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Abstract

This thesis presents the development and study of two stochastic models. The first one

is an equilibrium model for a market involving risk-averse insider trading. In particular, the

static information model is considered under new assumptions: a) the insider is risk-averse,

b) the signal received by the insider is not necessarily Gaussian, and c) the price set by

the market maker is a function of a weighted signal that is not necessarily Gaussian either.

Conditions on the weighting and pricing functions ensuring the existence of equilibrium are

discussed. Equilibrium pricing and weighting functions as well as the insider’s optimal trad-

ing strategy are derived. Furthermore, the influence of the risk aversion on the equilibrium

outcome is investigated.

The second model studied, we derive the explicit solution to an impulse control problem

with non-linear penalisation of control expenditure. This solution has several features that

are not present in impulse control problems with affine penalisation of control effort. The

state dependence of the free-boundaries characterising the optimal strategy is the first one.

The possibility for the so-called continuation region to not be an interval and the optimal

strategy to involve multiple simultaneous jumps while the problem data is convex are further

such aspects.
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Chapter 1

Introduction

In the first part of the thesis, we consider a new model of insider trading. The phenomenon

of insider trading in stock market has attracted significant interest from both economists and

mathematicians. The characterisation of the optimal strategy for an insider who possesses

superior information than general public has been widely studied in financial mathematics.

Especially with the development of enlargement of filtration by Jeulin and Yor [32], there

has been quite an interests studying models of insider trading, e.g., Ankirchner, Dereich and

Imkeller [2]. These papers have a common assumption: the insider’s trading amount will

not affect the market pricing dynamic.

On the other hand, assuming the opposite, consider “large investors”, Kyle [34] studied

the equilibrium model and showed the existence of unique linear equilibrium if the asset value

is Gaussian random variable. Under such equilibrium the price process is a Brownian motion

in market maker’s filtration and Brownian bridge in the insider’s filtration. Back [5] assumed

the price process to depend only on the cumulative order of the stocks. He considered the

model under continuous time trading where the insider can infer the cumulative trading

amount of noise traders by observing the price process continuously. Under such assump-

tions, he extended Kyle’s result and proved the existence of equilibrium beyond Gaussian

linear framework. Both Kyle and Back studied the risk neutral case where the insider has

linear utility function.

Cho [12] followed Back’s framework, considered risk averse cases where the insider has
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exponential utility function. He showed existence of equilibrium under Gaussian linear frame-

work. In addition, he allowed market maker to determine the price process depending not

only on the cumulative order of the asset, but also took into account the history of cumu-

lative order. From an economic sense, the more recent trade is better indicator to market

maker to determine the price of the asset.

Here, we follow Back’s framework, with continuous trading, and extend Cho’s results

to the risk averse case. In particular, for exponential utility, we characterise all optimal

strategies for the insider within a general, non-Gaussian framework. We also establish one

inconspicuous equilibrium that allows the insider to trade undetected by the market maker.

Moreover, we introduce the weighting function for market maker to determine the price

process depending on the paths of the cumulative order.

In the second part of the thesis, we consider a stochastic system whose state dynamics are

given by

Xt = x− Z̄t +Wt, for t ≥ 0,

where W is a standard one-dimensional Brownian motion and Z̄ is an impulsively controlled

process. In particular, the process Z̄ is given by

Z̄t =
∞∑
n=1

Zn1{τn<t},

where (τn) is the increasing sequence of stopping times at which impulsive action is applied

to the system and the positive real-valued random variables Zn, n ≥ 1, are the sizes of the

corresponding actions. In this context, the collection

Z = (τ1, τ2, . . . , τn, . . . ;Z1, Z2, . . . , Zn, . . .)

fully characterises any admissible control strategy. The objective of the optimisation problem

that we study is to minimise the performance criterion

Jx(Z) = E

[
λ

∫ ∞
0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)]
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over all strategies Z, where α, δ, κ, λ > 0 are given constants. The problem’s value function

is defined by

v(x) = inf
Z
Jx(Z), for x ∈ R.

The theory of stochastic impulse control has attracted considerable interest and has been

applied in several fields. In mathematical finance, economics and operations research, im-

portant contributions include Richard [51], Harrison, Sellke and Tayor [27], Mundaca and

Øksendal [43], Korn [35], Bar-Ilan, Sulem and Zanello [11], Bar-Ilan, Perry and Stadje [10],

Ohnishi and Tsujimura [47], Cadenillas and Zapatero [14], Cadenillas, Sarkar and Zapa-

tero [19], Cadenillas, Lakner and Pinedo [18], Feng and Muthuraman [25], Jeanblanc-Picqué

and Shiryaev [30], Alvarez and Lempa [4], and several references therein. Models motivated

by the optimal management of renewable resources have been studied by Alvarez [1], and

Alvarez and Koskela [3]. Also, the general mathematical theory of stochastic impulse control

is well-developed: see Lepeltier and Marchal [41], Perthame [48], Djehiche, Hamadène and

Hdhiri [21], as well as the books by Bensoussan and Lions [8], Øksendal and Sulem [46],

Pham [50], and several references therein.

In view of the general theory of stochastic impulse control, the value function of the

optimisation problem that we study identifies with a classical solution to the Hamilton-

Jacobi-Bellman (HJB) equation

min

{
1

2
w′′(x)− δw(x) + λx2, −w(x) + inf

z>0

[
w(x− z) + 1 + κzα

]}
= 0.

Our objective is to derive and characterise the solution to this quasi-variational inequality.

To the best of our knowledge, this is the first impulse control problem with non-linear

penalisation of control expenditure that has been explicitly solved in the literature. It turns

out that its solution has features that have not been observed in the literature. These include

the state dependence of the free-boundaries characterising the optimal strategy as well as

the possibility for the so-called continuation region to not be an interval despite the problem

data being convex. Furthermore, it may be the case that minimal costs can be achieved only

by multiple simultaneous jumps, which implies that an optimal strategy may not exist.
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Chapter 2

Insider trading with static

information: impact of insider’s risk

aversion on equilibrium

2.1 Market Model

In this thesis, we model the market affected by private information. In particular, we consider

a company which released a risky asset (i.e. a claim on the company value). This asset is

assumed to be traded continuously. At some future time, assumed to be time 1 without loss

of generality1, the value of the company, V will become public. As all the agents will agree

on the value of the company, they also will agree on the price of the asset being V . For

simplicity, we assume no information release directly to the public between the beginning

of the market and time 1. If all the agents in the market are risk-neutral, this will imply

constant price until the information release and abrupt price adjustment at the moment of

information release.

1The choice of deterministic time of the information release has no impact on our market model, the

generalisation of any other time will be straightforward.
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To describe this model in rigorous terms, consider filtered probability space

(Ω,F, {Ft}t∈[0,1],Q),

satisfying the usual conditions. We assume that this probability space is large enough to

support a Brownian motions B as well as a normally distributed random variable Z which

is independent of B.

We assume there is a risk-less asset on the market and for simplicity we set interest rate

to zero. The price of the risky asset is determined by the company’s fundamental value

at time 1, V , which will be released at time 1. We assume V = f(Z) where the function

f : R→ R and random variable Z satisfy the following assumption.

Assumption 1 We assume the fundamental price, V, satisfies:

1. f is continuously differentiable and strictly increasing.

2. |f | and |f ′| are bounded by constant K.

3. limx↓−∞ f
′(x) = limx↑∞ f

′(x) = 0.

4. Z = N(0, 1).

Remark 1 The assumption that f is strictly increasing implies that the larger the signal Z

the large the asset value. Since f is bounded, we immediately have E [f 2(Z)] < ∞, i.e., the

terminal price of the asset is in L2. Since f is strictly increasing and bounded, we have the

limits exist for f when x→ ±∞. Denote b and d to be the upper and lower limits of f , i.e.,

limx→−∞ f(x) = b and limx→∞ f(x) = d. By assuming V = f(Z) with above conditions, we

capture most random variables with smooth distribution functions for V .

The agents in the market are differentiated by the information they have access to, hence

by filtrations their actions are adapted to. In particular, we consider three types of agents

populating the market: noise trader, market maker and insider.

Noise Traders trade for reasons other than maximising their utilities, for example for

liquidity reasons by Grossman and Stiglitz [26] and we assume that their cumulative demand

follows a standard Brownian motion B.
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Market Maker observes total cumulated orders, which is the sum of orders from both

noise trader and informed trader, i.e., Yt = θt + Bt, where we denote the cumulative order

from the insider by time t to be θt. The admissible trading strategy of the insider, θ, will

be assumed to be an absolutely continuous process, thus Y is a continuous semimartingale

in (Ω,F, (Ft),Q). Then the market maker’s filtration at time t, FMt , is defined as FMt := FYt

for t ∈ [0, 1[ and FM1 := FY1 ∨ σ(Z).

The market maker sets the asset price, Pt. We define a weighted signal ξ of Y where ξ

satisfies the following SDE and initial condition:

dξt = w(t, ξt)dYt, ξ0 = 0 a.s., (2.1.1)

where w is called weighting function2 which satisfies admissibility conditions that we will

define shortly. In principle, P depends on the whole path of Y , i.e., the whole path of ξ.

For simplicity we assume Pt = ξt + c with some constant c for any t ∈ [0, 1[ and P1 = f(Z).

The admissibility conditions imposed on θ and w will ensure that SDE (2.1.1) will admit a

unique strong Markov solution. We will denote by P 0,z the time 0 law of the process ξ and

random variable Z. Now we consider the probability measure P defined on (Ω,FY1 ∨ σ(Z))

by

P(E) =

∫
R
P 0,z(E)µ(dz), ∀E ∈ FY1 ∨ σ(Z), (2.1.2)

which is the market maker’s measure. We will denote E, the expectation taken under market

maker’s measure and E0,z, the expectation taken under insider’s measure.

Insider observes the price process P up to any time t and distribution of Z at t = 0,

thus her filtration is given by FIt = FPt ∨σ(Z). Insider’s objective is to maximise the expected

utility of final wealth, i.e.:

sup
θ∈A(w)

E0,z

[
−1

γ
exp{−γW θ

1 }
]
,

where A(w), which will be specified later, is the set of admissible trading strategies given

the pricing rule (P,w). The expectation is taken under the measure P 0,z, which is the time

2We apply the weighting function as the market maker may wish to put price dependency more emphasised

on recent trades. This definition is a generalisation of [12] and [15].
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0 law of the coupled process ξ and signal Z. In reality, the insider observes the process P

and signal Z, we will show later in Remark 6 the equivalence of the filtrations FP ∨σ(Z) and

FY ∨ σ(Z). We use exponential utility function here with γ > 0. The ad-hoc reasoning for

choosing such utility function is discussed in Remark 7. We denote by W θ
1 an insider’s wealth

at terminal time if she chooses to follow the admissible trading strategy θ. It is comprised of

the continuous gain over the time interval [0, 1[ and gain from the possible price discrepancy

at terminal time t = 1, i.e.

W θ
1 =

∫ 1−

0

θtdPt + (f(Z)− P1−)θ1− . (2.1.3)

2.2 Admissibility and Equilibrium

The above market model suggests a feedback mechanism for the insider, as her trading

strategy will be reflected upon the asset price which in turn will influence her trading strategy

itself. In this thesis, we focus on finding the equilibrium of such market model in the sense:

1. given the pricing rule, insider’s trading strategy is optimal;

2. given the trading strategy, there exists a unique strong solution for SDE (2.1.1) over

[0, 1[ and the pricing rule is rational, i.e., martingale over [0, 1[.

To formalise the definition of equilibrium and rational pricing, we need to define the sets of

admissible pricing rules and admissible trading strategies.

Definition 1 Let b and d be the constants defined in Remark 1. An admissible pricing rule

is a measurable weighting function w and a constant c such that:

1. w ∈ C1,2
(

[0, 1]×]b̃, d̃[
)

is bounded and positive in the interior of its domain where

b̃ = b− c and d̃ = d− c.

2. The weighting function w ∈ C1,2 : [0, 1]×]b̃, d̃[→ R+ satisfies:

wt
w2

(t, ξ) +
wξξ(t, ξ)

2
= −γ (2.2.4)

for some positive γ ∈ R.
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3. There exists a unique strong solution ξ to the SDE (2.1.1) in (Ω,F, (Ft)t∈[0,1[,P) such

that τ > 1 where τ = inf{t ≥ 0 : ξt /∈]b̃, d̃[} = inf{t ≥ 0 : Pt /∈]b, d[}.

The first condition is inherited from the boundedness of f , hence the boundedness of the

pricing signal ξ. The second condition is a necessary condition for the existence of optimal

strategy which we will show later in Lemma 1.

Definition 2 We will call an admissible pricing rule rational if it satisfies

Pt = E
[
f(Z)|FYt

]
for a given admissible trading strategy θ (we will define shortly in Definition 3 what an

admissible trading strategy is). In particular P1 = f(Z) and P0 = E[f(Z)] where expectation

is taken w.r.t. the probability measure P defined in (2.1.2).

Remark 2 We can use Bertrand undercutting argument to explain rational pricing. The

market maker sets the price to be equal to the expectation of the liquidation value of the asset,

conditional on his information set at the time the price is determined. Thus market maker

earn on average zero profit. Suppose there are several market makers and one of them is

aggressive and makes profit by setting the price higher than the rational price. As a result of

competition, other market makers will set price in-between the rational price and the price

set by the aggressive market maker. Over the time, prices will converge to rational price.

Remark 3 Suppose P is rational pricing rule where Pt = ξt + c. Since ξ satisfies the SDE

(2.1.1), we know it is local martingale. Moreover, since w is bounded, we know ξ is a true

martingale. Therefore

E[f(Z)] = P0 = ξ0 + c = c.

We will consider rational pricing P with c = E[f(Z)] without loss of generality. As discussed

in the previous remark, we have P is bounded by the range ]b, d[. We immediately have

E[
∫ 1

0
P 2
t dt] < ∞. As we are taking expectation under market maker’s measure, this means

the process P ∈ L2 from market maker’s point of view, i.e., without the existence of the

insider.
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Remark 4 We will show that the rational price process P is bounded with a state space ]b, d[,

where b and d are the constants in Remark 1. In other words, condition 3 of Definition 1

is not restricting our choice of weighting function w. Indeed, as stated in the Remark 3,

Pt ∈ [b, d] a.s. for any t ∈ [0, 1]. Hence, the continuity of the process P implies that its state

space is at most [b, d].

Consider a stopping time τb := inf{t ≥ 0 : Pt = b} ∧ 1. As process P is a martingale

that is closed by the random variable f(Z), optional sampling theorem (e.g. Theorem I.16

in Protter [49]) implies that

E[f(Z)1τb<1|FYτb ] = E[f(Z)|FYτb ]1τb<1 = Pτb1τb<1 = b1τb<1.

Therefore,

bP[τb < 1] = E[f(Z)1τb<1] = E[f(Z)1τb<11f(Z)=b + f(Z)1τb<11f(Z)>b]

= E[b1τb<1 + (f(Z)− b)1τb<11f(Z)>b]

= bP[τb < 1] + E[(f(Z)− b)1τb<11f(Z)>b].

This yields that E[(f(Z) − b)1τb<11f(Z)>b] = 0 and, since (f(Z) − b)1τb<11f(Z)>b is non-

negative random variable, that (f(Z)− b)1τb<11f(Z)>b = 0 a.s.. Observe that

0 = P[(f(Z)− b)1τb<11f(Z)>b > 0] = P[τb < 1, f(Z) > b] = P[τb < 1],

where the last equality follows from the fact that

P[f(Z) > b] = P[Z > −∞] = 1,

since by the definition of f (and, in particular, Remark 1) f(z) = b ⇔ z = −∞, and Z is

normally distributed.

Similar consideration applies to τd := inf{t ≥ 0 : Pt = d} ∧ 1, and therefore τ := inf{t ≥
0 : Pt /∈]b, d[} ∧ 1 = 1 a.s.. This, together with the fact that

P[f(Z) ∈]b, d[] = P[−∞ < Z < +∞] = 1,

yields the desired conclusion.
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Remark 5 We want to show that choosing P = ξ+E[f(Z)] is in line with the conventional

pricing assumption and provide a brief ad-hoc proof of why we choose P to be linear. Assume

we have an alternative pricing rule that Pt = H(t, ζt) for t ∈ [0, 1[ where H is a strictly

increasing function w.r.t. the space variable. Therefore H−1 is well defined. ζ is the solution

to the SDE dζ = a(t, ζt)dYt and ζ0 = 0 a.s. where a is strictly positive in the interior of its

domain.

Apply Ito’s formula on process P stopped at τn where τn = inf{t ≥ 0 : Pt /∈]b+ 1
n
, d− 1

n
[},

denote P n
t = Pt∧τn and ζnt = ζt∧τn, we have:

P n
t = P0 +

∫ t∧τn

0

(
Hs(s, ζ

n
s ) +

a2(s, ζns )

2
Hζζ(s, ζ

n
s )

)
ds+

∫ t∧τn

0

Hζ(s, ζ
n
s )a(s, ζns )dβs

=

∫ t∧τn

0

(
Hs(s,H

−1(s, P n
s )) +

a2(s,H−1(s, P n
s ))

2
Hζζ(s,H

−1(s, P n
s ))

)
ds

+

∫ t∧τn

0

Hζ(s,H
−1(s, P n

s ))a(s,H−1(s, P n
s ))dβs +H(0, ζ0)

Since limn→∞ τn = τ > 1 due to Remark 4, we have the above equality is true for any

t ∈ [0, 1]. Suppose P is rational pricing, we have Pt = H(t, ζt) = E
[
f(Z)|FYt

]
. Therefore,

we know P is a martingale in its own filtration. Thus the drift term must be zero, i.e.,

Ht(t, y) +
a2(t, y)

2
Hyy(t, y) = 0, t ∈ [0, 1]. (2.2.5)

Therefore

Pt =

∫ t

0

Hy(s,H
−1(t, Ps))a(s,H−1(t, Ps))dβs +H(0, ζ0)

=

∫ t

0

Hy(s,H
−1(t, Ps))a(s,H−1(t, Ps))dβs + E[f(Z)].

Since this pricing rule is equivalent to the linear model, we have w(t, x) = Hy(t,H
−1(t, x −

E[f(Z)]))a(t,H−1(t, x − E[f(Z)])) and ξ as the solution of the SDE dξt = w(t, ξt)dβt with

initial condition ξ0 = 0 a.s. as Pt = ξt + E[f(Z)]. In other words, the alternative weighting

function a is given by:

a(t, y) =
w(t,H(t, y) + E[f(Z)])

Hy(t, y)
.
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We will show that a satisfies a similar PDE w satisfies which is inline with the PDE (2.3.6)

we derived in Remark 7. Differentiate a w.r.t. t and y, we have:

at(t, y) =
wt(t,H(t, y) + E[f(Z)]) + wx(t,H(t, y) + E[f(Z)])Ht(t, y)

Hy(t, y)

−w(t,H(t, y) + E[f(Z)])Hty(t, y)

H2
y (t, y)

,

ay(t, y) = wx(t,H(t, y) + E[f(Z)])− w(t,H(t, y) + E[f(Z)])Hyy(t, y)

H2
y (t, y)

,

ayy(t, y) = wxx(t,H(t, y) + E[f(Z)])Hy(t, y) +
2w(t,H(t, y) + E[f(Z)])H2

yy(t, y)

H3
y (t, y)

−wx(t,H(t, y) + E[f(Z)])Hy(t, y)Hyy(t, y) + w(t,H(t, y) + E[f(Z)])Hyyy(t, y)

H2
y (t, y)

.

Therefore, we have

L(a) =
at(t, y)

a2(t, y)
+
ayy(t, y)

2

=
(wt(t,H(t, y) + E[f(Z)]) + wx(t,H(t, y) + E[f(Z)])Ht(t, y))Hy(t, y)

w2(t,H(t, y) + E[f(Z)])

− Hty(t, y)

w(t,H(t, y) + E[f(Z)])
+
wxx(t,H(t, y) + E[f(Z)])Hy(t, y)

2

−wx(t,H(t, y) + E[f(Z)])Hy(t, y)Hyy(t, y) + w(t,H(t, y) + E[f(Z)])Hyyy(t, y)

2H2
y (t, y)

+
w(t,H(t, y) + E[f(Z)])H2

yy(t, y)

H3
y (t, y)

= Hy(t, y)

(
wt(t,H(t, y) + E[f(Z)])

w2(t,H(t, y) + E[f(Z)])
+
wxx(t,H(t, y) + E[f(Z)])

2

)
+
wx(t,H(t, y) + E[f(Z)])Hy(t, y)

w2(t,H(t, y) + E[f(Z)])

(
Ht(t, y) +

a2(t, y)

2
Hyy(t, y)

)
− 1

w(t,H(t, y) + E[f(Z)])

(
Ht(t, y) +

a2(t, y)

2
Hyy(t, y)

)
y

= −γHy(t, y).

This is the same PDE we derive later in Remark 7. Therefore, we have the equivalence of

the following pricing rules:
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1. Pricing rule Pt = ξt + E[f(Z)] and weighting function w satisfying (2.2.4) where ξ is

strong solution of SDE dξt = w(t, ξt)dYt, ξ0 = 0 a.s..

2. Pricing rule Pt = H(t, ζt) (H satisfies PDE (2.2.5), H(0, 0) = E[f(Z)]) and weighting

function a satisfying (2.3.6) where ζ is strong solution of SDE dζt = w(t, ζt)dYt, ζ0 = 0

a.s..

Moreover, if we have w, and pricing rule H, the corresponding weighting function a will be

given by

a(t, y) =
w(t,H(t, y) + E[f(Z)])

Hy(t, y)
.

On the other hand if we have w and weighting function a, the corresponding pricing rule will

be given by

Hy(t, y) = −1

γ

(
at(t, y)

a2(t, y)
+
ayy(t, y)

2

)
,

H(t, y) = w−1 (t, a(t, y)Hy(t, y))− E[f(Z)].

Thus without loss of generality, we only need to solve for the linear case where Pt = ξt +

E[f(Z)] and corresponding weighting function w satisfying (2.2.4).

Remark 6 We also would like to justify by choosing P (effectively ξ) over Y as market

maker’s pricing signal, we are not losing any information. As straightforwardly by the SDE

defined in (2.1.1) we have Fξ ⊆ FY . Since b̃ = b−E[f(Z)] ≤ 0 with equality when f(Z) = b

P-a.s., d̃ = d − E[f(Z)] ≥ 0 with equality when f(Z) = d P-a.s.. The initial condition of

ξ0 = 0 ∈]b̃, d̃[. We define for ∀x ∈]b̃, d̃[:

A(t, x) =

∫ x

0

dy

w(t, y)
+

∫ t

0

1

2
wx(s, 0)ds,

a strictly increasing function w.r.t. x. Therefore A−1(t, y) exists and is well defined. From

the definition, we calculate for ∀x ∈]b̃, d̃[:

Ax(t, x) =
1

w(t, x)
,

At(t, x) +
w2(t, x)

2
Axx = −

∫ x

0

wt(t, y)

w2(t, y)
dy +

1

2
wx(t, 0)− 1

2
wx(t, x)

= −
∫ x

0

(
wt(t, y)

w2(t, y)
+
wyy(t, y)

2

)
dy.
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Denote ηt = A(t, ξt). Apply Ito’s formula to process η stopped at time τn where τn = inf{t ≥
0 : Pt /∈]b + 1

n
, d − 1

n
[} = inf{t ≥ 0 : ξt /∈]b̃ + 1

n
, d̃ − 1

n
[}, denote ηnt = ηt∧τn and Y n

t = Yt∧τn,

we have

ηnt =

∫ t∧τn

0

Ax(s, ξ
n
s )dξns +

∫ t∧τn

0

(
As(s, ξ

n
s ) +

w2(s, ξns )

2
Axx(s, ξ

n
s )

)
ds

= Y n
t −

∫ t∧τn

0

(∫ A−1(s,ηns )

0

(
ws(s, y)

w2(s, y)
+
wyy(s, y)

2

)
dy

)
ds.

Since limn→∞ τn = τ > 1 due to Remark 4, we have

Yt = ηt +

∫ t

0

(∫ A−1(s,ηs)

0

(
ws(s, y)

w2(s, y)
+
wyy(s, y)

2

)
dy

)
ds,

i.e., Yt solely depends on η[0,t]. Therefore FY ⊆ Fη for any t ∈ [0, 1]. Moreover since A(t, x)

is invertible w.r.t. space variable and is continuous, we have Fη = Fξ. Thus FY ⊆ Fξ.

Combining with previous result that Fξ ⊆ FY , we have FY = Fξ. Hence the insider’s

filtration is equivalently generated by processes Y and σ(Z), i.e., insider has full information

of the market.

The definition of admissible strategy θ is based on the set of admissible pricing rule w.

Back [5] proved that any strategy as a discontinuous process or with nonzero martingale part

is strictly suboptimal. We also limit admissible trading strategies to absolutely continuous

set. The formal definition is as follows.

Definition 3 An admissible trading strategy θ ∈ A(w) for insider given any admissible

pricing rule is Fξ ∨ σ(Z) adapted process satisfying:

1. θ is absolutely continuous, i.e., dθt = αtdt.

2. There exists a unique strong solution of SDE (2.1.1) in (Ω,F, (Ft)t∈[0,1[,Q).

3. (ξ, Z) is a Markov process adapted to (Ft) with measure P 0,z;

We already have E0,z
[∫ 1

0
Ptdt

]
<∞ since P is bounded process. Thus doubling strategies

are eliminated since the admissible trading strategies are restricted in L2. (see Duffie and

Huang (1985) [20]).
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In addition, the insider will prefer not to be detected by the market maker. In this

case, she will hide her trading among the noise traders. Therefore, we only consider the

inconspicuous strategies for the insider.

Definition 4 We will call an admissible pricing strategy inconspicuous if

E[θs|Fξt ] = 0

for every 0 ≤ t ≤ s ≤ 1.

Thus the cumulative trading amount Yt = Bt + θt will appear as a local martingale in

market maker’s filtration. Moreover, since θ is absolutely continuous, quadratic variation

does not depend on the filtration, we have 〈Y 〉t = 〈B〉t = t. Thus we know Y is a local

martingale in Fξ with 〈Y 〉t = t. By Levy’s characterisation, Y is a Fξ Brownian motion. Now

we can formally define the market equilibrium given the definitions on admissible pricing

rules and admissible trading strategies.

Definition 5 An equilibrium of the insider is a pair (w∗, θ∗) s.t., w∗, an admissible pricing

rule, and θ∗ ∈ A(w∗), an admissible strategy satisfying:

1. w∗ is a rational pricing rule given θ∗.

2. θ∗ is insider’s optimal trading strategy, i.e.,

E0,z

[
−1

γ
exp

{
−γW θ∗

1

}]
= sup

θ∈A(w∗)

E0,z

[
−1

γ
exp

{
−γW θ

1

}]
.

In this thesis, we focus on existence of equilibrium in which the insider trading strategy is

inconspicuous. We will call an equilibrium with this property an inconspicuous equilibrium.

2.3 Characterisation of Insider’s Optimal Strategy

The following Lemma characterises the insider’s optimal strategy. For simplicity we denote

f̃(x) = f(x) − E[f(Z)] where f will satisfy all the conditions in Assumption 1. Moreover,

we have limx→∞ f̃(x) = d̃ = d− E[f(Z)] and limx→−∞ f̃(x) = b̃ = b− E[f(Z)].
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Lemma 1 Suppose the rational pricing rule w satisfies the following condition: θ∗ ∈ A(w)

satisfies ξ∗1 = f̃(z) P 0,z − a.s. for every z ∈ R, where ξ∗ is the strong solution to the SDE

ξt =
∫ t

0
w(s, ξs)dY

∗
s , ξ0 = 0 a.s. with Y ∗ = B + θ∗. Then θ∗ is the optimal strategy, i.e., for

any θ ∈ A(w),

E0,z

[
−1

γ
exp{−γW θ∗

1 }
]
≥ E0,z

[
−1

γ
exp{−γW θ

1 }
]
.

Proof.

We will adapt Wu’s proof of his Lemma 4.2 in [54].

Due to Remark 4, we have that ξt ∈]b̃, d̃[ a.s. for any t ∈ [0, 1], thus we can define the

following function for any ξ ∈]b̃, d̃[:

ϕ(t, ξ) =

∫ ξ

f̃(z)

y − f̃(z)

w(t, y)
dy +

1

2

∫ 1

t

w(s, f̃(z))ds.

Since w ∈ C1,2([0, 1]×]b̃, d̃[→ R) and w(t, x) > 0, ϕ(t, ξ) is well defined in C1,2([0, 1]×]b̃, d̃[→
R). The idea of defining such a function comes from the solution of HJB equations and ϕ

will be used to give an upper bound of the insider’s expected terminal utility.

First we derive some important properties of ϕ. Differentiate ϕ w.r.t. ξ to second order

we have

ϕξ(t, ξ) =
ξ − f̃(z)

w(t, ξ)
, ϕξξ =

1

w(t, ξ)
− [ξ − f̃(z)]wξ(t, ξ)

w2(t, ξ)
.

Differentiate ϕ w.r.t. t we have

ϕt(t, ξ) =

∫ ξ

f̃(z)

−(y − f̃(z))wt(t, y)

w2(t, y)
dy − 1

2
w(t, f̃(z)).

Note by Leibniz integral rule, we can move derivative inside the integral provided the inte-

grand and derivative of the integrand are continuous functions over the integral intervals. In

this case, − (y−f̃(z))wt(t,y)
w2(t,y)

is continuous function given the differentiability of w. Therefore,

I = ϕt(t, ξ) +
w2(t, ξ)

2
ϕξξ(t, ξ)

=

∫ ξ

f̃(z)

−(y − f̃(z))wt(t, y)

w2(t, y)
dy − 1

2
w(t, f̃(z)) +

1

2
w(t, ξ)− 1

2
(ξ − f̃(z))wξ(t, ξ)

= −
∫ ξ

f̃(z)

(y − f̃(z))

(
wt(t, y)

w2(t, y)
+
wyy(t, y)

2

)
dy +

1

2

∫ ξ

f̃(z)

(y − f̃(z))wyy(t, y)dy − 1

2
w(t, f̃(z))

+
1

2
w(t, ξ)− 1

2
(ξ − f̃(z))wξ(t, ξ).
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Integration by parts of the second integral we have

J =
1

2

∫ ξ

f̃(z)

(y − f̃(z))wyy(t, y)dy

=
1

2
(y − f̃(z))wy(t, y)|ξ

f̃(z)
− 1

2

∫ ξ

f̃(z)

wy(t, y)dy

=
1

2
(ξ − f̃(z))wξ(t, ξ)−

1

2
w(t, ξ) +

1

2
w(t, f̃(z)).

Substitute into the equation of I we have

I = −
∫ ξ

f̃(z)

(y − f̃(z))

(
wt(t, y)

w2(t, y)
+
wyy(t, y)

2

)
dy.

Due to condition (2.2.4), we have

ϕt(t, ξ) +
w2(t, ξ)

2
ϕξξ(t, ξ) = γ

∫ ξ

f̃(z)

(y − f̃(z))dy =
γ

2
(ξ − f̃(z))2.

We apply Ito’s formula on ϕ(t, ξt) stopped at τn where τn = inf{t ≥ 0 : ξt /∈ (b̃+ 1
n
, d̃− 1

n
)},

denote ξnt = ξt∧τn :

ϕ(t, ξnt )− ϕ(0, 0) =

∫ t∧τn

0

ϕξ(s, ξ
n
s )dξns +

∫ t∧τn

0

(
ϕs(s, ξ

n
s ) +

w2(s, ξns )

2
ϕξξ(s, ξ

n
s )

)
ds

=

∫ t∧τn

0

ξns − f̃(z)

w(s, ξns )
dξns +

γ

2

∫ t∧τn

0

(ξns − f̃(z))2ds.

Taking the limit n → ∞, we have τn → τ > 1 due to the condition 3 of Definition 1, the

admissible pricing rule. Therefore we have the above expression holds for any t ∈ [0, 1], i.e.,

ϕ(t, ξt)− ϕ(0, 0) =

∫ t

0

ξs − f̃(z)

w(s, ξs)
dξs +

γ

2

∫ t

0

(ξs − f̃(z))2ds.

In addition, we have the boundary condition

ϕ(1, ξ1) =

∫ ξ1

f̃(z)

y − f̃(z)

w(1, y)
dy ≥ 0.

To see this, if ξ1 > f̃(z), then y > f̃(z) for all y ∈ [f̃(z), ξ1], hence integral is positive On the

other hand, if ξ1 < f̃(z), then y < f̃(z) for all y ∈ [ξ1, f̃(z)], hence integral is also positive.

Equality holds if and only if ξ1 = f̃(z).
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The wealth process of the insider at terminal time is W1. Apply integration by part to

W θ
1 defined in (2.1.3), we have

W θ
1 =

∫ 1−

0

θtdξt + (f(Z)− (ξ1− + E[f(Z)])) θ1−

=

∫ 1−

0

θtdξt + (f̃(Z)− ξ1−)θ1−

= θ1−ξ1− − [θ, ξ]1− +

∫ 1−

0

ξtdθt + (f̃(Z)− ξ1−)θ1−

=

∫ 1−

0

(f̃(Z)− ξt)dθt =

∫ 1

0

(f̃(Z)− ξt)dθt.

In the above calculation, [θ, ξ]1− = 0 since θ is absolutely continuous process. The last

equality is due to continuity of process ξ.

Therefore the insider’s expected wealth:

R = sup
θ

E0,z

[
−1

γ
exp

{
−γW θ

1

}]
= −1

γ
inf
θ
E0,z

[
exp

{
−γ
∫ 1

0

(f̃(z)− ξt)dθ
}]

= −1

γ
inf
θ
E0,z

[
exp

{
γ

∫ 1

0

ξt − f̃(z)

w(t, ξt)
dξt − γ

∫ 1

0

(ξt − f̃(z))dBt

}]
.

The last equality is due to dξ = w(t, ξ)(dBt + dθt). Substitute Ito’s formula on ϕ(t, ξt) into

the above equation, we have

R = −1

γ
inf
θ
E0,z

[
exp

{
−γϕ(0, 0) + γϕ(1, ξ1)− γ

∫ 1

0

(ξt − f̃(z))dBt −
γ2

2

∫ 1

0

(ξt − f̃(z))2dt

}]
≤ −exp {−γϕ(0, 0)}

γ
inf
θ
E0,z

[
Eθ1
]

since ϕ(1, ξ1) ≥ 0 with equality if and only if ξ1 = f̃(z) a.s..

Eθt = exp

{
−γ
∫ t

0

(ξs − f̃(z))dBs −
γ2

2

∫ t

0

(ξs − f̃(z))2ds

}
is an Fξ,Z exponential local martingale with E0 = 1.

Since |f | and |f ′| are bounded by K, suppose |f̃ | and |f̃ ′| are bounded by K̃. By rational

pricing rule Definition 2, we know ξt = E[f̃(Z)|Fξt ] is bounded by K̃ for any t ∈ [0, 1]. The
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Novikov’s condition is satisfied since

E0,z exp

{
γ

∫ 1

0

∣∣∣ξt − f̃(z)
∣∣∣2 dt} ≤ exp{4γK̃2} <∞.

Thus it is a true martingale and in particular E0,z
[
Eθ1
]

= E0,z [E0] = 1. Therefore the

insider’s expected utility satisfies

E0,z

[
−1

γ
exp

{
−γW θ

1

}]
≤ E0,z

[
−1

γ
exp

{
−γW θ∗

1

}]
=

exp {−γϕ(0, 0)}
γ

.

Equality holds when θ∗ ∈ A(w) satisfies ξ∗1 = f̃(z) P 0,z-a.s. �

We introduce the following ad hoc derivation towards our consideration of exponential

utility above. It gives us an insightful, yet not rigorous justification of the reason we choose

exponential utility to study.

Remark 7 In this remark, we consider general pricing rule (H, a) where Pt = H(t, ζ), ζ is

the strong solution to SDE dζt = a(t, ζt)dYt, ζ0 = 0 a.s., Yt = Bt + θt is Brownian motion

in its own filtration due to inconspicuous trading. Our aim is the following, given (H, a)

satisfying (2.2.5) which is due to rational pricing in Remark 5, find out under which utility

functions there exists equilibrium and what other conditions (H, a) need to satisfy.

We know the terminal wealth W θ
1 =

∫ 1

0
(f(Z)−H(t, ζt)) dθt. Define process X satisfying

dXt = (f(Z)−H(t, ζt))dθt, X0 = 0 a.s..

Xt is an Fζ ∨ σ(Z) adapted process. The insider is trying to maximize the expected utility of

terminal wealth, i.e., supθ E0,z[W θ
1 ]. We can define:

v(t, x, ζ, θ) = E0,z
t

[
u

(
x+

∫ 1

t

(f(z)−H(s, ζs))dθs

)]
,

where u ∈ C3 is strictly increasing concave utility function. Define the conditional value

function φ(t, ζ, x):

φ(t, ζ, x) = sup
θ∈A(H,a)

v(t, x, ζ, θ),

where A(H, a) is the set of admissible trading strategy given pricing rule (H, a). The Bell-

man’s optimality principle, introduced by El Karoui [33] suggests the process φ(t, ζ,X) be a
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supermartingale for any θ ∈ A(H, a) and a martingale if and only if θ is optimal. By Ito’s

formula

dφ(t, ζt, Xt) = φζ(t, ζt, Xt)a(t, ζt)dBt + φx(t, ζt, Xt)(f(z)−H(t, ζt))dθt

+

(
φt(t, ζt, Xt) +

a2(t, ζt)

2
φζζ(t, ζt, Xt)

)
dt.

The drift term is negative for supermartingale and zero for martingale when θ is the optimal

strategy, hence

0 = φt(t, ζ, x) +
a2(t, ζ)

2
φζζ(t, ζ, x)

+ sup
θ∈A(H,w)

[φζ(t, ζ, x)a(t, ζ) + φx(t, ζ, x)(f(z)−H(t, ζ))]
dθ

dt
.

Notice that the Bellman equation is linear in dθ
dt

and has a solution if and only if

φt(t, ζ, x) +
a2(t, ζ)

2
φζζ(t, ζ, x) = 0,

φζ(t, ζ, x)a(t, ζ) + φx(t, ζ, x)(f(z)−H(t, ζ)) = 0

with boundary condition φ(1, ζ, x) = u(x). Differentiate the above PDEs w.r.t. ζ and t

respectively we have

φtζ(t, ζ, x) = −a(t, ζ)aζ(t, ζ)φζζ(t, ζ, x)− a2(t, ζ)

2
φζζζ(t, ζ, x),

φζt(t, ζ, x) =
φxt(t, ζ, x)(H(t, ζ)− f(z)) + φx(t, ζ, x)Ht(t, ζ)

a(t, ζ)

−at(t, ζ)φx(t, ζ, x)(H(t, ζ)− f(z))

a2(t, ζ)
.

Let φxt(t, ζ, x) = φtx(t, ζ, x), φζζx(t, ζ, x) = φxζζ(t, ζ, x) and finally φtζ(t, ζ, x) = φζt(t, ζ, x)

due to continuity, we can use (2.2.5) to simplify the above equations to satisfy the following

condition:

φxx(t, ζ, x)

φx(t, ζ, x)
=

1

Hζ(t, ζ)

(
at(t, ζ)

a2(t, ζ)
+
aζζ(t, ζ)

2

)
= −γ(t, ζ) (2.3.6)
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1. If γ = 0 we have φxx = 0. Therefore we have φ(t, ζ, x) = A(t, ζ)x + B(t, ζ). Apply

boundary condition φ(1, ζ, x) = u(x) = A(1, ζ)x+B(1, ζ). We conclude that only linear

utility case (w.l.o.g. u(x) = x) applies.

2. If γ = γ(t, ζ) we have φ(t, ζ, x) = A(t, ζ) exp {−γ(t, ζ)x} + B(t, ζ). Apply boundary

condition φ(1, ζ, x) = u(x) = A(1, ζ) exp {−γ(1, ζ)x}+B(1, ζ), i.e., γ(1, ζ) = const. =

γ, A(1, ζ) and B(1, ζ) are both constants. This imply the exponential utility case.

Without loss of generality u(x) = − 1
γ
e−γx where γ > 0 due to concavity of utility

function.

The linear utility case has been widely studied and will not be the focus of this paper. We

conclude that given (H, a) satisfying (2.2.5), Bellman’s optimality principle suggests (2.3.6)

and u(x) = − 1
γ
e−γx are the necessary conditions for the existence of the conditional value

function. This ad-hoc derivation inspires us to consider equilibrium under above exponential

utility.

From previous section we obtained the sufficient conditions for insider’s strategy to be

optimal given suitable conditions on pricing w. Now we provide the following sufficient

condition for (w∗, θ∗) to be an inconspicuous equilibrium.

Lemma 2 A triplet (P ∗, w∗, θ∗) where w∗ is an admissible pricing rule and θ∗ ∈ A(w∗), is

an inconspicuous equilibrium if it satisfies the following conditions:

1. Y ∗t = Bt + θ∗t is a standard Brownian motion in its own filtration.

2. ξ∗1 = f̃(z), P 0,z − a.s. for every z ∈ R and ξ∗ is the strong solution to ξt =∫ t
0
w∗(s, ξs)dY

∗
s on (Ω,F, (Ft)t∈[0,1[,P) with initial condition ξ0 = 0 a.s..

3. P ∗ = ξ∗ + E[f(Z)] is an (FY
∗
)-martingale w.r.t. P.

Proof. Suppose (P ∗, w∗, θ∗) is a triplet satisfying conditions 1 to 3 in the statement

of the Lemma.
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Condition 1 ensures that the insider’s trading strategy is inconspicuous since the total

order is a Brownian motion in market maker’s filtration. Conditions 2 and 3 imply that the

pricing rule w∗ is rational in the sense that

P ∗t = ξ∗t + E[f(Z)] = E[ξ∗1 | FY
∗

t ] + E[f(Z)]

= E[f(Z)− E[f(Z)] | FY ∗t ] + E[f(Z)] = E[f(Z) | FY ∗t ]

where the second equality is due to martingale property of ξ∗ by condition 3, the third

equality is due to the convergence of the terminal distribution by condition 2 and last equality

is by tower property.

Finally, by Lemma 1, conditions 2 imply that θ∗ is optimal.

�

By condition 2 of the above Lemma, ξ∗ need to have required terminal distribution of

f(Z), this effectively put the condition on w∗ as ξ∗t =
∫ t

0
w∗(s, ξs)dY

∗
s where Y ∗ is a standard

Brownian motion by condition 1. The following subsection discuss the existence of such

pricing rule.

2.4 Existence of Pricing Rule

Now we discuss the existence of w∗ for equilibrium. For brevity we will drop the asterisk in

this sub-section. The market maker has to solve PDE (2.2.4) and

ξ1
d
= f̃(Z). (2.4.7)

Provided ξ is the strong solution to SDE

dξt = w(t, ξt)dβt, ξ0 = 0 a.s.

and β is a P standard Brownian motion. The following proposition gives sufficient conditions

for existence of w(t, x) ∈ C1,2 : [0, 1]×]b̃, d̃[→ R+ such that there exists unique strong solution

to the above SDE (2.4.12) with required terminal distribution (2.4.7) and w solves the PDE

(2.2.4) .
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Proposition 1 Consider function f̃ = f−E[f(Z)] where f satisfies Assumption 1 and such

that E[f̃(Z)] = 0. Define limx→∞ f̃(x) = d̃, and limx→−∞ f̃(x) = b̃.

Suppose there exists λ(t, x) ∈ C1,3 : [0, 1]× R→]b̃, d̃[ such that

1. λ is bounded, strictly increasing, limx→±∞ λx(t, x) = 0 and

lim
x→−∞

λ(t, x) = b̃, lim
x→∞

λ(t, x) = d̃.

2. λ satisfies the Burger’s equation:

λt(t, x) +
1

2
λxx(t, x) = −γλ(t, x)λx(t, x). (2.4.8)

3. λ satisfies the boundary condition:

λ(1, x) = f̃ ◦ Φ−1 ◦ P (1, x) (2.4.9)

where Φ is the cumulative distribution function (CDF) of N(0, 1) and P is the CDF of

κt with κ being the unique strong solution of

dκt = dβt + γλ(t, κt)dt (2.4.10)

with initial condition κ0 = 0 a.s..

4. λ satisfies the initial condition λ(0, 0) = 0.

Then the weighting function w given by:

w(t, y) =
1

∂λ−1

∂y
(t, y)

(2.4.11)

is well defined and w(t, y) ∈ C1,2 : [0, 1]×]b̃, d̃[→ R+. It will satisfy the following:

1. w is positive in the interior of its domain, limy↓b̃w(t, y) = limy↑d̃w(t, y) = 0 for any

t ∈ [0, 1].

2. For any ξ ∈]b̃, d̃[, ξt = λ(t, κt) is a unique strong solution for SDE

dξt = w(t, ξt)dβt, (2.4.12)

with initial condition ξ0 = 0 a.s.. Moreover, the stopping τ := inf{t > 0 : ξt /∈]b̃, d̃[}
satisfies τ > 1 a.s..
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3. wt(t,ξ)
w(t,ξ)2

+
wξξ(t,ξ)

2
= −γ with boundary condition ξ1

d
= f̃(Z).

Please refer to Appendix for proof. The sketch of the proof is as follows: we begin by

proving w defined by (2.4.11) is well-defined and satisfies the properties in statement 1 for

w due to condition 1 for λ. Secondly, due to ξt = λ(t, κt) we can apply Ito’s formula to

obtain the SDE for ξ as in statement 2 for w. Stopping time τ > 1 is due to the process

κ being non-explosive since its drift is bounded. Thirdly the SDE for w in statement 3 for

w is shown by substituting (2.4.11) into Burger’s equation satisfied by λ due to condition

2. Finally the boundary condition of ξ1 is satisfied due to condition 3 and 4 of λ and the

definition ξt = λ(t, κt). Therefore to show existence of the rational pricing rule w, it is

sufficient to demonstrate existence of solutions for the Burger’s equation (2.4.8) and (2.4.9)

where P is the CDF of κt and κ is the unique strong solution of (2.4.10). We can further

relax the sufficient condition to existence of solution of an integral equation.

Lemma 3 Consider function f̃ = f−E[f(Z)] where f satisfies Assumption 1 and such that

E[f̃(Z)] = 0. Define limx→∞ f̃(x) = d̃, and limx→−∞ f̃(x) = b̃. Define

lim
x→∞

f̃(x) = d̃ > 0, lim
x→−∞

f̃(x) = b̃ < 0.

Let P̃ ∈ C2 : R → (0, 1) be a function strictly increasing w.r.t. x, with P̃ (−∞) = 0 and

P̃ (∞) = 1. It also satisfies the integral equation:

P̃ (x) =
c∗√
2π

∫ x

−∞
exp

{
γ

∫ u

0

f̃ ◦ Φ−1 ◦ P̃ (s)ds− u2

2

}
du.

Then

λ(t, x) :=

∫
R Γ(t, x− y)f̃ ◦ Φ−1 ◦ P̃ (y)e

∫ y
0 γf̃◦Φ

−1◦P̃ (u)dudy

γ
∫
R Γ(t, x− y)e

∫ y
0 γf̃◦Φ−1◦P̃ (u)dudy

, ∀t ∈ [0, 1], (2.4.13)

where Γ(t, x) = 1√
2π(1−t)

exp
{
− x2

2(1−t)

}
, is well defined, continuously differentiable with re-

spect to the space variable on [0, 1]×R and infinitely continuously differentiable on [0, 1[×R.

Moreover, λx(t, x) is uniformly bounded and at terminal time we have

λ(1, x) = f̃ ◦ Φ−1 ◦ P̃ (x).

Such defined λ satisfies all conditions of Proposition 1. Furthermore, P (1, x) = P̃ (x) where

P (t, x) is the CDF of κt satisfying the SDE (2.4.10).
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Proof. We will first show that λ given by (2.4.13) is well defined and has the degree

of regularity as stated.

Indeed, consider a PDE

ut(t, x) +
uxx(t, x)

2
= 0 (2.4.14)

with the terminal condition

u(1, x) = exp

{∫ x

0

γf̃ ◦ Φ−1 ◦ P̃ (u)du

}
.

As f̃ is bounded, the terminal condition has at most exponential growth, and therefore

Theorem 1.12 in [24] yields that there exits a classical solution to this Cauchy problem on

[0, 1] (note that we can take h as small as needed in this theorem). Moreover, the solution,

u, is given by

u(t, x) =

∫
R

Γ(t, x− y)u(1, y)dy ∀t ∈ [0, 1[.

Note that u ∈ C([0, 1]× R) as the solution of the Cauchy problem. Furthermore, Theorem

9.10 in [24] yields that u ∈ C∞([0, 1[×R).

Thus, ux(t, x) is well-defined and continuous on [0, 1[×R. Moreover, for any (t, x) ∈
[0, 1[×R we will have (differentiation under the integral sign is justified as

∣∣ ∂
∂x

Γ(t, x− y)
∣∣ =

|x−y|
1−t Γ(t, x− y) and u(1, y) < eK̃|y| where K̃ is the upper bound for |f̃ | and |f̃ ′|)

ux(t, x) =

∫
R

∂

∂x
Γ(t, x− y)u(1, y)dy = −

∫
R

∂

∂y
Γ(t, x− y)u(1, y)dy

= Γ(t, x− y)u(1, y) |∞−∞ −
∫
R

Γ(t, x− y)uy(1, y)dy.

Note that the last integral is well defined as |uy(1, y)| ≤ K̃eK̃|y| since |f̃ | is bounded by

constant K̃. Moreover,

0 ≤ lim
y→±∞

Γ(t, x− y)u(1, y) ≤ lim
y→±∞

1√
2π(1− t)

exp

{
−(x− y)2

2(1− t)
+ γK̃|y|

}
= 0.

As |uy(1, y)| ≤ K̃eK̃|y|, Theorem 1.12 in [24] yields that

ux(t, x) = −
∫
R

Γ(t, x− y)uy(1, y)dy (2.4.15)
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is a solution to the PDE (2.4.14) with the terminal condition

ux(1, x) = γf̃ ◦ Φ−1 ◦ P̃ (x) exp

{∫ x

0

γf̃ ◦ Φ−1 ◦ P̃ (u)du

}
.

In particular, ux ∈ C([0, 1] × R) and, in view of Theorem 9.10 in [24], ux ∈ C∞([0, 1[×R).

Furthermore,

u(t, x) =

∫
R

Γ(t, x− y)u(1, y)dy ≥
∫
R

Γ(t, x− y)e−K̃|y|dy

=

∫ 0

−∞
Γ(t, x− y)e−K̃|y|dy +

∫ ∞
0

Γ(t, x− y)e−K̃|y|dy = I1(t, x) + I2(t, x),

I1(t, x) =

∫ 0

−∞

1√
2π(1− t)

exp

{
−(x− y)2

2(1− t)
+ K̃y

}
dy

= exp

{
K̃x+

K̃2(1− t)
2

}∫ 0

−∞

1√
2π(1− t)

exp

{
−(y − (x+ K̃(1− t)))2

2(1− t)
dy

}

= exp

{
K̃x+

K̃2(1− t)
2

}
Φ
√

1−t(−x− K̃(1− t)),

I2(t, x) =

∫ ∞
0

1√
2π(1− t)

exp

{
−(x− y)2

2(1− t)
− K̃y

}
dy

= exp

{
−K̃x+

K̃2(1− t)
2

}∫ ∞
0

1√
2π(1− t)

exp

{
−(y − (x− K̃(1− t)))2

2(1− t)
dy

}

= exp

{
−K̃x+

K̃2(1− t)
2

}
Φ
√

1−t(−x+ K̃(1− t)).

Therefore, for any x > K̃(1− t), we have

u(t, x) ≥ I2(t, x) >
1

2
exp

{
−K̃x+

K̃2(1− t)
2

}
,

and for any x < K̃(1− t), we have

u(t, x) ≥ I1(t, x) >
1

2
exp

{
K̃x+

K̃2(1− t)
2

}
.
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Due to continuity of u, the function defined by

λ(t, x) =
ux(t, x)

γu(t, x)
, ∀t ∈ [0, 1],

is well-defined, continuous on [0, 1]×R and infinitely continuously differentiable on [0, 1[×R.

To establish that λx is continuous on [0, 1]× R, observe that

λx(t, x) =
uxx(t, x)u(t, x)− (ux(t, x))2

γu2(t, x)

is well defined on [0, 1]×R. Moreover, since both u and ux are continuous on [0, 1]×R and

u is strictly positive, the continuity of λx will follow from the continuity of uxx. Note that

from (2.4.15) we have (differentiation under the integral sign is justified as
∣∣ ∂
∂x

Γ(t, x− y)
∣∣ =

|x−y|
1−t Γ(t, x− y) and |uy(1, y)| < K̃eK̃|y|)

uxx(t, x) = −
∫
R

∂

∂x
Γ(t, x− y)uy(1, y)dy =

∫
R

∂

∂y
Γ(t, x− y)uy(1, y)dy

= −Γ(t, x− y)uy(1, y) |∞−∞ +

∫
R

Γ(t, x− y)uyy(1, y)dy

=

∫
R

Γ(t, x− y)uyy(1, y)dy. (2.4.16)

The last equality is due to

0 ≤ lim
y→±∞

Γ(t, x− y)|uy(1, y)| ≤ lim
y→±∞

K̃√
2π(1− t)

exp

{
−(x− y)2

2(1− t)
+ γK̃|y|

}
= 0,

And the
∫
R Γ(t, x− y)uyy(1, y)dy is well defined as we have

|uxx(1, x)| =

∣∣∣∣∣
[(
γf̃(Φ−1(P̃ (x)))

)2

+ γf̃ ′(Φ−1(P̃ (x)))
P̃x(x)

Φ′(Φ−1(P̃ (x)))

]
e
∫ x
0 γf̃◦Φ−1◦P̃ (u)du

∣∣∣∣∣
≤ γK̃

[
γK̃ +

∣∣∣∣∣ P̃x(x)

Φ′(Φ−1(P̃ (x)))

∣∣∣∣∣
]
eγK̃|x|

= γK̃

[
γK̃ + c∗ exp

{∫ x

0

γf̃(Φ−1(P̃ (u)))du+
1

2

(
Φ−1(P̃ (x))− x2

)}]
eγK̃|x|

≤ γK̃
[
γK̃ + c∗eγK̃|x|+

1
2((Φ−1(P̃ (x)))2−x2)

]
eγK̃|x|

≤ K̄e2γK̃|x| (2.4.17)
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where the first and second inequalities are due to the boundedness of f̃ and f̃ ′, and

K̄ = (γK̃)2 + γK̃c∗ supx e
1
2((Φ−1(P̃ (x)))2−x2). We have K̄ < ∞ since, due to the Lemma

6 in Appendix, limx→±∞ e
1
2((Φ−1(P̃ (x)))2−x2) ≤ 1 and Φ−1 ◦ P̃ being a continuous function.

The bound (2.4.17) together with the representation (2.4.16) yield, via application of the

Theorem 1.12 in [24], that uxx is a solution to the PDE (2.4.14) with the terminal condition

uxx(1, x).

Next, we show that this λ satisfies the conditions of Proposition 1.

Direct calculation yield that it solves the equation (2.4.8). Indeed,

λt(t, x) =
1

γ

(
utx(t, x)

u(t, x)
− ux(t, x)ut(t, x)

u2(t, x)

)
,

λx(t, x) =
1

γ

(
uxx(t, x)

u(t, x)
− u2

x(t, x)

u2(t, x)

)
,

λxx(t, x) =
1

γ

(
uxxx(t, x)

u(t, x)
− 3uxx(t, x)ux(t, x)

u2(t, x)
+

2u3
x(t, x)

u3(t, x)

)
,

and therefore

I = γ

(
λt(t, x) +

1

2
λxx(t, x) + γλx(t, x)λ(t, x)

)
=

1

u(t, x)

(
ut(t, x) +

uxx(t, x)

2

)
x

− ux(t, x)

u(t, x)2

(
ut(t, x) +

uxx(t, x)

2

)
= 0

Next, we demonstrate that condition 1 of Proposition 1 is satisfied. Indeed, λ is bounded

since

|λ(t, x)| ≤
∫
R Γ(t, x− y) |uy(1, y)| dy
γ
∫
R Γ(t, x− y)u(1, y)dy

=

∫
R Γ(t, x− y)u(1, y)

∣∣∣f̃ ◦ Φ−1 ◦ P̃ (y)
∣∣∣ dy

γ
∫
R Γ(t, x− y)u(1, y)dy

≤ K̃

γ

due to the boundedness of f̃ .

To show that λ is strictly increasing, we observe that

λx(1, x) =
d

dx

[
f̃ ◦ Φ−1 ◦ P̃ (x)

]
> 0

due to f̃ , Φ and P̃ being strictly increasing functions. Moreover,

λx(t, x) =
uxx(t, x)u(t, x)− ux(t, x)2

γu(t, x)2
.
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Integration by parts (and using bounds on f̃) will yield

I = uxx(t, x)u(t, x)− ux(t, x)2

=

(∫
R

Γxx(t, x− y)u(1, y)dy

)(∫
R

Γ(t, x− y)u(1, y)dy

)
−
(∫

R
Γx(t, x− y)u(1, y)dy

)2

=

(∫
R

Γ(t, x− y)uyy(1, y)dy

)(∫
R

Γ(t, x− y)u(1, y)dy

)
−
(∫

R
Γ(t, x− y)uy(1, y)dy

)2

≥
(∫

R
Γ(t, x− y)

√
uyy(1, y)u(1, y)dy

)2

−
(∫

R
Γ(t, x− y)uy(1, y)dy

)2

> 0

where the inequality before last is just an application of Cauchy-Schwarz inequality (uxx > 0

as we will see shortly) and the last inequality holds since

uxx(1, x)u(1, x)− u2
x(1, x) = γu2(1, x)λx(1, x) > 0.

Therefore λx(t, x) > 0 for all (t, x) ∈ [0, 1]× R, i.e. λ is strictly increasing.

Next, we need to establish that limx→±∞ λx(t, x) = 0. First we show this is true for t = 1.

We have

lim
x→±∞

λx(1, x) = lim
x→±∞

f̃ ′ ◦ Φ−1 ◦ P̃ (x)
P̃ ′(x)

Φ′(Φ−1 ◦ P̃ (x))

Observe that since limx→±∞ f̃
′(x) = 0, we only need to show that

lim
x→±∞

P̃ ′(x)

Φ′(Φ−1 ◦ P̃ (x))
=
√

2π lim
x→±∞

P̃ ′(x)

e−
1
2

(Φ−1◦P̃ (x))2

is finite. Observe that

√
2π lim

x→±∞

P̃ ′(x)

e−
1
2

(Φ−1◦P̃ (x))2
=
√

2π lim
x→±∞

P̃ ′′(x)

e−
1
2

(Φ−1◦P̃ (x))2(−Φ−1 ◦ P̃ (x)) d
dx

(
Φ−1 ◦ P̃ (x)

)
=
√

2π lim
x→±∞

P̃ ′(x)(γf̃ ◦ Φ−1 ◦ P̃ (x)− x)

e−
1
2

(Φ−1◦P̃ (x))2(−Φ−1 ◦ P̃ (x)) P̃ ′(x)

Φ′◦Φ−1◦P̃ (x)

= lim
x→±∞

x− γf̃ ◦ Φ−1 ◦ P̃ (x)

Φ−1 ◦ P̃ (x)

= lim
x→±∞

x

Φ−1 ◦ P̃ (x)
= 1 <∞.
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where the one to the last equality is due to the boundedness of f̃ , the last equality is due to

the Lemma 6 in Appendix and the first one is the application of L’Hopital rule. Note that

the rule is applicable since limx→+∞Φ−1 ◦ P̃ (x) = +∞ and

0 < lim
x→±∞

P̃ ′(x) =
c∗√
2π

lim
x→±∞

eγ
∫ x
0 f̃◦Φ−1◦P̃ (s)ds−x

2

2 ≤ c∗√
2π

lim
x→±∞

eγK̃|x|−
x2

2 = 0.

Therefore

lim
x→±∞

P̃ ′(x)

Φ′(Φ−1 ◦ P̃ (x))

is finite. Therefore, the previous considerations yield

lim
x→±∞

λx(1, x) = lim
x→±∞

d

dx
f̃ ◦ Φ−1 ◦ P̃ (x) = 0. (2.4.18)

Next, we need to show that limx→±∞ λx(t, x) = 0 for any t ∈ [0, 1[. We prove this

statement only for x→ +∞ as the case x→ −∞ is done similarly. First, observe that

uyy(1, y) =
d

dy

(
γf̃ ◦ Φ−1 ◦ P̃ (y)u(1, y)

)
= γ2

(
f̃ ◦ Φ−1 ◦ P̃ (y)

)2

u(1, y) + γ
d

dy

(
f̃ ◦ Φ−1 ◦ P̃ (y)

)
u(1, y),

and therefore

λx(t, x) =
uxx(t, x)u(t, x)− (ux(t, x))2

γu2(t, x)

=

∫
R Γ(t, x− y)uyy(1, y)dy

γ
∫
R Γ(t, x− y)u(1, y)dy

− 1

γ

(∫
R Γ(t, x− y)uy(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

)2

=
γ
∫
R Γ(t, x− y)

(
f̃ ◦ Φ−1 ◦ P̃ (y)

)2

u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

+

∫
R Γ(t, x− y) d

dy

(
f̃ ◦ Φ−1 ◦ P̃ (y)

)
u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy

−γ

∫R Γ(t, x− y)
(
f̃ ◦ Φ−1 ◦ P̃ (y)

)
u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy

2

= γI1(x) + I2(x)− γI2
3 (x).
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We will show that limx→∞ I1(x) = limx→∞ I
2
3 (x) = d̃2 and limx→∞ I2(x) = 0, which will yield

the required result. Due to the fact that f̃ is increasing and limx→∞ f̃(x) = d̃ > 0, we have

f̃(x) < d̃ for all x and therefore I1(x) < d̃ and I3(x) < d̃ for all x.

Moreover, fix an ε > 0 and let N be such that f̃(N) > d̃− ε, then we will have

lim
x→+∞

I3(x) = lim
x→+∞

∫
R Γ(t, x− y)u(1, y)f̃ ◦ Φ−1 ◦ P̃ (y)dy∫

R Γ(t, x− y)u(1, y)dy

≥ lim
x→+∞

b̃
∫ N
−∞ Γ(t, x− y)u(1, y)dy + (d̃− ε)

∫∞
N

Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

= d̃− ε+ lim
x→+∞

(b̃− d̃+ ε)
∫ N
−∞ Γ(t, x− y)u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy
= d̃− ε,

where the last equality is due to the Lemma 5 in Appendix. Due to the arbitrariness on ε,

and the previous bound on I3 we have limx→∞ I3(x) = d̃ as claimed.

Similarly, (N is the same as before)

lim
x→+∞

I1(x) = lim
x→+∞

∫
R Γ(t, x− y)u(1, y)(f̃ ◦ Φ−1 ◦ P̃ (y))2dy∫

R Γ(t, x− y)u(1, y)dy

≥ lim
x→+∞

(d̃− ε)2
∫∞
N

Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

= (d̃− ε)2 − lim
x→+∞

(d̃− ε)2
∫ N
−∞ Γ(t, x− y)u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy
= (d̃− ε)2,

and therefore limx→∞ I1(x) = d̃ in the same way as before.

Due to (2.4.18) and the fact that d
dy

(
f̃ ◦ Φ−1 ◦ P̃ (y)

)
is continuous, for any ε > 0 there

exist constants M and N such that∣∣∣∣ ddy (f̃ ◦ Φ−1 ◦ P̃ (y)
)∣∣∣∣ < ε, ∀y > N

and ∣∣∣∣ ddy (f̃ ◦ Φ−1 ◦ P̃ (y)
)∣∣∣∣ < M, ∀y ≤ N

Thus, we will have

lim
x→+∞

|I2(x)| ≤ lim
x→+∞

∫
R Γ(t, x− y)u(1, y)

∣∣∣ ddy (f̃ ◦ Φ−1 ◦ P̃ (y)
)∣∣∣ dy∫

R Γ(t, x− y)u(1, y)dy

≤ lim
x→+∞

(M − ε)
∫ N
−∞ Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

+ ε = ε,

32



where the last equality is due to the Lemma 5 in Appendix.

We also notice that, since |f̃ | is bounded by K̃, we have for any t ∈ [0, 1]:

|I1(x)| =

∫
R Γ(t, x− y)

∣∣∣f̃ ◦ Φ−1 ◦ P̃ (y)
∣∣∣2 u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy
≤ K̃2,

|I3(x)| ≤

∫
R Γ(t, x− y)

∣∣∣f̃ ◦ Φ−1 ◦ P̃ (y)
∣∣∣u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy
≤ K̃,

|I2(x)| =

∫
R Γ(t, x− y)

∣∣∣ ddy (f̃ ◦ Φ−1 ◦ P̃ (y)
)∣∣∣u(1, y)dy∫

R Γ(t, x− y)u(1, y)dy
.

To show λx(t, x) is uniformly bounded for (t, x) ∈ [0, 1] × R, it suffices to show

d
dy

(
f̃ ◦ Φ−1 ◦ P̃ (y)

)
is uniformly bounded in R, which is true due to 2.4.18.

To conclude that condition 1 of Proposition 1 holds, we need to demonstrate that

limx→∞ λ(t, x) = d̃, and limx→−∞ λ(t, x) = b̃. Notice that by the definition of λ(t, x),

lim
x→∞

λ(t, x) = lim
x→∞

ux(t, x)

γu(t, x)
= lim

x→∞

∫
R Γ(t, x− y)uy(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

= lim
x→∞

∫
R Γ(t, x− y)u(1, y)f̃ ◦ Φ−1 ◦ P̃ (y)dy∫

R Γ(t, x− y)u(1, y)dy
.

Since f̃ ◦ Φ−1 ◦ P̃ is bounded by d̃, we have

lim
x→∞

λ(t, x) ≤ lim
x→∞

d̃

∫
R Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

= d̃.

Since f̃ ◦ Φ−1 ◦ P̃ is strictly increasing and converge to d̃ when x → +∞. We have for any

ε > 0, there exists N > 0 s.t. for any x > N , we have f̃ ◦ Φ−1 ◦ P̃ (x) > d̃− ε. We have,

λ(t, x) =

∫ N
−∞ Γ(t, x− y)u(1, y)f̃ ◦ Φ−1 ◦ P̃ (y)dy∫

R Γ(t, x− y)u(1, y)dy

+

∫∞
N

Γ(t, x− y)u(1, y)f̃ ◦ Φ−1 ◦ P̃ (y)dy∫
R Γ(t, x− y)u(1, y)dy

= I4(x) + I5(x).

Due to boundedness of f̃ and Lemma 5 in Appendix, we have

lim
x→∞
|I4(x)| ≤ K̃ lim

x→∞

∫ N
−∞ Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

= 0
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and therefore limx→∞ I4(x) = 0. Moreover, due to the same lemma

lim
x→∞

I5(x) ≥ (d̃− ε)
∫∞
N

Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

= (d̃− ε)

[
1− lim

x→∞

∫ N
−∞ Γ(t, x− y)u(1, y)dy∫
R Γ(t, x− y)u(1, y)dy

]
= d̃− ε.

Since ε is arbitrarily chosen, we have limx→∞ I5 = d̃. Therefore, limx→∞ λ(t, x) = d̃. Similarly

we can show limx→−∞ λ(t, x) = b̃.

Next we will show the connection between P and P̃ that would imply that the condition

3 of Proposition 1 holds.

Since λ and λx are uniformly bounded due to Lemma 3, Proposition 5.2.9 and Theorem

5.2.5 in [38] yield that for any fixed (t, x) ∈ [0, 1]× R there exists unique strong solution to

SDE (2.4.10) with initial condition κt = x. Denote P (t, x) the CDF of κt.

Our goal is to derive P (t, x) via an application of Girsanov theorem. Consider a local

martingale L given by:

Lt = exp

{
−
∫ t

0

γλ(s, κs)dβs −
1

2

∫ t

0

γ2λ2(s, κs)ds

}
.

Since λ(t, x) is bounded, L is a true martingale, and therefore a measure defined by

dP̃
dP
|Ft= Lt

is equivalent to P. Moreover, under P̃ the process κ satisfies

κt = β̃t

by Girsanov Theorem and P[κt < x] = EP̃
[
1κt<x
Lt

]
.

Observe that

1

Lt
= exp

{∫ t

0

γλ(s, κs)dβ̃s −
1

2

∫ t

0

γ2λ2(s, κs)ds

}
= exp {I(t, κt)−Nt} ,

where I(t, x) =
∫ x

0
γλ(t, u)du, and

Nt =

∫ t

0

[
It(s, κs) +

1

2
γλx(s, κs) +

1

2
γ2λ2(s, κs)

]
ds.
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Indeed, application of Ito’s formula gives

I(t, κt) =

∫ t

0

It(s, κs)ds+

∫ t

0

Ix(s, κs)dκs +
1

2

∫ t

0

Ixx(s, κs)d〈κ〉s

=

∫ t

0

It(s, κs)ds+

∫ t

0

γλ(s, κs)dβ̃s +

∫ t

0

1

2
γλx(s, κs)ds,

which yields the required representation for 1/L.

Moreover,

Nt =

∫ t

0

{
γ

∫ κs

0

λt(s, x)dx+
γ

2
λx(s, κs) +

γ2

2
λ2(s, κs)

}
ds

=

∫ t

0

γ

{∫ κs

0

(
λt(s, x) +

1

2
λxx(s, x) + γλ(s, x)λx(s, x)

)
dx+

1

2
λx(s, 0) +

γ

2
λ2(s, 0)

}
ds

=
γ

2

∫ t

0

{
λx(s, 0) + γλ2(s, 0)

}
ds = c(t),

where the last equality is due to the fact that λ satisfies (2.4.8) and c is a deterministic

function.

Due to the above considerations, we have

P (t, x) = P[κt < x] = EP̃ [1κt<xeI(t,κt)] e−c(t)
= e−c(t)

1√
2πt

∫ x

−∞
eI(t,y)e−

y2

2t dy.

The last equality is because κt is a P̃ Brownian motion with normal distribution N(0, t).

Thus we have

Px(1, x) =
e−c(1)

√
2π

exp

{
γ

∫ x

0

λ(1, u)du− x2

2

}
=

e−c(1)

√
2π

exp

{
γ

∫ x

0

f̃ ◦ Φ−1 ◦ P̃ (u)du− x2

2

}
=

e−c(1)

c∗
P̃x(x).

Since P (1, x) is the CDF of κ1, we have

1 =

∫ ∞
−∞

Px(1, x)dx =
e−c(1)

c∗

∫ ∞
−∞

P̃x(x)dx =
e−c(1)

c∗
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due to the definition of P̃ . Therefore we have c∗ = e−c(1) and Px(1, x) = P̃x(x), integrate

both sides we have P (1, x) = P̃ (x) since P (1,∞) = P̃ (∞) = 1.

Finally we will show condition 4 of Proposition 1, i.e., λ(0, 0) = 0. By definition of λ, we

have λ(0, 0) = ux(0,0)
γu(0,0)

. Since

u(0, 0) =

∫
R

1√
2π
e−

y2

2
+γ

∫ y
0 f̃◦Φ

−1◦P̃ (u)dudy =
P̃ (∞)

c∗
=

1

c∗
.

Due to (2.4.15), we also have

ux(0, 0) =

∫
R

Γ(0,−y)uy(1, y)dy =

∫
R

γf̃ ◦ Φ−1 ◦ P̃ (y)√
2π

exp

{
−y

2

2
+ γ

∫ y

0

f̃ ◦ Φ−1 ◦ P̃ (u)du

}
dy

Therefore

λ(0, 0) =
c∗√
2π

∫
R
f̃ ◦ Φ−1 ◦ P̃ (y) exp

{
−y

2

2
+ γ

∫ y

0

f̃ ◦ Φ−1 ◦ P̃ (u)du

}
dy

=

∫
R
P̃y(y)f̃ ◦ Φ−1 ◦ P̃ (y)dy =

∫ 1

0

f̃ ◦ Φ−1(u)du

=

∫
R
f̃(z)

1√
2π
e−

z2

2 dz = E[f̃(Z)] = 0,

where the second equality is due to the definition of P̃ , the third equality is by change of

variable u = P̃ (y) and fourth equality is by change of variable z = Φ−1(u). �

To collect the results we have so far before moving onto the final Lemma for existence

of equilibrium pricing, we conclude that if given the existence of P̃ solving the integral

equation (2.4.19) defined in Lemma 4 with boundary conditions P̃ (−∞) = 0 and P̃ (∞) =

1, we can define function λ as (2.4.13), a strictly increasing function satisfying (2.4.8).

Moreover, P̃ is the terminal distribution of process κ which is the unique strong solution of

(2.4.10). By Proposition 1, we can define w(t, y) = 1
d
dy
λ−1(t,y)

∈ C1,2 : [0, 1]×]b̃, d̃[→ R+ with

limy↓b̃w(t, y) = limy↑d̃w(t, y) = 0 for any t ∈ [0, 1] and ξt = λ(t, κt) such that ξ is the unique

strong solution to (2.4.12) and w solves (2.2.4) and (2.4.7). The following Lemma completes

the existence of such pricing rule.

Lemma 4 Consider function f̃ = f − E[f(Z)] where f satisfies Assumption 1 and such

that E[f̃(Z)] = 0. Define limx→∞ f̃(x) = d̃, and limx→−∞ f̃(x) = b̃. Then there exists

36



P̃ ∈ C2 : R → R, a function strictly increasing w.r.t. x, with P̃ (−∞) = 0 and P̃ (∞) = 1

satisfying the integral equation

P̃ (x) =
c∗√
2π

∫ x

−∞
exp

{
γ

∫ u

0

f̃ ◦ Φ−1 ◦ P̃ (s)ds− u2

2

}
du (2.4.19)

where c∗ is chosen such that P̃ (∞) = 1.

Proof. First the integral equation (2.4.19) will make sense because f̃ is bounded,

therefore
∫ u

0
f̃ ◦ Φ−1 ◦ P̃ (s)ds is at most linear. Thus −u2

2
will be the dominating term in

the integral, i.e., ∫ ∞
−∞

exp

{
γ

∫ u

0

f̃ ◦ Φ−1 ◦ P̃ (s)ds− u2

2

}
du <∞.

Thus c∗ is well-defined. Denote g(x) = f̃ ◦ Φ−1 ◦ P̃ (x) and G(x) =
∫ x

0
g(u)du, we have the

integral expression for P̃ :

P̃ (x) =
c∗√
2π

∫ x

−∞
exp

{
γG(u)− u2

2

}
du.

where c∗ is constant to normalise the integral such that:

1 =
c∗√
2π

∫ ∞
−∞

exp

{
γG(u)− u2

2

}
du.

Here we have a recursive relation to obtain a sequence of gn(x), Gn(x), P̃ n(x) and c∗n such

that

gn(x) = f̃ ◦ Φ−1 ◦ P̃ n(x), Gn(x) =

∫ x

0

gn(u)du,

1 =
c∗n√
2π

∫ ∞
−∞

exp

{
γGn(u)− u2

2

}
du, P̃ n+1(x) =

c∗n√
2π

∫ x

−∞
exp

{
γGn(u)− u2

2

}
du.

Denote transformation T , the mapping such that P̃ n+1 = T P̃ n. Define

D =

{
P̃ ∈ Cb(R) : P̃ nondecreasing, P̃ (x) =

∫ x

−∞
P̃x(u)du; P̃ (−∞) = 0; P̃ (∞) = 1;

0 ≤ P̃x(x) ≤ c√
2π

exp

{
− x2

2σ2

}}
where we choose any σ2 > 1 and c = 1

2Φ(−γK̃)
exp

{
γ2K̃2

2(σ2−1)

}
.

We will show that the set D has the following properties:
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1. D is a convex set: Suppose P̃ 1, P̃ 2 ∈ D and λ ∈ [0, 1], then

P̃ := λP̃ 1 + (1− λ)P̃ 2 ∈ Cb, nondecreasing,

P̃ (−∞) = λP̃ 1(−∞) + (1− λ)P̃ 2(−∞) = 0,

P̃ (∞) = λP̃ 1(∞) + (1− λ)P̃ 2(∞) = 1.

Moreover

P̃ (x) = λP̃ 1(x) + (1− λ)P̃ 2(x)

= λ

∫ x

P̃ 1
x (s)ds+ (1− λ)

∫ x

P̃ 2
x (s)ds

=

∫ x (
λP̃ 1

x (s) + (1− λ)P̃ 2
x (s)

)
ds,

0 ≤ P̃x(x) = λP̃ 1
x (x) + (1− λ)P̃ 2(x) ≤ c√

2π
exp

{
− x2

2σ2

}
.

Thus P̃ ∈ D.

2. D is closed: Since Cb(R) is a Banach space, given {P̃ n}, a sequence of elements in D

converging to some element, P̃ ∈ Cb in the sup norm, i.e., for any ε > 0 there exists N

s.t. for any n > N , we have

sup
x∈R
| P̃ n(x)− P̃ (x) |≤ ε.

Therefore for any y > x, ε > 0 and n > N , we have

P̃ (y)− P̃ (x) = P̃ (y)− P̃ n(y) + P̃ n(y)− P̃ n(x) + P̃ n(x)− P̃ (x) ≥ −2ε

as P̃ n(y)− P̃ n(x) ≥ 0 for each n and y > x. Since ε can be arbitrarily small, we have

P̃ is a non-decreasing function.

Moreover, since P̃ n(−∞) = 0 for any n, choose n > N . Then for ε > 0 there exists

−L < 0 s.t. for any x < −L we have P̃ n(x) < ε. Therefore for any x < −L

0 ≤ P̃ (x) = P̃ (x)− P̃ n(x) + P̃ n(x) < 2ε.
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Thus we have P̃ (−∞) = 0 due to the arbitrary choice of ε.

Similarly, since P̃ n(∞) = 1 for any n, choose n > N . Then for ε > 0 there exists L > 0

s.t. for any x > L we have 1− P̃ n(x) < ε. Therefore for any x > L

0 ≤ 1− P̃ (x) = 1− P̃ n(x) + P̃ n(x)− P̃ (x) < 2ε.

Thus we have P̃ (∞) = 1 due to the arbitrary choice of ε.

In addition, for any x ≤ y in R, it follows from Fatou’s lemma that

0 ≤ P̃ (y)− P̃ (x) = lim
n→∞

∫ y

x

P̃ n
x (u)du ≤

∫ y

x

lim sup
n→∞

P̃ n
x (u)du.

Since each P̃ n
x is bounded from above by the same integrable functions, so will be

lim supn→∞ P̃
n
x (u) for every u ∈ [x, y]. This implies that P̃ is absolutely continuous

and, in particular, there exists a function P̃x with 0 ≤ P̃x(x) ≤ lim supn→∞ P̃
n
x (1, x) ≤

c√
2π

exp{− x2

2σ2} for all x ∈ R. Hence, D is closed.

3. T P̃ ∈ D. We start from

T P̃ (x) =
c∗
T P̃√
2π

∫ x

−∞
exp

{
γ

∫ u

0

f̃ ◦ Φ−1 ◦ P̃ (s)ds− u2

2

}
du,

From the definition of T P̃ we know it is increasing function in Cb(R) with T P̃ (−∞) = 0

and c∗
T P̃

is to normalise the integral such that T P̃ (∞) = 1. Moreover, it is absolutely

continuous and can be written as T P̃ (x) =
∫ x

(T P̃ )x(s)ds with

(T P̃ )x =
c∗
T P̃√
2π

exp

{
γ

∫ x

0

f̃ ◦ Φ−1 ◦ P̃ (s)ds− x2

2

}
.

First we obtain an estimate on c∗
T P̃

. By definition of c∗
T P̃

, we have

c∗
T P̃

=

√
2π∫∞

−∞ exp
{
γG(u)− u2

2

}
du
≤

√
2π∫∞

−∞ exp
{
−γ|G(u)| − u2

2

}
du

≤
√

2π∫∞
−∞ exp{−γK̃|u| − u2

2
}du

=

√
2π

exp{γ2K̃2

2
}
∫∞
−∞ exp{− (|u|+γK̃)2

2
}du

=

√
2π

2 exp{γ2K̃2

2
}
∫∞

0
exp{− (u+γK̃)2

2
}du

=

√
2π

2 exp{γ2K̃2

2
}
∫∞
γK̃

exp{−u2

2
}du

=
1

2Φ(−γK̃)
exp

{
−γ

2K̃2

2

}
, (2.4.20)
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where G(x) =
∫ x

0
f̃ ◦ Φ−1 ◦ P̃ (s)ds, K̃ is the upper bound of |f̃ | and |f̃ ′|. Therefore,

with σ2 > 1, we have

(T P̃ )x(x)e
x2

2σ2 =
c∗
T P̃√
2π

exp

{
γG(x)−

(
1

2
− 1

2σ2

)
x2

}
≤

c∗
T P̃√
2π

exp

{
γK̃|x| −

(
1

2
− 1

2σ2

)
x2

}
≤

c∗
T P̃√
2π

exp

{
γ2K̃2σ2

2(σ2 − 1)

}

≤ 1√
2π

1

2Φ(−γK̃)
exp

{
−γ

2K̃2

2
+

γ2K̃2σ2

2(σ2 − 1)

}

=
1√
2π

1

2Φ(−γK̃)
exp

{
γ2K̃2

2(σ2 − 1)

}
=

c√
2π
,

where c = 1
2Φ(−γK̃)

exp
{

γ2K̃2

2(σ2−1)

}
from definition of D. Thus we have P̃x(x) ≤

c√
2π

exp{− x2

2σ2}. Therefore, T P̃ ∈ D.

Concluding from above, we have D is a closed convex subset of Banach space, transformation

T maps from D to D. Thus TD is an equicontinuous family of functions. By Ascoli-Arzela

Theorem (Corollary III.3.3 Lang [39]), if P̃ n is a sequence in TD, then there is a subsequence

which converges not only point-wise to P̃ ∈ Cb(R) but also uniform on every compact interval

of R. We will show the convergence is uniform for any x ∈ R.

Assume P̃ nk is the convergent subsequence. By the definition of D, since P̃ nk
x (x) ≤

c√
2π

exp
{
− x2

2σ2

}
we have:

P̃ nk(x) ≤ c√
2π

∫ x

−∞
exp

{
− u2

2σ2

}
du, 1− P̃ nk(x) ≤ c√

2π

∫ ∞
x

exp

{
− u2

2σ2

}
du.

Therefore, there exist x∗ < 0 and x∗ > 0 such that for any ε > 0,

P̃ nk(x) ≤ c√
2π

∫ x∗

−∞
exp

{
− u2

2σ2

}
du = cσΦσ(x∗) ≤ ε,

1− P̃ nk(x) ≤ c√
2π

∫ ∞
x∗

exp

{
− u2

2σ2

}
du = cσΦσ(−x∗) ≤ ε,

where Φσ is the CDF of N(0, σ).
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Since P̃ nk converges to P̃ point-wise, we also have that for any x ≤ x∗, P̃ (x) ≤ ε and for

any x ≥ x∗, 1− P̃ (x) ≤ ε.

We also have the convergence is uniform on the compact [x∗, x
∗]. Thus there exist N ∈ N

such that for all k ≥ N

sup
x∈[x∗,x∗]

|P̃ nk(x)− P̃ (x)| ≤ ε.

Thus for any k ≥ N we have

sup
x∈R
|P̃ nk(x)− P̃ (x)| ≤ sup

x∈[x∗,x∗]

|P̃ nk(x)− P̃ (x)|+ sup
x∈[−∞,x∗]

(P̃ nk(x) + P̃ (x))

+ sup
x∈[x∗,∞]

(1− P̃ nk(x) + 1− P̃ (x)) ≤ 5ε.

Therefore the convergence of P̃ nk to P̃ is uniform for all x ∈ R. Thus TD is pre-compact in

Cb(R).

Next we show the transformation T is continuous. Assume without loss of generality

P̃ n converge to P̃ ∈ D in sup norm. It suffices to show the point-wise convergence of

T P̃ n to T P̃ (as we have shown above, since T P̃ n ∈ D, if T P̃ n converge to T P̃ point-

wise, we have T P̃ n converge to T P̃ uniformly in R under sup-norm). Since T P̃ n(x) =
c∗n√
2π

∫ x
−∞ exp{γGn(u)− u2

2
}du and denote

G(x) =

∫ x

0

g(u)du =

∫ x

0

f ◦ Φ−1 ◦ P̃ (u)du.

We already know from (2.4.20) that c∗n has an upper bound 1
2Φ(−γK̃)

exp
{
−γ2K̃2

2

}
. Similarly

we can achieve a lower bound for c∗n as well:

c∗n =

√
2π∫∞

−∞ exp
{
γG(u)− u2

2

}
du
≥

√
2π∫∞

−∞ exp
{
γ|G(u)| − u2

2

}
du

≥
√

2π∫∞
−∞ exp{γK̃|u| − u2

2
}du

=

√
2π

exp{γ2K̃2

2
}
∫∞
−∞ exp{− (|u|−γK̃)2

2
}du

=

√
2π

2 exp{γ2K̃2

2
}
∫∞

0
exp{− (u−γK̃)2

2
}du

=

√
2π

2 exp{γ2K̃2

2
}
∫∞
−γK̃ exp{−u2

2
}du

=
1

2Φ(γK̃)
exp

{
−γ

2K̃2

2

}
,
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where K̃ is the upper bound of |f̃ | and |f̃ ′|. Therefore c∗n has a converging subsequence

c∗nk → c∗. To show the point-wise convergence of T P̃ n to T P̃ , it suffices to show point-wise

convergence of T P̃ nk to T P̃ .

To do so, it suffices to show point-wise convergence of c∗nk exp{γGnk} to c∗ exp{γG} by

Scheffe’s theorem (Theorem 3.16.12 by Billingsley [6]). We have

lim
k→∞

∣∣c∗nk exp{γGnk(x)} − c∗ exp{γG(x)}
∣∣

≤ lim
k→∞

∣∣c∗nk exp{γGnk(x)} − c∗nk exp{γG(x)}
∣∣+ lim

k→∞

∣∣c∗nk exp{γG(x)} − c∗ exp{γG(x)}
∣∣

= I1 + I2.

To investigate the first term, we notice

I1 = lim
k→∞

c∗nk exp{γG(x)}
∣∣∣∣exp

{
γ

∫ x

0

(f̃ ◦ Φ−1 ◦ P̃ nk − f̃ ◦ Φ−1 ◦ P̃ )(u)du

}
− 1

∣∣∣∣
≤ lim

k→∞
c∗nk exp{γK̃|x|}

∣∣∣∣∣exp

{
γ|x| sup

[0,x]

∣∣∣f̃ ◦ Φ−1 ◦ P̃ nk(u)− f̃ ◦ Φ−1 ◦ P̃ (u)
∣∣∣}− 1

∣∣∣∣∣ .
Since P̃ nk converges to P̃ uniformly, we have for any ε > 0, there exists N ∈ N s.t. for any

k > N , we have

sup
x∈R
|P̃ nk(x)− P̃ (x)| < ε.

Therefore for any x ∈ R, when k > N , P̃ (x) − ε < P̃ nk(x) < P̃ (x) + ε. Thus, we have for

any 0 < ε < 1
2
(P̃ (x)− P̃ (0)),

J = sup
[0,x]

∣∣∣f̃ ◦ Φ−1 ◦ P̃ nk(u)− f̃ ◦ Φ−1 ◦ P̃ (u)
∣∣∣

≤
√

2π sup
[P̃ (0)−ε,P̃ (x)+ε]

f̃ ′(Φ−1(y)) exp

{
(Φ−1(y))2

2

}
sup
[0,x]

|P̃ nk(u)− P̃ (u)|

<
√

2πK̃ε sup
[P̃ (0)−ε,P̃ (x)+ε]

exp

{
(Φ−1(y))2

2

}
=
√

2πK̃εM(x, ε)

where M(x, ε) is an increasing function of ε. Moreover,

lim
ε↓0

M(x, ε) = sup
[P̃ (0),P̃ (x)]

exp

{
(Φ−1(y))2

2

}
= M(x).
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Therefore we have

I1 < lim
k→∞

c∗nk exp{γK̃|x|}
∣∣∣exp

{√
2πγ|x|K̃εM(x, ε)

}
− 1
∣∣∣

≤ c∗ exp{γK̃|x|} lim
ε↓0

∣∣∣exp
{√

2πγ|x|K̃εM(x, ε)
}
− 1
∣∣∣

=
1

2Φ(−γK̃)
exp

{
−γ

2K̃2

2
+ γK̃|x|

}
lim
ε↓0

∣∣∣exp
{√

2πγ|x|K̃M(x)ε
}
− 1
∣∣∣ = 0.

Note in the above inequality, the choice of k and ε are independent.

Since c∗nk → c∗, there exists Ñ ∈ N such that for anyε > 0 and k > Ñ we have

|c∗nk − c
∗| ≤ ε.

Thus

I2 = lim
k→∞
|c∗nk − c

∗| exp{γG(x)}

≤ exp{γK̃|x|} lim
k→∞
|c∗nk − c

∗| = 0.

Therefore

lim
k→∞

∣∣c∗nk exp{γGn(x)} − c∗ exp{γG(x)}
∣∣ = I1 + I2 = 0.

Hence T P̃ n converges to T P̃ point-wise. This implies that T P̃ n converge to T P̃ uniformly

in R under sup-norm. As P̃ n converge to P̃ uniformly in R under sup-norm, we have T is

a continuous operator. D is a closed and convex subset of a Banach space and TD is pre-

compact. Therefore, by Schauder’s fixed point theorem(Theorem 7.1.2 by Friedman [24]), T

has a fixed point P , i.e. T P̃ = P̃ . Moreover P̃ ∈ C1 due to the definition of operator T P̃ ,

P̃ is differentiable with continuous derivatives. We know P̃ ∈ C2 since directly differentiate

(2.4.19) we have P̃xx = P̃x

(
γf ◦ Φ−1 ◦ P̃ (x)− x

)
.

In addition, P̃ is strictly increasing as the derivative is strictly positive. �

Now we have the existence of P̃ solving the integral equation, as discussed before the

Lemma, we have the equilibrium pricing rule w(t, ξ) where w is defined in Proposition 1.

Moreover, we will show in the following Corollary that ρ, the transition density of process

ξ, and p, the transition density of process κ, exist and can be derived one another through

the connection between w and λ.
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Corollary 2 Let P̃ be the cumulative distribution function given by Lemma 4 and λ given

by

λ(t, x) :=

∫
R Γ(t, x− y)f̃ ◦ Φ−1 ◦ P̃ (y)e

∫ y
0 γf̃◦Φ

−1◦P̃ (u)dudy

γ
∫
R Γ(t, x− y)e

∫ y
0 γf̃◦Φ−1◦P̃ (u)dudy

, ∀t ∈ [0, 1].

Then the unique strong solution of SDE (2.4.10) with initial condition κ0 = 0 a.s., κ, admits

a transition density, denoted by p. Moreover, this transition density will satisfy Chapman-

Kolmogorov equation

p(t, y; s, z) =

∫
R
p(t, y;u, x)p(u, x; s, z)dx,

and have the following smoothness properties:

1. (continuity in the forward space variable) p(s, x; t, .) : R → [0,∞[ is continuous for

s ∈ [0, t[ and x ∈ R;

2. (smoothness in backward variables) (s, x) → p(s, x; t, y) belongs to C1,2([0, t[×R) for

every y ∈ R.

Furthermore, κ is a Feller process.

Moreover, consider the weighting function w(t, x) = 1
λ−1
x (t,x)

and ξ, the unique strong

solution of SDE (2.4.12) with initial condition ξ0 = 0 a.s..Then ξ admits a transition density,

denoted by ρ which is given by

ρ(t, y; s, z) =
p(t, λ−1(t, y); s, λ−1(s, z))

w(s, z)
.

Proof. The existence and uniqueness of a strong solution of SDE (2.4.10) with initial

condition κ0 = 0 a.s., was established in Lemma 3. Moreover, since λ and λx are uniformly

bounded due to Lemma 3, Proposition 5.2.9 and Theorem 5.2.5 in [38] yield that for any fixed

(t, x) ∈ [0, 1] × R there exists unique strong solution to SDE (2.4.10) with initial condition

κt = x.

Existence, uniqueness, and smoothness in backward variables (s, x) of the transition

density function p follows from pp. 368-369 of [38]. Indeed, those considerations apply due

to the uniform (on [0, 1]×R) boundedness of λ and λx and the fact that there exists unique

strong solution to (2.4.10) with initial condition κt = x for any (t, x) ∈ [0, 1]× R.
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In particular, there exists a unique fundamental solution of

vt(t, x) +
1

2
vxx(t, x) + γλ(t, x)vx(t, x) = 0, (2.4.21)

which is the transition density p.

To show that p satisfies Chapman-Kolmogorov equation, fix any (s, z) ∈ [0, 1] × R and

0 ≤ u < s. Observe that p(t, y; s, z) satisfies (2.4.21) on [0, u] × R with terminal condition

v(u, x) = p(u, x; s, z). Then, due to Theorem 5.7.6 in [38], we have the required representa-

tion

p(t, y; s, z) =

∫
R
p(t, y;u, x)p(u, x; s, z)dx.

The above considerations, together with the definition of the fundamental solution and the

Theorem 11 in Chapter 1, Section 6 in [24] implies that κ is a Feller process.

The continuity in the forward space variable follows from Theorem 3.2.1 in [53] and the

fact that p is the unique fundamental solution of (2.4.21).

Finally, we turn to the transition density of ξ. Due to the Proposition 1, ξt = λ(t, κt).

Moreover, considerations similar to the ones in the Proposition 1 yield that for any fixed

(t, y) ∈ [0, 1]×]b̃, d̃[, we have ξ
(t,y)
s = λ(s, κ

(t,λ−1(t,y))
s ) for all s ∈ [t, 1], where ξ(t,y) is the

unique strong solution of SDE (2.4.12) with initial condition ξ
(t,y)
t = y and κ(t,λ−1(t,y)) is the

unique strong solution of SDE (2.4.10) with initial condition κ
(t,λ−1(t,y))
t = λ−1(t, y). The

proof is similar to the consideration in Proposition 1. We have shown in the first paragraph

that SDE (2.4.10) with initial condition κt = x where (t, x) ∈ [0, 1] × R has unique strong

solution. Since y ∈]b̃, d̃[, we have λ−1(t, y) ∈ R. Denote κ as the unique strong solution to

SDE (2.4.10) with initial condition κt = λ−1(t, y). Define ξs = λ(s, κs), which is consistent

with the initial condition

ξt = λ(t, κt) = λ(t, λ−1(t, y)) = y.

Application of Ito’s formula will yield

ξs = ξt+

∫ s

t

λx(u, κu)dκu +

∫ s

t

(
λu(u, κu) +

λxx(u, κu)

2

)
du

= y+

∫ s

t

λx(u, κu) (dβu + γλ(u, κu)du)− γ
∫ s

t

λ(u, κu)λx(u, κu)du

= y+

∫ s

t

λx(u, κu)dβu =

∫ s

t

λx(u, λ
−1(u, ξu))dβu =

∫ s

t

w(u, ξu)dβu.
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Therefore ξs = λ(s, κs) is a strong solution to SDE (2.4.12) with initial condition ξt = y for

(t, y) ∈ [0, 1]×]b̃, d̃[. Denote that τ = inf{s > t : ξs /∈]b̃, d̃[} = inf{s > t : κs /∈] −∞,+∞[}.
Since κ is non-explosive due to the boundedness of the drift term γλ(s, κs), we have τ > 1.

To show the uniqueness of the solution to the SDE (2.4.12), suppose there is another

strong solution ξ̃. Denote a sequence of open sets Vn =]b̃ + 1
n
, d̃ − 1

n
[, n = 1, 2, ... and

define a sequence of stopping times νn by νn = inf{s ≥ t : ξ̃s /∈ Vn}. Then the process

κ̃s := λ−1(s, ξ̃s) is well defined on [t, νn] for all n. Note that since λ is increasing function,

νn = inf{s ≥ t : κ̃s /∈ Un}, where Un =
]
λ−1(s, b̃+ 1

n
), λ−1(s, d̃− 1

n
)
[
.

Application of Ito’s formula to κ̃ stopped at νn will yield

κ̃s∧νn = λ−1(t, y)+

∫ s∧νn

t

λ−1
x (u, ξ̃u)dξ̃u +

∫ s∧νn

t

(
λ−1
u (u, ξ̃u) +

λ−1
xx (u, ξ̃u)w

2(u, ξ̃u)

2

)
du

= λ−1(t, y)+

∫ s∧νn

t

λ−1
x (u, ξ̃u)w(u, ξ̃u)dβu +

∫ s∧νn

t

λ−1
u (u, ξ̃u) +

λ−1
xx (u, ξ̃u)

2
(
λ−1
x (u, ξ̃u)

)2

 du

= λ−1(t, y)+

∫ s∧νn

t

λ−1
x (u, ξ̃u)w(u, ξ̃u)dβu +

∫ s∧νn

t

γξ̃udu

= λ−1(t, y)+

∫ s∧νn

t

dβu +

∫ s∧νn

t

γλ(u, κ̃u)du,

and therefore κ̃ is a strong solution of (2.4.10) in [t, s∧ νn] for each n ∈ N. Since solution to

(2.4.10) with initial condition κt = λ−1(t, y) is unique, we have κ̃s∧νn = κs∧νn for all s ∈ [t, 1].

Taking the limit, in view of continuity of κ, we have κ̃s∧ν = κs∧ν for all s ∈ [t, 1], where

ν = limn→∞ νn. In particular, κ̃1∧ν = κ1∧ν and therefore ν < 1 is equivalent to τ < 1 which

has probability zero due to the arguments similar to Remark 4. Thus,

κ̃s = κ̃s∧ν = κs∧ν = κs t ∈ [t, 1].

Due to the connection between κ̃ and ξ̃ and continuity of κ̃ as well as κ, the above implies

that

P[ξ̃s = ξs, s ∈ [0, 1]] = 1.

Therefore ξ
(t,y)
s = λ(s, κ

(t,λ−1(t,y))
s ) for all s ∈ [t, 1] is the unique strong solution of SDE

(2.4.12) with initial condition ξ
(t,y)
t = y.
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Let φ be any bounded continuous function on R. For any (t, y) ∈ [0, 1]×]b̃, d̃[ and s ∈ [t, 1]

we have:

E[φ(s, ξ(t,y)
s )] = E[φ(s, λ(s, κ(t,λ−1(t,y))

s ))] =

∫
R
φ(s, λ(s, z))p(t, λ−1(t, y); s, z)dz

=

∫ d̃

b̃

φ(s, u)p(t, λ−1(t, y); s, λ−1(s, u))dλ−1(s, u)

=

∫ d̃

b̃

φ(s, u)
p(t, λ−1(t, y); s, λ−1(s, u))

w(s, u)
du

=

∫ d̃

b̃

φ(s, u)ρ(t, y; s, u)du

which implies that the density of ξ exists and is as stated. The second equality is by applying

the transition density of κ, the third equality is by change of variable u = λ(s, z), the fourth

equality is by connection between w and λ. �

In the next Subsection, we complete by giving the optimal trading strategy of the insider

under equilibrium described by the transition density ρ(t, ξ).

2.5 Equilibrium

In this Subsection, we give an inconspicuous equilibrium consists of the rational pricing rule

(P ∗, w∗) and optimal trading strategy θ∗ for the insider.

Theorem 3 Under Assumption 1, a triplet (P ∗, w∗, θ∗) given by the following is an incon-

spicuous equilibrium.

1. The weighting function w∗(t, x) = 1
λ−1
x (t,x)

where λ is given by

λ(t, x) :=

∫
R Γ(t, x− y)f̃ ◦ Φ−1 ◦ P̃ (y)e

∫ y
0 γf̃◦Φ

−1◦P̃ (u)dudy

γ
∫
R Γ(t, x− y)e

∫ y
0 γf̃◦Φ−1◦P̃ (u)dudy

, ∀t ∈ [0, 1].

The existence of P̃ is given by Lemma 4.

47



2. The insider’s trading strategy θ∗t =
∫ t

0
α∗(s, ξ∗s )ds where

α∗(t, x) = w∗(t, x)
ρx(t, x; 1, f̃(Z))

ρ(t, x; 1, f̃(Z))
.

ρ is defined in Corollary 2 as the transition density of process ξ where ξ satisfies the

SDE ξt =
∫ t

0
w∗(s, ξs)dβs.

3. The market maker’s pricing function P ∗t = ξ∗t + E[f(Z)], where ξ∗ satisfies the SDE

ξ∗t =

∫ t

0

w∗(s, ξ∗s )dY
∗
s .

The cumulative order Y ∗t = Bt + θ∗t .

Proof. We will first show that (P ∗, w∗) is admissible in the sense of Definition 1.

We know by Proposition 1, Lemma 3 and Lemma 4, we have the weighting function w∗ is

well-defined, positive in the interior of its domain and satisfies the PDE

w∗t (t, x)

w∗(t, x)2
+
w∗xx(t, x)

2
= −γ.

In addition, there exists unique strong solution ξ to the SDE

ξt =

∫ t

0

w∗(s, ξs)dβs.

By Proposition 1, it can be written as ξt = λ(t, κt) where κ is the unique strong solution of

SDE (2.4.10), i.e.,

κt = βt +

∫ t

0

γλ(s, κs)ds.

From Remark 4, we have τ > 1 a.s. Thus w∗ is admissible pricing rule.

Next we show θ∗ is admissible, i.e., θ∗ ∈ A(w∗). By construction θ∗ is absolutely contin-

uous. We need to show there exists unique strong solution for the SDE

dξ∗t = w∗(t, ξ∗t )dBt + w∗(t, ξ∗t )
2ρξ(t, ξ

∗
t ; 1, f̃(Z))

ρ(t, ξ∗t ; 1, f̃(Z))
dt, (2.5.22)

with initial condition ξ∗0 = 0 a.s.. We will show under the connection ξ∗t = λ(t, κ∗t ), it is

equivalent to show there exists unique strong solution for the SDE

dκ∗t = dBt + γλ(t, κ∗t )dt+
px(t, κ

∗
t ; 1, λ−1(1, f̃(Z)))

p(t, κ∗t ; 1, λ−1(1, f̃(Z)))
dt, (2.5.23)
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with initial condition κ∗0 = 0 a.s.. This is consistent with our result from Lemma 3 that

λ(0, 0) = 0. To show that ξ∗t = λ(t, κ∗t ) is a strong solution, apply Ito’s formula, we have

dξ∗t =

(
λt(t, κ

∗
t ) +

1

2
λxx(t, κ

∗
t )

)
dt+ λx(t, κ

∗
t )dκ

∗
t

= −γλ(t, κ∗t )λx(t, κ
∗
t )dt+ λx(t, κ

∗
t )dBt + γλ(t, κ∗t )λx(t, κ

∗
t )dt

+λx(t, κ
∗
t )
px(t, κ

∗
t ; 1, λ−1(1, f̃(Z)))

p(t, κ∗t ; 1, λ−1(1, f̃(Z)))
dt

= w∗(t, ξ∗t )dBt + w∗(t, ξ∗t )
px(t, κ

∗
t ; 1, λ−1(1, f̃(Z)))

p(t, κ∗t ; 1, λ−1(1, f̃(Z)))
dt

where the second equality is due to Burger’s equation (2.4.8) and the third equality is due

to the equality

λx(t, x) =
1

λ−1
y (t, λ(t, x))

= w∗(t, λ(t, x)).

Due to Corollary 2, we have the connection between ρ and p given as follows

p(t, κ∗t ; 1, λ−1(1, f̃(Z))) = w∗(1, f̃(Z))ρ(t, ξ∗t ; 1, f̃(Z)).

Therefore differentiate w.r.t. the first space variable, we have

px(t, κ
∗
t ; 1, λ−1(1, f̃(Z))) = w∗(1, f̃(Z))w∗(t, ξ∗t )ρx(t, ξ

∗
t ; 1, f̃(Z)).

Substitute into the Ito’s formula we have

dξ∗t = w∗(t, ξ∗t )dBt + w∗(t, ξ∗t )
2ρx(t, ξ

∗
t ; 1, f̃(Z))

ρ(t, ξ∗t ; 1, f̃(Z))
dt.

Therefore, ξ∗t = λ(t, κ∗t ) is a strong solution to SDE (2.5.22). It remains to show the unique-

ness of the solution of the SDE (2.5.22). Suppose there is another strong solution ξ̃. Denote

a sequence of open sets Vn =]b̃ + 1
n
, d̃ − 1

n
[, n = 1, 2, ... and define a sequence of stopping

times νn by νn = inf{t ≥ 0 : ξ̃t /∈ Vn}. Then the process κ̃t := λ−1(t, ξ̃t) is well defined on

[0, νn] for all n. Note that since λ is increasing function, νn = inf{t ≥ 0 : κ̃t /∈ Un}, where

Un =
]
λ−1(t, b̃+ 1

n
), λ−1(t, d̃− 1

n
)
[
.
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Application of Ito’s formula to κ̃ stopped at νn will yield

κ̃t∧νn =

∫ t∧νn

0

λ−1
x (s, ξ̃s)dξ̃s +

∫ t∧νn

0

(
λ−1
s (s, ξ̃s) +

λ−1
xx (s, ξ̃s)w

2(t, ξ̃s)

2

)
ds

=

∫ t∧νn

0

λ−1
x (s, ξ̃s)

(
w∗(t, ξ̃t)dBt + w∗(t, ξ̃t)

2ρx(t, ξ̃t; 1, f̃(Z))

ρ(t, ξ̃t; 1, f̃(Z))
dt

)
+

∫ t∧νn

0

γξ̃sds

=

∫ t∧νn

0

dBs +

∫ t∧νn

0

γλ(s, κ̃s)ds+

∫ t∧νn

0

w∗(t, ξ̃t)
ρx(t, ξ̃t; 1, f̃(Z))

ρ(t, ξ̃t; 1, f̃(Z))
dt

where the second equality is due to a derivation of Burger’s equation (2.6.25), the third

equation is due to the equality

λ−1
y (t, y) =

1

w∗(t, y)
.

Similar as before, due to Corollary 2, we have the connection between ρ and p given as

follows

ρ(t, ξ̃t; 1, f̃(Z)) =
p(t, κ̃t; 1, λ−1(1, f̃(Z)))

w∗(1, f̃(Z))
.

Therefore differentiate w.r.t. the first space variable, we have

ρx(t, ξ̃t; 1, f̃(Z)) =
px(t, κ̃t; 1, λ−1(1, f̃(Z)))

w∗(1, f̃(Z))w∗(t, ξ̃t)
.

Substitute into the Ito’s formula we have

κ̃t∧νn =

∫ t∧νn

0

dBs +

∫ t∧νn

0

γλ(s, κ̃s)ds+

∫ t∧νn

0

px(t, κ̃t; 1, λ(1, f̃(Z)))

p(t, κ̃t; 1, λ(1, f̃(Z)))
dt.

Therefore κ̃ is a strong solution of (2.5.23). Since solution to (2.5.23) is unique, we

have κ̃t∧νn = κ∗t∧νn for all t ∈ [0, 1]. Taking the limit, in view of continuity of κ∗, we have

κ̃t∧ν = κ∗t∧ν for all t ∈ [0, 1], where ν = limn→∞ νn. In particular, κ̃1∧ν = κ∗1∧ν and therefore

ν < 1 is equivalent to τ < 1 which has probability zero due to the arguments above. Thus,

κ̃t = κ̃t∧ν = κ∗t∧ν = κ∗t t ∈ [0, 1].

We apply Theorem 2.4 by Cetin and Danilova [13] to show that unique strong solution

exists for (2.5.23). Denote E = R and [0, 1] × E be the set containing the range of the

process (t, κ∗t ). Conditions to apply the theorem need to be checked are as follows:
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1. Assumption 2.1 [13] in one dimensional case where a = 1 and b = γλ(t, x) is uniformly

bounded by ]b̃, d̃[. The local martingale problem for A is well-posed whereas A is

defined as

At =
1

2

∂2

∂x2
+ γλ(t, x)

∂

∂x
.

To see that, by Corollary 5.4.8 and 5.4.9 of Karatzas and Shreve [38], the well-posedness

of martingale problem is equivalently the existence of weak solution and uniqueness in

law of the solution of the induced SDE by the martingale problem. Due to Theorem

5.2.9 [38], since the drift term is global Lipschitz and bounded by Lemma 3, we have

the SDE (2.4.10) admits unique strong solution for any initial condition κ0 = κ a.s..

Therefore the well-posedness of martingale problem is satisfied.

2. Assumption 2.2 [13]: we know κ as the unique strong solution of SDE (2.4.10) is a

Feller process. Moreover, since p satisfies Chapman-Kolmogorov equation, κ admits

the semigroup property.

We have shown in Corollary 2 that p has desired smoothness properties which is con-

dition (H) in Assumption 2.2 [13].

3. We have shown in Lemma 3 that λx is uniformly bounded, i.e., there exists constant

M s.t. for all t ∈ [0, 1], x, y ∈ R,

|λ(t, x)− λ(t, y)| ≤M |x− y|.

4. We want to show p(t, y; 1, y′) > 0 for all t ∈ [0, 1[, y, y′ ∈ R. p is the fundamental solu-

tion of the parabolic partial differential equation (2.4.21) with coefficient λ uniformly

bounded, hence at most linear growth. We have by Theorem 1.1 [45] that the funda-

mental solution has a Gaussian lower bound with coefficients depending on uniform

boundedness of growth condition on γλ. Therefore p(t, y; 1, y′) > 0 for all t ∈ [0, 1[,

y, y′ ∈ R.

5. We also need to show P s,x(inf{t > s : κt /∈ R} < 1) = 0 for any (t, x) ∈ [0, 1] × R

where κ satisfies SDE (2.4.10). It suffices to show that the escape time of process κ is
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a.s. ∞, i.e., the process κ is non-explosive, which it is as the unique strong solution of

the bounded drift one dimensional Levy process (2.4.10).

With all of the above conditions being satisfied, we have the SDE (2.5.23) has a unique

strong solution. Moreover, κ∗1 = λ−1(1, f̃(Z)). Therefore we have unique strong solution ξ∗

for SDE (2.5.22) and ξ∗1 = f̃(Z) a.s. which satisfies the second condition of the equilibrium

Lemma 2.

Next we need to show (P ∗, w∗, θ∗) given satisfy the remaining two conditions of the

equilibrium Lemma 2.

From above construction of ξ∗ which is the unique strong solution of SDE ξt =∫ t
0
w∗(s, ξs)dY

∗
s with terminal distribution ξ1 = f̃(Z), we have constructed a Markov bridge

adapted to its own filtration. Moreover, we have

E
[
α∗(t, ξ∗t )|F

ξ∗

t

]
= E

[
w∗(t, ξ∗t )

ρx(t, ξ
∗
t ; 1, f̃(Z))

ρ(t, ξ∗t ; 1, f̃(Z))
|Fξ

∗

t

]

= E

[
px(t, κ

∗
t ; 1, λ−1(1, f̃(Z)))

p(t, κ∗t ; 1, λ−1(1, f̃(Z)))
|Fκ∗t

]
=

∫
R
px(t, κ

∗
t ; 1, u)du

where the last equality is because p can be also viewed as the conditional density of

λ−1(1, f̃(Z)). Since
∫
R p(t, x; 1, u)du = 1 as p is transition density of κ∗. Moreover, from

Theorem 11 of Chapter I [24], we have estimate

|px(t, x; 1, u)| ≤ C(c)

1− t
exp

[
−c(u− x)2

2(1− t)

]
for some C as function of c and any c < 1. Thus for any bounded x, we have |px| ≤
C̃ exp(−c̃u2) where C̃ and c̃ depend on (t, u). Then by Leibniz rule, we can exchange the

order of integration and differentiation and obtain∫
R
px(t, x; 1, u)du = 0 = E

[
α∗(t, ξ∗t )|F

ξ∗

t

]
.

Therefore we have Y ∗t = Bt +
∫ t

0
α∗(s, ξ∗t )ds is an F

ξ∗

t -local martingale. Moreover, since

[Y ∗]t = [B]t = t, by Levy’s characterisation, we know Y ∗ is a standard Brownian motion in
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its own filtration. To show P ∗ is a FY
∗

martingale, it suffices to show ξ∗ is a FY
∗

martingale.

We know ξ∗t =
∫ t

0
w(s, ξ∗s )dY

∗
s is a local martingale in its own filtration due to continuity of

w∗. Moreover, w∗ is bounded due to Proposition 1. Thus ξ∗ is a true martingale.

Finally we show P ∗ is rational, equivalently we want to show P ∗t = ξ∗t + E[f(Z)] =

E[f(Z)|FY ∗t ]. Since ξ∗ is a martingale, we have ξ∗t = E[f̃(Z)|Fξ
∗

t ] = E[f̃(Z)|FY ∗t ]. Therefore

we have

P ∗t = ξ∗t + E[f(Z)] = E[f̃(Z)|FY ∗t ] + E[f(Z)] = E[f(Z)|FY ∗t ].

Thus P ∗ is rational.

�

The importance of the above equilibrium is as follows. Cho [12] considered exponential

utility with weighting function w depending only on time variable. He concluded that there

was no equilibrium unless the asset value is normally distributed. Now we see by relaxing

the condition on weighting function to depend on the path of cumulative order as well, linear

equilibrium exists under general, non-Gaussian framework. In comparison with risk-neutral

insider case, the equilibrium is not necessarily unique.

Future research could be made in the following directions. One straightforward extension

of the result is to consider unbounded, at most linear valuation function f . During our

attempt the difficulty lies in proving the integral equation (2.4.19) has a smooth solution.

Another new angle is to consider the dynamic information case where the insider observes

the information over time, instead of observing the full information at time 0. On the other

hand, the model for noise traders can be generalised to fit reality of the market, e.g., to have

time-varying volatility or to be modelled as Poisson process. We could also consider the case

where market makers are made risk-averse.

2.6 Appendix: proof of results in Section 2.4.1

Proof of Proposition 1. We start the proof by showing w is well-defined. Suppose there

exist λ solving (2.4.8) and (2.4.9). Since λ is strictly increasing w.r.t. x, λ−1(t, y) exists,
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well-defined and strictly increasing for any y ∈]b̃, d̃[. As λ(t, x) ∈ C1,3, we have

d

dy
λ−1(t, y) =

1

λx(t, λ−1(t, y))
. (2.6.24)

d2

dy2
λ−1(t, y) =

−λxx(t, λ−1(t, y))

λ2
x(t, λ

−1(t, y))

d

dy
λ−1(t, y) =

−λxx(t, λ−1(t, y))

λ3
x(t, λ

−1(t, y))
.

d3

dy3
λ−1(t, y) =

−λxxx(t, λ−1(t, y))

λ4
x(t, λ

−1(t, y))
+

3λ2
xx(t, λ

−1(t, y))

λ5
x(t, λ

−1(t, y))
.

We also have

λ−1
t (t, y) = − λt(t, λ

−1(t, y))

λx(t, λ−1(t, y))
.

Therefore λ−1(t, y) ∈ C1,3([0, 1]×]b̃, d̃[) → R. In particular, since λ(t, x) is strictly in-

creasing, differentiable and bounded, we have λx(t, x) > 0 for any (t, x) ∈ [0, 1]×]b̃, d̃[. Thus

by (2.6.24), we have ∂λ−1

∂y
(t, y) > 0 and w(t, y) = 1

λ−1
y (t,y)

∈ C1,2([0, 1]×]b̃, d̃[→ R) is well de-

fined. To see the behaviour of w on the boundaries b̃ and d̃, we notice limx→±∞ λx(t, x) = 0.

Therefore by (2.6.24), we have

lim
y↓b̃

w(t, y) = lim
y↓b̃

1

λ−1
y (t, y)

= lim
y↓b̃

λx(t, λ
−1(t, y)).

Since we have limx→−∞ λ(t, x) = b̃ and λ(t, x) is strictly increasing function w.r.t. x, we have

lim
y↓b̃

w(t, y) = lim
x→−∞

λx(t, x) = 0.

Similarly we have

lim
y↑d̃

w(t, y) = lim
y↑d̃

1

λ−1
y (t, y)

= lim
y↑d̃

λx(t, λ
−1(t, y)).

Since we have limx→∞ λ(t, x) = d̃ and λ(t, x) is strictly increasing function w.r.t. x, we have

lim
y↑d̃

w(t, y) = lim
x→∞

λx(t, x) = 0.

Moreover, since λx(t, x) is strictly positive for any x ∈ R, thus λ−1
y (t, y) is strictly positive

for any y ∈]b̃, d̃[. Therefore w(t, y) is strictly positive for any (t, y) ∈ [0, 1]×]b̃, d̃[.
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To derive PDE of w, we first derive PDE of λ−1 from (2.4.8). For simplicity in the rest

of the proof, unless specified, λ and its derivatives will be function of (t, λ−1(t, y)). Since

λ(t, λ−1(t, y)) = y, we differentiate w.r.t. t and y

λt + λxλ
−1
t = 0, λxλ

−1
y = 1, λxx(λ

−1
y )2 + λxλ

−1
yy = 0.

Thus we have the following

λ−1
t = − λt

λx
, λ−1

y =
1

λx
, λ−1

yy = −λxx
λ3
x

.

Therefore

λ−1
t +

λ−1
yy

2(λ−1
y )2

= − 1

λx

(
λt +

1

2
λxx

)
= γλ(t, λ−1(t, y)) = γy. (2.6.25)

Note w(t, y) = 1
λ−1
y (t,y)

, thus wt(t,y)
w2(t,y)

= −λ−1
ty (t, y) and wy(t, y) = − λ−1

yy (t,y)

(λ−1
y (t,y))2

. Therefore

wt(t, y)

w2(t, y)
+
wyy(t, y)

2
= −

(
λ−1
t +

λ−1
yy

2(λ−1
y )2

)
y

= −γ.

Thus w(t, y) = 1
λ−1
y (t,y)

satisfies (2.2.4).

Define ξt = λ(t, κt), which is consistent with the initial condition

0 = ξ0 = λ(0, κ0) = λ(0, 0).

Since λ is strictly increasing w.r.t. space variable, λ−1 exists and is well defined. Application

of Ito’s formula will yield

ξt = ξ0+

∫ t

0

λx(s, κs)dκs +

∫ t

0

(
λs(s, κs) +

λxx(s, κs)

2

)
ds

=

∫ t

0

λx(s, κs) (dβs + γλ(s, κs)ds)− γ
∫ t

0

λ(s, κs)λx(s, κs)ds

=

∫ t

0

λx(s, κs)dβs =

∫ t

0

λx(s, λ
−1(s, ξs))dβs =

∫ t

0

w(s, ξs)dβs.

Therefore ξt = λ(t, κt) is a strong solution to SDE (2.4.12). Observe that inf{t > 0 : ξt /∈
]b̃, d̃[} = inf{t > 0 : κt /∈] −∞,+∞[}. Since κ is non-explosive due to the boundedness of

the drift term γλ(t, κt), we have τ > 1. Equivalently,

P(κt >∞) = P(βt +

∫ t

0

γλ(s, κs)ds >∞)

≤ P(βt −max{−b̃, d̃}t >∞) = P(βt >∞) = 0
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together with

P(κt < −∞) = P(βt +

∫ t

0

γλ(s, κs)ds < −∞)

≤ P(βt + max{−b̃, d̃}t < −∞) = P(βt < −∞) = 0

yield the non-explosiveness of κ. Therefore τ > 1.

To conclude that statement 2 of the Proposition hold, it remains to show the uniqueness

of the solution of the SDE

dξt = w(t, ξt)dβt.

Suppose there is another strong solution ξ̃. Denote a sequence of open sets Vn =]b̃+ 1
n
, d̃− 1

n
[,

n = 1, 2, ... and define a sequence of stopping times νn by νn = inf{t ≥ 0 : ξ̃t /∈ Vn}. Then

the process κ̃t := λ−1(t, ξ̃t) is well defined on [0, νn] for all n. Note that since λ is increasing

function, νn = inf{t ≥ 0 : κ̃t /∈ Un}, where Un =
]
λ−1(t, b̃+ 1

n
), λ−1(t, d̃− 1

n
)
[
.

Application of Ito’s formula to κ̃ stopped at νn will yield

κ̃t∧νn =

∫ t∧νn

0

λ−1
x (s, ξ̃s)dξ̃s +

∫ t∧νn

0

(
λ−1
s (s, ξ̃s) +

λ−1
xx (s, ξ̃s)w

2(s, ξ̃s)

2

)
ds

=

∫ t∧νn

0

λ−1
x (s, ξ̃s)w(s, ξ̃s)dβs +

∫ t∧νn

0

λ−1
s (s, ξ̃s) +

λ−1
xx (s, ξ̃s)

2
(
λ−1
x (s, ξ̃s)

)2

 ds

=

∫ t∧νn

0

λ−1
x (s, ξ̃s)w(s, ξ̃s)dβs +

∫ t∧νn

0

γξ̃sds

=

∫ t∧νn

0

dβs +

∫ t∧νn

0

γλ(s, κ̃s)ds,

and therefore κ̃ is a strong solution of (2.4.10) in [0, t ∧ νn] for each n ∈ N. Since solution

to (2.4.10) is unique, we have κ̃t∧νn = κt∧νn for all t ∈ [0, 1]. Taking the limit, in view of

continuity of κ, we have κ̃t∧ν = κt∧ν for all t ∈ [0, 1], where ν = limn→∞ νn. In particular,

κ̃1∧ν = κ1∧ν and therefore ν < 1 is equivalent to τ < 1 which has probability zero due to the

arguments in Remark 4. Thus,

κ̃t = κ̃t∧ν = κt∧ν = κt t ∈ [0, 1].
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Due to the connection between κ̃ and ξ̃ and continuity of κ̃ as well as κ, the above implies

that

P[ξ̃t = ξt, t ∈ [0, 1]] = 1.

Finally, the distributional equality of the condition 3 of the Proposition holds since (2.4.9)

is equivalent to λ(1, κ1)
d
= f̃(Z) where Z = N(0, 1) since P (1, x) is the cumulative distribution

function of κ1. Therefore

ξ1 = λ(1, κ1)
d
= f̃(Z).

�

Lemma 5 Consider a function g satisfying

0 < g(x) ≤ eM |x|, ∀x ∈ R

for some constant M . Then for any z ∈ R and t ∈ [0, 1[ we have

lim
x→+∞

∫ z

−∞
Γ(t, x− y)g(y)dy = 0,

where Γ(t, x) = 1√
2π(1−t)

exp
{
− x2

2(1−t)

}
.

Proof. As
∫ z
−∞ Γ(t, x − y)g(y)dy is increasing in z, we can assume, without loss of

generality, that z > 0.

We have

0 <

∫ z

−∞
Γ(t, x− y)g(y)dy

<

∫ z

0

1√
2π(1− t)

e−
(x−y)2
2(1−t) +Mydy +

∫ 0

−∞

1√
2π(1− t)

e−
(x−y)2
2(1−t) −Mydy

= I1(x) + I2(x).

To complete the squares for each integral, we have

I1(x) =

∫ z

0

1√
2π(1− t)

e−
1

2(1−t) [x−y+(1−t)M ]2+
(1−t)M2

2
+Mxdy

= e
(1−t)M2

2
+Mx

∫ z−x−(1−t)M

−x−(1−t)M

1√
2π(1− t)

e−
u2

2(1−t)du

= e
(1−t)M2

2
+Mx

[
Φ

(
z − x− (1− t)M√

1− t

)
− Φ

(
−x− (1− t)M√

1− t

)]
.
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Similarly, we have

I2(x) = e
(1−t)M2

2
−MxΦ

(
−x+ (1− t)M√

1− t

)
.

Take limits when x→ +∞, we have limx→∞ I2(x) = 0 and

lim
x→∞

I1(x) = lim
x→∞

Φ
(
z−x−(1−t)M√

1−t

)
e−Mx− (1−t)M2

2

+ lim
x→∞

Φ
(
−x−(1−t)M√

1−t

)
e−Mx− (1−t)M2

2

= I3(x) + I4(x).

Since

lim
x→∞

Φ

(
z − x− (1− t)M√

1− t

)
= lim

x→∞
Φ

(
−x− (1− t)M√

1− t

)
= lim

x→∞
e−Mx− (1−t)M2

2 = 0,

are continuously differentiable functions, we can apply L’Hopital rule,

lim
x→∞

I3(x) = lim
x→∞

− 1√
2π(1−t)

e−
[z−x−(1−t)M ]2

2(1−t)

−Me−Mx− (1−t)M2

2

=
1√

2π(1− t)M
lim
x→∞

e−
[z−x−(1−t)M ]2

2(1−t) +Mx+
(1−t)M2

2 = 0,

lim
x→∞

I4(x) = lim
x→∞

− 1√
2π(1−t)

e−
[−x−(1−t)M ]2

2(1−t)

−Me−Mx− (1−t)M2

2

=
1√

2π(1− t)M
lim
x→∞

e−
[−x+(1−t)M ]2

2(1−t) +Mx+
(1−t)M2

2 = 0.

Therefore we have

lim
x→∞

∫ z

−∞
Γ(t, x− y)g(y)dy = lim

x→∞
(I2(x) + I3(x) + I4(x)) = 0.

�

Lemma 6 Suppose f satisfies Assumption 1 and limx→∞ f(x) = d > 0, limx→−∞ f(x) =

b < 0. Let P̃ ∈ C2 : R → R, a function strictly increasing w.r.t. x, with P̃ (−∞) = 0 and

P̃ (∞) = 1 satisfying the integral equation:

P̃ (x) =
c∗√
2π

∫ x

−∞
exp

{
γ

∫ u

0

f ◦ Φ−1 ◦ P̃ (s)ds− u2

2

}
du.
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Then, for any ε > 0 there exists x̂ such that for all x > x̂

−γ(d− ε) < Φ−1 ◦ P̃ (x)− x < 0, (2.6.26)

and for any x < −x̂
0 < Φ−1 ◦ P̃ (x)− x < γ(b− ε). (2.6.27)

This implies that

lim
x→±∞

Φ−1 ◦ P̃ (x)

x
= 1. (2.6.28)

Proof. First we will show bounds in (2.6.26). By L’Hopital’s rule, we have

lim
x→+∞

1− P̃ (x)

1− Φ(x)
= lim

x→+∞

P̃ ′(x)

Φ′(x)
= lim

x→+∞
c∗eγ

∫ x
0 f◦Φ−1◦P̃ (s)ds.

Since f , Φ and P̃ are strictly increasing functions, we know f ◦Φ−1◦ P̃ is a strictly increasing

function. As limx→∞ P̃ (x) = 1, we know

lim
x→+∞

f ◦ Φ−1 ◦ P̃ (x) = lim
x→+∞

f(x) = d > 0.

Therefore, there exists x∗ > 0 s.t. for all x > x∗, we have f ◦ Φ−1 ◦ P̃ (x) > d
2
. Thus∫ x

0

f ◦ Φ−1 ◦ P̃ (s)ds >

∫ x∗

0

f ◦ Φ−1 ◦ P̃ (s)ds+ (x− x∗)
d

2
.

Hence we have

lim
x→+∞

1− P̃ (x)

1− Φ(x)
= lim

x→+∞
c∗eγ

∫ x
0 f◦Φ−1◦P̃ (s)ds =∞ > 1.

Therefore there exists y∗ > 0 such that Φ−1(P̃ (x)) < x for all x > y∗.

Since Φ is strictly increasing function, the first inequality in (2.6.26) is equivalent to

P̃ (x) > Φ(x− γ(d+ ε))

for all x > x̂. Note that

lim
x→+∞

1− P̃ (x)

1− Φ(x− γ(d+ ε))
= lim

x→+∞

P̃ ′(x)

Φ′(x− γ(d+ ε))

= c∗ lim
x→+∞

eγ
∫ x
0 f◦Φ−1◦P̃ (s)ds−x

2

2
+ 1

2
(x−γ(d+ε))2

= c∗e
γ2(d+ε)2

2 lim
x→+∞

eγ
∫ x
0 f◦Φ−1◦P̃ (s)ds−γ(d+ε)x

< c∗e
γ2(d+ε)2

2 lim
x→+∞

e−γεx = 0 < 1.
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Therefore, there exists ỹ∗ > 0 such that for any x > ỹ∗, we have P̃ (x) > Φ(x− γ(d+ ε)).

The inequality (2.6.27) is proved similarly. Indeed,

lim
x→−∞

P̃ (x)

Φ(x)
= lim

x→−∞

P̃ ′(x)

Φ′(x)
= lim

x→−∞
c∗eγ

∫ x
0 f◦Φ−1◦P̃ (s)ds.

Since b < 0, we have

lim
x→−∞

f ◦ Φ−1 ◦ P̃ (x) = lim
x→−∞

f(x) = b < 0.

Therefore, there exists x∗ < 0 s.t. for all x < x∗, we have f ◦ Φ−1 ◦ P̃ (x) < b
2
. Thus∫ x

0

f ◦ Φ−1 ◦ P̃ (s)ds >

∫ x∗

0

f ◦ Φ−1 ◦ P̃ (s)ds+ (x− x∗)
b

2
.

Hence we have

lim
x→−∞

c∗eγ
∫ x
0 f◦Φ−1◦P̃ (s)ds =∞ > 1.

Therefore there exists y∗ < 0 such that Φ−1(P̃ (x)) < x for x < y∗.

To show the second inequality, as before, we need to show

P̃ (x) < Φ(x− γ(b− ε))

for x small enough. Notice

lim
x→−∞

P̃ (x)

Φ(x− γ(b− ε))
= lim

x→−∞

P̃ ′(x)

Φ′(x− γ(b− ε))

= c∗ lim
x→−∞

eγ
∫ x
0 f◦Φ−1◦P̃ (s)ds−x

2

2
+ 1

2
(x−γ(b−ε))2

= c∗e
γ2(b−ε)2

2 lim
x→∞

eγ
∫ x
0 f◦Φ−1◦P̃ (s)ds−γ(b−ε)x

< c∗e
γ2(b−ε)2

2 lim
x→−∞

eγεx = 0 < 1.

Therefore, there exists ỹ∗ < 0 such that for any x < ỹ∗, we have P̃ (x) < Φ(x − γ(b − ε)).
Thus, the statement of the Lemma holds with x̂ = max{y∗, ỹ∗,−y∗,−ỹ∗}.

�
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Chapter 3

The solution to an impulse control

problem with non-linear penalisation

of control effort

3.1 Problem formulation

We fix a filtered probability space (Ω,F,Ft,P) satisfying the usual conditions and carrying

a standard (Ft)-Brownian motion W . We denote by T the family of all (Ft)-stopping times.

An impulse control is a collection

Z = (τ1, τ2, . . . , τn, . . . ;Z1, Z2, . . . , Zn, . . .) ,

where (τn) ⊂ T is the increasing sequence of the (Ft)-stopping times at which impulsive

action is applied to a system and the positive real-valued random variables Zn, n ≥ 1, are

the sizes of the corresponding jumps of the underlying state process. In particular, we assume

that

τn < τn+11{τn<∞} for all n ≥ 1.
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We denote by A the family of all impulse controls. Given such a control Z ∈ A, we define

the cáglád process

Z̄t =
∞∑
n=1

Zn1{τn<t}. (3.1.1)

In this context, we model the stochastic dynamics of the controlled system by

Xt = x− Z̄t +Wt. (3.1.2)

The objective of the optimisation problem that we study is to minimise the performance

criterion given by

Jx(Z) = E

[
λ

∫ ∞
0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)]
(3.1.3)

over all strategies Z, where α, δ, κ, λ > 0 are given constants. The value function of this

optimisation problem is defined by

v(x) = inf
Z∈A

Jx(Z), for x ∈ R. (3.1.4)

In view of the general theory of stochastic impulse control, the value function of the

optimisation problem that we study identifies with a classical solution to the Hamilton-

Jacobi-Bellman (HJB) equation

min

{
1

2
w′′(x)− δw(x) + λx2, −w(x) + inf

z>0

[
w(x− z) + 1 + κzα

]}
= 0. (3.1.5)

3.2 The eventual nature of the optimal control

The structure of the problem we consider suggests that it should never be optimal to exercise

any control effort if the state process takes negative values and that it should never be optimal

to make the state process jump across the origin. The first of these observations suggests

that the value function v should satisfy the boundary condition

lim
x→−∞

v(x)

(
λE
[∫ ∞

0

e−δt(x+Wt)
2 dt

])−1

= lim
x→−∞

v(x)

(
λ

δ
x2 +

λ

δ2

)−1

= 1 (3.2.6)
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because the probability of the uncontrolled process hitting R+ tends to 0 as x → −∞.

Furthermore, these observations suggest that the optimal strategy should be partially char-

acterised by two strictly positive points a0 < b0. Whenever the state space process X reaches

the level b0, control should be exercised to “push” it instantaneously down to the level a0.

On the other hand, the controller should take no action as long as the state process is inside

the interval ]−∞, b0[. Accordingly, the restriction of the value function v in ]−∞, b0] should

identify with a solution to the ODE

1

2
w′′(x)− δw(x) + λx2 = 0, for x ∈ ]−∞, b0[, (3.2.7)

that satisfies the boundary condition

w(b0) = w(a0) + 1 + κ(b0 − a0)α. (3.2.8)

Every solution to the ODE (3.2.7) is given by

w(x) = Ae
√

2δx +Be−
√

2δx +
λ

δ
x2 +

λ

δ2
,

for some constants A,B ∈ R. In view of the boundary condition (3.2.6), we choose B = 0

and we look for a solution w to the HJB equation (3.1.5) whose restriction in ]−∞, b0] takes

the form

w(x) =

Ae
√

2δx + λ
δ
x2 + λ

δ2
, if x < b0

w(a0) + 1 + κ(x− a0)α, if x = b0

 , (3.2.9)

for some constant A ∈ R.

To derive a system of appropriate equations to determine the free-boundary points a0,

b0 and the constant A, we argue as follows. First, we note that the fact that b0 separates

the “wait” region ]−∞, b0[ from the “action” region to which b0 itself belongs implies that

the marginal cost of “waiting” should tend to the marginal cost of optimal “acting” as the

state process increases to b0. This observation suggests the free-boundary condition

w′(b0−) ≡
√

2δAe
√

2δb0 +
2λ

δ
b0 = ακ(b0 − a0)α−1, (3.2.10)

which is consistent with the C1 regularity associated with the so-called “principle of smooth

fit”. Furthermore, we note that the HJB equation (3.1.5) can be satisfied for x ∈ ]−∞, b0]
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only if

−w(b0) + w(y) + 1 + κ(b0 − y)α

= 0, for y = a0

≥ 0, for all y ≤ b0

 ,

which implies that the function y 7→ w(y) + 1 + κ(b0 − y)α has a local minimum at y = a0

and yields

w′(a0) ≡
√

2δAe
√

2δa0 +
2λ

δ
a0 = ακ(b0 − a0)α−1. (3.2.11)

We are therefore faced with the system of equations (3.2.8), (3.2.10) and (3.2.11) for the

unknowns a0, b0 and A.

Subtracting (3.2.11) from (3.2.10), we derive the expression

A = − 2λ(b0 − a0)

δ
√

2δ
(
e
√

2δb0 − e
√

2δa0

) < 0. (3.2.12)

On the other hand, adding (3.2.10) and (3.2.11) side by side and using (3.2.12), we obtain

f1(b0 − a0) = f2(b0 − a0) +
λ

δ

[
δ + δκ(b0 − a0)α

λ(b0 − a0)
+

2√
2δ
− (a0 + b0)

]
, (3.2.13)

where

f1(y) =
1

y
− κ(α− 1)yα−1 and f2(y) =

2λ

δ
√

2δ

[√
2δy

2
coth

√
2δy

2
− 1

]
. (3.2.14)

Furthermore, we can use (3.2.12) to observe that

q(a0, b0)

= 0

< 0

 ⇔ δ + δκ(b0 − a0)α

λ(b0 − a0)
+

2√
2δ

= a0 + b0

< a0 + b0

 , (3.2.15)

where

q(s, x) = −w(x) + w(s) + 1 + κ(x− s)α. (3.2.16)

It follows that the system of equations (3.2.8), (3.2.10) and (3.2.11) for the unknowns a0, b0

and A is equivalent to the system of equations

(3.2.12), f1(b0 − a0) = f2(b0 − a0) and a0 + b0 =
δ + δκ(b0 − a0)α

λ(b0 − a0)
+

2√
2δ
. (3.2.17)
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At this point, we should note that we have derived the system of equations (3.2.17) in a way

that is more involved than necessary because this will facilitate some of our analysis below.

The next result, which we prove in Appendix I, is concerned with the solvability of this

system of equations as well as with other issues that we will need in the following sections.

Lemma 7 Given any values of the constants λ, δ, κ, α > 0, the following statements are

true:

(I) The equation f1(y) = f2(y), where f1, f2 are defined by (3.2.14), has a unique solution

y∗ > 0.

(II) The points

a0 =
δ + δκyα∗

2λy∗
+

1√
2δ
− y∗

2
> 0 and b0 = a0 + y∗ > a0 (3.2.18)

provide the unique solution to the system of equations (3.2.17), which is equivalent to the

system of equations (3.2.8), (3.2.10) and (3.2.11) for the unknowns a0, b0 and A.

(III) There exist points y† ∈ ]0, a0[ and y† ∈ ]a0, b0[ such that the concave function ` defined

by

`(y) = w′(y) =
√

2δAe
√

2δy +
2λ

δ
y (3.2.19)

satisfies

`(y)

< 0, if y < y†

> 0, if y ∈ ]y†, b0]

 and `′(y)

> 0, if y < y†

< 0, if y ∈ ]y†, b0]

 . (3.2.20)

Furthermore,

if α ∈ ]0, 1[, then g(s, b0) < 0 for all s < a0 and gs(s, b0) > 0 for all s ≤ a0, (3.2.21)

while, if α ≥ 1, then g(s, b0)

< 0, if s < a0,

> 0, if s ∈ ]a0, b0]

 , (3.2.22)

where g is the function defined by

g(s, x) = w′(s)− ακ(x− s)α−1 ≡ `(s)− ακ(x− s)α−1, for s ≤ x. (3.2.23)

(IV) The function q defined by (3.2.16) satisfies

q(s, x) > 0 for all s < x ≤ b0 such that (s, x) 6= (a0, b0). (3.2.24)
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3.3 The solution to the case with concave penalisation

of control effort (α ∈ ]0, 1]α ∈ ]0, 1]α ∈ ]0, 1])

It turns out that, if α ∈ ]0, 1], then it is never optimal to wait for any amount of time if the

state process takes values greater than b0. In particular, given any initial condition x ≥ b0,

it is optimal to jump immediately to a point a(x) < b0 that we specify below. Otherwise,

the optimal strategy takes the form we studied in the previous section. In view of these

observations, we look for a solution to the HJB equation (3.1.5) of the form

w(x) =

Ae
√

2δx + λ
δ
x2 + λ

δ2
, if x < b0

w
(
a(x)

)
+ 1 + κ

(
x− a(x)

)α
, if x ≥ b0

 , (3.3.25)

for some C1 function a : [b0,∞[→ ]0, b0[ such that a(b0) = a0, where A < 0 is the constant

given by (3.2.12).

To determine the free-boundary function a, we first note that w can satisfy the HJB

equation (3.1.5) only if

w
(
a(x)

)
+ κ
(
x− a(x)

)α
= min

s<x

{
w(s) + κ(x− s)α

}
for all x ≥ b0.

This identity will be true only if a(x) ∈ ]0, b0[ satisfies

g
(
a(x), x

)
= 0 for all x ≥ b0, (3.3.26)

where g is defined by (3.2.23).

The next result, which we prove in Appendix II, is concerned with the solution to the

HJB equation (3.1.5) when α ∈ ]0, 1].

Lemma 8 Fix any values of the constants λ, δ, κ, α > 0 such that α ∈ ]0, 1]. Also, let A < 0

and 0 < a0 < b0 be defined by (3.2.12) and (3.2.18), and let y† ∈ ]0, a0[ and y† ∈ ]a0, b0[ be

as in Lemma 7.(III). The following statements are true:

(I) If α ∈ ]0, 1[, then there exist a constant εa ∈ ]0, (b0 − a0)/2[ and a C∞ function a :

]b0 − εa,∞[→ ]y†, a0 + εa[ such that (3.3.26) holds true. Furthermore,

a(b0) = a0, lim
x→∞

a(x) = y† and a′(x) < 0 for all x ∈ ]b0 − εa,∞[. (3.3.27)
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(II) If α ∈ ]0, 1[, then let the function a be as in part (I). On the other hand, if α = 1, define

a(x) = a0 for all x ≥ b0. The function w defined by (3.3.25) is C1 in R as well as C∞ in

R \ {b0} and satisfies the HJB equation (3.1.5).

We conclude this section with the following result, which we prove in Appendix III.

Theorem 4 Consider the stochastic impulse control formulated in Section 3.1 and suppose

that α ∈ ]0, 1]. The problem’s value function is given by

v(x) = w(x) for all x ∈ R,

where w > 0 is as in Lemma 8.(II). Furthermore, the optimal impulse control strategy Z? ∈ A

takes the qualitative form discussed at the beginning of the sections and is defined sequentially

by

τ ?1 = inf{t ≥ 0 | x+Wt ≥ b0}, Z?
1 = x+Wτ?1

− a(x+Wτ?1
), (3.3.28)

τ ?2 = inf
{
t ≥ τ ?1 | a(x+Wτ?1

) +Wt −Wτ?1
≥ b0

}
, Z?

2 = b0 − a0, (3.3.29)

and

τ ?n+1 = inf{t ≥ τ ?n | a0 +Wt −Wτ?n ≥ b0}, Z?
n+1 = b0 − a0, (3.3.30)

for n ≥ 2.

3.4 The case with strictly convex penalisation of con-

trol effort (α > 1α > 1α > 1)

The situation arising when α > 1 is fundamentally different from the one we studied in

the previous section. Indeed, the following result, which we prove in Appendix IV, reveals

that the cost of a single jump can be strictly larger than the total cost incurred by multiple

simultaneous jumps of the same total size.
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Lemma 9 Consider any α > 1 fixed. The functions Kn, K : [0,∞[→ [1,∞[ defined by

Kn(z) = n+ nκ
( z
n

)α
and K(z) = Kn(z), if z ∈ [zn−1, zn[,

for n = 1, 2, . . ., where

z0 = 0 and zn = κ−1/α

[(
1

n

)α−1

−
(

1

n+ 1

)α−1
]−1/α

, if n ≥ 1, (3.4.31)

are continuous and satisfy

Kn(z) = inf

{
n∑
j=1

(
1 + κuαj

) ∣∣∣ u1, . . . , un ≥ 0 and u1 + · · ·+ un = z

}
, (3.4.32)

K(z) = inf

{
n∑
j=1

(
1 + κuαj

) ∣∣∣ n ∈ N \ {0}, u1, . . . , un ≥ 0 and u1 + · · ·+ un = z

}
.

(3.4.33)

Furthermore,

lim
n→∞

(zn+1 − zn) = κ−1/α(α− 1)−1/α (3.4.34)

and

lim
z→∞

K(z)

z
= κ1/αα(α− 1)−(α−1)/α. (3.4.35)

This result suggests that we should look for a solution to the HJB equation (3.1.5) of the

form

w(x) =

Ae
√

2δx + λ
δ
x2 + λ

δ2
, if x < b0

w
(
a(x)

)
+K

(
x− a(x)

)α
, if x ≥ b0

 ,

for some function a : [b0,∞[ → ]0, b0[ such that a(b0) = a0, where A < 0 is the constant

given by (3.2.12). However, such a function would not satisfy the HJB equation even in the

sense of distributions because K ′ is not continuous and K ′(zn+) < K ′(zn−) for all n ≥ 1.

This observation suggests that the waiting region should involve intervals in ]b0,∞[ beyond

the interval ]−∞, b0[. On the other hand, Lemma 9 suggests that minimal costs can be

achieved only by multiple simultaneous jumps, which implies that an optimal strategy may

not exist. Despite most substantial effort in several directions, we have not managed to
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derive an explicit construction of the value function and the optimal strategy incorporating

these features.

The following result, which we prove in Appendix V, identifies the restriction of the value

function v in ]−∞, b0[ with the function w that we studied in Section 3.2.

Lemma 10 Consider the stochastic impulse control problem formulated in Section 3.1 and

suppose that α > 1. The problem’s value function satisfies

v(x) = inf
Z∈A

E

[
λ

∫ TZ

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZw(XTZ+)

]
, (3.4.36)

where w is defined by (3.2.9) with a0, b0 and A < 0 being as in Lemma 8.(II).

TZ = inf
{
t ≥ 0 | Xt ∈ ]−∞, b0]

}
. (3.4.37)

In particular,

v(x) = w(x) > 0 for all x ∈ ]−∞, b0].

We conclude with the following result, which we prove in Appendix VI. In this theorem,

we establish an iterative procedure for deriving the value function v. This procedure also

yields a sequence of ε-optimal strategies, which arise by solving sequentially (3.4.39) and

(3.4.40).

Theorem 5 Consider the stochastic impulse control problem formulated in Section 3.1, sup-

pose that α > 1, and define

w̄0(x) = min
{
wext(x), inf

z>0

[
wext(x− z) + 1 + κzα

]}
, (3.4.38)

where wext is the extension of the function w > 0 defined by (3.2.9), which is given by

wext(x) = Ae
√

2δx +
λ

δ
x2 +

λ

δ2
, for x ∈ R,

with a0, b0 and A < 0 being as in Lemma 8.(II). Also, define

wj(x) = inf
τ∈T

E
[
λ

∫ τ

0

e−δtX̊2
t dt+ e−δτ w̄j(X̊τ )

]
, (3.4.39)

w̄j+1(x) = min
{
wj(x), inf

z>0

[
wj(x− z) + 1 + κzα

]}
, (3.4.40)
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for j ≥ 0, where X̊t = x + Wt. For each j ≥ 0, the function wj is the difference of two

convex functions and satisfies the variational inequality

min

{
1

2
w′′j (x)− δwj(x) + λx2, w̄j(x)− wj(x)

}
= 0 (3.4.41)

in the sense of distributions. Furthermore,

w̄j(x) ≥ wj(x) ≥ w̄j+1(x) for all j ≥ 0 and lim
j→∞

wj(x) = v(x) for all x ∈ R. (3.4.42)

3.5 Appendix

3.5.1 Appendix I: proof of Lemma 7

Proof of (I). The calculations

f ′2(y) =
2λe

√
2δy

δ(e
√

2δy − 1)2

[
sinh
√

2δy −
√

2δy
]
> 0,

lim
y↓0

f2(y) = 0 and lim
y→∞

f2(y) =∞,

reveal that f2 is strictly increasing from 0 to ∞ as y increases from 0 to ∞. Combining this

observation with the calculations

f ′1(y) = − 1

y2
− κ(α− 1)2yα−2 < 0,

lim
y→∞

f1(y) =

0, if α ≤ 1

−∞, if α > 1

 and lim
y↓0

f1(y) =∞,

we can see that there exists a unique y∗ > 0 such that

f1(y)− f2(y)


< 0, if y > y∗

= 0, if y = y∗

> 0, if y ∈ ]0, y∗[

 . (3.5.43)
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Proof of (II). The points a0, b0 given by (3.2.18) are the unique solution to the correspond-

ing system of equations appearing in (3.2.17) with b0 > a0. Therefore, they give rise to the

unique solution to the system of equations (3.2.8), (3.2.10) and (3.2.11) for the unknowns

a0, b0 and A. To complete the proof of this part, we need to show that a0 > 0. To this end,

it suffices to show that

b0 + a0 =
δ + δκyα∗
λy∗

+
2√
2δ

> y∗ = b0 − a0. (3.5.44)

In view of the identity

δ + δκyα∗
λy∗

+
2√
2δ

= y∗ coth

√
2δy∗
2

+
δκαyα−1

∗
λ

,

which follows from the equation f1(y∗) = f2(y∗), we can see that (3.5.44) is equivalent to

y∗ coth

√
2δy∗
2

+
δκαyα−1

∗
λ

> y∗,

which is true because coth
√

2δy∗
2

> 1.

Proof of (III). The function ` defined by (3.2.19) is plainly concave because A < 0.

Combining this observation with the inequalities

`(0) =
√

2δA < 0 and `(a0) = `(b0)
(3.2.10)

= ακ(b0 − a0)α−1 > 0,

we obtain (3.2.20). We prove (3.2.21) later (see “Proof of (3.5.46) if α ∈ ]0, 1[” further

below).

Proof of (IV). In view of (I) and the observations that

lim
s→−∞

q(s, x) =∞ and lim
s↑x

q(s, x) = 1,

we can see that (3.2.24) will follow if we show that

q has no strictly negative minimum in
{

(s, x) ∈ R2 | s < x < b0

}
, (3.5.45)

and q(s, b0) > 0 for all s ∈ ]−∞, b0[ \ {a0}. (3.5.46)
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To prove (3.5.45), we argue by contradiction and we assume that there exists (s̄, x̄) with

s̄ < x̄ < b0 such that q(s̄, x̄) < 0 is a local minimum of q. The first order conditionsqs(s̄, x̄) = 0

qx(s̄, x̄) = 0

 ⇒

w
′(s̄) ≡ `(s̄) = ακ(x̄− s̄)α−1

w′(x̄) ≡ `(x̄) = ακ(x̄− s̄)α−1

 , (3.5.47)

the inequality q(s̄, x̄) < 0 and the same analysis as the one leading to (3.2.17) gives rise to

the inequalities

s̄+ x̄ >
δ + δκ(x̄− s̄)α

λ(x̄− s̄)
+

2√
2δ

and f1(x̄− s̄) < f2(x̄− s̄).

The second of these inequalities and (3.5.43) imply that x̄− s̄ > y∗ = b0 − a0. On the other

hand, the first order conditions (3.5.47) and (3.2.20) in (III) imply that

s̄ ∈ [a0, y
†[ and x̄ ∈ ]y†, b0] ⇒ x̄− s̄ ≤ b0 − a0 = y∗,

which is a contradiction.

To prove (3.5.46), we define

q̄(s) = q(s, b0) = −w(b0) + Ae
√

2δs +
λ

δ
s2 +

λ

δ2︸ ︷︷ ︸
w(s)

+1 + κ(b0 − s)α, for s ≤ b0,

and we observe that

lim
s→−∞

q̄(s) =∞, q̄(a0) = 0 and q̄(b0) = 1. (3.5.48)

Also, we calculate

q̄′(s) = g(s, b0) =
√

2δAe
√

2δs +
2λ

δ
s− ακ(b0 − s)α−1, (3.5.49)

q̄′′(s) = gs(s, b0) = 2δAe
√

2δs +
2λ

δ
+ α(α− 1)κ(b0 − s)α−2, (3.5.50)

q̄′′′(s) = (2δ)
3
2Ae

√
2δs − α(α− 1)(α− 2)κ(b0 − s)α−3, (3.5.51)

and we note that

lim
s→−∞

q̄′(s) = −∞ and q̄′(a0)
(3.2.11)

= 0. (3.5.52)
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To complete the proof, we need to distinguish between two different cases.

Proof of (3.5.46) if α ∈ ]0, 1[. Combining the concavity of q̄′ = g(·, b0), which follows from

(3.5.51) and the fact that A < 0, with (3.5.52), the observation that lims↑b0 q̄
′(s) = −∞,

and the fact that q̄(a0) < q̄(b0) (see (3.5.48)), we can conclude that there exists a unique

s† ∈ ]a0, b0[ such that

q̄′(s) = g(s, b0)

> 0, if s ∈ ]a0, s†[

< 0, if s ∈ ]−∞, a0[ ∪ ]s†, b0[

 .

These inequalities and (3.5.48) imply (3.5.46). On the other hand, these inequalities and the

concavity of q̄′ = g(·, b0) imply (3.2.21).

Proof of (3.5.46) if α ≥ 1. In this case, (3.2.20) and (3.5.50) reveal that q̄′ is strictly

increasing in ]−∞, a0[, which, combined with (3.5.52), implies that

q̄′(s) = g(s, b0) < 0 for all s ∈ ]−∞, a0[.

On the other hand, we can use (3.2.20) to calculate

q̄′(s) = `(s)− ακ(b0 − s)α−1 > `(a0)− ακ(b0 − a0)α−1 = q̄′(a0) = 0 for all s ∈ ]a0, b0[.

These inequalities and (3.5.48) imply (3.5.46) as well as (3.2.22). 2

3.5.2 Appendix II: proof of Lemma 8

Proof of (I). Suppose that α ∈ ]0, 1[. The calculations

gx(s, x) = −α(α− 1)κ(x− s)α−2 > 0 for all s < x, (3.5.53)

and lim
x↓s

g(s, x) = −∞, lim
x→∞

g(s, x) = `(s), for all s ∈ R (3.5.54)

imply that, given any s,

there exists a unique a(s) ∈ ]s,∞[ such that g
(
s, a(s)

)
= 0 if and only if `(s) > 0.

This observation and (3.2.20) implies that the equation g(s, x) = 0 for x > s defines uniquely

a continuous function a : ]y†, b0[→ R+ such that a(s) > s. In particular,

lim
s↓y†

a(s) =∞ and a(a0) = b0, (3.5.55)
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thanks to (3.2.20) and (3.2.11), respectively. Furthermore, these considerations and the first

inequality in (3.2.21) imply that

a(s) > b0 for all s ∈ ]y†, a0[. (3.5.56)

In view of second inequality in (3.2.21) and the calculation

gsx(s, x) = α(α− 1)(α− 2)κ(x− s)α−3 > 0 for all s < x,

we can see that gs(s, x) > 0 for all s ≤ a0 and x ≥ b0. Combining this observation with

(3.5.56) and the continuity of the functions gs and a, we can see that there exists εa ∈
]0, b0 − a0[ such that

gs
(
s, a(s)

)
> 0 for all s ∈ ]y†, a0 + εa[. (3.5.57)

Differentiating the identity g
(
s, a(s)

)
= 0 with respect to s and using this inequality and

(3.5.53), we obtain

a′(s) = −
gs
(
s, a(s)

)
gx
(
s, a(s)

) < 0 for all s ∈ ]y†, a0 + εa[. (3.5.58)

These considerations imply that, given any εa ∈
]
0, b0−a(a0 +εa)

[
, the function a defined

by

a(x) = a−1(x), for x > b0 − εa,

has all of the properties claimed in the statement of part (I) of the proposition.

For future reference, we also note that differentiation of (3.3.26) yields the expression

a′(x) = −
gx
(
a(x), x

)
gs
(
a(x), x

) =
α(α− 1)κ

(
x− a(x)

)α−2

`′
(
a(x)

)
+ α(α− 1)κ

(
x− a(x)

)α−2 < 0 for all x > b0. (3.5.59)

Proof of (II). Consider the function w defined by (3.3.25) for A, a0, b0 and a as in the

statement of the proposition. Before addressing the main issues of the proof, we make some

preliminary calculations that we will need in several places. First, we note that

w′(x) = w′
(
a(x)

)
a′(x) + ακ

(
x− a(x)

)α−1(
1− a′(x)

)
= g
(
a(x), x

)
a′(x) + ακ

(
x− a(x)

)α−1

(3.3.26)
= ακ

(
x− a(x)

)α−1
for all x > b0. (3.5.60)
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Combining these identities with the definition (3.2.23) of g and (3.3.26), we can see that

w′(x) = w′
(
a(x)

)
≡ `
(
a(x)

)
for all x > b0. (3.5.61)

On the other hand, differentiating (3.5.60), we obtain

w′′(x) = α(α− 1)κ
(
x− a(x)

)α−2[
1− a′(x)

]
for all x > b0. (3.5.62)

The function w is plainly C∞ in R \ {b0}. Also, it is C1 because

lim
x↓b0

w(x) = lim
x↓b0

[
w
(
a(x)

)
+ 1 + κ

(
x− a(x)

)α]
= w(a0) + 1 + κ(b0 − a0)α

(3.2.8)
= lim

x↑b0
w(x)

and

lim
x↓b0

w′(x)
(3.5.60)

= ακ(b0 − a0)α−1 (3.2.10)
= lim

x↑b0
w′(x).

In view of its definition and Lemma 7.(IV), we will prove that the function w defined by

(3.3.25) satisfies the HJB equation (3.1.5) if we show that

q(s, x)
(3.2.16)
≡ −w(x) + w(s) + 1 + κ(x− s)α ≥ 0 for all s < x and x > b0, (3.5.63)

and
1

2
w′′(x)− δw(x) + λx2 ≥ 0 for all x > b0. (3.5.64)

Proof of (3.5.63) if α ∈ ]0, 1[. Fix any x ≥ b0. Combining the concavity of g(·, x), which

follows from the calculation

gss(s, x) = (2δ)
3
2Ae

√
2δs − α(α− 1)(α− 2)κ(x− s)α−3

and the fact that A < 0, with the observations that

lim
s→−∞

g(s, x) = −∞, g
(
a(x), x

)
= 0 and lim

s↑x
g(s, x) = −∞

and (3.5.57) (recall that a = a−1), we can conclude that there exists a unique s†(s) ∈ ]a(x), x[

such that

qs(s, x) = g(s, x)

> 0, if s ∈ ]a0, s†[

< 0, if s ∈ ]−∞, a0[ ∪ ]s†, x[

 .
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Combining these inequalities with the observations that

lim
s→−∞

q(s, x) =∞, q
(
a(x), x

)
= 0 and q(x, x) = 1,

we can see that (3.5.63) is indeed true.

Proof of (3.5.63) if α = 1. In this case, the required result follows immediately once we

combine Lemma 7.(IV) with the observation that

q(s, x) = −w(x) + w(s ∨ b0) + κ
(
x− (s ∨ b0)

)
+ q(s, s ∨ b0)

= q(s, s ∨ b0) for all s < x and x > b0.

Proof of (3.5.64) if α ∈ ]0, 1[. We first use (3.5.61) to calculate

w′′(x) = `′
(
a(x)

)
a′(x)

(3.5.59)
=

α(α− 1)κ
(
x− a(x)

)α−2
`′
(
a(x)

)
`
(
a(x)

)
+ α(α− 1)κ

(
x− a(x)

)α−2 , for all x > b0,

and [
`
(
a(x)

)
+ α(α− 1)κ

(
x− a(x)

)α−2
]2

w′′′(x)

= α2(α− 1)2κ2
(
x− a(x)

)2α−4
`′′
(
a(x)

)
a′(x)

+ α(α− 1)(α− 2)κ
(
x− a(x)

)α−3[
`′
(
a(x)

)]2[
1− a′(x)

]2
> 0 for all x > b0,

the inequality following thanks to the concavity of ` (see Lemma 7.(III)) and the fact that a

is strictly decreasing (see part (I) of this proposition). In view of these calculations and the

fact that A < 0, we can see that

d

dx

[
1

2
w′′(x)− δw(x) + λx2

]
(3.5.61)

=
1

2
w′′′(x)− δ`

(
a(x)

)
+ 2λx

(3.2.19)
=

1

2
w′′′(x)− δ

√
2δAe

√
2δa(x) + 2λ

[
x− a(x)

]
> 0 for all x > b0. (3.5.65)

It follows that (3.5.64) is true if and only if

1

2
w′′(b0+)− δw(b0) + λb2

0 ≥ 0 ⇔ w′′(b0+) ≥ w′′(b0−). (3.5.66)
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To show that this inequality is indeed true, we note that (3.2.24) in Lemma 7.(IV) and

the definition (3.3.25) of w imply that

q
(
a(x), x

) > 0, if x ∈ ]b0 − εa, b0[

= 0, if x ≥ b0

 .

Since q is C1,1 and a is C∞, these inequalities imply that

lim
x↑b0

d2q
(
a(x), x

)
dx2

≥ 0.

Combining this observation with the calculation

lim
x↑b0

d2q
(
a(x), x

)
dx2

= lim
x↑b0

d
[
g
(
a(x), x

)
a′(x) + qx

(
a(x), x

)]
dx

= lim
x↑b0

[
−w′′(x) + α(α− 1)κ

(
x− a(x)

)α−2[
1− a′(x)

]]
= −w′′(b0−) + α(α− 1)κ(b0 − a0)α−2

[
1− a′(b0)

]
(3.5.62)

= −w′′(b0−) + w′′(b0+),

where we have used the identities

qs
(
a(x), x

)
= g
(
a(x), x

)
= 0,

we obtain (3.5.66).

Proof of (3.5.64) if α = 1. In this case, w′′(x) = 0 for all x > b0 and (3.5.65) follows

immediately. On the other hand, (3.5.66) is plainly true because w′′(b0−) = `′(b0) < 0 (see

(3.2.20) in Lemma 7.(III)).

3.5.3 Appendix III: proof of Theorem 4

Throughout the proof, we consider any initial condition x ∈ R fixed. Let Z ∈ A be any

admissible impulse control strategy such that Jx(Z) <∞. The finiteness of such a strategy’s

performance implies that

E
[∫ ∞

0

e−δtX2
t dt

]
<∞. (3.5.67)
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Using Itô’s formula, we obtain

e−δTw(XT+) = w(x) +

∫ T

0

e−δt
[

1

2
w′′(Xt)− δw(Xt)

]
dt+

∫
[0,T ]

e−δtw′(Xt) dZ̄t

+

∫ T

0

e−δtw′(Xt) dWt +
∑
t∈[0,T ]

e−δt
[
w(Xt+)− w(Xt)− w′(Xt)∆Xt

]
= w(x) +

∫ T

0

e−δt
[

1

2
w′′(Xt)− δw(Xt)

]
dt

+

∫ T

0

e−δtw′(Xt) dWt +
∞∑
n=1

e−δτn
[
w(Xτn − Zn)− w(Xτn)

]
1{τn≤T},

the second equality following from the fact that ∆Xs ≡ Xs+−Xs = ∆Z̄s and (3.1.1). These

identities imply that

λ

∫ T

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤T}

= w(x)− e−δTw(XT+) +

∫ T

0

e−δt
[

1

2
w′′(Xt)− δw(Xt) + λX2

t

]
dt+

∫ T

0

e−δtw′(Xt) dWt

+
∞∑
n=1

e−δτn
[
w(Xτn − Zn)− w(Xτn) + 1 + κZα

n

]
1{τn≤T}. (3.5.68)

Since w satisfies the HJB equation (3.1.5),

λ

∫ T

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤T}

≥ w(x)− e−δTw(XT+) +

∫ T

0

e−δtw′(Xt) dWt. (3.5.69)

In view of the definition (3.3.25) of w, we can see that there exists a constant C > 0 such

that [
w′(x)

]2
+
∣∣w(x)

∣∣ ≤ C
(
1 + |x|2

)
for all x ∈ R.

In view of these estimates, Itô’s isometry and (3.5.67) imply that

E

[(∫ T

0

e−δtw′(Xt) dWt

)2
]

= E
[∫ T

0

e−2δt
∣∣w′(Xt)

∣∣2 dt]
≤ C E

[∫ T

0

e−δt
(
1 +X2

t

)
dt

]
<∞
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and

lim
T→∞

e−δTE
[∣∣w(XT+)

∣∣] ≤ lim
T→∞

C
(
e−δT + E

[
e−δTX2

T

])
= 0. (3.5.70)

The first of these observations implies that the stochastic integral in (3.5.69) is a square

integrable martingale. Taking expectations in (3.5.69), we therefore obtain

E

[
λ

∫ T

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤T}

]
≥ w(x)− E

[
e−δTw(XT+)

]
.

Passing to the limit using the monotone convergence theorem and (3.5.70), we derive

Jx(Z) = E

[
λ

∫ ∞
0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)]
≥ w(x),

which establishes the inequality

v(x) ≥ w(x). (3.5.71)

To prove the reverse inequality and establish the optimality of the impulse control strat-

egy Z∗ defined by (3.3.28)–(3.3.30), we first note that (τ ∗n+1 − τ ∗n, n ≥ 2) is a sequence of

independent and identically distributed random variables, each having the same distribution

as the first hitting time

Tb0−a0(B) = inf{t ≥ 0 | Bt ≥ b0 − a0},

where B is a standard one-dimensional Brownian motion starting from 0. In particular,

E
[
e−δ(τ

∗
n+1−τ∗n)

]
= E

[
e−δTb0−a0 (B)

]
= e−

√
2δ(b0−a0)

and

E
[
e−δτ

∗
n
]

= E
[
e−δτ

∗
2
] n−2∏
j=1

E
[
e−δ(τ

∗
j+2−τ∗j+1)

]
= E

[
e−δτ

∗
2
]
e−(n−2)

√
2δ(b0−a0)

for all n ≥ 2. Furthermore, the state process X∗ associated with Z∗ satisfies

E
[∫ τ∗n+1

τ∗n

e−δtX∗t
2 dt

]
= E

[
e−δτ

∗
n

∫ τ∗n+1

τ∗n

e−δ(t−τ
∗
n)(a0 +Wt −Wτ∗n)2 dt

]
= E

[
e−δτ

∗
n
]
E

[∫ Tb0−a0 (B)

0

e−δt(a0 +Bt)
2 dt

]
for all n ≥ 2.
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In view of these observations and the monotone convergence theorem, we can see that

E

[
∞∑
n=1

e−δτ
∗
n
(
1 + κZ∗n

α
)]

= E

[
2∑

n=1

e−δτ
∗
n
(
1 + κZ∗n

α
)]

+
[
1 + κ(b0 − a0)α

] ∞∑
n=3

E
[
e−δτ

∗
n
]

<∞

and

E
[∫ ∞

0

e−δtX∗t
2 dt

]
= E

[∫ τ∗2

0

e−δtX∗t
2 dt

]
+ E

[∫ Tb0−a0 (B)

0

e−δt(a0 +Bt)
2 dt

]
∞∑
n=3

E
[
e−δτ

∗
n
]

<∞.

It follows that Jx(Z
∗) <∞.

To proceed further, we note that the impulse control strategy Z? is such that

1

2
w′′(X?

t )− δw(X?
t ) + λX?

t
2 = 0 for all t ∈ R+ \ {τ ?n, n ≥ 1},

and w(X?
τn − Z

?
n)− w(X?

τn) + 1 + κZ?
n
α = 0 for all n ≥ 1.

In view of these observations, we can see that (3.5.68) implies that

λ

∫ T

0

e−δtX?
t

2 dt+
∞∑
n=1

e−δτn
(
1 + κZ?

n
α
)
1{τ?n≤T}

= w(x)− e−δTw(X?
T+) +

∫ T

0

e−δtw′(X?
t ) dWt.

Using this identity instead of the inequality (3.5.69) and following the same steps as the ones

leading to (3.5.71), we can see that Jx(Z
?) = w(x). It follows that

v(x) ≤ w(x), (3.5.72)

which, combined with (3.5.71), implies that v(x) = w(x) as well as the optimality of Z?.

3.5.4 Appendix IV: proof of Lemma 9

Proof of Lemma 9. The identity (3.4.32) follows from the observation that, given any

α > 1, z ≥ 0 and n ≥ 2,

min
u1,...,un≥0
u1+···+un=z

n∑
j=1

(1 + κuαj ) = n+ nκ
( z
n

)α
. (3.5.73)
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For n = 2, this result follows immediately from the equivalence

d

du

[(
1 + κuα

)
+
(
1 + κ(z − u)α

)]
= 0 ⇔ u =

z

2
.

Given any n > 2, the first order conditions

∂

∂ui

(
n−1∑
j=1

(
1 + κuαj

)
+

[
1 + κ

(
z −

n−1∑
j=1

uj

)α])
= 0, for i = 1, 2, . . . , n− 1, (3.5.74)

are equivalent to ui+
∑n−1

j=1 uj = z, for i = 1, 2, . . . , n−1. Therefore, the first order conditions

(3.5.74) are equivalent to u1 = u2 = · · · = un−1. Combining this result with the observation

that un = z −
∑n−1

j=1 uj = u1, we can see that the minimum on the left-hand side of (3.5.73)

is achieved by the choice u1 = · · · = un = z
n
.

We can see that (3.4.33) is indeed true by combining (3.4.32) with the fact that the

inequality

n+ nκ
( z
n

)α
> (n+ 1) + (n+ 1)κ

(
z

n+ 1

)α
is equivalent to the inequality z > zn.

To show (3.4.34), we use the Maclaurin series expansion

(1 + y)ζ = 1 + ζy +
ζ(ζ − 1)

2
y2 + o(y2), for |y| < 1,

where ζ is a constant, to calculate

zn = κ−1/αn(α−1)/α

[
1−

(
1 +

1

n

)−(α−1)
]−1/α

= κ−1/αn(α−1)/α

[
α− 1

n
− α(α− 1)

2n2
+ o(n−2)

]−1/α

(3.5.75)

as well as

zn−1 = κ−1/αn(α−1)/α

[(
1− 1

n

)−(α−1)

− 1

]−1/α

= κ−1/αn(α−1)/α

[
α− 1

n
+
α(α− 1)

2n2
+ o(n−2)

]−1/α

. (3.5.76)
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In view of these calculations, we can see that

lim
n→∞

(zn − zn−1)

= κ−1/α(α− 1)−1/α lim
n→∞

n(α−1)/αn1/α

[(
1− α

2n
+ o(n−1)

)−1/α

−
(

1 +
α

2n
+ o(n−1)

)−1/α
]

= κ−1/α(α− 1)−1/α lim
n→∞

n

[(
1 +

1

2n
+ o(n−1)

)
−
(

1− 1

2n
+ o(n−1)

)]
,

and (3.4.34) follows.

Given any z > 0, there exists n ≥ 1 such that zn−1 ≤ z < zn. For any such pair of z and

n,
K(zn−1)

zn
<
K(z)

z
<
K(zn)

zn−1

because K is strictly increasing. In view of this observation, we can see that (3.4.35) will

follow if we show that

lim
n→∞

K(zn−1)

zn
= lim

n→∞

K(zn)

zn−1

= κ1/αα(α− 1)−(α−1)/α,

namely, if we prove that

lim
n→∞

n

zn

[
1 + κ

(zn−1

n

)α]
= lim

n→∞

n

zn−1

[
1 + κ

(zn
n

)α]
= κ1/αα(α− 1)−(α−1)/α. (3.5.77)

To this end, we calculate

lim
n→∞

n

zn

(3.5.75)
= lim

n→∞
κ1/αn1/α

[
α− 1

n
− α(α− 1)

2n2
+ o(n−2)

]1/α

= κ1/α(α− 1)1/α,

lim
n→∞

n

zn−1

(3.5.76)
= lim

n→∞
κ1/αn1/α

[
α− 1

n
+
α(α− 1)

2n2
+ o(n−2)

]1/α

= κ1/α(α− 1)1/α,

and (3.5.77) follows.

3.5.5 Appendix V: proof of Lemma 10

Proof of (I). First, we consider the function u defined by

u(x) =

w(x), if x ≤ b0

w(b0) + `(b0)(x− b0), if x > b0

 ,
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where w is given by (3.2.9). This function is C1 in R as well as C∞ in R \ {b0}, and satisfies

the inequality

min

{
1

2
u′′(x)− δu(x) + λx2, −u(x) + inf

z>0

[
u(x− z) + 1 + κzα

]}
≥ 0. (3.5.78)

In view of its construction and Lemma 7.(IV), we will establish (3.5.78) if we prove that

q̃(s, x) = −u(x) + u(s) + 1 + κ(x− s)α ≥ 0 for all s < x and x > b0, (3.5.79)

and
1

2
u′′(x)− δu(x) + λx2 ≥ 0 for all x > b0. (3.5.80)

To show (3.5.79), we consider any x > b0 and any s < x and we calculate

q̃x(s, x) = −`(b0) + ακ(x− s)α−1

= −g
(
b0 − (x− s), b0

)
(3.2.22)

=

> 0, if b0 − (x− s) < a0 ⇔ x > b0 − a0 + s

< 0, if b0 − (x− s) ∈ ]a0, b0] ⇔ x ∈ [s, b0 − a0 + s[

 .

These inequalities imply that

if x > b0 ∨ (b0 − a0 + s), then q̃(s, x) >

q(s, b0), if s ≤ a0

q̃(s, b0 − a0 + s), if s > a0

 ,

and, if x ∈ [s, b0 − a0 + s[ ∩ [b0,∞[, then q̃(s, x) > q̃(s, b0 − a0 + s),

where q is defined by (3.2.16). In view of these implications and Lemma 7.(IV), we can see

that (3.5.79) will follow if we prove that

q̃(s, b0 − a0 + s) ≥ 0 for all s > a0. (3.5.81)

To this end, we distinguish between two cases. If b0 < s ≤ b0 − a0 + s, then

q̃(s, b0 − a0 + s) = −`(b0)(b0 − a0) + 1 + κ(b0 − a0)α

(3.2.8)
= −`(b0)(b0 − a0) + w(b0)− w(a0)

=

∫ b0

a0

[
`(s)− `(b0)

]
ds

(3.2.20)
> 0.
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On the other hand, if a0 < s < b0 < b0 − a0 + s, then the calculation

dq̃(s, b0 − a0 + s)

ds
=
d
(
−w(b0)− `(b0)(s− a0) + w(s) + 1 + κ(b0 − a0)α

)
ds

= −`(b0) + `(s)

(3.2.20)
> 0

implies that

q̃(s, b0 − a0 + s) > q̃(a0, b0) = q(a0, b0)
(3.2.8)

= 0.

In either case, (3.5.81) holds true, and (3.5.79) has been proved.

In view of the calculations

d

dx

[
1

2
u′′(x)− δu(x) + λx2

]
= −δ`(b0) + 2λx

(3.2.19)
= −δ

√
2δAe

√
2δb0 + 2λ

[
x− b0

]
> 0 for all x > b0,

we can see that (3.5.80) is true if and only if

1

2
u′′(b0+)− δu(b0) + λb2

0 ≥ 0 ⇔ 0 ≥ w′′(b0−) = `′(b0),

which is true thanks to (3.2.20) in Lemma 7.(III).

To proceed further, we consider any initial condition x ∈ R and any impulse control

strategy Z ∈ A. Using Itô’s formula and (3.5.78), we can follow the same steps as the ones

we used to derive (3.5.69) in Appendix III to obtain

λ

∫ T

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤T}

≥ λ

∫ TZ∧T

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ∧T}

+ e−δ(TZ∧T )u(X(TZ∧T )+)− e−δTu
(
XT+

)
+

∫ T

TZ∧T
e−δtu′(Xt) dWt,

where TZ is the stopping time defined by (3.4.37). Following exactly the same arguments as

in the proof of (3.5.71) in Appendix III, we can see that this inequality implies that

Jx(Z) ≥ E

[
λ

∫ TZ

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZw(XTZ+)

]
,
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where we have also used the fact that w(XTZ+) = u(XTZ+). It follows that

v(x) ≥ inf
Z∈A

E

[
λ

∫ TZ

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZw(XTZ+)

]
. (3.5.82)

To derive the reverse inequality, we consider any initial condition x ∈ R and any impulse

control strategy Z ∈ A, and we denote by Z̃ ∈ A the impulse control strategy that is identical

to Z up to the stopping time TZ and then repositions the state process X down to the level

a0 whenever this hits the level b0 after time TZ. This strategy can be constructed as follows.

First, we define

Z̄
(i)
t =

∞∑
n=1

Zn1{τn<t}1{τn≤TZ},

τ
(ii)
1 = inf

{
t ≥ TZ | XTZ+ +Wt −WTZ+ ≥ b0

}
, Z

(ii)
1 = b0 − a0,

τ
(ii)
n+1 = inf{t ≥ τ (ii)

n | a0 +Wt −Wτ
(ii)
n
≥ b0}, Z

(ii)
n+1 = b0 − a0, for n ≥ 1,

and

Z̄
(ii)
t =

∞∑
n=1

Z(ii)
n 1{τ (ii)n <t}.

We then define Z̃ =
(
τ̃1, τ̃2, . . . , τ̃n, . . . ; Z̃1, Z̃2, . . . , Z̃n, . . .

)
, where τ̃n are the stopping times

at which the jumps of the process ˜̄Z = Z̄(i) + Z̄(ii) occur and Z̃n are the corresponding jump

sizes. Furthermore, we denote by Ã the family of all such impulse control strategies, and we

note that Ã ⊆ A. In particular, we note that

TZ̃ = TZ, X̃t1{t≤T
Z̃
} = Xt1{t≤TZ} and Z̃n1{τ̃n≤TZ̃} = Zn1{τn≤TZ}. (3.5.83)

Using the fact that the restriction of u in ]−∞, b0] identifies with w and satisfies (3.5.78)

with equality, and following exactly the same arguments as in the proof of (3.5.72) in Ap-

pendix III with u in place of w, we can see that

Jx(Z̃) = E

[
λ

∫ TZ

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZw(XTZ+)

]
.
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It follows that

v(x) = inf
Z∈A

Jx(Z) ≤ inf
Z̃∈Ã

Jx(Z̃)

= inf
Z∈A

E

[
λ

∫ TZ

0

e−δtX2
t dt+

∞∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZw(XTZ+)

]
,

where we have also used (3.5.83). Combining this inequality with (3.5.82), we obtain the

required result.

3.5.6 Appendix VI: proof of Theorem 5

The inequalities w̄j ≥ wj ≥ w̄j+1 for all j ≥ 0 are straightforward to see. On the other hand,

the regularity of the functions wj and the fact that they satisfy the variational inequality

(3.4.41) follow from Theorem 6.3 of Lamberton and Zervos [40]. In particular, wj satisfies

wj(x) = E
[
λ

∫ T ?j

0

e−δtX̊2
t dt+ e−δT

?
j w̄j(X̊T ?j

)

]
, (3.5.84)

where

X̊t = x+Wt and T ?j = inf
{
t ≥ 0 | wj(X̊t) = w̄j(X̊t)

}
, (3.5.85)

Furthermore, the continuity of the function z 7→ wj(x− z) + 1 + κzα and the fact that this

function tends to∞ as z increases to∞ imply that there exists a function zj : [b0,∞[→ [0,∞[

such that

zj(x) = arg min
z≥0

[
wj(x− z) + 1 + κzα

]
. (3.5.86)

Also, we note that the definitions of w̄j in (3.4.38), (3.4.40) and Lemma 7.(IV) imply that

w̄j(x) = wext(x) for all x ≤ b0 and j ≥ 0. (3.5.87)

We now show by induction that, given any j ≥ 0,

wj(x) = inf
Z∈Aj

E
[
λ

∫ TZ

0

e−δtX2
t dt

+

j∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZwext(XTZ+)

]
, (3.5.88)
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where

TZ = inf
{
t ≥ 0 | Xt ≤ b0

}
and Aj ⊆ A is the family of all admissible impulse control strategies Z such that τj+2 =∞,

namely, the class of all strategies that involve a maximum of j + 1 jumps. To establish

(3.5.88) for j = 0, we first note that, given any (Ft)-stopping times
¯
T ≤ T̄ ,

E

[
λ

∫ T̄

0

e−δtX2
t dt+ e−δT̄wext(X̊T̄ )

]

= E

[
λ

∫
¯
T∧T̄

0

e−δtX2
t dt+ e−δ(¯T∧T̄ )wext(X̊

¯
T∧T̄ )

]
(3.5.89)

because the process
(
λ
∫ t

0
e−δsX2

s ds+ e−δtwext(X̊t)
)

is a square-integrable martingale. In

view of this observation, the definitions (3.4.38), (3.4.39) of w̄0, w0, we can see that, given

any Z ∈ A0,

E
[
λ

∫ TZ

0

e−δtX2
t dt+ e−δτ1

(
1 + κZα

1

)
1{τ1≤TZ} + e−δTZwext(XTZ+)

]
= E

[
λ

∫ τ1∧TZ

0

e−δtX2
t dt+ e−δτ1

(
1 + κZα

1

)
1{τ1≤TZ} + e−δ(τ1∧TZ)wext(X(τ1∧TZ)+)

]
= E

[
λ

∫ τ1∧TZ

0

e−δtX̊2
t dt

+ e−δτ1
[
wext(X̊τ1 − Z1) + 1 + κZα

1

]
1{τ1≤TZ} + e−δTZwext(X̊TZ)1{TZ<τ1}

]
≥ inf

τ∈T
E
[
λ

∫ τ

0

e−δtX̊2
t dt+ e−δτ w̄0(X̊τ )

]
= w0(x). (3.5.90)

To derive the reverse inequality, we consider the strategy Z? ∈ A0 given by

τ ?1 = inf
{
t ≥ 0 | w0(X̊t) = w̄0(X̊t) and w̄0(X̊t) > wext(Xt)

}
and Z?

1 = z0(X̊τ?1
),

where z0 is defined by (3.5.86). The definition (3.4.38) of w̄0 and the identity (3.5.87) imply

that the stopping time T ?0 defined by (3.5.85) satisfies

T ?0 ≤ τ ?1 ∧ TZ? and T ?0 1{τ?1≤TZ?} = τ ?1 1{τ?1≤TZ?}.
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In view of this observation, (3.5.87) and (3.5.89) we can see that

E
[
λ

∫ TZ?

0

e−δtX2
t dt+ e−δτ

?
1
(
1 + κZ?

1
α
)
1{τ?1≤TZ?} + e−δTZ?wext(XTZ?+)

]
= E

[
λ

∫ τ?1∧TZ?

0

e−δtX2
t dt+ e−δτ

?
1
(
1 + κZ?

1
α
)
1{τ?1≤TZ?} + e−δ(τ

?
1∧TZ? )wext(X(τ?1∧TZ? )+)

]
= E

[
λ

∫ τ?1∧TZ?

0

e−δtX̊2
t dt

+ e−δτ
?
1

[
wext(X̊τ?1

− Z?
1) + 1 + κZ?

1
α
]

1{τ?1≤TZ?} + e−δTZ?wext(X̊TZ? )1{TZ?<τ?1 }

]
= E

[
λ

∫ T ?0

0

e−δtX̊2
t dt

+ e−δT
?
0

[
wext(X̊T ?0

− Z?
1) + 1 + κZ?

1
α
]

1{τ?1≤TZ?} + e−δT
?
0wext(X̊T ?0

)1{TZ?<τ?1 }

]
= E

[
λ

∫ T ?0

0

e−δtX̊2
t dt+ e−δT

?
0 w̄0(X̊T ?0

)

]
= w0(x). (3.5.91)

Combining these identities with (3.5.90), we obtain (3.5.88) for j = 0.

To proceed further, we assume that (3.5.88) holds true for j = k− 1, for some k ≥ 1. An

impulse control strategy Z ∈ Ak involves a maximum of k + 1 jumps. The evolution of the

driving Brownian motion after time τ1 at which the first jump occurs is independent of the

evolution of the state process prior to time τ1. Therefore, we may assume in what follows

that τn and Zn are measurable with respect to the information flow obtained by Xτ1+ and
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the process
(
(Wτ1+t −Wτ1)1{τ1<∞}

)
. In view of this observation

E
[
λ

∫ TZ

0

e−δtX2
t dt+

k+1∑
n=1

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZwext(XTZ+)

]
= E

[
λ

∫ τ1∧TZ

0

e−δtX2
t dt+ e−δτ1

(
1 + κZα

1

)
1{τ1≤TZ}

+ E
[
λ

∫ TZ

τ1∧TZ
e−δtX2

t dt

+
k+1∑
n=2

e−δτn
(
1 + κZα

n

)
1{τn≤TZ} + e−δTZwext(XTZ+)

∣∣∣∣Fτ1∧TZ]]
≥ E

[
λ

∫ τ1∧TZ

0

e−δtX2
t dt+ e−δτ1

(
1 + κZα

1

)
1{τ1≤TZ} + e−δ(τ1∧TZ)wk−1(X(τ1∧TZ)+)

]
= E

[
λ

∫ τ1∧TZ

0

e−δtX̊2
t dt

+ e−δτ1
[
wk−1(X̊τ1 − Z1) + 1 + κZα

1

]
1{τ1≤TZ} + e−δTZwk−1(X̊TZ)1{TZ<τ1}

]
≥ inf

τ∈T
E
[
λ

∫ τ

0

e−δtX̊2
t dt+ e−δτ w̄k(X̊τ )

]
= wk(x). (3.5.92)

Combining the arguments we have used in (3.5.91) and (3.5.92), we can see that the strategy

Z? ∈ Ak given by

τ ?n = inf
{
t ≥ 0 | wk+1−n(X̊t) = w̄k+1−n(X̊t) and w̄k+1−n(X̊t) > wk−n(Xt)

}
,

Z?
n = zk+1−n(X̊τ?n),

for n = 1, . . . , k + 1, satisfies

E
[
λ

∫ TZ?

0

e−δtX2
t dt+

k+1∑
n=1

e−δτn
(
1 + κZ?

n
α
)
1{τn≤TZ?} + e−δTZ?wext(XTZ?+)

]
= wk(x).

This identity and (3.5.92) imply that (3.5.88) holds true for j = k. It follows that (3.5.88)

is true for all j ≥ 0.

To establish the fact that limj→∞wj(x) = v(x) for all x ∈ R and complete the proof,

we first note that limj→∞wj(x) exists because the sequence
(
wj(x)

)
is decreasing. The
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inequality limj→∞wj(x) ≥ v(x) follows immediately from (3.5.88) and the fact that Aj ⊆
Aj+1 for all j ≥ 0. To prove the reverse inequality, we consider any ε-optimal strategy

Zε = (τ ε1 , . . . , τ
ε
n, . . . ;Z

ε
1 , . . . , Z

ε
n, . . .) ∈ A,

namely, any strategy such that Jx(Z
ε) ≤ v(x) + ε. If we denote by Zε,j ∈ Aj the strategy

obtained by Zε by setting τ εj+1+k =∞ for all k ≥ 1, then

v(x) + ε ≥ E

[
λ

∫ ∞
0

e−δt(Xε
t )

2 dt+
∞∑
n=1

e−δτ
ε
n
(
1 + κ(Zε

n)α
)]

= Jx(Z
ε,j) + E

[
λ

∫ ∞
τεj

e−δt
[
(Xε

t )
2 − (Xτεj

+Wt)
2
]
dt+

∞∑
n=j+2

e−δτ
ε
n
(
1 + κ(Zε

n)α
)]
.

Combining this observation with the limits

0 ≤ lim
j→∞

E

[
λ

∫ ∞
τεj

e−δt(Xε
t )

2 dt+
∞∑

n=j+2

e−δτ
ε
n
(
1 + κ(Zε

n)α
)]

≤ lim
j→∞

E

[
λ

∫ ∞
τεj

e−δt(Xε
τεj

+Wt)
2 dt

]
= lim

j→∞
E
[
e−δτ

ε
j

(
λ

δ
(Xε

τεj
)2 +

λ

δ2

)]
= 0,

which follow from the fact that limj→∞ τ
ε
j = ∞, we can see that limj→∞wj(x) ≤ v(x) + ε.

It follows that limj→∞wj(x) ≤ v(x) because ε has been arbitrary.
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