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Abstract

Flowgraph models are directed graph models for describing the dy-
namic changes in a stochastic process. They are one class of multi-
state models that are applied to analyse time-to-event data. The main
motivation of the flowgraph models is to determine the distribution of
the total waiting times until an event of interest occurs in a stochastic
process that progresses through various states. This thesis applies the
methodology of flowgraph models to the study of Markov and Semi-

Markov processes.

The underlying approach of the thesis is that the access to the mo-
ment generating function (MGF) and cumulant generating function
(CGF), provided by Mason’s rule enables us to use the Method of
Moments (MM) which depends on moments and cumulant. We give
a new derivation of the Mason’s rule to compute the total waiting
MGF based on the internode transition matrix of a flowgraph. Next,
we demonstrate methods to determine and approximate the distribu-
tion of total waiting time based on the inversion of the MGF, including
an alternative approach using the Padé approximation of the MGF,

which always yields a closed form density.

For parameter estimation, we extend the Expectation-Maximization
(EM) algorithm to estimate parameters in the mixture of negative
weight exponential density. Our second contribution is to develop a
bias correction method in the Method of Moments (BCMM). By in-
vestigating methods for tail area approximation, we propose a new

way to estimate the total waiting time density function and survival



function by showing how computation can be simplified when the tra-
ditional saddlepoint approximation is constructed based on the Padé
approximation of the MGF. A bias correction method for this Padé-
type saddlepoint approximation is also presented. For application, we
consolidate the Method of Moments and develop our own MATLAB
package called MMF to provide an interactive tool to find the total
waiting time MGF, simulate flowgraph data, and incorporate the MM

into large flowgraph models.



Glossary of acronyms

BCMM Bias corrected method of moments

CDF Cumulative distribution function

CGF Cumulant generating function

EM Expectation and Maximisation

MGF Moment generating function

MM Method of moments

MFM Methodology of Flowgraph Models

MLE Maximum likelihood estimator

MMF Method of moments in Flowgraph

MSE Mean square error

ME Maximum entropy

PDF Probability density function

SP Saddlepoint approximation

Notation

Dij The probability of transition from node ¢ to node j.

m;j(s)  The MGF of waiting time in node i before arriving at adjacent node j.
¢;j(s)  The transmittance for the branch connects node i to node j: p;jm;;(s).
Q The branch transmittance matrix of non-closed flowgraph in Chapter 2.
Q The branch transmittance matrix of closed flowgraph in Chapter 2.

A The coefficient matrix of non-closed flowgraph in Chapter 2: A =1 — Q7.
A The coefficient matrix of closed flowgraph in Chapter 2: A =T — Q7.
M, (s)  The MGF of total waiting time between input node 1 and output node n.

The survival function S(t) = P(T > t).
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Chapter 1
Introduction

Multistate models are used to describe time-to-event data that result from a
stochastic process. They model stochastic processes that progress through vari-
ous states, and they are commonly applied to describe the events (i.e. the transi-
tions between states) for an individual, which only occupies one of a few possible
states at any time. Here, the analysis focuses on modeling the total waiting time
between two states of interest for a single individual. Multistate models have a
wide application in demography, economics, operations research, sociology, in-
surance and finance. The entire area of queuing theory is based on multistate
models, starting with Johanssen (1907) as cited, for example, by Kendall (1951).
The work of Fix and Neyman (1951) is one of the earliest uses of a multistate
stochastic model in medical statistics. Hougaard (1999) presents a comprehensive
review paper of the multistate models, and Hougaard (2000) gives more detail
on the application of multistate models to handle multivariate survival data. An
introduction to event history analysis via multistate models is given by Andersen
and Keiding (2002). For an application to the statistical modelling and analysis
of network data, see Kelly, Zachary and Ziedins (1996).

In finance and insurance, the Markov multistate models first appeared in
Hoem (1969), and the first applications of semi-Markov multistate models to ac-
tuarial problems can be found in Hoem (1972). Pitacco (1995) illustrates how the
multistate Markov and semi-Markov models can be used for the actuarial model-

ing of health insurance policies. The monograph of Haberman and Pitacco (1999)
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gives a detail review of the application of multistate models in disability insurance
and long-term care insurance. More recently, Sen (2008) proposes a multi-state
Vasicek model for credit risk analysis, where he shows that the correlation be-
tween default and recovery can be modelled efficiently by allowing multiple loss
states in the Vasicek framework. Norberg (2008) discusses the methodology of
modern life insurance mathematics in the framework of a multistate model for
life-history analysis. Dickson, Waters and Hardy (2009) give a modern perspec-
tive on life contingencies in terms of the multistate model. Spierdijk and Koning
(2011) apply a multistate mixed proportional hazards approach to estimate a

sufficient loss reserve for insurance companies.

In a stochastic system context, a flowgraph consists of nodes representing the
outcomes or system states, where nodes are connected by directed line segments
called branches that give the direction of state transition. Each branch is assigned
a transition probability of taking this branch and waiting time distribution. The
flowgraph theory was originally developed in Mason (1953, 1956) to solve sys-
tems of linear equations for finding the transfer function of signal flowgraph in
electrical engineering. The work of Mason is later adapted for the computation
of MGF by Sittler (1956), Huggins (1957), Lorens (1964), Pritsker and Happ
(1966), Whitehouse (1970), and Butler (2000). A comprehensive presentations of
the flowgraph model and its application to the analysis of time-to-event data is
given in the book of Huzurbazar (2005).

Stochastic flowgraph models can be considered as a tool to analyse stochastic
process via a network approach. For example, in medical survival analysis, the
development of patient’s illness can be considered as a process that progresses
through several stages, where stage 1 is labeled as the diagnosis of disease, stage 2
is the advanced stage of the disease, and stage 3 represents the event of patient’s
death. A parallel flowgraph consists of 3 nodes can be applied for modeling the
survival time of patients, who can either die directly from other causes (i.e. move
directly from stage 1 to stage 3) or die from the advanced stage of disease (i.e.
move to stage 2 before reaching stage 3). In an engineering reliability problem

of 2 pump systems, the stages of the system begin with the functioning state 0



when both pumps are working properly, then proceed to the partially functioning
state 1 after one pump failed and eventually move to the maintenance states 2
when both pumps failed. In this case, a series flowgraph can be applied to model

the distribution of total waiting time from functioning state to maintenance state.

plomlo( )
01 m01 U p12m12 p23m23 O
Input Output
p20m20

Figure 1.1: Flowgraph model for modelling the total waiting time until the first
occurrence of 3 consecutive heads. The p;; is the transition probability and m;;(s)
is the MGF of waiting time distribution between node ¢ and node j.

The objective of flowgarph analysis is to determine the distribution of total
waiting time between two nodes of interest based on the inversion of MGF. This
is the starting point for computing the probability density function (PDF), cumu-
lative distribution function (CDF), survival and hazard function of total waiting
time. For illustration, let us consider a simple coin tossing experiment, where we
are interested in the total waiting time to obtain three consecutive heads. Our
system resulting from a sequence of independent coin tosses and the state of the
system is the current number of consecutive heads. Figure 1.1 is the flowgraph for
describing the outcomes of a coin tosses experiment. It starts from the input node
0 with no head and terminates in the output node 3 if we obtained 3 consecutive
heads. Each branch is labeled with a quantity called the branch transmittance,
which is defined as a product of the probability of taking that branch and the
MGF of the waiting time. For example, the branch that connects node 1 to node 2
is assigned with branch transmittance qi2(s) = p1amia(s), where pqs is the proba-
bility of transition from node 1 to node 2, and my5(s) is the MGF of waiting time
in node 1 before the state of system moves to node 2 (i.e. we obtain 2 consecutive
heads). The structure of the flowgraph and branch transmittances summarise all

information about the potential outcomes of this system.
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Structure of the thesis

Chapter 2 begins with a brief introduction to the flowgraph model, where three
basic structures: series, parallel and feedback loop are presented. The Flowgraph
model can be applied to describe any finite state stochastic network that is a
Markovian system or Semi-Markov process by including non-exponential dis-
tributed waiting times between states. As the MGF plays an important role in
the total waiting time density estimation, the use of Mason’s rule, which allow us
to compute the algebraic expression for the moment generating function of the
waiting time between two nodes of interest given the internode distributions, is
illustrated with examples. Our main contribution in this chapter is to propose a
new derivation of Mason’s rule based on matrix algebra, and the advantage of
our new formula is that we can now obtain the total waiting time MGF without
counting the paths and feedback loops. This has significantly improved the prac-
ticability of Mason’s rule for calculating MGF in large flowgraph models. We also
demonstrate the effectiveness of our formula to compute the MGF in a compli-

cated flowgarph with combination of series, parallel and feedback loop structures.

Chapter 3 presents three different methods for inverting the MGF to obtain
the PDF of total waiting time random variable. In brief, the Maximum Entropy
method provides density estimation subject to the moments constraints, whereas
the saddlepoint approximation is a numerical method to invert MGF by the idea
of integral approximation. While the above two well-known methods work with
the original given MGF', the Padé approximation approach estimates PDF based
on a rational function approximation of MGF in which the direct inversion can be
applied to obtain density function. Since the application of Padé approximation
is much less studied in the context of flowgraph model, our main contribution in
this chapter is to promote the use of Padé approximation to estimate the distri-
bution of total waiting time between two states of interests. The implementation
of each method is demonstrated in detail with examples of both exponential and
non-exponential internode waiting time case, and the comparison of these meth-

ods is also given in the last section of this chapter.



Given a sample of total waiting times between two nodes of interest in a flow-
graph, Chapter 4 compares the Maximum Likelihood method with the Method of
Moment (MM) for estimating parameters in the total waiting time distribution.
We start by demonstrating the application of EM algorithm for maximum likeli-
hood estimation in the traditional mixture density (i.e. all weight are positive).
As the total waiting time density is usually in the form of mixture exponential
density with some negative weights, our contribution is to introduce a new sys-
tematic procedure to convert the mixture density with possible negative weights
to a mixture density with positive weights, which makes the computation of max-

imum likelihood estimator (MLE) relatively simple using the EM algorithm.

On the other hand, we develop a easier-to-implement MGF approach for
computing the bias of the MM estimator to order O(n~1), where n is the size of
sample data, and propose a bias correction method in MM. Although the MM is
typically not as efficient as ML method in parameter estimation, it is faster and
easier to implement because it does not require inverting the MGF to obtain the
PDF, and hence the likelihood function. This feature is particularly useful in a big

flowgraph with a complicated structure that contains large number of parameters.

Chapter 5 is devoted to the tail area approximations for the PDF and sur-
vival function of total waiting time random variable. We first review the idea of
approximating tail area probabilities of PDF by an exponential function in the

form of ce™¢

¢, and propose a simple method to determine the asymptotic constant
c and rate a based on the MGF of total waiting time. We proceed with the error
analysis for the calculation of exponential function using the Padé approximation
of MGF, and then derive a closed form expression for modeling the behavior of
the error in estimating tail area probabilities that obtained by the Padé approx-

imation of MGF.

Moreover, the Lugannani-Rice saddlepoint approximation for survival func-
tion is also presented. As saddlepoint approximation usually involves high com-
putational cost if the underlying MGF is complicated, the major contribution we

present here is to develop a Padé-type saddlepoint approximation, using the Padé
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approximation of MGF as baseline function, to simplify the calculation in sad-
dlepoint approximation. A bias correction method for the Padé-type saddlepoint
approximation for tail probabilities is then proposed. Numerical examples for the
estimation of tail area probabilities of both PDF and survival function are also

illustrated to demonstrate the methods.

Chapter 6 introduces our own Matlab based computer package, the Method
of Moment in Flowgraph (MMF), for computing the Method of Moments estima-
tor for parameters in any user-defined flowgraph model. Our contribution is to
develop a Matlab package that provides a convenient way to derive the MGF of
total waiting time between two nodes of interest, simulate the flowgraph data, and
calculate the MM estimators. This package is particularly useful to researchers
and practitioners interested in applying the methodology of flowgraph to real life
problems. A detailed demonstration of how to use our package is presented with

an example.



Chapter 2

Mason’s rule

2.1 Review of the Flowgraph models

2.1.1 Introduction

Flowgraph analysis involves flowgraph algebra, which manipulates transition prob-
abilities and the moment generating function (MGF) of internode waiting time
to compute the MGF of the total waiting time and obtain the distribution of
total waiting time based on the inversion of its MGF. The first step in flow-
graph analysis is to identify the input node and output node from the set of
nodes that represent various states of a system. The terms “input” and “out-
put” are, here, used quite generally; the interpretation depends on the context.
For example, we may consider the diagnosis of a diseases as input and death as
output in medicine survival analysis. For an engineering reliability problem, the
fully functioning stage of a power generating system is usually labeled as input,
and the occurrence of fully failed stage is labeled as output. Secondly, we need

to derive the MGF of total waiting time between the input node and output node.

This chapter will first illustrate a probabilistic approach to solve three types
of flowgraph model, namely, series, parallel and single feedback loop. Next, we
discuss the property of flowgraph and illustrate Mason’s rule in determining the
MGF between two nodes of interest. The last part of this chapter will present our

new derivation of the Mason’s rule based on the matrix algebra.



Mason’s rule

Definition 1. For a random variable X with density function fx(x), the moment
generating function (MGF) of X, Mx(s), is for all s, such that

Mx<8) = EX[€SX] = /;ooesxfx(l’)dl’

o0

18 convergent.

Definition 2. A transmittance for the branch connecting node i to node j is de-
noted by q;;(s), such that q;;(s) = pi;mi;(s), and i # j, where p;; is the probability
of transition from node i to node j, and m;j(s) is the MGF of the waiting time

distribution in node i before reaching node j.

2.1.2 A probabilistic approach to compute the MGF
2.1.2.1 MGTF for the series flowgraph

Figure 2.1 is a series flowgraph describes, for example, the status of a power
generating system with two pumps. Node 0 is the initial stage where the system
is working properly with no pumps failed, node 1 indicates the event of one pump
failed, node 2 represents the occurrence of two pump failed and the system breaks
down. Let mgi(s) be the MGF of passage time Ty from node 0 to node 1 (i.e.
the waiting time for the occurrence of one pump fails), and mqs(s) be the MGF
of random variable T}, the waiting time in node 1 before reaching node 2. The
transition probability from 0 — 1 and 1 — 2 are all equal 1. As we are interested
in the total waiting time until two pumps fail, node 0 is the input and node 2 is
the output, then the total waiting time Ty, for the power generating system to
break down (i.e. node 0 to node 2) is the sum of two independent variables Ty,
and T15. The MGF of Tpy is, therefore, mg; (s)mia(s).

@ Po1mo1(s) @ Pp12maz(s) @

Input Output

Figure 2.1: Series flowgraph model for a power generating system



2.1 Review of the Flowgraph models

Now, suppose we have a series flowgraph model with n nodes, let ¢,,.1 be
the waiting time of a particle in the node i before it gets to node i + 1, i =
1...n — 1, then the overall waiting time from the first node to the n-th node
isT = Z?;ll tii+1. Since the MGF of the sum of independent random variables
is just the product of individual MGF, the MGF of the overall waiting time
distribution 7" is

My () = [ (s

where m; ;41(s) is the MGF of ¢;;.;. The result shows that the MGF of total
waiting time in a series flowgraph is a product of the MGF's of internode transition

time.

2.1.2.2 MGTF for the parallel lowgraph

Figure 2.2 is a parallel flowgraph model for the progression of cancer patients.
Node 0 represents the initial diagnosis of cancer, node 1 is the advanced state of
cancer, and node 2 is the event of death. Patients could reach node 1 with proba-
bility po; or die with probability pgs = 1 — pg1. Once the patient is in node 1, the
transition to node 2 is certain and p;; = 1. Since a path is defined as a sequence
of nodes from input to output that does not pass through any intermediate nodes
more than once, then there are two paths from input node 0 to output node 2 in
Figure 2.2. (see Table 2.1).

p01m01(s) p12m12(s)

o ®
Po2mp2 (8)

Input Output

Figure 2.2: Parallel flowgraph model for cancer progression
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Table 2.1: Paths for the flowgraph of cancer progression

Path j Path probability P; Path MGF Mx(s)
1: 0—2 Po2 Moz ()
2: 0—-1—2 Po1P12 mo1(5)mia(s)

Suppose we are interested in the total waiting time to the death of patient
due to any cause (e.g. either dying with or without advanced state of cancer),
let Xy, X5 be the waiting time to reach node 2 by taking path 1 and path 2
respectively, and let Y be the total waiting time for the occurrence of death. If
we assume distribution for X; and X, and the probability of taking path 1 and
path 2 is P, and P, separately.

PY <y = PXi<ylj=1)P+P(Xy<ylj=2)P;

Then

frly) = PXi=ylj=1)Pi+P(Xo=ylj=2)P
= fx,(y) P+ fx,(y) P>

The MGF of the total waiting time from node 0 to node 2 is

My(s) = Ey(e™)
= [ e wP P dy
= PiMx,(s) + P2Mx,(s)
= Ppo2mo2(s) + porpi2mon (s)maa(s)

Since po; + po2 = 1 and p12 = 1, then My (y) is a mixture of two different paths
MGF: with probability pos it is moz(s), and with probability po; it is mg1 ($)mia(s).

10



2.1 Review of the Flowgraph models

Given k possible paths between input node and output node in a parallel
flowgraph, the total waiting time is the passage time from input to output, and
it depends on the paths that we chose to travel to the output node. Let T} be
the random variable that represents the waiting time to reach output node by
selecting path j with probability P;, then the PDF of the total waiting time T

between input and output is

k
fr(t) =Y P(Ty=t|j)F,
j=1
where k is the total number of different paths between input node and output

node. The MGF of total waiting time distribution can be expression as

Mr(s) = E(e)

= / e fr(t)dt
0

00 k
= [ e Pm =t lpa
0

J=1

_ / Tt (P ()Pt -+ fr (0P} dt
0

= PlMTl(S) + PQMTQ(S) + ...+ PkMTk(s)
k
= Z Pj M, (s)
j=1
where My, (s) is the MGF of total waiting time to reach output node by taking
path j with probability P;, and Z§:1Pj = 1. Hence the MGF of the overall

waiting time in a parallel flowgraph is a finite mixture MGFs that results from

taking each path between input node and output node.

11
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2.1.2.3 MGTF for the flowgraph with feedback loops

Plomlo(s) p01m01(s)

o ®
Po2Mo2 (S)

Input Output

Figure 2.3: Single feedback loop flowgraph model

Figure 2.3 is a simple 3 nodes flowgraph that contains only one feedback
loop. Assume a particle starts from input node 0 can either directly move to
output node 2 or pass through the feedback loops 0 — 1 — 0 before transition to
output node 2. let pgs be the probability of transition from node 0 to node 2, and
po2 > 0 (i.e the particle will eventually get to node 2), then the probability of
the particle taking the feedback loop and return to node 0 (i.e. path 0 — 1 — 0)
is po1 = 1 — pg2. Each transition is considered as a Bernoulli trials with the
probability of “success” pge (i.e. path 0 — 2). Let N be the the number of times
a particle takes the feedback loop before it reaches output node 2, and N ~
Geometric (pg2), then the probability of first success transition to node 1 after k

times return to node 0 is
P(N=k) = (1—pgp)'pe fork=012... (2.1)

Let U be the total time of a particle spent in the path 0 — 1 — 0 and it has
density function fy(u) and MGF My (s) = mgo(s). Since this total time is a sum
of independent waiting time in 0 — 1 and 1 — 0. Therefore, the distribution of
U is a convolution of the distributions of the independent waiting time Tp; and

Tip, and we have

MU(S) = moo(s) = m01(s)m10(8)

12



2.1 Review of the Flowgraph models

Let V be the time of first transition from node 0 to node 2, it is independent of
U and has probability density function fy (v) and MGF My (s) = mgs(s). Since
N is the total number of times that a particle takes the feedback loop before it
gets to output node 2, the total waiting time W from node 0 to node 2 is then
the sum of time for particle to take the feedback loop, Zf\il U;, and the time in
the last transition from node 0 to node 2, V. Therefore, the distribution of W is

the convolution of N distributions fy;(u) and a single distribution fy (v).

N
W=y U +V

i=1

The density of W is

fw(w) = Y fw(w|N = k)p(N = k)

k=0

The MGF of W is

Mw(S) = E(€SW)
= / e*™ fw (w)dw

0
= ooeswf (w|N =k)p(N = k)dw
kZ:o/O w P

o

- Zp(N = k) /000 e* fw(w|N = k)dw
= D PN =k)Myx-k(s) (22)

where integration and summation can be interchanged as a consequence of the
monotone convergence theorem (Theorem 16.6, Billingsley (1986)). Since V' is
independent of U and U; is i.i.d with MGF My (s), the MGF of W|N = k is

Miyiv=k(s) = (My(s))" My(s) (2.3)

13
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By substituting equation 2.3 and 2.1 into 2.2, we have
s k
My (s) = Z 1 — po2) Poz(MU< )) My (s)
k=0

= My (9)3 {1 = )Mo ()}

k=0

Since My (s) = 1 for s near 0 and 1 — ppe < 1, then |(1 — po2) My (s)| < 1 holds in
an open neighborhood of s = 0. Therefore the MGF of W is

po2My (s)

Mw(s) = T 0= )Mo )
_ Pozmoz(s)

1- (1 - p02)m00(s)
Po2moz(8)

1- p01m01(s)m10(s)

The above examples contain some of the main ideas. In particular we see that
difference between the structure of the input-output MGF for the directed case
and the case with feedback loops.

2.2 A flowgraph approach to compute the MGF

A flowgraph can be considered as a directed graph obtained by assigning trans-
mittance for each edge. That is, a directed graph in which every edge is associated
with a function which is a product of the transition probability and the MGF of
internode waiting time distribution. In general, Mason’s rule is a procedure for
determining the MGF of the waiting time distribution between any two nodes
of interest in flowgraph, provided that there is at least one path between those
two nodes. The first step in applying Mason’s rule is to identify all the distinct
paths from input to output as well as the loops involved in those paths, then we
need to compute the corresponding transmittance (i.e. a product of transition

probability and MGF') and substitute them accordingly to the Mason’s formula.

14



2.2 A flowgraph approach to compute the MGF

nput ? utput

d

Figure 2.4: An illustrated flowgraph example

Definition 3. A directed graph is defined as G = (V, E) with

1. a setV =(1,...,n), whose elements are called nodes.

2. a set B of nodes in'V called directed edges.

Definition 4. A first-order loop is any path that returns to the starting node of

the feedback loop without passing through any node more than once.

Definition 5. A j-th order loop consists of j non-touching first-order loops. (i.e.
the loops do not share a common node). The transmittance of a j-th order loop

is the product of the transmittance of j first-order loops it contains.

As the Manson’s rule involves identifying paths and feedback loops based on
the above definitions, in order to avoid ambiguity, we now provide a schematic
representation of Definition 3, 4, and 5 in Figure 2.4. By definition 3, the flowgraph
in Figure 2.4 can be defined by G = (V, E') such that

1. The set of nodes, V = {0,1,2,3,4,5}.
2. The set of directed edges, F ={a, b, ¢, d, e, f, g, h, i, j}.

According to Definition 4, we have four first-order loops 1 -2 — 1,2 — 3 — 2,
3—4—3and 0 -1 — 2 — 0. However, the loop1 - 2 -3 —- 2 — 1
is not a correct first-order loop because the path that returns to node 1 has
passed through node 2 twice. Furthermore, by Definition 5, the feedback loops
1—-2—=1and 0 — 1 — 2 — 0 do not form a second order loop because they
share a common node at node 2. In fact, the only second order loop in Figure 2.4

is the pair of loops 1 - 2 — 1 and 3 — 4 — 3.

15



Mason’s rule

The Mason’s rule was originally derived by S.J. Mason for finding the transfer
function in electrical engineering (see Mason (1953, 1956)). The transfer functions
are commonly used within the fields of signal processing, communication theory,
and control theory. It is usually a mathematical representation, in terms of MGF,
of the relation between the input and output of a linear time-invariant system.
Butler (1997a) gives a modernised version of proof for Mason’s rule based on per-
mutation theory and linear algebra, and introduces an cofactor formula based on
the simplification of matrix systems procedure that is discussed by Pyke (1961)
and Howard (1964, 1971).

Theorem 1. The general form of Mason’s rule gives the MGF of the total waiting

time from input node to output node as

_ 2 Be(s)[1+ 355 (=1 L (s)]
L4220, (=1)L(s)

M(s)

where

1. Py(s) is the transmittance for the k-th path from input node to output

node.
2. L;(s) the sum of the transmittances over the j-th order loops.

3. Lf(s) is the sum of the transmittances over j-th order loops sharing no

common nodes with the k-th path (i.e. loops not touching the k-th path).

2.2.1 Example 1

Figure 2.5 is a flowgraph model with a combination of series, parallel, and loop
structures. It describes a group of patients within a three states reversible illness-
death system. Node 0 is the healthy state, where patients can transition to dis-
eased state in node 1 with probability pg;, or die with probability pgs = 1 — po1.
The waiting time distribution for the transition from node 0 to node 1 has MGF,
mo1(s). For a patient in node 1, the next possible transition is either to node 0

with probability pig or to node 2 with probability p;o = 1 — p1g, and the MGF of

16



2.2 A flowgraph approach to compute the MGF

each waiting times are mq¢(s) and my2(s) respectively. Our interest is to compute,
Mos(s), the MGF of total waiting time distribution from input node 0 to output
node 2. In this flowgraph, there are two paths and one first order loop from input

node 0 to output node 2.

p10m10(5>

P01m01($)

o ®
Po2Mp2 (S )

Input Output

Figure 2.5: Flowgraph model for a reversible illness-death system

1. Path1: 0 -1 — 2, Pl(S) = q01(s)q12(8)
2. Path 2: 0 — 2, Py(s) = qoa(s)

3. First order loop 0 — 1 — 0, L1(s) = qo1(s)q10(s).

where g;;(s) = pijm;;(s) is the branch transmittance defined in Definition 2, p;;
is the transition probability from node i to node j, and m;;(s) is the MGF of the

waiting time between node ¢ and node j.

By Mason’s rule in Theorem 1, the MGF of the total waiting time from node
0 to node 2 is

q02(5) + qo1(5)q12(s)
1 — qo1(s)qu0(s)
Po2moz(s) + porpiamor (s)mia(s)
- p01p10m01(s)m10(3)

17
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2.2.2 Example 2

Consider a more complicated flowgraph given in Figure 2.6.

p14m14(5)

P12m12(8)

Input

p23m23(s)
P34m34($)

Figure 2.6: A complex flowgraph

18



2.2 A flowgraph approach to compute the MGF

Table 2.2 presents a list of paths, first and second order loops between input

node 0 and output node 4.

Table 2.2: Summary of Paths and loops for the flowgraph

Paths Transmittance
1 0—-2—4 q02(5)q24(5)
2 0—-1—4 qo1(5)q14(s)
3 0—-1—-2—4 qo1(5)q12(5)q24(5)
4 0—-2—>3—14 qo2(5)q23(5)q34(5)
5 0—-1—-2—>3—4 q01(5)q12(5)q23(5)q34(5)
First order loops: 0—1—0 qo1(8)q10(s)
2—-3—2 q23(5)q32(8)
Second order loops: 0—1—0and2—3—2 qo(s)qi0(5)q3(s)g32(s)
Loop not touch path 2: 2—-3—=2 q23(5)q32(5)

By Mason’s rule, the MGF of total waiting time between node 0 and node 4
is
Pi(s) + Pa(s) [L — Li(s)] + P3(s) + Pa(s) + Ps(s)
1-— L1<S) + LQ(S)

M04(S) =

where

Pi(s) = qo2(s)qa(s)

Py(s) = qoi(s)qua(s)

P3(s) = qoi(s)q12(5)q24(s)

Py(s) = qoa(s)qes(s)gza(s)

Ps(s) = qoi(s)q2(5)qa3(s)qza(s)
Li(s) = qo3(s)gs(s)

Li(s) = qoi(s)qio(s) + q23(5)gz2(s)
Lo(s) = qo1(s)qi0(s)q23(s)gs2(s)

and ¢;;(s) = p;jm;;(s) is the branch transmittance between node i and node j

19



Mason’s rule

2.3 A new derivation of the Mason’s rule

Despite the fact that Mason’s rule only requires identifying all the paths and
feedback loops to compute the total waiting time MGF, Phillips (1996) points
out that Mason’s rule must be used with extreme care, it become increasingly
difficulty to identify the number of paths and loops correctly between input and
output in a large complicated flowgraph, because feedback loops can easily be
overlooked. In general, it can be complicated to implement the Mason’s formula
without making mistakes, particularly, as we can see in Figure 2.6, the existence
of non-touching loops increases the complexity of the formula. To overcome this
problem, we take a different approach and develop a new formula to compute the

MGF based on the internode transition matrix of flowgraph.

Suppose we consider the “flow” in terms of particles, a basic property of
flowgraph is the principle of mass conservation, which the outflow from a node
is equal to its inflow. We show this property in the next two examples. Figure
2.7 is a flowgraph with two input nodes at node 1 and node 2. Let x; denote the
number of particles come out from node 7. For convenience, we drop s from g;;(s)
and denote the transmittance from node i to node j by g;;. Suppose each input

node has 1 particle, then x3 can be expressed in terms of z; and z, as

423

) ©
q13

Figure 2.7: Flowgraph with two input nodes
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2.3 A new derivation of the Mason’s rule

ry = 1
To = 1
T3 = (13%1 + G23%2
In matrix form
AX =Y
where
1 0 0
A=1-QF = 0 1 0
—qi3 —q3 1
00 q13 T 1
and@ = [0 0 g ]|, X = [z, YV =
00 O T3 0

Figure 2.8 is a flowgraph with one feedback loop, where x; is defined as the
input node with 1 particle outflow. The relationship between each node can be

described by linear equations shown below

q23
q12

X1 x3
q13

Figure 2.8: A closed flowgraph with one feedback loop
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Mason’s rule

T = gure+1
Ty = (1271
T3 = (23T2 + ¢1371
In matrix form
AX =Y
where
I —qa O
A = I—QT = —12 1 0
—q13 —q3 1
0 qi2 @3 T 1
and @ = |gn 0 gul|, X = [z, YV = [0
0 0 0 T3 0

In a general flowgraph with n nodes, we can use a set of independent simultaneous

linear equations to represent the relationship between nodes.

1+ aprs+ -+ a1ty = Y1
a1T1 + T2+ -+ ATy, = Yo
Ap1T1 + Apalo + -+ 2, = Yn

In matrix form AX =Y, where A is a n-by-n coefficient matrix, such that

A = T1-Q7
1 ap - a
ay 1 - ag,
Ap1  Ap2 1

22



2.3 A new derivation of the Mason’s rule

and

aij = —qi = —pjim;i(s)

aii:]_

where () is the branch transmittance matrix, X denotes the nodes vector in
flowgraph, and Y is the input node indicator vector, where y; = 1 if node 7 is

the input node of the flowgraph (i.e. the node has only outflow), otherwise y; = 0.

Consider modeling a n states stochastic process in terms of a flowgraph, we
first need to identify two states of interest. Without any loss in generality, we set
the input at node 1 and output at node n to defined the direction of transition.
Secondly, we need to reduce the given flowgraph to a smaller one by excluding
those nodes along with all branches connected with such nodes that are not the
possible intermediate nodes during the transition from input to output. For ex-
ample, if we set the input node at 3 and output node at 4 in Figure 2.6, then node
0 and node 1 are irrelevant nodes and can be removed. This process of simplifying
a large flowgraph to a simple one with only two nodes and one branch is called
solving a flowgraph (Figure 2.9 is the solved flowgraph for Figure 2.5 on page
19). Note that Bulter (2000) generalised this procedure to solve flowgraph in the
single input and multiple outputs case (see Bulter (2000), Section 4.2).

(——)

Input Output

Figure 2.9: Solved flowgraph for the reversible illness-death system

After we simplified the complex flowgraph, the directed branch that connects
the node 1 with node n is labeled by the equivalent transmittances M, which
represents the transmittance of the entire flowgraph from input node to output
node. If the transition between these two nodes is certainly happening in a finite

time, this overall transmittances is the MGF of total waiting time distribution.
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To determine Mj,, we close the network by adding an extra branch from
the output node n to the input node 1 and label the corresponding transmit-
tance by w,; (see Figure 2.10). The idea behind introducing this transmittance
Wy is to simplify the calculation of M, in the context of closed flowgraph. By
the principle of conservation of mass, the transmittance in a closed system will
remain constant over time and will not be destroyed as a result, regardless of
the processes acting inside the system. In this case, w,; will convert all the flow

in output node n back to the input node 1, which is the reciprocal of target MGF.

Figure 2.10: Flowgraph model for a closed network system

We are now going to show a relationship between M, the MGF of total
waiting time between input node 1 and output node n, and the extra branch
transmittance w,; that connects those two nodes of interest. The branch trans-

mittance matrix Q for the closed flowgraph in Figure 2.10 is

N 0 Mln
(o, )

As there is no input in a closed network, the input node indicator ¥ = 0, and
the set of independent linear equations show the relationship between the nodes

are a homogeneous system AX = 0, where the coefficient matrix A is

o
I

~
I
!
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2.3 A new derivation of the Mason’s rule

The determinant of coefficient matrix A for this closed network is
det(A) = 1 — Mywy (2.5)

Pritsker and Happ (1966) claims that the determinant of the coefficient matrix
in a closed network is zero ( see Equation 5 in Pritsker and Happ (1966)), we will

discuss this proposition and give a proof in the following section.

Lemma 1. Given the branch transmittance matriz () of a non-closed flowgraph

with n nodes, we partition the transpose of matriz Q) in the form of

B 0

T 0

Q" =

and where B is a (n — 1) x (n — 1) matriz, v is 1 x (n — 1) row vector. Then

the MGF of waiting time between node 1 and output node n, such that 1 # n, is
My, (s) =v"(I,_y — B)™'Y

where Y = (Y1, ..., Yn—1)7 is a (n — 1) x 1 input node indicator vector with y; = 1

for input at node i, and zeros otherwise.

Proof. Suppose we consider the flow as particles from input to output in a non-
closed flowgraph. For ease of understanding, we set the input at node 1 and
output at node n. By partitioning the transpose of branch transmittance matrix

in a special way,

B 0

T 0

Q" =

where B is a (n—1)x (n—1) matrix that consists of all the gy, forall 1 < k <n—1,

1<1<n-—1,and vT is 1 x (n — 1) row vector such that

v = (

—qin, —q2n, - - -, _Qn—l,n)
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We are interested in the time taken for particle to reach output node n, where
particles will never leave once it enters the output node. (i.e. probability p,, = 1).
We assume that there is no loop on a single node to itself, and it takes at least
two transitions to return a node. The key idea in our proof is to use matrix B and
row vector v7 from QT to construct a n x n matrix D(s) with bottom righthand
corner entry equals 1 (i.e. d,,(s) = 1). To simplify the representation, we will

drop s for writing convenience. Define

B 0

D =
T 1

Since the input is chosen at node 1, the input node indicator vector is

Y = (yh "'7yn)T
with y; = 1 and zeros otherwise, then DY shows the path transmittance in
each node 1,...,n after one transition, D?Y shows the path transmittance after

two consecutive transitions, then D™Y represent the path transmittance after m
transitions in each node. Let m be the total number of transitions that particle

has made since input node 1.

B™ 0

D" =
TC 1

where
C =1,,+B+...+B™!

and [,y is the (n — 1) x (n — 1) identity matrix.

At this point, we need to propose the following conditions
1. B" - 0,asm — o

2. Iy +B+...+B™ 1) =(I,1 — B)™!, for m — oo, and |B| < 1.
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2.3 A new derivation of the Mason’s rule

NOTE: The first condition arises from our assumption that the particle al-
ways end up at the absorbing state (i.e. output node). The second condition is

just that ||B||* < 1 for some suitable matrix norm || . ||.

With these two conditions, m — oo gives

0 0
D" — D* = -
UT(In_l — B)_l 1

Since we have a single output at node n, then the MGF of total waiting time
from node 1 to node n just is the n-th entry of D™Y such that

e L [
oI (I, — B)™ 1] |0
| 0
_{UT([”—l - B)_1}1
_ d%] (2.6)

where d, is just the first component of 1 x (n — 1) row vector v*(I,_; — B)~L.
(ie. {vT(In-1—B)7'},). 0 denotes a (n — 1) x (n — 1) zero matrix, and both 0

and 1 are (n — 1) x 1 vector.

In general, the MGF of the total waiting time from input at node 1 to output

at node n in a non-closed flowgraph is

My, (s) =v"(I,-1 — B)™'Y

where y = (y1, Y2, ..., Yn)? with y; = 1 for input at node 7, and zeros otherwise. [J

Lemma 1 shows that the MGF of total waiting time between two nodes of
interest can be determined based on the matrix operations. With equation 2.6,

we can now prove a further result given below.
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Lemma 2. If a flowgraph is closed by adding a branch from output node to input
node, then the determinant of coefficient matric A = I, — QT in this closed

flowgraph is zero.

Proof. Let Q be the branch transmittance matrix of closed flowgraph, we first

partition the transpose of matrix Q as

ST B w
oI 0
where we take
w = (df,71,0,...,0)T (2.7)

and d, is the MGF of total waiting time from the input at node 1 and output

at node n. The coeflicient matrix is
~ ~ I,..— B —w
T n—1
A=1,-Q = [ T ]
Then

det(

\:3:
Il
o,
@
-t
/N
1
o
| L
(4
N
Sy
|
S
|
~_—

By equation 2.6 and 2.7, we have

11—l —B)'w = 1—d,di;!
= 1-1
=0 (2.9)

Substitute result 2.9 in equation 2.8, then det(A) = 0. Hence the determinant of

coefficients matrix in a closed flowgraph is zero. O
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2.3 A new derivation of the Mason’s rule

By Lemma 2, det(A) in equation 2.5 for Figure 2.10 is zero,

det(fl) = 1—M1nwn1 =0

Then,
My, = — (2.10)

Thus, the MGF of total waiting time from input node 1 to output node n, My,

is the reciprocal of the branch transmittance w,; that connects node n to node
1.

Theorem 2. Let a finite n nodes flowgraph is closed by adding a directed edge
associate with transmittance w, that connects output node n to input node 1. Let
A=1,—QF, where I, is n x n identity matriz, Q is the branch transmittance
matriz of the closed flowgraph. Then the MGF of waiting time from node 1 to

node n s

9 det(A)

My (s) = ——Qwm
tn(5) det(A [w..—o)

Proof. In a closed flowgraph that consists only of loops, there is no input or out-
put, and the input indicator vector Y becomes zero, then we have a homogeneous

system to describe the closed flowgraph.

AX =0

As w,; is the transmittance for the directed edge that connects from node n to

node 1, we consider det(A) as a function of w,;, and det(A) can be separated

into two parts,

det(A) = det(A) Ju,._o + 294

nl
0wn1

By Lemma 2, det(A) is zero in a closed flowgraph, then

~ Odet(A
det(A) [w,,=0 8T(1)

. wm:O
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Mason’s rule

~ det(A) fw,=o
nl = 9 det(A)

Own1

By equation 2.10, there is a reciprocal relationship between the MGF from node

1 to node n, My,,, and the branch transmittance w,,,

& det(A)

M, = — =—— %wm (2.11)
Wn1 det(A |w,,=0)

Lemma 3. Let H be a n X n square matriz, then

9 Odet(H) Ol
. Oh;; _ 1
e log (det(H)) = Tot(H) tr [H ah”}

provided that det(H) # 0, and tr(H) = hyy + hos + ... + by = > hiy s the

trace of the matriz H

Theorem 3. The MGF of total waiting time distribution from input node 1 to
output node n in a non-closed finite n nodes flowgraph is just the (n,1)th entry

of its inverse coefficient matrix A:

Min(s) = [(A)7'],

where A = I, — QT , and Q is the branch transmittance matriz of the flowgraph.

Proof. Given a n x n coefficient matrix A of closed flowgraph, by equation 2.11

and Lemma 3,

ddet(A)

- A
My, (s) = ——291  — 3 [(A |y —0) " 2.12
wl) = g = Al ] 212
Since only one entry of coefficient matrix A involves Wy such that ay,, = —wp,1,

then this entry becomes —1 after we differentiate ay,, with respect to w1, whereas

those entries without w,,; become zero.
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2.3 A new derivation of the Mason’s rule

Let A* = (fw—‘i), and A* is a constant matrix such that

nl

o (24N ) f g = (2.13)
0w . 0 otherwise

Define A = (A |,,,—0)~"! and substitute 2.13 in equation 2.12
- A _
Min(s) = —tr [ (A |w,,—0) " 0 = —tr[A- A7] (2.14)
0wn1
For A € RV, A* € R, we have
u=1
= =)0 And,
u=1 r=1

Since w,y is the (n,1)th entry of branch transmittance matrix Q and A = I, — Q7

then /~11n = —wy1. By equation 2.13, the only non-zero entry in matrix A* is
Ay, = —1 when r =1 and u = n, otherwise it is zero. Therefore

and equation 2.14 becomes

Mln(s) = Anl
= [(Afum=0)""],,

Since A |y,,,—o is just the coefficient matrix of a non-closed flowgraph A such
that A = I,, — Q7. Hence the MGF of waiting time from node 1 to node n in a

non-closed flowgraph is the (n,1)th entry of its inverse coefficient matrix A

Min(s) = [(A)7'],,
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Corollary 1. Given a finite non-closed flowgraph with input at node 1 and output

at node n, the r-th population moment p, can be determined by

0A A

Own Os

py = —tr (2.15)

s=0

where A = (A |y, ,—0)7", and A = I, — QT is the coefficient matriz of the closed
flowgraph constructed by adding a directed edge associated with transmittance wy;

that connects output node n to input node 1.

Proof. According to equation 2.14, we have
0 0 . -1 94
—M = ——tr| (Alw,= :
0s (5) 08{ r[ ( nt 0) 0wn1} }

- —tr{% [ (A wn1:0> -1 a‘?UA;l] }

where it leads to the following equation after applying the product rule,

% (Aluni=0)™ a?UAnJ
= X |‘”5;:°)_1 : (ai‘il) + (Aluy=0) - % (aiAm> (2.16)
By equation 2.13, % is a constant matrix, which does not involve variable s,
then B
% <8ifﬂ> _0 (2.17)

Substitute equation 2.17 into 2.16 and let A = (A |,,,—o)~" then

Sy« o[l (21)

Os 0s Owny
_ . |oA o4
n ' ds Owpn
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2.3 A new derivation of the Mason’s rule

The first population p; is

where A = (A |,,,—0) .

For the second population moment,
0? 0 oA 0A
M) = 3 [‘“ (a_ | awm)

o (ea e
N g Js \ 0s Owm,

By the product rule again,
0 (oA 0A\ A 04 04 0 (04 (2.18)
Os \ Os Ow, | 0s> Ow, 0s 0Os \ Ow, ’

By equation 2.17, the second term on the left hand side of equation 2.18 is

01 0 oA _oi
ds 0s 0w,  0s

Then, equation 2.18 becomes

o0 (04 i\ _ed o
Js Js 8wn1 n 0s? 8wn1

The second population moment is therefore determined as

o 0?4 0A
Ha = [@M“)] - [‘“ (a— | awm)

s=0
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By iteration, we obtain a formula for computing the r-th population moment

s=0
[ 0A A

N {—tr 0w, " Os

—u _a?UA;l ' 885; ( wn1=0)_1] }

S

O

To summarise, the MGF of the total waiting time is not easy to determine in
a complicated flowgraph by Mason’s rules, particularly for a flowgraph that has a
larger number of different order feedback loops, where we must be extra careful to
count the paths and feedback loops. Theorem 2 and 3 provide an alternative way
to compute the MGF based on the branch transmittance matrix of flowgraph,
which allow us to avoid finding a list of all the paths and feedback loops between
the input and output node. Furthermore, formula 2.15 given in Corollary 1 makes
the calculation of population moments very simple, and we will discuss more
about the application of formula 2.15 to the Method of Moments for parameter

estimation problem in Chapter 4.

34



2.3 A new derivation of the Mason’s rule

2.3.1 Example 1.1

In this section, we apply Theorem 2 to compute the MGF My (s) determined

in equation 2.4 on page 17, Example 1. First the flowgraph is closed by adding

an extra directed edge with transmittance wqy that connects output node 2 to

input node 1 (see Figure 2.11). The branch transmittance matrix of the flowgraph

becomes

plomlo(S)

p12m12(3)

0 qo1 qo2
Q = qo 0 qu2
W20 0 0

Define the coefficient matrix of flowgraph illustrated in Figure 2.11 as

A= L-Q"
1 —qi0 —W2o
= | —qn 1 0
—qo2 —q1z2 1
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Mason’s rule

we have
det(A) = 1 —qo1q12w20 — 01910 — Go2W20
then _
Odet(A)
—a . — —qo01912 — qo2
a’LUQ()

det(Alu=0) = 1— qo1qio

By Theorem 2, the MGF of total waiting time between input node 0 and output
node 2 is

8 det(A)

. i
) =7 GotA o)

qo2(s8) + qo1(8)q12(s)
I- CIOl(S)Cho(S) (2.19>

which gives the same expression of the MGF computed by Mason’s rule in equa-
tion 2.4, Section 2.2.1.

2.3.2 Example 2.1

To avoid counting the paths and loops between input node 0 and output node 4
in Example 2 on page 18, we apply our formula in Theorem 3 to compute Mpy(s)

only based on the branch transmittance matrix () such that

0 g g2 0 O
Go 0 q2 0 qu
Q = 0 0 0 Go3 Qo
0 0 g2 0 gsa

o 0 0 0 0
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2.3 A new derivation of the Mason’s rule

The coefficient matrix of the flowgraph given in Figure 2.6 is

A = L-Q"
I —qo O 0
—qo1 1 0 0
= | =2 —q2 1 —gs
0 0 —qs 1
0 —q14 —q24 —q34

_ o O O O

By Theorem 3, the MGF of total waiting time between node 0 and node 4 is the
(5,1)th entry of A~1

14901 — 914901923932 + 24901912 + G24902 + 434423901912 + G34G23G02
1 — @23g32 — q01q10 + 901910923932

Moy(s) =

(2.20)

If we want to determine the MGF of total waiting time between node 0 and node
2, we just need to look at the (3,1)th entry of A~!

qo2 + qo1412
1 — 23G32 — q01q10 + Q01910923932

(A s =

By our assumption, no further transition is allowed in the output node, then

¢23 = 0. Hence, the MGF of total waiting time between node 0 and node 2 is

Go2 + Go1912

M, =
02(8) 1 — qioqo

which matches the result of Mason’s rule in equation 2.4, Section 2.2.1.

Note that we do not need to compute the expressions 2.20 and 2.19 by hand,
and in fact, all the calculation required in Theorem 2, 3 and Corollary 1 can be
easily done by using symbolic algebra package MAPLE. However, we still have
not obtained the total waiting time distribution. In Chapter 3 we will discuss
how the distribution of total waiting time can be determined by the inversion
of its MGF, and subsequently derive the corresponding CDF, PDF and survivor

function.
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Chapter 3
Distribution theory

Mason’s rule allows us to compute the MGF of the total waiting time distribution
between two nodes of interests in a finite lowgraph. In this chapter, the main
purpose is to present methods that invert the MGF to obtain the density function

and determine the distribution of the total waiting time 7.

This chapter is organised as follow. The first section deals with the case
where the internode waiting time follows exponential or Gamma distributions
with integer-valued shape parameter (i.e. Erlang distribution). The second section
considers flowgraph models with non-exponentially distributed internode waiting
time, where direct inversion of the MGF is not possible. We discuss three different
methods to approximate the total waiting time density function, namely, saddle-
point approximation, the Maximum Entropy method and the Padé approximation
method. We continue with the examples given in Chapter 2 and illustrate how to
apply each method for estimating the probability density function and survivor
function.The last second presents the comparison of these methods in both the

exponential and non-exponential waiting time case.
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3.1 Exact inversion of the MGF

Suppose we have a flowgraph with all the internode waiting times assumed to be
exponentially distributed. The MGF of total waiting time in this case takes the
form of a rational polynomial function. It can be decomposed by partial fraction
method and then the inverse Laplace transform can be applied to obtain a closed

form density function.

Definition 6. The Laplace transform of a function f(t) for t > 0 is defined by
the following integral

LIf)(s) = / e (e (3.1)

By comparing equation 3.1 to the definition of MGF on page 8 Chapter 2, we
can see that L[f](s) is just the MGF with argument —s instead of s, so the inverse
Laplace transform of MGF Mr(—s) is the probability density function of T'. In
the exponential waiting time case, the MGF is a rational function in the form
of U(s)/P(s), which can be written as the sum of rational functions by partial
fractions. The probability density function can be determined by applying the
inverse Laplace transform to each component of the partial fractions decomposi-
tion in Mr(—s), and using the additive properties of the Laplace transform. This
is summarised in the Heaviside method (see Dalla Valle (1931), Spiegel (1965)).

Lemma 4. The Heaviside expansion formula
Let U(s) and R(s) be polynomials where U(s) has degree less than that of R(s).

Suppose R(s) = 0 has n distinct roots ay, k = 1,2,3...,n, then the inverse

Laplace transform of rational function % is

] - i o

where R (ay,) = d§§5)|s:ak-
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3.1 Exact inversion of the MGF

3.1.1 Example 1.3: Exponential waiting time

We return to the reversible illness-death system of Example 1 in Section 2.2.1.
To determine the distribution of total waiting time between input at node 0 and
output at node 2 in Figure 2.4, we assume all the internode waiting time are
exponentially distributed (see Table 3.1). The patient in node 0 could transition
to node 1 with probability pg; or die with probability pgs = 1 — pg1. The patient
in node 1 may recover and return to node 0 with probability p;g, or die from the

disease and transition to the output at node 2 with probability p1o = 1 — pyo.

Let Tys denote the total waiting time between input at node 0 and output at
node 2, we show how to compute the probability density function of waiting time
Ty by the exact inversion of its MGF, My, (s). For the purpose of illustration,

we assume
La=1 =12 X=05 \ =2

2. All the transition probability are equal to %, i.e. Po1 = Po2 = P10 = P12 = %

Table 3.1: Summary of waiting time distribution
Direction Distribution MGF

0—1  Exponential(\;) moi(s) = 2
0—2 Exponential(A3) mga(s) = ,\&is
1 —2  Exponential(\2) mia(s) = ,\iis
1—0 Exponential(Ay) mio(s) = A}fs
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We identify two paths 0 — 2, 0 — 1 — 2 and one feedback loop 0 — 1 — 0
between node 0 and node 2. By Mason’s rule, the MGF of the total waiting time

distribution from node 0 to node 2 is

Po1P12Mo1(8)M12(s) + Poammoz(s)
1 - p01p10m01(s)m10(3)
Tmo1 (8)maz(s) + 3moz(s)
1— imm(s)mlo(s)
(2 —5)(1.8 —3.4s + s?)

T (6125 +452)(05—5)(1.2 — 5) (3.3)

MToz (S> =

By Definition 6, the Laplace transform is just the MGF with argument —s instead

of s, then

U(s) (24 5)(1.8 4+ 3.4s + s%)
R(s) (64 12s+4s2)(0.5+s)(1.2+ s)

MTOQ(_S> =

solve

R(s) = (6+12s+45*)(0.5+5)(1.2+5) =0
The distinct roots are

1 6 1 1
o] = ——=, g = ——, Oé3:——(3—\/§), Oé4:——(3+\/§) (34)
2 5) 2 2
We apply the Heaviside expansion formula in Lemma 4 for the exact inversion of

equation 3.3

L Ma(-s)) = 17 [

} _

4
U(Ofk) eockt
—~ R(ay)
where
U(s) = (6 + 125 + 45%)(0.5 + 5)(1.2 + 5)

d 2 282
= %+§s+%s2+16s3
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3.1 Exact inversion of the MGF

Thus, the PDF of total waiting time Ty from node 0 to node 2 is

fr,(t) = 0.75¢™" —0.3636¢™" — 0.1207¢*3" — 0.0157¢™
0.75 03636 ., 0.1207 ., 0.0157
= —age’t — e — aze™® —
Qi Q2 as Qy

= 1.5fi(t) — 0.303f2(t) — 0.1904f5(t) — 0.0066 f4(t)

= szfz(t) (3.5)

ait aqt

[671&

where a’s are given in equation 3.4, and [;° fr, () = 1is verified. Since Sow =
1, the result shows that the total waiting time distribution is a mixture of expo-

nential distribution with negative weight for some component.

The survival function is

SToz(t) = P(T02 > t)
= 1.5e™" —0.3030e**" — 0.1904e**" — 0.0066e* (3.6)

Note that the numerical values in 3.5 and 3.6 are only decimal approximations.

The total waiting time distribution describes the time to occurrence of certain
events, where the underlying process goes through a set of nodes till termination
at the output node. This can be considered as the so-called phase type distribu-
tion, which is defined as the probability distribution of the time until absorption
in a Markov process with a finite number of transient states and one absorb-
ing state (see Neuts (1981)). Asmussen (1987) gives a useful introduction to the
phase type distribution, and Aalen (1995) discusses the application of phase type

distributions in survival analysis.
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3.2 Numerical approximation method

The aim of this section is to introduce three different methods for approximating
the waiting distribution between the input and output in a flowgraph, when the
internode waiting time does not follow the exponential distribution or Gamma
distributions with integer shape parameter (i.e. @ in Gamma(«,(3)). In such cases,
the MGF is not a rational form, and it therefore can’t be inverted directly to ob-
tain the probability density function. This motivates the use of approximation

methods to estimate density functions by inverting the given MGF numerically.

3.2.1 The Maximum Entropy method

In a complicated flowgarph with large number of parameters, it is often diffi-
cult to determine the distribution from the given observations of total waiting
time data between two nodes of interest. As we can compute the moments based
on the MGF of total waiting time obtained by the Mason’s rule, this forms our
motivation to apply the the maximum entropy method, where we assume certain
moment constraints of the total waiting time random variable and then maximise

the entropy of the target density function subject to these moment constraints.

The maximum entropy method was first introduced by Jaynes (1957), where
he discusses the link between statistical mechanics and information theory. Dawid
and Griinwald (2004) generalise this method to apply to arbitrary decision prob-
lems and loss functions, while the applications of maximum entropy method to
process information in the form of observed data and moment constraints is given
in Giffin and Caticha (2007). Wagner (1995) illustrates the use of the maxi-
mum entropy method for estimating density function of random variables based
on its moments. It is shown that, under appropriate moment constraints, some
of the well-know distributions in statistics are maximum entropy distributions.
For example, the exponential distribution can be derived from the maximum
entropy distribution of nonnegative random variable X under the constraints
E(z) = p1, while the normal distribution is a maximum entropy distribution

satisfying E(x) = py and E(2?) = po.
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3.2 Numerical approximation method

In general, the maximum entropy density f (t) can be computed by maximis-

ing the Shannon entropy
s = - [ Fonofar
subject to a set of the moment constrains:
| iwrd =
0

where p is the k-th noncentral moment of the density f(¢) such that

s=0

for k =0,1,...,m. Note that Mr(s) is the MGF of T" and py = 1.

The form of maximum entropy density f (t) is

f(t) =exp(—1— Zc,-ti)

(3.7)

(3.8)

(3.9)

where cg, ¢y, ..., ¢, are determined so that 3.9 is a proper density function and

satisfies all the m+ 1 moment constraints. Kagan, Linnik and Rao (1973) give an

simple proof of 3.9 based on convexity argument. (see Theorem 13.2.1, p.409). In

order to compute the parameters in 3.9, we need to construct a set of nonlinear

equations by substituting 3.9 to moment constraint in 3.8, and solve the resulting

m + 1 nonlinear equations 3.12 for m + 1 unknown constants c;.

Define

(3.10)

(3.11)
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By equation 3.8,
gr(c) = g fork = 0,1,....,m (3.12)

We apply the Newton-Raphson method to solve the set of nonlinear equations

9o, - - - gm for co, ..., cp. The first step is to compute the first order Taylor ex-

pansion of g for k= 0,1,...m at the initial value ® = (¢§, %, ..., %)
= dgr(co)
0 0
c) = + Ci — C;
e) = o)+ (e e
where

dgi(c) /OO . d o
= t"— -1 - it
dCi 0 dCi eXP( Z ¢ )

Then

Z(Ci — D) grri(”) = gr(”) — 1 (3.13)

for k=0,1,...m.

We can rewrite the set of equations 3.13 in matrix form.

Gy =V

46



3.2 Numerical approximation method

90(00) 91(00) ce gm(Co) Co — 08 90(00) — Mo

c c s G (c ¢y — co) —
where @ — 91(. 0) 92(. 0) g +1( 0) 5= 1 ‘ 1 V= 91( 0) 251
gm(CO) Im+1 (CO) e g2m(CO) Cm — C?n gm(CO) — MUm

3.2.1.1 Newton-Raphson method

Newton-Raphson method is a well known iterative procedure for finding approxi-
mations to the root of a real-valued function f(z). The basic idea of this method
is to start with an initial guess value for xy, which is reasonably close to the true
root of f(x), the function is approximated by its tangent line, then we compute
the z-axis intercept of this tangent line. The z-axis intercept will usually be a
better approximation to the root of function than the original guess, and the

method can be iterated.

In maximum entropy method, the Newton-Raphson method can be extended
to multivariate case and solved systems of k (non-linear) equations f;(x) = 0,
i =1,...,k, where f;(x) is a function of a k-dimensional vector x = (x1, ..., Tx),

whose Jacobian matrix is

ofiix) Oh(x) . 9h(x)

0x1 O0x2 oxy,
Ofa(x) Ofe(x) . . 0Ofe(x)

Ja) = | 7 0 o
Ofk(x)  Ofu(x) .. 9fu(x)

0x1 0x2 oxy,

Given suitable initial value x¢ and (J(x))™! exists, the method is iterated for
n=201,..
Xp+1 = Xp — (J(Xn))_lf(xn>

until the stopping criterion in equation 3.14 is satisfied.
| Xpt1 — X [< 0 (3.14)

for a user-defined tolerance ¢ > 0.
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Lemma 5. Given a (m+ 1) x (m+ 1) matriz G is defined as

_dgr(e) _
sz - dCi - gk-i—z(c)

where

ge(c) = /0 h t* fF(t)dt (3.15)

and f(t) = exp(—1—->" ct") fork=0,1,...m,i=0,1,...m. Then G is a

positive definite matriz and G~ exists.

Proof. Let ¢ = (cg,c1,...cm)T be any non-zeros vector. Then

9o [ ce 9m Co
g1 g2 o Om C1
dGe = ey o cm] i
9m YGm+1 Jom Cm
= chgo + 2coc1gr + (¢ + 2¢oc1)ga + - -+ 2 Gom (3.16)

Substitute equation 3.15 in 3.16, then

'Ge = / (c2 + 2cocrt + (€ + 2coer)t® + ...+ EtP™) f(t)dt
0

= / (C() + Clt + 02t2 + ...+ Cmtm)2 f(t)dt (317)
0

Since the integrand in 3.17 is always positive, the ¢/ Gec > 0, therefore the matrix
G is a positive definite matrix with det(G) > 0 and G exists.
O

By Lemma 5, the matrix G satisfies the non-singular condition (i.e. the inverse

of G exists) and it guarantees the convergence of the Newton-Raphson method.

G(Cl)(Cl+1—Cl) — V(Cl)
Cl—l—l — Cl—i-G_l(Cl)C(Cl)
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3.2 Numerical approximation method

Given the initial value ¢! for ¢, we solve this system iteratively for ¢ = (co, ..c;)
until |1 — ] < 0.00001. The estimated probability density function is obtained

after we substitute the resulting cy, ..c,, in equation 3.9.

3.2.1.2 Implementation

The Newton-Raphson method will usually converge if the initial value of ¢ is close
enough to the true value. As the dimension of ¢ increases with the number of mo-
ment constraints, the result of maximum entropy density estimation becomes very
sensitive to the choice of initial values for ¢. Wu (2003) shows evidence that the
sequential updating method is more robust with respect to the choice of initial
values, the basic idea is to compute the constant ¢ sequentially by adding only
one higher order moment constraint at each step. Our method is a special imple-
mentation based on the sequential updating method suggested by Wu (2003) to

derive an efficient algorithm for the computation of high dimensional c.

Given the first few ¢, can be relatively easy computed, we choose ¢ ; = 0

for cpy1 and define ¢® = (2, c9,...c%,0) as initial value in Newton method. We

start with k = 2 case as there is closed form solution for c¢g, ¢;.

/ exp(—1—co —it)dt = 1 (3.18)
0

/ texp(—1 —cy —ait)dt = p (3.19)
0

solve equation 3.18 for ¢; in terms of ¢y gives
c1 = exp(—1—¢) (3.20)
substitute equation 3.20 into equation 3.19,
/ootexp(—l —co)exp(—at)dt = pu
0

/ tepexp(—ait)dt = p
0
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The integral is just the definition of expected value for Exponential(c;), then
-1
=1,
the following procedure to compute ¢y = (co,c1,Ca. .. Cm).

¢ and ¢g = —1 —log(cy) = log(u) — 1 by equation 3.20. In general, we use

Step 1: Start with 0?2) = (c(()o),cgo),cgo)), choose the initial value c(()o) =

log(p) — 1, c&o) = %, and céo) = 0, then solve the system of equations itera-

tively for C%z) = (c((]l), cgl), cgl)) until |cl("2'r)1 — cl(2)| <1075,

Step 2: Set c(y = (g 3) = (D, M D ), where Cly is the result

from step 1 and we choose cgo) = 0. Solve the system of equations iteratively for

c%g) = (c((]z), . .c:(f)) until |cl(}51 — cl(3)| <1075,

Step m — 1: Set ¢, = (c%‘fl), Ay = (22 2 DY, set Y
(m—1)

then solve the system of equations iteratively for c%l =(cy .. L _1)) until

|cl(:;1) — Clpy| <1072,

o _

The sequential update procedure is particularly useful when the number of
moment constraints is larger. Instead of setting m+1 initial values for all ¢y, ..., ¢;,,
at the same time, this procedure reduces the multi-dimension search to one di-
mension by choosing initial value for ¢, k = 2, ..., m sequentially. The procedure
has been programmed in Matlab. Our result shows that the more moment con-
straints we have (i.e. the larger m is), the closer is the maximum entropy density
f (t) to the true density f(t). However, the computational cost becomes very high
to solve a larger set of equations if additional moments constraints are imposed,
partially because the integrals in g(s) function become increasingly difficult to
evaluate. As there is no formal method to determine the number of moment con-
straints, further research could be conducted to estimate the number of moments
constrains are needed in order to achieve a required accuracy of approximation.
For the trade off between the complexity of the maximum entropy density f (1)
and the accuracy of the estimation, we only impose 6 moment constraints in the

following two examples.
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3.2 Numerical approximation method

3.2.1.3 Example 3

Our first example is to apply the maximum entropy method for estimating the
probability density function of waiting time in a series flowgraph. We use the hy-
draulic pump system example in Section 2.1.2.1, Chapter 2. The series flowgraph
in Figure 2.1 describes the status of a two pump systems, the input is at node
0 which represents the system is working properly with no pumps failed, node 1
represents one pump failed, and the output is node 2 when two pump failed and
the system breaks down. The waiting time distributions between each node are
given in Table 3.2. We assume the transition probability from 0 — 1 and 1 — 2

are all equal 1 (i.e. pgy =po=1),and a =3, f = %, c=1.

Table 3.2: Summary of waiting time distribution

Flow direction  Distribution MGF
0—1 Exponential(c)  mo(s) = =%
1—2 Gamma(a,3)  mia(s) = (ﬁi)o‘

The MGF of total waiting time Tys from node 0 to node 2 is

M, (s) = pormor(s)pizmaa(s)

- (=)6ER)

1
8(1—15)(0.5—1s)3

By estimating the probability density function of total waiting time Ty, subject
to 6 moment constraints, we use this MGF to compute the value of the moment
constraints p,, r = 0...5, where u, = {%MTM(S)H , gives the result po =1,
1 =7, o = 62, ug = 666, gy = 8424, us = 122760. fBzy substituting the general
form of the maximum entropy distribution f(¢) defined in equation 3.9 and s,
r = 0,...,5, to each moment constraint in equation 3.8, we form a system of 6

nonlinear equations with 6 unknown cg, ¢ ..., cs.
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go 91 -~ Y5 do -go — Mo
g1 g2 - ge| |0 |1 —m
195 96 - Gio] _55_ | 95 — U5 ]
where §; = ¢; — i =0...5; g = gu(c”), k = 0,...,10. Given the current value

of value c® at each iteration, the integrals in gp(c®) for k = 0, ..., 10, defined in
equation 3.11, are computed numerically by using the adaptive Simpson quadra-
ture method, see Gander and Gautschi (2000) for “quad” function in Matlab.

The system is solved by updating the value of ¢ iteratively until |c/*! —c!| <

1075, The estimated probability density function f(t) is given by
Farm(t) = exp(—5.8309 + 1.9342¢ — 0.3429¢% + 0.0262t% — 0.0009¢* + 0.000014¢°)

Since the waiting time distribution between node 1 and node 2 is Gamma(3, 0.5)
with integer shape parameter o = 3, we can still apply the Heaviside expansion
formula by Lemma 4 to invert Mr,,(s) for the true probability density function
f(t) such that

1 1 1
f(t) = <§t2 - §t + 1)6_§t —e !

The comparison of maximum entropy density under different number of moment
constraints with the true density (solid line) is presented in Figure 3.1. It is clearly
shown that the quality of density approximation depends critically on the number
of moments constraints that we imposed, and it can be improved dramatically
as the number of moment constraints increases. The plot of maximum entropy
density that obtained with 6 moments constraints provides relatively the best

approximation to the shape of the true density function. (see Figure 3.2).
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3.2 Numerical approximation method

The performance of these maximum entropy densities are assessed by com-

puting their integrated square errors (ISE).

00 N2
]SE:/ {f(t)—f(t)} dt
0
where f(t) is the true density and f (t) is the estimated density. Table 3.3 pro-

vides numerical evidence that the accuracy of density estimation is significantly

improved by adding more moment constraints.

Table 3.3: Sum of square error(ISE)

Number of constraints 3 4 5 6
ISE 0.0477 0.0212 0.0199 0.0019
0.14
PN 3 constraints
/ z — — — 4 constraints
, N 5 constraints
0.12F — - — 6 constraints ||
true density
0.1F b
> 0.08F 1
=
[
Q
[S
2 0.06[ b
0.04 b
0.02 4
0 I .
0 5 10 15 20 25

total waiting time from state O to state 1

Figure 3.1: Density estimation by Maximum Entropy method.
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0.14 T T
— - — 6 constraints
true density

0.12

0.1f

probability
o
o
oo

T

o

o

)
T

0.02

1 1
0 5 10 15 20 25
overall waiting time from state O to state 1

Figure 3.2: Solid line: True density; Dash line: Estimated density by Maximum
Entropy with 6 moment constraints.

3.2.1.4 Example 1.4: Non-exponential waiting time

We consider the flowgraph model for reversible illness-death system again (see
Figure 2.5 on page 17), but Gamma distributed waiting time is allowed (see
Table 3.4). In the non-exponentially distributed internode waiting time case, the
MGF of total waiting time can not decomposed by partial fraction method, and
we can not use the exact inversion method of MGF for a closed form true density.
Maximum entropy method is then applied to estimate the density of total waiting

time between node 0 and node 2 under 6 moment constraints.

Table 3.4: Summary of waiting time distribution

Flow direction Distribution MGF
0—1 Gamma(aq,01) mei(s) = (5?is)a1
0— 2 Exponential (6, ) mo2(s) = 910;
1—2 Gamma(ay,B2)  mia(s) = ,Bgﬁis)OQ
1—=0 Exponential(6s) mao(s) = 929—is

o4



3.2 Numerical approximation method

For illustration we assume the following parameter values: pg; = 1—pgo = 0.5,
P12 = P1o = 05, p = 32, 61 = 48, Qg = 2, /62 = 3, 91 = 22, 92 =4, By Mason’s

rule, the MGF of overall waiting time distribution between node 0 and node 2 is

Po1P12mo1 (s)maz2(s) + poamez(s)
1—p01p10m01( ) ( )
1
2

H3%5) " (65) +3(3%)
32
1-3(m5) (5
By using the sequential update procedure, we obtain ¢y = —0.9670, ¢; = 1.6088,

co = —1.0621, c3 = 0.4775, ¢, = —0.0785, ¢5 = 0.0043. The resulting estimated
density function f(t) is

MToz (S> =

fME(t) = exp(—l — Cy — Clt — 02t2 — Cgt3 — C4t4 — C5t5)

= exp(—0.033 — 1.6088t + 1.0621¢* — 0.4775t> + 0.0785t* — 0.0043t°)

Probability

L L
0 1 2 3 4 5 6 7 8 9 10
Total waiting time from node 0 to node 2

Figure 3.3: Density estimation by Maximum Entropy method under 6 moment
constraints in Example 1.4.
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3.2.2 Padé approximation

Padé approximation is the method for approximating a function by a rational
function of given order, where the coefficients of its numerator and denominator
match the coefficients in the Taylor series expansion of given function. The most
important reason to use Padé approximation of MGF in flowgarph analysis is
because it allows us to approximate the MGF as the ratio of two polynomial
functions, which can be easily inverted to obtain a closed form estimation for the

probability density function by Lemma 4 in Section 3.1.

Amindavar and Ritcey (1994) first introduced the Padé approximation ap-
proach to estimate probability density functions from moments. It is shown that
the PDF can be easily determined as a series of exponential function, where rates
are computed as the poles of Padé approximation of MGF (i.e. the singularities
of PAp, 4(s)). A comprehensive reference for the background theory and the ap-
plication of Padé approximation can be found in Baker and Graves-Morris (1996),

where the derivation of 3.21 is discussed.

Definition 7. Given a formal Taylor series expansion of a function f(z),

flx) = Zc,-xi
=0

The Padé approzimation of f(x), PApq, is a rational function with numerator
order p and denominator order q in the form of:
PA, . (s) ?ZO%SJ ap + ays + ... a,s?
S = = =
-] S0 best o+ bis+ ... byst

(3.21)

such that
f(x) = PA[p,q] (x) + O(Ip+q+1)

o6



3.2 Numerical approximation method

Let Mx(s) be the MGF of a random variable X and write the Taylor expan-

sion of Mx(s) at s =0 as

Mx(s) = Fin gn
n=0
where yi,, = [;° 2" f(x)dx is the n-th noncentral moment of f(z). By setting
p < g, the Padé approximation of MGF, PAy, 4(s), can be decomposed by partial
fraction and then easily inverted to obtain a closed form density estimation by
Lemma 4. The coefficients a; and b, are computed by equating PAy, 4(s) with
the power series of MGF Mx(s),

P pta
ijo a;s

= cs™ + 07 (3.22)

q k
k=0 bk 5 n=0

where ¢, = “n—T By multiplying > 7_, bxs” on both side of equation 3.22

Zajsj = (Zbksk) (Zcm”) + O(sPrath) (3.23)

n=0
We equate the coefficients of sP*1, sP™2 ... sP9 on both side of 3.23 and construct
a system of ¢ equations with ¢ unknown denominator coefficients by, bs, . . ., b,.
bgCp—g+1 + bg—1Cp—grot+ -+ bocpr1 = 0
beCp + bg—1Cp1+ o bocprg = 0

In matrix form

HB = C (3.24)
Cp—q+1 Cp—q+2 Cp—q+3° " Cp bq ~Cpt+1
Cp—q+2 Cp—q+3 Cp—q+4 "°  Cpt1 bg—1 —Cp+2
where H = |Cpgt3 Cpgia Cpgis - Cpr2 |, B = |bg2|,C = |—Cpys
| G Cp+1 Cp+2° 7" Cptg—1] i b ] |~ Cpta |
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Set by = 1, we solve a set of equations in 3.24 for the by,0bo,...,b,. Given
the resulting by, K = 1,2,...,q, the numerator coefficient ag,as,...,a, can be
computed by matching the coefficient of 1,s,s2, ..., s? on both side of equation
3.23:

ayg = Co

a, = c1 + b100

ay = ca + bicy + bacy
ap = Cp+ an:iq(%q) bnCp—n

Since we can’t solve the system of equation HB = (' if the determinant of ¢ X ¢
square matrix H is zero (i.e. H™! doesn’t exist), the appropriate order of Padé ap-
proximation should guarantee that the square matrix H has full rank. We follow
the method suggested by Amindavar and Ritcey (1994) to define a Padé approx-
imation PAy,_1 4(s), such that the order of numerator is 1 degree smaller than
the order of denominator, compute the ¢ x ¢ square matrix H, and plot the rank
of H matrix against ¢ ( see Figure 3.4). The optimal order of denominator in the
Padé approximation is denoted by ¢*, the largest integer that matrix H has full
rank. The MGF is then approximated by the Padé approximation PAjg_1 4+(s).

3.2.2.1 Example 4

We use the Padé approach to estimate the density function of total waiting time
from node 0 to node 2 in Section 3.1.1 on page 41 again. By equation 3.3, the
MGTF of total waiting time from node 0 to node 2 is

(2 —5)(1.8 = 3.45 + s?)
(6 —12s +45%)(0.5 — 5)(1.2 — s)
1 —2.395+ 1.55% — 0.28s3

= 2
1 —4.83s + 852 —5.2253 + 1.11s4 (3:25)

MT02 (S) =

o8



3.2 Numerical approximation method

5r *
4+ * * *

T

S

x 3 *

C

IS

14
2+ *
1k
0 Il Il Il Il Il J
1 2 3 4 5 6 7

Figure 3.4: Rank check for matrix H

The optimal order of the Padé approximation is then determined by plotting
the rank of square matrix H defined in equation 3.24. Figure 3.4 shows how
the rank of matrix H changes as we choose different order of denominator ¢ in
PA(;_1,4(s). As can be seen that the g x ¢ square matrix H becomes rank deficient
if ¢ > 5, and we therefore choose ¢ = 4 as the optimal order of the denominator

in Padé approximation. The coefficient of PA34(s) can be easily computed by
using MAPLE.

1 —2.3889s + 1.5001s% — 0.2778s3
1 —4.8334s + 8.0003s% — 5.2227s3 + 1.1113s*

By comparing the coefficient in 3.26 with 3.25, PA3 4(s) gives a very good ap-

PApa(s) =

(3.26)

proximation of My, (s). We apply the Heaviside formula to invert PAjz 4(—s) and
obtain the approximated probability density function of Ty, as

fralt) = 0.75exp(—0.5t) — 0.3636 exp(—1.1999¢)
—0.12067 exp(—0.6339t) — 0.01570 exp(—2.3656t)  (3.27)
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Note that the form of finite mixtures of exponential distribution is much
more stable then the maximum entropy density defined in equation 3.9 on page

45. The approximated survival function of Tps is

Spalt) = P(T >1)
= 1.5exp(—0.5¢) — 0.3030 exp(—1.1999¢) (3.28)
—0.1903 exp(—0.6339t) — 0.0066 exp(—2.36561)

3.2.3 The Saddlepoint approximation: a discussion

Saddlepoint approximation are powerful tools for numerically inverting a MGF to
estimate density and distribution function. It is originally developed by Daniels
(1954) to approximate the probability density function of the mean of i.i.d random
variable. For the literature review, see Daniels (1954), Jensen (1995), Barndorft-
Nielsen and Cox (1997). Lugannani and Rice (1980) introduces the saddlepoint
approximation for estimating the cumulative distribution function. A rather in-
sightful discussion about the basic idea behind the derivation of saddlepoint ap-
proximation is given by Casella and Goutis (1999). The saddlepoint approxi-
mation has widespread applicability in many fields, including survival analysis
(Butler and Huzurbazar (1997), Huzurbazar (1999)), system reliability (Butler
(2000)), portfolio credit risk (Gordy, (2002)), insurance ruin problem (Gatto
(2008)), and option pricing (Carr and Madan (2009)).

In view of the rising popularity of saddlepoint approximation in flowgraph
model, this method play a key role in estimating the distribution of total waiting
time random variable whose MGF is known, and it is important to thoroughly
understand the proof before we propose our Padé-type saddlepoint approximation
in Chapter 5. Since the original proof given by Daniels (1954) is difficult to
follow and we are not aware of a complete detailed proof in the literature, this
forms our motivation to give a comprehensive explanation of how the saddlepoint
approximation is derived based on exponential tilting, edgeworth expansions, and
Hermite polynomials that discussed in Kolassa (1994). First, we give the basic

definition of saddlepoint approximation.
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3.2 Numerical approximation method

Theorem 4. Saddlepoint approzimation

Let X1,Xs,..., X, be i.i.d random variables with density f(x), and assume the
moment generating function Mx (s), exists in an open interval about zero. Denote
the corresponding cumulant generating function as Kx(s) = log (Mx(s)). The the
saddlepoint approximation for the probability density function of X is

1/2
fr(a) = (#X(SJ exp {n(Kx(3) - 57) | (3.29)

where K% (s) = X9 and K (3) = 7

Note that the formula given in equation 3.29 is applied to determine the dis-
tribution of the sample mean X. In the rest of this section, we present our own
proof of Theorem 4 based on Edgeworth expansion, and discuss the accuracy of

approximation by showing the “order of the approximation error”.

Proof. Let X1,X5,....X,, beii.drandom variable with mean p and finite variance
o?. Define _
_X-n

g

n
By the central limit theorem, Y is asymptotically Normal N(0,1) and its the

Y

characteristic function, x, (), converges to the characteristic function of N(0,1)

+0o0
Xy (t) = Ele™] = / e fy(y)dy — ¢ asn — oo

—00

Xy(t) = exp (—%tQ)
_ {X (%) }n (3.30)

where x is the characteristic function of Z = % ~ N(0,1).

Since
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It was decided to take a detour to explain the saddlepoint approximation
method. The basic idea is to approximate the characteristic function y,(t) by
keeping the first few terms of the Taylor expansion of x,(¢) at 0, and invert each

term of the approximation of x,(t) for the distribution function of Y.

Let L(t) = log(x(t)), we first expand L(t) as a Taylor series at t = 0,

L® L® @
log(x(t)) = L(0)+ LO(0)t + 2'<0>tz+ 3'<0>tg+ 4'<o>t4
L®(0) Lo, '
e Ut (3.31)
where
LY)(0) 1({ & ‘
;1 = il 77 1os (X()) t’ (3.32)
t=0

As x(t) is the characteristic function of standard normal random variable Z, then

we have

= 7/ E(Z7) (3.33)

Let K(t) =log (M., (t)) be the cumulant generating function of Z ~ N(0, 1), then
&’ &’
(dﬂ <>) (dﬂ o <>>)

Since the j-th cumulant of Z is k; = (ﬁK(t))

(3.34)

t=0
3.34, and equation 3.33 becomes

d’ .
<@ log (X(t))> = V'K (3.35)
t=0
Substitute 3.35 in 3.32 yields
IJ _ i) K
ﬁtﬂ - (Z)—,“J (3.36)
J: J:
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3.2 Numerical approximation method

Note that L(0) = log (x(0)) = 0. By substituting result 3.36 in 3.31, we have

(it)? Ky N (it)3k3 N (it) Ky N (it) ks - (it) K

log (x(t)) = (t)r1+—; 3 1 s bt (337)

(it)? Ky N (it)3k3  (it) sy N (it) ks P (it) K

9! 3! Al 5! ;! ) (3.38)

x(t) = exp ((it) +

To determine the x;, we need to compute the Taylor expansion of x(¢) at t = 0.

By the use of property x)(0) = #/E(Z7), we have

2) 2 (3) 3 (4) J
Xt = x(0)+xD(0) + X 2(!0)t + X ?E!O)t TR ;lo)t
= 1+ E(2)it + E(ZZ)!(it)2 i E(ZZ)!(it)s 4ot W (3.39)

Taking logarithm on both side of equation 3.39

E2) ()2 E(2%)(it)? E()(it)?
G | B ., )

log (x(t)) = log (1 + E(z)it +

4

Byapplyinglog(l—{—x):x—%2+x—;—%---,for—1<x§1.

o5 (x(t)) = 3 { (s %E@ﬂ@tﬁ)v} (3.40)

v>1 j>1

Equate equation 3.37 and 3.40
1 . (_1)v+1 1 o v
Z ﬁ(@tm— =) {T > ﬁE(z])(zt)J (3.41)
j>1 v>1
The cumulant ; can be computed by matching the coefficient of (it)’ in 3.41,
kK = FE(z)
Ky = Var(z)

ks = E{(z— E(2))’}
Ky = FB{(z— E(2))'} —3Var(z)
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Since z is standard normal N(0,1), substitute x; = 0 and k3 = 1 into 3.38,

x(t) = exp (- %tQ + (it;!'ﬁ’ + (iti!“‘* + (itg!% +0(t%) (3.42)

Substitute 3.42 in 3.30 gives

Xy(t) = {x(%) }n (3.43)

].tz 1 1 4 ) 1 5 _35 -3 !
= <{exp —§5+3'(zt) Kan 2 +4'( it) kan —l—a(zt) ksn 2+ O0(n™)

Set u = it in 3.43, then

1 1 1 1 :
xy(t) = exp <— 5152 311 suPn”7 + 4'f<c4u nt+ §m5u5n LI O(n‘z))

1 1 1 1
= exp (—5152) exp <§m3u3n 2 4 $m4u n~t+ §m5u5n 24+0(n~ ))

*

J

By expanding the second term in above equation as power series of

2 113'3

z T
" = T4zt 45400

which implies

1 3 1 1 5 —32
exp(x) = 1+§/€3un 2+4'/€4un +§/€5un 2

1/1 3 _1 1 4 1 1 5 _3\2
+2!<3'/<53un 2+$/<a4un —i-gf-%un 2)
11 3 1 4, —1 1 5 —3\°
+3!(3'/€3un 2+I/€un +§/€5un 2)
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3.2 Numerical approximation method

Then

xy(t) = exp <——t2) exp(*) (3.44)

= 2% (e 272 dro(u)e 2 0 r(u)e 2 0Tz + O(n?)

where
1
ri(u) = émsu?’ (3.45)
1 1
ro(u) = ﬂmu‘l + Eﬂaguﬁ
1 1
Tg(u) = —12961'{3”9 + m:‘ig:‘@lU? + EOH5U5

As the characteristic function of standard normal Y is
o 2
W) = [ eviag) = e (3.46)

where ®(y) is the CDF of Y ~ N(0, 1) respectively.

We can now find the distribution function of Y by inverting each terms in

equation 3.44

P(Y <y)=(y) + Ri(y)n"2 + Ro(y)n ™' + Ry(y)n™2 +O(n"2)  (347)

where R;(y) is the inverse transform of 7']-(2'15)6_%t2 in 3.44. Next, we show how to

determine the expression of R;(y), j = 1,2, 3.

The integration by parts method is applied to evaluate the integration in

equation 3.46, we have

1 ., 7o 00 ity 42
aoge]” - [ Faetw =

it o U

0o 2
(—it)_I/ eWddW(y) = e 2

[e.9]
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Repeated the integration

(—z't)_2/ ead? (y) = e_é

(—z't)_3/ ead® (y) = e_é
(—z't)_j/ eddW (y) = e_é (3.48)

where

30 (y) = (diy) a(y)

®(z) is the CDF of standard normal random variable Z. We then multiply both
side of equation 3.48 by (it)’

/_°° eityd{ (‘%)j ‘1>(y)} — (it)e

[e.e]

2 :
which implies that the inverse transform of (it)’e~= equals (—d%)Jé[)(y), such that

N d J
L [(it)ﬂe—ﬂ - (-d—y) o(y) (3.49)
Since u = it in equation 3.45, the coefficient of n=% in 3.44 is
. _lt2 1 - \3 _lt2
ri(it)e 2" = gKg(Zt) e 2
1t2

By the result of 3.49, the inverse transform of 7 (it)e”2" can be obtained

R = o () o (3.50)
Ra(w) = 51 (—%)4<1><y> o (—%)6¢<y> (351)
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3.2 Numerical approximation method

1 L dY° 1 d\’ 1 d\’
=— —— ] P — —— ] — —— ]
o) = 1yt (o ) 20+ e (—20) 000 + gy (o1 ) 20
(3.52)
Now we need to use the property of Hermite polynomials given in 3.53 for the

rest of our proof

(~2) o) = ~t-stot orj 21 (353)

where ¢(y) is the PDF of standard normal N (0, 1), and H,(y) is the probabilis-
tic Hermite polynomials. See Koornwinder (2010) for the notation of Hermite

polynomials H;. By applying formula 3.53 to equation 3.50, 3.51, and 3.52, then

Rily) = —smsthly)oly)
mal) = (~ggrath) - 25RH0)) ol
Ru) = () = e + pygrea)) 600

Hence we can obtain the distribution function of Y from 3.47

Fy(y) = P(Y <y)

= ®(y) + Raly)n 2 + Raly)n™" + Ryly)n? +O(n”?)
= ®(y) +0(y) ()0 + paly)n™ + poly)nt +O(n?))
where
nly) = —grsth(y) (354
pa(e) = —gralls(y) — 2530 (3:55)
po(r) = ooy — T () + oo Hily)  (3.56)
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To derive the density function of Y from its CDF, we have

frly) = dilyFy(y)

= o)+ d%aﬁ(.y) (P(w)nt + pa(y)n™ + py(y)n + O(m))

= o(y) + ¢(y){(p’1(y) —ypr(y))n "2 + (Ph(y) — ypa(y))n "t + (P (y) — yps(y))n~

= o(y) {1 + (0 (y) — yp (1)) 2 + (Ph(y) — ypa(y))n ™ + (05 (y) — yps(y))n }

(][54

)

(MY

Since the Hermite polynomials satisfy the following recursion relation
H(z) = 2H,(z) — Hyy1(2) (3.57)
By equation 3.54, 3.55, 3.56 and 3.57, we have

Py —ym = ciHy—ye Hy
= C1yH2 —cHy — ycng

K3
= —H
g3

Py —yps = (caHy+ c3Hy) — y(caH3 + c3Hs)
= c(yHs — Hy) + c3(yHs — He) — y(col3 + c3H5)
= cyHs — coHy + c3yHs — csHg — ycaHs — yesHp
= —cyHy — c3Hg

_ g Ky
T o9q T gl

ps —yps = (caHg+ csHg + cgHy) — y(caHs + csHg + coHy)
= c¢y(yHs — Hy) + c5(yHe — Hr) + c6(yHy — Hs) — y(caHg + cs He + c6Hy)

= —C4H9 — C5H7 — 06H5
3
Ry R3RK4 R5
= H H:+ —H
120610 T Tar T 120
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3.2 Numerical approximation method

Hence the probability density function of Y is

5 = o1+ Samunt+ (S + S )

3
K3 K3ky K5 s _2
+ (1296H9(y)+ il Hy(y) + H5(y))n + O(n )}(3.58)

where x; are the cumulant of standard normal distribution, and H;(y) are the

probabilistic Hermit polynomials.

As fy(y) is the probability density function of ¥ = Xt we need to make

NG
the transformation z = p + Y% for the probability density function of sample
mean X. By taking only the first two terms in the edgeworh expansions in 3.58,

we obtain

fx(z) = gfy <j;“) (3.59)

avel(22) - (22) o ()]

VD
To make the order of the approximation accurate to O(ﬁ), we need the value of

- +()
v

Z near p so that the term in the square bracket of equation 3.59 close to zero. For
each T, the method of exponential titling allow us to create a family of densities
such that the term in square bracket become zero. By introducing an extra pa-

rameter s, we can control the order of error term to give a optimal approximation.

For fixed s, the tilted density fx.(z) is defined as

fj;o e fx(z)dw
M,(s)

= exp (sr — Kx(s)) fx(x) (3.60)

fx. (%)

where Kx(s) =log (Mx(s)) is the cumulant generating function (CGF) of X.
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Given a random sample X, X,,,..., X, from fx_ (x), we can derive the
tilted density of its sample mean X, fx.(z), using its MGF. Since the MGF of

the sample mean of a random sample is

Mg (t) = {MXS <%> }n

and

+o0o
My () = / o fy. (2)dz

o0

= /_+OO exp(tr + sx — Kx(s)) fx(x)dw

0o
—+00

— oxp(—Kx(s)) / exp{(t + )2} fx (2)de

—00

= exp(—Kx(s))Mx(t+ s)

e = {n (DY
= {exp<—KX<s>>MX (% +s) }

exp(—nKx(s)) {MX (t *nns) }

= exp(—nKx(s))Mg(t + ns)

= exp(—nKx(s)) / exp{(t + ns)z} fx(x)dx

—00

= /_ h exp(tz) exp {n(si — KX(S))}fX(x)dx (3.61)

o0

Hence the PDF of X, is determined based on equation 3.61

fx,(@) = exp{n(sz — Kx(s))} fx(x) (3.62)
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3.2 Numerical approximation method

Let 15, 02 be the mean and variance of title density fx,. By the same idea

in constructing equation 3.59, we can write fx, () as

- x:\/ﬁ T — s K3 T — ps 3_ T = s l
fx.(x) US¢< - ) 1+6\/ﬁ ( N ) 3( s ) +O<n>]
(3.63)

Given z, the parameter s is chosen s = s, such that § satisfies £ = g, then

% = s = K’ (0) (3.64)

Now we need to connect the condition 3.64 to the CGF of X, Kx(s). By equation
3.60, the CGF of the titled density X is

Kx,(t) = log(M (t))

= log( " fx, (x)d )

_ log</ oltH9)a=Kx(s) f (:):)dx)
log (/ etz £y (- )) + log (e_KX(S)>
= Kx(t+s) — Kx(s)

As Kx(s) is a function of s, then

dKx,(t)  dEx(t+s)

dt dt

(=) - (.

dMx (s)
ds

Mx(S)
de(S)
ds

Since

t=0
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we have
dex(t—l—S) . dex(S)
dt N dsi
t=0
K{(0) = K{(s) (3.65)

Therefore, the j-th cumulant of X is just the j-th derivative of CGF of X with

respect to s. By condition 3.64 and equation 3.65, we have

7= K (0) = Kx(s)

——
B

Hence s is the solution of K’ (s) = Z.

3
2

We further expand fx,(z) given in 3.63 to the order of n~

Fee) = Lo Rt + (GH0) + S o

3
R3 R3k4 ﬁ 3 _2
+<1296H9(y)+ 144 H?(y)+ 120H5(y))n 2 _|_O(n )}366)

T—pg

Since ps =T = y = — T 0. On the other hand, the first nine probabilistic

Hermite polynomials are defined as Hy(y) = 1, Hi(y) =y, Hy(y) =1y*—1,
Hs(y) =y — 3y, Huly) =y*—6y2+3, Hs(y)=y®— 10y + 15y,
Hs(y) = y® — 15y + 4592 — 15,  Hy(y) =y — 21y° + 1059° — 105y,
Hg(y) = y®—28y5+210y* —420y*+105, Hy(y) = y°—36y" +378y> —1260y>+945y.

Then we have ¢(0) = —=, Hy(0) = 3, Hg(0) = —15, H3(0) = H;(0) =

H-(0) = Hy(0) = 0, which implies %2 Hy(0) = 0, and - Ho(0) + 5254 H,(0) +

144
e H5(0) = 0.
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3.2 Numerical approximation method

Hence equation 3.66 becomes
141 Fa_ 50 +0(n7?)
n \ 8 24

1/2 )
_ (WX()) {H% (-2 +o<n—2>} (367

By multiplying exp { — n(sz — Kx(s))} on both side of equation 3.62, and sub-
stitute 3.67

(@) = Y40

O3

fx(@) = exp{—n(st — Kx(s))}fx.(z) (3.68)
1/2 2
_ (#}M) exp {n(Kx(§) _ §x)}{1 +% (% - %) Lo () }

Since r; is only the j-th cumulant of standard normal N(0,1), we will show how

to express x; in term of the cumulant of X in the next part of our proof.

As Z, = XU;” ~ N(0,1), where us and o, are the mean and standard
deviation of X, jf(z = Uis, and fz,(z) = 0sfx.(x). Then

+00
My, (1) = / ¢ f.(2)dz

o0

+o00 _ 1
— / exp {t (1’8 MS) }asfxs (x)—dx,
—00 Os Os
+00
= / exp (_,ust) exp (txs) fuo(x)daxs
. o o
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which gives

Kgz,(t) = log(Mz,(t))
_ _“St+KX5 (i) (3.69)

US S

By differentiating 3.69 repeatedly with respect to ¢, we have

s 1 t
K, @) = My g (L
a0 = 2 i (1)
1 t
Kz, () = U—EKSQS (U—s)
1 t
" o "
Kz (t) = U_EKXS (U—s)
1 ; t
I R ) (_)
Zs ( ) (O‘?)é X 04
Hence ”
9o) = 220
| (02)2

Since 02 = K% _(0), and Kgg) (0) = K(s) by 3.65, then

. KQ(s)
;= KD(0) = ———=
! 0 (K%(s))>

Therefore the density of sample mean X is

1/2 ,
fe(z) = (ﬁ) exp {n(Kx(§) —S’j)}{l—i—% (% — 52%) +0 (n—z) }

(3.70)
where - "
K KO
BT et T )P
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3.2 Numerical approximation method

The leading term of the equation 3.70 is called the saddlepoint approximation

for the density of sample mean X

2K

1/2
9(z) = (%) exp{n(KX(g)—gz)} (3.71)

where Kx(s) is the cumulant generating function of X,

d2Kx(S)
Ky (s) = T ds?
and § satisfies that
Ky(§) =1

0

To summarise, the key idea of this derivation is to write the characteristic
function of X in term of the characteristic function of standard normal distribu-
tion Y, expand the characteristic function of Y as Taylor series, keep the first
few term and apply inversion method to recover the CDF of Y, then we com-
pute the PDF of Y and transform back to the PDF of sample mean X. As it
is shown in equation 3.70, we can essentially consider saddlepoint approximation
as a method to approximate a probability distribution in terms of its cumulant
generating function (CGF). As we mentioned in Chapter 2, since the MGF can
be easily obtained by the use of Mason’s rule, we can then compute the corre-
sponding CGF, this makes saddlepoint approximation for MFM (see glossary)

relatively straightforward.
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3.2.3.1 Approximation error of the Saddlepoint approximation

As the size of the approximation error is the most important concern in practical
application, we give a detail discussion about the order of the saddlepoint approx-
imation error in this section. We show that the order of error in estimating sample
mean density function can be improved from O(n~2) to O(n~2) by normalising
equation 3.71, where g(z) = O(nz). Hence the order of the approximation of

density function of sample mean z in 3.70 is

o) = ot (1+0(1)) (3.72)
= g(z)+0(n"?)

Therefore, the error rate is O(n~2) if f5(x) is approximated by g(z). However g(x)
doesn’t necessarily integrate to 1, we can improve this error rate by normalising

function g(z). From equation 3.72, we have

g(x) = % = fa(x) (1—O<%) +) (3.73)

The constant term is computed based on equation 3.73

¢ = /_:Og(x)dx _ 1-0(%)

Then the normalized function for g(x) is

G(x) = 9(z)

C

fa(x )(1—0(1)+0(%))
1—0(

~ fulx) {1+o< )<1+o<> )}

= fz(x) + fz(2)O <i) (3.74)

n?
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3.2 Numerical approximation method

Substitute equation 3.72 in 3.74 gives

Gla) = fale)+ {9@) (1 +0 (%)) }O (%)

= fu(2) + g(2)O (%)
= fala) +O(n"2)

because of g(z) = O(n2) Hence the order of error in approximating f5(z) is im-

Nl

) by using the normalised function G(x) = 9(@)

proved to O(n_ = w

3.2.4 The Lugannani-Rice formula for survival function

approximation

As the use of saddlepoint method for tail probabilities approximation is even
more important in practical application (see Daniel (1987), Reid (1988, 1991),
and Terrell (2003)), our contribution here is to rewrite the proof of Lugannani-
Rice formula for survival function approximation P(X > x) based on the uniform

asymptotic expansion (see Jensen (1995), p.67, Theorem 3.2.1).

Theorem 5. The Lugannani-Rice approximation for survival function

Let X1,Xs,...,X, be i.i.d random variable with cumulant generating function
(CGF) K.(s) = log(M,(s)). Then the Lugannani and Rice approzimation for

the survival function of X is given by

P(X > )

Q

1-P(X <)
1= B(z) + 6(2) (i 1 o<n—%>) (3.75)

Q

21 22

where ® and ¢ are the CDF and PDF of standard normal N(0,1) with z; =
8/ K% (3), 20 = /2 (82 — Kx(3)), and 3 is the solution to K (s) = x where
K’ (s) = dKx/ds and K% (s) = d*Kx/ds* are the first and second derivatives of
the CGF of X.
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Proof. Given equation 3.68, we have

P(X > 1)
_ / Fx(y)dy

= 1/2 2
:/x (%) exp{n(K(é)—gy)}{le%(%_%

(3.76)

) +0(n7?) }dy

In order to apply the uniform asymptotic expansion, we need to transform equa-

tion 3.76 in the form of

/nTa (%) exp (—5t°) qa(t)dt

Define

hy) =2 {3y)y — K(5(y))}

Given data y, §(y) is the solution of K'(s) = y such that

dK (3)
ds

then

= 1
dy )

d dK(s) s 1
ds ds dy

P*K @
ds? dy

ds  (dPK\
dy ds?

°K ds
>0=—>0
ds?

dy
then §(y) is a strictly increasing function in y.

d <df§<§>

=1

As

K"(3) =

78

(3.77)



3.2 Numerical approximation method

Let
T = 2{s(y)y — K(5(y))}
then AT
= = 2454+ 5y —K'(3)§
% {8 +38y— K'(3)8}
and
dh _ dhdT
dy - dT dy
1 -3
_ —{2(§y—K(§))} 2{5+ &'y — K'(5)§'}

{s+5y-K6)}

By equation 3.77, we have

_ i =~
As h(y) > 0 and §(y) is a strictly increasing function of y, then h is also a strictly

poo 3 (3.78)

increasing function of y. Therefore the range of integrand can be change from

Since J ) )
I | R
dy = o dh % dh h’dh (3.79)

By equation 3.77 and 3.79, we change the integrand variable from y to h(y) and

3.76 becomes

P(X > z) (3.80)

® rn\z n 1 1 (ky BK2 1
_ A ERLTE) DN P —) Lan
/h(x) (37) e (= )h’ K”(é){ +n<8 24)+O<n2)}
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Since the uniform asymptotic expansion formula is

/ " <%>%exp (-5 aultyit (3.81)
145(0 1 ¢87(0 1
{r—<¢wn{<>+5q;’+ 47;;%455+0<kﬂ)}
L exp(57°) { Ga() = 6a(0) 1 ¢1a(m) = 41a(0) | 1 dra(n) = Qka(o)}
2o " a " S ak n

By comparing the integral of () term in 3.80 to 3.81, we determine 7T, = oo,
1

n=h,a=mn,and q,(h) = IOk , and apply the uniform asymptotic expansion
formula for £ =1 case.

P(X > )
{1—M¢Mﬁ{%mW}+%(% )+ Q;)}
+%%ﬁwp(ﬁ“?m){%ﬂ”;%”>+o(%)} 352)

Next, we need to find the g,(h) function and compute ¢, (0), ¢®(0).

By substituting result 3.78 in ¢, (h) = - \/;T(U’ we obtain
1 h

RNV ZORENCE

(3.83)

Then

(@0 = (v§7§>

2(sy — K(8))
82K//( )
2(5K'(5) = K(3)
S2K7(3)
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3.2 Numerical approximation method

By the Taylor expansion of K(5) at 0, we have

K// 0 a2 K/// 0 23 k,iv 0 ~4
K(3) = K(0)+K'(0)s + (0)57  K7(O)5 | k(0)3 +O(8)
~—— 2 6 24
=0
K8 K38 k&t .
= Rmé+ 22 + % + ;‘4 +0(5) (3.84)
Then
) K (3)
K'(3) =
(5) ds
) 23
= m+mﬁ+ﬁguﬂ%i+066 (3.85)
) LK (3)
K//(S> d§2
- /£2+/£3§+%§2+O(§3) (3.86)

Asy = K'(8), we substitute equation 3.84, 3.85, and 3.86 in equation 3.77
h?* = 2(3K'(8) — K(3))

= 2{ <K1§ b ohgd? 4 2y Dy O(§5))

2 6
a2 23 ol
_ N K9S R3S KRqS N
</~$1$+ 5 + 5 + o +O(s))}

2H3§3 H4§4

3 T+ 0(8°) (3.87)

= /€2§2 +

81



Distribution theory

Further substitute equation 3.87 and 3.86 in equation 3.84 gives

2 h2
h) = ——r
q"< ) §2K”<§)
Ko + k38 + 1r48” + O(8°)
Ko + K35 + %H4§2 + O(§3)
2 K3 A 1 kg 32 a3
1+ 588+ 7754+ 0(8)
1+ 554+ 25482 + O(89)
K2 K2

2 1 1 1 2
= (1428 M o)) (1o B M (B S}
3/4,2 4/4,2 K9 2/4,2 K9 2%2
1I€3A 1 R3 2 1/4,4 ~2 ~3
= 1--3 () o™ 0
3/4,28_'—{3(/{2) 4/4,2 s (S)

1 . 1 1 R .
= 1- 573\//?28 + <§7§ - Z%) Ra$” 4 O(5°) (3.88)

where ; = - for j = 3,4. We next take logarithm on both side of 3.88, and
K2)2

uselog(l%—x):x—%ﬂt%

zt
1

e for =1 < <1,

2log(gqn(h)) = log

1 . 1 1 . .
1+ {—g’}/g\/ﬁ_gs + (g')/g - 1’74) /€2$2 + 0(83)}]

1 R 1 1 X —Lrys. /Rg8)? X
= —§V3\/'f_25 + <§7§ - Z%) Fas” — % +0(8%)

1 R 1 1 . 1 ) .
log(gn(h)) = _673\/’?25 + <§732, - Z%) /‘€2$2 - %732,%282 + 0(53)

1
574) I€2§2 + O(§3)
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3.2 Numerical approximation method

Then

1 R ) 1 R .
qn(h) = exp{ — 673\//€_28 + <%7§ — gw) rod? + O(s?’)}

1 .2
)m§2+( 673‘/'{_228+ ) +0(5)

S

1 5 1
p— 1 _ — S —_ 2 PR
673\/f<025+ (36%’ 874

1, 1

1 . . .
= 1- 673\/"?28 + (ﬁ%’ - 574) Kos” + O(5°) (3.89)

As g, (h) is a function of h, we need to express § in terms of h.
Define
8 = aih + axh® + O(h?) (3.90)

By substituting 3.90 to the first two terms of 3.87, we have

h2 = K9 (alh + a2h2)2 + g/’ﬁg (alh + a2h2)3 + O(h4)

2
= Kpalh® + (2&1&2%2 + glﬁlga?) h? + O(h*) (3.91)

Equate the coefficient h? and h3 on both side of 3.91 to solve a;,as, then

1
Gry=1=a; = —— 3.92
12 1 \/KJ_Q ( )
2 3 1 K3 1 Y3
2a1a9kK9 + gligal =0=ay = —51{—% = —5—1{2 (393)

where v3 = /{3/{2_%, then we substitute 3.92 and 3.93 in 3.90 yields

5= % (h - %wﬁ) + O(h%) (3.94)

83



Distribution theory

Substitute equation 3.94 in to equation 3.89

11 1 1 1 2
(h) = oL h — ~~sh? a2 — | h = Z~sn? h?
Gn(h) 1V \/7< 373) <7273 874)%2/{2( 3 ) +O(°)
1
874

1 1 11 1 2

1— g [ h— Z~sh? h — —~ygh? R3
673 < 373 ) + (7273 ) < 373 ) + O(h?)
1
6

1 11 1
- h A2 A2 - h2 h3
v3h + (18%, + 2 874) + O(h”)

B 1 ) 9 3
~ 673h+<24 874)%1 +O(h?)
Hence . .
— (2) — L2
w0 = 120 = 2 (38~ ) (3.95)

Finally, we substitute equation 3.95 and 3.83 in equation 3.82 to obtain the
Lugannani-Rice formula for survival function of X
> L/ 5\ 1 (5% 1 }
> = - S R _
PXza) = {1 }{H (8 o1 ) Tl s ) PO\
qn(h) — 1
hy— | ———+0|( —
+¢(v/nh) ﬁ( . Ly (n

- o (0 (3)) oo - vo()
= 1 B(z) + O(2) (- = O(n—a)) (3.96)

Fi(z) = P(z<ux)

where 2, = §/nK%(3), 20 = \/2n[8z — Kx(8)]; ® and ¢ are the CDF and PDF
of standard normal N(0,1). O
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3.3 Comparison of methods

3.3 Comparison of methods

3.3.1 Example 1.5

We compare all the above methods which relies on our access to the MGF and
CGF, the maximum entropy method with 5 moment constraints, saddlepoint ap-
proximation, and Padé approximation to estimate the total waiting time PDF
fr,(t) based on Mrp,(s) in Section 3.1.1 on page 41, where all the internode

waiting time follow exponential distribution (see Table 3.1 on page 41).

First, we compute the maximum entropy density based on 5 moment con-

straints
fue(t) = exp(—1.2160 — 0.0202¢ — 0.0937¢> + 0.0073¢> + 0.0002¢*)

The corresponding maximum entropy survival function, Sy;p(t) = = frp(uw)du,

can then be obtained by numerical integration.

Since we are only interested in the distribution of total waiting time Tgs
instead of the mean of total waiting time from node 0 to node 2, the saddlepoint
approximation for fr,,(t) of can be obtained by the substituting n = 1 in equation
3.71.

Foplt) = (27 K"(5))"% exp (K (3) - 52)

where K (s) = log (Mg, (s)), Mr,(s) is the MGF of Tpo; K'(s) = L K(s), and $
satisfies K'(5) = x.

The saddlepoint approximation for the survival function can be computed by

the use of Lugannani-Rice formula in Theorem 5 with n = 1.

S(0) = 1= 0(ea) + o0ea) (- 2 )

21 22

where 21 = §1/K"(8), 20 = /2 (5t — K(5)); ® and ¢ are the distribution and

density function of standard normal N (0, 1).
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The estimated PDF and survival function based on the inversion of Padé
approximation of Mr,,(s), PAjz(s), are given in equation 3.27 and 3.28. Since
both the true density function and the survival function are in closed form (see
equation 3.6 and 3.5 on page 43), we compare these three methods by calculating

the integrated square errors (ISE).
o0 N2
ISE = / (£~ F(o)) ar
0

where f(t) is the true density and f(¢) is the estimated density. We particularly
focus on the performance of these methods when estimation is only based the sim-
ulated data on the time interval ¢ = [0, 20]. The integrated square errors obtained
for each method are given in Table 3.5. It is shown that the Padé approximation
has the smallest ISE and is remarkable accurate in estimating both PDF and

survival function of total waiting time between node 0 and node 2.

Table 3.5: Integrated square error(ISE)

Method density function survival function
Maximum Entropy 0.0422 0.0186
Saddlepoint approximation 0.0286 0.0017
Padé approximation 7.46 x 10713 3.57 x 10714

Figure 3.5 and 3.6 indicate that all the three methods give reasonable good
approximations for both density function and survival function, particularly the
density estimation based on Padé method is virtually the same as the true den-
sity. For further comparison, we take the logarithm of our density estimation and
survival function estimation result, and plot each of them against ¢ in Figure 3.7
and 3.8 respectively. Generally, we can see that both saddlepoint approximation
and Padé approximation are relatively more accurate than the approximations
based maximum entropy method, which has a large error in the tail area esti-
mation of PDF and survival function. This may due to the fact the expression
of maximum entropy density is an exponential of polynomial function, see equa-
tion 3.9 on page 45, and it becomes unstable when ¢ is large. We will give more

discussion about the tail area approximation in Chapter 5.
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Figure 3.5: Density Estimation for Ty, in Example 1.5
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Figure 3.6: Survival estimation for 7Ty, in Example 1.5
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Figure 3.7: Plot log(f(t)) against ¢ in Example 1.5
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Figure 3.8: Plot log(P(T > t)) against ¢ in Example 1.5
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3.3.2 Example 1.6

Since a closed form expression for the true PDF in exponential case can always
be obtained by directly applying the inverse Laplace transform of the MGF, we
do not need to use any density approximation methods. As this is not always the
case and the true PDF will not have close form if the internode waiting time is
non exponentially distributed. In this section, we apply the maximum entropy
method, saddlepoint approximation and Padé approximation to estimate the dis-
tribution of the total waiting time in the example of Section 3.2.1.4 on page 54,

where Gamma distributed inter-node waiting time is allowed (see Table 3.4).

The MGF of the total waiting time from node 0 to node 2 is

i(4.48.§s)3-2(3 s) _'_%( 2233)

L= 55 (%)

MT02 (8) =

We can see that Mr,,(s) is not a rational function and the Heaviside formula
given in Lemma 4 can not be applied to compute its inverse Laplace transform
for fr,,(t). By imposing 6 moment constraints, the maximum entropy estimated

density is determined as
fup(t) = exp(—0.033 — 1.6088t + 1.0621> — 0.4775t> + 0.0785t* — 0.0043t°)

The estimated survival function based on the maximum entropy density is defined

as S we(t) = ft f ve(u)du, which requires to compute integration numerically.

Furthermore the saddlepoint approximation for the PDF and survival func-
tion of Tys can be obtained by formula given in 3.71 and 3.96 respectively. To
apply the Padé approximation method introduced in Section 3.2.2, we first ap-

proximate My, (s) as rational function PAs 4(s)

1—0.4508s + 0.138s% — 0.0117s?

PA =
54(5) = T 750305 +0.732352 — 0.144253 4 0.0109s*
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Lemma 4 on page 40 is applied to invert P Az 4(s) for the Padé estimated PDF.

fra(t) = 274072 (1.1902 cos(2.406t) + .613995682 sin(2.406t))
—3.876e 277" 4+ 2.566¢ %0

The Padé estimated survival function is

Spa(t) = —1.5044 exp(—2.5764t) + 1.9948 exp(—1.2863t)
2 exp(—4.6725t) (0.2548 cos(2.406¢) + 0.0002 sin(2.406¢))

The estimation for PDF and survival function is presented in Figure 3.9 and Fig-
ure 3.10 separately. We also compare all three methods by plotting the logarithm
of estimation result against ¢, Figure 3.11 and 3.12 reveal that the instability of

maximum entropy density occurs when ¢ becomes large.

To conclude, we find two appealing advantages of using Padé approxima-
tion for total waiting time density estimation. First, the Padé method is more
informative than the other two methods in the sense that it can always pro-
vide an analytical approximation for the unknown true density, which can be
easily applied to obtain closed form expression for survival function, reliability
function and hazard function. Secondly, the Padé method allows us to estimate
the PDF and CDF in the form of mixture of exponential densities, whose rates
are determined by the poles of the rational approximation of MGF. This unique
feature indicates that we can potentially analyse the total waiting time data in
terms of phase type distribution (see Huzurbazar (2002)). By comparisons, the
maximum entropy method can also give a closed form maximum entropy density
to estimate the probability density function, however, it is not easy to perform
further calculation because the high degree of polynomial in equation 3.9 leads
to high computational cost in evaluating the integral. Although the saddlepoint
approximation is accurate in both density and survival function estimation, the
implementation could be difficult if the MGF of total waiting time is compli-
cated, and it often requires a great deal of computational effort to compute the

saddlepoint § (see Theorem 4) and obtain estimation.
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Figure 3.9: Estimated PDF of Ty, (¢) in Example 1.6

T T T
| — — — Maximun entropy estimation
\ Saddlepoint approximation

0.9 \ — — — Pade approximation u

0.8 !

02 %

0.1f AN
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Chapter 4
Parameter estimation

In this chapter, we apply the maximum likelihood method and the method of
moments (MM) to estimate parameters in the total waiting time distribution.
The maximum likelihood method selects values of the parameters that maximise
the likelihood function. Maximum likelihood estimators (MLE) have a number of
attractive asymptotic properties, such as consistency, efficiency and asymptotic

normality.

However, in a flowgraph with non-exponentially distributed internode waiting
time, as shown in Section 3.3.2 Chapter 3, the probability density function of to-
tal waiting time is intractable and the analytical expression of likelihood function
is not available. In this case, the maximum likelihood method is often difficult
to implement and computationally costly, and the MLE has to be determined
numerically by the use of optimization methods based on an approximation of
the likelihood function.

The method of moments, on the other hand, does not require a closed form
of the likelihood function. It constructs moment equations by equating sample
moments with population moments (i.e. the derivation of MGF at s = 0) and
solving these moment equations to estimate the parameters. Moreover, with suit-

able parameterizations, MM is computationally efficient.
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Here is how this chapter is organised. The first two sections of this chapter
deal with the Maximum Likelihood Estimation. The first contribution we present
is to propose a method to convert the mixture of negative weight exponential
densities into a suitable form that can be adapted for applying the EM algo-
rithm to estimate its weight and rate parameters. We then turn to the method of
moments approach for parameter estimation in flowgraph, particularly the tran-
sition probability and the parameters in the internode waiting time distribution.
Our second contribution is to develop a formula to estimate the bias in the MM
estimator and suggest a bias correction method for the MM. The last section of
this chapter gives comparison between the MLE and MM estimator in terms of

their mean square error and actual computational time.

4.1 Maximum Likelihood Estimation

Given a sample of observations, the maximum likelihood estimation is a method
to estimate the parameters of a distribution by finding the value of parameters

that maximise the likelihood function.

Definition 8. let © = {z1,...,2,} be a set of independent and identically dis-
tributed (iid) observations from a distribution with probability density function
f(xz]0), that is indexzed by the set of parameters @ = (01, ...,04). Given the obser-

vations, the resulting likelihood function of the parameters 0 is:
LX) = ] f(ilo)
i=1

Then the maximum likelihood estimator (MLE) for 6 based on the observations

1,...,%, is defined as 0 for which

0 = argmax L(0|z)
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For a d-dimensional parameter § = (01, ...,60;), the procedure of finding the
MLE is usually about solving a system of likelihood equations, which are con-
structed by setting the first derivative of the logarithm of the likelihood function
to zero. As it is shown in equation 3.5, Section 3.1.1, it is common to have the
total waiting time density function in the form of a mixture density, and the
likelihood equation of mixture density is nonlinear equation, which can not have
analytical solution. Consequently, we need to apply some iterative procedures to

find an approximate solution of the likelihood equations.

4.2 The Expectation-Maximisation algorithm

The Expectation-Maximisation (EM) algorithm is an iterative method to find the
MLE when the likelihood function is impractical to differentiate or directly max-
imise, and the closed form solutions of likelihood function is not available. Each
iteration of EM algorithm consists of two steps: the expectation step (E-step)
followes by the maximisation step (M-step). This algorithm was first formally
introduced by Dempster, Laird, and Rubin (1977), and it has been broadly ap-
plied to perform statistical inference when the given data set is incomplete or has
missing values. For more detail background theory and extension, see McLachlan
and Krishnam (1997).

In flowgraph analysis, we assume that the path of each particle chose to move
from input node to output node is not observable, then the notion of “incomplete
data” can be considered as the missing information about the “path” between
input and output that generates each total waiting time, it is therefore useful to
express the waiting time problem as an incomplete-data problem within the EM

algorithm framework.

In this section, we first briefly review the basic theory of the EM algorithm,
present a detail derivation of the procedure for parameter estimation in a mixture
density, and propose an method to transform the mixture of negative weight

density into a suitable form for implementing the EM algorithm.
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Let X be a random variable with observed data x = (z1,...,,) that are
generated by some distribution having parameters 6 with parameter space ©. Let
y = (y1, ..., Yn) denotes the unobservable or missing information, and then assume
a complete data set z = (x,y). The joint density function for random variable Z

18

f0) = f(x,y]0)
= f(ylz, 0)f(«0)

We can then define the complete data likelihood function as
Llz) = []fl0)
i=1
i=1

Since the missing information y is unknown, L(#|z) can be considered as a func-
tion of y gives = and 6. We refer to the original likelihood function L(0|z) as the
incomplete data likelihood function. The EM algorithm consists of two steps as

follow.

The E-step (Expectation): The first step of EM algorithm is to find the
expected value of complete data log-likelihood function log(L(#|x, y)) with respect

to the unknown data Y given the observed data X and current value of parameter
g

Q6.6™) = E{log(L0lr.y)}y
_ /Y log(L (8], ) f (y]z, 6 )dy (4.1)

The second argument 6™ in Q(#, ™) represents the current value for § that we
use to evaluate the expectation at the m-th iteration. Note that equation 4.1 is

obtained based on the following definition of conditional expectation.
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4.2 The Expectation-Maximisation algorithm

Efh(y)|z, 8] = /Y h(y)f (yl, 0™)dy

The key idea in the expectation step is to understand that X and 6™ are given

constants, and Y is a random variable with marginal distribution f(y|z, 6(™).

The M-step (Maximisation): The second step of EM algorithm is to

maximise the expectation we obtained in equation 4.1 with respect to 6 such that
o0t = argmax Q(6,0™)
We choose 01 from © that
QO™ 9™y > Q(6,0™) for all § € ©

Given the initial value 8™ and data X, the EM algorithm starts off with E-
step and follows by M-step, the two steps are repeated until the difference in the
incomplete data log-likelihood function is less than a defined small amount ¢ for

convergence.
L™ V|z) — L(O™|z) < 6

Essentially, EM algorithm reconstructs the given incomplete-data likelihood func-
tion L(A|x) in terms of a complete-data likelihood function L(€|z), makes use of
the connection between these two function and obtains a MLE based on a po-
tentially simpler calculation in the EM algorithm for complete-data problem. In
some simple case, for example mixture of Normal distributions or mixture of Pois-
son distribution, the M-step of the algorithm always has analytical solution, so
that the implementation of EM algorithm is easy and we have closed form MLE.
In our case, the total waiting time PDF is in the form of mixture of exponential
distribution, the M-step usually doesn’t have analytical solution, and numerical

method is required to compute the MLE.
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Dempster, Laird, and Rubin (1977) shows that each iteration of EM algo-
rithm is guaranteed to increase the incomplete data log-likelihood until it con-
verges, the rate of convergence is linear and the rate depends on the proportion
of information in the observed data. By comparing to Newton-Raphson method,
the EM algorithm is numerically more stable with each iteration to increase the
log-likelihood function, and it converges to a local maximiser from almost any
starting point (Dennis and Schnabel (1983), page 5). A detail discussion on the
convergence issue of EM algorithm is given in Wu (1983). The EM algorithm
also has the advantage of lower computational cost per iteration, which it does
not require to evaluate the Jacobian matrix of likelihood equations. Although the
EM algorithm may converge very slowly for some initial value of parameter, this
can be overcome by starting from random initial value and keep the best of those
initial value of parameters that requires small number of iterations. In practise,
it is common to monitor convergence by observing the increase in the plot of

log-likelihood against iterations.

4.2.1 Case 1: Mixture with positive weights

As an important family of densities to which the EM algorithm can be applied
is the mixture density, which is a weighted sum of k& component densities that
come from a particular distribution, such as normal distribution or exponential
distribution. The goal of this section is to discuss the formulation of the EM

algorithm for mixture densities.

Definition 9. The finite mixture densities is defined as
k
F@©) = wif(xl6;) (4.2)
j=1

where each f;(x]0;) is a density function , Z?:l w; =1, and each weight w; > 0
can be thought of as the probability of the data belongs to the j-th component
density f;(z|0;) (i.e. P(component density j) = w;). The parameter vector is
denoted by © = (wy, ..., wy; 01, ..., O)
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4.2 The Expectation-Maximisation algorithm

The rest of this section will illustrate the derivation of formulas to estimate
the parameters in mixture densities (i.e. weights and parameters in component
density) based on the EM algorithm. We start off by defining the incomplete data
log-likelihood for f(x|©) from observed data x = (xy,...,x,) as

log (L(B]X)) = log <Hf(xi|@))
n k
= Zlog (ijfj(%\@j))

As log (L(©|X)) is in the form of the logarithm function of the sum of mix-
ture densities, it is difficult to be maximised by the usual maximum likelihood
procedure. To apply EM algorithm, we first denote the missing information by
y = (Y1,-.-,Yn), where y; € (1,2, ..., k) for each i = 1, ...,n such that y; = j if the
i-th data, z; belongs to the j-th component density f;(x|6;), j =1,2,.... k.

The complete data log-likelihood function is

log (L(O]X,Y)) = log( (X,Y[0))

= Zlog (yil:. 0,,) £ (:]6,,) (4.3)

Given the initial value ©©) = (w§°), . w}f% 9 9( ) and sample data X, we

can compute the marginal density function
fv1x,09) = [T £l 09) (4.4)
i=1

where
FWi, 2,09 flagly, ©9) f(1:]0)
f(ﬂfi,@(o)) B f(ifi|@(0))

fyilz, ©0) = (4.5)

By equation 4.2, we have

f(z;]0© Z w; f;( :)32|9(0 (4.6)

99



Parameter estimation

and
f:|09) = wl® (4.7)

Substitute 4.6 and 4.7 in 4.5, equation 4.4 becomes

f(Y|X7@(O)) = Hf yz‘xzu
— f[ (xz|yz>@(0 )'LUy (48)

k 0)
2:1 j= 1wjfy($2|9( )

Then the E-step gives

Q(0,0") = Eyxem{log(L(OIX, 1)) }
= ) log (L(O|X,y)) f(y|X,0©)

yey

where log (L(0]X,y)) and f(y|X,0©) are defined in equation 4.3 and 4.8 sepa-

rately. Further simplification leads to

Q6,09) = > log (L(OIX, ) f(ylX,0)

= 20 2 D log (wyfy(wil6,)) (vl X,0)

y1=1 yn=1 1=1

k k n k
= D DTS balog (wyfi(wild)) Flyl X, )

y1=1 yn=1 i=1 j=1
k n k k

= D) log (wifi(@il6;) D > Sy f(wIX,00) (4.9)
7j=1

=1 Yi1= 1 yn—l

where

0 otherwise

1 ifj =Y
O(jys) = { .
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4.2 The Expectation-Maximisation algorithm

As .
flylx,09) = T] f(y:le-,09)
z=1
Then we have

k k

DD S f X, 00)

y1=1 yn=1
k k

= (2> > > T Fwele, 09 | £l 0)

y1:1 yz-,l—l yi+1:1 ynzl Z=1,Z7ﬁi
k

n

- I

z=1l,z#1 Ly.=1

= f(]|xla @(0))

f(y2|xza @(0)) f(]|:l§',, @(0))

Because of 252:1 f(y.]z.,0©) = 1. Therefore, we can simplify equation 4.9 as

k

Q0,6°) = > "log (w; fi(wil6;)) f(ilzi, ©)

j=1 i=1

k n
= > log(w)) f(jlzi, ©©)

j=1 i=1

k n
£33 log (fy (i) f (il ©©)

j=1 i=1

= G(w;) + R(0;)
As G(wj) and R(6;) are independent, we can maximise Q(6,8(®) with respect to

w; and §; separately in M-step. Since the maximisation of G(w;) is subject to

the constraint Z?zl w; = 1, the method of Lagrange multipliers can be applied
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in this case, and solve the following equation for estimating w;, 7 =1, ...,

A(wj, A) = G(w;) + A(Z w; — 1)

= ZZlogwj ) f (i, ©9) —i—)\ij—l

7j=1 i=1 j=1

which yields the system of equations:

k
lelfj\xz,@( +Z)‘ _ 0
i =
oA F
o= dwi—1 =0

j=1

k. Let

(4.10)

(4.11)

Note equation 4.11 is the original constraint for the weights in Definition 9.

By multiplying w; on both side of equation 4.10, we have

k n
Zz.fﬂxza@(o ‘l‘Z)\'lUj =0
7=1 =1

n

Z(ijl% +Aw3) ~ 0

j=1 =1
n k
D> FGl, 00 + A = 0

i=1 j=1

Since Z?Zl f(zi, ©©) = 1, then equation 4.13 becomes

i=1

A= —n
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4.2 The Expectation-Maximisation algorithm

On the other hand, equation 4.12 implies that

Zf |2, ©) + Aw; = 0

Z?:1 f(.]|x27 @(0))

Substituting A = —n in 4.14 gives a general formula to determine the weight in
mixture density
1 n
= > f(ilen 0 (4.15)
i=1

where f(j|x;, ©©)) is the marginal density function of 3; = j-th component density

given data x; and the current value of parameter ©(® such that

oy — W h@lf?)
- k 0 0
S w® fi(:]6)

[z, © forj=1,.., k.

On the other hand, in order to estimate the parameters § = (64, ..., ;) that are

specified in each component density, we need to maximise function R(;)
k n
= > log (f(xil6;)) f(jlai, ©)
j=1 i=1
with respect 60;, for j = 1,...k. This involves finding the partial derivative of R(6;)
k

Z (810% fj l’z|9 ))) f(j‘xi’@(o)) — 0 (4.16)

7=1 =1

Generally, the computation of equation 4.16 depends on the expression of compo-
nent densities f;(x;|6;), and parameters 6, ..., 6 need to be estimated in a case by
case manner. In the best situation, each component density is from a well-known
distribution and it has a simple analytical form of PDF, where we can obtain a
closed form expression for 6; directly, however, in some case, the component den-
sity is very complicated, and we usually need to use numerical method to solve

equation 4.16 accordingly.
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4.2.1.1 Example 5.1

We consider the three nodes parallel flowgraph model for the progression of can-
cer patients in Section 2.1.2.2, Chapter 2 again. The distribution of internode
waiting time of flowgraph in Figure 2.2, page 9, is given in Table 4.1.

Table 4.1: Summary of waiting time distribution

Flow direction  Distribution MGF
0—1 Exponential(A;) moi(s) = 21
1—2 Exponential(Ay) mi2(s) = /\3\38
0—2 Exponential(A3) mga(s) = éﬁs

By Mason’s rule, the MGF of overall waiting time distribution between node

0 and node 2 is

MT02<3) = p01p12m01(s)m12(s) +p02m02(s)
B At A2 A3
N pm()\l—s)()\g—s )\3—8)

) +P02(

By the exact inversion method discussed in Section 3.1, we obtain the probability
density function of total waiting time from node 0 to node 2 in the form of mixture

of two densities such that

A1
f(t0) = por L (6_A2t — e_“) +p02A36_A3t
AL — Ao
= (L =po2) fr(t | O1) + pozfa(t | 02) (4.17)

2
- ijfj(t | 6;)
j=1

where fi(t]0;) = %(e_ht —e MY f5(t|0) = Xze™3!) the parameter vector is
0 = (w1, ws;01,63), 01 = (A1, \2), 63 = A3, and the mixture model weights satisfy

Z?:l w; = wy + wa = po1 + po2 = 1.
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4.2 The Expectation-Maximisation algorithm

Given the total waiting time data tq, ..., t,, the log-likelihood function is
log (L(#)) = log (H f(ti|9)>
i=1
n 2
i=1 j=1

Since the log likelihood function in parallel flowgraph contains the logarithm func-
tion of the sum of mixture densities, the derivation of the sum of log function with
respect to 6 leads to a system of non-linear equations, which are computationally

demanding to solve for 6.

As it is illustrated in Figure 2.2, that there are two different paths from input
node 0 to output 2 in our parallel lowgraph example, path 1is 0 — 1 — 2 and
path 2 is 0 — 2, the total waiting time data T" = (1, ...t,) can be viewed as
incomplete data by assuming the existence of unobserved data Y = (y1,...yn),
whose values indicate which path “generated ” each total waiting time, the EM
algorithm can be easily applied to find the MLE of mixture parameters in the
above parallel flowgraph.

Since f3(t|0s) is in the form of the PDF of exponential distribution, which
is much simpler than f;(¢|0;), and pp; = 1 — pgg, then it is more convenient to

update pgs first. By the use of formula given in equation 4.15, we have

m-41 1 - m
o= S Fl )
=1
1o~ wy™ htN")
n =S o™ 0

(m) (m)
s o () A™)
= _2 (4.19)
— ) A AT AT 4 pa? o (AT

To find the parameter ¢; = (A1, A\2) and #3 = A3 in each component density,
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let

Q(e,é(m)) = Q(9>9§m))+Q(979§m))
- Zlog(fl(tiWI))f(l‘ti,@(m)>

+) log(fa(ti]62)) £ (2]t ©™)
i=1
For 6y = A3, we substitute fo(z|62) in Q(6, 65™),

Q0,65™) = > log (Ase™") f(2]t:;, ™)
=1

n

- Z (log(A3) — Ast;) f(2[ti, ©™) (4.20)

i=1
Taking the derivative of 4.20 with respect to A3 and equating to zero, we have

> (5 -#) i) = o
3

i=1

> iy f2ft, 0
A3

1=1

A\ >or o f(2lt;, 0m)
’ > ooy tif (21, ©0m)

(4.21)

where m) )
Doz fz(ti‘)‘s )
(1= o) Fu &A™ AS™) + 5 Fa (i AS™)

Similarly, for the update of 6, = (A1, A2), we substitute fi(x]6;) in Q(6, 9§m)),

f2lt;, 0 =

- ALA
(m) . 112 _>\2ti _ —>\1ti i (0)
Q.0 = Z-Ezflog(h— A2)(e e )f(lm,@ ) (4.22)

- Z {bg(Al) +log(2) — log(Ar — Ag) + log(e ™" — e_klti)}f(”tu o)

i=1
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and solve the following partial derivative equations,

0Q /1 1 b o=t
o N : 1[t;, 0) = 4.2
2 Z <)‘1 Al — Ao - et — g~ Miti ) f( | ,© ) 0 ( 3)

0Q /1 1 b oot
-2\ T 1[t:;,01) = 4.24
a)\2 ZZ:; <)‘2 * A1 — Ao e~ A2ti — g=Aiti ) f( | ’9 ) 0 ( )

where
f(1)t;,09) = (1 poz )fl(t |)\ )
(1 =P A >+p02 FatAS7)

In this case, it will not be possible to obtain analytlc expressions for A\; and \; in

terms of of all other parameters, then numerical method such as Newton-Raphson
method is required to solve equation 4.23 and 4.24 for A\; and A\s.

Given ©™ = (1—pi plm A AU Ay we compute plp ™ and AL™Y
by explicit formula 4.19 and 4.21 respectively, determine A" and A" by
solving 4.23 and 4.24 numerically, and update O™ to O+ The iterations
will not stop until the convergence of log-likelihood function given in 4.18 occurs,

where the change of log(L(#)) is smaller than a pre-specified amount ¢

log (L(©™1)) —log (L(O™)) < § (4.25)

By assuming the true parameter values as: pgo = 0.3, por = 1 —pg2 = 0.7, \; = 1,
Ao = 2, A3 = 3, and simulate a sample size of 20000 total waiting time data from
node 0 to node 2 in the parallel flowgraph. Starting from suitable initial value
for 0, we set & = 107% in equation 4.25 as the tolerance value. The convergence
of log-likelihood function occurs after 1419 iterations. The estimation result is

presented in Table 4.2.

Table 4.2: Summary of MLE by EM algorithm
Sample size Do1 Do )\1 )\2 )\3
n = 20000 0.7006 0.2994 1.0254 1.9053 2.9866
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4.2.1.2 Example 5.2

Suppose the parallel flowgraph illustrated in Figure 2.2 consists of non-exponentially
distributed internode waiting time (see Table 4.3), the MGF of total waiting time
between input node 0 and output node 2 can not be decomposed into sum of ra-
tional function by partial fractions, and it therefore can not be inverted directly
to obtain closed form density function. In this case, the likelihood function is
not in closed form and the standard procedure for computing MLE can not be
applied. We need to first numerically invert the MGF based on the numerical
inversion of Laplace transforms method (see De Hoog (1982)), then apply the
Nelder-Mead simplex method to compute MLE numerically. For the purpose of
illustration, we allow the waiting time between node 1 and node 2 to follow a

Gamma distribution with non-integer shape parameter (see Table 4.3).

Table 4.3: Summary of waiting time distribution

Flow direction Distribution MGF
0—1 Exponential(A;)  mg(s) = %
1—2 Gamma(a, 3)  mya(s) = ﬁés "
0—2 Exponential(Ay) — mga(s) = A;\is

The MGF of total waiting time from node 0 to node 2 becomes

MToz (8) = p01p12m01(5>m12(5> +p02m02(8)
= pormoi(s)miz(s) + (1 — por)moz(s)

_ po1<)\l)\is) <ﬁ€s)a+(1—p01) (AjiS) (4.26)

Assuming the value of true parameters: po; = 0.7, Ay = 1, Ay = 1.5, a = 2.5,

G = 3, we simulated a sample size of 10000 total waiting time data from node
0 to node 2 in Figure 2.2. The first step of estimation is to numerically invert
the MGF given in equation 4.26 to obtain an approximated probability density
function f (t), compute the likelihood function based on f (), and then apply the
Nelder-Mead simplex method to compute MLE numerically. The result is shown
in Table 4.4.
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Table 4.4: Summary of MLE in non-exponential case

Sample size pn A A &
n=10000 0.75 12 1.8 24 29

4.2.2 Case 2: Mixture with negative weights

As it is shown in Section 4.2.1.1, the EM algorithm significantly simplifies the cal-
culation of Maximum likelihood estimation for finite mixture distribution. How-
ever, the PDF of total waiting time could be a mixture of exponential distribution
with negative weights, for example equation 3.5 on page 43, this forms our mo-
tivation to consider parameter estimation problem in a more difficult case where
the weights of component densities in a mixture density are allowed to be negative
value. A reference on the maximum likelihood estimation for these more general

mixed exponential densities can be found in Harris and Sykes (1987)).

Definition 10. A mixture of negative weight exponential density function for a

positive random variable X is defined as a weighted sum of k component densities:

fa) = S wifialay)

where

filzlay) = aue™®

is the probability density functions of exponential distribution with oy > 0 for

l=1,..,k, such that oy < ag < ... < oy, and the weights satisfy two constraints:

1. At least one w; ¢ [0,1] for some .

2. Zle w; = 1

Bartholomew (1969) developed a simple condition to verify whether or not a
mixture of exponentials is a proper probability density function (see Bartholomew
(1969), page 2184, Theorem 1), which plays an important role in the our deriva-
tion of our EM algorithm for mixture of negative weights exponential density. We

first present the original proof given in Bartholomew (1969).
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Theorem 6. Sufficient conditions (Bartholomew)

Given a function in the from of
k
flz) = Zwlale_a” (4.27)
=1

where the a’s are all positive and Zle w; = 1. The sufficient condition to ensure

that f(z) in 4.27 is a proper probability density function is
> wer >0 forr = 1,2,k (4.28)
=1

Proof. The alternative expression of 4.27 can be derived as

k k—1 T
f(x) = e™ " Z wyoy + Z {(e_o‘*x — e AT Z wlal} (4.29)
=1 r=1 =1

Since a1 < g < -+ < ay, it follows that
e T —e T HIT > () forr=1,2,..,k—1.

Hence f(x) given in equation 4.29 is positive for all z if
Zwlal >0 forr = 1,2,.. k.
=1

O

To apply the EM algorithm for estimating the parameters of a mixture of
negative weights exponential density function, we suggest a method to convert
the density defined in Definition 10 into a mixture of densities with positive
weight, so that the modified mixture density will be suitable for implementing
EM algorithm.
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Theorem 7. Given a mizture of negative weights density f(z) defined in Defi-
nition 10 with rates in ascending order ay < g < ... < g, and fi(t|ay) is the
corresponding component density with weight wy and the smallest rate . If f(x)
satisfies the Bartholomew’s sufficient conditions to be a PDF, then an alternative

expression of f(x) can be determined as
k
flo) =) mig;(x) (4.30)
j=1

where ¢1(t) = fi(tlay), m = 1— 2?22 s

w; 1s the negative weight for the j-th component densities f;(x|a;) and

araj (e7%t —emt)

gj(x) = oL —
J

for some j € {2,...,k}. Then equation 4.30 satisfies the following properties
1. ;>0 forallj=1,... k.

k
2. Zj:l 7Tj =1

Proof. By Definition 10, we have the total weight Zle w; = 1 while some w; are
negative, then there must exist at least one w* such that w* > 0. Furthermore,
Theorem 6 states that f(x) is a valid probability density function if condition
4.28 is satisfied. As ag > 0, in order to ensure that f(z) is a proper density func-
tion, w; must be a nonnegative value so that we have w;c; > 0 (i.e. condition
in 4.28 for r = 1 case). That is, the weight for the component density with the
smallest rate is always positive. Let v be the total number of component density
that associates with negative weight such that v < k — 1, label each of them by
index j for some j € {2,...,k}.
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v+1

The basic idea is to partition w* into cy,...c,11, where > "/

c, = w*, and
redistribute them to the j-th component densities involves negative weight by
constructing a nonnegative function c¢; fi(t) + w; f;(t) for some j € {2,...,k}. To

determine c;, we need to have

cifi(t) +w;ifi(t) = 0
—w-f—(t) )
c;, > —L7 forj € {2,..k
! fi(t) t J
now ()
i\ % Y (aa—ay)t
0 Y aemart Yo ©

As 0 < a; < ay, then el®1=%)! — (0 as t — oco. Since —w; > 0, then —wjﬁgg
fi(t)

decreases as t increase, giving the least upper bound for —w; Fip can be obtained

at t = 0, therefore we choose

—w; f;(t)
o = (=750).

e~ 90
—wjiae

ale—alo
—w;a;

= — forj € {2,...,k} (4.31)

g
Define function g;(t) in the form of
G(t) = RO+ wht)  forj € {2k

such that g;(t) > 0 for all ¢. Since f1(¢) and fy(t) are the probability density

function of exponential distribution, then

/Ooogj(t) = Cj/ooofl(t)dt+wj/0wfj(t)dt

= Cj—|—U)j

Hence we can replace f;(t) with the normalised function g;(t),

ci fit) +w;f5(t)

Cj—|—U)j

9;(t) = (4.32)
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4.2 The Expectation-Maximisation algorithm

Define m; = ¢; + w; and ¢; is defined in equation 4.31,
7Tj = Cj + ’LUj
= 224 w;
g

— wj< —z—i) (4.33)

Since « is the smallest rate, we have oy < o implies <1 — Z—i) <0, and w; <0,
then

T o= w (1—3—1’) >0  forj € {2, k).

We can also further simplify 4.32 by substituting 4.31,

—%i% 1 t Wy |4 t
pl) = —e O E el

o T W

—wjo; f1(t) + wjon f;(t)
—wW;0 + Wi

—WaiCys —at . e—ajt
Wi e + wjoa e

—wW;0; + Wi
alaj (e—ajt _ e—alt)

= forj € {2,..,k}. (4.34)

oy — Q5

Hence the alternative expression of mixture negative function is

f(t) = magi(t) + mga(t) + ... + mgi(t)

where g1 (t) = fi(t), m = 1— 2?22 7;, g;(t) and m; are defined by 4.34 and 4.33
respectively for j € {2,..., k}. O

Remark: We can also check whether g;(t), j = 2, ..., k, is a proper probability
density function by condition 4.28. Given
]

_ aq Ny
gi(t) = — are” M 4 et
a; — Q5 a; — Q5
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Since oy < o, we have

O{‘
Py = — Iy >0 forr =1 case
o — O

2
(0% aq

E pi; = — I oy + a; = 0for r =2 case

1 a1 — Q5 a1 — Q5

1=

By Theorem 6, we conclude that g;(¢) is a valid probability density function for
j=2 ...,k

4.2.2.1 Example 1.3 continued

In this example, we apply Theorem 7 and EM algorithm to estimate parame-
ters in PDF of total waiting time from node 0 to node 2 in the flowgraph for
3 nodes reversible illness-death system example in Section 3.1.1 Chapter 3. For
the purpose of illustration, we assumed A\; = 1, Ay = 1.2, A3 = 0.5, \y = 2, and
Po1 = Po2 = P10 = p12 = 0.5 in the following flowgraph.

By equation 3.5 on page 43, the resulting probability density function fr, (%)

is a mixture of exponential densities that contains negative weight.
4
Fro() = > wif;(tlay) (4.35)
j=1

where
fi(tlay) = aje™!

and = (w,«)such that w = (wy,ws, ws,wy) = (1.5, —0.303, —0.1915, —0.0066),
and o = (g, a9,a3,04) = (0.5,1.2,0.6339,2.366).

It is important to note that we only concentrate on the estimation of pa-
rameters § = (w, «) in the density function fr,(¢) rather than those parameters
in the flowgraph. (i.e. A’s and transition probabilities in Figure 2.4). According
to Theorem 7, as 0.5 < 0.6339 < 1.2 < 2.366, we set oy = 0.5 and w* = 1.5.

The alternative expression can be constructed by partitioning 1.5f;(¢), and re-
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4.2 The Expectation-Maximisation algorithm

distributing to other component densities that have negative weights, then

frat) = 3" migs(t) (4.30)

where

S wj< _&) (4.37)

and ™ = (my, 7o, w3, m4) = (0.5,0.4242,0.051,0.0248). The modified component
densities are defined by

OélOéj (e_o‘jt — e_o‘lt)

g(t) = (4.38)

a1 — Oy

By substituting « = (a1, ag, az, ay) = (0.5, 0.6339, 1.2, 2.366) in equation
4.38 accordingly, we obtain

= 0.8571 (7" —e %)
= 2.366 (e — e 009)
= 0.6339 (e7*%" — e7>300")
= fi(t) = 0.5e %%

Now we can apply the EM algorithm discussed in Section 4.2 to estimate pa-
rameters éj = (m;, ), for j = 1,2,3,4, in 4.36. The weight 7; can be updated

iteratively by formula given in equation 4.15

7TJ(' = 529(]\%045 )
=1

_ Ly () (4.39)
N4 Z?:lﬂl(m)gl(ti‘%(m))

As the first component density ¢ () is the PDF of exponential distribution, which

has relatively simple expression than the other three component densities, then

115



Parameter estimation

we first estimate its rate oy by the formula derived in 4.21,

g1t 6™
O{gm—i_l) — ZZZI g( ‘ ) ) (440)

>y tig(L]t:, 60m)

where

e gy — T a(tlef™)
g(1lts, ) = 4 _(m) (m)
™ giltileg )
Since g¢;(t) is a function of a; and «a; (see equation 4.38), and it is in the same
form of fi(¢ | c) in the mixture of density given by 4.17, we can therefore update

each o for j = 2,3,4 by the same approach in equation 4.22. Define

Q.6 = Zlog{ (af‘f‘;) (e —e‘“l“) }g(ﬂti,é(mh (4.41)
i=1 J

To speed up the calculation, we can replace the starting value a&"” and 7T§m

in 4.41 by the updated value 7" and a!™™" obtained from 4.39 and 4.40

respectively, and solve the following equation for a;

)

oQ “ 1 1 t.e—ti o
L _ _ v plm)y
aaj - Z [ _I_ (m+1) (m+1)ti :| g(] |t7,7 9 ) - 0

@ oy —a; e %l —eTM

where (m) o
g(jlts, 8™ = e
P D ga(tlal™ D) + S, w10

The updated value for the original weight w; can be derived from equation 4.37.

(m+1)
wj<_m+1> = — — forj = 234 (4.42)
1—W

As the conversion from mixture negative weight density to mixture positive weight
densities is a fairly straightforward computational procedure, it can be broadly
applied within the framework of the EM algorithm. Given the initial value of 0,
gim) — (w™, a™), the general procedure of parameter estimation for mixture

negative weight density is as follow:
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4.2 The Expectation-Maximisation algorithm

1. Convert the negative weight mixture density into positive weight mixture
density by Theorem 7, define (™ — §(m) = (7(m) (M)

2. Update (™) — g(m+1) by EM algorithm until likelihood function converges.

3. Transform back to original parameters §71) — gt — (y(m+1) o (m+1))

where w(™*Y) can be determined by 4.42.

4.2.2.2 Simulation

As the probability density function of total waiting time is obtained in the form
of 4.35, in order to test our method in Theorem 7 to estimate its parameters
w’s and a’s , we need to simulate the total waiting time data between input at
node 0 and output at node 2 of flowgraph in Figure 2.5 on page 17. To generate a
sample size of n total waiting time data tq, ..., t,,, we need to specific the internode
waiting distribution, label the flow direction between each node, as well as the
corresponding transition probability (see Table 4.5). We first need to simulate the
path of n particles from input node 0 to output node 2, and then compute each

total waiting time t;, 1 = 1, ..., n.

Table 4.5: Summary of waiting time distribution
Label Flow direction Probability Distribution

1 0—2 Po2 Exponential(A3)
2 0—1 Dol Exponential(A;)
3 1—0 P1o Exponential(\4)
4 1—2 D12 Exponential(Az)

The procedure of simulation is described as follow

1. At node 0, take a size of n weighted sample with replacement from set
{1,2}, using a vector of probabilities {pg2, po1}, where the integer 1 or 2 is
selected with probability pgs or pg;. Denote the total sample size of result

equal to 1 and 2 by s; and sy respectively, and s; + s = n.

2. For those result equal to 2, take a size of sy weighted sample with replace-

ment from set {3,4}, using a vector of probabilities {p1g, p12}, where the
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integer 3 or 4 is selected with probability p;o or p12. Denote the total sample

size of result equal to 3 and 4 by s3 and s4 respectively, and s3 + s4 = s9.
3. Set n = s3, stop simulation if s3 = 0, otherwise go to 4.

4. Repeat Step 1, 2 and 3 until s3 = so = 0. (i.e. all the particle reach output
node 2).

We construct a m x n matrix D to record the path for each particle from input
node 0 to output node 2, where the column represents index of sample data and
the row represents the direction of movement that each particle made before it
gets to output node 2, that is, d;; denotes the flowgraph direction that the j-th
particle chose in the i-th movement. Next, we generate internode waiting time
for each particle in every step of movement according to the given distribution
in Table 4.5, defined a m x n matrix G such that g;; represents the passage time
of j-th particle in the i-th movement, then the total waiting time for the j-th

particle to reach output node 2 is the column sum of matrix G.

For example, suppose we want to simulate 5 total waiting time data. First, the
path of 5 particles from input node 0 to output 2 are recorded in matrix D below,
the simulation of path is terminated once the particle follow either flow direction 1
(i.e. 0 — 2)or4 (i.e. 1 — 2). From matrix D, we see that it took a total of 6 steps
of transition for all the particles reach output node 2. Next, the passage time for
each transition in matrix D are simulated and stored in matrix G. Therefore, we
can then obtain 5 total waiting time ¢t = (0.5803,2.8013, 3.6601, 3.3988, 4.8463)

after taking the column sum of matrix G.

1 2 3 4 5
11 2 2 2 2 0.5803 2.5775 3.0027 0.1053 0.9066
210 3 3 3 3 0 0.2161 0.1474 0.1241 0.4028
310 1.1 2 2 0 0.0077 0.5100 2.1964 2.0252
D - — G =
410 0 0 4 3 0 0 0 0.9730 0.3381
510 0 0 0 2 0 0 0 0 0.0449
6\0 0 0 0 4 0 0 0 0 1.1288
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4.2 The Expectation-Maximisation algorithm

With this procedure, we simulate a random sample of n = 10000 total waiting
time data tq, ..., t, between node 0 and node 2 of the flowgraph in Figure 2.4 for

parameter estimation. Then we choose the initial value for the EM algorithm as

w® = (W w?® W W) = (0.4971,-0.3020, —0.1933, —0.0076) (4.43)

a® = & o al” a”) = (0.5020,1.2030,0.6370, 2.3680) (4.44)

The stopping criterion for EM algorithm was set based on the change in the

log-likelihood function is less than a tolerance value of 1075.
log (L(0™*V[t)) —log (L(6"™]t)) < 107

Note that the log-likelihood function log (L(#™|t)) tends to have multiple local
maxima in this example. Therefore we need to randomly select various initial
value for parameters with constrains: 1) 0 < 7; < 1, 2) a; > 0, and choose
suitably starting point in order to avoid converging to spurious maxima. Given
4.43 and 4.44, the log-likelihood converges after 2145 iterations and the results
are listed in the Tables 4.6 and 4.7. We observe that the estimation given by the
EM algorithm is sufficiently close to true value of parameters, and the difference

between is generally small.

Table 4.6: Summary of MLE by EM algorithm
parameter w1 Wo W3 Wy

True value 1.5 —0.3030 —0.1903 —0.0066
Estimated value 1.5029 —0.3021 —0.1932 —0.0076

Table 4.7: Summary of MLE by EM algorithm
parameter aq Qg Qg oy

True value 0.5 1.2 0.6339 2.366
Estimated value 0.5007 1.1890 0.6385 2.6581
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4.3 Method of Moments

The Method of Moments (MM) is based on the idea that statistical distribution
can be uniquely characterised by their moments, provided the moments are fi-
nite and satisfy the Carleman’s condition (see Sjodin (1987)). Although we can
uniquely determine many distributions such as normal and exponential, there are
some distributions, such as the Log-normal distribution, that can not be identified
given their moments, see Heyde (1963), Feller(1971), Stoyanov (1997). The MM
is closely related to the Stieltijes moment problem, where we find a distribution
function F(z) on [0, 00) such that

i :/ z"dF(z)
0

given a sequence of finite moments {u,, r = 0, 1,..., d}. The implementation of
Method of Moments requires equating a set of sample moments to their popula-
tion moments, and then solves the set of (generally nonlinear) equations for the

parameters in the target distribution.

Definition 11. let x4, ..., x, be iid sample from a distribution with d-dimensional
parameter 0 = (0y, ... ,04). The Method of Moment (MM) estimator 0 is the so-

lution to the following system of equations

,Ur(e) = my
where
d"M,(s)
(0 = 52
pir (0) ds” ls=0
_ 12": ,
o N "
forr=1,...,d.

Note that we use the formula 2.15 on page 32 to compute the population

moment g, symbolically.
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4.3 Method of Moments

In a large complicated flowgraph with non-exponentially distributed intern-
ode waiting time, it is often computationally demanding to approximate the total
waiting time density function. Since the MM does not need the step to approxi-
mate the likelihood function numerically, it tends to be more easier to implement.
Furthermore, the MGF of total waiting time between two nodes of interest in a
complicated flowgraph can be obtained based on Theorem 3 (see page 30), and
we can establish the population moment p, by the use of Corollary 1 Chapter 2,

which made the construction of a set of equations defined in 11 very simple.

4.3.1 Example 5.1 continued

We apply MM to estimate parameters in the parallel flowgraph illustrated by
Figure 2.2 on page 9. The waiting time distribution is given in Table 4.1 on page
104. Since the MGF of overall waiting time distribution between node 0 and node
2 is

Mr,(s) = poipiamoi(s)mia(s) + poamoz(s)

A A A
pm()\lis)()\gis) +P02(>\3i8)

A A A
P01()\118)()\2i8) +(1—p01)(>\33$)

By the Definition 11, in order to estimate 4 parameters 6 = (po1, A1, A2, A3),
we need to solve 4 equations that are constructed by equating sample moments

with population moments

dTMTOQ (8)
ds”

1,
s=0 - E;tl

forr=1,...,4, and

Po1 Po1 (1 - Pm)

M. Ao Ag) = — + — + — "~ 4.4
p1(Pot, A1, Az, Az) N + o + » (4.45)
2001 2pom . 2por  2(1 — po1)
AL Ao ) = 4 P 4.46
Mz(Pm 1, A2 3) )\12 Ao )\% )\32 ( )
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6po1 6po1 6po1 6po1 6(1 - Pm)

Mg(pm, A1, Ag, )\3) =

DYEAERED V) VRRED TP VD Ve Mg
(4.47)
24poy 24po; 24po; 24po; 24po;
A Ao, As) = + -
,u4(p01 15 A2 3) )\14 )\;{,)\2 )\12)\22 )\1)\23 )\24
24(1 —
4 240 = po) L o) (4.48)
A3

To make the subsequence calculation more stable, we reparametrises 4.45,

4.46, 4.47 and 4.48 by defining 6; = po1, 02 = /\%’ 03 = 7127 0y, = %3, then

(11(01,02,03,05) = 0105+ 0,05+ (1 — 0,)0,
(12(01, 02, 05,04) = 20,057 + 20,0505 + 26,02 +2(1 — 6,)62
p13(01,02,03,04) = 60,03 + 60,0505 + 66,0505 + 66,03
+6(1 —6,)03
114(01, 02, 03,04) = 240,05 + 240,0305 + 2460,020% + 246,0,03
+ 246,03 + 24(1 — 6,)0;

To estimate the parameters in the total waiting time distribution, we use the
same 10000 simulated total waiting time data in parallel flowgraph from Section
4.2.1.1, where true parameter values are assumed as: pg; = 0.7, Ay = 1, Ay = 2,
A3 = 3. The resulting sample moments based on the simulated data are computed
as my = 1.1679, my = 2.5974, m3 = 8.3192, my = 34.5268.
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The method of moments estimators are determined by using the multivariate

Newton-Raphson method in Section 3.2.1.1 to solve the moment equations.
Mr(‘91702703704> = My
for r = 1,...,4. The result is presented in Table 4.8.
Table 4.8: Summary of result by Method of Moments

Sample size  por A A2 A3
n = 10000 0.7060 1.0321 1.9457 3.0408

4.3.2 Example 5.2 continued

We continue with the parallel flowgraph example in Section 4.2.1.2, but assume
the waiting time from node 1 to node 2 follows Gamma distribution. The para-

metric assumptions of all internode waiting time is shown in Table 4.9

Table 4.9: Summary of waiting time distribution

Flow direction Distribution MGF
0—1 Exponential(A;)  mg(s) = Ai\is
1—2 Gamma(a, 3)  mya(s) = (gs)
0—2 Exponential(Ay)  mga(s) = /\;‘is

The MGF of total waiting time from node 0 to node 2 is given in equation

4.26 on page 108.

Mz, (s) = por ()\fi S) (ﬁf S)O‘ + (1 = por) (A;\i 8)
B*Apor (A2 — ) + Aao(1 — por) (A — ) (8 — )°

(6 = 5)* (M = 8) (A2 = 5)
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Again, we need to construct 5 equations for estimating 5 parameters pgi, A1,

Ao, «, 3 such that

d" My, (s) 1 «
ds" s=0 n; ! orr B
where
Po1 Po1x 1 — po1
- = 4.49
2po1 2po1 o ]901042 Po1x 2(1—]901)
_ 4.50
= Sr Nt T E T (4.50)
_ 6po1 6po1cv 329()1@2 3p01a+p01a3 +3Z901€Y2
BT T T T B
2po1v 6(1 - P01)
4.51
R 0
_ 24po1 | 24pne | 12ppa® | 12ppa | Gpoe® | 1lpgia?
T T TN T e T e T 51
4]901043 121701042 8p01a+p010z4+6p010z+24(1—p01)
A B33 A 33 A 33 B B A3
(4.52)
_ 120poir | 60pere® | 120(1 —po1) | por® | 120pg
SV AV ICE ¥ g N
5]701044 20}901043 60po1 v 60}901CY2 10]?01044
At A6 S A3 3°
40po1 v 30}901@3 55]?01042 30po1x +35P01Oé3
233 A 4 A 4 A 34 B°
501701042 24po1
2 2 (4.53)
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Define 6; = po1, 0 = /\%, 03 = /\%, 0y = o and 65 = % to reparametrise

equations 4.49, 4.50, 4.51, 4.52, and 4.53 as

p1(61,02,05,04,05) = 601605 + 610,05 + (1 — 6,)05

u2(91, 92, 93, 94, 95) = 2919% + 291929495 + 91929%
+ 010,02 +2(1 — 6,)02

,ug(ﬁl, 92, ‘93, 94, 95) = 6‘9193 + 6‘919%9495 + 391929293
+ 30,0,040% + 60,0302 + 30,0267
+ 20,0402 4+ 6(1 — 0,)63

114 (01, 02,03, 04,05) = 246,05 + 246,050,05 + 120,050502
+ 126,050,402 + 46,0,0302 + 126,0,030
+ 80,020,028 + 0,002 + 66,0307
+ 11010305 + 66,0405 + 24(1 — 6,)0;

115(01, 02, 03,04, 05) = 1200,050405 + 600,050502 + 120(1 — 6,)03
+ 0,60305 + 50,0,0505 + 200,036363
+ 600, 050402 + 600,050502 + 400,050,063
+ 3001020305 + 550,0,0705 + 300,020,053
+ 100,002 + 350,030% + 500,0503
+ 246,0,02 + 1200, 65

125



Parameter estimation

We simulated a sample size of 10000 total waiting time from node 0 and
node 2 with pgs = 0.7, A\ = 1, Ay = 1.5, a = 2.5, § = 3. The sample moments
are calculated as m; = 1.4871, my = 3.5348, ms = 11.4061, m, = 46.9320,
ms = 235.9361. By numerically solving the following 5 equations

pr (01, 09,03, 04,05) = m,
for r =1,...,5, the MM estimators are presented in Table 4.10.

Table 4.10: Summary of MoM in non-exponential parallel lowgraph

Sample size  py A1 Ao & 3
n = 100000 0.7112 1.0090 1.8765 2.6267 3.0167

4.3.3 Feedback loop flowgraph
4.3.3.1 Example 6.1.1: Exponential waiting time case

In this section, we demonstrate the use of MM to estimate parameters in the
feedback loop flowgraph of Figure 2.3 on page 12, where all the internode waiting

time follow exponential distribution.

Table 4.11: Summary of waiting time distribution

Flow direction Distribution MGF
0—1 Exponential(A;) moi(s) = 2%
1—0 Exponential(A1) mio(s) = 7
0—2 Exponential(Ay)  mga(s) = Aiis
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By Mason’s rule, the MGF of total waiting time distribution between node

0 and node 2 is

pozmoz(s)
- p01m01(s)m10(8)
Doz Aj;)
1= 0= (25) (25)
Po2Aa(Az — 8) (A1 — s)
()\2 — S) [82 — ()\3 + )\1)8 + )\3)\1]902]

MToz (S> =

To compute the MM estimator for pga, A1, A2, A3, we construct 4 equations such

that
d" M, (s) I,
s=0 - n;x’

ds”

forr=1,...,4. where

N+A 111
Ik I (4.54)

= Do2A3A1 A2 A3 A1

2 2 2 2 2()\3+)\1) 2()\3+)\1)
Ho = — — —+ T 5 — 3
A1 A2 A3 A2 )\2 p02)\1)\3 poz)\s)\l
23+ A1) 2(A3+ Ap)? 2

- 4.55

Po2A2 A3 A1 p%ﬂ%A% Po2A3A1 ( )

_ 6 B 6 B 6 n E _ 6()\3 + )\1)2 _ 6()\3 + )\1)2
BT NN NN N N 0NN PN

6()\3 + )\1) _ 12()\3 + )\1) 6(>\3 + )\1) 6

p02)\§)\3)\1 pgz)‘g)\% poz)@)\% ]902)\3)\%

6\ +A1)% 6N +M)* B +A)  6(A+N)

pgz)\g)\? pgz)\ﬁ\%)\% p02)\2>\1>\;2), poz)\z)\s)\%
6 6

+ + (4.56)

Do2A2 A3\ A2 AzAq
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24(X3+ M)% 0 24(A3 4+ A\y) 24 24
Ha 22NN VS VS VRS W vy W v
0231 Po2A2A3AT 2A3  P02A2A1A3
B 24 n 24 B 24(X3+ \1)3 B 24Xz + A\1)?
)‘§>\1 Poz)\2>\3)\% pgz)‘?)‘é pgz)\g)‘%
+24(>\3 + A1) B 48( A3+ A1) 24(A3+ \p)? B 72(A3 + A1)?
P02 A3 Az AL Poa A2 A3A] Do A2 A3AY Do M3
24Xz + A1)? 0 24(A3 4+ A)4 B 24(N3+ A1)? 48(A3+ A\p)
PAAININT PaaAIAT PRaAAIAS PRI
24()\3 + )\1)2 4 48()\3 + )\1) _ 24()\3 + )\1) _ 24()\3 + )\1)
poz)\g)\2)\3 poz)\2)\3 pog)\%)\l)\g pog)\%)\g)\%
B 24 N 24 % B 24 N 24 (4.57)
pog)\%)\g)\l p02)\2)\2 )\% pog)\g)\% )\%)\3)\1 '
Define 6, = o 0, = /\iz, 05 = /\is 0, = o to reparametrise equations 4.54,

4.55, 4.56 and 4.57 as

p1(61,0s,05,04) = Oy + 0405 + 040, — 05 — 0,

11201, 02, 05, 04) = 2050, — 20,05 — 60,050, — 20,62 — 2050, — 20,67
+ 20,0501 + 20,0205 + 20207 + 462050, + 20262 + 262

p13(01, 02, 03,04) = 60,050, — 60205 — 6020, — 18040,050, + 12020,056,
+ 120,460,607 — 30020507 — 3003020, + 60,6030, + 60,0305
— 6040507 + 18030307 + 1803626, + 6020,07 + 6030,62
— 6626% + 663607 + 60303 + 12040507 — 60,0,62
+ 605 — 60303
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,U4(91, 6,03, 94)

= 480,050,035 + 480,40,0307 — 720,03030, — 12003020507 — 1200205030,
+72020,020, + 480202050, — 240305 — 24030, + 240107 + 240105 — 246303
+2405 — 288030507 — 16803050, + 240,050, + 240,0505 + 24030,07
—24070,035 — 240,0507 + 168070507 + 9600507 + 2405030, + 1440160307
+96046,03 + 72070307 + 7207050, — 168030307 — 24030,07 — 240,0503
—240,0507 + 24070507 + 24030505 + T2070,0:07 — 246307 + 24030503

A sample size of 100000 total waiting time data between node 0 and node 2 are
simulated by assuming the true parameters as pgs = 0.7, A\ = 1, Ay = 0.5, A3 = 2.
The sample moments are m; = 2.6203, my = 12.8252, m3z = 89.6013, my =
806.8391. Then the method of moments estimator are obtained by numerically

solving the following 4 equations
gr(el, 02, 0s, 94) = My
forr=1,...,4.
Table 4.12: Summary of result by Method of Moments

Sample size  poo A1 Ao A3
n = 10000 0.6057 1.0388 0.5913 2.0076

4.3.3.2 Example 6.1.2: Non-exponential waiting time case

Consider the single feedback loop flowgraph model in Figure 2.3 on page 12, where
the waiting time between node 0 and node 1 is assumed to be non-exponentially
distributed (see Table 4.13).
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Table 4.13: Summary of waiting time distribution

Flow direction  Distribution MGF
0—1 Gamma(a,3)  mei(s) = ( )a
1—0 Exponential(As)  myg(s) = 22
0—2 Exponential(A;)  mga(s) = /é‘ -

By Mason’s rule, the MGF of total waiting time distribution between node
0 and node 2 is

p02m02(8)
1-— p01m01(s)m10(s)

Po2 (,\I\is)
L= (=) (35) (35)

We construct a system of 5 moments equations by Definition 11, and reparametrise

0, = Poz’
efficiency.

MToz (8)

0y = «, 05 = %, 0, = /\il and 05 = /\% to improve the computational

p1(6,62,05,04,05) = 04 + 010205 + 0105 — 0205 — 05

11201, 02, 05, 04, 05) = 202 + 20,010,053 + 20,0,05 — 20,0505 — 20,05
+ 4602050505 + 20202 — 3016202 — 60,050505 — 20,0
+ 20,0505 + 0,0502 — 0,02 + 2026202 + 02>
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4.3 Method of Moments

M3(91, 02,03, 04, 95)

—3020205 + 30,0205 + 6020,0505 + 60,020202 — 90,0,0202
1604050505 + 304010502 + 1803020205 + 1803020302 — 3607020205
—300702030% + 210,050305 + 1260,0,0302 + 663 050,05 — 90,050,603
—0303 + 30203 — 20,03 4 6020,05 — 6020505 + 60,0702 — 60,0,62
30,0202 — 30,405,032 + 6030305 — 12020303 4 70,0303 4 6020203
—90,0303 + 20,0,05 + 60303 — 60705 — 60305 + 607 + 120,070,050
—186,46,0,0305

,U4(91, 02,03, 04, 95)

4030305 — 12020305 + 8020305 + 2460360,0,05 + 24020202602 — 36020,0302
124602050505 + 12620,0,0% + 240,030303 — 480,020303 + 280,40,0303
—120,030305 + 240,020305 — 360,0,0305 4+ 120,0,0305 + 80,0,0,03
+480707050505 — 72070102005 + 720407050305 + 720407020503
—1440,07050505 — 1200407050502 + 840,0,050505 + 480,6,0,0503
+240,4070505035 — 36040,050205 + 62°05 — 60503 + 110505 — 66203
+24030,05 — 24030505 + 24020202 — 246030,02 + 12020305 — 1260360,63
+240,40703 — 240,0705 — 40,0505 + 12040505 — 80,003 + 24010505
—60070505 + 50070505 — 156,0505 + 36050505 — 726050505 + 426,0505
+22070505 — 33010503 + 60,0505 + 2401 — 2460305 + 240105 — 240705
+9601030305 + 14401050302 + 9601050305 — 24003050305
—32403050502 — 16803 0,0505 + 20007050505 + 22807050502
+T72070,050% — 600,030505 — 480,030302 + 7207020305

+3667020,02 — 14402030305 — 6007020,03 + 846,030305

240,020,035 + 1607050205 — 240,050,05
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132

M5(91, 02,05, 04, 95)

12006010205 — 1800:30,05035 + 60036010203 + 12003020505 + 140076, 0305 — 180036, 030;
+40070,0,05 — 6007050305 + 6003020505 — 7504010505 + 2100,6,0305 — 1650,0,050;
+300,0,0205 + 200,050305 — 6004050305 + 4004020305 + 15501050505 — 4500, 030505
+1600,050502 + 38561050505 — 2400,050502 — 900050505 + 800, 0,0502 + 12003070563
+12007070303 — 24003070505 + 12007070505 + 120046010505 — 3000,4070505 + 2500,070503
5050505 + 30030505 — 55030505 + 30050505 — 360030,0,0305 + 420026,0360305
—180036,050505 + 2400360, 0,0307 — 3000,60,050305 + 4200,0,050505 — 2400,6,030502
—1200,46,050,05 + 1200,60,020,03 + 24003070,0305 + 3600367030305 + 360020>0,0:62
—T72003030503505 — 60003070,050% + 1200507050205 + 4800,01050505 + 7200401050503
+4800,01050502 — 12000,07050505 — 16200,07050502 — 8400,07050505 + 1000040705030
+11400460205030% + 3600,070:20302 + 3600463050505 + 1800,07020,035 — 7200,07050305
—3000,07020,0% + 800,07050,05 4 12005 — 0505 4 100505 — 3505605 + 500305 — 240,03
+1200;0,05 — 120040505 — 120036,602 + 600303605 — 600:0,05 — 20030505 + 600360305
—40070503 + 50,0505 — 30040305 + 550,050 — 300,0:05 + 316,0505 — 1500, 0505
+2450,0505 — 150010505 + 246,050 + 120030707 + 120030703 — 120036703
—1200,6705 — 1200405 + 1206502 — 1200162 + 1800,670505 — 3600,070505
+60005050305 + 120005050502 + 120007050502 + 60007050305 — 180001050505
—336001050307 — 288001050302 — 10800102005 + 19506200505 + 33000; 050307
+222003050302 + 480030,0305 — 90007050305 — 1300070560307 — 540070560302
+72001030305 + 72001030302 + 24001020,02 — 180002050505 — 162003030362
—42003030,02 + 150002030305 + 114002020302 4 18062020,602 + 33003020305
+12063020,05 — 66002050505 — 20007020,0;5 + 6002050505 + 120050503

+390070505 — 180070505 + 240010505 — 600070505 + 500070505 + 2106360505
—420020505 + 1000360505 — 360010505 + 1200,0105 + 1100,076505



4.3 Method of Moments

We simulate a sample size of 10000 total waiting time from node 0 and node
2 with pp; = 0.7, « = 0.5, 3 = 1, \; = 1.5, Ay = 3. The sample moments are
my = 1.0232, mg = 2.1721, m3 = 7.1898, m4 = 32.3488, ms = 186.974. Then the
method of moments estimators are obtained by numerically solving the following

5 equations

MT(91792793704) = m, for r = 1,...,5.

Table 4.14: Summary of result by Method of Moments
Sample size  ppo & g A1 Ao
n = 10000 0.7115 0.4448 0.9548 1.4703 2.6289

4.3.4 Example 1.4 continued
4.3.4.1 Example 1.4.1: Exponential waiting time case

We return to the three nodes reversible illness model presented in Section 4.2.2.1.
Instead of maximum likelihood approach, we apply the method of moment to
estimate parameters in Figure 2.5 on page 17. This is a more challenging example,
where the dimension of parameter is high and the algebraic structure of moment

equations are complicated.

Table 4.15: Summary of waiting time distribution

Direction  Distribution MGF
0 —1  Exponential(A;) mgi(s) = A/\is
0 —2  Exponential(A3) mga(s) = ,\&is
1 —2  Exponential(A2) mia(s) = %
1—0 Exponential(A;) mqo(s) = ,\j\fs
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By Mason’s rule, the MGF of the total waiting time distribution from node
0 to node 2 is

Po1P12Mo1(8)m12(5) + poamoz(s)
1 — po1promor (s)mio(s)
()\4 - 3) [p01p12)\1)\2()\3 - 8) + )\3(1 - P01)()\1 - 8)()\2 - S)]
(A2 = 8)(A3 = 5) [(A1 = 8) (A1 — 5) — M Aapor (1 — pr2)]

MToz (S> =

We construct a system of 6 moment equations for estimating 6 parameters po1,

P12, )\1, )\2, )\3, )\4 as follow

dTMTo2 (3) — l zn:t:
ds" 5=0 n <=
for r =1,...,6 (see Appendix). For illustration purposes, we assume

La=1 =2 )\=3 \ =4
2. Po1 = 03, P12 = 0.8

A sample size of n = 100000 total waiting time data from node 0 to node 2
is simulated by the procedure we discussed in Section 4.2.2.2. The sample mo-
ments are computed as m; = 0.7126, mo = 1.3456, mz = 4.2553, my = 18.4244,
ms = 99.8849, mg = 649.9525. As it is not possible to solve the set of nonlin-
ear equations given by equation 4.3.4.1 algebraically, we use the Newton-Raphson
method to compute the MM estimators. To have a fast convergence of the Newton-
Raphson algorithm, we set the initial values as p(()ol) =0.2, pgg) =0.72, A§°) =0.92,
)\;0) = 1.9, )\go) = 3.05, )\510) = 4.0900. The result of the parameter estimation by
MM is given in Table 4.16

Table 4.16: Summary of result by Method of Moments
parameter Po1 P12 )\1 )\2 )\3 )\4

True value 0.3 0.8 1 2 3 4
Estimated value 0.3015 0.8889 0.9658 1.9731 2.9199 4.2631
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4.3 Method of Moments

Although there is a relatively large difference from the true value of A4, the
MM estimators still provide a reasonably good estimation for both the transition
probabilities and the rates of exponential distribution in the flowgraph model.
For high dimensional parameter estimation problems in a large flowgraph, the
advantage of the method of moments is in its simplicity of working with MGFs,

which can be easily computed by using any symbolic algebra package.

4.3.4.2 Example 1.4.2: Non-exponential waiting time case

In this section we demonstrate the use of method of moments to compute the es-
timator for 8 parameters in the flowgraph illustrated in Figure 2.5 which involves

non-exponentially distributed internode waiting time (see Table 4.17).

Table 4.17: Summary of waiting time distribution

Flow direction Distribution MGF
0—1 Gamma(ay,01)  me(s) = (5?is)a1
0— 2 Exponential(A;) moz(s) = Ai\is
1—2 Gamma(as,Fs)  mia(s) = (@ﬁis)m
1—=0 Exponential(\s) mio(s) = ,\2)\33

The MGF of the total waiting time distribution from node 0 to node 2 is

Po1P12Mo1 (8)mM12(8) + Poammoz(s)
11— p01p10m01(5)m10(5)
(A2 = 5) [porp12687" B2 (M — 5) + M (1 = por) (B — 8)* (B2 — 5)*?]
(A1 = 8)(B2 = 5)*2 [(B1 — 8)* (A2 — 5) — po1 By Ao (1 — pi2)]

MToz (S) =

In order to estimate 6 = (po1, p12, a1, B1, @2, B2, A1, A2), aset of 8 moment

equations are constructed as follow

dTMT02 (8)
ds”

1 n
= -y (4.58)
s=0 n —1

forr=1,...,8.
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The sample moments, m; = 1.05303, my = 1.97919, mg = 5.09816, m, =
16.66027, ms = 66.36213, mg = 313.28586, m; = 1714.98377, mg = 10697.19494,
are calculated based on 100000 samples of total waiting time from node 0 to
node 2 (i.e. see Section 4.2.2.2 for the procedure of simulation). Again, Newton-

Raphson Method is used for solving the set of moment equations derived by 4.58.

Since in multimodal situations the Newton-Raphson method may not con-
verge from any starting point, particularly for high dimensional parameters, the
convergence is sensitive to the initial value of parameters. We therefore typically
use multi-start when using the algorithm. For a fast convergence of Newton-
Raphson method, we start the algorithm at p((ﬁ) = 0.56, p§°2> =04, a%o) = 3.25,

O = 471, ol = 1.91, B9 = 3.1, A” = 2.15, A = 3.9. Table 4.18 summaries

the estimated value of parameters.

Table 4.18: Summary of result by Method of Moments

Parameter Po1 P12 aq I3} Qg B2 A1 A2

True value 0.5 0.5 3.2 4.8 2 3 2.2 4
Estimated value  0.5161 0.5061 3.1610 4.8081 2.1344 3.2018 2.2258  4.0515

For high dimensional parameter estimation problems, we note that the ac-
curacy of Method of Moment estimator depend crucially on two factors: 1) The
value of sample moments, 2) The efficiency of implementing the Newton-Raphson
method. Since the calculation of MM estimators is essentially a set of equation
solving problem, it is important to have sample moments that are close to the
theoretical moments evaluated at the true value of parameters, especially for high

» 7 when r is large). Therefore, we usually require a

sample moment (i.e. £ >
large sample size data to reduce the difference between sample moments and
theoretical moments. On the other hand, we can greatly improve the numeri-
cal stability of the Newton-Raphson algorithm by reparametrisating the moment
equations into a suitable form that does not involve rational terms. In addition,
we need to fine tune to the initial value so that the Newton-Raphson algorithm

can converge quickly.
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4.3 Method of Moments

4.3.5 Identifiability

Identifiability is a property that a model must satisfy so that we can estimate
the true value of this model’s underlying parameters based on the a number of
observations from it. Casella and Berger (2002) explain that the identifiability is
a property of the model, not of an estimator or estimation procedure. If a model

is not identifiable, then there is a difficulty in performing statistical inference.

Identifiability here means the parameters of flowgaph model can be estimated
by using the total waiting time data. We need to solve the set of moment equations
in MM or the set of likelihood equations in ML estimation for the parameter
estimator, which requires the Jacobian matrix of moment equations or the Fisher
information matrix, respectively, to be invertible. Note that we could inspect
the PDF for the constraints of parameter values, so that we have a valid PDF

to construct likelihood function. For the MM approach, given a d-dimensional

parameter § = (6, ...,0,), the Jacobian matrix is a d x d matrix H = {h;;}
such that h;; = g‘of; for 7,57 = 1,...,d. We check this identification conditions by

computing the algebraic expression of Jacobian determinant (see Appendix), and
find the conditions for the value of parameters to have det(H) # 0. The result is
summarised in Table 4.19 and 4.20.

Table 4.19: Conditions for exponential internode waiting time case
Example 5.1 continued 6.1.1
MLE M # Ao Po2 # 1

MM Po1r#FLM# X pe2#1
)\27&)\3)\17&)\3 )\37&)\1

Table 4.20: Conditions for Non-exponential internode waiting time case

Example 5.2 continued  6.1.2

MM po1 # 1 poz # 1
M # B A2 # 3

137



Parameter estimation

4.4 Bias correction in the Method of Moments

This section discusses the calculation of analytical first-order bias expressions for
the method of moments (MM) estimator of the parameters in the total waiting
time distribution. The MM estimator may be biased when the sample size of
data is small, partly because the sample moments will loss accuracy in match-
ing the population moments for small size samples, and the difference between
sample moments and population moments becomes large for higher order. The
motivation is to estimate the size of bias in MM estimator given sample data,

and improve the accuracy of MM estimators by removing the estimated bias.

First, we review two different approaches for bias reduction of MLE in lit-
erature. Cox and Snell (1968) develop a general expression for the bias to order
O(n™!) of the maximum likelihood estimation for high dimensional parameter. Es-
sentially, the Cox-Snell method is a “corrective” approach to bias adjusted MLE,
where we first calculate the MLE, then correct by subtracting its estimated bias.
On the other hand, Firth (1993) introduces an alternative “preventive” approach,
which involves modifying the score functions before they are solved for comput-
ing the MLE. Cordeiro and McCullagh (1991) have adopted the Cox and Snell
formula (see equation (20) in Cox and Snell (1968)) to derive general formula
for second-order biases of MLEs of parameters in generalized linear model. For
the MM estimator, further research could be done to connect Firth’s method
to adjust moments equations (i.e. biased corrected the sample moments) in the

method of moments.

Based on the asymptotic expansion of moment function, we propose a for-
mula for computing the analytical bias expressions to order O(n~!) of the MM
estimator in both univariate and multivariate case, where n is the sample size.
The bias corrected MM estimator can then be determined by subtracting the
bias (estimated at the MM of the parameters) from the original MM estimator.
The results of a series flowgraph simulation experiment is presented, where we
evaluate the performance of bias corrected MM estimators that are based on our

analytical results, as well as the corresponding MM estimator and MLEs.
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4.4 Bias correction in the Method of Moments

Lemma 6. Let G(0) = (G1(0),...,G4(0))" be a d x 1 vector such that
Gr(0) = p(0) —my (4.59)
where p,.(0) and m,. are defined in Definition 11. Then

EG,.0) =0 (4.60)
forr=1...d.

Proof. By Definition 11, we have

E(my) = E(") = p(0)

then,
= ,ur(e) - E(mr)
=0
forr=1,...,d.

0

Let 6 be the Method of Moment estimator. By Definition 11, we also have
G)=0 (4.61)

Lemma 7. Given a vector of parameters 61, ...,0, with mean u and covariance
matriz X, let § = %Z?:l 0;. The following holds

Viald —p) % N0, %)

We say that 0 is asymptotically normally distributed with mean j and covariance

matrix %Z.
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Theorem 8. Given parameter 0 = (0y,...,0;). The closed form expression for
the bias of Method of Moments estimator 0 is

b@,) = EO—0)

forr=1,...,d, where

B( %% E( 5%t
s_ |E Gz E(%2
B(5) - E(%)
1 A& - 2Gy(0)
A = —§ZZCOV(9k,91)E<89k89l) = —5CVi

and

Proof. Univariate case
In one dimensional parameter case (i.e. d =1 in Lemma 6, we apply second order

of Taylor expansion of G(0) in 6 at 6:

G() ~ G(0) + G'(0)(6 — 0) + %G”(@)(é _ g2 (4.62)
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4.4 Bias correction in the Method of Moments

Taking expectations on both side of equation 4.62, we obtain

E(G(0)) ~ E(G(0)) + E{G"(0)(6 — 0)} + E{%G”(@)(é - 9)2} (4.63)

A~

By equation 4.61, we have E(G(#)) = 0, then equation 4.63 becomes
R 1 .
0~ E(G(0)) + E{G'(0)(0 — 0)} + E{EG"(Q)(Q - 9)2} (4.64)

By equation 4.60, the first term on the right hand side of equation 4.64 vanishes,
then X
E{G'(0)(0 —0)} + E{§G”(9)(§ - 9)2} ~ 0 (4.65)

where

) = 20
dMl(O) dml

do do
dM1(0)

de

&2G

62

MN0) Py
oz de2
d>M1(0)

do?

G// (9) —

ds

Since M} (0) = (M) ’ only involves parameters, G’(f) and G" () are func-
s=0
tions of parameter, and they can be considered as constant for the terms involves

expectation in equation 4.65, then

GOEG—0)+ G”(@)E{%(é —0p} =0

-~ -E0- 0200
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~ ~

oo Var(0) +0(0)}G"(0)
2G(0

(4.66)

By Lemma 7, Var(f) = O (1), then

Subsequently
(0) = {B6-0))
-o(3)
1

As we only want to approximate the estimated bias up to order n™", so we can

remove b?(f) in equation 4.66.

~

E@l—0) = —%ﬁ;)w) L0 (%) (4.67)

A~

Furthermore, Var(f) can be approximated by using the result of the first order

Taylor expansion of G(6) in § at 6.

GO) +G'(0)(6 —0) ~ 0
s . G(9)
9‘9“‘@(9) (4.68)

Since ('(0) is a functions of parameter, then Var(d) can be derived from equation

4.68,

Var(f) = % (4.69)

Substitute equation 4.69 into equation 4.67 leads to

R N Var(G(0))G"(6)
EO =0~ Gy
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4.4 Bias correction in the Method of Moments

By equation 4.59, when r =1

Var(G(0)) = Var(M(0) —m;) (4.70)

As MY0) = de'—“;(S) i is a function of parameter, and m; = = 3" | x;, then

4.70 becomes

Var(G(#)) = Var(m,)
Var(x)

B(#?) — (B(x))’
M2(0) — (M2(0))?

A~

In one dimensional parameter case, the explicit form of bias b(d) = E(0 — 6) in
terms of MGF is

E—6) ~ —Varéfé@)?;(e) +0 <%) (4.71)
where
o) = )
o) = T o)
(Gl — M0 0LOY

Hence the estimated bias of 6 can be determined by substituting the value of 0

in equation 4.71,
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Proof. Multivariate case
When we have d dimensional parameters § = (61, ...,0,), the first order Taylor

expansion of G(6) for § at 6 is
GB) ~ GO)+G'(H)(0—0)

where

- _ - I5] el
G M (0) — my Sor) (G

_éd_ _Md(O)' — My | (%)

GO +G@B)O—0) ~ 0
-0 ~ —(G'(0)"'G(0)
1.e. .
és_es = _ZQSPGP(Q) (472)

for s = 1,...,d, where g, is the (s, p)-th entry of matrix [G’(#)]~'. The second

order multivariate Taylor expansion for each Gr(é), r=1,...,d,of 6 at 0 is
. . 1 . .
G.0) ~ G.00)+G.0)(0—0)+ 5(«9 —0)TG"(0)(6 - 0) (4.73)
d d
~ 0G.(0) 1 ~ ~ 0*G.,.(0)
~ G0 0, — 0, - O — 0:) (0 — 0u) 77"
Gr( )+;( ) =58 +2;;(t 1) >89t(‘99u

Take expectation on both side of equation 4.73.

B(G(0) ~ E(G68)+> E{(@, - 98)865;29)}

T D) Y2 (RS ICARacUN SR N

t=1 t=1
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4.4 Bias correction in the Method of Moments

By equation 4.60, the first term on the right hand side of equation 4.74 equals

zeros, the second term can be expressed as

E{(és - es)aG’“(e)} — cov (és — 9, aG’“(e)) + B0, - es)E(aG*(e)) (4.75)

00 00, 00,
By substituting equation 4.72 in cov (és — 0, ag;g”), then
. aG,.(0)\ d 9G,(0)

cov(@s — 0, Tﬁs> = cov( - ;gspGp(ﬁ), 20. )

d

0G,(0)
= —ngpcov Gp(0),
50, 550
d
06, (0) 06, (0)
= - ngp E(G,(9) — E(G,(0))E

> uf £(c0"5,%) (52
By equation 4.59, 8%?) is a function of parameter, then

9G,(6)\ _ 9G.(6)

B(Gh(0) 55~ ) = 5 E(Gy(6)
By equation 4.60, we have E(G,(#)) = 0, then
N aGr<9) _
cov (es 6. ) — 0 (4.76)
Substitute 4.76 into 4.75, we have
0G0 9G, (6)
E{(@s 0075 } — E(d, - 95)E< . ) (4.77)
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The third terms on the right hand side of equation 4.74 can be expressed as

Eﬁ@—m@fwwﬁzg} mq@—m@fwxﬁgg} (4.78)
B{(0 - 000, — 0} (o))

Replace ét — 6, and éu — 6, by equation 4.72 then

A . 892G, (0 4 & 82G, (0
COV{(Qt—Qt)(Qu—Qu)> aeta(eu)} = COV(ZZQUJ p9uq Gy 09t0(9)>

1 g=1

=
i 4 PG,
— Zzgtpgqu0V< q,W&(gu))

p=1 ¢=1

where cov <G Gy, %fgé )> = 0 because G,G, and %ecée ) are independent, then

) ) 0°G1(0) } ~ 0 (4.79)

cov{(@t )6~ 0). T
On the other hand
E{(ét — 0,0, — eu)} = cov(fy — 0,0, — 0,) + E(6, — 0,)E(b, — 0,)
- 1
= cov(f,0,) + 0O (ﬁ) (4.80)

By substituting the result 4.79 and 4.80 in equation 4.78, we have

G (9)} _

o : 96, (0
{0~ 000~ 0) 55 )

ov(ét,éu)E< . 9;9 ;

Since E(G(A)) = 0 by 4.61, we substitute 4.77 and 4.81 into 4.74, then

d d
ZE(@S—HS)E(a )—l—%ZZCOV 0,,0, (giggj) ~ 0

s=1 t=1 u=1

(4.81)
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4.4 Bias correction in the Method of Moments

N oG, 1< 9G, (0 1

;E(GS_GS)E( aei ) - 7;;” 01, (aetéfej)*o(ﬁ)

B - (4.82)
forr=1,...,d.

We can write equation 4.82 in matrix form and solve the set of equations for
the bias E(f, — 6,) of order n~".

BE = A
E = B'A
where _ -
E(f; — 61) BE\%) - E(%: Ay
b E(92.—92)’B: E%% Eg% A= 42
E(0y — 6,) E("%) E(%) A
and i . i
Ai:—EC’VZ fori=1,...,d
V, = [U(l) | 0@ .| U(d)]T
; 9*G,(0) 9*G,(0) 0*G,(0)
() d L L
v E(aejael ) E(aejaez ) E(aejaed)
and
C = [ c® .| ]
where,
V) = [cov(é 0,), cov(f;,6) ..., cov(b;,0y)
- f fs=t
cov(6..6)) = Var(6;) if s
0 if s£t
forj=1,....d
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~

Note that we can express Var(d) in terms of MGF. By equation 4.72 and

4.96, wee have

A~

Var(0s) = Var[_igspGp(e)}

= > g,Var[G,(6)]

= Y g2, Var[M2(0) — m,)]

g2
%Var [2P] (4.83)

gsp is the (s, p)-th entry of matrix [G'(9)] .

4.5 Comparison of MLE and MM

4.5.1 Example 7: Series network with exponential waiting
time

Figure 4.1 is a simple series network with exponential waiting time, we estimate

the parameters 8 = (A1, A\y) by maximum likelihood estimation, method of mo-

ments, and apply our formula to obtain the biased correction method of moment

estimator. We will compare these estimators by their Mean Square Error (MSE).
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@ Po1moi(s) @ P12maz(s) @

Input Output

Figure 4.1: Series flowgraph model for hydraulic pump system

Table 4.21: Summary of waiting time distribution

Flow direction  Distribution MGF
0—1 Exponential(A1) mo1(s) = /\I\is
1—2 Exponential(A2) mia(s) = ,\;\is

The MGF of total waiting time from node 0 to node 2 is

My, (s) = <>\1)\i ;) <>\2/\i ;)

The probability density function can be obtained by computing the inverse laplace

transform of My, (s)
)\1)\2 (6_)\2t — €_>\1t)
At — Ao

Given data tq,...,t,, the log-likelihood function is

L(Ai,N2) = log (HfT(tz')>

= nlog ()\1)\1—)\2)\2) +) log (e — e Mh)

We then need to solve the following equations for the MLE

fr(t) =

oL )\271, u tl exp(—)\lti)
8)\1 )\1()\1 - )\2) ; exp(—)\gti) — exp(—)\lti)
8[/ )\171 - tl exp(—)\gti)
_ n =0 4.84
8)\2 )\2()\1 — )\2) ; exp(—Alti) — exp(—)\gti) ( )
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The MLE are computed by using the Newton-Raphson method to numerically

solve above equations for A\; and A,.

In order to apply the method of moments, we need to solve two equations

for estimating two unknown parameter \; and \s.

L1 0
- JE— —m =
YD Y
1 1 1
2( 5+~ + —my = 0
()\% Mg AQ) ?
where m; = %Z;‘Zl i, mg = % ?:1 t?-

Define a = /\il and b= /\%, to reparameterise the above equations as

at+b—my = 0

1
a2+ab+bz—§m2 =

which can be easily solved and gives closed form expression for parameter

estimation

)\01 =

mi + 2m2 — 3(m1)2

. 2
)\12 == (485)
my — 2m2 - 3(m1)2

For the bias corrected method of moments estimator, we need to first estimate
the bias b(#) that is given in Theorem 8. Let G be a 2 x 1 vector

G = |9
_G2
[ML0) —
— | m2(0) - mJ
B /\11 + /\12 —m ]
T (B r)-m
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[0G,  9G,
L OA\1 02
B i _)\1—2 _)\2—2
I D Ve B ) P D b e 4/\53]

The inverse of G/ is

(G/)_l _ g11 912]
[ 921 22
T (et2X)A? A2 3
= | eubog z“a;ig’] (4.86)
LN 2(aa)

and

B 0°G, 02G, 0°G, 02G1\ 17
w5 (5) (o) & (o) 2 (5]

9 T
= _707073
A} A3

B 092G 092Gy 092G 02Gy\ 17
v [ (5) (o) & (o) 2 (57

_ (2, 4 2 2 4+12T
D T AR A AN A TS

C = [cM,0,0,cY]

where ¢; and ¢4 can be determined by formula given in equation 4.83 such that

Var(z) Var(z?)

n _ 2 2

c 911 " + 919 n
Var(z Var(z?

0 = gy ) g )
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Also

then

Var(z) = E(2%) — (BE(z))?

= M2(0) — (M}(0))”
1.1
PHDY

Var(z®) = E(z') — (E(2?))?

= MN0) — (M2(0))*
4

= 5y (5X + 43 4 30 +4A1h + 5AY)
172

1

Al - —50‘/1
1
Ay = -0V

Hence the expression for the bias in Method of Moment estimator are

b1 (A1)

ba(A2)

E(\ —\p)

g11A1 + g12As
A(=21A3 — 16A2A3 — I8\ AL — 16A3A2 — 16A%N; + 9AD)

4.
()\1 — )\2)3)\%71 ( 87)
E(Xs — X2)
92141 + g2 Ao
Ao (16ALAS 4 16A3AZ + 16A2X3 + 18M1 Ao + 213N, — 9A3) (4.88)

()\1 — )\2)3)\%71

where g;; is defined in equation 4.86.
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Recall that T} is the random waiting time in node 0 until node 1 is reached,
and T3 is the random waiting time in node 1 until node 2 is reached. To simulate
n total waiting time data from node 0 to node 2, we simulate each internode
waiting time independently, ¢; ~ Exp(A;) and ty ~ Exp()\2), and then take the
sum of these two internode waiting time, t = t; + t5. Given the total waiting
time data, we compute the maximum likelihood estimator (MLE) G, by solving
equations 4.84, method of moment (MM) estimator O, by equation 4.85, then
the estimated bias in MM estimator can be determined by substituting the value
of ém = (5\1, 5\2) in equation 4.87 and 4.88, then the bias corrected MM estimator

can be obtained as 0y, = 6,, — b(é)

We set the initial value at A&O) = 1.12 and )\g)) = 2.82 for the numerical
method (i.e. Newton-Raphson method) that determines the MLE and MM esti-
mator. Sample size of 1000, 10000 and 100000 were simulated with A\; = 1 and
Ao = 3. The simulation is repeated for 1000 times, each time gives MLE émlea
MM estimator ém, and the biased corrected MM estimator ébc. The comparison

of these estimators is given by examining their mean square error (MSE).

MSE(d) = E{(é —9)2}

Table 4.22: Summary of Mean Square Error in \;
Sample size MM BCMM MLE
10000 3.5385 x 10~% 1.4663 x 10™* 2.79912 x 10~*
100000 3.4553 x 1075  2.6165 x 107° 2.61894 x 107
1000000 3.22 x 1076 2.45 x 1076 2.22 x 1076

Table 4.23: Summary of Mean Square Error in Ao
Sample size MM BCMM MLE
10000 2.1393 x 1072 1.8941 x 1072 1.4810 x 1072
100000 1.9756 x 1072 1.9124 x 103 1.3470 x 1073
1000000 1.92 x 10~ 1.49 x 10~* 1.32 x 10~*
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Table 4.22 and Table 4.23 show mean square error of three different estimators
for \; and Mo. In terms of accuracy, the maximum likelihood estimators give the
best estimation, since they have the smallest mean square error in all different
sample sizes. Although the method of moments (MM) estimator has the largest
mean square error, the corresponding bias corrected method of moment (BCMM)
estimators, after substracting the estimated bias in equation 4.87 and 4.88, are
effective in reducing mean square error. It can be seen that the bias corrected
method of moments provides better result, where the mean square error difference
between MLE and BCMM estimator is getting smaller than in standard MM

estimator.

4.5.2 Computational time

To justify the computational efficiencies of the method of moment and maximum
likelihood method, we present a direct comparison of times for computing MM
estimator and MLE in three different flowgraph examples of this chapter. In
each example, we use the same simulated total waiting time data, and set the
corresponding numerical method to start from the same initial value of target

parameters.

Table 4.24: Comparison of computational time (seconds)
Example 7 6.1.1 1.4.1

MLE  0.15 21.77 93.07
MM 0.07 027 822

Table 4.24 illustrates the actual computational time in seconds for both meth-
ods in estimating different number of parameters. It is clearly shown that the
method of moments substantially reduces the time in parameter estimation over

the maximum likelihood method by an order of magnitude.
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Chapter 5

Tail area probability

approximations

In order to determine the probability that a system will survive beyond a spec-
ified time, we are often interested in approximating the survival function of the
total waiting time between two nodes of interest in a flowgraph, rather than its
probability density function. The tail area probability of survival function is de-
fined as P(T > t,) = 1—p, where t, is the p-th percentile such that P(T' < t,) = p.

This chapter focuses on the approximations for tail probabilities of the total
waiting time distribution, particularly the shape of the survival function P(T" > t)
when t is large, based on two different approaches, Padé approximation and sad-
dlepoint approximation. In the first approach, we approximate the behavior of
total waiting time survival function S(t) = P(T > t) at large ¢ by a simple ex-

@ where the rate a can be obtained based

ponential function in the form of ve™
on the analysis of singularities in the Padé approximation of MGF. The second
approach is to estimate survival function by the use of Lugannani-Rice saddle-
point formula, which requires the original MGF of total waiting time. The major
contributions we present is to show the connection between the two apparently
unrelated methods in estimating survival function, and propose a bias corrected
Padé-type saddlepoint approximation, which significantly simplifies the calcula-

tions of original saddlepoint approximation method.
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Tail area probability approximations

This chapter is organised as follow. In Section 1 we review theorems that
relate to asymptotic behavior of inverse Laplace transforms, which is the foun-
dation of exponential function approximation for tail area probabilities. We then
apply the the final value theorem to propose a new formula to determine the
asymptotic constant and the asymptotic rate in this exponential function. Nu-
merical comparisons are made with the true survival probabilities at different
percentiles ¢,. In section 2 we illustrate flowgraph examples for the error analy-
sis in tail area approximation by the inversion of Padé approximation of MGF.
Section 3 demonstrates a detailed procedure for applying Lugannani-Rice for-
mula for survival function approximation. Section 4 extends the application of
Lugannani-Rice formula by using the Padé approximation of a given MGF as
baseline function, and propose a general Padé-type saddlepoint approximation
method. Section 5 discusses the limiting behavior of error in saddlepoint approx-
imation for tail area probability, and present a new bias correction method for

Padé-type saddlepoint approximation of both PDF and survival function.

5.1 Tail area approximation by exponential func-
tion

The main purpose in this section is to discuss the use of exponential approxima-
tions to describe the limiting behavior of survival function of total waiting time.
First, we derive the form of exponential approximations based on the asymptotic
property of Laplace transform. Secondly, we demonstrate through examples that
tail area survival probabilities approximations provided by exponential function is
exceptionally good. The comparison of approximation for tail probabilities based
on exponential functions that constructed from different order of Padé approxi-

mation is also presented.
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5.1 Tail area approximation by exponential function

Lew (1973) discusses the asymptotic behavior of the inversion of Laplace
transform, that is, a complex-valued locally integrable function f(t) on [0, 400)
from L[f](s). By equation (1.3) of Lew (1973) , it is shown that the behavior of
f(t) near t — +o00 depends on the rightmost singularities of L[f](s).

Theorem 9. Lew’s theorem
Let f(t) be a function on [0,+00) with Laplace transform L[f](s) such that

1 Y+1i00
J0) = g | L) (5.1)
where the integration is done along the vertical line Re(s) = -~ in the complex

plane such that ~ is greater than the real part of all singularities of L[f](s). If
L[f](s) can be continued analytically to the left, and if the contour of (5.1) can
be moved sufficiently in that direction, then the behavior of f(t) as t — oo is

determined by that of L[f](s) near its rightmost singularities.
fit) = O as t — oo

where v is the rightmost singularities of L[f](s)

Suppose we let T" be the total waiting time random variable with density
function f(t) and MGF Mr(s). Based on a Padé approach, we can approximate
the MGF of total waiting time by a rational function, which can then be applied in
the Heaviside formula to obtain true probability density function f(t) in the form
of sum of exponential functions, with the rates are the poles in the denominator
of Padé approximation ( see Lemma 4 on page 40). By Theorem 9, the behavior
of f(t) near t — 400 is dominated by the corresponding Laplace transform near
its rightmost singularities, then we can approximate the density function by an

exponential function as
ft) = ce ™ as t — 0o (5.2)

where a is the absolute value of the rightmost singularities of My (—s), and ¢ is
constant. It is important to note that 5.2 only hold for suitably large ¢, but does
not hold for all t. We clarify on this point in Section 5.1.1 and Section 5.2.
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Tail area probability approximations

Definition 12. Let T be a continuous random variable with CDF F(t), PDF f(t)
and MGF Mr(s) on the interval [0, +00), the survival function of T is defined as

follows:
S(t) = P(T >t)
1— F(t)
~ [ s
t
In our case, T denotes the total waiting time between two nodes of interest

in a flowgraph. By Definition 12 and equation 5.2, we can obtain an exponential

function to estimate the tail area probabilities of survival function as follow
P(T >t) ~ ve ™ as t — 00 (5.3)
where the asymptotic constant is
v=—
a
and the asymptotic decay rate a is the absolute value of the rightmost singularities

of Mt (—s). Furthermore, equation 5.3 is equivalent to

lim e*P(T >t) = v

t—o0

5.1.1 Example 1.3.1

We first consider the flowgraph model for a reversible illness-death system, which
has exponential distribution for all internodes waiting time (see Table 3.1 on page
41), where A\ = 1, Ay = 1.2, A3 = 0.5, \y = 2, and po1 = po2 = p1o = P12 = %
The MGF of the total waiting time between node 0 and node 2 is

Po1P12Mo1(8)m12(5) + Poamoz(s)
1 — poi1promor (5)mao(s)
(2 —5)(1.8 — 3.4s + s?)

(6 — 125 + 452)(0.5 — 5)(1.2 — 5)

MToz (S) =
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5.1 Tail area approximation by exponential function

In Section 3.1 of Chapter 3, it was shown that the closed form expression of prob-
ability density function can be obtained by the exact inversion of MGF M, (—s).
For a MGF with k singularities, the resulting total waiting time density function

is in the following form
ft) = cre™™ 4 coe™ ™ 4 .+ cpe” %!

where ay, ...a;, are the absolute value of singularities of Mz,,(—s), and ¢4, ...cy, are

the corresponding constant terms.

By applying the Heaviside formula to invert equation 5.4, the true PDF is
f(t) = 0.75e7%%" —0.3636e~ % — 0.1207¢ 20340t _ (.0157¢ 2366
and the corresponding true survival function is

S(t) = P(T>t)
= 1.5e7%%" —0.303e7 "% 4+ 0.1903e 70310 1 0.0066¢%3%"  (5.5)

For large ¢, the limit behavior of S(t) is dominated by the exponential function
1.5e79% which gives good approximation to the tail area probabilities of total
waiting time survival function. Given numerator order p and denominator ¢ ,
we establish Padé approximation of original MGF from 5.4, and compare the
approximations for tail probabilities that constructed from each PAy, ;(s) with
the true survival function given in 5.5. The detail expression of estimated survival

functions in each case are given below. The Padé approximation of order p = 1

and ¢ = 2 is
1+ 0.4543s
PAf 5 (—s) = |
1:2(75) = T35 50885+ 177152 (5.6)
where
frany () = 0.6753e~04942 (4188114261
and

Spayy () = 1.3665¢~0494 — 0.3665¢ 11426
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The Padé approximation of order p =1 and ¢ = 3 is

14 0.5272s

PAj 3(—s) = .
(=) 1+ 2.9716s + 1.9491s% + 0.04813s3 (5.7)
where
fragy(t) = 0.6874e™"4%T — 0.4086e™ 107" — 0.2788¢ %27
and
Spag(t) = 1.3866e 0197 — 0.3795¢~ L0767 _ ,0Q72e 9275t
The Padé approximation of order p =2 and ¢ = 3 is
1+ 1.8019s + 0.57915>
PAj3(—s) = .
23(78) = 15151635 1 5.64405" 1 2.30505° (5.8)
where
frag,(t) = 0.7301e 04990 _ () 1262¢70-6908F _ () 3528¢~1-2582¢
and
Spapy(t) = 1.4630e™%1% —0.1827e~ %% — .2804e =127
The Padé approximation of order p =2 and ¢ = 4 is
1+ 1.9092s + 0.6357s>
Pheal=) = o6 1 25148 5.9

1+ 4.35365 + 5.9631s% 4 2.5149s3 + 0.0052s%

where
Frag.y () = 0.7434e7049T — (.1262¢~ 9% — 0.3672e "™ — 0.2537 134246
and

Spag(t) = 1.4877e 04T — 0.1883e 7905 — (.2988e 12257 — (0.0005e 14 240%

160



5.1 Tail area approximation by exponential function

The Padé approximation of order p =3 and ¢ =4 is

1+ 2.3890s + 1.5002s% 4 0.2778s>
1+ 4.8334s + 8.0004s% 4 5.2227s3 + 1.1113s%

PApq(—s) = (5.10)

frag.y(t) = 0.75e7%% —0.3636e "% — 0.1207e~ "% — 0.0157¢ 25

Spag.y(t) = 1.500000844e™"% — 0.3030e™"'* — 0.1903e ™" %1% — 0.006e >

Table 5.1: Summary of pole analysis

Method asymptotic constant v the right-most singularities —a*

PA 5 (s) 1.366534374 20.4941829741
PA}.5(s) 1.386621578 -0.4957436281
PApp.(s) 1.463030169 -0.4990385780
PA . (s) 1.487693424 -0.4997200087
PA3.4(s) 1.500000844 -0.5
My, (s) 1.5 -0.5

Table 5.1 summarise the value of parameters for the dominated exponen-
tial function, in the form of equation 5.3, to describe the limiting behavior of
true survival function P(T" > t). Note that the last row of Table 5.1 shows the
true value of the right-most singularities and the asymptotic constant that are
computed based on the original MGF My, (s). Clearly, as the order of Padé
approximation increases, the value of asymptotic constant v and the right-most
singularities of Padé approximation of MGF, —a, converges to 1.5 and -0.5 re-
spectively. These result imply that a higher order Padé approximation leads to an
exponential function that gives more precise description for the limiting behavior

of the total waiting time tail probabilities than a lower order Padé approximation.

Table 5.2 compares the explicit value of estimate survival probabilities P(T >
t) based on the dominated exponential function that specified in Table 5.1.
The comparison is given in estimating probability at each percentile ¢,, where
p = 50%, 75%, 90%, 95%, 99%, 99.9%, and 99.9%. The true survival probabil-

ities are illustrated in the last column of Table 5.2. Numerical result shows that
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Table 5.2: Summary of exponential approximation for survival function: The unit
of probability for t*, t** and t*** are 1072, 1073, 10~ respectively
percentile p Time ¢, PApgy PApg PApg PApy PApy True

50% 1.86 0.5442 0.5506 0.5774 0.5863 0.5909 0.5
75% 3.37 0.2581 0.2604 0.2718 0.2757 0.2777 0.25
90% 5.27 0.1155 0.1163 0.1207 0.1223 0.1231 0.1
95% 6.69 0.0501 0.0502 0.0519 0.0525 0.0528 0.05
99%* 9.95 0.9989 0.9980 1.0190 1.0292 1.0348 1

99.9%** 14.59 1.0099 1.0016 1.0072 1.0141 1.0183 1
99.99%*** 19.21  1.02868 1.0129 1.0032 1.0069 1.0098 1

all the exponential functions give reasonable good approximation for the tail area
probability of P(T > t), particularly, we see that the exponential function based
on PAp 9(s) provides relatively the best estimation for the survival probabilities
up to 99% percentile at time ¢y 99 = 9.95, whereas the optimal approximation of
survival probabilities at time 14.59 and 19.21 are given by the exponential func-

tions that derived from PAp g(s) and PAp 5(s) respectively.

Since the value of survival probability becomes significantly small and ap-
proaches to zeros as t gets increasingly large, in order to give a better graph-
ical comparison, we plot —log(P(T > t)) against ¢, where —log(P(T > t)) =
—log(v) — log(e
and positive slop a*. Figure 5.1 compares approximation for distribution in term

~'t) = —log(v) + a*t is a straight line with interception —log(v)
of —log transform. It appears that the quality of approximation is generally very
good, even there are relatively large difference between the estimated and the
true value when t is smaller than the 50% percentile ty 5, i.e. t < 1.86 (see Figure
5.2). However, once t is greater than to9 = 5.27, the 90% percentile, we see a

clear evidence of convergence to the true survival function.

Figure 5.2 indicates that the exponential approximation from PAp (s) yields
the best estimation for the true survival function when ¢ € [0, 1.86], whereas Fig-
ure 5.3 illustrates the survival function approximation for ¢ € [19,19.21] is opti-
mal for exponential function that results from PAp, 5(s). Furthermore, Figure 5.4

demonstrates the quality of these exponential functions in estimating tail area
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5.1 Tail area approximation by exponential function

probabilities of survival function for ¢ € [29.99, 30], where the plot of exponential
function from PAps 4(s) is the closest to the true survival probabilities, follow
by the estimation based on PAp 4(s), and the relatively poor approximation is
observed in the exponential function derived from PAp, 5(s).

We also make comparison for the estimation of hazard function ¢(t) = %
based on the PDF and survival function that derived from different order of Padé
approximation of MGF. The results of hazard function estimation are compared
under different time intervals, see Figure 5.5, 5.6, 5.7, and 5.8. All of these results
conclude that the closer to the order of original MGF, the greater accuracy we

will have for estimating survival probability at large ¢.

10

True

—log(P(T>t))

0 2 4 6 8 10 12 14 16 18 20
time t

Figure 5.1: Plot of —log (P(T > t)) against ¢ € [0,19.21]
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—log(P(T>t))

time t

9.24
True
PA12
9.22H ——PA13 B

—log(P(T>t))

9.08 1 b

9.06 L I
19 19.05 19.1 19.15 19.2

time t

Figure 5.3: Plot of —log (P(T > t)) against ¢t € [19,19.21]
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14.598 T

14.596

14.594

14.592

—log(P(T>t))

1459

14.588

14.586

14.584 I I I I I I I I I
29.99 29.991 29.992 29.993 29.994 29.995 29.996 29.997 29.998 29.999 30

time t

Figure 5.4: Plot of —log (P(T > t)) against ¢t € [29.99, 30]

Hazard function estimation 1

0.6 T
0.5 b
0.4 b
/
0.3 i
Q
8
0.2 b
0.1} True
PA12
PA13
or — — PA23 |1
- — —PA24
PA34
-0.1 ! ; ;
5 10 15 20

time t

Figure 5.5: Plot of hazard function estimation against ¢ € [0, 19.21]
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Hazard function estimation 2
0.45 T

0.4

0.35

0.3

0.25

0.2

rate

0.15

0.1

0.05

-0.05 ; : ;
0 0.5 1 15 2

time t

Figure 5.6: Plot of hazard function estimation against ¢ € [0, 1.86]

Hazard function estimation 3

o499 i .
True
0.498} PA12 |
PA13
----- PA23
04971 - - —pa24|]
g 0 PA34
0.496 .
0.495} .
0.494 .
19 19.05 19.1 19.15 19.2

time t

Figure 5.7: Plot of hazard function estimation against ¢ € [19,19.21]
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Hazard function estimation 4

0.501 : : ‘ ‘
0.5 o k
0.499} True
PA12
0.498} PA13
————— PA23
£ 0.497} -~ —PA2
e PA34
0.496 | 1
0.495} 1
0.494 | |

29.99 29.992 29.994 29.996 29.998 30 30.002
time t

Figure 5.8: Plot of hazard function estimation against ¢ € [29.99, 30]

5.1.2 Example 1.3.2

We now consider some internode waiting time to follow non-exponential distri-
bution in a flowgraph, the PDF of total waiting time f(¢) in this case usually

o can’t be

doesn’t have closed form expression, and the exponential function ce™
determined directly by inspecting f(t). In general, the value of rate a can always
be determined by finding the rightmost singularities of the Laplace transform of
f(t), L[f](s) (i-e. solve the denominator of MGF My (—s) for s), however, we still
need to compute the constant term c¢ in order to describe the limiting behavior
of total waiting time distribution. By using the final value theorem, we suggest
a simple method to determine the asymptotic constant ¢ based on the MGF of

total waiting time and the asymptotic decay rate a.
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Proposition 1. Let T be a positive random variable with PDF f(t), MGF Mr(s).
Suppose f(t) can be approrimated as

ft) ~ ce ™ as t — oo
Then a is the absolute value of the right-most singularity of Mr(—s), and
c = lirr(l) sMr(a —s) (5.11)

The asymptotic constant ¢ and asymptotic decay rate a are defined by

tlim ef(t) = ¢ (5.12)
Let G(t) = e™f(t). By the final value theorem, we have
lim G(t) = lim sL[G](s) (5.13)

t—00 s—0

where L[G](s) is the Laplace transform of function G(t).

Since

= Mr(a —s) (5.14)
where Mr(s) is the MGF of total waiting time T.
Substituting 5.14 into 5.13. By equation 5.12, we therefore have
c = £1_1)r(1) sMr(a — s)

where a is the absolute value of the right-most singularity of Mrt(—s).
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5.1 Tail area approximation by exponential function

The formula 5.11 is particularly useful for evaluating the asymptotic constant
when the closed from expression of total waiting density is not available, because
it only depends on the MGF of total waiting time, which can be easily obtain by
the use of Mason’s rule in Chapter 2. Since the Laplace transform of total waiting
time density is just the MGF with argument —s instead of s, and the MGF is
usually a rational function, we will always have the Laplace transform in rational

form, which guarantees its singularities exists.
To show that our formula 5.11 in Proposition 1 works in the situation of

non-closed form density function, we let the waiting time between node 1 and

node 0 in Example 1.3.2 to follow Gamma distribution.

Table 5.3: Summary of waiting time distribution

Flow direction Distribution MGF
0—1 Exponential(A;)  mgi(s) = %
1—0 Gamma(a,(3) mao(s) = ( és>a
0—2 Exponential(A3)  mga(s) = Af\is
1—2 Exponential(A2)  mua(s) = 7%

We assume )\1 = 05, )\2 = 2, )\3 = 02, a = 15, ﬁ = 2, and Po1 = Po2 = P1o =
P12 = % The MGF of the total waiting time between node 0 and node 2 is

_ porpi2mo1 (s)maz(s) 4 pozmoz(s)
MTO2<8) N 1 — porp1omor (s)mio(s)
1(5:5) (55) + 5 (552 )
-1 ()"

4
_ _ 2
_ 0.6 — 25 — 0.4s _ (5.15)
(s —2)(s — 0.2) {2 — 45— 14142 (;1)" }

169



Tail area probability approximations

From equation 5.15, we see that the denominator of MGF Mr,,(s) is not a
polynomial function, because the value of « is non-integer (i.e. & = 1.5), which
does not allow us to decompose Mr,, (s) by partial fraction, and it leads to a non-
closed form probability density function, which it can only be determined by the
numerical inversion of Laplace transforms. Also note that the Laplace transform
of f(t) is M, (—s), and the singularities can be obtained easily by solving the

denominator of My, (—s) for s such that

(54 2)(s +0.2) {2 s — 1.4142 (2 i 8)1'5} _ 0

The solutions are s; = —2, s = —0.2, s3 = —0.3354, s, = —2.2051 — 0.2801i,
s4 = —2.2051 + 0.2801i

As the rightmost singularities is sy, the asymptotic decay rate is a = |sq| =

0.2, then we have

0.2 + 25+ 0.4(0.2 — s)?

MToz (0'2 - S) = 1 \15
S(18+s) {124 45 - 14142 (1) 7}

By equation 5.11, we have

¢ = lim sMg,(0.2—s) = 0.1953

s— 0

Next, we simulated a sample size of 10000 total waiting time data between node 0
and node 2, and computed the estimated density function f (t) by using De Hoog’s
method (1982) to numerically invert Mr,,(—s). To verify the value of asymptotic
constant, function G(t) = f(t)/exp(—0.2t) is plotted against ¢ in Figure 5.9.
As can be seen that the evidence of convergence of function G(t) is remarkable
for large ¢, where the solid line describes the behavior of function G(t), and the
horizonal dash line indicate the value of limit 0.1953. Therefore, the PDF can be

approximated by an exponential function in the following form

f(t) =~ 0.1953¢ %% as t — 00 (5.16)
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5.1 Tail area approximation by exponential function

To further investigate the quality of approximation for tail area probabilities

based on equation 5.16, we take log on both side of equation 5.16
log(f(t)) ~ log(0.1953) — 0.2¢

If our calculation for parameter ¢ and a are correct, we expect that the plot
of log(0.1953) — 0.2t is similar to the shape of log(f(t)) when t is large. Figure
5.10 illustrates that there is a remarkably good agreement between log(f(t)) and
log(0.1953) — 0.2¢ in almost the entire range of ¢. Furthermore, we can obtain the

approximation for survival function based on equation 5.16,
P(T >t) ~ 0.9765e " as t — 0o (5.17)

Similarly, the plot of —log(P (7T > t)) against —log(0.9765) + 0.2t is presented in
Figure 5.11 to check the asymptotic constant 0.9765.

Table 5.4: Summary of exponential approximation for PDF: The unit of proba-
bility for t*, t** are 104, 107" respectively

Time  f({) 0.1953exp(—0.2()

3.57  0.1030 0.0955
6.96  0.0509 0.0486
11.47  0.0202 0.0197
14.91  0.0101 0.0099
22.89  0.0020 0.0021
34.14*  2.1199 2.1169
44.49*  2.6709 2.6697

The comparison of approximation for f(¢) and P(7 > t) with estimated value
based on 0.1953 exp(—0.2¢) and 0.9765 exp(—0.2¢) is presented in Table 5.4 and
Table 5.5 separately. The numerical results show that the quality of exponen-
tial function approximation is exceptionally good. All these results indicate that
equation 5.16 and 5.17 can correctly provide the description of the characteristic

tail behavior of the true PDF and survival function.
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Plot of asymptotic constant c against t
0.22 ‘ ‘ ‘

0.2

0.18

0.14 R
0.12 R
01 Il Il Il Il Il
0 10 20 30 40 50 60
time t

Figure 5.9: Plot of the function G(t) = e f(t) against t

Comparsion of approxiamtion for —log(f(t))

—Iog(c5+at
—log(P(T>t))

551

0 5 10 15 20
time t

Figure 5.10: Plot of —log(f(¢)) and —log(0.1953) 4 0.2t against ¢
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5.2 Inversion of Padé approximations

Table 5.5: Summary of exponential approximation for tail distribution.

Percentile Time P(T >1t) 0.9765exp(—0.2¢)

50% 3.57 0.5 0.4777
75% 6.96 0.25 0.2429
90% 11.47 0.1 0.0985
95% 14.91 0.05 0.0496
99% 22.89 0.01 0.0101
99.9% 34.14 0.001 0.0011
99.99%  44.49  0.0001 0.00013

Comparsion of approxiamtion for —log(P(T>t))
45 ‘ ‘

—Iog(c/a)+at
—log(P(T>t))

3.5

251

15F

0.5f

0 5 10 15 20
time t

Figure 5.11: Plot of —log(P(T > t)) and —log(0.9765) + 0.2t against ¢

5.2 Inversion of Padé approximations

As we have seen in Section 5.1.1, Chapter 3, Padé approximation is the only
method that can provide density estimation in the form of a mixture of exponen-
tial densities, which is closely related to the exponential approximation in Section

5.1. This distinctive feature allows us to apply the formula we have proposed in
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Tail area probability approximations

Proposition 1 to estimate tail area probabilities. For application, it is very impor-
tant to examine the size of approximation error, and the quality of approximation
for survival function must be assessed by evaluating the size of difference between
the estimated value and true value of P(T" > t). In this section, we focus on esti-
mating the error in survival function approximation in Example 1.3.2, and develop
an closed form expression for modeling the behavior of error in the estimation of

tail area probabilities of survival function.

Let M(s) = %8 be the MGF of total waiting time between input and out-

put of a flowgraph, where the degree of polynomial U(s) and R(s) are p and ¢

respectively. By Definition 3.21, Chapter 3, Let PAj; 4(s) denote the Padé approx-
imation of M (s) with numerator order p and denominator order ¢, where p < ¢
so that the inversion of PAy; 4(s) leads to a valid probability density function (see
Amindavar and Ritcey (1994)).

Lemma 8. Let fi(t) and fy(t) be the inverse Laplace transforms of Fi(s) and
Fy(s), respectively, and let ¢y and cy be constant. The linearity property of inverse

transform states

L‘1{01F1(3)+C2F2(s)} = LY Fi(s)] + LY caFa(s)]
= 1 fi(t) + cafa(?t)

Since PA; 4(s) is a rational function with the order of its numerator less than
denominator, the exact inversion of PA;4(s) will always lead to a PDF in the
form of sum of exponential function. By analogy with equation 5.2 and 5.3, we
can describe the limiting behavior of f(t) and P(T > t) in terms of exponential

function.

¢ * —a*t

c'e ast — 0o (5.18)

P(T>t) ~ ve ™! as t — 0o (5.19)

-

—~

=
l
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5.2 Inversion of Padé approximations

where a* is the absolute value of the right-most singularities of PA; 5(—s),

c*

c¢* can be determined by ¢* = lim,_osPAj; 4(a — s), and v* = &.
To quantify the error in tail area approximation by exponential functions
that derived from different order of Padé approximations, we consider examining

their relative error in term of asymptotic constant and asymptotic decay rate

A

P(T'>t)— P(T >1)

nt) = P(T > 1)
,Ue—at o U*e—a*t
- ,Ue—at
- 11— U_*e(a—a*)t
v

.
where v* = &, and v = £. We then have
a*? a
vt —w as " —c¢, a" —a (5.20)

and

elamalt 1 as a* —a (5.21)

Then equation 5.20 and 5.21 imply that
n(t) —0 asc" — ¢, a" —a

Figure 5.12 depicts the plot of relative error in approximating survival probabil-
ities at t € [0,20] by 5 different order of Padé approximations. Apparently, the
exponential functions constructed from PA[; 9y and PA[; 3 have smaller relative
error among these functions in time interval [0, 16]. However, Figure 5.13 reveals
evidence that PAjy 3, PAj 4 and PAjy 4 perform better for large ¢, particularly
the exponential approximation of survival function obtained by the inversion of
PA[ 5 has the smallest relative error for ¢ € [16.32,20]. Thus, it appears that the
choice of the order of Padé approximation of MGF depends on the size of sur-
vival probability that we want to estimate, the smaller survival probability (i.e. ¢
is large) the higher order of Padé approximations is required to obtain accurate

estimation, which is consistent with the results given by Table 5.2 in Section 5.1.1.
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Relative error plot 1

T T T T
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=
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Figure 5.12: Plot of relative error in P(T > t) against ¢ € [0, 20]

We now consider describing the behavior of error in tail area approximation.
Let Lieg.g](s) = PAq(s) — Mr(s) be the difference between the original MGF
and its Padé approximation with numerator order p and denominator order ¢. By

Lemma 8, the inverse Laplace transform of Lley; 4](s), €5,4/(t), can be expressed as

epa(t) = L_I{PA[M](S)—M(S)}
= f(t)—ft) (5.22)

A

Define 6(t) = P(T > t) — P(T > t). To capture the behavior of error in
estimating tail area probabilities §(¢) for large t, we substitute equation 5.2 and
5.18 in equation 5.22, then
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Relative error plot 2
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Figure 5.13: Plot relative error in P(T > t) against t € [14, 20]
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where v* = ;—z, and v = <. Hence the error in tail area approximation 6(¢) can
be approximated by a closed form expression, denoted by ) (t), which consists of

two exponential function.

5(t)

X
/C_)q\>

ve ™ ast— oo (5.23)
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Tail area probability approximations

In the situation when the true survival function does not have closed form,
it becomes difficult to directly identify the dominating exponential function. The
motivation to construct 5.23 is to analyse the error of tail area approximation
d(t) based on the singularities of MGF and its Padé approximation. The simple
form of 5.23 enables us to easily obtain a closed from estimation for (), even
the closed forms of original tail distribution is not available. The calculation in
5.23 is straightforward, because it only requires to find the singularities of MGF
and Padé approximation, and the asymptotic constant that can be determined

by Proposition 1.

5.2.1 Example 8

We return to the reversible illness-death system example in Section 5.1.1, and
investigate the behavior of error in tail area approximation based on the Padé

approximations for MGF given by equation 5.4 on page 158.

Po1P12Mo1 (8)M12(8) + poamoz(s)
1- p01p10m01(s)m10(3)
(24 5)(1.8 4 3.4s + s?)
(6 4+ 125+ 452)(0.5 + s5)(1.2 + s)
1+ 2.3889s + 1.552 + 0.27778s>
14 4.8333s + 8s? 4+ 5.222253 + 1.1111s*

MTOQ(_S> =

Having found the Padé approximation of Mrp,,(—s) subjected to different or-
ders, which are presented in equation 5.6, 5.7, 5.8, 5.9, and 5.10, we can obtain
exponential functions to approximate the estimated density function f (t), and
subsequently derive the function in the form of equation 5.19 to describe the
limiting behavior of survival function P(T > t). In each case, we apply 5.23 to
compute the estimated error 6(¢), and compare it with the value of true error 6(t)

by plotting them in the same graph.
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5.2 Inversion of Padé approximations

As can be observed in Figure 5.14, 5.15, 5.16, 5.17 and 5.18, all the estimated
error are gradually converging to the true error in the approximation of survival
function as t increases, and there is clearly a good match between 6(t) and 6(t)
for ¢t > 10. These results indicate that the the form of function in equation 5.23
is effective and provides a useful frame of reference to help us understand the

behavior of error in the approximation of tail area probabilities.

A comparison of absolute error 1
0.14 T T T T T T T

true error
\ — — — estimated error

0.12¢ 4

0.1 i

0.08 - b

0.06 |- b

Absolute error

0.04} \ |

0.02- \ 7
\

0 2 4 6 8 10 12 14 16 18 20

Figure 5.14: Estimated error based on PAp g(s)
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A comparison of absolute error 2
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0.06F E
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0.02 N b

2 4 6 8 10 12 14 16 18 20

Figure 5.15: Estimated error based on PAp 5(s)

A comparison of absolute error 3

true error
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Figure 5.16: Estimated error based on PAp 5(s)
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Absolute error

Absolute error

x 107 A comparison of absolute error 4

true error
12} — — — estimated error ||
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time

Figure 5.17: Estimated error based on PAp 4(s)

x 107" A comparison of absolute error 5

true error
8f — — — estimated error |7

0 5 10 15 20

Figure 5.18: Estimated error based on PA3 4(s)
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5.3 Saddlepoint approximation for survival func-
tion

Huzurbazar (1999) shows evidence that the saddlepoint method can provide ex-
tremely accurate approximation for tail probabilities, and the accuracy holds
even in the small sample case. Traditionally, the saddlepoint method is often
applied for statistical inference in small sample size problems by approximating
p-value when the exact distribution is intractable. Further examples that illus-
trate the accuracy of the saddlepoint approximation can be found in Huzurbazar.
S (1999, Section 2.1). In probability theory, the saddlepoint method is more gen-
erally known as the large deviation theory (see Hall(1992), Dembo and Zeitouni
(1998)), which concerns the asymptotic behaviour of the tails probabilities of
extreme events. More recently, the saddlepoint approximation is considered as a
suitable technique in the context of portfolio credit loss. Glasserman (2004) ap-
plies this method to estimate the tail of the distribution of large portfolio losses,
while Yang, Hurd and Zhang (2006) shows that Saddlepoint approximation has
superior performance for CDO (collateralized debt obligations) pricing problem.
As we are usually interested in determining the distribution of total waiting time
between input node and output node in flowgraph model, but not the mean of
total waiting time, in this section, we specifically focus on the implementation
of saddlepoint approximation for the survival function of single random variable

based on the Lugannani-Rice formula 3.75 ( i.e. n =1 case).

Let T be the random variable that represents the total waiting time, and let
tmae be the largest value at which the survival function is estimated. Suppose
there are totally ¢ data points in interval [0, ¢,,,,] for approximation, that is, we
want to calculate the estimated value of P(T > t;) for t; € [0, tmas), ¢ = 1...L.
In order to apply the Lugannani-Rice formula, we need to first establish the
expression of first and second derivatives of cumulant generating function (CGF)
Kr(s) with respect to s. For each given value ¢; in interval [0, ¢,,4.], i = 1...¢, the

approximation for P(T > t) is computed by the following procedures.

1. Calculate §; by solving equation K7.(s;) = t; for s;.
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5.3 Saddlepoint approximation for survival function

2. Given §; at each value of t;, evaluate the value of Kr(s;) and K/.(s;).

3. Substitute K/(8;) and §; in §/KJ.(3) for 21, and t;, $;, K7($;) in /2 (5t — K7(3))

for z9 (see Theorem 5, page 77).

4. Compute the estimated value of P(T > t;) by substituting the value of z;

and 25 in equation 3.75 accordingly.

For most problems involving complicated flograph, s can be obtained by using
numerical method to solve K7.(s) =t for s, while in simple flowgarph case, it can
be explicitly determined in closed form. We will discuss further on the method

to simplify the calculation of § in Section 5.5.

5.3.1 Example 1.3.3

We now demonstrate the Lugannani-Rice formula for survival function approxi-
mations in Section 5.1.1. The algebraic expressions of the MGF given by equation
5.4 is

()\4 - S)(?))\l)\g)\g - )\1)\28 - 2)\3)\18 — 2)\3)\28 + 2)\382)

M —
T (5) (BAM AL — 4A1s —ANgs + 4sY) (A3 — s)( Ay — 8)

The CGF, Kr,,(s) = log(Mr,(s)), can be easily calculated by using symbolic
algebra package such as MAPLE.

KT02(8> = lOg(g)\l)\g)\g - )\1)\28 - 2)\3)\18 - 2)\3)\28 + 2)\382)
log(Ay — 8) —1og(3A1 Ay — 4A15 — 445 + 4s?)

—log(A3 — s) —log(A\2 — s) (5.24)
Then
y 4)\38 — )\1)\2 — 2)\3)\1 — 2)\3)\2 1
K =
TOQ(S) 3)\1)\2)\3 — )\1)\28 — 2)\3)\18 — 2)\3)\28 + 2)\382 * S — )\4
AN + 4N, — 8s 1 1

M — s — Ihs £ 452 5— D 5—
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K7 (s) = L + ! + ;
02 (s—=X2)?2  (s—=A3)2  3A Ay —4Ais —4)Nys + 482
L L 16N 16A 416X
(s —A1)2 (B Ay — 4N\is — 4)ys + 4s2)2
43

_3)\1)\2)\3 — )\1)\28 — 2)\3)\18 — 2)\3)\28 -+ 2)\382
16A1 0202 — 4X2X0 A3 — 40202 — A2A2 — 4\ A2A5 — 4A2N2
(3)\1)\2)\3 - )\1)\28 - 2)\3)\18 — 2)\3)\2 + 2)\382)2

By substituting parameter Ay = 1, Ay = 1.2, A3 = 0.5, \y = 2, and py; =

Do2 = Pio = P12 = % into equation 5.25, and equate it to each t; € [0, tmazl,
1 =1...4, and we solve

Kipa(s) = (5.25)

for s; at each given ¢;. Next, we evaluate the terms in equation 5.24 and 5.25 at
S, and follow the step 3 of our procedure to compute z;, zo respectively. Once
the explicit values for the required terms in Lugannani-Rice formula 3.86 are ob-
tained, the approximation for the survival function P(7T > t) can then be easily
computed. For illustration, we consider applying Lugannani-Rice saddlepoint ap-

proximation to estimate P(7" > t) in time interval [0, 20].

By using the —log transform, Figure 5.19 presents the plot of true survival
function along with its saddlepoint approximation by Lugannani-Rice formula for
the survival function of total waiting time Tps. In general, we can see that the
Lugannani-Rice saddlepoint approximation is extremely close to the true survival
function, and there is virtually no graphical difference between them in the whole
range of t. To further investigate how the error in survival function estimation
is distributed, Figure 5.20 illustrates the plot of relative error for ¢ € [0,20]. It
clearly reveals that most of error occurs in estimating P(7" > t) when ¢ < 5.27,
that is, up to 90% percentile, where the relative error rises steadily until it peaks
at 3.34% when t = 1.34, then it drops sharply as ¢ increases. All of these plots
indicates that the saddlepoint approximations using the Lugannani-Rice formula

are highly suited for estimating the tail area probabilities of P(T > t) for large t.
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SP approximation for survival function
10 T T T
True

~log[P(T>t)]

time t

Figure 5.19: Survival function approximation by Lugannani-Rice formula

x107° Plot of relative error in SP approximation for P(T>t)
35 T T T T T

Relative error
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time t

Figure 5.20: Relative error in estimating P(T" > t) by Lugannani-Rice formula
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5.4 Padé-type Saddlepoint approximation for sur-

vival function

For flowgraphs consists of large number of nodes and several feedback loops,
such as Figure 2.5, Chapter 2, the resulting MGF of total waiting time is of-
ten a complicated rational function, leads to even more complicated expression
for CGF Kr(s), as well as its derivative K/ (s) and K7.(s), which makes subse-
quent calculation very computationally demanding. The challenge is effectively to
solve equation K/.(s) =t for § when the first derivative of CGF, K'(s), is in com-

plicated form, and numerical method is often required to determine the value of s.

In this section, we introduce an alternative approach to apply saddlepoint
approximation based on the Padé approximation of MGF instead of original
MGF, that is, replace the “based line MGF” Mr(s) with its Padé approximation
PAy, 4(s) in Definition 7 and continue with the procedures we outlined in Section
5.3 to estimate survival function. Next, we reconsider the reversible illness-death
system of Example 1.3.2, and present a comparison of Lugannani-Rice saddlepoint
approximation based on the original MGF given in equation 5.4, its 5 different
order of Padé approximations, as well as the true survival function given by equa-
tion 5.5. For each Padé approximations given in equations 5.6, 5.7, 5.8, 5.9, 5.10,
we follow the procedures in Section 5.3 to compute the exponential function ap-

proximation of survival function.

The resulting saddlepoint approximations for survival function are plotted
in Figure 5.21. It is shown that the Padé-type saddlepoint approximations are
really close to each other and there is no obvious difference between them over
the entire range of ¢. By further comparing the plot of saddlepoint approximation
for survival function nears the 50% percentile, t = 1.86, and 99.99% percentile, t =
19.21, in Figure 5.22 and 5.23 separately, we can observe that the approximation
based on high order of Padé approximation tend to have a smaller deviation to the
approximation based on the original MGF than the low order one, particularly,
the plots of approximation based on Padé approximation PAjs3(s), PAjg4(s),
and PApz 4(s) follow closer to the plot of approximation based MGFEF Mrp(s).

186



5.4 Padé-type Saddlepoint approximation for survival function

SP approximation for survival function
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Figure 5.21: Plot of —logP((T > t)) against t € [0, 20].
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Figure 5.22: Plot of —logP((T > t)) against t € [1.86,1.861].
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SP approximation for survival function 3

9.195 T

9.19F

©
I
©
o
T
0
>
w
i
|

—log[P(T>t)]
<
[a)
m

©
[
©
T
|

9.175 4

917 4

9.165 b

9.16
19.21 19.211 19.212 19.213 19.214 19.215 19.216 19.217 19.218 19.219 19.22
time t

Figure 5.23: Plot of —logP((T > t)) against t € [19.21,19.22].

In addition, Figure 5.24 plots the relative error in estimating the saddlepoint
approximation of Mr(s) for ¢ € [14,19.5] after applying Lugannani-Rice formula
under different order of Padé approximations of MGF. Consistent with the result
from Figure 5.22 and Figure 5.23, the closer the order of Padé approximation
to the order of original MGF we use in saddlepoint approximation, the smaller
relative error it will result. The upward trend in both the relative error plot of
SPpa,, , (t) and SPpy, , (¢) implies that high order of Padé approximations should
be chosen as baseline line function, so that we could have an accurate estimation

for the saddlepoint approximation of original MGF at large t.
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Relative error in estimating SP approximation based on original MGF
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Figure 5.24: Comparison of relative error in estimating SPyy(s).

Table 5.6, summarise the value of Lugannani-Rice saddlepoint approxima-
tions for P(T" > t) at different percentile ¢,, and makes comparisons with the true
survival probability. Again, it becomes clear that higher order of Padé approx-
imation gives relatively more accurate estimation, particularly for the survival

probability at large t.

After computing the saddlepint approximation under a range of order of Padé
approximations of MGF for ¢ € [0,20], Table 5.7 presents the sum of absolute
error in estimating the result of saddlepoint approximation of survival function-
based on the original MGF. Evidently, there is a decreasing trend in the sum of
absolute error as the order of Padé approximations get closer to the order of orig-
inal MGF. By contrast, the estimation based on PA3 4(s), among the others, has
the smallest sum of absolute error 1.3498 x 1079, while the Padé approximation
with numerator order 1 and denominator 2 has the biggest sum of absolute error

0.3041 in the same time interval.
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Table 5.6: Summary of Lugannani-Rice saddlepoint approximation for survival
function P(T > t): The unite of survival probability at time t* 1073, t** is 10~*

Time PA[LQ] PA[lvg] PA[273] PA[274] PA[374] MT(S> True

1.86  0.498114 0.497685 0.497826 0.497822 0.497823 0.4978234 0.5
3.37  0.248220 0.248498 0.248638 0.248642 0.248643 0.2486428 0.25
5.28  0.099487 0.099648 0.099935 0.099963 0.099969 0.0999699 0.1
6.69  0.049775 0.049818 0.050012 0.050041 0.050050 0.0500502 0.05
9.95 0.012419 0.012394 0.012431 0.012444 0.012449 0.0124485 0.01
14.59*  1.023370 1.014268 1.008766 1.009399 1.009882 1.0098819 1
19.21*  1.048834 1.032398 1.015143 1.014358 1.014485 1.0144851 1

Table 5.7: Sum of absolute error in estimating the saddlepoint approximation of
survival function based on MGF for ¢ € [0, 20]

0.3041 0.0284 0.0268 0.0143 1.3498 x 10~°

To conclude, all of the above numerical and graphical results suggest that the
accuracy of the Lugannani-Rice saddlepoint approximation for survival function
crucially depends on the structure of “based line MGF” | it is therefore more con-
venient to use Padé approximation that both the order of both numerator and

denominator is similar to the original MGF.

5.5 Bias correction for the Padé-type Saddle-

point approximation

As the saddlepoint method based on the Padé approximation of MGF would
usually generates error, and the the magnitude of error depends on whether the
baseline Padé approximation has similar structure to the original MGF, that
is, the result of saddlepoint approximation would be more accurate if both the
numerator and denominator order of baseline Padé approximation is close to the
MGF of random variable that we are interested. This raises our interest of how
to effectively characterise the error of in such cases, and investigate the order of

error in the Padé-type saddlepoint approximation.
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In this section, we examine the case of applying saddlepoint approximation
with Padé approximation as baseline function for the estimation of both PDF and
survival function. We show that the behavior of error between saddlepoint ap-
proximation with original MGF and its Padé approximation can be described by
the error between saddlepoint approximation constructed with their correspond-
ing dominated exponential function. Next, we propose a biased corrected method
for the Padé-type saddlepoint approximation for both PDF and tail distribution
estimation. Numerical examples are also presented in the end to illustrate our
method.

Let T be a positive random variable with MGF Mr(s). The derivation of
our method use the fact that the probability density function of T, f(t), can be

approximated by an exponential function as follow

ft) = ce ™ as t — 0o (5.26)

where a is the absolute value of the right-most singularity of Mt(—s), and ¢ is a

constant that can be obtained by Proposition 1 (see 5.11 on page 168).

The Laplace transform of this dominated exponential function is

L{ce™™](s) = cLle™"](s)

a-+s

Since the MGF is just the Laplace transform with argument —s instead of s, so

the corresponding baseline function in saddlepoint approximation for estimating

function ce™ is
M(s) = —© (5.27)

a—S

Suppose we estimate functions on both side of equation 5.26 by the saddlepoint
approximation for density estimation (see Theorem 4, Section 3.2.3, Chapter 3),
then

SPw(t) ~ SPy(t) as t — oo (5.28)
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where SP () is the saddlepoint approximation for f(¢) based on the MGF
of T, Mry(s) and SPy(t) is the saddlepoint approximation for the dominated
exponential function with baseline function in the form of equation 5.27. On the
other hand, let f (t) be the density function obtained by the exact inversion of
Padé approximation of MGF. As it is shown in 5.18 on page 174, we have

flt) =~ ce " as t — 0o (5.29)

Analogy to equation 5.28, we apply saddlepoint approximation to both side of
equation 5.29, then

SPLa(t) ~ SPp(t) as t — 00 (5.30)

where the saddlepoint approximation for the dominated exponential function of

~

f(t) is SPa(t), with baseline function

*

C

a(s) =
pa(s) = ——

By equation 5.28 and 5.30, the order of error between SP(t) and SP,,(t) can

be approximated as
SPa(t) — SPpa(t) = O (SPy(t) — SPya(?)) ast — 00 (5.31)

Similarly to the idea of deriving equation 5.23 in Section 5.5, equation 5.31 im-
plies that, for large t, the behavior of error between the saddleponit approximation
with original MGF and its Padé approximation can be described by the saddle-
ponit approximation with their exponential dominated term. Hence, we propose a
general formula to correct the bias in the saddlepoint approximation that having

Padé approximation of MGF as baseline function.
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5.5 Bias correction for the Padé-type Saddlepoint approximation

Theorem 10. Let T be a random variable with MGF, M (s) such that

C

Mr(s) = as s — 0

a—S

where a is the absolute value of the right-most singularity of Mr(—s), and

¢ = limsMr(a — s)

S—

Also let PAp, 1(s) be the Padé approximation of My(s) with numerator order p

and denominator order q such that

*

C

PAp q(s) ~ as s — 0

a*—s
where a* is the absolute value of the right-most singularity of PAy, o(—s), and

*

¢ = liII(l) sPAp, g(a — s)

Denote the saddlepoint approximation for the PDF with baseline function (x)
by SP.(t), define n(t) = SPum(t) — SPpa(t) as the bias in Padé-type saddlepoint
approzimation, and 1(t) = SPy(t) — SPp(t) be the estimated bias. Then for
t — 00, the bias corrected Padé-type saddlepoint approximation for the PDF is

SPpax(t) ~ SPpa(t) + c1n(t) as t — 00 (5.32)

where ¢y 1s a constant that satisfies
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Corollary 2. Suppose we define the Lugannani-Rice formula with baseline func-
tion (x) by LR.(t), then fort — oo, the bias corrected Lugannani-Rice Padé-type
saddlepoint approximation for survival function based on PAp, 4(s) can be ea-

pressed as
LRpa (t) ~ LRpa(t) 4+ cow(t) ast — oo

=0
where w(t) = LRm(t) — LRpa(t) , @(t) = LRy (t) — LRpa(?).

As we have shown in Example 1.3.3, the drawback of saddlepoint approx-
imation is the difficulty in effectively solving K/.(s) = t for the saddlepoint 8,
particularly when the MGF of total waiting time becomes very complicated in a
large flowgraph that has feedback loops, which constantly occurs in practice. In
that case, the step of determining $ often involves with high computational costs
since the solution of K7.(s) = t usually does’t have closed form expression, and

numerical method such as Newton-Raphson method is required.

However, the calculation of saddlepoint approximation is much easier if our
bias correction formula 5.32 is applied. Firstly, the structure of Padé approxi-
mation is relatively simpler than the original MGF, especially for a lower order
Padé approximation that has simple CGF, which could significantly reduce the
computational cost in the subsequent calculation of saddlepoint §. Secondly, it
is worth pointing out that we can always have a closed form solution of § for

computing saddlepoint approximation SPy,(t) and SPy.(2).
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5.5 Bias correction for the Padé-type Saddlepoint approximation

For example, given equation 5.27, we have

K(s) = log(N(s)) = log(——)

a—S

and

K'(s) = dlzl'iS) - ais

Then equation K'(s) =t become

1

a—S

=1
which immediately gives the closed form solution of s as follow
§ = a—-— (5.33)

where a is the absolute value of the rightmost original MGF. Since pa(s) is in the
same form of M(s), we can also find a closed form solution of s* for saddlepoint
approximation SPy,(t) as

s* = a"— - (5.34)

where a* is the absolute value of the rightmost singularity of Padé approximation
PAy, o (—s). With our method, the calculation of saddlepoint is less computation-
ally demanding because it is directly computed from the original data t, which
avoids using numerical method. Despite there is a problem in equation 5.33 and
5.34 if t equals zeros, we can still apply them in practise because total waiting
time will never occur to be zero in real life problem. In the following two sections
we demonstrate our bias corrected method in the Padé-type approximation for

both probability density function and survival function estimation.
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5.5.1 Probability density function estimation

To illustrate our method, we apply saddlepoint approximation to estimate prob-
ability density function of total waiting from node 0 to node 2 in Section 5.1.1
on page 158. The MGF of total waiting time Tp, is

Po1P12Mo1(8)M12(s) + Poammoz(s)
I— p01p10m01(s)m10(3)
(2 —5)(1.8 —3.4s + s?)

(6 —12s 4+ 452)(0.5 — 5)(1.2 — s)

MToz (S> =

(5.35)

The true density function is
f(t) = 0.75e7%% — 0.3636e~ " — 0.1207e "% — 0.0157¢~ 2%

Since the absolute value of the right-most singularity of Mr,,(—s) is 0.5, and the
true density function f(t) can be approximated by 0.75¢%5% for large ¢, which

has the corresponding baseline function for saddlepoint approximation

. 0.75
M(s) = Gz (5.36)

Given a sample size of 2000 total waiting time data in interval [0,20], the sad-
dlepoint point § can be easily obtained based upon 5.35 and 5.36, and we can
compute the saddlepoint approximation, SPy;(t) and SPy;(¢), for density function

—05t respectively. On the

f(t) and its exponential approximation function 0.75e
other hand, as explained in Section 5.5, saddlepoint approximation with lower
order of Padé approximation typically generates larger error than that of using
higher order of Padé approximation. For the purpose of illustration, we choose
the Padé approximation with numerator order 1 and denominator 2, PAy; 4(s)
given by 5.6 on page 159, as the baseline function in saddlepoint approximation,

so that it will allow us to better examine our formula 5.32 in a large error case.

1+ 0.4543s
1+ 2.8988s + 1.771s2

which leads to a density as fpa,, (f) = 0.6753¢™%4* —0.4188¢~ 142",

PA[LQ} (S) =
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5.5 Bias correction for the Padé-type Saddlepoint approximation

Since

fPA[l,z] (t) ~ (.6753e 04942t s s oo
The Laplace transform of 0.6753¢~04%2 after replacing argument s with —s is

0.6753

AL = Gom — s

Similarly, the saddlepoint approximation for density fpa, ., (t) and function
0.6753e 04942 can be determined, denoted them separately as SPp,(¢) and SP, (¢).
Define n(t) = SPum(t) —SPpa(t), and 7)(t) = SPy; () —SPga(t). In order to determine

the constant term ¢; in Theorem 10, we first plot log (1(t)) — log (7(t)) against ¢

in Figure 5.25, which indicates a clear evidence of convergence in log % for
large t. Further calculation shows that

n(t) — ast — o
log (ﬁ(t)) 2.8367 t (5.37)

Taking exponential on both side of equation 5.37,

n(t)
n(t)

— exp(2.8367) = 17.0597

Hence
n(t) ~ 17.0597n(t) as t — oo (5.38)

To verify our result, we need to compare the plot of n(t) with 7(¢) and 17.05977(t)
respectively. Figure 5.26 presents both the plot of n(t) and 7(¢) against t in inter-
val [19, 20], where there is a relatively big difference between the sp error and the
estimated sp error. After multiplying 17.0597 to 7)(t), Figure 5.27 shows that the
plot of 17.05977(t) denoted by “Estimated Sp error after correction”, is close to
the plot of “Sp error n(t)” which provides a solid evidence that our calculation

for constant ¢; = 17.0597 is correct, and equation 5.38 holds.
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Furthermore, the agreement between the error SPy(t) — SP.(t) and the es-
timated error 17.0597 (SPy;(t) — SPpa(t)) suggests that we can improve the result
of saddlepoint approximation that derived from Padé approximation of MGF by

adding the estimated error as follow
SPpa-(t) ~ SPpa(t) + 17.0597(SPy(t) — SPpa(t)) (5.39)

as t — oo.

Difference of log error

0 5 10 15 20

Figure 5.25: Plot of convergence test

Figure 5.28 shows the plot of PDF estimation by SP,,(t) without correc-
tion and SPy(t), whereas Figure 5.29 shows the plot of SPy(t) with SPy.- (%)
that defined in formula 5.39 ( denoted as “New SP-PADE12”). As can be seen
in Figure 5.29, the bias corrected saddlepoint approximation for PDF based on
PA[ (s) significantly improves the quality of density estimation, and there is a
good match to the saddlepoint approximation based on original MGF Mr,, (s),

compared with previous result in Figure 5.28.

198



5.5 Bias correction for the Padé-type Saddlepoint approximation

X107 SP approximation for density function

Error

Sp error
Estimated Sp error
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time t

Figure 5.26: A comparison of error in SP approximation 1

x 10> Corrected error in SP approximation for density function

7 \

Error

SP error
Estimated Sp error after correction
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time t

Figure 5.27: A comparison of error in SP approximation 2
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x107° SP approximation for probability density function

13 T T T T T
Original SP-MGF
SP-PADE12
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Figure 5.28: SP approximation for probability density function 1

x 107> corrected SP approximation for probability density function
6 T T T T
Original SP-MGF
New SP-PADE12

Probability
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time t

Figure 5.29: SP approximation for probability density function 2
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5.5 Bias correction for the Padé-type Saddlepoint approximation

Table 5.8: Saddlepoint approximation for probability density function estimation.
Time 3.37 5.27 6.69 9.9 14.59 19.21
SP,a(t) 0.2803 0.1096 0.0543 0.0134 10.95 x 10~* 11.168 x 107

SP*,.(t) 0.2677 0.0979 0.0460 0.0102 6.5535 x 107* 5.1154 x 107>
SPu(t)  0.1167 0.0484 0.0245 0.0061 5.0020 x 10~*  5.0251 x 1077

Table 5.9: Absolute error in saddlepoint approximation for PDF.
Time 3.37 5.27 6.69 9.9 14.59 19.21

SP,.(t) 0.1636 0.0612 0.0298 0.0073 5.9480 x 10~* 6.1429 x 107
SP*,.(t) 0.1510 0.0495 0.0215 0.0041 1.5515 x 10~* 0.0903 x 10~

Table 5.8 summarise the explicit value of probability obtained from saddle-
point approximation based on PAp g(s), SPya(t), original MGF My, (s), SPwm(t),
and the biased corrected saddlepoint approximation given by Theorem 10, SP*,,(¢).
By comparing to the value of SPy(t), we find that SP*,,(¢) has substantially im-
proved the accuracy after we corrected the bias in SP,(t), and the bias corrected
Padé-type saddlepoint approximation is better in the sense that it is close to the
value obtained by saddlepoint approximation based on original MGF. Further
evidence is given in Table 5.9, where it illustrates that the absolute error in den-
sity estimation decreases dramatically in SP7,(t), particularly the absolute error

becomes smaller as ¢ increases.
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5.5.2 Survival function approximation

We now illustrate the performance of the bias corrected Padé-type saddlepoint
approximation for survival function estimation in Section 5.1.1. For implemen-
tation, we consider estimating survival function P(7" > t) in the time interval
[0, 20], where a sample size of 2000 total waiting time data is uniformly discre-
tised with sub-interval 0.01. The Lugannani-Rice formulat given in Theorem 5
is applied for the calculation of tail area probability of survival function. Recall
equation 5.5 in Section 5.1.1, the true survival function of total waiting time from

node 0 to node 2 is
P(T >t) = 1.5e7%% —0.303e~ 12" + 0.1903e~ %531 + 0.0066¢ >0
By equation 5.3 in Section 5.1, we have
P(T >t) ~ 1.5¢ %% as t — 0o

which leads to L5
M(s) = i
() = 955

The survival function derived from the Padé approximation PAp 4(s) is

Spayq(t) = 1.3665e704942t _ () 3665 1-1426t

giving
SPA[l,z] (t) ~ 1.3665e 04942 s s oo
then -
(S) 0.4942 — s

The estimation of survival function from Lugannani-Rice formula with original
MGF Mr,, (s), Padé approximation PAp (s), M(s), and PA(s) are denoted by
LRwm(t), LRpa(t), LRy (t), LRpa(t) respectively.

Let w(t) = LRm(t) — LRpa(?) , @(t) = LRy (¢) — LRyu(t). We plot log(ﬂ)

o)
against t in Figure 5.30. Evidently, it converges to 0.2143 after as t increases, and
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5.5 Bias correction for the Padé-type Saddlepoint approximation

we find the corresponding constant ¢, is exp(0.2143) = 1.2389, such that
w(t) ~ 1.23890(t) as t — 0o

Having see the relatively large difference between the two type of errors in Figure
5.31, the plot given by Figure 5.32 shows that the estimated error in tail area
probability, w(t), is now closely matching the true error w(t) after we multiply
1.2389 to w(t). According to Corollary 2, the bias corrected Lugannani-Rice Padé-
type saddlepoint approximation for tail area survival probability can be computed
by

LRpa(t) =~ LRpa(t) + 1.2389 (LRy;(¢) — LRya(?)) (5.40)

as t — oo.

Next, for t € [19,20], we compare the estimated tail area survival probabil-
ities from the Lugannani-Rice Padé-type approximation LR, (t), LRyax(t) with
the result from approximation based on original MGF, LRy(¢) in Figure 5.33
and Figure 5.34. Again, we see that the bias correction method given by equation
5.40 dramatically improves the quality of Padé-type approximation, and the plot
of LRpa+(t) and LRy (t) are almost indistinguishable in Figure 5.34. Moreover,
Table 5.10 provides more details of the survival probabilities estimation made by
the Lugannani-Rice approximation. By looking the explicit numerical result, we
find that the accuracy of tail approximation is highly satisfactory after bias cor-
rection, and the deviation to the approximation based on original MGF, SPy(?),
is typically smaller in LRp,«(¢) than LR, (%).

Table 5.10: Saddlepoint approximation for survival probabilities estimation. Unit
of probability is in 1073
Time 14.59 15 16 17 18 19 19.21

LRy, (t) 1.0234 0.8361 0.5107 0.3119 0.1905 0.1163 0.1049
LR*pa(t) 0.9914 0.8092 0.4931 0.3004 0.1830 0.1115 0.1005
LRy(t) 1.0034 0.8183 0.4976 0.3024 0.1837 0.1117 0.1006
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Difference of log error

time t

Figure 5.30: Plot of convergence test

5)(10-6 Error in SP approximation for tail area probabilities
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Figure 5.31: A comparison of error in tail area approximation 1
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x 10°® Corrected error in SP approximation for tail area probabilities
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Estimated SP error after correction
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Figure 5.32: A comparison of error in tail area approximation 2
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Figure 5.33: SP approximation for tail area probability 1
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s x107° Corrected SP approximation for tail area probabilities
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Figure 5.34: SP approximation for tail area probability 2

Table 5.11: A comparison of sum of absolute error of Padé-type saddlepoint
approximation of PDF and survival function for ¢ € [14, 20].

original bias corrected reduce%

PDF 0.1537 0.0309 79.87%
Survival function  0.0065 0.0024 62.22%

It is also interesting to explore the performance of our bias corrected method
in Padé-type saddlepoint approximation for PDF and survival function. By set-
ting the saddlepoint approximation based on original MGF as benchmark re-
sult, we calculate the sum of absolute error in each Padé-type approximation for
t € [14,20]. Table 5.11 gives strong evidence that the bias correction method
does very well and it significantly improves the accuracy in the tail area of both
function, particularly we have a 62.22% decrease in the sum of absolute error in
the survival function estimation, while there is 79.87% reduction in the density

function approximation.
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Chapter 6
Application

In this chapter, we introduce our Matlab package, Method of Moments in Flow-
graph (MMF), to analyse flowgraph data and estimate parameters. The MMF
package supports a wide range of tasks, from calculating the branch transition
matrix to derive the total waiting time MGF between two nodes of interests. It
also includes functions and interactive tools for simulating flowgraph data between
user defined input and output node, as well as the calculation of the Method of
Moments estimator for the transition probability and the parameters of internode

distribution.

The purpose of this chapter is to consolidate the methods we have developed
for modeling flowgraph data and show the details of implementing our package in
Matlab for flowgraph analysis. In the first part, we describe the main operations
of MMF package and explain the theorems associated with the built-in functions.
In the second part, we demonstrate the implementation of our package in a large

complicated flowgraph example.
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Incidence
matrix of
flowgraph

Transition \

probability
and internode MMF MM estimator
distribution

parameter / Output

total waiting
time data

Input

Figure 6.1: Ilustration of MMF package

6.1 Overview

Figure 6.1 represents the operations of MMF package to compute the MM estima-
tor. The MMF package only requires three inputs as they are illustrated in Figure
6.1. The incidence matrix initialise the structure of flowgraph by defining the
direction of each edge, we can then assign the corresponding transition probabil-
ity, specify the type of internode distribution and the corresponding parameters
value, the total waiting time data can either be the real sample data or the data

generated by simulation. The typical steps of our MMF package are given below.

Step 1: Derive the branch transition matrix .
Step 2: Compute the MGF of total waiting time between input and output.

Step 3: Calculate the Method of Moment estimators.
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6.1 Overview

The following is the Matlab code of MMF package

1 function est=MMF(IM,iniv,data)

2 %lnput:

3 %1)IM: Incidence matrix

4 %2)iniv: Value of parameters

5 %3)data: Total waiting time sample data

7 %Output:
g %est: The Method of Moment estimator

10

11 % Derive the transition matrix Q
12 infor=tranm(IM);

13

14 % Calculate the sample moments
15 datm=zeros(1,length(iniv));

16 for i=1l:length(iniv)

17 datm(i)=mean(data.”i);

18 end

19

20 %Compute MM estimator by the Nelder —Mead simplex algorithm

21 pad=infor.dist;

22 options=optimset( '‘Display' , 'iter’ );

23 est=fminsearch(@(theta) momeq(IM,pad,theta,datm),ini v,options);
24

25 end

The MMF package contains two functions that we have programmed in Mat-
lab, namely, tranm and momeq. The description of each function is provided in
the script of MMF package. To clearly illustrate what computations are being per-
formed, we will give further explanation for each function, demonstrate the details

of implementing each steps of MMF package in the next section.
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6.2 Implementation in MATLAB

6.2.1 Function to compute the branch transition matrix

As the branch transition matrix plays a key role in our algebraic approach to
compute the total waiting MGF, we create a user defined Matlab function files,
tranm.m, to compute the branch transition matrix of a flowgraph model. This
function requires the incidence matrix of flowgraph as input, then it will ask us
to manually enter the transition probability for each directed edge, choose the

type of internode distribution and the corresponding parameters value.

Definition 13. The incidence matrix of a flowgraph is a | X k matricx H =
{hi;}, where | and k are the total number of vertices and edges respectively in a
flowgraph, such that h;; = —1 if the edge e; (the j-th column) leaves vertex v;

(the i-th row), h;; = 1 if the edge e; enters vertex v;, and 0 otherwise.

For example the incidence matrix for the flowgraph in Figure 2.5, page 17 is
a matrix consists of 3 rows (corresponding to the three vertices) and 4 columns

(corresponding to the four directed edges).

0 -1 -1
B =1-1 0 -1
0 0 0
where b;; = —1 if there is a potential transition from node ¢ (the i-th row) to

node j (the j-th column), and b;; = 0 for no transition.
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Given the transition probability p;; and the MGF of waiting time between

node i and node j, m;;(s), the branch transition matrix ) is determined as

0 qo1 Qo2
Q(S ) = lqo 0 qpo
0 0 0

where g;; = ¢;;(s) = p;jm;(s). Therefore, we can apply our Theorem 3 in Chapter
2 to compute the MGF of total waiting time between input at node 0 and output

at node 2.

The implementation of tranm.m in Matlab are displayed as below.

»» IM=[-1,0,-1,1:1,-1,0,-1:0,1,1,0];

object=tranm(IM) ;

please input transition probability from node 1 to node 0:0.5
please input lambda:l

please input transition probability from node 0 to node 1:0.7
please input alpha:2

please input beta:3

please input transition probability from node 0 to node 2:0.3
please input lambda:0.4

please input transition probability from node 1 to node 2:0.5
please input alpha:l.Z2

please input beta:2. 7

Jx > |

Figure 6.2: Illustration of tranm.m function

Figure 6.2 shows the first output of implementing the tranm.m function for
the flowgraph model on page 17. After substituting the incidence matrix IM into
tranm.m function (i.e. tranm(IM)), we will be asked to enter the value of the
transition probability for each edge, then a popup menu contains the choice of
internode distribution, Exponential and Gamma will appear (see Figure 6.3). We
can then simply enter the corresponding value of parameters for the selected dis-

tribution.
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The output of tranm.m function consists of three items: the type of intern-
ode distribution for each edge (1 for exponential and 2 for Gamma) in dist, the
set of parameter value in theta, and the branch transition matrix Q (see Figure
6.4). In practice, the tranm.m function allows us to easily determine the branch
transition matrix Q of a large flowgraph by providing an interactive way to assign

the information for each directed edge.

B mENU |

Choose a distribution between node 0 and node 2:

Exponential

Figure 6.3: Menu for the choice of internode distribution

»» object
object =
dist: [1 2 1 2]
theta: [0.5000 0.7000 0.3000 0.5000 1 2 3 0.4000 1.2000 2.7000]
Q: [3x3 sym]
»» object.q
ans = =
[ O =% % (s =31 ) =3/{2bx{s—"2/5))]
[ -1/(2x(s - 11}, 0, -3/(x(s - 27/1011]
[ 0, a, 0]
Jx o> | -
4 rrr -

Figure 6.4: Output of tranm.m function
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6.2.2 Function to compute the MGF

After we obtain the branch transition matrix (), we program a Matlab function

called MV.m to derive the total waiting time MGF based on Theorem 3, as well

as the population moment (i.e. p,(f) in Definition 11 Chapter 4).

The MV.m function requires the branch transition matrix (), which is one of

the output of tranm.m function, to compute the MGF evaluated at the value of

parameters, while it needs the total number of parameter to be estimated in a

flowgraph for calculating the population moments. The following is the Matlab

code of MV.m function.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

function object2=MV(Q,theta)
%lInput: 1) Q: The branch transition matrix

% 2) theta: The set of parameter
%Output: 1) object2.MGF: The MGF of total waiting time
% 2) object2.mv: The population moment

% Construct an identity function
syms s

dim=size(Q);
im=eye(length(Q),length(Q));

% Apply Theorem 3 Chapter 2 to compute MGF
A=im—transpose(Q);

M=inv(A);

object2. MGF=M(dim(1),1);

% Calculate the population moment

np=Ilength(theta);

ME=[zeros(np —1,1);s];

object2.mv=zeros(1,np);

for i=1:np;
ME(i)=diff(object2.MGF,s,i);
object2.mv(i)=subs(ME(i),s,0);

end
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6.2.3 Sampling Methods

As the accuracy of parameter estimation depends on the sample size of total
waiting time data, and it is common to have difficulty to obtain large enough real
flowgraph data, this motivates us to apply the simulation method to generate

total waiting time data between the input and output of a flowgraph.

For a simple flowgraphs with small number of nodes and feedback loops, we
can simulate the path of each particle from input node to output node and then
obtain the total waiting time according to the internode distribution. However,
in a large complicated flowgraph case, it is not convenient and time consuming to
write Matlab codes for simulation in a case by case manner. Therefore, instead
of following the simulation method based on paths as we did in Section 4.2.2.2
Chapter 4, we creat a Matlab function call simdat.m (see Appendix) based on

the inverse transform sampling method to obtain total waiting time data.

The inverse transform sampling is a method to generate sample of random
variable X given its cumulative distribution function F'(x), it is based upon the

following standard theorem.

Theorem 11. Let F' be a continuous cumulative distribution function on R with
inverse F'=1 defined by

F'u) = inf{z: Flz)=u, 0<u<1}

If U is a uniform random variable from Uniform(0,1), then F~Y(U) has distribu-

tion function F.

The inverse transform sampling method is particularly useful for simulating
total waiting time data in a large flowgraph model. Apart from the traditional
path simulation approach, it allows us to obtain sample data based on its CDF
that is derived from the MGF, which can be easily determined by using the
algebraic approach formula in Theorem 3 Chapter 2. Given the MGF of total
waiting time M (s), we can determine the PDF f(z) by either the exact inversion

method in Section 3.1 or the numerical method in Section 3.2, Chapter 3, then
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we can apply the procedure of inverse transform sampling as follow
1. Derive the inverse CDF F~!(z) from PDF f(x)
2. Generate y ~ Uniform(0,1)

3. Compute z = F~(y)

0.7 1

CDF

05} .
0.4f .
03f .
02 X, .

0.1 1

Figure 6.5: Hlustration of inverse transform sampling

Figure 6.5 demonstrates how the random sample z; is generated given uni-
form random number y;. The inversion method is exact when F~!(x) is in closed
form. However, the CDF F(t) of total waiting time between two nodes of interests
in a flowgraph model is usually nonlinear function, and the analytical expression
of F~1(t) is not available. In this case, we need to apply numerical method to solve
the equation F'(x) = u numerically for z. Note that we could apply the built-in

Matlab function called “fsolve” to find the solution of nonlinear equations.
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6.2.4 Method to compute the MM estimator

As the MM estimator 6 for parameter 6 = (01, ...,04) is the solution to the system

of equations determined by Definition 11, Chapter 4, we can construct a function

R(0) as

R(O) = Y (u(0) —m,)*  forr=1,..d (6.1)

r=1
then R(é) — 0 will be satisfied if  is the MM estimator. Hence the computation
of MM estimator can be considered as a problem for finding the zeros of a scalar

function R(#) of several variables 6 = (0, ..., 0,).

The Nelder-Mead algorithm is one of the well known algorithms for multidi-
mensional optimization problem. It is developed by Nelder and Mead (1965) and
it has been extensively used to solve parameter estimation. The basic idea is to
use the term simplex (a generalized triangle in d dimensions) and find the mini-
mum of a function of d variables. For reference, see Powell (1973) and McKinnon
(1999). Byatt, Coope and Price (2003) summary the development of this method.

Since it is computationally demanding to construct the Jacobian matrix of
the systems of moment equations, this algorithm belongs to a general class of
direct search methods which do not require to use any derivatives, therefore it is
relatively easy to implement than other optimisation method for computing the
MM estimators. We use Matlab’s built-in function fminsearch (see Lagarius,
Reeds, Wright, and Wright (1998)) to find the minimum of R(6) function (i.e.
R(6) = 0) and calculate the MM estimator.

To demonstrate the use of fminsearch function, we consider the series flow-

graph model example in Figure 2.1 Chapter 2 again. The incidence matrix is
defined as
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Suppose we assume tg; ~ Exp(A;) and ¢35 ~ Exp(Ay), A sample size of n
total waiting time between node 0 and node 2 is generated by the inverse sampling
method (i.e. simdat function), compute the sample moments and derive function
R(#) for d = 4 case by equation 6.1. Given the sample moments, we create a
function handle called momeq.m (see Appendix) to compute the value of R(6) at
each value of parameters #, so that the Nelder-Mead algorithm can be applied

iteratively to minimise R() for calculating the MM estimator.

1 %Define the incidence matrix
2 IM=[ -1,0;1, -1;0,1];

4+ %Define the initial value of parameters
5 1iniv=[0.9,1.1,0.6,1.4];

7 %simulate 10000 waiting time data

s n=10000;

9 datv=simdat(out. MGF,n);

10

11 %Call function momeq and calculate the MM estimator

12 options=optimset( '‘Display' , 'iter’ );

13 [est,fval]=fminsearch(@(theta)
momeq(IM,pad,theta,datm),iniv,options);

Note that we only use the total waiting time data generated by simdat.m
function in Section 6.2.3, in practice, we usually use the sample total waiting time
data for parameter estimation. The computation proceeds by applying Nelder-
Mead algorithm (i.e. fminsearch function ) to find a minimum of momeq function
(i.e. the value of R(0)), starting at an initial value of parameter specified in
iniv. The options function allows us to see the output at each iteration of
calculation, such as the value of R(6) and the operation of Nelder-Mead algorithm.
The computation will be terminated if the change in the function value is less
than 10~* (Le. |R(0"+!) — R(A))| < 107%), the result of MM estimator 6 and
the corresponding value of R(f) at @ will be stored in variable est and fval

respectively.
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6.3 Example 9

In this section, we implement our MMF package to estimate the MM estimator
for a total of 10 parameters in a flowgraph, which has a similar structure to the
flowgraph given in Figure 2.5, Section 2.2.1, Chapter 2, but contains some in-
ternode waiting time that follow Gamma distribution. We summary the type of

the internode distribution and the corresponding value of parameters in Table 6.1.

Table 6.1: Summary of waiting time distribution

Direction transition probability = Distribution

1—0 po = 0.4 Exponential(2)
0—1 po1 = 0.7 Gamma(1.5, 3)
0—2 Po2 = 0.3 Exponential(1)
1—2 pi2 = 0.6 Gamma(9, 0.5)

Step 1: Define the incidence matrix of flowgraph in Figure 2.5 on page 17.

Recall that the column and row of matrix H represents the edge and vertex of
flowgraph, such that h;; = —1 if edge e; (the j-th column) leaves vertex v; (the

i-th row), h;; = 1 if edge e; enters vertex v;, and 0 otherwise.

Step 2: Simulate a sample size of n = 10° total waiting time data between
node 0 and node 2 by the use of simdat function. Note that we usually input the

real sample data rather than the simulated data for practical application.
Step 3: Execute the MMF package (see Figure 6.6), input the incidence matrix

IM, the sample data datv, and the initial value iniv for the transition probability

and the parameters of each internode distribution by the menu in Figure 6.3.
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est=MNF (IM, iniv, datv)

please input transition probzbility from node 1 to node 0:0.4

m

please input lambda:?2

please input transition probzbility from node 0 to node 1:0.7
please input alpha:1.5

please input beta:3

please input transition probability from node 0 to node 2:0.3
please input lambda:l

please input transition probability from node 1 to node 2:0.6
please input alpha: 9

please input beta: 0.5

fx] ~

Figure 6.6: Implementation of MMF package in Matlab

The package takes 596.94 seconds to complete the computation, where it
requires 507 iterations of the Nelder-Mead algorithm. The calculated results ob-
tained from the MMF package are displayed in the Table 6.2 and Table 6.3. By
comparing with the true value of parameters, we can see that reasonably good
estimation results are obtained for both transition probability and internode dis-

tribution parameters.

Table 6.2: Summary of MM estimators for transition probabilities

Parameter P10 Po1 Do2 D12
True value 0.4 0.7 0.3 0.6
Estimated value 0.4216 0.7163 0.3256 0.6131

Table 6.3: Summary of MM estimators for internode distribution parameters

Parameter Ao Ao2 o1 Bo1 Q12 B2
True value 2 1 1.5 3 9 0.5
Estimated value 2.1947 1.1735 1.2335 2.7618 9.6072 0.5131

To conclude, the MMF package not only provides a user-friendly way to input
the information from flowgraph but also it unifies the processes of constructing
branch transition matirx, deriving the total waiting time MGF, and computing
the MM estimators. For practical application, we can easily adapt the MMF package
in MATLAB as needed for the parameter estimation problem in any type of
flowgraph models.
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1. We summary the system of 6 moment equations for MM in Section 4.3.4.1
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—A1Po1P12A1A3 — AaAi A + M A Aapor — Po1AeAsAs — Po1 A2 Az A1 + po1 AaAzpia A
AN A2 A3 (po1 — po1piz — 1)
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2
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221



Appendix
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+15p0 5N ATATPTy — 6P A A3 NPT, — 251 A3 AID12AT — 3P51 Ae ASAIDia AT
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+3p5 A2 AZAID12 AT — TG A AsAGAI D12 + AD5 A AsAIAT + DY ASASATAT DT,
FPo ASAAIDTAT — Apo1p12 A1 AsA] — Ajpo1 D12 ATASA] — Ajpo1p1a AT AN
— AP0 P12 AT A2 A3 — AT P12 ATAS + P ASAZAIAT DYy — P ASAZAGDT AT
+2D81 AAIAIDIAT — Pa ASAIAID12A] + Dot AN NI D12 + Por ASASAIAT P12
FPo1 AAIAIAIP12 — 3P AASAIAT P12 + 205 ASNSATAT + poy ASASAIAD

FPo ASAINIAT — 3P0 ASAGAIDTLAT + Do ASASAIAIp1a + Po ASASAIA P12
F3pS AAININT — 200 MAS N D 1aAT — P A AIAIDI AT — 33 A AN P2,
+3p5 A2 AGAIDIAT + 6P Ao AGATDTIAT + Dot AASAIAI D12 — 3P8 A A AT A
PR ASAIAZ PR, — 2p2 ASAIAS 1oAY — BpR I ASAIAIAZD1a — por AJASAGA?
FPo AASAIATDY, — 60 ASASAIATD12 + Por ASASAAAT P12 — Por A AsAT A
F3P ASAZAINT + o ASASAINT — 3p0, A ASAIPTAT — Por ASAAIA]

— P ASASAINI P12 + Do AG AR AT AT — 2P ASASATDTLAD + Dl A ASATD1a ]
+p01)\3)\5)\ 2912)\4 + 7p01)\5)\3)\4)\1p12 62901)\5)\3)\4)\11712 8]701)\5)‘3)‘4)\12912
TP AAGAIDIAT + 205 A NIAIA] — Pot ASAAIAT — Do ASASAIA D2
+3p3 A AINIP12AT + P AASAIATDT, — Por ASAZAAT — ATAIAS — 5pd ASAIAZpI A

=3P ASASAIAIDE, — 3P ASASAIDILAT + 6Py AN AN D1y — p01)\5)\2)\5)\1p12>
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,uﬁ(pOIapl% )\17 )\27 )\37 )\4)
720

X(por — porprz — 1)OAGAGNG
(Por ATz + PAAIADAT — B AAIAGP12AS — P AASARAS
FPo ASAININSDT, + Do  ASASAIAI Dy + 3p5 ASASAIAI DT, + 3p5 NIASAS AT D12
F3Pp ATARASATPTy — Do APASASAT DY, — 2P ATASASATT, + 2P AT ASAS AT
+p01)\4)\2)\ plz)\6 32901)\2)\6)\5)\5 + 32901)\4)\2)\ plz)\6 3p01)\4)\2)\ Plz)\6
—PSIASASNIND 4 4pd NIASAZA D1y — P2 MASAS NS p1s + dpd AMIASAZASp3,
FAPg I AIASAIAE + Dot ASASP12 AT — 3pg ASASPT NSNS — 6pd ASASATAS
—6pa  ASASAZNT + 21p2 ASASD1o NSNS 4 153 ASASp1aATAT + 1203 ASASp1aAIA?
=3P A1 AT D12 — 15pG A ASPTR ATAT + 3P iIASAZAT P + 3P AIASASAT P
HAPGATAAATPTy + 25 NTARASPIAT — 3o AIASASAT DTy — 3Pt ATARASATPT,
+ApS NIASAINT DT, — 8D AASAIAT D12 — 6P AASPT AIAT — To ASASAZAIP12
—5pa AIAS NI D1a + 3pa AIAASDIAAT — 3P AIAAS P12 AT — PoLAIAS AT
—2D5  AIASASP12A] + 9P ATASASAT D12 + Bpgi ATASASAL D12 + 9P ASASASATp1a
+PoI AN P12 — 6pd NIASASATDT, + 4po ASASAZAI P12 — 6P AIAS ALY
—12pg ASASPTNIAT — B0MGpg p1a AT + 3P AgASPia AIAT + 3P AaAgpia AT AL
—Por ASAZATAL — P ASASATP12AT — BALPG1 DT ATAS + ot AgAS AT A s
—5pa  ASASNIAS D12 + P ASAINIAT — B0ASPE, T ATAS + 2050, pTH AT
—10A9P0 P12 A3 — 10APg P ATAS + 30AGPg P AT A3 — SAIPG DI ATAS
+5)\4P01P12)\6)\6 + 20)\429012912)\6)\6 10)\461293117?2)‘6)‘6 10)\4p01p12)\(15)\3
—AATAIPGLPTs — BAGATAGDg D + TP ATASAGAT p1a + TGP Do AT
—Por ATASAZAS — S ATASAIAS + 4pZ AIASAZAG — p2 AIAIASpS, N
—6p51 TSNP AT + 3P ATAGATPTRAT + AP NiASASPTAT — 6P A ASPTR AT
—10pg A\JASN AT, — 5P AJASAZAT D1 + 10pG NIASAZAT DTy — 3Pt AP ASDIR AT
+3Pg ATAIAIDTLAT + 2D ASASNIAT DT, + 1205 ASAINIAT DT, — 2001 ASASAIAT DL,
+11p01)‘6)‘3)‘4)‘1p12 21p01)\6)\3)‘4)\1p12 + 171701)\6)\3)\4)\ P12 + 9p01)\6)\3)‘4)\1p12




—9PI ASAGAIAT P12 — 3P ASASAIAT P12 + 2P0 ASAZAIAT + 5p0; AIASAAT D
=3P ASAININDZ, 4 3P ASASAIAT — Bpg  ASAINIAT + 205 ASASAIAT 4 3pd ASASAIND
5P ASAGAIAT + 200 AAGAIDTAS + Dot ASASATDILAT — Dot ASAGAIAT — Do ASASATAT P12
— Do ASAGAIAT D12 — BPor ASAIAGATD12 + PG AaASAAT — Poi AGASAZ A D12 + 4Py ASASAS AT P
+p01)\4)‘6)‘4>\1p12 + 3]901)‘5)‘6)‘4)‘11712 p01)‘4)‘6)‘4>\1p12 + 3]901)‘3)‘6)‘4)‘11712 91701)‘5)‘6)‘4)‘1]912
—3Pg I MASAZATDT, — I AIASASA DTy — B ASASATAL — 8 ASASATAT — 8p3  ASASATAS
+2p01)‘6>‘6)‘4)\1p12 13}901)‘5)‘6)‘4)\11912 152901)‘4)‘6)‘4)\11912 13}901)‘3)‘6)‘4)\11912 p01)‘6)‘6)‘4)\1pl2
+H12p5 \IASASATPTy + TP AJASASATPT, — 3Pt ATASASAI D, + 3D0i AN ASPI2 AT + P AT AS A3 AT
— PR NI 1oAS - Do ASASAZ NI D1 + por ASASAZA 1o — TPE NIASAZAS 1o + 4pZ NSASAZAT
F3Pa I ASASAIAT — 63 AIASAIND — 8pd  AIAIASDI AT + P AS Ao ASDTAS — Do A Ao ASp1a NS
FPot XA A D1s — PR ATAS A A Do + 11p2 ASASNIN3 D2, — Opd ASASNINCDZ, — 5p2 ASASAI A,
—8PZ I ASASATAL — 8pa i ASASAIAL + 205 ASASAS AT D12 — 13p AJASAS A D12 — 15p3 MIAS A A p1a
132901)\3)\6)\4)\11912 p01)\6)\6)‘4)\1P12 + 11p01)\5)‘6)‘4)\12912 + 122901)\4)‘6)\4)\12912
—3p01)\3)‘6)\4)\1P12 + 3p01)\4)\4)\ pr2A] + Po1)\4)\2)\3p12)\6 P01)\4)\2)\ P12} + p01)\6)\6)\2)\1p12
Pt AASAINT 12 — Tpa AIASAIA1a + 4pd ASASAIAT + 3pa AIASAIAT — 6pi AgASASNS
—8Pa  AINGASDZ AT 4 P2 AT A ASPT A — P2 AT AASD1oAS + Dot ASASAS A 1o — 9pZ ATAS A3 Aoy
F5P AGASASAT — Bpo ASASAZAT + 10pg; ASASAZAT — 10pg ASASASAT + 4pi A A ASp1a T
—EPR A ASASAIAG + Apd NGNS NS - Apd NSASAZNTPS, + Apd ASASAZ NP1 — T ASASAZATpS,
+15p5; ASASAZAT DT, — 13pg ASASAZAT P12 + 155 AGASAZ AT D12 — 12p0; ASASAZA DT,
FTPo AIASAIAT DIy — 18P0 AJAASATPY, — 13p5i APASASAT P12 + 86 AT AS AT,
— 123 ASASAIAS Ly + 8o ASASAZ N 1o + 4P AIASAIN 1o — 2P AIASAZAE D2, + 15p2 ASASp1a A2
+ 143 AS AP 1o ATAT + 9P ASASD1a AT AL + 5p2  ASASD1a A AL 4 128 ASASp1a ATAZ — 6p2 ASASp2, NP2
—6p51 Ao N3P ATAL — 3P ALASA AP — 301 AN ASATPT: — Dot AIASASATY — P AJASAG DI AT
F2p NASASPTAT + 6P AASASPT AT — 125 AIASASDTRAT — 9D ATASASPI AT — 3P ATASASPTR AT
1293 NIASASPT A + 12p3 AIASASPTLAT + 63 ATASASPTAT + 3pg ASASP1a NI AT + poy A ASAS P AT
— P AIAASD1I2AT — BpS ASAS AN p1a — 10p5 ASASAAI DT, — P ASASASAI DY, + Bp5 ASAS A AP,
+10p0; AGASASAT D + P AASASAT P + 4P APASAS AT, + 4P AN ASATPT, — 516 AJAS A3 ATp1
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—3pa NIASAIAS — 2p8 MAASAINY — 3pd ASASNIND 4 por AASAS A 1o — DB AS AR ASpI, A2
+4p01)\6)\2)\3p12)\5 6p01)\6)\2)\3p12)\5 6p01)\6)\2)\3p12)\5 + 4p01)\6)\2)\3p12)\5
F12p8 A A AP AT+ 1208 AS Ao AS PN — Apg AS A AT AT — 125, AS Ao AP, A3
+10p MASAZATPT, + 26p5 AIASA3A D12 — 34pg AJASAZAS P12 + 42pg; AgAS A3 A pT,
F5PS AT AASDILAS + 10p5, A3 A ASDTAS + PS5 AT NSNS — 55 A2 A AT, NS
—10pS A A ASPIAS + Aph AT A AP AS — 1695, AJ A AP A8 + 24p5, A Ao AP, A0
+4p01)\5)\2)\32912)\6 162901)\5)\2)\32912)\6 8p01)\5)‘2)‘32912)‘6 181701)\5)‘2)‘32912)‘6
+6p01)\5)\2)\3p12)\6 + 18p01)\5)\2)\3p12)\6 p01)\4)\2)\§p12)\? + 4p01)\4)\2)\3p12)\1
—4p3 NN ASP1oAS — por ASASAINL — Dot ATASASAZ — por AMIASASAS — por ASASAS A
—p01AiA6A§A5 + P01)\4>\g>\§>\?p12 + p01>\i)\6)\g)\%p12 + p01)\4)\g>\§>\?p12 4]901)\4)\6)\3)\11712
—6p5 MASAIATDT, — 6P AIASASAT DT, — 4pa AIASASAIPT, + Toa AIASAS AT P12
F11PZ NIASAINE 1o + 6pg  ASAINEDE NS — 2pd ASAINSDI NS — 6pg ASAINSpZ, NS
—6p01)\ A2A§p12A6 + 2p01)\3)\4)\3p12)\5 p01)\2)\4)\gp12)\6 + p01)\2)\4)\3p12)\6
FPor NZASAIN D1y — Por ASASAINZ — por AIASAINS — Doy AIAS AT — por AIASAINS
F 203 A2 NSNS — PR AZASAANS — 22 AZNSNSp 1oAY 4 P2 NSASAZ 2N — poi ASAS O,
—pmASASAi‘AZ - p01)\g)\g)\%)\4 P01>\6)\6)\ )\5 + 92901)‘4)‘4)\31912)‘4 32901)‘4)‘4)\32912)‘4
_9]931)‘4)‘4)\217%2)\4 - P(5)1A6>\2>\gp12>\5 - 6]901)‘2)‘2)@1712)\51) + 4p01>\4)\2)\gp12)\1
—Ipa ASIASAS AT, 4 26p0, ASASASAT P2, + 2105 ASAS A A pro — 22p2 ASAS A3 T3,
—34pg AGASASAT P12 + 26p5, AGASASAT D12 — P AJASASAT + 26p0; AjASA AT
215, ASAATP12 + 2951 ATASASP12AT + 6P AJASAG P12 AT — By AJASAS 1o
— DB I AZASNINS D2, 4+ 203 A2 ASAINS D1y — 2203 NSASAS A2, + 5pd ATASAINS
55 ATAASAT — 2DG AAAGPIAT + Do ATAASP12 AT + PO ATARASDEAT — Pt ASASATA
FPor APAAATD12 — Pt AJAIAIAT — Dot AJASAZAT + 6pg, AsAZ AP AT + Dor ASAZATAT pia
—pou ASASAIAT — Por ASAZAIAT + 3pgi ASASAIAT + Do ASAZAIAT + 3P AsAS ST AT
=3P ASAININS — D2 XIS DI ND 4 3p3 MASASD 1oAY + Pl AIAZAS P2, A
4]901)‘4)‘2)‘31712)‘6 6]901)‘4)‘2)‘3]912)‘6 9p01>‘4>‘2>‘3p12>‘6 + 31’01)‘4)‘2)‘31712)‘6
+9p01)\4)\2)\32912)\6 342901)\5)\6)\3)\11712 + 421701)\6)\6)‘3)‘11712 341701)\6)\6)‘3)‘11712



FpS I ASASAINS S, — Apa ASASPZ AT AL — AP ASASD2, NIAT — Bp2 ATASASp1a AT — 4pa AT A ASp1a?
—3pa NIASASD1aAT — POt ASAIASAT 4 3P ASASAGAS — 33 ASASAIAS + pg ASASAGN
5]901)‘6)‘3)\4)\11712 5]901)\6)\3)\6)\ D12 + 71701)\6)\3)‘6)\ P12 + 31701)\6)\3)‘4)\1]912 4]901)‘3)\6)\ P12>\6

2P ASASAID12AS + 3P ASASAIDTLAT — 3 AN AS — Py ASAS AT D12 AT — 53 ASASAINSp,

TP ASAININ D10 + 3pa ASASAIN T, — o  ASASAIND?, + 3pg AJASASPI,AT — 10pS AIAS A3\ S p,

+5p AN AN DT, + Dot ASASAA 12 — Por ATASASAS + 63, AT ASASD1aAT — 3ps AT ASAS P12 AT
=3P ASAZAZPIR AT + 6P AGASATPTAT + 3P AASASPTAT — Dot AAAASDIRAT — 3P0 AJASASPIa AL
—Por Ao MNP, + 25 MATAIATPTy + P A AATAI P, — 8o ASASATATP 12 — 8P ASASATAT P

F2p ASAGAIATDT, + 1290 AAGNIAIDT, — 2001 A3 AT P, + 110G A A3 AT P

FIPR ASAIAIATDT, — 3P A ASAIAID T, — D01 Aa A3 ATAT P12 — 8P ASASNIATDI2 — 851 As A3 AT P,

FPa AIASAAS DT, + P ASASAS AL — 3p3  NIASAIAT — B AIASAIAT — 5p2 AIASASAT

FB0NATAGP P12 — B0AGATAGDG Dty — TONGATAGDG Py + A0XGATASPG DT — BOAGATAG g 12

F25 XA p12 — LOAGATAGPG pTy + 40AGATAGPG, pTs — 25AATASPG 1z + AGATAS PG Pt

—BXENENSPE ply 4 TONSASASPS 2, — TOASAOASDS 2y + BASASASDS P12 — ASporpia At ASAS

—)\meplz)\ )\ )\ - A p01p12)\4)\ )\ — A P01P12)\ >\2)\ >\4P01P12)\6)\ 60)\6>\6)\2p012912

F6AAINS D01 — IBASASAS PG, + 6ASAONSDE, + 20ASASASph, — 15AGASASpE, — ASAOASHS,

—ASNNS + Da I ASASAIAT — BASAINSpo1 12 — ASpor1pia AT ASAS + 10ASASASpo o1y — 6P ASASAS DI AT

— 208 NaAGASD19AT — 6P ASASAS D12 AT — 63 AIASAS P12 AT — 3l AT A ASD1aAT — P AIASAIASpl,
—6p MASAIAIDT, + Py AIASAIASpTy — Togi AAASAASPY, + 15pa, AIASASASpT, + 33 AIASAIASpl,
132901)\4)\6)\2)\11712 12p01)\4)\6)\2)\1p12 + 32901)\4)\6)\2)\11712 + 15p01)\4)\6)‘2)\1p12 p01)\2)\g)\§)\z11

+APg ASASAIAT — 6p3 ASASAIAT + 3pR  AIASAZIAT — 20, NIASASAT — 23 AJASAZAD
—Po ATAASATPT, — 3Pt AIASAGATDE, — 301 AIASASATPT: — 9P ASASATAL — AGpGi T A TS
—5AD0 P12 A NS 4 ASpS Do ASAS + B2 AIAS AP, AT + Ap2 AIASASDTL Y + 3p2 NI AP, AL

F 0 ASASPE AT — 9P ASASAIAT — ot ASASAY — ot ASASAS + 6p3  ASASAATpY, — pS AASAAS Pl

—IPE ATASASAODT, — 2293 NINSASASpZ, — 225, ASASASAS D2, 4 pS ASASASAT 4 2 ATAS A3 A G2,

FApy NIASASAT P + AP XA ASATDTy + BAIPG T AIAS + 205 AJASAZPIR AT + 6P AJAS A P,

ASPIAT 4 ApZ NINGASDZ AT 4 D3 ASAASP1o A — 4p2 NI ASD1oAT — 2p2 ASASASPE, NS — P2 ASAS
=33 NN D12 — 8PS NZASAIA D1g + Bpo ASASASAZ + 3pg  MIASAIAT + por ASASAS AP
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FP01 ASAGP12 AT AL + Por ASASP12ATAS 4 Dot ASASP12 AT Ad + Por ASASp1a AT A

F9P AIAASATPT, + I ATASAATDT, — Wi AiAAGAT P12 — 9P AJASAS AP

+3p5 ATASASDTOAT + 205 AT ASASD12AT — 3P AT ASAIP1aAT — 3P ASASASPIaA]

F2p2 NS AINSDE NS+ 33 ASAZA 1o AT — 2P AT AN 1o AT — 4pd MG Ao AS T, A

HAPS A AAGP12A] — POt ASAIASAT + 5P AJAIASAT + PO ATAIASAT — 5pgi AJASAS A

—10p3 AJASIAAS + 10pg; AAIAZAT — 9pg ASAS AZ AT P12 + 9pg AAASASPTL AL

+2P01)\5)\2)\3P12)\5 8p01)\5)\2)\3p12)\5 + 122901)\5)‘2)\32912)\5 + 6p01)\5)\2)\3p12)\5

—8]701)‘5)‘2)\32912)‘5 122901)‘5)‘2)\32912)‘5 182901)‘5)‘2)\32912)‘5 + 6p01)‘5)‘2)‘3p12)‘5

F18pg S AIASPI AT — 3P ASAZASD1oAT 4 Do ASAIASpIa AT + 4pd ASASAIN

+3PI AIASAIAT + APa i ATASAIAT — 3p5 ATASAIAI D12 + Pot ASASASATD12 + Por ASAS A AT Do

P01 AASAIATD12 + Dot AASASAT P12 + 2P ASASAIAT — Py AJASAIAT — 2p2 ATASASA
Po1>\3)\6)\4)\5 + 3]901)\5)\6)\4)\‘;’1712 + po1)\6)‘6>‘4>\1p12 2]901)‘5)‘6)‘4)‘11712
2p01)\3)\6)\4)\12912 317(J1)\6)‘6)\4)\ P12 + 52901)\4)\6)\4)\ P12 + 22901)\3)\4)\3]?12)\5

F1TPg  ASAININTP12 — 6P3 ASASAIAT D, 4+ Dot ASASP1a ATAZ — 3 ASASA 1A
3p01)‘4)‘6)‘4)‘1p12 + 3%1)‘4)‘6)‘5)\3 212901)‘6)‘3)‘5)\12912 + 30)‘6)\6)\21731]9?2

—App NAIASDTIAS 4 6P AIASAZAT + 22p0 AIASAZ A D2, + 11p3 A3ASAZAPp2,

+11pg NIASAIATD12 — BASDG DT ATAS + 10Ag; D12 AT AS + 20A5p5,p1a ATAS

F2RR NN, + P AN + 45 AP )



2. Jacobian determinant for Example 5.2 continued, in Section 4.3.2.

203, a(por — 1)(B — A
det(H) = =% (;\]%)\%05)1(4 I)G(pm,)\l,&,a,ﬂ)

where

G(Pm, A1, Ao, @ 6)

— ( — 6180 A1 B3NS + 17200 M1 B%AT 4 21 MIAS 3 — 19200 AIN5 3 + 22800 X2 335
—5960 1 \2AS 3% — 2404 N3 BAT 4 86401157 + 9600 NINS B + 5760 AN
—12000a* A2 B*\T + 3000 A2 3305 — 187200 M3A58° 4 98400 A3NS 51 + 36000 N3 33 \]
—1124a* A\ 32A5 — 34560, 8705 + 51840737 A3 — 34560773 \y — 72a°A1N\5 3
+64a5 X1 32T + 3848 \I B2AS + 6408 A3 32NS — 672053 B3N] + 1607\ BA]
+3a°AIAS B — 72000\ 87N + 31200\ B3NS + 194400 A\IAS3° — 8a ™ ATAS3
—48a MIBN] + 48a" X332 N5 — 1285 X2 N5 57 + 7200 A3 BA] — 98P AIAS B
+6240° A3 3305 — 5520°AINS 3% 4 88a° A3 AL 4 28808 A2 33NS 4 984a° ] 32A]
—9T92XINS 3% + 293761 3°N3 — 5184 N5 3* + 3456 A1A5 3 — 864\ \;5*
—34560° A1 BT + 984a° A1 B3NS + 4608a° NS Bt — 1344a° N3 B3N] — 4320° N3 32N\5
—1872a° A\TA5 8" + 720a° X\ B* A5 — 115200327 8°N3 + 58560a° A\IAS3° + 7440’ N BZAS
—104a° X2 BA] — 278400\ B°A\] — 19200° ATA53° — 36480a°ATA53° + 106a° AN 3
—5760a° AJA58" + 208800 ATA5 31 — 115200° X3NS5 + 864087 N5 — 230403°\)
+1440° N3N B% — 720003 A2 BT + 21888AIN5 3% — 16992A1\53° — 11520, 8°\]
—12960\1 872 + 3456 A2 31 \7 — 106080 A1 B3NS + 1027202 A3 63T + 21120323 33\)
+3840a° N3 37N — 17760 A1 32 A5 + 3600a° A N5 — 888a® AT 325 + 4608003 \5 3%\
—60480a° X2 3°\5 + 31680a° A 3NS5 — 70082 NI N33 + 2160087 A5 + 2899202\ N5 34
—31008a’ N3N B% + 292a° AT 5% — 576002 N1 %NS + 3600002 N3N 37 — 5602\]32A]
—4802 N\ BAS — 33120a° AT 3% + 864002 \3\33° — 86403°\ + 4802 \[\53
302400\ 87 N5 + 172800 AT 87 A3 + 969602 A2 34 N\] — 615602 M1 33\
—34560A3N3 37 + 4608A33° N0 + 74880235 A3 — 12672002 55\3 4 89280\, 353
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+888a2 A2 32 A5 — 115208° AT Ag — 6912002 A3 37 — T7T760A187\5 + 2505601 3°AS
—13824X235)5 + 950407237 \5 4 8640337 Ay — 9504\ 35X2 + 1152002 X335\
+80640a%\53°\F — 5760a° X3 3°\5 + 1036800 A1 37 \; — 1411200227 3°\]
+950400° A1 30§ — 6912007\ 375 — 22464\53°A7 — 23607 N7 32A5 — 129120\ )5 5°
+48aA]F*NS — 159602 AT 32 A\5 — 67202\ B3NS + 31680aA1B°N5 — 19440aAIN5 3!

—24a X3NS5 37 + 144001 A5 8% 4 11808a X2 B*A\] + 14400a\] 7 \5 — 10752a,3°\]
—42432aX{\5 3% + 48288 M\IN5 37 — 40320 A M5 3¢ + 12288a A3 3% AT — 11520000303 37
+432a X7 3% X5 — 1080 B2AS + 864a\T NS — 144000aA; 87A; — 4a’A5A]

—aSAIND 4 7200 3705 — 172800 35N\ Ao + 69120aA; 35N5 4+ 5a* ASAT — 103680aA2 B8NS
+69120a\53° N3 — 230400 NS + 17280087\ + 2a° AT + 384003 3°\5 — 5760a°3°\]
+2a° N3] — 4aPA5AT + 89280aA; 3N + 72000 375 + 37440067 \S + 57600\ 3" Ay
+201600aA3B7 A5 — 172800855 — 97920 A\ B°\) — 216a\2 32\ — 273600, 8\S
—24a X} B2N5 + 17280005 8°AF — 864X, 3 \5 + 552003°\5 + 14403°\5 — 28803\

— 14400023 B°M2 — 25920a6°\7 — 26405 A1 33\ + 6864a2A§53A§>



3. Jacobian determinant for Example 6.1.2, Section 4.3.3.2

2(po2 — 1)%a(B — Xo)(a + 1)
)‘?)‘gpgzﬂm

det(H) = G(po1; M1, A2, i, B) (2)

where

G\, Ao, «, )

= 2880A787 — 28808 A1 A2 — 14408°A3po2 + 28808 A3poz + 31200 B°A] + 7200 371
—3a5ATA5 — a"AIA] — 2400 B2\ Apos + 271202 3* M Aspo2 — 396002 3° A1 A3 pos
+3600023° X2\ 2pgs + 19200 85X \apoz — 1440023 M A2pgs — 144002 3522 Aapos
+2640° B> X X5poz — 9120° 3 M Agpoa + 720 B AT N3 poz + 960a° B A A5 pos
—7200° B2 A{A3po2 + 360 B2 A po2 — 240 B2 M Apoa — 720" B2 AT A3 pos
+720% BN Adpoa — 7204 BAN2 N3 pos 4+ 1680023 Mg + 36poa\3a® M35 + 1204 pgaa i3
+204X po2® A3 32 + 480 po2® A3 37 — 240\ poacha 3t — 49XTa* Ay 3 — 880ATa* N5 32
—1860ATa?A23% — 1632XTado3* — M*a® A5 — 1440X3po3° Ay + 864poa)3 31N
— 1203 pe2BA5a* — 24X3pga 32 A50° + 948N poa B2 A3 + 528\ B A5a — 36pga i Ao
—156pga AT ® A5 3% + 192pga ATad3 3% + 2304pga A1 87N — 424070 \36% — 156710 \33°
—24N\1Ppoaa A3 3% — 240A1po2c® A3 37 — 61M]Q° N33 — 12ppa i B M50 — 636pg AT B2 N30
—2640pga X} B A5a® — 1200pg2 3 B° Nax + 448X3 3 N5a + 277203 32 \3a?
—3600X33° Ao + 612pga A1 B2 N30 + 288pea i B Asa® — T20pea\3 37 A — 432073 3°
+448X\303 N3 6% 4 205203020333 + 3648X\3aN2BY + 28030\ 6 + 12pgeAia N 32
+24poa Aiads 3% — 180pea i B2 A5a® — T20pea )i B* Adar — 1188ppa 2 32 N5a2 + 1440013
+14400\20, 3% — 8640X3035 + 432002037 — 2880A30* 3% 4 4080\] B
+120050 0% 3% — 14405030 3% — 360 500" 3 + 1368 3710’ B
+120050 102 8% 4+ 28 X530 B — 144A50 70 5% + 10080 A 3° — 432000 a3
+10080AA 70 3% — 432X3X\30? 3% + 56A5030° 3% — 336 50Ta° 5° 4 3312)3 8 \5a
—5232\303a° 3 — 1728 32 8% + 3000A3 0102 3° + 6120A3A1a* 3% — 720075\ 02 3°
—120050 033 + 1680A3A 1 ® B + 1152X30203 6% — 3240A3 003 3° + 61207\2\2033°
—12240\73 370 — 3600707 3% + 1680A3\ 3% — 1440A50 3% — 28803° A1 \3poe
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+43208° A3 N\apoz — 288087 A1 Aapoz — 240a8° A5pos — 1440035 X3pgs + 4320087 A\3pos
+1200% 6 Npos — 156002 8% Xipos + 2880023°A3pgy 4 240002 3 AIN, — 1200° 81N\ pos
+3600°3° \ypog + 6960 B*ATAS + 7200 B* AT Ag + 16a° B2AINS + 288a° B2 A\I\;
—11a®BAIN; + 480832 A3 + 3a” BATAS + 2010 A5 + 2880A7 3% Ny — 864M3pga i3
—2304XA3A33° + 864X N3 3% + 864N} B — 864X N1 B — 864A3pga 3T — 216071 3° \oax
—5112A13*A3a% — 2016773 \3a — 21963° \o\ia® — 7232 MM Ta? + 18082 A5 T
+3600° 85 M Adpoz + 960 BN A3 pog + 30 AINE — 480 posBlad N, — 36A5A2a° 32
+144pa B A5ATa? + 408X3a N3 5% — 216ppaAZa)s3° — 64X3a? N5 37 — 64X3a A3
—24peeAia A58 — 408aFPATAS — 5602 B2 AIAS + 940’ BATAS + 240 BTN,

— 24P M3 52 + 24poa N3aXs 3% + 4320,3* M Mapoz + 216003° M Xapos
+576003° M2 Xapo2 — 432003" A1 Aapgz + 8ASAZaC B — 24A3N3a° 32
—432003° A1 Aapo2 + 2402 BATAGpo2 + 1083 20 3°



4. Jacobian determinant for Example 5.1 continued, Section 4.3.1

288])31(1 — pOl)
PPN
FAIAS — AIA3 H 9AIAIAZ — 9NT NS + 3A3AT — 3AIANs

F3AAIAS + 4A A5 — I ASAS + 335 — A5A3)

det(H) (A2 — A3) (AL — A3) (AL — A2)(—3AA3Ns + 33N N2

5. Jacobian determinant for Example 6.1.1, Section 4.3.3.1.
288(1 — po2)? (A3 — A1)
ASASATPD,
F2X507 — 3poa Ao A2 + Do A2 AzAT — ANZAA2 + TAZAAT — 3AIN?

+2P02 N3N — 2P02 Ao M A + Az A ASpos — 2A5M A
SEAAAL P A2AAZ + TAZAZA, — 3A3A2 4 2A§A§))

det(H)

. (2]902)\?;’)\? — 2)\3)\?)\2])02 — 2)\3)\?)\2
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6. The following is the Matlab code of simdat.m function
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28

29

30

31

32

33

34

function datv=simdat(MGF,n)
%lInput: 1) MGF ——The MGF of total waiting time
% 2) n The sample size

%Output: datv ——total waiting time data

% Derive the PDF by the inverse Laplace transform
syms st Xx

M=subs(MGF,s, —s);

f=ilaplace(M,s,t);

% Compute the CDF

matlabFunction(f, file' , 'pdfs' )
F=int(f,t,0,x);
matlabFunction(F, file' , 'cdfs' )

% Simulate dat2 from Uniform(0,1)
dat2=rand(1,n);

initv=2;
sn=length(dat2);
tol=10" —6;

%Solve F(x)=dat2 for x

options=optimset( ‘TolFun' tol, ‘'Display’ , 'off'

sdat=zeros(1,sn);
infov=zeros(1,sn);
fvalv=zeros(1,sn);
for i=1:sn
[est, fval, info]=fsolve(@(x) cdfu(x,dat2(i)),initv,op
sdat(i)=est;
fvalv(i)=fval;
infov(i)=info;
end
datv=sdat;
end

tions);

238




7. The following is the Matlab code of momeq.m function
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36

function fv=momeq(IM,pad,theta,datm)

%Input

%1)IM Incidence matrix

%2)pad The type of internode distribution, 1 for ...
Exponential, 2 for Gamma

%3)theta ——The set of parameters

%4)datm ——The total waiting time sample data

%Output

%fv——The value of R function defined in equation 6.1

% Derive the transition matrix
syms s

G=CIM(IM);
y=[zeros(1,length(G) -1),s];
x=[G;y];

x( end—1,))=[];

dim=size(IM);

nz=find(x== —1);

pv=theta(1:dim(2));

indx=dim(2);

for i=1:dim(2)
p=pv(i);
pnum=pad(i);
if  pnum==1

lambda=theta(indx+1);
x(nz(i))=p  *lambda/(lambda -s);
indx=indx+1;

end

if  pnum==2
alpha=theta(indx+1);
beta=theta(indx+2);
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37

38

39

40

41

42

43

44

46

47

48

49

58

59

60

61

62

x(nz(i))=p  *alpha/(beta —s);
indx=indx+2;
end

end

x( end,end)=0;

%compute the MGF
K=MV(x,theta);
MGF=K.MGF;

%Determine the moment from the coefficient of taylor series
MGF.

np=Ilength(theta);

f=MGF;

T=taylor(f,np+1);

TC=sym2poly(T);

c=factorial(1:np);

c2=sort(c, 'descend' );
PM=c2.*TC(1:np);
meqg=sort(PM, ‘'ascend' );

%Construct the R function
fv=sum((meq —datm).”2);
end

of...
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