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Abstract

Flowgraph models are directed graph models for describing the dy-

namic changes in a stochastic process. They are one class of multi-

state models that are applied to analyse time-to-event data. The main

motivation of the flowgraph models is to determine the distribution of

the total waiting times until an event of interest occurs in a stochastic

process that progresses through various states. This thesis applies the

methodology of flowgraph models to the study of Markov and Semi-

Markov processes.

The underlying approach of the thesis is that the access to the mo-

ment generating function (MGF) and cumulant generating function

(CGF), provided by Mason’s rule enables us to use the Method of

Moments (MM) which depends on moments and cumulant. We give

a new derivation of the Mason’s rule to compute the total waiting

MGF based on the internode transition matrix of a flowgraph. Next,

we demonstrate methods to determine and approximate the distribu-

tion of total waiting time based on the inversion of the MGF, including

an alternative approach using the Padé approximation of the MGF,

which always yields a closed form density.

For parameter estimation, we extend the Expectation-Maximization

(EM) algorithm to estimate parameters in the mixture of negative

weight exponential density. Our second contribution is to develop a

bias correction method in the Method of Moments (BCMM). By in-

vestigating methods for tail area approximation, we propose a new

way to estimate the total waiting time density function and survival



function by showing how computation can be simplified when the tra-

ditional saddlepoint approximation is constructed based on the Padé

approximation of the MGF. A bias correction method for this Padé-

type saddlepoint approximation is also presented. For application, we

consolidate the Method of Moments and develop our own MATLAB

package called MMF to provide an interactive tool to find the total

waiting time MGF, simulate flowgraph data, and incorporate the MM

into large flowgraph models.



Glossary of acronyms

BCMM Bias corrected method of moments

CDF Cumulative distribution function

CGF Cumulant generating function

EM Expectation and Maximisation

MGF Moment generating function

MM Method of moments

MFM Methodology of Flowgraph Models

MLE Maximum likelihood estimator

MMF Method of moments in Flowgraph

MSE Mean square error

ME Maximum entropy

PDF Probability density function

SP Saddlepoint approximation

Notation
pij The probability of transition from node i to node j.

mij(s) The MGF of waiting time in node i before arriving at adjacent node j.

qij(s) The transmittance for the branch connects node i to node j: pijmij(s).

Q The branch transmittance matrix of non-closed flowgraph in Chapter 2.

Q̃ The branch transmittance matrix of closed flowgraph in Chapter 2.

A The coefficient matrix of non-closed flowgraph in Chapter 2: A = I − QT .

Ã The coefficient matrix of closed flowgraph in Chapter 2: Ã = I − Q̃T .

M1n(s) The MGF of total waiting time between input node 1 and output node n.

S(t) The survival function S(t) = P (T > t).
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3.2.2 Padé approximation . . . . . . . . . . . . . . . . . . . . . 56

3.2.2.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 The Saddlepoint approximation: a discussion . . . . . . . . 60

3.2.3.1 Approximation error of the Saddlepoint approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.4 The Lugannani-Rice formula for survival function approx-

imation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Comparison of methods . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Example 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 Example 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Parameter estimation 93

4.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . 94

4.2 The Expectation-Maximisation algorithm . . . . . . . . . . . . . . 95

4.2.1 Case 1: Mixture with positive weights . . . . . . . . . . . 98

4.2.1.1 Example 5.1 . . . . . . . . . . . . . . . . . . . . 104

4.2.1.2 Example 5.2 . . . . . . . . . . . . . . . . . . . . . 108

4.2.2 Case 2: Mixture with negative weights . . . . . . . . . . . 109

4.2.2.1 Example 1.3 continued . . . . . . . . . . . . . . . 114

4.2.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . 117

4.3 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.1 Example 5.1 continued . . . . . . . . . . . . . . . . . . . . 121

4.3.2 Example 5.2 continued . . . . . . . . . . . . . . . . . . . . 123

4.3.3 Feedback loop flowgraph . . . . . . . . . . . . . . . . . . . 126

4.3.3.1 Example 6.1.1: Exponential waiting time case . . 126

4.3.3.2 Example 6.1.2: Non-exponential waiting time case 129

4.3.4 Example 1.4 continued . . . . . . . . . . . . . . . . . . . . 133

4.3.4.1 Example 1.4.1: Exponential waiting time case . . 133

4.3.4.2 Example 1.4.2: Non-exponential waiting time case 135

vi



CONTENTS

4.3.5 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Bias correction in the Method of Moments . . . . . . . . . . . . . 138

4.5 Comparison of MLE and MM . . . . . . . . . . . . . . . . . . . . 148

4.5.1 Example 7: Series network with exponential waiting time . 148

4.5.2 Computational time . . . . . . . . . . . . . . . . . . . . . 154

5 Tail area probability approximations 155

5.1 Tail area approximation by exponential function . . . . . . . . . . 156

5.1.1 Example 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.1.2 Example 1.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 167
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Chapter 1

Introduction

Multistate models are used to describe time-to-event data that result from a

stochastic process. They model stochastic processes that progress through vari-

ous states, and they are commonly applied to describe the events (i.e. the transi-

tions between states) for an individual, which only occupies one of a few possible

states at any time. Here, the analysis focuses on modeling the total waiting time

between two states of interest for a single individual. Multistate models have a

wide application in demography, economics, operations research, sociology, in-

surance and finance. The entire area of queuing theory is based on multistate

models, starting with Johanssen (1907) as cited, for example, by Kendall (1951).

The work of Fix and Neyman (1951) is one of the earliest uses of a multistate

stochastic model in medical statistics. Hougaard (1999) presents a comprehensive

review paper of the multistate models, and Hougaard (2000) gives more detail

on the application of multistate models to handle multivariate survival data. An

introduction to event history analysis via multistate models is given by Andersen

and Keiding (2002). For an application to the statistical modelling and analysis

of network data, see Kelly, Zachary and Ziedins (1996).

In finance and insurance, the Markov multistate models first appeared in

Hoem (1969), and the first applications of semi-Markov multistate models to ac-

tuarial problems can be found in Hoem (1972). Pitacco (1995) illustrates how the

multistate Markov and semi-Markov models can be used for the actuarial model-

ing of health insurance policies. The monograph of Haberman and Pitacco (1999)
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Introduction

gives a detail review of the application of multistate models in disability insurance

and long-term care insurance. More recently, Sen (2008) proposes a multi-state

Vasicek model for credit risk analysis, where he shows that the correlation be-

tween default and recovery can be modelled efficiently by allowing multiple loss

states in the Vasicek framework. Norberg (2008) discusses the methodology of

modern life insurance mathematics in the framework of a multistate model for

life-history analysis. Dickson, Waters and Hardy (2009) give a modern perspec-

tive on life contingencies in terms of the multistate model. Spierdijk and Koning

(2011) apply a multistate mixed proportional hazards approach to estimate a

sufficient loss reserve for insurance companies.

In a stochastic system context, a flowgraph consists of nodes representing the

outcomes or system states, where nodes are connected by directed line segments

called branches that give the direction of state transition. Each branch is assigned

a transition probability of taking this branch and waiting time distribution. The

flowgraph theory was originally developed in Mason (1953, 1956) to solve sys-

tems of linear equations for finding the transfer function of signal flowgraph in

electrical engineering. The work of Mason is later adapted for the computation

of MGF by Sittler (1956), Huggins (1957), Lorens (1964), Pritsker and Happ

(1966), Whitehouse (1970), and Butler (2000). A comprehensive presentations of

the flowgraph model and its application to the analysis of time-to-event data is

given in the book of Huzurbazar (2005).

Stochastic flowgraph models can be considered as a tool to analyse stochastic

process via a network approach. For example, in medical survival analysis, the

development of patient’s illness can be considered as a process that progresses

through several stages, where stage 1 is labeled as the diagnosis of disease, stage 2

is the advanced stage of the disease, and stage 3 represents the event of patient’s

death. A parallel flowgraph consists of 3 nodes can be applied for modeling the

survival time of patients, who can either die directly from other causes (i.e. move

directly from stage 1 to stage 3) or die from the advanced stage of disease (i.e.

move to stage 2 before reaching stage 3). In an engineering reliability problem

of 2 pump systems, the stages of the system begin with the functioning state 0

2



when both pumps are working properly, then proceed to the partially functioning

state 1 after one pump failed and eventually move to the maintenance states 2

when both pumps failed. In this case, a series flowgraph can be applied to model

the distribution of total waiting time from functioning state to maintenance state.

0

Input

1 2 3

Output
p01m01(s) p12m12(s)

p10m10(s)

p12m12(s)

p20m20(s)

p23m23(s)

Figure 1.1: Flowgraph model for modelling the total waiting time until the first
occurrence of 3 consecutive heads. The pij is the transition probability and mij(s)
is the MGF of waiting time distribution between node i and node j.

The objective of flowgarph analysis is to determine the distribution of total

waiting time between two nodes of interest based on the inversion of MGF. This

is the starting point for computing the probability density function (PDF), cumu-

lative distribution function (CDF), survival and hazard function of total waiting

time. For illustration, let us consider a simple coin tossing experiment, where we

are interested in the total waiting time to obtain three consecutive heads. Our

system resulting from a sequence of independent coin tosses and the state of the

system is the current number of consecutive heads. Figure 1.1 is the flowgraph for

describing the outcomes of a coin tosses experiment. It starts from the input node

0 with no head and terminates in the output node 3 if we obtained 3 consecutive

heads. Each branch is labeled with a quantity called the branch transmittance,

which is defined as a product of the probability of taking that branch and the

MGF of the waiting time. For example, the branch that connects node 1 to node 2

is assigned with branch transmittance q12(s) = p12m12(s), where p12 is the proba-

bility of transition from node 1 to node 2, and m12(s) is the MGF of waiting time

in node 1 before the state of system moves to node 2 (i.e. we obtain 2 consecutive

heads). The structure of the flowgraph and branch transmittances summarise all

information about the potential outcomes of this system.

3



Introduction

Structure of the thesis

Chapter 2 begins with a brief introduction to the flowgraph model, where three

basic structures: series, parallel and feedback loop are presented. The Flowgraph

model can be applied to describe any finite state stochastic network that is a

Markovian system or Semi-Markov process by including non-exponential dis-

tributed waiting times between states. As the MGF plays an important role in

the total waiting time density estimation, the use of Mason’s rule, which allow us

to compute the algebraic expression for the moment generating function of the

waiting time between two nodes of interest given the internode distributions, is

illustrated with examples. Our main contribution in this chapter is to propose a

new derivation of Mason’s rule based on matrix algebra, and the advantage of

our new formula is that we can now obtain the total waiting time MGF without

counting the paths and feedback loops. This has significantly improved the prac-

ticability of Mason’s rule for calculating MGF in large flowgraph models. We also

demonstrate the effectiveness of our formula to compute the MGF in a compli-

cated flowgarph with combination of series, parallel and feedback loop structures.

Chapter 3 presents three different methods for inverting the MGF to obtain

the PDF of total waiting time random variable. In brief, the Maximum Entropy

method provides density estimation subject to the moments constraints, whereas

the saddlepoint approximation is a numerical method to invert MGF by the idea

of integral approximation. While the above two well-known methods work with

the original given MGF, the Padé approximation approach estimates PDF based

on a rational function approximation of MGF in which the direct inversion can be

applied to obtain density function. Since the application of Padé approximation

is much less studied in the context of flowgraph model, our main contribution in

this chapter is to promote the use of Padé approximation to estimate the distri-

bution of total waiting time between two states of interests. The implementation

of each method is demonstrated in detail with examples of both exponential and

non-exponential internode waiting time case, and the comparison of these meth-

ods is also given in the last section of this chapter.

4



Given a sample of total waiting times between two nodes of interest in a flow-

graph, Chapter 4 compares the Maximum Likelihood method with the Method of

Moment (MM) for estimating parameters in the total waiting time distribution.

We start by demonstrating the application of EM algorithm for maximum likeli-

hood estimation in the traditional mixture density (i.e. all weight are positive).

As the total waiting time density is usually in the form of mixture exponential

density with some negative weights, our contribution is to introduce a new sys-

tematic procedure to convert the mixture density with possible negative weights

to a mixture density with positive weights, which makes the computation of max-

imum likelihood estimator (MLE) relatively simple using the EM algorithm.

On the other hand, we develop a easier-to-implement MGF approach for

computing the bias of the MM estimator to order O(n−1), where n is the size of

sample data, and propose a bias correction method in MM. Although the MM is

typically not as efficient as ML method in parameter estimation, it is faster and

easier to implement because it does not require inverting the MGF to obtain the

PDF, and hence the likelihood function. This feature is particularly useful in a big

flowgraph with a complicated structure that contains large number of parameters.

Chapter 5 is devoted to the tail area approximations for the PDF and sur-

vival function of total waiting time random variable. We first review the idea of

approximating tail area probabilities of PDF by an exponential function in the

form of ce−at, and propose a simple method to determine the asymptotic constant

c and rate a based on the MGF of total waiting time. We proceed with the error

analysis for the calculation of exponential function using the Padé approximation

of MGF, and then derive a closed form expression for modeling the behavior of

the error in estimating tail area probabilities that obtained by the Padé approx-

imation of MGF.

Moreover, the Lugannani-Rice saddlepoint approximation for survival func-

tion is also presented. As saddlepoint approximation usually involves high com-

putational cost if the underlying MGF is complicated, the major contribution we

present here is to develop a Padé-type saddlepoint approximation, using the Padé

5
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approximation of MGF as baseline function, to simplify the calculation in sad-

dlepoint approximation. A bias correction method for the Padé-type saddlepoint

approximation for tail probabilities is then proposed. Numerical examples for the

estimation of tail area probabilities of both PDF and survival function are also

illustrated to demonstrate the methods.

Chapter 6 introduces our own Matlab based computer package, the Method

of Moment in Flowgraph (MMF), for computing the Method of Moments estima-

tor for parameters in any user-defined flowgraph model. Our contribution is to

develop a Matlab package that provides a convenient way to derive the MGF of

total waiting time between two nodes of interest, simulate the flowgraph data, and

calculate the MM estimators. This package is particularly useful to researchers

and practitioners interested in applying the methodology of flowgraph to real life

problems. A detailed demonstration of how to use our package is presented with

an example.
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Chapter 2

Mason’s rule

2.1 Review of the Flowgraph models

2.1.1 Introduction

Flowgraph analysis involves flowgraph algebra, which manipulates transition prob-

abilities and the moment generating function (MGF) of internode waiting time

to compute the MGF of the total waiting time and obtain the distribution of

total waiting time based on the inversion of its MGF. The first step in flow-

graph analysis is to identify the input node and output node from the set of

nodes that represent various states of a system. The terms “input” and “out-

put” are, here, used quite generally; the interpretation depends on the context.

For example, we may consider the diagnosis of a diseases as input and death as

output in medicine survival analysis. For an engineering reliability problem, the

fully functioning stage of a power generating system is usually labeled as input,

and the occurrence of fully failed stage is labeled as output. Secondly, we need

to derive the MGF of total waiting time between the input node and output node.

This chapter will first illustrate a probabilistic approach to solve three types

of flowgraph model, namely, series, parallel and single feedback loop. Next, we

discuss the property of flowgraph and illustrate Mason’s rule in determining the

MGF between two nodes of interest. The last part of this chapter will present our

new derivation of the Mason’s rule based on the matrix algebra.

7



Mason’s rule

Definition 1. For a random variable X with density function fX(x), the moment

generating function (MGF) of X, MX(s), is for all s, such that

MX(s) = EX [esX ] =

∫ +∞

−∞
esxfX(x)dx

is convergent.

Definition 2. A transmittance for the branch connecting node i to node j is de-

noted by qij(s), such that qij(s) = pijmij(s), and i 6= j, where pij is the probability

of transition from node i to node j, and mij(s) is the MGF of the waiting time

distribution in node i before reaching node j.

2.1.2 A probabilistic approach to compute the MGF

2.1.2.1 MGF for the series flowgraph

Figure 2.1 is a series flowgraph describes, for example, the status of a power

generating system with two pumps. Node 0 is the initial stage where the system

is working properly with no pumps failed, node 1 indicates the event of one pump

failed, node 2 represents the occurrence of two pump failed and the system breaks

down. Let m01(s) be the MGF of passage time T01 from node 0 to node 1 (i.e.

the waiting time for the occurrence of one pump fails), and m12(s) be the MGF

of random variable T12, the waiting time in node 1 before reaching node 2. The

transition probability from 0 → 1 and 1 → 2 are all equal 1. As we are interested

in the total waiting time until two pumps fail, node 0 is the input and node 2 is

the output, then the total waiting time T02 for the power generating system to

break down (i.e. node 0 to node 2) is the sum of two independent variables T01

and T12. The MGF of T02 is, therefore, m01(s)m12(s).

0

Input

1
p01m01(s)

2

Output

p12m12(s)

Figure 2.1: Series flowgraph model for a power generating system
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2.1 Review of the Flowgraph models

Now, suppose we have a series flowgraph model with n nodes, let ti,i+1 be

the waiting time of a particle in the node i before it gets to node i + 1, i =

1 . . . n − 1, then the overall waiting time from the first node to the n-th node

is T =
∑n−1

i=1 ti,i+1. Since the MGF of the sum of independent random variables

is just the product of individual MGF, the MGF of the overall waiting time

distribution T is

MT (s) =
n−1∏

i=1

mi,i+1(s)

where mi,i+1(s) is the MGF of ti,i+1. The result shows that the MGF of total

waiting time in a series flowgraph is a product of the MGFs of internode transition

time.

2.1.2.2 MGF for the parallel flowgraph

Figure 2.2 is a parallel flowgraph model for the progression of cancer patients.

Node 0 represents the initial diagnosis of cancer, node 1 is the advanced state of

cancer, and node 2 is the event of death. Patients could reach node 1 with proba-

bility p01 or die with probability p02 = 1− p01. Once the patient is in node 1, the

transition to node 2 is certain and p12 = 1. Since a path is defined as a sequence

of nodes from input to output that does not pass through any intermediate nodes

more than once, then there are two paths from input node 0 to output node 2 in

Figure 2.2. (see Table 2.1).

0

Input

1

2

Output

p01m01(s)

p02m02(s)

p12m12(s)

Figure 2.2: Parallel flowgraph model for cancer progression
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Mason’s rule

Table 2.1: Paths for the flowgraph of cancer progression

Path j Path probability Pj Path MGF MXj
(s)

1 : 0 → 2 p02 m02(s)
2 : 0 → 1 → 2 p01p12 m01(s)m12(s)

Suppose we are interested in the total waiting time to the death of patient

due to any cause (e.g. either dying with or without advanced state of cancer),

let X1, X2 be the waiting time to reach node 2 by taking path 1 and path 2

respectively, and let Y be the total waiting time for the occurrence of death. If

we assume distribution for X1 and X2, and the probability of taking path 1 and

path 2 is P1 and P2 separately.

P (Y < y) = P (X1 ≤ y|j = 1)P1 + P (X2 ≤ y|j = 2)P2

= P (X1 ≤ y|0 → 2)P1 + P (X2 ≤ y|0 → 1 → 2)P2

Then

fY (y) = P (X1 = y|j = 1)P1 + P (X2 = y|j = 2)P2

= fX1(y)P1 + fX2(y)P2

The MGF of the total waiting time from node 0 to node 2 is

MY (s) = EY (esY )

=

∫ ∞

0

esy (fX1(y)P1 + fX2(y)P2) dy

= P1MX1(s) + P2MX2(s)

= p02m02(s) + p01p12m01(s)m12(s)

Since p01 + p02 = 1 and p12 = 1, then MY (y) is a mixture of two different paths

MGF: with probability p02 it is m02(s), and with probability p01 it is m01(s)m12(s).

10



2.1 Review of the Flowgraph models

Given k possible paths between input node and output node in a parallel

flowgraph, the total waiting time is the passage time from input to output, and

it depends on the paths that we chose to travel to the output node. Let Tj be

the random variable that represents the waiting time to reach output node by

selecting path j with probability Pj, then the PDF of the total waiting time T

between input and output is

fT (t) =

k∑

j=1

P (Tj = t | j)Pj

where k is the total number of different paths between input node and output

node. The MGF of total waiting time distribution can be expression as

MT (s) = E(esT )

=

∫ ∞

0

estfT (t)dt

=

∫ ∞

0

est
k∑

j=1

P (Tj = t | j)Pjdt

=

∫ ∞

0

est {fT1(t)P1 + fT2(t)P2 + . . . + fTk
(t)Pk} dt

= P1MT1(s) + P2MT2(s) + . . . + PkMTk
(s)

=

k∑

j=1

PjMTj
(s)

where MTj
(s) is the MGF of total waiting time to reach output node by taking

path j with probability Pj, and
∑k

j=1 Pj = 1. Hence the MGF of the overall

waiting time in a parallel flowgraph is a finite mixture MGFs that results from

taking each path between input node and output node.
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2.1.2.3 MGF for the flowgraph with feedback loops

0

Input

1

2

Output

p01m01(s)

p02m02(s)

p10m10(s)

Figure 2.3: Single feedback loop flowgraph model

Figure 2.3 is a simple 3 nodes flowgraph that contains only one feedback

loop. Assume a particle starts from input node 0 can either directly move to

output node 2 or pass through the feedback loops 0 → 1 → 0 before transition to

output node 2. let p02 be the probability of transition from node 0 to node 2, and

p02 > 0 (i.e the particle will eventually get to node 2), then the probability of

the particle taking the feedback loop and return to node 0 (i.e. path 0 → 1 → 0)

is p01 = 1 − p02. Each transition is considered as a Bernoulli trials with the

probability of “success” p02 (i.e. path 0 → 2). Let N be the the number of times

a particle takes the feedback loop before it reaches output node 2, and N ∼
Geometric (p02), then the probability of first success transition to node 1 after k

times return to node 0 is

P (N = k) = (1 − p02)
kp02 for k = 0, 1, 2 . . . (2.1)

Let U be the total time of a particle spent in the path 0 → 1 → 0 and it has

density function fU(u) and MGF MU(s) = m00(s). Since this total time is a sum

of independent waiting time in 0 → 1 and 1 → 0. Therefore, the distribution of

U is a convolution of the distributions of the independent waiting time T01 and

T10, and we have

MU(s) = m00(s) = m01(s)m10(s)
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2.1 Review of the Flowgraph models

Let V be the time of first transition from node 0 to node 2, it is independent of

U and has probability density function fV (v) and MGF MV (s) = m02(s). Since

N is the total number of times that a particle takes the feedback loop before it

gets to output node 2, the total waiting time W from node 0 to node 2 is then

the sum of time for particle to take the feedback loop,
∑N

i=1 Ui, and the time in

the last transition from node 0 to node 2, V . Therefore, the distribution of W is

the convolution of N distributions fU(u) and a single distribution fV (v).

W =

N∑

i=1

Ui + V

The density of W is

fW (w) =

∞∑

k=0

fW (w|N = k)p(N = k)

The MGF of W is

MW (s) = E(esW )

=

∫ ∞

0

eswfW (w)dw

=

∞∑

k=0

∫ ∞

0

eswfW (w|N = k)p(N = k)dw

=
∞∑

k=0

p(N = k)

∫ ∞

0

eswfW (w|N = k)dw

=
∞∑

k=0

P (N = k)MW |N=k(s) (2.2)

where integration and summation can be interchanged as a consequence of the

monotone convergence theorem (Theorem 16.6, Billingsley (1986)). Since V is

independent of U and Ui is i.i.d with MGF MU (s), the MGF of W |N = k is

MW |N=k(s) = (MU (s))k MV (s) (2.3)
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Mason’s rule

By substituting equation 2.3 and 2.1 into 2.2, we have

MW (s) =
∞∑

k=0

(1 − p02)
kp02

(
MU (s)

)k

MV (s)

= p02MV (s)
∞∑

k=0

{
(1 − p02)MU(s)

}k

Since MU(s) ≈ 1 for s near 0 and 1− p02 < 1, then |(1− p02)MU(s)| < 1 holds in

an open neighborhood of s = 0. Therefore the MGF of W is

MW (s) =
p02MV (s)

1 − (1 − p02)MU(s)

=
p02m02(s)

1 − (1 − p02)m00(s)

=
p02m02(s)

1 − p01m01(s)m10(s)

The above examples contain some of the main ideas. In particular we see that

difference between the structure of the input-output MGF for the directed case

and the case with feedback loops.

2.2 A flowgraph approach to compute the MGF

A flowgraph can be considered as a directed graph obtained by assigning trans-

mittance for each edge. That is, a directed graph in which every edge is associated

with a function which is a product of the transition probability and the MGF of

internode waiting time distribution. In general, Mason’s rule is a procedure for

determining the MGF of the waiting time distribution between any two nodes

of interest in flowgraph, provided that there is at least one path between those

two nodes. The first step in applying Mason’s rule is to identify all the distinct

paths from input to output as well as the loops involved in those paths, then we

need to compute the corresponding transmittance (i.e. a product of transition

probability and MGF) and substitute them accordingly to the Mason’s formula.

14



2.2 A flowgraph approach to compute the MGF

0

Input

1 2 3 4 5

Output

a b

d

c

f

e

h

g i

j

Figure 2.4: An illustrated flowgraph example

Definition 3. A directed graph is defined as G = (V, E) with

1. a set V = (1, ..., n), whose elements are called nodes.

2. a set E of nodes in V called directed edges.

Definition 4. A first-order loop is any path that returns to the starting node of

the feedback loop without passing through any node more than once.

Definition 5. A j-th order loop consists of j non-touching first-order loops. (i.e.

the loops do not share a common node). The transmittance of a j-th order loop

is the product of the transmittance of j first-order loops it contains.

As the Manson’s rule involves identifying paths and feedback loops based on

the above definitions, in order to avoid ambiguity, we now provide a schematic

representation of Definition 3, 4, and 5 in Figure 2.4. By definition 3, the flowgraph

in Figure 2.4 can be defined by G = (V, E) such that

1. The set of nodes, V = {0, 1, 2, 3, 4, 5}.

2. The set of directed edges, E = {a, b, c, d, e, f, g, h, i, j}.

According to Definition 4, we have four first-order loops 1 → 2 → 1, 2 → 3 → 2,

3 → 4 → 3 and 0 → 1 → 2 → 0. However, the loop 1 → 2 → 3 → 2 → 1

is not a correct first-order loop because the path that returns to node 1 has

passed through node 2 twice. Furthermore, by Definition 5, the feedback loops

1 → 2 → 1 and 0 → 1 → 2 → 0 do not form a second order loop because they

share a common node at node 2. In fact, the only second order loop in Figure 2.4

is the pair of loops 1 → 2 → 1 and 3 → 4 → 3.
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Mason’s rule

The Mason’s rule was originally derived by S.J. Mason for finding the transfer

function in electrical engineering (see Mason (1953, 1956)). The transfer functions

are commonly used within the fields of signal processing, communication theory,

and control theory. It is usually a mathematical representation, in terms of MGF,

of the relation between the input and output of a linear time-invariant system.

Butler (1997a) gives a modernised version of proof for Mason’s rule based on per-

mutation theory and linear algebra, and introduces an cofactor formula based on

the simplification of matrix systems procedure that is discussed by Pyke (1961)

and Howard (1964, 1971).

Theorem 1. The general form of Mason’s rule gives the MGF of the total waiting

time from input node to output node as

M(s) =

∑
k Pk(s)[1 +

∑
j(−1)jLk

j (s)]

1 +
∑

j(−1)jLj(s)

where

1. Pk(s) is the transmittance for the k-th path from input node to output

node.

2. Lj(s) the sum of the transmittances over the j-th order loops.

3. Lk
j (s) is the sum of the transmittances over j-th order loops sharing no

common nodes with the k-th path (i.e. loops not touching the k-th path).

2.2.1 Example 1

Figure 2.5 is a flowgraph model with a combination of series, parallel, and loop

structures. It describes a group of patients within a three states reversible illness-

death system. Node 0 is the healthy state, where patients can transition to dis-

eased state in node 1 with probability p01, or die with probability p02 = 1 − p01.

The waiting time distribution for the transition from node 0 to node 1 has MGF,

m01(s). For a patient in node 1, the next possible transition is either to node 0

with probability p10 or to node 2 with probability p12 = 1− p10, and the MGF of
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2.2 A flowgraph approach to compute the MGF

each waiting times are m10(s) and m12(s) respectively. Our interest is to compute,

M02(s), the MGF of total waiting time distribution from input node 0 to output

node 2. In this flowgraph, there are two paths and one first order loop from input

node 0 to output node 2.

0

Input

1

2

Output

p10m10(s)

p02m02(s)

p01m01(s)
p12m12(s)

Figure 2.5: Flowgraph model for a reversible illness-death system

1. Path 1: 0 → 1 → 2, P1(s) = q01(s)q12(s)

2. Path 2 : 0 → 2, P2(s) = q02(s)

3. First order loop 0 → 1 → 0, L1(s) = q01(s)q10(s).

where qij(s) = pijmij(s) is the branch transmittance defined in Definition 2, pij

is the transition probability from node i to node j, and mij(s) is the MGF of the

waiting time between node i and node j.

By Mason’s rule in Theorem 1, the MGF of the total waiting time from node

0 to node 2 is

M02(s) =
q02(s) + q01(s)q12(s)

1 − q01(s)q10(s)
(2.4)

=
p02m02(s) + p01p12m01(s)m12(s)

1 − p01p10m01(s)m10(s)
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2.2.2 Example 2

Consider a more complicated flowgraph given in Figure 2.6.

0

Input

1

2

3

4

Output

p10m10(s)

p02m02(s)

p01m01(s)
p12m12(s)

p14m14(s)

p24m24(s)

p23m23(s)

p32m32(s)

p34m34(s)

Figure 2.6: A complex flowgraph

18



2.2 A flowgraph approach to compute the MGF

Table 2.2 presents a list of paths, first and second order loops between input

node 0 and output node 4.

Table 2.2: Summary of Paths and loops for the flowgraph

Paths Transmittance

1 0 → 2 → 4 q02(s)q24(s)
2 0 → 1 → 4 q01(s)q14(s)
3 0 → 1 → 2 → 4 q01(s)q12(s)q24(s)
4 0 → 2 → 3 → 4 q02(s)q23(s)q34(s)
5 0 → 1 → 2 → 3 → 4 q01(s)q12(s)q23(s)q34(s)

First order loops: 0 → 1 → 0 q01(s)q10(s)
2 → 3 → 2 q23(s)q32(s)

Second order loops: 0 → 1 → 0 and 2 → 3 → 2 q01(s)q10(s)q23(s)q32(s)
Loop not touch path 2: 2 → 3 → 2 q23(s)q32(s)

By Mason’s rule, the MGF of total waiting time between node 0 and node 4

is

M04(s) =
P1(s) + P2(s) [1 − L2

1(s)] + P3(s) + P4(s) + P5(s)

1 − L1(s) + L2(s)

where

P1(s) = q02(s)q24(s)

P2(s) = q01(s)q14(s)

P3(s) = q01(s)q12(s)q24(s)

P4(s) = q02(s)q23(s)q34(s)

P5(s) = q01(s)q12(s)q23(s)q34(s)

L2
1(s) = q23(s)q32(s)

L1(s) = q01(s)q10(s) + q23(s)q32(s)

L2(s) = q01(s)q10(s)q23(s)q32(s)

and qij(s) = pijmij(s) is the branch transmittance between node i and node j
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2.3 A new derivation of the Mason’s rule

Despite the fact that Mason’s rule only requires identifying all the paths and

feedback loops to compute the total waiting time MGF, Phillips (1996) points

out that Mason’s rule must be used with extreme care, it become increasingly

difficulty to identify the number of paths and loops correctly between input and

output in a large complicated flowgraph, because feedback loops can easily be

overlooked. In general, it can be complicated to implement the Mason’s formula

without making mistakes, particularly, as we can see in Figure 2.6, the existence

of non-touching loops increases the complexity of the formula. To overcome this

problem, we take a different approach and develop a new formula to compute the

MGF based on the internode transition matrix of flowgraph.

Suppose we consider the “flow” in terms of particles, a basic property of

flowgraph is the principle of mass conservation, which the outflow from a node

is equal to its inflow. We show this property in the next two examples. Figure

2.7 is a flowgraph with two input nodes at node 1 and node 2. Let xi denote the

number of particles come out from node i. For convenience, we drop s from qij(s)

and denote the transmittance from node i to node j by qij . Suppose each input

node has 1 particle, then x3 can be expressed in terms of x1 and x2 as

x1

x2

x3q13

q23

Figure 2.7: Flowgraph with two input nodes
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2.3 A new derivation of the Mason’s rule

x1 = 1

x2 = 1

x3 = q13x1 + q23x2

In matrix form

AX = Y

where

A = I − QT =




1 0 0

0 1 0

−q13 −q23 1




and Q =




0 0 q13

0 0 q23

0 0 0


, X =




x1

x2

x3


, Y =




1

1

0




Figure 2.8 is a flowgraph with one feedback loop, where x1 is defined as the

input node with 1 particle outflow. The relationship between each node can be

described by linear equations shown below

x1

x2

x3

q21

q13

q12

q23

Figure 2.8: A closed flowgraph with one feedback loop
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Mason’s rule

x1 = q21x2 + 1

x2 = q12x1

x3 = q23x2 + q13x1

In matrix form

AX = Y

where

A = I − QT =




1 −q21 0

−q12 1 0

−q13 −q23 1




and Q =




0 q12 q13

q21 0 q23

0 0 0


, X =




x1

x2

x3


, Y =




1

0

0




In a general flowgraph with n nodes, we can use a set of independent simultaneous

linear equations to represent the relationship between nodes.

x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + x2 + · · ·+ a2nxn = y2

...

an1x1 + an2x2 + · · · + xn = yn

In matrix form AX = Y , where A is a n-by-n coefficient matrix, such that

A = I − QT

=




1 a12 · · · a1n

a21 1 · · · a2n

...
... · · · ...

an1 an2 · · · 1



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2.3 A new derivation of the Mason’s rule

and

aij = −qji = −pjimji(s)

aii = 1

where Q is the branch transmittance matrix, X denotes the nodes vector in

flowgraph, and Y is the input node indicator vector, where yi = 1 if node i is

the input node of the flowgraph (i.e. the node has only outflow), otherwise yi = 0.

Consider modeling a n states stochastic process in terms of a flowgraph, we

first need to identify two states of interest. Without any loss in generality, we set

the input at node 1 and output at node n to defined the direction of transition.

Secondly, we need to reduce the given flowgraph to a smaller one by excluding

those nodes along with all branches connected with such nodes that are not the

possible intermediate nodes during the transition from input to output. For ex-

ample, if we set the input node at 3 and output node at 4 in Figure 2.6, then node

0 and node 1 are irrelevant nodes and can be removed. This process of simplifying

a large flowgraph to a simple one with only two nodes and one branch is called

solving a flowgraph (Figure 2.9 is the solved flowgraph for Figure 2.5 on page

19). Note that Bulter (2000) generalised this procedure to solve flowgraph in the

single input and multiple outputs case (see Bulter (2000), Section 4.2).

0

Input

2

Output

M02(s)

Figure 2.9: Solved flowgraph for the reversible illness-death system

After we simplified the complex flowgraph, the directed branch that connects

the node 1 with node n is labeled by the equivalent transmittances M1n, which

represents the transmittance of the entire flowgraph from input node to output

node. If the transition between these two nodes is certainly happening in a finite

time, this overall transmittances is the MGF of total waiting time distribution.

23



Mason’s rule

To determine M1n, we close the network by adding an extra branch from

the output node n to the input node 1 and label the corresponding transmit-

tance by wn1 (see Figure 2.10). The idea behind introducing this transmittance

wn1 is to simplify the calculation of M1n in the context of closed flowgraph. By

the principle of conservation of mass, the transmittance in a closed system will

remain constant over time and will not be destroyed as a result, regardless of

the processes acting inside the system. In this case, wn1 will convert all the flow

in output node n back to the input node 1, which is the reciprocal of target MGF.

1

Input

n

Output

M1n

wn1

Figure 2.10: Flowgraph model for a closed network system

We are now going to show a relationship between M1n, the MGF of total

waiting time between input node 1 and output node n, and the extra branch

transmittance wn1 that connects those two nodes of interest. The branch trans-

mittance matrix Q̃ for the closed flowgraph in Figure 2.10 is

Q̃ =

(
0 M1n

wn1 0

)

As there is no input in a closed network, the input node indicator Y = 0, and

the set of independent linear equations show the relationship between the nodes

are a homogeneous system ÃX = 0, where the coefficient matrix Ã is

Ã = I − Q̃T

=

(
1 −wn1

−M1n 1

)
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2.3 A new derivation of the Mason’s rule

The determinant of coefficient matrix Ã for this closed network is

det(Ã) = 1 − M1nwn1 (2.5)

Pritsker and Happ (1966) claims that the determinant of the coefficient matrix

in a closed network is zero ( see Equation 5 in Pritsker and Happ (1966)), we will

discuss this proposition and give a proof in the following section.

Lemma 1. Given the branch transmittance matrix Q of a non-closed flowgraph

with n nodes, we partition the transpose of matrix Q in the form of

QT =

[
B 0

vT 0

]

and where B is a (n − 1) × (n − 1) matrix, vT is 1 × (n − 1) row vector. Then

the MGF of waiting time between node 1 and output node n, such that 1 6= n, is

M1n(s) = vT (In−1 − B)−1Y

where Y = (y1, ..., yn−1)
T is a (n− 1)× 1 input node indicator vector with yi = 1

for input at node i, and zeros otherwise.

Proof. Suppose we consider the flow as particles from input to output in a non-

closed flowgraph. For ease of understanding, we set the input at node 1 and

output at node n. By partitioning the transpose of branch transmittance matrix

in a special way,

QT =

[
B 0

vT 0

]

where B is a (n−1)×(n−1) matrix that consists of all the qkl for all 1 ≤ k ≤ n−1,

1 ≤ l ≤ n − 1, and vT is 1 × (n − 1) row vector such that

vT = (−q1n,−q2n, . . . ,−qn−1,n)
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We are interested in the time taken for particle to reach output node n, where

particles will never leave once it enters the output node. (i.e. probability pnn = 1).

We assume that there is no loop on a single node to itself, and it takes at least

two transitions to return a node. The key idea in our proof is to use matrix B and

row vector vT from QT to construct a n× n matrix D(s) with bottom righthand

corner entry equals 1 (i.e. dnn(s) = 1). To simplify the representation, we will

drop s for writing convenience. Define

D =

[
B 0

vT 1

]

Since the input is chosen at node 1, the input node indicator vector is

Y = (y1, ..., yn)
T

with y1 = 1 and zeros otherwise, then DY shows the path transmittance in

each node 1, . . . , n after one transition, D2Y shows the path transmittance after

two consecutive transitions, then DmY represent the path transmittance after m

transitions in each node. Let m be the total number of transitions that particle

has made since input node 1.

Dm =

[
Bm 0

vT C 1

]

where

C = In−1 + B + . . . + Bm−1

and In−1 is the (n − 1) × (n − 1) identity matrix.

At this point, we need to propose the following conditions

1. Bm → 0, as m → ∞

2. (In−1 + B + . . . + Bm−1) = (In−1 − B)−1, for m → ∞, and |B| < 1.
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2.3 A new derivation of the Mason’s rule

NOTE: The first condition arises from our assumption that the particle al-

ways end up at the absorbing state (i.e. output node). The second condition is

just that ||B||2 < 1 for some suitable matrix norm || . ||.

With these two conditions, m → ∞ gives

Dm → D∗ =

[
0 0

vT (In−1 − B)−1 1

]

Since we have a single output at node n, then the MGF of total waiting time

from node 1 to node n just is the n-th entry of DmY such that

DmY → D∗Y =

[
0 0

vT (In−1 − B)−1 1

][
1

0

]

=

[
0{

vT (In−1 − B)−1
}

1

]

=

[
0

d∗
n1

]
(2.6)

where d∗
n1 is just the first component of 1 × (n − 1) row vector vT (In−1 − B)−1.

(i.e.
{
vT (In−1 − B)−1

}
1
). 0 denotes a (n − 1) × (n − 1) zero matrix, and both 0

and 1 are (n − 1) × 1 vector.

In general, the MGF of the total waiting time from input at node 1 to output

at node n in a non-closed flowgraph is

M1n(s) = vT (In−1 − B)−1Y

where y = (y1, y2, ..., yn)
T with yi = 1 for input at node i, and zeros otherwise.

Lemma 1 shows that the MGF of total waiting time between two nodes of

interest can be determined based on the matrix operations. With equation 2.6,

we can now prove a further result given below.
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Lemma 2. If a flowgraph is closed by adding a branch from output node to input

node, then the determinant of coefficient matrix Ã = In − Q̃T in this closed

flowgraph is zero.

Proof. Let Q̃ be the branch transmittance matrix of closed flowgraph, we first

partition the transpose of matrix Q̃ as

Q̃T =

[
B w

vT 0

]

where we take

w = (d∗
n1

−1, 0, . . . , 0)T (2.7)

and d∗
n1 is the MGF of total waiting time from the input at node 1 and output

at node n. The coefficient matrix is

Ã = In − Q̃T =

[
In−1 − B −w

−vT 1

]

Then

det(Ã) = det

([
In−1 − B −w

−vT 1

])

=
∣∣(In−1 − B) − wvT

∣∣

=
∣∣(In−1 − B)[1 − vT (In−1 − B)−1w]

∣∣ (2.8)

By equation 2.6 and 2.7, we have

1 − vT (In−1 − B)−1w = 1 − d∗
n1d

∗−1
n1

= 1 − 1

= 0 (2.9)

Substitute result 2.9 in equation 2.8, then det(Ã) = 0. Hence the determinant of

coefficients matrix in a closed flowgraph is zero.
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2.3 A new derivation of the Mason’s rule

By Lemma 2, det(A) in equation 2.5 for Figure 2.10 is zero,

det(Ã) = 1 − M1nwn1 = 0

Then,

M1n =
1

wn1
(2.10)

Thus, the MGF of total waiting time from input node 1 to output node n, M1n,

is the reciprocal of the branch transmittance wn1 that connects node n to node

1.

Theorem 2. Let a finite n nodes flowgraph is closed by adding a directed edge

associate with transmittance wn1 that connects output node n to input node 1. Let

Ã = In − Q̃T , where In is n × n identity matrix, Q̃ is the branch transmittance

matrix of the closed flowgraph. Then the MGF of waiting time from node 1 to

node n is

M1n(s) = −
∂ det(Ã)

∂wn1

det(Ã |wn1=0)

Proof. In a closed flowgraph that consists only of loops, there is no input or out-

put, and the input indicator vector Y becomes zero, then we have a homogeneous

system to describe the closed flowgraph.

ÃX = 0

As wn1 is the transmittance for the directed edge that connects from node n to

node 1, we consider det(Ã) as a function of wn1, and det(Ã) can be separated

into two parts,

det(Ã) = det(Ã) |wn1=0 +
∂ det(Ã)

∂wn1

· wn1

By Lemma 2, det(Ã) is zero in a closed flowgraph, then

det(Ã) |wn1=0 +
∂ det(Ã)

∂wn1
· wn1 = 0
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wn1 = −det(Ã) |wn1=0

∂ det(Ã)
∂wn1

By equation 2.10, there is a reciprocal relationship between the MGF from node

1 to node n, M1n, and the branch transmittance wn1,

M1n =
1

wn1
= −

∂ det(Ã)
∂wn1

det(Ã |wn1=0)
(2.11)

Lemma 3. Let H be a n × n square matrix, then

∂

∂hij

log
(
det(H)

)
=

∂ det(H)
∂hij

det(H)
= tr

[
H−1 ∂H

∂hij

]

provided that det(H) 6= 0, and tr(H) = h11 + h22 + . . . + hnn =
∑n

i=1 hii is the

trace of the matrix H

Theorem 3. The MGF of total waiting time distribution from input node 1 to

output node n in a non-closed finite n nodes flowgraph is just the (n,1)th entry

of its inverse coefficient matrix A:

M1n(s) =
[
(A)−1

]
n1

where A = In − QT , and Q is the branch transmittance matrix of the flowgraph.

Proof. Given a n × n coefficient matrix Ã of closed flowgraph, by equation 2.11

and Lemma 3,

M1n(s) = −
∂ det(Ã)

∂wn1

det(Ã |wn1=0)
= −tr

[
(Ã |wn1=0)

−1 · ∂Ã

∂wn1

]
(2.12)

Since only one entry of coefficient matrix Ã involves wn1 such that ã1n = −wn1,

then this entry becomes −1 after we differentiate ã1n with respect to wn1, whereas

those entries without wn1 become zero.
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2.3 A new derivation of the Mason’s rule

Let A∗ =
(

∂Ã
∂wn1

)
, and A∗ is a constant matrix such that

A∗ =

(
∂Ã

∂wn1

)

kl

=

{
−1 if a∗

kl = −wn1

0 otherwise
(2.13)

Define Ā = (Ã |wn1=0)
−1 and substitute 2.13 in equation 2.12

M1n(s) = −tr

[
(Ã |wn1=0)

−1 · ∂Ã

∂wn1

]
= −tr[Ā · A∗] (2.14)

For Ā ∈ R
n×n, A∗ ∈ R

n×n, we have

−tr[Ā · A∗] = −
n∑

u=1

(Ā · A∗)uu

= −
n∑

u=1

n∑

r=1

ĀurA
∗
ru

Since wn1 is the (n,1)th entry of branch transmittance matrix Q̃ and Ã = In−Q̃T ,

then Ã1n = −wn1. By equation 2.13, the only non-zero entry in matrix A∗ is

A∗
ru = −1 when r = 1 and u = n, otherwise it is zero. Therefore

−tr[Ā · A∗] = −Ān1 · (−1) = Ān1

and equation 2.14 becomes

M1n(s) = Ān1

=
[
(Ã |wn1=0)

−1
]
n1

Since Ã |wn1=0 is just the coefficient matrix of a non-closed flowgraph A such

that A = In − QT . Hence the MGF of waiting time from node 1 to node n in a

non-closed flowgraph is the (n,1)th entry of its inverse coefficient matrix A

M1n(s) =
[
(A)−1

]
n1
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Corollary 1. Given a finite non-closed flowgraph with input at node 1 and output

at node n, the r-th population moment µr can be determined by

µr = −tr

[
∂Ã

∂wn1
· ∂rĀ

∂sr

] ∣∣∣∣∣
s=0

(2.15)

where Ā = (Ã |wn1=0)
−1, and Ã = In − Q̃T is the coefficient matrix of the closed

flowgraph constructed by adding a directed edge associated with transmittance wn1

that connects output node n to input node 1.

Proof. According to equation 2.14, we have

∂

∂s
M(s) = − ∂

∂s

{
tr

[(
Ã|wn1=0

)−1

· ∂Ã

∂wn1

]}

= −tr

{
∂

∂s

[(
Ã|wn1=0

)−1

· ∂Ã

∂wn1

]}

where it leads to the following equation after applying the product rule,

∂

∂s

[
(Ã|wn1=0)

−1 · ∂Ã

∂wn1

]

=
∂(Ã|wn1=0)

−1

∂s
·
(

∂Ã

∂wn1

)
+ (Ã|wn1=0)

−1 · ∂

∂s

(
∂Ã

∂wn1

)
(2.16)

By equation 2.13, ∂Ã
∂wn1

is a constant matrix, which does not involve variable s,

then
∂

∂s

(
∂Ã

∂wn1

)
= 0 (2.17)

Substitute equation 2.17 into 2.16 and let Ā = (Ã |wn1=0)
−1 then

∂

∂s
M(s) = −tr




∂
(
Ã|wn1=0

)−1

∂s
·
(

∂Ã

∂wn1

)


= −tr

[
∂Ā

∂s
· ∂Ã

∂wn1

]
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2.3 A new derivation of the Mason’s rule

The first population µ1 is

µ1 =

[
∂

∂s
M(s)

]∣∣∣∣∣
s=0

= −tr

[
∂Ā

∂s
· ∂Ã

∂wn1

] ∣∣∣∣∣
s=0

where Ā = (Ã |wn1=0)
−1.

For the second population moment,

∂2

∂s2
M(s) =

∂

∂s

[
− tr

(
∂Ā

∂s
· ∂Ã

∂wn1

)]

= −tr

[
∂

∂s

(
∂Ā

∂s
· ∂Ã

∂wn1

)]

By the product rule again,

∂

∂s

(
∂Ā

∂s
· ∂Ã

∂wn1

)
=

∂2Ā

∂s2
· ∂Ã

∂wn1
+

∂Ā

∂s
· ∂

∂s

(
∂Ã

∂wn1

)
(2.18)

By equation 2.17, the second term on the left hand side of equation 2.18 is

∂Ā

∂s
· ∂

∂s
(

∂Ã

∂wn1
) =

∂Ā

∂s
· 0 = 0

Then, equation 2.18 becomes

∂

∂s

(
∂Ā

∂s
· ∂Ã

∂wn1

)
=

∂2Ā

∂s2
· ∂Ã

∂wn1

The second population moment is therefore determined as

µ2 =

[
∂2

∂s2
M(s)

]∣∣∣∣∣
s=0

=

[
− tr

(
∂2Ā

∂s2
· ∂Ã

∂wn1

)]∣∣∣∣∣
s=0
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By iteration, we obtain a formula for computing the r-th population moment

µr =

[
∂r

∂sr
M(s)

]∣∣∣∣∣
s=0

=

{
− tr

[
∂Ã

∂wn1
· ∂rĀ

∂sr

]}∣∣∣∣
s=0

=

{
− tr

[
∂Ã

∂wn1
· ∂r

∂sr

(
Ã
∣∣
wn1=0

)−1
]}∣∣∣∣

s=0

To summarise, the MGF of the total waiting time is not easy to determine in

a complicated flowgraph by Mason’s rules, particularly for a flowgraph that has a

larger number of different order feedback loops, where we must be extra careful to

count the paths and feedback loops. Theorem 2 and 3 provide an alternative way

to compute the MGF based on the branch transmittance matrix of flowgraph,

which allow us to avoid finding a list of all the paths and feedback loops between

the input and output node. Furthermore, formula 2.15 given in Corollary 1 makes

the calculation of population moments very simple, and we will discuss more

about the application of formula 2.15 to the Method of Moments for parameter

estimation problem in Chapter 4.
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2.3.1 Example 1.1

In this section, we apply Theorem 2 to compute the MGF M02(s) determined

in equation 2.4 on page 17, Example 1. First the flowgraph is closed by adding

an extra directed edge with transmittance w20 that connects output node 2 to

input node 1 (see Figure 2.11). The branch transmittance matrix of the flowgraph

becomes

0

Input

1

2

Output

p10m10(s)

p02m02(s)

p01m01(s)
p12m12(s)

w20

Figure 2.11: Closed flowgraph model for a reversible illness-death system

Q̃ =




0 q01 q02

q10 0 q12

w20 0 0




Define the coefficient matrix of flowgraph illustrated in Figure 2.11 as

Ã = I3 − Q̃T

=




1 −q10 −w20

−q01 1 0

−q02 −q12 1




35



Mason’s rule

we have

det(Ã) = 1 − q01q12w20 − q01q10 − q02w20

then
∂ det(Ã)

∂w20
= −q01q12 − q02

det(Ã|w20=0) = 1 − q01q10

By Theorem 2, the MGF of total waiting time between input node 0 and output

node 2 is

M02(s) = −
∂ det(Ã)

∂w20

det(Ã |w20=0)

=
q02(s) + q01(s)q12(s)

1 − q01(s)q10(s)
(2.19)

which gives the same expression of the MGF computed by Mason’s rule in equa-

tion 2.4, Section 2.2.1.

2.3.2 Example 2.1

To avoid counting the paths and loops between input node 0 and output node 4

in Example 2 on page 18, we apply our formula in Theorem 3 to compute M02(s)

only based on the branch transmittance matrix Q such that

Q =




0 q01 q02 0 0

q10 0 q12 0 q14

0 0 0 q23 q24

0 0 q32 0 q34

0 0 0 0 0



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The coefficient matrix of the flowgraph given in Figure 2.6 is

A = I5 − QT

=




1 −q10 0 0 0

−q01 1 0 0 0

−q02 −q12 1 −q32 0

0 0 −q23 1 0

0 −q14 −q24 −q34 1




By Theorem 3, the MGF of total waiting time between node 0 and node 4 is the

(5,1)th entry of A−1

M04(s) =
q14q01 − q14q01q23q32 + q24q01q12 + q24q02 + q34q23q01q12 + q34q23q02

1 − q23q32 − q01q10 + q01q10q23q32

(2.20)

If we want to determine the MGF of total waiting time between node 0 and node

2, we just need to look at the (3,1)th entry of A−1

(A−1)31 =
q02 + q01q12

1 − q23q32 − q01q10 + q01q10q23q32

By our assumption, no further transition is allowed in the output node, then

q23 = 0. Hence, the MGF of total waiting time between node 0 and node 2 is

M02(s) =
q02 + q01q12

1 − q10q01

which matches the result of Mason’s rule in equation 2.4, Section 2.2.1.

Note that we do not need to compute the expressions 2.20 and 2.19 by hand,

and in fact, all the calculation required in Theorem 2, 3 and Corollary 1 can be

easily done by using symbolic algebra package MAPLE. However, we still have

not obtained the total waiting time distribution. In Chapter 3 we will discuss

how the distribution of total waiting time can be determined by the inversion

of its MGF, and subsequently derive the corresponding CDF, PDF and survivor

function.
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Chapter 3

Distribution theory

Mason’s rule allows us to compute the MGF of the total waiting time distribution

between two nodes of interests in a finite flowgraph. In this chapter, the main

purpose is to present methods that invert the MGF to obtain the density function

and determine the distribution of the total waiting time T .

This chapter is organised as follow. The first section deals with the case

where the internode waiting time follows exponential or Gamma distributions

with integer-valued shape parameter (i.e. Erlang distribution). The second section

considers flowgraph models with non-exponentially distributed internode waiting

time, where direct inversion of the MGF is not possible. We discuss three different

methods to approximate the total waiting time density function, namely, saddle-

point approximation, the Maximum Entropy method and the Padé approximation

method. We continue with the examples given in Chapter 2 and illustrate how to

apply each method for estimating the probability density function and survivor

function.The last second presents the comparison of these methods in both the

exponential and non-exponential waiting time case.
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3.1 Exact inversion of the MGF

Suppose we have a flowgraph with all the internode waiting times assumed to be

exponentially distributed. The MGF of total waiting time in this case takes the

form of a rational polynomial function. It can be decomposed by partial fraction

method and then the inverse Laplace transform can be applied to obtain a closed

form density function.

Definition 6. The Laplace transform of a function f(t) for t > 0 is defined by

the following integral

L[f ](s) =

∫ ∞

0

e−stf(t)dt (3.1)

By comparing equation 3.1 to the definition of MGF on page 8 Chapter 2, we

can see that L[f ](s) is just the MGF with argument −s instead of s, so the inverse

Laplace transform of MGF MT (−s) is the probability density function of T . In

the exponential waiting time case, the MGF is a rational function in the form

of U(s)/P (s), which can be written as the sum of rational functions by partial

fractions. The probability density function can be determined by applying the

inverse Laplace transform to each component of the partial fractions decomposi-

tion in MT (−s), and using the additive properties of the Laplace transform. This

is summarised in the Heaviside method (see Dalla Valle (1931), Spiegel (1965)).

Lemma 4. The Heaviside expansion formula

Let U(s) and R(s) be polynomials where U(s) has degree less than that of R(s).

Suppose R(s) = 0 has n distinct roots αk, k = 1, 2, 3 . . . , n, then the inverse

Laplace transform of rational function U(s)
R(s)

is

L−1

[
U(s)

R(s)

]
=

n∑

k=1

U(αk)

R′(αk)
eαkt (3.2)

where R′(αk) = dR(s)
ds

|s=αk
.
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3.1.1 Example 1.3: Exponential waiting time

We return to the reversible illness-death system of Example 1 in Section 2.2.1.

To determine the distribution of total waiting time between input at node 0 and

output at node 2 in Figure 2.4, we assume all the internode waiting time are

exponentially distributed (see Table 3.1). The patient in node 0 could transition

to node 1 with probability p01 or die with probability p02 = 1 − p01. The patient

in node 1 may recover and return to node 0 with probability p10, or die from the

disease and transition to the output at node 2 with probability p12 = 1 − p10.

Let T02 denote the total waiting time between input at node 0 and output at

node 2, we show how to compute the probability density function of waiting time

T02 by the exact inversion of its MGF, MT02(s). For the purpose of illustration,

we assume

1. λ1 = 1, λ2 = 1.2, λ3 = 0.5, λ4 = 2.

2. All the transition probability are equal to 1
2
, i.e. p01 = p02 = p10 = p12 = 1

2

Table 3.1: Summary of waiting time distribution

Direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

0 → 2 Exponential(λ3) m02(s) = λ3

λ3−s

1 → 2 Exponential(λ2) m12(s) = λ2

λ2−s

1 → 0 Exponential(λ4) m10(s) = λ4

λ4−s
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We identify two paths 0 → 2, 0 → 1 → 2 and one feedback loop 0 → 1 → 0

between node 0 and node 2. By Mason’s rule, the MGF of the total waiting time

distribution from node 0 to node 2 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
1
4
m01(s)m12(s) + 1

2
m02(s)

1 − 1
4
m01(s)m10(s)

=
(2 − s)(1.8 − 3.4s + s2)

(6 − 12s + 4s2)(0.5 − s)(1.2 − s)
(3.3)

By Definition 6, the Laplace transform is just the MGF with argument −s instead

of s, then

MT02(−s) =
U(s)

R(s)
=

(2 + s)(1.8 + 3.4s + s2)

(6 + 12s + 4s2)(0.5 + s)(1.2 + s)

solve

R(s) = (6 + 12s + 4s2)(0.5 + s)(1.2 + s) = 0

The distinct roots are

α1 = −1

2
, α2 = −6

5
, α3 = −1

2
(3 −

√
3), α4 = −1

2
(3 +

√
3) (3.4)

We apply the Heaviside expansion formula in Lemma 4 for the exact inversion of

equation 3.3

L−1 [MT02(−s)] = L−1
[U(s)

R(s)

]
=

4∑

k=1

U(αk)

R′(αk)
eαkt

where

U(s) = (6 + 12s + 4s2)(0.5 + s)(1.2 + s)

R′(s) =
d

ds
R(s) =

87

5
+

288

5
s +

282

5
s2 + 16s3
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3.1 Exact inversion of the MGF

Thus, the PDF of total waiting time T02 from node 0 to node 2 is

fT02(t) = 0.75eα1t − 0.3636eα2t − 0.1207eα3t − 0.0157eα4t

=
0.75

α1
α1e

α1t − 0.3636

α2
α2e

α2t − 0.1207

α3
α3e

α3t − 0.0157

α4
α4e

α4t

= 1.5f1(t) − 0.303f2(t) − 0.1904f3(t) − 0.0066f4(t)

=
4∑

i=1

wifi(t) (3.5)

where α’s are given in equation 3.4, and
∫∞
0

fT02(t) = 1 is verified. Since
∑4

i=1 wi =

1, the result shows that the total waiting time distribution is a mixture of expo-

nential distribution with negative weight for some component.

The survival function is

ST02(t) = P (T02 > t)

= 1.5eα1t − 0.3030eα2t − 0.1904eα3t − 0.0066eα4t (3.6)

Note that the numerical values in 3.5 and 3.6 are only decimal approximations.

The total waiting time distribution describes the time to occurrence of certain

events, where the underlying process goes through a set of nodes till termination

at the output node. This can be considered as the so-called phase type distribu-

tion, which is defined as the probability distribution of the time until absorption

in a Markov process with a finite number of transient states and one absorb-

ing state (see Neuts (1981)). Asmussen (1987) gives a useful introduction to the

phase type distribution, and Aalen (1995) discusses the application of phase type

distributions in survival analysis.
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3.2 Numerical approximation method

The aim of this section is to introduce three different methods for approximating

the waiting distribution between the input and output in a flowgraph, when the

internode waiting time does not follow the exponential distribution or Gamma

distributions with integer shape parameter (i.e. α in Gamma(α,β)). In such cases,

the MGF is not a rational form, and it therefore can’t be inverted directly to ob-

tain the probability density function. This motivates the use of approximation

methods to estimate density functions by inverting the given MGF numerically.

3.2.1 The Maximum Entropy method

In a complicated flowgarph with large number of parameters, it is often diffi-

cult to determine the distribution from the given observations of total waiting

time data between two nodes of interest. As we can compute the moments based

on the MGF of total waiting time obtained by the Mason’s rule, this forms our

motivation to apply the the maximum entropy method, where we assume certain

moment constraints of the total waiting time random variable and then maximise

the entropy of the target density function subject to these moment constraints.

The maximum entropy method was first introduced by Jaynes (1957), where

he discusses the link between statistical mechanics and information theory. Dawid

and Grünwald (2004) generalise this method to apply to arbitrary decision prob-

lems and loss functions, while the applications of maximum entropy method to

process information in the form of observed data and moment constraints is given

in Giffin and Caticha (2007). Wagner (1995) illustrates the use of the maxi-

mum entropy method for estimating density function of random variables based

on its moments. It is shown that, under appropriate moment constraints, some

of the well-know distributions in statistics are maximum entropy distributions.

For example, the exponential distribution can be derived from the maximum

entropy distribution of nonnegative random variable X under the constraints

E(x) = µ1, while the normal distribution is a maximum entropy distribution

satisfying E(x) = µ1 and E(x2) = µ2.
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3.2 Numerical approximation method

In general, the maximum entropy density f̂(t) can be computed by maximis-

ing the Shannon entropy

S = −
∫ ∞

0

f̂(t)logf̂(t)dt (3.7)

subject to a set of the moment constrains:

∫ ∞

0

f̂(t)tkdt = µk (3.8)

where µk is the k-th noncentral moment of the density f(t) such that

µk =
{ dk

dsk
MT (s)

}∣∣∣
s=0

for k = 0, 1, ..., m. Note that MT (s) is the MGF of T and µ0 = 1.

The form of maximum entropy density f̂(t) is

f̂(t) = exp(−1 −
m∑

i=0

cit
i) (3.9)

where c0, c1, ..., cm are determined so that 3.9 is a proper density function and

satisfies all the m+1 moment constraints. Kagan, Linnik and Rao (1973) give an

simple proof of 3.9 based on convexity argument. (see Theorem 13.2.1, p.409). In

order to compute the parameters in 3.9, we need to construct a set of nonlinear

equations by substituting 3.9 to moment constraint in 3.8, and solve the resulting

m + 1 nonlinear equations 3.12 for m + 1 unknown constants ci.

Define

gk(c) =

∫ ∞

0

tkf̂(t)dt (3.10)

=

∫ ∞

0

tk exp(−1 −
m∑

i=0

cit
i)dt (3.11)
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By equation 3.8,

gk(c) = µk for k = 0, 1, ..., m (3.12)

We apply the Newton-Raphson method to solve the set of nonlinear equations

g0, . . . , gm for c0, . . . , cm. The first step is to compute the first order Taylor ex-

pansion of gk for k = 0, 1, . . .m at the initial value c0 = (c0
0, c

0
1, . . . , c

0
m)

gk(c) = gk(c
0) +

m∑

i=0

(ci − c0
i )

dgk(c0)

dci

where

dgk(c)

dci
=

∫ ∞

0

tk
d

dci
exp(−1 −

m∑

i=0

cit
i)

= −
∫ ∞

0

tk+i exp(−1 −
m∑

i=0

cit
i)

= −gk+i(c)

Then

gk(c) = gk(c
0) −

m∑

i=0

(ci − c0
i )gk+i(c

0)

gk(c
0) −

m∑

i=0

(ci − c0
i )gk+i(c

0) = µk

m∑

i=0

(ci − c0
i )gk+i(c

0) = gk(c
0) − µk (3.13)

for k = 0, 1, . . .m.

We can rewrite the set of equations 3.13 in matrix form.

Gδ = V
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3.2 Numerical approximation method

where G =




g0(c0) g1(c0) · · · gm(c0)

g1(c0) g2(c0) · · · gm+1(c0)
...

... · · · ...

gm(c0) gm+1(c0) · · · g2m(c0)




, δ =




c0 − c0
0

c1 − c0
1

...

cm − c0
m




, V =




g0(c0) − µ0

g1(c0) − µ1

...

gm(c0) − µm




3.2.1.1 Newton-Raphson method

Newton-Raphson method is a well known iterative procedure for finding approxi-

mations to the root of a real-valued function f(x). The basic idea of this method

is to start with an initial guess value for x0, which is reasonably close to the true

root of f(x), the function is approximated by its tangent line, then we compute

the x-axis intercept of this tangent line. The x-axis intercept will usually be a

better approximation to the root of function than the original guess, and the

method can be iterated.

In maximum entropy method, the Newton-Raphson method can be extended

to multivariate case and solved systems of k (non-linear) equations fi(x) = 0,

i = 1, ..., k, where fi(x) is a function of a k-dimensional vector x = (x1, ..., xk),

whose Jacobian matrix is

J(x) =




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xk

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xk

...
... · · · ...

∂fk(x)
∂x1

∂fk(x)
∂x2

· · · ∂fk(x)
∂xk




Given suitable initial value x0 and (J(x))−1 exists, the method is iterated for

n = 0, 1, ..

xn+1 = xn − (J(xn))−1f(xn)

until the stopping criterion in equation 3.14 is satisfied.

| xn+1 − xn |< δ (3.14)

for a user-defined tolerance δ > 0.

47



Distribution theory

Lemma 5. Given a (m + 1) × (m + 1) matrix G is defined as

Gki = −dgk(c)

dci
= gk+i(c)

where

gk(c) =

∫ ∞

0

tkf̂(t)dt (3.15)

and f̂(t) = exp(−1 −∑m
i=0 cit

i) for k = 0, 1, . . .m, i = 0, 1, . . .m. Then G is a

positive definite matrix and G−1 exists.

Proof. Let c = (c0, c1, . . . cm)T be any non-zeros vector. Then

cT Gc =
[
c0 c1 . . . cm

]




g0 g1 · · · gm

g1 g2 · · · gm+1

...
... · · · ...

gm gm+1 · · · g2m







c0

c1

...

cm




= c2
0g0 + 2c0c1g1 + (c2

1 + 2c0c1)g2 + . . . + c2
mg2m (3.16)

Substitute equation 3.15 in 3.16, then

cT Gc =

∫ ∞

0

(
c2
0 + 2c0c1t + (c2

1 + 2c0c1)t
2 + . . . + c2

mt2m
)
f̂(t)dt

=

∫ ∞

0

(
c0 + c1t + c2t

2 + . . . + cmtm
)2

f̂(t)dt (3.17)

Since the integrand in 3.17 is always positive, the cT Gc > 0, therefore the matrix

G is a positive definite matrix with det(G) > 0 and G−1 exists.

By Lemma 5, the matrix G satisfies the non-singular condition (i.e. the inverse

of G exists) and it guarantees the convergence of the Newton-Raphson method.

G(cl)(cl+1 − cl) = V (cl)

cl+1 = cl + G−1(cl)C(cl)
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3.2 Numerical approximation method

Given the initial value cl for c, we solve this system iteratively for c = (c0, ..cm)

until |cl+1− cl| ≤ 0.00001. The estimated probability density function is obtained

after we substitute the resulting c0, ..cm in equation 3.9.

3.2.1.2 Implementation

The Newton-Raphson method will usually converge if the initial value of c is close

enough to the true value. As the dimension of c increases with the number of mo-

ment constraints, the result of maximum entropy density estimation becomes very

sensitive to the choice of initial values for c. Wu (2003) shows evidence that the

sequential updating method is more robust with respect to the choice of initial

values, the basic idea is to compute the constant c sequentially by adding only

one higher order moment constraint at each step. Our method is a special imple-

mentation based on the sequential updating method suggested by Wu (2003) to

derive an efficient algorithm for the computation of high dimensional c.

Given the first few ck can be relatively easy computed, we choose c′k+1 = 0

for ck+1 and define c0 = (c0
1, c

0
2, ...c

0
k, 0) as initial value in Newton method. We

start with k = 2 case as there is closed form solution for c0, c1.

∫ ∞

0

exp(−1 − c0 − c1t)dt = 1 (3.18)

∫ ∞

0

t exp(−1 − c0 − c1t)dt = µ (3.19)

solve equation 3.18 for c1 in terms of c0 gives

c1 = exp(−1 − c0) (3.20)

substitute equation 3.20 into equation 3.19,

∫ ∞

0

t exp(−1 − c0) exp(−c1t)dt = µ

∫ ∞

0

tc1 exp(−c1t)dt = µ
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The integral is just the definition of expected value for Exponential(c1), then

c1 = 1
µ
, and c0 = −1 − log(c1) = log(µ) − 1 by equation 3.20. In general, we use

the following procedure to compute c(m) = (c0, c1, c2 . . . cm).

Step 1: Start with c0
(2) = (c

(0)
0 , c

(0)
1 , c

(0)
2 ), choose the initial value c

(0)
0 =

log(µ) − 1, c
(0)
1 = 1

µ
, and c

(0)
2 = 0, then solve the system of equations itera-

tively for c1
(2) = (c

(1)
0 , c

(1)
1 , c

(1)
2 ) until |cl+1

(2) − cl
(2)| ≤ 10−5.

Step 2: Set c0
(3) = (c1

(2), c
0
3) = (c

(1)
0 , c

(1)
1 , c

(1)
2 , c

(0)
3 ), where c1

(2) is the result

from step 1 and we choose c
(0)
3 = 0. Solve the system of equations iteratively for

c2
(3) = (c

(2)
0 , . . . c

(2)
3 ) until |cl+1

(3) − cl
(3)| ≤ 10−5.

· · ·
Step m − 1: Set c0

(m) = (cm−2
(m−1), c

0
m) = (cm−2

0 , cm−2
1 , ..., cm−2

m−1, c
(0)
m ), set c

(0)
m = 0,

then solve the system of equations iteratively for cm−1
(m) = (c

(m−1)
0 , . . . c

(m−1)
m ) until

|cl+1
(m) − cl

(m)| ≤ 10−5.

The sequential update procedure is particularly useful when the number of

moment constraints is larger. Instead of setting m+1 initial values for all c0, ..., cm

at the same time, this procedure reduces the multi-dimension search to one di-

mension by choosing initial value for ck, k = 2, ..., m sequentially. The procedure

has been programmed in Matlab. Our result shows that the more moment con-

straints we have (i.e. the larger m is), the closer is the maximum entropy density

f̂(t) to the true density f(t). However, the computational cost becomes very high

to solve a larger set of equations if additional moments constraints are imposed,

partially because the integrals in g(s) function become increasingly difficult to

evaluate. As there is no formal method to determine the number of moment con-

straints, further research could be conducted to estimate the number of moments

constrains are needed in order to achieve a required accuracy of approximation.

For the trade off between the complexity of the maximum entropy density f̂(t)

and the accuracy of the estimation, we only impose 6 moment constraints in the

following two examples.
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3.2 Numerical approximation method

3.2.1.3 Example 3

Our first example is to apply the maximum entropy method for estimating the

probability density function of waiting time in a series flowgraph. We use the hy-

draulic pump system example in Section 2.1.2.1, Chapter 2. The series flowgraph

in Figure 2.1 describes the status of a two pump systems, the input is at node

0 which represents the system is working properly with no pumps failed, node 1

represents one pump failed, and the output is node 2 when two pump failed and

the system breaks down. The waiting time distributions between each node are

given in Table 3.2. We assume the transition probability from 0 → 1 and 1 → 2

are all equal 1 (i.e. p01 = p10 = 1), and α = 3, β = 1
2
, c = 1.

Table 3.2: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(c) m01(s) = c
c−s

1 → 2 Gamma(α,β) m12(s) = ( β
β−s

)α

The MGF of total waiting time T02 from node 0 to node 2 is

MT02(s) = p01m01(s)p12m12(s)

=

(
c

c − s

)(
β

β − s

)α

=
1

8(1 − s)(0.5 − s)3

By estimating the probability density function of total waiting time T02 subject

to 6 moment constraints, we use this MGF to compute the value of the moment

constraints µr, r = 0 . . . 5, where µr =
{

dr

dsr MT02(s)
}∣∣∣

s=0
, gives the result µ0 = 1,

µ1 = 7, µ2 = 62, µ3 = 666, µ4 = 8424, µ5 = 122760. By substituting the general

form of the maximum entropy distribution f̂(t) defined in equation 3.9 and µr

r = 0, ..., 5, to each moment constraint in equation 3.8, we form a system of 6

nonlinear equations with 6 unknown c0, c1 . . . , c5.
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


g0 g1 · · · g5

g1 g2 · · · g6

...
... · · · ...

g5 g6 · · · g10







δ0

δ1

...

δ5




=




g0 − µ0

g1 − µ1

...

g5 − µ5




where δi = ci − c0
i ,i = 0 . . . 5; gk = gk(c

0), k = 0, . . . , 10. Given the current value

of value c0 at each iteration, the integrals in gk(c
0) for k = 0, ..., 10, defined in

equation 3.11, are computed numerically by using the adaptive Simpson quadra-

ture method, see Gander and Gautschi (2000) for “quad” function in Matlab.

The system is solved by updating the value of c iteratively until |cl+1 − cl| ≤
10−5. The estimated probability density function f̂(t) is given by

f̂ME(t) = exp(−5.8309 + 1.9342t− 0.3429t2 + 0.0262t3 − 0.0009t4 + 0.000014t5)

Since the waiting time distribution between node 1 and node 2 is Gamma(3, 0.5)

with integer shape parameter α = 3, we can still apply the Heaviside expansion

formula by Lemma 4 to invert MT02(s) for the true probability density function

f(t) such that

f(t) =
(1

8
t2 − 1

2
t + 1

)
e−

1
2
t − e−t

The comparison of maximum entropy density under different number of moment

constraints with the true density (solid line) is presented in Figure 3.1. It is clearly

shown that the quality of density approximation depends critically on the number

of moments constraints that we imposed, and it can be improved dramatically

as the number of moment constraints increases. The plot of maximum entropy

density that obtained with 6 moments constraints provides relatively the best

approximation to the shape of the true density function. (see Figure 3.2).
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3.2 Numerical approximation method

The performance of these maximum entropy densities are assessed by com-

puting their integrated square errors (ISE).

ISE =

∫ ∞

0

{
f(t) − f̂(t)

}2

dt

where f(t) is the true density and f̂(t) is the estimated density. Table 3.3 pro-

vides numerical evidence that the accuracy of density estimation is significantly

improved by adding more moment constraints.

Table 3.3: Sum of square error(ISE)

Number of constraints 3 4 5 6

ISE 0.0477 0.0212 0.0199 0.0019
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Figure 3.1: Density estimation by Maximum Entropy method.
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Figure 3.2: Solid line: True density; Dash line: Estimated density by Maximum
Entropy with 6 moment constraints.

3.2.1.4 Example 1.4: Non-exponential waiting time

We consider the flowgraph model for reversible illness-death system again (see

Figure 2.5 on page 17), but Gamma distributed waiting time is allowed (see

Table 3.4). In the non-exponentially distributed internode waiting time case, the

MGF of total waiting time can not decomposed by partial fraction method, and

we can not use the exact inversion method of MGF for a closed form true density.

Maximum entropy method is then applied to estimate the density of total waiting

time between node 0 and node 2 under 6 moment constraints.

Table 3.4: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Gamma(α1,β1) m01(s) = ( β1

β1−s
)α1

0 → 2 Exponential(θ1) m02(s) = θ1

θ1−s

1 → 2 Gamma(α2,β2) m12(s) = ( β2

β2−s
)α2

1 → 0 Exponential(θ2) m10(s) = θ2

θ2−s
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3.2 Numerical approximation method

For illustration we assume the following parameter values: p01 = 1−p02 = 0.5,

p12 = p10 = 0.5, α1 = 3.2, β1 = 4.8, α2 = 2, β2 = 3, θ1 = 2.2, θ2 = 4. By Mason’s

rule, the MGF of overall waiting time distribution between node 0 and node 2 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
1
4

(
4.8

4.8−s

)3.2( 3
3−s

)2
+ 1

2

(
2.2

2.2−s

)

1 − 1
4

(
4.8

4.8−s

)3.2( 4
4−s

)

By using the sequential update procedure, we obtain c0 = −0.9670, c1 = 1.6088,

c2 = −1.0621, c3 = 0.4775, c4 = −0.0785, c5 = 0.0043. The resulting estimated

density function f̂(t) is

f̂ME(t) = exp(−1 − c0 − c1t − c2t
2 − c3t

3 − c4t
4 − c5t

5)

= exp(−0.033 − 1.6088t + 1.0621t2 − 0.4775t3 + 0.0785t4 − 0.0043t5)
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Figure 3.3: Density estimation by Maximum Entropy method under 6 moment
constraints in Example 1.4.
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3.2.2 Padé approximation

Padé approximation is the method for approximating a function by a rational

function of given order, where the coefficients of its numerator and denominator

match the coefficients in the Taylor series expansion of given function. The most

important reason to use Padé approximation of MGF in flowgarph analysis is

because it allows us to approximate the MGF as the ratio of two polynomial

functions, which can be easily inverted to obtain a closed form estimation for the

probability density function by Lemma 4 in Section 3.1.

Amindavar and Ritcey (1994) first introduced the Padé approximation ap-

proach to estimate probability density functions from moments. It is shown that

the PDF can be easily determined as a series of exponential function, where rates

are computed as the poles of Padé approximation of MGF (i.e. the singularities

of PA[p,q](s)). A comprehensive reference for the background theory and the ap-

plication of Padé approximation can be found in Baker and Graves-Morris (1996),

where the derivation of 3.21 is discussed.

Definition 7. Given a formal Taylor series expansion of a function f(x),

f(x) =

∞∑

i=0

cix
i

The Padé approximation of f(x), PA[p,q], is a rational function with numerator

order p and denominator order q in the form of:

PA[p,q](s) =

∑p
j=0 ajs

j

∑q
k=0 bksk

=
a0 + a1s + . . . aps

p

b0 + b1s + . . . bqsq
(3.21)

such that

f(x) = PA[p,q](x) + O(xp+q+1)

56



3.2 Numerical approximation method

Let MX(s) be the MGF of a random variable X and write the Taylor expan-

sion of MX(s) at s = 0 as

MX(s) =
∞∑

n=0

µn

n!
sn

where µn =
∫∞
0

xnf(x)dx is the n-th noncentral moment of f(x). By setting

p < q, the Padé approximation of MGF, PA[p,q](s), can be decomposed by partial

fraction and then easily inverted to obtain a closed form density estimation by

Lemma 4. The coefficients aj and bk are computed by equating PA[p,q](s) with

the power series of MGF MX(s),

∑p
j=0 ajs

j

∑q
k=0 bksk

=

p+q∑

n=0

cnsn + O(sp+q+1) (3.22)

where cn = µn

n!
. By multiplying

∑q
k=0 bks

k on both side of equation 3.22

p∑

j=0

ajs
j =

(
q∑

k=0

bks
k

)(
p+q∑

n=0

cnsn

)
+ O(sp+q+1) (3.23)

We equate the coefficients of sp+1, sp+2, . . . , sp+q on both side of 3.23 and construct

a system of q equations with q unknown denominator coefficients b1, b2, . . . , bq.

bqcp−q+1 + bq−1cp−q+2+ · · · b0cp+1 = 0
...

...

bqcp + bq−1cp+1+ · · · b0cp+q = 0

In matrix form

HB = C (3.24)

where H =




cp−q+1 cp−q+2 cp−q+3 · · · cp

cp−q+2 cp−q+3 cp−q+4 · · · cp+1

cp−q+3 cp−q+4 cp−q+5 · · · cp+2

...
... · · · ...

cp cp+1 cp+2 · · · cp+q−1




, B =




bq

bq−1

bq−2

...

b1




, C =




−cp+1

−cp+2

−cp+3

...

−cp+q




.
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Set b0 = 1, we solve a set of equations in 3.24 for the b1, b2, . . . , bq. Given

the resulting bk, k = 1, 2, . . . , q, the numerator coefficient a0, a1, . . . , ap can be

computed by matching the coefficient of 1, s, s2, . . . , sp on both side of equation

3.23:

a0 = c0

a1 = c1 + b1c0

a2 = c2 + b1c1 + b2c0

...

ap = cp +
∑min(p,q)

n=1 bncp−n

Since we can’t solve the system of equation HB = C if the determinant of q × q

square matrix H is zero (i.e. H−1 doesn’t exist), the appropriate order of Padé ap-

proximation should guarantee that the square matrix H has full rank. We follow

the method suggested by Amindavar and Ritcey (1994) to define a Padé approx-

imation PA[q−1,q](s), such that the order of numerator is 1 degree smaller than

the order of denominator, compute the q × q square matrix H, and plot the rank

of H matrix against q ( see Figure 3.4). The optimal order of denominator in the

Padé approximation is denoted by q∗, the largest integer that matrix H has full

rank. The MGF is then approximated by the Padé approximation PA[q∗−1,q∗](s).

3.2.2.1 Example 4

We use the Padé approach to estimate the density function of total waiting time

from node 0 to node 2 in Section 3.1.1 on page 41 again. By equation 3.3, the

MGF of total waiting time from node 0 to node 2 is

MT02(s) =
(2 − s)(1.8 − 3.4s + s2)

(6 − 12s + 4s2)(0.5 − s)(1.2 − s)

=
1 − 2.39s + 1.5s2 − 0.28s3

1 − 4.83s + 8s2 − 5.22s3 + 1.11s4
(3.25)
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Figure 3.4: Rank check for matrix H

The optimal order of the Padé approximation is then determined by plotting

the rank of square matrix H defined in equation 3.24. Figure 3.4 shows how

the rank of matrix H changes as we choose different order of denominator q in

PA[q−1,q](s). As can be seen that the q×q square matrix H becomes rank deficient

if q ≥ 5, and we therefore choose q = 4 as the optimal order of the denominator

in Padé approximation. The coefficient of PA[3,4](s) can be easily computed by

using MAPLE.

PA[3,4](s) =
1 − 2.3889s + 1.5001s2 − 0.2778s3

1 − 4.8334s + 8.0003s2 − 5.2227s3 + 1.1113s4
(3.26)

By comparing the coefficient in 3.26 with 3.25, PA[3,4](s) gives a very good ap-

proximation of MT02(s). We apply the Heaviside formula to invert PA[3,4](−s) and

obtain the approximated probability density function of T02 as

fPA(t) = 0.75 exp(−0.5t) − 0.3636 exp(−1.1999t)

−0.12067 exp(−0.6339t) − 0.01570 exp(−2.3656t) (3.27)
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Note that the form of finite mixtures of exponential distribution is much

more stable then the maximum entropy density defined in equation 3.9 on page

45. The approximated survival function of T02 is

SPA(t) = P (T ≥ t)

= 1.5 exp(−0.5t) − 0.3030 exp(−1.1999t) (3.28)

−0.1903 exp(−0.6339t) − 0.0066 exp(−2.3656t)

3.2.3 The Saddlepoint approximation: a discussion

Saddlepoint approximation are powerful tools for numerically inverting a MGF to

estimate density and distribution function. It is originally developed by Daniels

(1954) to approximate the probability density function of the mean of i.i.d random

variable. For the literature review, see Daniels (1954), Jensen (1995), Barndorff-

Nielsen and Cox (1997). Lugannani and Rice (1980) introduces the saddlepoint

approximation for estimating the cumulative distribution function. A rather in-

sightful discussion about the basic idea behind the derivation of saddlepoint ap-

proximation is given by Casella and Goutis (1999). The saddlepoint approxi-

mation has widespread applicability in many fields, including survival analysis

(Butler and Huzurbazar (1997), Huzurbazar (1999)), system reliability (Butler

(2000)), portfolio credit risk (Gordy, (2002)), insurance ruin problem (Gatto

(2008)), and option pricing (Carr and Madan (2009)).

In view of the rising popularity of saddlepoint approximation in flowgraph

model, this method play a key role in estimating the distribution of total waiting

time random variable whose MGF is known, and it is important to thoroughly

understand the proof before we propose our Padé-type saddlepoint approximation

in Chapter 5. Since the original proof given by Daniels (1954) is difficult to

follow and we are not aware of a complete detailed proof in the literature, this

forms our motivation to give a comprehensive explanation of how the saddlepoint

approximation is derived based on exponential tilting, edgeworth expansions, and

Hermite polynomials that discussed in Kolassa (1994). First, we give the basic

definition of saddlepoint approximation.
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Theorem 4. Saddlepoint approximation

Let X1,X2,. . . ,Xn be i.i.d random variables with density f(x), and assume the

moment generating function MX(s), exists in an open interval about zero. Denote

the corresponding cumulant generating function as KX(s) = log (MX(s)). The the

saddlepoint approximation for the probability density function of X̄ is

f̂X̄(x) =

(
n

2πK ′′
X(ŝ)

)1/2

exp
{

n(KX(ŝ) − ŝx̄)
}

(3.29)

where K ′′
X(s) = d2Kx(s)

ds2 , and K ′
X(ŝ) = x̄

Note that the formula given in equation 3.29 is applied to determine the dis-

tribution of the sample mean X̄. In the rest of this section, we present our own

proof of Theorem 4 based on Edgeworth expansion, and discuss the accuracy of

approximation by showing the “order of the approximation error”.

Proof. Let X1,X2,. . . ,Xn be i.i.d random variable with mean µ and finite variance

σ2. Define

Y =
X̄ − µ

σ√
n

By the central limit theorem, Y is asymptotically Normal N(0,1) and its the

characteristic function, χy(t), converges to the characteristic function of N(0,1)

χy(t) = E[eity] =

∫ +∞

−∞
eityfY (y)dy −→ e−t2/2 as n → ∞

Since

χy(t) = exp

(
−1

2
t2
)

=
{

exp

(
−1

2

t2

n

)}n

=

{
χ

(
t√
n

)}n

(3.30)

where χ is the characteristic function of Z = X−µ
σ

∼ N(0, 1).
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It was decided to take a detour to explain the saddlepoint approximation

method. The basic idea is to approximate the characteristic function χy(t) by

keeping the first few terms of the Taylor expansion of χy(t) at 0, and invert each

term of the approximation of χy(t) for the distribution function of Y .

Let L(t) = log (χ(t)), we first expand L(t) as a Taylor series at t = 0,

log(χ(t)) = L(0) + L(1)(0)t +
L(2)(0)

2!
t2 +

L(3)(0)

3!
t3 +

L(4)(0)

4!
t4

+
L(5)(0)

5!
t5 + · · ·+ L(j)(0)

j!
tj (3.31)

where
L(j)(0)

j!
tj =

1

j!

(
dj

dtj
log (χ(t))

)∣∣∣∣∣
t=0

tj (3.32)

As χ(t) is the characteristic function of standard normal random variable Z, then

we have (
dj

dtj
log (χ(t))

)∣∣∣∣∣
t=0

= ijE(Zj) (3.33)

Let K(t) = log (Mz(t)) be the cumulant generating function of Z ∼ N(0, 1), then

(
dj

dtj
K(t)

)∣∣∣∣∣
t=0

=

(
dj

dtj
log (Mz(t))

)∣∣∣∣∣
t=0

(3.34)

= E(zj)

Since the j-th cumulant of Z is κj =
(

dj

dtj
K(t)

) ∣∣∣∣
t=0

, we have κj = E(zj) by

3.34, and equation 3.33 becomes

(
dj

dtj
log (χ(t))

)∣∣∣∣∣
t=0

= ijκj (3.35)

Substitute 3.35 in 3.32 yields

Lj(0)

j!
tj =

(it)jκj

j!
(3.36)
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Note that L(0) = log (χ(0)) = 0. By substituting result 3.36 in 3.31, we have

log (χ(t)) = (it)κ1 +
(it)2κ2

2!
+

(it)3κ3

3!
+

(it)4κ4

4!
+

(it)5κ5

5!
+ · · ·+ (it)jκj

j!
(3.37)

χ(t) = exp
(
(it)κ1 +

(it)2κ2

2!
+

(it)3κ3

3!
+

(it)4κ4

4!
+

(it)5κ5

5!
+ · · ·+ (it)jκj

j!

)
(3.38)

To determine the κj , we need to compute the Taylor expansion of χ(t) at t = 0.

By the use of property χ(j)(0) = ijE(Zj), we have

χ(t) = χ(0) + χ(1)(0)t +
χ(2)(0)t2

2!
+

χ(3)(0)t3

3!
+ · · · + χ(j)(0)tj

j!

= 1 + E(z)it +
E(z2)(it)2

2!
+

E(z3)(it)3

3!
+ · · ·+ E(zj)(it)j

j!
(3.39)

Taking logarithm on both side of equation 3.39

log (χ(t)) = log

(
1 + E(z)it +

E(z2)(it)2

2!
+

E(z3)(it)3

3!
+ · · ·+ E(zj)(it)j

j!

)

By applying log(1 + x) = x − x2

2
+ x3

3
− x4

4
· · · , for −1 < x ≤ 1.

log (χ(t)) =
∑

v≥1

{
(−1)v+1

v

(∑

j≥1

1

j!
E(zj)(it)j

)v
}

(3.40)

Equate equation 3.37 and 3.40

∑

j≥1

1

j!
(it)jκj =

∑

v≥1

{
(−1)v+1

v

(∑

j≥1

1

j!
E(zj)(it)j

)v
}

(3.41)

The cumulant κj can be computed by matching the coefficient of (it)j in 3.41,

κ1 = E(z)

κ2 = V ar(z)

κ3 = E{(z − E(z))3}
κ4 = E{(z − E(z))4} − 3V ar(z)
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Since z is standard normal N(0,1), substitute κ1 = 0 and κ2 = 1 into 3.38,

χ(t) = exp
(
− 1

2
t2 +

(it)3κ3

3!
+

(it)4κ4

4!
+

(it)5κ5

5!
+ O(t6)

)
(3.42)

Substitute 3.42 in 3.30 gives

χy(t) =

{
χ

(
t√
n

)}n

(3.43)

=

{
exp

(
−1

2

t2

n
+

1

3!
(it)3κ3n

− 3
2 +

1

4!
(it)4κ4n

−2 +
1

5!
(it)5κ5n

− 5
2 + O(n−3)

)}n

Set u = it in 3.43, then

χy(t) = exp

(
− 1

2
t2 +

1

3!
κ3u

3n− 1
2 +

1

4!
κ4u

4n−1 +
1

5!
κ5u

5n− 3
2 + O(n−2)

)

= exp

(
−1

2
t2
)

exp
( 1

3!
κ3u

3n− 1
2 +

1

4!
κ4u

4n−1 +
1

5!
κ5u

5n− 3
2

︸ ︷︷ ︸
∗

+O(n−2)
)

By expanding the second term in above equation as power series of

ex = 1 + x +
x2

2!
+

x3

3!
+ O(x4)

which implies

exp(∗) = 1 +
1

3!
κ3u

3n− 1
2 +

1

4!
κ4u

4n−1 +
1

5!
κ5u

5n− 3
2

+
1

2!

( 1

3!
κ3u

3n− 1
2 +

1

4!
κ4u

4n−1 +
1

5!
κ5u

5n− 3
2

)2

+
1

3!

( 1

3!
κ3u

3n− 1
2 +

1

4!
κ4u

4n−1 +
1

5!
κ5u

5n− 3
2

)3
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Then

χy(t) = exp

(
−1

2
t2
)

exp(∗) (3.44)

= e−
1
2
t2 + r1(u)e−

1
2
t2n− 1

2 + r2(u)e−
1
2
t2n−1 + r3(u)e−

1
2
t2n− 3

2 + O(n−2)

where

r1(u) =
1

6
κ3u

3 (3.45)

r2(u) =
1

24
κ4u

4 +
1

72
κ2

3u
6

r3(u) =
1

1296
κ3

3u
9 +

1

144
κ3κ4u

7 +
1

120
κ5u

5

As the characteristic function of standard normal Y is

χy(t) =

∫ ∞

−∞
eitydΦ(y) = e−

t2

2 (3.46)

where Φ(y) is the CDF of Y ∼ N(0, 1) respectively.

We can now find the distribution function of Y by inverting each terms in

equation 3.44

P (Y ≤ y) = Φ(y) + R1(y)n− 1
2 + R2(y)n−1 + R3(y)n− 3

2 + O(n−2) (3.47)

where Rj(y) is the inverse transform of rj(it)e
− 1

2
t2 in 3.44. Next, we show how to

determine the expression of Rj(y), j = 1, 2, 3.

The integration by parts method is applied to evaluate the integration in

equation 3.46, we have

[
dΦ(y)

1

it
eity
]∞
−∞

−
∫ ∞

−∞

eity

it
dΦ(1)(y) = e−

t2

2

(−it)−1

∫ ∞

−∞
eitydΦ(1)(y) = e−

t2

2
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Repeated the integration

(−it)−2

∫ ∞

−∞
eitydΦ(2)(y) = e−

t2

2

(−it)−3

∫ ∞

−∞
eitydΦ(3)(y) = e−

t2

2

...

(−it)−j

∫ ∞

−∞
eitydΦ(j)(y) = e−

t2

2 (3.48)

where

Φ(j)(y) =

(
d

dy

)j

Φ(y)

Φ(z) is the CDF of standard normal random variable Z. We then multiply both

side of equation 3.48 by (it)j

∫ ∞

−∞
eityd

{(
− d

dy

)j

Φ(y)
}

= (it)je−
t2

2

which implies that the inverse transform of (it)je−
t2

2 equals (− d
dy

)jΦ(y), such that

L−1
[
(it)je−

t2

2

]
=

(
− d

dy

)j

Φ(y) (3.49)

Since u = it in equation 3.45, the coefficient of n− 1
2 in 3.44 is

r1(it)e
− 1

2
t2 =

1

6
κ3(it)

3e−
1
2
t2

By the result of 3.49, the inverse transform of r1(it)e
− 1

2
t2 can be obtained

R1(y) =
1

6
κ3

(
− d

dy

)3

Φ(y) (3.50)

Similarly, we can derive

R2(u) =
1

24
κ4

(
− d

dy

)4

Φ(y) +
1

72
κ2

3

(
− d

dy

)6

Φ(y) (3.51)
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R3(u) =
1

1296
κ3

3

(
− d

dy

)9

Φ(y) +
1

144
κ3κ4

(
− d

dy

)7

Φ(y) +
1

120
κ5

(
− d

dy

)5

Φ(y)

(3.52)

Now we need to use the property of Hermite polynomials given in 3.53 for the

rest of our proof

(
− d

dy

)j

Φ(y) = −Hj−1(y)φ(y) for j ≥ 1 (3.53)

where φ(y) is the PDF of standard normal N(0, 1), and Hn(y) is the probabilis-

tic Hermite polynomials. See Koornwinder (2010) for the notation of Hermite

polynomials Hj. By applying formula 3.53 to equation 3.50, 3.51, and 3.52, then

R1(y) = −1

6
κ3H2(y)φ(y)

R2(y) =

(
− 1

24
κ4H3(y) − 1

72
κ2

3H5(y)

)
φ(y)

R3(y) =

(
− 1

1296
κ3

3H8(y) − 1

144
κ3κ4H6(y) +

1

120
κ5H4(y)

)
φ(y)

Hence we can obtain the distribution function of Y from 3.47

FY (y) = P (Y ≤ y)

= Φ(y) + R1(y)n− 1
2 + R2(y)n−1 + R3(y)n− 3

2 + O(n−2)

= Φ(y) + φ(y)
(
p1(y)n− 1

2 + p2(y)n−1 + p3(y)n− 3
2 + O(n−2)

)

where

p1(y) = −1

6
κ3H2(y) (3.54)

p2(x) = − 1

24
κ4H3(y) − 1

72
κ2

3H5(y) (3.55)

p3(x) = − 1

1296
κ3

3H8(y) − 1

144
κ3κ4H6(y) +

1

120
κ5H4(y) (3.56)
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To derive the density function of Y from its CDF, we have

fY (y) =
d

dy
FY (y)

= φ(y) +
d

dy
φ(y)

(
p1(y)n− 1

2 + p2(y)n−1 + p3(y)n− 3
2 + O(n−2)

)

= φ(y) + φ(y)
{(

p′1(y) − yp1(y))n− 1
2 + (p′2(y) − yp2(y))n−1 + (p′3(y) − yp3(y)

)
n− 3

2

}

= φ(y)
{

1 + (p′1(y) − yp1(y))n− 1
2 + (p′2(y) − yp2(y))n−1 + (p′3(y) − yp3(y))n− 3

2

}

Since the Hermite polynomials satisfy the following recursion relation

H ′
n(x) = xHn(x) − Hn+1(x) (3.57)

By equation 3.54, 3.55, 3.56 and 3.57, we have

p′1 − yp1 = c1H
′
2 − yc1H2

= c1yH2 − c1H3 − yc1H2

=
κ3

6
H3

p′2 − yp2 = (c2H
′
3 + c3H

′
5) − y(c2H3 + c3H5)

= c2(yH3 − H4) + c3(yH5 − H6) − y(c2H3 + c3H5)

= c2yH3 − c2H4 + c3yH5 − c3H6 − yc2H3 − yc3H5

= −c2H4 − c3H6

=
κ4

24
H4 +

κ2
3

72
H6

p′3 − yp3 = (c4H
′
8 + c5H

′
6 + c6H

′
4) − y(c4H8 + c5H6 + c6H4)

= c4(yH8 − H9) + c5(yH6 − H7) + c6(yH4 − H5) − y(c4H8 + c5H6 + c6H4)

= −c4H9 − c5H7 − c6H5

=
κ3

3

1296
H9 +

κ3κ4

144
H7 +

κ5

120
H5
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Hence the probability density function of Y is

fY (y) = φ(y)

{
1 +

κ3

6
H3(y)n− 1

2 +

(
κ4

24
H4(y) +

κ2
3

72
H6(y)

)
n−1

+

(
κ3

3

1296
H9(y) +

κ3κ4

144
H7(y) +

κ5

120
H5(y)

)
n− 3

2 + O(n−2)

}
(3.58)

where κj are the cumulant of standard normal distribution, and Hj(y) are the

probabilistic Hermit polynomials.

As fY (y) is the probability density function of Y = X̄−µ
σ√
n

, we need to make

the transformation x̄ = µ + Y σ√
n

for the probability density function of sample

mean X̄. By taking only the first two terms in the edgeworh expansions in 3.58,

we obtain

fX̄(x) =

√
n

σ
fY

(
x̄ − µ

σ√
n

)
(3.59)

=
1

σ
φ

(
x̄ − µ

σ√
n

)[
√

n +
κ3

6

{(
x̄ − µ

σ√
n

)3

− 3

(
x̄ − µ

σ√
n

)}
+ O

(
1√
n

)]

To make the order of the approximation accurate to O( 1√
n
), we need the value of

x̄ near µ so that the term in the square bracket of equation 3.59 close to zero. For

each x̄, the method of exponential titling allow us to create a family of densities

such that the term in square bracket become zero. By introducing an extra pa-

rameter s, we can control the order of error term to give a optimal approximation.

For fixed s, the tilted density fXs
(x) is defined as

fXs
(x) =

esxfX(x)∫ +∞
−∞ esxfX(x)dx

=
esxfX(x)

Mx(s)

= exp (sx − KX(s)) fX(x) (3.60)

where KX(s) = log (MX(s)) is the cumulant generating function (CGF) of X.
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Given a random sample Xs1, Xs2, . . . , Xsn
from fXs

(x), we can derive the

tilted density of its sample mean X̄s, fX̄s
(x), using its MGF. Since the MGF of

the sample mean of a random sample is

MX̄s
(t) =

{
MXs

(
t

n

)}n

and

MXs
(t) =

∫ +∞

−∞
etxfXs

(x)dx

=

∫ +∞

−∞
exp(tx + sx − KX(s))fX(x)dx

= exp(−KX(s))

∫ +∞

−∞
exp{(t + s)x}fX(x)dx

= exp(−KX(s))MX(t + s)

MX̄s
(t) =

{
MXs

(
t

n

)}n

=

{
exp(−KX(s))MX

(
t

n
+ s

)}n

= exp(−nKX(s))

{
MX

(
t + ns

n

)}n

= exp(−nKX(s))MX̄(t + ns)

= exp(−nKX(s))

∫ +∞

−∞
exp{(t + ns)x̄}fX̄(x)dx

=

∫ +∞

−∞
exp(tx̄) exp

{
n(sx̄ − KX(s))

}
fX̄(x)dx (3.61)

Hence the PDF of X̄s is determined based on equation 3.61

fX̄s
(x) = exp

{
n(sx̄ − KX(s))

}
fX̄(x) (3.62)
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3.2 Numerical approximation method

Let µs, σ2
s be the mean and variance of title density fXs

. By the same idea

in constructing equation 3.59, we can write fX̄s
(x) as

fX̄s
(x) =

√
n

σs

φ

(
x̄ − µs

σs√
n

)[
1 +

κ3

6
√

n





(
x̄ − µs

σs√
n

)3

− 3

(
x̄ − µs

σs√
n

)
+ O

(
1

n

)]

(3.63)

Given x̄, the parameter s is chosen s = ŝ, such that ŝ satisfies x̄ = µŝ, then

x̄ = µŝ = K ′
Xs

(0) (3.64)

Now we need to connect the condition 3.64 to the CGF of X, KX(s). By equation

3.60, the CGF of the titled density Xs is

KXs
(t) = log (MXs

(t))

= log

(∫ +∞

−∞
etxfXs

(x)dx

)

= log
( ∫ +∞

−∞
e(t+s)x−KX (s)fX(x)dx

)

= log
( ∫ +∞

−∞
e(t+s)xfX(x)

)
+ log

(
e−KX(s)

)

= KX(t + s) − KX(s)

As KX(s) is a function of s, then

dKXs
(t)

dt
=

dKX(t + s)

dt

Since

(
dKX(t + s)

dt

) ∣∣∣∣∣
t=0

=

(
dMX(t+s)

dt

MX(t + s)

) ∣∣∣∣∣
t=0

=
dMX(s)

ds

MX(s)

=
dKX(s)

ds
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we have (
djKX(t + s)

dtj

) ∣∣∣∣∣
t=0

=
djKX(s)

dsj

K
(j)
Xs

(0) = K
(j)
X (s) (3.65)

Therefore, the j-th cumulant of Xs is just the j-th derivative of CGF of X with

respect to s. By condition 3.64 and equation 3.65, we have

x̄ = K ′
Xs

(0)︸ ︷︷ ︸
µŝ

= K ′
X(s)

Hence ŝ is the solution of K ′
X(s) = x̄.

We further expand fX̄s
(x) given in 3.63 to the order of n− 3

2

fX̄s
(x) =

√
n

σŝ
φ(y)

{
1 +

κ3

6
H3(y)n− 1

2 +

(
κ4

24
H4(y) +

κ2
3

72
H6(y)

)
n−1

+

(
κ3

3

1296
H9(y) +

κ3κ4

144
H7(y) +

κ5

120
H5(y)

)
n− 3

2 + O(n−2)

}
(3.66)

Since µŝ = x̄ ⇒ y = x̄−µŝ

σŝ/
√

n
= 0. On the other hand, the first nine probabilistic

Hermite polynomials are defined as H0(y) = 1, H1(y) = y, H2(y) = y2 − 1,

H3(y) = y3 − 3y, H4(y) = y4 − 6y2 + 3, H5(y) = y5 − 10y3 + 15y,

H6(y) = y6 − 15y4 + 45y2 − 15, H7(y) = y7 − 21y5 + 105y3 − 105y,

H8(y) = y8−28y6+210y4−420y2+105, H9(y) = y9−36y7+378y5−1260y3+945y.

Then we have φ(0) = 1√
2π

, H4(0) = 3, H6(0) = −15, H3(0) = H5(0) =

H7(0) = H9(0) = 0, which implies κ3

6
H3(0) = 0, and

κ3
3

1296
H9(0) + κ3κ4

144
H7(0) +

κ5

120
H5(0) = 0.
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3.2 Numerical approximation method

Hence equation 3.66 becomes

fX̄s
(x) =

√
n

σŝ
φ(0)

[{
1 +

1

n

(
κ4

8
− 5κ2

3

24

)}
+ O

(
n−2
)
]

=

(
n

2πK ′′
X(ŝ)

)1/2{
1 +

1

n

(
κ4

8
− 5κ2

3

24

)
+ O(n−2)

}
(3.67)

By multiplying exp
{
− n(sx̄ − KX(s))

}
on both side of equation 3.62, and sub-

stitute 3.67

fX̄(x) = exp
{
− n(sx̄ − KX(s))

}
fX̄s

(x) (3.68)

=

(
n

2πK ′′
X(ŝ)

)1/2

exp
{

n(KX(ŝ) − ŝx̄)
}{

1 +
1

n

(
κ4

8
− 5κ2

3

24

)
+ O

(
n−2
)
}

Since κj is only the j-th cumulant of standard normal N(0,1), we will show how

to express κj in term of the cumulant of X in the next part of our proof.

As Zs = Xs−µs

σs
∼ N(0, 1), where µs and σs are the mean and standard

deviation of X, dZs

dXs
= 1

σs
, and fZs

(z) = σsfXs
(x). Then

MZs
(t) =

∫ +∞

−∞
etzsfZs

(z)dz

=

∫ +∞

−∞
exp

{
t

(
xs − µs

σs

)}
σsfxs

(x)
1

σs
dxs

=

∫ +∞

−∞
exp

(
−µst

σs

)
exp

(
txs

σs

)
fxs

(x)dxs

= exp

(
−µst

σs

)
MXs

(
t

σs

)
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which gives

KZs
(t) = log (MZs

(t))

= −µst

σs

+ KXs

(
t

σs

)
(3.69)

By differentiating 3.69 repeatedly with respect to t, we have

K ′
Zs

(t) = −µs

σs
+

1

σs
K ′

Xs

(
t

σs

)

K ′′
Zs

(t) =
1

σ2
s

K ′′
Xs

(
t

σs

)

K ′′′
Zs

(t) =
1

σ3
s

K ′′′
Xs

(
t

σs

)

...

K
(j)
Zs

(t) =
1

(σ2
s)

j

2

K
(j)
Xs

(
t

σs

)

Hence

K
(j)
Zs

(0) =
K

(j)
Xs

(0)

(σ2
s)

j

2

Since σ2
s = K ′′

Xs
(0), and K

(j)
Xs

(0) = K
(j)
X (s) by 3.65, then

γj = K(j)
zs

(0) =
K

(j)
X (s)

(K ′′
X(s))

j

2

Therefore the density of sample mean X̄ is

fx̄(x) =

(
n

2πK ′′
X(ŝ)

)1/2

exp
{
n(KX(ŝ)− ŝx̄)

}{
1+

1

n

(
γ4

8
− 5γ2

3

24

)
+O

(
n−2
)
}

(3.70)

where

γ3 =
K

(3)
X (s)

(K ′′
X(s))

3
2

, γ4 =
K

(4)
X (s)

(K ′′
X(s))2
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3.2 Numerical approximation method

The leading term of the equation 3.70 is called the saddlepoint approximation

for the density of sample mean X̄

g(x) =

(
n

2πK ′′
X(ŝ)

)1/2

exp
{

n(KX(ŝ) − ŝx̄)
}

(3.71)

where KX(s) is the cumulant generating function of X,

K ′′
X(s) =

d2KX(s)

ds2

and ŝ satisfies that

K ′
X(ŝ) = x̄

To summarise, the key idea of this derivation is to write the characteristic

function of X̄ in term of the characteristic function of standard normal distribu-

tion Y , expand the characteristic function of Y as Taylor series, keep the first

few term and apply inversion method to recover the CDF of Y , then we com-

pute the PDF of Y and transform back to the PDF of sample mean X̄. As it

is shown in equation 3.70, we can essentially consider saddlepoint approximation

as a method to approximate a probability distribution in terms of its cumulant

generating function (CGF). As we mentioned in Chapter 2, since the MGF can

be easily obtained by the use of Mason’s rule, we can then compute the corre-

sponding CGF, this makes saddlepoint approximation for MFM (see glossary)

relatively straightforward.
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3.2.3.1 Approximation error of the Saddlepoint approximation

As the size of the approximation error is the most important concern in practical

application, we give a detail discussion about the order of the saddlepoint approx-

imation error in this section. We show that the order of error in estimating sample

mean density function can be improved from O(n− 1
2 ) to O(n− 3

2 ) by normalising

equation 3.71, where g(x) = O(n
1
2 ). Hence the order of the approximation of

density function of sample mean x̄ in 3.70 is

fx̄(x) = g(x)

(
1 + O

(
1

n

))
(3.72)

= g(x) + O(n− 1
2 )

Therefore, the error rate is O(n− 1
2 ) if fx̄(x) is approximated by g(x). However g(x)

doesn’t necessarily integrate to 1, we can improve this error rate by normalising

function g(x). From equation 3.72, we have

g(x) =
fx̄(x)

1 + O( 1
n
)

= fx̄(x)

(
1 − O

(
1

n

)
+ · · ·

)
(3.73)

The constant term is computed based on equation 3.73

c =

∫ +∞

−∞
g(x)dx = 1 − O

(
1

n

)

Then the normalized function for g(x) is

G(x) =
g(x)

c

=
fx̄(x)

(
1 − O( 1

n
) + O( 1

n2 )
)

1 − O( 1
n
)

= fx̄(x)

{
1 + O

(
1

n2

)(
1 + O

(
1

n

)
+ · · ·

)}

= fx̄(x) + fx̄(x)O

(
1

n2

)
(3.74)

76



3.2 Numerical approximation method

Substitute equation 3.72 in 3.74 gives

G(x) = fx̄(x) +

{
g(x)

(
1 + O

(
1

n

))}
O

(
1

n2

)

= fx̄(x) + g(x)O

(
1

n2

)

= fx̄(x) + O(n− 3
2 )

because of g(x) = O(n
1
2 ) Hence the order of error in approximating fx̄(x) is im-

proved to O(n− 3
2 ) by using the normalised function G(x) = g(x)∫ +∞

−∞ g(x)dx
.

3.2.4 The Lugannani-Rice formula for survival function

approximation

As the use of saddlepoint method for tail probabilities approximation is even

more important in practical application (see Daniel (1987), Reid (1988, 1991),

and Terrell (2003)), our contribution here is to rewrite the proof of Lugannani-

Rice formula for survival function approximation P (X̄ ≥ x) based on the uniform

asymptotic expansion (see Jensen (1995), p.67, Theorem 3.2.1).

Theorem 5. The Lugannani-Rice approximation for survival function

Let X1,X2,. . . ,Xn be i.i.d random variable with cumulant generating function

(CGF) Kx(s) = log(Mx(s)). Then the Lugannani and Rice approximation for

the survival function of X̄ is given by

P (X̄ > x) ≈ 1 − P (X̄ ≤ x)

≈ 1 − Φ(z2) + φ(z2)

(
1

z1

− 1

z2

+ O(n− 3
2 )

)
(3.75)

where Φ and φ are the CDF and PDF of standard normal N(0, 1) with z1 =

ŝ
√

K ′′
X(ŝ), z2 =

√
2 (ŝx − KX(ŝ)), and ŝ is the solution to K ′

X(s) = x where

K ′
X(s) = dKX/ds and K ′′

X(s) = d2KX/ds2 are the first and second derivatives of

the CGF of X.

77



Distribution theory

Proof. Given equation 3.68, we have

P (X̄ ≥ x)

=

∫ ∞

x

fX̄(y)dy (3.76)

=

∫ ∞

x

(
n

2πK ′′(ŝ)

)1/2

exp
{
n(K(ŝ) − ŝy)

}{
1 +

1

n

(
κ4

8
− 5κ2

3

24

)
+ O

(
n−2
)
}

dy

In order to apply the uniform asymptotic expansion, we need to transform equa-

tion 3.76 in the form of

∫ Tα

η

( α

2π

) 1
2

exp
(
−α

2
t2
)

qα(t)dt

Define

h(y) =
√

2 {ŝ(y)y − K(ŝ(y))} (3.77)

Given data y, ŝ(y) is the solution of K ′(s) = y such that

dK(ŝ)

ds
= y

then

d

dy

(
dK(ŝ)

ds

)
= 1

d

dŝ

(
dK(ŝ)

ds

)
dŝ

dy
= 1

d2K

dŝ2

dŝ

dy
= 1

dŝ

dy
=

(
d2K

dŝ2

)−1

As

K ′′(ŝ) =
d2K

dŝ2
> 0 ⇒ dŝ

dy
> 0

then ŝ(y) is a strictly increasing function in y.
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3.2 Numerical approximation method

Let

T = 2 {ŝ(y)y − K(ŝ(y))}

then
dT

dy
= 2 {ŝ + ŝ′y − K ′(ŝ)ŝ′}

and

dh

dy
=

dh

dT

dT

dy

=
1

2

{
2 (ŝy − K(ŝ))

}− 1
2 · 2 {ŝ + ŝ′y − K ′(ŝ)ŝ′}

=
{

2 (ŝy − K(ŝ))
}− 1

2
{
ŝ + ŝ′ (y − K ′(ŝ))︸ ︷︷ ︸

=0

}

=
{

2 (ŝy − K(ŝ))
}− 1

2
ŝ

By equation 3.77, we have

h′ =
dh

dy
=

ŝ

h
(3.78)

As h(y) ≥ 0 and ŝ(y) is a strictly increasing function of y, then h is also a strictly

increasing function of y. Therefore the range of integrand can be change from∫∞
x

dy →
∫∞

h(x)
dh(y).

Since

dy =
dy

dh
· dh =

1
dh
dy

· dh =
1

h′dh (3.79)

By equation 3.77 and 3.79, we change the integrand variable from y to h(y) and

3.76 becomes

P (X̄ ≥ x) (3.80)

=

∫ ∞

h(x)

( n

2π

) 1
2
exp

(
−n

2
h2
) 1

h′
√

K ′′(ŝ)︸ ︷︷ ︸
(∗)

{
1 +

1

n

(
κ4

8
− 5κ2

3

24

)
+ O

(
1

n2

)}
dh
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Since the uniform asymptotic expansion formula is

∫ Tα

η

( α

2π

) 1
2
exp

(
−α

2
t2
)

qα(t)dt (3.81)

= {1 − Φ(
√

αη)}
{

qα(0) +
1

α

q
(2)
α (0)

2
+ · · ·+ 1

αk

q
(2k)
α (0)

2 · 4 · · · (2k)
+ O

(
1

αk+1

)}

+
exp(−α

2
η2)√

2πα

{qα(η) − qα(0)

η
+

1

α

q1α(η) − q1α(0)

η
+ .. +

1

αk

qka(η) − qka(0)

η

}

By comparing the integral of (∗) term in 3.80 to 3.81, we determine Tα = ∞,

η = h, α = n, and qα(h) = 1

h′
√

K ′′(ŝ)
, and apply the uniform asymptotic expansion

formula for k = 1 case.

P (X̄ ≥ x)

=
{
1 − Φ(

√
nh)
}
{

qn(0)

(
1 +

1

n

(
κ4

8
− 5κ2

3

24

))
+

1

n

q′′n(0)

2
+ O

(
1

n2

)}

+
1√
2πn

exp

(
−(

√
nh)2

2

){
qn(h) − qn(0)

h
+ O

(
1

n

)}
(3.82)

Next, we need to find the qn(h) function and compute qn(0), q(2)(0).

By substituting result 3.78 in qα(h) = 1

h′
√

K ′′(ŝ)
, we obtain

qn(h) =
1

h′
√

K ′′(ŝ)
=

h

ŝ
√

K ′′(ŝ)
(3.83)

Then

(qn(h))2 =

(
h

ŝ
√

K ′′(ŝ)

)2

=
2 (ŝy − K(ŝ))

ŝ2K ′′(ŝ)

=
2 (ŝK ′(ŝ) − K(ŝ))

ŝ2K ′′(ŝ)

80
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By the Taylor expansion of K(ŝ) at 0, we have

K(ŝ) = K(0)︸ ︷︷ ︸
=0

+K ′(0)ŝ +
K ′′(0)ŝ2

2
+

K ′′′(0)ŝ3

6
+

kiv(0)ŝ4

24
+ O(ŝ5)

= κ1ŝ +
κ2ŝ

2

2
+

κ3ŝ
3

6
+

κ4ŝ
4

24
+ O(ŝ5) (3.84)

Then

K ′(ŝ) =
dK(ŝ)

dŝ

= κ1 + κ2ŝ +
κ3ŝ

2

2
+

κ4ŝ
3

6
+ O(ŝ4) (3.85)

K ′′(ŝ) =
d2K(ŝ)

dŝ2

= κ2 + κ3ŝ +
κ4

2
ŝ2 + O(ŝ3) (3.86)

As y = K ′(ŝ), we substitute equation 3.84, 3.85, and 3.86 in equation 3.77

h2 = 2 (ŝK ′(ŝ) − K(ŝ))

= 2

{(
κ1ŝ + κ2ŝ

2 +
κ3

2
ŝ3 +

κ4

6
ŝ4 + O(ŝ5)

)

−
(

κ1ŝ +
κ2ŝ

2

2
+

κ3ŝ
3

6
+

κ4ŝ
4

24
+ O(ŝ5)

)}

= κ2ŝ
2 +

2κ3ŝ
3

3
+

κ4ŝ
4

4
+ O(ŝ5) (3.87)
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Further substitute equation 3.87 and 3.86 in equation 3.84 gives

q2
n(h) =

h2

ŝ2K ′′(ŝ)

=
κ2 + 2

3
κ3ŝ + 1

4
κ4ŝ

2 + O(ŝ3)

κ2 + κ3ŝ + 1
2
κ4ŝ2 + O(ŝ3)

=
1 + 2

3
κ3

κ2
ŝ + 1

4
κ4

κ2
ŝ2 + O(ŝ3)

1 + κ3

κ2
ŝ + 1

2
κ4

κ2
ŝ2 + O(ŝ3)

=

(
1 +

2

3

κ3

κ2
ŝ +

1

4

κ4

κ2
ŝ2 + O(ŝ3)

)(
1 − κ3

κ2
ŝ − 1

2

κ4

κ2
ŝ2 +

(
κ3

κ2
ŝ +

1

2

κ4

κ2
ŝ2

)2

+ · · ·
)

= 1 − 1

3

κ3

κ2
ŝ +

{
1

3

(
κ3

κ2

)2

− 1

4

κ4

κ2

}
ŝ2 + O(ŝ3)

= 1 − 1

3
γ3

√
κ2ŝ +

(
1

3
γ2

3 −
1

4
γ4

)
κ2ŝ

2 + O(ŝ3) (3.88)

where γj =
κj

(κ2)
j
2

for j = 3, 4. We next take logarithm on both side of 3.88, and

use log(1 + x) = x − x2

2
+ x3

3
− x4

4
· · · , for −1 < x ≤ 1,

2 log(qn(h)) = log

[
1 +

{
−1

3
γ3

√
κ2ŝ +

(
1

3
γ2

3 −
1

4
γ4

)
κ2ŝ

2 + O(ŝ3)

}]

= −1

3
γ3

√
κ2ŝ +

(
1

3
γ2

3 −
1

4
γ4

)
κ2ŝ

2 − (−1
3
γ3
√

κ2ŝ)
2

2
+ O(ŝ3)

log(qn(h)) = −1

6
γ3

√
κ2ŝ +

1

2

(
1

3
γ2

3 −
1

4
γ4

)
κ2ŝ

2 − 1

36
γ2

3κ2ŝ
2 + O(ŝ3)

= −1

6
γ3

√
κ2ŝ +

(
5

36
γ2

3 −
1

8
γ4

)
κ2ŝ

2 + O(ŝ3)
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Then

qn(h) = exp
{
− 1

6
γ3

√
κ2ŝ +

(
5

36
γ2

3 −
1

8
γ4

)
κ2ŝ

2 + O(ŝ3)
}

= 1 − 1

6
γ3

√
κ2ŝ +

(
5

36
γ2

3 −
1

8
γ4

)
κ2ŝ

2 +

(
−1

6
γ3
√

κ2ŝ + · · ·
)2

2
+ O(ŝ3)

= 1 − 1

6
γ3

√
κ2ŝ +

(
11

72
γ2

3 −
1

8
γ4

)
κ2ŝ

2 + O(ŝ3) (3.89)

As qn(h) is a function of h, we need to express ŝ in terms of h.

Define

ŝ = a1h + a2h
2 + O(h3) (3.90)

By substituting 3.90 to the first two terms of 3.87, we have

h2 = κ2

(
a1h + a2h

2
)2

+
2

3
κ3

(
a1h + a2h

2
)3

+ O(h4)

= κ2a
2
1h

2 +

(
2a1a2κ2 +

2

3
κ3a

3
1

)
h3 + O(h4) (3.91)

Equate the coefficient h2 and h3 on both side of 3.91 to solve a1,a2, then

a2
1κ2 = 1 ⇒ a1 =

1√
κ2

(3.92)

2a1a2κ2 +
2

3
κ3a

3
1 = 0 ⇒ a2 = −1

3

κ3

κ2
2

= −1

3

γ3√
κ2

(3.93)

where γ3 = κ3κ2
− 3

2 , then we substitute 3.92 and 3.93 in 3.90 yields

ŝ =
1√
κ2

(
h − 1

3
γ3h

2

)
+ O(h3) (3.94)
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Substitute equation 3.94 in to equation 3.89

qn(h) = 1 − 1

6
γ3

√
κ2

1√
κ2

(
h − 1

3
γ3h

2

)
+

(
11

72
γ2

3 −
1

8
γ4

)
κ2

1

κ2

(
h − 1

3
γ3h

2

)2

+ O(h3)

= 1 − 1

6
γ3

(
h − 1

3
γ3h

2

)
+

(
11

72
γ2

3 −
1

8
γ4

)(
h − 1

3
γ3h

2

)2

+ O(h3)

= 1 − 1

6
γ3h +

(
1

18
γ2

3 +
11

72
γ2

3 −
1

8
γ4

)
h2 + O(h3)

= 1 − 1

6
γ3h +

(
5

24
γ2

3 −
1

8
γ4

)
h2 + O(h3)

Hence

qn(0) = 1, q(2)
n (0) = 2

(
5

24
γ2

3 −
1

8
γ4

)
(3.95)

Finally, we substitute equation 3.95 and 3.83 in equation 3.82 to obtain the

Lugannani-Rice formula for survival function of X̄

P (X̄ ≥ x) =
{
1 − Φ(

√
nh)
}{

1 +
1

n

(
γ4

8
− 5γ2

3

24

)
+

1

n

(
5γ2

3

24
− γ4

8

)
+ O

(
1

n2

)}

+φ(
√

nh)
1√
n

(
qn(h) − 1

h
+ O

(
1

n

))

=
(
1 − Φ(

√
nh)
)(

1 + O

(
1

n2

))
+ φ(

√
nh)

(
1√
nŝσ

− 1√
nh

+ O

(
1

n
3
2

))

= 1 − Φ(z2) + φ(z2)

(
1

z1
− 1

z2
+ O(n− 3

2 )

)
(3.96)

Note that the saddlepoint approximation for the CDF of X̄ is

Fx̄(x) = P (x̄ ≤ x)

= 1 − P (X̄ ≥ x)

= Φ(z2) + φ(z2)

(
1

z2
− 1

z1
+ O(n− 3

2 )

)

where z1 = ŝ
√

nK ′′
X(ŝ), z2 =

√
2n [ŝx − KX(ŝ)]; Φ and φ are the CDF and PDF

of standard normal N(0, 1).
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3.3 Comparison of methods

3.3.1 Example 1.5

We compare all the above methods which relies on our access to the MGF and

CGF, the maximum entropy method with 5 moment constraints, saddlepoint ap-

proximation, and Padé approximation to estimate the total waiting time PDF

fT02(t) based on MT02(s) in Section 3.1.1 on page 41, where all the internode

waiting time follow exponential distribution (see Table 3.1 on page 41).

First, we compute the maximum entropy density based on 5 moment con-

straints

f̂ME(t) = exp(−1.2160 − 0.0202t− 0.0937t2 + 0.0073t3 + 0.0002t4)

The corresponding maximum entropy survival function, ŜME(t) =
∫∞

t
f̂ME(u)du,

can then be obtained by numerical integration.

Since we are only interested in the distribution of total waiting time T02

instead of the mean of total waiting time from node 0 to node 2, the saddlepoint

approximation for fT02(t) of can be obtained by the substituting n = 1 in equation

3.71.

f̂sp(t) = (2πK ′′(ŝ))
− 1

2 exp (K(ŝ) − ŝx)

where K(s) = log (MT02(s)), MT02(s) is the MGF of T02; K ′(s) = d
ds

K(s), and ŝ

satisfies K ′(ŝ) = x.

The saddlepoint approximation for the survival function can be computed by

the use of Lugannani-Rice formula in Theorem 5 with n = 1.

Ŝsp(t) = 1 − Φ(z2) + φ(z2)

(
1

z1
− 1

z2

)

where z1 = ŝ
√

K ′′(ŝ), z2 =
√

2 (ŝt − K(ŝ)); Φ and φ are the distribution and

density function of standard normal N(0, 1).
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The estimated PDF and survival function based on the inversion of Padé

approximation of MT02(s), PA[3,4](s), are given in equation 3.27 and 3.28. Since

both the true density function and the survival function are in closed form (see

equation 3.6 and 3.5 on page 43), we compare these three methods by calculating

the integrated square errors (ISE).

ISE =

∫ ∞

0

(
f(t) − f̂(t)

)2

dt

where f(t) is the true density and f̂(t) is the estimated density. We particularly

focus on the performance of these methods when estimation is only based the sim-

ulated data on the time interval t = [0, 20]. The integrated square errors obtained

for each method are given in Table 3.5. It is shown that the Padé approximation

has the smallest ISE and is remarkable accurate in estimating both PDF and

survival function of total waiting time between node 0 and node 2.

Table 3.5: Integrated square error(ISE)

Method density function survival function

Maximum Entropy 0.0422 0.0186
Saddlepoint approximation 0.0286 0.0017

Padé approximation 7.46 × 10−13 3.57 × 10−14

Figure 3.5 and 3.6 indicate that all the three methods give reasonable good

approximations for both density function and survival function, particularly the

density estimation based on Padé method is virtually the same as the true den-

sity. For further comparison, we take the logarithm of our density estimation and

survival function estimation result, and plot each of them against t in Figure 3.7

and 3.8 respectively. Generally, we can see that both saddlepoint approximation

and Padé approximation are relatively more accurate than the approximations

based maximum entropy method, which has a large error in the tail area esti-

mation of PDF and survival function. This may due to the fact the expression

of maximum entropy density is an exponential of polynomial function, see equa-

tion 3.9 on page 45, and it becomes unstable when t is large. We will give more

discussion about the tail area approximation in Chapter 5.
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Figure 3.5: Density Estimation for T02 in Example 1.5
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Figure 3.6: Survival estimation for T02 in Example 1.5
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Figure 3.7: Plot log(f(t)) against t in Example 1.5
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Figure 3.8: Plot log(P (T > t)) against t in Example 1.5
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3.3.2 Example 1.6

Since a closed form expression for the true PDF in exponential case can always

be obtained by directly applying the inverse Laplace transform of the MGF, we

do not need to use any density approximation methods. As this is not always the

case and the true PDF will not have close form if the internode waiting time is

non exponentially distributed. In this section, we apply the maximum entropy

method, saddlepoint approximation and Padé approximation to estimate the dis-

tribution of the total waiting time in the example of Section 3.2.1.4 on page 54,

where Gamma distributed inter-node waiting time is allowed (see Table 3.4).

The MGF of the total waiting time from node 0 to node 2 is

MT02(s) =
1
4

(
4.8

4.8−s

)3.2( 3
3−s

)2
+ 1

2

(
2.2

2.2−s

)

1 − 1
4

(
4.8

4.8−s

)3.2( 4
4−s

)

We can see that MT02(s) is not a rational function and the Heaviside formula

given in Lemma 4 can not be applied to compute its inverse Laplace transform

for fT02(t). By imposing 6 moment constraints, the maximum entropy estimated

density is determined as

f̂ME(t) = exp(−0.033 − 1.6088t + 1.0621t2 − 0.4775t3 + 0.0785t4 − 0.0043t5)

The estimated survival function based on the maximum entropy density is defined

as ŜME(t) =
∫∞

t
f̂ME(u)du, which requires to compute integration numerically.

Furthermore the saddlepoint approximation for the PDF and survival func-

tion of T02 can be obtained by formula given in 3.71 and 3.96 respectively. To

apply the Padé approximation method introduced in Section 3.2.2, we first ap-

proximate MT02(s) as rational function PA[3,4](s)

PA[3,4](s) =
1 − 0.4508s + 0.138s2 − 0.0117s3

1 − 1.5039s + 0.7323s2 − 0.1442s3 + 0.0109s4
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Lemma 4 on page 40 is applied to invert PA[3,4](s) for the Padé estimated PDF.

f̂pa(t) = 2e−4.6724t (1.1902 cos(2.406t) + .613995682 sin(2.406t))

−3.876e−2.5763t + 2.566e−1.2863t

The Padé estimated survival function is

Ŝpa(t) = −1.5044 exp(−2.5764t) + 1.9948 exp(−1.2863t)

2 exp(−4.6725t) (0.2548 cos(2.406t) + 0.0002 sin(2.406t))

The estimation for PDF and survival function is presented in Figure 3.9 and Fig-

ure 3.10 separately. We also compare all three methods by plotting the logarithm

of estimation result against t, Figure 3.11 and 3.12 reveal that the instability of

maximum entropy density occurs when t becomes large.

To conclude, we find two appealing advantages of using Padé approxima-

tion for total waiting time density estimation. First, the Padé method is more

informative than the other two methods in the sense that it can always pro-

vide an analytical approximation for the unknown true density, which can be

easily applied to obtain closed form expression for survival function, reliability

function and hazard function. Secondly, the Padé method allows us to estimate

the PDF and CDF in the form of mixture of exponential densities, whose rates

are determined by the poles of the rational approximation of MGF. This unique

feature indicates that we can potentially analyse the total waiting time data in

terms of phase type distribution (see Huzurbazar (2002)). By comparisons, the

maximum entropy method can also give a closed form maximum entropy density

to estimate the probability density function, however, it is not easy to perform

further calculation because the high degree of polynomial in equation 3.9 leads

to high computational cost in evaluating the integral. Although the saddlepoint

approximation is accurate in both density and survival function estimation, the

implementation could be difficult if the MGF of total waiting time is compli-

cated, and it often requires a great deal of computational effort to compute the

saddlepoint ŝ (see Theorem 4) and obtain estimation.
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Figure 3.9: Estimated PDF of T02(t) in Example 1.6
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Figure 3.10: Estimated survival function of T02 in Example 1.6
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Figure 3.11: Plot log(f(t)) against t in Example 1.6
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Figure 3.12: Plot log(P (T > t)) against t in Example 1.6
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Chapter 4

Parameter estimation

In this chapter, we apply the maximum likelihood method and the method of

moments (MM) to estimate parameters in the total waiting time distribution.

The maximum likelihood method selects values of the parameters that maximise

the likelihood function. Maximum likelihood estimators (MLE) have a number of

attractive asymptotic properties, such as consistency, efficiency and asymptotic

normality.

However, in a flowgraph with non-exponentially distributed internode waiting

time, as shown in Section 3.3.2 Chapter 3, the probability density function of to-

tal waiting time is intractable and the analytical expression of likelihood function

is not available. In this case, the maximum likelihood method is often difficult

to implement and computationally costly, and the MLE has to be determined

numerically by the use of optimization methods based on an approximation of

the likelihood function.

The method of moments, on the other hand, does not require a closed form

of the likelihood function. It constructs moment equations by equating sample

moments with population moments (i.e. the derivation of MGF at s = 0) and

solving these moment equations to estimate the parameters. Moreover, with suit-

able parameterizations, MM is computationally efficient.
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Here is how this chapter is organised. The first two sections of this chapter

deal with the Maximum Likelihood Estimation. The first contribution we present

is to propose a method to convert the mixture of negative weight exponential

densities into a suitable form that can be adapted for applying the EM algo-

rithm to estimate its weight and rate parameters. We then turn to the method of

moments approach for parameter estimation in flowgraph, particularly the tran-

sition probability and the parameters in the internode waiting time distribution.

Our second contribution is to develop a formula to estimate the bias in the MM

estimator and suggest a bias correction method for the MM. The last section of

this chapter gives comparison between the MLE and MM estimator in terms of

their mean square error and actual computational time.

4.1 Maximum Likelihood Estimation

Given a sample of observations, the maximum likelihood estimation is a method

to estimate the parameters of a distribution by finding the value of parameters

that maximise the likelihood function.

Definition 8. let x = {x1, . . . , xn} be a set of independent and identically dis-

tributed (iid) observations from a distribution with probability density function

f(x|θ), that is indexed by the set of parameters θ = (θ1, . . . , θd). Given the obser-

vations, the resulting likelihood function of the parameters θ is:

L(θ|X) =

n∏

i=1

f(xi|θ)

Then the maximum likelihood estimator (MLE) for θ based on the observations

x1, . . . , xn is defined as θ̂ for which

θ̂ = argmax L(θ|x)
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For a d-dimensional parameter θ = (θ1, . . . , θd), the procedure of finding the

MLE is usually about solving a system of likelihood equations, which are con-

structed by setting the first derivative of the logarithm of the likelihood function

to zero. As it is shown in equation 3.5, Section 3.1.1, it is common to have the

total waiting time density function in the form of a mixture density, and the

likelihood equation of mixture density is nonlinear equation, which can not have

analytical solution. Consequently, we need to apply some iterative procedures to

find an approximate solution of the likelihood equations.

4.2 The Expectation-Maximisation algorithm

The Expectation-Maximisation (EM) algorithm is an iterative method to find the

MLE when the likelihood function is impractical to differentiate or directly max-

imise, and the closed form solutions of likelihood function is not available. Each

iteration of EM algorithm consists of two steps: the expectation step (E-step)

followes by the maximisation step (M-step). This algorithm was first formally

introduced by Dempster, Laird, and Rubin (1977), and it has been broadly ap-

plied to perform statistical inference when the given data set is incomplete or has

missing values. For more detail background theory and extension, see McLachlan

and Krishnam (1997).

In flowgraph analysis, we assume that the path of each particle chose to move

from input node to output node is not observable, then the notion of “incomplete

data” can be considered as the missing information about the “path” between

input and output that generates each total waiting time, it is therefore useful to

express the waiting time problem as an incomplete-data problem within the EM

algorithm framework.

In this section, we first briefly review the basic theory of the EM algorithm,

present a detail derivation of the procedure for parameter estimation in a mixture

density, and propose an method to transform the mixture of negative weight

density into a suitable form for implementing the EM algorithm.
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Let X be a random variable with observed data x = (x1, ..., xn) that are

generated by some distribution having parameters θ with parameter space Θ. Let

y = (y1, ..., yn) denotes the unobservable or missing information, and then assume

a complete data set z = (x, y). The joint density function for random variable Z

is

f(z|θ) = f(x, y|θ)
= f(y|x, θ)f(x|θ)

We can then define the complete data likelihood function as

L(θ|z) =
n∏

i=1

f(zi|θ)

=

n∏

i=1

f(xi, yi|θ)

Since the missing information y is unknown, L(θ|z) can be considered as a func-

tion of y gives x and θ. We refer to the original likelihood function L(θ|x) as the

incomplete data likelihood function. The EM algorithm consists of two steps as

follow.

The E-step (Expectation): The first step of EM algorithm is to find the

expected value of complete data log-likelihood function log(L(θ|x, y)) with respect

to the unknown data Y given the observed data X and current value of parameter

θ(m).

Q(θ, θm) = E {log(L(θ|x, y))}Y

=

∫

Y

log(L(θ|x, y))f(y|x, θ(m))dy (4.1)

The second argument θ(m) in Q(θ, θ(m)) represents the current value for θ that we

use to evaluate the expectation at the m-th iteration. Note that equation 4.1 is

obtained based on the following definition of conditional expectation.
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E[h(y)|x, θ(m)] =

∫

Y

h(y)f(y|x, θm)dy

The key idea in the expectation step is to understand that X and θm are given

constants, and Y is a random variable with marginal distribution f(y|x, θ(m)).

The M-step (Maximisation): The second step of EM algorithm is to

maximise the expectation we obtained in equation 4.1 with respect to θ such that

θ(m+1) = argmax Q(θ, θ(m))

We choose θ(m+1) from Θ that

Q(θ(m+1), θ(m)) ≥ Q(θ, θ(m)) for all θ ∈ Θ

Given the initial value θ(m) and data X, the EM algorithm starts off with E-

step and follows by M-step, the two steps are repeated until the difference in the

incomplete data log-likelihood function is less than a defined small amount δ for

convergence.

L(θ(m+1)|x) − L(θ(m)|x) ≤ δ

Essentially, EM algorithm reconstructs the given incomplete-data likelihood func-

tion L(θ|x) in terms of a complete-data likelihood function L(θ|z), makes use of

the connection between these two function and obtains a MLE based on a po-

tentially simpler calculation in the EM algorithm for complete-data problem. In

some simple case, for example mixture of Normal distributions or mixture of Pois-

son distribution, the M-step of the algorithm always has analytical solution, so

that the implementation of EM algorithm is easy and we have closed form MLE.

In our case, the total waiting time PDF is in the form of mixture of exponential

distribution, the M-step usually doesn’t have analytical solution, and numerical

method is required to compute the MLE.
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Dempster, Laird, and Rubin (1977) shows that each iteration of EM algo-

rithm is guaranteed to increase the incomplete data log-likelihood until it con-

verges, the rate of convergence is linear and the rate depends on the proportion

of information in the observed data. By comparing to Newton-Raphson method,

the EM algorithm is numerically more stable with each iteration to increase the

log-likelihood function, and it converges to a local maximiser from almost any

starting point (Dennis and Schnabel (1983), page 5). A detail discussion on the

convergence issue of EM algorithm is given in Wu (1983). The EM algorithm

also has the advantage of lower computational cost per iteration, which it does

not require to evaluate the Jacobian matrix of likelihood equations. Although the

EM algorithm may converge very slowly for some initial value of parameter, this

can be overcome by starting from random initial value and keep the best of those

initial value of parameters that requires small number of iterations. In practise,

it is common to monitor convergence by observing the increase in the plot of

log-likelihood against iterations.

4.2.1 Case 1: Mixture with positive weights

As an important family of densities to which the EM algorithm can be applied

is the mixture density, which is a weighted sum of k component densities that

come from a particular distribution, such as normal distribution or exponential

distribution. The goal of this section is to discuss the formulation of the EM

algorithm for mixture densities.

Definition 9. The finite mixture densities is defined as

f(x|Θ) =
k∑

j=1

wjfj(x|θj) (4.2)

where each fj(x|θj) is a density function ,
∑k

j=1 wj = 1, and each weight wj ≥ 0

can be thought of as the probability of the data belongs to the j-th component

density fj(x|θj) (i.e. P(component density j) = wj). The parameter vector is

denoted by Θ = (w1, ..., wk; θ1, ..., θk)
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The rest of this section will illustrate the derivation of formulas to estimate

the parameters in mixture densities (i.e. weights and parameters in component

density) based on the EM algorithm. We start off by defining the incomplete data

log-likelihood for f(x|Θ) from observed data x = (x1, ..., xn) as

log (L(Θ|X)) = log

(
n∏

i=1

f(xi|Θ)

)

=
n∑

i=1

log

(
k∑

j=1

wjfj(xi|θj)

)

As log (L(Θ|X)) is in the form of the logarithm function of the sum of mix-

ture densities, it is difficult to be maximised by the usual maximum likelihood

procedure. To apply EM algorithm, we first denote the missing information by

y = (y1, ..., yn), where yi ∈ (1, 2, ..., k) for each i = 1, ..., n such that yi = j if the

i-th data, xi belongs to the j-th component density fj(x|θj), j = 1, 2, ..., k.

The complete data log-likelihood function is

log (L(Θ|X, Y )) = log(f(X, Y |Θ))

=
n∑

i=1

log (f(yi|xi, θyi
)f(xi|θyi

)) (4.3)

Given the initial value Θ(0) = (w
(0)
1 , ..., w

(0)
k ; θ

(0)
1 , ..., θ

(0)
k ) and sample data X, we

can compute the marginal density function

f(Y |X, Θ(0)) =

n∏

i=1

f(yi|xi, Θ
(0)) (4.4)

where

f(yi|xi, Θ
(0)) =

f(yi, xi, Θ
(0))

f(xi, Θ(0))
=

f(xi|yi, Θ
(0))f(yi|Θ(0))

f(xi|Θ(0))
(4.5)

By equation 4.2, we have

f(xi|Θ(0)) =

k∑

j=1

wjfj(xi|θ(0)
i ) (4.6)
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and

f(yi|Θ(0)) = w(0)
yi

(4.7)

Substitute 4.6 and 4.7 in 4.5, equation 4.4 becomes

f(Y |X, Θ(0)) =
n∏

i=1

f(yi|xi, Θ
(0))

=

n∏

i=1

f(xi|yi, Θ
(0))w

(0)
yi∑k

j=1 wjfj(xi|θ(0)
i )

(4.8)

Then the E-step gives

Q(θ, θ(0)) = EY |X,Θ(0)

{
log (L(Θ|X, Y ))

}

=
∑

y∈Y

log (L(Θ|X, y)) f(y|X, Θ(0))

where log (L(Θ|X, y)) and f(y|X, Θ(0)) are defined in equation 4.3 and 4.8 sepa-

rately. Further simplification leads to

Q(θ, θ(0)) =
∑

y∈Y

log (L(Θ|X, y)) f(y|X, Θ(0))

=

k∑

y1=1

· · ·
k∑

yn=1

n∑

i=1

log (wyi
fyi

(xi|θyi
)) f(y|X, Θ(0))

=
k∑

y1=1

· · ·
k∑

yn=1

n∑

i=1

k∑

j=1

δ(j,yi)log (wjfj(xi|θj)) f(y|X, Θ(0))

=
k∑

j=1

n∑

i=1

log (wjfj(xi|θj))
k∑

y1=1

· · ·
k∑

yn=1

δ(j,yi)f(y|X, Θ(0)) (4.9)

where

δ(j,yi) =

{
1 if j = yi

0 otherwise
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As

f(y|X, Θ(0)) =
n∏

z=1

f(yz|xz, Θ
(0))

Then we have

k∑

y1=1

· · ·
k∑

yn=1

δ(j,yz)f(y|X, Θ(0))

=
k∑

y1=1

· · ·
k∑

yn=1

δ(j,yz)

n∏

z=1

f(yz|xz, Θ
(0))

=

[
k∑

y1=1

· · ·
k∑

yi−1=1

k∑

yi+1=1

· · ·
k∑

yn=1

n∏

z=1,z 6=i

f(yz|xz, Θ
(0))

]
f(j|xi, Θ

(0))

=

n∏

z=1,z 6=i

[
k∑

yz=1

f(yz|xz, Θ
(0))

]
f(j|xi, Θ

(0))

= f(j|xi, Θ
(0))

Because of
∑k

yz=1 f(yz|xz, Θ
(0)) = 1. Therefore, we can simplify equation 4.9 as

Q(θ, θ(0)) =

k∑

j=1

n∑

i=1

log (wjfj(xi|θj)) f(j|xi, Θ
(0))

=

k∑

j=1

n∑

i=1

log(wj)f(j|xi, Θ
(0))

+

k∑

j=1

n∑

i=1

log (fj(xi|θj)) f(j|xi, Θ
(0))

= G(wj) + R(θj)

As G(wj) and R(θj) are independent, we can maximise Q(θ, θ(0)) with respect to

wj and θj separately in M-step. Since the maximisation of G(wj) is subject to

the constraint
∑k

j=1 wj = 1, the method of Lagrange multipliers can be applied
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in this case, and solve the following equation for estimating wj, j = 1, ..., k. Let

Λ(wj, λ) = G(wj) + λ(
k∑

j=1

wj − 1)

=
k∑

j=1

n∑

i=1

log(wj)f(j|xi, Θ
(0)) + λ(

k∑

j=1

wj − 1)

which yields the system of equations:

∂Λ

∂wj
=

k∑

j=1

n∑

i=1

f(j|xi, Θ
(0))

wj
+

k∑

j=1

λ = 0 (4.10)

∂Λ

∂λ
=

k∑

j=1

wj − 1 = 0 (4.11)

Note equation 4.11 is the original constraint for the weights in Definition 9.

By multiplying wj on both side of equation 4.10, we have

k∑

j=1

n∑

i=1

f(j|xi, Θ
(0)) +

k∑

j=1

λwj = 0

k∑

j=1

( n∑

i=1

f(j|xi, Θ
(0)) + λwj

)
= 0 (4.12)

n∑

i=1

k∑

j=1

f(j|xi, Θ
(0)) + λ = 0 (4.13)

Since
∑k

j=1 f(j|xi, Θ
(0)) = 1, then equation 4.13 becomes

n∑

i=1

1 + λ = 0

λ = −n
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4.2 The Expectation-Maximisation algorithm

On the other hand, equation 4.12 implies that

n∑

i=1

f(j|xi, Θ
(0)) + λwj = 0

wj = −
∑n

i=1 f(j|xi, Θ
(0))

λ
(4.14)

Substituting λ = −n in 4.14 gives a general formula to determine the weight in

mixture density

wj =
1

n

n∑

i=1

f(j|xi, Θ
(0)) (4.15)

where f(j|xi, Θ
(0)) is the marginal density function of yi = j-th component density

given data xi and the current value of parameter Θ(0) such that

f(j|xi, Θ
(0)) =

w
(0)
j fj(xi|θ(0)

j)
∑k

l=1 w
(0)
l fl(xi|θ(0)

i )
for j = 1, .., k.

On the other hand, in order to estimate the parameters θ = (θ1, ..., θk) that are

specified in each component density, we need to maximise function R(θj)

R(θj) =

k∑

j=1

n∑

i=1

log (fj(xi|θj)) f(j|xi, Θ
(0))

with respect θj , for j = 1, ...k. This involves finding the partial derivative of R(θj)

∂R(θj)

∂θj
=

k∑

j=1

n∑

i=1

(
∂log(fj(xi|θj))

∂θj

)
f(j|xi, Θ

(0)) = 0 (4.16)

Generally, the computation of equation 4.16 depends on the expression of compo-

nent densities fj(xi|θj), and parameters θ1, ..., θk need to be estimated in a case by

case manner. In the best situation, each component density is from a well-known

distribution and it has a simple analytical form of PDF, where we can obtain a

closed form expression for θj directly, however, in some case, the component den-

sity is very complicated, and we usually need to use numerical method to solve

equation 4.16 accordingly.
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4.2.1.1 Example 5.1

We consider the three nodes parallel flowgraph model for the progression of can-

cer patients in Section 2.1.2.2, Chapter 2 again. The distribution of internode

waiting time of flowgraph in Figure 2.2, page 9, is given in Table 4.1.

Table 4.1: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

1 → 2 Exponential(λ2) m12(s) = λ2

λ2−s

0 → 2 Exponential(λ3) m02(s) = λ3

λ3−s

By Mason’s rule, the MGF of overall waiting time distribution between node

0 and node 2 is

MT02(s) = p01p12m01(s)m12(s) + p02m02(s)

= p01

( λ1

λ1 − s

)( λ2

λ2 − s

)
+ p02

( λ3

λ3 − s

)

By the exact inversion method discussed in Section 3.1, we obtain the probability

density function of total waiting time from node 0 to node 2 in the form of mixture

of two densities such that

f(t|θ) = p01
λ1λ2

λ1 − λ2
(e−λ2t − e−λ1t) + p02λ3e

−λ3t

= (1 − p02)f1(t | θ1) + p02f2(t | θ2) (4.17)

=
2∑

j=1

wjfj(t | θj)

where f1(t|θ1) = λ1λ2

λ1−λ2
(e−λ2t − e−λ1t), f2(t|θ) = λ3e

−λ3t, the parameter vector is

θ = (w1, w2; θ1, θ2), θ1 = (λ1, λ2), θ2 = λ3, and the mixture model weights satisfy∑2
j=1 wj = w1 + w2 = p01 + p02 = 1.
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4.2 The Expectation-Maximisation algorithm

Given the total waiting time data t1, ..., tn, the log-likelihood function is

log (L(θ)) = log

(
n∏

i=1

f(ti|θ)
)

=
n∑

i=1

log

(
2∑

j=1

wjfj(ti | θj)

)
(4.18)

Since the log likelihood function in parallel flowgraph contains the logarithm func-

tion of the sum of mixture densities, the derivation of the sum of log function with

respect to θ leads to a system of non-linear equations, which are computationally

demanding to solve for θ.

As it is illustrated in Figure 2.2, that there are two different paths from input

node 0 to output 2 in our parallel flowgraph example, path 1 is 0 → 1 → 2 and

path 2 is 0 → 2, the total waiting time data T = (t1, ...tn) can be viewed as

incomplete data by assuming the existence of unobserved data Y = (y1, ...yn),

whose values indicate which path “generated ” each total waiting time, the EM

algorithm can be easily applied to find the MLE of mixture parameters in the

above parallel flowgraph.

Since f2(t|θ2) is in the form of the PDF of exponential distribution, which

is much simpler than f1(t|θ1), and p01 = 1 − p02, then it is more convenient to

update p02 first. By the use of formula given in equation 4.15, we have

p
(m+1)
02 =

1

n

n∑

i=1

f(2|ti, θ(m)
2 )

=
1

n

n∑

i=1

w
(m)
2 f2(ti|λ(m)

3 )
∑2

l=1 w
(m)
l fl(ti|θ(m)

i )

=
1

n

n∑

i=1

p
(m)
02 f2(ti|λ(m)

3 )

(1 − p
(m)
02 )f1(ti|λ(m)

1 , λ
(m)
2 ) + p

(m)
02 f2(ti|λ(m)

3 )
(4.19)

To find the parameter θ1 = (λ1, λ2) and θ2 = λ3 in each component density,
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let

Q(θ, θ(m)) = Q(θ, θ
(m)
1 ) + Q(θ, θ

(m)
2 )

=
n∑

i=1

log(f1(ti|θ1))f(1|ti, Θ(m))

+

n∑

i=1

log(f2(ti|θ2))f(2|ti, Θ(m))

For θ2 = λ3, we substitute f2(x|θ2) in Q(θ, θ
(m)
2 ),

Q(θ, θ
(m)
2 ) =

n∑

i=1

log
(
λ3e

−λ3ti
)
f(2|ti, Θ(m))

=
n∑

i=1

(log(λ3) − λ3ti) f(2|ti, Θ(m)) (4.20)

Taking the derivative of 4.20 with respect to λ3 and equating to zero, we have

n∑

i=1

(
1

λ3
− ti

)
f(2|ti, Θ(m)) = 0

∑n
i=1 f(2|ti, Θ(m))

λ3

−
n∑

i=1

tif(2|ti, Θ(m)) = 0

λ
(m+1)
3 =

∑n
i=1 f(2|ti, Θ(m))∑n

i=1 tif(2|ti, Θ(m))
(4.21)

where

f(2|ti, Θ(m)) =
p

(m)
02 f2(ti|λ(m)

3 )

(1 − p
(m)
02 )f1(ti|λ(m)

1 , λ
(m)
2 ) + p

(m)
02 f2(ti|λ(m)

3 )

Similarly, for the update of θ1 = (λ1, λ2), we substitute f1(x|θ1) in Q(θ, θ
(m)
1 ),

Q(θ, θ
(m)
1 ) =

n∑

i=1

log

(
λ1λ2

λ1 − λ2

)(
e−λ2ti − e−λ1ti

)
f(1|ti, Θ(0)) (4.22)

=
n∑

i=1

{
log(λ1) + log(λ2) − log(λ1 − λ2) + log(e−λ2ti − e−λ1ti)

}
f(1|ti, Θ(0))
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and solve the following partial derivative equations,

∂Q

∂λ1

=
n∑

i=1

(
1

λ1

− 1

λ1 − λ2

+
tie

−λ1ti

e−λ2ti − e−λ1ti

)
f(1|ti, Θ(0)) = 0 (4.23)

∂Q

∂λ2

=
n∑

i=1

(
1

λ2

+
1

λ1 − λ2

− tie
−λ2ti

e−λ2ti − e−λ1ti

)
f(1|ti, Θ(0)) = 0 (4.24)

where

f(1|ti, Θ(0)) =
(1 − p

(m)
02 )f1(ti|λ(m)

1 , λ
(m)
2 )

(1 − p
(m)
02 )f1(ti|λ(m)

1 , λ
(m)
2 ) + p

(m)
02 f2(ti|λ(m)

3 )

In this case, it will not be possible to obtain analytic expressions for λ1 and λ2 in

terms of of all other parameters, then numerical method such as Newton-Raphson

method is required to solve equation 4.23 and 4.24 for λ1 and λ2.

Given Θ(m) = (1−p
(m)
02 , p

(m)
02 , λ

(m)
1 , λ

(m)
2 , λ

(m)
3 ), we compute p

(m+1)
02 and λ

(m+1)
3

by explicit formula 4.19 and 4.21 respectively, determine λ
(m+1)
1 and λ

(m+1)
2 by

solving 4.23 and 4.24 numerically, and update Θ(m) to Θ(m+1). The iterations

will not stop until the convergence of log-likelihood function given in 4.18 occurs,

where the change of log(L(θ)) is smaller than a pre-specified amount δ

log
(
L(Θ(m+1))

)
− log

(
L(Θ(m))

)
≤ δ (4.25)

By assuming the true parameter values as: p02 = 0.3, p01 = 1− p02 = 0.7, λ1 = 1,

λ2 = 2, λ3 = 3, and simulate a sample size of 20000 total waiting time data from

node 0 to node 2 in the parallel flowgraph. Starting from suitable initial value

for θ, we set δ = 10−6 in equation 4.25 as the tolerance value. The convergence

of log-likelihood function occurs after 1419 iterations. The estimation result is

presented in Table 4.2.

Table 4.2: Summary of MLE by EM algorithm

Sample size p̂01 p̂02 λ̂1 λ̂2 λ̂3

n = 20000 0.7006 0.2994 1.0254 1.9053 2.9866
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4.2.1.2 Example 5.2

Suppose the parallel flowgraph illustrated in Figure 2.2 consists of non-exponentially

distributed internode waiting time (see Table 4.3), the MGF of total waiting time

between input node 0 and output node 2 can not be decomposed into sum of ra-

tional function by partial fractions, and it therefore can not be inverted directly

to obtain closed form density function. In this case, the likelihood function is

not in closed form and the standard procedure for computing MLE can not be

applied. We need to first numerically invert the MGF based on the numerical

inversion of Laplace transforms method (see De Hoog (1982)), then apply the

Nelder-Mead simplex method to compute MLE numerically. For the purpose of

illustration, we allow the waiting time between node 1 and node 2 to follow a

Gamma distribution with non-integer shape parameter (see Table 4.3).

Table 4.3: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

1 → 2 Gamma(α, β) m12(s) =
(

β
β−s

)α

0 → 2 Exponential(λ2) m02(s) = λ2

λ2−s

The MGF of total waiting time from node 0 to node 2 becomes

MT02(s) = p01p12m01(s)m12(s) + p02m02(s)

= p01m01(s)m12(s) + (1 − p01)m02(s)

= p01

(
λ1

λ1 − s

)(
β

β − s

)α

+ (1 − p01)

(
λ2

λ2 − s

)
(4.26)

Assuming the value of true parameters: p01 = 0.7, λ1 = 1, λ2 = 1.5, α = 2.5,

β = 3, we simulated a sample size of 10000 total waiting time data from node

0 to node 2 in Figure 2.2. The first step of estimation is to numerically invert

the MGF given in equation 4.26 to obtain an approximated probability density

function f̂(t), compute the likelihood function based on f̂(t), and then apply the

Nelder-Mead simplex method to compute MLE numerically. The result is shown

in Table 4.4.

108



4.2 The Expectation-Maximisation algorithm

Table 4.4: Summary of MLE in non-exponential case

Sample size p̂01 λ̂1 λ̂2 α̂ β̂

n = 10000 0.75 1.2 1.8 2.4 2.9

4.2.2 Case 2: Mixture with negative weights

As it is shown in Section 4.2.1.1, the EM algorithm significantly simplifies the cal-

culation of Maximum likelihood estimation for finite mixture distribution. How-

ever, the PDF of total waiting time could be a mixture of exponential distribution

with negative weights, for example equation 3.5 on page 43, this forms our mo-

tivation to consider parameter estimation problem in a more difficult case where

the weights of component densities in a mixture density are allowed to be negative

value. A reference on the maximum likelihood estimation for these more general

mixed exponential densities can be found in Harris and Sykes (1987)).

Definition 10. A mixture of negative weight exponential density function for a

positive random variable X is defined as a weighted sum of k component densities:

f(x) =
k∑

l=1

wlfl(x|αl)

where

fl(x|αl) = αle
−αlx

is the probability density functions of exponential distribution with αl > 0 for

l = 1, ..., k, such that α1 < α2 < ... < αk, and the weights satisfy two constraints:

1. At least one wl /∈ [0, 1] for some l.

2.
∑k

l=1 wl = 1

Bartholomew (1969) developed a simple condition to verify whether or not a

mixture of exponentials is a proper probability density function (see Bartholomew

(1969), page 2184, Theorem 1), which plays an important role in the our deriva-

tion of our EM algorithm for mixture of negative weights exponential density. We

first present the original proof given in Bartholomew (1969).
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Theorem 6. Sufficient conditions (Bartholomew)

Given a function in the from of

f(x) =
k∑

l=1

wlαle
−αlx (4.27)

where the α’s are all positive and
∑k

l=1 wl = 1. The sufficient condition to ensure

that f(x) in 4.27 is a proper probability density function is

r∑

l=1

wlαl ≥ 0 for r = 1, 2, .., k (4.28)

Proof. The alternative expression of 4.27 can be derived as

f(x) = e−αkx
k∑

l=1

wlαl +
k−1∑

r=1

{
(e−αrx − e−αr+1x)

r∑

l=1

wlαl

}
(4.29)

Since α1 < α2 < · · · < αk, it follows that

e−αrx − e−αr+1x ≥ 0 for r = 1, 2, .., k − 1.

Hence f(x) given in equation 4.29 is positive for all x if

r∑

l=1

wlαl ≥ 0 for r = 1, 2, .., k.

To apply the EM algorithm for estimating the parameters of a mixture of

negative weights exponential density function, we suggest a method to convert

the density defined in Definition 10 into a mixture of densities with positive

weight, so that the modified mixture density will be suitable for implementing

EM algorithm.
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Theorem 7. Given a mixture of negative weights density f(x) defined in Defi-

nition 10 with rates in ascending order α1 < α2 < ... < αk, and f1(t|α1) is the

corresponding component density with weight w1 and the smallest rate α1. If f(x)

satisfies the Bartholomew’s sufficient conditions to be a PDF, then an alternative

expression of f(x) can be determined as

f(x) =

k∑

j=1

πjgj(x) (4.30)

where g1(t) = f1(t|α1), π1 = 1 −
∑k

j=2 πj,

πj = wj

(
1 − αj

α1

)

wj is the negative weight for the j-th component densities fj(x|αj) and

gj(x) =
α1αj (e−αjt − e−α1t)

α1 − αj

for some j ∈ {2, ..., k}. Then equation 4.30 satisfies the following properties

1. πj > 0 for all j = 1, ..., k.

2.
∑k

j=1 πj = 1

Proof. By Definition 10, we have the total weight
∑k

l=1 wl = 1 while some wl are

negative, then there must exist at least one w∗ such that w∗ > 0. Furthermore,

Theorem 6 states that f(x) is a valid probability density function if condition

4.28 is satisfied. As α1 > 0, in order to ensure that f(x) is a proper density func-

tion, w1 must be a nonnegative value so that we have w1α1 ≥ 0 (i.e. condition

in 4.28 for r = 1 case). That is, the weight for the component density with the

smallest rate is always positive. Let v be the total number of component density

that associates with negative weight such that v ≤ k − 1, label each of them by

index j for some j ∈ {2, ..., k}.
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The basic idea is to partition w∗ into c1, ...cv+1, where
∑v+1

z=1 cz = w∗, and

redistribute them to the j-th component densities involves negative weight by

constructing a nonnegative function cjf1(t) + wjfj(t) for some j ∈ {2, ..., k}. To

determine cj , we need to have

cjf1(t) + wjfj(t) ≥ 0

cj ≥ −wjfj(t)

f1(t)
for j ∈ {2, ..., k}

Now

−wj
fj(t)

f1(t)
= −wj

αje
−αjt

α1e−α1t
= −wj

αj

α1
e(α1−αj)t

As 0 < α1 < αj , then e(α1−αj)t → 0, as t → ∞. Since −wj > 0, then −wj
fj(t)

f1(t)

decreases as t increase, giving the least upper bound for −wj
fj(t)

f1(t)
can be obtained

at t = 0, therefore we choose

cj =
(−wjfj(t)

f1(t)

)
t=0

=
−wjαje

−αj0

α1e−α10

=
−wjαj

α1

for j ∈ {2, ..., k} (4.31)

Define function gj(t) in the form of

gj(t) = cjf1(t) + wjfj(t) for j ∈ {2, ..., k}

such that gj(t) ≥ 0 for all t. Since f1(t) and f2(t) are the probability density

function of exponential distribution, then

∫ ∞

0

gj(t) = cj

∫ ∞

0

f1(t)dt + wj

∫ ∞

0

fj(t)dt

= cj + wj

Hence we can replace fj(t) with the normalised function gj(t),

gj(t) =
cjf1(t) + wjfj(t)

cj + wj
(4.32)
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Define πj = cj + wj and cj is defined in equation 4.31,

πj = cj + wj

=
−wjαj

α1

+ wj

= wj

(
1 − αj

α1

)
(4.33)

Since α1 is the smallest rate, we have α1 < αj implies
(
1 − αj

α1

)
< 0, and wj < 0,

then

πj = wj

(
1 − αj

α1

)
> 0 for j ∈ {2, .., k}.

We can also further simplify 4.32 by substituting 4.31,

gj(t) =

−wjαj

α1
f1(t) + wjfj(t)
−wjαj

α1
+ wj

=
−wjαjf1(t) + wjα1fj(t)

−wjαj + wjα1

=
−wjαjα1e

−α1t + wjα1αje
−αjt

−wjαj + wjα1

=
α1αj(e

−αjt − e−α1t)

α1 − αj

for j ∈ {2, ..., k}. (4.34)

Hence the alternative expression of mixture negative function is

f(t) = π1g1(t) + π2g2(t) + ... + πkgk(t)

where g1(t) = f1(t), π1 = 1−
∑k

j=2 πj , gj(t) and πj are defined by 4.34 and 4.33

respectively for j ∈ {2, ..., k}.

Remark: We can also check whether gj(t), j = 2, ..., k, is a proper probability

density function by condition 4.28. Given

gj(t) = − αj

α1 − αj
α1e

−α1t +
α1

α1 − αj
αje

−αjt
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Since α1 < αj , we have

p1α1 = − αj

α1 − αj
α1 > 0 for r = 1 case

2∑

i=1

piαi = − αj

α1 − αj
α1 +

α1

α1 − αj
αj = 0 for r = 2 case

By Theorem 6, we conclude that gj(t) is a valid probability density function for

j = 2, ..., k.

4.2.2.1 Example 1.3 continued

In this example, we apply Theorem 7 and EM algorithm to estimate parame-

ters in PDF of total waiting time from node 0 to node 2 in the flowgraph for

3 nodes reversible illness-death system example in Section 3.1.1 Chapter 3. For

the purpose of illustration, we assumed λ1 = 1, λ2 = 1.2, λ3 = 0.5, λ4 = 2, and

p01 = p02 = p10 = p12 = 0.5 in the following flowgraph.

By equation 3.5 on page 43, the resulting probability density function fT02(t)

is a mixture of exponential densities that contains negative weight.

fT02(t) =
4∑

j=1

wjfj(t|αj) (4.35)

where

fj(t|αj) = αje
−αjt

and θ = (w, α) such that w = (w1, w2, w3, w4) = (1.5,−0.303,−0.1915,−0.0066),

and α = (α1, α2, α3, α4) = (0.5, 1.2, 0.6339, 2.366).

It is important to note that we only concentrate on the estimation of pa-

rameters θ = (w, α) in the density function fT02(t) rather than those parameters

in the flowgraph. (i.e. λ’s and transition probabilities in Figure 2.4). According

to Theorem 7, as 0.5 < 0.6339 < 1.2 < 2.366, we set α1 = 0.5 and w∗ = 1.5.

The alternative expression can be constructed by partitioning 1.5f1(t), and re-
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4.2 The Expectation-Maximisation algorithm

distributing to other component densities that have negative weights, then

fT02(t) =
4∑

j=1

πjgj(t) (4.36)

where

πj = wj

(
1 − αj

α1

)
(4.37)

and π = (π1, π2, π3, π4) = (0.5, 0.4242, 0.051, 0.0248). The modified component

densities are defined by

gj(t) =
α1αj(e

−αjt − e−α1t)

α1 − αj

(4.38)

By substituting α = (α1, α2, α3, α4) = (0.5, 0.6339, 1.2, 2.366) in equation

4.38 accordingly, we obtain

g2(t) = 0.8571
(
e−0.5t − e−1.2t

)

g3(t) = 2.366
(
e−0.5t − e−0.6339t

)

g4(t) = 0.6339
(
e−0.5t − e−2.366t

)

g1(t) = f1(t) = 0.5e−0.5t

Now we can apply the EM algorithm discussed in Section 4.2 to estimate pa-

rameters θ̃j = (πj , αj), for j = 1, 2, 3, 4, in 4.36. The weight πj can be updated

iteratively by formula given in equation 4.15

π
(m+1)
j =

1

n

n∑

i=1

g(j|ti, α(m)
1 )

=
1

n

n∑

i=1

π
(m)
j gj(ti|α(m)

1 )
∑4

l=1 π
(m)
l gl(ti|α(m)

i )
(4.39)

As the first component density g1(t) is the PDF of exponential distribution, which

has relatively simple expression than the other three component densities, then
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we first estimate its rate α1 by the formula derived in 4.21,

α
(m+1)
1 =

∑n
i=1 g(1|ti, θ̃(m))∑n

i=1 tig(1|ti, θ̃(m))
(4.40)

where

g(1|ti, θ̃(m)) =
π

(m)
1 g1(ti|α(m)

1 )
∑4

l=1 π
(m)
l gl(ti|α(m)

i )

Since gj(t) is a function of α1 and αj (see equation 4.38), and it is in the same

form of f1(t | α1) in the mixture of density given by 4.17, we can therefore update

each αj for j = 2, 3, 4 by the same approach in equation 4.22. Define

Q(θ, θ̃
(m)
j ) =

n∑

i=1

log

{(
α1αj

α1 − αj

)(
e−αjti − e−α1ti

)}
g(j|ti, θ̃(m)) (4.41)

To speed up the calculation, we can replace the starting value α
(m)
1 and π

(m)
1

in 4.41 by the updated value π
(m+1)
1 and α

(m+1)
1 obtained from 4.39 and 4.40

respectively, and solve the following equation for αj

∂Q

∂αj
=

n∑

i=1

[
1

αj
+

1

α
(m+1)
1 − αj

− tie
−αjti

e−αjti − e−α
(m+1)
1 ti

]
g(j|ti, θ̃(m)) = 0

where

g(j|ti, θ̃(m)) =
π

(m)
j gj(ti|α(m)

j )

p
(m+1)
1 g1(ti|α(m+1)

1 ) +
∑4

l=2 π
(m)
l gl(ti|θ̃(m)

i )

The updated value for the original weight wj can be derived from equation 4.37.

w
(m+1)
j =

π
(m+1)
j

1 − α
(m+1)
j

α
(m+1)
1

for j = 2, 3, 4. (4.42)

As the conversion from mixture negative weight density to mixture positive weight

densities is a fairly straightforward computational procedure, it can be broadly

applied within the framework of the EM algorithm. Given the initial value of θ̃,

θ̃(m) = (w(m), α(m)), the general procedure of parameter estimation for mixture

negative weight density is as follow:
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4.2 The Expectation-Maximisation algorithm

1. Convert the negative weight mixture density into positive weight mixture

density by Theorem 7, define θ(m) → θ̃(m) = (π(m), α(m))

2. Update θ̃(m) → θ̃(m+1) by EM algorithm until likelihood function converges.

3. Transform back to original parameters θ̃(m+1) → θ(m+1) = (w(m+1), α(m+1)),

where w(m+1) can be determined by 4.42.

4.2.2.2 Simulation

As the probability density function of total waiting time is obtained in the form

of 4.35, in order to test our method in Theorem 7 to estimate its parameters

w’s and α’s , we need to simulate the total waiting time data between input at

node 0 and output at node 2 of flowgraph in Figure 2.5 on page 17. To generate a

sample size of n total waiting time data t1, ..., tn, we need to specific the internode

waiting distribution, label the flow direction between each node, as well as the

corresponding transition probability (see Table 4.5). We first need to simulate the

path of n particles from input node 0 to output node 2, and then compute each

total waiting time ti, i = 1, ..., n.

Table 4.5: Summary of waiting time distribution

Label Flow direction Probability Distribution

1 0 → 2 p02 Exponential(λ3)
2 0 → 1 p01 Exponential(λ1)
3 1 → 0 p10 Exponential(λ4)
4 1 → 2 p12 Exponential(λ2)

The procedure of simulation is described as follow

1. At node 0, take a size of n weighted sample with replacement from set

{1, 2}, using a vector of probabilities {p02, p01}, where the integer 1 or 2 is

selected with probability p02 or p01. Denote the total sample size of result

equal to 1 and 2 by s1 and s2 respectively, and s1 + s2 = n.

2. For those result equal to 2, take a size of s2 weighted sample with replace-

ment from set {3, 4}, using a vector of probabilities {p10, p12}, where the
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integer 3 or 4 is selected with probability p10 or p12. Denote the total sample

size of result equal to 3 and 4 by s3 and s4 respectively, and s3 + s4 = s2.

3. Set n = s3, stop simulation if s3 = 0, otherwise go to 4.

4. Repeat Step 1, 2 and 3 until s3 = s2 = 0. (i.e. all the particle reach output

node 2).

We construct a m × n matrix D to record the path for each particle from input

node 0 to output node 2, where the column represents index of sample data and

the row represents the direction of movement that each particle made before it

gets to output node 2, that is, dij denotes the flowgraph direction that the j-th

particle chose in the i-th movement. Next, we generate internode waiting time

for each particle in every step of movement according to the given distribution

in Table 4.5, defined a m× n matrix G such that gij represents the passage time

of j-th particle in the i-th movement, then the total waiting time for the j-th

particle to reach output node 2 is the column sum of matrix G.

For example, suppose we want to simulate 5 total waiting time data. First, the

path of 5 particles from input node 0 to output 2 are recorded in matrix D below,

the simulation of path is terminated once the particle follow either flow direction 1

(i.e. 0 → 2) or 4 (i.e. 1 → 2). From matrix D, we see that it took a total of 6 steps

of transition for all the particles reach output node 2. Next, the passage time for

each transition in matrix D are simulated and stored in matrix G. Therefore, we

can then obtain 5 total waiting time t = (0.5803, 2.8013, 3.6601, 3.3988, 4.8463)

after taking the column sum of matrix G.

D =




1 2 3 4 5

1 1 2 2 2 2

2 0 3 3 3 3

3 0 1 1 2 2

4 0 0 0 4 3

5 0 0 0 0 2

6 0 0 0 0 4




→ G =




0.5803 2.5775 3.0027 0.1053 0.9066

0 0.2161 0.1474 0.1241 0.4028

0 0.0077 0.5100 2.1964 2.0252

0 0 0 0.9730 0.3381

0 0 0 0 0.0449

0 0 0 0 1.1288



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4.2 The Expectation-Maximisation algorithm

With this procedure, we simulate a random sample of n = 10000 total waiting

time data t1, ..., tn between node 0 and node 2 of the flowgraph in Figure 2.4 for

parameter estimation. Then we choose the initial value for the EM algorithm as

w(0) = (w
(0)
1 , w

(0)
2 , w

(0)
3 , w

(0)
4 ) = (0.4971,−0.3020,−0.1933,−0.0076) (4.43)

α(0) = (α
(0)
1 , α

(0)
2 , α

(0)
3 , α

(0)
4 ) = (0.5020, 1.2030, 0.6370, 2.3680) (4.44)

The stopping criterion for EM algorithm was set based on the change in the

log-likelihood function is less than a tolerance value of 10−5.

log
(
L(θ(m+1)|t)

)
− log

(
L(θ(m)|t)

)
≤ 10−5

Note that the log-likelihood function log
(
L(θ(m)|t)

)
tends to have multiple local

maxima in this example. Therefore we need to randomly select various initial

value for parameters with constrains: 1) 0 < πj < 1, 2) αj > 0, and choose

suitably starting point in order to avoid converging to spurious maxima. Given

4.43 and 4.44, the log-likelihood converges after 2145 iterations and the results

are listed in the Tables 4.6 and 4.7. We observe that the estimation given by the

EM algorithm is sufficiently close to true value of parameters, and the difference

between is generally small.

Table 4.6: Summary of MLE by EM algorithm

parameter w1 w2 w3 w4

True value 1.5 −0.3030 −0.1903 −0.0066
Estimated value 1.5029 −0.3021 −0.1932 −0.0076

Table 4.7: Summary of MLE by EM algorithm

parameter α1 α2 α3 α4

True value 0.5 1.2 0.6339 2.366
Estimated value 0.5007 1.1890 0.6385 2.6581
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4.3 Method of Moments

The Method of Moments (MM) is based on the idea that statistical distribution

can be uniquely characterised by their moments, provided the moments are fi-

nite and satisfy the Carleman’s condition (see Sjödin (1987)). Although we can

uniquely determine many distributions such as normal and exponential, there are

some distributions, such as the Log-normal distribution, that can not be identified

given their moments, see Heyde (1963), Feller(1971), Stoyanov (1997). The MM

is closely related to the Stieltijes moment problem, where we find a distribution

function F (x) on [0,∞) such that

µr =

∫ ∞

0

xrdF (x)

given a sequence of finite moments {µr, r = 0, 1, ..., d}. The implementation of

Method of Moments requires equating a set of sample moments to their popula-

tion moments, and then solves the set of (generally nonlinear) equations for the

parameters in the target distribution.

Definition 11. let x1, . . . , xn be iid sample from a distribution with d-dimensional

parameter θ = (θ1, . . . , θd). The Method of Moment (MM) estimator θ̂ is the so-

lution to the following system of equations

µr(θ) = mr

where

µr(θ) =
drMx(s)

dsr

∣∣∣
s=0

mr =
1

n

n∑

i=1

xr
i

for r = 1, . . . , d.

Note that we use the formula 2.15 on page 32 to compute the population

moment µr symbolically.
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4.3 Method of Moments

In a large complicated flowgraph with non-exponentially distributed intern-

ode waiting time, it is often computationally demanding to approximate the total

waiting time density function. Since the MM does not need the step to approxi-

mate the likelihood function numerically, it tends to be more easier to implement.

Furthermore, the MGF of total waiting time between two nodes of interest in a

complicated flowgraph can be obtained based on Theorem 3 (see page 30), and

we can establish the population moment µr by the use of Corollary 1 Chapter 2,

which made the construction of a set of equations defined in 11 very simple.

4.3.1 Example 5.1 continued

We apply MM to estimate parameters in the parallel flowgraph illustrated by

Figure 2.2 on page 9. The waiting time distribution is given in Table 4.1 on page

104. Since the MGF of overall waiting time distribution between node 0 and node

2 is

MT02(s) = p01p12m01(s)m12(s) + p02m02(s)

= p01

( λ1

λ1 − s

)( λ2

λ2 − s

)
+ p02

( λ3

λ3 − s

)

= p01

( λ1

λ1 − s

)( λ2

λ2 − s

)
+ (1 − p01)

( λ3

λ3 − s

)

By the Definition 11, in order to estimate 4 parameters θ = (p01, λ1, λ2, λ3),

we need to solve 4 equations that are constructed by equating sample moments

with population moments

drMT02(s)

dsr

∣∣∣
s=0

=
1

n

n∑

i=1

tri

for r = 1, . . . , 4, and

µ1(p01, λ1, λ2, λ3) =
p01

λ1
+

p01

λ2
+

(1 − p01)

λ3
(4.45)

µ2(p01, λ1, λ2, λ3) =
2p01

λ1
2 +

2p01

λ1λ2

+
2p01

λ2
2

+
2(1 − p01)

λ3
2 (4.46)
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µ3(p01, λ1, λ2, λ3) =
6p01

λ1
3 +

6p01

λ1
2λ2

+
6p01

λ1λ2
2 +

6p01

λ2
3 +

6(1 − p01)

λ3
3

(4.47)

µ4(p01, λ1, λ2, λ3) =
24p01

λ1
4 +

24p01

λ3
1λ2

+
24p01

λ1
2λ2

2 +
24p01

λ1λ2
3 +

24p01

λ2
4

+
24(1 − p01)

λ3
4 (4.48)

To make the subsequence calculation more stable, we reparametrises 4.45,

4.46, 4.47 and 4.48 by defining θ1 = p01, θ2 = 1
λ1

, θ3 = 1
λ2

, θ4 = 1
λ3

, then

µ1(θ1, θ2, θ3, θ4) = θ1θ2 + θ1θ3 + (1 − θ1)θ4

µ2(θ1, θ2, θ3, θ4) = 2θ1θ2
2 + 2θ1θ2θ3 + 2θ1θ

2
3 + 2(1 − θ1)θ

2
4

µ3(θ1, θ2, θ3, θ4) = 6θ1θ
3
2 + 6θ1θ

2
2θ3 + 6θ1θ2θ

2
3 + 6θ1θ

3
3

+ 6(1 − θ1)θ
3
4

µ4(θ1, θ2, θ3, θ4) = 24θ1θ
4
2 + 24θ1θ

3
2θ3 + 24θ1θ

2
2θ

2
3 + 24θ1θ2θ

3
3

+ 24θ1θ
4
3 + 24(1 − θ1)θ

4
4

To estimate the parameters in the total waiting time distribution, we use the

same 10000 simulated total waiting time data in parallel flowgraph from Section

4.2.1.1, where true parameter values are assumed as: p01 = 0.7, λ1 = 1, λ2 = 2,

λ3 = 3. The resulting sample moments based on the simulated data are computed

as m1 = 1.1679, m2 = 2.5974, m3 = 8.3192, m4 = 34.5268.
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The method of moments estimators are determined by using the multivariate

Newton-Raphson method in Section 3.2.1.1 to solve the moment equations.

µr(θ1, θ2, θ3, θ4) = mr

for r = 1, ..., 4. The result is presented in Table 4.8.

Table 4.8: Summary of result by Method of Moments

Sample size p̂01 λ̂1 λ̂2 λ̂3

n = 10000 0.7060 1.0321 1.9457 3.0408

4.3.2 Example 5.2 continued

We continue with the parallel flowgraph example in Section 4.2.1.2, but assume

the waiting time from node 1 to node 2 follows Gamma distribution. The para-

metric assumptions of all internode waiting time is shown in Table 4.9

Table 4.9: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

1 → 2 Gamma(α, β) m12(s) =
(

β
β−s

)α

0 → 2 Exponential(λ2) m02(s) = λ2

λ2−s

The MGF of total waiting time from node 0 to node 2 is given in equation

4.26 on page 108.

MT02(s) = p01

(
λ1

λ1 − s

)(
β

β − s

)α

+ (1 − p01)

(
λ2

λ2 − s

)

=
βαλ1p01(λ2 − s) + λ2(1 − p01)(λ1 − s)(β − s)α

(β − s)α(λ1 − s)(λ2 − s)
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Again, we need to construct 5 equations for estimating 5 parameters p01, λ1,

λ2, α, β such that

drMT02(s)

dsr

∣∣∣
s=0

=
1

n

n∑

i=1

tri for r = 1, . . . , 5

where

µ1 =
p01

λ1
+

p01α

β
+

1 − p01

λ2
(4.49)

µ2 =
2p01

λ2
1

+
2p01α

λ1β
+

p01α
2

β2
+

p01α

β2
+

2(1 − p01)

λ2
2

(4.50)

µ3 =
6p01

λ3
1

+
6p01α

λ2
1β

+
3p01α

2

λ1β2
+

3p01α

λ1β2
+

p01α
3

β3
+

3p01α
2

β3

+
2p01α

β3
+

6(1 − p01)

λ3
2

(4.51)

µ4 =
24p01

λ4
1

+
24p01α

λ3
1β

+
12p01α

2

λ2
1β

2
+

12p01α

λ2
1β

2
+

6p01α
3

β4
+

11p01α
2

β4

+
4p01α

3

λ1β3
+

12p01α
2

λ1β3
+

8p01α

λ1β3
+

p01α
4

β4
+

6p01α

β4
+

24(1 − p01)

λ4
2

(4.52)

µ5 =
120p01α

λ4
1β

+
60p01α

2

λ3
1β

2
+

120(1 − p01)

λ5
2

+
p01α

5

β5
+

120p01

λ5
1

+
5p01α

4

λ1β4
+

20p01α
3

λ2
1β

3
+

60p01α

λ3
1β

2
+

60p01α
2

λ2
1β

3
+

10p01α
4

β5

+
40p01α

λ2
1β

3
+

30p01α
3

λ1β4
+

55p01α
2

λ1β4
+

30p01α

λ1β4
+

35p01α
3

β5

+
50p01α

2

β5
+

24p01α

β5
(4.53)
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Define θ1 = p01, θ2 = 1
λ1

, θ3 = 1
λ2

, θ4 = α and θ5 = 1
β

to reparametrise

equations 4.49, 4.50, 4.51, 4.52, and 4.53 as

µ1(θ1, θ2, θ3, θ4, θ5) = θ1θ2 + θ1θ4θ5 + (1 − θ1)θ3

µ2(θ1, θ2, θ3, θ4, θ5) = 2θ1θ
2
2 + 2θ1θ2θ4θ5 + θ1θ

2
4θ

2
5

+ θ1θ4θ
2
5 + 2(1 − θ1)θ

2
3

µ3(θ1, θ2, θ3, θ4, θ5) = 6θ1θ
3
2 + 6θ1θ

2
2θ4θ5 + 3θ1θ2θ

2
4θ

2
5

+ 3θ1θ2θ4θ
2
5 + θ1θ

3
4θ

3
5 + 3θ1θ

2
4θ

3
5

+ 2θ1θ4θ
3
5 + 6(1 − θ1)θ

3
3

µ4(θ1, θ2, θ3, θ4, θ5) = 24θ1θ
4
2 + 24θ1θ

3
2θ4θ5 + 12θ1θ

2
2θ

2
4θ

2
5

+ 12θ1θ
2
2θ4θ

2
5 + 4θ1θ2θ

3
4θ

3
5 + 12θ1θ2θ

2
4θ

3
5

+ 8θ1θ2θ4θ
3
5 + θ1θ

4
4θ

4
5 + 6θ1θ

3
4θ

4
5

+ 11θ1θ
2
4θ

4
5 + 6θ1θ4θ

4
5 + 24(1 − θ1)θ

4
3

µ5(θ1, θ2, θ3, θ4, θ5) = 120θ1θ
4
2θ4θ5 + 60θ1θ

3
2θ

2
4θ

2
5 + 120(1 − θ1)θ

5
3

+ θ1θ
5
4θ

5
5 + 5θ1θ2θ

4
4θ

4
5 + 20θ1θ

2
2θ

3
4θ

3
5

+ 60θ1θ
3
2θ4θ

2
5 + 60θ1θ

2
2θ

2
4θ

3
5 + 40θ1θ

2
2θ4θ

3
5

+ 30θ1θ2θ
3
4θ

4
5 + 55θ1θ2θ

2
4θ

4
5 + 30θ1θ2θ4θ

4
5

+ 10θ1θ
4
4θ

5
5 + 35θ1θ

3
4θ

5
5 + 50θ1θ

2
4θ

5
5

+ 24θ1θ4θ
5
5 + 120θ1θ

5
2

125



Parameter estimation

We simulated a sample size of 10000 total waiting time from node 0 and

node 2 with p02 = 0.7, λ1 = 1, λ2 = 1.5, α = 2.5, β = 3. The sample moments

are calculated as m1 = 1.4871, m2 = 3.5348, m3 = 11.4061, m4 = 46.9320,

m5 = 235.9361. By numerically solving the following 5 equations

µr(θ1, θ2, θ3, θ4, θ5) = mr

for r = 1, . . . , 5, the MM estimators are presented in Table 4.10.

Table 4.10: Summary of MoM in non-exponential parallel flowgraph

Sample size p̂01 λ̂1 λ̂2 α̂ β̂

n = 100000 0.7112 1.0090 1.8765 2.6267 3.0167

4.3.3 Feedback loop flowgraph

4.3.3.1 Example 6.1.1: Exponential waiting time case

In this section, we demonstrate the use of MM to estimate parameters in the

feedback loop flowgraph of Figure 2.3 on page 12, where all the internode waiting

time follow exponential distribution.

Table 4.11: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(λ3) m01(s) = λ3

λ3−s

1 → 0 Exponential(λ1) m10(s) = λ1

λ1−s

0 → 2 Exponential(λ2) m02(s) = λ2

λ2−s
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By Mason’s rule, the MGF of total waiting time distribution between node

0 and node 2 is

MT02(s) =
p02m02(s)

1 − p01m01(s)m10(s)

=
p02

(
λ2

λ2−s

)

1 − (1 − p02)
(

λ3

λ3−s

)(
λ1

λ1−s

)

=
p02λ2(λ3 − s)(λ1 − s)

(λ2 − s) [s2 − (λ3 + λ1)s + λ3λ1p02]

To compute the MM estimator for p02, λ1, λ2, λ3, we construct 4 equations such

that
drMx(s)

dsr

∣∣∣
s=0

=
1

n

n∑

i=1

xr
i

for r = 1, . . . , 4. where

µ1 =
λ3 + λ1

p02λ3λ1

+
1

λ2

− 1

λ3

− 1

λ1

(4.54)

µ2 =
2

λ3λ1

− 2

λ2λ3

− 2

λ2λ1

+
2

λ2
2

− 2(λ3 + λ1)

p02λ1λ
2
3

− 2(λ3 + λ1)

p02λ3λ
2
1

+
2(λ3 + λ1)

p02λ2λ3λ1
+

2(λ3 + λ1)
2

p2
02λ

2
3λ

2
1

− 2

p02λ3λ1
(4.55)

µ3 =
6

p02λ1λ
2
3

− 6

λ2
2λ1

− 6

λ2
2λ3

+
6

λ3
2

− 6(λ3 + λ1)
2

p2
02λ

2
1λ

2
3

− 6(λ3 + λ1)
2

p2
02λ

2
3λ

3
1

+
6(λ3 + λ1)

p02λ
2
2λ3λ1

− 12(λ3 + λ1)

p2
02λ

2
3λ

2
1

+
6(λ3 + λ1)

p02λ
2
3λ

2
1

+
6

p02λ3λ
2
1

+
6(λ3 + λ1)

3

p3
02λ

3
3λ

3
1

+
6(λ3 + λ1)

2

p2
02λ2λ2

3λ
2
1

− 6(λ3 + λ1)

p02λ2λ1λ2
3

− 6(λ3 + λ1)

p02λ2λ3λ2
1

+
6

p02λ2λ3λ1

+
6

λ2λ3λ1

(4.56)
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Parameter estimation

µ4 =
24(λ3 + λ1)

2

p2
02λ

3
3λ

3
1

+
24(λ3 + λ1)

p02λ2λ2
3λ

2
1

− 24

λ3
2λ3

+
24

p02λ2λ1λ2
3

− 24

λ3
2λ1

+
24

p02λ2λ3λ
2
1

− 24(λ3 + λ1)
3

p3
02λ

3
1λ

4
3

− 24(λ3 + λ1)
3

p3
02λ

3
3λ

4
1

+
24(λ3 + λ1)

p02λ3
2λ3λ1

− 48(λ3 + λ1)

p2
02λ2λ2

3λ
2
1

+
24(λ3 + λ1)

3

p3
02λ2λ3

3λ
3
1

− 72(λ3 + λ1)
2

p3
02λ

3
3λ

3
1

24(λ3 + λ1)
2

p2
02λ

2
2λ

2
3λ

2
1

+
24(λ3 + λ1)

4

p4
02λ

4
3λ

4
1

− 24(λ3 + λ1)
2

p2
02λ2λ2

1λ
3
3

+
48(λ3 + λ1)

p2
02λ

2
1λ

3
3

−24(λ3 + λ1)
2

p2
02λ2λ

2
3λ

3
1

+
48(λ3 + λ1)

p2
02λ

2
3λ

3
1

− 24(λ3 + λ1)

p02λ
2
2λ1λ

2
3

− 24(λ3 + λ1)

p02λ
2
2λ3λ

2
1

− 24

p02λ2
2λ3λ1

+
24

p2
02λ

2
3λ

2
1

+
24

λ4
2

− 24

p02λ2
3λ

2
1

+
24

λ2
2λ3λ1

(4.57)

Define θ1 = 1
λ1

, θ2 = 1
λ2

, θ3 = 1
λ3

. θ4 = 1
p02

to reparametrise equations 4.54,

4.55, 4.56 and 4.57 as

µ1(θ1, θ2, θ3, θ4) = θ2 + θ4θ3 + θ4θ1 − θ3 − θ1

µ2(θ1, θ2, θ3, θ4) = 2θ3θ1 − 2θ2θ3 − 6θ4θ3θ1 − 2θ4θ
2
3 − 2θ2θ1 − 2θ4θ

2
1

+ 2θ4θ2θ1 + 2θ4θ2θ3 + 2θ2
4θ

2
1 + 4θ2

4θ3θ1 + 2θ2
4θ

2
3 + 2θ2

2

µ3(θ1, θ2, θ3, θ4) = 6θ2θ3θ1 − 6θ2
2θ3 − 6θ2

2θ1 − 18θ4θ2θ3θ1 + 12θ2
4θ2θ3θ1

+ 12θ4θ1θ
2
3 − 30θ2

4θ3θ
2
1 − 30θ2

4θ
2
3θ1 + 6θ4θ

2
2θ1 + 6θ4θ

2
2θ3

− 6θ4θ2θ
2
1 + 18θ3

4θ3θ
2
1 + 18θ3

4θ
2
3θ1 + 6θ2

4θ2θ
2
1 + 6θ2

4θ2θ
2
3

− 6θ2
4θ

3
1 + 6θ3

4θ
3
1 + 6θ3

4θ
3
3 + 12θ4θ3θ

2
1 − 6θ4θ2θ

2
3

+ 6θ3
2 − 6θ2

4θ
3
3
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4.3 Method of Moments

µ4(θ1, θ2, θ3, θ4)

= 48θ4θ2θ1θ
2
3 + 48θ4θ2θ3θ

2
1 − 72θ4θ

2
2θ3θ1 − 120θ2

4θ2θ3θ
2
1 − 120θ2

4θ2θ
2
3θ1

+72θ3
4θ2θ

2
3θ1 + 48θ2

4θ
2
2θ3θ1 − 24θ3

2θ3 − 24θ3
2θ1 + 24θ4

4θ
4
1 + 24θ4

4θ
4
3 − 24θ3

4θ
4
3

+24θ4
2 − 288θ3

4θ
2
3θ

2
1 − 168θ3

4θ
3
3θ1 + 24θ4θ

3
2θ1 + 24θ4θ

3
2θ3 + 24θ3

4θ2θ
3
1

−24θ2
4θ2θ

3
3 − 24θ4θ

2
3θ

2
1 + 168θ2

4θ
2
3θ

2
1 + 96θ4

4θ3θ
3
1 + 24θ2

2θ3θ1 + 144θ4
4θ

2
3θ

2
1

+96θ4
4θ1θ

3
3 + 72θ2

4θ3θ
3
1 + 72θ2

4θ
3
3θ1 − 168θ3

4θ3θ
3
1 − 24θ2

4θ2θ
3
1 − 24θ4θ

2
2θ

2
3

−24θ4θ
2
2θ

2
1 + 24θ2

4θ
2
2θ

2
1 + 24θ2

4θ
2
2θ

2
3 + 72θ3

4θ2θ3θ
2
1 − 24θ3

4θ
4
1 + 24θ3

4θ2θ
3
3

A sample size of 100000 total waiting time data between node 0 and node 2 are

simulated by assuming the true parameters as p02 = 0.7, λ1 = 1, λ2 = 0.5, λ3 = 2.

The sample moments are m1 = 2.6203, m2 = 12.8252, m3 = 89.6013, m4 =

806.8391. Then the method of moments estimator are obtained by numerically

solving the following 4 equations

gr(θ1, θ2, θ3, θ4) = mr

for r = 1, . . . , 4.

Table 4.12: Summary of result by Method of Moments

Sample size p̂02 λ̂1 λ̂2 λ̂3

n = 10000 0.6057 1.0388 0.5913 2.0076

4.3.3.2 Example 6.1.2: Non-exponential waiting time case

Consider the single feedback loop flowgraph model in Figure 2.3 on page 12, where

the waiting time between node 0 and node 1 is assumed to be non-exponentially

distributed (see Table 4.13).
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Parameter estimation

Table 4.13: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Gamma(α,β) m01(s) =
(

β
β−s

)α

1 → 0 Exponential(λ2) m10(s) = λ2

λ2−s

0 → 2 Exponential(λ1) m02(s) = λ1

λ1−s

By Mason’s rule, the MGF of total waiting time distribution between node

0 and node 2 is

MT02(s) =
p02m02(s)

1 − p01m01(s)m10(s)

=
p02

(
λ1

λ1−s

)

1 − (1 − p02)
(

β
β−s

)(
λ2

λ2−s

)

We construct a system of 5 moments equations by Definition 11, and reparametrise

θ1 = 1
p02

, θ2 = α, θ3 = 1
β
, θ4 = 1

λ1
and θ5 = 1

λ2
to improve the computational

efficiency.

µ1(θ1, θ2, θ3, θ4, θ5) = θ4 + θ1θ2θ3 + θ1θ5 − θ2θ3 − θ5

µ2(θ1, θ2, θ3, θ4, θ5) = 2θ2
4 + 2θ4θ1θ2θ3 + 2θ4θ1θ5 − 2θ4θ2θ3 − 2θ4θ5

+ 4θ2
1θ2θ3θ5 + 2θ2

1θ
2
5 − 3θ1θ

2
2θ

2
3 − 6θ1θ2θ3θ5 − 2θ1θ

2
5

+ 2θ2θ3θ5 + θ1θ2θ
2
3 − θ2θ

2
3 + 2θ2

1θ
2
2θ

2
3 + θ2

2θ
2
3
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4.3 Method of Moments

µ3(θ1, θ2, θ3, θ4, θ5)

= −3θ2
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µ5(θ1, θ2, θ3, θ4, θ5)
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2
3 + 60θ3

4θ1θ2θ
2
3 + 120θ3

4θ2θ3θ5 + 140θ2
4θ1θ

3
2θ

3
3 − 180θ2

4θ1θ
2
2θ

3
3

+40θ2
4θ1θ2θ

3
3 − 60θ2

4θ
2
2θ

2
3θ5 + 60θ2

4θ2θ
2
3θ5 − 75θ4θ1θ

4
2θ

4
3 + 210θ4θ1θ

3
2θ

4
3 − 165θ4θ1θ

2
2θ

4
3

+30θ4θ1θ2θ
4
3 + 20θ4θ

3
2θ

3
3θ5 − 60θ4θ

2
2θ

3
3θ5 + 40θ4θ2θ

3
3θ5 + 155θ1θ

4
2θ

4
3θ5 − 450θ1θ

3
2θ

4
3θ5

+160θ1θ
3
2θ

3
3θ

2
5 + 385θ1θ

2
2θ

4
3θ5 − 240θ1θ

2
2θ

3
3θ

2
5 − 90θ1θ2θ

4
3θ5 + 80θ1θ2θ

3
3θ

2
5 + 120θ3

4θ
2
1θ

2
2θ

2
3

+120θ2
4θ

3
1θ

3
2θ

3
3 − 240θ2

4θ
2
1θ

3
2θ

3
3 + 120θ2

4θ
2
1θ

2
2θ

3
3 + 120θ4θ

4
1θ

4
2θ

4
3 − 300θ4θ

3
1θ

4
2θ

4
3 + 250θ4θ

2
1θ

4
2θ

4
3

−5θ4
2θ

4
3θ5 + 30θ3

2θ
4
3θ5 − 55θ2

2θ
4
3θ5 + 30θ2θ

4
3θ5 − 360θ3

4θ1θ2θ3θ5 + 420θ2
4θ1θ

2
2θ

2
3θ5

−180θ2
4θ1θ5θ2θ

2
3 + 240θ2

4θ1θ2θ3θ
2
5 − 300θ4θ1θ

3
2θ

3
3θ5 + 420θ4θ1θ

2
2θ

3
3θ5 − 240θ4θ1θ

2
2θ

2
3θ

2
5

−120θ4θ1θ5θ2θ
3
3 + 120θ4θ1θ

2
5θ2θ

2
3 + 240θ3

4θ
2
1θ2θ3θ5 + 360θ2

4θ
3
1θ

2
2θ

2
3θ5 + 360θ2

4θ
3
1θ2θ3θ

2
5

−720θ2
4θ

2
1θ

2
2θ

2
3θ5 − 600θ2

4θ
2
1θ2θ3θ

2
5 + 120θ2

4θ
2
1θ5θ2θ

2
3 + 480θ4θ

4
1θ

3
2θ

3
3θ5 + 720θ4θ

4
1θ

2
2θ

2
3θ

2
5

+480θ4θ
4
1θ2θ3θ

3
5 − 1200θ4θ

3
1θ

3
2θ

3
3θ5 − 1620θ4θ

3
1θ

2
2θ

2
3θ

2
5 − 840θ4θ

3
1θ2θ3θ

3
5 + 1000θ4θ

2
1θ

3
2θ

3
3θ5

+1140θ4θ
2
1θ

2
2θ

2
3θ

2
5 + 360θ4θ

2
1θ2θ3θ

3
5 + 360θ4θ

3
1θ

2
2θ

3
3θ5 + 180θ4θ

3
1θ

2
5θ2θ

2
3 − 720θ4θ

2
1θ

2
2θ

3
3θ5

−300θ4θ
2
1θ

2
5θ2θ

2
3 + 80θ4θ

2
1θ5θ2θ

3
3 + 120θ5

4 − θ5
2θ

5
3 + 10θ4

2θ
5
3 − 35θ3

2θ
5
3 + 50θ2

2θ
5
3 − 24θ2θ

5
3

+120θ4
4θ1θ5 − 120θ4

4θ2θ3 − 120θ3
4θ1θ

2
5 + 60θ3

4θ
2
2θ

2
3 − 60θ3

4θ2θ
2
3 − 20θ2

4θ
3
2θ

3
3 + 60θ2

4θ
2
2θ

3
3

−40θ2
4θ2θ

3
3 + 5θ4θ

4
2θ

4
3 − 30θ4θ

3
2θ

4
3 + 55θ4θ

2
2θ

4
3 − 30θ4θ2θ

4
3 + 31θ1θ

5
2θ

5
3 − 150θ1θ

4
2θ

5
3

+245θ1θ
3
2θ

5
3 − 150θ1θ

2
2θ

5
3 + 24θ1θ2θ

5
3 + 120θ3

4θ
2
1θ

2
5 + 120θ2

4θ
3
1θ

3
5 − 120θ2

4θ
2
1θ

3
5

−120θ4θ
3
1θ

4
5 − 120θ4

4θ5 + 120θ5
1θ

5
5 − 120θ4

1θ
5
5 + 180θ4θ

3
1θ

3
2θ

4
3 − 360θ4θ

2
1θ

3
2θ

4
3

+600θ5
1θ

4
2θ

4
3θ5 + 1200θ5

1θ
3
2θ

3
3θ

2
5 + 1200θ5

1θ
2
2θ

2
3θ

3
5 + 600θ5

1θ2θ3θ
4
5 − 1800θ4

1θ
4
2θ

4
3θ5

−3360θ4
1θ

3
2θ

3
3θ

2
5 − 2880θ4

1θ
2
2θ

2
3θ

3
5 − 1080θ4

1θ2θ3θ
4
5 + 1950θ3

1θ
4
2θ

4
3θ5 + 3300θ3

1θ
3
2θ

3
3θ

2
5

+2220θ3
1θ

2
2θ

2
3θ

3
5 + 480θ3

1θ2θ3θ
4
5 − 900θ2

1θ
4
2θ

4
3θ5 − 1300θ2

1θ
3
2θ

3
3θ

2
5 − 540θ2

1θ
2
2θ

2
3θ

3
5

+720θ4
1θ

3
2θ

4
3θ5 + 720θ4

1θ
2
2θ

3
3θ

2
5 + 240θ4

1θ
3
5θ2θ

2
3 − 1800θ3

1θ
3
2θ

4
3θ5 − 1620θ3

1θ
2
2θ

3
3θ

2
5

−420θ3
1θ

3
5θ2θ

2
3 + 1500θ2

1θ
3
2θ

4
3θ5 + 1140θ2

1θ
2
2θ

3
3θ

2
5 + 180θ2

1θ
3
5θ2θ

2
3 + 330θ3

1θ
2
2θ

4
3θ5

+120θ3
1θ

2
5θ2θ

3
3 − 660θ2

1θ
2
2θ

4
3θ5 − 200θ2

1θ
2
5θ2θ

3
3 + 60θ2

1θ5θ2θ
4
3 + 120θ5

1θ
5
2θ

5
3

+390θ3
1θ

5
2θ

5
3 − 180θ2

1θ
5
2θ

5
3 + 240θ4

1θ
4
2θ

5
3 − 600θ3

1θ
4
2θ

5
3 + 500θ2

1θ
4
2θ

5
3 + 210θ3

1θ
3
2θ

5
3

−420θ2
1θ

3
2θ

5
3 + 100θ2

1θ
2
2θ

5
3 − 360θ4

1θ
5
2θ

5
3 + 120θ4θ

4
1θ

4
5 + 110θ4θ

2
1θ

2
2θ

4
3

132



4.3 Method of Moments

We simulate a sample size of 10000 total waiting time from node 0 and node

2 with p02 = 0.7, α = 0.5, β = 1, λ1 = 1.5, λ2 = 3. The sample moments are

m1 = 1.0232, m2 = 2.1721, m3 = 7.1898, m4 = 32.3488, m5 = 186.974. Then the

method of moments estimators are obtained by numerically solving the following

5 equations

µr(θ1, θ2, θ3, θ4) = mr for r = 1, . . . , 5.

Table 4.14: Summary of result by Method of Moments

Sample size p̂02 α̂ β̂ λ̂1 λ̂2

n = 10000 0.7115 0.4448 0.9548 1.4703 2.6289

4.3.4 Example 1.4 continued

4.3.4.1 Example 1.4.1: Exponential waiting time case

We return to the three nodes reversible illness model presented in Section 4.2.2.1.

Instead of maximum likelihood approach, we apply the method of moment to

estimate parameters in Figure 2.5 on page 17. This is a more challenging example,

where the dimension of parameter is high and the algebraic structure of moment

equations are complicated.

Table 4.15: Summary of waiting time distribution

Direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

0 → 2 Exponential(λ3) m02(s) = λ3

λ3−s

1 → 2 Exponential(λ2) m12(s) = λ2

λ2−s

1 → 0 Exponential(λ4) m10(s) = λ4

λ4−s
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By Mason’s rule, the MGF of the total waiting time distribution from node

0 to node 2 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
(λ4 − s) [p01p12λ1λ2(λ3 − s) + λ3(1 − p01)(λ1 − s)(λ2 − s)]

(λ2 − s)(λ3 − s) [(λ1 − s)(λ4 − s) − λ1λ4p01(1 − p12)]

We construct a system of 6 moment equations for estimating 6 parameters p01,

p12, λ1, λ2, λ3, λ4 as follow

drMT02(s)

dsr

∣∣∣
s=0

=
1

n

n∑

i=1

tri

for r = 1, . . . , 6 (see Appendix). For illustration purposes, we assume

1. λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4.

2. p01 = 0.3, p12 = 0.8

A sample size of n = 100000 total waiting time data from node 0 to node 2

is simulated by the procedure we discussed in Section 4.2.2.2. The sample mo-

ments are computed as m1 = 0.7126, m2 = 1.3456, m3 = 4.2553, m4 = 18.4244,

m5 = 99.8849, m6 = 649.9525. As it is not possible to solve the set of nonlin-

ear equations given by equation 4.3.4.1 algebraically, we use the Newton-Raphson

method to compute the MM estimators. To have a fast convergence of the Newton-

Raphson algorithm, we set the initial values as p
(0)
01 = 0.2, p

(0)
12 = 0.72, λ

(0)
1 = 0.92,

λ
(0)
2 = 1.9, λ

(0)
3 = 3.05, λ

(0)
4 = 4.0900. The result of the parameter estimation by

MM is given in Table 4.16

Table 4.16: Summary of result by Method of Moments

parameter p01 p12 λ1 λ2 λ3 λ4

True value 0.3 0.8 1 2 3 4
Estimated value 0.3015 0.8889 0.9658 1.9731 2.9199 4.2631
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Although there is a relatively large difference from the true value of λ4, the

MM estimators still provide a reasonably good estimation for both the transition

probabilities and the rates of exponential distribution in the flowgraph model.

For high dimensional parameter estimation problems in a large flowgraph, the

advantage of the method of moments is in its simplicity of working with MGFs,

which can be easily computed by using any symbolic algebra package.

4.3.4.2 Example 1.4.2: Non-exponential waiting time case

In this section we demonstrate the use of method of moments to compute the es-

timator for 8 parameters in the flowgraph illustrated in Figure 2.5 which involves

non-exponentially distributed internode waiting time (see Table 4.17).

Table 4.17: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Gamma(α1,β1) m01(s) = ( β1

β1−s
)α1

0 → 2 Exponential(λ1) m02(s) = λ1

λ1−s

1 → 2 Gamma(α2,β2) m12(s) = ( β2

β2−s
)α2

1 → 0 Exponential(λ2) m10(s) = λ2

λ2−s

The MGF of the total waiting time distribution from node 0 to node 2 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
(λ2 − s) [p01p12β

α1
1 βα2

2 (λ1 − s) + λ1(1 − p01)(β1 − s)α1(β2 − s)α2 ]

(λ1 − s)(β2 − s)α2 [(β1 − s)α1(λ2 − s) − p01β
α1
1 λ2(1 − p12)]

In order to estimate θ = (p01, p12, α1, β1, α2, β2, λ1, λ2), a set of 8 moment

equations are constructed as follow

drMT02(s)

dsr

∣∣∣
s=0

=
1

n

n∑

i=1

tri (4.58)

for r = 1, . . . , 8.
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The sample moments, m1 = 1.05303, m2 = 1.97919, m3 = 5.09816, m4 =

16.66027, m5 = 66.36213, m6 = 313.28586, m7 = 1714.98377, m8 = 10697.19494,

are calculated based on 100000 samples of total waiting time from node 0 to

node 2 (i.e. see Section 4.2.2.2 for the procedure of simulation). Again, Newton-

Raphson Method is used for solving the set of moment equations derived by 4.58.

Since in multimodal situations the Newton-Raphson method may not con-

verge from any starting point, particularly for high dimensional parameters, the

convergence is sensitive to the initial value of parameters. We therefore typically

use multi-start when using the algorithm. For a fast convergence of Newton-

Raphson method, we start the algorithm at p
(0)
01 = 0.56, p

(0)
12 = 0.4, α

(0)
1 = 3.25,

β
(0)
1 = 4.71, α

(0)
2 = 1.91, β

(0)
2 = 3.1, λ

(0)
1 = 2.15, λ

(0)
2 = 3.9. Table 4.18 summaries

the estimated value of parameters.

Table 4.18: Summary of result by Method of Moments

Parameter p01 p12 α1 β1 α2 β2 λ1 λ2

True value 0.5 0.5 3.2 4.8 2 3 2.2 4
Estimated value 0.5161 0.5061 3.1610 4.8081 2.1344 3.2018 2.2258 4.0515

For high dimensional parameter estimation problems, we note that the ac-

curacy of Method of Moment estimator depend crucially on two factors: 1) The

value of sample moments, 2) The efficiency of implementing the Newton-Raphson

method. Since the calculation of MM estimators is essentially a set of equation

solving problem, it is important to have sample moments that are close to the

theoretical moments evaluated at the true value of parameters, especially for high

sample moment (i.e. 1
n

∑n
i=1 tri when r is large). Therefore, we usually require a

large sample size data to reduce the difference between sample moments and

theoretical moments. On the other hand, we can greatly improve the numeri-

cal stability of the Newton-Raphson algorithm by reparametrisating the moment

equations into a suitable form that does not involve rational terms. In addition,

we need to fine tune to the initial value so that the Newton-Raphson algorithm

can converge quickly.
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4.3.5 Identifiability

Identifiability is a property that a model must satisfy so that we can estimate

the true value of this model’s underlying parameters based on the a number of

observations from it. Casella and Berger (2002) explain that the identifiability is

a property of the model, not of an estimator or estimation procedure. If a model

is not identifiable, then there is a difficulty in performing statistical inference.

Identifiability here means the parameters of flowgaph model can be estimated

by using the total waiting time data. We need to solve the set of moment equations

in MM or the set of likelihood equations in ML estimation for the parameter

estimator, which requires the Jacobian matrix of moment equations or the Fisher

information matrix, respectively, to be invertible. Note that we could inspect

the PDF for the constraints of parameter values, so that we have a valid PDF

to construct likelihood function. For the MM approach, given a d-dimensional

parameter θ = (θ1, ..., θd), the Jacobian matrix is a d × d matrix H = {hij}
such that hij = ∂µi

∂θj
for i, j = 1, ..., d. We check this identification conditions by

computing the algebraic expression of Jacobian determinant (see Appendix), and

find the conditions for the value of parameters to have det(H) 6= 0. The result is

summarised in Table 4.19 and 4.20.

Table 4.19: Conditions for exponential internode waiting time case

Example 5.1 continued 6.1.1

MLE λ1 6= λ2 p02 6= 1
MM p01 6= 1 λ1 6= λ2 p02 6= 1

λ2 6= λ3 λ1 6= λ3 λ3 6= λ1

Table 4.20: Conditions for Non-exponential internode waiting time case

Example 5.2 continued 6.1.2

MM p01 6= 1 p02 6= 1
λ1 6= β λ2 6= β
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4.4 Bias correction in the Method of Moments

This section discusses the calculation of analytical first-order bias expressions for

the method of moments (MM) estimator of the parameters in the total waiting

time distribution. The MM estimator may be biased when the sample size of

data is small, partly because the sample moments will loss accuracy in match-

ing the population moments for small size samples, and the difference between

sample moments and population moments becomes large for higher order. The

motivation is to estimate the size of bias in MM estimator given sample data,

and improve the accuracy of MM estimators by removing the estimated bias.

First, we review two different approaches for bias reduction of MLE in lit-

erature. Cox and Snell (1968) develop a general expression for the bias to order

O(n−1) of the maximum likelihood estimation for high dimensional parameter. Es-

sentially, the Cox-Snell method is a “corrective” approach to bias adjusted MLE,

where we first calculate the MLE, then correct by subtracting its estimated bias.

On the other hand, Firth (1993) introduces an alternative “preventive” approach,

which involves modifying the score functions before they are solved for comput-

ing the MLE. Cordeiro and McCullagh (1991) have adopted the Cox and Snell

formula (see equation (20) in Cox and Snell (1968)) to derive general formula

for second-order biases of MLEs of parameters in generalized linear model. For

the MM estimator, further research could be done to connect Firth’s method

to adjust moments equations (i.e. biased corrected the sample moments) in the

method of moments.

Based on the asymptotic expansion of moment function, we propose a for-

mula for computing the analytical bias expressions to order O(n−1) of the MM

estimator in both univariate and multivariate case, where n is the sample size.

The bias corrected MM estimator can then be determined by subtracting the

bias (estimated at the MM of the parameters) from the original MM estimator.

The results of a series flowgraph simulation experiment is presented, where we

evaluate the performance of bias corrected MM estimators that are based on our

analytical results, as well as the corresponding MM estimator and MLEs.
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Lemma 6. Let G(θ) = (G1(θ), . . . , Gd(θ))
T be a d × 1 vector such that

Gr(θ) = µr(θ) − mr (4.59)

where µr(θ) and mr are defined in Definition 11. Then

E(Gr(θ)) = 0 (4.60)

for r = 1 . . . d.

Proof. By Definition 11, we have

E(mr) = E(xr) = µr(θ)

then,

E (Gr(θ)) = E (µr(θ) − mr)

= µr(θ) − E(mr)

= 0

for r = 1, . . . , d.

Let θ̂ be the Method of Moment estimator. By Definition 11, we also have

G(θ̂) = 0 (4.61)

Lemma 7. Given a vector of parameters θ1, . . . , θn with mean µ and covariance

matrix Σ, let θ̄ = 1
n

∑n
i=1 θi. The following holds

√
n(θ̄ − µ)

d→ N(0, Σ)

We say that θ̄ is asymptotically normally distributed with mean µ and covariance

matrix 1
n
Σ.

139



Parameter estimation

Theorem 8. Given parameter θ = (θ1, . . . , θd). The closed form expression for

the bias of Method of Moments estimator θ̂ is

b(θ̂r) = E(θ̂ − θ)

=

d∑

i=1

B−1
ri Ai + O

(
1

n2

)

for r = 1, . . . , d, where

B =




E
(

∂G1

∂θ1

)
· · · E

(
∂G1

∂θd

)

E
(

∂G2

∂θ1

)
· · · E

(
∂G2

∂θd

)

... · · · ...

E
(

∂Gd

∂θ1

)
· · · E

(
∂Gd

∂θd

)




Ai = −1

2

d∑

k=1

d∑

l=1

cov(θ̂k, θ̂l)E

(
∂2Gi(θ)

∂θk∂θl

)
= −1

2
CVi

and

Gr(θ) = M r
x(0) − mr

Vi = [v(1) | v(2) | . . . | v(d)]T , where v(j) =

[
E
(

∂2Gi(θ)
∂θj∂θ1

)
, E
(

∂2Gi(θ)
∂θj∂θ2

)
. . . , E

(
∂2Gi(θ)
∂θj∂θd

)]
.

C = [c(1) | c(2) | . . . | c(d)], where c(j) =
[
cov(θ̂j , θ̂1), cov(θ̂j , θ̂2) . . . , cov(θ̂j , θ̂d)

]
.

for j = 1, . . . , d

Proof. Univariate case

In one dimensional parameter case (i.e. d = 1 in Lemma 6, we apply second order

of Taylor expansion of G(θ̂) in θ̂ at θ:

G(θ̂) ≈ G(θ) + G′(θ)(θ̂ − θ) +
1

2
G′′(θ)(θ̂ − θ)2 (4.62)
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Taking expectations on both side of equation 4.62, we obtain

E(G(θ̂)) ≈ E(G(θ)) + E{G′(θ)(θ̂ − θ)} + E
{1

2
G′′(θ)(θ̂ − θ)2

}
(4.63)

By equation 4.61, we have E(G(θ̂)) = 0, then equation 4.63 becomes

0 ≈ E(G(θ)) + E{G′(θ)(θ̂ − θ)} + E
{1

2
G′′(θ)(θ̂ − θ)2

}
(4.64)

By equation 4.60, the first term on the right hand side of equation 4.64 vanishes,

then

E{G′(θ)(θ̂ − θ)} + E
{1

2
G′′(θ)(θ̂ − θ)2

}
≈ 0 (4.65)

where

G′(θ) =
dG(θ)

dθ

=
dM1

x(0)

dθ
− dm1

dθ

=
dM1

x(0)

dθ

G′′(θ) =
d2G

dθ2

=
d2M1

x(0)

dθ2
− d2m1

dθ2

=
d2M1

x(0)

dθ2

Since M1
x(0) =

(
dMx(s)

ds

) ∣∣∣
s=0

only involves parameters, G′(θ) and G′′(θ) are func-

tions of parameter, and they can be considered as constant for the terms involves

expectation in equation 4.65, then

G′(θ)E(θ̂ − θ) + G′′(θ)E
{1

2
(θ̂ − θ)2

}
≈ 0

E(θ̂ − θ) ≈ −E(θ̂ − θ)2G′′(θ)

2G′(θ)
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E(θ̂ − θ) ≈ −{Var(θ̂) + b2(θ̂)}G′′(θ)

2G′(θ)
(4.66)

By Lemma 7, V ar(θ̂) = O
(

1
n

)
, then

E(θ̂ − θ) = O

(
1

n

)

Subsequently

b2(θ̂) =
{
E(θ̂ − θ)

}2

= O

(
1

n2

)

As we only want to approximate the estimated bias up to order n−1, so we can

remove b2(θ̂) in equation 4.66.

E(θ̂ − θ) = −Var(θ̂)G′′(θ)

2G′(θ)
+ O

(
1

n2

)
(4.67)

Furthermore, Var(θ̂) can be approximated by using the result of the first order

Taylor expansion of G(θ̂) in θ̂ at θ.

G(θ) + G′(θ)(θ̂ − θ) ≈ 0

θ̂ − θ ≈ − G(θ)

G′(θ)
(4.68)

Since G′(θ) is a functions of parameter, then Var(θ̂) can be derived from equation

4.68,

Var(θ̂) =
Var(G(θ))

(G′(θ))2
(4.69)

Substitute equation 4.69 into equation 4.67 leads to

E(θ̂ − θ) ≈ −Var(G(θ))G′′(θ)

2(G′(θ))3
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By equation 4.59, when r = 1

Var(G(θ)) = Var(M1
x(0) − m1) (4.70)

As M1
x(0) = dMx(s)

ds

∣∣∣
s=0

is a function of parameter, and m1 = 1
n

∑n
i=1 xi, then

4.70 becomes

Var(G(θ)) = Var(m1)

=
Var(x)

n

=
E(x2) − (E(x))2

n

=
M2

x(0) − (M1
x(0))2

n

In one dimensional parameter case, the explicit form of bias b(θ̂) = E(θ̂ − θ) in

terms of MGF is

E(θ̂ − θ) ≈ −Var(G(θ))G′′(θ)

2(G′(θ))3
+ O

(
1

n2

)
(4.71)

where

G′(θ) =
d

dθ
(M1

x(0))

G′′(θ) =
d2

dθ2
(M1

x(0))

Var (G(θ)) =
M2

x(0) − (M1
x(0))2

n

Hence the estimated bias of θ̂ can be determined by substituting the value of θ̂

in equation 4.71,

b̂(θ̂) = −Var(G(θ̂))G′′(θ̂)

2(G′(θ̂))3
+ O

(
1

n2

)
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Proof. Multivariate case

When we have d dimensional parameters θ = (θ1, . . . , θd), the first order Taylor

expansion of G(θ̂) for θ̂ at θ is

G(θ̂) ≈ G(θ) + G′(θ)(θ̂ − θ)

where

G =




G1

G2

...

Gd




=




M1
x(0) − m1

M2
x(0) − m2

...

Md
x(0) − md




, G′ =




(
∂G1

∂θ1

)
· · ·

(
∂G1

∂θd

)
(

∂G2

∂θ1

)
· · ·

(
∂G2

∂θd

)

... · · · ...(
∂Gd

∂θ1

)
· · ·

(
∂Gd

∂θd

)




Since G(θ̂) = 0 is given in equation 4.61, then

G(θ) + G′(θ)(θ̂ − θ) ≈ 0

θ̂ − θ ≈ −(G′(θ))−1G(θ)

i.e.

θ̂s − θs = −
d∑

p=1

gspGp(θ) (4.72)

for s = 1, . . . , d, where gsp is the (s, p)-th entry of matrix [G′(θ)]−1. The second

order multivariate Taylor expansion for each Gr(θ̂), r = 1, . . . , d, of θ̂ at θ is

Gr(θ̂) ≈ Gr(θ) + G′
r(θ)(θ̂ − θ) +

1

2
(θ̂ − θ)T G′′

r(θ)(θ̂ − θ) (4.73)

≈ Gr(θ) +
d∑

s=1

(θ̂s − θs)
∂Gr(θ)

∂θs

+
1

2

d∑

t=1

d∑

u=1

(θ̂t − θt)(θ̂u − θu)
∂2Gr(θ)

∂θt∂θu

Take expectation on both side of equation 4.73.

E(Gr(θ̂)) ≈ E(Gr(θ)) +

d∑

s=1

E
{

(θ̂s − θs)
∂Gr(θ)

∂θs

}

+
1

2

d∑

t=1

d∑

t=1

E
{

(θ̂t − θt)(θ̂u − θ)
∂2Gr(θ)

∂θt∂θu

}
(4.74)
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By equation 4.60, the first term on the right hand side of equation 4.74 equals

zeros, the second term can be expressed as

E
{

(θ̂s − θs)
∂Gr(θ)

∂θs

}
= cov

(
θ̂s − θs,

∂Gr(θ)

∂θs

)
+ E(θ̂s − θs)E

(∂Gr(θ)

∂θs

)
(4.75)

By substituting equation 4.72 in cov
(
θ̂s − θs,

∂Gr(θ)
∂θs

)
, then

cov
(
θ̂s − θs,

∂Gr(θ)

∂θs

)
= cov

(
−

d∑

p=1

gspGp(θ),
∂Gr(θ)

∂θs

)

= −
d∑

p=1

gspcov
(
Gp(θ),

∂Gr(θ)

∂θs

)

= −
d∑

p=1

gsp

{
E
(
Gp(θ)

∂Gr(θ)

∂θs

)
− E(Gp(θ))E

(∂Gr(θ)

∂θs

)}

By equation 4.59, ∂Gr(θ)
∂θs

is a function of parameter, then

E
(
Gp(θ)

∂Gr(θ)

∂θs

)
=

∂Gr(θ)

∂θs
E(Gp(θ))

By equation 4.60, we have E(Gp(θ)) = 0, then

cov
(
θ̂s − θs,

∂Gr(θ)

∂θs

)
= 0 (4.76)

Substitute 4.76 into 4.75, we have

E
{

(θ̂s − θs)
∂Gr(θ)

∂θs

}
= E(θ̂s − θs)E

(∂Gr(θ)

∂θs

)
(4.77)
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The third terms on the right hand side of equation 4.74 can be expressed as

E
{

(θ̂t − θt)(θ̂u − θu)
∂2Gr(θ)

∂θt∂θu

}
= cov

{
(θ̂t − θ)(θ̂u − θ),

∂2Gr(θ)

∂θt∂θu

}
(4.78)

+E
{

(θ̂t − θt)(θ̂u − θu)
}
E
(∂Gr(θ)

∂θt∂θu

)

Replace θ̂t − θt and θ̂u − θu by equation 4.72 then

cov
{

(θ̂t − θt)(θ̂u − θu),
∂2Gr(θ)

∂θt∂θu

}
= cov

( d∑

p=1

d∑

q=1

gtpGpguqGq,
∂2Gr(θ)

∂θt∂θu

)

=
d∑

p=1

d∑

q=1

gtpguqcov
(
GpGq,

∂2Gr(θ)

∂θt∂θu

)

where cov
(
GpGq,

∂2Gr(θ)
∂θt∂θu

)
= 0 because GpGq and ∂2Gr(θ)

∂θt∂θu
are independent, then

cov
{

(θ̂t − θ)(θ̂u − θ),
∂2Gr(θ)

∂θt∂θu

}
= 0 (4.79)

On the other hand

E
{

(θ̂t − θt)(θ̂u − θu)
}

= cov(θ̂t − θt, θ̂u − θu) + E(θ̂t − θt)E(θ̂u − θu)

= cov(θ̂t, θ̂u) + O

(
1

n2

)
(4.80)

By substituting the result 4.79 and 4.80 in equation 4.78, we have

E
{

(θ̂t − θt)(θ̂u − θ)
∂2Gr(θ)

∂θt∂θu

}
= cov(θ̂t, θ̂u)E

(∂Gr(θ)

∂θt∂θu

)
(4.81)

Since E(G(θ̂)) = 0 by 4.61, we substitute 4.77 and 4.81 into 4.74, then

d∑

s=1

E(θ̂s − θs)E
(∂Gr(θ)

∂θs

)
+

1

2

d∑

t=1

d∑

u=1

cov(θ̂t, θ̂u)E
(∂Gr(θ)

∂θt∂θu

)
≈ 0

146



4.4 Bias correction in the Method of Moments

d∑

s=1

E(θ̂s − θs)E
(∂Gr(θ)

∂θs

)
= −1

2

d∑

t=1

d∑

u=1

cov(θ̂t, θ̂u)E
(∂Gr(θ)

∂θt∂θu

)
+ O

(
1

n2

)

(4.82)

for r = 1, . . . , d.

We can write equation 4.82 in matrix form and solve the set of equations for

the bias E(θ̂s − θs) of order n−1.

BE = A

E = B−1A

where

E =




E(θ̂1 − θ1)

E(θ̂2 − θ2)
...

E(θ̂d − θd)




, B =




E
(

∂G1

∂θ1

)
· · · E

(
∂G1

∂θd

)

E
(

∂G2

∂θ1

)
· · · E

(
∂G2

∂θd

)

... · · · ...

E
(

∂Gd

∂θ1

)
· · · E

(
∂Gd

∂θd

)




, A =




A1

A2

...

Ad




and

Ai = −1

2
CVi for i = 1, . . . , d.

Vi = [v(1) | v(2) | . . . | v(d)]T

v(j) =

[
E
(∂2Gi(θ)

∂θj∂θ1

)
, E
(∂2Gi(θ)

∂θj∂θ2

)
. . . , E

(∂2Gi(θ)

∂θj∂θd

)]

and

C = [c(1) | c(2) | . . . | c(d)]

where,

c(j) =
[
cov(θ̂j , θ̂1), cov(θ̂j , θ̂2) . . . , cov(θ̂j , θ̂d)

]

cov(θ̂s, θ̂t) =

{
Var(θ̂s) if s = t

0 if s 6= t

for j = 1, . . . , d
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Note that we can express Var(θ̂) in terms of MGF. By equation 4.72 and

4.96, wee have

Var(θ̂s) = Var
[
−

d∑

p=1

gspGp(θ)
]

=
d∑

p=1

g2
spVar [Gp(θ)]

=

d∑

p=1

g2
spVar [Mp

x(0) − mp]

=

d∑

p=1

g2
sp

n
Var [xp] (4.83)

=
d∑

p=1

g2
sp

n

{
E(x2p) − [E(xp)]2

}

=

d∑

p=1

g2
sp

n

{
M2p

x (0) − [Mp
x(0)]2

}

gsp is the (s, p)-th entry of matrix [G′(θ)]−1.

4.5 Comparison of MLE and MM

4.5.1 Example 7: Series network with exponential waiting

time

Figure 4.1 is a simple series network with exponential waiting time, we estimate

the parameters θ = (λ1, λ2) by maximum likelihood estimation, method of mo-

ments, and apply our formula to obtain the biased correction method of moment

estimator. We will compare these estimators by their Mean Square Error (MSE).

148



4.5 Comparison of MLE and MM

0

Input

1
p01m01(s)

2

Output

p12m12(s)

Figure 4.1: Series flowgraph model for hydraulic pump system

Table 4.21: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

1 → 2 Exponential(λ2) m12(s) = λ2

λ2−s

The MGF of total waiting time from node 0 to node 2 is

MT02(s) =
( λ1

λ1 − s

)( λ2

λ2 − s

)

The probability density function can be obtained by computing the inverse laplace

transform of MT02(s)

fT (t) =
λ1λ2

(
e−λ2t − e−λ1t

)

λ1 − λ2

Given data t1, . . . , tn, the log-likelihood function is

L(λ1, λ2) = log

(
n∏

i=1

fT (ti)

)

= n log

(
λ1λ2

λ1 − λ2

)
+

n∑

i=1

log
(
e−λ2ti − e−λ1ti

)

We then need to solve the following equations for the MLE

∂L

∂λ1

= − λ2n

λ1(λ1 − λ2)
+

n∑

i=1

ti exp(−λ1ti)

exp(−λ2ti) − exp(−λ1ti)
= 0

∂L

∂λ2
=

λ1n

λ2(λ1 − λ2)
+

n∑

i=1

ti exp(−λ2ti)

exp(−λ1ti) − exp(−λ2ti)
= 0 (4.84)

149



Parameter estimation

The MLE are computed by using the Newton-Raphson method to numerically

solve above equations for λ1 and λ2.

In order to apply the method of moments, we need to solve two equations

for estimating two unknown parameter λ1 and λ2.

1

λ1
+

1

λ2
− m1 = 0

2

(
1

λ2
1

+
1

λ1λ2
+

1

λ2
2

)
− m2 = 0

where m1 = 1
n

∑n
i=1 ti, m2 = 1

n

∑n
i=1 t2i .

Define a = 1
λ1

and b = 1
λ2

, to reparameterise the above equations as

a + b − m1 = 0

a2 + ab + b2 − 1

2
m2 = 0

which can be easily solved and gives closed form expression for parameter

estimation

λ̂01 =
2

m1 +
√

2m2 − 3(m1)2

λ̂12 =
2

m1 −
√

2m2 − 3(m1)2
(4.85)

For the bias corrected method of moments estimator, we need to first estimate

the bias b(θ) that is given in Theorem 8. Let G be a 2 × 1 vector

G =

[
G1

G2

]

=

[
M1

x(0) − m1

M2
x(0) − m2

]

=

[
1
λ1

+ 1
λ2

− m1

2
(

1
λ2
1

+ 1
λ1λ2

+ 1
λ2
2

)
− m2

]
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G′ =

[
∂G1

∂λ1

∂G1

∂λ2

∂G2

∂λ1

∂G2

∂λ2

]

=

[
−λ−2

1 −λ−2
2

−4λ−3
1 − 2λ−2

1 λ−1
2 −2λ−1

1 λ−2
2 − 4λ−3

2

]

The inverse of G′ is

(G′)−1 =

[
g11 g12

g21 g22

]

=

[
− (λ2+2λ1)λ2

1

λ1−λ2

λ2λ3
1

2(λ1−λ2)
(2λ2+λ1)λ2

2

λ1−λ2
− λ1λ3

2

2(λ1−λ2)

]
(4.86)

and

V1 =
[
E

(
∂2G1

∂λ2
1

)
, E

(
∂2G1

∂λ1λ2

)
, E

(
∂2G1

∂λ2λ1

)
, E

(
∂2G1

∂λ2
2

)]T

=

[
2

λ3
1

, 0, 0,
2

λ3
2

]T

V2 =
[
E

(
∂2G2

∂λ2
1

)
, E

(
∂2G2

∂λ1λ2

)
, E

(
∂2G2

∂λ2λ1

)
, E

(
∂2G2

∂λ2
2

)]T

=

[
12

λ4
1

+
4

λ3
1λ2

,
2

λ2
1λ

2
2

,
2

λ2
1λ

2
2

,
4

λ1λ3
2

+
12

λ4
2

]T

C = [c(1), 0, 0, c(4)]

where c1 and c4 can be determined by formula given in equation 4.83 such that

c(1) = g2
11

Var(x)

n
+ g2

12

Var(x2)

n

c(4) = g2
21

Var(x)

n
+ g2

22

Var(x2)

n
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Also

Var(x) = E(x2) − (E(x))2

= M2
x(0) −

(
M1

x(0)
)2

=
1

λ2
1

+
1

λ2
2

Var(x2) = E(x4) − (E(x2))2

= M4
x(0) −

(
M2

x(0)
)2

=
4

λ4
1λ

4
2

(5λ4
2 + 4λ1λ

3
2 + 3λ2

1λ
2
2 + 4λ3

1λ2 + 5λ4
1)

then

A1 = −1

2
CV1

A2 = −1

2
CV2

Hence the expression for the bias in Method of Moment estimator are

b1(λ1) = E(λ̂1 − λ1)

= g11A1 + g12A2

=
λ1(−21λ5

2 − 16λ2
1λ

3
2 − 18λ1λ

4
2 − 16λ3

1λ
2
2 − 16λ4

1λ2 + 9λ5
1)

(λ1 − λ2)3λ2
2n

(4.87)

b2(λ2) = E(λ̂2 − λ2)

= g21A1 + g22A2

=
λ2(16λ1λ

4
2 + 16λ3

1λ
2
2 + 16λ2

1λ
3
2 + 18λ4

1λ2 + 21λ5
1λ2 − 9λ5

2)

(λ1 − λ2)3λ2
1n

(4.88)

where gij is defined in equation 4.86.
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Recall that T1 is the random waiting time in node 0 until node 1 is reached,

and T2 is the random waiting time in node 1 until node 2 is reached. To simulate

n total waiting time data from node 0 to node 2, we simulate each internode

waiting time independently, t1 ∼ Exp(λ1) and t2 ∼ Exp(λ2), and then take the

sum of these two internode waiting time, t = t1 + t2. Given the total waiting

time data, we compute the maximum likelihood estimator (MLE) θ̂mle by solving

equations 4.84, method of moment (MM) estimator θ̂m by equation 4.85, then

the estimated bias in MM estimator can be determined by substituting the value

of θ̂m = (λ̂1, λ̂2) in equation 4.87 and 4.88, then the bias corrected MM estimator

can be obtained as θ̂bc = θ̂m − b(θ̂).

We set the initial value at λ
(0)
1 = 1.12 and λ

(0)
2 = 2.82 for the numerical

method (i.e. Newton-Raphson method) that determines the MLE and MM esti-

mator. Sample size of 1000, 10000 and 100000 were simulated with λ1 = 1 and

λ2 = 3. The simulation is repeated for 1000 times, each time gives MLE θ̂mle,

MM estimator θ̂m, and the biased corrected MM estimator θ̂bc. The comparison

of these estimators is given by examining their mean square error (MSE).

MSE(θ̂) = E
{

(θ̂ − θ)2
}

Table 4.22: Summary of Mean Square Error in λ1

Sample size MM BCMM MLE

10000 3.5385 × 10−4 1.4663 × 10−4 2.79912× 10−4

100000 3.4553 × 10−5 2.6165 × 10−5 2.61894× 10−5

1000000 3.22 × 10−6 2.45 × 10−6 2.22 × 10−6

Table 4.23: Summary of Mean Square Error in λ2

Sample size MM BCMM MLE

10000 2.1393 × 10−2 1.8941 × 10−2 1.4810 × 10−2

100000 1.9756 × 10−3 1.9124 × 10−3 1.3470 × 10−3

1000000 1.92 × 10−4 1.49 × 10−4 1.32 × 10−4
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Table 4.22 and Table 4.23 show mean square error of three different estimators

for λ̂1 and λ̂2. In terms of accuracy, the maximum likelihood estimators give the

best estimation, since they have the smallest mean square error in all different

sample sizes. Although the method of moments (MM) estimator has the largest

mean square error, the corresponding bias corrected method of moment (BCMM)

estimators, after substracting the estimated bias in equation 4.87 and 4.88, are

effective in reducing mean square error. It can be seen that the bias corrected

method of moments provides better result, where the mean square error difference

between MLE and BCMM estimator is getting smaller than in standard MM

estimator.

4.5.2 Computational time

To justify the computational efficiencies of the method of moment and maximum

likelihood method, we present a direct comparison of times for computing MM

estimator and MLE in three different flowgraph examples of this chapter. In

each example, we use the same simulated total waiting time data, and set the

corresponding numerical method to start from the same initial value of target

parameters.

Table 4.24: Comparison of computational time (seconds)

Example 7 6.1.1 1.4.1

MLE 0.15 21.77 93.07
MM 0.07 0.27 8.22

Table 4.24 illustrates the actual computational time in seconds for both meth-

ods in estimating different number of parameters. It is clearly shown that the

method of moments substantially reduces the time in parameter estimation over

the maximum likelihood method by an order of magnitude.
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Chapter 5

Tail area probability

approximations

In order to determine the probability that a system will survive beyond a spec-

ified time, we are often interested in approximating the survival function of the

total waiting time between two nodes of interest in a flowgraph, rather than its

probability density function. The tail area probability of survival function is de-

fined as P (T > tp) = 1−p, where tp is the p-th percentile such that P (T < tp) = p.

This chapter focuses on the approximations for tail probabilities of the total

waiting time distribution, particularly the shape of the survival function P (T > t)

when t is large, based on two different approaches, Padé approximation and sad-

dlepoint approximation. In the first approach, we approximate the behavior of

total waiting time survival function S(t) = P (T > t) at large t by a simple ex-

ponential function in the form of ve−at, where the rate a can be obtained based

on the analysis of singularities in the Padé approximation of MGF. The second

approach is to estimate survival function by the use of Lugannani-Rice saddle-

point formula, which requires the original MGF of total waiting time. The major

contributions we present is to show the connection between the two apparently

unrelated methods in estimating survival function, and propose a bias corrected

Padé-type saddlepoint approximation, which significantly simplifies the calcula-

tions of original saddlepoint approximation method.
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Tail area probability approximations

This chapter is organised as follow. In Section 1 we review theorems that

relate to asymptotic behavior of inverse Laplace transforms, which is the foun-

dation of exponential function approximation for tail area probabilities. We then

apply the the final value theorem to propose a new formula to determine the

asymptotic constant and the asymptotic rate in this exponential function. Nu-

merical comparisons are made with the true survival probabilities at different

percentiles tp. In section 2 we illustrate flowgraph examples for the error analy-

sis in tail area approximation by the inversion of Padé approximation of MGF.

Section 3 demonstrates a detailed procedure for applying Lugannani-Rice for-

mula for survival function approximation. Section 4 extends the application of

Lugannani-Rice formula by using the Padé approximation of a given MGF as

baseline function, and propose a general Padé-type saddlepoint approximation

method. Section 5 discusses the limiting behavior of error in saddlepoint approx-

imation for tail area probability, and present a new bias correction method for

Padé-type saddlepoint approximation of both PDF and survival function.

5.1 Tail area approximation by exponential func-

tion

The main purpose in this section is to discuss the use of exponential approxima-

tions to describe the limiting behavior of survival function of total waiting time.

First, we derive the form of exponential approximations based on the asymptotic

property of Laplace transform. Secondly, we demonstrate through examples that

tail area survival probabilities approximations provided by exponential function is

exceptionally good. The comparison of approximation for tail probabilities based

on exponential functions that constructed from different order of Padé approxi-

mation is also presented.
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5.1 Tail area approximation by exponential function

Lew (1973) discusses the asymptotic behavior of the inversion of Laplace

transform, that is, a complex-valued locally integrable function f(t) on [0, +∞)

from L[f ](s). By equation (1.3) of Lew (1973) , it is shown that the behavior of

f(t) near t → +∞ depends on the rightmost singularities of L[f ](s).

Theorem 9. Lew’s theorem

Let f(t) be a function on [0, +∞) with Laplace transform L[f ](s) such that

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
exp(ts)L[f ](s)ds (5.1)

where the integration is done along the vertical line Re(s) = γ in the complex

plane such that γ is greater than the real part of all singularities of L[f ](s). If

L[f ](s) can be continued analytically to the left, and if the contour of (5.1) can

be moved sufficiently in that direction, then the behavior of f(t) as t → ∞ is

determined by that of L[f ](s) near its rightmost singularities.

f(t) = O(eνt) as t → ∞

where ν is the rightmost singularities of L[f ](s)

Suppose we let T be the total waiting time random variable with density

function f(t) and MGF MT (s). Based on a Padé approach, we can approximate

the MGF of total waiting time by a rational function, which can then be applied in

the Heaviside formula to obtain true probability density function f(t) in the form

of sum of exponential functions, with the rates are the poles in the denominator

of Padé approximation ( see Lemma 4 on page 40). By Theorem 9, the behavior

of f(t) near t → +∞ is dominated by the corresponding Laplace transform near

its rightmost singularities, then we can approximate the density function by an

exponential function as

f(t) ≈ ce−at as t → ∞ (5.2)

where a is the absolute value of the rightmost singularities of MT (−s), and c is

constant. It is important to note that 5.2 only hold for suitably large t, but does

not hold for all t. We clarify on this point in Section 5.1.1 and Section 5.2.
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Tail area probability approximations

Definition 12. Let T be a continuous random variable with CDF F (t), PDF f(t)

and MGF MT(s) on the interval [0, +∞), the survival function of T is defined as

follows:

S(t) = P (T > t)

= 1 − F (t)

=

∫ ∞

t

f(x)dx

In our case, T denotes the total waiting time between two nodes of interest

in a flowgraph. By Definition 12 and equation 5.2, we can obtain an exponential

function to estimate the tail area probabilities of survival function as follow

P (T > t) ≈ ve−at as t → ∞ (5.3)

where the asymptotic constant is

v =
c

a

and the asymptotic decay rate a is the absolute value of the rightmost singularities

of MT(−s). Furthermore, equation 5.3 is equivalent to

lim
t→∞

eatP (T > t) = v

5.1.1 Example 1.3.1

We first consider the flowgraph model for a reversible illness-death system, which

has exponential distribution for all internodes waiting time (see Table 3.1 on page

41), where λ1 = 1, λ2 = 1.2, λ3 = 0.5, λ4 = 2, and p01 = p02 = p10 = p12 = 1
2
.

The MGF of the total waiting time between node 0 and node 2 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
(2 − s)(1.8 − 3.4s + s2)

(6 − 12s + 4s2)(0.5 − s)(1.2 − s)
(5.4)
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5.1 Tail area approximation by exponential function

In Section 3.1 of Chapter 3, it was shown that the closed form expression of prob-

ability density function can be obtained by the exact inversion of MGF MT02(−s).

For a MGF with k singularities, the resulting total waiting time density function

is in the following form

f(t) = c1e
−a1t + c2e

−a2t + ... + cke
−akt

where a1, ...ak are the absolute value of singularities of MT02(−s), and c1, ...ck are

the corresponding constant terms.

By applying the Heaviside formula to invert equation 5.4, the true PDF is

f(t) = 0.75e−0.5t − 0.3636e−1.2t − 0.1207e−0.6340t − 0.0157e−2.366t

and the corresponding true survival function is

S(t) = P (T > t)

= 1.5e−0.5t − 0.303e−1.2t + 0.1903e−0.6340t + 0.0066e−2.366t (5.5)

For large t, the limit behavior of S(t) is dominated by the exponential function

1.5e−0.5t, which gives good approximation to the tail area probabilities of total

waiting time survival function. Given numerator order p and denominator q ,

we establish Padé approximation of original MGF from 5.4, and compare the

approximations for tail probabilities that constructed from each PA[p,q](s) with

the true survival function given in 5.5. The detail expression of estimated survival

functions in each case are given below. The Padé approximation of order p = 1

and q = 2 is

PA[1,2](−s) =
1 + 0.4543s

1 + 2.8988s + 1.771s2
(5.6)

where

fPA[1,2]
(t) = 0.6753e−0.4942t − 0.4188e−1.1426t

and

SPA[1,2]
(t) = 1.3665e−0.4942t − 0.3665e−1.1426t
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The Padé approximation of order p = 1 and q = 3 is

PA[1,3](−s) =
1 + 0.5272s

1 + 2.9716s + 1.9491s2 + 0.04813s3
(5.7)

where

fPA[1,3]
(t) = 0.6874e−0.4957t − 0.4086e−1.0767t − 0.2788e−38.9275t

and

SPA[1,3]
(t) = 1.3866e−0.4957t − 0.3795e−1.0767t − 0.0072e−38.9275t

The Padé approximation of order p = 2 and q = 3 is

PA[2,3](−s) =
1 + 1.8019s + 0.5791s2

1 + 4.2463s + 5.6440s2 + 2.3056s3
(5.8)

where

fPA[2,3]
(t) = 0.7301e−0.4990t − 0.1262e−0.6908t − 0.3528e−1.2582t

and

SPA[2,3]
(t) = 1.4630e−0.4990t − 0.1827e−0.6908t − 0.2804e−1.2582t

The Padé approximation of order p = 2 and q = 4 is

PA[2,4](−s) =
1 + 1.9092s + 0.6357s2

1 + 4.3536s + 5.9631s2 + 2.5149s3 + 0.0052s4
(5.9)

where

fPA[2,4]
(t) = 0.7434e−0.4997t − 0.1262e−0.6508t − 0.3672e−1.2287t − 0.2537e−484.2466t

and

SPA[2,4]
(t) = 1.4877e−0.4997t − 0.1883e−0.6508t − 0.2988e−1.2287t − 0.0005e−484.2466t
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The Padé approximation of order p = 3 and q = 4 is

PA[3,4](−s) =
1 + 2.3890s + 1.5002s2 + 0.2778s3

1 + 4.8334s + 8.0004s2 + 5.2227s3 + 1.1113s4
(5.10)

fPA[3,4]
(t) = 0.75e−0.5t − 0.3636e−1.12t − 0.1207e−0.6340t − 0.0157e−2.3656t

SPA[3,4]
(t) = 1.500000844e−0.5t − 0.3030e−1.12t − 0.1903e−0.6340t − 0.006e−2.3656t

Table 5.1: Summary of pole analysis

Method asymptotic constant v the right-most singularities −a∗

PA[1,2](s) 1.366534374 -0.4941829741
PA[1,3](s) 1.386621578 -0.4957436281
PA[2,3](s) 1.463030169 -0.4990385780
PA[2,4](s) 1.487693424 -0.4997200087
PA[3,4](s) 1.500000844 -0.5
MT02(s) 1.5 -0.5

Table 5.1 summarise the value of parameters for the dominated exponen-

tial function, in the form of equation 5.3, to describe the limiting behavior of

true survival function P (T > t). Note that the last row of Table 5.1 shows the

true value of the right-most singularities and the asymptotic constant that are

computed based on the original MGF MT02(s). Clearly, as the order of Padé

approximation increases, the value of asymptotic constant v and the right-most

singularities of Padé approximation of MGF, −a, converges to 1.5 and -0.5 re-

spectively. These result imply that a higher order Padé approximation leads to an

exponential function that gives more precise description for the limiting behavior

of the total waiting time tail probabilities than a lower order Padé approximation.

Table 5.2 compares the explicit value of estimate survival probabilities P (T >

t) based on the dominated exponential function that specified in Table 5.1.

The comparison is given in estimating probability at each percentile tp, where

p = 50%, 75%, 90%, 95%, 99%, 99.9%, and 99.9%. The true survival probabil-

ities are illustrated in the last column of Table 5.2. Numerical result shows that
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Table 5.2: Summary of exponential approximation for survival function: The unit
of probability for t∗, t∗∗ and t∗∗∗ are 10−2, 10−3, 10−4 respectively

percentile p Time tp PA[1,2] PA[1,3] PA[2,3] PA[2,4] PA[3,4] True

50% 1.86 0.5442 0.5506 0.5774 0.5863 0.5909 0.5
75% 3.37 0.2581 0.2604 0.2718 0.2757 0.2777 0.25
90% 5.27 0.1155 0.1163 0.1207 0.1223 0.1231 0.1
95% 6.69 0.0501 0.0502 0.0519 0.0525 0.0528 0.05
99%∗ 9.95 0.9989 0.9980 1.0190 1.0292 1.0348 1

99.9%∗∗ 14.59 1.0099 1.0016 1.0072 1.0141 1.0183 1
99.99%∗∗∗ 19.21 1.02868 1.0129 1.0032 1.0069 1.0098 1

all the exponential functions give reasonable good approximation for the tail area

probability of P (T > t), particularly, we see that the exponential function based

on PA[1,2](s) provides relatively the best estimation for the survival probabilities

up to 99% percentile at time t0.99 = 9.95, whereas the optimal approximation of

survival probabilities at time 14.59 and 19.21 are given by the exponential func-

tions that derived from PA[1,3](s) and PA[2,3](s) respectively.

Since the value of survival probability becomes significantly small and ap-

proaches to zeros as t gets increasingly large, in order to give a better graph-

ical comparison, we plot −log(P (T > t)) against t, where −log(P (T > t)) =

−log(v) − log(e−a∗t) = −log(v) + a∗t is a straight line with interception −log(v)

and positive slop a∗. Figure 5.1 compares approximation for distribution in term

of −log transform. It appears that the quality of approximation is generally very

good, even there are relatively large difference between the estimated and the

true value when t is smaller than the 50% percentile t0.5, i.e. t < 1.86 (see Figure

5.2). However, once t is greater than t0.9 = 5.27, the 90% percentile, we see a

clear evidence of convergence to the true survival function.

Figure 5.2 indicates that the exponential approximation from PA[1,2](s) yields

the best estimation for the true survival function when t ∈ [0, 1.86], whereas Fig-

ure 5.3 illustrates the survival function approximation for t ∈ [19, 19.21] is opti-

mal for exponential function that results from PA[2,3](s). Furthermore, Figure 5.4

demonstrates the quality of these exponential functions in estimating tail area
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5.1 Tail area approximation by exponential function

probabilities of survival function for t ∈ [29.99, 30], where the plot of exponential

function from PA[3,4](s) is the closest to the true survival probabilities, follow

by the estimation based on PA[2,4](s), and the relatively poor approximation is

observed in the exponential function derived from PA[2,3](s).

We also make comparison for the estimation of hazard function φ(t) = f(t)
s(t)

based on the PDF and survival function that derived from different order of Padé

approximation of MGF. The results of hazard function estimation are compared

under different time intervals, see Figure 5.5, 5.6, 5.7, and 5.8. All of these results

conclude that the closer to the order of original MGF, the greater accuracy we

will have for estimating survival probability at large t.
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Figure 5.1: Plot of −log (P (T > t)) against t ∈ [0, 19.21]
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Figure 5.2: Plot of −log (P (T > t)) against t ∈ [0, 1.86]
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Figure 5.3: Plot of −log (P (T > t)) against t ∈ [19, 19.21]
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Figure 5.4: Plot of −log (P (T > t)) against t ∈ [29.99, 30]
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Figure 5.5: Plot of hazard function estimation against t ∈ [0, 19.21]
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Figure 5.6: Plot of hazard function estimation against t ∈ [0, 1.86]
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Figure 5.7: Plot of hazard function estimation against t ∈ [19, 19.21]
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Figure 5.8: Plot of hazard function estimation against t ∈ [29.99, 30]

5.1.2 Example 1.3.2

We now consider some internode waiting time to follow non-exponential distri-

bution in a flowgraph, the PDF of total waiting time f(t) in this case usually

doesn’t have closed form expression, and the exponential function ce−at can’t be

determined directly by inspecting f(t). In general, the value of rate a can always

be determined by finding the rightmost singularities of the Laplace transform of

f(t), L[f ](s) (i.e. solve the denominator of MGF MT (−s) for s), however, we still

need to compute the constant term c in order to describe the limiting behavior

of total waiting time distribution. By using the final value theorem, we suggest

a simple method to determine the asymptotic constant c based on the MGF of

total waiting time and the asymptotic decay rate a.
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Proposition 1. Let T be a positive random variable with PDF f(t), MGF MT(s).

Suppose f(t) can be approximated as

f(t) ≈ ce−at as t → ∞

Then a is the absolute value of the right-most singularity of MT (−s), and

c = lim
s→0

sMT (a − s) (5.11)

The asymptotic constant c and asymptotic decay rate a are defined by

lim
t→∞

eatf(t) = c (5.12)

Let G(t) = eatf(t). By the final value theorem, we have

lim
t→∞

G(t) = lim
s→0

sL[G](s) (5.13)

where L[G](s) is the Laplace transform of function G(t).

Since

L[G](s) =

∫ ∞

0

e−stG(t)dt

=

∫ ∞

0

e−steatf(t)dt

=

∫ ∞

0

e(a−s)tf(t)dt

= MT(a − s) (5.14)

where MT(s) is the MGF of total waiting time T.

Substituting 5.14 into 5.13. By equation 5.12, we therefore have

c = lim
s→0

sMT(a − s)

where a is the absolute value of the right-most singularity of MT(−s).
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The formula 5.11 is particularly useful for evaluating the asymptotic constant

when the closed from expression of total waiting density is not available, because

it only depends on the MGF of total waiting time, which can be easily obtain by

the use of Mason’s rule in Chapter 2. Since the Laplace transform of total waiting

time density is just the MGF with argument −s instead of s, and the MGF is

usually a rational function, we will always have the Laplace transform in rational

form, which guarantees its singularities exists.

To show that our formula 5.11 in Proposition 1 works in the situation of

non-closed form density function, we let the waiting time between node 1 and

node 0 in Example 1.3.2 to follow Gamma distribution.

Table 5.3: Summary of waiting time distribution

Flow direction Distribution MGF

0 → 1 Exponential(λ1) m01(s) = λ1

λ1−s

1 → 0 Gamma(α,β) m10(s) =
(

β
β−s

)α

0 → 2 Exponential(λ3) m02(s) = λ3

λ3−s

1 → 2 Exponential(λ2) m12(s) = λ2

λ2−s

We assume λ1 = 0.5, λ2 = 2, λ3 = 0.2, α = 1.5, β = 2, and p01 = p02 = p10 =

p12 = 1
2
. The MGF of the total waiting time between node 0 and node 2 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
1
4

(
0.5

0.5−s

)(
2

2−s

)
+ 1

2

(
0.2

0.2−s

)

1 − 1
4

(
0.5

0.5−s

)(
2

2−s

)1.5

=
0.6 − 2s − 0.4s2

(s − 2)(s − 0.2)
{

2 − 4s − 1.4142
(

1
2−s

)1.5
} (5.15)
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From equation 5.15, we see that the denominator of MGF MT02(s) is not a

polynomial function, because the value of α is non-integer (i.e. α = 1.5), which

does not allow us to decompose MT02(s) by partial fraction, and it leads to a non-

closed form probability density function, which it can only be determined by the

numerical inversion of Laplace transforms. Also note that the Laplace transform

of f(t) is MT02(−s), and the singularities can be obtained easily by solving the

denominator of MT02(−s) for s such that

(s + 2)(s + 0.2)

{
2 + 4s − 1.4142

(
1

2 + s

)1.5
}

= 0

The solutions are s1 = −2, s2 = −0.2, s3 = −0.3354, s4 = −2.2051 − 0.2801i,

s4 = −2.2051 + 0.2801i

As the rightmost singularities is s2, the asymptotic decay rate is a = |s2| =

0.2, then we have

MT02(0.2 − s) =
0.2 + 2s + 0.4(0.2 − s)2

s(1.8 + s)
{

1.2 + 4s − 1.4142
(

1
1.8+s

)1.5
}

By equation 5.11, we have

c = lim
s→ 0

sMT02(0.2 − s) = 0.1953

Next, we simulated a sample size of 10000 total waiting time data between node 0

and node 2, and computed the estimated density function f̂(t) by using De Hoog’s

method (1982) to numerically invert MT02(−s). To verify the value of asymptotic

constant, function G(t) = f̂(t)/exp(−0.2t) is plotted against t in Figure 5.9.

As can be seen that the evidence of convergence of function G(t) is remarkable

for large t, where the solid line describes the behavior of function G(t), and the

horizonal dash line indicate the value of limit 0.1953. Therefore, the PDF can be

approximated by an exponential function in the following form

f(t) ≈ 0.1953e−0.2t as t → ∞ (5.16)
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5.1 Tail area approximation by exponential function

To further investigate the quality of approximation for tail area probabilities

based on equation 5.16, we take log on both side of equation 5.16

log(f(t)) ≈ log(0.1953) − 0.2t

If our calculation for parameter c and a are correct, we expect that the plot

of log(0.1953) − 0.2t is similar to the shape of log(f(t)) when t is large. Figure

5.10 illustrates that there is a remarkably good agreement between log(f(t)) and

log(0.1953)−0.2t in almost the entire range of t. Furthermore, we can obtain the

approximation for survival function based on equation 5.16,

P (T > t) ≈ 0.9765e−0.2t as t → ∞ (5.17)

Similarly, the plot of − log(P (T > t)) against − log(0.9765)+0.2t is presented in

Figure 5.11 to check the asymptotic constant 0.9765.

Table 5.4: Summary of exponential approximation for PDF: The unit of proba-
bility for t∗, t∗∗ are 10−4, 10−5 respectively

Time f(t) 0.1953 exp(−0.2t)

3.57 0.1030 0.0955
6.96 0.0509 0.0486
11.47 0.0202 0.0197
14.91 0.0101 0.0099
22.89 0.0020 0.0021
34.14∗ 2.1199 2.1169
44.49∗∗ 2.6709 2.6697

The comparison of approximation for f(t) and P (T > t) with estimated value

based on 0.1953 exp(−0.2t) and 0.9765 exp(−0.2t) is presented in Table 5.4 and

Table 5.5 separately. The numerical results show that the quality of exponen-

tial function approximation is exceptionally good. All these results indicate that

equation 5.16 and 5.17 can correctly provide the description of the characteristic

tail behavior of the true PDF and survival function.
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Figure 5.9: Plot of the function G(t) = eatf(t) against t
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5.2 Inversion of Padé approximations

Table 5.5: Summary of exponential approximation for tail distribution.

Percentile Time P (T > t) 0.9765 exp(−0.2t)

50% 3.57 0.5 0.4777
75% 6.96 0.25 0.2429
90% 11.47 0.1 0.0985
95% 14.91 0.05 0.0496
99% 22.89 0.01 0.0101

99.9% 34.14 0.001 0.0011
99.99% 44.49 0.0001 0.00013
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Figure 5.11: Plot of − log(P (T > t)) and − log(0.9765) + 0.2t against t

5.2 Inversion of Padé approximations

As we have seen in Section 5.1.1, Chapter 3, Padé approximation is the only

method that can provide density estimation in the form of a mixture of exponen-

tial densities, which is closely related to the exponential approximation in Section

5.1. This distinctive feature allows us to apply the formula we have proposed in
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Proposition 1 to estimate tail area probabilities. For application, it is very impor-

tant to examine the size of approximation error, and the quality of approximation

for survival function must be assessed by evaluating the size of difference between

the estimated value and true value of P (T > t). In this section, we focus on esti-

mating the error in survival function approximation in Example 1.3.2, and develop

an closed form expression for modeling the behavior of error in the estimation of

tail area probabilities of survival function.

Let M(s) = U(s)
R(s)

be the MGF of total waiting time between input and out-

put of a flowgraph, where the degree of polynomial U(s) and R(s) are p and q

respectively. By Definition 3.21, Chapter 3, Let PA[p̂,q̂](s) denote the Padé approx-

imation of M(s) with numerator order p̂ and denominator order q̂, where p̂ < q̂

so that the inversion of PA[p̂,q̂](s) leads to a valid probability density function (see

Amindavar and Ritcey (1994)).

Lemma 8. Let f1(t) and f2(t) be the inverse Laplace transforms of F1(s) and

F2(s), respectively, and let c1 and c2 be constant. The linearity property of inverse

transform states

L−1
{
c1F1(s) + c2F2(s)

}
= L−1[c1F1(s)] + L−1[c2F2(s)]

= c1f1(t) + c2f2(t)

Since PA[p̂,q̂](s) is a rational function with the order of its numerator less than

denominator, the exact inversion of PA[p̂,q̂](s) will always lead to a PDF in the

form of sum of exponential function. By analogy with equation 5.2 and 5.3, we

can describe the limiting behavior of f̂(t) and P̂ (T > t) in terms of exponential

function.

f̂(t) ≈ c∗e−a∗t as t → ∞ (5.18)

P̂ (T > t) ≈ v∗e−a∗t as t → ∞ (5.19)
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where a∗ is the absolute value of the right-most singularities of PA[p̂,q̂](−s),

c∗ can be determined by c∗ = lims→0 sPA[p̂,q̂](a − s), and v∗ = c∗

a∗ .

To quantify the error in tail area approximation by exponential functions

that derived from different order of Padé approximations, we consider examining

their relative error in term of asymptotic constant and asymptotic decay rate

η(t) =
P (T > t) − P̂ (T > t)

P (T > t)

=
ve−at − v∗e−a∗t

ve−at

= 1 − v∗

v
e(a−a∗)t

where v∗ = c∗

a∗ , and v = c
a
. We then have

v∗ → v as c∗ → c, a∗ → a (5.20)

and

e(a−a∗)t → 1 as a∗ → a (5.21)

Then equation 5.20 and 5.21 imply that

η(t) → 0 as c∗ → c, a∗ → a

Figure 5.12 depicts the plot of relative error in approximating survival probabil-

ities at t ∈ [0, 20] by 5 different order of Padé approximations. Apparently, the

exponential functions constructed from PA[1,2] and PA[1,3] have smaller relative

error among these functions in time interval [0, 16]. However, Figure 5.13 reveals

evidence that PA[2,3], PA[2,4] and PA[2,4] perform better for large t, particularly

the exponential approximation of survival function obtained by the inversion of

PA[2,3] has the smallest relative error for t ∈ [16.32, 20]. Thus, it appears that the

choice of the order of Padé approximation of MGF depends on the size of sur-

vival probability that we want to estimate, the smaller survival probability (i.e. t

is large) the higher order of Padé approximations is required to obtain accurate

estimation, which is consistent with the results given by Table 5.2 in Section 5.1.1.
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Figure 5.12: Plot of relative error in P (T > t) against t ∈ [0, 20]

We now consider describing the behavior of error in tail area approximation.

Let L[ε[p̂,q̂]](s) = PA[p̂,q̂](s) − MT(s) be the difference between the original MGF

and its Padé approximation with numerator order p̂ and denominator order q̂. By

Lemma 8, the inverse Laplace transform of L[ε[p̂,q̂]](s), ε[p̂,q̂](t), can be expressed as

ε[p̂,q̂](t) = L−1
{

PA[p̂,q̂](s) − M(s)
}

= f̂(t) − f(t) (5.22)

Define δ(t) = P̂ (T > t) − P (T > t). To capture the behavior of error in

estimating tail area probabilities δ(t) for large t, we substitute equation 5.2 and

5.18 in equation 5.22, then
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Figure 5.13: Plot relative error in P (T > t) against t ∈ [14, 20]

δ(t) = P̂ (T > t) − P (T > t)

=

∫ ∞

t

f̂(u)du−
∫ ∞

t

f(u)du

≈
∫ ∞

t

(
c∗e−a∗u − ce−au

)
du

≈ c∗

a∗ e−a∗t − c

a
e−at

≈ v∗e−a∗t − ve−at as t → ∞

where v∗ = c∗

a∗ , and v = c
a
. Hence the error in tail area approximation δ(t) can

be approximated by a closed form expression, denoted by δ̂(t), which consists of

two exponential function.

δ(t) ≈ δ̂(t)

= v∗e−a∗t − ve−at as t → ∞ (5.23)
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In the situation when the true survival function does not have closed form,

it becomes difficult to directly identify the dominating exponential function. The

motivation to construct 5.23 is to analyse the error of tail area approximation

δ(t) based on the singularities of MGF and its Padé approximation. The simple

form of 5.23 enables us to easily obtain a closed from estimation for δ(t), even

the closed forms of original tail distribution is not available. The calculation in

5.23 is straightforward, because it only requires to find the singularities of MGF

and Padé approximation, and the asymptotic constant that can be determined

by Proposition 1.

5.2.1 Example 8

We return to the reversible illness-death system example in Section 5.1.1, and

investigate the behavior of error in tail area approximation based on the Padé

approximations for MGF given by equation 5.4 on page 158.

MT02(−s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
(2 + s)(1.8 + 3.4s + s2)

(6 + 12s + 4s2)(0.5 + s)(1.2 + s)

=
1 + 2.3889s + 1.5s2 + 0.27778s3

1 + 4.8333s + 8s2 + 5.2222s3 + 1.1111s4

Having found the Padé approximation of MT02(−s) subjected to different or-

ders, which are presented in equation 5.6, 5.7, 5.8, 5.9, and 5.10, we can obtain

exponential functions to approximate the estimated density function f̂(t), and

subsequently derive the function in the form of equation 5.19 to describe the

limiting behavior of survival function P̂ (T > t). In each case, we apply 5.23 to

compute the estimated error δ̂(t), and compare it with the value of true error δ(t)

by plotting them in the same graph.
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5.2 Inversion of Padé approximations

As can be observed in Figure 5.14, 5.15, 5.16, 5.17 and 5.18, all the estimated

error are gradually converging to the true error in the approximation of survival

function as t increases, and there is clearly a good match between δ̂(t) and δ(t)

for t > 10. These results indicate that the the form of function in equation 5.23

is effective and provides a useful frame of reference to help us understand the

behavior of error in the approximation of tail area probabilities.
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Figure 5.14: Estimated error based on PA[1,2](s)
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Figure 5.15: Estimated error based on PA[1,3](s)
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Figure 5.16: Estimated error based on PA[2,3](s)

180



5.2 Inversion of Padé approximations
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Figure 5.17: Estimated error based on PA[2,4](s)
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Figure 5.18: Estimated error based on PA[3,4](s)
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5.3 Saddlepoint approximation for survival func-

tion

Huzurbazar (1999) shows evidence that the saddlepoint method can provide ex-

tremely accurate approximation for tail probabilities, and the accuracy holds

even in the small sample case. Traditionally, the saddlepoint method is often

applied for statistical inference in small sample size problems by approximating

p-value when the exact distribution is intractable. Further examples that illus-

trate the accuracy of the saddlepoint approximation can be found in Huzurbazar.

S (1999, Section 2.1). In probability theory, the saddlepoint method is more gen-

erally known as the large deviation theory (see Hall(1992), Dembo and Zeitouni

(1998)), which concerns the asymptotic behaviour of the tails probabilities of

extreme events. More recently, the saddlepoint approximation is considered as a

suitable technique in the context of portfolio credit loss. Glasserman (2004) ap-

plies this method to estimate the tail of the distribution of large portfolio losses,

while Yang, Hurd and Zhang (2006) shows that Saddlepoint approximation has

superior performance for CDO (collateralized debt obligations) pricing problem.

As we are usually interested in determining the distribution of total waiting time

between input node and output node in flowgraph model, but not the mean of

total waiting time, in this section, we specifically focus on the implementation

of saddlepoint approximation for the survival function of single random variable

based on the Lugannani-Rice formula 3.75 ( i.e. n = 1 case).

Let T be the random variable that represents the total waiting time, and let

tmax be the largest value at which the survival function is estimated. Suppose

there are totally ℓ data points in interval [0, tmax] for approximation, that is, we

want to calculate the estimated value of P (T > ti) for ti ∈ [0, tmax], i = 1...ℓ.

In order to apply the Lugannani-Rice formula, we need to first establish the

expression of first and second derivatives of cumulant generating function (CGF)

KT (s) with respect to s. For each given value ti in interval [0, tmax], i = 1...ℓ, the

approximation for P (T > t) is computed by the following procedures.

1. Calculate ŝi by solving equation K ′
T (si) = ti for si.

182



5.3 Saddlepoint approximation for survival function

2. Given ŝi at each value of ti, evaluate the value of KT (ŝi) and K ′′
T (ŝi).

3. Substitute K ′′
T (ŝi) and ŝi in ŝ

√
K ′′

T (ŝ) for z1, and ti, ŝi, KT (ŝi) in
√

2 (ŝt − KT (ŝ))

for z2 (see Theorem 5, page 77).

4. Compute the estimated value of P (T > ti) by substituting the value of z1

and z2 in equation 3.75 accordingly.

For most problems involving complicated flograph, ŝ can be obtained by using

numerical method to solve K ′
T (s) = t for s, while in simple flowgarph case, it can

be explicitly determined in closed form. We will discuss further on the method

to simplify the calculation of ŝ in Section 5.5.

5.3.1 Example 1.3.3

We now demonstrate the Lugannani-Rice formula for survival function approxi-

mations in Section 5.1.1. The algebraic expressions of the MGF given by equation

5.4 is

MT02(s) =
(λ4 − s)(3λ1λ2λ3 − λ1λ2s − 2λ3λ1s − 2λ3λ2s + 2λ3s

2)

(3λ1λ4 − 4λ1s − 4λ4s + 4s4)(λ3 − s)(λ2 − s)

The CGF, KT02(s) = log(MT02(s)), can be easily calculated by using symbolic

algebra package such as MAPLE.

KT02(s) = log(3λ1λ2λ3 − λ1λ2s − 2λ3λ1s − 2λ3λ2s + 2λ3s
2)

log(λ4 − s) − log(3λ1λ4 − 4λ1s − 4λ4s + 4s4)

− log(λ3 − s) − log(λ2 − s) (5.24)

Then

K ′
T02

(s) =
4λ3s − λ1λ2 − 2λ3λ1 − 2λ3λ2

3λ1λ2λ3 − λ1λ2s − 2λ3λ1s − 2λ3λ2s + 2λ3s2
+

1

s − λ4

+
4λ1 + 4λ4 − 8s

3λ1λ4 − 4λ1s − 4λ4s + 4s2
− 1

s − λ2
− 1

s − λ3
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K ′′
T02

(s) =
1

(s − λ2)2
+

1

(s − λ3)2
+

8

3λ1λ4 − 4λ1s − 4λ4s + 4s2

− 1

(s − λ4)2
+

16λ2
4 − 16λ1λ4 + 16λ2

1

(3λ1λ4 − 4λ1s − 4λ4s + 4s2)2

− 4λ3

3λ1λ2λ3 − λ1λ2s − 2λ3λ1s − 2λ3λ2s + 2λ3s2

+
16λ1λ2λ

2
3 − 4λ2

1λ2λ3 − 4λ2
3λ

2
1 − λ2

1λ
2
2 − 4λ1λ

2
2λ3 − 4λ2

2λ
2
3

(3λ1λ2λ3 − λ1λ2s − 2λ3λ1s − 2λ3λ2 + 2λ3s2)2

By substituting parameter λ1 = 1, λ2 = 1.2, λ3 = 0.5, λ4 = 2, and p01 =

p02 = p10 = p12 = 1
2

into equation 5.25, and equate it to each ti ∈ [0, tmax],

i = 1...ℓ, and we solve

K ′
T02

(s) = ti (5.25)

for ŝi at each given ti. Next, we evaluate the terms in equation 5.24 and 5.25 at

ŝ, and follow the step 3 of our procedure to compute z1, z2 respectively. Once

the explicit values for the required terms in Lugannani-Rice formula 3.86 are ob-

tained, the approximation for the survival function P (T > t) can then be easily

computed. For illustration, we consider applying Lugannani-Rice saddlepoint ap-

proximation to estimate P (T > t) in time interval [0, 20].

By using the −log transform, Figure 5.19 presents the plot of true survival

function along with its saddlepoint approximation by Lugannani-Rice formula for

the survival function of total waiting time T02. In general, we can see that the

Lugannani-Rice saddlepoint approximation is extremely close to the true survival

function, and there is virtually no graphical difference between them in the whole

range of t. To further investigate how the error in survival function estimation

is distributed, Figure 5.20 illustrates the plot of relative error for t ∈ [0, 20]. It

clearly reveals that most of error occurs in estimating P (T > t) when t < 5.27,

that is, up to 90% percentile, where the relative error rises steadily until it peaks

at 3.34% when t = 1.34, then it drops sharply as t increases. All of these plots

indicates that the saddlepoint approximations using the Lugannani-Rice formula

are highly suited for estimating the tail area probabilities of P (T > t) for large t.

184



5.3 Saddlepoint approximation for survival function

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

time t

−
lo

g[
P

(T
>

t)
]

SP approximation for survival function

 

 
True
SP

Figure 5.19: Survival function approximation by Lugannani-Rice formula
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Figure 5.20: Relative error in estimating P (T > t) by Lugannani-Rice formula
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5.4 Padé-type Saddlepoint approximation for sur-

vival function

For flowgraphs consists of large number of nodes and several feedback loops,

such as Figure 2.5, Chapter 2, the resulting MGF of total waiting time is of-

ten a complicated rational function, leads to even more complicated expression

for CGF KT (s), as well as its derivative K ′
T (s) and K ′′

T (s), which makes subse-

quent calculation very computationally demanding. The challenge is effectively to

solve equation K ′
T (s) = t for ŝ when the first derivative of CGF, K ′(s), is in com-

plicated form, and numerical method is often required to determine the value of ŝ.

In this section, we introduce an alternative approach to apply saddlepoint

approximation based on the Padé approximation of MGF instead of original

MGF, that is, replace the “based line MGF” MT(s) with its Padé approximation

PA[p,q](s) in Definition 7 and continue with the procedures we outlined in Section

5.3 to estimate survival function. Next, we reconsider the reversible illness-death

system of Example 1.3.2, and present a comparison of Lugannani-Rice saddlepoint

approximation based on the original MGF given in equation 5.4, its 5 different

order of Padé approximations, as well as the true survival function given by equa-

tion 5.5. For each Padé approximations given in equations 5.6, 5.7, 5.8, 5.9, 5.10,

we follow the procedures in Section 5.3 to compute the exponential function ap-

proximation of survival function.

The resulting saddlepoint approximations for survival function are plotted

in Figure 5.21. It is shown that the Padé-type saddlepoint approximations are

really close to each other and there is no obvious difference between them over

the entire range of t. By further comparing the plot of saddlepoint approximation

for survival function nears the 50% percentile, t = 1.86, and 99.99% percentile, t =

19.21, in Figure 5.22 and 5.23 separately, we can observe that the approximation

based on high order of Padé approximation tend to have a smaller deviation to the

approximation based on the original MGF than the low order one, particularly,

the plots of approximation based on Padé approximation PA[2,3](s), PA[2,4](s),

and PA[3,4](s) follow closer to the plot of approximation based MGF MT(s).
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Figure 5.21: Plot of −logP̂ ((T > t)) against t ∈ [0, 20].
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19.21 19.211 19.212 19.213 19.214 19.215 19.216 19.217 19.218 19.219 19.22
9.16

9.165

9.17

9.175

9.18

9.185

9.19

9.195

9.2

time t

−
lo

g[
P

(T
>

t)
]

SP approximation for survival function 3

 

 

PA12
PA13
PA23
PA24
PA34
MGF

Figure 5.23: Plot of −logP̂ ((T > t)) against t ∈ [19.21, 19.22].

In addition, Figure 5.24 plots the relative error in estimating the saddlepoint

approximation of MT (s) for t ∈ [14, 19.5] after applying Lugannani-Rice formula

under different order of Padé approximations of MGF. Consistent with the result

from Figure 5.22 and Figure 5.23, the closer the order of Padé approximation

to the order of original MGF we use in saddlepoint approximation, the smaller

relative error it will result. The upward trend in both the relative error plot of

SPPA[1,2]
(t) and SPPA[1,3]

(t) implies that high order of Padé approximations should

be chosen as baseline line function, so that we could have an accurate estimation

for the saddlepoint approximation of original MGF at large t.
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Figure 5.24: Comparison of relative error in estimating SPM(s).

Table 5.6, summarise the value of Lugannani-Rice saddlepoint approxima-

tions for P (T > t) at different percentile tp, and makes comparisons with the true

survival probability. Again, it becomes clear that higher order of Padé approx-

imation gives relatively more accurate estimation, particularly for the survival

probability at large t.

After computing the saddlepint approximation under a range of order of Padé

approximations of MGF for t ∈ [0, 20], Table 5.7 presents the sum of absolute

error in estimating the result of saddlepoint approximation of survival function-

based on the original MGF. Evidently, there is a decreasing trend in the sum of

absolute error as the order of Padé approximations get closer to the order of orig-

inal MGF. By contrast, the estimation based on PA[3,4](s), among the others, has

the smallest sum of absolute error 1.3498 × 10−6, while the Padé approximation

with numerator order 1 and denominator 2 has the biggest sum of absolute error

0.3041 in the same time interval.
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Table 5.6: Summary of Lugannani-Rice saddlepoint approximation for survival
function P (T > t): The unite of survival probability at time t∗ 10−3, t∗∗ is 10−4

.

Time PA[1,2] PA[1,3] PA[2,3] PA[2,4] PA[3,4] MT (s) True

1.86 0.498114 0.497685 0.497826 0.497822 0.497823 0.4978234 0.5
3.37 0.248220 0.248498 0.248638 0.248642 0.248643 0.2486428 0.25
5.28 0.099487 0.099648 0.099935 0.099963 0.099969 0.0999699 0.1
6.69 0.049775 0.049818 0.050012 0.050041 0.050050 0.0500502 0.05
9.95 0.012419 0.012394 0.012431 0.012444 0.012449 0.0124485 0.01

14.59∗ 1.023370 1.014268 1.008766 1.009399 1.009882 1.0098819 1
19.21∗∗ 1.048834 1.032398 1.015143 1.014358 1.014485 1.0144851 1

Table 5.7: Sum of absolute error in estimating the saddlepoint approximation of
survival function based on MGF for t ∈ [0, 20]

PA[1,2] PA[1,3] PA[2,3] PA[2,4] PA[3,4]

0.3041 0.0284 0.0268 0.0143 1.3498 × 10−6

To conclude, all of the above numerical and graphical results suggest that the

accuracy of the Lugannani-Rice saddlepoint approximation for survival function

crucially depends on the structure of “based line MGF”, it is therefore more con-

venient to use Padé approximation that both the order of both numerator and

denominator is similar to the original MGF.

5.5 Bias correction for the Padé-type Saddle-

point approximation

As the saddlepoint method based on the Padé approximation of MGF would

usually generates error, and the the magnitude of error depends on whether the

baseline Padé approximation has similar structure to the original MGF, that

is, the result of saddlepoint approximation would be more accurate if both the

numerator and denominator order of baseline Padé approximation is close to the

MGF of random variable that we are interested. This raises our interest of how

to effectively characterise the error of in such cases, and investigate the order of

error in the Padé-type saddlepoint approximation.
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In this section, we examine the case of applying saddlepoint approximation

with Padé approximation as baseline function for the estimation of both PDF and

survival function. We show that the behavior of error between saddlepoint ap-

proximation with original MGF and its Padé approximation can be described by

the error between saddlepoint approximation constructed with their correspond-

ing dominated exponential function. Next, we propose a biased corrected method

for the Padé-type saddlepoint approximation for both PDF and tail distribution

estimation. Numerical examples are also presented in the end to illustrate our

method.

Let T be a positive random variable with MGF MT(s). The derivation of

our method use the fact that the probability density function of T , f(t), can be

approximated by an exponential function as follow

f(t) ≈ ce−at as t → ∞ (5.26)

where a is the absolute value of the right-most singularity of MT(−s), and c is a

constant that can be obtained by Proposition 1 (see 5.11 on page 168).

The Laplace transform of this dominated exponential function is

L[ce−at](s) = cL[e−at](s)

=
c

a + s

Since the MGF is just the Laplace transform with argument −s instead of s, so

the corresponding baseline function in saddlepoint approximation for estimating

function ce−at is

M̂(s) =
c

a − s
(5.27)

Suppose we estimate functions on both side of equation 5.26 by the saddlepoint

approximation for density estimation (see Theorem 4, Section 3.2.3, Chapter 3),

then

SPM(t) ≈ SPM̂(t) as t → ∞ (5.28)
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where SPM(t) is the saddlepoint approximation for f(t) based on the MGF

of T , MT(s) and SPM̂(t) is the saddlepoint approximation for the dominated

exponential function with baseline function in the form of equation 5.27. On the

other hand, let f̂(t) be the density function obtained by the exact inversion of

Padé approximation of MGF. As it is shown in 5.18 on page 174, we have

f̂(t) ≈ c∗e−a∗t as t → ∞ (5.29)

Analogy to equation 5.28, we apply saddlepoint approximation to both side of

equation 5.29, then

SPpa(t) ≈ SPp̂a(t) as t → ∞ (5.30)

where the saddlepoint approximation for the dominated exponential function of

f̂(t) is SPp̂a(t), with baseline function

p̂a(s) =
c∗

a∗ − s

By equation 5.28 and 5.30, the order of error between SPM(t) and SPpa(t) can

be approximated as

SPM(t) − SPpa(t) = O (SPM̂(t) − SPp̂a(t)) as t → ∞ (5.31)

Similarly to the idea of deriving equation 5.23 in Section 5.5, equation 5.31 im-

plies that, for large t, the behavior of error between the saddleponit approximation

with original MGF and its Padé approximation can be described by the saddle-

ponit approximation with their exponential dominated term. Hence, we propose a

general formula to correct the bias in the saddlepoint approximation that having

Padé approximation of MGF as baseline function.
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5.5 Bias correction for the Padé-type Saddlepoint approximation

Theorem 10. Let T be a random variable with MGF, MT(s) such that

MT(s) ≈ c

a − s
as s → 0

where a is the absolute value of the right-most singularity of MT(−s), and

c = lim
s→0

sMT(a − s)

Also let PA[p,q](s) be the Padé approximation of MT(s) with numerator order p

and denominator order q such that

PA[p,q](s) ≈ c∗

a∗ − s
as s → 0

where a∗ is the absolute value of the right-most singularity of PA[p,q](−s), and

c∗ = lim
s→0

sPA[p,q](a − s)

Denote the saddlepoint approximation for the PDF with baseline function (∗)
by SP∗(t), define η(t) = SPM(t) − SPpa(t) as the bias in Padé-type saddlepoint

approximation, and η̂(t) = SPM̂(t) − SPp̂a(t) be the estimated bias. Then for

t → ∞, the bias corrected Padé-type saddlepoint approximation for the PDF is

SPpa∗(t) ≈ SPpa(t) + c1η̂(t) as t → ∞ (5.32)

where c1 is a constant that satisfies

c1 = lim
t→∞

η(t)

η̂(t)
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Corollary 2. Suppose we define the Lugannani-Rice formula with baseline func-

tion (∗) by LR∗(t), then for t → ∞, the bias corrected Lugannani-Rice Padé-type

saddlepoint approximation for survival function based on PA[p,q](s) can be ex-

pressed as

LRpa∗(t) ≈ LRpa(t) + c2ω̂(t) as t → ∞

and c2 is a constant that satisfies

c2 = lim
t→∞

ω(t)

ω̂(t)

where ω(t) = LRM(t) − LRpa(t) , ω̂(t) = LRM̂(t) − LRp̂a(t).

As we have shown in Example 1.3.3, the drawback of saddlepoint approx-

imation is the difficulty in effectively solving K ′
T (s) = t for the saddlepoint ŝ,

particularly when the MGF of total waiting time becomes very complicated in a

large flowgraph that has feedback loops, which constantly occurs in practice. In

that case, the step of determining ŝ often involves with high computational costs

since the solution of K ′
T (s) = t usually does’t have closed form expression, and

numerical method such as Newton-Raphson method is required.

However, the calculation of saddlepoint approximation is much easier if our

bias correction formula 5.32 is applied. Firstly, the structure of Padé approxi-

mation is relatively simpler than the original MGF, especially for a lower order

Padé approximation that has simple CGF, which could significantly reduce the

computational cost in the subsequent calculation of saddlepoint ŝ. Secondly, it

is worth pointing out that we can always have a closed form solution of ŝ for

computing saddlepoint approximation SPM̂(t) and SPp̂a(t).
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For example, given equation 5.27, we have

K(s) = log
(
M̂(s)

)
= log

( c

a − s

)

and

K ′(s) =
dK(s)

ds
=

1

a − s

Then equation K ′(s) = t become

1

a − s
= t

which immediately gives the closed form solution of s as follow

ŝ = a − 1

t
(5.33)

where a is the absolute value of the rightmost original MGF. Since p̂a(s) is in the

same form of M̂(s), we can also find a closed form solution of ŝ∗ for saddlepoint

approximation SPp̂a(t) as

ŝ∗ = a∗ − 1

t
(5.34)

where a∗ is the absolute value of the rightmost singularity of Padé approximation

PA[p,q](−s). With our method, the calculation of saddlepoint is less computation-

ally demanding because it is directly computed from the original data t, which

avoids using numerical method. Despite there is a problem in equation 5.33 and

5.34 if t equals zeros, we can still apply them in practise because total waiting

time will never occur to be zero in real life problem. In the following two sections

we demonstrate our bias corrected method in the Padé-type approximation for

both probability density function and survival function estimation.
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5.5.1 Probability density function estimation

To illustrate our method, we apply saddlepoint approximation to estimate prob-

ability density function of total waiting from node 0 to node 2 in Section 5.1.1

on page 158. The MGF of total waiting time T02 is

MT02(s) =
p01p12m01(s)m12(s) + p02m02(s)

1 − p01p10m01(s)m10(s)

=
(2 − s)(1.8 − 3.4s + s2)

(6 − 12s + 4s2)(0.5 − s)(1.2 − s)
(5.35)

The true density function is

f(t) = 0.75e−0.5t − 0.3636e−1.2t − 0.1207e−0.6340t − 0.0157e−2.366t

Since the absolute value of the right-most singularity of MT02(−s) is 0.5, and the

true density function f(t) can be approximated by 0.75e−0.5t for large t, which

has the corresponding baseline function for saddlepoint approximation

M̂(s) =
0.75

0.5 − s
(5.36)

Given a sample size of 2000 total waiting time data in interval [0, 20], the sad-

dlepoint point ŝ can be easily obtained based upon 5.35 and 5.36, and we can

compute the saddlepoint approximation, SPM(t) and SPM̂(t), for density function

f(t) and its exponential approximation function 0.75e−0.5t respectively. On the

other hand, as explained in Section 5.5, saddlepoint approximation with lower

order of Padé approximation typically generates larger error than that of using

higher order of Padé approximation. For the purpose of illustration, we choose

the Padé approximation with numerator order 1 and denominator 2, PA[1,2](s)

given by 5.6 on page 159, as the baseline function in saddlepoint approximation,

so that it will allow us to better examine our formula 5.32 in a large error case.

PA[1,2](s) =
1 + 0.4543s

1 + 2.8988s + 1.771s2

which leads to a density as fPA[1,2]
(t) = 0.6753e−0.4942t − 0.4188e−1.1426t.
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Since

fPA[1,2]
(t) ≈ 0.6753e−0.4942t as t → ∞

The Laplace transform of 0.6753e−0.4942t after replacing argument s with −s is

P̂A[1,2](s) =
0.6753

0.4942 − s

Similarly, the saddlepoint approximation for density fPA[1,2]
(t) and function

0.6753e−0.4942t can be determined, denoted them separately as SPpa(t) and SPp̂a(t).

Define η(t) = SPM(t)−SPpa(t), and η̂(t) = SPM̂(t)−SPp̂a(t). In order to determine

the constant term c1 in Theorem 10, we first plot log (η(t)) − log (η̂(t)) against t

in Figure 5.25, which indicates a clear evidence of convergence in log
(

η(t)
η̂(t)

)
for

large t. Further calculation shows that

log

(
η(t)

η̂(t)

)
→ 2.8367 as t → ∞ (5.37)

Taking exponential on both side of equation 5.37,

η(t)

η̂(t)
→ exp(2.8367) = 17.0597

Hence

η(t) ≈ 17.0597η̂(t) as t → ∞ (5.38)

To verify our result, we need to compare the plot of η(t) with η̂(t) and 17.0597η̂(t)

respectively. Figure 5.26 presents both the plot of η(t) and η̂(t) against t in inter-

val [19, 20], where there is a relatively big difference between the sp error and the

estimated sp error. After multiplying 17.0597 to η̂(t), Figure 5.27 shows that the

plot of 17.0597η̂(t) denoted by “Estimated Sp error after correction”, is close to

the plot of “Sp error η(t)” which provides a solid evidence that our calculation

for constant c1 = 17.0597 is correct, and equation 5.38 holds.
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Tail area probability approximations

Furthermore, the agreement between the error SPM(t) − SPpa(t) and the es-

timated error 17.0597 (SPM̂(t) − SPp̂a(t)) suggests that we can improve the result

of saddlepoint approximation that derived from Padé approximation of MGF by

adding the estimated error as follow

SPpa∗(t) ≈ SPpa(t) + 17.0597(SPM̂(t) − SPp̂a(t)) (5.39)

as t → ∞.
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Figure 5.25: Plot of convergence test

Figure 5.28 shows the plot of PDF estimation by SPpa(t) without correc-

tion and SPM(t), whereas Figure 5.29 shows the plot of SPM(t) with SPpa∗(t)

that defined in formula 5.39 ( denoted as “New SP-PADE12”). As can be seen

in Figure 5.29, the bias corrected saddlepoint approximation for PDF based on

PA[1,2](s) significantly improves the quality of density estimation, and there is a

good match to the saddlepoint approximation based on original MGF MT02(s),

compared with previous result in Figure 5.28.
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Figure 5.29: SP approximation for probability density function 2
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5.5 Bias correction for the Padé-type Saddlepoint approximation

Table 5.8: Saddlepoint approximation for probability density function estimation.

Time 3.37 5.27 6.69 9.9 14.59 19.21

SPpa(t) 0.2803 0.1096 0.0543 0.0134 10.95 × 10−4 11.168 × 10−5

SP∗
pa(t) 0.2677 0.0979 0.0460 0.0102 6.5535 × 10−4 5.1154 × 10−5

SPM(t) 0.1167 0.0484 0.0245 0.0061 5.0020 × 10−4 5.0251 × 10−5

Table 5.9: Absolute error in saddlepoint approximation for PDF.

Time 3.37 5.27 6.69 9.9 14.59 19.21

SPpa(t) 0.1636 0.0612 0.0298 0.0073 5.9480 × 10−4 6.1429 × 10−5

SP∗
pa(t) 0.1510 0.0495 0.0215 0.0041 1.5515 × 10−4 0.0903 × 10−5

Table 5.8 summarise the explicit value of probability obtained from saddle-

point approximation based on PA[1,2](s), SPpa(t), original MGF MT02(s), SPM(t),

and the biased corrected saddlepoint approximation given by Theorem 10, SP∗
pa(t).

By comparing to the value of SPM(t), we find that SP∗
pa(t) has substantially im-

proved the accuracy after we corrected the bias in SPpa(t), and the bias corrected

Padé-type saddlepoint approximation is better in the sense that it is close to the

value obtained by saddlepoint approximation based on original MGF. Further

evidence is given in Table 5.9, where it illustrates that the absolute error in den-

sity estimation decreases dramatically in SP∗
pa(t), particularly the absolute error

becomes smaller as t increases.
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Tail area probability approximations

5.5.2 Survival function approximation

We now illustrate the performance of the bias corrected Padé-type saddlepoint

approximation for survival function estimation in Section 5.1.1. For implemen-

tation, we consider estimating survival function P (T > t) in the time interval

[0, 20], where a sample size of 2000 total waiting time data is uniformly discre-

tised with sub-interval 0.01. The Lugannani-Rice formulat given in Theorem 5

is applied for the calculation of tail area probability of survival function. Recall

equation 5.5 in Section 5.1.1, the true survival function of total waiting time from

node 0 to node 2 is

P (T > t) = 1.5e−0.5t − 0.303e−1.2t + 0.1903e−0.6340t + 0.0066e−2.366t

By equation 5.3 in Section 5.1, we have

P (T > t) ≈ 1.5e−0.5t as t → ∞

which leads to

M̂(s) =
1.5

0.5 − s

The survival function derived from the Padé approximation PA[1,2](s) is

SPA[1,2]
(t) = 1.3665e−0.4942t − 0.3665e−1.1426t

giving

SPA[1,2]
(t) ≈ 1.3665e−0.4942t as t → ∞

then

P̂A(s) =
1.3665

0.4942 − s

The estimation of survival function from Lugannani-Rice formula with original

MGF MT02(s), Padé approximation PA[1,2](s), M̂(s), and P̂A(s) are denoted by

LRM(t), LRpa(t), LRM̂(t), LRp̂a(t) respectively.

Let ω(t) = LRM(t) − LRpa(t) , ω̂(t) = LRM̂(t) − LRp̂a(t). We plot log
(ω(t)

ω̂(t)

)

against t in Figure 5.30. Evidently, it converges to 0.2143 after as t increases, and
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5.5 Bias correction for the Padé-type Saddlepoint approximation

we find the corresponding constant c2 is exp(0.2143) = 1.2389, such that

ω(t) ≈ 1.2389ω̂(t) as t → ∞

Having see the relatively large difference between the two type of errors in Figure

5.31, the plot given by Figure 5.32 shows that the estimated error in tail area

probability, ω̂(t), is now closely matching the true error ω(t) after we multiply

1.2389 to ω(t). According to Corollary 2, the bias corrected Lugannani-Rice Padé-

type saddlepoint approximation for tail area survival probability can be computed

by

LRpa∗(t) ≈ LRpa(t) + 1.2389 (LRM̂(t) − LRp̂a(t)) (5.40)

as t → ∞.

Next, for t ∈ [19, 20], we compare the estimated tail area survival probabil-

ities from the Lugannani-Rice Padé-type approximation LRpa(t), LRpa∗(t) with

the result from approximation based on original MGF, LRM(t) in Figure 5.33

and Figure 5.34. Again, we see that the bias correction method given by equation

5.40 dramatically improves the quality of Padé-type approximation, and the plot

of LRpa∗(t) and LRM(t) are almost indistinguishable in Figure 5.34. Moreover,

Table 5.10 provides more details of the survival probabilities estimation made by

the Lugannani-Rice approximation. By looking the explicit numerical result, we

find that the accuracy of tail approximation is highly satisfactory after bias cor-

rection, and the deviation to the approximation based on original MGF, SPM(t),

is typically smaller in LRpa∗(t) than LRpa(t).

Table 5.10: Saddlepoint approximation for survival probabilities estimation. Unit
of probability is in 10−3

Time 14.59 15 16 17 18 19 19.21

LRpa(t) 1.0234 0.8361 0.5107 0.3119 0.1905 0.1163 0.1049
LR∗

pa(t) 0.9914 0.8092 0.4931 0.3004 0.1830 0.1115 0.1005
LRM(t) 1.0034 0.8183 0.4976 0.3024 0.1837 0.1117 0.1006
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Figure 5.30: Plot of convergence test
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Figure 5.33: SP approximation for tail area probability 1
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Table 5.11: A comparison of sum of absolute error of Padé-type saddlepoint
approximation of PDF and survival function for t ∈ [14, 20].

original bias corrected reduce%

PDF 0.1537 0.0309 79.87%
Survival function 0.0065 0.0024 62.22%

It is also interesting to explore the performance of our bias corrected method

in Padé-type saddlepoint approximation for PDF and survival function. By set-

ting the saddlepoint approximation based on original MGF as benchmark re-

sult, we calculate the sum of absolute error in each Padé-type approximation for

t ∈ [14, 20]. Table 5.11 gives strong evidence that the bias correction method

does very well and it significantly improves the accuracy in the tail area of both

function, particularly we have a 62.22% decrease in the sum of absolute error in

the survival function estimation, while there is 79.87% reduction in the density

function approximation.
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Chapter 6

Application

In this chapter, we introduce our Matlab package, Method of Moments in Flow-

graph (MMF), to analyse flowgraph data and estimate parameters. The MMF

package supports a wide range of tasks, from calculating the branch transition

matrix to derive the total waiting time MGF between two nodes of interests. It

also includes functions and interactive tools for simulating flowgraph data between

user defined input and output node, as well as the calculation of the Method of

Moments estimator for the transition probability and the parameters of internode

distribution.

The purpose of this chapter is to consolidate the methods we have developed

for modeling flowgraph data and show the details of implementing our package in

Matlab for flowgraph analysis. In the first part, we describe the main operations

of MMF package and explain the theorems associated with the built-in functions.

In the second part, we demonstrate the implementation of our package in a large

complicated flowgraph example.
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flowgraph

Transition
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distribution
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total waiting
time data

Input

MMF MM estimator

Output

Figure 6.1: Illustration of MMF package

6.1 Overview

Figure 6.1 represents the operations of MMF package to compute the MM estima-

tor. The MMF package only requires three inputs as they are illustrated in Figure

6.1. The incidence matrix initialise the structure of flowgraph by defining the

direction of each edge, we can then assign the corresponding transition probabil-

ity, specify the type of internode distribution and the corresponding parameters

value, the total waiting time data can either be the real sample data or the data

generated by simulation. The typical steps of our MMF package are given below.

Step 1: Derive the branch transition matrix .

Step 2: Compute the MGF of total waiting time between input and output.

Step 3: Calculate the Method of Moment estimators.
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6.1 Overview

The following is the Matlab code of MMF package

1 function est=MMF(IM,iniv,data)

2 %Input:

3 %1)IM: Incidence matrix

4 %2)iniv: Value of parameters

5 %3)data: Total waiting time sample data

6

7 %Output:

8 %est: The Method of Moment estimator

9

10

11 % Derive the transition matrix Q

12 infor=tranm(IM);

13

14 % Calculate the sample moments

15 datm=zeros(1,length(iniv));

16 for i=1:length(iniv)

17 datm(i)=mean(data.ˆi);

18 end

19

20 %Compute MM estimator by the Nelder −Mead simplex algorithm

21 pad=infor.dist;

22 options=optimset( 'Display' , 'iter' );

23 est=fminsearch(@(theta) momeq(IM,pad,theta,datm),ini v,options);

24

25 end

The MMF package contains two functions that we have programmed in Mat-

lab, namely, tranm and momeq. The description of each function is provided in

the script of MMF package. To clearly illustrate what computations are being per-

formed, we will give further explanation for each function, demonstrate the details

of implementing each steps of MMF package in the next section.
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6.2 Implementation in MATLAB

6.2.1 Function to compute the branch transition matrix

As the branch transition matrix plays a key role in our algebraic approach to

compute the total waiting MGF, we create a user defined Matlab function files,

tranm.m, to compute the branch transition matrix of a flowgraph model. This

function requires the incidence matrix of flowgraph as input, then it will ask us

to manually enter the transition probability for each directed edge, choose the

type of internode distribution and the corresponding parameters value.

Definition 13. The incidence matrix of a flowgraph is a l × k matrix H =

{hij}, where l and k are the total number of vertices and edges respectively in a

flowgraph, such that hij = −1 if the edge ej (the j-th column) leaves vertex vi

(the i-th row), hij = 1 if the edge ej enters vertex vi, and 0 otherwise.

For example the incidence matrix for the flowgraph in Figure 2.5, page 17 is

a matrix consists of 3 rows (corresponding to the three vertices) and 4 columns

(corresponding to the four directed edges).

H =




−1 0 −1 1

1 −1 0 −1

0 1 1 0




Next, we need to transform the incidence matrix H into the matrix B such that

B =




0 −1 −1

−1 0 −1

0 0 0




where bij = −1 if there is a potential transition from node i (the i-th row) to

node j (the j-th column), and bij = 0 for no transition.
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6.2 Implementation in MATLAB

Given the transition probability pij and the MGF of waiting time between

node i and node j, mij(s), the branch transition matrix Q is determined as

Q(s) =




0 q01 q02

q10 0 q12

0 0 0




where qij = qij(s) = pijmij(s). Therefore, we can apply our Theorem 3 in Chapter

2 to compute the MGF of total waiting time between input at node 0 and output

at node 2.

The implementation of tranm.m in Matlab are displayed as below.

Figure 6.2: Illustration of tranm.m function

Figure 6.2 shows the first output of implementing the tranm.m function for

the flowgraph model on page 17. After substituting the incidence matrix IM into

tranm.m function (i.e. tranm(IM)), we will be asked to enter the value of the

transition probability for each edge, then a popup menu contains the choice of

internode distribution, Exponential and Gamma will appear (see Figure 6.3). We

can then simply enter the corresponding value of parameters for the selected dis-

tribution.

211



Application

The output of tranm.m function consists of three items: the type of intern-

ode distribution for each edge (1 for exponential and 2 for Gamma) in dist, the

set of parameter value in theta, and the branch transition matrix Q (see Figure

6.4). In practice, the tranm.m function allows us to easily determine the branch

transition matrix Q of a large flowgraph by providing an interactive way to assign

the information for each directed edge.

Figure 6.3: Menu for the choice of internode distribution

Figure 6.4: Output of tranm.m function
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6.2.2 Function to compute the MGF

After we obtain the branch transition matrix Q, we program a Matlab function

called MV.m to derive the total waiting time MGF based on Theorem 3, as well

as the population moment (i.e. µr(θ) in Definition 11 Chapter 4).

The MV.m function requires the branch transition matrix Q, which is one of

the output of tranm.m function, to compute the MGF evaluated at the value of

parameters, while it needs the total number of parameter to be estimated in a

flowgraph for calculating the population moments. The following is the Matlab

code of MV.m function.

1 function object2=MV(Q,theta)

2 %Input: 1) Q: The branch transition matrix

3 % 2) theta: The set of parameter

4 %Output: 1) object2.MGF: The MGF of total waiting time

5 % 2) object2.mv: The population moment

6

7 % Construct an identity function

8 syms s

9 dim=size(Q);

10 im=eye(length(Q),length(Q));

11

12 % Apply Theorem 3 Chapter 2 to compute MGF

13 A=im−transpose(Q);

14 M=inv(A);

15 object2.MGF=M(dim(1),1);

16

17 % Calculate the population moment

18 np=length(theta);

19 ME=[zeros(np −1,1);s];

20 object2.mv=zeros(1,np);

21 for i=1:np;

22 ME(i)=diff(object2.MGF,s,i);

23 object2.mv(i)=subs(ME(i),s,0);

24 end
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6.2.3 Sampling Methods

As the accuracy of parameter estimation depends on the sample size of total

waiting time data, and it is common to have difficulty to obtain large enough real

flowgraph data, this motivates us to apply the simulation method to generate

total waiting time data between the input and output of a flowgraph.

For a simple flowgraphs with small number of nodes and feedback loops, we

can simulate the path of each particle from input node to output node and then

obtain the total waiting time according to the internode distribution. However,

in a large complicated flowgraph case, it is not convenient and time consuming to

write Matlab codes for simulation in a case by case manner. Therefore, instead

of following the simulation method based on paths as we did in Section 4.2.2.2

Chapter 4, we creat a Matlab function call simdat.m (see Appendix) based on

the inverse transform sampling method to obtain total waiting time data.

The inverse transform sampling is a method to generate sample of random

variable X given its cumulative distribution function F (x), it is based upon the

following standard theorem.

Theorem 11. Let F be a continuous cumulative distribution function on R with

inverse F−1 defined by

F−1(u) = inf {x : F (x) = u, 0 < u < 1}

If U is a uniform random variable from Uniform(0,1), then F−1(U) has distribu-

tion function F.

The inverse transform sampling method is particularly useful for simulating

total waiting time data in a large flowgraph model. Apart from the traditional

path simulation approach, it allows us to obtain sample data based on its CDF

that is derived from the MGF, which can be easily determined by using the

algebraic approach formula in Theorem 3 Chapter 2. Given the MGF of total

waiting time M(s), we can determine the PDF f(x) by either the exact inversion

method in Section 3.1 or the numerical method in Section 3.2, Chapter 3, then
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6.2 Implementation in MATLAB

we can apply the procedure of inverse transform sampling as follow

1. Derive the inverse CDF F−1(x) from PDF f(x)

2. Generate y ∼ Uniform(0, 1)

3. Compute x = F−1(y)
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Figure 6.5: Illustration of inverse transform sampling

Figure 6.5 demonstrates how the random sample xi is generated given uni-

form random number yi. The inversion method is exact when F−1(x) is in closed

form. However, the CDF F (t) of total waiting time between two nodes of interests

in a flowgraph model is usually nonlinear function, and the analytical expression

of F−1(t) is not available. In this case, we need to apply numerical method to solve

the equation F (x) = u numerically for x. Note that we could apply the built-in

Matlab function called “fsolve” to find the solution of nonlinear equations.
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6.2.4 Method to compute the MM estimator

As the MM estimator θ̂ for parameter θ = (θ1, ..., θd) is the solution to the system

of equations determined by Definition 11, Chapter 4, we can construct a function

R(θ) as

R(θ) =
d∑

r=1

(µr(θ) − mr)
2 for r = 1, ..., d (6.1)

then R(θ̂) = 0 will be satisfied if θ̂ is the MM estimator. Hence the computation

of MM estimator can be considered as a problem for finding the zeros of a scalar

function R(θ) of several variables θ = (θ1, ..., θd).

The Nelder-Mead algorithm is one of the well known algorithms for multidi-

mensional optimization problem. It is developed by Nelder and Mead (1965) and

it has been extensively used to solve parameter estimation. The basic idea is to

use the term simplex (a generalized triangle in d dimensions) and find the mini-

mum of a function of d variables. For reference, see Powell (1973) and McKinnon

(1999). Byatt, Coope and Price (2003) summary the development of this method.

Since it is computationally demanding to construct the Jacobian matrix of

the systems of moment equations, this algorithm belongs to a general class of

direct search methods which do not require to use any derivatives, therefore it is

relatively easy to implement than other optimisation method for computing the

MM estimators. We use Matlab’s built-in function fminsearch (see Lagarius,

Reeds, Wright, and Wright (1998)) to find the minimum of R(θ) function (i.e.

R(θ) = 0) and calculate the MM estimator.

To demonstrate the use of fminsearch function, we consider the series flow-

graph model example in Figure 2.1 Chapter 2 again. The incidence matrix is

defined as

H =



−1 0

1 −1

0 1



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Suppose we assume t01 ∼ Exp(λ1) and t12 ∼ Exp(λ2), A sample size of n

total waiting time between node 0 and node 2 is generated by the inverse sampling

method (i.e. simdat function), compute the sample moments and derive function

R(θ) for d = 4 case by equation 6.1. Given the sample moments, we create a

function handle called momeq.m (see Appendix) to compute the value of R(θ) at

each value of parameters θ, so that the Nelder-Mead algorithm can be applied

iteratively to minimise R(θ) for calculating the MM estimator.

1 %Define the incidence matrix

2 IM=[ −1,0;1, −1;0,1];

3

4 %Define the initial value of parameters

5 iniv=[0.9,1.1,0.6,1.4];

6

7 %simulate 10000 waiting time data

8 n=10000;

9 datv=simdat(out.MGF,n);

10

11 %Call function momeq and calculate the MM estimator

12 options=optimset( 'Display' , 'iter' );

13 [est,fval]=fminsearch(@(theta) ...

momeq(IM,pad,theta,datm),iniv,options);

Note that we only use the total waiting time data generated by simdat.m

function in Section 6.2.3, in practice, we usually use the sample total waiting time

data for parameter estimation. The computation proceeds by applying Nelder-

Mead algorithm (i.e. fminsearch function ) to find a minimum of momeq function

(i.e. the value of R(θ)), starting at an initial value of parameter specified in

iniv. The options function allows us to see the output at each iteration of

calculation, such as the value of R(θ) and the operation of Nelder-Mead algorithm.

The computation will be terminated if the change in the function value is less

than 10−4 (i.e. |R(θl+1) − R(θl)| ≤ 10−4), the result of MM estimator θ̂ and

the corresponding value of R(θ) at θ̂ will be stored in variable est and fval

respectively.
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6.3 Example 9

In this section, we implement our MMF package to estimate the MM estimator

for a total of 10 parameters in a flowgraph, which has a similar structure to the

flowgraph given in Figure 2.5, Section 2.2.1, Chapter 2, but contains some in-

ternode waiting time that follow Gamma distribution. We summary the type of

the internode distribution and the corresponding value of parameters in Table 6.1.

Table 6.1: Summary of waiting time distribution

Direction transition probability Distribution

1 → 0 p10 = 0.4 Exponential(2)

0 → 1 p01 = 0.7 Gamma(1.5, 3)

0 → 2 p02 = 0.3 Exponential(1)

1 → 2 p12 = 0.6 Gamma(9, 0.5)

Step 1: Define the incidence matrix of flowgraph in Figure 2.5 on page 17.

H =




−1 0 −1 1

1 −1 0 −1

0 1 1 0




Recall that the column and row of matrix H represents the edge and vertex of

flowgraph, such that hij = −1 if edge ej (the j-th column) leaves vertex vi (the

i-th row), hij = 1 if edge ej enters vertex vi, and 0 otherwise.

Step 2: Simulate a sample size of n = 106 total waiting time data between

node 0 and node 2 by the use of simdat function. Note that we usually input the

real sample data rather than the simulated data for practical application.

Step 3: Execute the MMF package (see Figure 6.6), input the incidence matrix

IM, the sample data datv, and the initial value iniv for the transition probability

and the parameters of each internode distribution by the menu in Figure 6.3.
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Figure 6.6: Implementation of MMF package in Matlab

The package takes 596.94 seconds to complete the computation, where it

requires 507 iterations of the Nelder-Mead algorithm. The calculated results ob-

tained from the MMF package are displayed in the Table 6.2 and Table 6.3. By

comparing with the true value of parameters, we can see that reasonably good

estimation results are obtained for both transition probability and internode dis-

tribution parameters.

Table 6.2: Summary of MM estimators for transition probabilities

Parameter p10 p01 p02 p12

True value 0.4 0.7 0.3 0.6
Estimated value 0.4216 0.7163 0.3256 0.6131

Table 6.3: Summary of MM estimators for internode distribution parameters

Parameter λ10 λ02 α01 β01 α12 β12

True value 2 1 1.5 3 9 0.5
Estimated value 2.1947 1.1735 1.2335 2.7618 9.6072 0.5131

To conclude, the MMF package not only provides a user-friendly way to input

the information from flowgraph but also it unifies the processes of constructing

branch transition matirx, deriving the total waiting time MGF, and computing

the MM estimators. For practical application, we can easily adapt the MMF package

in MATLAB as needed for the parameter estimation problem in any type of

flowgraph models.
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1. We summary the system of 6 moment equations for MM in Section 4.3.4.1
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2. Jacobian determinant for Example 5.2 continued, in Section 4.3.2.

det(H) =
2p3

01α(p01 − 1)(β − λ1)

λ8
1λ
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G(p01, λ1, λ2, α, β)

where

G(p01, λ1, λ2, α, β)
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2λ7
2 + 21α4λ4

1λ
8
2β − 1920α4λ5

1λ
4
2β
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3. Jacobian determinant for Example 6.1.2, Section 4.3.3.2

det(H) =
2(p02 − 1)3α(β − λ2)(α + 1)

λ6
1λ

8
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6
02β
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G(p01, λ1, λ2, α, β) (2)

where

G(λ1, λ2, α, β)
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5
2p02 + 2712α2β4λ1λ
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4. Jacobian determinant for Example 5.1 continued, Section 4.3.1
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5. Jacobian determinant for Example 6.1.1, Section 4.3.3.1.
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6. The following is the Matlab code of simdat.m function

1 function datv=simdat(MGF,n)

2 %Input: 1) MGF −−−The MGF of total waiting time

3 % 2) n−−−−−The sample size

4

5 %Output: datv −−−total waiting time data

6

7 % Derive the PDF by the inverse Laplace transform

8 syms s t x

9 M=subs(MGF,s, −s);

10 f=ilaplace(M,s,t);

11

12 % Compute the CDF

13 matlabFunction(f, 'file' , 'pdfs' )

14 F=int(f,t,0,x);

15 matlabFunction(F, 'file' , 'cdfs' )

16

17 % Simulate dat2 from Uniform(0,1)

18 dat2=rand(1,n);

19 initv=2;

20 sn=length(dat2);

21 tol=10ˆ −6;

22

23 %Solve F(x)=dat2 for x

24 options=optimset( 'TolFun' ,tol, 'Display' , 'off' );

25 sdat=zeros(1,sn);

26 infov=zeros(1,sn);

27 fvalv=zeros(1,sn);

28 for i=1:sn

29 [est, fval, info]=fsolve(@(x) cdfu(x,dat2(i)),initv,op tions);

30 sdat(i)=est;

31 fvalv(i)=fval;

32 infov(i)=info;

33 end

34 datv=sdat;

35 end
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7. The following is the Matlab code of momeq.m function

1 function fv=momeq(IM,pad,theta,datm)

2 %Input

3 %1)IM−−−−−−Incidence matrix

4 %2)pad−−−−−The type of internode distribution, 1 for ...

Exponential, 2 for Gamma

5 %3)theta −−−The set of parameters

6 %4)datm−−−−The total waiting time sample data

7

8

9 %Output

10 %fv−−−The value of R function defined in equation 6.1

11

12

13 % Derive the transition matrix

14 syms s

15 G=CIM(IM);

16 y=[zeros(1,length(G) −1),s];

17 x=[G;y];

18 x( end−1,:)=[];

19 dim=size(IM);

20 nz=find(x== −1);

21

22 pv=theta(1:dim(2));

23 indx=dim(2);

24

25 for i=1:dim(2)

26 p=pv(i);

27 pnum=pad(i);

28 if pnum==1

29 lambda=theta(indx+1);

30 x(nz(i))=p * lambda/(lambda −s);

31 indx=indx+1;

32 end

33

34 if pnum==2

35 alpha=theta(indx+1);

36 beta=theta(indx+2);
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37 x(nz(i))=p * alpha/(beta −s);

38 indx=indx+2;

39 end

40

41 end

42

43 x( end ,end)=0;

44

45 %compute the MGF

46 K=MV(x,theta);

47 MGF=K.MGF;

48

49 %Determine the moment from the coefficient of taylor series of...

MGF.

50 np=length(theta);

51 f=MGF;

52 T=taylor(f,np+1);

53 TC=sym2poly(T);

54 c=factorial(1:np);

55

56 c2=sort(c, 'descend' );

57 PM=c2. * TC(1:np);

58 meq=sort(PM, 'ascend' );

59

60 %Construct the R function

61 fv=sum((meq −datm).ˆ2);

62 end
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