastic models. The first one
is an equilibrium model for a market involving risk-averse insider trading. In particular, the
static information model is considered under new assumptions: a) the insider is risk-averse,
b) the signal received by the insider is not necessarily Gaussian, and c¢) the price set by
the market maker is a function of a weighted signal that is not necessarily Gaussian either.
Conditions on the weighting and pricing functions ensuring the existence of equilibrium are
discussed. Equilibrium pricing and weighting functions as well as the insider’s optimal trad-
ing strategy are derived. Furthermore, the influence of the risk aversion on the equilibrium

outcome is investigated.

The second model studied, we derive the explicit solution to an impulse control problem
with non-linear penalisation of control expenditure. This solution has several features that
are not present in impulse control problems with affine penalisation of control effort. The
state dependence of the free-boundaries characterising the optimal strategy is the first one.
The possibility for the so-called continuation region to not be an interval and the optimal
strategy to involve multiple simultaneous jumps while the problem data is convex are further

such aspects.
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Chapter 1

Introduction

In the first part of the thesis, we consider a new model of insider trading. The phenomenon
of insider trading in stock market has attracted significant interest from both economists and
mathematicians. The characterisation of the optimal strategy for an insider who possesses
superior information than general public has been widely studied in financial mathematics.
Especially with the development of enlargement of filtration by Jeulin and Yor [32], there
has been quite an interests studying models of insider trading, e.g., Ankirchner, Dereich and
Imkeller [2]. These papers have a common assumption: the insider’s trading amount will
not affect the market pricing dynamic.

On the other hand, assuming the opposite, consider “large investors”, Kyle [34] studied
the equilibrium model and showed the existence of unique linear equilibrium if the asset value
is Gaussian random variable. Under such equilibrium the price process is a Brownian motion
in market maker’s filtration and Brownian bridge in the insider’s filtration. Back [5] assumed
the price process to depend only on the cumulative order of the stocks. He considered the
model under continuous time trading where the insider can infer the cumulative trading
amount of noise traders by observing the price process continuously. Under such assump-
tions, he extended Kyle’s result and proved the existence of equilibrium beyond Gaussian
linear framework. Both Kyle and Back studied the risk neutral case where the insider has
linear utility function.

Cho [12] followed Back’s framework, considered risk averse cases where the insider has



exponential utility function. He showed existence of equilibrium under Gaussian linear frame-
work. In addition, he allowed market maker to determine the price process depending not
only on the cumulative order of the asset, but also took into account the history of cumu-
lative order. From an economic sense, the more recent trade is better indicator to market
maker to determine the price of the asset.

Here, we follow Back’s framework, with continuous trading, and extend Cho’s results
to the risk averse case. In particular, for exponential utility, we characterise all optimal
strategies for the insider within a general, non-Gaussian framework. We also establish one
inconspicuous equilibrium that allows the insider to trade undetected by the market maker.
Moreover, we introduce the weighting function for market maker to determine the price

process depending on the paths of the cumulative order.

In the second part of the thesis, we consider a stochastic system whose state dynamics are
given by
Xy =x—2Z,+W,, fort>0,

where W is a standard one-dimensional Brownian motion and Z is an impulsively controlled

process. In particular, the process Z is given by

Zt = Z ZTL]-{Tn<t}7
n=1

where (7,) is the increasing sequence of stopping times at which impulsive action is applied
to the system and the positive real-valued random variables Z,, n > 1, are the sizes of the

corresponding actions. In this context, the collection
Z: (71,7'27...,7'”,...;Z1,Z2,...,Zn,...)

fully characterises any admissible control strategy. The objective of the optimisation problem

that we study is to minimise the performance criterion

J(Z)=FE [\ / e X7 dt+ Y e (14 KZY)
0

n=1




over all strategies Z, where «,d, x, A > 0 are given constants. The problem’s value function
is defined by
v(z) = iIZIf Jo(Z), forxeR.

The theory of stochastic impulse control has attracted considerable interest and has been
applied in several fields. In mathematical finance, economics and operations research, im-
portant contributions include Richard [51], Harrison, Sellke and Tayor [27], Mundaca and
(Oksendal [43], Korn [35], Bar-Ilan, Sulem and Zanello [11], Bar-Ilan, Perry and Stadje [10],
Ohnishi and Tsujimura [47], Cadenillas and Zapatero [14], Cadenillas, Sarkar and Zapa-
tero [19], Cadenillas, Lakner and Pinedo [18], Feng and Muthuraman [25], Jeanblanc-Picqué
and Shiryaev [30], Alvarez and Lempa [4], and several references therein. Models motivated
by the optimal management of renewable resources have been studied by Alvarez [1], and
Alvarez and Koskela [3]. Also, the general mathematical theory of stochastic impulse control
is well-developed: see Lepeltier and Marchal [41], Perthame [48], Djehiche, Hamadene and
Hdhiri [21], as well as the books by Bensoussan and Lions [8], Qksendal and Sulem [46],
Pham [50], and several references therein.

In view of the general theory of stochastic impulse control, the value function of the
optimisation problem that we study identifies with a classical solution to the Hamilton-
Jacobi-Bellman (HJB) equation

min {%w”(m) — dw(z) + \®, —w(z) + inf [w(z — 2) + 1 + k2] } =0.

2>0

Our objective is to derive and characterise the solution to this quasi-variational inequality.
To the best of our knowledge, this is the first impulse control problem with non-linear
penalisation of control expenditure that has been explicitly solved in the literature. It turns
out that its solution has features that have not been observed in the literature. These include
the state dependence of the free-boundaries characterising the optimal strategy as well as
the possibility for the so-called continuation region to not be an interval despite the problem
data being convex. Furthermore, it may be the case that minimal costs can be achieved only

by multiple simultaneous jumps, which implies that an optimal strategy may not exist.



Chapter 2

Insider trading with static
information: impact of insider’s risk

aversion on equilibrium

2.1 Market Model

In this thesis, we model the market affected by private information. In particular, we consider
a company which released a risky asset (i.e. a claim on the company value). This asset is
assumed to be traded continuously. At some future time, assumed to be time 1 without loss
of generality!, the value of the company, V' will become public. As all the agents will agree
on the value of the company, they also will agree on the price of the asset being V. For
simplicity, we assume no information release directly to the public between the beginning
of the market and time 1. If all the agents in the market are risk-neutral, this will imply
constant price until the information release and abrupt price adjustment at the moment of

information release.

IThe choice of deterministic time of the information release has no impact on our market model, the

generalisation of any other time will be straightforward.



To describe this model in rigorous terms, consider filtered probability space

(Qa 377 {gjt}te[o,l]a Q)a

satisfying the usual conditions. We assume that this probability space is large enough to
support a Brownian motions B as well as a normally distributed random variable Z which
is independent of B.

We assume there is a risk-less asset on the market and for simplicity we set interest rate
to zero. The price of the risky asset is determined by the company’s fundamental value
at time 1, V, which will be released at time 1. We assume V = f(Z) where the function

f R — R and random variable Z satisfy the following assumption.

Assumption 1 We assume the fundamental price, V, satisfies:

1. f is continuously differentiable and strictly increasing.
2. |f| and |f’| are bounded by constant K.

3. limy oo f/(2) = limgree f'(z) = 0.

4. Z =N(0,1).

Remark 1 The assumption that f is strictly increasing implies that the larger the signal Z
the large the asset value. Since f is bounded, we immediately have E[f?*(Z)] < oo, i.e., the
terminal price of the asset is in L?. Since f is strictly increasing and bounded, we have the
limits exist for f when x — 4+o00. Denote b and d to be the upper and lower limits of f, i.e.,
lim, , o f(z) = b and lim,_,, f(z) = d. By assuming V = f(Z) with above conditions, we

capture most random variables with smooth distribution functions for V.

The agents in the market are differentiated by the information they have access to, hence
by filtrations their actions are adapted to. In particular, we consider three types of agents
populating the market: noise trader, market maker and insider.

Noise Traders trade for reasons other than maximising their utilities, for example for
liquidity reasons by Grossman and Stiglitz [26] and we assume that their cumulative demand

follows a standard Brownian motion B.



Market Maker observes total cumulated orders, which is the sum of orders from both
noise trader and informed trader, i.e., Y; = 0; + B;, where we denote the cumulative order
from the insider by time ¢ to be 6,. The admissible trading strategy of the insider, 0, will
be assumed to be an absolutely continuous process, thus Y is a continuous semimartingale
in (Q,F,(%),Q). Then the market maker’s filtration at time ¢, FM | is defined as FM := FY
for t € [0,1] and FM := FY v o(Z).

The market maker sets the asset price, P,. We define a weighted signal £ of Y where &

satisfies the following SDE and initial condition:
¢ = w(t, &)dY:, & =0 a.s., (2.1.1)

where w is called weighting function? which satisfies admissibility conditions that we will
define shortly. In principle, P depends on the whole path of Y, i.e., the whole path of &.
For simplicity we assume P; = & + ¢ with some constant ¢ for any ¢ € [0,1] and P, = f(Z).
The admissibility conditions imposed on § and w will ensure that SDE (2.1.1) will admit a
unique strong Markov solution. We will denote by P%* the time 0 law of the process ¢ and
random variable Z. Now we consider the probability measure P defined on (2,5} V o(Z))
by

P(E) = /]RPO’Z(E)M(dz), VE € F) Vo(2), (2.1.2)

which is the market maker’s measure. We will denote [E, the expectation taken under market
maker’s measure and E%?, the expectation taken under insider’s measure.

Insider observes the price process P up to any time t and distribution of Z at t = 0,
thus her filtration is given by F/ = FF Vo (Z). Insider’s objective is to maximise the expected

utility of final wealth, i.e.:

1
sup E™* [——exp{—va }] :
vy

0cA(w)
where A(w), which will be specified later, is the set of admissible trading strategies given

the pricing rule (P,w). The expectation is taken under the measure P%? which is the time

2We apply the weighting function as the market maker may wish to put price dependency more emphasised

on recent trades. This definition is a generalisation of [12] and [15].
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0 law of the coupled process ¢ and signal Z. In reality, the insider observes the process P
and signal Z, we will show later in Remark 6 the equivalence of the filtrations Vo (Z) and
FY Vv o(Z). We use exponential utility function here with v > 0. The ad-hoc reasoning for
choosing such utility function is discussed in Remark 7. We denote by W an insider’s wealth
at terminal time if she chooses to follow the admissible trading strategy 6. It is comprised of
the continuous gain over the time interval [0, 1] and gain from the possible price discrepancy

at terminal time t = 1, i.e.

W = / _ 0.dP, + (f(Z) — P,-)0,-. (2.1.3)

2.2 Admissibility and Equilibrium

The above market model suggests a feedback mechanism for the insider, as her trading
strategy will be reflected upon the asset price which in turn will influence her trading strategy

itself. In this thesis, we focus on finding the equilibrium of such market model in the sense:
1. given the pricing rule, insider’s trading strategy is optimal;

2. given the trading strategy, there exists a unique strong solution for SDE (2.1.1) over

[0,1] and the pricing rule is rational, i.e., martingale over [0, 1[.

To formalise the definition of equilibrium and rational pricing, we need to define the sets of

admissible pricing rules and admissible trading strategies.

Definition 1 Let b and d be the constants defined in Remark 1. An admissible pricing rule

s a measurable weighting function w and a constant ¢ such that:

1. w e G2 ([0, 1]x]b, J[) is bounded and positive in the interior of its domain where
b=b—candd=d—c.

2. The weighting function w € G2 : [0, 1]x]b, d[— RT satisfies:

%(t,f) + wff(;a 6) = — (224)

for some positive v € R.



3. There exists a unique strong solution & to the SDE (2.1.1) in (Q, T, (Fy)eecppap, P) such
that T > 1 where T = inf{t > 0: & ¢]b,d[} = inf{t > 0: P, ¢]b, d[}.

The first condition is inherited from the boundedness of f, hence the boundedness of the
pricing signal £&. The second condition is a necessary condition for the existence of optimal

strategy which we will show later in Lemma 1.

Definition 2 We will call an admissible pricing rule rational if it satisfies
P, =E[f(Z)|5/]

for a given admissible trading strateqy 0 (we will define shortly in Definition 3 what an
admissible trading strategy is). In particular Py = f(Z) and Py = E[f(Z)] where expectation
is taken w.r.t. the probability measure P defined in (2.1.2).

Remark 2 We can use Bertrand undercutting argument to explain rational pricing. The
market maker sets the price to be equal to the expectation of the liquidation value of the asset,
conditional on his information set at the time the price is determined. Thus market maker
earn on average zero profit. Suppose there are several market makers and one of them is
aggressive and makes profit by setting the price higher than the rational price. As a result of
competition, other market makers will set price in-between the rational price and the price

set by the aggressive market maker. Ouver the time, prices will converge to rational price.

Remark 3 Suppose P is rational pricing rule where P, = & + c. Since & satisfies the SDE
(2.1.1), we know it is local martingale. Moreover, since w is bounded, we know £ is a true

martingale. Therefore
E[f(Z2)]=Po=& +c=c.

We will consider rational pricing P with ¢ = E[f(Z)] without loss of generality. As discussed
in the previous remark, we have P is bounded by the range |b,d|. We immediately have
E[ fol P2dt] < co. As we are taking expectation under market maker’s measure, this means
the process P € L? from market maker’s point of view, i.e., without the existence of the

insider.

10



Remark 4 We will show that the rational price process P is bounded with a state space |b, d],
where b and d are the constants in Remark 1. In other words, condition 3 of Definition 1
1s not restricting our choice of weighting function w. Indeed, as stated in the Remark 3,
P, € [b,d] a.s. for anyt € [0,1]. Hence, the continuity of the process P implies that its state
space is at most [b, d].

Consider a stopping time 7, := inf{t > 0 : P, = b} A 1. As process P is a martingale
that is closed by the random variable f(Z), optional sampling theorem (e.g. Theorem 1.16
in Protter [49]) implies that

E[f(Z)1Tb<1]3~Zb] = E[f(Z)|3"TYb]1Tb<1 =P, 1, =bl, .

Therefore,

bP[r, < 1] F(2)1«1] = E[f(2)1n,alpz)= + F(Z)1n<lyz)50)
blr<1+ (f(Z) = b)1r<ily(z)s]

P[m, < 1] + E[(f(Z) = b)1r,<1lf(z)]-

E[f
E[

This yields that E[(f(Z) — b)1;,<11pzyss] = 0 and, since (f(Z) — b)1,,<1lpz)>p 5 non-
negative random variable, that (f(Z) — b)1,,<11yzy>p = 0 a.s.. Observe that

0= ]P)[(f(Z) — b)]-‘rb<1]-f(Z)>b > O} = ]P)[Tb <1, f(Z) > b] = ]P)[Tb < 1],
where the last equality follows from the fact that
Plf(Z) >b] =P[Z > —o0] =1,

since by the definition of f (and, in particular, Remark 1) f(z) = b < z = —o0, and Z is
normally distributed.

Similar consideration applies to 74 := inf{t > 0: P, = d} A 1, and therefore T := inf{t >
0: P, ¢]b,d[} N1 =1 a.s.. This, together with the fact that

Plf(Z) €]b,d]] = P[00 < Z < +0o0] =1,
yields the desired conclusion.

11



Remark 5 We want to show that choosing P = { +E[f(Z)] is in line with the conventional
pricing assumption and provide a brief ad-hoc proof of why we choose P to be linear. Assume
we have an alternative pricing rule that P, = H(t,(;) for t € [0,1] where H is a strictly
increasing function w.r.t. the space variable. Therefore H=! is well defined. ( is the solution
to the SDE d¢ = a(t, (;)dY; and {y = 0 a.s. where a is strictly positive in the interior of its
domain.

Apply Ito’s formula on process P stopped at T,, where 7, = inf{t > 0: P, ¢]Jb+ X, d— [},

denote P' = Pip,, and (' = Ciar,, we have:

tATh a2(s gn) tATh
Ptn = PO + / <Hs(57 C;L) + %HCC(& C;L)) ds + HC<87 C;L>a<57 C?)dﬁs
0 0
tATh 2 Hfl Pn
= [ (e + S b s, )
0
tATh
o [ Hels, B (s, PPY)als, H (s, P))B, + H(0,)
0
Since lim, oo 7, = T > 1 due to Remark 4, we have the above equality is true for any

t € 0,1]. Suppose P is rational pricing, we have P, = H(t,(;) = E [f(Z)|F)]. Therefore,

we know P is a martingale in its own filtration. Thus the drift term must be zero, i.e.,
a®(t,
Hi(t,y) + %Hyy(t,y) =0, tel0,1]. (2.2.5)
Therefore
t
P, = / Hy(s, H™'(t, Py))a(s, H™'(t, Ps))dB, + H(0, Go)
0

_ / H,(s, H™\(t, P.))a(s, H\(t, P,))dB, + E[f(Z)].

Since this pricing rule is equivalent to the linear model, we have w(t,x) = H,(t, H ' (t,z —
E[f(Z)]))a(t, H ' (t,x — E[f(Z)])) and & as the solution of the SDE d& = w(t,&)dB; with
initial condition & = 0 a.s. as P, =& + E[f(Z)]. In other words, the alternative weighting

function a is given by:

w(t, H(t,y) + E[f(2)])

alt.v) = @)

12



We will show that a satisfies a similar PDE w satisfies which is inline with the PDE (2.3.6)

we derived in Remark 7. Differentiate a w.r.t. t and y, we have:

wi(t, H(t, y) + E[f(Z)]) + wa (¢, H(t,y) + E[f(Z2)]) He(t,y)
Hy(ta?/)
~w(t, H(t,y) + E[f(Z)])Hyy(,y)
H2(t,y) ’

ai(t,y) =

w(t, H(t,y) + E[f(2)]) Hyy(t, y)
H2(t,y) ’

ay(t,y) = w.(t, H(t,y) + E[f(2)]) -
ay(ty) = weelt, Ht,y) +E[f(Z))H, (t,y) + 2u(t, H(t,y);gli{i()Z)])Hyy(t, y)

wx(t> H<t7 y) + E[f(Z)])Hy(ta y>Hyy(t> y) + w(t> H(t> y) + E[f(Z)])Hyyy(t> y)
HZ(t,y) '

Therefore, we have

a(t,y) | ayy(ty)

a*(t, y) 2

(we(t, H(t,y) + E[f(2)]) + wa(t, H(t,y) + E[f(Z)])He(t, y)) Hy(t,y)
w(t, H(t,y) + E[f(2)])

L(a) =

. th(t7 y) wxx(t7 H(ta y) + E[f(Z)])Hy(tv y)
Wt 1(0,y) + BF(Z)) 2
w1, Hty) + ELF(Z))Hy (1) By (¢, ) + w(t, H(t,y) + ELf(Z)]) Hypa t,9)
2H2(t,y)
w(t, H(t,y) + ELF(Z))H2,(1,y)
H3(t,y)
) wilt, H(t,) T B (D)) | wnlt, H(19) + L ()
= Ay) <w2<t H(t,y) TEF2) T 2 )
w,(t, H(t.y) + ELF(Z))H,(t.v) a2(t,y)
w3, HE )+ EL2) (Ht“ vy Hult ”)
“w(t H(t,y) +E (Ht yy(t y)>y

= —yH,(t,y).

This is the same PDE we derive later in Remark 7. Therefore, we have the equivalence of

the following pricing rules:

13



1. Pricing rule P, = & + E[f(Z)] and weighting function w satisfying (2.2.4) where & is
strong solution of SDE d&§; = w(t,&)dY;, & =0 a.s..

2. Pricing rule P, = H(t,(;) (H satisfies PDE (2.2.5), H(0,0) = E[f(Z)]) and weighting
function a satisfying (2.3.6) where C is strong solution of SDE d(; = w(t,(;)dY;, o =0

a.s..

Moreover, if we have w, and pricing rule H, the corresponding weighting function a will be

given by (t, H(t,y) + E[f(2)])
w(t, Y
a(t,y) = Hy(t, y)

On the other hand if we have w and weighting function a, the corresponding pricing rule will

H,(ty) = — (at(tyy) . ayy(t,y)) |

v \a?(t,y) 2
H(t,y) =w™" (t,a(t,y)Hy(t,y)) — E[f(2)].

Thus without loss of generality, we only need to solve for the linear case where P, = & +

be given by

E[f(Z)] and corresponding weighting function w satisfying (2.2.4).

Remark 6 We also would like to justify by choosing P (effectively £) over Y as market
maker’s pricing signal, we are not losing any information. As straightforwardly by the SDE
defined in (2.1.1) we have F¢ C FY. Since b=b—E[f(Z)] < 0 with equality when f(Z) =b
P-a.s., d = d — E[f(Z)] > 0 with equality when f(Z) = d P-a.s.. The initial condition of
& =0 €lb,d[. We define for Va €]b, d|:
x t
Alt,z) = /0 % -I—/O %wx(s,(])ds,
a strictly increasing function w.r.t. x. Therefore A7\(t,y) erists and is well defined. From

the definition, we calculate for Vx G]i), CZ[

1
A0 =y
w(t, x) T wy(t,y) 1 1
At(ta ) + 9 wa - _/0 wQ(t,y) dy + wa(t7 0) - §wx<t7x)

A o R e L

14



Denote ny = A(t,&). Apply Ito’s formula to process n stopped at time 1, where 1, = inf{t >
0:P¢lb+id—L} =inf{t >0:¢ ¢1b + %,CZ— L[}, denote 0 = munr, and Y" = Yipr,,

we have

2

_ Yn_/t/\rn /A—l(s,n?) (ws(s,y) +wyy(8,y))dy ds.
' 0 0 w(s,y) 2

Since lim,,_soo 7, = 7 > 1 due to Remark 4, we have

t A7 (sms) ws(s Wy (S
Yt:m+/ (/ (w228,y3 N yy(Q,y))dy ds.
0 0 Y

i.e., Yy solely depends on nyoy. Therefore F¥ C F" for any t € [0,1]. Moreover since A(t, x)

i o= [ asegs [ (04 =G e s

is invertible w.r.t. space variable and is continuous, we have F" = F¢. Thus F¥ C F¢.
Combining with previous result that 3¢ C FY, we have F¥ = F¢. Hence the insider’s
filtration is equivalently generated by processes Y and o(Z), i.e., insider has full information

of the market.

The definition of admissible strategy 6 is based on the set of admissible pricing rule w.
Back [5] proved that any strategy as a discontinuous process or with nonzero martingale part
is strictly suboptimal. We also limit admissible trading strategies to absolutely continuous

set. The formal definition is as follows.

Definition 3 An admissible trading strategy 0 € A(w) for insider given any admissible

pricing rule is ¢V o(Z) adapted process satisfying:
1. 0 is absolutely continuous, i.e., df, = audt.
2. There exists a unique strong solution of SDE (2.1.1) in (Q,F, (F)ecpoap Q).
3. (&,7) is a Markov process adapted to (F;) with measure P%?;

We already have E®* [ fol Ptdt} < oo since P is bounded process. Thus doubling strategies
are eliminated since the admissible trading strategies are restricted in L% (see Duffie and

Huang (1985) [20]).
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In addition, the insider will prefer not to be detected by the market maker. In this
case, she will hide her trading among the noise traders. Therefore, we only consider the

inconspicuous strategies for the insider.

Definition 4 We will call an admissible pricing strategy inconspicuous if
E[0|F] = 0

for every 0 <t < s <1.

Thus the cumulative trading amount Y; = B; 4+ 6; will appear as a local martingale in
market maker’s filtration. Moreover, since # is absolutely continuous, quadratic variation
does not depend on the filtration, we have (Y), = (B), = t. Thus we know Y is a local
martingale in F¢ with (Y'); = ¢t. By Levy’s characterisation, Y is a * Brownian motion. Now
we can formally define the market equilibrium given the definitions on admissible pricing

rules and admissible trading strategies.

Definition 5 An equilibrium of the insider is a pair (w*,0%) s.t., w*, an admissible pricing

rule, and 0* € A(w*), an admissible strategy satisfying:
1. w* 1s a rational pricing rule given 0*.
2. 0* is insider’s optimal trading strategy, i.e.,

E%* —l exp {—VWf*}] = sup E%* {—l exp {—’ny}
Y feA(w*) Y

In this thesis, we focus on existence of equilibrium in which the insider trading strategy is

inconspicuous. We will call an equilibrium with this property an inconspicuous equilibrium.

2.3 Characterisation of Insider’s Optimal Strategy

The following Lemma characterises the insider’s optimal strategy. For simplicity we denote
f(x) = f(x) — E[f(Z)] where f will satisfy all the conditions in Assumption 1. Moreover,
we have lim,_,o f(z) =d = d — E[f(Z)] and lim,_,_ f(z) =b=b—E[f(Z)].
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Lemma 1 Suppose the rational pricing rule w satisfies the following condition: 0* € A(w)
satisfies & = f(z) P — a.s. for every z € R, where & is the strong solution to the SDE
& = fgw(s,gs)dn"‘, &0 =0 a.s. withY* = B+ 6*. Then 0* is the optimal strategy, i.e., for

any 0 € A(w),
E%* —%eXp{—va *}] > E** [—%exp{—va }] :

PROOF.

We will adapt Wu'’s proof of his Lemma 4.2 in [54].

Due to Remark 4, we have that & 6}5, d~[ a.s. for any t € [0, 1], thus we can define the
following function for any ¢ €]b, d|:

; 1
o= [ a1 ] [t e

Since w € €V2([0,1]x]b, d[— R) and w(t,z) > 0, p(t, &) is well defined in €%2([0, 1]x]b, d[—
R). The idea of defining such a function comes from the solution of HJB equations and ¢
will be used to give an upper bound of the insider’s expected terminal utility.

First we derive some important properties of (. Differentiate ¢ w.r.t. £ to second order
we have ~ ~

§—f(2) 1 [€ = f(2)]we(t, €)

el =0 €T ui g w(t,€)

Differentiate ¢ w.r.t. ¢ we have
I A R L C) A CR) S S

Note by Leibniz integral rule, we can move derivative inside the integral provided the inte-

grand and derivative of the integrand are continuous functions over the integral intervals. In
(y=F(2))we(ty)

this case, — =L 5 continuous function given the differentiability of w. Therefore,
1= e+ T
= /ff) — f;iﬁ?j;“y) dy — u(t, F() + J0(t,€) — 5(€ — F(2)we(t,©
= [ e (e Yy [ = ettty gl i)
(€)= 5(€ — F)uelt ©)

17



Integration by parts of the second integral we have

1 3 -
;=1 /f = Tty
_ 1 F ta)é L[ t,y)d
- %(g — f(2)we(t, &) — %w(t,f) + %w(t, f(2))

Due to condition (2.2.4), we have

w(t, §)
2

3

et =7 [ = FeNdy =~ F)

Sot(ta S) +

We apply Ito’s formula on o(t, &) stopped at 7, where 7, = inf{t > 0: & ¢ (b + i d— 1,

denote &' = &iar,:

tATh tATh 2 n
o) - 00,0 = [T [ (oo + D5 g ) s

tAT, r tAT,
" &y - f(Z) 8 / " 3 2
= 2Ll 4 — £ — f(2))“ds.
[ SemErr) @i
Taking the limit n — oo, we have 7, — 7 > 1 due to the condition 3 of Definition 1, the

admissible pricing rule. Therefore we have the above expression holds for any ¢ € [0, 1], i.e.,

p(t,&) — ¢(0,0) 2/0 &_—“]gdéﬁg/o (& — f(2))%ds.

w(s,
In addition, we have the boundary condition
&1 r
y— f(2)
o6 = | dy > 0.

To see this, if & > f(z), then y > f(z) for all y € [f(z), &1, hence integral is positive On the
other hand, if & < f(z), then y < f(z) for all y € [£1, f(2)], hence integral is also positive.

Equality holds if and only if & = f(z).
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The wealth process of the insider at terminal time is W;. Apply integration by part to
W{ defined in (2.1.3), we have

we - [ bdes + (F(Z) — (61 +ELF(Z)) by
= /0 7 0,dE; + (f(Z) —&1-)01-
— & —l0.8 + /0 &b+ (F(2) — )1

- [ G@-guan= [ (72~

In the above calculation, [#,£];- = 0 since 6 is absolutely continuous process. The last
equality is due to continuity of process £.

Therefore the insider’s expected wealth:

R = sup 1D [—% exp {—wvf}}
= —%ireleO’Z {eXp {—7 /Ol(f(Z) - &)dHH
exp {7 / 1 %—ﬁjd& -/ (6 - f(z))dBt}

The last equality is due to d¢ = w(t,&)(dB; + db;). Substitute Ito’s formula on (¢, ;) into

1
= ——infE"*?
v o

the above equation, we have

R = —ligf]EO’z [eXp {—790(070) +7p(1,&) - 7/01(& — f(2))dB; — %2/01(& - f(Z))thH

~
_exp {_’790(07 0)} inf B0 [89}
gl 6 '

<

since (1,&;) > 0 with equality if and only if & = f(2) a

8?=exp{—7/(£ B——/ }

is an F&7 exponential local martingale with &, = 1.
Since | f| and |f’| are bounded by K, suppose | f| and |f’| are bounded by K. By rational
pricing rule Definition 2, we know & = E[f(Z)|F5] is bounded by K for any t € [0,1]. The
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Novikov’s condition is satisfied since

1
E%* exp {fy /
0

Thus it is a true martingale and in particular E%* [8?] = E%*[&)] = 1. Therefore the

& — ]Z(Z))Zdt} < eXp{4fyf(2} < 00.

insider’s expected utility satisfies

K~ {—% exp {—”YWf}} < EY {—% exp {—”le*}] = &P {_Yf(o’ 0)}

Equality holds when 6% € A(w) satisfies & = f(z) P%*-a.s. |
We introduce the following ad hoc derivation towards our consideration of exponential
utility above. It gives us an insightful, yet not rigorous justification of the reason we choose

exponential utility to study.

Remark 7 In this remark, we consider general pricing rule (H,a) where P, = H(t,(), ( is
the strong solution to SDE d(; = a(t,(;)dY:, (o = 0 a.s., Y; = By + 6, is Brownian motion
in its own filtration due to inconspicuous trading. Our aim is the following, given (H,a)
satisfying (2.2.5) which is due to rational pricing in Remark 5, find out under which utility
functions there exists equilibrium and what other conditions (H,a) need to satisfy.

We know the terminal wealth W¢ = fol (f(Z)— H(t,())db;. Define process X satisfying
dXt = (f(Z) - H(t, Ct))deh X() =0a.s..

X is an F°V o(Z) adapted process. The insider is trying to mazimize the expected utility of

terminal wealth, i.e., sup, E%*[W{]. We can define:

ot 0) =8 [u (o [ 000 - mscan, ).

where u € C3 is strictly increasing concave utility function. Define the conditional value
function ¢(t,(, x):
¢(t7 C? x) = Sup U(tJ ZE’ C? 9)7

0cA(H,a)
where A(H,a) is the set of admissible trading strategy given pricing rule (H,a). The Bell-
man’s optimality principle, introduced by El Karoui [33] suggests the process ¢(t,(, X) be a
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supermartingale for any 0 € A(H,a) and a martingale if and only if 0 is optimal. By Ito’s

formula

d¢(t7 Cta Xt) = ¢C(t7 Ct7 Xt)a(tv Ct)dBt + ¢$(t7 Ctv Xt)(f(z) - H(tv Ct))det

2
+ (¢t(t7 Cta Xt) + a4 (2;7 Ct) ¢CC(t> Ct, Xt)) dt.

The drift term is negative for supermartingale and zero for martingale when 6 is the optimal

strategy, hence

a’(t,¢)

0 = ¢u(t, ¢, o)+ 5 Pec(t, ¢, )
do
0cA(H,w)
Notice that the Bellman equation is linear in % and has a solution if and only if
a’(t, ¢
sy + T )=

Oc(t, ¢ x)alt, C) + ¢alt, ¢, 2)(f(2) — H(t, () =0

with boundary condition ¢(1,(,z) = u(x). Differentiate the above PDEs w.r.t. ( and t

respectively we have

clt, ) = =alt, Qaclt, Vot ¢ 2) - 5 oe(t.. ),
ety = SLEIIEO = 1) 0, GG
_at(t? C)¢x<t7 Ca 1’) (H(t> C) - f(Z))
(1.0 '

Let gbxt(tv Ca ZL’) = ¢tz(t> C? 37), ¢CCx(t7 C) l’) = ¢$CC(t> C? JT) and ﬁna”y ¢tC(t> Ca x) = ¢Ct(t7 Cv .’L’)
due to continuity, we can use (2.2.5) to simplify the above equations to satisfy the following

condition:

Gua(t,Cx) 1 a(t, () acc(t,Q)\
¢x(t7C,x) B Hg(t, C) (a2<t,<) + CCQ ) - _'Y(t,C) (236)
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1. If v = 0 we have ¢, = 0. Therefore we have ¢(t,(,z) = A(t,{)x + B(t,(). Apply
boundary condition ¢(1,(, x) = u(z) = A(1,{)x+B(1,(). We conclude that only linear
utility case (w.l.o.g. u(x) = x) applies.

2. If v = v(t,¢) we have ¢(t,(,x) = A(t, () exp {—7(t,{)x} + B(t, (). Apply boundary
condition ¢(1,(,x) = u(x) = A(1, ) exp {—(1,{)z} + B(1,(), i.e., v(1,{) = const. =
v, A(1,¢) and B(1,() are both constants. This imply the exponential utility case.
Without loss of generality u(z) = —%e‘w where v > 0 due to concavity of utility

function.

The linear utility case has been widely studied and will not be the focus of this paper. We
conclude that given (H,a) satisfying (2.2.5), Bellman’s optimality principle suggests (2.5.6)
and u(x) = —%e‘” are the necessary conditions for the existence of the conditional value
function. This ad-hoc derivation inspires us to consider equilibrium under above exponential

utility.

From previous section we obtained the sufficient conditions for insider’s strategy to be
optimal given suitable conditions on pricing w. Now we provide the following sufficient

condition for (w*,6*) to be an inconspicuous equilibrium.

Lemma 2 A triplet (P*,w*,0%) where w* is an admissible pricing rule and 0* € A(w*), is

an inconspicuous equilibrium if it satisfies the following conditions:
1. Y} = B, + 07 is a standard Brownian motion in its own filtration.

2. & = f(z), P% — a.s. for every z € R and £ is the strong solution to & =

fot w*(s,&)dY ] on (S, F, (F)coaf, P) with initial condition & = 0 a.s..

3. P* =&+ E[f(Z)] is an (FY)-martingale w.r.t. P.

PROOF. Suppose (P*,w*,0*) is a triplet satisfying conditions 1 to 3 in the statement

of the Lemma.
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Condition 1 ensures that the insider’s trading strategy is inconspicuous since the total
order is a Brownian motion in market maker’s filtration. Conditions 2 and 3 imply that the

pricing rule w* is rational in the sense that

P = & +Ef(2)] =Elg | 5]+ Ef(2)]
= Elf(2) -E[f(2)]| "] +Elf(2)] =Elf(2) | 5}"]

where the second equality is due to martingale property of £* by condition 3, the third
equality is due to the convergence of the terminal distribution by condition 2 and last equality
is by tower property.
Finally, by Lemma 1, conditions 2 imply that 6* is optimal.
|
By condition 2 of the above Lemma, £* need to have required terminal distribution of
f(Z), this effectively put the condition on w* as & = f(f w*(s,&)dY,F where Y* is a standard
Brownian motion by condition 1. The following subsection discuss the existence of such

pricing rule.

2.4 Existence of Pricing Rule

Now we discuss the existence of w* for equilibrium. For brevity we will drop the asterisk in

this sub-section. The market maker has to solve PDE (2.2.4) and
&= f(2). (2.4.7)
Provided € is the strong solution to SDE
dé& = w(t,&)dBy, & =0 a.s.

and [ is a P standard Brownian motion. The following proposition gives sufficient conditions
for existence of w(t, ) € €2 : [0,1]x]b, d[— R* such that there exists unique strong solution
to the above SDE (2.4.12) with required terminal distribution (2.4.7) and w solves the PDE
(2.2.4) .
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Proposition 1 Consider function f = f—E[f(Z)] where f satisfies Assumption 1 and such
that E[f(Z)] = 0. Define lim,_,o f(z) = d, and lim,_,_o, f(z) = b.
Suppose there exists A(t,x) € €3 1 [0,1] x R —]b, d[ such that

1. X is bounded, strictly increasing, lim, 1o A\:(t,2) =0 and

lim At,z)=b, lim At z)=d.

T——00 T—r00

2. X satisfies the Burger’s equation:
Ae(t, ) + %)\m(t, x) = —yA(t, 2) A\ (t, x). (2.4.8)
3. X satisfies the boundary condition:
M1,z) = fod Lo P(1,2) (2.4.9)

where @ is the cumulative distribution function (CDF) of N(0,1) and P is the CDF of

k¢ with Kk being the unique strong solution of
dry = dB; + YA(t, ke)dt (2.4.10)
with initial condition kg = 0 a.s..
4. X satisfies the initial condition A(0,0) = 0.

Then the weighting function w given by:

1
w(t,y) = = (2.4.11)

is well defined and w(t,y) € @42 : [0,1]x]b, d[— R.. It will satisfy the following:

1. w is positive in the interior of its domain, lim, ;w(t,y) = lim ;w(t,y) = 0 for any

t €10,1].

2. For any & E]B, CZ[, & = A(t, ki) is a unique strong solution for SDE

i~

& = w(t,&)dpy, (2.4.12)

with initial condition & = 0 a.s.. Moreover, the stopping T := inf{t > 0 : & ¢]b,d[}

satisfies T > 1 a.s..
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3wt | we(to)

AL 5 = — with boundary condition & 4 f(2).

Please refer to Appendix for proof. The sketch of the proof is as follows: we begin by
proving w defined by (2.4.11) is well-defined and satisfies the properties in statement 1 for
w due to condition 1 for A. Secondly, due to & = A(t,k;) we can apply Ito’s formula to
obtain the SDE for £ as in statement 2 for w. Stopping time 7 > 1 is due to the process
k being non-explosive since its drift is bounded. Thirdly the SDE for w in statement 3 for
w is shown by substituting (2.4.11) into Burger’s equation satisfied by A due to condition
2. Finally the boundary condition of &; is satisfied due to condition 3 and 4 of A and the
definition & = A(¢, k). Therefore to show existence of the rational pricing rule w, it is
sufficient to demonstrate existence of solutions for the Burger’s equation (2.4.8) and (2.4.9)
where P is the CDF of k; and & is the unique strong solution of (2.4.10). We can further
relax the sufficient condition to existence of solution of an integral equation.

Lemma 3 Consider function f = f—E[f(Z)] where f satisfies Assumption 1 and such that
E[f(Z)] = 0. Define lim,_ f(z) = d, and lim,_,_, f(z) = b. Define

lim f(z)=d>0, lim f(z)=b<0.

200 @ —o00
Let P € @ : R — (0,1) be a function strictly increasing w.r.t. =, with P(—c0) = 0 and
P(o0) = 1. It also satisfies the integral equation:

P(z) \/ﬁ exp{ / foCD_loP(s)ds—%}du.

fuTlt -
7fR

Then

At, z) =

r JY focbflols(u)dud
Z Ply)el Y ovieo, 1, (2.4.13)

T — y €f0 yfo®—1oP(u dudy

y)f e
(
where U'(t, z) = { 1 5 }, 1s well defined, continuously differentiable with re-

spect to the space vamable on [0,1] x R and infinitely continuously differentiable on [0, 1[xR.

Moreover, A\;(t,x) is uniformly bounded and at terminal time we have
A1,z) = fod o P(x).

Such defined \ satisfies all conditions of Proposition 1. Furthermore, P(1,x) = P(x) where
P(t,x) is the CDF of k; satisfying the SDE (2.4.10).
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Proor. We will first show that A given by (2.4.13) is well defined and has the degree
of regularity as stated.

Indeed, consider a PDE
2N (2.4.14)

with the terminal condition
u(1,z) = exp {/ yfodto ]S(u)du} :
0

As f is bounded, the terminal condition has at most exponential growth, and therefore
Theorem 1.12 in [24] yields that there exits a classical solution to this Cauchy problem on
[0,1] (note that we can take h as small as needed in this theorem). Moreover, the solution,
u, is given by

u(t,z) = /Rl"(t,x —yu(l,y)dy Vvt e |0,1].

Note that v € C([0,1] x R) as the solution of the Cauchy problem. Furthermore, Theorem
9.10 in [24] yields that u € C*([0, 1[xR).

Thus, u,(t,z) is well-defined and continuous on [0, 1[xR. Moreover, for any (¢,z) €
[0, 1[xR we will have (differentiation under the integral sign is justified as ‘%F(t, xr — y)‘ =
B

1:3;‘F(t, r—y) and u(l,y) < ekl where K is the upper bound for ]f] and ]f’])

wita) = [ oo —gutpdy=— [ St - pudy

= Tt = ully) % = [ Tlta =L o)y

Note that the last integral is well defined as |u,(1,y)| < KeXll since |f| is bounded by

constant K. Moreover,

. . 1 r—y)? -
<1 I'(t,z — 1 < 1 _ — K =0.
0< lim T(te—yuly) < lim Ty eXP{ i 7 |y\} 0
As |u,(1,y)] < KeXW Theorem 1.12 in [24] yields that
wito) == [ Tt~ gy (1, y)dy (2.4.15)
R
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is a solution to the PDE (2.4.14) with the terminal condition
uy(1,2) = vf o &' o P(x) exp {/ vfod o p(u)du} )
0

In particular, u, € C([0,1] x R) and, in view of Theorem 9.10 in [24], u, € C*(]0, 1[xR).

Furthermore,

uta) = [Tt —puttody> [ e —pe iy

0 _ 00 _
= / F<t7 T — y)eiKlmdy + / F<t7 T — y)eiKMdy = Il(ta I) + I2<t7 $),
0

—00

(z —y)

[ ey

3 - K(1-t) ]| (° L ) =+ KO —-0)?
= exp{Ker—2 }/oo—%(l—t) p{ 20— 1) dy}

]1(t,l‘) =

- K1t
= exp Kx—l—%

(z —y)° _ f(y} dy

o 1
/0 Jor -t eXp{_2(1 —y
= exp{—f(xjtw}

K2(1—1)
2

[Q(t, l’) =

Jp—— - Ka-n)P,
o V2r(l-1) 2(1—t)

= exp{—f(ij }@\/ﬁ(—aﬁl—f((l—t)).

Therefore, for any = > K (1 — t), we have

K1 —t)}

1 ~
u(t,x) > Iy(t,z) > 5 eXP {—Kx—l— 5

and for any = < K (1 — t), we have

1 - K*(1—t
u(t,z) > L (t,x) > éexp{K.Q%F %}
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Due to continuity of u, the function defined by
(t,
At o) = 2D gy e o 1,

is well-defined, continuous on [0, 1] x R and infinitely continuously differentiable on [0, 1[xR.

To establish that A, is continuous on [0, 1] x R, observe that

Uge (1, 2)u(t, ) — (uy(t, z))?

Aall ) = yu?(t, z)

is well defined on [0, 1] x R. Moreover, since both u and w, are continuous on [0, 1] x R and
w is strictly positive, the continuity of A\, will follow from the continuity of u,,. Note that
from (2.4.15) we have (differentiation under the integral sign is justified as ‘aa—xf(t, z—y)| =

28D (¢ 2 — y) and |uy(1,y)| < KeXl)

0 0
wntia) = = [ 0= Loy = [ S0l = (1 )dy

R

— D(tz— yuy(Ly) 2 + / D(t, 2 — y)ugy (1, y)dy
R

_ /Rr(t,x gy (1, )dy. (2.4.16)

The last equality is due to

| _ K (z —y)?
< - = NG SR B
0< lim Tte—y)luy(Ly) < lim %(1_@‘”“){ T

+ R} =0,
And the [, I(t,x — y)uy, (1, y)dy is well defined as we have

efOI yfo®~LoP(u)du

ue(L2)| = |[(vﬂ@—l@(w»))g+vf'<<1>-1<P<x>>> ~

IN
2
=
2
=
_l’_

1K 7K + ¢ exp { " F@ 7 (B(u)))du + - (271 (P(a)) - ?) H (Ko

VK [y K + et |z\+%(<¢—1<ﬁ'<x>>>2—x2)] Re

IN

KeKlal (2.4.17)

IN
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where the first and second inequalities are due to the boundedness of f and f, and
K = (yK)? 4+ yKc*sup, e2 (@' P@)*=%) * \We have K < oo since, due to the Lemma
6 in Appendix, lim, 4. e%(@_l(ﬁ)(x)))Lﬁ) <land ®'loP being a continuous function.
The bound (2.4.17) together with the representation (2.4.16) yield, via application of the
Theorem 1.12 in [24], that wu,, is a solution to the PDE (2.4.14) with the terminal condition
Uz (1, ).

Next, we show that this A\ satisfies the conditions of Proposition 1.

Direct calculation yield that it solves the equation (2.4.8). Indeed,

_ 1 utz<t7x) . uw(t7x>ut(t’x)
Mlt,x) = N ( u(t, ) u?(t, ) ) ’
Moo = 5 (- Ee5)
Aew(t, @) = 5 ( ult, ) u(t, ) ud(t, x) ) )

and therefore
I = 4 ()\t(t, z) + %)\m(t,x) A, @A(t,@)
_ ! (ut(t,x) + “”(t’x)>m _ Gt2) (ut(t,x) + M) —0

u(t, ) 2 u(t, x)? 2

Next, we demonstrate that condition 1 of Proposition 1 is satisfied. Indeed, X is bounded

since

Je Ttz —y) uy(1,9)] dy
Ty Dt e —yu(l, y)dy

T =) [Footo Plydy
B v Jo Tt — y)u(l,y)dy -

AL, @)

K
Y
due to the boundedness of f.
To show that A is strictly increasing, we observe that
d r- _
Ao(La) = — [fo(I)‘l o P(z)| >0

due to f , ® and P being strictly increasing functions. Moreover,

Nolt,z) = Lozl iv)l;(;(;z):c; up(t, )
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Integration by parts (and using bounds on f) will yield

I = ug(t,v)u(t,x) — uy(t, )

- (/R rm(t,x—y)u(Ly)dy) (/Rr(t,x—y)uu,y)dy) - (/R I‘gc(tya:—y)u(Ly)cly)2
= (/R Ltz —y)uyy(l,y)dy) (Ar(t,x - y)u(l,y)dy) - (/RF(M - y)uy(l,y)dy>2
> (/R Lt x — y)\/uyy(l,y)U(lay)de - (/R L(t, o — y)uy(lay)dy>2 >0

where the inequality before last is just an application of Cauchy-Schwarz inequality (u,, > 0

as we will see shortly) and the last inequality holds since
g (1, 2)u(1, 7) — u(1, 1) = yu(1,2) N\ (1, 7) > 0.

Therefore A, (t,z) > 0 for all (t,z) € [0,1] X R, i.e. A is strictly increasing.
Next, we need to establish that lim, 1 A;(¢,2) = 0. First we show this is true for ¢t = 1.

We have ~
_ . )22

lim A (1,z) = lim f o® 'o P(x) (w)~

x—>+o00 x—>+o00 (I)’(CI)—l o P(ZL‘))

Observe that since lim,_, 4 f’ (x) = 0, we only need to show that

P@) o pim @

a—+00 /(1 o P(z)) z-sEoo o5 (®1oP(x))?

is finite. Observe that

P’ p//
V27 lim % = V2m lim - (Nx) =
a—do0 o—5(®71oP(2)) z—+o0 e—%(fl’*loP(w))Z(_cp—l o P(;c))di ((I)‘l o P(q:))

= V2r lim P'(z)(yfo® ' o P(x) — x)

z—+o00 67%@—1013(33))2(_@71 o p(z))%(lx)ﬁ()

z—~fod o Px)

= lim =
w00 d-1o P(x)
. x
= lim ————=1< 0.

a=to0 =1 o P(z)
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where the one to the last equality is due to the boundedness of f , the last equality is due to
the Lemma 6 in Appendix and the first one is the application of L’Hopital rule. Note that
the rule is applicable since lim,_, . ® ! o ]5(x) = 400 and

- c* 12 C* % z2
0< lim P'(z)= lim 7 Jo o2 ePds—5 < lim eKl=% =0,
r—Fo00 \ 2 r—Foo \ 2 r—Foo

Therefore ~
P'(x)
im =
xr—*+00 q)/((I)—l le) P(x))

is finite. Therefore, the previous considerations yield

lim A, (1,z) = lim —f odto P(x) =0. (2.4.18)

r—+oo r—too [E

Next, we need to show that lim, 1. A.(t,2) = 0 for any ¢t € [0,1[. We prove this

statement only for z — 400 as the case x — —oo is done similarly. First, observe that

un(ly) = 5 (1o @ o Ply)ull.y))

= 2 (Foa o Py)) ully) + 1 (Fod~ o P(y)) u(l,y)

dy
and therefore
gt )u(t, ) — (ug(t, x))?
Aally ) = fyu2(t )
_ fR uyy<1 y)dy (fR “y(l y)dy)
v/ﬁR tLr—yulydy v\ [T Ju(L, y)dy

3 f D(tx—y) (Foato P<y>)2 u(Ly)dy
Jo Ttz = y)u(1, y)dy
Jo Ttz —y) it (fo oo 15(3/)) u(1,y)dy
Jo Tt = y)u(l, y)dy
Ju T2 — (fo ¢to 15(.@)) u(1, y)dy
- fR t,x — y)u(l,y)dy
= L)+ Be) — 7 E).

_|_
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We will show that lim, o I1(7) = lim, o [3(z) = d? and lim,_,, Ir(x) = 0, which will yield
the required result. Due to the fact that f is increasing and lim,_, f (x) = d > 0, we have
f(x) < d for all z and therefore I,(z) < d and Is(z) < d for all x.

Moreover, fix an € > 0 and let N be such that f(N) > d — €, then we will have

u(1,y)f o @1 o P(y)d
T—+00 J:—)—l—oo f]R (1 y)dy
o bm b [ T( t,:c—y) (1 y)dy + (d—e) [y Ttz —y)u(l,y)dy
T sS40 fRF(t,x—y)u(l,y)dy
. b—d+ NFt,x— u(l,y)d ~
et lm ( €) oo I y)u(l,y) Vg
=400 Jo Ttz = y)u(l, y)dy

where the last equality is due to the Lemma 5 in Appendix. Due to the arbitrariness on e,
and the previous bound on 5 we have lim,_,o I5(z) = d as claimed.

Similarly, (N is the same as before)

- gy Je L (1 y)(fo ' o P(y))dy
o) iy B0
) —€) fN (t,z — u(l y)dy
o
_ (CZ— 6)2 — lim B 6 f—oo F<t7x - y)u(lvy)dy _ (CZ— 6)2,

atoo [Tt 2 = y)u(l,y)dy
and therefore lim, ., [1(x) = d in the same way as before.
Due to (2.4.18) and the fact that % (f od o Py )) is continuous, for any € > 0 there
exist constants M and N such that

CZ/ <f 0! P(y)>‘<e, Yy > N

and

‘di (fo@‘lop(y)> <M, Vy<N

Y

Thus, we will have

JiTta = y)u(l, ) — (foatoP(y))|dy

lim |L(x)] < lim

@ to00 T 400 Jo Ttz —y)u(l,y)dy
L(t,x — 1,y)d
< lim (M — f )( y)y+€:€a
7400 fR Ju(1, y)dy
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where the last equality is due to the Lemma 5 in Appendix.
We also notice that, since | f| is bounded by K, we have for any ¢ € [0, 1]:

Jo Ttz —y) ‘fo > 1o 15@)‘2 u(1,y)dy
Jo Dtz — y)u(l,y)dy

iy < Y [Fo®to Py)| u(ly)dy
Ja D(t.x = y)u(l, y)dy
L) = Je Ttz —y) ‘% (fo > lo 15(3/)) ‘ u(l, y)dy'
Jo Dt 2 = y)u(l,y)dy
To show A;(¢,z) is uniformly bounded for (¢,z) € [0,1] x R, it suffices to show
% (f odlo f’(y)) is uniformly bounded in R, which is true due to 2.4.18.

1L (2)| = K?,

IN

K,

IN

To conclude that condition 1 of Proposition 1 holds, we need to demonstrate that

lim,_,e0 A(t, ) = d, and lim,_,_ A(t, z) = b. Notice that by the definition of (¢, z),

uw(tax) — lim er(t’x_y)uy(lay)dy

lim A(t = i
_ o ez —y)u(ly)fo @ o P(y)dy

Since f o @' o P is bounded by d, we have

e L'tz —y)u(l,y)d
lim A(¢,z) < lim de (t.2 — y)u(l, y)dy

=d.
T—00 T—00 fRF(t,l’ — y)u(l,y)dy

Since f o® 1o P is strictly increasing and converge to d when z — +o0o. We have for any

€ > 0, there exists N > 0 s.t. for any 2 > N, we have fo® Lo P(zx) > d — e. We have,

JE Dt x —y)u(l,y)f o @' o P(y)dy
fR Ltz — y)u(~1, y)dy )

STtz — y)u(l,y)f o @' o Py)dy
Jo Dtz — y)u(l,y)dy

Due to boundedness of f and Lemma 5 in Appendix, we have

N
- I'(t,z — y)u(l,y)d
lim |I4(x)] < K lim LOO ( ypull, y)dy =

AMt,z) =

+ = Ii(x) + I5(x).
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and therefore lim, o, I4(x) = 0. Moreover, due to the same lemma

. jg» Ju(1, y)dy
1152015(3;) 2 (d- fR (1 y)dy

o : f L(t, @ — y)u(l,y)dy
= (d—¢) |1- :cl—>oo fR (t,z —y)u(l,y)dy

Since € is arbitrarily chosen, we have lim, ., I5 = d. Therefore, lim, o, A(t, ) = d. Similarly
we can show lim, , o, A(t,x) = b.

Next we will show the connection between P and P that would imply that the condition
3 of Proposition 1 holds.

Since A and A, are uniformly bounded due to Lemma 3, Proposition 5.2.9 and Theorem
5.2.5 in [38] yield that for any fixed (¢,z) € [0, 1] x R there exists unique strong solution to
SDE (2.4.10) with initial condition x; = x. Denote P(t,z) the CDF of &;.

Our goal is to derive P(t,x) via an application of Girsanov theorem. Consider a local

martingale L given by:

t 1 t
L; = exp {—/ YA(S, ks)dBs — 5/ V2A2(s, /@s)ds} .
0 0

Since A(t,x) is bounded, L is a true martingale, and therefore a measure defined by

dP

e= L
dPh t

is equivalent to P. Moreover, under P the process k satisfies

fitzﬁt

1nt<z:| .

by Girsanov Theorem and P[x, < z] = EF [ i

Observe that

1 ! = 1
= exp {/ YA(s, ks )dBs — —/ VAN (s, ﬁs)ds} =exp {I(t, ki) — Ni},
Ly 0 2 Jo

where I(t,2) = [ 7A(t,u)du, and

t 1 1
N, = / [It(s, Ks) + 57)\90(8, Ks) + 572)\2(5, KJS):| ds.
0
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Indeed, application of Ito’s formula gives

I(t, k)

¢ ¢ 1 [t
= /It(s,/is)ds+/ Iz(s,ms)d/@5+—/ I.(8, ks)d(K)s
0 0 2 Jo
¢ ¢ . tq
— /]t(s,f@s)ds—i—/ VA(s,ﬁs)dﬁs—l—/ §7Az(s,ms)d8,
0 0 0

which yields the required representation for 1/L.

Moreover,

t Ks 2
N, = / {7/ Ae(s, x)dx + z)\$(8, Ks) + 1A2(s, /{S)} ds
0 0 2 2
t Kg 1 1 /y )
- / v {/ <)\t(s, x)+ 5)\$z(8, x) + YA(s, ) A (s, x)) dr + 5)\;5(3, 0) + 5)\ (s, 0)} ds
0 0

_ %/0 Dha(5,0) +722(s,0) Y ds = e(t),

where the last equality is due to the fact that A satisfies (2.4.8) and c¢ is a deterministic

function.

Due to the above considerations, we have

P(t,z) = Pl <] =EF [1,ﬁ<xel(t’“t)] e~e®

1 r y2
) I(ty) ,—%
= e e e 2t dy.

\/ 27t /_OO Y

The last equality is because r; is a P Brownian motion with normal distribution N(0, ).

Thus we have

e—c(l) x 2
P.(1,z) = exp{v/ A(l,u)du—?}
0

Since P(1,z) is the CDF of x;, we have

00 670(1) oo efc(l)
1:/ P.(1,z)dx = / Py(v)dr = —

*
o0 c —00
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due to the definition of P. Therefore we have ¢* = e~ and P,(1,z) = P,(z), integrate
both sides we have P(1,z) = P(x) since P(1,00) = P(c0) = 1.
Finally we will show condition 4 of Proposition 1, i.e., A(0,0) = 0. By definition of A, we

have A(0,0) = uxggo Since

1 +'yfy fod~loP(u)d ( ) 1
u0.0) = [ = y="0 2
Due to (2.4.15), we also have

u,(0,0) :/RF(O, —y)uy(l,y)dy:/wcoq) ° Py) exp{—y—+7/0 fo q)_lolf’(u)du} dy

R \/271' 2
Therefore
1, y? Yz 1.5
A0,0) = o P~ ex ——+/ o~ oPudu}d
00) = <= [FootoPwen -y [ (u)dc dy

- 7 <>f 0! <>dy—/01fo<b1<u>du

_ /f —E[f(2)] =

where the second equality is due to the definition of P, the third equality is by change of

variable © = P(y) and fourth equality is by change of variable z = &~ (). |

To collect the results we have so far before moving onto the final Lemma for existence
of equilibrium pricing, we conclude that if given the existence of P solving the integral
equation (2.4.19) defined in Lemma 4 with boundary conditions P(—o0) = 0 and P(oc0) =
1, we can define function A\ as (2.4.13), a strictly increasing function satisfying (2.4.8).
Moreover, P is the terminal distribution of process x which is the unique strong solution of
(2.4.10). By Proposition 1, we can define w(t,y) = m € @42 :[0,1]x]b, d[— R* with
lim, ;w(t,y) = lim;w(t,y) = 0 for any ¢ € [0,1] and & = A(t, ;) such that ¢ is the unique
strong solution to (2.4.12) and w solves (2.2.4) and (2.4.7). The following Lemma completes

the existence of such pricing rule.

Lemma 4 Consider function f = f — E[f(Z)] where f satisfies Assumption 1 and such
that B[f(Z)] = 0. Define lim,_oo f(z) = d, and lim,_,_o f(x) = b. Then there exists
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P c @ :R = R, a function strictly increasing w.r.t. x, with P(—o0) = 0 and P(cc) = 1

satisfying the integral equation

P(x) = \/C% /; exp {»y/Ou fod o P(s)ds — u;} du (2.4.19)

where ¢* is chosen such that P(co) = 1.

PrRoOF.  First the integral equation (2.4.19) will make sense because f is bounded,

therefore [ fo® o P(s)ds is at most linear. Thus —“72 will be the dominating term in

00 u N 2
/ exp {7/ foq)_10P(s)ds—%}du<oo.
—00 0

Thus ¢* is well-defined. Denote g(z) = f o &' o P(z) and G(z = [ g(u)du, we have the

the integral, i.e.,

integral expression for P:

P(z) = \/c% /Oo exp {ya(u) - “;} du.

where ¢* is constant to normalise the integral such that:

02
ex (u) — — ¢ du.

\/ 2m P { ) 2 }

Here we have a recursive relation to obtain a sequence of ¢"(x), G™(z), P"(x) and ¢ such

that

g'(0) = Fod o P'(z), G"(x)= / " (),

* 00 2 2
= \/C;_W - exp {vG"(u) - %} du, P"(x \/_/ exp {an( ) — }du.

Denote transformation 7', the mapping such that Pl = TP, Define

[\D

D= {]5 € C(R) : Pnondecreasing, P(z) = / P, (u)du; P(—00) = 0; P(c0) = 1;

—00

where we choose any 0% > 1 and ¢ = m(iﬂ%) exp {%}

We will show that the set D has the following properties:
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1. D is a convex set: Suppose P!, P2 € D and A € [0, 1], then

P := AP+ (1 — \)P? € €, nondecreasing,

P(—00) = AP'(—00) 4 (1 — \)P*(—00) = 0,

P(o0) = AP (00) + (1 — A) P?(c0) = 1.

Moreover
P(z) = Aﬁlgx) F1-NP@)
= )\/ P;(s)ds—l-(l—)\)/ P%(s)ds
_ / (APX(s) + (1= N P(s) ) ds,
0 < Pu(x) = AP} () + (1 = \)P*(z) < o {—; 2}
Thus P € D.

2. D is closed: Since Cy(R) is a Banach space, given {]5”}, a sequence of elements in D
converging to some element, P € €, in the sup norm, i.e., for any € > 0 there exists N
s.t. for any n > N, we have

sup | P*(z) — P(z) |[< e
z€eR

Therefore for any y > x, ¢ > 0 and n > N, we have

as P"(y) — P™(x) > 0 for each n and y > z. Since € can be arbitrarily small, we have
P is a non-decreasing function.
Moreover, since P"(—oc) = 0 for any n, choose n > N. Then for € > 0 there exists

—L <0 s.t. for any z < —L we have P"(z) < e. Therefore for any = < —L

0 < P(z) = P(z) — P"(z) 4+ P"(z) < 2e.
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3.

Thus we have P(—o00) = 0 due to the arbitrary choice of e.
Similarly, since P"(c0) = 1 for any n, choose n > N. Then for ¢ > 0 there exists L > 0

s.t. for any © > L we have 1 — P*(z) < e. Therefore for any z > L
0<1—P(z)=1- P"(x)+ P"(z) — P(x) < 2.

Thus we have P(c0) = 1 due to the arbitrary choice of €.

In addition, for any z < y in R, it follows from Fatou’s lemma that

~ ~ Y. Y ~
0 < P(y) — P(x) = lim Pl (u)du < / lim sup Py (u)du.

n—oo n—o00

Since each 15;; is bounded from above by the same integrable functions, so will be
lim sup,, .. P*(u) for every u € [z,y]. This implies that P is absolutely continuous

and, in particular, there exists a function P, with 0 < P,(z) < limsup,_,., P*(1,z) <

7= exp{—%} for all x € R. Hence, D is closed.

TP € D. We start from

Tp(ac)—\c/% exp{ /foé[) )ds—%}du,

From the definition of TP we know it is increasing function in Cy(R) with 7'P(—co) = 0

and ¢}, 5 is to normalise the integral such that TP(cc) = 1. Moreover, it is absolutely

P
continuous and can be written as TP(z) = [*(TP),(s)ds with

exp{ /foq> )ds—””;}

First we obtain an estimate on ¢ ;. By definition of ¢}, we have

. V2 < V2
re ffooo exp {’yG(u) — “72} du — ffooo exp {—’y]G(u) — “72} du
< V2T B V2T
— o ep{—Klul — % }du exp{g} e exp{—w}du
\ 2T V2T

2exp{ZE} [ oxp{— CHIER Y gy, 2exp{ T8} [7% exp{— }du

2772
Y i (2.4.20)
20(—K) 2
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where G(z) = [ f o ®' o P(s)ds, K is the upper bound of |f| and |f’|. Therefore,

with o2 > 1, we have

TP oo ‘w
(TP),(x)ez? = \/%exp

IN
N
B

IN
O
N
vl
@
>
o
— /—/H/—\;H/—/H
! =h
Bl
|

1 72[%2 72K202
< exp § —
V21 20 (—~K) 2 2(02 —1)
1 1 V2 K? ¢
= — exp =
V27 20(—yK) 2(02 - 1) V2r
where ¢ = me p{2(722—1} from definition of D. Thus we have P( ) <

—5o3 > }. Therefore, TP € D.

Concluding from above, we have D is a closed convex subset of Banach space, transformation
T maps from D to D. Thus TD is an equicontinuous family of functions. By Ascoli-Arzela
Theorem (Corollary I11.3.3 Lang [39]), if P" is a sequence in 7D, then there is a subsequence
which converges not only point-wise to P € Cp(R) but also uniform on every compact interval
of R. We will show the convergence is uniform for any x € R.

Assume P™ is the convergent subsequence. By the definition of D, since P (z) <

2
c oz .
Tom €XD { 5o } we have:

Pr(z) < / exp{ 2“22}du 1— Pz /ep{ }d

Therefore, there exist z* < 0 and x, > 0 such that for any € > 0,

T 2
P (z) < exp {_u_} du = co®?(z,) <,

C
\V 2T /—oo 202

o] 2

where @7 is the CDF of N(0, o).
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Since P™ converges to P point-wise, we also have that for any z < z,, ]5(1‘) < € and for

any r > x*, 1 — P(x) < e
We also have the convergence is uniform on the compact [z, z*]. Thus there exist N € N
such that for all K > N

sup |P™(z) — P(x)| <.

TE[T 2]

Thus for any £ > N we have

sup [P () — P(a)] < sup |[P™(x)—P(a)|+ sup (P™(a)+ P(x))

Tz€R TE[Tx,x*] TE[—00,x«]
+ sup (1—P™(z)+1— P(x)) < 5e.
TE[z*,00]

Therefore the convergence of P™ to P is uniform for all z € R. Thus 7D is pre-compact in
Cp(R).

Next we show the transformation 7T is continuous. Assume without loss of generality
P™ converge to P € D in sup norm. It suffices to show the point-wise convergence of
TP" to TP (as we have shown above, since TP™ € D, if TP" converge to TP point-
wise, we have TP" converge to TP uniformly in R under sup-norm). Since TP"(z) =

[7. exp{yG™(u) — “Ydu and denote

*
Cn

Ver

G(z) = /Om g(u)du = /09: fod o P(u)du.

We already know from (2.4.20) that ¢} has an upper bound pvs (—1w 7 OXP {—@} Similarly

we can achieve a lower bound for ¢ as well:
. V2 S V2
" 2 exp {(vG(u) — L du — [7 exp {7|G(u)| — £} du
V2 B V2
[ exp{vKlu| — “2—2}du exp{@} I eXp{—M}du
V2 V2

Qexp{#}fooo exp{—%}du QeXp{VQQKQ}ij exp{—g—g}du

1 o 72f(2
= —————ex — ,
20(K) | 2
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where K is the upper bound of | f | and | f! |. Therefore ¢! has a converging subsequence
¢y, — ¢*. To show the point-wise convergence of TP to TP, it suffices to show point-wise
convergence of TP™ to TP.

To do so, it suffices to show point-wise convergence of ¢;; exp{yG"*} to c*exp{yG} by

Scheffe’s theorem (Theorem 3.16.12 by Billingsley [6]). We have

lim [¢;, exp{rG™ (2)} — ¢ exp{rG@)}]
< lim ¢, exp{yG™(2)} — ¢, exp{yG(x)}| + lim |c, exp{yG(2)} - ¢"exp{yG(x)}]
= I+ L.

To investigate the first term, we notice

L = klim Cy, exp{7G(z)} |exp {’y/x(fo dloP™ — fod o ﬁ)(u)du} - 1‘
—00 0

fodtoP™(u)— fod o Pu

< lim ¢ exp{yK|z|}
k—oo 'k

——
|
—_

exp § v|z[sup
0,2]

Since P™ converges to P uniformly, we have for any € > 0, there exists N € N s.t. for any
k > N, we have
sup | P (z) — P(x)] < e.

zeR
Therefore for any = € R, when k > N, P(z) — e < P™(z) < P(x) 4+ ¢. Thus, we have for
any 0 < e < %(p(x) — P(0)),

J = sup|fodtoP™(u)— fod o P(u)‘
[0,2]

< Var s f’<<1>1<y>>exp{w}suprﬁnk<u>—P<u>r
)

[P(O)—e,]s(x)—l—e] [0,x]

ot @ W)\ _ o7
< V2rKe sup R S 2nKeM (x,¢)
[P(0)—e,P(x)+¢]

where M (x,€) is an increasing function of e. Moreover,

(I)—l 2
lim M(z,e) = sup exp{w} = M(z).
e [P(0), P(a)]
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Therefore we have

L < klim Crrs exp{vK|z|} ’exp {\/ 2my|x| KeM (x, e)} - 1‘
—00

< ¢ exp{’yk]ﬂ}lif(r)l ‘exp {\/ 21| x| KeM (z, e)} - 1‘

1 72l~(2 ~ ) ~
= ——exp{ — +~vKl|x hm‘ex { 21 xKMxe}—l’zO.
) p{ 5 Tk !} im |exp | V2m7|e| K M(2)

Note in the above inequality, the choice of k and e are independent.

Since ¢, — ¢”, there exists N € N such that for anye > 0 and k > N we have

e, — ¢l < e

Thus
I, = lim |c, —c*lexp{7G(7)}
k—o0
< exp{yK]|z|} lim |¢; —c*|=0.
k—ro0 k
Therefore

kli)m ¢t exp{7G"(2)} — c*exp{1G(2)}| = [ + I = 0.

Hence TP™ converges to TP point-wise. This implies that TP™ converge to TP uniformly
in R under sup-norm. As P" converge to P uniformly in R under sup-norm, we have T is
a continuous operator. D is a closed and convex subset of a Banach space and T'D is pre-
compact. Therefore, by Schauder’s fixed point theorem(Theorem 7.1.2 by Friedman [24]), T
has a fixed point P, i.e. TP = P. Moreover P € C! due to the definition of operator TP,
P is differentiable with continuous derivatives. We know P € €2 since directly differentiate
(2.4.19) we have P, =P, ('yf odlo ]5(:15) — a:)

In addition, P is strictly increasing as the derivative is strictly positive. [

Now we have the existence of P solving the integral equation, as discussed before the
Lemma, we have the equilibrium pricing rule w(t, ) where w is defined in Proposition 1.
Moreover, we will show in the following Corollary that p, the transition density of process
&, and p, the transition density of process k, exist and can be derived one another through

the connection between w and \.
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Corollary 2 Let P be the cumulative distribution function given by Lemma 4 and \ given

by
IRF(ta T — y)fNO dlo P(y)efonyoq’*lOP(u)dudy

7 Ja Dt @ = y)eld nforoP gy
Then the unique strong solution of SDE (2.4.10) with initial condition ko = 0 a.s., k, admits

At, ) =

, Vtelo,1].

a transition density, denoted by p. Moreover, this transition density will satisfy Chapman-

Kolmogorov equation

p@%&@=/ﬁ@%%@ﬂ%%&@w,
R
and have the following smoothness properties:

1. (continuity in the forward space variable) p(s,z;t,.) : R — [0,00[ is continuous for

s€[0,t] and x € R;

2. (smoothness in backward variables) (s,z) — p(s,x;t,y) belongs to CH2([0,t[xR) for
every y € R.

Furthermore, k is a Feller process.

Moreover, consider the weighting function w(t,z) = and &, the unique strong

1
Azt (t)
solution of SDE (2.4.12) with initial condition & = 0 a.s.. Then & admits a transition density,

denoted by p which is given by

p(t, At y)is A (5,2))

p(t,y;s,z) = w(5.2)

PRrROOF. The existence and uniqueness of a strong solution of SDE (2.4.10) with initial
condition ko = 0 a.s., was established in Lemma 3. Moreover, since A\ and A, are uniformly
bounded due to Lemma 3, Proposition 5.2.9 and Theorem 5.2.5 in [38] yield that for any fixed
(t,xz) € [0,1] x R there exists unique strong solution to SDE (2.4.10) with initial condition
Ky = .

Existence, uniqueness, and smoothness in backward variables (s,x) of the transition
density function p follows from pp. 368-369 of [38]. Indeed, those considerations apply due

to the uniform (on [0, 1] X R) boundedness of A and A, and the fact that there exists unique

strong solution to (2.4.10) with initial condition x; = x for any (¢, z) € [0, 1] x R.
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In particular, there exists a unique fundamental solution of
1
v(t, z) + §vm(t, z) + YAt x)v,(t, z) = 0, (2.4.21)

which is the transition density p.

To show that p satisfies Chapman-Kolmogorov equation, fix any (s,z) € [0,1] x R and
0 < u < s. Observe that p(t,y; s, z) satisfies (2.4.21) on [0,u| x R with terminal condition
v(u,z) = p(u,x; s, z). Then, due to Theorem 5.7.6 in [38], we have the required representa-
tion

p(t,y; s, 2) = /p(t, yiu, )p(u, 3 s, z)dz.
The above considerations, together Witthhe definition of the fundamental solution and the
Theorem 11 in Chapter 1, Section 6 in [24] implies that x is a Feller process.

The continuity in the forward space variable follows from Theorem 3.2.1 in [53] and the
fact that p is the unique fundamental solution of (2.4.21).

Finally, we turn to the transition density of £&. Due to the Proposition 1, § = A(¢, k).
Moreover, considerations similar to the ones in the Proposition 1 yield that for any fixed
(t,y) € [0,1]x]b,d[, we have &) = A(s, /{g”\il(t’y))) for all s € [t, 1], where £t¥) is the
unique strong solution of SDE (2.4.12) with initial condition ﬁt(t’y) =y and £ E9) ig the
unique strong solution of SDE (2.4.10) with initial condition &™) = A\=L(¢,y). The
proof is similar to the consideration in Proposition 1. We have shown in the first paragraph
that SDE (2.4.10) with initial condition x;, = x where (¢,x) € [0,1] x R has unique strong
solution. Since y E]E, CZ[, we have A7!(¢,y) € R. Denote r as the unique strong solution to
SDE (2.4.10) with initial condition x; = A71(¢,). Define & = A(s, k4), which is consistent

with the initial condition

gt = )‘(ta /{t) = /\(tv A_l(tay)) =Y.

Application of Ito’s formula will yield

& =&t / (s ), + / S (”‘(“’H“HM) "
t t

s

Y+ /S Ae(wy 5y) (dBy + YA (u, Ky )du) — v [ M, k) Az (U, Ky )du

t

y+ /)\gc(u,fiu)dﬁu:/ )\gc(u,)\_l(u,fu))dﬁu:/ w(u, &,)dp,.
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Therefore £ = A(s, ks) is a strong solution to SDE (2.4.12) with initial condition & = y for
(t,y) € [0,1]x]b,d[. Denote that 7 = inf{s >t : & ¢]b,d[} = inf{s > t : k, ¢] — 00, +00l[}.
Since k is non-explosive due to the boundedness of the drift term yA(s, ks), we have 7 > 1.

To show the uniqueness of the solution to the SDE (2.4.12), suppose there is another
strong solution é Denote a sequence of open sets V, :]B + %,Ci — %[, n = 1,2,... and
define a sequence of stopping times v, by v, = inf{s > ¢ : &, ¢ V,}. Then the process
fis = A7\(s,&,) is well defined on [t,1,] for all n. Note that since X is increasing function,
v, =inf{s >t : &, ¢ U,}, where U, = })\_1(5,5—1— Ly A (s, d - 1) [

Application of Ito’s formula to & stopped at v, will yield

SAVnp, ~ ~ SAVp, R )\_1 ; 9 £,
Rsnvn =AMt y)+ / A7 (u, €4)dEy + / <A;1<u,£u>+ wwégw <u£>>du

e / N (s &yl ) dBa + / T ) ¢

S$A\Vp ~ ~ SAUp 5
et [ b+ [ 2
ts/\un SAVn !
=AYt y)+ / dﬁu—l—/ YA (u, Ry, )du,
t t

and therefore & is a strong solution of (2.4.10) in [t, s A v;,] for each n € N. Since solution to
(2.4.10) with initial condition k; = A71(¢, y) is unique, we have fs,, = Ksn,, for all s € [t, 1].
Taking the limit, in view of continuity of k, we have Rsr, = ksp, for all s € [¢, 1], where
v =lim, . v,. In particular, kK15, = K1r, and therefore v < 1 is equivalent to 7 < 1 which

has probability zero due to the arguments similar to Remark 4. Thus,
’%5 = "%s/\u = Rsav = Rs te [t7 1]

Due to the connection between k and 5 and continuity of k£ as well as k, the above implies
that

Pl¢s =&, s € [0,1]] = 1.

Therefore &) = )\(s,/igt”\_l(t’y))) for all s € [t,1] is the unique strong solution of SDE

(2.4.12) with initial condition £ = y.
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Let ¢ be any bounded continuous function on R. For any (¢,y) € [0,1]x]b,d[ and s € [t, 1]

we have:

Elg(s,€00)] = E[p(s, A(s, s C0) / 65, A(s, 2))p(t, AL (E): 5. 2)d>

d
_ / O, Wp(t A (1, 9): 5, A (5, 10))AA (s, )
) /d" o, BN 00N (50)
b

w(s, u)

d
_ / o(s, W)p(t, 5, u)du

which implies that the density of ¢ exists and is as stated. The second equality is by applying
the transition density of x, the third equality is by change of variable u = A(s, z), the fourth
equality is by connection between w and . [ |

In the next Subsection, we complete by giving the optimal trading strategy of the insider

under equilibrium described by the transition density p(t,€).

2.5 Equilibrium

In this Subsection, we give an inconspicuous equilibrium consists of the rational pricing rule

(P*,w*) and optimal trading strategy 6* for the insider.

Theorem 3 Under Assumption 1, a triplet (P*,w*,0%) given by the following is an incon-

spicuous equilibrium.

1. The weighting function w*(t,z) = where X is given by

1
Az (tw)

JoT(t,z —y) f o &L o P(y)eld 1fo® oPlwidugy

At,x) =
( ) ,.)/L/‘R t T — €f0 v fod— 10P(u)dudy

, Vtelo,1].

The existence ofl5 18 given by Lemma 4.
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2. The insider’s trading strategy 6} = fo *)ds where
pa(t, 31, f(2))

pt, =1, f(Z))
p is defined in C’omllary 2 as the transition density of process & where £ satisfies the

SDE & = [}y w*(s,&,)dBs.

a*(t,r) = w*(t,x)

3. The market maker’s pricing function P} = & + E[f(Z)], where £* satisfies the SDE

¢
& = [ vy
0
The cumulative order Y;" = By + 6.

Proor.  We will first show that (P*,w*) is admissible in the sense of Definition 1.
We know by Proposition 1, Lemma 3 and Lemma 4, we have the weighting function w* is
well-defined, positive in the interior of its domain and satisfies the PDE

wi(t,x) wi(tz)
w(t, )2 2

In addition, there exists unique strong solution ¢ to the SDE

gt :/0 w <8>€s)dﬁs-

By Proposition 1, it can be written as & = A(¢, k;) where & is the unique strong solution of

SDE (2.4.10), i.e
t
ke = By +/ YA(S, ks)ds.
0
From Remark 4, we have 7 > 1 a.s. Thus w* is admissible pricing rule.

Next we show #* is admissible, i.e., 8* € A(w*). By construction 6* is absolutely contin-

uous. We need to show there exists unique strong solution for the SDE

46— w(t,€)dB, + w1, &P LT (D) gy 2.5.22
OB ) e ) 22

with initial condition & = 0 a.s.. We will show under the connection & = A(¢,;), it is

equivalent to show there exists unique strong solution for the SDE

pa(t, K751, A7 1(1, f(Z)))dt (2.5.23)
p(t, w5 LAY f(2))
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with initial condition k§ = 0 a.s.. This is consistent with our result from Lemma 3 that

A(0,0) = 0. To show that & = A(t, k7) is a strong solution, apply Ito’s formula, we have

d&; = ()\t(t, k) + %Am(t, nj)) dt + N\ (t, K} dK}
= =Yt kL) (t, k7 )dt + A (t, £7)d By + YAt k7)) A (8, K7 )dt
pa(t iy LA, f(Z)))dt
p(t, ki 1L, AN, f(Z)))
pe(t, k5 1L, A (1, f(Z)))dt
p(t, ki LA, £(2)))

where the second equality is due to Burger’s equation (2.4.8) and the third equality is due

+ A (t, K;)

= w*(t,&)dB; +w*(t,&)

to the equality
1

At At )

Due to Corollary 2, we have the connection between p and p given as follows

Ao(t ) = = w*(t, \(t, x)).

pt, ki LA (L f(2)) = 0 (L f(2))p(t. 5 1, f(2)).

Therefore differentiate w.r.t. the first space variable, we have

Pty ks 1L,ATHL f(2)) = w (1, F(2)w (4,€) (8,651, (2))-

Substitute into the Ito’s formula we have

pr(t, ffv 17 f(Z»dt
p(t, &5 1, f(2))

Therefore, & = A\(t, k}) is a strong solution to SDE (2.5.22). It remains to show the unique-

& = w*(t, & )dB; + w*(t, &)

ness of the solution of the SDE (2.5.22). Suppose there is another strong solution £. Denote
a sequence of open sets V,, :]B + %, d— %[, n = 1,2, ... and define a sequence of stopping
times v, by v, = inf{t > 0 : ét ¢ V,}. Then the process i := /\_1(25,&) is well defined on
[0,1,] for all n. Note that since A is increasing function, v, = inf{t > 0 : &; ¢ U,}, where

L@:]X4@5+%LX4@J—%).
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Application of Ito’s formula to & stopped at v, will yield

tAvy _ ~ tAvn ~ )\ B
'%t/\un = / /\;l(safs)dfs + / ()\8_1(87§8) + = 8 5
0 0

pr(t £t>17f dt) t/\yn

_ tAvn . 5 . _ . 5
- /0 /\x (Svfs) (w (tagt)dBt_}'w <t7€) (t ft,l,f + ’}/gsds

o thvn tAVn - tAvn px(t gta 17 f(Z
- / dBS*/o 7A<S’“s)d”/o w8 Ty

where the second equality is due to a derivation of Burger’s equation (2.6.25), the third

ds

equation is due to the equality

1

A ty) = ——.
v () w*(t, y)

Similar as before, due to Corollary 2, we have the connection between p and p given as

follows 7
p(t, R 1A (Lf(Z)))_
w(1, f(2))

Therefore differentiate w.r.t. the first space variable, we have

Pa(t, i 1AL, £(2)))
w (1, f(Z))w=(t, &)

p(t,:1, f(2)) =

p:c(tu gt; 1’ f(Z)) =

Substitute into the Ito’s formula we have

tAvn tAvn tAvn ~ . ~
Finvn =/ st+/ YA, /%s)ds+/ Pat i 1AL F(Z))) )y
0 0 0 p(t, ke; 1, AL, f(2)))

Therefore & is a strong solution of (2.5.23). Since solution to (2.5.23) is unique, we

have Rpy, = ki, for all ¢ € [0,1]. Taking the limit, in view of continuity of x*, we have
Riny = Kip, for all t € [0,1], where v = lim,, o v,,. In particular, &y, = k7,, and therefore

v < 1 is equivalent to 7 < 1 which has probability zero due to the arguments above. Thus,
/Nﬁt = /’%t/\y = /i;:/\y = :‘i: te [O, 1]

We apply Theorem 2.4 by Cetin and Danilova [13] to show that unique strong solution
exists for (2.5.23). Denote E = R and [0,1] x E be the set containing the range of the

process (t, 7). Conditions to apply the theorem need to be checked are as follows:
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. Assumption 2.1 [13] in one dimensional case where @ = 1 and b = yA(¢, z) is uniformly
bounded by ]l~), J[ The local martingale problem for A is well-posed whereas A is
defined as

To see that, by Corollary 5.4.8 and 5.4.9 of Karatzas and Shreve [38], the well-posedness
of martingale problem is equivalently the existence of weak solution and uniqueness in
law of the solution of the induced SDE by the martingale problem. Due to Theorem
5.2.9 [38], since the drift term is global Lipschitz and bounded by Lemma 3, we have
the SDE (2.4.10) admits unique strong solution for any initial condition kg = & a.s..

Therefore the well-posedness of martingale problem is satisfied.

. Assumption 2.2 [13]: we know k as the unique strong solution of SDE (2.4.10) is a
Feller process. Moreover, since p satisfies Chapman-Kolmogorov equation, x admits

the semigroup property.

We have shown in Corollary 2 that p has desired smoothness properties which is con-

dition (H) in Assumption 2.2 [13].

. We have shown in Lemma 3 that A, is uniformly bounded, i.e., there exists constant

M s.t. forallt € [0,1], z,y € R,

. We want to show p(t,y;1,vy') > 0 for all t € [0,1[, ¥,y € R. p is the fundamental solu-
tion of the parabolic partial differential equation (2.4.21) with coefficient A uniformly
bounded, hence at most linear growth. We have by Theorem 1.1 [45] that the funda-
mental solution has a Gaussian lower bound with coefficients depending on uniform
boundedness of growth condition on yA. Therefore p(¢,y;1,3") > 0 for all ¢t € [0, 1],
v,y € R.

. We also need to show P**(inf{t > s : k, ¢ R} < 1) =0 for any (¢,z) € [0,1] x R
where x satisfies SDE (2.4.10). It suffices to show that the escape time of process & is
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a.s. 00, i.e., the process k is non-explosive, which it is as the unique strong solution of

the bounded drift one dimensional Levy process (2.4.10).

With all of the above conditions being satisfied, we have the SDE (2.5.23) has a unique
strong solution. Moreover, k% = A~*(1, f(Z)). Therefore we have unique strong solution &*
for SDE (2.5.22) and & = f(Z) a.s. which satisfies the second condition of the equilibrium
Lemma 2.

Next we need to show (P*,w*,0*) given satisfy the remaining two conditions of the
equilibrium Lemma 2.

From above construction of &* which is the unique strong solution of SDE ¢ =

fg w*(s,&s)dY with terminal distribution & = f(Z), we have constructed a Markov bridge

adapted to its own filtration. Moreover, we have

i p(t, &1, f(2))
pa(t. K7 1,A—1<1,f<2>>>|3m*
otk LATNLL f(2))

= /px(t, ki 1 u)du
R

= E

where the last equality is because p can be also viewed as the conditional density of
A‘l(l,f(Z)). Since [, p(t,x;1,u)du = 1 as p is transition density of x*. Moreover, from
Theorem 11 of Chapter I [24], we have estimate

C(c)

e (6 x; L u)| <
palt s 1,0)| < T

(u— @2]

oxp |-eb=h

for some C as function of ¢ and any ¢ < 1. Thus for any bounded z, we have |p,| <
C exp(—¢éu?) where C' and & depend on (¢,u). Then by Leibniz rule, we can exchange the

order of integration and differentiation and obtain
[ttt ade =02 [ae.g)5¢ ).
R

Therefore we have Y," = B, + f(f o*(s,&)ds is an FF -local martingale. Moreover, since

[Y*]; = [B]; = t, by Levy’s characterisation, we know Y* is a standard Brownian motion in
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its own filtration. To show P* is a ¥ martingale, it suffices to show £* is a ¥~ martingale.
We know & = f(f w(s,£)dY is a local martingale in its own filtration due to continuity of
w*. Moreover, w* is bounded due to Proposition 1. Thus £* is a true martingale.

Finally we show P* is rational, equivalently we want to show P = & + E[f(Z)] =
E[f(Z)|F)"]. Since £* is a martingale, we have & = E[f(Z)|F5] = E[f(Z)|F)"]. Therefore
we have

P =& +E[f(2)] = E[f(2)|5]"] + E[f(2)] = E[f(2)|9)").

Thus P* is rational.
|

The importance of the above equilibrium is as follows. Cho [12] considered exponential
utility with weighting function w depending only on time variable. He concluded that there
was no equilibrium unless the asset value is normally distributed. Now we see by relaxing
the condition on weighting function to depend on the path of cumulative order as well, linear
equilibrium exists under general, non-Gaussian framework. In comparison with risk-neutral
insider case, the equilibrium is not necessarily unique.

Future research could be made in the following directions. One straightforward extension
of the result is to consider unbounded, at most linear valuation function f. During our
attempt the difficulty lies in proving the integral equation (2.4.19) has a smooth solution.

Another new angle is to consider the dynamic information case where the insider observes
the information over time, instead of observing the full information at time 0. On the other
hand, the model for noise traders can be generalised to fit reality of the market, e.g., to have
time-varying volatility or to be modelled as Poisson process. We could also consider the case

where market makers are made risk-averse.

2.6 Appendix: proof of results in Section 2.4.1

Proof of Proposition 1. We start the proof by showing w is well-defined. Suppose there
exist A solving (2.4.8) and (2.4.9). Since ) is strictly increasing w.r.t. z, A™!(¢,y) exists,
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well-defined and strictly increasing for any y €]b, d[. As A(t,z) € €3, we have

d. . 1
P Wik 2020
P ARATNEY) d L (AT )
w2 Y= Ry @ YT TR A G Y)
B (AN (G Y) | 3L A (L y)
i YT TG T y) T R A Tny)

We also have
. )\t(tv Ail(tv y))
Ao(t, A, y))

Therefore A= (¢,y) € €'3([0,1]x]b,d[) — R. In particular, since A(t, ) is strictly in-
creasing, differentiable and bounded, we have A, (t,z) > 0 for any (¢,z) € [0,1]x]b,d[. Thus
by (2.6.24), we have %(t,y) > 0 and w(t,y) = /\gll(t,y) e C2([0,1]x]b,d[— R) is well de-
fined. To see the behaviour of w on the boundaries b and d, we notice lim, 1, A;(t,2) = 0.

Therefore by (2.6.24), we have

At y) =

1
limw(t,y) = lim ———— = lim A\, (£, A" (¢, )).
ylb (t:9) ylb AN Y) b ( t:9))

Since we have lim,_,_o A(£, z) = b and A(t, z) is strictly increasing function w.r.t. z, we have

limw(t,y) = lim A,(t,z) =0.

ylb T——00

Similarly we have

lim w(t,y) = lim = lim A, (t, A7 (t, ).
ytd yrd AL (6 Y)  yrd

Since we have lim,_,.o A(f, ) = d and A(t, z) is strictly increasing function w.r.t. z, we have

limw(t,y) = lim A.(¢,z) = 0.

de T—r00

Moreover, since A (t, z) is strictly positive for any z € R, thus A’ 1(t,y) is strictly positive

for any y €]b, d[. Therefore w(t,y) is strictly positive for any (¢,y) € [0,1]x]b, d].
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To derive PDE of w, we first derive PDE of A™! from (2.4.8). For simplicity in the rest
of the proof, unless specified, A and its derivatives will be function of (¢, \"'(¢,y)). Since

At, A7t y)) =y, we differentiate w.r.t. ¢ and y

MEANT=0, ANT=10 AW )2 AN =0,

Y

Thus we have the following

A 1 A
-1 t -1 -1 Tz
At - _A_x’ Ay - )\—w, )\yy - —F
Therefore
N+ My ] At + e ) = Mt At y)) = (2.6.25)
t 2()\y_1)2 - Ax t 92 Tx =7 ) Y =Y. <Y
-1

Note w(t,y) = m’ thus Z’;((ig)) = -\, (t,y) and wy(t,y) = —% Therefore

wy(t, Wy, (t, A

;(t y) + yy(2 y) _ (/\;1 + 5 /\y_yl 2) = .
w?(l,y) R/,

Thus w(t,y) = m

Define & = A(t, k¢), which is consistent with the initial condition

satisfies (2.2.4).

0= {0 = )\(0, Iio) = )\(0, 0)

Since )\ is strictly increasing w.r.t. space variable, \7! exists and is well defined. Application

of Ito’s formula will yield

& =&t /)\x(s,/gs)d,%s_‘_/ ()‘5(37/435)4—)\3:90(;’58))(18
0 0

t

— /t Ae (8, Ks) (dBs +YA(s,k5)ds) — v [ A(s, ks)Ae(s, Ks)ds
0

0
- /Ot (8, Ks)dBs = /Ot Aa(5, A7 1(s,£,))dBs = /Otw(s,fs)dﬂs.

Therefore & = A(t, k;) is a strong solution to SDE (2.4.12). Observe that inf{t > 0 : & ¢
1b,d[} = inf{t > 0 : K, ¢] — 0o, +0o[}. Since x is non-explosive due to the boundedness of

the drift term yA(¢, k;), we have 7 > 1. Equivalently,

P(ky > 00) = P(S + /Ot YA(S, ks )ds > 00)

< P(B; — max{—b,d}t > c0) = P(f; > 00) =0
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together with

Pk, < —o0) = P(B + /Ot YA(s, ks)ds < —0o0)

< P(B; + max{—b,d}t < —o0) = P(, < —00) = 0

yield the non-explosiveness of k. Therefore 7 > 1.
To conclude that statement 2 of the Proposition hold, it remains to show the uniqueness

of the solution of the SDE
d& = w(ta §t)dﬂt.

Suppose there is another strong solution &. Denote a sequence of open sets V, :]Z~)+ %, d— %[,
n = 1,2,... and define a sequence of stopping times v, by v, = inf{t > 0 : & ¢ V,}. Then
the process &y := A" 1(t, &) is well defined on [0, 1,] for all n. Note that since X is increasing
function, v, = inf{t > 0: &, ¢ U, }, where U, = ]A‘l(t, b+ 1), AN (t,d - 1) [

Application of Ito’s formula to K stopped at v, will yield

I%t/\yn = AtAVn )\;I(S,gs)dgs =+ /Ot/\l/” ()\s_l(s’gs) + Aw_xl(s7£s;w2<37€s)> ds

tAvy _ _ tAvy R _1
- / )‘m_l(svgs)w(s,fs)dﬁs +/ )\5_1(8’55) + >‘1’x (8758)
0 0

tAvp ~ _ tAvp, _
= [ lutfanr [ adas
Ot/\un tAUn 0
- / dﬁs—i—/ YA(s, Rs)ds,
0 0

and therefore & is a strong solution of (2.4.10) in [0,¢ A v,] for each n € N. Since solution
to (2.4.10) is unique, we have Ryn,, = Kiay, for all ¢ € [0,1]. Taking the limit, in view of
continuity of k, we have R, = kn, for all ¢ € [0, 1], where v = lim,, o ¥,. In particular,
Fiany = Kipe and therefore v < 1 is equivalent to 7 < 1 which has probability zero due to the

arguments in Remark 4. Thus,

I"%t = I%t/\y = Ritay = Rt te [0, 1]
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Due to the connection between k and é and continuity of k£ as well as k, the above implies
that
P& = ¢&,t €[0,1]] = 1.

Finally, the distributional equality of the condition 3 of the Proposition holds since (2.4.9)
is equivalent to \(1, k1) L7 (Z) where Z = N(0, 1) since P(1, z) is the cumulative distribution
function of ;. Therefore

& =M1,5) L f(2).

Lemma 5 Consider a function g satisfying
0<g(x) <eMel vz eR

for some constant M. Then for any z € R and t € [0, 1] we have

z

lim L(t,z —y)g(y)dy =0,
T—r+00 N
where T'(t,x) = 27r1(1_t) exp {——Q(it) }

PrROOF. As ffoo [(t,z — y)g(y)dy is increasing in z, we can assume, without loss of

generality, that z > 0.

We have
0 < / Itz —y)g(y)dy
z 1 _@w)® /0 1 LY
< e 20n Yd + e 20-n Yd
/0 V2 —1) A N Y

To complete the squares for each integral, we have

1 2, (1—t)M?2
e—ﬁ[x—y-i-(l—t)M} +%+Mrdy

]1(1’) =

—a—(1—t)M )
a—t)Mm2 z=z—( 1 o
= e 2 +Mz / — e 20Dy

—z—(1-t)M \/ 271'(1 —_ t)

ey, {(D (z—x\;l(i_; t)M> e (—x }%t)Mﬂ |

o7




Similarly, we have

e =)

Take limits when z — 400, we have lim,_,., Ir(x) = 0 and
P (zf:rf(lft)M) P <fmf(17t)M)
. L Vit . Vit B
A )= i = e i = B+ )

Since

—rx—(1—-tO)M —r— (1 =M Coa?
s-ro0 NI £hoe i Jim,

are continuously differentiable functions, we can apply L’Hopital rule,

[z—z—(1—t)M]?

ée_ 2(1—1t)

. . 2m(1—t)
lim I3(x) = lim o
T—00 T—00 _ MeMa—t=57—=

[zfzf(lft)M]2
lim e~ zu-n TMeF

1
= — — O,
V2m(1 —t)M w—

(1—t) M2
2

[—z—(1—t) M]?
— 1 e 2(1—t)
. . 4/ 2m(1-t)
lim I(z) = lim o
T—00 T—00 _Me_Mr_f
1 [—z+(—t)M]? (1—t) M2
= — — lime =g TMrt— —

V/2m(1 —t) M @0
Therefore we have

z

lim [ T(t,x = y)g(y)dy = lim (I(z) + I3(2) + L()) = 0.

z—oo J_

Lemma 6 Suppose f satisfies Assumption 1 and lim,_,o f(z) = d > 0, lim,_,_ f(z) =
b<0. Let P € C?: R — R, a function strictly increasing w.r.t. x, with P(—oo) =0 and
P(00) = 1 satisfying the integral equation:

C* x Uu _ uQ
e od o P(s)ds — — } du.
= el [ (s~ 5 |

o8

P(z) =




Then, for any e > 0 there exists & such that for all x > &

—y(d—e)<d o Plx)—x <0, (2.6.26)
and for any v < —&
0<dloPx)—z<y(b—e). (2.6.27)
This implies that .
lim o ‘;P(m) —1. (2.6.28)

PROOF. First we will show bounds in (2.6.26). By L’Hopital’s rule, we have

1— P(x) P'(x)

1. _ . _ 1 * fyfox fO‘I)_IOIB(S)dS.
a:—1>I-lI—1c>o 1— CI)((L’) T—+00 (I)/($> :v—1>1:11—100 ce

Since f, ® and P are strictly increasing functions, we know fo® 'o P is a strictly increasing

function. As lim, o, P(z) =1, we know

lim fod loP(z)= lim f(z)=d>0.

r—r+00 T—+00

Therefore, there exists x, > 0 s.t. for all z > x,, we have fo® !0 f’(:p) > g. Thus

’ _1o~ss m*o_lo~ss I—xc—i
/Ofocb P()d>/of<I> Pls)ds + (v — )5

Hence we have

lim 1——P(x) — lim e Jo foRTIoP()ds — o 5
Tr—+00 1 —_ @((L’) Tr—+00

Therefore there exists y* > 0 such that ®~'(P(z)) < z for all z > y*.

Since @ is strictly increasing function, the first inequality in (2.6.26) is equivalent to

P(x) > ®(x —v(d +¢))

for all x > z. Note that

lim 1 - P) = lim P'(z)

aotoo 1 — Bz —y(d+e)  eotoo Oz —y(d +€))

x — . 12 1
— ¢ lim efyfo fod 10P(s)ds—7+§(z—'y(d+e))2
T—r—+00

2 2 -
_ 0*677 (d;"e) lim e’yfox fo® loP(s)ds—y(d+e)x
T—r+400
2 2
¥ (d+e) . _
< ez lim e =0<1.
T—r+00
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Therefore, there exists §* > 0 such that for any 2 > §*, we have P(z) > ®(x — y(d + €)).
The inequality (2.6.27) is proved similarly. Indeed,
P()

D/
lim = lim P'(x) — lim c*e'lo

fod~loP(s)ds
T——00 q)(q;) T——00 CI)’(J;) T——00 '

Since b < 0, we have

lim fo® 'oP(x)= lim f(z)=0b<0.

T—r—00 T—r—00

Therefore, there exists z* < 0 s.t. for all z < 2*, we have f o ®~ o P(z) < b Thus

/2 fod loP(s)ds > /2 fod® loP(s)ds + (x — x*)é
0 0 2

Hence we have

lim c*evdo fo2 ToP(s)ds — o 5 .
Tr—r—00

Therefore there exists y, < 0 such that @71 (P(z)) < x for z < y..

To show the second inequality, as before, we need to show

P(x) < ®(x —v(b—¢))

for x small enough. Notice

lim = lim p/@)
z——o0 O(x — (b —¢€)) z——o0 ®'(x — (b —€))

15 2 1
— ¢ lim e'yf(ffoé LoP(s)ds—Z-+5 (z—y(b—e))?
T—r—00
(G 2 fod~loP(s)ds—(b
= ez lim Vo fo? oP(s)ds—(b—c)x
Tr—r00
* Fe-9® vex
< c'e 2 lim 7 =0 < 1.
Tr——00

Therefore, there exists 7, < 0 such that for any z < ., we have P(z) < ®(z — y(b — ¢)).

Thus, the statement of the Lemma holds with = max{y*, 7", — v, —7x }.
[
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Chapter 3

The solution to an impulse control
problem with non-linear penalisation

of control effort

3.1 Problem formulation

We fix a filtered probability space (Q,F, F;, P) satisfying the usual conditions and carrying
a standard (F;)-Brownian motion W. We denote by T the family of all (&F;)-stopping times.

An impulse control is a collection
Z: (7'1,7'2,...,Tn,...;Zl,ZQ,...,Zn,...),

where (7,) C T is the increasing sequence of the (F;)-stopping times at which impulsive
action is applied to a system and the positive real-valued random variables Z,,, n > 1, are
the sizes of the corresponding jumps of the underlying state process. In particular, we assume
that

Tn < Tat11{r, <o} for all n > 1.
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We denote by A the family of all impulse controls. Given such a control Z € A, we define

the caglad process
7, = Z Zulir<ty- (3.1.1)
n=1

In this context, we model the stochastic dynamics of the controlled system by

The objective of the optimisation problem that we study is to minimise the performance

criterion given by

Jo(2) =E )\/ e XPdt+ Y e (14 kZY) (3.1.3)
0

n=1

over all strategies Z, where a,d,k, A\ > 0 are given constants. The value function of this
optimisation problem is defined by

v(z) = %122 J.(Z), forxeR. (3.1.4)

In view of the general theory of stochastic impulse control, the value function of the
optimisation problem that we study identifies with a classical solution to the Hamilton-
Jacobi-Bellman (HJB) equation

min {%w”(m) — dw(z) + \®, —w(z) + inf [w(z — 2) + 1 + k2] } =0. (3.1.5)

z>0

3.2 The eventual nature of the optimal control

The structure of the problem we consider suggests that it should never be optimal to exercise
any control effort if the state process takes negative values and that it should never be optimal
to make the state process jump across the origin. The first of these observations suggests
that the value function v should satisfy the boundary condition

lim v(r) (AE UOOO ez + Wt)thD_1 = lim v(x) (%aﬁ + %) h =1 (3.2.6)

T—r—00 T—r—00
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because the probability of the uncontrolled process hitting R, tends to 0 as x — —oo.
Furthermore, these observations suggest that the optimal strategy should be partially char-
acterised by two strictly positive points ag < by. Whenever the state space process X reaches
the level by, control should be exercised to “push” it instantaneously down to the level ag.
On the other hand, the controller should take no action as long as the state process is inside
the interval |—o0, by[. Accordingly, the restriction of the value function v in |—o00, by] should
identify with a solution to the ODE

1
iw”(m) —6w(z) + A z? =0, forz €]—o0,by, (3.2.7)

that satisfies the boundary condition
w(bo) = w(aog) + 1+ x(by — ao)”. (3.2.8)

Every solution to the ODE (3.2.7) is given by
A A
w(x) = AeV20r 4 BemV20r 4 ng + 52
for some constants A, B € R. In view of the boundary condition (3.2.6), we choose B = 0
and we look for a solution w to the HJB equation (3.1.5) whose restriction in |—o00, by| takes

the form
Aem”H—%xQ—i—(%, if x < by
w(x) = : (3.2.9)
w(ag) + 1+ k(x —ag)®, if x=by
for some constant A € R.
To derive a system of appropriate equations to determine the free-boundary points ag,
by and the constant A, we argue as follows. First, we note that the fact that by separates
the “wait” region |—o0, bo[ from the “action” region to which by itself belongs implies that

the marginal cost of “waiting” should tend to the marginal cost of optimal “acting” as the

state process increases to by. This observation suggests the free-boundary condition
2\
W (by—) = V20 AeY?0 4 Fbo = ak(by — ag)* (3.2.10)

which is consistent with the C! regularity associated with the so-called “principle of smooth

fit”. Furthermore, we note that the HJB equation (3.1.5) can be satisfied for x € |—o0, b
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only if
=0, fory=am
—w(bo) +w(y) + 1+ Kby — y)* 7
>0, forally<b
which implies that the function y — w(y) + 1 + k(by — y)* has a local minimum at y = ag
and yields

2\
w'(ag) = V26 AeV?%0 4 — 0 = ak(by — ag)* . (3.2.11)

We are therefore faced with the system of equations (3.2.8), (3.2.10) and (3.2.11) for the
unknowns ag, by and A.

Subtracting (3.2.11) from (3.2.10), we derive the expression

2)\(1)0 — (l(])

A= _5\/5 (e\/%bo _ e\/ﬁao)

<0. (3.2.12)

On the other hand, adding (3.2.10) and (3.2.11) side by side and using (3.2.12), we obtain

Ao + 5H(b0 - ao)a 2 :|
by — ag) = fo(byp — ap) + —= + — (agp +bg)| , 3.2.13
it = ao) = faltn = an) + 5 | RO (gt (3.2.13)
where
1 2\ | V20y V260y
=——k(a—1)y*" and = coth —1]. 3.2.14
hly) =2 —rla=1Dy f2(y) NGT; [ 5 5 (3.2.14)
Furthermore, we can use (3.2.12) to observe that
=0 — an)® =ag+0b
a(a0, bo) e 0 *A‘S’Z(bo )" , 2 et (3.2.15)
<0 (O_GO) \/ﬁ < ag + by
where
q(s,z) = —w(x) + w(s) + 1 + k(z — s)°. (3.2.16)

It follows that the system of equations (3.2.8), (3.2.10) and (3.2.11) for the unknowns ay, bo

and A is equivalent to the system of equations

5+6/€(b0—(10)a 2
3.2.12), by — ag) = fa(bg — a and ag+ by = + )
( ), fi(bo — ao) = f2(bo — ao) 0+ 0o Nbo — a0) /%

(3.2.17)
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At this point, we should note that we have derived the system of equations (3.2.17) in a way
that is more involved than necessary because this will facilitate some of our analysis below.
The next result, which we prove in Appendix I, is concerned with the solvability of this

system of equations as well as with other issues that we will need in the following sections.

Lemma 7 Given any values of the constants \,0,k,a > 0, the following statements are

true:

(I) The equation fi(y) = fa2(y), where fi, fo are defined by (3.2.14), has a unique solution
ye > 0.
(IT) The points

0+ ory< 1 Y
= * —=>0 d b= . > 3.2.18
ag N 55 2 an 0= Qo+ Ysx > Qo ( )

provide the unique solution to the system of equations (3.2.17), which is equivalent to the

system of equations (3.2.8), (3.2.10) and (3.2.11) for the unknowns ag, by and A.

(II1) There exist points y; € 10, a0] and y' € Jag, bo| such that the concave function { defined

by
2\
Uy) = w'(y) = V20 AeY? 4 = (3.2.19)
satisfies
<0, ify<y >0, ify<y'
y) ! and  0'(y) . (3.2.20)
>0, ify € ]y;, bol <0, ifyely’ b
Furthermore,

if « €]0,1[, then g¢(s,by) <0 foralls<ay and gs(s,by) >0 for all s < agy, (3.2.21)

<0, 1ifs<ayg,
while, if o« > 1, then g(s,by) , (3.2.22)
> 0, ZfS S ]Clo, bg]
where g is the function defined by
g(s,7) =w'(s) —ar(z — 8)* ' = l(s) —ar(z —s)* ', fors <. (3.2.23)
(IV) The function q defined by (3.2.16) satisfies

q(s,z) >0 forall s <z < by such that (s,x) # (ao, bo). (3.2.24)
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3.3 The solution to the case with concave penalisation

of control effort (a € ]0,1))

It turns out that, if « € ]0, 1], then it is never optimal to wait for any amount of time if the
state process takes values greater than by. In particular, given any initial condition x > by,
it is optimal to jump immediately to a point a(z) < by that we specify below. Otherwise,
the optimal strategy takes the form we studied in the previous section. In view of these
observations, we look for a solution to the HJB equation (3.1.5) of the form
Aemx+§x2+5%, if x < by
w(z) = : (3.3.25)
w(a(z)) + 14+ k(z —a(z))”, ifa>b
for some C! function a : [by, 0o — ]0, by[ such that a(by) = ag, where A < 0 is the constant
given by (3.2.12).
To determine the free-boundary function a, we first note that w can satisfy the HJB

equation (3.1.5) only if

w(a(z)) + k(z — a(x))” = min{w(s) + x(z — s)*} for all z > by.

s<x

This identity will be true only if a(z) € 0, by[ satisfies
g(a(z),z) =0 for all z > by, (3.3.26)

where g is defined by (3.2.23).
The next result, which we prove in Appendix II, is concerned with the solution to the

HJB equation (3.1.5) when « € 0, 1].

Lemma 8 Fiz any values of the constants \, 0, k,« > 0 such that « € ]0,1]. Also, let A <0
and 0 < ag < by be defined by (3.2.12) and (3.2.18), and let y; € )0, a0 and y' € Jag, by| be
as in Lemma 7.(II1). The following statements are true:

(I) If « € ]0,1], then there exist a constant e, € 10, (by — ao)/2[ and a C* function a :
1bo — €4, 00[ = Jyt, ap + €4 such that (3.3.26) holds true. Furthermore,

a(bo) = ap, lim a(x)=y; and d'(x) <0 for allx € by — &4, . (3.3.27)

T—r00

66



(I) If « €]0, 1], then let the function a be as in part (I). On the other hand, if « = 1, define
a(x) = ag for all x > by. The function w defined by (3.3.25) is C* in R as well as C* in
R\ {bo} and satisfies the HJB equation (3.1.5).

We conclude this section with the following result, which we prove in Appendix III.

Theorem 4 Consider the stochastic impulse control formulated in Section 3.1 and suppose

that o € 10, 1]. The problem’s value function is given by
v(x) =w(z) forallx € R,

where w > 0 is as in Lemma 8.(II). Furthermore, the optimal impulse control strategy Z* € A

takes the qualitative form discussed at the beginning of the sections and is defined sequentially

by
=imf{t >0[ 2+ W, 2 b}, Z7 =+ Wy —alzx+Wsy), (3.3.28)
7y =nf{t > 77 | ale+We) + W= Wey 2o}, Zs = by — ap, (3.3.29)
and
Ty = inf{t > 70 [ ag+ Wy = W > bo}, Z),; = bo — ao, (3.3.30)
forn > 2.

3.4 The case with strictly convex penalisation of con-

trol effort (a>1)

The situation arising when o > 1 is fundamentally different from the one we studied in
the previous section. Indeed, the following result, which we prove in Appendix IV, reveals
that the cost of a single jump can be strictly larger than the total cost incurred by multiple

simultaneous jumps of the same total size.
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Lemma 9 Consider any o > 1 fized. The functions K, K : [0,00[ — [1, 00| defined by

K.(z)=n+nk (i>a and K(z) = K,(2), ifz € [zn-1,2nls

n
form=1,2,..., where
1! 1o\
20=0 and z,=r""" [(ﬁ) - (n n 1) ] ,ifn>1, (3.4.31)
are continuous and satisfy
K, (z) = inf {z”: (14 kuf) ’ Ul .o Uy >0 and ug + -+ +upy = z} , (3.4.32)
j=1

K(z)zinf{Z(l—l—/{u?‘) ’ n € N\ {0}, ul,...,unz()andu1+...+un:z}‘

j=1
(3.4.33)
Furthermore,
lim (zp1 — 20) = 6 7/%(a —1)7V° (3.4.34)
n—oo
and
K
lim ) _ kY% (a — 1)"(@ /e, (3.4.35)

zZ—00 z

This result suggests that we should look for a solution to the HJB equation (3.1.5) of the
form

Aemw+’g\a:2+5%, if x < by

w(z) = ,

w(a(z)) + K (z — a(:c))a, if x> by
for some function a : [by,00[ — |0, bo[ such that a(by) = ag, where A < 0 is the constant
given by (3.2.12). However, such a function would not satisfy the HJB equation even in the
sense of distributions because K’ is not continuous and K'(z,+) < K'(z,—) for all n > 1.
This observation suggests that the waiting region should involve intervals in by, o[ beyond
the interval |—oo,b[. On the other hand, Lemma 9 suggests that minimal costs can be
achieved only by multiple simultaneous jumps, which implies that an optimal strategy may

not exist. Despite most substantial effort in several directions, we have not managed to
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derive an explicit construction of the value function and the optimal strategy incorporating
these features.
The following result, which we prove in Appendix V, identifies the restriction of the value

function v in |—o0, by[ with the function w that we studied in Section 3.2.

Lemma 10 Consider the stochastic impulse control problem formulated in Section 3.1 and
suppose that o > 1. The problem’s value function satisfies

v(xz) = inf E

Ty o
_5 —0Tn « =4
anl )\/0 (& tXt2 dt + E (& (1 + RZn)l{TnSTz} +e TZw(XTZJr) s (3436)

n=1

where w 1s defined by (3.2.9) with ay, by and A < 0 being as in Lemma 8.(II).
Ty =inf{t > 0| X; €]—00,b}. (3.4.37)

In particular,

v(z) =w(x) >0 forall x €]—00,by.

We conclude with the following result, which we prove in Appendix VI. In this theorem,
we establish an iterative procedure for deriving the value function v. This procedure also
yields a sequence of e-optimal strategies, which arise by solving sequentially (3.4.39) and

(3.4.40).

Theorem 5 Consider the stochastic impulse control problem formulated in Section 3.1, sup-

pose that o > 1, and define
Wo(x) = min {wext(x), ir>1(f) [Wexi (z — 2) + 1 + k2°] } : (3.4.38)
where Weyxy 1S the extension of the function w > 0 defined by (3.2.9), which is given by
Wext (T) = AeVPe 4 %1‘2 + %, for x € R,
with ag, by and A < 0 being as in Lemma 8.(II). Also, define

w;(r) = inf E {)\ / e X2 dt + e~ ()‘m} : (3.4.39)
TE 0
W41 () = min {wj(x), ir>1£ [wi(z — 2) + 1 + k2] } : (3.4.40)
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for 5 > 0, where X, = x+ W, For each j > 0, the function w; is the difference of two

convex functions and satisfies the variational inequality

J

1
min {Ew/-/(x) — dw;(x) + Ar?, w;(z) — w, (:z:)} =0 (3.4.41)
in the sense of distributions. Furthermore,

wi(x) > wi(x) > Wi (x) forall j >0 and lim w;(z) =v(xz) forallzeR. (3.4.42)

- j—00

3.5 Appendix

3.5.1 Appendix I: proof of Lemma 7

Proof of (I). The calculations

2\eV20y

! _ 3 _
foy) = —5(6\/@; Y sinh v26y — v20y| > 0,

lim fo(y) =0 and  lim fo(y) = oo,
yJ0 Yy—00

reveal that f5 is strictly increasing from 0 to oo as y increases from 0 to co. Combining this

observation with the calculations
/ 1 2 a—2
fl(y):—E—F«'(Oé—l) Yy <0,

0, ifa<1
lim fi(y) = and  lim f1(y) = oo,
e —o0, ifa>1 yio

we can see that there exists a unique y, > 0 such that

<0, ify>uwy.
fily) = fly) =0, ify=y. . (3.5.43)

>0, ifye]0,y
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Proof of (II). The points ag, by given by (3.2.18) are the unique solution to the correspond-
ing system of equations appearing in (3.2.17) with by > ag. Therefore, they give rise to the
unique solution to the system of equations (3.2.8), (3.2.10) and (3.2.11) for the unknowns
ag, bp and A. To complete the proof of this part, we need to show that ag > 0. To this end,

it suffices to show that

0+ oKy 2
b = : > 1y, = by — ag. 3.5.44
0+ ao N + e Yy 0 — Qo ( )
In view of the identity
0+ dry2 2 V20y, Okaydt
AYx V26 2 A

which follows from the equation fi(y.) = f2(y«), we can see that (3.5.44) is equivalent to

V20, N Sroyt

.« coth
Ys CO 5 3

> Yu

V3B,
h Y20

which is true because cot > 1.

Proof of (IIT). The function ¢ defined by (3.2.19) is plainly concave because A < 0.

Combining this observation with the inequalities

(3.2.10)

00) = V25A <0 and £(ag) = £(by) =" by — ag)*t > 0,

we obtain (3.2.20). We prove (3.2.21) later (see “Proof of (3.5.46) if o € ]0,1[” further
below).

Proof of (IV). In view of (I) and the observations that
lim ¢(s,z) =00 and limg(s,z) =1,
S——00 sTx
we can see that (3.2.24) will follow if we show that
¢ has no strictly negative minimum in {(s,z) € R* | s <z < by}, (3.5.45)

and ¢(s,byp) >0 forall s € |—o0,bo[\ {ao} (3.5.46)
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To prove (3.5.45), we argue by contradiction and we assume that there exists (S, z) with
§ < & < by such that ¢(s,7) < 0 is a local minimum of ¢q. The first order conditions
qs(5,2) =0 5)=4(5) = ar(z — 5)*!
(5.2) = (5) = an(z = 3) (3.5.47)
q:(5,2) =0

the inequality ¢(S,z) < 0 and the same analysis as the one leading to (3.2.17) gives rise to

the inequalities
0+ ok(x — 35)° 2
+ OK(T = 5) and f1(T —35) < fo(T — 5).

s+x > +
AT — 3) V26
The second of these inequalities and (3.5.43) imply that Z — § > y,. = by — ap. On the other

hand, the first order conditions (3.5.47) and (3.2.20) in (III) imply that
< bO — g = Y,

%Al

5¢€[ag,y'[ and z €yl by] = z-—

which is a contradiction.

To prove (3.5.46), we define
1(5) = qls,bo) = —w(by) + AeY + 22+ X 114 by — ), for s < b
q(s) = q(s,by) = —w(by) + Ae testmt + Kk(bg — 8)*, for s < by,

w(s)
and we observe that
lim ¢(s) =00, ¢(ap) =0 and g(by) = 1. (3.5.48)
§——00
Also, we calculate
—/ V265 2\ a—1
7 (s) = g(s,bg) = V26 AeV?> + 55 ar(by — s)*7, (3.5.49)
2\
7' (s) = gs(s,by) = 26 AeV?s 1 5 + ala — 1)k(by — 8)* 2, (3.5.50)
7"(s) = (26)2Ae¥®* — (o — 1) (a — 2)k(by — )72, (3.5.51)
and we note that
g » (3.2.11)
lim ¢'(s) = —o00 and ¢'(ag) = 0. (3.5.52)
5——00
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To complete the proof, we need to distinguish between two different cases.
Proof of (5.5.46) if a € |0, 1[. Combining the concavity of ¢ = ¢(-, by), which follows from
(3.5.51) and the fact that A < 0, with (3.5.52), the observation that limgy, ¢ (s) = —oo,

and the fact that g(ag) < q(by) (see (3.5.48)), we can conclude that there exists a unique
st € Jag, by[ such that
>0, if s €]ag, st

q'(s) = g(s,bo)
<0, ifse]—o0,ap[U]st,bol

These inequalities and (3.5.48) imply (3.5.46). On the other hand, these inequalities and the
concavity of ¢ = g(+, by) imply (3.2.21).
Proof of (3.5.46) if & > 1. In this case, (3.2.20) and (3.5.50) reveal that ¢ is strictly

increasing in |—o00, ag[, which, combined with (3.5.52), implies that
7 (s) =g(s,bp) <0 forall s €]—00,a|.
On the other hand, we can use (3.2.20) to calculate
7(s) =€(s) —ar(by — 8)* ' > lag) — ar(by — ap)* ' = 7 (ag) =0 for all s € Jag, by|.

These inequalities and (3.5.48) imply (3.5.46) as well as (3.2.22). O

3.5.2 Appendix II: proof of Lemma 8

Proof of (I). Suppose that o € |0, 1[. The calculations

Ge(8,7) = —ala — )k(x —5)** >0 foralls<uz, (3.5.53)
and liing(s,x) = —o00, lim g(s,z)=4{(s), forallseR (3.5.54)
TS T—r 00

imply that, given any s,
there exists a unique a(s) € |s, oo[ such that g(s, a(s)) = 0 if and only if £(s) > 0.

This observation and (3.2.20) implies that the equation g(s,x) = 0 for > s defines uniquely

a continuous function a : Jy;, bo[ — Ry such that a(s) > s. In particular,

liim a(s) =oc0 and a(ag) = b, (3.5.55)
slys
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thanks to (3.2.20) and (3.2.11), respectively. Furthermore, these considerations and the first
inequality in (3.2.21) imply that

a(s) > by for all s € Jys, agl. (3.5.56)
In view of second inequality in (3.2.21) and the calculation
gsx(s,2) = ala — 1)(a — 2)k(x —5)* > >0 forall s <u,

we can see that gs(s,z) > 0 for all s < ag and & > by. Combining this observation with
(3.5.56) and the continuity of the functions gs and a, we can see that there exists g, €
10, b9 — ao[ such that

gs(s,a(s)) >0 forall s € |y;, ap + el (3.5.57)

Differentiating the identity g(s, a(s)) = 0 with respect to s and using this inequality and
(3.5.53), we obtain
~gs(s,a(5))
9:(s,a(s))
These considerations imply that, given any ¢, € }0, bo—a(ag+e,) [, the function a defined
by

a'(s) = <0 forall s €|y, ap+ eql- (3.5.58)

a(r) = a '(x), for x> by — e,
has all of the properties claimed in the statement of part (I) of the proposition.
For future reference, we also note that differentiation of (3.3.26) yields the expression

_go(al@).x) _ alo—Ds(z —a(x)™
95(a(@),x)  £(a(x)) + ala = 1)r(r — a@)*

a'(z) =

<0 forall z>by. (3.5.59)

Proof of (II). Consider the function w defined by (3.3.25) for A, ag, by and a as in the
statement of the proposition. Before addressing the main issues of the proof, we make some

preliminary calculations that we will need in several places. First, we note that
w'(z) = w'(a(z))d (z) + ar(z — a(x))ail(l —d'(z))
= g(a(z),z)d (z) + ar(z — a(x))ai1

(3.3.26)

ak(z — a(az))a_l for all = > by. (3.5.60)
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Combining these identities with the definition (3.2.23) of ¢ and (3.3.26), we can see that
w'(z) = w'(a(z)) = ((a(x)) for all z > by. (3.5.61)
On the other hand, differentiating (3.5.60), we obtain
w"(z) = oo — D)k (z — a(x))a_Q[l —d'(z)] for all z > by. (3.5.62)

The function w is plainly C* in R\ {by}. Also, it is C" because

limw(x) = lim [w (a(z)) + 14 K(z — a(m))a} = w(ag) + 1+ r(by — ap)® B29 i w(x)
xlbg xlbg xTho
and
.\ (35.60) a1 (3210) .,
limw'(z) =" ak(by — ap) =" limw'(z).
xlbo xTbo

In view of its definition and Lemma 7.(IV), we will prove that the function w defined by

(3.3.25) satisfies the HJB equation (3.1.5) if we show that

q(s, x) G20 —w(z)+w(s)+ 14+ k(x—35)*>0 forall s<azand x> by, (3.5.63)
1
and Ew”(x) —6w(z) + Az >0 for all z > by. (3.5.64)

Proof of (3.5.63) if a € ]0,1[. Fix any « > by. Combining the concavity of g(-, ), which

follows from the calculation
gss(s,x) = (25)%A€ 25 _ofa —1)(a—2)r(x —5)*3
and the fact that A < 0, with the observations that

Sgr_noog(s,x) = —o00, g(a(z),z) =0 and lslTnzlg(s,:c) = —00

and (3.5.57) (recall that a = a™'), we can conclude that there exists a unique si(s) € Ja(x), x|

such that

>0, if s €]ag, st
qs(s, ) = g(s, )
<0, ifse]—o0,a0[U]ls;, ]

)



Combining these inequalities with the observations that

lim q(s,z) = oo, q(a(:c),x) =0 and gq(z,z)=1,

5——00
we can see that (3.5.63) is indeed true.

Proof of (3.5.63) if « = 1. In this case, the required result follows immediately once we

combine Lemma 7.(IV) with the observation that

q(s,z) = —w(x) + w(s Vbo) + k(z — (s Vbo)) +q(s,sVbp)

=q(s,sVby) forall s<zandz > by.

Proof of (3.5.64) if o € ]0,1]. We first use (3.5.61) to calculate

@ss0)_ala = (e —a@))" 0 (a())
((a(z)) + ala — )r(z — a(a:))a_w

w"(z) = ' (a(z))d (z)

for all = > by,

and

[ﬁ(a(as)) +a(a—1)k(z — a(:z))aﬁ] 2w’”(x)
=o*(a—1)%k*(z — a(:v))2a74€”(a(:v))a'(:v)

+ala—1)(a— 2)/1(30 — a(m))a_3 [f’(a(m))]g [1 — a'(xﬂ2

> (0 for all x > by,

the inequality following thanks to the concavity of ¢ (see Lemma 7.(III)) and the fact that a
is strictly decreasing (see part (I) of this proposition). In view of these calculations and the

fact that A < 0, we can see that

d |1 , 2| (3.5.61) L,
el L (x) — ow(x) + Az =W (z) — 60(a(x)) + 2\
2.19) 1
(3 2:19) §w///<x) N (5\/%146\/%(1@) + 2\ [l’ _ a(:zc)]
>0 forall z > b. (3.5.65)

It follows that (3.5.64) is true if and only if
1
iw”(b(ﬁ—) —w(b) + Aoy >0 < w(by+) > w”(by—). (3.5.66)
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To show that this inequality is indeed true, we note that (3.2.24) in Lemma 7.(IV) and
the definition (3.3.25) of w imply that

> 0, if z € ]bo — Ea,b()[
q(a(z), )

= O, if x 2 bo
Since g is C*! and a is C*°, these inequalities imply that

- d*q(a(z), )

> 0.
xtbo dx? -

Combining this observation with the calculation
Palale) o) dfg(efa) 2)a (@) + (o), )]
@by dx? «tbo dx

— }clﬁ‘rbrol [—w”(x) +ala —1)k(z — cL(av))af2 [1- a’(x)H

= —u(by=) + e = 1)re(b — ao)**[1 — a'(by)]

(3.5.62) —w" (by—) + w" (bo+),

where we have used the identities

qs (a(x),x) = g(a(x),x) =0,

we obtain (3.5.66).

Proof of (3.5.64) if « = 1. In this case, w”(z) = 0 for all x > by and (3.5.65) follows
immediately. On the other hand, (3.5.66) is plainly true because w”(by—) = ¢'(by) < 0 (see
(3.2.20) in Lemma 7.(I11)).

3.5.3 Appendix III: proof of Theorem 4

Throughout the proof, we consider any initial condition x € R fixed. Let Z € A be any
admissible impulse control strategy such that J,(Z) < oo. The finiteness of such a strategy’s

performance implies that
E { / e X} dt] < o0. (3.5.67)
0

7



Using It0’s formula, we obtain

T
e Tw(Xr,) = w(z) +/ e~ 0 Ew”(Xt) - 5w(Xt)} dt —I—/ e ' (X,) dZ,
0 [0,T]

+ /OT e~ (X,) dW, + Z e w(Xep) — w(Xy) — w'(X)AX]

te[0,7

= w(z) + /0 ' e~ 0 Ew”(xt) - 5w(Xt)} dt

T [ee]
0

n=1
the second equality following from the fact that AX, = X,, — X, = AZ, and (3.1.1). These
identities imply that

T o0
A / e_‘s'th2 dt + Z e 9™ (1 + /{Z;f) 1¢r,<7)
0 n=1
T 1 T
= w(z) — e Tw(Xry) + / e 0t {iw"(xt) — dw(X,) + )\Xf] dt + / e~ (X,) dW,
0 0

+Y e (X, — Zo) —w(Xs,) + 1+ £Z5) 1r, <1y (3.5.68)

n=1

Since w satisfies the HJB equation (3.1.5),

T o0
A / MNP dt+ Y e (14 K Z7) Lir<ry
0

n=1

T
> w(z) — e Tw(Xry) + / et (X,) dW,. (3.5.69)
0

In view of the definition (3.3.25) of w, we can see that there exists a constant C' > 0 such

that
[w'(av)}2 + |w(z)| < C(1+ |z*) forall z € R.

In view of these estimates, [t0’s isometry and (3.5.67) imply that

( /0 ' e 0w (X,) th>2 —E { /0 ' e 2w (X,)|* dt]

T
<CE [/ (11 X?) dt]
0

< 00

E

78



and

T—oo

lim e*éTEUw(Xﬂ)ﬂ < lim C(e"ST +E[e’5TX%}) ~0. (3.5.70)

The first of these observations implies that the stochastic integral in (3.5.69) is a square

integrable martingale. Taking expectations in (3.5.69), we therefore obtain

E

T o0
/\/ e XFdt+) e (14 kZY) l{Tn<T}] > w(z) — Ble™ w(Xry)].
0

n=1

Passing to the limit using the monotone convergence theorem and (3.5.70), we derive

J.(2)=E A/ e XPdt+) e (14 kZ7) | > w(w),
0 n=1
which establishes the inequality
v(x) > w(x). (3.5.71)

To prove the reverse inequality and establish the optimality of the impulse control strat-
egy Z2* defined by (3.3.28)-(3.3.30), we first note that (7,;,, — 7;,n > 2) is a sequence of
independent and identically distributed random variables, each having the same distribution

as the first hitting time
Tbo—ao(B) = mf{t 2 0 | Bt Z b() - ao},
where B is a standard one-dimensional Brownian motion starting from 0. In particular,

E[e—ﬂnﬁ“—ﬁi)] — E[e_éTbofao(B)} — 6—\/%(170—&0)

and
n—2
E [6—57';:} - F [6—572*} HE[G—ZS(T;H_T;H)} ) [6—57-;} e—(n—z)\/ﬁ(bo—ao)
j=1

for all n > 2. Furthermore, the state process X* associated with Z* satisfies

Th+1 . Th+1 .
E { / e&Xt*th} =" [e‘”n / e =00 (ag 4+ W, — WT;)2dz]

* *
n

N Tbofao(B)
=E[e ™" ]E / e ag+ By)*dt| for all n > 2.
0
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In view of these observations and the monotone convergence theorem, we can see that

oo 2 ]
E (D e (1+rZ;)| =E|D e (L+rZ;) | + [14r(bo — ag)*] > B[]
n=1 n=1 n=3
< 0
and
0o T3 Tog—ag(B) > .
E [ / e X;? dt] =E [ / e X;? dt] +E / e (ao+ By)?dt| Y Ele ]
0 0 0 =3

< Q0.

It follows that J,(Z*) < oo.

To proceed further, we note that the impulse control strategy Z* is such that

1
§w”(Xt*) —ow(XP)+AXPP =0 forallt e Ry\ {7, n>1},

and w(X; —Z0) —w(X: )+ 1+rZ;*=0 foralln>1.

In view of these observations, we can see that (3.5.68) implies that

T o0
A / e MNPt + Yy e (L4 K2 ) Lmgery
0

n=1
T
=w(z) — e Tw(X;,) + / e (X ) dW,.
0

Using this identity instead of the inequality (3.5.69) and following the same steps as the ones
leading to (3.5.71), we can see that J,(Z*) = w(x). It follows that

v(z) < w(x), (3.5.72)

which, combined with (3.5.71), implies that v(z) = w(z) as well as the optimality of Z*.

3.5.4 Appendix IV: proof of Lemma 9

Proof of Lemma 9. The identity (3.4.32) follows from the observation that, given any
a>1,z>0and n > 2,

n

. ay E @
o min_ Z(l + Kuj) =n+nk <n) . (3.5.73)
ul-Fup=z j=1
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For n = 2, this result follows immediately from the equivalence

i[(l—i—ﬁuo‘)—l—(l—l—/ﬁ(z—u)a)} =0 & u=

2z
du 2

Given any n > 2, the first order conditions

n—1 n—1 o
ai (Z(l‘i"fu?)‘f' 1+/€<Z—Zuj) ]):O, fori=1,2,...,n—1, (3.5.74)
7 =

j=1

are equivalent to uﬁ—zy;ll uj = z,fori =1,2,...,n—1. Therefore, the first order conditions
(3.5.74) are equivalent to u; = us = - -+ = u,_;. Combining this result with the observation
that u, = z — Z;:ll uj = uy, we can see that the minimum on the left-hand side of (3.5.73)
is achieved by the choice u; = -+ =u, = 2.

We can see that (3.4.33) is indeed true by combining (3.4.32) with the fact that the

inequality

n+%(§)“>(n+1>+<n+1>% (nil)

is equivalent to the inequality z > z,.
To show (3.4.34), we use the Maclaurin series expansion

()

5 y* +o(y?), for |y <1,

(L+y) =1+Cy+

where ( is a constant, to calculate

1 —(a—1) —1/a
zp = k- Yeplas/a [1 - (1 + —) ]
n

-1/
_ 1o, (a=1)/a | ¥ 1 . afa—1) —2
=Kk /% { - 52 +o(n™7) (3.5.75)
as well as
1 —(a—1) —1/a
2y = k- VeplaTh/a (1 — —) -1
n
~1  ala—1) /e
_ . —1/a, (a—1)/a | ¥ -2
=Kk { - + 52 + o(n )} : (3.5.76)
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In view of these calculations, we can see that

lim (2, — 2,1)
n—oo

-1/ —1/a
— kY% (a — 1)~V Tim ple-D/apl/a {(1 ~ 2y 0(n’1)> - (1 + 21 + o(nfl)) }

n—oo

1 1
_ 1/« _ 1\—1/a 15 -1 . . -1
=k a—1) 7}1—{20” [(1 tgt o(n )> (1 5.t o(n ))] :
and (3.4.34) follows.

Given any z > 0, there exists n > 1 such that z,_; < 2z < z,. For any such pair of z and

n,

K(an) _ K() _ K()

Zn z Zn—1

because K is strictly increasing. In view of this observation, we can see that (3.4.35) will

follow if we show that

K(z,_ K(z, L
lim @ — lim ﬁ _ Hl/aa(a —1)~(eD/a,

n—00 Zn n—oo Zp_1q

namely, if we prove that

lim n [1 + K (Zrhl)a} = lim

n—oo 2, n n—00 Zn_1

14w (%)a] — kMo(a — 1)"@D/a (3577)

To this end, we calculate

N (3.5.75) a—1 ala—1) e
lim — =" lim g/ont/e [ - + 0(71_2)} = kY(a — 1)V,
n

n—oo 2, n— 00 27’L2
5 -1 -1 e
lim —— B2 i glepl/e |2 + afa —1) +o(n?) = kY(a — 1)V,
n—oo 2, 1 n—00 n 2712

and (3.5.77) follows.

3.5.5 Appendix V: proof of Lemma 10

Proof of (I). First, we consider the function u defined by

w(z), if x < b

w(bo) + g(bo)(l‘ — bo), if v > b()
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where w is given by (3.2.9). This function is C! in R as well as C*° in R\ {by}, and satisfies
the inequality

min {%u”(x) — du(z) + A2, —u(x) + inf [u(z — 2) + 1+ K2°] } > 0. (3.5.78)
In view of its construction and Lemma 7.(IV), we will establish (3.5.78) if we prove that
q(s,z) = —u(z) +u(s) + 1+ k(z —s)* >0 forall s <z and x> by, (3.5.79)
and %u”(m) —du(x) +Ax* >0 for all z > by. (3.5.80)
To show (3.5.79), we consider any x > by and any s < = and we calculate
Gu(s,2) = —L(bo) + ar(x — s)* !
= —g(bo —(z - 5)750)

3222) | >0, ifbg—(r—5)<ay & x>b—ag+s

<0, ifby—(x—s)€lag,by] & z€[s,bp—ap+s|
These inequalities imply that

q(s,by), if s <ag
if > byV (bg —ap+s), then ¢(s,x)> :
G(s,bgp — ag + s), if s > ag

and, if x € [s,by — ag + s[N [by, 0], then G(s,x) > G(s,by — ap + s),

where ¢ is defined by (3.2.16). In view of these implications and Lemma 7.(IV), we can see

that (3.5.79) will follow if we prove that
G(s,bg —ag+s) >0 for all s > ag. (3.5.81)
To this end, we distinguish between two cases. If by < s < by — ag + s, then

cj(s, bo — ap + S) = —g(bo)(bo — (10) + 1+ /ﬁ)(bg — ao)a

2 0(by) (b — ag) + w(bo) — w(an)

_ / [6(s) — €(bo)] ds

ag
(3.2.20)
>
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On the other hand, if ag < s < by < by — ag + s, then the calculation
dq(s,bo —ag+s) d(—w(bo) — €(bo)(s — ag) + w(s) + 1 + k(by — ag)®)

ds ds
= —{(bo) +((s)
(3.2.20)
>
implies that
- - (3.2.8)
q(s,bo — ap + s) > qd(aop, by) = q(aop, by) =" 0.

In either case, (3.5.81) holds true, and (3.5.79) has been proved.

In view of the calculations

d 1 " 2 _
7 |3 (x) = du(z) + Ax*| = =dl(by) + 2\x

B2 _5\/25 4V 4 2\ [ — by]

> (0 for all x > by,

we can see that (3.5.80) is true if and only if

1
5u”(b0+) —Su(by) + A5 >0 < 0> w'(by—) = {'(by),

which is true thanks to (3.2.20) in Lemma 7.(III).

To proceed further, we consider any initial condition x € R and any impulse control
strategy Z € A. Using It6’s formula and (3.5.78), we can follow the same steps as the ones
we used to derive (3.5.69) in Appendix III to obtain

T [e.9]
A / NN+ Y e (14 KZ7) 1, <my
0

n=1

ToNT 0
>\ / e X7 dt+ Y e ™ (14 KZY) L <rony
0 n=1
T

+ 676(TZ’/\T)u(X(Tz/\T)+) - eiéTu(XTJr) +/ eiétu/(Xt) W,

Ty NT
where T is the stopping time defined by (3.4.37). Following exactly the same arguments as
in the proof of (3.5.71) in Appendix III, we can see that this inequality implies that

Jo(Z) > E

Ty, e
A / NP+ e (14 K25 ) Lp, <y + e5TZw(XTz+)] :
0 n=1
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where we have also used the fact that w(Xr,+) = u(Xr,+). It follows that

v(z) > inf E

Ty 00
zen A/0 eUXFdt+ Y e (14 KZ7) Lipery + ¢ P w(Xny) | - (3.5.82)

n=1

To derive the reverse inequality, we consider any initial condition x € R and any impulse
control strategy Z € A, and we denote by Z € A the impulse control strategy that is identical
to Z up to the stopping time 7% and then repositions the state process X down to the level
ao whenever this hits the level by after time T%. This strategy can be constructed as follows.

First, we define

Zt(i) = Z Zn i, <y L, <10}s

n=1

7_l(ii) _ inf{t > Ty | XT2+ + W, — WT2+ > bo}, Zfii) — bO — Qy,

T(i)l = inf{t > 7{% | ag+ W, — W i = bo}, Z(i)l =by —ag, forn>1,

n n

and

~(i1) _ - (#) B
Zt — ZZH 1{T7gzz)<t}'
n=1

We then define Z = (%1,%2, T3 Z0 Do Do .), where 7,, are the stopping times
at which the jumps of the process 7 = 29 + 7 occur and Z, are the corresponding jump
sizes. Furthermore, we denote by A the family of all such impulse control strategies, and we

note that A C A. In particular, we note that
TZ = Tz, Xt]‘{tSTz} = Xt]‘{tSTZ} and Zn]‘{%nSTz} = Zn]‘{TnSTZ}' (3583)

Using the fact that the restriction of u in |—o00, by] identifies with w and satisfies (3.5.78)
with equality, and following exactly the same arguments as in the proof of (3.5.72) in Ap-

pendix III with « in place of w, we can see that

~ TZ’ ©
J(2) =E | / e XFdt+ ) e ™ (14 KZ2) L <my + € Tw(Xr 1)
0

n=1
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It follows that

v(z) = inf J,(Z) < inf J,(Z)

ZeA ZeA
Tz [ = 1 19
: - 2 —07n « —0T:
= inf B )\/0 e X dt+§ e "™ (14 KZ3) Lro<ryy + € P w(Xryy) |

n=1
where we have also used (3.5.83). Combining this inequality with (3.5.82), we obtain the

required result.

3.5.6 Appendix VI: proof of Theorem 5

The inequalities w; > w; > w4 for all 7 > 0 are straightforward to see. On the other hand,
the regularity of the functions w; and the fact that they satisfy the variational inequality

(3.4.41) follow from Theorem 6.3 of Lamberton and Zervos [40]. In particular, w; satisfies

TJ?k ° % °
wi(z) =E {/\/ e X2 dt + 707 wi(Xr)| (3.5.84)
0
where
Xe=x+W, and T =inf{t >0] w;(X,) =w;(X,)}, (3.5.85)

Furthermore, the continuity of the function z — w;(x — 2) + 1 + kz® and the fact that this
function tends to co as z increases to oo imply that there exists a function 3; : [by, 00| — [0, 00|
such that

3;(z) = argmin|w;(z — 2) + 1 + k2°]. (3.5.86)

2>0
Also, we note that the definitions of w; in (3.4.38), (3.4.40) and Lemma 7.(IV) imply that
W;j(T) = Wext(z) for all x < by and j > 0. (3.5.87)

We now show by induction that, given any 7 > 0,

Tz,
wj(xr) = inf E[)\/ e X2 dt
0

ZE.A]'

J
+Y e (14 K25 ) Lrery + € P wen (X4 ) | (3.5.88)

n=1
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where

Ty =inf{t >0] X, <bo}

and A; C A is the family of all admissible impulse control strategies Z such that 7,19 = oo,
namely, the class of all strategies that involve a maximum of j 4+ 1 jumps. To establish

(3.5.88) for j = 0, we first note that, given any (J,)-stopping times T' < T,

E

T 1 o
A / e X2dt + e‘STwext(XT)]
0

=K

TAT . .
)\/ eiétth dt + €§(IAT)wext(Xf_Z“/\T>] (3589>
0

because the process ()\ fot e X 52 ds + e“stwext()o(t)> is a square-integrable martingale. In
view of this observation, the definitions (3.4.38), (3.4.39) of wy, wy, we can see that, given

any Z € Ay,

Tz
E [)\/ e_‘”th dt + e~ (1 + &Zf‘) 1<y + 6_5T2wext(XTZ+)}
0

TINTy,
E [A / e X dt+ e (1 + KZY) 1 <y + e5(TIATZ)weXt(X(TlATZ)+)]
0
TINTy, .
E [A / e X2 dt
0

+ 6_67—1 [wext(j(’rl - Zl) + ]- + K/Zla] 1{7‘1§Tz,} + 6_6Tzwext<)o(Tz)1{Tz<Tl}:|

> inf E {)\/ e X2 dt + e_‘STwO()O(T)]
TeT 0

= wo(). (3.5.90)
To derive the reverse inequality, we consider the strategy Z* € Ay given by

T = inf{t >0 wo(j(t) = ?DO(XQ and @DO()OQ) > wext(Xt)} and 7y = 30(‘)0@1*)’

where 3¢ is defined by (3.5.86). The definition (3.4.38) of wy and the identity (3.5.87) imply
that the stopping time T defined by (3.5.85) satisfies

Tg S Tf /\TZ* and Tgl{Tl*gTZ*} = Tfl{rngZ*}-
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In view of this observation, (3.5.87) and (3.5.89) we can see that

TZ*
E [A/ e X7 dt+ e (14 KZF) Lpp <ty + €07 Wee (X750 1)
0

Tf/\Tz* . "
E |:)\/ 6—6tXtQ dt + €—§T1 (1 + K“Zfa)]-{ngTZ*} + 6—5(7'1 /\TZ'*)wext(X(Tf/\TZ*)+):|
0
TF ATy x R
E[)\ / e X2 dt
0
+ 0 [wext(j(q* —ZN)+1+ /@Zfa] lericry + 6_5Tz*wext()%TZ*)1{Tz*<7'1*}:|
73 .
=F {)\/ e_‘StXt2 dt
0

+e7% [wext()%m —Z7) + 1+ Hzl*a] Lirp<tpn) + 6_5T5wext()%T5)1{Tz*<Tf}}

T3 . .
= [A / e XEdt + e wO(XTO*)]
0
= wo(x). (3.5.91)

Combining these identities with (3.5.90), we obtain (3.5.88) for j = 0.

To proceed further, we assume that (3.5.88) holds true for j = k — 1, for some £ > 1. An
impulse control strategy Z € Ay involves a maximum of k£ + 1 jumps. The evolution of the
driving Brownian motion after time 7, at which the first jump occurs is independent of the
evolution of the state process prior to time 7. Therefore, we may assume in what follows

that 7,, and Z,, are measurable with respect to the information flow obtained by X, and
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the process ((Wn+t - WTI)1{71<OO}). In view of this observation

T, k+1
E {A / e XEdt + Z e O (1+ KZ3) Lr,<ry + 6_6Tz’wext(XTz+):|
0

n=1

T1N\Ty
— {)\ / e X dt+ e (1 + KZY) 1 <1y
0

Tz
+E{A / e X2 dt

1 ATy,
k+1

T Z e (L4 K27 ) Lreray + € wen (X, 4) fTrn/\TzH
n=2

Tl/\TZ
E [A/ e_&XtZ dt 4 =" (1 + /{Z?) Lir<ryy + 6_6(T1ATZ)wk—1(X(T1/\Tz,)+):|
0
T1NTy R
E{A / e X2 dt
0

+ e ' [wkfl()o(ﬁ - Zl) +1+ HZﬂ 1{T1STZ} + eéTzwk1<XTz.)1{Tz<Tl}1

v

> infE {)\/ e X2 dt + e Twy(X,)

TET 0

= wy(x). (3.5.92)

Combining the arguments we have used in (3.5.91) and (3.5.92), we can see that the strategy
Z* € Ay given by

T:; = lnf{t >0 | wk’—i—l—n()%t) = wk—i—l—n()%t) and wk-&-l—n()%t) > wk—n(Xt)}>
Ly = 3/€+1—n()0(’r;)a
forn=1,...,k -+ 1, satisfies

Tk k+1
E [)\/ e_‘StXt2 dt + Z e 9™ (1 + mZ;a)l{TnSTz*} + e 0Tz Wext (X1ye+) | = wi(z).
0

n=1
This identity and (3.5.92) imply that (3.5.88) holds true for j = k. It follows that (3.5.88)
is true for all j > 0.
To establish the fact that lim;_,. w;(z) = v(x) for all z € R and complete the proof,

we first note that lim; . w;(z) exists because the sequence (w;(z)) is decreasing. The
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inequality lim;_,., w;(x) > v(z) follows immediately from (3.5.88) and the fact that A; C

A1 for all 7 > 0. To prove the reverse inequality, we consider any e-optimal strategy

2 = (15, TR TS ZEL ) EA,

77,7"

namely, any strategy such that J,(Z°) < v(x) + e. If we denote by 257 € A; the strategy
obtained by Z° by setting 75, = oo for all £ > 1, then

o(z) +¢>E /\/ X+ (L R(Z2)1)
0 n=1
= J.(Z%7) +E /\/ e [(X7)? = (Xee + W] dt + Z (14 k(Z2)) ] -
5 n=j+2

Combining this observation with the limits

0< limE A/ e XE) dt + Z (14 K(Z)*)
R n=j+2
: | - —5t € A 15 A
< lim E [ A (X +W;)?dt| = lim E (XL + = || =0,
Jj—ro0 -€ Jj—o0 ) J 0?2

which follow from the fact that lim; , 75 = 0o, we can see that lim; . w;(7) < v(z) +e.

It follows that lim;_,., w;(z) < v(x) because ¢ has been arbitrary.
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