
The London School of Economics and Political Science

Topological Optimisation of Artificial Neural Networks
for Financial Asset Forecasting

Shiye (Shane) He

A thesis submitted to the Department of Management of the London

School of Economics for the degree of Doctor of Philosophy.

April 2015, London

1

Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD degree of the

London School of Economics and Political Science is solely my own work other than where I

have clearly indicated that it is the work of others (in which case the extent of any work carried

out jointly by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted, provided

that full acknowledgement is made. This thesis may not be reproduced without the prior

written consent of the author.

I warrant that this authorization does not, to the best of my belief, infringe the rights of

any third party.

2

Abstract

The classical Artificial Neural Network (ANN) has a complete feed-forward topology, which

is useful in some contexts but is not suited to applications where both the inputs and targets

have very low signal-to-noise ratios, e.g. financial forecasting problems. This is because this

topology implies a very large number of parameters (i.e. the model contains too many degrees

of freedom) that leads to over fitting of both signals and noise. This results in the ANN having

very good in-sample performance on the data used for its training but poor performance out-

of-sample for forecasting.

The main contribution of my research is to develop a new heuristic method called “ANN

reduction” for optimising the topological structure of a feed-forward ANN in order to improve

its out-of-sample performance (using an RMS measure). The research concentrated on the

topological optimization of the graph representing an ANN, which reduces the effective degrees

of freedom of the ANN whilst still maintaining its feed-forward (but incomplete) topology. Such

reductions in the number of parameters have been attempted before in the literature, but our

procedure is of a different (graph theoretic) nature and (in extremis) optimal for small-size

ANNs.

Two applications of the ANN reduction are also implemented and programmed for empir-

ical simulations. For this purpose, two datasets generated from deterministic functions and

three datasets derived from foreign exchange market prices are used for evaluating the ANN

reduction applications. These applications generate new ANN topologies with some clear per-

formance advantages over those obtained by the best complete ANNs, improving the general-

ization (out-of-sample) performance by up to 27.6% compared to the complete ANN on the

function generated datasets and up to 14.1% on the financial forecasting problem for the FX

data.

3

Acknowledgements

Foremost, I would like to thank my advisors, Prof. Nicos Christofides, for guiding me

through the whole PhD life. His continuous encouragement, invaluable guidance and constant

support helped me greatly in pursuing my goals in life.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Nigel Meade

and Dr. Cormac Lucas for their encouragement, insightful comments, and hard questions.

I owe special thanks to my mom, dad and my fiancé, for their continuous encouragement,

care and support during my study. This dissertation is simply impossible without them.

4

Contents

1 Introduction 9

1.1 The Financial Forecasting Problem (FFP) . 9

1.2 Traditional forecasting methodologies . 11

1.2.1 Time series methods . 12

1.2.2 Causal methods . 14

1.2.3 Practical discussion . 15

1.3 Machine learning methods . 16

1.3.1 Machine learning classes . 16

1.3.2 Machine learning models . 18

1.3.3 Machine learning in the FFP . 19

1.4 ANN and applications in the FFP . 20

2 Background 22

2.1 Topology of ANN . 22

2.1.1 Feed-forward ANN . 25

2.1.2 Approximation using ANN . 31

2.2 Training of ANN . 38

5

2.2.1 Sampled input-target data pairs . 39

2.2.2 Objective function . 40

2.2.3 Back-propagation . 41

2.2.4 Conjugate gradient methods . 46

2.2.5 Local minima and global minima . 55

2.3 ANN for forecasting . 56

2.3.1 Over-fitting problem . 56

2.4 Inputs to ANN . 58

2.5 Survey of ANN topological optimisation . 60

2.5.1 Growing methods . 61

2.5.2 Pruning methods . 63

3 Theoretical framework 67

3.1 Representing ANN topological structures as graphs 67

3.1.1 Graph and ANN network architecture 69

3.1.2 ANN topological optimisation problem 70

3.2 Heuristic implementation of static vertex optimisation 74

3.2.1 λ-optimal on ANN static vertex optimisation 76

3.2.2 Enhanced ANN-Reduction Procedure (ERP) 80

3.2.3 Cascaded Enhanced ANN-Reduction Procedure (CERP) 89

3.3 Conclusion of the chapter . 90

4 Empirical simulation on function approximation 93

4.1 Introduction . 93

6

4.2 Simulation with deterministic function one . 95

4.2.1 Optimisation problem settings . 96

4.2.2 Result from complete ANN . 97

4.2.3 Result of topologically-optimising complete ANN for function one using

ERP . 101

4.2.4 Result of optimising complete ANN for function one using CERP 106

4.3 Simulate with sample data from deterministic function two 110

4.3.1 Problem settings . 110

4.3.2 Result from complete ANN . 111

4.3.3 Results of ERP . 114

4.3.4 Results of CERP . 119

4.4 Summary of result . 123

5 Empirical simulation on foreign exchange price forecasting 125

5.1 Introduction . 125

5.2 Data construction for the ANN forecasting problem 126

5.3 Design and setting of the ANN forecasting System 135

5.4 Forecasting performance of complete ANN . 138

5.4.1 Forecasting Problem 1 . 139

5.4.2 Forecasting Problem 2 . 140

5.4.3 Forecasting Problem 3 . 141

5.5 ERP results . 142

5.5.1 Forecasting Problem 1 . 142

5.5.2 Forecasting Problem 2 . 144

7

5.5.3 Forecasting Problem 3 . 146

5.6 CERP results . 148

5.6.1 Forecasting Problem 1 . 148

5.6.2 Forecasting Problem 2 . 150

5.6.3 Forecasting Problem 3 . 152

5.7 Robustness test . 154

5.8 Comparative study of ANN and AR model . 155

5.9 Summary and comparison of simulation results 156

6 Conclusion 159

6.1 Introduction . 159

6.2 Theoretical framework and implementation . 160

6.3 Empirical evidence . 163

6.4 Limitation and future research . 164

A 25 Possible topology of 5-3-1 Basic ANN 176

8

Chapter 1

Introduction

1.1 The Financial Forecasting Problem (FFP)

Forecasting is a process of making statements about events, in which actual outcomes have

not yet been observed (output) often by employing time series analysis on historical data. The

basic idea of forecasting assumes that future occurrences are partially based on present and

past observations, e.g. a forecast of variable Xt is E(Xt+h|Wt) where Wt is the information

set used and available at time t, and the forecast is for h periods ahead. The success of

a forecasting model E relies on the accuracy of finding the relationships between particular

input and output sets. Mathematical modeling and trend forecasting for stochastic financial

time series has long been a popular research topic. Most modern methodologies have involved

statistical models such as time series analysis. These models usually use real market data as

inputs such as unexpected growth in GDP, changing industry structure or more specifically

corporate fundamentals i.e. price earnings ratios, etc.

The FFP involves making statements about a financial asset’s future value based on the

observed information and assumptions that reflect existing conditions in the financial market.

The term "forecasting" is reserved for estimating quantitative values at specific times in the

future, thus the FFP is associated with quantitative methods and quantified information.

9

A commonplace application of the FFP is to estimate the holding period return of a portfolio

in the next period. The return is forecasted based on a careful selection of prior information

such as portfolio current value, recent share price volatility or closing exchange rate and various

macroeconomic conditions.

Ultimately, if one can forecast a future event, one can exploit this informatioin to the

advantage. The FFP is a means of evaluating the profitability of an investment opportunity

and to form a basis on prioritising investment decisions. It can also assist investors to provide

for their future investment needs and is invaluable to traders to translate the forecast into

profits. Accurately identifying investment opportunities and cost is one of the most important

elements in a financial market which leads to success.

Despite an enormous amount of research already carried out on this subject, the predictabil-

ity of a financial market is still under debate [2, 3] especially at the turning of economic cycles.

There are mainly two famous hypotheses that assert pessimism for the FFP. These are the

Random Walk Hypothesis (RWH) and the Efficient Market Hypothesis (EMH).

The RWH claims that a stock price does not follow any pattern, so it is not possible to

forecast future prices from past data[5]. According to this hypothesis, a trader investing money

in the market is no different than throwing dice in a casino.

In an informationally efficient market, public news is promptly delivered to investors without

any delay. The EMH claims that prices on traded assets already reflect all past publicly available

information so any excess investment returns cannot be earned from investment strategies based

on historical share prices or other historical data. Therefore, the EMH states that the FFP will

not be able to reliably forecast future returns because it is based on observed information that

is useless in an (information) efficient market[4, 6].

The two hypotheses have the same judgement regarding past information to future outcomes

and render the FFP useless. Both have been continuously criticised from researchers. Lo and

MacKinlay argue that prices do not follow a random walk[7]. Strong negative correlations

have been found between past price earnings ratio and following stock returns[8], which is in

10

conflict with the RWH. Most financial prediction models have demonstrated limited abilities to

generate excess returns under most circumstances. Several studies[9, 10, 11, 30, 16, 32, 33, 35]

provide some evidence of predictability emanating from short term horizon strategies although

many models have failed to obtain a reliable forecasting function.

The main reason for this is that the relationship functions are usually weak, with very

low signal to noise ratio, so it is necessary to construct an approximate representation for the

function of interest by choosing an appropriate approximation. The approximation function

is a particular function involving a number of free parameters. These parameters are then to

be "tuned" (calibrated) and refined through a process called training or learning in order to

minimise the difference between the approximation and the original signal.

The movement of some asset prices such as stock prices are stochastic in nature. Ultimately

it argues for the existence of a stochastic mapping relationship between the historical and future

values. In some commonly considered situations this data exhibits complicated statistical

correlations. However, Timmerman [12] comments "the stronger (i.e. easier to detect) the

evidence of past return predictability, the greater the expected decline in future predictability,

as predictability patterns get more rapidly incorporated into current market prices." Further

more, he invistigated predictablility of stock returns from their past values and found some

modest evidence of local predictability in some short window over a long time horizon, but

none of the forecasting models appear able to predict returns sustainablely [12].

1.2 Traditional forecasting methodologies

Many financial market practitioners and academic researchers have spent tremendous effort

working on the FFP. Different methods have been developed for the specific needs of financial

applications. The selection of the method depends on the objectives and the condition of

the particular FFP. Traditionally there are two broad categories of methods for forecasting

problems and they are differentiated through their handling of input and output data. The

two categories are time series methods and causal methods. Recent developments of machine

11

learning techniques have led to a new approach in the FFP and it is categorised as the third

method. Table 1.2.0 lists quantitative forecasting methods that are relevant to many forecasting

situations. A brief overview for the two traditional categories is introduced in this section

following the machine learning methods in Section 1.3.

Forecasting Methods Examples
Time series methods Weighted Moving Average;

Auto-Regressive Moving Average;
etc.

Causal methods Leading Indicator Analysis; etc.
Machine learning methods Artificial Neural Networks; Support

Vector Machines; etc.
Table 1.2.0 Examples of forecasting methods

1.2.1 Time series methods

In time series methods, past data are used as the basis of estimating future outcomes. The

difficulty is to extract features including patterns, changes or disturbances in the past time

series and project them with current data to forecast the future. Two time series methods will

be discussed here, Moving Average(MA) and Auto-Regressive Moving Average (ARMA):

MA

MA is perhaps the most common type of time series forecasting method. A moving average

MAt of data at time t is the average of the values from time t−∆ to t, where ∆ is a fixed time

window. If those values are xt−∆+1, xt−∆+2, ..., xt, then MAt =
xt−∆+1+xt−∆+2+...+xt

∆ . The idea

of MA is to form a smooth version of the time series from consecutive past periods. One possible

forecast for the next period is then xt+1 = MAt + εt where εt is white noise. MAt is often

adjusted by multiplying the time series values with a "weight" wt (with
∑
wt = 1) , varying

with t so that MAt =
wt−∆+1∗xt−∆+1+wt−∆+2∗xt−∆+2+...+wt∗xt

∆ , e.g. giving greater weights to

recent observations (with respect to time t) and less weight to older observations. This adjusted

version is called Weighted Moving Average[1]. A specific example is the Exponential MA where

the weights "die" exponentially backwards from t to t−∆, e.g. wt = 1− exp((t)−(t−1)
∆).

12

MA is a very simple method but has slow reactions to a fast-changing market in that its

value always lags the original time series, i.e. it introduces a phase-shift in the input data

stream, which limits its usefulness when applying it to the FFP.

ARMA

ARMA models, sometimes referred to as Box-Jenkins, are typically applied to auto-correlated

time series data[13]. ARMA uses a variable’s past behavior to select the best forecasting model

from a general class of models for forecasting. As its name states, the model consists of a MA

component and an Auto-Regressive (AR) component.

The MA part or more precisely the Weighted Moving Average, computes a weighted linear

combination of past errors: MA(q) = c +
∑q

i=1 θiεt−i+1 + εt, where c is a constant, θi are

parameters and ε is white noise and q is an integer defining the order of the MA process.

Similarly,the AR part is written AR(p) = c +
∑p

i=1wiXt−i+1 + εt, where c is a constant,

wi are parameters and ε is again white noise.

An ARMA(p,q) model with p autoregressive terms and q moving-average terms is therefore,

Xt+1 = c+
∑p

i=1wiXt−i+1 +
∑p

i=1 θiεt−i+1 + εt. To apply ARMA, there are three stages : 1,

model identification and model selection; 2, parameter estimation; and 3, model checking. The

first step is to ensure that the time series data conforms to the specifications of a stationary

univariate process. This is done by checking the residuals which should be independent of each

other and constant in mean and variance over time. Sometimes there exists seasonality in the

time series and therefore seasonal differencing is necessary. Using plots for the autocorrelation

and partial autocorrelation functions of the time series to decide which (AR, MA or both)

component should be used in the model. The second step is to apply regression analysis to

estimate the value of the best-fit parameters. The final step is to back-test the data from the

estimated model. If the estimation is inadequate or the stationarity condition of the data series

is not satisfied, another approach has to be used.[14]

13

1.2.2 Causal methods

Causal methods concentrate on finding the cause-result relationship between observable factors

and outcomes. These methods assume that it is possible to have underlying factors that might

influence the variable that is being forecast (the "target"). For example, including information

about a recent number of passengers who booked flights may well improve the ability of a

model to forecast the cost of fuel for an airline company in the coming period. [15] In general,

the premise is that the cause of changes in the value of a target variable is closely associated

with changes in one or more of the currently observable variable(s). Therefore, if future values

of these "inputs" can be estimated, they can be used to forecast the value of the target. An

important causal method is leading indicator analysis:

Leading Indicator Analysis (LIA)

Forecasting using financial and economic statistics in order to predict the value or direction of

the target is called LIA. The term "leading" means that the independent variables xt at time

t, have a consequential influence on the dependent variable yt+1 at time t+1 . For example, an

analyst may find that a rise in oil price in the previous period indicates (leads) that the price

of an asset will increase in future periods.

In general it is very difficult to identify leading indicators in any market. Often the only

technique available is to list as "possible leading indicator" every conceivable variable which

(under some "knowledge" or rationale) could be a possible candidate. One can then test (by

linear regression, for example) whether a variable in this list is a suitable leading indicator or

not, and select a small subset that are then proposed as leading indicator variables (inputs).

Note that although a variable in this list is rejected by linear regression, it may be an important

leading indicator but one whose effects on the target are nonlinear in nature and cannot be

identified by linear regression, for example.

14

1.2.3 Practical discussion

Several studies examine the practical relationship between stock returns and fundamental stock

variables. Variables such as earnings yield, cash flow yield, book-to-market ratio, and size

are shown to have some power in predicting stock returns. Another input is provided by

independent credit rating agencies such as Fitch, Moodys and Standard & Poor’s who employ

expert knowledge in making subjective credit analysis and rating decisions. Expert knowledge

incorporates market factors and non-quantifiable influences to produce forecasts of possible

credit events.

Fama and French [36] forecast the asset price in terms of three common risk factors: an

overall market factor, a "size" factor relating to firm size, a "value" factor the book-to-market

equity.

At the same time other researchers find that macroeconomic variables such as short-term

interest rates, expected inflation, dividend yields, yield spreads between long and short-term

government bonds, yield spreads between low grade and high grade bonds, lagged price-earnings

ratios, and lagged returns have some power to predict stock returns. These studies lead to

econometric forecasting approaches.

The major difference between time series methods and casual methods is that the former

forecasting techniques use past trends of a particular variable to be the basis of forecasting the

future of that variable; while the latter method uses past time series on many relevant variables

to produce the forecast for the variable of interest. Note that applications combine both of the

previous two methods. For general forecasting issues, one of the key problems encountered is

to find the most appropriate forecasting method. When applying the above methods to the

FFP, the problem is to understand the different forecasting methods and their relative merits

to be able to choose which method to apply in a particular situation. However, given the large

space of available information and complexity of the financial market, it is usually difficult to

find an adequate answer.

15

1.3 Machine learning methods

Machine learning is a branch of artificial intelligence which is concerned with the design of

algorithms that allows computers to learn based on empirical data. Next we will introduce the

two important classes of learning: supervised learning and unsupervised learning, followed with

a discussion of their applications in the FFP. Some examples are given in Subsection 1.3.2.

1.3.1 Machine learning classes

Supervised learning

Supervised learning generates a function that maps inputs to a desired target. The word

’supervise’ means that the generated mapping function is inferred from supervised (or labelled)

training data samples. Each training sample is considered to have a vector of inputs and a

vector of a desired mapping target. The input-target pair is also called the supervisory signal

as they are often provided by human experts labelling the training examples. A supervised

learning algorithm analyses the training samples and computationally produces an approximate

mapping function from the training process.

For example, given (x1, y1), ..., (xN , yN) for a set of N training examples, xi is the i-th input

example and yi is its label, a learning algorithm seeks the function g : X 7→ Y , where X is the

input space and Y is the output space.

The mapping function is also called a classifier in discrete cases or a regression function if the

data is continuous. The objective of the exercise is to produce the correct output g(x) given a

new training input x through a learning algorithm, which is a process of rewarding or penalising

the system if it gives the correct solution or not. The performance is indicated through a

mismatch between output g(x) and the training target y, which contains prior knowledge

about the problem domain. If the learning algorithm is well trained and the system itself is

predictable, the inferred approximation function should predict the correct output value for

any valid input x′ for out-of-sample cases ȳ′ ≈ y′ = g(x′). This allows the learning algorithm

16

to generalise correct mapping from the training data to other unseen instances and to predict

outputs given inputs that it has not encountered. Tasks that fall within the paradigm of

supervised learning are pattern recognition (also known as classification) and regression (also

known as function approximation). The supervised learning paradigm is also applicable to

sequential data, e.g. speech and gesture recognition. This can be thought of as learning with a

’teacher’ in the form of a function that provides continuous feedback on the quality of solutions

obtained thus far.

Unsupervised learning

Unsupervised learning algorithms study how to represent patterns from particular inputs, so

that the system can reflect the statistical structure of the overall input collection. This type of

algorithm is given no explicit target outputs nor needs any evaluations associated with inputs

and state/environment. Different to supervised learning, the unsupervised learner "brings

to bear prior biases as to what aspects of the structure of the input should be captured in

the output"[29]. One method which has been suggested for unsupervised learning is density

estimation techniques explicitly for building statistical models (such as Bayesian probabilities)

of how underlying causes can create observed unlabelled inputs. A priori biases include implicit

properties of the model, the parameters and the observed variables. Tasks that fall within the

paradigm of unsupervised learning are in general estimation problems; the applications include

clustering, the estimation of statistical distributions, compression and filtering.

When applying the FFP, for the need of forecasting in complicated market conditions and

for different objectives, variations on the machine learning application have been developed.

Next we will illustrate some implementations presented in the literature. There are other classes

associated with machine learning which are largely extended or combined from the above basic

three, so we will not discuss them explicitly.

17

1.3.2 Machine learning models

The well-known developed machine learning models are Artificial Neural Network (ANN), K-

Nearest Neighbours (KNN), Bayesian Statistics (BS) and Support Vector Machines (SVM).

This section focuses on ANN as it is used throughout the thesis.

• A large volume of literature has used ANN for financial and economic forecasting [18,

19, 20, 21]. The design of ANN was first inspired by the functional structure of biolog-

ical neurons in the 1940s[17] and it is perhaps the oldest machine learning application.

Through decades of development, ANN has become an information processing paradigm

that consists of a number of interconnected processing neurons. Modern ANNs, like the

human brain, learn by training in specific applications such as pattern recognition or

financial data approximation. A detailed introduction of structure and implementation

is presented in Chapter 2.

• KNN is a method for classifying objects based on the K closest training examples in

the featured space. For regression analysis, it assigns the function value for the object

to be equal to the weighted sum values of its k nearest neighbours. KNN is a type of

instance-based learning, which means it approximates a function locally[23]. Therefore

KNN is sensitive to the local structure of the data, resulting in uneven performance for

time series prediction[54]

• The Bayesian framework for machine learning works in a similar manner to Baye’s Rule

P (D) = P (D|M)P (M)/P (M |D). First, by examining each possible model to gain a prior

probability P (M); second, by examining each training data to evaluate the conditional

probability of the data given in the model P (D|M); finally, it enumerates through all

training data samples and reasonable models to gain knowledge of the posterior probabil-

ity of the model P (M |D) . In short, it learns probabilities about how evidence supports

outcomes, and then predicts new evidence outcomes. For real world applications with

large space of models, approximate Bayesian methods can be used[24].

• SVM constructs one or more hyper-planes to separate classes in the sample space, which

18

can be used for classification. Based on the complexity of the separation, the original

finite-dimensional space may be mapped into a higher dimensional space using a kernel

function to ensure that data becomes linearly separable. A version of SVM for regression is

proposed by Vapnik[25]; for time series prediction SVM has also produced some attractive

results[26]. There are many corresponding evidence however, in general, SVM has not

demonstrated any improvement over what can be achieved using ANNs.

In the supervised learning problem, one is usually presented with a time series sample

of input-output pairs. The goal is to infer the mapping implied by the sample inputs and

outputs. The reward/penalty function in ANN is called the cost function. The cost function

is set in relation to the difference between the network’s output (given an "input") and the

actual data (which is sometimes called the "target"). A commonly used cost function is the

mean-squared error, which aims to minimise the averaged squared error between the network’s

output and the sample target over all the time series. For this type of problem ANN is usually

structured in multilayer perceptrons and the cost function is optimised using gradient descent.

The multilayer perceptrons structure and the gradient descent optimisation process will be

discussed in Chapter 2.

1.3.3 Machine learning in the FFP

The idea of using machine learning for the FFP has been popularised since the 1990s but its

effect remains inconclusive . Although no financial institution has reported significant profit or

loss resulting from particular machine learning models, machine learning technology remains

widely employed as a tool in the financial investment sector. In recent years the presence of

machine learning in both the academic literature and financial and economic industries has

increased substantially, providing a new perspective to the agenda of finance and economics

by their ability to handle large amounts of financial data and simulate complex models. An

important application of computational finance is in forecasting asset prices in finance. Some

of the currently used methods employ learning methods such as Support Vector Machines,

Bayesian approaches and ANN.

19

In a modelling system, regardless of the type of problem and the method chosen, the objec-

tive criterion is always of central importance to assess the effectiveness of forecasting. While

estimating prediction risk is important in its own right for providing a means of estimating the

expected error inherent in the prediction output from a prediction process, it is also an impor-

tant tool for assessing method selection, data preprossessing and improving the performance of

the selected method.

A successful machine learning system for financial data forecasting is an ensemble of three

crucial components: 1, data pre-processing; 2, forecasting algorithms; and 3, evaluation, tuning

and forecasting. Each component itself is a challenge and can stand alone as a research topic.

Since there are few proven prior general solutions, extensive experimentations are necessary, but

even experience of failure can aid the development of the subject. However, notable in regards

to the types of machine learning technique employed for the FFP, a recent survey shows there

seems to be an increasing number of applications using existing ANN models. The development

of ANN in the FFP focused on enhancing new training algorithms [31].

1.4 ANN and applications in the FFP

ANN is a type of machine learning system that was inspired from the structure of intercon-

nectivity of neurons in the human brain as illustrated earlier. The learning process of ANN is

also similar to that of human learning processes such that the nature of a relationship between

incidents can be learned provided there is enough sample information for training. The actual

performance of training and simulating is determined by the ANN’s architecture, which is the

interconnection between the processing elements (neurons) and their parameters. A classical

type of ANN structure is the feed forward network, which is described in detail in later chap-

ters. ANNs have been widely used for quantitative data modelling, such as financial stock price

prediction because of its superior abilities to discover non-linear relationships in multivariate

analyses. They have also been successfully used for low-level cognitive tasks such as speech

recognition and character recognition and are now being explored for knowledge induction and

20

decision support.

Referring to a previously mentioned example of credit rating companies we can use expert

knowledge of finding methods for credit rating forecasting. Moody and Utan [32] find that when

applying ANN for forecasting bond credit ratings, the results from ANN are more accurate

compared to conventional results from linear regression. Earlier work from Dutta and Shekhar

[33] also demonstrates a similar result by developing ANN to determine whether a correct credit

rating is given. On the same training set ANN gave the best performance of 92.4% whereas a

regression model only classified 64.7% correctly. Odom and Sharda [10] have also shown that

ANN maybe more appropriate in predicting bankruptcy compared to traditional approaches.

Although there is an increasing amount of research which supports applying ANNs in a real

business situation, opinions regarding their value are mixed. In particualr, Callen [34] used

ANN forecasting of quarterly accounting earnings but the study revealed that neural-network

models are not superior to linear time series models when the data are financial, seasonal and

non-linear; this is partly because the data used for training contains a significant amount of

noise and exhibits non-stationary characteristics. A study by Timmermann [12] also shows that

in forecasting stock returns standard ANN does not produce better results compared to some

other models including AR. Furthermore, Timmermann’s emperical findings suggest that most

of the time stock returns are not predictable but there exists only modest evidence of local

predictability within a limited timeframe [12].

The research objective of this thesis is to explore some new possibilities to improve perfor-

mance of ANNs, particularly in applications to the financial industry. In particular we consider

the problems arising from over-training and the effects of too many degrees of freedom inherent

in the ANN because of the excessive numbers of parameters to be estimated [73, 74, 75]. This

exploration is to be modelled, simulated and compared based on applications of financial index

forecasting using C++. Before proceeding to the research details, a complete background of

ANN will be introduced in the following chapter.

21

Chapter 2

Background

2.1 Topology of ANN

Neural networks are assembled from interconnected neurons, thus it is important to understand

the functionalities of these neurons. In the early days the development of artificial neural

networks was attempted as a tool to understand the generic biological neuron in the bodies of

mammals, such as the one displayed in Figure 2.1.0a, by simulating computational algorithms

for them to use.

Biological neurons are cells. On the input end of the cell are a number of fine transmission

lines namely dendrites with a tree shape resemblance. There are many varieties in the number of

dendrites and shapes of neurons which reflect the information processes performed in neurons.

The cell body is also referred to as the soma and contains the nucleus which has related

cellular metabolic apparatus. Neurons are interconnected with each other through a long thin

item called an axon. The axon is the transmission line for the signals produced by a neuron.

For example, a spinal motor neuron in the backbone can have meter long axons running to the

toes. On the end of the axon the transmission lines branch again in what is called a terminal

arborisation. On the end of the axonal branches are synapses where the output of the neuron

is produced. To portrait a standard procedure of information flow in the neuron, dendrites

22

Figure 2.1.0a Generic biological neuron [39].

on top of the backbone in a human body receives input signals from brain cells, the soma

then processes and integrates the inputs, and information is transmitted along the axon to the

synapses and output to other neurons or to effector organs such as hand muscles in order to

perform various movements [39].

Investigations have shown that the extent of dendritic spread allows significant spatial

integration, which means multiple signals from different locations (or output from synapses)

can be added. This signal is created in a form of electronic voltage difference built by ions in the

body of cells and has two general types, namely excitatory post-synaptic potential (EPSP) and

Inhibitory post-synaptic potential (IPSP). The EPSP helps to depolarise the ions in the cells to

build up the voltage and IPES does the opposite. The soma is transforming electronic voltage

difference to a firing pulse and is sent down the axon. This behaviour of soma is effectively like

a voltage to frequency convert and was first theorised by Stevens Hillyard [98] in 1967. Figure

23

2.1.0b suggests the way EPSP and IPSP signals are received, low passed and integrated at cell

body, the processed potential is then transmitted through the axon to other neurons.

Figure 2.1.0b Steven’s neuron [39].

Through decades of studying, research has developed many formal neural models described

in the neural network literature. Among them, perhaps the most historically important, is the

McCulloch-Pitts neuron [38]., first proposed in 1943. Twenty years earlier than Steven’s neuron,

McCulloch-Pitts neuron is a binary threshold logic unit as is known today. The neuron has a

fixed threshold and responds to its two binary synapse inputs, which represent two excitatory

signals passed through two dendrites to a nerve cell. Given different thresholds the neurons

have behaviours similar to an electronic AND or OR logic gate. As illustrated in Figure 2.1.0c

and Table 2.1.0 for example, with a threshold of 1, the neuron output is 1 if any of the inputs

is 1; with threshold of 2, the output is 1 only if both inputs are 1.

Although McCulloch’s approximations of real biological neurons is not close to what we

found as the behaviour of neurons in the body today, the impact of the McCulloch and Pitts

work was not among neuroscientists, but among computer scientists. It served as a foundation

in developments of most modern generic neurons and complex neural networks[39].

24

x1

Inputs

x2

y
θ

Output

Figure 2.1.0c McCulloch-Pitts’ neuron, a binary threshold logic unit

Input at time t Output at time t+1
x1 x2 y

θ = 1 (inclusive OR)
0 0 0
1 0 1
0 1 1
1 1 1
θ = 2 (AND)
0 0 0
1 0 0
0 1 0
1 1 1

Table 2.1.0 Input and output table for McCulloch-Pitts neuron with thresholds 1 and 2

2.1.1 Feed-forward ANN

A feed-forward neural network, as illustrated in Figure 2.1.1a, is an ANN where connections

between the neurons form a directed acyclic graph. The information flow is only in one direction:

forward from an input layer, shown in yellow, through the green layers and to the output layer

in blue. No matter how many neurons and how neurons in each layer are connected, there are

no cycles in this network.

The above figure has two (green) layers with hidden neurons, which collectively are called

the hidden layer. We will discuss this multi-hidden-layer ANN in Subsection 2.1.1. Before that,

let us start with the simplest kind of feed-forward ANN: a single neuron network.

25

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.1.1a In a feed-forward ANN, information only flow in one direction

A single neuron network

Referring to Figure 2.1.1b The artificial neuron is an algorithm for supervised learning of

combinations of inputs into possible outputs. The first step is a simple weighted sum of the

synaptic inputs. The second step is a nonlinear activation function that operates on the node

result in a nonlinear way to produce an output. Figure 2.1.1b shows a single neuron, which

consists of n inputs and a bias input b, an assembler output u, and an activation function h.

The inputs maybe rescaled by weights w based on the importance of the connections.

The summation step is a linear combination of dot products between the input vector

{x1, x2, .., xi, ..., xî} and input weights vector {w1, w2, ...wi, ..., wî}. In addition to the weighted

sum, a constant bias b is added. The output of the node is u.

u = b+
î∑
i=1

wixi

The activation step consists of an activation function h(·) that defines the output signal y

from the output neuron in terms of its net input signal.

y = h(u) = h(b+

î∑
i=1

wixi)

26

Inputs Output

Input Output

x1

xi

xî

b

∑ u
h()

y

wî

wi

w1

Figure 2.1.1b A hidden neuron with hyperbolic tangent activation function

Generally there are three types of activation function: binary (also referred to as a thresh-

old, or step), linear and non-linear. For example, the threshold in McCulloch-Pitts neurons

effectively acts as a binary activation function. Due to the fact that the weighted sum of the

inputs is potentially unbounded, one reason for the incorporation of an activation function h(u)

is to dampen or magnify the weighted summation depending on the knowledge of classification

problems to produce an output within an acceptable range. We briefly introduce one of the

non-linear activation functions here but more detailed background in provided in Subsection

2.1.2.

To choose an activation function that matches the need for an ANN in application to a

particular problem is not a simple task, but we have several conditions to help with the decision.

The compression of the range of values of u from [−∞,∞] to a limited range is also referred

to in McClelland and Rumelhart as a squashing function[40]. If such an activation function

27

is differentiable, monotonically increasing, and has the property that −∞ < limu→−∞ h(u) <

limu→∞ h(u) <∞, (which has theoretical significance which was pointed out in the 1970s[41]),

the realised function is an s-shaped non-linear function curve. It is also an advantage to have an

activation function which produces output in the range from 0 to +1 (a sigmoid, for example

i.e. 1
1+e−x) or from −1 to +1 (a tanh(·) function, discussed next). The hyperbolic tangent

function shown in Figure 2.1.1c is chosen as the activation function for the ANN in much of

this research to meet the needs of general approximation problems.

h(x) = tanh(x) =
ex − e−x

ex + e−x

h(x) = tanh x

−2 −1 1 2

−1

1

x

h(x)

Figure 2.1.1c Hyperbolic tangent function

Multi-neuron network

A more complex feed-forward ANN is the single-hidden-layer ANN, which consists of a single

hidden layer with a multiple number of artificial neurons. The neurons are interconnected into

a feed-forward topology where each neuron in any layer has directed connections to the neurons

of the subsequent layer (consider an input layer, a hidden layer and an output layer). Such

single-hidden-layer ANN can be described using a three step model as in Figure 2.1.1d: a linear

28

weighted summation step between the inputs and the next part, a non-linear step that does

non-linear transformations and another linear summation step between the hidden layer to the

outputs[42] (in this case a single output). Note that the function of output neuron is to sum

the weighted output from hidden neurons and the output-neuron does not necessarily have to

have an activation function.

x1

xi

x
î

b1

bj

bĵ

∑

∑

∑

∑

h(·)

h(·)

h(·)

bk

y

w11

w1j

w1ĵ

wij

wîĵ

w1k

wjk

wĵk

Input layer Output layerHidden layer

Figure 2.1.1d A multi-neuron network with a single-hidden-layer, where h(·) is the activation
function

Suppose the index of nonlinear hidden neurons is j, and the index of output neurons is k.

With input vector [x1, x2, ..., xi, ..., xî], the output of the jth summation neurons of the hidden

layer is

bj +
∑
i

wijxi

29

The outputs of the jth nonlinear neuron of the hidden layer is

h(bj +
∑
i

wijxi)

The final output of the kth neuron at the output layer is:

y = bk +
∑
j

[wjkh(bj +
∑
i

wijxi)] (2.1)

For a multi-hidden-layer ANN, the feed-forward topology is simply cascading the output of

one hidden layer to the input of another hidden layer. For example, a two-hidden-layer ANN

is illustrated in Figure 2.1.1e.

bias

∑

∑

∑

∑

h(·)

h(·)

h(·)

Input layer Output layerHidden layer 1

∑

∑

∑

h(·)

h(·)

h(·)

Hidden layer 2

weights

bias

bias

weights weights

Figure 2.1.1e A multi-hidden-layer network

We have seen a multi-hidden layer ANN network can also be seen as a directed graph

of neurons described in the beginning of this section. Figure 2.1.1f displays the graphical

interpretation of a single-hidden-layer ANN. Arcs are "weighted" which means that the output

signal from an arc is the input signal multiplied by this weight. Note that neurons on the

output layer do nothing other than sum its inputs. This is because the use of non-linear neuron

30

at the outputs would limit the range of possible outputs to a range attainable by the activation

function, which would be undesirable in many cases.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1.1f Illustration of a 4-5-1 ANN

The single-hidden-layer ANN in Figure 2.1.1f has four neurons in the input layer, one hidden

layer with five neurons and one neuron in the output layer. Therefore, it is also called a 4-5-1

feed-forward ANN. Similarly, a 4-5-5-1 topology means that there are two hidden layers with

5 neurons each in the ANN. This definition allows us to clearly describe a feed-forward ANN

topology completely.

2.1.2 Approximation using ANN

Suppose there is a mapping J of set X, which contains input x, to a real set <. The mapping

function is defined as J : X → <. An approximation problem can be described in the following

way:

Given the topology of an ANN defined by the graph G (together with the activation of the

vertices), and given a set w of weights of the arcs and biases b of the vertices, the output of

ANN for a specific input vector Xn (n indicates the sample index) is yn. The observed "target"

of the mapping system when the system input is Xn is ȳn so ȳn = J(Xn). The error for the

input is some measure of the difference between ȳn and yn.

In this section we focus on the problem of approximating the topology G. The process of

31

finding suitable parameters w and b is through a training process, which is discussed in Section

2.1.

At this stage we want to state a well-known theorem which justifies the approach described

above, namely "Universal Approximation theorem" states[45] that a single-hidden-layer feed-

forward ANN with a finite number of hidden neurons can approximate a continuous function

on compact subsets of <î, under mild assumptions on the activation function.

The formal definition (which we will not discuss further) is:

Theorem 1 (Universal Approximation theorem). Let σ be any continuous discriminatory func-

tion. Let Iî denote the î-dimensional unit hypercube [0, 1]î. The space of continuous functions

on Iî is denoted by C(Iî). Then given any arbitrary function J ∈ C(Iî) and ε > 0, there exist

a finite sum y = S(x) =
∑î

i=1 αiσ(wTi x + βi), ∀αi ∈ <, ∀βi ∈ < and ∀w ∈ <î. The functions

S(x) are dense in C(Iî) so that S is an approximation of the function J and |S(x)− J(x)| < ε

∀x ∈ Iî

The discriminatory function σ Cybenko applied to prove the above theorem is a sigmoid,

which becomes the justification of using some continuous, bounded and monotonically increas-

ing functions as activation function. In this subsection, we will first discusses applications with

simpler activation function such as linear and binary, then we will look into some intuitive proof

of using the hyperbolic tangent as activation functions.

Linear activation function

If the activation functions are linear, then for any such network one can always find an equiv-

alent network without implementing any hidden layers. This follows from the fact that the

composition of successive linear transformations is itself a linear transformation. However, if

the number of hidden neurons is smaller than either the number of input or output neurons,

then the linear transformation which the network generates is not the most general possibility

since information is lost in the dimensionality reduction in the hidden neurons.

In practice there are few approximation architectures using purely linear functions. Thus,

32

in general there is little interest in multilayer linear networks, and we shall therefore mainly

consider networks where the activation functions are non-linear.

Binary activation function

In this section we describe the kind of decision problems that can be represented by ANN with

binary activation functions. In order to visualise the described we will limit the discussion to

a 2-dimensional input vector.

A binary activation function h(x) takes the value 0 or 1 depending on whether x < 0 and

x ≥ 0

Considering a ANN with a single hidden layer (see Figure 2.1.2a). One can show that y

can distinguish between input (x1, x2) that lie in a region as shown in Figure 2.1.2d(a) i.e. a

separating hyperplane P of the Euclidean plane

Input x1

Input x2

y Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1.2a A 2-2-1 ANN with binary activation functions

Considering a ANN with two weight layers (see Figure 2.1.2b), we can show that y can

distinguish points (x1, x2) in a convex polyhedron P from points outside this polyhedron as

shown in Figure 2.1.2d(b).

Input x1

Input x2

y Output

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 2.1.2b A 2-2-1-1 ANN with binary activation functions

Considering a ANN with three weight layers (see Figure 2.1.2c), we can also show that y can

distinguish points (x1, x2) in an arbitrary subset of the Euclidean plane, including a collection

33

on disconnected 2-D region that may or may not be contiguous as demonstrated in Figure

2.1.2d(c).

Input x1

Input x2

y Output

Hidden
layer 1

Input
layer

Hidden
layer 2

Hidden
layer 3

Output
layer

Figure 2.1.2c A 2-2-2-1-1 ANN with binary activation functions

x1

x2

P

x2

x1 x1

x2

P

P

P

(a) (b) (c)

Figure 2.1.2d(a-c) Decision boundary produced from different two inputs ANN topologies
with binary activation functions.

Non-linear activation function

It is shown previously in Figure 2.1.1c that a hyperbolic tangent function has the characteristics

of being continuously differentiable, monotonically increasing and has the bounded property

that

−∞ < lim
u→−∞

h(u) < lim
u→∞

h(u) <∞

These characteristics become important properties in determining the topology and training

the ANNs. Details about training processes are introduced in Section 2.2.

Using a non-linear function such as the hyperbolic tangent to be the activation function

satisfies the general need of flexibility in approximation problems. It not only provides mono-

tonic and continuous differentiable nonlinearities, but also approximates any linear activation

34

function arbitrarily accurately. This can be achieved by rearranging the weights on the con-

nections feeding into each neuron, including the bias, to be small so that the summed input

lies on the linear part of the hyperbolic tangent curve around the center. Then the weights on

the outputs of the neuron leading to the subsequent layer of neurons can be made in large sizes

to re-scale the activation functions (with a suitable offset biases if it is necessary). Similarly, a

hyperbolic tangent function can be made to approximate a step function by setting the weights

and the bias feeding into a neuron to be very large in absolute values, so that the scaled input

signal lies close to the two limits of the hyperbolic tangent curve.

The multi-hidden-layer ANN with hyperbolic tangent activation function has an important

property relating to the approximation capability. Much research in the late 1980s has con-

cluded that a multilayer feed-forward ANN with finite number of non-linear neurons in the

hidden layers can approximate arbitrarily accurately any function f [42] that is f : S → < is

continuous over closed and bounded sets S. Here we demonstrate an intuitive heuristic proof

developed by Bishop [43] and graphically shows that a two-hidden-layer ANN is sufficient to

approximate any smooth multivariate mapping with arbitrary accuracy.

Theorem 2. A two-hidden-layer network with hyperbolic tangent activation functions could

represent an arbitrary decision boundary to arbitrary accuracy.

Consider a two-hidden-layer network with hyperbolic tangent activation functions in a two

dimensional input space. Figure 2.1.2e(a) shows the output from hyperbolic tangent neurons

in the first nonlinear layer, which is

h(bj +
∑
i

wijxi)

The orientation of the S-shaped hyperbolic tangent surface is determined by the direction

of vector w, its location is determined by bias b, and the steepness of the S-shape surface is

determined by ‖w‖.

The linear layer following the first nonlinear layer forms weighted linear combinations of

35

these S-shaped surfaces. Consider the combination of two such surfaces in which we choose

the second hyperbolic tangent surface to have the mirrored orientation of the first surface but

displace it by a short distance. A ridge-like function as shown in Figure 2.1.2e(b) can be

obtained.

Repeat the above process to construct two or more of the ridge-like functions with or-

thogonal orientations and combine them to produce a bump-like structure as shown in Figure

2.1.2e(c).

The bump-like structure has a central peak that presents many other ridges that stretch out

to infinity. A second nonlinear layer can effectively act as a filter to remove the excess ridges.

So feeding the bump-like output from the linear layer into a new layer of hyperbolic tangent

neurons to isolate the central bump, is shown in Figure 2.1.2e(d).

Bishop[43]’s work highlights that any reasonable function can be approximated to arbi-

trary accuracy by a linear superposition of a sufficiently large number of localised bump-like

structures, provided the coefficients in the linear combination are appropriately chosen. This

superposition is performed by the output neuron, which has a linear activation function. This

serves as a foundation to the architecture of feed-forward ANNs used throughout this thesis.

Further to the effort towards multi-hidden-layer ANN, as introduced in the begining of this

section, the universal approximation theorem derived by Cybenko [45] states that all functions

in Borel space can be approximated with arbitrary accuracy by a single-hidden-layer ANN with

sigmoid activation functions The complete mathematical proof for this foundation theorem is

discussed in Cybenko(1989)[45].

Here we outline an intuitive proof for the universal property derived later by Jones[99] to

demonstrate the approximation ability using hyperbolic tangent functions.

Consider a two input function J(x1, x2), using Fourier decomposition with coefficient num-

ber n1 and n2, this function can be approximated in linear summation within any given sum-

of-squares error. Applying decomposition to the function in the variable x2 results

36

Figure 2.1.2e(a-d) Graphical illustration of two hidden layer ANN topologies for
approximating smooth multivariate mapping to arbitrary accuracy [43].

J(x1, x2) '
∑
n2

An2(x1) cos(n2x2)

where An2(x1) means coefficients An2 are functions of x1. Applying decomposition again

on the coefficients leads to

J(x1, x2) '
∑
n2

∑
n1

An2n1 cos(n1x1) cos(n2x2)

Using the trigonometric identity cos(n1x1) cos(n2x2) = 1
2 cos(n1x1 + n2x2) + 1

2 cos(n1x1 −

n2x2)

J(x1, x2) '
∑
n2

∑
n1

An2n1 [
1

2
cos(n1x1 + n2x2) +

1

2
cos(n1x1 − n2x2)]

37

It is notable that a cosine function can be approximated to arbitrary accuracy by a linear

combination of a step function. A summation of cosine function can also be approximated to

arbitrary accuracy. The case of a two input function J(x1, x2) can also extend to any number

of inputs. Recall that in the beginning of the section we described that a hyperbolic tangent

neuron can approximate a linear or a step function. Thus, it forms the basis of a simple proof

that a single-hidden-layer ANN with hyperbolic tangent activation function can approximate

any continuous function to an arbitrary accuracy.

2.2 Training of ANN

Once a successive approximation paradigm is established, we can turn the focus to the tun-

ing of function parameters for achieving the best approximation. These tuning processes are

performed based on training the approximation architecture with a given set of actual input

and target data pairs. A set of outputs can be realised from projections of the actual inputs

through the approximation architecture. These realised outputs are then to be compared with

the actual targets to evaluate performance of the approximation. If the set of realised results

is not quite close to targets, the weights and biases need to be adjusted until a satisfactory

evaluation for the approximation architecture is produced.

Solving an approximation problem consists of three steps as illustrated in figure 2.2.0. The

first step is to choose a suitable deterministic function space in which the solution of the

problem is to be approximated. The elements of these function spaces are those encompassed

by the multilayer ANN. In the second step the variation problem is formulated by selecting an

appropriate objective function defined in terms of the function space chosen before. The third

step is to solve the reduced function optimisation problem.

In order to construct approximation architectures using ANN, the objective function must

be defined as in Subsection 2.2.2. Training an ANN is an optimisation problem where the

value of connection weights and biases on neurons is to be determined. Details of the solving

process are presented in Subsection 2.2.3. Because the feed-forward ANN with hyperbolic

38

Start

Construct the ANN: define a function space

Define Objective Function: formulate the variational problem

Apply Training Algorithm: solve the reduced function optimisation problem

Finish

Figure 2.2.0 Solving an approximation problem

tangent function has a non-linear architecture, the objective function must be optimised using

non-linear optimisation methods. Various methods are discussed in Subsection 2.2.4. First, In

order to describe these procedures completely, we need to look at an example of input-target

data pairs.

2.2.1 Sampled input-target data pairs

The input-target data set allows the approximation architecture to be evaluated and improved

systematically. A good data set contains limited redundant data and significant information for

feature selections. Referring to the FFP described in Chapter 1, for an ANN to approximate

a desired function of financial asset price movement; a careful selection of input-target data

set must be defined for the learning environment. The training data maybe obtained from

various sources such as raw trading information or derived data. Raw information includes

volume, price or daily price change. Derived data includes technical indicators, e.g. moving

average, trend-line indicators; and fundamental indicators (e.g. intrinsic share value, economic

environment, etc.)

Consider a collection of sample pairs as shown in Figure 2.2.1:

The first column is the index of samples and the next four columns include data of the

market return, the asset return, the Libor rate and the yield curve over the corresponding

sampling period. Some market research has concluded that all of these four time series are

39

Sample Index Market Return
in last period

Asset Return
in last period

Libor Rate Change
in last period

Yield Curve Slope
in last period

Actual Asset Return in
the next sample period

1 -0.006386 0.0033 -0.004542 -0.081465 -0.007278
2 -0.006639 0.019629 -0.005692 -0.096378 0.004855
3 -0.010802 0.023265 0.002947 -0.045364 -0.025915
4 0.008009 0.010157 -0.017075 -0.029022 0.103779
5 0.006414 -0.002706 -0.01802 -0.034067 0.115777
...

...
...

...
...

...
497 -0.001118 -0.006639 -0.000263 -0.064543 0.074455
498 -0.031406 -0.010802 0.015641 -0.057588 0.010986
499 -0.036141 0.008009 0.021997 -0.07632 -0.016566
500 -0.021018 0.006414 0.014133 0.03528 0.027425

Table 2.2.1 Example of financial time series samples

the factors in forecasting the return of the asset over the future period, as shown in the last

column. For the FFP discribed in the above example, the construction of approximation ANN

topology is therefore required to have 4 inputs and 1 output; the 500 input-target sample pairs

are then used for training and evaluation of the ANN performance.

2.2.2 Objective function

Typically, the optimisation problem is of the least squares form

minimise
1

N

N∑
n=1

‖e(xn)‖2

subject to x ∈ <n

where e(xn) is the difference function between the target and the ANN output on sample

n.

In the context of the approximation problem discussed in the beginning of Subsection 2.1.2,

suppose the observed target ȳ is approximated by an ANN with a vector of inputs X, the

input-target data set consist of N pairs of Xs and ȳs.

Suppose n is the index of a sample pair, the corresponding output of ANN from Xn is

yn = S(Xn,W) where S is the function of ANN model and W is a vector of the weight and

the bias parameters for the topology of the ANN. The difference between the target sample ȳn

and the ANN output yn is also called the error function e(Xn,W) = ȳn − yn, and the sum of

40

error over all N samples is

E(W) =
N∑
n=1

‖e(Xn,W)‖2 =
N∑
n=1

(ȳn − yn)2 (2.2)

The optimisation problem is then the problem of finding weights and biases W so that the

objective function E(w) is minimised.

2.2.3 Back-propagation

In the case of approximating a single target using a single hidden neuron as discussed in Section

2.1, if the nonlinear activation function h(·) is continuously reversible, we can transfer (from

the output layer towards the input layer) the objective function by applying the reverse of the

activation function on the target sample

minimise
w

1

N

N∑
n=1

∥∥∥∥∥[h−1(ȳn − b)]−
∑
i

wijxin

∥∥∥∥∥
2

We can substitute the components in the square bracket with a constant number. As a result,

solving this minimisation problem can be solved by the ordinary least squares (OLS) method

where weight and bias of the ANN can be estimated from linear regression.

However in a multilayer ANN case, the above OLS approach cannot be used to determine

the weights and biases other than the ones on the final linear summation layer. This is known

as the credit assignment problem. Bertsekas [42] describes this problem thus: If an output

neuron produces an incorrect response when the network is presented with an input vector, we

have no way to determine which of the hidden neurons is responsible for generating the error;

Therefore, there is no way of determining which weight to adjust or by how much. In other

words, in order to adjust the weight parameter of a connection, the derivative of the weight

with respect to the error function must be calculated.

Because of the credit assignment problem, research in ANN had stalled during the 1960-

80s. It was not until 1974 and later when back-propagation was applied in the context of ANN,

41

discovered by Werbos in his PhD thesis and discussed in detail by Rumelhart, Hinton and

Williams[60], which led to a renaissance in the field of ANN research.

To explain the procedures of back-propagation, we use a network with three non-linear

hidden layers as an example. Illustrated in Figure 2.2.3, considering a particular (middle

hidden) layer with nonlinear activation neurons indexed with j, where on the adjacent layer

close to the inputs are activation neurons indexed by i and neurons on the adjacent layer close

to the outputs indexed by k.

k

j
i

wjk

wij

Layer
close to
output

Layer
close to
input

Figure 2.2.3 The direction of arrows illustrate how error is propagated backward from the
neurons near outputs to the neurons near inputs in a feed-forward network.

For the purpose of simplification, all the bias terms are considered as extra units or inputs

with fixed activation output of +1, so that the biases are not dealt with explicitly. Recall

in Subsection 2.1.1 of this chapter we described u as the summed signal before the nonlinear

transformation of a hidden neuron and let us also denote z as the post nonlinearly transformed

signal,

uj =
∑
i

wijzi (2.3)

where zi is the output from a neuron i on the layer close to the inputs, which sends a signal

via a connection to neuron j with an associated weight wij . The summed single uj is then

transformed by a nonlinear activation function in neuron j, so that

42

zj = h(uj) (2.4)

For the neuron in the subsequent layer, we have

uk =
∑
j

wjkzj

zk = h(uk)

Recall that the objective function is to minimise the sum of the error function (Equation

2.2)

E(X,w) = ȳ − S(X,w)

For an ANN with a fixed set of weights and biases, E(X,w) can be calculated via forward

propagation since it can be regarded as a forward flow of information through the network.

The error function has a corresponding input vector, so that the summed error E is affected

by a particular connection with weight wij only via the summed input uj to activation unit zk.

The partial derivatives of error function to the respect weight is therefore:

∂E

∂wij
=
∂E

∂uj

∂uj
∂wij

(2.5)

From Equation 2.3 we know that

∂uj
∂wij

= zi (2.6)

Define

δj =
∂E

∂uj
(2.7)

43

Substituting Equation 2.6 and Equation 2.7 into Equation 2.5 we can obtain

∂E

∂wij
= δjzi (2.8)

Equation 2.8 shows that the required derivative with respect to a connection weight wij

can be obtained simply by multiplying the value of delta δj for the neuron at the output side

of the connections by the value of zi for the neuron at the input side of the connections (z = 1

if it is a bias).

For neuron k, we can also see that from Equation 2.3 and Equation 2.6:

δk =
∂E

∂uk
= h′(uk)

∂E

∂zk
(2.9)

Thus, to evaluate the δ for each hidden neuron we can apply the chain rule:

δj =
∂E

∂uj
=
∑
k

∂E

∂uk

∂uk
∂uj

(2.10)

where the summation is for all neurons on the layer of k from which neuron j sends signals,

refers to Figure 2.2.3.

From Equation 2.3 and Equation 2.4 it is known that

∂uk
∂uj

=
∂uk
∂zj

∂zj
∂uj

= h′(uj)
∑
k

wjk (2.11)

Substituting Equation 2.7 and Equation 2.11 into Equation 2.9, the formula of back-

propagation can be obtained

δj = h′(uj)
∑
k

wjkδk (2.12)

The reason of the name back-propagation is that from Equation 2.12 the value of δ for a

44

particular hidden neuron on any layer can be obtained by propagating the δ’s backwards from

neurons on the layer close to the output as illustrated in Figure 2.2.3. Since the value of the δ

on the output layer is known, all the deltas for the hidden neurons in a feed-forward network

can be evaluated recursively by applying Equation 2.12.

As stated in Bishop[43], the back-propagation procedure can be summarised in the following

five steps. For evaluating the derivatives of the error function with respect to the weights:

1. Initialise all weights and apply an input vector X to the ANN

2. Forward-propagate through the network using Equation 2.3 and Equation 2.4 to find the

activations of all the hidden and output neurons.

3. Evaluate the delta δk for all the output neurons using Equation 2.9.

4. Back-propagate the deltas δk using Equation 2.12 to obtain δj for each hidden neuron in

the network.

5. Use Equation 2.5 to obtain the required derivatives of the error function with respect to

the weight for a connection.

Note that in this thesis, it is assumed that all activation functions are the same. However, in

real applications they may be different. In those cases the output of each individual activation

function is simply kept track of.

Once the derivatives (sensitivity) of error functions with respect to all weights and biases

are obtained through back-propagation, the next step is to adjust the weight parameters which

could reduce the error by the maximal amount. This adjustment is a steepest descent and the

method is repeated many times until the error minimisation criteria are satisfied. The ANN’s

parameters are effectively ’trained’, so that the total error between the target samples and the

output of the model is minimised.

45

2.2.4 Conjugate gradient methods

Introduced in the previous chapter, the back-propagation training method was popularised and

contributed to much research development of ANNs throughout 1980s to early 1990s, but soon

after it was replaced by the conjugate gradient method. This is because a pure multidimensional

steepest descent method produces a very large number of small steps that zig-zag in the space

of variables, leading to a very large number of iterations. The conjugate gradient method

improves the situation.

Conjugate Gradient

A typical unconstrained optimisation problem is formulated in the form ofmin {f (X) : X ⊂ <n},

where f : <n 7→ < is continuously differentiable. The domain X of the function f is called the

searching space or the choice set, while the elements of X, set x, are called candidate solutions

or feasible solutions. The goal of the optimisation problem is to find a solution {x0, x1 · · · }

that minimises the objective function f(X).

Note that in the case of training of ANN models, the optimisation objective is the error

function E(w) and the search space is the weights and bias setW , but the conventional symbols

f(X) with x ∈ X are used throughout the following section for the convenience of expression.

There are many approaches for non-linear optimisation problems; perhaps one of the most

popular methods is Conjugate Gradient (CG) searching.

CG methods comprise a class of unconstrained optimisation algorithms which are charac-

terised by low memory requirements and strong local and global convergence properties. Al-

though there is continuous development in algorithms, they commonly have the same structure

expressed by the iterative form

xk+1 = xk + αkdk,

where d is the descent direction of the objective function f(x) and α is a positive step size

obtained from line search. The descent direction d is further generated iteratively from

46

dk+1 = −gk+1 + βkdk

where gk is the initial descent direction when k=0 or the gradient of the objective function

f(xk) when k > 0

d0 = −g0, gk = ∇f(xk)
T.

Here βk is the direction parameter and is calculated differently in various algorithms.

The first non-linear CG method was proposed by Fletcher and Reeves [50] in 1964

βFRk =
‖gk+1‖2

‖gk‖2

Polak and Ribiere [51] proposed another CG method in 1969

βPRk =
g>k+1yk

‖gk‖2

while yk = gk+1 − gk

Once a search direction is completed as a conjugate gradient, a step size must be computed

in order to move along this direction, a number of alternatives exists:

1) Golden Section:

Define the initial bracket interval [a, b] (Figure 2.2.4a) that contains only one local mini-

mum.

x1 and x2 are selected by the golden ratio rule R =
√

5−1
2 , x1 = b − R(b − a), x2 =

a + R(b − a). Compare f(x1) f(x2) and choose the larger, in this case f(x2) > f(x1)

so x2is the new upper bracket. The new interval is between a′and b′. x′1and x′2 are then

calculated and compared, and iterations are repeated until ‖x2 − x1‖ is small.

2) Brent’s method:

The Van Wijngaarden–Dekker–Brent method combines root bracketing, bisection and

47

Figure 2.2.4a Illustration of Golden Section method

quadratic interpolation. Because any quadratic function f(x) can be interpolated in-

versely using three prior points x1,x2,x3; Brent suggests that we should search for a value

at f ′(x) = 0 which is then taken as the next estimation of the root x. Figure 2.2.4b

explains this graphically. A parabola (dashed line) is drawn through the three original

points 1©, 2©, 3© representing x1,x2,x3on the given function f(x) (solid line). The func-

tion is evaluated at the parabola’s minimum f ′(x) = 0, 4©, representing x, which replaces

point 3©. A new parabola (dotted line) is drawn through points 1©, 4©, 2©. The minimum

of this parabola is at point 5©, which is close to the minimum of the original function.

Let

v1 =
[f(x)− f(x1)][f(x)− f(x2)]x3

[f(x3)− f(x1)][f(x3)− f(x2)

v2 =
[f(x)− f(x2)][f(x)− f(x3)]x1

[f(x1)− f(x2)][f(x1)− f(x3)

v3 =
[f(x)− f(x1)][f(x)− f(x3)]x2

[f(x2)− f(x1)][f(x2)− f(x3)

48

Figure 2.2.4b Illustration of Brent’s method

The inverse quadratic interpolation is

x = v1 + v2 + v3

Setting f ′(x) = 0 gives an estimated result for the minimum root, which can be written

as

x = x2 +

f(x2)
f(x1) [f(x1)

f(x3)(f(x2)−f(x1)
f(x3))(x3 − x2)− (1− f(x2)

f(x3))(x2 − x1)]

(f(x2)
f(x1) − 1)(f(x2)

f(x3) − 1)(f(x1)
f(x3) − 1)

Next, replace x2 with x1 or x3 (the one closer to x). If, however, x is not between x1 and

x3 then bisection steps are used instead. The iteration repeats until ‖x2 − x‖ is small.

3) Hanger-Zhang and line search based on Wolfe conditions:

In 2005 William Hager and Hongchao Zhang[52] proposed a nonlinear conjugate gradient

method and an associated implementation based on an inexact line search. Its direction

parameter is updated as:

βHZk = (yk − 2dk
‖yk‖2

d>k yk
)>
gk+1

d>k yk

where yk = gk+1 − gk.

49

The inexact line search described in their implementation is the improved version of Wolfe

conditions combined with bisection and secant methods. Consider a search interval [a, b]

– L0. Terminate the line search if the Wolfe condition is satisfied.

– L1. [ak+1, bk+1] = secant2(ak, bk).

– L2. if bk+1 − ak+1 > γ(bk − ak), then c = (ak+1 + bk+1)/2 and [ak+1, bk+1] =

update(ak+1, bk+1, ck+1).

– L3. Repeat L0.

The following is the list of update(a, b, c) , secant2(a, b) and the parameter used for this

project

1) Interval update [ā, b̄] = update(a, b, c)

– U0. If c /∈ (a, b), then ā = a, b̄ = b, and return.

– U1. If f ′(c) ≥ 0, then ā = a, b̄ = b, and return.

– U2. If f ′(c) < 0 and f(c) ≤ f(0) + εk, then ā = a, b̄ = b, and return.

– U3. If f ′(c) < 0 and f(c) > f(0) + εk, then setâ = a, b̂ = b, and do the following

∗ a. Set d = (1− θ)â+ θb̂; if f ′(c) ≥ 0, then set ā = â, b̄ = d, and return.

∗ b. If f ′(c) < 0 and f(c) ≤ f(0) + εk, then set ā = d, and go to step a.

∗ c. If f ′(c) < 0 and f(c) > f(0) + εk, then set b̂ = d, and go to step a.

2) Double Secant Step [ā, b̄] = secant2(a, b), secant(a, b) = af ′(b)−bf ′(a)
f ′(b)−f ′(a) .

– S1. c = secant(a, b) and [A,B] = update(a, b, c).

– S2. If c = B, then c̄ = secant(b, B).

– S3. If c = A, then c̄ = secant(a,A).

– S4. If c = A or c = B, then [ā, b̄] = update(A,B, c̄). Otherwise [ā, b̄] = [A,B].

3) Line Search Parameters

50

– c1 ∈ (0, 0.5), used in the Wolfe conditions (Armijo rule)

– c2 ∈ [c1, 1), used in the Wolfe conditions (Curvature condition)

– ε ∈ [0,∞), used in the approximate Wolfe termination (U2)

– θ ∈ (0, 1), used in the update rules when the potential intervals [a, c] or [c, b] violate

the opposite slope condition contained (U3)

– γ ∈ (0, 1), determines when a bisection step is performed (L2)

The Wolfe Condition consists of two rules: i) The Armijo rule and ii) The Curvature

condition: i) ensures that the step length αk decreases f(x) sufficiently, and ii) ensures

that the slope has been reduced sufficiently.

The Armijo rule holds if the following inequality is satisfied

f(xk + αkdk) ≤ f(xk) + c1αkd
>
k∇f(xk)

with 0 < c1 < 1.

It is illustrated in Figure 2.2.4c. The solid curve is f(x), the dashed line is ∇f(xk), and

the dotted line is determined by f(xk) + c1αkd
>
k∇f(xk) with c1 = 0.5. In order for step

length α to satisfy the Armijo rule, f(xk + αkdk) has to lie in the interval between the

dashed and dotted line, which prevents the line search from taking too long steps.

The Curvature condition holds if another inequality is satisfied

d>k∇f(xk + αkdk) ≥ c2d
>
k∇f(xk)

with 0 < c1 < c2 < 1.

However, the above condition can result in a value for the step length that is not close

to a minimiser of f(x). To force αk to lie close to a critical point, the modified version is

applied

| d>k∇f(xk + αkdk) |≥ c2 | d>k∇f(xk) |

51

Figure 2.2.4c Illustration of Armijo Rule

Together with the Armijo rule and the modified curvature condition, we have this so-called

strong Wolfe condition. The details of its implementation are described in Subsection

2.3.2.

Combining the direction methods and root-finding algorithms, the computational method

of CG can be described in six steps:

– Step 1 Calculate the steepest direction: ∆xn = −∇xf(xn),

– Step 2 Compute β according to one of the formulas,

– Step 3 Update the conjugate direction: Λxn = 4xn + βΛxn−1,

– Step 4 Perform a line search: optimise αn, arg min
αn

f(xn + αnΛxn),

– Step 5 Update the position: xn+1 = xn + αnΛxn,

– Step 6 Repeat step1 to 5 until stopping criteria is reached.

In the following content, three examples, a linear CG problem and two non-linear CG

problems are presented. The line search algorithms are the Golden section and the Brent

Method while the Fletcher–Reeves and Polak–Ribire methods are chosen to update the β

parameter. These are compared later to Hager and Zhang, a method with a search based on

Wolfe conditions in Subsection 2.3.2.

52

Example of Linear Conjugate Gradient Search

Considering the linear system Ax = b, the conjugate gradient method can be performed directly

to solving the linear equation A>Ax = A>b with iterative steps for programming purposes.

Given that Ax =

 4 1

1 3

 x1

x2

 =

 1

2

 with the initial guess x =

 2

1

. Table 2.2.4a
is the result generated from the minimisation code.

Iteration x1 x2

0 2 1
1 0.23565 0.338369
2 0.0909091 0.636364

Table 2.2.4a Result of CG on a trivial linear problem

The results indicate that with the Fletcher–Reeves method, it takes only 2 iterations to

achieve the stopping criteria ‖gn‖ < 0.001. The linear problem is simple to compute.

Comparative study of Non-Linear Conjugate Gradient Methods

Whereas linear conjugate gradient methods can be applied directly, the non-linear conjugate

gradient method is generally using its gradient ∇f(x) alone, under the condition that the

function is twice differentiable at its minimum.

Consider a square polynomial f(x) = (x1 + 2x2 − 7)2 − (2x1 + x2 − 5)2. The contour of

f(x) in Figure 2.2.4d indicates that the function has a single minimum at f(1, 3) = 0.

Start with an initial guess x =

 10

10

, Table 2.2.4b-2.2.4c is the result generated from

iteration of the following methods respectively.

Again, the β uploading method is Fletcher–Reeves; the Golden section method is used for

line search. It takes 12 iterations to achieve the stopping criteria ‖gn‖ < 0.001.

However, with the Polak–Ribire and Brent methods it takes 40 iterations (Table 2.2.4c).

This result indicate that for this square polynomial function, the Fletcher–Reeves and

Golden Section methods result in a better performance.

53

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

0.5

2.5

2.5

55

5

10

10

10
10

20

20

20

20 20

40

4040

40

40
40

80

80

80

80

80

80

160

160

160

160

160

160

320

320

320

320

320

320

640

640

640

640

640

x1

x 2

Contour Plot

Figure 2.2.4d Contour of the cubic polynomial f(x)

Iteration x1 x2

0 10 10
1 1.88198 2.10439
2 1.55093 2.47514
4 1.10952 2.92999
7 1.0049 2.99528
12 0.999749 3.00022

Table 2.2.4b Result of CG with Fletcher–Reeves method

Iteration x1 x2

0 10 10
1 3.21678 3.40262
2 2.36927 2.67623
4 1.92212 2.39415
7 1.45018 2.57007
11 1.18439 2.8239
20 1.02364 2.97525
40 1.00027 2.99971

Table 2.2.4c Result of CG with Polak–Ribire methods

Now consider an objective function of five variables:

f(x) = 100(x2−x2
1)2+100(x3−x2

2)2+100(x4−x2
3)2+100(x5−x2

4)2+(1−x2)2+(1−x3)2+(1−x4)2+(1−x5)2

From intuition the minimum of this function should be at x1 = x2 = x3 = x4 = x5 = 1

54

resulting f(x) = 0. It is first simulated with the Fletcher–Reeves and Golden section methods.

The initial guess is x1 = x2 = x3 = x4 = x5 = 2. Executing the programme shows that it

takes 1099 iterations to reach the final result x1 = 0.998593; x2 = 1.00251; x3 = 0.997066;

x4 = 1.00035; x5 = 0.998386. But the Hanger-Zhang method takes only 76 iterations to reach

the final result x1 = 1; x2 = 1; x3 = 1; x4 = 1; x5 = 1. Based on the result of these

comparisons, the Hanger-Zhang method is chosen as the optimisation method for ANN design

in this thesis.

2.2.5 Local minima and global minima

In mathematics, the maxima and minima of a function, known collectively as extrema, are the

largest and smallest value that the function takes at a point either within a given neighbourhood

(local extremum) or on the function domain in its entirety (global extremum). For example, as

illustrated in Figure 2.2.5, the local maxima and minima, and the global maxima and minima

is shown for cos(3πx)/x, between 0.1 ≤ x ≤ 1.1.

Figure 2.2.5 Local minima and global minima

In the case of ANN the target function is an error function, the error-surface is formed by

a combination of all values of weights and bias defined by the ANN topology. To minimise the

error function described in Subsection 2.2.2 is the goal of training.

55

However, a significant drawback of the training procedure is that the error-surface may

contains local minimum. The result of the gradient descent method is dependent on the initial

stating position defined by the usually randomised initial weight and bias at the beginning of

training. Such a method, however, does not guarantee the finding of a global minimum.

2.3 ANN for forecasting

2.3.1 Over-fitting problem

In machine learning, over-fitting occurs when an approximating model learns to describe ran-

dom error or noise instead of just the underlying relationship. Over-fitting generally occurs

when a model is over parameterised, such as for an ANN that has too many weight and bias

parameters relative to the actual required number for the given observations. A model which

has been overfitted will generally have good approximation performance to the training data

pairs (in-sample) but have poor predictive (out-of-sample) performance to unknown data by

exaggerating minor fluctuations caused by noise contained in the data.

A model is typically trained by maximising its performance on some sets of training data,

i.e. to minimise the difference of in-sample estimating and actual data. However, the efficacy of

the model should be determined not by its performance on the training data but by its ability

to perform well on unseen data, i.e. to minimise the difference of out-of-sample estimation

and actual data. Over-fitting occurs when a model begins to memorise training data rather

than learning to generalise from the features of the training set. As an extreme example, if the

number of parameters is the same as or greater than the number of observations, a simple model

can learn to perfectly predict the in-sample training data simply by memorising the training

data entirely. Such a model will typically fail drastically on unseen out-of-sample data, as it

has not learned to generalise at all.

In training of an ANN, the error function is assumed to reach a state where it will also be

able to predict the correct output for other unknown data, thus generalising to situations which

56

were not presented during training . However, especially in cases where learning is performed

over too long a period or where training examples are rare, the ANN may adjust to very

specific random features of the training data, which have no relation to the target function. In

this process of over-fitting, the performance on the training examples still increases while the

performance on unseen data becomes worse, i.e. the RMS error is reduced when applying it to

training data instead of all data.

The potential of over-fitting depends not only on the number of parameters and data but

also the conformability of the approximating model with the data shape, and the magnitude

of model error compared to the expected level of noise or error in the data.

Even when the fitted model does not have an excessive number of parameters, it is to be

expected that the fitted relationship will appear to perform less well on a new data set than

on the data set used for fitting[53]. In particular, the value of the coefficient of determination

will shrink relative to the original training data. In statistics, the coefficient of determination

R2 is used in the context of statistical models whose main purpose is the prediction of future

outcomes on the basis of other related information. It is the proportion of variability in a data

set that is accounted for by the statistical model. It provides a measure of how well future

outcomes are likely to be predicted by the model.

In order to avoid over-fitting, it is necessary to use techniques such as cross-validation or

early stopping.

1. Cross-validation: when designing an ANN, cross-validation can be implemented by sep-

arating the sampled data set into two, one for training and one for validation. For every

iteration step of the training, the validation data set is applied as an out-of-sample test.

As illustrated in Figure 2.3.1, where training error is shown in the blue line, validation

error is in the red line and both are as functions of the number of training cycles. If the

validation error increases while the training error steadily decreases, where it is marked

by an exclamation, this indicates that further training does not result in better gener-

alisation. Such a situation concludes that a over-fitting may have occurred. The best

57

predictive and fitted model would be where the validation error has its global minimum,

i.e. at x∗.

2. Early stopping: setting a maximum number of training iterations is effective when the

convexity error function becomes very small and inefficient as well as preventing over-

fitting from over-training.

Figure 2.3.1 Training error and validation error against training iteration

Generally speaking, the basis of these techniques are either (1) to explicitly penalise overly

complex models, or (2) to test the model’s ability in generalising by evaluating its performance

on an out-of-sample set of data, which is assumed to be in a similar form of some typical data

that the model will encounter in its applications.

2.4 Inputs to ANN

Traditional ANN models are limited by the dimensionality of the problem space because the

complexity of an ANN approximation model is dependent on the topology as well as the number

of inputs. The number of parameters needed to describe the connections for a single-hidden-

layer ANN with î inputs, ĵ hidden neurons and k̂ outputs is î× ĵ+ ĵ+ ĵ× k̂+ k̂. For example,

the 4-5-1 ANN introduced in Figure 2.1.1f of Section 2.1 uses a total of 25 parameters to specify

its connectivities between the input and hidden layer and 6 parameters between the hidden and

58

output layer; if one more input is assigned to the network then the number of parameters has

to increase by 6. In the other words, even with the smallest increase of the input dimensions,

it gives rise to large regions in terms of complexity of calculation for the model. Also, following

the analysis by Scott[97], increasing the dimension of input requires an exponential increase in

the number of samples required in order to map a given function over the model parameter

space with sufficient confidence.

A problem that cannot be ignored is that although such a black box has powerful ability

in approximating a complex function deterministically, training samples are also one of the

critical factors in successfully performing the mapping. In real life applications, ANN models

may be supplied with insufficient or uninformative input-output sample pairs, which is called

under-specified; or more inputs than is strictly necessary, which is called over-specified; or noise

from sampling superfluous; or even weakly informative data. In either one or more cases, the

performance of the model will be poor simply because some of the behavior of the output

remains unexplained or biased by noise from the selected input sample. In most situations, it

is reasonable to argue that some expert knowledge of the system can be put into consideration,

so a reasonable set of candidate input-output sample pairs are selected based on this knowledge

when building the model.

Therefore, there are two key considerations when treating the sample pairs for training

an ANN: dimension of data and relevance of data. A priori assumptions in the development

of ANNs is that at least one or more of the available candidate sample inputs is capable of

describing some, if not all, of the output behavior. There are techniques in helping to determine

the nature and relative strength of these relationships, which in return provides a base for

selecting inputs as well as data dimension reduction.

Limited by the scope of this research, we will not focus on discussing the problems of data

dimensionality and the related techniques for data reduction, but the importance of these topics

cannot be ignored in the ANN applications.

59

2.5 Survey of ANN topological optimisation

Despite the progress of development in ANN, there are many issues that remain to be solved

for achieving a general applicability in real-world problems. One of the most important tasks

is to develop an approach for determining the right ANN network topology to solve a specific

problem.

Formal learning theories have been used to support the construction of machine learning

systems by estimating the necessary network size. Most work is based on the pioneering Vap-

nik–Chervonenkis theory[75] which contributes to the study of the relationships between the

complexity of a machine learning system and the number of training samples available[73, 74].

Under the assumption that the network is capable of exactly representing (with zero error) an

arbitrary training set consisting of t different patterns, Yu’s theoretical work proves that such

an exact representation using a single hidden layer requires a maximum of t-1 neurons in that

layer. It is of course, obvious that this upper bound is of no practical significance.

Studies of previous ANN implementations has shown that the dilemma of network design

stems from the fact that both large and small networks exhibit a number of benefits[56]: for a

network with an excess number of free parameters, i.e. too many neurons or weight connections

generate a complex decision surface[62], although it is arguable to say that such a complex

surface can benefit the generalisation ability[64]. Baum and Haussler have shown theoretically

that networks with few free parameters exhibit a better generalisation performance[65]. This

view is also supported by some experimental work[63, 66, 67, 68, 69]. Moreover, a smaller

trained network means a simpler interpretation of embedded knowledge and thus the rule

extraction procedure [69, 70].

Optimal network architecture is a compromise of two things: (i) the ANN is large enough

to learn the problem efficiently and (ii) small enough to generalise the application well.

To determine a suitable ANN architecture, one straightforward approach is to try random

networks with different sizes. This process is computational infeasible for real world applica-

tions. As a result, more systematic approaches are needed.

60

In order to facilitate complexity optimisation in ANNs, several algorithms are developed,

which are described in the following subsections. From the procedures carried out in each one,

these algorithms can mainly be divided into three groups: growing methods, pruning methods,

and a combination of the two[72]. The details in algorithmic procedure for some of the methods

are presented in the next chapter.

2.5.1 Growing methods

As its name indicates, growing methods search for an optimum architecture by increasing the

network’s size. It is also called constructive methods (or additive), usually starting with a

minimal network and adding one or more new neurons and connections during its optimisation

process until the subsequent training process satisfies the constraints. Kwok[81] in his survey

paper categorised the single-valued growing methods by differentiating their training processes,

as demonstrated in Table 2.3.2a. The representative algorithms for individual categories are

introduced as follows.

Training process Representative algorithms
Training with memorisation Resource-Allocating Network
Training the whole network Dynamic Node Creation
Training only the new hidden neurons Projection Pursuit Regression

Table 2.3.2a Categories of single-valued state transition mapping

• Platt describes the Resource-Allocating Network (RAN) as a single-hidden-layer network

of locally tuned hidden neurons whose responses are linearly combined to form an out-

put response[79]. It is essentially a summing radial basis function that interpolates the

continuous function on a compact interval with arbitrary accuracy[80, 77]. The RAN

starts with zero hidden neurons and grows by allocating hidden neurons subject to the

present observed output satisfying one or more growth criteria. The changes between

each consecutive observation can then be adapted as sequence learning problems such as

sequential recognition and on-line prediction. This is an important advantage of RAN. A

detection method may also be defined, whereby the process memorises recent significant

61

differences from state transitions and applies them to learning. The objective of learning

is to gradually approach the appropriate complexity of the network that is sufficient to

provide an approximation to the underlying mapping function. Much of the work that

followed is derived from the principle of the resource allocating network (RAN) or its

variations[76, 77]. A drawback of these algorithms is that their convergence properties

are unknown[81].

• Dynamic Node Creation (DNC), which was first introduced by Ash, is another type of

growing method[82]. In a single hidden layer case, the state transition proceeds by adding

one additional sigmoid hidden neuron at one time. The process always applies on the

same hidden layer for multilayer networks. Different to RAN, after every neuron addition,

the network is retrained completely for the DNC network. Some similar approaches are

produced with a slight alternation in the neuron addition rules[78, 83]. These algorithms

are simple to implement, and the convergence to the target function follows directly

from the universal approximation property of the underlying architecture. However, the

major difficulty lies in the tremendous increase in computational requirements in complex

problems when the network becomes large.

• The third common type of growing method is inspired from a statistical technique called

Projection Pursuit Regression (PPR) developed by Friedman[84]. PPR overcomes the

curse of dimensionality by projecting the input vector onto a one-dimensional hyperplane.

It then applies a nonlinear transformation of the input variables and adds them in a linear

fashion. The main difference is that the functions fitted in PPR can be different for each

combination of input variables and is estimated one at a time and then updated with

the weights, although these are all specified upfront and estimated simultaneously in the

ANN. So when applying PPR as a growing method, the hidden neurons to be added

are in complicated transfer functional forms rather than just sigmoidal, and the training

is only applied upon the hidden neuron. For nonparametric problems such as financial

data forecasting, smoothing splines are used to obtain transfer functions of the hidden

neurons. Although using nonparametric hidden neurons is a computationally intensive

62

process, strong convergence to the target function for the network sequence produced by

these algorithms has been proved[85].

In general, growing methods have several advantages. One is that the initial network for a

constructive problem is simple and straightforward to implement. The characteristic of growth

ensures that the methods search for smaller solutions which meet the objectives. There are also

some disadvantages to these methods. Many constructive algorithms employ a greedy approach

to neuron addition, which may be trapped in local minima in most cases. This suggests that

the growing method is sensitive to the initial condition.

2.5.2 Pruning methods

The approach taken by the pruning algorithms described in this section is to train a network that

is larger than necessary and then remove the neurons or connections that are the least relevant

to the problem. A trimmed system also favours improved generalisation while its complexity

is reduced simultaneously. The processes of removal are mainly divided into five broad groups

as proposed in Reed’s survey paper[64], which is listed with respective characteristics in Table

2.3.2b.

Pruning algorithms Characteristics
Sensitivity calculation methods Modify on trained network

and prune upon significance in
changes.

Penalty-term methods Modify the objective function
to penalise unnecessary neu-
ron.

Interactive pruning Remove hidden neurons with
linear correlated or constant
outputs.

Genetic Algorithms Remove or retain neurons
through mutation from a pool
of networks.

Table 2.3.2b Brief introduction of pruning optimisation process

• One of the most commonly developed pruning algorithms is the sensitivity calculation

63

method. It first estimates the sensitivity of the error function with respect to the tem-

porary removal of one or more network connections, then pruning is applied based on

the significance of changes resulting from the modification. Karnin developed an approx-

imation to the weight sensitivity calculation, so the expression for connection pruning is

easy to calculate and does not need for a separate sensitivity-calculation phase[86]. Le

Cun deduced another iterative pruning procedure called optimal brain damage, which

measures the salience of weights by expanding the error function using a Taylor series,

then reducing the expression to a second order derivative of error function with respect to

the weight[88]. A neurons pruning method called ’skeletonisation’ algorithm, which was

introduced by Mozer, estimates the sensitivity of input and hidden neurons by calculat-

ing the derivative of the error function with respect to an introduced gating neuron[87].

Based on Mozer’s contribution, Segee further found that summing variance of weights

of connectors into a neuron is a good indicator of the neuron’s relevance and that the

output error is a monotonic function of the relevance of this neuron[91]. The drawback

of sensitivity calculations is that it requires a large amount of computational effort. Ap-

proximations of derivative calculations are introduced to simplify the process but with

additional noise too.

• Penalty-term methods are some of the other common approaches used in network pruning.

These methods modify the error function by adding a penalty term so that the training

process effectively prunes a network by driving one or a group of weights of the connections

to zero. The design of penalty-terms varies based on the needs or criteria from problem

sets, but most work is derived from two fundamental terms: weight decay and sensitivity

measure. The weight decay term, first introduced by Plaut et al., is a summation of the

square of weights multiplied by a decay function, thus it is differentiable with respect

to the weights. By adding it to the objective function, weights which are not essential

to the solution decay to zero during the back-propagation learning[58]. Instead of using

the function of weights as a decay term, Chauvin proposed a sensitivity measure in

order to prune hidden neurons. The term adds a summation of monotonic functions of

64

hidden neurons to the training objective, which effectively measures how much the hidden

neuron’s activity varies over the training patterns. The output’s variance is an indication

of the importance of the hidden neurons: if a neuron’s output changes significantly, it

is more sensitive to inputs and probably encodes important information; in contrast,

neurons which are less important can be removed by driving all output connections to

zero[90]. The problem of the penalty-term is that this approach may eliminate small

weights that are indeed effective to the overall architecture of the networks and may

introduce additional local minima during training on the error surface.

• Interactive methods require the designer to explicitly inspect the target network’s ele-

ments one by one. It removes hidden neurons whose outputs are linear correlated or

constants. Sietsma used a heuristic approach to exam the network. Reed, citing Si-

etsma states ’although for a simple demonstrated network, the method can find a smaller

network that solves the problem and has good performance in out-of-sample tests, it is

unable to learn the problem reliably when a random network is encountered’[64].

• Combining evolution strategies and genetic algorithms produces the concept of Breeder

Genetic procedures which select an optimal network topology[94, 93]. These procedures

generally involve four steps: generate initial pool, mating, retraining and evaluation.

The basic idea behind the genetic algorithms is that the optimal solution will be found

in areas of the solution space that contain good solutions and that these areas can be

identified through robust sampling. A typical procedure starts from a completely trained

network. Random disconnection is performed on the network while creating a population

of pruned versions. Each version is then fed with the same data set for evaluation. The

top performing pruned networks are randomly mated and produce some further pruned

networks which retain only the parent mutual connections. These networks mutate with

none or some additional connections. Last, the mutated networks can be trained and

evaluated for performance or proceed for further mating and mutation process until a

satisfactory solution is found. The advantages of genetic algorithms are that they are less

likely to be trapped in local minima. It also allows other methods described above to be

65

applied.

An important question for a pruning algorithm is when to stop the pruning. Separate

validation data sets may be required to answer the question. Alternatively, sensitivity methods

may stop pruning automatically when the variation of sensitivity jumps above a threshold.

Dynamic control factor may be introduced before the training in the penalty-term methods to

balance the scaling factor of the additional penalty-terms.

For the purpose of research, I have reviewed many growing and pruning algorithms based

on different techniques and also briefly discussed each algorithm with its own advantages and

limitations. The latest developments in ANN topological optimisation can be traced with

references from these techniques[95, 72]. In the implementation process one can use more than

a single technique in searching for optimal network architecture. Combinatorial algorithms of

growing and pruning have also been developed in the hope of capturing the benefit from both

algorithms’ advantages[72]. More sophisticated methods sometimes reach better solutions, but

the accuracy is usually compensated by the disproportional increase in the computation time

and space.

66

Chapter 3

Theoretical framework

3.1 Representing ANN topological structures as graphs

The network architecture for an ANN is the critical factor in determining the model’s overall

performance on both the in-sample training result and the generalisation ability. The connec-

tivity and the transfer function on each neuron in the network are pre-specified before training

the parameters. As an example, a complete feed-forward ANN has many arcs to connect every

neuron from one layer to every neuron in the adjacent layers; a random non-zero initial weight

is attributed to each arc and is subject for training. The complete ANN can be represented as

a complete tripartite graph and this representation is introduced in Section 3.1.

It is mentioned in Chapter 1 that the major problem in using ANN in the FFP is that

the model usually has too high a degree of freedom, which leads to a good result for fitting

in-sample training data but a poor result when applying it to forecasting on out-of-sample data.

Therefore, once a complete ANN is fully trained, finding an optimal network connectivity with

the improved generalisation performance compared to the original ANN is called the ANN

topology optimisation problem. More detail about the problem is discussed in Subsection

3.1.2.

As introduced in the previous chapter, there are existing techniques for automatically im-

67

proving the architectures of an ANN. The majority of these existing techniques can be cat-

egorised in two: additive methods and pruning methods. Despite the increasing number of

techniques developed, however, little progress has been made towards the success of systemi-

cally constructing a near-optimal architecture because many techniques produce output which

is trapped at local optima [101, 102]. Designing the optimal architecture for an ANN can be

formulated as the topology optimisation problem: given some performance (optimality) crite-

rion, the performance level of all architectures forms a discrete solution space. Miller et al.

[103] stated several characteristics of this space:

1) The space is infinitely large since the number of possible neurons and connections is

unbounded;

2) The space is non-differentiable since changes in the number of neurons or connections

are discrete and can have a discontinuous effect on the ANN’s performance;

3) The space is complex and noisy since the mapping from architecture to its performance

is complex and indirect, and dependent on the evaluation method used;

4) The space is multi-modal since different architectures may have similar performance.

These characteristics inspired the research in this thesis where a heuristic technique is

applied for searching for the optimal architecture of an ANN without altering the number of

neuron but changing the set of connections. As a result, a heuristic algorithm named ANN-

reduction is proposed for systematically optimising existing sub-optimal networks. The ANN-

reduction algorithm is developed to repetitively generate modifications on the topology until

the output "can no longer be improved". This framework is discussed in Subsection 3.2.1.

Two procedures have been designed as the practical implementations of ANN-reduction al-

gorithm. These are: 1) Enhanced ANN-Reduction Procedure (ERP) and 2) Cascaded Enhanced

ANN-Reduction Procedure (CERP). These implementations are introduced in Subsection 3.2.2

and 3.2.3.

68

3.1.1 Graph and ANN network architecture

A graph G is a finite set V of elements called vertices together with a set A of pairs of vertices

called arcs. Below is an example of a simple graph: vertex set V = {1, 2, 3, 4} and arc set

A = {(2, 4)}, which is shown in the left of Figure 3.1.1a where circles are vertices and arcs are

lines that connect the vertices. In some cases there are weights or distances associated to the

arcs, this is called a weighted graph. If there is a path from every vertex to every other vertex,

the graph is called a connected graph; otherwise, the graph is a disconneted graph. The left of

Figure 3.1.1a is a disconnected graph and the right figure is a connected graph.

1

4

2

3

Vertices set V = 1, 2, 3, 4 with
arc set A = (2, 4)

1

4

2

3

Vertices set V = 1, 2, 3, 4 with
arc set A = (1, 3), (1, 4), (2, 4)

Figure 3.1.1a Two graphs with vertices set V and arcs set A.

A directed graph contains directed arcs which are vertex pairs with an initial vertex and

a terminal vertex. A path in a directed graph consists of a sequence of directed arcs which

connects a pair of vertices on the path. If the initial vertex and terminal vertex is the same for

one path, such a path is called a cycle or circuit.

A bipartite graph is a graph G whereby the vertex set V can be partitioned into two non-

empty sets V1 and V2 in a such way that every arc of G goes from a vertex in V1 to a vertex in

V2. When the bipartite graph is complete, it can be written as G|V1|,|V2| where |V1|, |V2| is the

number of vertices in V1 and V2 respectively. Similarly, a tripartite graph is a graph where the

vertex set is partitioned into three non empty sets of vertices V1, V2 and V3.

Recall the interpretation of a multi-layer perceptron network which is shown in Figure 2.1.1f

69

of Chapter 2. Each vertex represents a neuron, each arc represents a connection and the cost

of an arc is the weight of the connection. Ignoring the biases, a single hidden layer ANN can

be effectively represented as a tripartite graph where î is the number of vertices on the input

layer or the number of inputs to the ANN; ĵ is the number of vertices on the hidden layer or

the number of hidden neurons; k̂ is the number of vertices on the output layer or the number

of outputs. For feed-forward ANNs, the acyclic graph is directed from inputs to outputs so

that all vertices on the input layer are initial vertices while all vertices on theq output layer are

terminal vertices.

Definitions 1.1 A maximal path in a graph G from vertex Vi to vertex Vj is a path of

maximum cardinality between Vi and Vj . If G is k-partite, the largest possible maximal path

is of k− 1. A k-partite graph where every vertex is contained in a maximal path of cardinality

k − 1 is an ANN. If the removal of an arc from an ANN does not result in another ANN then

the ANN is called a basic ANN

A basic ANN may or may not be a tree rooted at the output vertex. If a tree exists that is

a basic ANN, then the tree is called a basic-ANN-tree, and is a graph of minimum degrees of

freedom as measured by the number of arcs.

Note, consider a tripartite graph G with an "input" set of vertices V1, an "intermediate"

(hidden) set of vertices V2 and an "output" set of vertices V3, which in our case will be a single

vertex, i.e. |V3|=1. If |V1| ≥ |V2| then a basic ANN tree always exists. If |V1| < |V2| then only

a basic ANN exists and a basic-ANN-tree does not exist.

On the left of Figure 3.1.1c illustrates a tripartite graph representation of a complete ANN

with |V1| = 4, |V2| = 3 and |V3| = 1; On the right of Figure 3.1.1c illustrate a basic-ANN-tree

with the same sets of vertices.

3.1.2 ANN topological optimisation problem

By transforming the topology of an ANN and its network connectivities into a graph, the

topological optimisation problem can be explained using graphical approaches. Starting from a

70

Input
layer

vertices

Hidden
layer

vertices

Output
layer

vertices

Complete ANN Basic-ANN-tree
Figure 3.1.1c Illustration of a complete ANN and
a basic ANN tree with the same set of vertices.

fully trained ANN which is a complete tripartite graph, two ideas were considered in searching

for the optimal graph:

Static vertex optimisation

Consider a tripartite graph where î = |V1|, ĵ = |V2| and k̂ = |V3|, we call the complete tripartite

graph Gî,ĵ,k̂. Let EG (ĒG) be the in-sample (out-of-sample) RMSE of the ANN given by G.

Definitions 1.2 From the vertex set V1, V2, V3 where vi ∈ V1, vj ∈ V2, vk ∈ V3, find a

set of arcs A to construct an ANN G(â) where |A| = â is given, so that G(â) produces the

"best" generalisation performance in terms of the out of sample RMSE ĒG(â) compared with

the equivalent performance ĒGî,ĵ,k̂
. By best here we mean set A which maximises ĒG(â)−ĒGî,ĵ,k̂

This definition of the static vertex optimisation applies to optimising the complete tripartite

graph, but this can be easily generalised to apply to m-partite graphs or any non-complete

graphs.

Ignoring the vertex biases (note that these were converted by the addition of extra vertices

and arcs), the upper bound and the lower bound on â are as follows:

The total number of arcs in Gî,ĵ,k̂ is î × ĵ + ĵ × k̂ and the total number of arcs in a

corresponding basic ANN is max
(
î, ĵ
)

+ ĵ × k̂. As the result G(â) shows in Figure 3.1.2a and

71

Figure 3.1.2b, the range of â is limited by:

(
max

(
î, ĵ
)

+ ĵ × k̂
)
≤ â <

(
î× ĵ + ĵ × k̂

)

Input
layer

vertices

Hidden
layer

vertices

Output
layer

vertices

1

2

î

1

2

3

ĵ

k̂

Example of a static vertex opti-
mised graph with the maximum
number of arcs â

1

2

î

1

2

3

ĵ

k̂

Example of a static vertex op-
timised stucture with the mini-
mal number of arcs â

Figure 3.1.2a Left, The total number of arcs in a complete ANN Gî,ĵ,k̂ is î× ĵ + ĵ × k̂; Right,

The number of arcs in the corresponding basic ANN is max
(
î, ĵ
)

+ ĵ × k̂

Input
layer

vertices

Hidden
layer

vertices

Output
layer

vertices

1

2

î

1

2

3

ĵ

k̂

Figure 3.1.2b Based on the constraint, the number of arcs â must be chosen within a specific
range.

Note that if î ≥ ĵ and k̂ = 1 a basic-ANN-tree is possible and the lower bound on â is î+ ĵ

(which is one less than the number of vertices, as of course it should be)

72

Dynamic vertex optimisation

The definition of dynamic vertex optimisation is more general then that of static vertex opti-

misation. In dynamic vertex optimisation the number of vertices |V2| is not given. Therefore,

with a given number of arcs â many different basic ANNs may be possible and the problem

then becomes one of also optimising all such graphs. Note that if for a given number |V2|, a

basic-ANN-tree exists and â defines such a tree (i.e. takes its minimal value), then the problem

is somewhat simplified in that the additional optimisation of the arc sets A are over all such

trees.

Based on an initial complete ANN Gî,ĵ,k̂, Figure 3.1.2c shows the difference between a

possible solution from static vertex optimisation and a possible solution from dynamic vertex

optimisation.

Input
layer

vertices

Hidden
layer

vertices

New
Hidden
layer

vertices

Output
layer

vertices

1

2

î

1

2

3

ĵ

k̂

A possible solution of static ver-
tex optimisation

1

2

î

1

2

3

ĵ

ĵ′

k̂

A possible solution of dynamic
vertex optimisation

Figure 3.1.2c Applying static vertex optimisation and dynamic vertex optimisation on the
same network.

Consider applying the static vertex optimisation approach on a tripartitie graph with î

input vertices, ĵ hidden vertices and k̂ output vertices. In order to find the suitable set of

connections A using this approach, the search space is potentially large because the number of

73

possible connectivities with a specified number of arcs â is

(
î× ĵ + ĵ × k̂

â

)

although, of course, not all choices of the â arcs are feasible.

For example, let a 19-4-1 complete ANN be the subject to be optimised using the static

vertex optimisation approach, so that the tripartite graph Gî,ĵ,k̂ has î = 19, ĵ = 4, k̂ = 1. In

this case

max
(
î, ĵ
)

+ ĵ × k̂ = 23 ≤ â ≤ î× ĵ + ĵ × k̂ = 80

Specify â = 50, the searching space for such ANN is

(
80

â

)
= 8.8714125e+ 21

Although one can use greedy algorithms to locate the optimial solution by searching though

all possible combinations of A, a better way is to use an algorithm inspired from heuristic search,

which is discussed in the next section.

3.2 Heuristic implementation of static vertex optimisation

The designation of a ’heuristic’ algorithm is an algorithm that produces a feasible solution to

a problem but one which is not necessarily optimal.

One classical application of a heuristic search is in connection with the travelling salesman

problem (TSP). A weighted complete undirected graph consists of vertices (cities) and weighted

arcs (arcs with costs); The objective of a TSP is to find a Hamiltonian cycle with a minimum

sum of weights. A Hamiltonian cycle is a cycle which passes through all the vertices once

and once only. Because there is no known polynomial algorithm for solving the TSP exactly,

a heuristic method is desired for obtaining a reasonably good (but not necessarily optimal)

solution[104] to large-scale problems. One approach is to find any Hamiltonian cycle C first,

74

then search for a modification on C to produce another Hamiltonian cycle C ′ with less weight;

the process can be repeated until no improvement is found. For example, a simple heuristic

procedure can be as follows:

On a complete undirected graph with n vertices, there is a total number of (n− 1)! Hamil-

tonian cycles. For indices i, j and k i < j < k and j > i+ 1, k > j + 1, let

C = v1v2 . . . vivi+1 . . . vjvj+1 . . . vkv1

be a Hamilton cycle which may be a suboptimal solution to the TSP.

As illustrated in Figure 3.2.0, a new Hamilton cycle can be obtained by removing the arcs

(vi, vi+1) and (vj , vj+1) and adding the arcs (vi, vj) and (vi+1, vj+1), so that

C ′ = v1v2 . . . vivjvj−1 . . . vi+1vj+1vj+2 . . . vkv1

vi+1vi

vj+1 vj

Figure 3.2.0 The modified Hamilton cycle C ′

Comparing C ′ to C, if the summed weight of the newly added arcs is less than that of the

removed arcs, i.e.

w(vi, vj) + w(vi+1, vj+1) < w(vi, vi+1) + w(vj , vj+1)

75

the cycle C ′ is an improvement on C.

In the above example, only two arcs are replaced in a modification but other numbers are

also possible. Define λ as the number of arcs to be swapped. If a solution is reached such that

the removal of any set of λ arcs and its replacement with another set of λ arcs does not lead

to an improved cycle, then the solution is called λ-optimal [105]. This heuristic approach is

called a λ-optimal algorithm (or simply λ-opt). A λ-optimal algorithm can be applied to most

combinatorial optimisation problems, not just the TSP.

Repetitive application of a λ-optimal algorithm, starting from different random initial cycles

result in a high probability of finding the global optimal or near optimal solution among many

local optimal solutions. The probability of obtaining an optimal solution using a 3-opt (λ = 3)

algorithm is significantly higher than that of 2-opt (λ = 2) algorithms. Experimental results

also indicated that the implementation of 4-opt (λ = 4) algorithms cost more computational

time while not noticeably increasing the probability that it is optimum. It was concluded that

the 3-opt is a good application for solving the TSP [105].

3.2.1 λ-optimal on ANN static vertex optimisation

Recall the objective of an ANN topology optimisation is to improve the ANN generalisation

performance on out of sample data by removing some arcs between vertices on the input layer

to vertices in the adjacent layers (and within hidden neural layers for multi-layer cases) while

retaining the ANN property.

A new procedure called ANN-reduction, inspired by the λ-optimal algorithm in TSP is de-

veloped and implemented to automatically improve the topological graph of an ANN. Similarly,

in attempting to find a graph with the optimal performance subject to an ANN network, the

ANN-reduction algorithm involves disconnection and reconnection of a number of arcs to form

different new network graphs. Introduced in the definition of the static vertex optimisation, â

is defined as the total number of arcs required in the network. The idea behind ANN-reduction

is that the heuristic optimisation algorithm effectively maps an initial starting solution into

76

some local optimal solutions and attempts to search for the one near global optimal among all

of those solutions.

In order to have a clear interpretation of ANN-reduction implementation, the parameters

vector of an ANN graph can be recorded as a vector of real number representations for the arcs

weights and biases inputs. An ANN with î input vertices, ĵ hidden layer vertices and k̂ output

vertices has a parameters vector W of size (̂i+ 1)× ĵ + (ĵ + 1)× k̂ (which also includes ĵ + k̂

numbers of biases). Suppose bj1 is the value of bias on the first hidden layer vertex, bk1 is the

value of bias on the first output vertex and so on. The parameter vector is stored as

W =

[
bj1 , w(vi1 , vj1), w(vi2 , vj1), ..., w(vî, vj1),

bj2 , w(vi1 , vj2), w(vi2 , vj2), ..., w(vî, vj2),

..., ..., w(vî, vĵ),

bk1 , w(vj1 , vk1), w(vj2 , vk1), ..., w(v(ĵ , vk1),

..., ..., w(vĵ , vk̂)

]

For example, a 19-3-1 ANN can be represented by a parameter vector W with size of 64,

whereW [0] is the value of bias on the first vertex,W [1]...W [19] are the value of weights from the

inputs to the first hidden vertex, as illustrated in Figure 3.2.1a, W [0] = bj1 ,W [1] = w(vi1 , vj1),

W [21] = w(vi1 , vj2) etc. respectively.

The following is an implementation of ANN-reduction on ANN static vertex optimisation

which is starting from a complete ANN Gî,ĵ,k̂, with its set of vertices as defined in the definition

A.1.

Step 1: Construct the fully trained ANN, its topology being represented by a tripartite graph

Gî,ĵ,k̂. The number of vertices î, ĵ, k̂ on the input, hidden and output layer respectively

77

W [59]

W [39]

W [19]W [58]W [38]W [18]W [57]W [37]W [17]W [56]W [36]W [16]W [55]W [35]W [15]W [54]W [34]W [14]W [53]W [33]W [13]W [52]W [32]W [12]W [51]W [31]W [11]W [50]W [30]W [10]W [49]W [29]W [9]W [48]W [28]W [8]W [47]W [27]W [7]W [46]W [26]W [6]W [45]W [25]W [5]W [44]W [24]W [4]

W [43]

W [23]

W [3]W [42]

W [22]

W [2]
W [41]

W [21]

W [1]

W [63]

W [62]

W [61]

W [60]

W [40]

W [20]

W [0]

Input layer Hidden layer Output layer

î = 19 ĵ = 3 k̂ = 1

Figure 3.2.1a Vector representation of ANN’s weights and biases parameters

and consists of three disjoint vertices sets V1, V2, V3 where vi ∈ V1,vj ∈ V2 and vk ∈ V3.

For the trained complete ANN, the number of connections is î ∗ ĵ + ĵ ∗ k̂ and the weight

parameter vector isWGî,ĵ,k̂
. A testing data sample is applied to compute the out-of-sample

RMSE as ĒGî,ĵ,k̂
.

Step 2: From the disjoint vertices sets V1, V2, V3, construct a number m̂ of basic ANNs, represented

by Hm for m ∈ M = {1, 2....m̂}. Discussed in Section 3.1.2, the number of arcs on each

basic ANN is max
(
î, ĵ
)

+ ĵ × k̂. The weights parameter vector WHm . The weight of the

arcs of Hm are taken from the complete ANN:

wHm(vi, vj) = wGî,ĵ,k̂
(v′i, v

′
j)

78

where arc (vi, vj) of graph Hm corresponds to arc (v′i, v
′
j) of graph Gî,ĵ,k̂

Step 3: Feed the training samples to train all m̂ of constructed basic ANNs Hm to H ′m (H ′m is

topological identical to Hm but with different arc weights). Compute the out-of-sample

RMSE for each of the basic ANN ĒH′m .

Step 4: Select the graph H∗ from the graphs H ′m, m = 1...m̂ with the minimum value of ĒH′m

as the basic ANN for the next stage.

Step 5: Based on the selected basic ANN H∗ and corresponding arc-weight vector WH∗ , add

â−
{

max
(
î, ĵ
)

+ ĵ × k̂
}

number of arcs to create G(â). Recall from Section 3.1.2 that

max
(
î, ĵ
)

+ ĵ × k̂ ≤ â < î× ĵ + ĵ × k̂

so with the specified total number of arcs â, the above inequality must be satisfied.

Step 6: For a specified â repeat Step 5 n̂ times. For n ∈ N = {0, 1, 2....n̂} produce a set of Gn(â)

which contains all possible combinations of the added arcs. Feed the in-sample training

data to evaluate every Gn(â) and record the one with the minimal in-sample RMSE as

G∗(â); Use the training sample to retrain the WG∗(â) to become WG′∗(â), and evaluate its

out-of-sample RMSE: ĒG′∗(â).

Step 7: Repeat Step 5 and 6 with some different â. Choose the â and the n for which G′∗(â) has

the least out-of-sample RMSE. Denote this as G∗∗ and ĒG∗∗ respectively.

Finally, compare the ĒG∗∗ to the performance of the complete ANN ĒGî,ĵ,k̂
. If ĒG∗∗ ≤ ĒGî,ĵ,k̂

then G∗∗ is the solution of ANN-reduction and we call it a ’topologically-optimised ANN.

As the weights of arcs are represented directly by those of non-zero real numbers, setting

the value of a weight to be zero is equivalent to removing the arc from the graph G. Note that

1) The procedure effectively reduces the number of connections î ∗ ĵ + ĵ ∗ k̂ in the Gî,ĵ,k̂ to

â in the Gâ with a chosen value of added arcs: â−
{

max
(
î, ĵ
)

+ ĵ × k̂
}
;

79

2) The size of parameter vector is fixed: dim(WGâ
) = dim(WGî,ĵ,k̂

) = (̂i+1)× ĵ+(ĵ+1)× k̂,

so WGî,ĵ,k̂
is fitted with all non-zero values while WGâ

must contain (̂i+ 1)× ĵ+ (ĵ+ 1)× k̂− â

number of zeros.

The flow chart representation of the pseudo code for basic ANN construction (Step 1 to Step

4) of the ANN-reduction algorithm is displayed in Figure 3.2.1b; Arcs addition and Simplified

ANN construction (Step 5 to Step 7) of the ANN-reduction algorithm is displayed in Figure

2.1c

3.2.2 Enhanced ANN-Reduction Procedure (ERP)

Two major issues of the ANN-reduction procedure appear in the implementation described

previously. First, the process requires us to find an optimal performing basic ANN as a basis

for the following arc re-connection; accordingly, all m possible graphs of the basic ANN are to

be constructed, trained, tested and compared (see Figure 3.2.1b). Second, provide a basic ANN

and a specified number of arcs to be added, the process required for building the simplified ANN

topology by adding the arc connections. All n possible combinations from the arcs addition

are assessed and the new graphs are then tested for further process. For both of the issues, the

problem is the huge search space for some even small sizes of ANN.

The question of calculating the exact number of possible basic ANNs from a specified size of

input and hidden vertices is a problem of calculating a Stirling partition number. The problem

counts the number of ways to partition a set of labeled items into a number of unlabeled

nonempty subsets. In the words of single hidden layer ANN, given vertices î, ĵ, k̂, the ’labeled

items’ are the vertices, which is the larger of input vertices size and hidden vertices size a =

max
(
î, ĵ
)
; The ’unlabeled subsets’ are the vertices to be varied by the possible basic ANNs

b = min
(
î, ĵ
)
. The total number of possible basic ANN graphs is Stirling S

(
a
b

)
can be calculated

by Sharp’s algorithm[106]. Consider the first issue on finding a basic ANN for a 5-3-1 ANN, the

number of possible basic ANN is m = 25 for G5,3,1. These basic ANN are shown in Appendix

A. However, for a 10-5-1 ANN G10,5,1, such number increases to m = 34105.

80

Fetch the completely trained ANN G
î,ĵ,k̂

with WG
î,ĵ,k̂

For m is the index of all H, initialise m = 1 and ĒH∗ = +∞

Construct the basic ANN Hm with WHm from G
î,ĵ,k̂

Train Hm to H
′m and evaluate performance result ĒH

′m

Is ĒH
′m < ĒH∗ ?

Store the pre-trained parameter vector WH∗ = WHm

Store the post-trained performance result ĒH∗ = ĒH
′m

m = m+ 1

Is m < m̂?

Output H∗ and WH∗

False

True

Figure 3.2.1b Flowchart of ANN-reduction algorithm Step 1-4

81

Fetch the basic ANN H∗ with WH∗

Initialise â =
{

max
(

î, ĵ
)

+ ĵ × k̂
}

, ĒG∗∗ = +∞

For n is the index for all G(â), initialise n = 1 and EG∗(â) = +∞

Add arcs on H∗ to construct Gn(â), calculate EGn(â)

Is EGn(â) < EG∗(â)?

EG∗(â) = EGn(â) and G∗(â) = Gn(â)

n = n+ 1

Is n ≤ n̂?

Train G∗(â) with WG∗(â) to WG
′
∗(â) and evaluate ĒG

′
∗(â)

Is ĒG
′
∗(â) < ĒG∗∗?

ĒG∗∗ = ĒG
′
∗(â), WG∗∗ = WG

′
∗(â)

â = â+ 1

Is â < î× ĵ + ĵ × k̂?

Output G∗∗ and WG∗∗

False

True

False

True

Figure 3.2.1c Flowchart of ANN-reduction algorithm Step 5-7

82

Indicated by the large difference in the above examples, it could be very expensive to iterate

through all candidate basic graphs for training and evaluation. To overcome this first issue of

ANN-reduction, a substitution is developed in ERP to efficiently build a basic ANN: Inspired

from sensitivity pruning methods, the modification enhances the ANN-reduction by strictly

searching for a suitable basic ANN from a completely trained ANN network by disconnecting a

path with effectively least aggregate weights out of the graph in each iteration. This is different

to the formal algorithm where searching for the basic ANN is performed randomly among

combinations of a given minimal number of edges.

This modification is based on the following assumption, which is related to the amount of an

approximation error from a well-trained ANN. Suppose each input of the ANN vi pass through

a directed path of connections with parameters wvi,vj and wvj ,vk to output vk contributes some

useful information while carrying an amount of training error (noise). Disconnecting such a

connection effectively removes the contribution as well as the noise transmitted through that

path. If such a contribution is less than the noise, the overall performance of the ANN should

be improved after the parameter path is disconnected.

If the absolute value of the weight parameter for a connection between input vi to hidden

layer neuron vj
∣∣wvi,vj ∣∣ is relatively small compared to the absolute value from all other inputs v̄i

to the hidden vertices vj , this suggests that the input vi contributes less information compared

to the rest of inputs on the paths through the hidden neuron vj . Similarly, a small value

of weight |wvi,vk | has a similar implication whereby the signal from neuron vj has less of a

contribution to the output vk. To compare the weight between the paths, the relative value

of a path from an input vertex vi through a hidden vertex vj to the output vertex vk can be

calculated by multiplying the weight parameters of the two connections pi,j,k = wvi,vj ×wvj ,vk .

For a complete ANN Gî,ĵ,k̂, the total number of paths is î× ĵ × k̂.

For example, a complete ANN G3,2,1 with the parameter vector in Table 3.2.2 has its graph

displayed in Figure 3.2.2a. The dashed path has a relative value of 0.1× 0.1 = 0.01; the dotted

path has a relative value of 0.4× 0.2 = 0.08

The implication of relative value for paths provide a foundation for the following modifica-

83

Input to hidden layer Bias Input 1 Input 2 Input 3

Neuron 1 1 0.7 0.3 0.4
Neuron 2 1 0.1 0.5 0.2

Hidden to output layer Bias Neuron 1 Neuron 2

Output Neuron 1 0.2 0.1

Table 3.2.2 Parameter vector of G3,2,1

Input
layer

vertices

Hidden
layer

vertices

Output
layer

vertices
1

2

3

1

2

1

0.7

0.3

0.
4

0.1
0.5

0.2

0.2

0.1

Figure 3.2.2a Graph of G3,2,1, the dotted path has a relative value of 0.08 and the dashed
path has a relative value of 0.01.

tion on the ANN-reduction process of constructing a basic ANN.

Start from a list of paths PGî,ĵ,k̂
which contains all paths in Gî,ĵ,k̂ with values calculated

from the parameters vector WGî,ĵ,k̂
. The basic ANN can be constructed from the following

steps:

Step 1: Sort the paths pi,j,k in PGî,ĵ,k̂
in ascending order according to the absolute value. Initialise

an empty list Premoved and initialise iteration counter iteration = 1;

Step 2: Check the path pi′,j′,k′ of list Pî,ĵ,k̂ proceed to next step if douti′ > 1 and dinj′ > 1 is true,

which means the path is not the only path connecting the input vertices vi′ , or the only

path connecting the hidden layer vertices vj′ ; otherwise if douti′ = 1 or dinj′ = 1 then go to

step 4;

Step 3: Add pi′,j′,k′ to Premoved, disconnect the path by setting the corresponding arc’s weight

84

wvi′,j′ = 0 in the parameter vector W ;

Step 4: Remove pi′,j′,k′ from PGî,ĵ,k̂
;

Step 5: Stop the process if the list is empty. Otherwise increment the iteration counter iteration =

iteration+ 1 and goto Step 2,

When the list of paths PGî,ĵ,k̂
in Step 5 is empty, a basic ANN is constructed and its

parameter vector is stored in WGî,ĵ,k̂
. Note that the basic ANN produced by the ERP may not

have the best out-of-sample RMSE compared to all possible basic ANNs assessed in the ANN-

reduction. However because the pruning process is based on the discussed assumption that

the connections with small weights contribute less useful information and introduce noise, by

disconnecting the light weighted paths and retaining only the most heavy weighted connections,

a basic ANN is constructed for the rest of the optimisation process.

As an example, Figure 3.2.2b is the basic ANN constructed from the previous example of

G3,2,1 with parameter vector listed in Table 3.2.2.

Input
layer

vertices

Hidden
layer

vertices

Output
layer

vertices
1

2

3

1

2

1

0.7

0.
4

0.5

0.2

0.1

Figure 3.2.2b Graph of basic ANN constructed from G3,2,1

On the basic ANN created from Gî,ĵ,k̂, the number of arcs can be added is fixed by the total

number of connections â specified in the simplified graphG(â), which is â−
{

max
(
î, ĵ
)

+ ĵ × k̂
}
.

The number of arcs removed in the basic ANN is î× ĵ−max
(
î, ĵ
)
, so the number n̂ of possible

85

sets of arcs to be added is therefore n̂ =

(î× ĵ −max
(
î, ĵ
)

â−
{

max
(
î, ĵ
)

+ ĵ × k̂
}). For example, suppose

3 arcs are to be added on a basic ANN with topology (5, 3, 1), there are n̂ =
(

10
3

)
= 120; for 3

arcs are to be added on a basic ANN with topology (10, 5, 1), n̂ =
(

40
3

)
= 9880.

Again the large difference in the example above indicates that the cost to construct all n

graphs for a specified â could be very high; Furthermore, by default ANN-reduction requires

to search through an entire range of â:
[
max

(
î, ĵ
)

+ ĵ × k̂ ≤ â < î× ĵ + ĵ × k̂
]
to obtain a

global optimal solution and the range changes accordingly with the size of input and hidden

vertices.

A complete implementation of ERP is represented in the following flow charts. Figure 3.2.2c

is the flow chart representation of ERP for steps of creating the basic ANN; Figure 3.2.2d is

the flow chart representation of ERP for the steps of arcs addition process and the subsequent

searches for the optimal solution.

The use of random arc re-connection has a drawback. The performance of ERP depends

on an appropriate number of arc-addition attempts (trials), say n∗ which we specify. Using

a 10-5-1 topology as an example, (ignoring the biases) the basic ANN has 15 arcs and the

complete ANN has 55 arcs. If â = 17, which means 17 − 15 = 2 arcs are to be added on the

basic ANN, the number of possible combinations for adding the 2 arcs are n̂ =

(
40

2

)
= 780

where 40 is the number of possible vertex pairs where arcs may be added. For an â that is close

to the size of the complete ANN or close to the size of the basic ANN, the total number n of the

possible ways for adding the arcs is relatively small so most of the graphs Gâ can be assessed

in ERP by setting a sufficiently large trial number n∗ for the random arc re-connection or even

the original greedy approach can be used in this case. On the contrary, for â that is near the

mid point of the range, the number of possible arc-set addition can be too large for ERP to be

computationally feasible.

86

Fetch the completely trained ANN G
î,ĵ,k̂

with WG
î,ĵ,k̂

Calculate pi,j,k for all paths, ∀vi ∈ Vi,∀vj ∈ Vj ∀vk ∈ Vk and store in the list PG
î,ĵ,k̂

Sort the list PG
î,ĵ,k̂

in ascending order according to the absolute value of paths

Get the path p
i̇,j̇,k̇

on top of the list P
î,ĵ,k̂

Is douti > 1 and dinj > 1?

Add p
i̇,j̇,k̇

to wremoved, and set wvi̇,vj̇
= 0 in WG

î,ĵ,k̂

Remove p
i̇,j̇,k̇

from PG
î,ĵ,k̂

Is PG
î,ĵ,k̂

empty?

Output WH = WG
î,ĵ,k̂

for the basic ANN H

False

False

Figure 3.2.2c Flow chart representation of ERP for steps of creating the basic ANN

87

Fetch the basic ANN H with WH

Initialise â =
{

max
(

î, ĵ
)

+ ĵ × k̂
}

, ĒG∗∗ = +∞ and specifies n∗

Initialise index n = 1 for random arcs addition and EG∗(â) = +∞

Construct a random Gn(â) from H, calculate EGn(â)

Is EGn(â) < EG∗(â)?

EG∗(â) = EGn(â) and G∗(â) = Gn(â)

n = n+ 1

Is n ≤ n∗?

Train G∗(â) with WG∗(â) to WG
′
∗(â) and evaluate ĒG

′
∗(â)

Is ĒG
′
∗(â) < ĒG∗∗?

ĒG∗∗ = ĒG
′
∗(â), WG∗∗ = WG

′
∗(â)

â = â+ 1

Is â < î× ĵ + ĵ × k̂?

Output G∗∗ and WG∗∗

False

True

False

True

Figure 3.2.2d Flow chart representation of ERP for the steps of arcs addition process.

88

3.2.3 Cascaded Enhanced ANN-Reduction Procedure (CERP)

An alternative implementation, namely CERP is designed by cascading a series of arc re-

connection processes following the construction of the basic ANN in the ERP. Each arc re-

connection process is only performed within a limited range of small â and in each process the

arcs are added on the output graph produced from its predecessor; the cascaded process termi-

nates when it fails to obtain a strucure with an improvment on the out-of-sample performance

after retraining.

Consider an implementation of CERP for optimisng the complete ANN Gî,ĵ,k̂, where ∀vi ∈

Vi,∀vj ∈ Vj and ∀vk ∈ Vk. A basic ANN H is constructed in the first place following the steps

of ERP described in Section 3.2.2; the performance evaluation of the basic ANN is denoted by

ĒH . Suppose all of the cascaded arc re-connection processes are configured to add a single arc

only in turn:

Step 1: Initialise the starting reference ANN graph for the cascaded arc re-connection process,

Gtemp = H, ĒGtemp = ĒH and WGtemp = WH ;

Step 2: Perform arc re-connection by adding a single arc (vi, vj) to Gtemp to form Gtemp∪ (vi, vj);

Step 3: Retrain Gtemp ∪ (vi, vj) to G′temp ∪ (vi, vj) and obtain the out-of-sample performance

ĒG′temp∪(vi,vj);

Step 4: Find the arc (v′i, v
′
j) for which the out-of-sample performance improvement of the newly

constructed graph Gimproved = G′temp ∪ (v′i, v
′
j) is larger than all other possible arcs, so

that

∆EGimproved
= ĒG′temp∪(v′i,v

′
j) − ĒGtemp

is maximised. If the arc (v′i, v
′
j) does exist and EGimproved

> 0, goto Step 5; If no such arc

exists to satisfy EGimproved
> 0, the output graph is assigned to G∗∗ = Gtemp and goto

Step 6;

Step 5: Reassign reference ANN graph Gtemp = Gimproved, ĒGtemp = ĒGimproved
and WGtemp =

89

WGimproved
and goto Step 2.

Step 6: Compare the ĒG∗∗ to the performance of complete ANN ĒGî,ĵ,k̂
, if ĒG∗∗ ≤ ĒGî,ĵ,k̂

then

G∗∗ is the topologically-optimised graph.

Because the CERP steps for creating the basic ANN from a complete graph are the same

as ERP, the steps are not discussed explicitly here. The following Figure 3.2.3 is a flow chart

representation of CERP steps for the cascaded arcs addition with a specific number of arcs in

turn.

The improvement of CERP from ERP is in two folds: 1) Each cascaded arcs addition in

CERP attempts for all combinations of the arcs for a given â, whereby in ERP only a portion

of combination maybe tested. 2) CERP outputs a result immediately at the point that the

cascading process is terminated whenever the condition of performance improvement is not

satisfied, whereas in ERP the selected graphs from all ranges of â are compared.

3.3 Conclusion of the chapter

In this chapter we developed a framework of techniques for searching the optimal architecture

of an ANN and we introduced a graphical topology representation. The heuristic algorithm

namely ANN-reduction is proposed for systematically optimising existing sub-optimal networks

by changing the set of connections but without altering the number of neurons. The ANN-

reduction algorithm is developed to repetitively generate modifications on an initial complete

topology until the out of sample performance can no longer be improved. ANN-reduction

can be applied to improve the problems associated with over-training and the effects of too

many degrees of freedom inherent in the ANN application because of the excessive numbers of

parameters to be estimated in the complete topology.

The aim of this research is to improve performance of ANNs particularly in applications to

the FFP. For this purpose, two implementations are designed following the framework of ANN-

reduction algorithm: 1) ERP and 2) CERP. Both implementation have a common phase of

90

Fetch H, ĒH and WGtemp
= WH

Set the number of arcs to be added in turn by specifying an appropriate â

Initialise Gtemp = H, ĒGtemp
= ĒH , WGtemp

= WH

Initialise n = 1, where n is the index of arc (vi, vj) to be added, and ∆EGimproved
= 0

Construct Gtemp ∪ (vi, vj) from Gtemp

Retrain Gtemp ∪ (vi, vj) to G′

temp ∪ (vi, vj) and calculate ĒG′

temp∪(vi,vj)

Compute ∆EGtemp
= ĒGtemp

− ĒG′

temp∪(vi,vj)

Is ∆EGtemp
≥ ∆EGimproved

?

Update ∆EGimproved
= ∆EGtemp

Update Gimproved = G′

temp ∪ (vi, vj) and EGimproved
= ĒG′

temp∪(vi,vj)

n = n+ 1

Is n ≤ n̂?

Is ∆EGimproved
= 0?

Update Gtemp = Gimproved, ĒGtemp
= ĒGimproved

and WGtemp
= WGimproved

Output WG∗∗ = WGtemp
and the optimal solution G∗∗ = Gtemp

False

True

True

Figure 3.2.3 Flow chart representation of CERP steps for the cascaded arcs addition with a
specific number of arcs in turn.

91

constructing the basic ANN but have different procedures of executing the arc addition phase.

Because of this difference, the two implementations may yield different optimised topologies

when applied to the same problem. We will discuss with simulation examples in the next

chapter.

92

Chapter 4

Empirical simulation on function

approximation

4.1 Introduction

In Chapter 3 we have proposed a theoretical framework for static vertex optimisation of feed-

forward ANNs, namely the ANN reduction process. The process is developed using a heuristic

searching method which consist of two stages:

(i) Basic ANN construction (see Figure 3.2.1b) and

(ii) Arc re-connection (see Figure 3.2.1c).

In the first stage, the trained complete ANN is processed to construct a set of basic ANNs;

After retraining, the best performing basic ANN is selected as a candidate solution with a

minimal number of arcs, and its out-of-sample performance is recorded for the next stage.

In the second stage, a number of arcs are added to the basic ANN to construct some new

ANNs, which are then retrained and compared for further selection of the solution. From all

newly constructed ANNs , the output of the ANN reduction process is the one with the best

improvement on out-of-sample performance compared to the initial complete ANN. Because all

93

ANNs produced during the process have the same number of neurons, this distinguishes ANN

reduction process from the traditional applications listed in Chapter 2.

We have also drawn attention to some critical steps of the ANN reduction where a huge

search space may be produced in practice, preventing the process from performing efficiently.

In order to address the issue, two implementations of the ANN reduction process are developed.

The procedures are called Enhanced ANN-Reduction Procedure (ERP) and Cascaded Enhanced

ANN-Reduction Optimisation Procedure (CERP).

Compared to the ANN reduction process, both ERP and CERP introduce a systematic

pruning implementation in the first stage to build the basic ANN instead of constructing a pool

of random constructed basic ANN. Furthermore, the two procedures perform arc re-connection

differently in the second stage. Because of these modifications, the search spaces of ERP and

CERP are much reduced to the original ANN reduction process.

However, these reductions in the search space imply that when the original ANN reduction,

ERP and CERP are applied to the same topology optimisation problem, the former process

should find an optimised ANN with at least an equal or better generalasation performance

compared to the latter two. In other words, we can prove the effectiveness of the original ANN

reduction process (which, however, is impractical) by testing the out-of-sample performance of

ERP and CERP using simulations.

In this chapter, empirical results are collected from simulations with ERP and CERP on

improving the topology of ANNs for approximating two deterministic functions. Two bespoke

functions are designed for applications and each one generates a sample dataset for the simu-

lation.1.

The two deterministic functions are described separately in the beginning of Sections 4.2

and 4.3 followed by four subsections : Subsection 1 presents the settings of simulation for ANN

training and testing in respect to each sample dataset; Subsection 2 records the approximation
1The simulations are tested in two platforms: x64 Windows OS with Visual C++ compiler and x64 Mac OS

with LLVM compiler. There is a minor rounding difference between the results from the two platform and the
former results are displayed in this thesis

94

results from some complete ANNs; Subsection 3 shows the ERP results from optimisng the

top performing complete ANN and some other selected complete ANN listed in Subsection 2;

Subsection 4 shows the CERP result from optimising the top performing complete ANN. The

analytical discussion are in-line with the summaries concluded in the end of the sections.

4.2 Simulation with deterministic function one

Consider the following function designed for the first approximation problem:

y =
1

200
x3

1 + 10(x3
2 + x3

3)
1
3 + 100(x4 + x5) + 100x

1
3
6

+x6 log(exp(x7) + exp(x8)) + x9x10

This ten variable function is complex as it consists of a series of non-linear terms including

cubic, exponential and logarithm terms. Note that the function is continuously and monotoni-

cally increasing with respect to any variable; the constant parameters are carefully adjusted so

that within a bounded input space, the corresponding output calculated from the function is

not dominated by any input.

The inputs x1,, x10 are all integers generated randomly within a range of [−100, 100].

From each set of input samples, an output y is calculated accordingly and forms a set of

input-target sample pairs.

Using an ANN to approximate the above function in a 10-dimension space requires a suf-

ficiently large size of samples for training and testing, so a total of 1200 input-target sample

pairs are generated for this purpose. Specifically, 600 out of the 1200 sample pairs are ran-

domly allocated for training, 200 sample pairs are randomly allocated for validation, another

200 sample pairs are randomly allocated for testing and the rest is allocated for out-of-sample

approximation (forecasting).

95

4.2.1 Optimisation problem settings

Given the sample pairs for the approximation models, we are now ready to construct some

complete ANNs to be optimised by the topology optimisation applications. Recall the universal

approximation theorem discussed in Section 2.1.2 states that all functions in a broad space can

be approximated with arbitrary accuracy using a single-hidden-layer ANN with hyperbolic

tangent activation functions; for this reason, all ANNs are constructed using a single hidden

layer topology in all simulations.

In addition, there are two configurations needed to be pre-determined on the complete ANN:

(i) The number of hidden neurons

In order to determine the optimal number of neurons on the hidden layer, complete

networks with the different number of hidden neurons must be trained and compared. For

this reason, different networks are constructed with 10-k-1 topology where k = 2, 3, ..., 12

for the simulation.

(ii) The initial search position

Each topology is tested with 20 random initial values of arc weights and biases.

Furthermore, as discussed in Chapter 2, the Hanger-Zhange conjugate gradient search al-

gorithm is applied throughout the training process. In order to ensure that a network is suf-

ficiently and efficiently trained, two conditions governing the algorithm of conjugate gradient

search must be specified in advance:

(i) The maximum number of conjugate gradient iterations is capped to 2000 so that the

conjugate gradient process has sufficient number of attempts to find the optimal solution;

(ii) The gradient convergence tolerance is limited to a threshold of 0.05 on the norm of search

gradients. The search stops if the search gradient becomes less than 0.05.

For the purpose of this simulation, a good test of the topology optimisation problem should

start from the complete ANN which has the best testing-sample RMSE. Therefore, a complete

96

ANN is explicitly selected among the pool of ANNs constructed following the initial training.

In this case, a total of 220(20 ∗ 11) networks (20 initial start points × 11 ANN topologies)

have been constructed and the best performing one is selected as the first target ANN to be

optimisied in this simulation.

4.2.2 Result from complete ANN

Once all 220 complete ANNs are constructed after training, validation and testing, the perfor-

mance results are compared for selecting the best complete ANN for the topology optimisation

simulation.

Table 4.2.2a displays the out-of-sample performance from the 220 complete ANNs, the table

rows are indexed by the number of hidden neurons k; and the table columns are indexed by the

seed ID which applied for generating the initial parameter vector before the initial training.

97

Initial parameter seed ID
Topology 1 2 3 4 5 6 7 8 9 10

2 0.407551 0.51171 0.436613 0.511952 0.557178 0.434353 0.407475 0.547115 0.568491 0.511836
3 0.567149 0.366283 0.360564 0.339117 0.36829 0.337115 0.337214 0.311993 0.432864 0.363071
4 0.305674 0.310351 0.310072 0.362756 0.308915 0.521407 0.273821 0.283356 0.273346 0.372609
5 0.265458 0.180008 0.178147 0.691958 0.173111 0.304711 0.179155 0.163922 0.179155 0.167922
6 0.16845 0.610069 0.36268 0.156081 0.331456 0.286098 0.147104 0.331549 0.151033 0.318756
7 0.619525 0.179925 0.311941 0.171597 0.118739 0.176791 0.16116 0.1598 0.156958 0.18246
8 0.325656 0.18522 0.183263 0.145587 0.156752 0.185056 0.128355 0.181614 0.156211 0.155771
9 0.169109 0.202688 0.16042 0.127723 0.225309 0.0712184 0.166227 0.117885 0.141904 0.184965
10 0.178173 0.1609 0.190761 0.227093 0.127421 0.163434 0.118882 0.123601 0.165073 0.124715
11 0.121898 0.138827 0.254509 0.134853 0.171568 0.655521 0.157162 0.661449 0.13032 0.195021
12 0.229843 0.226787 0.135845 0.190723 0.152399 0.214244 0.19763 0.509312 0.127189 0.211545

Initial parameter seed ID
Topology 11 12 13 14 15 16 17 18 19 20

2 0.434891 0.434679 0.407386 0.436612 0.64104 0.436612 0.511925 0.436619 0.511643 0.511593
3 0.363151 0.508926 0.51176 0.337174 0.337518 0.337344 0.363707 0.530194 0.337101 0.363506
4 0.282214 0.315465 0.346399 0.36277 0.31068 0.379958 0.250061 0.300251 0.238224 0.307901
5 0.283797 0.380361 0.178021 0.16921 0.172659 0.176814 0.324746 0.177408 0.222555 0.305615
6 0.182098 0.403302 0.184603 0.210478 0.219599 0.315518 0.175311 0.185944 0.249338 0.324182
7 0.200147 0.154457 0.184453 0.184689 0.189304 0.216241 0.33225 0.178394 0.325029 0.324056
8 0.144895 0.155169 0.299157 0.54607 0.183398 0.154015 0.142512 0.16257 0.330266 0.123197
9 0.151325 0.336093 0.307371 0.124043 0.155609 0.295608 0.161766 0.187075 0.33999 0.206395
10 0.120321 0.145696 0.213005 0.164722 0.184223 0.127638 0.122117 0.201204 0.177389 0.142277
11 0.125982 0.158079 0.547352 0.155892 0.162057 0.17036 0.126067 0.203779 0.623782 0.172392
12 0.15725 0.156833 0.179241 0.167167 0.137754 0.62059 0.12775 0.190972 0.082723 0.219955

Table 4.2.2a Performance measured as testing-sample RMSE from all 220 constructed complete ANNs. The best result is highlighted
in red.

98

As it is indicated in the table, the top performing complete ANN, which is to be applied for

both simulation of ERP and CERP, is obtained from the 10-9-1 topology and it is trained using

an initial search position generated from seed ID 6. For the simulation of ERP, in addition

to optimising the top performing complete network, the second to the sixth best performing

complete ANN are also selected to be optimised by the application. The topology of these

chosen complete ANN networks and their seed ID are listed in Table 4.2.2b.

Note that according to the flowchart of ERP described in Chapter 3, the parameter vector

of the optimised ANN is obtained after receiving two rounds of training in total (the first

round is the initial training on the complete ANN and the second round is for re-training the

topologically optimised ANN). Therefore, any comparison on the output performance between

the complete ANN and the topologically optimised ANN should be performed on the parameters

produced after the same depth of training to get the topologically optimisied ANN from the

fully trained complete ANN.

For the above reason, two testing-sample performance result on each of the selected complete

networks are recorded in Table 4.2.2b: Column 3 is the performance produced from a maximum

training iteration of 2000; Column 4 is the performance produced from a maximum training

iteration of 4000. In some cases, if the training condition of gradient convergence tolerance

is satisfied and the training procedure is terminated before the 2000 iteration, the increment

on the maximum iteration setting does not affect any of the outcome and the two columns

can have an identical value. Figure 4.2.2 show the graphical representation of the performance

result listed in the table.

Rank Topology Random Seed ID Performance of the complete ANN
trained up to 2000 iterations

Performance of the complete ANN
trained up to 4000 iterations

1 10-9-1 6 0.0712184 0.05652
2 10-12-1 19 0.082723 0.07658
3 10-9-1 8 0.117885 0.11477
4 10-7-1 5 0.118739 0.11343
5 10-10-1 7 0.118882 0.11157
6 10-10-1 11 0.12032 0.12032

Table 4.2.2b Performance (testing-sample RMSE) of the selected complete ANNs at different
level of maximum training iteration

99

10-9-1
Seed 6

10-12-1
Seed 19

10-9-1
Seed 8

10-7-1
Seed 5

10-10-1
Seed 7

10-10-1
Seed 11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
·10−2

O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the complete ANNs trained up to 2000 iterations
Performance of the complete ANNs trained up to 4000 iterations

Figure 4.2.2 Graphical representation of testing-sample performance from the complete ANNs
(with seed ID) subject to topology optimisation

The following Table 4.2.2c shows the parameter vector of the top performing complete 10-

9-1 ANN, obtained from the initial parameter vector generated from random generator using

seed ID of 6.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.815287 -0.0149804 -0.0006692 0.00077773 -0.018028 -0.0130862 0.0159306 -0.0136298 -0.0256615 0.302132 0.262766
Neuron 2 -0.0015882 -0.004493 0.0119685 -0.0081415 0.00549122 -0.0157849 0.162285 -0.523953 0.507484 -0.0085196 -0.0002807
Neuron 3 0.738853 0.00123026 0.00083283 -0.0051976 0.00321306 0.00111096 0.253726 -0.168008 -0.157757 -0.0640853 0.10079
Neuron 4 0.00750358 -0.0090472 0.0128761 -0.0103685 0.0049237 -0.0116615 -0.161937 -0.614361 0.607345 -0.0065514 -0.0024366
Neuron 5 -0.760023 0.00472197 -0.0043851 0.00567956 0.00195972 0.00370975 0.239502 0.165494 0.175495 -0.0372796 0.067102
Neuron 6 0.812022 0.00999102 0.00229457 0.0023436 0.00948603 0.00942313 0.014975 -0.0771023 -0.0752904 0.28919 -0.247271
Neuron 7 -0.006682 -1.66994 0.00977476 0.00367253 -0.015478 -0.0004025 0.00791051 0.00988735 0.00563888 0.0255108 -0.0017587
Neuron 8 -1.13737 0.185726 0.0140008 -0.0068822 0.258468 0.187348 -0.156419 -0.0904841 0.0272234 0.233192 0.310606
Neuron 9 0.232437 0.0629526 0.00791475 0.00836278 0.0821993 0.0809821 -0.0497592 -0.0057086 0.0290013 0.0137922 0.0925956

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9

Output
neuron

-0.880781 -2.90057 -1.77148 2.76931 1.28485 3.08203 3.25075 0.343027 0.618533 6.00623

Table 4.2.2c Trained parameter vector of the complete 10-9-1 complete ANN

100

4.2.3 Result of topologically-optimising complete ANN for function one us-

ing ERP

Given a complete ANN to be optimised, ERP first prunes some arcs to construct a basic ANN.

In each iteration of the systematic pruning process, a path from any input to the output with

the smallest weight is found and the arc between the input vertex and the hidden vertex on

the path is disconnected. As a result of the pruning, weight parameters on the remaining arcs

are the same as the trained complete ANN, while weight parameters for the disconnected arcs

are replaced with 0.

From the top performing ANN with seed ID of 6 listed in Table 4.2.2c, the parameter vector

of the corresponding basic ANN constructed is listed in Table 4.2.3a and the corresponding

graph is shown in Figure 4.2.3a.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.815287 0 0 0 0 0 0 0 0 0 0.262766
Neuron 2 -0.0015882 0 0 0 0 0 0 -0.523953 0.507484 0 0
Neuron 3 0.738853 0 0 -0.0051976 0 0 0 0 0 0 0
Neuron 4 0.00750358 0 0.0128761 0 0 0 0 0 0 0 0
Neuron 5 -0.760023 0 0 0 0 0 0.239502 0 0 0 0
Neuron 6 0.812022 0 0 0 0 0 0 0 0 0.28919 0
Neuron 7 -0.006682 -1.66994 0 0 0 0 0 0 0 0 0
Neuron 8 -1.13737 0 0 0 0.258468 0 0 0 0 0 0
Neuron 9 0.232437 0 0 0 0 0.0809821 0 0 0 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9

Output
neuron

-0.880781 -2.90057 -1.77148 2.76931 1.28485 3.08203 3.25075 0.343027 0.618533 6.00623

Table 4.2.3a Basic ANN constructed from the 10-9-1 network

101

Input
vertices

Hidden
vertices

Output
vertices

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

0.
26

27
66

-0.
52

39
53

0.5
07

48
4

-0.00519755
0.0128761

0.239502

0.28
919

-1.66994

0.258468

0.0809821

0.815287

-0.00159

0.738853

0.00750358

-0.76003

0.812022

-0.00668

-1.13737

0.232437

-2.90057

-1.77148

2.76931

1.28485

3.08203

3.25075

0.343
027

0.6
185

33

6.0
062

3

-0.880781

Figure 4.2.3a Corresponding graph of the network in Table 4.2.3a

102

The next stage of ERP produces some new ANNs by adding a number of arcs on the basic

ANN. Following the algorithm described in Chapter 3 and for this simulation:

(i) A specified number of arcs are repetitively and randomly added on the basic ANN to

form 50 ANNs with a total of â arcs in each;

(ii) Among all the constructed ANNs, the one with the lowest training-sample RMSE is

selected for retraining of up to 2000 iterations.

In order to search for the ANN with an optimal number of arcs, it is necessary to repeat

the arc re-connection process with different value of â. For the simulation, this is done on all

possible number of arcs that can be added on the basic ANN. Then an ANN with the best

testing-sample performance is selected for the output of the ERP.

Continuing the simulation on the 10-9-1 basic ANN with the parameter vector presented

in Table 4.2.3a, given a number of arcs specified to be added in the second stage, the arcs are

randomly added on the basic ANN and this process is repeated for 50 times in the simulations so

50 new ANNs are constructed. The re-training is applied on the best training-sample performing

ANN and the testing-sample RMSE is calculated. Table 4.2.3b shows the performance result

of the selected ANN given each number of arcs being added 0, 1, ..., 79. Note that the basic

ANN has 19 arcs, so the corresponding values of â is 19, 20, ..., 98.

Num. Arc added 0 1 2 3 4 5 6 7 8 9
Out-of-Sample 0.55763 0.556229 0.55256 0.388283 0.56316 0.555014 0.473678 0.371905 0.3776 0.565976

Num. Arc added 10 11 12 13 14 15 16 17 18 19
Out-of-Sample 0.550643 0.540459 0.399693 0.516637 0.541297 0.480672 0.516487 0.407611 0.387844 0.231651

Num. Arc added 20 21 22 23 24 25 26 27 28 29
Out-of-Sample 0.299936 0.217275 0.314385 0.166259 0.17033 0.175397 0.173021 0.207397 0.119497 0.388971

Num. Arc added 30 31 32 33 34 35 36 37 38 39
Out-of-Sample 0.298098 0.204808 0.119494 0.120723 0.183095 0.202116 0.117857 0.177541 0.325603 0.164346

Num. Arc added 40 41 42 43 44 45 46 47 48 49
Out-of-Sample 0.161753 0.116935 0.180557 0.122268 0.121969 0.249241 0.128503 0.168778 0.128884 0.12005

Num. Arc added 50 51 52 53 54 55 56 57 58 59
Out-of-Sample 0.116665 0.121963 0.122563 0.132488 0.124668 0.176828 0.0836928 0.174734 0.0652948 0.0659341

Num. Arc added 60 61 62 63 64 65 66 67 68 69
Out-of-Sample 0.0740358 0.153482 0.0664806 0.0626142 0.169649 0.0620185 0.068024 0.0562831 0.0612434 0.0558611

Num. Arc added 70 71 72 73 74 75 76 77 78 79
Out-of-Sample 0.0571836 0.056823 0.0568077 0.057147 0.0564708 0.0564332 0.0568085 0.0567244 0.056856 0.0563009

Table 4.2.3b Testing-sample performance of the best performing ANN produced with indicated
number of arcs being added on the basic ANN (starting graph 10-9-1, seed6)

The result in Table 4.2.3c has shown that the best testing-sample performing ANN is

103

produced from adding 69 arcs on the 10-9-1 basic ANN. With an out-of-sample standardised

RMSE of 0.0558611 from the ANN, this is an 1.16% improvement from the complete ANN which

has a testing-sample standardised RMSE of 0.05652. Therefore, we conclude a topologically-

optimised ANN has been found by ERP and the parameter vector of the network is listed in

the Table 4.2.3d (pre-retraining) and Table 4.2.3e (post-retraining)

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.815287 -0.0149804 0 0 -0.018028 0 0.0159306 -0.0136298 -0.0256615 0.302132 0.262766
Neuron 2 -0.0015882 -0.004493 0.0119685 -0.0081415 0.00549122 -0.0157849 0.162285 -0.523953 0.507484 -0.0085196 -0.0002807
Neuron 3 0.738853 0.00123026 0.00083283 0 0 0.00111096 0.253726 -0.168008 -0.157757 -0.0640853 0.10079
Neuron 4 0.00750358 -0.0090472 0.0128761 -0.0103685 0.0049237 -0.0116615 -0.161937 -0.614361 0.607345 -0.0065514 -0.0024366
Neuron 5 -0.760023 0.00472197 -0.0043851 0.00567956 0.00195972 0 0.239502 0.165494 0.175495 -0.0372796 0.067102
Neuron 6 0.812022 0 0.00229457 0 0.00948603 0 0 -0.0771023 -0.0752904 0.28919 -0.247271
Neuron 7 -0.006682 -1.66994 0.00977476 0.00367253 0 -0.0004025 0.00791051 0.00988735 0.00563888 0.0255108 -0.0017587
Neuron 8 -1.13737 0.185726 0.0140008 -0.0068822 0.258468 0.187348 -0.156419 -0.0904841 0.0272234 0.233192 0.310606
Neuron 9 0.232437 0.0629526 0.00791475 0.00836278 0.0821993 0.0809821 -0.0497592 -0.0057086 0.0290013 0.0137922 0.0925956

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9

Output ver-
tex

-0.880781 -2.90057 -1.77148 2.76931 1.28485 3.08203 3.25075 0.343027 0.618533 6.00623

Table 4.2.3d Parameter of the topologically-optimised 10-9-1 ANN from ERP (pre-retraining)

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.763097 -0.0073454 0 0 6.02E-05 0 0.0112408 -0.0104286 -0.0140099 0.263305 0.235631
Neuron 2 0.00689082 -0.0020497 0.0115126 -0.0048973 0.00537161 -0.0064154 0.136069 -0.540696 0.52815 -0.0068527 1.98E-05
Neuron 3 0.741616 -0.0026557 0.00190684 0 0 0.00030411 0.236602 -0.154717 -0.147468 -0.0414116 0.0658725
Neuron 4 0.0149547 -0.0018397 0.0107743 -0.007176 0.00257174 -0.0073326 -0.135505 -0.560548 0.556747 -0.0073115 -0.0009837
Neuron 5 -0.756364 0.00080349 -0.0013835 0.00608684 -0.005117 0 0.228757 0.154486 0.159676 -0.0505272 0.0515318
Neuron 6 0.774157 0 0.00048555 0 0.00171301 0 0 -0.0559592 -0.0586401 0.250008 -0.226613
Neuron 7 0.00576105 -0.686811 0.00487147 0.00258587 0 -0.0009362 0.00665927 -0.0030159 0.00209987 0.00370649 0.00868127
Neuron 8 -1.184 0.308459 0.0109257 0.00529496 0.180629 0.162509 -0.116828 0.01261 0.0399712 0.0605006 0.272171
Neuron 9 0.386146 0.142264 0.00581273 0.00607273 0.0868309 0.0831904 -0.0554277 0.00630236 0.0151294 0.0259587 0.125863

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9

Output ver-
tex

-1.05684 -3.87272 -1.89626 3.27111 1.73053 3.50441 4.1855 1.4639 1.6913 6.4779

Table 4.2.3e Parameter of the topologically-optimised 10-9-1 ANN from ERP (post-retraining)

Table 4.2.3f summarises the results of ERP on optimising all six chosen networks listed in

Table 4.2.2b using the same setting described above. The standardised testing-sample perfor-

mance for the complete ANNs in column 4 is compared to the performance of the optimised

ANNs in columns 6. The number of arcs in the compete ANNs and the topologically-optimised

ANN is compared between column 5 and 7. The percentage of performance improvement for

each case is listed in column 8. These results show that ERP has successfully produced a

topologically-optimised ANN for each of the 6 target complete ANNs. In addition, a graphical

104

performance comparison of the complete ANNs and the corresponding topologically-optimised

ANNs produced from ERP is shown in Figure 4.2.3b.

Performance
rank of
Complete
ANN

Topology Random
Seed ID

Performance
of Complete
ANN

Num. of
arcs in the
Complete
ANN

Performance
of Topology
optimised
ANN

Num. of
arcs in the
Optimised
ANN

Performance
improve-
ment

1 10-9-1 6 0.05652 99 0.0558611 88 1.16%
2 10-12-1 19 0.07658 132 0.06607 114 13.73%
3 10-9-1 8 0.11477 99 0.111028 81 3.26%
4 10-7-1 5 0.11343 77 0.109412 55 3.54%
5 10-10-1 7 0.11157 110 0.108516 69 2.73%
6 10-10-1 11 0.12032 110 0.045507 95 62.18%

Table 4.2.3f Testing-sample result of ERP: topology and performance comparison for the se-
lected networks

10-9-1
Seed 6

10-12-1
Seed 19

10-9-1
Seed 8

10-7-1
Seed 5

10-10-1
Seed 7

10-10-1
Seed 11

0

2

4

6

8

10

12

14
·10−2

O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the complete ANNs trained up to 2000 iterations
Performance of the complete ANNs trained up to 4000 iterations
Performance of the topologically-optimised ANNs produced from ERP

Figure 4.2.3b Graphical performance (measured as testing-sample RMSE) comparison of the
complete ANNs and the corresponding topologically-optimised ANNs produced from ERP

From Table 4.2.3f and Figure 4.2.3b it is important to note that the overall best ANN is

obtained not from the best performing complete and fully trained starting topology, but from

105

the starting topology ranked in 6th place (with 110 arcs). For this 10-10-1 complete ANN the

algorithm removed 15 arcs (reducing the number to 95) and obtained a topologically-optimised

ANN with an RMSE of 0.045507 instead of 0.0558611, an improvement of 18.54%.

Next, the forecasting sample pairs are applied on the above listed topologies for out-of-

sample performance evaluation. The result is shown in Table 4.2.3g and the graphical result is

presented in Figure 4.2.3c.

Performance
rank of
Complete
ANN

Topology Random
Seed ID

Performance
of Complete
ANN

Num. of
arcs in the
Complete
ANN

Performance
of Topology
optimised
ANN

Num. of
arcs in the
Optimised
ANN

Performance
improve-
ment

1 10-9-1 6 0.0573485 99 0.0549979 88 4.27%
2 10-12-1 19 0.0812 132 0.07203 114 12.73%
3 10-9-1 8 0.12201 99 0.118311 81 3.13%
4 10-7-1 5 0.13153 77 0.12957 55 1.51%
5 10-10-1 7 0.13089 110 0.13016 69 0.56%
6 10-10-1 11 0.122753 110 0.106092 95 15.70%

Table 4.2.3g forecasting-sample result of ERP: topology and performance comparison for the
selected networks

4.2.4 Result of optimising complete ANN for function one using CERP

This subsection demonstrates the simulation of CERP on the top performing complete ANN

with 10-9-1 topology displayed in Table 4.2.2c. We have shown in Chapter 3 that both ERP

and CERP follow the same procedures in the basic ANN construction stage, so the intermediate

result from the first stage is not explicitly written again. All the training settings are the same

as in Subsection 4.2.2.

In the second stage of CERP, the basic ANN in Table 4.2.3a is retrained and forms a

temporary reference for the following iterations of arc re-connection. In each iteration, a single

arc is added to the reference ANN and the addition is repeated for all disconnected pairs of

vertices between the input layer and the hidden layer to construct new ANNs. The output

from each iteration is the ANN with the best performance improvement (based on the testing-

sample RMSE) compared to the reference ANN, which is then replaced as a new reference

for the next iteration; otherwise the iteration is terminated if there is no improvement. Table

106

10-9-1
Seed 6

10-12-1
Seed 19

10-9-1
Seed 8

10-7-1
Seed 5

10-10-1
Seed 7

10-10-1
Seed 11

0

2

4

6

8

10

12

14
·10−2

O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the complete ANNs trained up to 4000 iterations
Performance of the topologically-optimised ANNs produced from ERP

Figure 4.2.3c Graphical performance (measured as forecasting-sample RMSE) comparison of
the complete ANNs and the corresponding topologically-optimised ANNs produced from ERP

4.2.4a records the testing-sample performance of the reference ANN in each iteration until the

process is terminated.

The above table shows that, on the problem of optimising the complete 10-9-1 ANN, CERP

algorithm is terminated after adding 33 arcs on to the basic ANN. However, according to the

out-of-sample performance of the output network, a standardised RMSE of 0.110326 is higher

than the initial complete ANN, which is 0.05652. In other words, CERP fails to find the

optimised network for this example.

Figure 4.2.4 shows the graphical results of the performance from the ANNs produced during

CERP arc re-connection, iterations in Table 4.2.4a as well as the performance of initial complete

ANN in Table 4.2.2b and the corresponding performance of the topologically-optimised ANN

produced by ERP in Table 4.2.3f.

107

Iteration Number 0 1 2 3 4 5

Testing Sample RMSE 0.557630 0.467387 0.381763 0.283653 0.240733 0.172604
Iteration Number 6 7 8 9 10 11

Testing Sample RMSE 0.167410 0.165066 0.162711 0.162054 0.161218 0.160449
Iteration Number 12 13 14 15 16 17

Testing Sample RMSE 0.159641 0.158723 0.158466 0.157970 0.156414 0.155577
Iteration Number 18 19 20 21 22 23

Testing Sample RMSE 0.137594 0.123019 0.119561 0.117362 0.116146 0.115045
Iteration Number 24 25 26 27 28 29

Testing Sample RMSE 0.113626 0.112955 0.112111 0.111736 0.111403 0.111053
Iteration Number 30 31 32 33

Testing Sample RMSE 0.110900 0.110527 0.110510 0.110326

Table 4.2.4a Iteration number to the performance on testing samples results from CERP inter-
mediate steps

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

30

35

40

45

50

55

60
·10−2

Number of arcs added on the basic ANN / CERP arc re-connection iteration number

O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the ANNs produced durning the iteration of CERP arc re-connection
Performance of the complete ANN trained up to 2000 iterations
Performance of the complete ANN trained up to 4000 iterations
Performance of the topologically-optimised ANN produced from ERP

Figure 4.2.4 Testing-sample performance comparison between the ANNs produced during the
iteration of CERP, the complete ANN and the ERP optimised ANN

108

From Figure 4.2.4 and Table 4.2.4b we note the following:

(i) The improvement in the RMSE is not smooth with respect to the number of arcs added.

(ii) As a result of (i) it is impossible to predict whether continuing the single arc re-connection

(when the previous steps produced negligible improvements) is worthwhile or not. For

example, at the time that 17 arcs were added, the previous 4 or 5 arc re-connection pro-

duced negligible improvement but when 18 and 19 were added there was a very significant

improvement in the error.

(iii) Observation (ii) above is typical of combinatorial optimisation problems where local opti-

misation seems to produce a convergent solution but more "extended" local optimisation

(for example adding 2,3 more arcs simultaneously) can produce significantly better results.

The above comments explain why the process of CERP arc re-connection iteration termi-

nated with 33 arcs with no improvement possible by adding any other single arc, but clearly

(considering that the complete connected graph has better RMSE) an improvement is possible

if a set of arcs (more than one arc) is added during the iterations.

Finally as a summary of the simulations for both ERP and CERP applications on the func-

tion one’s datasets, Table 4.2.4b lists the performance comparison between the best performing

complete ANN and the corresponding topologically-optimised ANNs produced from ERP and

CERP.

Topology Standardised testing-
sample RMSE

Standardised
forecasting-sample
RMSE

Number of connections Testing-sample perfor-
mance improvement

Forecasting-sample per-
formance improvement

Complete ANN 0.05652 0.0573485 99
ERP optimised ANN 0.0558611 0.0549979 88 1.16% 1.92%
CERP optimised ANN 0.110326 0.134012 52 - -

Table 4.2.4b Performance improvement from ERP and CERP to the best complete ANN for
approximating the function one.

109

4.3 Simulate with sample data from deterministic function two

Consider the following function proposed for generating the training and testing sample pairs

in the simulations:

y = 100 ∗ (x2 − x1)2 + 100 ∗ (x3 − x2)2 + 100 ∗ (x4 − x3)2

+100 ∗ (x5 − x4)2 + 100 ∗ (x1 − x5)2 + (1− x1)2

+(1− x2)2 + (1− x3)2 + (1− x4)2 + (1− x5)2

This function is constructed using five independent variables. To differentiate from the

function one used in the previous simulations, the independent variables of function two are

structured in a symmetrical form. All independent variables x1,, x5 are randomly generated

integers between [-100,100] and the dependent variable y is calculated accordingly to form an

input-output sample pair.

A total of 1200 sample pairs is generated. From which 600 samples are randomly allocated

for training and the rest are divided equally and randomly allocated for validation, testing and

forecasting.

4.3.1 Problem settings

For the same reason as stated in Subsection 4.2.1, we want to select the best performing

complete ANNs as the subject of topology optimisation simulation. There are 5 independent

variables and 1 dependent variable for each sample pair so the 5-k-1 complete ANNs are con-

structed accordingly, where k = 2, 3, ..., 10. For each value of k, 20 sets of weight parameters

are generated randomly for training. As a result, a total of 200(20 ∗ 10) ANNs are constructed.

The training settings have remained the same as in the previous simulations:

(i) The number of training iterations is capped to 2000;

110

(ii) The gradient convergence tolerance (in norm value) is limited to 0.05.

4.3.2 Result from complete ANN

After training the complete ANNs, the testing samples are fed into the ANNs for the testing-

sample performance calculation. Table 4.3.2a shows the result of the performance measurement

on all 200 ANNs, where the rows are indexed by the number of hidden neuron k and the columns

are indexed by the seed ID for generating the initial weight parameters.

111

Initial Search ID
Number of Hidden Neuron 1 2 3 4 5 6 7 8 9 10

2 0.4555941 0.60757303 0.58196519 0.5355216 0.58196519 0.51153372 0.45559127 0.51645591 0.50256729 0.50258145
3 0.24082471 0.50525496 0.44041688 0.43959274 0.44080488 0.59627295 0.50820034 0.5226752 0.52019994 0.44033758
4 0.23627834 0.23757261 0.23726277 0.23813478 0.51022529 0.23540209 0.23699061 0.54321924 0.2359838 0.55611662
5 0.24640111 0.23299112 0.2327739 0.21459097 0.19157847 0.18873136 0.25876464 0.40068253 0.23119557 0.23148303
6 0.18560331 0.24573103 0.19439159 0.24390914 0.18092921 0.05536895 0.18782141 0.05772356 0.08960336 0.25396904
7 0.05694898 0.10838726 0.04657387 0.04865291 0.07128818 0.56463841 0.20000226 0.04985259 0.07867401 0.04692901
8 0.04502584 0.10372534 0.58789277 0.07063935 0.24035911 0.04804344 0.04578541 0.55137002 0.04544528 0.07031649
9 0.03122248 0.04456902 0.10249026 0.04437078 0.22673558 0.05293703 0.11368357 0.07015591 0.0318141 0.04695932
10 0.04385449 0.11752474 0.04428213 0.05564112 0.33504014 0.35167589 0.0235972 0.02959175 0.47117914 0.03216217

Initial Search ID
Number of Hidden Neuron 11 12 13 14 15 16 17 18 19 20

2 0.58196519 0.58196519 0.58196519 0.58196519 0.58196519 0.58196519 0.58196519 0.58196519 0.58196519 0.58196519
3 0.50716379 0.59502683 0.44043671 0.53999915 0.59505798 0.50729973 0.54983219 0.5072091 0.44015066 0.50374261
4 0.54424446 0.23572891 0.23639445 0.51067276 0.23617383 0.23769665 0.23939025 0.5140996 0.47851711 0.59168778
5 0.26783132 0.23166541 0.23380053 0.24139821 0.23004998 0.26038828 0.19267251 0.46006315 0.28100709 0.25706
6 0.20275138 0.19188405 0.18962205 0.25138702 0.25112816 0.05390957 0.18105977 0.05287897 0.59279797 0.05478497
7 0.08434246 0.04938048 0.32048315 0.04772285 0.05034084 0.07658874 0.56777354 0.08640196 0.53343717 0.17599683
8 0.04979283 0.0438644 0.04143389 0.08521673 0.0583959 0.04673388 0.07784562 0.0575525 0.04889959 0.0973265
9 0.04579391 0.04328014 0.12927767 0.0341469 0.03940243 0.04576191 0.08980926 0.05051898 0.0473122 0.0435203
10 0.04538552 0.06352426 0.03067871 0.04009289 0.14322887 0.06369391 0.04918308 0.07505544 0.0508257 0.08720231

Table 4.3.2a Performance measured as testing-sample RMSE from all 200 complete ANN constructed. The best result is highlighted
in red.

112

The above table indicates that the top performing complete ANN has a 5-10-1 topology

trained from a set of the initial parameters obtained by random number generator using seed

ID of 7. This network is selected as the initial ANN to be optimised by ERP.

In the simulations with data generated from function one, we optimised all 6 best perfom-

ing ANNs using ERP. Similarly in this simulation for function two, we want to also test the

effectiveness of the optimsiation process on different networks. Because the ten best performing

complete topologies are all produced from topologies with either 9 or 10 hidden neurons (but

with different weight parameters), we are selecting the second and the third best performing

complete ANN together with another three networks to be processed in the following simula-

tions by ERP. The performance of the six selected complete ANNs is listed in Table 4.3.2b.

Figure 4.3.2 shows the graphical representation of the performance result listed in that table.

Rank Topology Random Seed ID Performance of the complete ANN
trained up to 2000 iterations

Performance of the complete ANN
trained up to 4000 iterations

1 5-10-1 7 0.0235972 0.0188145
2 5-10-1 8 0.02959175 0.02712
3 5-9-1 1 0.03122248 0.02522
- 5-6-1 6 0.05536895 0.05537
- 5-5-1 6 0.18873136 0.18361
- 5-3-1 1 0.24082471 0.24082

Table 4.3.2b Performance (testing-sample RMSE) of the selected complete ANNs at different
levels of maximum training iteration

Table 4.3.2c shows the parameter vector of the top performing 5-10-1 complete ANN.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5

Neuron 1 0.197664 0.0385426 0.0939453 0.0585473 0.157778 0.165421
Neuron 2 2.17103 0.0502977 0.10233 0.0811365 0.234934 0.255555
Neuron 3 -1.63444 0.596404 -0.278238 0.0284927 0.0919592 -0.346744
Neuron 4 0.775261 -0.0715918 -0.0229444 -0.013542 0.475701 -0.0529839
Neuron 5 1.28857 0.468474 -0.210515 0.0202325 0.071339 -0.268478
Neuron 6 0.675667 -0.071445 0.943846 0.203166 0.395814 0.13755
Neuron 7 -1.66532 -0.0327849 -0.281185 0.651712 -0.287607 0.0701861
Neuron 8 0.802541 -0.0397389 0.447003 -0.00236289 -0.0392217 -0.103334
Neuron 9 0.788407 0.0285906 -0.0117311 -0.0252995 -0.0982598 0.446585
Neuron 10 1.36006 -0.0163542 -0.22312 0.478412 -0.225713 0.0582374

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10

Output ver-
tex

7.87373 3.78169 7.65505 2.13229 -3.97619 -3.88677 -0.065674 1.9114 -2.80242 -4.22502 -3.82434

Table 4.3.2c Parameter vector of the 5-10-1 complete ANN

113

5-10-1
Seed 7

5-10-1
Seed 8

5-9-1
Seed 1

10-6-1
Seed 6

5-5-1
Seed 6

5-3-1
Seed 1

0

2

4

6

8

10

12

14

16

18

20

22

24

·10−2
O
ut
-o
f-
sa
m
pl
e
R
M
SE

Result of the complete ANN trained up to 2000 iterations
Result of the complete ANN trained up to 4000 iterations

Figure 4.3.2 Graphical representation of testing-sample performance for the complete ANNs
subject to topology optimisation

4.3.3 Results of ERP

From the top performing 5-10-1 complete ANN listed in Table 4.3.2c, the first stage of ERP

prunes the network into a basic ANN. This produces the parameter vector recorded in Table

4.3.3a; the corresponding graph is shown in Figure 4.3.3a

114

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5

Neuron 1 0.197664 0 0 0 0 0.165421
Neuron 2 2.17103 0 0 0 0 0.255555
Neuron 3 -1.63444 0.596404 0 0 0 0
Neuron 4 0.775261 0 0 0 0.475701 0
Neuron 5 1.28857 0.468474 0 0 0 0
Neuron 6 0.675667 0 0.943846 0 0 0
Neuron 7 -1.66532 0 0 0.651712 0 0
Neuron 8 0.802541 0 0.447003 0 0 0
Neuron 9 0.788407 0 0 0 0 0.446585
Neuron 10 1.36006 0 0 0.478412 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10

Output ver-
tex

7.50794 3.27796 7.28459 1.99891 -3.68492 -3.735 -0.0823348 1.79094 -2.6395 -3.92952 -3.67265

Table 4.3.3a Basic ANN constructed from the 5-10-1 complete ANN

115

Input
vertices

Hidden
vertices

Output
vertices

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

0.
16

54
21

0.2
55

55
5

0.596404

0.47
570

1

0.468474

0.943846

0.651712

0.447003

0.446585

0.478412

0.197664

2.17103

-1.63445

0.775261

1.28857

0.675667

-1.66531

0.802541

0.788407

1.36006

3.78169

7.65505

2.13229

-3.9762

-3.88676

-0.06567

1.9114

-2.8
024

1

-4.
225

02

-3.
82

43
4

-0.880781

Figure 4.3.3a Corresponding graph of the network in Table 4.3.3a

116

On the second stage of ERP, â numbers of connections are randomly added on to the 5-10-1

basic ANN to construct some new ANNs. Particularly for this simulation, the number of arcs to

be added is 0, 1, ..., 39 and the corresponding â = 20, 21..., 59. For each â, the random process is

repeated for 50 times and ERP selects the best in-sample performing ANN out of the 50. The

selected ANN is further trained for up to 2000 iterations before the performance calculation.

Table 4.3.3b shows the out-of-sample RMSE of the selected ANN from every â assigned in the

second stage of this simulation.

Num. Arc added 0 1 2 3 4 5 6 7 8 9
Out-of-Sample 0.464777 0.381158 0.33781 0.330319 0.333859 0.285402 0.286506 0.216204 0.198554 0.0506598

Num. Arc added 10 11 12 13 14 15 16 17 18 19
Out-of-Sample 0.204352 0.0532992 0.0756511 0.0539306 0.0300784 0.0304495 0.0546929 0.0240544 0.0251505 0.0301257

Num. Arc added 20 21 22 23 24 25 26 27 28 29
Out-of-Sample 0.0222016 0.0345123 0.0229365 0.0217007 0.0277345 0.0195861 0.0298685 0.0265805 0.0323089 0.0311179

Num. Arc added 30 31 32 33 34 35 36 37 38 39
Out-of-Sample 0.0350045 0.0201318 0.022037 0.0411805 0.0223831 0.0199765 0.0190606 0.0218507 0.021023 0.0187567

Table 4.3.3b Performance (measured as testing-sample RMSE) of topologically-optimised 5-10-1
networks with indicated number of arcs added

According to Table 4.3.2b, the testing-sample RMSE of the top performing 5-10-1 complete

ANN is 0.0188145 after the training of up to 4000 iterations. Compare this with Table 4.3.3b,

the out-of-sample performance of ERP optimised ANN is improved from the initial complete

ANN when â = 59, which has a standardised out-of-sample RMSE of 0.0187567, representing

a small improvement of 0.31%. Table 4.3.3c is the ERP intermediate result from selecting

the best in-sample performing ANN out of the 50 ANNs constructed by adding 39 arcs; the

corresponding parameter of the final ANN after retraining is in recorded Table 4.3.3d.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5

Neuron 1 0.197664 0.0385426 0.0939453 0.0585473 0.157778 0.165421
Neuron 2 2.17103 0.0502977 0.10233 0.0811365 0.234934 0.255555
Neuron 3 -1.63444 0.596404 -0.278238 0.0284927 0.0919592 -0.346744
Neuron 4 0.775261 -0.0715918 -0.0229444 -0.013542 0.475701 -0.0529839
Neuron 5 1.28857 0.468474 -0.210515 0.0202325 0.071339 -0.268478
Neuron 6 0.675667 0 0.943846 0.203166 0.395814 0.13755
Neuron 7 -1.66532 -0.0327849 -0.281185 0.651712 -0.287607 0.0701861
Neuron 8 0.802541 -0.0397389 0.447003 -0.00236289 -0.0392217 -0.103334
Neuron 9 0.788407 0.0285906 -0.0117311 -0.0252995 -0.0982598 0.446585
Neuron 10 1.36006 -0.0163542 -0.22312 0.478412 -0.225713 0.0582374

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10

Output ver-
tex

7.87373 3.78169 7.65505 2.13229 -3.97619 -3.88677 -0.065674 1.9114 -2.80242 -4.22502 -3.82434

Table 4.3.3c Parameter vector of the selected ANN obtained after adding 39 arcs (pre-retraining)

117

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5

Neuron 1 0.218093 0.0314945 0.0829806 0.0492129 0.143559 0.146167
Neuron 2 2.0207 0.040161 0.0914836 0.065396 0.210328 0.220941
Neuron 3 -1.55633 0.539046 -0.252159 0.0206251 0.0809547 -0.312221
Neuron 4 0.748251 -0.0567616 -0.0195598 -0.00619662 0.430715 -0.046008
Neuron 5 1.27489 0.437119 -0.19803 0.0155267 0.0628049 -0.249188
Neuron 6 0.590192 0 0.759866 0.233843 0.335064 0.101587
Neuron 7 -1.58512 -0.0211412 -0.26473 0.586639 -0.263714 0.0649551
Neuron 8 0.774346 -0.0282234 0.402387 0.00869792 -0.0345434 -0.0920231
Neuron 9 0.757358 0.0279468 -0.0069586 -0.0216032 -0.0776221 0.404296
Neuron 10 1.333 -0.0105932 -0.21294 0.442563 -0.209924 0.0538297

hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10

Output ver-
tex

9.038 4.97524 8.82318 2.51404 -4.84453 -4.30947 -0.0714315 2.22326 -3.29003 -5.10089 -4.28055

Table 4.3.3d Final (post retraining) parameter vector of the optimised ANN

Table 4.3.3e summarises the results of ERP of optimising all six selected complete ANNs

for approximating function two evaluated from the testing samples. It demonstrates that ERP

again has produced a topologically-optimised ANN with an improved performance from each

complete topologies listed in Table 4.3.2b. In addition, Figure 4.3.3b shows the graphical

performance comparison of the complete ANNs and the corresponding topologically-optimised

ANNs produced from ERP.

Performance
rank of
Complete
ANN

Topology Random
Seed ID

Performance
of Complete
ANN

Num. of
arcs in the
Complete
ANN

Performance
of Topology
optimised
ANN

Num. of
arcs in the
Optimised
ANN

Performance
improve-
ment

1 5-10-1 7 0.0188145 60 0.0187567 59 0.31%
2 5-10-1 8 0.02712 60 0.02414141 55 10.98%
3 5-9-1 1 0.02522 54 0.025048 44 0.66%
- 5-6-1 6 0.05537 36 0.03678132 25 33.57%
- 5-5-1 6 0.18361 30 0.18095668 24 1.44%
- 5-3-1 1 0.24082 18 0.23509169 17 2.38%

Table 4.3.3e Testing-sample results of ERP: topology and performance comparison for the
selected networks

Last, the forecasting sample pairs are applied on the above topologies for evaluation of the

out-of-sample performance. This result is shown in Table 4.2.3f and the bar chart is presented

in Figure 4.2.3c.

118

5-10-1
Seed 7

5-10-1
Seed 8

5-9-1
Seed 1

10-6-1
Seed 6

5-5-1
Seed 6

5-3-1
Seed 1

0

2

4

6

8

10

12

14

16

18

20

22

24

·10−2
O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the complete ANN trained up to 2000 iterations
Performance of the complete ANN trained up to 4000 iterations
Performance of the topologically-optimised ANN produced from ERP

Figure 4.3.3b Graphical performance (testing-sample RMSE) comparison of the complete
ANNs and the corresponding topologically-optimised ANNs produced from ERP

Performance
rank of
Complete
ANN

Topology Random
Seed ID

Performance
of Complete
ANN

Num. of
arcs in the
Complete
ANN

Performance
of Topology
optimised
ANN

Num. of
arcs in the
Optimised
ANN

Performance
improve-
ment

1 5-10-1 7 0.0158266 60 0.0153268 59 3.16%
2 5-10-1 8 0.03021 60 0.0257561 55 14.74%
3 5-9-1 1 0.028374 54 0.027329 44 3.68%
- 5-6-1 6 0.05834 36 0.04221 25 27.65%
- 5-5-1 6 0.16261 30 0.16046 24 1.34%
- 5-3-1 1 0.240245 18 0.238872 17 0.57%

Table 4.3.3f Forecasting-sample results of ERP: topology and performance comparison for the
selected networks

4.3.4 Results of CERP

In the next simulation, we apply CERP to optimise the top performing 5-10-1 complete ANN

listed in Table 4.3.2c. The same basic ANN produced from the systematic pruning process in

119

5-10-1
Seed 7

5-10-1
Seed 8

5-9-1
Seed 1

10-6-1
Seed 6

5-5-1
Seed 6

5-3-1
Seed 1

0

2

4

6

8

10

12

14

16

18

20

22

24

·10−2
O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the complete ANN trained up to 4000 iterations
Performance of the topologically-optimised ANN produced from ERP

Figure 4.3.3c Graphical performance (forecasting-sample RMSE) comparison of the complete
ANNs and the corresponding topologically-optimised ANNs produced from ERP

Table 4.3.3a is created and it is initialised to be the reference ANN. Described in Subsection

3.3.2 of Chapter 3, a single arc on the reference ANN is added on the basic ANN of the iteration

to construct new ANNs; the new ANNs are then compared for selection of the reference ANN

in the following iteration. Table 4.3.4a records the out-of-sample performance of the best ANN

produced from each iteration until the process is terminated.

Figure 4.3.4a shows the graphical results of the testing-sample performance from the ANNs

produced during iterations of CERP arc re-connection. For comparison, the figure has also

shown the performance of initial complete ANN in Table 4.3.2b and the corresponding topologically-

optimised ANN produced by ERP in Table 4.3.3e. Figure 4.3.4b is the zoomed in version of

the Figure 4.3.4a to explicitly differentiate the final performance results between CERP and

ERP.

120

Iteration Number 0 1 2 3 4 5
Testing Sample RMSE 0.464776 0.378892 0.324366 0.275250 0.198983 0.036399

Iteration Number 6 7 8 9 10 11
Testing Sample RMSE 0.026521 0.023733 0.022478 0.020504 0.019152 0.018343

Iteration Number 12 13 14 15 16 17
Testing Sample RMSE 0.017544 0.017030 0.016134 0.015791 0.015335 0.014933

Iteration Number 18 19 20 21 22 23
Testing Sample RMSE 0.014684 0.014583 0.014292 0.014167 0.014066 0.013959

Iteration Number 24 25 26
Testing Sample RMSE 0.013920 0.013871 0.013840

Table 4.3.4a Iteration number (number of added arcs) and the testing-sample RMSE from the
CERP intermediate steps.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25

30

35

40

45

50
·10−2

Number of arcs added on the basic ANN / CERP arc re-connection iteration number

O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the ANNs produced durning the iteration of CERP arc re-connection
Performance of the complete ANN trained up to 2000 iterations
Performance of the complete ANN trained up to 4000 iterations
Performance of the topologically-optimised ANN produced from ERP

Figure 4.3.4a Performance (measured as testing-sample RMSE) comparison between the
ANNs produced during the iteration of CERP, the complete ANN and the ERP optimised

ANN

As it is indicated in Table 4.3.4a and Figure 4.3.4a, CERP terminates after adding a total

of 26 arcs on the basic ANN, producing a topologically-optimised ANN with the parameter

121

0 2 4 6 8 10 12 14 16 18 20 22 24 26
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

·10−2

Number of arcs added on the basic ANN / CERP arc re-connection iteration number

O
ut
-o
f-
sa
m
pl
e
R
M
SE

Performance of the ANNs produced durning the iteration of CERP arc re-connection
Performance of the complete ANN trained up to 2000 iterations
Performance of the complete ANN trained up to 4000 iterations
Performance of the topologically-optimised ANN produced from ERP

Figure 4.3.4b Zoomed in version of Figure 4.3.4a on the testing-sample RMSE scaled between
10−2 and 3.5× 10−2

vector display in Table 4.3.4b. Furthermore, we have showin in Figure 4.3.4a the significant

performance improvement from the reference ANNs produced throughout the CERP arc re-

connection iterations, which surpassed the performance of both the complete ANN and the

ERP optimisied ANN after adding 10 arcs to the basic ANN.

To summarise the results of simulations on topology optimising the ANNs for approximating

the function two, in Table 4.3.4c we list the performance and topology of the Complete ANN, the

optimised ANN from ERP and the result from CERP. Comparing the perfromance difference

between the complete ANN, the ERP optimised ANN and the CERP optimised ANN, we can

conclude that for this specific approximation problem, while the topology produce by CERP

performs significantly better than the output from ERP, both ERP and CERP have successfully

produced topologically-optimised ANNs from the complete topology with an improved out-of-

122

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5

Neuron 1 -0.688142 0.0188687 -0.0018256 -0.0017033 -0.165142 0.177981
Neuron 2 4.6491 0.176328 0.246609 0.600174 -0.0171675 -0.0065245
Neuron 3 1.89584 -0.0465279 -0.112507 0 0 0
Neuron 4 0.728946 0 0 0.15284 -0.191379 0.00275895
Neuron 5 0.720748 0.237589 -0.126816 0 0.0156305 -0.0164924
Neuron 6 -0.718039 0.0741848 0.183718 0 0 0
Neuron 7 -0.709378 0 -0.124725 0.207736 -0.013124 -0.0012451
Neuron 8 0.797542 0.0252118 -0.793093 0.134183 -0.0064763 0
Neuron 9 0.692942 -0.172598 -0.0047923 0 -0.0059953 0.178266
Neuron 10 0.722869 0.01295 -0.551886 0.0777391 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10

Output 14.8875 15.1953 14.571 5.55913 -14.2376 -8.91718 -11.2244 12.1684 2.45861 -15.5168 -7.7474

Table 4.3.4b Parameter vector of topologically-optimised ANN produced by CERP based on
the samples generated from Function 2

sample performance.

Topology Standardised testing-
sample RMSE

Standardised
forecasting-sample
RMSE

Number of connections Testing-sample perfor-
mance improvement

Forecasting-sample per-
formance improvement

Complete ANN 0.0188145 0.0158266 60
ERP optimised ANN 0.0187567 0.0153268 59 0.31% 3.16%
CERP optimised ANN 0.01384 0.0138546 41 26.4% 12.46%

Table 4.3.4c Performance improvement from ERP and CERP to the best complete ANN for
approximating the function two.

4.4 Summary of result

Throughout this chapter, the empirical simulations are performed to test ERP and CERP on

ANNs for approximating deterministic functions. Two non-trivial functions are designed to

generate sample data and the samples are separated into training set, validation set, testing set

and forecasting set for the simulation. On each of the approximation problems, a large number

of ANN with different complete topologies are compared. The best 6 performing complete

ANNs are then selected for topology optimisation using ERP and the top performing complete

ANN is applied to be optimised by CERP.

For both of the two approximating problems, all topology-optimised ANNs produced from

ERP have improved performance from the initial complete topology. CERP did not find a

better performing topology than the complete ANN on approximating the function 1. However,

123

the performance improvement throughout the iterative arc-addition process on the problem

has provided an example of the combinatorial effect of adding multiple arcs simultaneously

as discussed in the Chapter 3. Finally, The topology-optimised ANN produced from CERP

outperforms the one produced from ERP for function 2, but this is clearly not generally (see

next chapter).

In the coming chapter we will perform further empirical simulations on noisy data. With

data obtained from financial market, the performance of ERP and CERP are tested on ANN

for FFP.

124

Chapter 5

Empirical simulation on foreign

exchange price forecasting

5.1 Introduction

We have demonstrated in Chapter 4 that the topology optimisation process can improve gener-

alisation (out-of-sample) performance of ANNs on approximating problems for two non-trivial

functions with input-target data pairs generated without the addition of sample noise. However,

as discussed in Chapter 1, many practical ANN applications such as for the FFP, encounter

input data that usually contain large amounts of noise. Therefore in this Chapter, we examine

the application of the topology optimisation process on ANNs for the FFP using historical

financial data obtained from the Foreign Exchange (FX) market.

The content of this Chapter is organised in the following way: Section 5.2 introduces the raw

data obtained from the FX market and the construction of the three FFPs used throughout this

Chapter for the simulations. Section 5.3 describes two designs of ANN systems using ERP and

CERP respectively to be applied for the ANN training, optimisation and forecasting. Section

5.4 shows the performance result from the complete ANN for each FFP. From the complete

ANN, topology optimisation is applied and Section 5.5 and Section 5.6 show the intermediate

125

results as well as the final output produced using ERP and CERP respectively.

5.2 Data construction for the ANN forecasting problem

In order to construct a FFP for ANN, we need to first process the raw data to form input and

target datasets for ANNs to be trained with. The raw data is a collection of direct quoted

foreign exchange rates for the G10 currencies and Chinese Yuan to US dollar (excluding US

dollar to itself). The G10 currencies are the 10 most influential and actively traded currencies

in the world and include 1) US Dollar (USD); 2) Canadian Dollar (CAD); 3) Japanese Yen

(JPY); 4) Australian Dollar (AUD); 5) New Zealand Dollar (NZD); 6) British Pound (GBP);

7) Euro (EUR); 8) Swiss Franc (CHF); 9) Swedish Krona (SEK); 10) Norwegian Krone (NOK).

To limit the scope of the experiment, all FX rates are sampled at the daily New York trading

closing time.

From the FX raw data, a single forecasting target is defined for the FFP in this research:

suppose on day t, the 1 day holding period return on Euro to US dollar exchange price is

r1
t (EUR/USD), which can be calculated from the proportion of the price change from day t − 1

to day t: r1
t (EUR/USD) = pt(EUR/USD)−pt−1(EUR/USD)

pt−1(EUR/USD) . This is also known as momentum in the word

of technical analysis and it can be compared with the trends regressed from a price series to

provide information on the sustainability of an assets price in a short future. In the case of this

research, the target of forecasting problem is set to estimate the 5 day return of EUR/US FX

rate on the future trading day t+ 1

Target: Eur/USD 5 Day Return on day t+ 1, denoted as: r1
t+1(EUR/USD)

To construct the appropriate inputs for the forecasting target defined above, there are

many technical analysis tools that are commonly applied in market analysis and related the

FFP which can be used to guide the construction of the dataset for ANN training. In particular,

three technical analysis tools are most relevant and important to the forecasting problem on the

FX market. These are Bollinger Bands, Long-Short Trend Cross-over and Absolute/Relative

126

Currency Strength.

Bollinger Bands, developed by John Bollinger [107], provide a relative measurement within

a period of time for higher band and lower band of an asset price. The bands are useful in

comparing price dynamic from time to time to support rigorous price pattern recognition and

forms market indicators for trading decisions. Bollinger Bands are usually calculated from: 1)

A 20 day period moving average of the asset price; 2) A 20 day period volatility of the asset

price; The upper band is the sum of the moving average and a multiple of volatility; and the

lower band is the moving average minus a multiple of volatility. Figure 5.2.0a shows an example

of Bollinger Bands for the EUR/USD pair from Dec 2013 to May 2014, the bands consist of

the 20 day period moving average and the 20 day period volatility multiplied by a factor of 0.2.

Jan14 Feb14 Mar14 Apr14 May14
0.71

0.71

0.72

0.72

0.73

0.73

0.74

0.74

0.75

0.75

0.76

U
SD

$

EUR/US
Upper Bollinger Band
Lower Bollinger Band

Figure 5.2.0a Illustration of Bollinger Bands for the EUR/USD price from Dec 2013 to May
2014

Long-Short Trend Cross-over, which is applied to signal the trigger point of buy/sale in

machine trading, consists of two trends each based on different length of regression period from

127

a time series. 1 As its name shows, the long trend is a regression gradient of an asset prices

over a large window (e.g. 120 days); the short trend is from regression gradient over a small

window (e.g. 20 days). While the short trend may be more reactive to daily price differences,

the long trend encapsulates market trend over a longer time. Figure 5.2.0b shows a 6 month

trend and a 1 month trend for the EUR/USD pair on the day of 19th May 2014

Jan14 Feb14 Mar14 Apr14 May14
0.72

0.72

0.73

0.73

0.74

0.74

0.75

0.75

U
SD

$

EUR/US
Long (6 months) Trend
Short (1month) Trend

Figure 5.2.0b Illustration of a 6 month trend and a 1 month trend for the EUR/USD price on
the day of 19th May 2014

Absolute/Relative Currency Strength are two technical analysis tools particularly used in

the analysis of the foreign exchange market. The term absolute or relative only differ from

the reference point in the calculations, otherwise they are the same. The basic idea is to show

that if the exchange rate of a currency pair is up-trending, whether it is due to the strength

of domestic currency or the weakness of foreign currency. For example, if the exchange rate of
1The trends in Long-Short Trend Cross-over model commonly known to be based on moving average. A

trend based on linear regression, however, identifies the change of direction faster than the ones based on moving
average given the same period of window [108].

128

Euro/US is rising, the currency strength indicator can tell if it is because of a strengthening

Euro, or weakening US dollar or both.

Inspired from the elements of the above technical analysis tools, 10 inputs are fixed for the

forecasting problems:

Input1: Eur/USD 1 Day Return on day t, denoted as: r1
t (EUR/USD)

Input2: Eur/USD 20 Day Return on day t: r20
t (EUR/USD)

Input3: Eur/USD Daily Return Volatility over past 20 Days (annualized) on day t: σ20
t (EUR/USD)

Input4: Eur/USD Daily Price 20 Day Trend on day t: β20
t (EUR/USD)

Input5: Eur/USD Daily Price 120 Day Trend on day t: β120
t (EUR/USD)

Input6: Average of the other 9 currencies’ 1 Day Return on day t: r1
t (EUR/USD), where

r1
t (EUR/USD) =

1

9

[
r1
t (CAD/USD) + r1

t (JPY/USD) + r1
t (AUD/USD)

+ r1
t (NZD/USD) + r1

t (GBP/USD) + r1
t (CHF/USD)

+ r1
t (SEK/USD) + r1

t (NOK/USD) + r1
t (CNY/USD)

]

Input7: Average of the other 9 currencies’ 20 Day Return on day t: r20
t (EUR/USD)

Input8: Average of the other 9 currencies’ Daily Return Volatility over the past 20 Days (annual-

ized) on day t: σ20
t (EUR/USD)

Input9: Average of the other 9 currencies’ Daily Price 20 Day Trend on day t: β20
t (EUR/USD)

Input10: Average of the other 9 currencies’ Daily Price 120 Day Trend on day t: β120
t (EUR/USD)

These inputs are selected because:

1. Both input 1 and 2 are momentum indicators over the two time windows. In particular,

input 1 is also the 1 day lagged result from the output and as discussed, the difference

129

between input 2 and 5 provide information on how long the FX rate may be sustainable

at that level.

2. Together with input 3, 5 and a constant parameter, the Bollinger Bands analysis can be

applied.

3. Input 4 and 5 can be used to form Long-Short Trend Cross-over indicator.

4. The relative strength of the foreign currency in a FX pair can be found through the

change in averaging the exchange price of all other than domestic currencies in the world

to the foreign currency. In the case of this research, the relative strength of US dollar

is found through averaging the technical indicators of the rest world major currencies,

which lead to input 6-10.

Following the discussion above, the input-target data pairs for ANN forecasting are pro-

cessed from the raw data obtained from The Wall Street Journal for the period between Jan

1998 to May 2014. The daily FX rate for currency pair has more than 4000 samples in the raw

data and this number is slightly reduced by the end-effect of the above period.

In the simulations of this chapter, data for training ANN in the FFP is divided into four

sets: Training, Validation, Testing and Forecasting. This is different to the simulations in the

previous chapter which use only three sets of data: Training, Validation, and Testing. In the

simulation with the datasets generated from the deterministic functions, the Testing dataset

is subject to the topology optimisation process and is also the only out-of-sample data for the

performance evaluation. In the current simulation for the FFP with datasets obtained from the

market, however, the testing dataset is used for ERP or CERP to optimise the graph of ANN;

and the forecasting dataset is to be used solely for performance evaluation and comparison.

For the purpose of this research, the size of both in and out-of-sample datasets are large

enough for the results to be statistically representative. A procedure we applied to setup the

four datasets is: We use 1000 input-target sample pairs ordered on date from day 1 to 1000,

which covers approximately a 4 year horizon, the training set and validation set are randomly

allocated from the first 700 samples in proportion of 80:20 with 560 samples for training and

130

140 samples for validation; then the next 100 samples from day 701 to 800 is allocated for

testing; and the last 200 samples from day 801 to 1000 is for forecasting.

Guided from the above discussion, three forecasting problems can be setup by partitioning

the input-target sample pairs produced in Section 5.2:

1. The first problem covers 1000 samples dated from 1st July 2010 to 30th April 2014

• 700 samples from 1st July 2010 to 6th March 2013 for training and validation, in

which 560 samples are randomly drawn for training and the rest 140 for validation;

• 100 samples from 7th March 2013 to 24th July 2013 for testing;

• 200 samples from 25th July 2013 to 30th April 2014 for forecasting;

Note that the target samples for testing and forecasting is continuously in time, as de-

picted in Figure 5.2.0c, the timeseries of r1
t+1(EUR/USD) is shown between 7th March 2013

to 30th April 2014. The first 100 sample in the shaded area are for the testing and the

rest are for the forecasting.

2. The second problem covers 1000 samples dated from 1st September 2006 to 01st July

2010

• 700 samples from 1st September 2006 to 7th May 2009 for training and validation;

• 100 samples from 8th May 2009 to 24th September 2009 for testing;

• 200 samples from 25th September 2009 to 1st July 2010 for forecasting;

Figure 5.2.0d shows the time series of r1
t+1(EUR/USD) between 7th April 2009 to 31st May

2010 for the problem 2. The shaded area includes the testing target samples only.

3. The third problem covers 1000 samples dated from 1st October 2002 to 31st July 2006

• 700 samples from 1st October 2002 to 6th June 2005 for training and validation;

• 100 samples from 7th June 2005 to 24th October 2005 for testing;

• 200 samples from 25th October 2005 to 31st July 2006 for forecasting;

131

Apr13 Jul13 Oct13 Jan14 Apr14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
·10−2

U
SD

$

Testing and forecasting target samples of Problem 1

Figure 5.2.0c r1
t+1(EUR/USD) between 7th March 2013 to 30th April 2014

Figure 5.2.0e shows the timeseries of r1
t+1(EUR/USD) between 7th June 2005 to 31st July

2006 for the problem 3. The shaded area includes the testing target samples only.

132

Aug09 Nov09 Feb10 May10
−4

−3

−2

−1

0

1

2

3

4

5

6
·10−2

U
SD

$

Testing and forecasting target samples of Problem 2

Figure 5.2.0d r1
t+1(EUR/USD) between 7th April 2009 to 31st May 2010

133

Jul05 Oct05 Jan06 Apr06 Jul06
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
·10−2

U
SD

$

Testing and forecasting target samples of Problem 3

Figure 5.2.0e r1
t+1(EUR/USD) between 7th June 2005 to 31st July 2006

134

5.3 Design and setting of the ANN forecasting System

Once the data structure for the forecasting problems is fixed, a system of simulation including

complete ANN training and selection, topology optimisation and forecasting can be constructed.

The flow chart in Figure 5.3.0 is an overview of the system assembled from implementations

which has been introduced in the previous chapters. The detailed configuration of the system

is described in the steps following the figure.

Train complete ANNs using
different topology and from
different initial positions

(Step 1 - Step 7)

Select the best performing
complete ANN to be

simulated with topology
optimisation applications

(Step 8)

Perform topology optmisation
using ERP

(Step 9a - Step 17a)

Perform topology optmisation
using CERP

(Step 9b - Step 17b)

Evaluate the
topologically-optimised ANN

(Step 18)

Performance
comparison
(Step 18)

either

or

Training, validation and testing

datasets are applied only

Testing and forecasting

datasets are applied only

Figure 5.3.0 Flow chart representation of ANN forecasting system for the FFP of FX data

135

Step 1: Given the datasets of an FX forecasting problem, construct a complete ANN denoted by

G10,ĵ,1, so the topology has 10 inputs, 1 output and ĵ number of hidden neurons which

is initialised to ĵ = 2.

Step 2: Initialise the parameter vector of the complete ANN with a random number generator

using seed ID S = 1;

Step 3: Train the complete ANN, measure and store the performance measured from the testing

samples;

Step 4: Increase the SeedID S by 1;

Step 5: If S ≤ 20, Goto Step 3, so that 20 initial search positions are applied on each complete

ANN topology ;

Step 6: Increase the number of hidden neuron ĵ by 1;

Step 7: If ĵ ≤ 12, Goto Step 2, so a total of 11 ANN complete topology are tested

Step 8: The trained complete ANN with the best performance in record is selected to proceed,

denote as G10,ĵ′,1;

−−−−− Start of ERP sub-Routine −−−−−

Step 9a: Apply the basic ANN construction stage of ERP on the selected G10,ĵ′,1 to construct

the basic ANN, denoted as H;

Step 10a: Initalise the number of arcs to be added is 0 so that â −
{

max
(

10, ĵ′
)

+ ĵ′
}

= 0

and the trial ID n = 1

Step 11a: Randomly adding the number of arcs to the basic ANN so a total of â arcs in the

ANN; test and record the performance of the network from the training set (in-

sample) data;

Step 12a: Increase the trial ID n = n+ 1;

Step 13a: If n ≤ 200 trials, go to Step 11a so that the arcs are added randomly for 200 times

136

Step 14a: Evaluate and select the best performing network found based on the training sam-

ples, retrain the ANN from the existing parameter and record the result as the

candidate output ANN of ERP;

Step 15a: Increase the number of arcs to be added by 1;

Step 16a: Repeat from Step 10a until â reaches the maximum.

Step 17a: Selected the â which specifies the best performing candidate output ANN on the

testing set, which is the topologically-optimised ANN, denote as Gâ.

−−−−− End of ERP sub-Routine −−−−−

−−−−− Start of CERP sub-Routine −−−−−

Step 9b: Apply the basic ANN construction stage of CERP on G10,ĵ′,1 to construct the basic

ANN, denoted as H and set Gtemp = H;

Step 10b: Train H and evaluate the out-of-sample performance

Step 11b: Initialise the trial ID to n = 1

Step 12b: For the nth element with a value of 0 in the parameter vector of Gtemp, where the

arc (vi, vj) under indication is effectively disconnected, reconnect the indicated arc

to form Gtemp ∪ (vi, vj); train and test the result network to G′temp ∪ (vi, vj) and

record the testing sample (out-of-sample) performance;

Step 13b: Increase the trial ID n = n+ 1;

Step 14b: Repeat from Step 12b until the last element with 0 value in the parameter vector of

Gtemp has been indicated;

Step 15b: Select the best performing ANN G′temp ∪ (v′i, v
′
j) in the record, if the out-of-sample

performance is better than the Gbasic go to Step 16b, otherwise go to Step 17b;

Step 16b: Assign the best performing network to Gtemp, go to Step 11b;

Step 17b: Assign the selected network to Gâ.

−−−−− End of CERP sub-Routine −−−−−

137

Step 18: Apply the topologically-optimised ANN Gâ on the forecasting dataset and compare to the

forecasting performance of complete ANN G10,ĵ′,1 using the value of standardised RMSE

between the output values and the target samples.

Similar to the previous simulations discussed in Subsection 4.2.1 of Chapter 4, there are

two conditions governing the training and learning process of the ANN need to be set. For

the simulation of the FFP, the maximum number of training iterations is set to 2000 and the

stopping limit of gradient convergence tolerance is set to 10−4.

5.4 Forecasting performance of complete ANN

This section is divided into three subsections each one presenting the results of the best complete

ANN obtained on a dataset constructed in Section 5.2. The complete ANN is constructed

following Step 1 to Step 8 of the simulation systems designed in Section 5.3.

Note that in this chapter, the performance measurement is shown in the form of standardised

value of RMSE between the ANN forecasted result and the sample target. Introduced in

Chapter 4: the RMSE obtained from the approximation model for a particular sample set is

standardised by dividing the RMSE with the average of the target sample absolute values.

From the standardised RMSE, it is clearer to interpret the performance of a system across

different data sets with different size and value of samples.

In addition to the standardised RMSE, some other measurements are taken for supplemental

studies on the performance. These include the number of correct estimation on the directional

sign of the target sample as well as the percentage of RMSE improvement. Note that all

these supplemental measurement are evaluated only for a relative comparison between different

topologies, i.e. complete ANN, ERP optimised ANN and CERP optimised ANN constructed

during the simulations.

138

5.4.1 Forecasting Problem 1

From the 560 samples recorded in Section 5.2 for training and the 140 samples for validation

constructed for Problem 1, a complete ANN G10,2,1 is produced. The complete network consists

of ĵ′ = 2 hidden neurons and is trained with initial parameters generated from seedID = 10;

The training condition is met and the iteration is terminated after 17 training cycles. The

parameter vector of this complete ANN G10,2,1 is displayed in Table 5.4.1a:

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.718879 0.575939 0.340596 0.164531 0.117442 0.254044 0.957463 0.218548 0.130085 0.916669 0.333643
Neuron 2 0.291268 0.619459 0.0222096 0.703529 0.999962 0.756335 0.0305982 0.329984 0.0859183 0.542532 0.329601

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output -0.00157161 0.112988 -0.125494

Table 5.4.1a Parameters of the 10-11-1 complete ANN for Problem 1

Feed the 100 testing samples on the above complete ANN G10,2,1 produces results with

performance indicators recorded on the upper row of Table 5.4.1b; Apply the same network

on the 200 forecasting samples producing results with performance indicators recorded in the

lower row of the table:

Testing Sample RMSE Directional correctness Number of Samples

1.20372 56 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.33289 83 200
Table 5.4.1b Performance indicators of G10,2,1 on the testing samples and forecasting sample
for Problem 1

139

5.4.2 Forecasting Problem 2

Similarly, for the training and validation sample set of Problem 2, the resulting complete ANN

with topology G10,2,1 has ĵ′ = 8 on the hidden layer and is trained with seedID = 8 for 11

iterations before the training conditions are met. Table 5.4.2a shows the parameter vector of

the G10,2,1 and Table 5.4.2b is its corresponding results with performance indicators on the

testing sample sets and the forecasting sample sets.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.217297 0.533894 -0.0363056 0.20332 0.977062 0.772806 0.712451 0.951504 0.583963 0.162424 0.767263
Neuron 2 0.642077 0.482657 0.194613 0.933769 0.167704 0.482409 0.938685 0.209894 0.619177 0.359694 0.186694

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output
neuron

0.0292679 0.171265 -0.0204738

Table 5.4.2a Complete ANN G10,2,1 for Problem 2

Testing Sample RMSE Directional correctness Number of Samples

1.25454 56 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.26749 110 200
Table 5.4.2b Performance result of G10,2,1 for Problem 2 on the testing samples

140

5.4.3 Forecasting Problem 3

Table 5.4.3a is the parameter vector of the complete ANN produced following Step 1 to Step 8

on the training and validation sample set of Problem 3. The complete ANN G10,7,1 has ĵ′ = 7

and is trained from seedID = 3 after 23 training iterations. The corresponding results with

performance indicators on the testing sample is listed in the upper row of Table 5.4.3b and the

results on forecasting sample is in the lower row of the table.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.190398 0.443337 0.582247 0.579185 0.146256 0.211177 0.385638 0.569971 0.48278 1.01295 0.0328951
Neuron 2 0.878388 0.65805 0.607833 0.881124 0.489164 0.185209 0.539137 0.338801 0.881392 0.246838 0.0965114
Neuron 3 -0.242191 0.136376 1.03228 1.21114 1.03644 0.481833 1.11992 0.487381 -0.00875052 0.424771 0.418579
Neuron 4 0.704599 0.960257 0.864852 0.345339 0.49042 0.0894278 0.121483 0.0432097 0.118666 0.916029 0.600254
Neuron 5 0.227071 1.06085 0.719177 0.161046 0.509035 0.722609 0.956368 0.550305 0.457381 0.0665518 0.434911
Neuron 6 0.426958 0.889725 0.482792 0.0696612 0.588499 0.454945 0.753524 0.254704 0.260308 0.743121 0.668761
Neuron 7 0.687403 0.219279 0.713396 0.577511 0.124302 1.05727 0.280918 0.224055 0.861022 0.621636 0.166156

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7

Output
neuron

-0.0885371 0.536204 0.387812 -0.809672 -0.113546 -0.00443031 0.0380259 0.110771

Table 5.4.3a Parameter of the best trained complete ANN G10,2,1 for Problem 3

Testing Smaple RMSE Directional correctness Number of Samples

1.18548 51 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.24101 107 200
Table 5.4.3b Performance result of G10,7,1 for Problem 3 on the testing samples

141

5.5 ERP results

Continue with the topology optimisation system described in Section 5.2 to optimise the above

complete ANNs, this section records the results produced by taking the ERP subroutine (Step

9a to 17a) . Each subsection presents the outputs from a problem, including the basic ANN

constructed in Step 9 and the final optimised ANN in Step 17 with the performance indicators.

5.5.1 Forecasting Problem 1

Continue the steps applying ERP on the complete ANN G10,2,1 listed in Table 5.4.1a, the

basic ANN with minimal network Gbasic is produced from Step 9. Table 5.5.1a contains the

parameter vector of Gbasic.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.718879 0 0.340596 0 0 0 0.957463 0 0.130085 0.916669 0
Neuron 2 0.291268 0.619459 0 0.703529 0.999962 0.756335 0 0.329984 0 0 0.329601

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output -0.00157161 0.112988 -0.125494

Table 5.5.1a Parameters of the basic ANN Gbasic for Problem 1

Proceed from Step 10 to Step 17 to construct numbers of topology simplified ANN, the best

performing one is selected to be the topologically-optimised solution Gâ from the system. For

the problem 1,Gâ with parameter vector listed in Table 5.5.1b is produced by adding â = 3.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.717228 0 0.34413 0.174587 0 0 0.958394 0.222858 0.144583 0.91059 0
Neuron 2 0.297778 0.621271 0 0.689794 1.00436 0.755906 0 0.326906 0 0.550684 0.326861

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output -0.0387877 0.0949776 -0.0806881

Table 5.5.1b Parameters of the topology optimised ANN Gâ for Problem 1

The testing-sample performance of the selected Gâ is recorded in the top row of Table

5.5.1c. This result outperforms other candidate simplified ANNs constructed from the different

142

number of arcs added. Finally, in Step 18 of the forecasting system, the topologically-optimised

ANN listed above is applied to the performance evaluation on the forecasting samples . The

bottom row of Table 5.5.1c shows the result from the topologically-optimised ANN.

Testing Sample RMSE Directional correctness Number of Samples

1.20107 57 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.28416 104 200
Table 5.5.1c Performance result of Gâ from ERP for Problem 1 on the testing samples (top)
and forecasting samples (bottom)

While the ERP topology optimisied ANN makes a slightly 0.22% improvement on the

testing samples compared to results from the complete ANN, the performance difference on the

forecasting samples is improved by 3.66% comparing the standardised out-of-sample RMSE in

Table 5.4.1b and Table 5.5.1c. As a result, the forecasting performance is generally improved

over the 200 samples with the topologically-optimised ANN.

143

5.5.2 Forecasting Problem 2

From Step 9, the parameter vector of the basic ANN G10,2,1 obtained by ERP is displayed in

the Table 5.5.2a.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.217297 0.533894 0 0.20332 0.977062 0.772806 0.712451 0.951504 0.583963 0.162424 0.767263
Neuron 2 0.642077 0 0.194613 0 0 0 0 0 0 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output
neuron

0.0292679 0.171265 -0.0204738

Table 5.5.2a Basic ANN Gbasic for Problem 2

Then from Step 10 to Step 17, the topologically-optimised ANN Gâ is found with â = 9.

The Gâ is with the parameter vector in the Table 5.5.2b and the testing sample performance

results in the top row of Table 5.5.2c

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.112558 0.520133 -0.157704 0.278555 1.09974 0.645556 0.697776 0.916615 0.65221 0.177816 0.717335
Neuron 2 0.643738 0.457252 0.198654 0 0.162332 0.505124 0.944115 0.218986 0.595817 0.336425 0.248246

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output
neuron

0.136787 0.498721 -0.40633

Table 5.5.2b Topology optimised ANN Gâ for Problem 2

In Step 18, the performance of the topologically-optimised ANN Gâ on the forecasting

samples for the Problem 2 is evaluated, which is recorded in the bottom row of Table 5.5.2c.

Testing Sample RMSE Directional correctness Number of Samples

1.18774 49 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.28228 111 200
Table 5.5.2c Performance result of Gâ for Problem 2 on the testing samples (top) and on the
forecasting samples (bottom)

144

Comparing the staderdised out-of-sample RMSE between the output of the complete ANN,

the ERP topologically-optimised ANN and target samples in Table 5.4.2b and Table 5.5.2c, we

notice the big improvement on the performance of topologically-optimised ANN when applied

to the testing data, which is 5.33%. However, the performance is not improved when the ERP

optimised ANN is applied to the forecasting data.

145

5.5.3 Forecasting Problem 3

Subsequently the basic ANN GT with parameter vector in Table 5.5.3a is produced from Step

9.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.190398 0 0 0 0 0 0 0 0 1.01295 0
Neuron 2 0.878388 0 0 0 0 0 0 0 0.881392 0 0
Neuron 3 -0.242191 0 1.03228 1.21114 1.03644 0 1.11992 0 0 0 0
Neuron 4 0.704599 0.960257 0 0 0 0 0 0 0 0 0
Neuron 5 0.227071 0 0 0 0 0 0 0.550305 0 0 0
Neuron 6 0.426958 0 0 0 0 0 0 0 0 0 0.668761
Neuron 7 0.687403 0 0 0 0 1.05727 0 0 0 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7

Output
neuron

-0.0885371 0.536204 0.387812 -0.809672 -0.113546 -0.00443031 0.0380259 0.110771

Table 5.5.3a Parameters of the basic ANN Gbasic for Problem 3

Next from Step 10 to Step 17 of the system, the topologically-optimised ANN Gâ is found

for â = 46. The optimised network has parameter vector listed in Table 5.5.3b and its corre-

sponding testing sample performance indicators is recorded in the top row of Table 5.5.3c.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.0754125 0.490469 0.349621 0.454131 0.294076 0.303452 0.376267 0.411164 0.528946 1.25533 -0.166286
Neuron 2 0.994978 0.508483 0.662756 0.98752 0.475662 0 0.545469 0.661029 0.980859 0.529205 0.139557
Neuron 3 -0.50002 -0.0672461 0.922691 1.15628 1.15691 0.0937933 1.00352 0.601595 -0.035826 0.332981 0.535932
Neuron 4 0.766139 0.984672 0.945408 0.487787 0 0.10434 -0.0303194 -0.0929022 0.20281 0.793751 0
Neuron 5 0.221132 1.06622 0.710441 0 0.517782 0.72652 0 0.551614 0.466201 0.0830251 0
Neuron 6 0.331632 0.988325 0 0 0 0.457856 0 0.290079 0.2343 0.81104 0.655909
Neuron 7 0.635789 0 0.789786 0.480149 0.224333 1.17285 0 0.333422 0.861482 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7

Output
neuron

-0.121599 0.62743 0.539339 -0.966876 -0.604769 0.0118163 0.334202 0.211392

Table 5.5.3b Parameters of the topology optimised ANN Gâ for Problem 3

Last in Step 18, the performance of Gâ on the forecasting samples is calculated and shown

in the bottom row of the Table 5.5.3c.

The improvement of the ERP topologically-optimised ANN from the complete ANN, accord-

ing to the standardised out-of-sample RMSE in Table 5.4.3b and Table 5.5.3c, is approximately

0.83% on the testing data and 0.5% on the forecasting data.

146

Testing Sample RMSE Directional correctness Number of Samples

1.17569 51 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.2348 112 200
Table 5.5.3c Performance result of Gâ for problem 3 on the testing samples (top row) and the
forecasting samples

147

As the performance results indicated in Table 5.5.1c for problem 1, Table 5.5.2c for problem

2 and Table 5.5.3c for problem 3, in all three simulations the ERP topologically-optimised ANNs

have outperformed the complete ANN. These empirical results conclude that ERP can improve

the generalisation performance of a complete ANN by constructing the topologically-optimised

ANN with reduced number of aces between the input and the hidden layer.

5.6 CERP results

This section records the output produced by taking the CERP sub-routine (Step 9a to 17a)

of the topology optimisation system to optimise the complete ANNs in Section 5.3. Each

subsection presents the final optimised topology in Step 17 with the performance indicators.

Recall that both ERP and CERP construct a unique basic ANN from the samples so it is not

shown repetitively in the following subsections.

5.6.1 Forecasting Problem 1

Applying CERP on the complete ANN listed in Subsection 5.4.1 for Problem 1, the process

first constructs the basic ANN as displayed in Table 5.5.1a. The subsequent arc re-connection

follows the loop described in Step 15b of the system takes only 1 iteration to reach a solution.

Table 5.6.1a shows the testing sample performance along with the iteration number:

Iteration Number 0 1
Testing Sample RMSE 0.930974 0.908024

Table 5.6.1a Iteration number to the performance on testing samples from the corresponding
topology produced during the loop of CERP.

The configuration of CERP subroutine in the system has set that for each iteration, the

CERP adds 1 arc on the optimal ANN chosen from the previous iteration. The loop of CERP

terminates after 1 iteration means the result ANN has 1 arc added onto the basic ANN. The

parameter vector of the result is shown in Table 5.6.1b and the performance indicators on

testing sample is in Table 5.6.1c

148

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.717715 0 0.345766 0 0 0 0.959179 0 0.146889 0.909022 0
Neuron 2 0.298289 0.620139 0 0.691102 1.00907 0.753851 0 0.325043 0 0 0.321553

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output
neuron

-0.0493728 0.0557513 -0.0314627

Table 5.6.1b Parameter vector of Gâ from CERP for Problem 1

The bottom row of Table 5.6.1c shows the performance results from applying the Gâ on the

forecasting sample which is to be compared with performance results from the complete ANN

G10,2,1 in Table 5.4.3

standardised Testing Sample RMSE Directional correctness Number of Samples

1.20133 59 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.27887 105 200

Table 5.6.1c Performance of Gâ produced from CERP on the testing samples (top row) and
the forecasting samples (bottom row) for Problem 1

Finally, we can meausre the performce difference of the complete ANN and the CERP

optimised ANN from the value of standardised out-of-sample RMSE. For the CERP optimised

ANN, the performance is improved 0.20% on the testing data and 4.05% on the forecasting

data.

149

5.6.2 Forecasting Problem 2

From the sample training sets of problem 2, the basic ANN described in Table 5.5.2a is built,

from which the CERP takes only one iteration before the arc re-connection iteration is termi-

nated, as it is recorded in Table 5.6.2a:

Iteration Number 0 1
Testing Sample RMSE 1.256835428 1.21739

Table 5.6.2a Iteration number to the performance on testing samples from CERP intermediate
steps

The corresponding parameter vector of the result Gâ from CERP is recorded in Table 5.6.2b

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 0.189768 0.528682 0 0.223925 1.00127 0.752253 0.705395 0.946737 0.602595 0.162614 0.759973
Neuron 2 0.641108 0 0.206542 0 0 0 0.941407 0 0 0 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2

Output
neuron

0.0472913 0.209364 -0.217389

Table 5.6.2b Parameter vector of Gâ from CERP for Problem 2

From the Gâ, the performance on the testing sample indicators are listed in the top row of

Table 5.6.1c; the performance on the forecasting samples are listed in the bottom tow of Table

5.6.2c

standardised Testing Smaple RMSE Directional correctness Number of Samples

1.21739 56 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.28969 110 200

Table 5.6.2c Performance of Gâ produced from CERP on the testing samples (top row) and
the forecasting samples (bottom row) for Problem 2

According to the change between the standardised out-of-sample RMSE listed in Table

5.4.2b and Table 5.6.2c, the performance of the CERP optimised ANN on the testing data is

150

significantly improved by 2.96% compared as the complete ANN but no improvement on the

forecasting data in terms of RMSE.

151

5.6.3 Forecasting Problem 3

For the basic ANN constructed from datasets of Problem 3, CERP takes 7 iterations to produce

the optimised ANN. The detail with iteration are shown in Table 5.6.3a

Iteration Number 0 1 2 3 4 5 6 7
Testing Sample RMSE 1.476095 1.377691 1.296116 1.274964 1.253709 1.219632 1.219012 1.20646

Table 5.6.3a Iteration number to the performance on testing samples from CERP intermediate
steps

The parameter vector of the topologically-optimised ANN Gâ produced from CERP is

recorded in Table 5.6.3b.

Input to
hidden
layer

Bias Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Neuron 1 1.98156 0 0 0.137113 0 -1.54246 0 -0.114671 0 0.195466 0
Neuron 2 -0.156039 0 0 0 0 0 0 0 0.13805 0 0
Neuron 3 -3.20723 0 1.38972 2.50967 1.0019 0 -0.324854 0 0 0 0
Neuron 4 3.03371 1.97453 0 0 0 0 0 0 0 0 0
Neuron 5 2.78733 0 0 0 1.4579 0 0 0 0 0 2.54096
Neuron 6 -2.08238 0 0 0 0 1.74176 0 0 0 0 0
Neuron 7 1.89047 0 0.115946 0 0 0 0 1.38926 -0.104086 0.355344 0

Hidden
to output
layer

Bias Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7

Output
neuron

0.320631 4.15035 3.15644 -0.786137 -0.165435 -0.336006 3.88299 0.607364

Table 5.6.3b Parameter vector of Gâ from CERP for Problem 3

The corresponding performance of the Gâ on the testing samples is listed in the top row of

Table 5.6.3c; the performance of the Gâ on the forecasting samples is listed in the bottom tow

of Table 5.6.3c

standardised Testing Smaple RMSE Directional correctness Number of Samples

1.20646 - 100

Forecasting Sample RMSE Directional correctness Number of Samples

1.31697 - 200

Table 5.6.3c Performance of Gâ produced from CERP on the testing samples (top row) and
the forecasting samples (bottom row) for Problem 2

According to the value of standardised out-of-sample RMSE listed in Table 5.4.2b and Table

5.6.2c, for problem 3, the CERP with a single-arc addition implementation fails to optimise the

152

complete ANN as the CERP iterations terminate on an ANN with a testing data RMSE worse

than the complete ANN. Therefore, the network produced in Table 5.6.3b is not topologically

optimised.

153

5.7 Robustness test

From the previous simulations, we have obtained 3 different ANNs from each of the three

FX forecasting problems: a complete ANN, an ERP optimised ANN and a CERP optimised

ANN. An immediate question emerges: how robust the ANN is - can the ANN be performed

consistently well on data from a different period of time?

With the parameter vectors recorded in Table 5.4.1a to Table 5.6.3b, we can gauge the

robustness of the ANNs by applying each topology on the out-samples of all three problems.

Table 5.7 shows the results of this.

Problem 1 Problem 2 Problem 3

Problem 1
Complete ANN 1.33289 1.29396 1.25116
ERP-opt ANN 1.28416 1.29772 1.24685

CERP-opt ANN 1.27887 1.29862 1.2481

Problem 2
Complete ANN 1.34585 1.26749 1.27778
ERP-opt ANN 1.48942 1.28228 1.28987

CERP-opt ANN 1.39189 1.28969 1.29857

Problem 3
Complete ANN 1.60497 1.29961 1.24101
ERP-opt ANN 1.71889 1.38116 1.2348

CERP-opt ANN 1.56151 1.55825 1.31697

Table 5.7 Performance comparison on the robustness test

From Table 5.7, we can conclude that in terms of the forecasting RMSE, the topologies

obtained from its original problem has consistently (highlighted in red) outperformed the other

topologies. This suggests that if the underlying sampling period for the FX forecasting problems

has changed, the ANN must be promptly retrained as well.

154

5.8 Comparative study of ANN and AR model

Timmerman’s results [12] have shown that on forecasting US stock returns, the complete ANNs

deliver a superior out-of-sample forecasting performance than some naive forecasting methods

including the AR models. In our research it is also interesting to compare the performance of

the complete ANN and the topology optimised ANN with the AR models on the problems of

FX forecasting.

We constructed three sets of 1000 input-target sample pairs for the tests on ANNs and AR

models. The inputs are (R1
t−4, R

1
t−3, R

1
t−2, R

1
t−1, R

1
t), which are the Eur/USD 1 Day Returns on

day t− 4, t− 3, t− 2, t− 1, t respectively, and the corresponding target is R1
t+1. The data pairs

are sampled for the same periods of times as the three forecasting problems listed in Section

5.2.

For the comparative study, the same system designed in Section 5.3 is applied for building

the 5 input ANNs. The training, validation, testing and forecasting datasets are divided in the

same proportion as the problems in Section 5.2.

An AR(5) model is built: R1
t+1 = c+

∑4
i=0wiR

1
t−i+ ε, where Rt is Eur/USD 1 Day Return

on day t, c is a constant, wi are the parameters and ε is the white noise. The rolling window

approach is applied for AR(5), which uses a fixed-length window of the most recent 120 data

samples to estimate the parameters (c, w) of the model and then predicts the target conditional

on those parameter estimates.

Given the data pairs constructed above, the AR(5) is applied and the standerdised RMSE

measurement between the the predictions and the targets is compared with the corresponding

ANN forecasting results. Table 5.8 summrise the out-of-sample performance from the ANN

topologies and the AR(5) on all three problems.

Table 5.8 indicates that for the data pairs 1 and the data pairs 2, all ANN topology has

superior out-of-sample RMSE performance compare to the AR(5) models. For the data pairs 3,

the system fails to find a good complete ANN, however, both ERP and CERP can optimise the

155

Problem 1 Problem 2 Problem 3

Complete ANN 1.29006 1.31223 1.29897
ERP optimised ANN 1.28378 1.30483 1.26925

CERP optimised ANN 1.30398 1.30158 1.27583
AR(5) 1.31355 1.32534 1.28591

Table 5.8 Out-of-sample RMSE of ANN and AR(5)

Problem 1 Problem 2 Problem 3

Complete ANN 110 106 105
ERP optimised ANN 116 112 117

CERP optimised ANN 104 105 107
AR(5) 105 110 105

Table 5.9 Out-of-sample directional correctness (out of 200 samples) of ANN and AR(5)

ANN to produce a better performing topology compare to AR(5) in terms of the out-of-sample

forecasting performance

5.9 Summary and comparison of simulation results

In this chapter we have built a system for constructing, training, selecting and topology opti-

mising ANN for the FFP with FX market data. The system is tested on three FX forecasting

problems. For each of the problem sets, an optimally performing complete ANN is constructed

and trained, which becomes the subject of topology optimisation simulation. The two ANN

reduction applications: ERP and CERP are applied in turn, producing topologically-optimised

ANNs with a reduced number of network connectivities. As a conclusion to the simulation,

we summarise all the performance results from the complete ANN and from the topologically-

optimised ANNs produced by ERP and CERP given each problem dataset, which is listed in

Table 5.10.

Because ANNs are huristic (approximatly local optimal) and not not necessarily optimal, it

is possible to impose a constraint (e.g. ERP and CERP) and the results to improve. Clearly,

this would not have been a possible outcome if the complete ANNs were globally optimal and

not local optimal.

156

According to Table 5.10, comparing the out-of-sample RMSE of the topologically-optimised

ANNs obtained through ERP and CERP, a mixed result can be found. As the amount of

improvement in RMSE evaluation for both testing sample or forecasting sample is varied,

although in many cases ERP performs better in terms of the RMSE, CERP has also had some

good results. This mixed comparison has verified our discussion at the end of Section 3.2

in Chapter 3, while the implementation of CERP has allowed for more number of training

iterations than ERP, CERP does not account for the combined effect of the arcs as much as

ERP does.

While there is no significant line to conclude whether ERP or CERP is better than the

other, for all three problems, ERP produces a topologically-optimised ANN with improved

performance compared to the selected optimally performing complete ANNs in terms of the

testing samples; for problem 1 and problem 2, CERP produces a topologically-optimised ANN

with improved performance. Note although it is indicated from the result of problem 2, a

topology with improved testing sample performance may not produce a better forecasting

performance, in more general cases (including the results from robustness test in Section 5.7

and comparative tests in Section 5.8) the forecasting performance is positively correlated to

the testing sample performance. These evidently shows the outcome of this research that

the proposed ANN reduction and its application can improve the generalisation performance

of a complete ANN by optimising the topological graph subject to a reduced number of arc

connectivities and the degree of freedom.

Further more, we have tested the robustness of the ANN topologies and compared the

ANNs with an AR(5) models. The results shows that any ANN topology must be promptly

retrained if the underlying data is changed and all ANN topology delivers superior out-of-sample

performance than AR(5).

157

Testing Data Samples (In-sample)
Problem Topology Standardised RMSE % improvement (RMSE) Directional correctness (out of 100 samples)

Complete 1.20372 56
1 ERP 1.20107 0.22% 57

CERP 1.20133 0.20% 59

Complete 1.25454 56
2 ERP 1.18774 5.33% 49

CERP 1.21739 2.96% 56

Complete 1.18548 51
3 ERP 1.17569 0.83% 51

CERP 1.206461 - -

Forecasting Data Samples (Out-of-Sample)
Problem Topology Standardised RMSE % improvement (RMSE) Directional correctness(out of 200 samples)

Complete 1.33289 83
1 ERP 1.28416 3.66% 104

CERP 1.27887 4.05% 105

Complete 1.26749 110
2 ERP 1.28228 -1.17% 111

CERP 1.28969 -1.75% 110

Complete 1.24101 107
3 ERP 1.2348 0.50% 112

CERP 1.316971 - -
Table 5.10 Summary of performance evaluation for the selected complete ANN, and the topologically-optimised ANNs produce from
ERP and CERP.

1This network is not topologically optimised from CERP with the single-arc addition implementation.

158

Chapter 6

Conclusion

6.1 Introduction

Using machine learning algorithms for financial data forecasting has long been an intriguing

topic. In this thesis we are particularly focused on discussing the work related to a category

of these learning algorithms, namely the ANN model. Inspired from the interconnectivity

of neurons in the human brain, the ANN model is constructed in ways similar to that of

human learning processes with supervision. The actual performance of training and forecasting

is determined by the ANN’s topology, which is the interconnection between the processing

elements (activation functions of hidden neurons) and their parameters (weights of connections).

We discussed in the work of Cybenko and Bishop, who both proved that any function

can be approximated with arbitrary accuracy by a feed-forward ANN with single-hidden-layer

and hyperbolic tangent activation function on the hidden neurons. We also compared several

learning processes for training the ANN system and selected a nonlinear conjugate gradient

method with an associated implementation based on an inexact line search developed by Hanger

and Zhang. These become the basis for all implementation of ANN topology, training and

simulation throughout the research phase of this thesis.

A key issue remains to define the capability of ANN in solving the FFP, in view of the

159

fact that the models usually train well in-sample but perform poorly in generalisation (out-

of-sample). This is because the network’s parameters often over-fit the in-sample data by the

training process, but the model is insufficiently fitted to the underlying signal and performs

poorly out-of-sample in forecasting applications.

The cause of this problem is that in many practical forecasting situations, an exact relation-

ship between the input sample and the target data is not possible to be determined. Especially

in the case of the FFP, training samples involve financial data which contains market noise

which significantly affect any input-target relation. The stochastic nature of financial data also

means the relationship is changing overtime. Therefore, in order to construct a good approxi-

mation model from a given training dataset, the ANN topology is often configured with more

than sufficient degree of freedom by over-specifying the number of parameters rather than try-

ing to find the necessary size, so that the model can be trained well by the information enclosed

within the training set, which means that the extra degrees of freedom are trained on random

noise. While the noise-trained parameters are fitted for approximating in-sample data, they

produce a large error on the out-of-sample data.

The objective of this thesis is to explore a new approach to improve the generalisation per-

formance of ANN models through optimising the ANN graph theoretic topological structure.

As a result, a concept of a heuristic approach is proposed for optimising a complete ANN by

altering its arc connectivities within a suitable range. This is in contrast to the conventional

approaches of reducing the model’s degrees of freedom. Albeit the approaches in the literature

have similar objectives, none has produced an effective algorithm for optimising ANN applica-

tions in the financial field. Therefore, a more effective process on ANN topology optimisation

needed to be found to fill-in this gap, particularly in applications to the FFP.

6.2 Theoretical framework and implementation

The design of the new topology optimisation algorithm, ANN reduction, is inspired from the

class of λ-optimal algorithms for solving the TSP. Similar to the applications of λ-optimal in

160

TSP, the ANN reduction algorithm involves both arc disconnection and arc reconnection on

the graph of the target complete ANN. The algorithm heuristically improves the out-of-sample

performance of the ANN by altering a number of connections and the topology.

In the thesis, the ANN reduction algorithm is discussed along with a constraint that the

vertex/layer topology of the target ANN is fixed. The constraint is in place so that all hidden

neurons are kept connected with at least one input and output during the optimisation process.

This implies that the number of neurons in the post-optimised topology is not changed from

the pre-specified complete ANN. A network topology with a minimal number of connections

which satisfy the above constraint is defined as a basic ANN.

An abstract design of ANN reduction algorithm is developed in two stages: 1) Basic ANN

construction phase and 2) Arc re-connection phase

Basic ANN construction stage . Finds the optimal network with a minimum degree of

freedom by performing arc disconnection on the complete ANN. While the disconnection

is performed, a number of network structures that satisfy the static vertex constraints is

produced. The best performing one is recorded as the basic ANN and also is a candidate

solution of the topology optimisation called simplified ANN with the minimal degree of

freedom.

Arc re-connection stage . Constructs new networks by reconnecting a specific number of

previously disconnected arcs on the base ANN. An optimal structure is selected from

many networks constructed this way and also becomes the simplified ANN with the

specified degree of freedom. This phase is repeated with different numbers of arcs in the

reconnection and is terminated when all possible numbers have been considered. The

output of the topology optimisation is selected from all simplified ANN constructed, and

the one with the best out-of-sample performance is selected, where the "out-of-sample"

performance is measured on a subset of the reserved out-of-sample instances.

Following the abstract design of the ANN reduction algorithm, two applications are imple-

mented, namely ERP and CERP. While both of the two applications use the same procedure

161

for building the basic ANN, the ERP executes the arc re-connection phase similarly to what

was described in the abstract design. CERP alters the abstract design by cascading a series of

single arc re-connection processes to perform progressive optimisation.

For the purpose of practical implementation, in designing the two applications we have

discussed several simplifications. The most important simplification that has been applied is

at the basic ANN construction stage. This stage, which applied to both ERP and CERP, is

a systematic process of pruning connections from the trained complete ANN, retaining only

connections associated with heavy weighted parameters. The objective of the pruning process

is to search for a network which has the minimal number of arcs to satisfy the static vertex

constraint and has the maximum sum of weights from all possible arc combinations. The search

result is retrained to become the basic ANN for the arc re-connection phase and the simplified

ANN for performance comparison.

ERP executes arc re-connection by reconnecting a specified number of arcs simultaneously

and randomly from the basic ANN. Because there is a huge number of potential combinations,

as a simplification, a large but limited number of networks are constructed from the random

process. These networks are accessed so the best performing ones are retrained and become a

simplified ANN. The arc re-connection is then repeated with a different number of arcs specified

for reconnection. All simplified ANN are compared to select the best as the output of ERP.

CERP executes arc re-connection by reconnecting only a small number of arcs initially

on the basic ANN so that networks with all combination can be constructed, retrained and

compared. If the best performing construction shows a performance improvement from the

basic ANN, the best performing network is applied with further arc re-connection (with a small

number of arcs again) until no further improvement can be found. The progressively improved

network is a unique solution and is the output of CERP.

Both applications aim for the same objective of finding the ANN graph with an optimal

degree of freedom to produce a better generalisation performance compared to the complete

ANN with the same vertex/layer topology. Depending on the complexity of the forecasting

problem, the algorithm find some near-optimal solutions to it. Because the two applications

162

use different approaches, the output graphs from the two may be different.

6.3 Empirical evidence

We demonstrated the effectiveness of the ANN reduction algorithm through some simulations.

For this purpose, a total of five datasets collected from various forecasting problems have been

used for testing the two topology optimisation applications. Among the five datasets, two are

generated from non-trivial "designed" functions; The other three datasets are obtained from

the FX market for different time periods.

For the data samples generated from the designed functions, two functions are designed in

the ways that they cannot be approximated easily by the ANNs. One dataset is produced from

each of the functions. Within every input-target sample pair, the inputs are randomly generated

values and the target is a corresponding output calculated according to the function given the

inputs. Each dataset is then randomly distributed into three subsets: training, validating and

testing for the simulation process.

For the data samples obtained from the FX market, the raw data are daily exchange prices

across major currency countries over three non-overlapping periods. To build the forecasting

problems, some raw data is transformed into technical indicators which are widely accepted

in the industry for analysing and forecasting future returns. The input-target sample pairs

consist of those technical indicators as the inputs and the actual exchange return at that time

is the target. To mimic a realistic FFP with noisy and stochastic time series, each dataset

are segmented into four subsets: training, validating, testing and forecasting, according to the

sample order in time.

Throughout the simulations, the generalisation performance of the network structures is

evaluated by the RMS difference between the outputs of ANN and the corresponding target

samples of the testing set.

The simulation is initiated by constructing a complete ANN model from each data with the

163

number of inputs and the number of outputs fixed by the training sample pairs. The topology

of the complete ANN is determined by testing using different numbers of neurons in the hidden

layer and is trained with many random initial training positions in order to produce a complete

graph with the best performance. ERP and CERP are then applied in turn on the complete

ANN to perform topology optimisation on the best performing complete ANN produced.

The simulation results on all five problems (both function generated data and FX data)

have shown that ERP produce topologically-optimised ANNs which have better generalisa-

tion performance compared to the complete ANN. Although CERP with a single-arc addition

implementation has only successfully produced topology optimised network in three cases, a

possible course to improve this is to apply a revision on the arc addition process, which involves

restarting the process by altering one or more previously added arcs.

We have analysed the performance plot and discussed the reason in terms of the combina-

torial effects. Furthermore, on the three FX datasets, the complete ANN and the topologically-

optimised ANNs are tested with the forecasting samples to evaluate their performance in solving

the FFP. The RMSE evaluation on the test results has shown that all topologically-optimised

ANNs produce some level of improvement in the forecasting performance compared to the com-

plete ANNs. These results provide evidence to support our research objective in development

of ANN reduction and the related implementations of ERP and CERP.

6.4 Limitation and future research

This research was conducted following a comprehensive study of ANN background including

the structural design, training methodologies, generalisation issues, and existing methodologies

for topology optimisations. Then the research focused on developing the theoretical framework

for a heuristic algorithm: ANN reduction, for optimising single hidden layer ANNs with a static

vertex/layer feed-forward topology and this was followed by implementations of the algorithms,

ERP and CERP. Finally, the algorithms were evaluated on financial data forecasting problems

to demonstrate the performance of the purposed algorithm. As a consequence of the research

164

methodology, scope and implementation, the study has encountered a number of limitations,

which can be considered in future research:

1. Further work towards dynamic topology optimisation: In this regard it may just be

possible using a piecewise linearised approximation to the transfer function, to formulate

small ANN-design problem as mixed integer programs and solve these optimally for small

sizes. Much can be learned from such an approach, especially in providing an absolute

comparison with heuristic techniques.

2. Extend from single hidden layer feed-forward topology: ANN reduction is discussed on

the basis of optimising single hidden layer feed-forward structures. Although the globe

approximation theorem has supported the use of such structure for approximating prob-

lems, it is highly likely that the optimal ANN for a given number of vertices and arcs is

not a single hidden-layer structure, and the exact (small-size) solution mentioned above

may lead to more exotic but also more effective graph topologies.

3. Effect of noise: it is axiomatic that noise reduces the effectiveness of any forecasting

system. There are very few studies in the literature that consider this issue by performing

carefully controlled injection of noise in a simulated environment and noting the different

ANN structures that result for the same problem but at different noise levels. This is

particularly important if ANNs are to be used more successfully in financial forecasting

since, perhaps more important than the forecast itself, is the robustness of the forecasts

and how this robustness is impacted by noise.

165

Bibliography

[1] Chou, Y. (1975). Statistical Analysis. Holt International.

[2] B. G. Malkei (1999). A Random Walk Down Wall Street, 7th ed.

[3] E. Maasoumi and J. Racine (2002). Entropy and Predictability of Stock Market Returns,

Journal of Econometrics.

[4] E. Fama (1970). Efficient Capital Markets: A Review of Theory and Empirical Work,

Journal of Finance 25 (2): 383–417.

[5] E. Fama (1965). The Behavior of Stock Market Prices, Journal of Business 38: 34–105.

[6] P. Samuelson (1965). Proof That Properly Anticipated Prices Fluctuate Randomly, Indus-

trial Management Review 6: 41–49.

[7] Lo and MacKinlay (1999). A Non-Random Walk Down Wall Street.

[8] Dreman and Berry (1995). Overreaction, Underreaction, and the Low-P/E Effect, Finan-

cial Analysts Journal 51 (4): 21–30.

[9] E Gately (1995). Neural networks for financial forecasting.

[10] Odom and Sharda (1990). A neural network model for bankruptcy prediction. IJCNN

International Joint Conference on Neural Networks 163 - 168 vol.2.

[11] Cao and Tay (2001). Financial Forecasting Using Support Vector Machines. Neural Com-

puting & Applications Volume 10, Number 2, 184-192.

166

[12] Timmermann, A. (2008). Elusive return predictability. International Journal of Forecast-

ing, 24(1), 1-18.

[13] Box, G. E. ., Jenkins, G. M., & Reinsel, G. C. (1976). Time series analysis. Holden-day

San Francisco.

[14] Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models (Vol. 3). Wiley On-

line Library.

[15] Nahmias, S., & Nahmias, S. (2004). Production and Operations Analysis with Student CD

(5th ed.). McGraw-Hill/Irwin.

[16] Mitchell, T. (1997). Machine Learning. New York: McGraw-Hill.

[17] McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous

activity. Bulletin of mathematical biology, 52(1-2), 99-115.

[18] Cheng, W., Wagner, L., & Lin, C. H. (1996). Forecasting the 30-year US treasury bond

with a system of neural networks. Journal of Computational Intelligence in Finance, 4(1),

10–16.

[19] Kutsurelis, J. (1998). Forecasting financial markets using neural networks: An analysis of

methods and accuracy. Naval postgraduate school monterey ca.

[20] Moody, J. (1995). Economic forecasting: Challenges and neural network solutions. Pro-

ceedings of the International Symposium on Artificial Neural Networks.

[21] Yao, J., & Tan, C. L. (2000). A case study on using neural networks to perform technical

forecasting of forex. Neurocomputing, 34(1), 79–98.

[22] Chitra, A., & Uma, S. (2010). An Ensemble Model of Multiple Classifiers for Time Series

Prediction. International Journal of Computer Theory and Engineering, 2, 454–458.

[23] Shakhnarovich, G. (2005). Nearest-neighbor methods in learning and vision theory and

practice. Cambridge, Mass, MIT Press,.

167

[24] Toni, T.; Welch, D.; Strelkowa, N.; Ipsen, A.; Stumpf, M.P.H., & Toni, T.; W. (2009).

Approximate Bayesian computation scheme for parameter inference and model selection

in dynamical systems. Journal of the Royal Society Interface, 6(31)

[25] Drucker, H., Burges, C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector

regression machines, advances in neural information processing systems, 9, 156-161.

[26] Muller, K. R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J., & Vapnik, V. (1999).

Using support vector machines for time series prediction. Advances in kernel methods:

Support vector learning, 253.

[27] Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 44(1.2), 206 –226.

[28] Ghahramani, Z. (2004). Unsupervised learning. Advanced Lectures on Machine Learning,

72–112.

[29] Dayan, P. (1999). Unsupervised learning. The MIT Encyclopedia of the Cognitive Science.

MIT.

[30] Cooper, M. (1999). Filter rules based on price and volume in individual security overreac-

tion. Review of Financial Studies, 12(4), 901–935.

[31] Krollner, B., Vanstone, B., & Finnie, G. (2010). Financial time series forecasting with ma-

chine learning techniques: A survey. European Symposium on Artificial Neural Networks:

Computational and Machine Learning.

[32] Moody, J., & Utans, J. (1994). Architecture selection strategies for neural networks: Ap-

plication to corporate bond rating prediction. Neural networks in the capital markets (pp.

277–300).

[33] Dutta, S., & Shekhar, S. (1988). Bond rating: A nonconservative application of neural

networks. Neural Networks, 1988., IEEE International Conference on (pp. 443–450).

168

[34] Callen, J. L., Kwan, C. C. ., Yip, P. C. ., & Yuan, Y. (1996). Neural network forecasting

of quarterly accounting earnings. International Journal of Forecasting, 12(4), 475–482.

[35] Kim, K., & Han, I. (2000). Genetic algorithms approach to feature discretization in arti-

ficial neural networks for the prediction of stock price index. Expert Systems with Appli-

cations, 19(2), 125–132.

[36] Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and

bonds. Journal of financial economics, 33(1), 3–56.

[37] Officer, R. R. (1972). The Distribution of Stock Returns. Journal of the American Statis-

tical Association, 67(340), 807-812. doi:10.2307/2284641

[38] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. Bulletin of mathematical biology, 5(4), 115–133.

[39] Anderson, J. A., & Davis, J. (1995). An introduction to neural networks (Vol. 1). MIT

Press.

[40] Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Psycholog-

ical and biological models (Vol. 2). The MIT press.

[41] Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized

populations of model neurons. Biophysical journal, 12(1), 1–24.

[42] Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming (1st ed.). Athena

Scientific.

[43] Bishop, C. M. (1995). Neural networks for pattern recognition.

[44] Gibson, G. J., & Cowan, C. F. N. (1990). On the decision regions of multilayer perceptrons.

Proceedings of the IEEE, 78(10), 1590–1594.

[45] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathemat-

ics of Control, Signals, and Systems (MCSS), 2(4), 303–314.

169

[46] Irie, B., & Miyake, S. (1988). Capabilities of three-layered perceptrons. Neural Networks,

1988., IEEE International Conference on (pp. 641–648).

[47] Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences, 79(8), 2554.

[48] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8), 1735–1780.

[49] Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), 533–536.

[50] Fletcher, R., & Reeves, C. (1964). Function minimization by conjugate gradients. The

computer journal, 7(2), 149–154.

[51] Polak, E., & Ribiere, G. (1969). Note sur la convergence de directions conjugates, Rev.

Franataise Informat. Recherche Opertionelle, 3e annate, 16, 35–43.

[52] A New conjugate gradient method with guaranteed descent and an efficient line search -

WW Hager, H Zhang (2006)

[53] Everitt, B. S., & Skrondal, A. (2002). The Cambridge dictionary of statistics. Cambridge:

Cambridge.

[54] Chitra, A., & Uma, S. (2010). An Ensemble Model of Multiple Classifiers for Time Series

Prediction. International Journal of Computer Theory and Engineering, 2, 454–458.

[55] Rumelhart, D. E. (1985). Learning internal representations by error propagation. DTIC

Document.

[56] Castellano, G., Fanelli, A. M., & Pelillo, M. (1997). An iterative pruning algorithm for

feedforward neural networks. Neural Networks, IEEE Transactions on, 8(3), 519–531.

[57] Kung, S., & Hwang, J. (1988). An algebraic projection analysis for optimal hidden units

size and learning rates in back-propagation learning. Neural Networks, 1988., IEEE Inter-

national Conference on (pp. 363–370).

170

[58] Plaut, D. C., & Hinton, G. E. (1987). Learning sets of filters using back-propagation.

Computer Speech & Language, 2(1), 35–61.

[59] Burr, D. J. (1988). Experiments on neural net recognition of spoken and written text.

Acoustics, Speech and Signal Processing, IEEE Transactions on, 36(7), 1162–1168.

[60] Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), 533–536.

[61] Yu, X.-H. (1992). Can backpropagation error surface not have local minima. IEEE Trans-

actions on Neural Networks, 3(6), 1019-1021. doi:10.1109/72.165604

[62] LippmaANN, R. P. (1987). An introduction to computing with neural nets. ARIEL, 209,

115–245.

[63] Emmerson, M. D., & Damper, R. (1993). Determining and improving the fault tolerance

of multilayer perceptrons in a pattern-recognition application. Neural Networks, IEEE

Transactions on, 4(5), 788–793.

[64] Reed, R. (1993). Pruning algorithms-a survey. Neural Networks, IEEE Transactions on,

4(5), 740–747.

[65] Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization? Neural

computation, 1(1), 151–160.

[66] Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., & Hopfield, J.

(1987). Large automatic learning, rule extraction, and generalization. Complex systems,

1(5), 877–922.

[67] Chauvin, Y. (1990). Generalization performance of overtrained back-propagation networks.

Neural Networks, 45–55.

[68] Towell, G. G., Craven, M. W., & Shavlik, J. W. (1991). Constructive induction in

knowledge-based neural networks. Proc. Eighth Intl. Workshop Machine Learning (pp.

213–217).

171

[69] LeCun, Y., & others. (1989). Generalization and network design strategies. CoANNection-

ism in perspective, 143–155.

[70] Towell, G., & Shavlik, J. W. (1992). Interpretation of Artificial Neural Networks: Mapping

knowledge-based Neural Networks into Rules. Advances in Neural Information Processing

Systems, pp. 977-984, Denver, CO. Morgan KaufmaANN.

[71] Xu, J., & Ho, D. W. C. (2006). A new training and pruning algorithm based on node

dependence and Jacobian rank deficiency. Neurocomputing, 70(1-3), 544–558.

[72] Narasimha, P. L., Delashmit, W. H., Manry, M. T., Li, J., & Maldonado, F. (2008). An

integrated growing-pruning method for feedforward network training. Neurocomputing,

71(13-15), 2831–2847.

[73] Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and

the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4), 929–965.

[74] Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L. (1989). A general lower bound

on the number of examples needed for learning. Information and Computation, 82(3),

247–261.

[75] Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the Uniform Convergence of Relative

Frequencies of Events to Their Probabilities. Theory of Probability and its Applications,

16(2), 264. doi:10.1137/1116025

[76] Zhang, J., & Morris, A. (1998). A sequential learning approach for single hidden layer

neural networks. Neural networks, 11(1), 65–80.

[77] Kadirkamanathan, V., & Niranjan, M. (1993). A function estimation approach to sequen-

tial learning with neural networks. Neural Computation, 5(6), 954–975.

[78] Chung, F., & Lee, T. (1995). Network-growth approach to design of feedforward neural

networks. Control Theory and Applications, IEE Proceedings- (Vol. 142, pp. 486–492).

172

[79] Platt, J. (1991). A resource-allocating network for function interpolation. Neural compu-

tation, 3(2), 213–225.

[80] Buhmann, & Martin D. (2003). Radial Basis Functions: Theory and Implementations.

Cambridge University Press.

[81] Tin-Yau Kwok, & Dit-Yan Yeung. (1997). Constructive algorithms for structure learning

in feedforward neural networks for regression problems. IEEE Transactions on Neural

Networks, 8(3), 630-645.

[82] Ash, T. (1989). Dynamic Node Creation in Backpropagation Networks. Connection Sci-

ence, 1(4), 365-375.

[83] Azimi-Sadjadi, M. R., Sheedvash, S., & Trujillo, F. O. (1993). Recursive dynamic node

creation in multilayer neural networks. IEEE Transactions on Neural Networks, 4(2), 242-

256.

[84] Friedman, J. H., & Stuetzle, W. (1981). Projection Pursuit Regression. Journal of the

American Statistical Association, 76(376), 817-823.

[85] Jones, L. K. (1987). On a Conjecture of Huber Concerning the Convergence of Projection

Pursuit Regression. The Annals of Statistics, 15(2), 880-882.

[86] Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained neural

networks. Neural Networks, IEEE Transactions on, 1(2), 239–242.

[87] Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming the fat

from a network via relevance assessment. Morgan Kaufmann Publishers Inc.

[88] Le Cun, Y., Denker, J. S., Solla, S. A., Howard, R., & Jackel, L. (1990). Optimal brain

damage. Advances in neural information processing systems, 2(1), 1990.

[89] Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (1986). Experiments on learning by back

propagation.

173

[90] Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden units. Ad-

vances in neural information processing systems 1 (pp. 519–526).

[91] Segee, B. E., & Carter, M. J. (1991). Fault tolerance of pruned multilayer networks. ,

IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991 (Vol. ii, pp.

447-452 vol.2).

[92] Kruschke, J. (1988). Creating local and distributed bottlenecks in hidden layers of back-

propagation networks. Proceedings of the 1988 Connectionist Models Summer School (pp.

120–126).

[93] Whitley, D., Starkweather, T., & Bogart, C. (1990). Genetic algorithms and neural net-

works: optimizing connections and connectivity. Parallel Computing, 14(3), 347-361.

[94] Zhang, B. T., & Muhlenbein, H. (1993). Evolving optimal neural networks using genetic

algorithms with Occam’s razor. Complex Systems, 7(3), 199–220.

[95] Augasta, M. G., & Kathirvalavakumar, T. (2011). A Novel Pruning Algorithm for Opti-

mizing Feedforward Neural Network of Classification Problems. Neural Processing Letters,

1–18.

[96] Bellman, R. E. (1961). Adaptive control processes: a guided tour. Princeton University

Press.

[97] Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization.

Wiley-Blackwell.

[98] Hillyard, S. and Galambos, R. (1967). Effects of stimulus and response contingencies on a

surface negative slow potential shift in man. Electroencephalography and Clinical Neuro-

physiology, 22(4), pp.297-304.

[99] Jones, L. (1990). Constructive approximations for neural networks by sigmoidal functions.

Proc. IEEE, 78(10), pp.1586-1589.

174

[100] Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and

search. Communications of the ACM, 19(3), 113–126.

[101] Xin Yao. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9),

1423–1447. doi:10.1109/5.784219

[102] Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that

constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1), 54–65.

doi:10.1109/72.265960

[103] G. F. Miller, P. M. Todd, and S. U. (1989). Hegde, Designing neural networks using

genetic algorithms, in Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications, J.

D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 379-384.

[104] Bondy, J. A., & Murty, U. S. R. (1976). Graph Theory With Applications. Elsevier

Science Ltd/North-Holland. 65

[105] Lin, S. & Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Operations Research 21 (2): 498-516.

[106] Sharp Henry (1968), Cardinality of finite topologies, J. Combinatorial Theory 5: 82-86.

[107] Bollinger, John. Bollinger on Bollinger Bands. McGraw Hill, 2002.

[108] Kaufman, Perry J. New Trading Systems And Methods. 5th ed. Hoboken, N.J.: John

Wiley & Sons, 2005. 273-275.

175

Appendix A

25 Possible topology of 5-3-1 Basic

ANN

Input
vertices
(labelled)

Hidden
vertices
(unla-
belled)

Output
vertices

1 2

176

3 4

5 6

7 8

9 10

177

11 12

13 14

15 16

17 18

178

19 20

21 22

23 24

25

179

	Introduction
	The Financial Forecasting Problem (FFP)
	Traditional forecasting methodologies
	Time series methods
	Causal methods
	Practical discussion

	Machine learning methods
	Machine learning classes
	Machine learning models
	Machine learning in the FFP

	ANN and applications in the FFP

	Background
	Topology of ANN
	Feed-forward ANN
	Approximation using ANN

	Training of ANN
	Sampled input-target data pairs
	Objective function
	Back-propagation
	Conjugate gradient methods
	Local minima and global minima

	ANN for forecasting
	Over-fitting problem

	Inputs to ANN
	Survey of ANN topological optimisation
	Growing methods
	Pruning methods

	Theoretical framework
	Representing ANN topological structures as graphs
	Graph and ANN network architecture
	ANN topological optimisation problem

	Heuristic implementation of static vertex optimisation
	-optimal on ANN static vertex optimisation
	Enhanced ANN-Reduction Procedure (ERP)
	Cascaded Enhanced ANN-Reduction Procedure (CERP)

	Conclusion of the chapter

	Empirical simulation on function approximation
	Introduction
	Simulation with deterministic function one
	Optimisation problem settings
	Result from complete ANN
	Result of topologically-optimising complete ANN for function one using ERP
	Result of optimising complete ANN for function one using CERP

	Simulate with sample data from deterministic function two
	Problem settings
	Result from complete ANN
	Results of ERP
	Results of CERP

	Summary of result

	Empirical simulation on foreign exchange price forecasting
	Introduction
	Data construction for the ANN forecasting problem
	Design and setting of the ANN forecasting System
	Forecasting performance of complete ANN
	Forecasting Problem 1
	Forecasting Problem 2
	Forecasting Problem 3

	ERP results
	Forecasting Problem 1
	Forecasting Problem 2
	Forecasting Problem 3

	CERP results
	Forecasting Problem 1
	Forecasting Problem 2
	Forecasting Problem 3

	Robustness test
	Comparative study of ANN and AR model
	Summary and comparison of simulation results

	Conclusion
	Introduction
	Theoretical framework and implementation
	Empirical evidence
	Limitation and future research

	25 Possible topology of 5-3-1 Basic ANN

