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Thesis abstract 

A large body of research finds correlations between unemployment and health. This raises 

the question of whether unemployment benefit programs, which aim to alleviate financial 

stress associated with job loss, have their own health effects. Although existing studies 

indicate that receiving unemployment benefits is likely protective for health, most studies 

do not account for the potentially endogenous relationship between unemployment benefit 

receipt and individual characteristics. Since not all unemployed people are eligible for, or 

receive unemployment benefits, estimates of the health effects of unemployment benefits 

may be biased.  

This thesis aims to better understand whether unemployment benefits have a causal effect 

on health by taking advantage of quasi-experimental variations in unemployment benefit 

programs in the United States. In the first study, I investigate whether the presence of 

generous State unemployment benefit programs results in fewer suicides during labour 

market downturns. In the second study, I use longitudinal data to explore whether State 

unemployment benefit generosity buffers the impact of job loss on self-reported health. The 

third study examines whether unemployment benefit eligibility expansions lead to greater 

participation in physically active leisure. Lastly, I use an instrumental variables approach to 

estimate the self-reported health effects of receiving unemployment benefits.  

Across all four studies, I consistently find evidence that unemployment benefits have a 

health promoting effect in the short-term: unemployment benefits are associated with 

lower suicide rates, better self-reported health and increased physical activity. While the 

precise mechanisms remain uncertain, I argue that unemployment benefits may positively 

affect health by subsidizing income and leisure time, both of which can be beneficial for 

physical and mental health. Although unemployment benefits are unlikely to be a cost-

effective approach to improve health, the results indicate that policymaker efforts to reduce 

or limit access to unemployment benefits may lead to unanticipated adverse health effects. 
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Chapter 1. Introduction 

1.1 Overview  

Theoretical models and empirical analyses have led researchers to conclude that non-

biological factors, such as wealth, education, and socioeconomic status, are integral 

determinants of health and health behaviours (House et al., 1990, Link and Phelan, 1995, 

Grossman, 1972, Case and Deaton, 2005, Galama and van Kippersluis, 2010, Kawachi et al., 

2010). However disagreements persist regarding the direction of causality – i.e. whether 

non-biological factors influence health or health influences said non-biological factors – or 

even whether observed associations reflect causal relationships at all (Cutler et al., 2008, 

Smith, 2007, Contoyannis and Rice, 2001).   

Closely linked to this debate is an increasing body of literature on the association between 

economic downturns, job loss and health. Research in this area has at times been 

contradictory with some suggesting that at the macro-level, mortality (a commonly used 

indicator of population health) is procyclical and increasing during economic upturns (Ruhm, 

2000, Ruhm, 2003, Ruhm, 2005, Ruhm, 2007, Tapia Granados and Diez Roux, 2009), while 

others find at the micro-level that economic downturns are detrimental to health (Laszlo et 

al., 2010, Martikainen, 1990, Sposato et al., 2011). In many cases there is limited 

understanding of the precise causal mechanisms at play. Analyses at the macro-level, which 

often use unemployment rates to denote economic downturns, conceal whether it is people 

losing jobs who are driving observed changes in population health or whether findings are 

due to changes among the population that remains employed. As employed and 

unemployed cohorts may have very different experiences in the context of poor economic 

conditions, it may be ecological fallacy to draw conclusions for individuals based on macro-

level analyses. Yet much of the research that finds associations between job loss and health 

at the individual level is also unable to determine the direction of effects, as it is difficult to 

distinguish whether health declines as a result of job loss, or whether poor health leads to 

job loss, for example due to hindered ability to work.  

Despite difficulties determining causality, the statistical association between economic 

downturns, job loss and health raises the question of whether counter-cyclical policies can 

alter any of the health outcomes or health behaviours that may be influenced by bad 
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economic times and job displacement. There are a multitude of relevant counter-cyclical 

policies that could be hypothesized to reduce the impact of economic downturns on health. 

In the United States (US), for example, relevant social protection programs may include, but 

are not limited to unemployment insurance (UI), temporary assistance for needy families 

(TANF), social security, disability assistance, food stamps, and workmen’s compensation. 

Likewise, targeted healthcare programs such as Medicaid or mental health programs (Lang, 

2013) also are intended to improve health and may have an enhanced role for the 

unemployed or during economic contractions. Despite considerable research on the health 

effects of unemployment and economic recessions, there has been limited research on 

whether counter-cyclical programs are able to provide a protective effect or otherwise alter 

relevant health outcomes and behaviours. Therefore there is little understanding of how 

experiences of unemployment might influence health differently depending on the types of 

social programs in place.  

In this thesis, I explore the effect of unemployment benefit programs1 on health outcomes 

and health behaviours in the US. Unemployment benefit programs supply temporary 

supplementary income to eligible individuals who experience job loss. Due to the structure 

of the safety net system in the US, they may be the initial or perhaps only social program 

that individuals who experience job loss participate in (Fishback et al., 2010). During the 

recent recession, family incomes fell on average 40% for long-term unemployed workers, 

and slightly more than a quarter of unemployed workers experienced economic hardship 

after job loss. It is estimated that income would have fallen even more without the 

protection afforded by UI, which replaced 43% of lost earnings for long-term unemployed 

workers claiming benefits (Johnson and Feng, 2013). 

While unemployment benefits are not explicitly designed to improve health, there are a 

number of reasons that they may have effects for health. First, one would expect income 

transfers to dilute some of the financial effects of job displacement. Naturally, if income is 

an important determinant of health, access to unemployment benefits – particularly 

generous benefits – could provide a protective effect for the health of the unemployed. This 

could be as a result of the consumption smoothing effect of unemployment benefits, which 

                                                           
1
 In this thesis I use the terms unemployment benefits and unemployment insurance (UI) interchangeably. 
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would allow unemployed individuals to some extent to maintain previous lifestyles and 

healthy habits that contribute to their level of health. Income from unemployment benefits 

may also have a psychological effect if they reduce financial worries and thereby alleviate 

depression or anxiety. Additionally, there may be health effects that result from subsidized 

leisure time while out-of-work, particularly if unemployed people spend some of their 

additional time engaging in health producing behaviours.  

Alternatively in the opposite direction, benefit receipt may induce a certain level of stigma 

that worsens certain health dimensions. If people feel ashamed at having been put in a 

position to accept unemployment benefits, this could have a detrimental effect on their 

well-being and ultimately impact their health. Unemployment benefits could also worsen 

health if they encourage extended unemployment duration or subsidize unhealthy 

behaviours, such as smoking.  

Although unemployed workers themselves are most likely to be affected by unemployment 

benefits, there may also be spillover effects for other groups (Burgard et al., 2009, Meltzer 

et al., 2010). For example, there may be some psychological effect of knowing that benefits 

are available, which lessens stress associated with the fear of joblessness and lack of 

income, and possibly even reduces job insecurity among those that do not suffer job loss. 

The families of workers who receive unemployment benefits may also experience health 

effects (Lindo, 2011). 

Identifying the health effects of unemployment benefits is methodologically challenging, in 

part because of the non-random selection into benefit receipt: if less healthy individuals (i.e. 

in a comparatively more permanent state of ill health irrespective of job loss) are more likely 

to lose their job and therefore, potentially more likely to claim benefits, the association 

between receiving benefits and health may underestimate the true effect of benefits on 

health. Alternatively, healthier unemployed individuals may be more likely to meet 

unemployment benefit eligibility requirements if they also have more complete work 

histories or higher previous wages than their comparatively less healthy unemployed 

counterparts; in this case, the association between benefit receipt and health could be 

overestimated. To correctly identify the health effects of unemployment benefits it is 

important to design studies that properly account for the potentially endogenous 
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relationship between unemployment benefits and individual characteristics, including 

health.  

The US provides an interesting setting for studying the health effects of unemployment 

benefits. While the US Federal government sets broad rules regarding coverage and 

eligibility, States have discretion over many aspects of their unemployment benefit 

programs, leading to considerable variation in unemployment benefit programs across 

States and time. These variations are arguably unrelated to health, and on this basis can 

therefore be used to estimate the health effects of unemployment benefits. Additionally, 

not all unemployed individuals receive unemployment benefits in the US due to complex 

eligibility criteria, leading to variation within pools of unemployment spells in the likelihood 

of receiving benefits. 

Therefore, the objective in this thesis is to provide evidence on the health impact of 

unemployment benefits by taking advantage of variations in the design of unemployment 

benefit programs in the US. To this end, this thesis takes three main methodological 

approaches in four empirical chapters.  In Chapters 2 and 3, I exploit variation across States 

and time in the legally mandated generosity of unemployment benefits to explore effects on 

suicide rates and self-reported health, respectively. In Chapter 4, I take advantage of 

variation across States in the timing of an unemployment benefit expansion program and 

estimate effects on physically active leisure participation. Finally, in Chapter 5 I exploit 

variation across unemployment spells in terms of an eligibility requirement that job loss be 

through no fault of the individual to investigate whether receiving unemployment benefits 

affects self-reported health.  

The thesis is organised as follows. The next section of Chapter 1 discusses the literature on 

unemployment and health in an effort to identify health outcomes and behaviours that may 

be affected by unemployment benefits, as well as to highlight the methodological 

challenges to estimating causal relationships. Chapter 1 also discusses some of the existing 

literature on social policies and health – with a focus on unemployment benefits and health 

– and provides background to the unemployment benefit program in the US. Chapters 2 

through 5 contain empirical analyses, as described above, which aims to identify the effects 
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of unemployment benefit programs on health. Chapter 6 discusses the overall empirical 

findings, mechanisms, and policy implications. 

1.2 Literature review  

This literature review focuses mainly on two distinct bodies of research: (1) the relationship 

between economic cycles, unemployment and health, and (2) the health effects of various 

social policies, particularly unemployment benefit programs. The purpose of reviewing 

previous research from the US and other countries on economic cycles, unemployment and 

health is to identify those health outcomes and health behaviours that are most commonly 

associated with job loss and economic downturns in well-designed studies; some of these 

health outcomes and behaviours are those which I will investigate in this thesis. The 

research on the health effects of unemployment benefit programs will highlight the work 

that has already taken place in this area and reveal some of the key gaps in the literature. I 

will also highlight the methodological challenges to obtaining causal estimates in these 

areas of research.  

1.2.1 Unemployment, business cycles, and health 

There is considerable, albeit seemingly conflicting literature on the health effects of 

economic cycles, unemployment and job loss. While research using aggregate data – 

particularly from the US – has often concluded that economic downturns are good for 

health (Ruhm, 2000, Ruhm, 2003, Ruhm, 2005, Ruhm, 2007, Tapia Granados and Diez Roux, 

2009), much research—generally using micro-level data on individual employment status— 

has suggested that economic downturns, job loss, and job insecurity are associated with 

poor health (Laszlo et al., 2010, Martikainen, 1990, Sposato et al., 2011).  Many of the 

macro-level studies have investigated death rates, a common indicator of population health. 

In his seminal research, Ruhm finds that using State-level data from the US, during economic 

downturns, total mortality rates decrease implying that economic contractions may actually 

be good for health (Ruhm, 2000, Ruhm, 2003, Ruhm, 2005, Ruhm, 2007). He suggests that 

this unexpected result is attributable to decreases in obesity and smoking during economic 

downturns, while diet and exercise improve. This has prompted further studies attempting 

to replicate these results. For example, Miller and colleagues (2009) investigate health 

changes associated with local area unemployment rates and find that a 1 percent reduction 
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in unemployment rates in 2004 would have predicted nearly 12,000 additional deaths 

overall. Disaggregating these additional deaths by age group, they find that young adults 

(ages 18-24) have the most cyclical mortality rates, but that 71% of the additional deaths 

predicted by economic downturns occur amongst those over 80 years old. Furthermore, 

96% of the additional cardiovascular deaths predicted by business cycles occur among those 

over age 65. Therefore, because the majority of additional deaths are among age groups 

who are unlikely to be in the labour force, it would appear that an individuals’ own labour 

market involvement may not be the primary mechanism at play.  

While these aggregate level studies find that overall mortality rates decrease at times of 

high unemployment, studies of individual employment data have more often found 

associations in the opposite direction – even in the case of mortality. For example, a 2009 

study by Sullivan and von Wachter examines whether tenured workers who lose their job 

due to firm downsizing have a higher likelihood of premature death (Sullivan and von 

Wachter, 2009). Linking administrative data on earnings and employment to death records 

for male workers in Pennsylvania in the 1970s and 1980s, they find a substantial increase in 

the risk of death in the years following job loss among high seniority workers, which 

subsequently decreases over time. The estimated effect sizes suggest that a displaced mid-

career worker (between 30-40 years old at the time of job loss) loses approximately 1.5 

years of overall life expectancy relative to a non-displaced worker. The authors attribute the 

results largely to financial losses associated with job loss, since differences in mortality risk 

across groups of workers correlate with the size of their loss in earnings. Other research 

using the Panel Study of Income Dynamics (PSID) also finds that after controlling for baseline 

self-reported health, State and industry fixed effects, a one percentage point increase in the 

US county-level unemployment rate is associated with 6% higher mortality risk among 

working-aged men (Halliday, 2013). Because the effect is not observed for women or people 

over 60 years old, both of whom are less likely to be in the labour force, the author 

concludes – in contrast to Miller and colleagues (2009) – that individual labour market 

involvement does play a key role. The probability of death is found to increase for diseases 

of the circulatory system by 7.7% within one year of the increase in the unemployment rate 

and declines over time. 
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Contradictory findings on the effects of job loss and business cycles on mortality may be due 

to differences in the populations being studied, and in particular, may be due to the 

magnitude of direct exposure to joblessness and earnings losses. For example, the health of 

the mass layoff population studied by Sullivan and von Wachter (2009) may have been 

profoundly damaged as a result of significant declines in earnings – likely to a greater degree 

than earnings losses experienced by the overall population during a recession. Likewise, 

health effects of unemployment may differ according to the economic or social context.  In 

his research on mortality and unemployment, Martikainen (1990) finds that during 

recessions, unemployment is more weakly related to health than in periods of economic 

expansion.  The author suggests that this contextual effect could be due to fewer stigmas 

associated with being unemployed during recessions. Alternatively, it could be due to a 

comparatively stronger counter-cyclical response of the welfare state during recessions in 

Finland, or some entirely different mechanism.  

While mortality is an objective endpoint that reflects differences in health status and health 

behaviours, generally speaking it is an uncommon outcome among the working-age 

population in developed countries. Moreover, given that it is an uncommon occurrence and 

that there is often limited detail available on the cause of death, studies linking mortality to 

economic conditions generally do not shed much light on the mechanisms at work. Some of 

the causes of death that have been empirically investigated also appear from a biological 

standpoint unlikely to be affected quickly by phenomena such as job loss (Stuckler et al., 

2009). For example, it is difficult to envision a pathway by which all-cause mortality rates 

(which include causes of death than can come about rather quickly, such as suicides, but 

also include cancer and cardiovascular diseases that can take many years to develop) 

change dramatically at approximately the same time as unemployment rates or coincide 

with the timing of job loss.  

There has been fairly consistent evidence that unemployment rates and job loss are likely 

associated with certain health outcomes and behaviours that manifest in the short-term. 

The most common of these health outcomes include increased suicide risk and poorer self-

reported health or mental health (Catalano et al., 2011). As these are of primary interest for 
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my thesis, in the following sections I briefly review some of the literature on these specific 

health outcomes. 

1.2.1.1 Business cycles, job loss and suicides 

Suicide is one of the most often researched as well as bluntest measures of health outcomes 

associated with economic strains. French sociologist Émile Durkheim may have put it best 

when he said that “the determinants of individual cases of suicide might be distinct from the 

determinants of the suicide rate” (Durkheim, 1897). Indeed, frequently cited risk factors for 

suicide include psychiatric disorders such as schizophrenia, depression, alcohol or drug 

abuse, genetic predisposition, or a recent distressing event – many of these factors could be 

caused or exacerbated by job loss or economic decline (American Foundation for Suicide 

Prevention, 2012). Suicides which specifically occur as a result of economic strains are a 

well-known phenomenon (Stack and Wasserman, 2007), and even have led to use of the 

term “econocide” (Schott, 2009).  

Much of the existing evidence presented above in Section 1.2.1 demonstrates that at a 

macro level, population health does not deteriorate, save for suicides. Researchers have 

repeatedly found higher unemployment rates to be associated with higher suicide mortality 

rates (Classen and Dunn, 2012, Miller et al., 2009, Ruhm, 2000, Stuckler et al., 2009) with 

the association often observed among cohorts that are most likely to suffer the effects of 

unemployment: working-age populations (Luo et al., 2011) and males (Nandi et al., 2012, 

Schmitz, 2011).  A recent study reviews the effect of recessions on age-adjusted suicide 

rates in the US from 1928-2007 and finds that suicides have historically increased during 

recessions and fallen during expansions, although the effect is not observable for those 15-

24 years old or those over 65, possibly because these groups are unlikely to be in the labour 

force or otherwise as directly affected by changing economic conditions (Luo et al., 2011). 

A potential concern is that other unobserved factors unrelated to unemployment may 

influence suicide rates; such confounders (e.g. spending on mental health care) that vary 

over time and place can result in biased estimates. Nandi and colleagues (2012) assess 

whether economic activity in New York could be linked to changes in monthly suicide rates 

between 1990 and 2006. The authors attempt to account for time-variant confounders 
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(such as seasonal or long-term trends) using non-parametric smoothing functions. The study 

finds confirmatory evidence that rates of suicide in New York City have historically been at 

their lowest when economic activity was strongest. Men and older adults drove the 

observed pattern.  

The relationship between business cycles and suicide has been observed in countries other 

than the US.  For example, during the Asian financial crisis of the late 1990s, there was a 

well-documented increase in suicides that corresponded to increases in unemployment 

rates (Chang et al., 2009, Khang et al., 2005). Stuckler and colleagues (2009) also use 

multivariate regression and find a positive association between unemployment rates and 

suicide in 26 European countries. However this relationship may not be entirely consistent 

for all countries. For example, suicides remained stable or declined in Finland during the 

recession in the early 1990s (Ostamo and Lonnqvist, 2001) but increased during the 

economically prosperous years between 1985 and 1990 (Hintikka et al., 1999). A generous 

welfare system could potentially be a reason why suicide rates have been found to not be 

associated with unemployment rates in Finland, though this is unconfirmed empirically. 

After accounting for time trends, no statistical association was found between 

socioeconomic factors and suicides in Ireland either (Lucey et al., 2005). 

Some research has concluded that job loss itself does not actually increase the risk of 

suicide, but that comparatively longer durations of unemployment (15 to 26 weeks) as well 

as large-scale events such as mass layoffs, may be associated with increased suicide risk 

(Classen and Dunn, 2012). Exploiting variations in monthly unemployment rates and the 

distribution of unemployment duration across regions and time, the authors find that 

moderate to long unemployment spells were a significant risk factor for suicide, while 

suicide does not typically occur in the short-run immediately following job loss (though they 

consider the short-run to be a very short period of time: within the first 5 weeks). They do 

find mass layoffs are associated with a slight increase in suicides; the coefficient estimates 

imply one additional suicide for every 4,200 men who lose their job through a mass layoff 

and one additional suicide for every 7,100 women who lose their job through a mass layoff. 

This, as well as the finding that regions with a high concentration of long-duration 

unemployment are prone to higher suicide rates, seems to indicate that contextual factors 
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related to job loss—but not necessarily the immediate experience of losing a job itself—may 

play a significant role in influencing suicide risk.  

Nearly all studies linking unemployment to suicide rates use data on unemployment rates as 

the exposure mechanism; few studies use individual level data on employment status, job 

loss, or the cause of suicide, most probably due to the difficulties of collecting such data 

(Blakely et al., 2003, Jones et al., 1991). Nevertheless, there are a small number of studies 

that do use individual level data. Jones and colleagues (1991) use a case-control study of 

deliberate non-fatal self-poisoning cases and find a strong correlation between 

unemployment and self-poisoning. However they claim to find no causal evidence linking 

job loss to suicide because risk factors associated with self-poisoning did not significantly 

increase after unemployment; they therefore conclude that it is likely that there is some 

unobserved third factor which increases both the risk of unemployment and self-poisoning, 

though they provide no indication of what that unobserved factor may be. Blakely and 

colleagues (2003) find the unemployed in New Zealand are around 2.5 times more likely 

than the employed to commit suicide, but attribute nearly half of the association to poor 

psychological health irrespective of job loss.  

Overall, the literature offers convincing evidence that there is a link between employment 

conditions and suicide rates in many countries, however the precise pathway and whether 

the association is due to changes in employment or due to some other factor correlated 

with labour market conditions remains unclear.  

1.2.1.2 Job loss, self-reported health and related indicators of mental health 

Subjective health indicators often capture individual perceptions of health using Likert 

scales in survey questionnaires. They have been demonstrated to be reasonable predictors 

of more objective measures of health, including the risk of death (Idler and Benyamini, 

1997, Liang, 1986, Burstrom and Fredlund, 2001). However self-reported health measures 

are not without problems related to non-random measurement error; many researchers 

have found heterogeneity in how populations rate the same ‘objective’ health status, 

leading to variations in self-reported health that are based on differences in reporting 

behaviours, rather than differences in actual health state. For example, older people have 
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been found to rate their health relatively more favourably than younger people who share 

the same risk of death (Van Doorslaer and Gerdtham, 2003). Other types of self-reported 

health measures, such as binary indicators of whether health impedes one’s ability to 

perform work, are also common but may suffer from biases directly linked to employment 

status (Lindeboom and Kerkhofs, 2009); for example, the unemployed may be more inclined 

to report being disabled to justify being out of work. Additionally, despite linkages to more 

objective health measures, recent analysis using instrumental variables also finds that 

subjective health capture tiredness, and to a lesser extent physical functioning and bodily 

pain (Au and Johnston, 2013). Self-reported health measures may also capture individual 

traits unrelated to health, such as attitudes towards risk, since research finds counter 

intuitively that those who report better health are at greater likelihood of purchasing 

private health insurance (Doiron et al, 2008). Nevertheless, despite uncertainty in exactly 

what they are measuring, subjective health indicators remain one of the most common 

health outcomes to be associated with job loss and economic downturns. 

There is, however, considerable debate about whether individuals rate themselves in poor 

subjective health as a consequence of job loss, or whether individuals in poor health are 

more likely to be selected into unemployment. The latter may occur either because poor 

health limits one’s ability to work, or because of some alternative factor(s) correlated with 

both self-reported health and employment status; this can lead to biased estimates of the 

effect of job loss on health. In an effort to circumvent the possibility of people in poor 

health being at greater likelihood of being selected into unemployment, a number of studies 

have sought to investigate health effects of forms of job loss that are presumed to be 

exogenous to the individual. The intuition is that if job loss is demonstrably the result of 

something that is not the fault of the individual, such as a business closure or mass layoff, 

then it is less probable that an individual has lost their job as a result of poor health or other 

characteristics specific to the person themselves. Nevertheless, even involuntary job loss 

due to a business closure or mass layoffs may not be sufficiently exogenous to the individual 

to guarantee that selection into the sample of unemployed is random and not biased by 

people who are a priori in poor health. For example, healthy individuals may self-select out 

of firms that are likely to go out of business. Similarly, firms with a large number of people in 

poor health may be less productive, which could contribute to the business closing. 
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Additionally, estimations of health effects only among those who have lost their job due to a 

business closure may not be generalizable to the broader unemployed population. This 

being said, studies using mass layoffs and business closures provide reasonably good 

evidence of the effect of job loss on self-reported health. 

For example, a study from the US using PSID data investigates job loss due to business 

closures (Strully, 2009). Strully finds that business closures increased the likelihood of an 

individual reporting fair or poor health by 54%, though effects are of a similar magnitude for 

other causes of job loss as well.  The health effect seems to be temporary among workers 

who are re-employed by the time that they were surveyed, as these individuals report being 

in no worse health than those that remained stably employed throughout the sample 

period. She also finds that there may be a higher likelihood of health-related selection into 

unemployment among blue-collar workers than white-collar workers, perhaps because 

manual labourers require more health capital to perform their jobs effectively.  

Burgard, Brand and House (2007) also find associations between involuntary job loss and 

self-reported health (Burgard et al., 2007). Using information on the cause of job loss as 

reported by survey respondents, the authors distinguish between individuals who have lost 

their job due to health-related reasons and those who experienced job loss for other non-

health reasons. Not surprisingly, their study finds that individuals who reported losing their 

job due to health reasons had the largest declines in health following job loss. However 

even individuals who lost their job for non-health reasons were found to have greater 

likelihood of depressive symptoms. 

Another paper however finds that job loss does not have a causal effect on self-reported 

health (Bockerman and Ilmakunnas, 2009). Rather, this study suggests that the health of 

individuals who become unemployed is more likely to already be poor prior to job loss. 

Therefore, the authors conclude that it is not job loss that causes poor health, but poor 

health that increases the likelihood of entering into unemployment. Other evidence 

suggests a similar phenomenon among older people (Salm, 2009). Salm examines job 

closures for near elderly employees and finds that those who suffer from job loss were more 

likely to report poor health afterwards, but also finds that health reasons were a common 

cause of job displacement. Further evidence finds that individuals in poor health who lose 
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their job experience longer unemployment duration than healthy job losers (Stewart, 2001). 

Stewart concludes that these longer unemployment spells partially explain the association 

between unemployment and poor health, since at any point in time the sick will make up a 

relatively greater portion of the total unemployed. 

The effects of unemployment on self-reported measures of health may differ across 

countries due to variations in social protection programs. A study by Bambra and Eikemo 

(2009) finds that while the negative relationship between unemployment and self-reported 

health is persistent across Europe, some of the cross-country variation can be explained by 

welfare state regime type. Health inequalities between the employed and unemployed were 

found to be greatest in countries where welfare access is means-tested. This suggests that 

the ease of access to social protection in a country may have a moderating influence on the 

health effects of unemployment. The recent financial crisis in Greece has been found to 

have had effects on self-reported health, which may also be due in part to erosion of the 

welfare state (Vandoros et al., 2013). The finding by Bockerman and Ilmakunnas (2009) that 

unemployment does not cause poor health in Finland may also be due to the presence of 

strong safety nets in that country. 

It is possible that changes in self-reported health measures associated with economic 

downturns and unemployment capture changes in mental health or psychosocial well-being 

as opposed to physical health. One reason to suppose this is that self-reported job insecurity 

has also been shown to have an effect on self-reported health measures in many European 

countries (Laszlo et al., 2010). As job insecurity does not likely result in the same income loss 

or stigma as actual job loss, these effects may be more likely due to psychological stress, as 

opposed to an effect of reductions in income and changes in consumption patterns on 

physical health.  

There is a large literature demonstrating strong associations between job separation and 

emotional or psychological problems (Dooley et al., 1994, Kessler, 1997, Catalano et al., 

2011). Mental health effects of job loss have been found to be strongest among blue collar 

workers, with one study finding the best predictor of mental health to be whether the 

unemployed are able to keep active during job separation (Hepworth, 1980). The potential 

for reverse causality again plagues many studies that aim to quantify a linkage between job 



 
 

29 

loss and mental health. Individuals who were laid off are found to have a greater likelihood 

of depression than those who suffer job loss due to business closures, providing some 

evidence that individuals in poor mental health or who are prone to mental health problems 

are often selected into unemployment (Brand et al., 2008). Another interesting study uses 

industry-level unemployment rates as an instrumental variable for individual 

unemployment. Although this instrument may not satisfy the exclusion criteria since other 

researchers estimate direct effects of unemployment rates on health outcomes, the author 

finds that while those in poor psychological health are more likely to become unemployed, 

psychological health worsens as a result of unemployment (Gathergood, 2012). Gathergood 

also reports that the psychological health of older workers (i.e. those closer to retirement 

age) is less affected by unemployment than it is for younger workers, which is consistent 

with the Salm (2009) study. The Gathergood study also finds that individual unemployment 

may have less of an effect on psychological health in areas where the unemployment rate is 

high. This phenomena is also demonstrated in another study, indicating that individual 

mental health seems to be affected to some extent through individuals’ comparisons of 

their own social conditions to more aggregate group level conditions, or that there is some 

other contextual effect (Clark, 2003).  

Overall, the literature suggests that self-reported health and mental health may worsen as a 

result of job loss, though it is unclear if this is due to changes in reporting behaviours or to 

actual changes in health status. There may also be a high likelihood of selection into 

unemployment among individuals who rate themselves in poor health, which calls into 

question whether, or the degree to which job loss has a causal effect on self-reported health 

measures. Likewise, contextual factors including the level of unemployment and the degree 

of social protection may play an important moderating role. 

1.2.1.3 Common methodological challenges and approaches for obtaining causal 

estimates in this research area 

 

Despite considerable research linking job loss and labour market conditions to health 

outcomes — particularly suicide and self-reported health — definitive evidence of a causal 

relationship between unemployment and health (i.e. where health is altered as a direct 

result of a change in employment status) is limited, in part because of the non-random 



 
 

30 

selection of individuals into unemployment. If individuals were randomly assigned to be 

either unemployed or employed, evidence of a causal effect of unemployment could be 

inferred based on observed health differences between the two groups. However in reality, 

unemployed individuals form a unique, non-random sample that differs from the employed 

in various observable and unobservable characteristics, some of which may be important 

determinants of health themselves. As will become apparent, the methodological issues 

that impede causal estimates of the effect of job loss on health also complicate estimation 

of the effects of unemployment benefits on health. Here I briefly recap some of the 

difficulties in designing and interpreting studies of causal relationships between 

unemployment and health.2 

To estimate causal effects, it is necessary to compare a treatment group to a control group 

that represents how members of the treatment group would appear if they had not been 

allocated to the treatment. We cannot observe this counterfactual (e.g. the effect of 

remaining employed among people who in fact have lost their job) so instead, must identify 

a control group of comparable individuals who did not receive the treatment (e.g. a group 

who did not become unemployed).  Non-randomised selection into these treatment or 

control groups is problematic because baseline differences between the treatment group 

and control group can cause observed differences between the groups following treatment 

exposure that are not actually a consequence of the treatment itself.  

Selection into the groups might occur non-randomly because of an endogenous relationship 

between characteristics that determine both whether an individual is assigned to a 

treatment (e.g. unemployed) and the post-treatment outcome (e.g. poor health). 

Endogeneity is an important problem that can prohibit meaningful interpretation of 

estimated relationships; there are various possible sources of endogeneity. For example, 

one concern may be that the treatment (in this case, job loss) may be caused by changes in 

the health outcome rather than the other way around. It could be that individuals who 

experience a decline in their health become less productive at work and subsequently quit 

or are laid off. If this were to occur, it could lead to an observed correlation between job 

                                                           
2
 Measurement error is another important challenge when estimating causal effects. For example, as 

highlighted in Section 1.2.1.2, self-reported health may vary according to employment status, even if there is 
no causal effect of unemployment on more objective measures. 
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loss and poor health. However, the assertion that job loss caused health to deteriorate 

would not be accurate. This is known as reverse causality. 

Alternatively, both job loss and health may to some extent be dependent on other 

unobserved factors.  For example, an individual may experience a stressful life event, such 

as a divorce, and as a result of this event, experience both a decline in mental health and 

become unemployed. Joblessness might again be correlated with poor mental health, 

however the cause of poor mental health would in all likelihood be the stressful life event, 

not the job displacement. Without appropriately controlling for the occurrence of the 

confounding stressful life event, it would be easy to incorrectly draw conclusions regarding 

the relationship between job loss and health. This is known as omitted variable bias. 

Overall, if unhealthy people are more likely to be selected into unemployment than healthy 

people, this will cause the pool of unemployed to be in relatively poorer health, even if job 

loss has no causal effect on health. The possibility of biased estimates due to the 

aforementioned issues—reverse causality and/or omitted variables—requires careful 

methodological consideration to correctly identify the effects of job loss and labour market 

conditions on health. Despite being the gold-standard approach to obtaining causal 

estimates, a randomised controlled trial study design, where individuals are randomly 

assigned to be either employed or unemployed, is clearly not feasible on ethical grounds. 

However, there are suitable approaches for observational data that are described in this 

literature review, though each has its own caveats.  

Generally speaking when using observational data, causal inference requires some source of 

exogenous variation in the exposure of interest to ensure that the association between 

treatment and outcome is unbiased. For example, studying effects of involuntary causes of 

job loss, such as business closures, is an attempt to address reverse causality. Since the 

experience of job loss is not the immediate fault of the individual, the argument is that poor 

health is itself an unlikely cause of unemployment. However, even this approach is not 

necessarily sufficient to demonstrate causality; it is possible that individuals who 

involuntarily lose their jobs due to business closure are still somewhat likely to be in poor 

health prior to job loss, particularly if healthier, more productive individuals self-select into 

other more successful firms.  
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Likewise, the use of more aggregate indicators that are presumed exogenous to individuals, 

such as unemployment rates, is another common approach to attempt to circumvent the 

possible endogeneity between job loss and health. However aggregate indicators sacrifice 

detailed information that is needed both for understanding the mechanisms at play, as well 

as for identifying the subpopulations affected by the explanatory variable of interest. For 

example, a statistical relationship between unemployment rates and health does not 

confirm that health is affected by job loss, as it is still possible that some omitted variable, 

such as changes in levels of air pollution during economic contractions, is linked to both 

unemployment rates and health. Additionally, the population whose health is affected by 

changes in unemployment rates may not necessarily be those who experience job loss, as 

revealed by Miller and colleagues (2009).  

Analysis using longitudinal data is also important for obtaining causal estimates, since 

repeated estimates of the same units of observation allow for study of changes over time, 

before and after exposure to a treatment. Use of longitudinal data can also partially 

ameliorate the possibility that unobserved variables are responsible for correlations. With 

longitudinal data, fixed or random effects models can be used to control for unobserved 

heterogeneity, either when that heterogeneity is correlated or uncorrelated with the 

independent explanatory variables, respectively. However this is only effective to control for 

omitted variables if these factors are time invariant, as longitudinal data does not provide 

insights into unobserved shocks that affect both health and employment. 

Advanced statistical techniques are also commonly used to imitate randomised study 

designs; oftentimes, these take advantage of ‘quasi-natural’ experiments, such as variations 

in the timing of policy rollouts. The intuition is that individuals are allocated to treatment 

and control groups as a result of factors that are well beyond their control (or the control of 

researchers). One technique that makes use of such experiments is difference-in-difference 

models, which calculate the effect of a treatment by comparing average outcomes before 

and after exposure to a ‘quasi-natural’ intervention. The difference-in-difference estimate 

measures the difference in the differences between a treatment and control group before 

and after exposure. The approach however can still be susceptible to confounding if the 

treatment group is not randomly allocated (e.g. some other factor precipitated the 

intervention) or if other factors correlate with the treatment (e.g. many related 
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interventions happened concurrently so it is difficult to pinpoint which is responsible for an 

observed effect). A similar approach is regression discontinuity study designs, which 

compare individuals who barely qualify to receive a treatment (e.g. because they just cross 

some threshold determining eligibility) relative to individuals who are barely ineligible for 

the treatment. 

Another common technique is to use instrumental variables. The strategy is to find some 

exogenous factor which determines the endogenous variable of interest (e.g. 

unemployment), but which is uncorrelated with the outcome variable. The instrumental 

variable can then be used to predict the endogenous variable in a first stage equation, and 

that newly predicted value is then substituted into the original equation to estimate causal 

effects. Instrumental variable estimates provide local average treatment effects (LATE), in 

that they only reflect effects among the sample that is actually affected by the instrument. 

Other issues remain however, as it is difficult to identify truly exogenous instrumental 

variables that are sufficiently strong predictors of endogenous variables. Weak instruments 

can provide only limited insight into possible causal pathways. 

Other approaches include matching techniques, which can be used to try and ensure that 

the treatment and control groups are sufficiently comparable. Here, the goal is to ensure 

that each member of a treatment group has at least one member of the control group with 

similar observable characteristics. Propensity score matching is a common statistical 

matching approach that uses observable characteristics to calculate the probability of 

membership in a treatment group vs. a control group. Once individuals are allocated to 

treatment or control, the distributions of observable characteristics can be compared to 

ensure that the groups are suitably similar in aspects other than the outcome variable of 

interest. Propensity score matching, however, is unable to ensure that the treatment and 

control groups do not differ in unobserved characteristics. 

1.2.2 Social protection programs and health  

In this section of the literature review I discuss existing research on unemployment benefits 

and health and show that well-designed studies are lacking. In particular, the studies 

presented do not sufficiently account for endogenous selection into unemployment benefit 

receipt, leading to potentially biased estimates that prevent well-founded conclusions 
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regarding whether unemployment benefits have a causal effect on health outcomes. I also 

briefly discuss a small number of interesting studies that exploit ‘quasi-natural’ variations in 

social protection programs in an effort to shed light on the relationship between income 

and health. Since understanding the causal nature of this relationship is also complicated by 

endogeneity issues, the research provides important methodological insights that inform 

the empirical portion of this thesis. 

 

1.2.2.1 Unemployment benefits and health: existing research 

Unemployment benefit programs may potentially influence the health of displaced workers 

through several possible mechanisms (discussed further in Section 1.3.6). For example, in 

the short run, benefits compensate for the loss of earnings associated with job loss and thus 

smooth consumption during unemployment spells (Gruber, 1997). This may enable workers 

to purchase health-promoting goods and services such as healthy food and health insurance 

coverage, as well as reduce some of the psychosocial stress associated with financial losses. 

On the other hand, unemployment benefits may decrease labour supply by reducing the 

marginal incentive to search for a job, increasing the incidence and duration of non-

employment (Chetty, 2008, Katz and Meyer, 1990, Moffitt and Nicholson, 1982, Krueger and 

Mueller, 2010). This could lead to skill depreciation and negative career effects, which may 

be detrimental for health in the long-run. Likewise, if poor health results from 

unemployment due to a lack of time structure or changes in social status, benefit-induced 

unemployment could be detrimental for health. There could also be ambiguity regarding the 

potential impact of longer unemployment spells on health-related behaviours: longer 

unemployment duration may increase free time that can be spent engaging in health 

promoting leisure activities, such as sports or other exercise, but time out of work has been 

shown to reduce total physical exertion due to lower work-related physical activity (Colman 

& Dave, 2013).  

Despite the potential that unemployment benefits alter the effects of job loss and 

unemployment rates on health, there are a limited number of studies that have linked 

unemployment benefits to health and health behaviours. Existing studies have typically 

examined whether there are effects for health associated with actually receiving 
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unemployment benefits, compared to control groups that do not receive benefits (i.e. the 

fully employed or unemployed non-recipients).  

Among the research on health effects of unemployment benefit receipt, evidence is mixed 

though generally favours the hypothesis that unemployment benefits are good for health. 

For example, research has shown that receipt of ‘entitlement benefits’—which by their 

definition includes unemployment benefits—can be effective at preventing reductions in 

self-reported health status during unemployment in the US, Germany, and Britain, although 

means-tested benefits do not demonstrate the same effect (Rodriguez, 2001, Rodriguez et 

al., 1997). Rodriguez (2001) uses regression models to estimate the likelihood of reporting 

poor health and finds that unemployed people receiving means-tested benefits (e.g. 

welfare) in the US are 2.4 times as likely as fully employed people to report poor health 

(95% Confidence Interval (CI): 1.4, 4.1). However she finds that comparing fully employed 

and unemployed people who received entitlement benefits does not reveal statistically 

significant differences in the likelihood of poor health at p<0.05. Based on this she 

concludes that entitlement benefit receipt moderates the relationship between 

unemployment and self-reported health status.  

In a separate analysis, Rodriguez and colleagues find that receipt of entitlement benefits is 

associated with a reduction in depression symptoms among unemployed women in the 

long-term (Rodriguez et al., 2001). Working-age women who were unemployed but looking 

for work and receiving benefits in 1987 actually reported fewer depressive symptoms in 

1992 compared to women who had been fully employed in 1987. However, receiving 

welfare benefits is strongly correlated with greater depressive symptoms in the long-run. 

There were no statistically significant effects for men. In both Rodriguez (2001) and 

Rodriguez et al (2001) it is not possible to identify the specific role of unemployment 

benefits.  

McLeod et al (2012a) finds in the US that protective effects of unemployment benefit 

receipt for health are mostly among low wage blue collar workers in minimum and medium 

skill level jobs, for whom unemployment benefits can represent a potentially significant 

portion of prior earnings and who may otherwise have limited savings (McLeod et al., 

2012a). Using data from the PSID, the authors find that for minimally skilled and medium 
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skilled workers in the US, there are no statistically significant differences in the odds of 

reporting poor health between the fully employed and the unemployed who receive 

unemployment benefits; however the unemployed not receiving benefits are more likely to 

report poor health than the employed. In separate analysis, McLeod et al (2012b) also finds 

no relationship between unemployment and mortality for high-skilled workers in the US and 

attributes this, in part, to greater access to unemployment benefits for more educated 

workers (McLeod et al., 2012b). 

Similarly, Artazcoz and colleagues find that unemployment benefits reduce the risk of poor 

mental health among some unemployed workers in Spain (Artazcoz et al., 2004). At the time 

of the study, unemployment benefit eligibility in Spain was determined based on household 

income levels; to qualify, per household member income had to be equal or lower than 75% 

of the minimum salary. Therefore, unemployed individuals living in households with other 

wage earners often would not receive benefits, underscoring the likelihood of important, 

often unobserved differences between unemployment benefit recipients and non-

recipients. The authors find male manual workers who received benefits were less likely to 

be in poor mental health than male manual workers who did not receive benefits. 

Additionally, in comparison to individuals in stable employment, unemployed individuals in 

the US who did not receive unemployment benefits were more likely to report increased 

alcohol consumption and decreased body weight upon re-employment in the following year 

(Bolton and Rodriguez, 2009). There were no significant effects found on the likelihood of 

smoking.  

As mentioned in Section 1.2.1.1, Classen and Dunn (2012) find that longer unemployment 

duration and mass layoffs, but not the experience of losing a job itself, is associated with 

increases in suicide rates. The authors conduct a robustness check where they demonstrate 

that the suicide rate is not statistically associated with the number of new unemployment 

insurance (UI) claims, and use this as supplementary evidence that job loss itself is not the 

cause of suicide because, as they state, new UI claims can be used as a measure of short-

term unemployment. Yet an alternative but unexplored explanation for not finding a 

statistical association between benefit claims and suicides could be that suicide risk is 

actually mitigated by unemployment benefits. 
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Also at an aggregate level, a recent study finds that between 2004 and 2009, US State 

unemployment rates were positively correlated with the frequency of Google searches for 

the keyword “depression,” while the volume of State UI claims was negatively correlated 

with the number of searches for keywords “depression” and “anxiety” (Tefft, 2011). This 

may indicate some moderating effect of unemployment benefits for mental health. 

However a study using cross-country European data examined whether national aggregate 

expenditures on unemployment cash benefits modified the impact of unemployment rates 

on suicide rates, but found no significant effects (Stuckler et al., 2009). 

While the literature does generally suggest that unemployment benefit programs reduce 

the likelihood of some health outcomes or behaviours linked to job loss and economic 

downturns, the potentially endogeneous relationship between individual characteristics and 

selection into unemployment benefits is an important methodological concern for most of 

the aforementioned studies. As will be discussed in depth in Section 1.3, in the US not all 

individuals that are eligible actually claim benefits, and the amount received is partly 

determined by worker’s careers and previous salary. Just as job losers are not randomly 

allocated to unemployment, similarly, unemployed workers are not randomly allocated to 

receive benefits, and therefore are not necessarily directly comparable in many unmeasured 

ways to unemployed workers not receiving or ineligible for benefits, or to the pool of 

continuously employed workers. There are likely to be systematic differences between the 

subsample of individuals who receive unemployment benefits and the subsample that does 

not, leading to potentially biased estimates of the impact of receiving benefits on health. 

1.2.2.2 Studies using social programs to identify effects of income on health 

Understanding the linkages between unemployment benefits and health faces similar 

methodological challenges to understanding the closely-related relationship between 

income and health; while lower income is often associated with poorer health, it is 

challenging to identify the causal pathway and direction of effects in part due to 

endogeneity (Kawachi et al., 2010). For example, individuals in poor health may not have 

the same earnings potential as healthier people, leading to lower income that is caused by 

poor health. Likewise, other factors including but not limited to education, neighbourhood, 
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or cultural factors could be responsible for determining both low income and poor health 

outcomes. 

To identify whether changes in income have a causal effect on health, a selection of studies 

have taken interesting quasi-experimental approaches that take advantage of arguably 

exogenous sources of variation in income resulting from changes in social programs. This 

growing literature suggests that although social programs in the US such as social security, 

the Earned Income Tax Credit, welfare reform and the food stamp program were not 

motivated by health concerns, these social polies can cause important health effects and 

may shed light on the income-health nexus. Therefore previous efforts in this area of 

research provide useful methodological approaches that inform much of the analyses 

conducted in this thesis.  

For example, a number of studies have made use of variations in the generosity of social 

programs as a means of identifying health effects of changes in income. Snyder and Evans 

(2006) exploit variation in the level of social security benefits offered to people in the US 

born in the quarter before and after January 1, 1917 (i.e. those born Q4 1916 compared to 

Q1 1917). Those born in Q4 1916 had on average 7-10% higher monthly social security 

payments than those born in Q1 1917 as a result of a change in the way benefits were 

calculated. They find, counter intuitively, that the cohort with comparatively higher social 

security benefits due to the so-called social security “notch” had higher mortality rates after 

age 65. They explain that this may be due to the higher propensity for the Q1 1917 cohort to 

engage in part-time work in older age, which reduces their social isolation, rather than 

evidence that income is bad for health.  

Additionally, Schmeiser (2009) studies the effects of income on obesity among low-income 

men and women. Using an instrumental variables (IV) strategy, the author exploits 

exogenous variation the generosity of the Federal and State Earned Income Tax Credit to 

predict household income and finds that increases in income are associated with higher 

body mass index. Another interesting study investigates whether income support from the 

Supplemental Security Income program for the poor elderly is associated with lower 

disability rates (Herd et al., 2008).  This study exploits variation in maximum benefits at the 

State-year level to investigate the impact of an income support policy on health; it uses an 
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intention-to-treat study design, as it does not distinguish between individuals that actually 

received benefits and those that did not. The study finds that an increase of $100 per month 

in maximum benefits causes the share of the population reporting mobility limitations to 

decline by 0.46 percent. Income support programs have also been shown to have a positive 

health effect in developing countries (Case, 2004). Case (2004) examines the effect of 

income on health by studying the time period in South Africa when pension levels for elderly 

blacks were raised to be commensurate with pensions offered to whites; she finds positive 

improvements in the health of elderly black pensioners. 

Other studies use variations in access to social programs to estimate effects. Almond et al 

(2011) examine the effect of the food stamp program on birth outcomes, arguing that food 

stamps represent an exogenous increase in income for poor households. Exploiting variation 

across 3,100 US counties in the month when the food stamp program was rolled-out, they 

find expansions reduced the incidence of low birth weight. Bitler et al (2005) study the 

effects of welfare reform on health insurance access, health care utilization and unmet need 

among single women. They find using difference-in-difference models that exploit variation 

in the timing of reforms across States and difference-in-difference-in-difference models 

(where an additional control group is married women unaffected by welfare reform) that 

reform in the 1990s to restrict access to welfare by imposing stricter work requirements and 

lifetime limits led to reduced access and utilization of health care services.  

Taken together, these studies provide important insight into how methodological 

approaches that can be used to circumvent the endogeneity problems inherent not only to 

studying the relationship between income and health, but also studying the effects of 

unemployment and unemployment benefits on health. 

 

1.3. Background to unemployment benefits in the US 

The US provides a very strong setting for studying the causal effects of unemployment 

benefits on health because there is considerable variation across States in terms of how the 

program is implemented and because not all unemployed individuals receive 

unemployment benefits for a variety of reasons. This leads to the formation of various 
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treatment and control groups, some of which are sufficiently comparable to allow for 

estimation of the health effects of unemployment benefits. The purpose of this section is to 

provide a basic foundation for understanding the UI program in the US. 

1.3.1 General overview 

The Federal-State UI program was established as part of the Social Security Act of 1935 (The 

Social Welfare History Project, 2015).  This came about following years of fragmented and 

largely unsuccessful attempts at unemployment compensation legislation in various States 

including Connecticut, Massachusetts, Minnesota, New York, Pennsylvania, and Wisconsin.  

A key barrier to creating unemployment benefit programs at the State level was the concern 

that financing an unemployment benefit program based on employer taxes would lead to 

variations across States in employer costs, stifling interstate competition. 

The Social Security Act’s key contribution was therefore not to set up a Federal 

unemployment benefit program, but rather, the Act made it easier for States to establish 

their own unemployment benefit plans because it created a Federal unemployment tax that 

would be levied equally across all employers in all States. The decision to actually pass 

unemployment benefit legislation and form an unemployment benefit program remained in 

the hands of the States; however all 50 States, the District of Columbia, Puerto Rico and the 

US Virgin Islands ultimately passed legislation and formed their own programs. As a result, 

each State operates its own program. This means that States are able to decide many 

specifics regarding who contributes to the fund, the amount and duration of benefits, and 

specific eligibility requirements, which leads to considerable variation across the States. 

However all programs must follow general rules established by the Federal government 

relating to coverage and eligibility.  

1.3.2 Financing 

The unemployment benefit system is tax-financed. Currently under the Federal 

Unemployment Tax Act, the unemployment tax rate is 6.0% of an employer’s taxable wages 

based on the first $7,000 paid in wages to each employee in each calendar year (US 

Department of Labor, 2015). Generally, employers are responsible for paying 

unemployment taxes if (1) they pay wages to employees of $1,500, or more, in any quarter 
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of a calendar year; or, (2) they had at least one employee during any day of a week during 

20 weeks in a calendar year; there is slight variability in these figures in some states. Some 

types of employment are generally not covered and therefore do not pay unemployment 

taxes; this includes agricultural labour and domestic workers.  

The system was designed so that funds would be collected at the Federal level. However, 

because each State operates its own program, States also collect unemployment taxes. 

Employers must pay – at a minimum – 10 percent of the total unemployment tax to the 

Federal government but can pay the remainder into the State unemployment fund (this is 

referred to as a “credit” against the total Federal tax). This means under the current tax rate 

of 6.0% that if an employer pays 90% of unemployment taxes to the State, the effective 

Federal tax rate is 0.6%; for a single employee earning more than $7,000 per year, an 

employer would pay a Federal tax of $42 ($7,000 x 0.6%).  

States are able to borrow from the Federal government or raise taxes if their funds are 

severely depleted, allowing benefit levels to be potentially set at high levels within States 

that are relatively poor. States that take Federal loans to meet their liabilities but that do 

not pay those loans back on time are referred to as “credit reduction States.” If this 

happens, a greater percentage of the unemployment tax (i.e. the 6.0%) must be paid 

directly to the Federal government; however this has no bearing on the benefit level 

offered. The Federal government may also require and finance benefit extensions during 

recessions (US Department of Labor, 2012). 

1.3.3 Eligibility requirements 

State unemployment insurance programs provide temporary wage replacement to those 

unemployed workers who qualify. Job losers are not guaranteed to receive UI; on the 

contrary, eligibility and the amount of benefit received is based on a complex set of criteria 

that differ across States but are based on general principles set by the Federal government 

(US Department of Labor, 2012). Job losers must meet several monetary and non-monetary 

eligibility criteria that determine whether they are allowed to receive benefits as well as 

their level of benefits.  
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In regards to monetary requirements, unemployed individuals must have worked for an 

established period of time, referred to as a ‘base period’; the precise length of time varies 

across individual States. (US Department of Labor, 2009a). Previous wages earned during 

the base period are used to determine eligibility and the level of benefits received per week, 

with each State setting its own maximum weekly benefit amount and duration.  

Different States use different methods to determine monetary eligibility to receive benefits. 

Generally, however, the methods used by the different States fit into three categories: 

(1) A worker must have earned some multiple of the benefit level they are eligible to receive 

(e.g. if the benefit level is $100 per week and the multiple used by the State is 40, then to be 

eligible a worker will have had to earn at least $4,000 during the base period);  

(2) A worker must have earned above some flat amount predetermined by the State during 

their base period; 

(3) A worker must have worked above a predetermined number of weeks/hours at a given 

weekly/hourly wage rate during the base period. 

After determining if a worker is monetarily eligible based on prior wages and time spent 

working, the exact weekly amount to be paid must be computed. As maximum weekly 

benefit levels are capped, States tend to replace a higher percentage of income for 

relatively low-wage workers compared to high-wage workers. State methods for calculating 

benefit levels are quite heterogeneous and broadly fit into four categories. Actual benefit 

levels are generally based on: 

(1) a percentage of the average weekly wage in the quarter during the base period when the 

worker earned the highest wages;  

(2) a multiple of the total or average quarterly wages paid in more than one quarter of the 

base period; 

(3) a percentage of annual wages in the base period;  

(4) a percentage of average weekly wages in the base period. 
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The method of calculating the maximum number of weeks that benefits can be received 

also can vary substantially across States. Some States offer the same duration to all benefit 

receivers; however oftentimes, these States have high minimum wage thresholds to qualify 

to receive benefits. Other States without uniform benefit duration determine each worker’s 

duration by capping the total allowable benefit (duration X weekly amount) as some fraction 

of their base period wages. A further approach is to use a fraction of weeks worked during 

the base period to determine duration. 

Non-monetary requirements also vary substantially across States but mainly relate to the 

reason for job separation; States with identical laws may interpret those laws completely 

differently (US Department of Labor, 2009b). The key non-monetary requirement is that 

workers must become unemployed through no fault of their own to be eligible. Part-time, 

temporary and self-employed workers are generally not eligible to receive benefits when 

they become unemployed, although there are some exceptions. In some States, individuals 

who leave their employment voluntarily can qualify to receive unemployment benefits if 

they have a good reason for doing so, such as leaving to accept other work, compulsory 

retirement, harassment, domestic violence, or to join the armed forces, among other 

reasons. UI recipients must also report to State authorities that they are actively seeking 

work and register at a public employment office. To maintain eligibility, benefit recipients 

must file weekly or bi-weekly claims confirming that they are still eligible for benefits. 

1.3.4 Maximum benefit levels and duration 

As mentioned, while actual weekly benefit levels and maximum number of weeks of benefit 

receipt depends on an individual’s prior wages and duration of employment, the States are 

responsible for setting the maximum and minimum allowable weekly benefit levels and the 

maximum duration benefits can be received. Data on State unemployment program benefit 

generosity are available from the US Department of Labor Employment and Training 

Administration and disaggregated by the maximum allowable benefit per week (in US$) and 

the maximum number of weeks an individual can collect. Typically unemployment benefits 

can be collected for no more than 26 weeks, though the exact maximum duration varies 
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over time across States3. Allowing states to administer their own benefit programs results in 

a large degree of heterogeneity in maximum unemployment benefit levels (weekly 

maximum benefit level X maximum duration) across states and years: for example, adjusted 

for inflation the lowest maximum benefit levels between 1968 and 2008 are in Alabama 

1983 ($4,039 in 1999 US$4) and the highest benefits are in Massachusetts 2008 ($21,708 in 

1999 US$). Figure 1.1 demonstrates this heterogeneity over time for a selection of States. 

Figure 1.1. Trends in maximum allowable real unemployment benefit levels, 1968-2008, 

selected States 

Source: US Department of Labor Employment and Training Administration and Current 
Population Survey 

                                                           
3
 Unemployment benefits were provided for extended periods of time since 2009 until the end of 2013 as a 

result of the Great recession. See http://useconomy.about.com/od/suppl1/p/Unemployment-Benefits-
Extensions.htm 
4
 Converted to constant 1999 US$ using the Consumer Price Index (CPI-U) from the Bureau of Labour Statistics. 

Maximum weekly benefit and maximum duration are multiplied together to obtain the total allowable benefit 
level in a given year. 
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1.3.5 Uptake of unemployment benefits 

Displaced workers must file claims with State UI agencies to receive benefits, either in 

person, by phone, or over the internet. One implication is that not all eligible displaced 

workers actually claim benefits. As a result of the non-universality of UI, fewer than half of 

the unemployed typically receive benefits (Stone and Chen, 2013). In fact, UI programs in 

the US have historically had low take-up rates, with 34.8% of the unemployed applying for 

UI in 2005 and only 23.9% actually receiving benefits, according to data from the 2005 UI 

supplement of the Current Population Survey (CPS) (Vroman, 2009). 51.9% of the 

unemployed who did not apply for unemployment benefits did so because they believed 

themselves to be ineligible; 17.8% did not apply because of reasons related to attitude, lack 

of understanding or other barriers; and 5.3% reported that they did not apply because they 

were retired, ill or disabled. Only about two-thirds of eligible workers claimed benefits in the 

recent recession (Johnson and Feng, 2013). 

Because of eligibility rules and the need to apply for benefits, several important differences 

arise between unemployed individuals who receive benefits and those who do not.  

Compared to non-UI receivers, unemployed workers receiving UI are more likely to be 

younger, highly educated, higher-earners and to have received benefits previously (United 

States Government Accountability Office, 2006). Disadvantaged workers in particular have 

historically had difficulties accessing UI, in part because workers incorrectly assume that 

they are ineligible for benefits or because the circumstances surrounding their loss of 

employment make them ineligible (Shaefer, 2010). There has historically been low uptake 

among the self-employed (who are in fact technically ineligible), temporary workers, and 

younger age groups, as well as higher uptake among job losers (as opposed to job leavers), 

States in the Northeast, upper Midwest, and along the West coast (Vroman, 2009). As a 

result, unemployed workers receiving benefits are a selected sample differing in key 

observable and unobservable characteristics from unemployed workers not receiving or 

ineligible for benefits. 

1.3.6 Selected research into non-health effects of unemployment benefits in the US 

Many studies look at the effects of unemployment benefits on non-health outcomes in the 

US; a large number of these studies are centred on the hypothesis that unemployment 
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benefits reduce job search and extend unemployment duration, ultimately contributing to 

slightly higher unemployment rates (Chetty 2008, Katz and Meyer, 1990, Moffitt and 

Nicholson 1982, Mortensen 1977. Katz and Meyer (1990) find that a one week increase in 

the duration of potential benefits leads to an increase in the average unemployment spell 

by UI recipients of 0.16 to 0.20 weeks. Moffitt and Nicholson (1982) use a framework where 

individuals choose between labour and leisure when determining the length of their 

unemployment spell (Moffitt and Nicholson, 1982). Looking at the Federal Supplemental 

Benefits program, they estimate that the program’s 26 week benefit extension added 

approximately 2.5 weeks to the average unemployment spell—0.096 weeks for every 

additional week benefit extension. Their approach leads them to conclude that workers 

prolong their unemployment in favour of greater leisure time as a result of receiving UI 

benefit extensions. Additionally, evidence also suggests that more generous unemployment 

benefits are also associated with higher unemployment benefit take-up rates (Anderson and 

Meyer, 1997).  

Other studies similarly show that the effects of UI on unemployment duration are 

pronounced among low-income individuals, who are unlikely to have accumulated savings 

to self-insure against job loss and who, as mentioned, often have a relatively greater 

percentage of their previous wages replaced. For example, Mortenson (1977) investigates 

UI effects on unemployment duration using a model that assumes no savings—all earned 

income is consumed—and finds that UI increases unemployment duration (Mortensen, 

1977). Increases in UI benefit generosity have correspondingly been shown to have larger 

effects on unemployment duration among individuals that are liquidity constrained, such as 

the poor (Chetty, 2008); 60% of the estimated increase in unemployment duration due to UI 

is a result of this liquidity effect. A large amount of research focuses on the spike in leaving 

unemployment around the time that UI benefits are exhausted. Some of this research 

suggests that the observed increase in unemployment exit rates coinciding with the timing 

of UI benefit exhaustion is due to changes in reporting by individuals who no longer have a 

reason to register their employment status with government officials (Card et al., 2007). 

Not all research in this area is reliant on the notion that unemployment benefits lead to 

market failures. UI has also been shown to benefit the unemployed by smoothing 
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consumption, allowing workers to hold out for high-wage employment and improving 

worker productivity (Acemoglu, 2001, Acemoglu and Shimer, 2000, Gruber, 1997). Research 

by Gruber investigates the degree to which unemployment benefit programs successfully 

smooth food consumption (Gruber, 1997). He uses estimates of the unemployment benefit 

level that individuals would have been eligible to receive in a given State and year; this 

measure reflects variation in legislated benefit levels across States and time. He does not 

distinguish between those who actually receive benefits and those who are eligible but do 

not participate in the program. He also finds that the effect of unemployment benefits on 

consumption only lasts for a single period—there are no permanent changes to 

consumption patterns as a result, indicating that any effects of unemployment benefits (if 

they are related to consumption patterns) may be most likely to occur in the short-term. 

Research by Acemoglu (2001) and Acemoglu and Shimer (2000) also finds that UI programs 

ultimately lead to greater worker productivity and allow workers to hold out for high wage 

employment because UI lets workers be choosier and take some risk in their decisions when 

seeking re-employment.  

 

1.4. Chapter summary 

This chapter has reviewed some of the research that reveals a statistical association 

between job loss, labour market conditions and certain health outcomes. Some of the most 

common adverse health outcomes linked to these variables are suicides and poor self-

reported health, though it is unclear whether the estimated relationships are causal given 

the potentially endogenous relationship between health and employment. It is also unclear 

what aspects of health are being captured by self-reported health measures in these 

circumstances. Despite this uncertainty, there are reasons to suspect that unemployment 

benefits could have their own effects on health, such as through their effect on income or 

through their effect on leisure time. While existing research largely finds a correlation 

between unemployment benefits and better health, many of the same methodological 

concerns that can lead to biased estimates of the effect of unemployment on health also 

affect existing studies of unemployment benefits and health. In particular, the non-

universality of unemployment benefit receipt among the unemployed in the US and 
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complex eligibility criteria leaves open the possibility that benefit recipients differ in any 

number of observable and unobservable ways from non-recipients. If benefit recipients are 

a priori more likely to be in better or worse health than non-recipients, estimates of the 

association between unemployment benefits and health will be biased. 

To circumvent the aforementioned methodological challenges inherent to determining a 

causal relationship between unemployment benefits and health, in the following four 

empirical chapters I take three main approaches that exploit variation in the design of US 

unemployment benefit programs to estimate health effects. As explained, States have a 

large degree of autonomy in terms of the design of their programs. This autonomy leads to 

variations across States and time in a number of UI program characteristics, including 

benefit generosity and eligibility criteria; I argue that these variations are exogenous to 

health, as policymakers set them legislatively with no regard for health outcomes. Other 

studies described above have used analogous approaches that exploit similar variations in 

other social programs to better understand the role of social determinants, such as income, 

on health. 

In Chapter 2, I begin by investigating whether unemployment benefits moderate the 

association between unemployment rates and suicides by exploiting variation across States 

and time in the maximum allowable benefit level that job losers are eligible to receive. 

Subsequently, in Chapter 3 I perform similar analysis but use longitudinal individual data to 

explore whether maximum allowable State UI benefits alter self-reported health of the 

unemployed. In Chapter 4, I exploit variations across States and time in the rollout of a 

policy that expands UI eligibility for low educated workers and use this to estimate UI 

effects on physical activity participation. Lastly in Chapter 5 I use an instrumental variables 

approach that exploits variation in the likelihood of receiving UI across a sample of 

unemployment spells based on whether job loss occurred due to a business closure, as this 

is inline with eligibility requirements that job loss be through no fault of the individual.  
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Chapter 2. Unemployment benefit program generosity and suicides 

Summary 

Unemployment rates are positively correlated with suicide rates, but it is uncertain whether 

unemployment benefits moderate this relationship. Exploiting variations in the generosity of 

US State unemployment benefit programs over the last four decades, I test the hypothesis 

that more generous unemployment benefit programs reduce the impact of economic 

downturns on suicide. Using State fixed-effect models that predict suicide rates, I find a 

negative interaction between unemployment rates and maximum allowable State benefit 

levels among the working age population (Beta=-0.57, p<.001). The results indicate that the 

impact of unemployment rates on suicide is offset by the presence of generous State 

unemployment benefit programs, though estimated effects are small in magnitude and the 

results suggest heterogeneous effects depending on labour market conditions.  
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2.1 Introduction 

Many previous studies suggest that economic downturns are associated with increased 

suicide rates (Classen and Dunn, 2012, Stuckler et al., 2009, Miller et al., 2009, Ruhm, 2000), 

particularly among working age males (Luo et al., 2011, Nandi et al., 2012), who are at 

increased risk of job loss during recessions (Hoynes et al., 2012). An important question is 

whether UI programs aimed at mitigating the financial hardship associated with job loss 

reduce the number of suicides associated with rising unemployment rates (Catalano et al., 

2011). While much research has documented an increase in suicides when the economy 

worsens (Reeves et al., 2012, Barr et al., 2012, Tapia Granados and Diez Roux, 2009, Stuckler 

et al., 2009, Gerdtham and Ruhm, 2006, Neumayer, 2004, Miller et al., 2009, Ruhm, 2000), 

no studies have examined the potentially offsetting impact of unemployment benefit 

programs in the US.  

Unemployment benefit programs could be expected to protect against suicide risk through a 

number of potential pathways. For example, benefits may mitigate the impact of individual 

job loss on suicide by providing a social safety net for the unemployed and their families, 

which may be reflected in lower overall suicide rates during recessions when in the context 

of generous unemployment benefits. The presence of unemployment benefit programs may 

also provide comfort to the employed at risk of job loss, thereby reducing negative mental 

health effects associated with stress at the population level (Burgard et al., 2009, Meltzer et 

al., 2010).  

Most previous studies linking unemployment benefit programs to health have focused only 

on the association between actual receipt of unemployment benefits and self-rated health 

among the unemployed (see Section 1.2.2.1). In general, these studies suggest that 

unemployed workers receiving benefits have better subjective and mental health than 

unemployed workers who do not receive unemployment benefits (Rodríguez et al., 2001, 

McLeod et al., 2012a, Artazcoz et al., 2004). One potential caveat of these studies is the 

strong selection associated with claiming or being eligible for unemployment benefits.  

Eligibility to receive benefits, as well as the amount of benefits received, is determined 

based on a worker’s career, salary, and reason for job loss; each of these factors is plausibly 

an independent predictor of suicide.  
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One earlier study using cross-country data from European countries examined whether 

national aggregate expenditures on unemployment benefits modified the impact of 

unemployment rates on suicide mortality, but found no evidence of an effect (Stuckler et 

al., 2009). A potential problem with this approach is that aggregate spending on 

unemployment benefits reflects both program generosity as well as the number of 

unemployed individuals in receipt of benefits. If unemployment benefit expenditures 

increase when the unemployment rate increases, an interaction will yield potentially biased 

estimates of the contribution of unemployment benefits to reducing suicides associated 

with recessions.  

Building on prior research (Stuckler et al., 2009, Rodríguez et al., 2001, McLeod et al., 2012a, 

Artazcoz et al., 2004), this study exploits the large variation in maximum allowable 

unemployment benefits over the last decades across US States to investigate whether more 

generous benefit programs reduce the number of suicides associated with recessions. While 

this approach does not enable me to identify the direct effect of benefits on the 

unemployed, it allows me to estimate whether the impact of recessions on suicide is offset 

by increased unemployment benefit program generosity. 

2.2 Methods 

2.2.1 Data  

Data on maximum allowable UI benefits were obtained from the US Department of Labour 

Employment and Training Administration (US Department of Labor, 2012). Maximum 

benefits were disaggregated by the maximum allowable amount per week (in US dollars) 

and the maximum number of weeks workers were entitled to receive benefits. These two 

values were multiplied to obtain the total maximum allowable benefit level in a given year. 

All amounts were adjusted to constant US dollars using Consumer Price Index (CPI-U) 

adjustments obtained from the Bureau of Labour Statistics.  

State suicide deaths and population levels came from the US Compressed Mortality Files 

collected by the Centers for Disease Control and Prevention (CDC WONDER) (Centers for 

Disease Control and Prevention, 2012). Data are available on the number of suicide deaths 

by State, year, sex and age-group (ages 20-24, 25-34, 35-44, 45-54, and 55-64). Suicide was 
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defined based on International Classification of Disease (ICD) codes for suicide and self-

inflicted injury E950-E959 (ICD-8 an ICD-9) for 1968 to 1998, and intentional self-harm X60-

X84 (ICD-10) for 1999 to 2008. The sample comprised 14,557 State-year-age-sex 

observations, covering 798,600 deaths from 1968 to 2008. 

State unemployment rates were calculated based on the March Supplement5 from the 

Current Population Survey (CPS) accessed through the CPS Integrated Public Use Microdata 

Series (King et al., 2010). For each State and year, I estimate the sex-specific proportion of 

individuals aged 30-64 in the labour force reporting to be unemployed. I used the 

unemployment rate at these ages as an overall indicator of the economic conditions for the 

working-age population in every State. For each State and year, I also obtained data from 

the CPS March Supplement on (a) average real State wages and salaries, adjusted to 

constant US dollars using the CPI-U and (b) the State-specific distribution of the population’s 

educational attainment (i.e. the proportion of the population with a college degree). 

Additionally controlling for State-specific race distributions (e.g. black, white, other) did not 

change estimates due to little change over time in race composition within states, so this 

variable was not included in the models presented.   

2.2.2 Empirical strategy 

The Federal-State UI Program, created by The Social Security Act of 1935, provides States 

with autonomy to organize their own program provided that some conditions on coverage 

and eligibility are met. Although the dollar value of benefits received is individually 

determined, State laws define the maximum amount and duration of benefits that workers 

are entitled to receive after job loss (US Department of Labor, 2012). Annual changes in 

state maximum real total benefits averaged 0.3% between 1968 and 2008, but ranged from 

-33.4% to 51.4%. Large swings most often occurred when policymakers altered the 

maximum number of weeks that workers could receive benefits, though there are also 

instances when maximum weekly benefit amounts changed substantially.  

                                                           
5
 I use the March supplement because wages and salaries, as well as educational attainment data are only 

available in the CPS March Annual Social and Economic Supplement. Also, prior to 1989, employment status is 
only available in the March supplement. 
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Maximum allowable state unemployment benefit levels provide a useful source of 

exogenous variation to test whether unemployment benefits have an effect on outcomes 

like suicide rates. For example, in many States, nominal (non-inflation adjusted) benefit 

levels do not change each year; this inattention to benefit level updates on an annual basis 

is indicative that maximum allowable unemployment benefit levels are determined based 

on legislative will in most States and years, rather than some formula linked to economic 

conditions. A report by the Fiscal Policy Institute describes the somewhat indiscriminate 

procedure of setting unemployment benefit levels in the late 1990s in New York, stating 

that “…sporadic legislative initiatives to lift the ceiling on the maximum weekly benefit have 

trailed behind increases in the cost of living” (Fiscal Policy Institute, 2000).  This suggests 

that changes in State laws are unlikely to be correlated with state suicide rates, 

demographics or other state characteristics.  

A potential concern is that maximum benefit levels and changes in unemployment benefit 

legislation may be closely linked with other types of social programs that also vary at the 

State level, making it difficult to establish that any empirically estimated relationships are 

definitively due to unemployment programs. However a thorough review of social programs 

in the US indicates this is unlikely to be the case (Fishback et al., 2010). According to this 

review, benefit generosity in one social program is not highly related to generosity in other 

programs, either across States or within the same State. Some of the strongest correlations 

in benefit generosity are amongst need-based programs, which do not include UI programs. 

The review finds that a benefit program’s generosity overall has more to do with political or 

fiscal factors, and that the relative importance of these factors differs both by social 

program and State. Using maximum allowable benefit levels in the analysis is also preferable 

to average per person State-year spending or total State spending, because the latter two 

variables would be highly correlated with State economic conditions since they reflect 

changes in program participation. The notion that maximum State unemployment benefits 

are exogenous to health is an important and plausible assumption, which allows for testing 

of the health impact of changing benefit levels within States over time.  

I modelled the absolute suicide mortality rate in a linear Ordinary Least Square (OLS) model. 

I chose to model the absolute rate because previous epidemiological studies have 
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emphasized that this is most appropriate for assessing the public health relevance of an 

exposure (Knol and VanderWeele, 2012, Blot and Day, 1979). The basic model has the 

following generic form:     

 
D jtag = α + β1URjtg + β2 lnUBjt + β3(URjtg * ln UBjt )+ βx X '+ S j +Tt + S j * T +ε jtag  

Where D is the suicide rate for State j at year t stratified by age a and sex g, UR is the sex-

specific State unemployment rate, UB is the maximum State unemployment benefit for a 

given year , X is a vector of controls, S is a State fixed effect, T is a year fixed effect, S*T is a 

vector of State-specific linear time trends, and ε is the regression error term. State fixed 

effects control for all time-invariant differences across States and use only within-State 

variation over time to identify the impact of unemployment and benefits on suicide. Year 

fixed effects control for factors affecting trends in suicide at the national level. State-specific 

linear terms control for State-specific factors that linearly affect State trends. X is a vector of 

controls including age, sex, cohort population size, the log of average state wages and 

salaries, and the percentage of the population with a college degree. I use the natural log of 

benefit levels because the data are skewed, and to allow me to calculate the effect of a 

proportional increase in maximum benefit levels in the main analysis. In alternative models, 

I divided the maximum State unemployment benefit by the average State wages and 

salaries to estimate the benefit replacement rate (i.e. the ratio of benefit amount to average 

weekly wage, typically calculated at the individual claimant level) and used that variable in 

lieu of UB. 

In stratified models, following other studies that examine the link between suicide rates and 

labour market conditions, I also investigate whether there are heterogeneous effects by age 

group and gender.  

All models use robust standard errors clustered at the state-gender level, since this is the 

level of variation for unemployment rates. 

2.3 Results 
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2.3.1 Descriptive statistics 

Suicide rates and the generosity of unemployment benefits vary considerably across US 

States (Table 2.1). Nevada had the highest age-sex standardized suicide rates among the 

working age population (36.5 deaths per 100,000 population), while suicide rates were 

lowest in the District of Columbia (8.8 per 100,000).  Massachusetts has historically provided 

the highest maximum unemployment benefits, with the average over the sample period 

being $16,604 in 1999 US$, while Alabama has had the lowest average benefits, $4,039 in 

1999 US$. 
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Table 2.1. Suicide rates, unemployment rates and maximum unemployment benefits across US 

States during 1968-2008 

  

Age/Sex 

Standardized 

Suicide Rate per 

100,000 Working-

age (20-64) 

population 

  
Unemployment 

Rate 
  

Maximum Unemployment 

Benefits, 1999 US$ 

  Mean Min  Max   Mean Min Max   Mean Min Max 

Alabama 19.5 17.5 22.1   4.8 2.0 8.7   $5,064  $4,039  $6,852  

Alaska 23.0 9.1 35.4   7.6 5.1 11.6   $8,855  $6,689  $11,671  

Arizona 28.6 23.0 36.6   4.2 1.9 7.0   $5,274  $4,528  $6,471  

Arkansas 20.0 14.4 24.7   4.7 2.7 8.0   $7,525  $5,916  $8,550  

California 23.2 13.7 35.6   5.4 3.6 8.6   $7,472  $5,783  $10,319  

Colorado 28.6 21.0 35.4   4.0 1.3 8.4   $8,490  $7,591  $9,582  

Connecticut 14.2 8.7 19.6   4.2 0.6 8.1   $11,646  $9,244  $14,340  

Delaware 15.6 5.6 26.0   3.8 1.8 7.2   $7,915  $6,731  $10,006  

District of 

Columbia 
8.8 0.0 22.4   5.1 2.0 10.2   $10,634  $7,086  $14,955  

Florida 24.6 19.4 30.2   4.0 1.0 6.6   $6,456  $4,722  $7,716  

Georgia 21.5 16.1 30.0   3.5 1.1 7.3   $6,034  $4,731  $7,102  

Hawaii 13.5 4.9 23.7   3.5 1.9 6.7   $9,250  $7,988  $10,933  

Idaho 24.5 16.0 33.2   5.2 2.4 9.7   $7,226  $6,829  $7,862  

Illinois 16.0 12.2 19.5   4.7 1.6 8.5   $9,702  $8,412  $10,870  

Indiana 20.0 15.9 23.4   4.4 1.5 9.4   $6,907  $5,337  $8,863  

Iowa 18.6 14.3 24.3   3.5 1.6 8.5   $8,610  $7,335  $13,294  

Kansas 19.9 15.7 23.9   3.3 1.1 5.7   $7,681  $7,090  $8,508  

Kentucky 21.9 17.7 25.0   4.8 2.7 9.9   $6,884  $5,533  $8,675  

Louisiana 20.6 16.4 26.5   4.9 2.1 9.4   $6,981  $5,144  $10,087  

Maine 19.4 9.7 26.9   4.8 2.5 7.9   $9,241  $8,201  $10,401  

Maryland 17.2 12.7 23.4   3.3 1.3 6.4   $7,042  $6,309  $8,343  

Massachusetts 13.5 9.1 17.0   4.6 1.9 9.3   $16,604  $12,868  $21,708  

Michigan 19.9 15.8 25.5   6.0 2.0 11.9   $8,474  $7,150  $10,353  

Minnesota 18.0 13.4 23.3   4.0 1.6 6.3   $9,439  $8,252  $11,422  

Mississippi 18.1 13.9 22.0   4.9 1.9 10.7   $4,955  $4,289  $6,090  

Missouri 21.2 17.8 25.5   4.0 0.9 7.1   $5,695  $4,567  $6,873  

Montana 26.6 15.3 37.2   5.2 1.6 8.4   $7,066  $6,351  $8,690  

Nebraska 16.9 11.7 24.9   2.7 0.6 4.9   $5,523  $4,617  $6,604  

Nevada 36.5 25.9 49.4   4.7 1.8 8.4   $6,994  $6,466  $7,774  

New Hampshire 17.5 8.4 27.0   3.7 0.8 7.9   $6,806  $5,569  $8,956  

New Jersey 12.0 9.6 14.7   4.8 2.2 9.2   $9,274  $6,910  $11,706  

New Mexico 30.5 23.7 40.7   4.9 2.5 8.5   $6,655  $5,868  $9,511  

New York 12.9 9.7 16.7   4.9 2.0 7.8   $8,157  $5,610  $10,183  

North Carolina 20.9 17.3 25.1   3.8 1.9 7.8   $8,258  $6,218  $9,823  

North Dakota 14.3 2.7 23.0   3.7 1.8 5.9   $7,300  $6,535  $8,220  

Ohio 19.6 15.2 23.6   4.6 2.1 8.9   $10,046  $7,369  $12,555  

Oklahoma 22.6 17.8 26.8   3.7 0.8 7.7   $7,383  $6,471  $8,841  
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Oregon 24.9 20.4 29.0   5.8 2.9 10.2   $8,338  $6,099  $9,786  

Pennsylvania 19.1 16.7 21.0   4.7 2.0 7.5   $10,510  $6,734  $12,453  

Rhode Island 11.9 1.4 25.7   5.1 2.3 9.5   $10,823  $7,768  $13,399  

South Carolina 19.5 16.2 23.0   4.1 1.2 8.0   $6,152  $4,940  $7,934  

South Dakota 17.2 2.0 26.2   3.1 0.9 5.2   $5,601  $4,641  $6,862  

Tennessee 22.0 19.4 24.4   4.3 2.2 8.3   $5,805  $4,830  $6,790  

Texas 21.1 16.8 24.9   3.8 1.6 7.2   $6,992  $4,796  $8,023  

Utah 24.5 20.1 30.5   3.4 1.1 6.3   $8,577  $7,221  $11,777  

Vermont 17.8 0.0 32.8   3.9 1.8 6.5   $6,902  $5,876  $8,550  

Virginia 21.9 17.0 28.8   2.8 1.4 4.2   $6,698  $5,854  $7,862  

Washington 23.1 18.4 28.3   5.5 2.8 9.7   $10,586  $8,824  $14,002  

West Virginia 20.2 15.6 24.7   6.1 1.7 13.1   $8,613  $5,784  $11,000  

Wisconsin 20.4 17.0 24.4   4.6 2.5 7.6   $8,671  $7,285  $12,618  

Wyoming 24.4 7.7 42.8   3.8 1.7 7.8   $7,203  $6,172  $8,090  

Total 20.2 0.0 49.4   4.4 0.6 13.1   $7,991  $4,039  $21,708  

 

To motivate the analysis, Figure 2.1 shows age- and sex-standardized suicide rates plotted 

against State unemployment rates, separately for States and years above (solid line) and 

below (dotted line) the mean of benefits across all States and years ($7990 US constant 

dollars). The figure indicates that total suicide rates increased as unemployment rates rose. 

However, the positive association between unemployment rates and suicide was greater for 

States and years with maximum unemployment benefits below the sample mean as 

compared to States and years with more generous unemployment benefits.  
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Figure 2.1. Lines of best fit for age-sex standardized suicide rates among the working-age 

population vs. working-age unemployment rates, total population, US, 1968-2008 

 

 

2.3.2 Main results 

Table 2.2 summarizes results from models that include the maximum level of State 

unemployment benefits (full model estimates are shown in Appendix Table 2.1). Controlling 

for all confounders, a one-percentage point increase in the State unemployment rate was 

associated with 0.16 (p<0.01) more suicide deaths per 100,000 population (Model 1, Table 

2.2). Incorporating both unemployment rates and benefits into the model (Model 2), higher 

maximum unemployment benefits were not associated with a significant change in suicides 

per 100,000 persons. Model 3 shows that there was a negative interaction between the 

state unemployment rate and maximum unemployment benefits (Beta=-0.57, p<0.01), 

suggesting that the impact of unemployment rates on suicide was offset by higher 
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unemployment benefits. Again, in Model 3 the main effect of maximum unemployment 

benefits is not statistically significant, though the point estimate is positive (Beta=0.20).   

Table 2.2 Estimated effects of State unemployment rates and unemployment benefits on 

suicide rates per 100,000 across 50 US states and the District of Columbia, ages 20-64, 

1968-2008 

  (1) (2) (3) 

VARIABLES Model 1 Model 2 Model 3 

        

Unemployment rates 0.159*** 0.159*** 0.179*** 

(0.0417) (0.0418) (0.0401) 

Maximum unemployment benefit -0.102 0.198 

(logged, 1999 prices) (0.767) (0.759) 

Maximum unemployment benefit * -0.565*** 

Unemployment rate (0.151) 

Average real state wages and  -0.504 -0.469 -0.52 

salaries (logged, 1999 prices) (1.18) (1.21) (1.21) 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

All models include: State fixed effects, year fixed effects, State-specific linear trends, age 
cohort, sex cohort, the log of population size, and the percentage of the population that has 
graduated college.  

Alternative models that include maximum benefits as a share of average State wages and 

salaries (to proxy the replacement rate) as the explanatory variable of interest showed 

similar results (Table 2.3). Using this approach, unemployment rates remain positively 

associated with suicide rates. The main effect of the replacement rate is not statistically 

significant in Models 2 or 3. However, the interaction between the replacement rate and 

the unemployment rate is negative and statistically significant at p<0.05 (Beta = -0.544). 
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Table 2.3 Estimated effects of State unemployment rates and unemployment benefit 

replacement rates on suicide rates per 100,000 across 50 US states and the District of 

Columbia, ages 20-64, 1968-2008 

  (1) (2) (3) 
VARIABLES Model 1 Model 2 Model 3 

        
Unemployment rates 0.161*** 0.161*** 0.187*** 

 
(0.0402) (0.0408) (0.0386) 

    Maximum unemployment benefit share of average 
state wages and salaries 

 
0.12 0.598 

(1999 prices) 
 

(1.27) (1.26) 

    UR*UB share of wages 
  

-0.544** 

   
(0.250) 

    
    Robust standard errors in parentheses 

   *** p<0.01, ** p<0.05, * p<0.1 
   

All models include: State fixed effects, year fixed effects, State-specific linear trends, age 
cohort, sex cohort, the log of population size, and the percentage of the population that has 
graduated college.  

 

To better illustrate the findings from Model 3 in Table 2.2, Figure 2.2 shows the number of 

additional suicides predicted by unemployment rates for State-years where unemployment 

benefits were above and below the historical mean ($7990 US constant dollars per person). 

Higher unemployment rates predicted higher suicide rates, but this association was steeper 

when unemployment benefits were low. Despite the lower slope in high benefit State years, 

in cases where unemployment rates were low, benefit levels above the historical mean 

were associated with comparatively higher State suicide rates. Higher predicted suicide 

rates at low unemployment rates in State-years with generous unemployment benefits is a 

result of the positive, albeit statistically insignificant main effect of benefits. 
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Figure 2.2. Additional suicides per 100,000 population predicted by unemployment rates 

and unemployment benefit generosity  

 

Note: High/low benefit levels are above/below the mean level ($7990 US constant dollars 
per person). Predicted values are based on unemployment rates, unemployment benefit 
levels, and interaction term using Model 3 estimates in Table 2.2. 

 

I next investigate whether the observed effects of unemployment benefit programs are 

consistent by gender and age group. Estimates for the main effects of unemployment rates 

and benefits disaggregated by age and gender are shown in Figures 2.3 and 2.4, 

respectively. Rising unemployment rates are associated with higher suicide rates for males 

and females, as well as for age groups between 20 and 44 years of age. Suicide rates among 

older cohorts, 45 to 64 years of age, are not strongly associated with unemployment rates. 

Neither males or females, nor any age cohorts, have a statistically significant relationship 

between suicide rates and the maximum State-level of unemployment benefits. 
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Figure 2.3. Unemployment rate main effect estimates stratified by age group and gender 

and 95% Confidence Intervals, US, 1968-2008 

 

Figure 2.4. Unemployment benefit main effect estimates stratified by age group and 

gender and 95% Confidence Intervals, US, 1968-2008 
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Figure 2.5 shows the estimated interaction terms from these age or gender stratified 

models. Although stratification by gender increased the size of confidence intervals, the 

UR*UB interaction term remains negative both for men (Beta=-0.22; 95% CI: -0.51, 0.080) 

and women (-0.13; 95% CI: -0.28, 0.021); effects did not statistically differ by gender given 

the overlapping confidence intervals. Among all age groups there is a negative interaction 

between unemployment rates and benefits, so that the impact of unemployment rates on 

suicide is offset by larger unemployment benefits; estimates for ages 45-54 were similar to 

other age groups but confidence intervals were wider. Although unemployment benefits 

appeared to mitigate the impact of increased unemployment rates most markedly for those 

aged 20-24 years, there were no clear differences across age groups, as the confidence 

intervals overlapped. 

Figure 2.5. Unemployment rate*unemployment benefit interaction estimates stratified by 

age group and gender and 95% Confidence Intervals, US, 1968-2008 
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altogether also did not materially affect the results (Table 2.4). Removing time trends leads 

to a negative and statistically significant main effect of benefits (-1.62, p<0.05) though this 

could be spurious without accounting for the non-stationarity of benefit levels through 

incorporating trends into the model. 

Table 2.4. Robustness check #1– inclusion of linear and quadratic State time trends 

  (1) (2) (3) 

VARIABLES 

Linear 
and 

quadratic Quadratic 
No time 
trends 

        
Unemployment rate 0.169*** 0.197*** 0.164*** 

 
(0.0386) (0.0410) (0.0458) 

    Maximum unemployment benefit 0.576 0.386 -1.62* 
(logged, 1999 prices) (0.729) (0.906) (0.901) 

 
   Maximum unemployment benefit * unemployment 

rate -0.586*** -0.545*** -0.609*** 

 
(0.150) (0.158) (0.208) 

 
   Linear trends Yes No No 

Quadratic trends Yes Yes No 

Robust standard errors in parentheses 
   *** p<0.01, ** p<0.05, * p<0.1 

  

All models include: State fixed effects, year fixed effects, State-specific linear trends, age 
cohort, sex cohort, the log of population size, average real state wages and salaries and the 
percentage of the population that has graduated college. 

 

I also examined whether the results hold when allowing State and year fixed effects to be 

gender-specific and find that while the estimated effects are smaller in magnitude, the 

UR*UB interaction remains negative (p=0.06) (Table 2.5).  
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Table 2.5. Robustness check #2– inclusion of gender-specific State and year fixed effects 

 (1) (2) (3) (4) 

VARIABLES 

State and 
year fixed 

effects State*Gender Year*Gender 

State*gender 
and 

year*gender  

          

Unemployment rates 0.179*** 0.147*** 0.100** 0.0857*** 

(0.0401) (0.0307) (0.0409) (0.0312) 

     

Maximum unemployment benefit 0.198 0.548 0.372 0.696 

(logged, 1999 prices) (0.759) (0.715) (0.665) (0.608) 

     
Maximum unemployment benefit * 
unemployment rate -0.565*** -0.173 -0.584*** -0.18* 

(0.151) (0.0972) (0.153) (0.0958) 

State fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Year fixed effects*gender No No Yes Yes 

State fixed effects*gender No Yes No Yes 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

All models include: State fixed effects, year fixed effects, State-specific linear trends, age cohort, sex cohort, 
the log of population size, average real state wages and salaries and the percentage of the population that has 
graduated college.  

 

One possible concern is that temporal patterns in the dependent variable could violate the 

assumptions of the model, which would leave open the possibility of a temporally patterned 

“third variable” driving the results. For example, a recent article by Ionides et al (2013) 

highlights the challenge of estimating the economy and suicide relationship using panel 

analysis. Ionides and colleagues conducted a State fixed-effects analysis of the economy and 

suicide from 1980 to 2006, and concluded that mortality remains strongly autocorrelated 

despite the inclusion of State-specific time trends.  

To ensure that the models are robust to possible autocorrelation, I re-ran the main Model 3 

using a number of alternative approaches that are robust to the presence of autocorrelation 

(Table 2.6). First I use Newey-West standard errors, which are used in OLS regressions when 

the error structure is assumed to be heteroskedastic and possibly autocorrelated up to 

some lag, which I set at 10 years. I also tested Prais-Winsten models, which use generalized 

least-squares to estimate linear regression models where the errors are serially correlated 
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following a first-order autoregressive process. Lastly, I experimented with autoregressive 

models that include lagged dependent variables. In all instances the results were consistent 

and the models indicate that the finding of a negative UR*UB interaction is robust. In the 

model with 10 years of lagged dependent variables, the lagged suicide rate dependent 

variables eventually lose statistical significance but the coefficients of interest (UR, UB, 

UR*UB) remain significant. Based on these robustness checks, it appears that 

autocorrelation is not a major concern in the study. 

Table 2.6. Robustness check #3– accounting for possible autocorrelation 

 (1) (2) (3) (4) 

VARIABLES 
Main Model 

3 

Newey-West standard 
errors (10 year 
maximum lag) 

Prais-
Winsten AR10 

          
Unemployment rate 0.179*** 0.179*** 0.0983*** 0.0804** 
  (0.0401) (0.0372) (0.0262) (0.0315) 
     
Maximum 
unemployment benefit 0.198 0.198 0.0530 0.753 
(logged, 1999 prices) (0.759) (0.726) (0.671) (0.483) 
     
Maximum 
unemployment benefit 
* -0.565*** -0.565*** -0.304*** -0.228*** 
Unemployment rate (0.151) (0.110) (0.0912) (0.0782) 

Robust standard errors in parentheses 
   *** p<0.01, ** p<0.05, * p<0.1 

   

All models include: State fixed effects, year fixed effects, State-specific linear trends, age cohort, sex 
cohort, the log of population size, average real state wages and salaries and the percentage of the 
population that has graduated college.  

 

Next, as a falsification test, I implemented the main models on neoplasm mortality rates 

instead of suicide rates, where I expected to observe no effects of unemployment or UI 

benefits (Lipsitch et al., 2010). Accordingly, I found no effect of unemployment rates, 

unemployment benefits, or the interaction term on neoplasm mortality at accepted levels of 

statistical significance (Table 2.7).  
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Table 2.7 Estimated effects of State unemployment rates and unemployment benefits on 

cancer death rates per 100,000 across 50 US states and the District of Columbia, ages 20-

64, 1968-2008 

 (1) (2) (3)  

VARIABLES Model 1 Model 2 Model 3 

    
 

  

 Unemployment rate -0.259 -0.278 -0.284 

 
 

(0.201) (0.200) (0.195) 

 
  

 
 

 Maximum unemployment benefit   5.677 5.49 

 (logged, 1999 prices)   (2.94) (2.789) 

 
    

 Maximum unemployment benefit *   
 

0.302 

 Unemployment rate   
 

(0.560) 

 
  

  
 

  

Robust Standard Errors in parentheses 
    *** p<0.01, ** p<0.05, * p<0.1 
    

All models include: State fixed effects, year fixed effects, state-specific linear trends, age cohort, 
sex cohort, the log of population size, average real state wages and salaries and the percentage 
of the population that has graduated college.  

 

I also experimented with alternative models that included the number of weekly 

unemployment benefit claims for each state instead of annual unemployment rates as the 

exposure mechanism, or in addition to unemployment rates, to account for the fact that 

many unemployed workers are ineligible or do not claim benefits (Table 2.8). Results did not 

notably differ from those based on benefit exposure through the unemployment rate. 
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Table 2.8. Estimated effects of State unemployment rates, weeks of unemployment 

benefit claims and unemployment benefits on suicide rates per 100,000 across 50 US 

states and the District of Columbia, ages 20-64, 1968-2008 

  (1) (2) (3) (4) 

VARIABLES 
UI weeks 
(logged) 

UI weeks (not 
logged) 

UI weeks 
(logged) and 

UR 
UI weeks (not 

logged) and UR 

          

UI weeks of claims per capita (logged) 0.138*** 0.152*** 

(0.0394) (0.0395) 

     

UI weeks of claims per capita (not logged) 0.0227*** 0.0221*** 

(0.00541) (0.00559) 

     

Maximum unemployment benefits 0.0431** 0.0263** 0.0502*** 0.0245** 

(logged, 1999 prices) (0.0171) (0.0109) (0.0171) (0.0111) 

     
UI weeks of claims per capita * UI benefit 
levels -0.0235*** -0.00376*** -0.0269*** -0.00372*** 

(0.00702) (0.000854) (0.00711) (0.000873) 

     

Unemployment rate 0.00127*** 0.000957** 

(0.000464) (0.000474) 

Robust standard errors in parenthesis. 

*** p<0.01, ** p<0.05, * p<0.1 

All models include: State fixed effects, year fixed effects, State-specific linear trends, age cohort, sex cohort, 
the log of population size, average real state wages and salaries and the percentage of the population that has 
graduated college. 

 

Lastly, the number of suicides in some State-year-age-sex combinations was low, which may 

have led to imprecise results; I re-estimated models based on aggregated age standardised 

data at the State-year-sex level instead and find that this led to similar results, regardless of 

whether I included linear time trends, quadratic time trends, or no time trends (Table 2.9). 
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Table 2.9. Estimated effects of State unemployment rates and unemployment benefits on 

suicide rates per 100,000 across 50 US states and the District of Columbia, age-

standardised data, 1968-2008 

  (1) (2) (3) (4) 

VARIABLES 

Linear and 
quadratic 

trends 
Linear 
trends 

Quadratic 
trends 

No time 
trends 

          
Unemployment rate 0.0643** 0.0664** 0.0854*** 0.0600* 

 
(0.0352) (0.0358) (0.0373) (0.0450) 

 
    

 0.456 -0.0144 0.156 0.715 
Maximum unemployment benefit 
(logged, 1999 prices) (0.397) (0.572) (0.597) (0.790) 

 
    

Maximum unemployment benefit * 
-0.347*** -0.298*** -0.267*** -0.327*** 

Unemployment rate (0.0917) (0.0892) (0.0887) (0.116) 

     Robust Standard Errors in parentheses 
    *** p<0.01, ** p<0.05, * p<0.1 
    

 
 

   

All models include: State fixed effects, year fixed effects, State-specific linear trends, age 
cohort, sex cohort, the log of population size, average real state wages and salaries and the 
percentage of the population that has graduated college.  

 

2.4 Discussion 

This study was motivated by studies suggesting that economic recessions increase the risk of 

suicide (Barr et al., 2012, Reeves et al., 2012, Stuckler et al., 2009, Ruhm, 2000). While 

previous research by Stuckler et al (2009) found no protective effect of unemployment 

benefit expenditures across European countries, the approach used in that study did not 

account for the endogenous relationship between the level of unemployment and the 

amount of money spent in aggregate on unemployment benefits. This study presented in 

this Chapter, based on data on State program generosity rather than expenditure levels, 

suggests that unemployment benefit programs in the US are associated with a reduced 

impact of labour market downturns on suicide. I found no evidence of differential effects of 

unemployment benefits interacted with unemployment rates across age or gender.  
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These results shed some light on the mechanisms linking unemployment rates to suicide. 

Theoretically plausible mechanisms linking poor labour market conditions to suicide include 

financial distress, stigma, social isolation, or reduced “meaning in life.” This study finds that 

generous maximum unemployment benefits have a preventive effect on suicide during 

periods of high unemployment.  This interaction between unemployment rates and benefit 

generosity suggests that the increase in suicides during recessions may partially be due to 

income loss among the unemployed or fear of income loss among other groups during 

periods of economic uncertainty. Economic recessions have previously been linked to 

increased levels of job insecurity and psychological distress, even among those who do not 

experience job loss (Burgard et al., 2009, Meltzer et al., 2010). Unemployment benefits may 

therefore protect against suicide by providing a social safety net for all workers at risk of 

unemployment and their families, mitigating the negative mental health effects of job 

insecurity.  

The results are consistent with previous research suggesting that the association between 

unemployment and mortality may be modified by the institutional context (Bambra and 

Eikemo, 2009, Martikainen, 1990, McLeod et al., 2012a, McLeod et al., 2012b,). For 

example, prior research suggests that higher expenditures on active labour market 

programs mitigate the impact of economic downturns on mortality (Stuckler et al., 2009). 

Similarly, generous unemployment benefit levels might reduce the mental health effects of 

job stress and insecurity associated with economic downturns.  

Despite finding that more generous unemployment benefit programs mitigate the 

association between unemployment rates and suicide, the estimate of the main effect of 

unemployment benefits had wide confidence intervals that crossed the null in almost all 

models; effects of unemployment benefits were only statistically significant through their 

interaction with unemployment rates. This is not surprising, as unemployment rates act as 

an exposure mechanism, since more people are likely to receive unemployment benefits 

when unemployment rates are high.  

While a finding of a negative main effect would have fit well with the hypothesis that more 

generous benefits are associated with fewer suicides, I am unable to confirm the direction 

of the main effect. A potential explanation for the impreciseness of the main effect is that 
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generous unemployment benefit programs could protect against the risk of suicide but can 

also lead to increased unemployment duration (Katz and Meyer, 1990, Moffitt and 

Nicholson, 1982), for example, by lowering job search intensity among the unemployed 

(Krueger and Mueller, 2010). As a result, if benefits were to discourage re-employment, 

generous unemployment benefits may in some cases inadvertently increase suicides if they 

contribute to longer spells of unemployment. Yet during economic recessions, when there 

are fewer job vacancies, the protective effects of unemployment benefits may offset any 

adverse effects of benefit programs on labour market participation, thus decreasing suicide 

rates. This hypothesis is consistent with earlier studies suggesting that cash or in-kind 

benefit programs often have contradictory effects (Strully et al., 2010, Schoeni and Russell 

Sage Foundation., 2008). Nevertheless, this interpretation remains speculative given the 

degree of uncertainty surrounding the estimate, as well as in the absence of individual-level, 

longitudinal data, which is needed to assess the causal mechanisms behind these aggregate 

associations.  

There are a number of limitations to the analysis. First, maximum State unemployment 

benefit generosity is only a proxy measure for unemployment benefits, since actual 

unemployment benefit amounts differ across individuals based on a number of factors 

including an individual’s length of unemployment and prior work history. Using maximum 

allowable State benefit levels therefore introduces some degree of measurement error. 

Additionally, while the study suggests that unemployment benefit policy mitigates the 

effects of unemployment rates on suicide, it does not address the question of whether 

receiving unemployment benefits during individual unemployment spells directly affects 

suicide risk. Using these data, I cannot establish whether the effects of unemployment 

benefit programs occur among the unemployed population in receipt of benefits, or 

whether benefit programs might prevent suicide among other populations not in receipt of 

benefits, such as the employed. One alternative is to investigate effects of unemployment 

benefit programs among the population that is actually eligible to receive these benefits. 

Nevertheless, it is also important to identify whether changes in unemployment benefits 

affect not only the income of workers themselves but also that of others, such as their 

household members, regardless of their labour market status. There could be important 

spillover effects for those not directly eligible, which may explain why this study found no 
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significant differences in the relationship between unemployment benefit programs and 

suicides across age groups. 

Additionally, while prior research finds that changes to unemployment benefit programs are 

uncorrelated with changes in other policies (Fishback et al., 2010), and despite the inclusion 

of many confounders, these estimates may partially pick up effects of other policies that co-

vary with unemployment benefit generosity. Policies such as gun legislation, mental health 

spending, or other income support programs could be hypothesised to also reduce suicide 

rates. Higher social welfare expenditures overall and more liberal public policy are 

associated with lower suicide rates (Flavin and Radcliff, 2009), while States that reduce total 

public welfare spending also have higher suicide rates (Zimmerman, 2002). However State 

mental health spending, which has historically been at low levels, may not have a significant 

effect on suicide rates (Ross et al., 2012). Nevertheless, another recent study estimated the 

impact of mental health benefits being required as a component of insurance coverage on 

State suicide rates and found significant effects (Lang, 2013). While previous studies using 

earlier time periods had found no effect of these types of mandates, Lang finds that 

between 1990 and 2004 suicide rates were lower in States with such policies in place; these 

policies did not become commonplace generally speaking until the mid- to late 1990s. This 

serves as a reminder that suicide is often the result of mental health issues and not 

necessarily economic conditions, and suggests that policies unrelated to employment may 

play an important role in mitigating suicide risk.  

This being said, it is difficult to imagine that the timing of changes in these or other policies 

potentially associated with suicide would have systematically coincided with changes in 

maximum unemployment benefit levels across different States. I have also attempted to 

control for this to some extent by including State fixed effects, which capture time invariant 

State characteristics; year fixed effects, which capture national level yearly characteristics; 

and State time trends, which capture linear changes over time that are specific to a state. I 

also control for average wages in a State as well as education—two factors that may 

correlate with State policies. It is also unlikely that these other social policies would have an 

effect on suicide rates through their interaction with unemployment rates; policies such as 

State mental health spending would be expected to affect suicide rates irrespective of 
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labour market conditions. Likewise, mental health spending may be endogenous with 

suicide rates if States with higher prevalence of mental health issues spend more due to 

increased utilization (and not to greater generosity). Unemployment benefits on the other 

hand are set at a mandated maximum and there is no reason to think that they would vary 

with respect to the prevalence of mental health conditions. Lastly, the models assume that 

unemployment benefit policies are associated with suicide rates concurrently; it is possible 

that there are long-term effects of unemployment benefits that are not captured.  

The findings from this study suggest that generous State UI benefits reduce the mental 

health impact of labour market downturns. Unemployment benefit policies may provide 

comfort to those who are prone to suicide during economic downturns, highlighting the 

potential mental health gains of expanding the generosity of benefits. A better 

understanding of the reasons underlying this finding may allow policymakers to adjust 

unemployment benefit schemes to maximise their health impact. Given the small 

magnitude of estimated effects, raising unemployment benefit levels might be an inefficient 

way to reduce the number of suicides (see Section 6.4.1).  However, as unemployment 

benefit programs are not designed specifically to reduce suicide, the finding that they do so 

is evidence of a positive externality associated with these programs and contributes to 

understanding of the linkages between unemployment and suicide rates. The study suggests 

that unemployment benefit programs not only help American families to smooth 

consumption but may also have the unintended etiological effect of reducing the rates of 

suicides during times of economic hardship. 
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Appendix Table 2.1 Estimated effects of State unemployment rates and 

unemployment benefits on suicide rates per 100,000 across 50 US states and the 

District of Columbia, ages 20-64, 1968-2008, full model results 

UI benefit levels UI benefits as a share of wages 

  (1) (2) (3) (4) (5) (6) 

VARIABLES Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Unemployment rates 0.159*** 0.159*** 0.179*** 0.161*** 0.161*** 0.187*** 

(0.0417) (0.0418) (0.0401) (0.0402) (0.0408) (0.0386) 

Unemployment benefits -0.102 0.198 

(0.767) (0.759) 

UR*UB -0.565*** 

(0.151) 

Unemployment benefit share 
of state wages 0.120 0.598 

(1.26) (1.27) 

UR*UB share of wages -0.544** 

(0.250) 

Average real state wages and 
salaries (logged, 1999 prices) -0.504 -0.469 -0.520 

(1.18) (1.21) (1.21) 

20-24 years - - - - - - 

25-34 years -2.16*** -2.17*** -2.15*** -2.16*** -2.16*** -2.15*** 

(0.574) (0.574) (0.573) (0.572) (0.572) (0.570) 

35-44 years -1.36** -1.36** -1.35** -1.35** -1.35** -1.35** 

(0.619) (0.619) (0.619) (0.618) (0.618) (0.616) 

45-54 years -0.123 -0.123 -0.115 -0.120 -0.119 -0.115 

(0.597) (0.597) (0.597) (0.596) (0.596) (0.595) 
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55-64 years 0.414 0.414 0.416 0.415 0.415 0.417 

(0.512) (0.512) (0.512) (0.511) (0.511) (0.511) 

Male 1.81*** 1.81*** 1.81*** 1.81*** 1.81*** 1.81*** 

(0.368) (0.368) (0.367) (0.368) (0.369) (0.369) 
State percentage of 
population that has 
graduated college -4.94 -4.95 -4.80 -5.17 -5.14 -5.05 

(4.73) (4.74) (4.75) (4.62) (4.71) (4.69) 

Log of cohort population size 2.12*** 2.12*** 2.10*** 2.11*** 2.11*** 2.10*** 

(0.731) (0.728) (0. 725) (0.728) (0.727) (0.725) 

State fixed effects Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes 

State linear trends Yes Yes Yes Yes Yes Yes 

Constant 13.3 12.9 13.8 8.51 8.53 8.62 

(13.6) (13.6) (13.7) (9.69) (9.65) (9.65) 

Observations 14,557 14,557 14,557 14,557 14,557 14,557 

Robust standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
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Chapter 3. Unemployment benefit program generosity and self-reported 

health 

Summary 

Researchers have linked job displacement to poorer self-reported health, but few studies 

identify policies that mitigate the negative health consequences of individual joblessness. 

Unemployment benefit programs might protect health through several pathways, but a key 

methodological challenge is accounting for the fact that individuals who receive 

unemployment benefits differ from those who do not receive benefits. Following the 

approach presented in Chapter 2, in this study, I examine whether State unemployment 

benefit generosity buffers the impact of joblessness on health. To do this, I link State law 

data on maximum allowable unemployment benefit levels between 1985 and 2008 to 

individual self-rated health for heads of households in the Panel Study of Income Dynamics. 

I find that unemployment is associated with increased risk of reporting poor health among 

men in fixed effects linear probability models (Beta =0.0618, p<0.01) but this effect is lower 

when the generosity of State unemployment benefits is high (Beta for interaction between 

unemployment and benefits=-0.0751, p<0.05). Results suggest that unemployment benefits 

may alleviate the adverse health effects of unemployment among men.  
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3.1 Introduction 

An extensive body of research has linked job loss to poorer physical and mental health 

(Catalano et al., 2011), as well as higher risk of premature death (Sullivan and von Wachter, 

2009). Recent literature has focused on establishing the causal nature of this association 

(Bockerman and Ilmakunnas, 2009, Strully, 2009, Browning et al., 2006, Browning and 

Heinesen, 2012, Salm, 2009, Schmitz, 2011, Sullivan and von Wachter, 2009), but few 

studies have explored whether specific social programs modify the health effects of job loss. 

Understanding the impact of policies is useful for identifying interventions that might 

reduce the harms associated with unemployment, but they may also reveal some of the 

mechanisms explaining the association between job loss and health. Job loss is associated 

with a substantial loss in earnings (Jacobson et al., 1993, Johnson and Feng, 2013). If income 

loss is the primary mechanism linking job loss to health, one would expect generous 

unemployment benefit programs to mitigate some of the negative consequences of job loss 

on health. On the other hand, unemployment benefits may be less effective if job loss 

influences health primarily through non-financial mechanisms, such as the loss of a time 

structure for the day, decreased self-esteem, chronic stress (Gallo et al., 2001) or changes in 

health-related behaviour.    

As mentioned in Chapter 1, a small number of studies have investigated the association 

between unemployment benefit receipt and self-reported health measures (Rodriguez, 

2001, Rodríguez et al., 2001, Rodriguez et al., 1997, McLeod et al., 2012a). For example, 

Rodriguez (2001) analysed self-reported health data from Britain, Germany and the US and 

found that unemployed workers in receipt of unemployment benefits do not have 

statistically higher likelihood of reporting poor health compared to the employed, while 

unemployed workers receiving no benefits are in worse health than these two groups. She 

concludes that benefit receipt moderates the association between unemployment and poor 

self-reported health.  Similarly, McLeod et al (2012a) found that unemployed US workers 

not receiving benefits are more likely to report poor health than employed workers, but the 

health of unemployed workers in receipt of benefits does not statistically differ from the 

health of employed workers. The association between receiving benefits and health was 

most pronounced amongst low-skilled unemployed workers, who appear to gain 

substantially from receipt of unemployment cash benefits.  
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A key caveat in these studies is that they do not account for selection into benefit receipt, a 

bias which could lead to either over- or under-estimation of effects; this is a particularly 

notable concern because unemployment benefit programs in the US have historically had 

low take-up rates (Vroman, 2009). Receipt of benefits may be endogenous with health if 

factors that determine receipt of benefits are correlated with changes in health due to 

unemployment (Gruber, 1997). This would be the case, for example, if people who do not 

expect to be unemployed for a long duration do not decide to apply for unemployment 

benefits; these people may also be less likely to experience health effects of unemployment 

because of their short duration in unemployment. Alternatively, if healthier job losers are 

more likely to be eligible for and receive unemployment benefits, the health benefits of 

unemployment benefits will be overestimated. During the recent recession, for example, 

non-Hispanic White race, higher educational level and being married, characteristics 

associated with better health, also predicted receipt of benefits among long-term 

unemployed workers (Johnson and Feng, 2013). On the other hand, job losers in poor health 

may anticipate longer-term spells of unemployment and therefore may be more likely to 

claim unemployment benefits as compared to healthier individuals who expect to quickly 

find new employment. While 61% of workers in manufacturing and 66% of workers in 

construction were receiving benefits in the period 2008-2011, only 52% of professional and 

management workers and 49% of workers in the retail trade industry were receiving 

benefits in the same period (Johnson and Feng, 2013). These findings suggest that selection 

is a serious source of potential bias in the relationship between unemployment benefit 

receipt and health, though the direction of bias is unclear.  

In the US, the Federal-State Unemployment Insurance Program provides temporary wage 

replacement for eligible workers who become unemployed through no fault of their own. 

Although all States must follow general rules established at the Federal level relating to 

coverage and eligibility, each State operates its own program. As a result, there is 

considerable variation in the generosity of unemployment benefit programs across States 

and over time. An approach to account for selection is to exploit these variations in the 

generosity of unemployment benefit programs to understand their effects on the health of 

workers. The assumption is that changes in unemployment benefit policy are uncorrelated 

with a worker’s health or other characteristics, as individuals have no control over the policy 
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at the time they experience job loss. Variations in unemployment benefit generosity across 

States and over time, therefore, offer a unique quasi-experiment to estimate the impact of 

this policy on the health of unemployed workers.   

In Chapter 2, I exploited these variations to assess whether unemployment benefits 

moderate the relationship between aggregate unemployment rates and suicide rates, which 

are known to increase during recessions (Classen and Dunn, 2012, Miller et al., 2009). 

Findings from Chapter 2 suggest that more generous unemployment benefits are associated 

with a weaker effect of recessions on suicide.  However, the study in Chapter 2 was based 

on aggregate data and did not estimate whether unemployment benefits reduce the 

negative impact of job loss among unemployed workers, or whether benefits might in fact 

lead to improvements in mental health among both employed and unemployed workers, for 

example, by reducing the stress associated with the fear of job loss. It is also not clear 

whether results for suicide are applicable to self-rated health, a measure that combines 

elements of both physical and mental health, and a strong predictor of mortality (Idler and 

Benyamini, 1997).  

In this chapter, I assess whether there are heterogeneous effects of unemployment benefit 

programs on the health of the unemployed and the employed.  I hypothesise that income 

from unemployment benefits reduces psychological and physical morbidity primarily among 

displaced workers, so that individuals losing their job at a time of more generous 

unemployment benefit policies will suffer fewer health consequences than comparable 

individuals losing their jobs during years of lower benefit generosity. By focusing on 

unemployment benefit program generosity at the State level, I am able to circumvent the 

bias generated by selection into benefits in the aforementioned studies on unemployment 

benefits and health (Bruckner, 2014, Ferrarini et al., 2014). To identify this effect, I exploit 

variation in State unemployment benefit program generosity across US States and link these 

to longitudinal individual-level data.   

The actual unemployment benefit levels received by those who are unemployed are also 

available in the PSID and could potentially be used to estimate the effect of unemployment 

benefits on health. However actual benefits received may be endogenous with health if 

individuals in poor health are more likely to have previously worked low-wage jobs or had a 
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history of employment volatility. Poor work history may not only disqualify these individuals 

from receiving the maximum allowable State benefit level (since actual benefit levels 

received are determined based on prior wages and time spent working), but also could 

mean that actual benefit levels may be highly correlated with the likelihood of poor health 

(i.e. lower actual benefits are associated with worse health), because both are determined 

in part by low wages and related socio-economic factors. This would lead to a spurious 

relationship between actual benefits and health. Using actual benefit levels would also 

prohibit me from assessing whether UI programs have health effects among those who do 

not experience job loss. Additionally, without access to administrative data there is a 

possibility that benefit level data in surveys will suffer from measurement error (Gruber, 

1997). Regardless, as stated by Gruber (1997), studying the effect of actual benefit levels 

may be less useful from a policy perspective since policymakers can only influence the 

maximum level of allowable benefits and not the actual receipt of those benefits anyways.  

3.2 Methods  

3.2.1 Data 

This study uses data from the 1984 to 2009 waves of the PSID (Panel Study of Income 

Dynamics, 2013). The PSID is a longitudinal household study that collects data on individual 

characteristics, including employment status and self-reported health. The survey was 

conducted annually from 1968 through 1997, after which it shifted to biennial interviews.  

Data are taken from each head of household. Within each wave of the PSID, each family unit 

identifies the current head of household. At the onset of the survey in 1968, if the family 

contained a husband-wife pair, the husband was automatically designated as the head to 

match definitions used by the Census Bureau. The person listed as head of household can 

change over time. When a new head must be chosen, he or she must be at least 16 years 

old and have the most financial responsibility within the family unit. If this person is female 

and she has a husband in the family unit, or if she has a boyfriend with whom she has been 

living for at least one year, then he is listed as head of household. However, in the scenario 

where the husband or boyfriend is incapacitated and unable to fulfil the functions of head, 

then the female is listed as the head of the family unit. Naturally, this lends itself to a head 

of household sample that primarily consists of men (see Table 3.1).  
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The outcome variable of interest is self-reported health, first included in the PSID survey in 

the 1984 wave; values include ‘excellent’ (1) ‘very good’ (2), ‘good’ (3), ‘fair’ (4), and ‘poor’ 

(5). For this analysis, I collapse this variable into a dichotomous indicator of poor health, 

where ‘fair’ (4) or ‘poor’ (5) health are equal to 1. This binary indicator has been shown to 

be a strong predictor of objective measures of health, including the risk of death (Idler and 

Benyamini, 1997, Liang, 1986, Burstrom and Fredlund, 2001). There is disagreement over 

the precise dimensions of health it measures. While evidence from the British Household 

Panel survey suggests that individuals place more emphasis on physical conditions 

(Powdthavee and van den Berg, 2011), recent analysis using instrumental variables finds 

that subjective health capture tiredness, and to a lesser extent physical functioning and 

bodily pain (Au and Johnston, 2013). Self-reported health indicators can be contaminated by 

reporting bias if survey respondents rate comparable health states differently. However 

while there is strong evidence of variations in reporting by factors such as age (Van 

Doorslaer and Gerdtham, 2003) there is no reason to suspect that reporting biases would 

vary systematically according to within-State fluctuations in unemployment benefit 

generosity. 

Other individual level data include whether an individual reported joblessness in the year 

prior to the health assessment (t-1), age, gender, and the natural log of family income, 

which is lagged to avoid simultaneity with joblessness (i.e., assessed at t-2). Although the 

main results do not materially differ after doing so, I exclude 3,673 observations (person-

years) for which maximum available benefits were larger than household income in the 

previous year, as these individuals are very unlikely to meet eligibility criteria). I also 

excluded 1,803 observations with missing data. The final sample consists of 12,855 heads of 

household aged 18-65 participating in PSID. 

I link data from PSID to State-level data on maximum state UI benefits obtained from the US 

Department of Labor Employment and Training Administration. Maximum benefit 

generosity is reported as the maximum allowable amount per week (in US dollars) and the 

maximum number of weeks a worker is entitled to receive benefits. As in Chapter 2, I 

multiplied these two values to obtain the maximum total allowable benefit level a worker is 

entitled to receive in a given year and State, adjusted to constant 1999 US dollars using the 
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Bureau of Labour Statistics Consumer Price Index (CPI-U). Finally, the models include data 

on State unemployment rates for the working-age population estimated from the Current 

Population Survey (CPS) to control for other factors that may be correlated with business 

cycles, an approach which has been used previously to deal with this potential issue 

(Krueger and Mueller, 2010). 

3.2.2 Empirical Strategy  

In this study, I use OLS linear probability models that estimate effects of unemployment 

benefits by exploiting exogenous variation in the generosity of unemployment benefit 

programs over time across States6. The main analysis uses individual fixed effects, but I also 

report results from models that incorporate individual random effects. Individual fixed 

effects estimators are attractive because they control for unobserved individual-level time 

invariant heterogeneity. On the other hand, individual fixed effects may be overly restrictive 

because they identify effects of unemployment benefits only for individuals who experience 

more than one spell of joblessness. Therefore, I also present results from individual random 

effects models that include State fixed effects to control for permanent characteristics that 

vary across States. This allows me to better take advantage of the longitudinal nature of the 

data by exploiting changes within States across time. However, using random effects models 

requires that the individual effect is uncorrelated with the explanatory variables, which is 

unlikely to be met when using individual-level panel data. I perform Hausman tests to 

decide between random and fixed effects and in all instances the test strongly favours fixed 

effects. Therefore, when reporting results from random effects models, I also report results 

that include Mundlak corrections (Mundlak, 1978). This approach uses individual random 

effects but also includes within-individual mean values of the covariates as additional 

explanatory variables. Since these new explanatory variables are time invariant within 

individuals, the assumption is that they capture some of the correlation between the 

individual random effects and the covariates that otherwise make the random effects model 

inconsistent. 

                                                           
6
 I do not use logistic regression due to the possible bias resulting from incidental parameters in the fixed 

effects models. The problem here is that with insufficient time periods in the panel, as the number of 
individuals in the sample grows, so too do the number of incidental parameters in the model; this can produce 
biased estimates. 
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The basic model specification for the effect of joblessness is as follows: 

Pr(Hit =1)= αi + β1Uit -1 + β2 lnUB jt -1 + β3(Uit -1 * ln UB jt -1)+ βxX 'it + S j +Tt +εit   

where H is a binary variable equal to 1 if individual i reported poor health in year t, α  is the 

individual effect, U is whether an individual experienced joblessness in t-1, UB is the mean-

centred natural log of maximum unemployment benefits in State j for year t-1, X is a vector 

of individual controls, S represents State fixed effects, T represents year fixed effects and ε 

is the regression error term. Employment, unemployment rates, and State maximum 

allowable unemployment benefit levels are lagged by one year because the PSID 

questionnaire asks about employment status in the prior year7. The natural log of benefit 

levels captures proportional increases in maximum benefit levels. State fixed effects control 

for all time-invariant differences across States so that the impact of benefits on self-

reported health is identified out of variations within States over time. Year fixed effects 

control for factors affecting trends in self-reported health across all States. 

The estimate of primary interest is U*UB, which assesses the interaction between 

joblessness and unemployment benefits. This term assess whether larger maximum 

unemployment benefits at the time of joblessness in a worker’s State of residence moderate 

the impact of job loss on health. A negative coefficient would indicate that the impact of 

unemployment on health is weaker if State maximum unemployment benefits are higher.  

In separate models, I also investigate the links between aggregate unemployment rates, 

State benefit levels and self-reported health using a similar specification: 

Pr(H it =1)= αi + β1URit -1 + β2 lnUBjt -1 + β3(URit -1 * ln UBjt-1)+ βx X 'it + S j + Tt +εit  

where UR is the mean-centred state unemployment rate for State j, lagged by one year to 

be contemporaneous with the timing of individual job loss. In this model, I assess the 

interaction UR*UB to examine whether larger maximum unemployment benefits offset the 

impact of aggregate economic downturns across the entire population. At a final stage, I 
                                                           
7
 I use these data at t-1 primarily because self-reported health is reported at the time of survey, whereas 

unemployment benefit receipt is only reported for the year prior. While actual benefit receipt is not used in 
this study, I make use of this variable in the study in Chapter 5. Therefore, to maintain consistency across the 
thesis, I estimate effects based on job loss in the prior year in all instances.  
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implement a third model that combines both aggregate (i.e. UR and UR*UB) and individual-

level (i.e. U and U*UB) unemployment measures:  

Pr(Hit =1)= αi + β1Uit -1 + β2 lnUBjt -1 + β3(Uit -1 * ln UBjt -1)+ β4URit -1 + β5(URit -1 * ln UB jt -1)+ βx X 'it + S j +Tt +εit  

This approach makes it possible to distinguish the effects of unemployment benefits 

following unemployment spells from effects of unemployment benefits among person-years 

where no job loss occurred. In all models standard errors are robust and clustered at the 

State-year level and therefore consistent in the presence of correlated errors within State-

years.  

3.3 Results 

3.3.1 Descriptive statistics 

Descriptive statistics disaggregated by employment status and gender are summarized in 

Table 3.1.  This shows that 17.7 percent of the sample experienced at least one episode of 

job loss. 10 percent of individuals who were gainfully employed in the previous year 

reported poor health, while 24.9 percent of individuals who experienced job loss in the 

previous year reported poor health. Compared to two years prior, unemployed individuals 

were 5.3 percentage points more likely to report poor health, whereas amongst the 

employed, the share reporting poor health only increased by 0.9 percent over the same 

period. Men make up nearly 80 percent of the sample of heads of household. Employed 

men were less likely than employed women to report poor health. 
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Table 3.1. Descriptive statistics, means and standard deviations 

  

Poor 
health 

Poor health 
in t-2 

State 
unemployment 
rate in t-1 

UI Real total 
benefit in t-1 
(1999 US$) 

Real family 
income in t-2 
(1999 US$) 

Age Male 

Total Employed 0.100 0.091 4.601 7,877.80 60,549.07 41.2 80.3% 

  
(0.300) (0.288) (1.555) (2253.23) (65610.89) (10.4) (0.398) 

 
Unemployed 0.249 0.196 4.743 7,631.11 38,938.81 41.5 64.3% 

  
(0.433) (0.397) (1.577) (1879.44) (43298.72) (12.8) (0.479) 

         Men Employed 0.086 0.078 4.605 7,931.46 67,386.88 41.0 - 

  
(0.28) (0.269) (1.554) (2294.49) (70580.69) (10.2) 

 

 
Unemployed 0.241 0.176 4.802 7,751.63       48,361.39  42.5 - 

  
(0.428) (0.381) (1.568) (1870.12) (50389.28) (13.0) 

 
         
Women Employed 0.156 0.146 4.585 7,659.02 32,669.33 41.9 - 

  
(0.363) (0.353) (1.562) (2062.22) (24026.73) (11.1) 

 

 
Unemployed 0.264 0.233 4.638 7,414.47 22,001.46 39.6 - 

  
(0.441) (0.423) (1.59) (1877.6) (15331.9) (12.2) 

 

 Note: Standard deviations (SD) in parenthesis 
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To illustrate the generosity of benefits relative to household income, Figure 3.1 shows 

histograms of the maximum household unemployment benefit replacement rate, which 

reflect the proportion of income that is maintained through unemployment benefit receipt. 

This is calculated by dividing the real maximum unemployment benefit level in t-1 by real 

household income in t-2. Panel A shows replacement rates using observed household 

income, while Panel B uses household income divided by the square root of the number of 

members in the household (Atkinson, 1995). On average, maximum allowable benefits 

correspond to between one fourth and one third of household income. The mean 

household income replacement rate (Panel A) is 25.9 percent, but for half of respondents, 

the mean replacement rate is below 18.9 percent. Using the replacement rate adjusted for 

household size (Panel B) the mean replacement rate is 34.4 percent, but less than 28.6 

percent for half of the respondents. 

Figure 3.1. Histograms of maximum household UI replacement rates 

Panel A      Panel B 

  

Figure 3.2 plots lines of best fit for the probability of reporting poor health along the 

maximum level of real total unemployment benefits separately for employed and 

unemployed workers; Figure 3.3 plots the same lines of best fit stratified by gender. While 

displaced workers have higher probabilities of poor self-reported health than employed 

workers at all levels of benefits, both employed and unemployed respondents have lower 

probabilities of poor health as benefit levels increase (Figure 3.2). Among men, the slope is 

noticeably steeper for unemployed workers, so that the health gap between employed and 

unemployed male workers becomes noticeably smaller as benefits increase (Figure 3.3).  
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Among women, more generous benefits predict lower probability of poor health, but the 

slopes are nearly identical for the employed and unemployed. Based on these clear 

differences, as well as because of historical disparities in employment patterns by gender 

and the disproportionate number of men in my sample of heads of households, I stratify the 

sample and primarily examine whether there are effects of unemployment benefit 

programs for men. 

 

Figure 3.2. Probability of poor self-reported health relative to maximum allowable real 

unemployment benefit levels, unemployed and employed workers, full sample 
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Figure 3.3. Probability of poor self-reported health relative to maximum allowable real 

unemployment benefit levels, unemployed and employed workers, by gender 
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Table 3.2.  Fixed and random effects estimates of the probability of reporting poor health 

in time t conditional on State unemployment benefit generosity at t-1, main effects, men 

 

Fixed effects Random effects 
Random effects 

(Mundlak) 

  (1) (2) (3) 

VARIABLES Main effects Main effects Main effects 

        

Joblessness in t-1 0.0632*** 0.0819*** 0.0551*** 

 

(0.00865) (0.00895) (0.00811) 

Natural log real total max benefit in t-1 -0.0109 -0.00668 -0.00383 

 

(0.0141) (0.0130) (0.0129) 

Working age state UR in t-1 -0.00148 -0.00222** -0.00223** 

 

(0.000972) (0.00103) (0.000932) 

Poor health in t-2 0.0344*** 0.232*** 0.0265** 

 

(0.0104) (0.00895) (0.0103) 

Natural log real family income in t-2 -0.00961*** -0.0426*** -0.00654** 

 

(0.00279) (0.00265) (0.00267) 

Age -0.00412 0.00492*** 0.00238*** 

 

(0.00303) (0.000203) (0.000391) 

State FE Yes Yes Yes 

  

    

Year FE Yes Yes Yes 

  

    

Observations 52,892 52,892 52,892 

Number of respondents 9,349 9,349 9,349 

Robust standard errors clustered at State-year in parenthesis;*** p<0.01, ** p<0.05, * p<0.1 

 

3.3.2 Main results 

Model results for men using individual fixed and random effects without the interactions are 

summarised in Table 3.2. The Hausman test firmly rejects the hypothesis that the difference 

between the random and fixed effect model coefficients is not systematic (p<0.0001) which 

supports using individual fixed effects. Nevertheless, using either fixed or random individual 

effects (with or without the Mundlak corrections), unemployment in t-1 is associated with a 

higher probability of reporting poor health. Greater working age unemployment rates are 

associated with slightly lower likelihood of poor health, however the coefficients are only 

significant at p<0.05 for the random effects models. The main effect of unemployment 

benefits is non-significant for any of the models, though the coefficient is negative.  
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Next I review model results for men using individual fixed effects and including the 

interaction terms8 (Table 3.3). Results in column 1 indicate that unemployment at time t-1 

was associated with higher likelihood of reporting poor health in the following year 

(Beta=0.0612, p<0.01). The main effect of State unemployment benefit generosity, which 

reflects the association between benefit levels and self-reported health in all years, 

including those where an individual was employed, was associated with lower likelihood of 

reporting poor health in a given year, but the estimate is not statistically significant. The 

interaction between joblessness and benefit generosity is negative and significant, 

indicating that the association between joblessness and poor self-rated health is weaker for 

men when State unemployment benefits are more generous (Beta=-0.079, p<0.05).   

Column 2 in Table 3.3 summarises results from a model estimating the impact of aggregate 

State unemployment rates on self-rated health. There is no significant effect for the main 

effect of unemployment rates, however there was a significant interaction between 

unemployment rates and benefits. This appears to indicate that poor self-reported health is 

more likely when both unemployment benefits and unemployment rates are high 

(Beta=0.00674, p<0.05). 

The final model in column 3 combines joblessness, unemployment rates, and both 

interactions. Results for joblessness do not materially differ from the simpler model in 

column 1 which does not include unemployment rates. While joblessness remains 

associated with significantly higher likelihood of reporting poor health (Beta=0.0618, 

p<0.01) more generous benefits at the time of joblessness reduces the likelihood of 

reporting poor health (Beta=-0.0751, p<0.05). In these models there is no longer a 

significant interaction between State unemployment rates and maximum unemployment 

benefits. 

                                                           
8
 Again, the Hausman test firmly rejects the hypothesis that the difference between the random and fixed 

effect model coefficients is not systematic (p<0.0001). 
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Table 3.3.  Fixed effects estimates of the probability of reporting poor health in time t 

conditional on State unemployment benefit generosity at t-1, interactions, men 

Individual fixed effects 

  (1) (2) (3) 

VARIABLES 
Individual 

joblessness 
Unemployment 

rates 
Both 

        

Joblessness in t-1 0.0612*** 0.0618*** 

(0.00852) (0.00853) 

Natural log real total max benefit in t-1 -0.0107 -0.00479 -0.00806 

(0.0141) (0.0137) (0.0140) 

Joblessness* Natural log real total max 
benefit in t-1 

-0.0749** -0.0751** 

(0.0371) (0.0371) 

Working age state UR in t-1 
 

-0.00119 -0.00145 

(0.000941) (0.000939) 

UR * UI 0.00674** 0.00404 

(0.00273) (0.00266) 

Poor health in t-2 0.0339*** 0.0397*** 0.0344*** 

(0.0104) (0.00932) (0.0104) 

Natural log real family income in t-2 -0.00975*** -0.0128*** 
-

0.00972*** 

(0.00278) (0.00256) (0.00279) 

Age -0.00421 -0.00322 -0.00407 

(0.00303) (0.00294) (0.00303) 

State FE Yes Yes Yes 

Year FE Yes Yes Yes 

Observations 53,167 63,232 52,892 

Number of respondents 9,408 10,126 9,349 

Robust standard errors clustered at State-year in parenthesis;*** p<0.01, ** p<0.05, * p<0.1 
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3.3.3 Additional analyses 

I conducted additional analyses to check the consistency of the results to changes in 

modelling approach (i.e. using random individual effects) and to see if estimated effects 

were consistent among women. Table 3.4 contains the results of individual random effects 

models for men; in these models, the interaction term U*UB reflects variation with States in 

the generosity of unemployment benefits across all individuals and years, rather than 

variation within an individual who experiences multiple job losses (as in the individual fixed 

effects models). The results are similar to the models using individual fixed effects.  In the 

full model with individual random effects and the Mundlak correction (Column 6), 

joblessness at t-1 is associated with higher likelihood of poor self-reported health 

(Beta=0.0535, p<0.01), while more generous unemployment benefits weakens the effect of 

joblessness (Beta=-0.0768, p<0.05). The main effect of unemployment rates is negative and 

statistically significant at p<0.05. Unlike in the individual fixed effects model, the interaction 

between UR*UI remains positive and is statistically significant, even after controlling for 

individual job loss.  
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Table 3.4.  Random effects estimates of the probability of reporting poor health in time t 

conditional on State unemployment benefit generosity at t-1, interactions, men 

OLS random effects OLS random effects (Mundlak) 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 
Individual 

joblessness 
Unemployment 

rates 
Both 

Individual 
joblessness 

Unemployment 
rates 

Both 

  
          

Joblessness in t-1 0.0790*** 0.0794*** 0.0534*** 
 

0.0535*** 

(0.00869) (0.00872) (0.00797) 
 

(0.00798) 

Natural log real 
total max benefit 
in t-1 

-0.00561 0.00287 -0.0014 -0.00307 0.00909 -0.000146 

(0.0131) (0.0133) (0.013) (0.0129) (0.0126) (0.0127) 

Joblessness* 
Natural log real 
total max benefit 
in t-1 

-0.124*** -0.124*** -0.0763** 
 

-0.0768** 

(0.0368) (0.0368) (0.0350) 
 

(0.0350) 

Working age state UR in t-1 -0.00166* -0.00218** 
 

-0.00209** -0.00222** 

 
(0.00099) (0.001) 

 
(0.000894) (0.000890) 

UR * UI 
 

0.00480* 0.00361 
 

0.00653** 0.00455* 

 
(0.00268) (0.00287) 

 
(0.00255) (0.00262) 

Poor health in t-2 0.231*** 0.269*** 0.232*** 0.0262** 0.0272*** 0.0266** 

(0.00892) (0.00772) (0.00894) (0.0103) (0.00943) (0.0103) 

Natural log real 
family income in 
t-2 

-0.0429*** -0.0543*** -0.0427*** -0.00654** -0.00726*** -0.00664** 

(0.00263) (0.00251) (0.00265) (0.00266) (0.00240) (0.00267) 

Age 0.00493*** 0.00576*** 0.00492*** 0.00262*** 0.00297*** 0.00238*** 

(0.000203) (0.000183) (0.000203) (0.000384) (0.000428) (0.000391) 

State FE Yes Yes Yes Yes Yes Yes 

 
Year FE Yes Yes Yes Yes Yes Yes 

 
Observations 53,167 63,232 52,892 53,167 63,232 52,892 

Number of 
respondents 

9,408 10,126 9,349 9,408 10,126 9,349 

Robust standard errors clustered at State-year in parenthesis;*** p<0.01, ** p<0.05, * p<0.1 
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I also ran models for women despite the expectation in line with the plots of best fit in 

Figure 3.3, that I would find no statistically significant difference in the likelihood of poor 

self-reported health based on the interaction between unemployment benefit generosity 

and joblessness using linear probability models. Table 3.5 contains results for individual 

fixed effect and random effect models that only include the main effects of joblessness, 

unemployment rates and benefits. Although the coefficient for joblessness is positive and 

statistically significant in all instances, neither benefit generosity nor working age 

unemployment rates are statistically significant. The coefficients on benefits however are 

negative, consistent with the results for men. 

Table 3.5.  Fixed and random effects estimates of the probability of reporting poor health 

in time t conditional on State unemployment benefit generosity at t-1, main effects, 

women 

Fixed effects 
Random 
effects 

Random 
effects 

(Mundlak) 

  (1) (2) (2) 

VARIABLES Main effects Main effects Main effects 

        

Joblessness in t-1 0.0362*** 0.0532*** 0.0332*** 

(0.0134) (0.0124) (0.0119) 

Natural log real total max benefit in t-
1 

-0.0410 -0.0225 -0.0170 

(0.0313) (0.0300) (0.0251) 

Working age state UR in t-1 -2.35e-05 0.00135 -5.13e-05 

(0.00218) (0.00231) (0.00202) 

Poor health in t-2 -0.00176 0.331*** -0.00436 

(0.0155) (0.0127) (0.0136) 

Natural log real family income in t-2 -0.0155** -0.0584*** -0.0118** 

(0.00681) (0.00549) (0.00567) 

Age 0.00340 0.00579*** 0.00440*** 

(0.00813) (0.000349) (0.000767) 

State FE Yes Yes Yes 

    

Year FE Yes Yes Yes 

    

Observations 13,565 13,565 13,565 

Number of respondents 3,506 3,506 3,506 

Robust standard errors clustered at State-year in parenthesis;*** p<0.01, ** p<0.05, * p<0.1 
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Table 3.6 contains fixed and random effects models (Mundlak correction only) for women 

that include interaction terms for joblessness*benefits and unemployment rates*benefits. 

Again, joblessness is associated with higher likelihood of poor health in all instances. 

However the interaction between joblessness and benefits is not statistically significant. 

Interestingly, the interaction between unemployment rates and benefits is statistically 

significant (p<0.05) and positive in the models that do not control for individual job loss 

(Columns 2 and 5) implying worse self-reported health across the female population as 

unemployment rates increase if benefits are comparatively more generous. However this 

effect is no longer significant after controlling for individual job loss (Columns 3 and 6). 

Lastly, I clustered errors at the individual level in separate analysis for all fixed and random 

effects models and found that this did not affect the statistical significance of any results 

(results not shown).  
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Table 3.6.  Fixed and random effects estimates of the probability of reporting poor health 

in time t conditional on State unemployment benefit generosity at t-1, interactions, 

women 

Fixed effects Random effects (Mundlak) 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 
Individual 

joblessness 
Unemployment 

rates 
Both 

Individual 
joblessness 

Unemployment 
rates 

Both 

              

Joblessness in t-1 0.0403*** 0.0390*** 0.0362*** 
 

0.0349*** 

(0.0141) (0.0142) (0.0122) 
 

(0.0122) 

Natural log real total 
max benefit in t-1 

-0.0463 -0.0365 -0.0430 -0.0204 -0.0171 -0.0189 

(0.0314) (0.0336) (0.0313) (0.0251) (0.0245) (0.0254) 

Joblessness* Natural 
log real total max 
benefit in t-1 

0.0439 0.0433 0.0424 
 

0.0416 

(0.0566) (0.0566) (0.0551) 
 

(0.0552) 

Working age state 
UR in t-1  

-0.00242 0.000196 
 

-0.00256 0.000115 

(0.00194) (0.00224) 
 

(0.00182) (0.00205) 

UR * UI 0.0109** 0.00505 
 

0.0118** 0.00420 

(0.00529) (0.00621) 
 

(0.00478) (0.00579) 

Poor health in t-2 -0.00173 -0.00356 -0.00172 -0.00400 -0.0137 -0.00445 

(0.0154) (0.0122) (0.0155) (0.0136) (0.0119) (0.0137) 

Natural log real 
family income in t-2 

-0.0159** -0.0102* -0.0156** -0.0120** -0.00711 -0.0118** 

(0.00678) (0.00587) (0.00682) (0.00564) (0.00499) (0.00568) 

Age 0.00260 0.00710 0.00347 0.00433*** 0.00370*** 0.00439*** 

(0.00809) (0.00666) (0.00814) (0.000717) (0.001000) (0.000765) 

State FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Observations 13,628 18,046 13,565 13,628 18,046 13,565 

Number of 
respondents 

3,524 4,131 3,506 3,524 4,131 3,506 

Robust standard errors clustered at State-year in parenthesis;*** p<0.01, ** p<0.05, * p<0.1 
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3.4 Discussion 

This study was motivated by a lack of understanding of how unemployment benefit policies 

influence worker´s health. I find that generous State unemployment benefits are associated 

with lower likelihood of reporting poor health among unemployed male workers. One might 

also hypothesise that unemployment benefits could lead to health improvements among 

the employed population, for example, by reducing the stress associated with the fear of job 

loss during poor labour market conditions (Luechinger et al., 2010). However I find no 

consistent evidence of an effect of unemployment benefits for men or women who are not 

unemployed, although in the case of the latter it is possible that this is because they 

comprise a small share of the sample of heads of households. The results suggest that 

generous unemployment benefits are a promising approach to alleviate the negative health 

effects of job loss for men.  

Results from the study provide some insight into the mechanisms linking job loss to health. 

As in Chapter 2, theoretically plausible mechanisms linking job loss to self-reported health 

include financial distress, stigma, social isolation, or reduced “meaning in life” (Janlert and 

Hammarstrom, 2009, Bartley, 1994). In this study, I find that larger maximum allowable 

unemployment benefits have a protective effect on self-reported health during periods of 

unemployment.  This interaction between job loss and benefit generosity suggests that the 

relationship between poor self-reported health and unemployment may partially be due to 

income loss after job loss. While it is likely that income is not the only mechanism through 

which unemployment influences health, these findings highlight the potential of income 

support programs to not only smooth consumption during unemployment spells, as has 

been suggested in the literature (Gruber, 1997), but also influence health after job loss.  

Although income may play an important role in the unemployment benefit and health 

relationship, there are alternative explanations for how unemployment benefit programs 

might buffer the impact of job loss on health. Individuals require health so that they can 

maximize their utility and enjoy life (Grossman, 1972). Time spent working increases 

income, which allows individuals to purchase health inputs such as healthy food, but at the 

same time, working reduces time to invest in health promoting activities like exercise, or 

may even harm health as a result of exposure to adverse working conditions. Individuals 
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who are not working, however, may have more leisure time available that can be used for 

health promoting activities like exercise. Access to generous unemployment benefits may 

therefore protect health by subsidising time out of work and providing the unemployed with 

additional time to engage in health promoting leisure activities by lengthening 

unemployment. This notion is consistent with research on the effects of UI on 

unemployment duration and leisure (Chetty, 2008, Moffitt and Nicholson, 1982, Mortensen, 

1977). 

I also found in some models (e.g. full random effects models with Mundlak correction, Table 

3.4 Column 6) that higher unemployment rates were associated with lower likelihood of 

reporting poor self-reported health for men; I also find in some instances (e.g. random 

effects models with Mundlak correction for women, Table 3.6 Column 5) that the 

interaction between unemployment rates and benefits was associated with greater 

likelihood of reporting poor health. The relationship between unemployment rates and poor 

self-reported health is consistent with studies that find that mortality declines during 

economic contractions and worsens during economic upturns (Tapia Granados, 2005, Ruhm, 

2000, Ruhm, 2003, Ruhm, 2005, Miller et al., 2009). This finding, as well as the positive 

coefficient on UR*UI in the random effects model suggests that the mechanisms through 

which aggregate unemployment shocks influence health at the population health may differ 

from those through which job loss influence health at the individual level. For example, 

during economic downturns, leisure time might increase, making it less ‘costly’ to make 

health investments such as spending time doing exercise and cooking healthy foods. By 

contrast, individual job loss might lead to poor health through influencing income, 

psychological well-being, social networks and other negative pathways. Nevertheless, it is 

important to note that the full individual fixed effects model, which is robust to individual 

heterogeneity because it controls for individual level time invariant characteristics, does not 

indicate any significant effects of unemployment rates or UR*UI (Table 3.3 Column 3). 

There are a number of limitations to this analysis. These results are based on self-reported 

health, which captures a combination of complex physical and mental health dimensions. It 

is possible that mental health effects drive the results; this is consistent with the study 

presented in Chapter 2 that finds higher unemployment benefits are associated with lower 
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suicide rates. This may also provide support for the hypothesis that self-reported health 

measures largely capture changes in mental health. Second, the study design enables 

identification of the net effect of unemployment benefit policies, but it does not capture the 

direct effect of receiving benefits. While the latter is also of interest, the approach in this 

study has two main advantages. A first advantage is that by using legislatively determined 

benefit generosity I overcome selection bias inherent to the non-randomised allocation of 

unemployment benefits. A second advantage is that I am able to provide estimates of the 

net effect of a policy intervention that would change the generosity of unemployment 

benefits. This is important because it has been estimated that a non-negligible proportion of 

eligible unemployed workers do not claim unemployment benefits, so the direct effect of 

receiving benefits might overestimate the impact of a policy change on the health of all 

unemployed workers. On the downside however, using maximum allowable benefits is 

imprecise and introduces some degree of measurement error, since many unemployed UI 

recipients receive less generous benefits if they do not have adequate work history to 

qualify for maximum benefits, or if they return to employment early. 

The results suggest that unemployment benefits, which aim to smooth consumption during 

periods of unemployment, have the potential to improve health. The magnitude of this 

effect for unemployed workers is substantial. Based on the effect of joblessness on health 

(Beta=0.0618) and the estimated effect of benefits on unemployed males (-.00806 minus 

0.0751) from Table 3.3 Column 3, I estimate that at the mean levels of benefits, a 75 percent 

increase in the maximum unemployment benefits a worker is entitled to receive every year 

in their State of residence completely offsets the impact of unemployment on health. 

The current financial crisis has sparked debates on the costs and benefits of social programs. 

The findings presented here suggest that any costs-benefit analysis of unemployment 

benefit policies should take into account the potential loss in health that would result from 

diminishing the comprehensiveness of unemployment benefit programs. 
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Chapter 4. Unemployment benefit expansions and physically active leisure 

Summary 

Previous research finds that UI incentivizes leisure—both sedentary and physically active— 

by reducing the opportunity cost of time. In this study, I use nationally representative data 

from the Behavioral Risk Factor Surveillance System (BRFSS) and the American Time Use 

Survey (ATUS) to investigate specifically whether UI leads unemployed people to engage in 

physical activity.  Exploiting variation across US States in the timing of a policy that uniquely 

expanded UI eligibility only for workers with irregular work history, I find that UI increased 

the likelihood of reporting physically active leisure in the BRFSS by around 8 to 10% among 

unemployed non-high school graduates, but had no effect on the physical activity of other 

unemployed demographics. I find confirmatory evidence using the ATUS, where this UI 

eligibility expansion coincided with increased likelihood of going for a walk among 

unemployed non-high school graduates, but had no effect on other unemployed groups, the 

amount of time spent walking or on other more intensive exercise. The results are robust to 

a number of specifications, including difference-in-difference-in-difference, use of various 

control groups, State-specific trends, and demographic interactions.  
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4.1. Introduction  

Many studies suggest that job loss has deleterious effects on a variety of health behaviours 

and conditions and may increase the risk of premature mortality (Catalano et al., 2011, 

Modrek, 2013, Browning and Heinesen, 2012, Sullivan and von Wachter, 2009). However 

the notion that increases in non-labour time may actually be good for health in some 

instances are supported by several studies that find that increases in unemployment are 

associated with reductions in overall death rates (Tapia Granados, 2005, Ruhm, 1995, Ruhm, 

2000, Ruhm, 2003, Ruhm, 2005, Gerdtham and Ruhm, 2006). A common explanation for the 

latter is that healthy lifestyles are also countercyclical: joblessness increases physical activity 

among the habitually inactive, as well as weight loss among the severely obese. A one 

percentage point increase in US State unemployment rates is associated with a 1.5% 

increase in physical activity and a 1.4% decrease in severe obesity at the population level 

(Ruhm 2005).  

Access to financial resources during unemployment may explain why some of those who are 

unemployed increase their participation in physically active leisure. Although increases in 

non-labour time reduce the opportunity cost of engaging in time-consuming behaviours like 

physical activity, in the absence of savings or alternative financial resources that do not 

require additional individual work effort, such as spousal income, much of the free time 

associated with unemployment might be spent searching for a job. If part of the mechanism 

relating unemployment to physical activity and potentially better health has to do with 

access to financial resources and the costs of health promoting leisure while out-of-work, 

one would expect that unemployment benefits could be a critical prerequisite among 

unemployed individuals who would otherwise have minimal savings or few alternative 

sources of income. For these liquidity-constrained individuals, unemployment benefits could 

play an important role and lead to a linkage between unemployment and physical activity.  

In this chapter, I test whether unemployment benefits cause some individuals to engage in 

physically active leisure while out of work. In the US, each State UI program provides some 

job losers with varying levels of income support for a limited time period, depending on 

individual characteristics. Since not all unemployed people are eligible for, or apply for UI, a 

key methodological challenge in assessing the causal impact of UI on physically active leisure 
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is the non-random selection into benefit receipt. Identifying any effects of unemployment 

benefits therefore requires exogenous variation in the likelihood of receiving benefits. In 

this study, I exploit variation across States in the timing of a UI modernization program 

called the Alternate Base Period (ABP). In the US, States have gradually been implementing 

ABP, which expands UI eligibility for workers with irregular work histories. This program has 

been demonstrated in the literature to uniquely increase UI uptake only among non-high 

school graduates who, due to their tendency to have unstable work histories, often do not 

otherwise qualify for UI; however the policy has not been shown to affect UI receipt among 

other, more highly educated groups. I expect that a large share of the unemployed non-high 

school graduate cohort affected by ABP also lacks access to considerable financial resources 

without receiving UI benefits, so that the increase in UI due to ABP is likely to have a 

significant impact on the finances of these individuals and their families. I investigate 

whether UI through the ABP policy led to greater physical activity among these low-

educated ABP-eligible workers.  

4.2 Background 

4.2.1 Theoretical framework 

The basic theoretical framework underpinning this study is the expectation that 

unemployment benefits lengthen unemployment duration by distorting job search 

incentives and subsidizing leisure time for the unemployed, with the strongest effects 

among liquidity constrained households (Chetty 2008; Moffitt and Nicholson 1982; 

Mortensen 1977). This hypothesis is derived directly from labour supply theory, which 

proposes a trade-off between deciding whether to engage in labour or leisure to maximize 

utility. During periods of joblessness, individuals do not engage in wage producing labour, 

leading to greater consumption of leisure because of reductions in its opportunity cost. The 

decreased cost of leisure time associated with joblessness is likely to be conditional to some 

extent on access to financial resources; otherwise, a large portion of time while unemployed 

must be allocated to job search to preserve consumption levels (Gruber, 1997).  

For the unemployed receiving unemployment benefits, as there is no work effort or time 

required to produce additional income, there is less need to choose between labour, job 
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search9, and leisure (Besley and Coate, 1992). Leisure time—both sedentary and physically 

active— is effectively subsidized by unemployment benefits10 (Holmlund, 1998) with the 

choice between sedentary and physically active leisure depending to some extent on 

individual preferences. An important but unanswered question is whether this additional 

leisure time associated with unemployment benefits could inadvertently be health 

promoting. If individuals with access to unemployment benefits choose to spend some of 

their newfound leisure time engaging in physical activity, the time off of work could 

ultimately improve some aspects of their health, and may provide a mechanism explaining 

previous findings in the literature that increases in unemployment can be good for health, 

as well as the findings in Chapters 2 and 3 that unemployment benefits can be good for self-

reported and mental health. 

The leisure time subsidized by UI may be beneficial for the health of the unemployed if that 

time is spent engaging in health promoting activities. The canonical Grossman model of 

demand for health posits that demand for time-intensive health promoting activities will 

increase as the price of engaging in these activities decreases (Grossman, 1972, Becker, 

1965). A utility maximizing unemployed individual with excess free time could be expected 

to spend some of their time investing in their health by engaging in physically active leisure. 

With leisure time underwritten by UI, the price of undertaking time consuming healthy 

activities, such as exercise, diminishes substantially. This temporary increase in income from 

UI without commensurate work effort is distinct from temporary wage increases requiring 

labour, which reduce health investment behaviours due to their propensity to encourage 

additional work hours (Dustmann and Windmeijer, 2000). The increase in income associated 

with UI could therefore result in increases in active, health producing leisure, such as 

physical activity.  

                                                           
9
 All US States mandate that the unemployed must actively search for work—for example, by signing up for 

internet employment-search services or keeping a record of weekly work searches—to be UI eligible. 
Therefore, some amount of time must be allocated to job searching for UI benefit receivers. 
10

 As an aside, individuals have to provide enough labour during their base period to qualify for UI. For low 
wage earners, the amount of labour hours needed is comparatively greater than for higher wage earners. This 
means that for low wage individuals, leisure would have been consumed at a premium while employed. The 
perceived decrease in the cost of leisure associated with joblessness and UI could appear substantial to such 
an individual. 
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There is some evidence already suggesting that UI has a positive effect on health, though no 

studies have specifically investigated whether there are effects of UI on physical activity or 

time spent engaging in healthy behaviours (Rodriguez, 2001, Rodríguez et al., 2001, 

Rodriguez et al., 1997, McLeod et al., 2012a). In Chapters 2 and 3 I provide evidence that the 

level of UI generosity can play an important role; exploiting variation across States and time 

in the maximum allowable State UI benefits, I find that more generous UI benefit programs 

reduce the likelihood of poor self-reported health among the unemployed and slightly 

moderate the effect of unemployment rates on suicides. However the precise causal 

pathway (i.e. whether observed effects are due to increases in income, leisure time, or 

both) underlying the observed associations between UI and health are unclear.  

The idea that UI could incentivize leisure-time physical activity is also consistent with 

literature on the determinants of physical activity participation. In the US, lack of time has 

been cited as a reason for physical inactivity (Brownson et al., 2001). A study using the 

Behavioral Risk Factor Surveillance System (BRFSS) dataset finds that increases in hours of 

work are associated with less physical activity among the low educated; the author 

emphasizes that changes in time rather than changes in income drive the results (Xu, 2013). 

Research also indicates that as wages and the opportunity cost of time increase, the 

intensity of physical activity increases so that less time is needed to achieve comparable 

levels of fitness (Meltzer and Jena, 2010). This implies that for UI receivers, for whom the 

opportunity cost of time is low, the decision to engage in physical activity may result in 

relatively less-intensive, more time-consuming leisurely physical activity, such as walking. 

Lastly, a recent study from 2003 to 2010 using the American Time Use Survey (ATUS) finds 

that physical activity increases as a result of unemployment, with effects largely among low-

educated men; however the increased physical activity associated with unemployment does 

not fully substitute for decreases in work-related physical activity (Colman and Dave, 2013).  

4.2.2 Unemployment insurance modernization in the US: Alternate Base Periods 

One of the impediments to UI eligibility relates to work history and monetary eligibility 

requirements (US Department of Labor, 2009a). To receive UI, unemployed individuals must 

have a minimum level of earnings as determined by each state over a predefined base 

period; historically, this base period has comprised the earliest four of the previous five 
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completed quarters before job loss (Figure 4.1, upper panel). The purpose of requiring a 

minimum level of earnings over a standard base period is to ensure that individuals in 

receipt of benefits have sufficient attachment to the labour market prior to job loss; the lag 

between job loss and the base period allows sufficient time for administrative UI eligibility 

processing. Individuals who do not have adequate earnings during this standard base period 

cannot meet monetary eligibility requirements and thus are not eligible to receive UI 

benefits. This largely penalizes individuals with irregular work histories and low wages; 

research shows that low earners are less likely than high earners to receive UI, underscoring 

the complications of studying any effects of UI via direct comparisons between UI receivers 

and non-receivers (Gould-Werth and Shaefer, 2012). 

 Figure 4.1. Time periods used to determine monetary eligibility for UI, standard base 

period vs. alternate base period 

Standard 

Base Period           

Q1 Q2 Q3 Q4 Q5 
Example date 
of job loss 

January-
March 2014 

April-June 
2014 

July-
September 

2014 

October-
December 

2014 
January-

March 2015 
April 15th 

2015 

    
Alternate 

Base Period   

Q1 Q2 Q3 Q4 Q5 
Example date 
of job loss 

January-
March 2014 

April-June 
2014 

July-
September 

2014 

October-
December 

2014 
January-

March 2015 
April 15th 

2015 

Source: Adapted based on Gould-Werth, A., & Shaefer, H. L. (2013)  

Note: The grey boxes are the quarters that are used to determine monetary eligibility for UI 
given April 15th, 2014 as the hypothetical date of job loss. For a worker to be eligible for UI, 
they must meet State earnings requirements in the quarters highlighted in grey. 

 

In an effort to increase UI take-up among marginalized workers, States have progressively 

been allowing the unemployed to claim UI eligibility using wages earned over Alternate Base 



106 
 

Periods (ABP). Under ABP, UI eligibility is not based on earnings during the earliest four of 

the previous five completed quarters, but rather, the eligibility window is shifted forward by 

one quarter to comprise the four most recently completed quarters (Figure 4.1, lower 

panel). By shifting the base period window to account for more recent earnings, individuals 

who have unsteady work histories have a greater chance of qualifying for UI. ABP may also 

increase application rates among individuals who would not have applied otherwise 

(O'Leary, 2010).  

The first State to implement ABP was Vermont in 1988; by the end of the 20th century, only 

6 more states had followed suit (Rhode Island, Washington, New Jersey, Ohio, North 

Carolina and New York) followed by Maine, Massachusetts, Michigan, Wisconsin and New 

Hampshire by 2001 (Figure 4.2). However between 2003 and 2010, 21 more states plus 

Washington D.C. enacted legislation for ABP at varying points in time. One of the reasons for 

such a large increase in ABP is that as part of the American Recovery and Reinvestment Act 

(ARRA) of 2009, States were given access to special funds totalling $7 billion, conditional on 

reforms to modernize their UI program. One-third of these funds were made available to 

states if they had ABP in place, which led 10 states to enact ABP legislation in 2009 followed 

by 3 more states in 2010 (O'Leary, 2010). These Federal stimulus funds were subsequently 

transferred into each State’s UI trust fund, without any requirement for the funding to pay 

for the UI modernization reforms themselves. 
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Figure 4.2. Year of Alternate Base Period Implementation in US States 

 

Source: Based on data from http://www.urban.org/UploadedPDF/412582-How-Do-
unemployment-Insurance-Modernization-Laws-Affect-the-Number-and-Composition-of-
Eligible.pdf 

While ABP increases the number of unemployed who are eligible to receive UI, there is only 

limited evidence that it has effectively increased UI take-up. A report for the US Department 

of Labor in 1995 concluded that, based on five of the six States that had enacted ABP policy 

at that time, the presence of ABP could increase the number of eligible UI claimants by 

between 6 and 8 percent overall (Vroman, 1995). The study found that, as expected, 

beneficiaries of the policy were typically low-wage earners, as earnings among ABP eligible 

individuals were lower than workers who were eligible under the standard base period. 

Another simulation using data from the Survey of Income and Program Participation also 

finds that low-wage workers (in the bottom quartile of wage earners) disproportionately 

gain from ABP (Stettner et al., 2005).  

Pre-2003 2003 2004 2005 2008 2009 2010 2011 2012

Not by 

end of 

2012
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The only nationally representative study using data from the CPS finds analogous evidence 

that ABP increases UI take-up among low wage earners (Gould-Werth and Shaefer 2013). 

Despite underreporting of UI receipt in the CPS, the authors conclude that between 1987 

and 2011, the unemployed seeking part-time work with less than a high school degree were 

more likely to receive UI under ABP, but they do not find statistically significant effects for 

UI uptake among any other unemployed cohorts. This result is unsurprising, given that non-

high school graduates are likely to be low-wage, part-time and intermittent workers – the 

target demographic of the policy. 

4.3 Methods 

4.3.1 Data 

The primary data source for this study is the BRFSS, which is a nationally-representative 

repeated cross-sectional dataset and the largest telephone survey in the world (Centers for 

Disease Control, 2014). The BRFSS collects data on personal health behaviours and 

individual characteristics and has frequently been used to study the relationship between 

unemployment and health (Ruhm and Black, 2002, Ruhm, 2005, Ruhm, 2003, Dee, 2001, 

Tefft and Kageleiry, 2014, Helliwell et al., 2011). The dataset is particularly useful for this 

study due to its large size and representativeness of the US population, as the effects of ABP 

on UI take-up are of a small magnitude and only occur among a small subsample of the 

population.  

As a supplementary analysis, I use data from the ATUS (Bureau of Labor Statistics, 2014). 

Sponsored by the Bureau of Labour Statistics and conducted by the US Census Bureau, the 

ATUS is a nationally-representative repeated cross-sectional dataset comprised of randomly 

selected individuals from the CPS. Interviewees report detailed information on how they 

spent their time, minute-by-minute, during the previous day. The ATUS has been used 

previously to investigate time spent job searching as well as time spent on health promoting 

activities (Krueger and Mueller, 2010, Cawley and Liu, 2012, Tudor-Locke et al., 2010, 

Colman and Dave, 2013).    

I use data from the 2003 through 2010 waves of both surveys because beginning in 2011, 

the BRFSS changed its weighting methodology to iterative proportional fitting, which 
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replaced the previously used post stratification weighting method11. Likewise, the Bureau of 

Labour Statistics provides state-specific monthly unemployment rates beginning in 2003, 

which I use as a control variable to proxy economic conditions.  

The BRFSS outcome variable of interest is a self-reported yes-no question regarding whether 

the respondent took part in any leisure time physical activity during the past month. Despite 

the potential for measurement error, research suggests that self-reported measures of 

physical activity, such as the question used in the BRFSS, are valid, reliable and correlate 

with such objective measures (Aires et al., 2003, Yore et al., 2007). For example, Yore et al 

(2007) followed 60 BRFSS participants and compared their answers to the subjective 

physical activity question to pedometer and accelerometer readings, as well as to a daily 

physical activity log and found general consistency. As a result, these types of questions 

have been commonly used to measure physical activity (Brownson et al., 2005, Ford et al., 

2010, Barker et al., 2011, Mensah et al., 2005, Hackmann et al., 2012, Tekin et al., 2013). 

While other BRFSS data on self-reported moderate and vigorous physical activity are 

potentially of interest, these indicators are only available in alternating BRFSS waves (i.e. in 

odd years) so that there are only 4 years of data between 2003 and 2010. This not only 

reduces the sample size considerably, but also means that in many instances, there are no 

observations at, or around the actual time of ABP implementation in many States. As a 

result, I do not use these variables in the analysis. 

I use the 2003 through 2010 ATUS to supplement the BRFSS analysis. While the ATUS does 

not contain the identical leisure-time physical activity question as the BRFSS, it does contain 

information on minutes spent participating in a long list of sporting activities. I limit the 

analysis to minutes spent walking, running, or engaging in any sporting activity because 

walking and running are common sporting activities, do not require specific equipment, and 

can be done without team members or competitors; the any sporting activity category 

captures all types of physical activities. I do not include minutes spent walking or running 

while traveling from one place to another, as I consider this to be a mode of transport rather 

than participation in a leisure time physical activity. Although the reported minutes spent 

                                                           
11

 Weighting is required to account for unequal probabilities of respondents being included in the survey 
(Ruhm 2005); weights make the BRFSS data representative of the adult population in the state, allowing me to 
obtain consistent estimates of average treatment effects (Ruhm & Black, 2002).  
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exercising in the ATUS could be considered a more objective outcome measure than the 

self-reported question in the BRFSS, the ATUS itself has a number of drawbacks for this 

study. Importantly, the ATUS sample of unemployed people is considerably smaller than the 

BRFSS. This is problematic given the small effect of ABP on UI take-up and the fact that I am 

interested in changes within and across States, which requires fairly large samples within 

each State and time period. Information on employment status collected through the CPS 

and reported in the ATUS also may not refer to the same months as the information 

collected on time-use, making it difficult to ensure that the time-use data consists 

exclusively of unemployed individuals. 

Other relevant data available in both surveys include gender, age group (18-24, 25-34, 35-

44, 45-54,55-64), marital status, education level, race (white, black, or other), body mass 

index12, as well as State of residence, year and month surveyed.  

4.3.2 Empirical strategy 

 

Neither the BRFSS, nor ATUS datasets contain information on whether individuals actually 

receive UI. However assessing the direct effect of UI receipt on physical activity could 

produce biased results because of key differences among individuals who are eligible or 

ineligible, those who qualify or do not qualify, and those who ultimately receive or do not 

receive UI. As a result, I exploit the wide-variation within and across States in the timing of 

ABP implementation to investigate the effect of the change in UI eligibility criteria on the 

likelihood of reporting physically active leisure among the low educated unemployed. Based 

on available research as described above, I assume that ABP implementation systematically 

increases UI take-up only among unemployed individuals with less than a high school 

education, but has no significant effect to either increase or decrease UI take up among 

other, more highly educated unemployed individuals who have stable work histories (Gould-

Werth and Shaefer 2013). An important limitation however is that I am unable to confirm 

that these individuals in fact do receive UI.  

                                                           
12

 Body mass index data is missing for most unemployed non-high school graduate respondents in the ATUS 
and so it is not used in the supplemental analysis. 
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I use two main specifications to take advantage of both the variation in the timing of ABP 

implementation and the subgroups exposed to, and affected by the policy. First, I employ a 

difference-in-difference (DD) approach exploiting within-State variation in the timing of ABP 

implementation, and the fact that States introduced the policy at different points over a 

period of 8 years. For this first specification, I restrict the sample to individuals with less 

than a high school education who became unemployed in the past year, because this is the 

group mostly likely to be affected by ABP policy once implemented within a State. The 

treatment group are therefore recently unemployed individuals with less than a high school 

education in States and time periods that have implemented ABP, while the control group is 

recently unemployed individuals with less than a high school education when and where 

ABP has not been implemented. A key benefit of the DD approach is the ability to reduce 

selection problems inherent in comparing the effects of non-random selection into 

treatment groups. While it is possible that there are changes in the composition of the 

unemployed population with less than a high school degree over time, it is improbable that 

changes in the composition of this population would systematically correlate with ABP 

implementation over time and bias the results, as there is considerable variation in the year 

and month of ABP implementation across States. The DD model is therefore: 

Pr(PAijmt =1)= α + β1ABP + β2UR jmt + βx X 'i+ S j +Yt + Mm +εijmt  

where PA is an indicator of whether an individual reports engaging in leisure time physical 

activity, S are State fixed effects that control for time invariant State characteristics, Y are 

year fixed effects, M are month fixed effects which capture seasonal variations, UR are State 

monthly unemployment rates, and X is a vector of individual characteristics. ABP is an 

interaction between State and time where ABP=1 beginning in the month following a State’s 

ABP implementation, allowing enough time for ABP eligibility to begin to be processed by 

State programs (Stettner et al., 2005). Using this DD specification, the coefficient on ABP is 

the average treatment effect of the policy on physically active leisure, identified for States 

that implement ABP at some point between 2003 and 2010.  

One drawback of this approach is that any other policies or events that correlate with each 

State’s ABP implementation may also produce an observable effect on the outcome 

variable. For example, since ABP policy was a requirement for States to receive ARRA UI 
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modernization funds, it is possible that the ABP coefficient may pick up some aspects of the 

other elements contained within the ARRA program, such as the Supplemental Nutrition 

Assistance Program and support for Medicaid, or other measures that have broad effects on 

unemployed residents of a State, including but not limited to just the unemployed with less 

than a high school education (Modrek, 2013). Medicaid, for example, affects a wide swath 

of the US population, having nearly 70 million enrollees in 2010—nearly 20 percent of the 

US population—which is larger than the total adult population that did not graduate high 

school (approximately 13 percent of the US population) and far larger than the unemployed 

non-high school graduate population (Kaiser Family Foundation, 2014, US Census Bureau, 

2012). The DD approach could therefore pick up these contemporaneous effects and give an 

inaccurate estimate of the independent effect of ABP. 

To address this issue, I use difference-in-difference-in-difference (DDD) models, where an 

additional control group presumed to be unaffected by ABP is included. I primarily use the 

recently unemployed who have graduated high school but have received no further 

education, and are unemployed in the same State and time period. This additional control 

group is arguably a reasonable comparator to the unemployed with less than a high school 

education in terms of education level, earnings potential, and eligibility for other social 

programs such as Medicaid, but based on previous research on the effects of ABP, is not 

likely to benefit from ABP policy. I also run models that use other control groups—either all 

unemployed who have at least graduated high school or the unemployed who have 

completed some college. Both of these alternative control groups are unlikely to be affected 

by ABP, but are also unlikely to be affected by other social welfare programs, and may be 

less comparable to the non-high school graduate demographic in terms of observable and 

unobservable characteristics in general. The generic DDD model specification is: 

 

Pr(PAijmt =1)= α + β1ABP + β2UR jmt + βx X 'i+ β3Ei + S j +Yt + Mm + β4(Ei * ABP)+ (Ei * S j )+ (Ei * Yt )+ (Ei * Mm )+εijmt

 

where E refers to the population eligible for ABP, in this case, unemployed with less than a 

high school education. I use separate State, year, and month fixed effects for the eligible 

and non-eligible populations, which is a conservative modelling approach. The coefficient of 
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interest in this model is ABP*E, which estimates the average effect of ABP policy on the 

target population. 

I conduct many robustness checks, including inclusion of State-specific time trends and 

demographic interactions. I also test whether ABP effects differ by marital status or age 

group, with the expectation that any effect of UI on physical activity occurs most strongly 

among unmarried and younger working-age cohorts, for whom UI benefits may replace a 

substantial portion of prior earnings. I also run the analysis after collapsing the monthly data 

into State-year observations. As an additional sensitivity analysis, I test the effects of ABP on 

the natural log of height, for which there is no reason to expect that variations across States 

and repeated cross-sections will be associated with implementation of ABP policy in the 

short-term.  

One of the key assumptions of DD and DDD is the common trend assumption. This stipulates 

that physical activity participation is essentially indistinguishable among the treatment and 

control groups prior to implementation of ABP policy. If the likelihood of physical activity 

among the treatment and control groups had already been diverging prior to ABP 

implementation, the models may inaccurately attribute effects to the policy. This would be 

the case even after controlling for observable characteristics. With nearly half of the 50 

States plus Washington DC implementing ABP at various points in time over the sample 

period, it is difficult to visually confirm that there is no difference in trends prior to ABP. 

However, many studies have utilized a test, where a dummy policy is created to see 

whether there is a statistically significant difference between treatment and control groups 

in the time period leading up to the policy (Gregg et al., 2012, Bertrand et al., 2004). I use 

two dummy policies: the 2 years prior to the actual implementation of ABP and the 3 years 

prior to the actual implementation of ABP. I test this for DD and DDD specifications, where a 

non-significant association validates the common trend assumption.  

All models are OLS linear regressions and use standard errors that are robust to unobserved 

heteroscedasticity and clustered at the State-year-month level, because ABP policy variation 

is at that level; this allows for intragroup correlation and is appropriate for DD and DDD. 

However I also run models with robust standard errors clustered at the State, State-year, 

and state-month to ensure that I am appropriately accounting for autocorrelation in the 
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variance of the outcomes and find no notable differences in the results (Bertrand et al., 

2004) (Appendix Table 4.1). Results also do not differ in terms of statistical significance or 

direction of effects using logistic regressions instead of OLS linear regression (Appendix 

Table 4.2). 

4.4 Results 

4.4.1 Descriptive statistics 

 

The BRFSS contains 9,062 18 to 65 year olds with less than a high school degree who had 

been unemployed for less than one year at the time of survey. 42.3 percent (n=3,833) were 

exposed to ABP policy. For the main DDD approach, where unemployed high school 

graduates are the additional control group, 25,812 respondents were recently unemployed 

high school graduates with no further education, with 11,869 of those exposed to ABP but 

whose UI eligibility was not likely affected by the policy. The ATUS contains 1,178 18 to 65 

year olds with less than a high school degree who report being unemployed; 40.8 percent 

(n=481) were exposed to ABP.  

Table 4.1 contains weighted descriptive statistics from the BRFSS for recently unemployed 

individuals exposed to ABP and not exposed to ABP, disaggregated by those with less than a 

high school degree and those with a high school degree but no further education (the 

control group in the main DDD). The percentages of ABP-exposed unemployed with less 

than a high school education (the treatment group) that were male (61.9%), non-white 

(44.0%), or unmarried (62.3%) are slightly higher than the respective percentages in all of 

the control groups in the main analysis (unemployed with less than a high school education 

but not exposed to ABP, high school graduates exposed to but not affected by ABP, and high 

school graduates not exposed to or affected by ABP).  

ABP-exposed and non-exposed unemployed non-high school graduate respondents in the 

ATUS have similar demographic characteristics to those in the BRFSS. 18.4% of unemployed 

ABP-exposed non-high school graduate respondents reported any minutes of all sports 

activities, 5.0% reported any minutes of walking, 1.7% reported any minutes of running and 

11.1% reported any minutes of job search; 15.0%, 4.7%, 0.8% and 13.8% of the unemployed 



115 
 

non-ABP exposed non-high school graduate control group reported participation in these 

activities, respectively.  
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Table 4.1. Descriptive statistics of ABP vs non-ABP exposed individuals in the BRFSS, sample weighted  

      

Male Age Married White Black Asian Other race 

Leisure 

physical 

activity 

Body 

mass 

index 

Natural 

log of 

height 

(in 

inches) 

Unemployed 
with less 
than high 

school 
education 

No ABP Mean 0.58 33.81 0.48 0.65 0.18 0.01 0.16 0.64 27.53 4.20 

 
Standard Deviation 0.49 12.57 0.50 0.48 0.38 0.11 0.36 0.48 5.90 0.11 

            
ABP Mean 0.62 32.75 0.38 0.56 0.24 0.01 0.19 0.66 27.13 4.20 

 
Standard Deviation 0.49 12.98 0.48 0.50 0.43 0.11 0.39 0.47 5.98 0.08 

            
Total Mean 0.60 33.44 0.44 0.62 0.20 0.01 0.17 0.65 27.39 4.20 

 
Standard Deviation 0.49 12.73 0.50 0.49 0.40 0.11 0.37 0.48 5.93 0.10 

Unemployed 
high school 
graduates 

only  

No ABP Mean 0.59 33.23 0.40 0.66 0.21 0.02 0.12 0.72 27.35 4.21 

 
Standard Deviation 0.49 12.77 0.49 0.47 0.41 0.13 0.32 0.45 5.89 0.08 

            ABP Mean 0.59 34.10 0.42 0.68 0.22 0.01 0.09 0.71 27.41 4.21 

 
Standard Deviation 0.49 13.14 0.49 0.47 0.41 0.11 0.29 0.45 5.94 0.06 

            Total Mean 0.59 33.59 0.41 0.67 0.21 0.02 0.11 0.72 27.37 4.21 

 
Standard Deviation 0.49 12.93 0.49 0.47 0.41 0.12 0.31 0.45 5.91 0.07 
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Figure 4.3. Fitted lines of the percentage of unemployed reporting physically active leisure 

in the BRFSS, by State, 2003-2010  

 

Fitted lines in Figure 4.3 reveal that the share of the unemployed with less than a high 

school education who reported physically active leisure increased between 2003 and 2010 

(solid line), but that there were no changes of note among unemployed high school 

graduates (dotted line). While this increase in physical activity participation among non-high 

school graduates coincides with the incremental increase over time in the number of States 

implementing ABP, it is not possible to attribute these changes to ABP, since I cannot 

ascertain whether increased physical activity is occurring within States as they implement 

ABP, or whether something else entirely is driving the change.  

4.4.2 Main results 

 

Before proceeding with the DD and DDD models, I check to ensure that the common trend 

assumption holds using the BRFSS data. I run the DD and DDD model specifications with all 

covariates, but replace ABP with dummy policies covering the 2 years prior (24 months) or 3 

0
4

0
2

0
6

0
8

0
1

00

P
er

ce
nt

a
ge

 r
ep

o
rt

in
g 

p
hy

si
ca

lly
 a

ct
iv

e 
le

is
ur

e 
(%

)

2003 2004 2005 2006 2007 2008 2009 2010
Year

Unemployed less than high school Unemployed high school graduate

State mean value State mean value



118 
 

years prior (36 months) to ABP implementation (Table 4.2, Columns 1 and 2). In all 

instances, unemployed non-high school graduates are not predicted to have statistically 

significant differences in their likelihood of reporting physical activity leading up to ABP 

implementation relative to the control groups. This provides confirmatory evidence that the 

treatment and control groups had similar physically active leisure trends prior to ABP. 
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Table 4.2. Testing the common trend assumption by using 2-year and 3-year prior to ABP implementation dummy policies to investigate 

trends in leisure physical activity, any walking, any running, any sporting activity and any job search 

 

Leisure physical activity  
Leisure physical 

activity 
Any walking Any running Any sporting activity Any job search 

DD DDD DD DDD DD DDD DD DDD DD DDD DD DDD 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

  
Individual-

level  
Individual-

level  

State-
year 

collapsed  

State-
year 

collapsed  

Individual-
level  

Individual-
level  

Individual-
level  

Individual-
level  

Individual-
level  

Individual-
level  

Individual-
level  

Individual-
level  

Using 2 years prior as the placebo test 

ABP 2 years prior -0.0327 0.00599 0.0277 0.0336** -0.0000714 -0.00696 -0.00453 -0.00584 0.000644 0.0222 -0.0890** 0.0202 

  (0.0325) (0.0268) (0.0315) (0.0171) -0.0434 -0.0196 (0.00558) (0.00859) (0.0614) (0.0380) (0.0432) (0.0385) 

ABP 2 years prior*Less than high school -0.0301   -0.0109   0.00706   0.00141   -0.0131   -0.116** 

  
 

(0.0514)   (0.0315)   -0.0462   (0.0102)   (0.0693)   (0.0572) 

Using 3 years prior as the placebo test 

ABP 3 years prior 0.00527 0.0124 0.0161 0.0277* 0.00243 -0.00354 -7.00e-05 -0.000840 -0.0122 0.0183 -0.0990** 0.0234 

  (0.0317) (0.0251) (0.0286) (0.0160) -0.0339 -0.0172 (0.00815) (0.00899) (0.0482) (0.0312) (0.0443) (0.0320) 

ABP 3 years prior*Less than high school 0.0248   -0.0155   0.00637   0.00166   -0.0112   -0.126** 

    (0.0492)   (0.0291)   -0.0379   (0.0120)   (0.0557)   (0.0527) 

Robust standard errors in parentheses 
        

*** p<0.01, ** p<0.05, * p<0.1 
  

 
Note: Models include gender, age group, marital status, education level, race (white, black, or other), State, year and month, as in other DD and 
DDD specifications. If a coefficient is statistically significant it indicates that there was a trend in the outcome variable prior to ABP policy 
implementation. 
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The DD models reveal the average treatment effect of ABP among the unemployed with less 

than high school education based on within-State variation in the timing of ABP (Table 4.3). 

The basic model including no controls other than State, year and month fixed effects finds 

that ABP implementation is associated with increased probability of physical activity 

participation (Beta=0.0798, p<0.1, Column 1); controlling for State monthly unemployment 

rates slightly increases the magnitude and preciseness of the estimate (Beta=0.0851, 

p<0.05, Column 2). After controlling for all covariates, ABP policy implementation remains 

associated with increased probability of engaging in physical activity (Beta=0.085, p<0.05, 

Column 3). The placebo outcome, the natural log of height, does not statistically differ from 

null in any models (Columns 5-7).  
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Table 4.3. Estimates from difference-in-difference and difference-in-difference-in-difference models predicting the effects of ABP on leisure 

physical activity and the natural log of height, OLS linear regression, BRFSS 

Leisure physical activity  Natural log of height (in inches) 

Difference-in-Difference 

Difference-in-

Difference-in-

Difference 

Difference-in-Difference 

Difference-in-

Difference-in-

Difference 

 (1) (2) (3) (4) (5) (6) (7) (8) 

  
No 
controls 

Unemployment rate 
control only 

Fully 
adjusted 

Fully adjusted No controls 
Unemployment rate 

control only 
Fully 

adjusted 
Fully adjusted 

  
            

ABP 0.0798* 0.0851** 0.0850** -0.0103 -0.00957 -0.00904 -0.00787 -0.00239 
(0.041) (0.0413) (0.041) (0.0268) (0.00911) (0.00923) (0.00792) (0.00364) 

ABP*Less than high school 
   

0.0921*   
  

-0.00514 
(0.0472)   (0.00835) 

Observations 9,048 9,048 8,854 34,355 9,062 9,062 8,866 34,399 
         

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Note: Fully adjusted models include gender, age group, marital status, education level, race (white, black, or other), State, year and month. 
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As discussed, DD models may produce biased estimates of the effect of ABP if some other 

policy or event that influences physical activity coincides with ABP implementation. Using 

the DDD specification, I find that non-high school graduates exposed to ABP are again at a 

higher likelihood of reporting physical activity (Column 4). The magnitude of the effect is 

0.0921 (p<0.1), comparable in both size and preciseness to the DD estimate. There is no 

discernible effect of ABP on the likelihood of physical activity among the high school 

graduate control group based on the non-significant main effect of ABP. There are also no 

effects on the log of height (Column 8). 

4.4.3 Sensitivity analysis 

 

I run many additional models to test the robustness of the results (Table 4.4). First, to 

ensure that the results of the DDD are not biased because of the choice of control group, I 

run alternate models where the control group is the entire unemployed population that has 

at least graduated from high school, or where the control group is the unemployed 

population that has completed some college education only (Columns 2 and 3). In both 

cases, ABP policy is again associated with higher likelihood of physical activity among those 

with less than a high school degree at p<0.05 (Beta for all unemployed model=0.0912; Beta 

for some college unemployed model=0.103).  

I next add State linear time trends (Column 4) and State quadratic time trends to the DDD 

model (Column 5), with negligible effect on the coefficient of interest. Analogous to the 

Ruhm (2005) study which found aggregate level effects of unemployment rates on physical 

activity, I add demographic interactions age*sex, age*race, sex*race, sex*marriage, and 

sex*education to the DDD model (Column 6); no material differences are found in the 

results.  

I also separately test three way interactions between ABP*less than high school education* 

marital status, and ABP*less than high school education*age cohort. I find that individuals in 

the treatment group who are not married are more likely to report being physically active 

than those who are married (Column 7, Beta=0.0951, p<0.05). The results are robust to 

interacting marital status with all other control variables, including State, year and month 
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interactions (Column 8; Beta=0.0879, p<0.1). Likewise, in models that include three-way 

age*less than high school*ABP interactions, the effect of ABP on the treatment group is 

strongest amongst younger age groups (Column 9; Beta for age 18-24*less than high 

school*ABP=0.141, p<0.01; Beta for age 25-34*less than high school*ABP=0.0972, p<0.05). 

Including age cohort interactions with all control variables produces similar findings, with 

results statistically significant for age groups 25-34 only (Column 10; p<0.01). 

To confirm that effects of ABP are not due to differences in BMI across cohorts, I control for 

BMI in the original DDD model (Column 11). While higher BMI is associated with a 

statistically lower likelihood of engaging in physical activity (p<0.01), the positive effect of 

ABP implementation on physical activity among non-high school graduates remains 

(Beta=0.0813, p<0.1). Lastly, because of the potential for bias due to small numbers of 

observations at the State-year-month level, I collapse the main DDD individual level data 

into state-year level observations. The State-year observation data pass the common trend 

tests for unemployed non-high school graduates (Table 4.2, Columns 3 and 4) and the 

results remain significant for the DDD (p<0.1), though the predicted effect size of ABP on the 

non-high school graduate treatment group is smaller due to the statistically significant main 

effect of ABP (Column 12).
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Table 4.4. Robustness checks of the effect of ABP on the probability of engaging in physically leisure, BRFSS 

 

Testing different control groups for DDD 
Testing inclusion of 

state trends 
Testing additional interactions   Other robustness tests 

 

Main DDD 
(Control: 

high school 
graduates) 

Alternative 
Control: All 

unemployed 
that have at 

least 
graduated 
high school 

Alternative 
Control: 

Some college 
unemployed 

State 
linear 
time 

trends 

State 
quadratic 

time 
trends 

Interactio
ns 

between 
all 

demograp
hic 

variables 
included 

DDD 
married 

DDD 
married 

(and 
interaction

s) 

DDD age 
groups 

DDD age 
groups 

(and 
interactio

ns) 

BMI as 
control 

Collapsing 
to 

weighted 
state-
years 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

ABP -0.0103 -0.011 -0.0216 -0.0285 -0.0284 -0.0115 -0.0103 -0.0111 -0.00973 -0.0196 -0.00706 -0.0457* 

 
(0.0268) (0.0155) (0.0238) (0.0311) (0.0307) (0.0265) (0.0268) (0.0261) (0.0267) (0.0264) (0.0272) (0.0243) 

ABP*Less than high school 0.0921* 0.0912** 0.103** 0.0864* 0.0840* 0.0920* 0.0951** 0.0879* 
 

  0.0813* 0.0864* 

 
(0.0472) (0.0427) (0.0479) (0.0466) (0.0464) (0.0471) (0.0482) (0.053) 

 
  (0.0481) (0.0450) 

Married*Less than high 
school*ABP 

   
  

 
  

-0.00669 0.0241 

 
  

  

    
  

 
  (0.0298) (0.0782) 

 
  

  Age 18-24*Less than high 
school*ABP 

   
  

 
  

  

0.141*** 0.121 
  

    
  

 
  

  
(0.0512) (0.0758) 

  
Age 25-34*Less than high 
school*ABP 

   
  

 
  

  

0.0972* 0.223*** 
  

    
  

 
  

  
(0.0523) (0.0735) 

  
35-44*Less than high 
school*ABP 

   
  

 
  

  

0.0389 0.0618 
  

    
  

 
  

  
(0.0561) (0.0929) 

  
45-54*Less than high 
school*ABP 

   
  

 
  

  

0.0535 0.0578 
  

    
  

 
  

  

(0.0583) (0.0834) 
  

55-64*Less than high 
school*ABP 

   
  

 
  

  

0.0494 0.00809 
  

    
  

 
  

  

(0.0641) (0.126) 
  

Body mass index 
   

  
 

  
  

 
  -0.00333*** 

 

    
  

 
  

  
 

  (0.00088) 
 

Observations 34,355 69,016 27,943 34,316 34,316 34,355 34,355 34,355 34,355 34,355 33,042 814 

Robust standard errors in 
parentheses 
 

       
    

 *** p<0.01, ** p<0.05, * p<0.1; Note: Models contain all control variables that are included in other DDD models. Additional interactions between marital status and all control variables are 
included in the model shown in Column 8; interactions between age group and all control variables are included in the model shown in Column 10.
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To supplement the BRFSS results, I replicate the main DD and DDD model specifications 

using the ATUS sample of unemployed individuals. I find that the binary outcome variables 

of whether any minutes were spent walking, running, or engaging in a sporting activity pass 

both the 2 years and 3 years prior common trend tests for both the DD and DDD model 

specifications, however the any minutes spent job searching outcome variable does not 

(Table 4.2, Columns 5-12). Both 2 and 3 years prior to ABP, there was a statistically 

significant lower probability of unemployed non-high school graduates spending any time 

job searching; this prohibits further analysis to compare time-spent searching for work with 

time spent engaging in physical activities. 

Nevertheless, using the DD approach, I find that based on the point estimates, ABP is 

associated with higher probability of reporting any walking (Table 4.5, Beta=0.0751); the 

effect size is comparable to those found using the BRFSS. However, perhaps due to the 

relatively small of unemployed respondents that did not complete high school (n=848), the 

estimated confidence intervals are wide. Due to this potential small sample size issue, for 

the DDD I use all unemployed who have at least finished high school as the control group, 

rather than just the unemployed who have only graduated high school; this increases the 

sample size to n=4,306 unemployed people. I find that unemployed non-high school 

graduates exposed to ABP have an increased probability of spending any time walking 

(Beta=0.107; p<0.1). I do not find any statistically significant effects of ABP on the 

probability of engaging in any sporting activities overall or on running (Table 4.6). 

Table 4.5. Supplemental analyses predicting the effects of ABP on any time spent walking 

and job search, ATUS 

Difference in difference Difference in difference in difference 

  (1) (2) 

VARIABLES Any walking Any walking 

      
ABP 0.0751 -0.0364 

(0.0534) (0.024) 
ABP*Less than high school 0.107* 

(0.0573) 

Observations 848 4,306 
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
Note: Models contain all control variables that are included in other DD and DDD models. 
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Table 4.6 Supplemental analyses predicting the effects of ABP any time running and any 

sports participation, ATUS 

Difference in difference in difference 

  (1) (2) 

VARIABLES Any running 
Any sports 

participation 

      
ABP -0.0111 -0.0449 

(0.0115) (0.0404) 
ABP*Less than high school 0.0129 0.110 

(0.019) (0.0878) 

Observations 4,306 4,306 
      

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
   

Note: Models contain all control variables that are included in other DDD models. 

 

As an additional supplemental analysis, I investigate whether changes in State UI generosity 

have an effect on physically active leisure. The models are identical to the DD model 

described in this chapter, except I replace ABP with the natural log of maximum State UI 

benefits (inline with the approach used in Chapter 3). Because low educated job losers are 

unlikely to be eligible to receive maximum UI benefits if they have poor work history, I run 

the analysis stratified by education. 

I find that more generous maximum UI benefits are associated with a higher likelihood of 

reporting being physically active in the BRFSS among unemployed high school graduates 

and unemployed with some college, and lower likelihood among non-high school graduates 

and college graduates, though confidence intervals are wide in all instances (Table 4.7). This 

is unsurprising in the case of the latter two groups, as non-high school graduates are 

unlikely to receive maximum UI benefits as mentioned, whereas college graduates may not 

benefit substantially from small changes in maximum UI generosity if these replace trivial 

shares of their prior wages. However combining high school graduates and some college 

into a single group (controlling for educational attainment), I find a statistically significant 
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higher likelihood of physically active leisure in Table 4.7 Column 5  (Beta=0.0282, p<0.1). 

This is validated in the ATUS, where this same cohort is predicted to have greater likelihood 

of any participation in sporting activities as maximum UI benefits increase (Beta=0.0628, 

p<0.05). I do not find statistically significant effects for walking (not shown). 

 

Table 4.7 Supplemental analyses predicting physically active leisure (BRFSS) and any 

sports participation (ATUS) conditional on maximum State UI generosity 

 

BRFSS ATUS 

Physically active leisure 

Any 
participation 
in sporting 
activities 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 
No high 
school 

High 
school 
only 

Some 
college 

College 
grad 

High 
school 

and 
some 

college 

High school 
and some 

college 

              
Max UI benefit (natural log) -0.00259 0.0176 0.0424 -0.0153 0.0282* 0.0628** 

(0.0306) (0.0219) (0.0319) (0.0324) (0.0157) (0.0298) 
       
Observations 8,843 25,473 19,060 15,547 44,533 2,319 
  

Robust standard errors in parentheses       
*** p<0.01, ** p<0.05, * p<0.1 

Note: Models contain all control variables that are included in DD models. 

 

Lastly, I also investigated whether ABP had effects on other health outcomes and 

behaviours reported in the BRFSS that are commonly associated with job loss. As noted in 

Chapter 1, mental health effects are frequently linked to job loss (Catalano et al, 2011), as 

are declines in self-reported health (Strully, 2009). Previous research shows that the 

unemployed may also increase their level of alcohol consumption (Janlert and 

Hammarstrom, 1992); after controlling for possible reverse causality by only studying 

involuntary job losses, one study found that job loss increased the likelihood to drink, but 

not the level of drinking (Gallo et al., 2001). In the US those losing jobs are also likely to lose 
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access to health insurance (Gruber and Madrian, 1997, Schaller and Stevens, 2014), thereby 

reducing their access to timely care.  

I estimate DD models for indicators of binge drinking (consuming 5 or more alcoholic drinks 

for men, or 4 or more drinks for women on any one occasion in the last 30 days), heavy 

drinking (consuming more than 2 alcoholic drinks per day for men, or 1 drink per day for 

women), smoking (current smoker vs. non-smoker), mental health (reporting any days of 

bad mental health in the last 30 days), having health care coverage, reporting unmet health 

care need due to costs, and self-reported health (Table 4.8). In all instances I find no 

statistically significant effects of ABP for any of these variables.  

 

Table 4.8 Estimates from difference-in-difference models predicting effects of ABP on 

various outcomes, BRFSS 

VARIABLES 

Not a 

binge 

drinker 

Not a 

heavy 

drinker 

Not a 

smoker 

Any days 

of bad 

mental 

health in 

past 30 

days 

Health 

care 

coverag

e 

Unmet 

need 

due to 

cost 

Binary 

variable 

of Good 

health 

                

ABP -0.0430 -0.0197 -0.0314 0.0139 -0.0101 -0.0646 0.0160 

(0.0356) (0.0248) (0.0483) (0.0530) (0.0486) (0.0499) (0.0413) 

Observations 7,528 8,474 6,589 8,650 8,793 8,827 8,825 

Robust standard errors in parentheses, clustered at state-year-
month 

*** p<0.01, ** p<0.05, * p<0.1  
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4.5. Discussion 

Unemployment benefits have many rationales and effects, but to date, no research has 

examined whether they lead to changes in time-consuming health behaviours, such as 

exercise. Although the image of an unemployment benefit-receiving ‘couch potato’ may be 

ubiquitous, this study suggests that UI recipients are likely to spend some of their newfound 

leisure time participating in physical activity. Analysis using two separate datasets and a 

number of robustness checks produces consistent estimates that are of the same sign, 

similar magnitude and statistical significance. The results appear to be driven by unmarried 

and younger unemployed cohorts, who are likely to benefit most from UI expansions given 

their proclivity to have fewer savings or alternative access to financial resources, absent UI.  

Point estimates across all model specifications suggest ABP implementation resulted in an 8-

10 percentage point increase in the probability of physical activity. While this implies that 

the effect of the ABP treatment on the treated population – actual UI receivers – is quite 

large, the wide confidence intervals prohibit any definitive conclusions regarding the precise 

magnitude of effects; 95% confidence intervals from the main DDD model, for example, 

indicate that the increased probability of reporting physically active leisure following ABP 

adoption ranges from near 0 to 18.5%. This lack of precision may be due in part to small 

numbers of individuals in some State-year-month cohorts, resulting in instances where 

there is either 0 or 100% participation in physical activity in an entire State-year-month. 

However as noted, the effect remains positive and significant even after aggregating the 

data to the State-year level (Table 4.4, Column 12), where the distribution of physical 

activity is more evenly balanced (Figure 4.4). While unlikely, the estimated effect size could 

also be large if ABP leads to changes in social norms regarding physical activity, which might 

cause spill-over effects among non-UI recipients within the same low-educated 

demographic (Berkman and Glass 2000). Nevertheless, the finding of a consistent 

relationship using UI generosity seems to at least support the estimated direction of effects. 
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Figure 4.4 Distribution of physically active leisure at the State-year level among non-high 

school graduates, BRFSS 

 

 

 

The main underlying mechanism may be either that (1) individuals receiving UI benefits feel 

less pressure to search for work, which gives them additional time that can be spent 

engaging in physical activities or (2) individuals receiving UI benefits are able to afford costly 

physical activities, such as gym memberships. Unfortunately, I am unable to explore 

whether individuals substitute exercise in lieu of job search because the outcome variable of 

whether an individual engaged in any job search does not pass the common trend test: in 

the two and three years prior to ABP implementation, non-high school graduates were 

already statistically less likely to spend any time searching for a job. Nevertheless, given the 

finding from the ATUS that there is greater probability of time spent walking but not of 

other, potentially more expensive sporting activities, the former explanation appears most 

likely. 
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Despite finding effects of UI for mental health in Chapter 2 and for self-reported health in 

Chapter 3, I find no effects of ABP for these variables in the study presented in this chapter 

using the BRFSS data. One explanation could be that UI through ABP may not improve these 

particular health outcomes, for example, because as a result of their poor work history, ABP 

UI recipients are likely to receive comparatively less generous benefit amounts than the 

unemployed who qualify for UI using the standard base period. Likewise, the timeframe in 

Chapter 3 reflects health effects in the year following job loss, whereas ABP effects in this 

study are estimated contemporaneously; self-reported health and mental health effects 

may take more time to develop than the decision to engage in physical activity. 

Physical inactivity is an important determinant of poor health. Possible long-run health 

effects of leisure time physical activity include better weight management, lower risk of 

chronic disease, and reduced risk of death (Warburton et al., 2006, Ruhm, 2005, Chaput et 

al., 2011, Abu-Omar and Rutten, 2008, Lindstrom et al., 2001, Clays et al., 2014, Johnsen et 

al., 2013, Naci and Ioannidis, 2013). There may also be economic gains of better health 

caused by UI. While UI has been shown to increase worker productivity and allow workers 

be choosier in their decisions when seeking re-employment (Acemoglu, 2001, Acemoglu and 

Shimer, 2000) it is possible that UI provides workers with an opportunity to increase their 

health capital during periods of unemployment, contributing to greater worker productivity 

upon return to employment. The increase in productivity due to physical activity is 

consistent with evidence that job applicants who engage in leisure sports activities have 

higher call-back rates from prospective employers as well as higher wages and earnings 

(Rooth, 2011, Lechner, 2009).  

There are a number of important limitations to this analysis. As noted, using the BRFSS or 

ATUS I am unable to identify whether individuals actually receive UI, so I cannot confirm 

that UI recipients have a greater propensity to engage in physical activity. Similarly, because 

I cannot observe changes in UI take-up, I rely on the existing literature to infer the effects of 

ABP on UI take-up among nationally representative samples. The results would be biased if 

take-up patterns differed substantially among the BRFSS or ATUS survey samples, although 

this seems unlikely given the consistency in the estimates across the two datasets.  
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Additionally, the BRFSS question on leisure time physical activity, though commonly used in 

the literature, is vague and may capture various behaviours or suffer from measurement 

error. However, the alternative, to fit individuals with accelerometers, is not feasible on this 

scale. It is also reassuring that the more objective data from the ATUS provide confirmatory 

results, despite the significantly smaller sample size. Other datasets such as the National 

Health and Nutrition Examination Survey that have more detailed data on physical activity 

have too few observations to detect the effects of a policy like ABP that only increased take-

up among a limited demographic.  

 

Finally, I am unable to observe changes in exercise within-individuals over time due to the 

non-panel nature of both the BRFSS and ATUS surveys. Future research should assess 

whether leisure-time subsidies including, but not limited to UI, affect more objective 

measures of physical activity among unemployed individuals with otherwise poor access to 

financial resources, as well as whether such leisure time subsidies have an effect on 

objective health outcome measures.  

 

The finding that UI increases leisure physical activity is consistent with the notion that 

reductions in the opportunity cost of time will lead individuals to engage in time-consuming 

leisure activities. Although UI recipients may also spend some of their time taking part in 

sedentary leisure activities while out-of-work, the decision to engage in physical activities 

and invest in health during periods of unemployment allows individuals to accumulate 

health stock (Brown and Kaufold, 1988) which may also better prepare them to eventually 

re-enter the workforce.  

 

  



 133

Appendix Table 4.1 Estimates from difference-in-difference and difference-in-difference-in-difference models predicting physically active 

leisure that cluster robust standard errors at the State, State year, State month, or State year month level, BRFSS 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES DD State 
DD State 

year 
DD State 
month 

DD State 
year month DDD State 

DDD State 
year 

DDD State 
month 

DDD State 
year month 

                  
ABP 0.0850* 0.0850*** 0.0850* 0.0850** -0.00975 -0.00975 -0.00975 -0.00975 

(0.0484) (0.0319) (0.0451) (0.0410) (0.0166) (0.0119) (0.0138) (0.0155) 
ABP*less than high 
school 0.0845** 0.0845*** 0.0845* 0.0845** 

(0.0408) (0.0302) (0.0465) (0.0425) 
Observations 8,854 8,854 8,854 8,854 69,016 69,016 69,016 69,016 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: Models contain all control variables that are included in other DD and DDD models. 
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Appendix Table 4.2 Estimates from difference-in-difference and difference-in-

difference-in-difference models predicting physically active leisure using logistic 

regression, BRFSS  

  (1) (2) 

VARIABLES DD  (odds ratios) DDD  (odds ratios) 

      

ABP 1.661** 0.941 

(0.365) (0.0863) 

ABP*less than high school 1.666** 

(0.384) 

Observations 8,854 69,016 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

Note: Models contain all control variables that are included in other DD and DDD 
models. 
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Chapter 5. Effects of receiving unemployment benefits for self-

reported health: Evidence using an instrumental variables approach 

Summary 

While the studies presented in Chapters 2, 3 and 4 estimate health effects of 

variations in State UI policy, those studies do not confirm that there are health 

effects of actually receiving unemployment benefits. Identifying health effects of UI 

receipt is challenging due to selection into both job loss and unemployment benefits, 

leading UI recipients to differ from non-recipients in various characteristics. In this 

study, I use data from the PSID to examine the impact of receiving UI on the self-

reported health of the unemployed. Using an instrumental variable (IV) approach in 

an effort to account for selection into benefit receipt, I find that the unemployed 

who received unemployment benefits are less likely to report poor health in the year 

after job loss than the unemployed who did not receive benefits. Results are similar 

using either the pooled sample of unemployment spells or the full longitudinal 

dataset. 
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5.1 Introduction 

Identifying whether there are health effects of receiving unemployment benefits is 

challenging due to strong selection into both job loss and unemployment benefits. 

While some research suggests that unemployment benefit receipt may prevent 

some of the negative health effects of job loss (Rodriguez, 2001, Rodriguez et al., 

1997, McLeod et al., 2012a), these studies do not account for the endogenous 

relationship between receiving unemployment benefits and individual 

characteristics that may correlate with health.  

In Chapters 2 and 3, I attempt to overcome this bias by exploiting variations within 

and across States in their legislated maximum generosity of unemployment benefits. 

In Chapter 2 I use State fixed effect models and exploit exogenous changes in benefit 

generosity across the US from 1968 to 2008 and show that the impact of rising 

unemployment rates on suicide is offset by the presence of generous State 

unemployment benefit programs, though estimated effects are small in magnitude. 

Likewise in Chapter 3 I use individual-level data from the PSID and find that job loss 

leads to higher probability of reporting poor health, but that this effect is smaller 

when the generosity of State unemployment benefits is high. Similarly, in Chapter 4 I 

exploit variation across States and time in enhanced UI eligibility that arises due to 

ABP policy rollouts. I find that easier access to UI is associated with participation in 

physical activity. These studies circumvent selection by exploiting State level changes 

in benefits; however these State level measures of UI can only proxy actual benefits 

received by the unemployed, and therefore suffer from measurement error. 

Importantly, Chapters 2 through 4 do not directly examine whether actual receipt of 

UI improves the health of the unemployed, the focus of the present study.  

I use the 20 survey waves of the PSID from 1984 to 2009 to investigate the impact of 

UI on the probability of reporting poor health after job loss.  Federal UI Program 

rules require benefit receivers to have lost their job through no fault of their own. In 

an effort to obtain unbiased estimates of the effect of UI receipt on health, I use the 

pool of all unemployment spells experienced by heads of household in the PSID 
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during the sample period13 and exploit variation in the likelihood of receiving UI 

based on whether job loss was due to a business closure. I demonstrate that workers 

losing their job due to business closure are significantly more likely to receive UI, but 

do not systematically differ in terms of health and other observable characteristics 

prior to job loss, as compared to workers losing their job for other reasons. Using an 

instrumental variable (IV) approach, I find that receiving UI significantly reduces the 

probability of reporting poor health in the year after job loss, with effects driven by 

males. The estimates are consistent using individual fixed effect models.  

5.2 Methods 

5.2.1 Data 

As in Chapter 3, I use data from the PSID, a nationally representative longitudinal 

household survey that collects data on employment status, demographics, and since 

1984, data on self-reported health. Data were collected annually up until 1997, after 

which the PSID shifted to a biennial design. The analysis presented is based on the 

same sample of working-age (18-65 years old) heads of household from the 1984 

through 2009 survey waves as in Chapter 3.  

PSID measures health using the self-rated health item, a subjective indicator that 

captures individuals’ perceptions of their health using Likert scales. Respondents are 

asked to rate their own health on a scale ranging from ‘excellent’ (1) to ‘very good’ 

(2), ‘good’ (3), ‘fair’ (4), and ‘poor’ (5). Maintaining consistency again with the study 

in Chapter 3, I collapse the scale into a binary variable, where categories 4 and 5 

indicate poor health and are coded as 1; categories 1, 2 and 3 are coded as 0.  

I also extracted data on employment status from each survey wave. Based on 

available information I constructed a binary variable that indicates whether an 

unemployment spell occurred at some point in the previous year. For the majority of 

unemployment spells, information is available on the cause of job loss, including 

whether it was due to business closure, lay off, quitting, or other causes. 

                                                           
13

 The sample of PSID heads of household is the same sample used in Chapter 3. 
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The PSID contains information on whether an unemployed individual received UI as 

well as the actual total benefit amount received. Receiving UI is coded as 1 if the 

respondent indicated that they had received UI in the previous year and/or reported 

an amount of UI received that was greater than 0.  I refrain from using data on the 

specific amount received because the survey does not specify the duration of UI 

receipt, so it is not possible to accurately distinguish whether the total amount 

individuals report reflects higher weekly benefit amounts or longer duration 

receiving benefits. For example, an individual might report $500 of unemployment 

benefits in the PSID, but it is not possible to determine if they are receiving $250 for 

2 weeks or $100 for 5 weeks, etc. 

Other variables used in the analysis include age, gender, race (white, black, other), 

education level (high school, college, above), marital status (married, single, 

separated, divorced, widowed), and the number of people in the household. Two 

other individual level variables are lagged by 2 years: the dichotomous indicator of 

poor health and the natural log of family income. Income is lagged to avoid 

simultaneity with job loss. Both variables are lagged by two years to keep the models 

consistent when the survey changed from an annual to biennial design. To control 

for State-specific labour market conditions that may affect health (e.g. Ruhm 2000), I 

also use the State unemployment rate for the working-age population calculated 

from the CPS as an explanatory variable.  

5.2.2 Empirical Strategy 

The objective in this study is to estimate the average causal effect of UI receipt on 

self-reported health for individuals that experienced job loss in the previous year. 

Alternatively, this can be thought of as the mean effect of a treatment on a treated 

population, where UI is the treatment and unemployed non-UI receivers are the 

control group. The average treatment effect is the difference between the two 

groups, provided that unemployed workers in the treatment group are identical to 

displaced workers in the control group.  
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To illustrate the approach, I start with the following basic specification adapted from 

Heckman et al (1997) and Salm (2009): 

Δ = E(Yi,1 | UIi,1 = 1) - E(Yi,1 | UIi,1 = 0) 

Here, Yi,1 is an unemployed individual’s self-reported health in the year after job loss. 

The parameter Δ captures the difference in health between jobless individuals who 

receive UI (UI=1) compared to that individual’s health if they had not received UI 

(UI=0).  

Because it is not possible to observe the counterfactual (i.e. the effect of UI receipt 

for those who did not actually receive UI) I need to identify a control group of 

unemployed non-UI recipients. For an individual i’ in the control group (i.e. not in 

receipt of benefits) with the same observed individual characteristics as someone in 

the treatment group who did receive UI, the assumption is that: 

E(Yi,1 | X’i,t, Yi,0, UIi,1 = 0) = E(Yi’,1 | X’i’,t, Yi’,0, UIi’,1 = 0) 

where X is a vector of characteristics, including age, gender, race, education, marital 

status, household size and previous income level pre-job loss; and Yi,0 is self-reported 

health in a previous time period. I can identify the average UI treatment effect by 

estimating the following naïve equation, controlling for many of the observable 

factors that may differ between the treatment and control groups:  

Yi,t 1 = α + ΔUIi,t-1 + β1URs,t-1 + βx X’i,t + Sj + Tt + εi,t-1  (1) 

Where Yit is health of unemployed individual i at time t, X is a vector of control 

variables associated with receipt of unemployment benefits, UI is a binary indicator 

for whether the individual received UI in the previous year, S is a set of State fixed 

effects, T is a set of year fixed effects, UR is the unemployment rate in the State of 

residence in the year of job loss, and ε is the standard error.  

The assumption of comparability between UI receivers and non-receivers however, 

is difficult to meet; although many of the variables selecting individuals into UI may 
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be captured by X, the equation above is insufficient to identify the effect of UI 

receipt on health because UI will be endogenous with health if there are additional 

unobserved characteristics that correlate with both health and UI receipt, or if there 

is reverse causality. In this case, OLS would produce biased estimates of the causal 

effect of benefits on health. 

To address the potential endogeneity of UI receipt I take various approaches. The 

main identification strategy uses a two-stage least squares IV approach that exploits 

exogenous variation in some variable that is able to predict UI receipt but is not 

included in the main equation predicting poor health, and is not correlated with εi. I 

experiment with a variety of possible instruments, including State laws on maximum 

unemployment benefit levels in a State and year (as in Chapters 2 and 3), and State-

level implementation of ABP policy that alters the base period used to define UI 

monetary eligibility (as in Chapter 4). However, as I will demonstrate, neither is a 

sufficiently strong predictor of benefit receipt in the PSID sample. In the case of 

maximum benefit generosity, it is possible that the unemployed are unaware of 

small variations in State UI maximum benefits when deciding whether to apply for 

benefits, or that changes during the sample period are too small to generate 

changes in claiming behaviour. Likewise, State implementation of ABP is a weak 

predictor of UI receipt for all but low-income workers, who are only marginally 

represented in the PSID sample (Gould-Werth and Shaefer, 2013). 

The preferred model specification utilizes a binary variable indicating whether job 

loss was the result of a business closure, and therefore not a direct consequence of 

individual factors, as the IV (Table 5.1). During the sample period, 8.1% of 

unemployment spells were attributable to business closure among those with data 

available on the cause of job loss; 44.1% reported quitting their job, while 31.0% 

were laid off.   
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Table 5.1. Causes of job loss 

Business closure 8.1% 

Strike or lockout 0.0% 

Laid off or fired 31.0% 

Quit 44.1% 

Other 16.7% 

Total 100.0% 

   

The rationale for this approach is that UI non-monetary eligibility rules imply that 

workers who involuntarily lose their job due to business closure (and other 

involuntary causes) are more likely to be eligible to receive UI than workers that 

experience job loss due to other reasons such as quitting without good cause or 

being fired. I assume business closures are themselves not due strictly to an 

individual person’s characteristics (Strully, 2009, Salm, 2009, Brand et al., 2008). 

Other studies have relied on business or plant closures as an IV for job loss when 

comparing employed and unemployed workers (Fang and Gavazza, 2011, Schmitz, 

2011, Kuhn et al., 2004), but to my knowledge, no study has used business closures 

as an IV for UI receipt.  

The basic intuition behind using business closures to estimate effects of job loss on 

health in prior studies is that an individual who loses their job as a result of a 

business closure is unlikely to have become unemployed due to health reasons. That 

is, the chance that health-related selection into unemployment biases the 

association between unemployment and health is thought to be trivial. However it is 

unclear how pervasive health-related selection is among the non-business closure 

control group, or whether there is also equivalent health-related section among 

business closure job losers such that the two groups are sufficiently comparable. 

Although some of the unemployed due to non-business closure reasons will have 

selected into unemployment due to poor health (either voluntarily or involuntarily), 

some of unemployed due to business closure will likely also have had underlying 

health issues prior to job loss, which may cause workers to be less productive, and 

potentially contribute to their workplace closure.  
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Health-related selection plays an unknown role in determining unemployment 

among the entire pool of non-business closure job losers. Few surveys ask 

respondents whether their job loss occurred for health reasons (Burgard et al, 2007, 

Salm, 2009) and these data may overestimate the role of health due to reporting 

biases as individuals seek to justify their unemployment (Lindeboom and Kerkhofs, 

2009). While health is an important determinant of maintaining employment for 

manual workers, research shows it is of less importance for most other occupations 

(Case and Deaton, 2005, Muurinen and Le Grand, 1985).  

In fact, Strully (2009) finds health-related selection to be of a similar magnitude 

across different causes of job loss in the PSID. Using multinomial logistic regressions 

to estimate the likelihood of experiencing no fault job loss (i.e. business closure), 

being fired/laid off, voluntary job separation or miscellaneous separation, 

conditional on poor self-reported health in the previous survey wave and a set of 

covariates, she finds that poor self-reported health in the prior survey wave 

increases the likelihood of experiencing job loss due to business closure relative to 

steady employment by 20.2%, though the confidence intervals are wide14. Poor self-

reported health in the previous survey wave correspondingly is shown to increase 

the likelihood of being fired/laid off by a comparable 26.8%, which is only marginally 

more statistically significant at p<0.1 than the estimate for business closure; 

voluntary separation is also 25.8% more likely for those who had previously reported 

poor health. Additionally, Strully finds statistically significant increases in the 

likelihood of poor self-reported health following job loss that are of similar 

magnitudes across all four causes of job loss. This suggests that while business 

closure is arguably an exogenous form of job loss, there are not necessarily 

significant health differences between the pool of unemployed due to business 

closure and unemployed for other reasons, particularly prior to job loss. 

Nevertheless, to be a valid instrument, the exclusion restriction requires that 

business closures have no direct effect on self-reported health. A potential violation 

                                                           
14

 The impreciseness may be due to the comparatively small sample size in that study (1.7% of the 
total sample consists of no fault job loss, compared to 4.1% of observations laid off, 15.3% voluntary 
separation, and 2.9% miscellaneous separation). 
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of this assumption would occur if job loss due to business closure affects health of 

the unemployed via mechanisms other than job loss, or if there are compositional 

differences between workers who lose their job due to business closures vs. other 

unemployed workers. For example, individuals who lose their job due to a business 

closure may be more (or less) devastated than other job losers at having become 

unemployed, which could affect their health. The identification strategy assumes 

that job loss due to business closure can only influence self-reported health through 

its effect on the likelihood of receiving UI benefits, but not through a direct pathway.  

I show three pieces of evidence to suggest that prior to job loss, workers who 

experience job loss due to business closure do not differ in key characteristics from 

workers who experience job loss due to other reasons, and that business closure 

does not have a direct effect on health absent UI receipt. First, I compare observable 

characteristics and find that unemployed individuals who experience job loss due to 

business closure are very similar to unemployed individuals who experience job loss 

due to other reasons, both in the UI and non-UI receiving sub-samples (Table 5.2). 

For example, 15.4% of UI receivers who lost their job due to business closure 

reported poor health in the year prior to job loss, compared to 15.3% of UI receivers 

who lost their job for other reasons (Table 5.2, Row 4). A t-test is unable to reject the 

null hypothesis that these two are equal (t-value=0.0138). Likewise, 22.5% of non-UI 

receivers who lost their job due to business closure reported poor health in the year 

prior, compared to 21.1% among other unemployed workers not receiving UI (t-test 

of difference in means produces a t-value=0.549).  
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Table 5.2. Comparison of observable characteristics of business closure and other causes of job loss, disaggregated by UI recipients and non-

recipients 

  Business close, Received Benefits Business Close, No benefits 
Other cause of job loss, Received 

Benefits 
Other cause of job loss, No benefits 

  Mean SD Mean SD Mean SD Mean SD 

Health (t) 2.615 0.976 2.684 1.134 2.611 1.070 2.742 1.172 

Poor health (t) 0.162 0.369 0.254 0.436 0.188 0.391 0.258 0.438 

Health (t-2) 2.546 0.965 2.578 1.114 2.466 1.003 2.606 1.099 

Poor health (t-2) 0.154 0.362 0.225 0.419 0.153 0.361 0.211 0.408 

Newly reporting poor 
health (change from t-2 to 
t) 

0.077 0.268 0.115 0.319 0.114 0.318 0.120 0.326 

Male  0.692 0.463 0.598 0.491 0.690 0.463 0.559 0.497 

Age (t) 42.669 10.739 40.467 11.713 40.025 11.178 39.421 13.272 

Married (t) 0.454 0.500 0.324 0.469 0.439 0.497 0.314 0.464 

Single (t) 0.177 0.383 0.332 0.472 0.292 0.455 0.388 0.487 

Widowed (t) 0.062 0.241 0.057 0.233 0.029 0.169 0.051 0.220 

Divorced (t) 0.231 0.423 0.180 0.385 0.167 0.373 0.167 0.373 

Separated (t) 0.077 0.268 0.107 0.309 0.072 0.259 0.080 0.272 

White 0.538 0.500 0.381 0.487 0.513 0.500 0.395 0.489 

Black 0.415 0.495 0.611 0.489 0.410 0.492 0.558 0.497 

Other 0.046 0.211 0.004 0.064 0.072 0.259 0.039 0.194 

High School or less (t) 0.831 0.376 0.787 0.410 0.712 0.453 0.768 0.422 

College (t) 0.162 0.369 0.201 0.401 0.280 0.449 0.216 0.412 

Post-Graduate (t) 0.008 0.088 0.012 0.110 0.009 0.092 0.016 0.126 

Number in house (t) 2.608 1.486 2.910 1.726 2.899 1.627 2.716 1.659 

Total family income (t-2) 38442.62 25658.49 28787.94 40909.71 38102.41 31922.27 30226.82 43675.27 

Working age 
unemployment rate in 
year of unemployment 
spell (t-1) 

4.952 1.602 4.841 1.558 5.090 1.574 4.698 1.585 
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A comparison of all business closure unemployment spells vs. all other 

unemployment spells also reveals that, apart from differences in their likelihood of 

receiving UI benefits (34.8% of business closure job losers received UI compared to 

19.2% of other unemployed workers), the groups have similar characteristics (Table 

5.3). 20.1% of business closure job losers were in poor health in the year before job 

loss, compared to 20.0% of job losers due to all other causes (t-test of difference in 

means produces a t-value=0.0445). Additionally using only the annual data from the 

1984 through 1997 waves of the PSID, I confirm that the share of respondents 

reporting poor health in the same year as job loss (t-1) is similar across business 

closure unemployment spells and all others (21.1% of business closure job losers 

report poor health, compared to 22.3% of job losers for all other reasons: t-

value=0.462); this is despite the possibility that job loss may have already occurred 

(or was imminent) at the time of survey15. This suggests that the propensity for 

individuals to be selected into unemployment due to poor health does not differ 

substantially across business closure and non-business closure unemployment spells.  

                                                           
15

 Each wave of the PSID refers to job loss that occurred in t-1, but health status in the current year. 
Therefore, using the prior year’s health status (i.e. t-1) may occur contemporaneously with job loss 
despite being recorded in a different wave of the survey. 
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Table 5.3. Comparison of observable characteristics of business closure and other 

causes of job loss 

  Business closure Other causes of job loss 

  Mean SD Mean SD 

          

Health (t) 2.660 1.081 2.717 1.154 

Poor health (t) 0.222 0.416 0.245 0.430 

Health (t-2) 2.567 1.063 2.579 1.082 

Poor health (t-2) 0.201 0.401 0.200 0.400 

Newly reporting 
poor health 
(change from t-2 to 
t) 

0.102 0.303 0.119 0.324 

Male  0.631 0.483 0.584 0.493 

Age (t) 41.233 11.418 39.537 12.897 

Married (t) 0.369 0.483 0.338 0.473 

Single (t) 0.278 0.449 0.369 0.483 

Widowed (t) 0.059 0.236 0.047 0.211 

Divorced (t) 0.198 0.399 0.167 0.373 

Separated (t) 0.096 0.295 0.079 0.270 

White 0.436 0.497 0.418 0.493 

Black 0.543 0.499 0.530 0.499 

Other 0.019 0.136 0.045 0.208 

High School or less 
(t) 

0.802 0.399 0.757 0.429 

College (t) 0.187 0.391 0.228 0.420 

Post-Graduate (t) 0.011 0.103 0.015 0.120 

Number in house 
(t) 

2.805 1.651 2.751 1.655 

Total family income 
(t-2) 

32202.06 36510.28 31746.57 41778.42 

Working age 
unemployment rate 
in year of 
unemployment 
spell (t-1) 

4.880 1.572 4.773 1.590 
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Next, inline with Strully (2009), I explore whether there is comparable health-related 

selection into unemployment among business closures and all other causes of job 

loss. I use OLS and run the fully adjusted model in equation (1) without UI as a 

covariate, and replace the dependent variable to be whether job loss occurred as a 

result of a business closure. The explanatory variable of interest is self-reported 

health in previous waves; if health-related selection were more likely among the 

non-business closure cohort than the business closure cohort, I would expect a 

statistically significant negative coefficient. However I find that poor health in t-2 

does not predict cause of job loss in t-1 (Beta=-0.00738, p=0.496) (Table 5.4, Column 

1). Even restricting to the sample of annual data between 1984 and 1997 to estimate 

health effects with greater proximity to the timing of job loss (Table 5.4, Column 2), I 

find no evidence of heterogeneous health selection according to cause of job loss.  

To be sure that there is health-related selection into job loss overall, I run the fully 

adjusted OLS model on the entire sample that includes both employment and 

unemployment spells, where the dependent variable is any type of job loss. I confirm 

that there remains an association between job loss and prior poor health at both t-2 

and t-1 (Columns 3 and 4). 

Table 5.4. Estimated effects of self-reported health in previous waves on job loss 

and the cause of job loss 

  (1) (2) (3) (4) 
VARIABLES Business closure Business closure Any job loss Any job loss 

          
Poor health (t-2) -0.00738 -0.0124 0.0270*** 0.0163*** 

(0.0108) (0.0149) (0.00375) (0.00539) 
Poor health (t-1) -0.0205 0.0216*** 

(0.0152) (0.00527) 

Observations 4,247 2,650 74,770 47,780 
      

     

Robust standard errors in parentheses. Models include marital status, race, education, 
number in household, age, gender, logged real household income, State unemployment 
rates and State and year fixed effects. 

*** p<0.01, ** p<0.05, * p<0.1 
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To further examine the exclusion restriction, I restrict the sample to only non-UI 

receivers and run the fully adjusted OLS model in equation (1), including an 

additional explanatory variable indicating whether job loss was due to business 

closure. This allows identification of whether there are health differences in the year 

after an unemployment spell between business closure job losers and all other 

causes of job loss, absent any influence of UI receipt. I find that losing a job due to 

business closure is not associated with a statistically different likelihood of reporting 

poor health in the year after job loss as compared to other types of job losers (Beta= 

-0.0284; p=0.303) (Table 5.5). This suggests that any health differences between UI 

receivers and non-receivers in subsequent analyses are not an artefact of the 

business closure cohort systematically being in better health relative to other jobless 

individuals. Together, this provides some justification for using job loss due to 

business closure as a potentially exogenous source of variation in the likelihood of 

receiving UI among a pool of unemployment spells. However I am unable to fully test 

the exclusion criteria, so it remains possible that job loss through business closure 

has a differential effect on health through a pathway other than through UI. 

Table 5.5. Estimated effects of business closure on self-reported poor health in the 

year after job loss for non-UI receivers 

VARIABLES 

Effects among non-UI 
recipients 

 (1) 

    
Business closure -0.0284 

(0.0276) 
Poor health (t-2) 0.461*** 

(0.0200) 

Observations 3,372 
    

  

*** p<0.01, ** p<0.05, * p<0.1 

Robust standards in parenthesis. Models include marital status, race, education, 
number in household, age, gender, logged real household income, State 
unemployment rates and State and year fixed effects. 
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I use OLS linear two stage least squares models where the first stage equation takes 

the following form: 

UIi,t-1 = α + β1BCi,t-1 + β2 URs,t-1 + βx X’i,t + Sj + Tt + εi,t-1   (2) 

Where BC is whether job loss occurred as a result of a business closure. In the 

second stage, the predicted level ÛI is then substituted into the original equation: 

Yi,t = α + β1ÛIi,t-1 + β2 URs,t-1 + βx X’i,t + Sj + Tt + εi,t-1                (3) 

Where Yi,t is the probability that unemployed individual i would report poor health at 

time t. Effectively, this IV approach allows for estimation of the effect of UI receipt 

on the likelihood of poor health in a treated sample of unemployed workers with 

increased likelihood of receiving benefits, but whose characteristics do not differ 

from a control sample of unemployed workers who are less likely to be eligible for 

benefits. The IV estimates give the local average treatment effect (LATE) on the 

subpopulation affected by the instrument (Angrist et al., 1996), which in this case, is 

individuals who have lost their job due to a business closure. All models use robust 

standard errors. However I also cluster errors at the individual or use two-way 

clustering by individual and State of residence and the results are consistent for the 

main findings (Appendix Table 5.1). 

5.3 Results 

5.3.1 Descriptive statistics 

Figure 5.2 shows the distribution of self-reported health according to employment 

status for the PSID sample of heads of household across all 20 waves of the survey. 

As expected, I find that individuals more often report poor health in the year after 

experiencing job loss compared to workers who had been fully employed in the 

previous year.  
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Figure 5.1. Distribution of self-reported health in year t, by employment status in t-

1, 1984-2009 

 

Table 5.6 shows descriptive statistics for the sample of unemployment spells 

disaggregated by UI recipients and non-recipients. There are some important 

differences between UI receivers and non-receivers according to mean values of 

selected observable characteristics from the year before job loss (t-2), the year of 

job loss (t-1), and the year after job loss (t). Non-benefit receivers are more likely to 

report poor health than UI receivers, both in the year before job loss (21.2% 

compared to 15.3%, t-value=3.99) and in the year after job loss (25.8% compared to 

18.4%, t-value=4.72). Compared to UI receivers, a slightly greater percentage of non-

UI receivers who previously did not report poor health in the year before job loss (t-

2), reported poor health the year after job loss (t) (12.0% compared to 10.9%, 

though the t-value=0.94).  

UI receivers are more likely to be married, White, male, and/or have had 

comparatively higher household incomes, consistent with evidence from the US 

Government Accountability Office (US Government Accountability Office, 2006). By 

contrast, non-UI receivers are more likely to be single and/or Black. Unemployed 

individuals are more likely to receive benefits if they are jobless in State-years with 
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higher unemployment rates. This may be due to longer unemployment spells and 

fewer employment opportunities during periods of high unemployment.  

Table 5.6 Descriptive statistics for sample of unemployment spells  

 
No UI (control) UI (treatment) 

  Mean SD Mean SD 

Health (t) 2.738 1.170 2.612 1.057 

Poor health (t) 0.258 0.437 0.184 0.388 

Health (t-2) 2.604 1.099 2.477 0.998 

Poor health (t-2) 0.212 0.408 0.153 0.361 

Newly reporting poor health (change 
from t-2 to t) 

0.120 0.325 0.109 0.312 

Male  0.562 0.496 0.690 0.463 

Age (t) 39.491 13.175 40.388 11.150 

Married (t) 0.314 0.464 0.441 0.497 

Single (t) 0.384 0.486 0.276 0.447 

Widowed (t) 0.051 0.220 0.034 0.181 

Divorced (t) 0.168 0.374 0.176 0.381 

Separated (t) 0.082 0.275 0.073 0.260 

White 0.394 0.489 0.516 0.500 

Black 0.562 0.496 0.411 0.492 

Other 0.037 0.188 0.069 0.253 

High School or less (t) 0.769 0.421 0.728 0.445 

College (t) 0.215 0.411 0.263 0.441 

Post-Graduate (t) 0.016 0.125 0.008 0.092 

Number in house (t) 2.729 1.664 2.859 1.611 

Total family income (t-2) 30132.83 43495.75 38149.31 31121.12 

Working age unemployment rate in 
year of unemployment spell (t-1) 

4.708 1.584 5.071 1.577 

          

N 3673   945   
 

 

There are also notable differences by gender in the distribution of poor health 

among benefit receivers and non-receivers (Figure 5.3). Of all unemployed males not 

receiving benefits, 26.0% reported to be in poor health in the year after job loss, 

while only 17.3% of males who did receive benefits reported poor health. While the 

patterns are similar for females, the magnitude of the difference between benefit 

receivers and non-receivers appears to be smaller. 
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Figure 5.2. Percentage reporting poor health in year t who were unemployed in t-1, 

by sex and benefit receipt status 

 

 

 

5.3.2 Main results 

Table 5.7 contains the results of OLS and IV models that estimate the effect of UI 

receipt on the probability of reporting poor health for the sample of unemployment 

spells. Simple OLS models that control only for poor health in t-2 suggest that 

receiving UI is associated with a 5.7 percentage point significant reduction in the 

probability of reporting poor health (model results not shown). These results are 

robust to various controls in the fully adjusted model (Table 5.7, Column 1). 
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 Table 5.7. Estimated effects of UI receipt on self-reported poor health, pooled and 

gender-stratified samples of unemployment spells 

  (1) (2) (3) (4) (5) (6) 

VARIABLES OLS (all) IV (all) OLS (males) 
 IV 

(males) 
OLS 

(females) 
 IV 

(females) 

              

Business closure 
(First stage   

0.158*** 
 

0.148*** 
 

0.169*** 

predicting UI 
receipt)  

(0.0222) 
 

(0.0299) 
 

(0.0332) 

              

UI receipt -0.0466*** -0.300** -0.0618*** -0.374* -0.0197 -0.253 

(0.0147) (0.139) (0.0177) (0.192) (0.0276) (0.215) 

Poor health (t-2) 0.437*** 0.428*** 0.437*** 0.425*** 0.428*** 0.422*** 

(0.0184) (0.0162) (0.0248) (0.0226) (0.028) (0.0237) 

Observations 4,247 4,247 2,485 2,485 1,762 1,762 

               

       

*** p<0.01, ** p<0.05, * p<0.1 

Robust standard errors in parenthesis. Models include marital status, race, 
education, number in household, age, gender, logged real household income, State 
unemployment rates and State and year fixed effects. 
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Table 5.8. First stage OLS models predicting UI receipt, full sample and by gender 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Full sample Males Females 

VARIABLES UI receipt UI receipt UI receipt UI receipt UI receipt UI receipt UI receipt UI receipt UI receipt 

                    

Business close 0.158***   0.148***   0.169***   

(0.0260)   (0.0347)   (0.0408)   

Maximum state allowable benefits   0.0280     0.0401     -0.0114   

  (0.0760)     (0.103)     (0.110)   

ABP   -0.00428   0.00175   -0.0181 

  (0.0256)   (0.0351)   (0.0377) 

Constant -0.426*** -0.694 -0.437*** -0.198* -0.574 -0.325*** -0.579*** -0.481 -0.582*** 

(0.0792) (0.707) (0.0793) (0.101) (0.959) (0.0867) (0.128) (0.952) (0.128) 

            

Observations 4,247 4,247 4,247 2,485 2,485 2,485 1,762 1,762 1,762 
 
Cragg-Donald Wald F-Statistic 50.99  0.144   0.028 24.437  0.162   0.002  25.927  0.011 0.24  

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
 

 
 

          

Models include marital status, race, education, number in household, age, gender, logged real household income, State unemployment rates 
and State and year fixed effects. 
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Before proceeding, as mentioned, I test how well the various potential instruments predict 

unemployment benefit receipt: business closure, maximum state benefits, and ABP 

implementation (Table 5.8). As shown in columns 2, 5 and 8, variations in maximum State 

benefit generosity do not have a statistically significant effect on the likelihood of 

unemployed individuals receiving unemployment benefits. Likewise, ABP policy 

implementation (described in Chapter 4 in depth) is not a strong predictor of 

unemployment benefit take-up.16  

I now turn to the main specification, which uses business closure as an instrument for UI 

receipt. Returning to Table 5.7, the first row shows the results of the first stage regression 

predicting unemployment benefit receipt. Using the sample of all unemployment spells, the 

coefficient on business closure is positive and statistically significant (Beta= 0.158; p<0.001) 

suggesting that business closure is highly correlated with benefit receipt. The Angrist-

Pischke first-stage chi-squared statistic, which tests for underidentification, has a value of 

50.99, which can be rejected at p<0.0001. The Anderson canonical correlation LM statistic of 

Chi-sq(1)=51.36 (p=0.0000) also allows rejection of the null hypothesis that the model is 

underidentified. Most importantly, the Cragg-Donald Wald F statistic is 50.99 (p<0.0001), 

well above the Stock-Yogo weak ID test critical values.  

Results from the second stage of the main IV specification are summarized in column 2 of 

Table 5.7. Controlling for endogenous selection into UI receipt using the IV, I find that 

receiving UI reduces the probability that unemployed workers report poor health by 30 

percentage points. The effect is significant at the 5% level and is much larger than the 

standard OLS estimate. I also run separate models for the pooled sample of unemployment 

spells by gender (Columns 3-6). Based on the OLS model, unemployment benefit receipt is 

associated with a 6.2 percentage point lower likelihood of poor health; using the IV model, 

receipt of UI reduces the probability of poor health by 37 percentage points for males, 

significant at the 10% level. The OLS and IV estimated effects for females are not statistically 

                                                           
16

 Because ABP and State UI generosity are not strong predictors of benefit receipt, I do not use them as IVs in 
the main analysis. However, I also run IV models that include all 3 variables using the limited information 
maximum likelihood (LIML) estimator; this approach is preferable in the presence of weak instruments. Results 
are consistent with those found using only plant closures as an IV and can be found in Appendix Table 5.2. 
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different from the effect for males, but standard errors are large rendering the estimates 

non-significant. 

5.3.3 Sensitivity analysis 

A potential limitation of the main analysis is that differences between treatment and control 

remain in the IV specification due to individual level characteristics that might be correlated 

with the likelihood of receiving UI. To address bias by unobserved, time-invariant individual 

characteristics, I carry out additional analysis using individual fixed effects in the context of 

the IV specification. These models include the same covariates (with the exception of 

gender in the fixed effects model, since it is time invariant). The sample is considerably 

larger (n=74,770) because unlike the pooled unemployment spell sample, data includes all 

years for all heads of households, even those who never experience an unemployment spell. 

In these models, the impact of benefits is identified out of within individual variation in UI 

receipt across multiple job loss episodes. In the IV specification, I exploit within individual 

variation in the type of job loss across multiple job loss episodes for identification.  

Table 5.9 shows descriptive statistics for the full sample of all person-year observations. 

5.8% of all person-years corresponded to a year of job loss. In the total sample, 1.2% of 

person-years were for an individual receiving UI benefits, which corresponds to 20.5% of 

unemployment spells.  
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Table 5.9 Descriptive statistics for full sample of all person-observation years 

  Mean SD 

Job loss (t-1) 0.058 0.234 

UI receipt (t-1) 0.012 0.108 

Health (t) 2.289 1.029 

Poor health (t) 0.113 0.317 

Health (t-2) 2.224 1.001 

Poor health (t-2) 0.103 0.304 

Newly reporting poor health (change from t-2 to t) 0.052 0.223 

Male  0.776 0.417 

Age (t) 40.983 10.695 

Married (t) 0.619 0.486 

Single (t) 0.176 0.381 

Widowed (t) 0.027 0.162 

Divorced (t) 0.138 0.345 

Separated (t) 0.040 0.196 

White 0.638 0.481 

Black 0.318 0.466 

Other 0.039 0.195 

High School or less (t) 0.662 0.473 

College (t) 0.297 0.457 

Post-Graduate (t) 0.040 0.197 

Number in house (t) 2.994 1.499 

Total family income (t-2) 57218.53 65494.13 

Working age unemployment rate in year of unemployment 
spell (t-1) 

4.627 1.558 

 

Table 5.10 shows the results of OLS and IV models incorporating individual fixed effects. In 

OLS models, UI receipt is not associated with poor health, while both job loss in t-1 and 

previous poor health in t-2 predict higher likelihood of poor health in t. In the IV model, 

business closure is still a strong predictor of benefit receipt in the first stage equation. Even 

in this restrictive specification, in the second stage of the IV, I find that receiving UI benefits 

significantly reduces the probability of reporting poor health by 27 percentage points 

(p<0.01).  

Because of the heterogeneous effects between men and women found in Chapter 3, I also 

stratify the sample by gender and replicate the analysis (Columns 3-6). Consistent with 

results for the subsample of unemployment spells, I find that the effect of UI receipt is 

significant and strong for males. The effect is similar in magnitude for females, albeit as in 

Chapter 3, it is not significant.  
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Table 5.10 Estimated effects of UI receipt on self-reported poor health using individual fixed effects models 

 
(1) (2) (3) (4) (5) (6) 

VARIABLES 
OLS individual 
fixed effects 

IV individual 
fixed effects 

OLS individual 
fixed effects 

(males) 

IV individual 
fixed effects 

(males) 

OLS individual 
fixed effects 

(females) 

IV individual 
fixed effects 

(females) 

      
    

Business closure (First stage 
 

0.154*** 
 

0.157*** 
 

0.145*** 

predicting UI receipt) 
 

(0.00582) 
 

(0.00663) 
 

(0.0123) 

              

UI receipt -0.00664 -0.270*** -0.0280 -0.286** 0.0290 -0.249 

 
(0.0149) (0.102) (0.0180) (0.117) (0.0264) (0.222) 

Job loss 0.0513*** 0.111*** 0.0665*** 0.131*** 0.0314** 0.0832* 

 
(0.00852) (0.0236) (0.0105) (0.0298) (0.0144) (0.0426) 

Poor health (t-2) 0.0296*** 0.0299*** 0.0382*** 0.0385*** 0.00840 0.00878 

 
(0.00847) (0.00416) (0.0103) (0.00470) (0.0146) (0.00904) 

       Observations 74,770 74,770 57,966 57,966 16,804 16,804 

Number of individuals 14108 14108 10027 10027 4091 4091 

  
  

 
  

 
  

*** p<0.01, ** p<0.05, * p<0.1 

Robust standard errors in parenthesis. Models include marital status, race, education, number in household, age, gender, logged real household income, 
State unemployment rates and State and year fixed effects.
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5.5 Discussion 

In this Chapter, I examine the impact of receiving unemployment benefits on the health of the 

unemployed. There are important limitations to the analysis. The main analysis uses the pooled 

sample of unemployment spells and may not fully control for unobserved individual level 

heterogeneity between treatment and control groups. Additionally, the individual fixed effects 

models control for time invariant unobserved heterogeneity within individuals but are very 

restrictive, since they are only identified for individuals who experience multiple job loss where 

at least one of those job losses was due to a business closure. Nevertheless, estimates point to 

a similar conclusion: unemployed individuals who receive unemployment benefits are at lower 

risk of reporting poor health in the year following job loss than comparable unemployed 

individuals who do not receive benefits. Effects of unemployment benefits are found only for 

males, though they also make up the majority of the heads of household PSID sample.  

In all IV estimations, the effect of unemployment benefits is much larger than the OLS 

estimates suggest. For the full sample of unemployment spells, the IV estimated 

unemployment benefit receipt coefficient is -0.30, whereas OLS estimates yield a coefficient of 

-0.047. This may seem surprising, as the a priori expectation was that the OLS estimates would 

be too large because the group of unemployed unemployment benefit receivers tend to be a 

more advantaged group than the group of unemployed non-receivers. While this could indicate 

that the business closure IV does not meet the exclusion criteria and is therefore an 

inappropriate IV, I note two important considerations that could explain the unexpectedly large 

IV estimate.  

First, OLS may underestimate the effect of UI if individuals in worse health self-select into UI, 

for example, because they expect to have lower rates of re-employment. As a result, benefit 

claimants may include a larger pool of individuals with pre-existing health problems. However, 

Table 5.6 shows that UI receivers are in fact less likely than non-receivers to be in poor health 

prior to job loss (t-2). While this does not exclude the possibility that some individuals in the 

sample select into UI after experiencing an unobserved health decline around the time of job 

loss (i.e. around t-1), this explanation appears unlikely. A second, more plausible explanation 
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for the difference between the IV and OLS estimates relates to the choice of instrument. IV 

estimates correspond to the LATE on the subpopulation affected by the instrument (Angrist et 

al., 1996), in this case, individuals losing their job because of business closure. So this estimate 

represents the average effect of UI receipt on the likelihood of poor self-reported health for 

those whose treatment status (i.e. UI receipt) has occurred because of losing a job through a 

business closure. If the health effects of UI benefits are larger for this group than for other 

unemployed individuals, I would expect to see larger IV than OLS estimates. Nevertheless, the 

standard errors for the IV estimates are quite large, so that the -0.30 estimate is imprecise; 

95% CI for the main estimate in Table 5.7 is between -0.573 and -0.0266. 

These findings may also help to explain some inconsistencies in the literature on the 

relationship between job loss due to business closure and health. For example, while some 

research in the US provides convincing evidence that poor health outcomes result from 

business closures (Sullivan & von Wachter, 2009), other studies suggest either a weak or 

inconsistent relationship (Strully, 2009, Brand et al 2008) or find no direct causal impact of 

business closure on health at all (Salm 2009), implying that the observed correlation between 

unemployment and health is largely, or at least to some extent, due to selection into 

joblessness among individuals in poor health. However, none of the aforementioned studies 

account for whether business closure job losers in their samples received UI while out-of-work. 

If receiving UI is protective for health, the comparatively higher likelihood of benefit receipt 

among workers displaced by business closure could explain why some studies observe no 

health effects of job loss for this group.  

These results also offer some insight into the potential mechanisms linking job loss to health. 

The finding that UI benefit receipt improves self-rated health suggests that income losses and 

financial uncertainty are potential mechanisms through which unemployment influences 

health. In the absence of UI, some unemployed individuals may be unable to pay for health 

promoting goods and services. UI benefits, alternatively, may help the unemployed to cope 

with some of the stress associated with financial uncertainty, or subsidise health promoting 

leisure time.  
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Appendix Table 5.1 Estimated effects of UI receipt on self-reported poor health with standard errors clustered at the individual or two-way 

clustering by individual and State of residence, pool of unemployment spells 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 
All unemployment spells Male unemployment spells 

VARIABLES 

OLS 
individual 
standard 

errors 

OLS two-
way 

individual 
State 

standard 
errors 

IV 
individual 
standard 

errors 

IV two-way 
individual 

State 
standard 

errors 

OLS 
individual 
standard 

errors 

OLS two-
way 

individual 
State 

standard 
errors 

IV 
individual 
standard 

errors 

IV two-way 
individual 

State 
standard 

errors 

                  

UI receipt -0.0466*** -0.0466*** -0.300** -0.300** -0.0618*** -0.0618*** -0.374** -0.374* 

 
(0.0146) (0.0151) (0.143) (0.129) (0.0174) (0.0188) (0.186) (0.204) 

Robust standard errors in parentheses. Models include marital status, race, education, number in 
household, age, gender, logged real household income, State unemployment rates and State and year fixed 
effects.  

 
   *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 5.2. Limited information maximum likelihood (LIML) estimates of the effect 

of UI receipt on self-reported poor health using business closure, maximum allowable State 

benefits and State ABP implementation as instrumental variables 

  (1) (2) (3) 

VARIABLES IV (all)  IV (males)  IV (females) 

First stage predicting UI receipt       

Business closure 0.158*** 0.148*** 0.169*** 

 
(0.0222) (0.0299) (0.0332) 

Maximum allowable State 
benefits 

0.024 0.031 -0.005 

 
(0.0735) (0.0993) (0.110) 

ABP -0.004 0.002 -0.019 

 
(0.0256) (0.0354) (0.0369) 

        

UI receipt -0.319** -0.431** -0.259 

 

(0.145) (0.217) (0.214) 

Poor health (t-2) 0.427*** 0.422*** 0.422*** 

 

(0.0163) (0.0234) (0.0238) 

    Observations 4,247 2,485 1,762 

Cragg-Donald Wald F-Statistic 17.036 8.173 8.719 

    

*** p<0.01, ** p<0.05, * p<0.1 

Robust standard errors in parenthesis. Models include marital status, race, education, number 
in household, age, gender, logged real household income, State unemployment rates and State 
and year fixed effects.  
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Chapter 6 Discussion 

Summary 

In this thesis I have investigated whether unemployment benefit programs in the US have 

an effect on selected health outcomes and behaviours. Taking various approaches that 

attempt to circumvent the endogenous relationship between benefit receipt and individual 

characteristics that may be correlated with health, I find consistent evidence that 

unemployment benefits are good for health. Unemployment benefit programs are 

associated with fewer suicides, better self-reported health, and increased physical activity. 

The results of these studies can improve an academic understanding of how job loss is 

associated with health, as well as serve to better inform policymakers considering reforms 

to unemployment benefit programs of the potential for unintended consequences for 

health. 
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6.1 Overview of findings 

The purpose of this research was to obtain causal evidence regarding whether 

unemployment benefit programs in the US have an effect on selected health outcomes and 

behaviours that are frequently linked to job loss and economic downturns. Although existing 

research already suggested that unemployment benefits moderate the effect of job loss on 

health, no studies to date had taken steps to control for endogenous selection into 

unemployment benefit receipt. This is an important methodological gap. Without a better 

understanding of the direction of causality, it is unclear whether studies detecting positive 

associations between unemployment benefit receipt and health are simply providing 

evidence that healthier people are more likely to receive UI, or alternatively, finding that UI 

leads causally to better health. In the following sections, I briefly review some of the key 

findings in each of the four studies presented in this thesis. 

6.1.1 More generous unemployment benefits reduce suicides in contexts of high 

unemployment 

In Chapter 2, I investigated whether the maximum allowable UI benefit level in a State and 

year has a moderating effect on State suicide rates. Assessing effects of UI on the entire 

State population is comparable to macro-level studies that assess associations between 

unemployment rates and population health; in both instances, such studies cannot identify 

whether changes in population health are occurring among the unemployed or employed 

populations. Methodologically however, an advantage of this sort of approach is that effects 

are unlikely to be biased by changes in the composition of the treated population (i.e. 

changes in the composition of the unemployed or the UI recipients) because everyone in the 

population is exposed.  

I find that within States, more generous UI benefits reduce the effect of increases in 

unemployment rates on suicides. The effect of changes in UI is only statistically significant 

through its interaction with unemployment rates so that if a State increases its UI maximum 

generosity at a time of low unemployment rates, there is no significant effect on suicide risk. 

This is a logical result, as one would not expect unemployment benefit generosity to have 
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any effect on population health if very few people are receiving unemployment benefits (i.e. 

if unemployment were near zero). It is also a reassuring finding, as it implies that I am not 

inadvertently picking up effects of some other correlated policy or State characteristic that 

could have an effect on suicides irrespective of the unemployment rate. I also find 

confirmatory evidence that UI effects are likely to be occurring through changes in the 

degree of population exposed to benefits using changes in the number of UI claims as the 

exposure mechanism (rather than unemployment rates). 

Although not statistically significant, I find a positive main effect of UI in the models that 

include the interaction between UI generosity and unemployment rates. While the estimate 

is imprecise, the point estimate would seem to suggest that at low unemployment rates, 

more generous unemployment benefits could lead to higher suicide rates. Although any 

interpretation is necessarily speculative, this requires some explanation. One possible 

reason could be that when the labour market is strong, more generous benefits incentivise 

longer unemployment duration even though job opportunities are readily available; 

however when the labour market is weak, UI provides a needed safety net given the dearth 

of job opportunities. Prior research confirms that UI benefits have a negative effect on the 

probability of leaving unemployment (Chetty, 2008, Katz and Meyer, 1990, Moffitt and 

Nicholson, 1982, Krueger and Mueller, 2010). Extended unemployment duration 

incentivised by UI during good economic times therefore could exasperate poor mental 

health for vulnerable individuals. Hypothetically, a person in poor mental health who 

decides to stay out of work for a longer period of time because they are receiving UI may 

also have a difficult time finding re-employment after UI benefits expire, which might then 

worsen their mental health further. Nevertheless, I am unable to definitively explain why 

the point estimate for the main effect of UI becomes positive after inclusion of the 

interaction term. 

While I find convincing evidence that UI benefits buffer the effect of unemployment rates 

on suicides, a key limitation of the study as mentioned is that I am unable to identify 

whether any of the estimated effects of UI benefits are concentrated among individuals who 
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experience job loss. It is possible that unemployment benefits influence suicide rates 

through some pathway other than receiving them. For example, they may provide comfort 

to employed people at risk of losing a job. To understand whether the effects of UI are 

occurring among job losers requires analysis using individual level longitudinal data.  

6.1.2 More generous unemployment benefits available at the time of job loss are 

associated with lower probability of poor self-reported health among the unemployed 

In Chapter 3, I extend the aforementioned analysis using maximum State UI benefit levels 

and use longitudinal individual level data to estimate the effects of changes in benefit 

generosity on self-reported health. While the outcome measure differs from that used in 

Chapter 2, this study enables me to isolate whether effects of benefit generosity are 

population-wide, or whether they are specific to the unemployed. I am also able to test 

whether UI has an effect on self-reported health through its interaction with unemployment 

rates, to see whether there is consistency with the finding in Chapter 2. Significant effects 

here would imply that unemployment benefit generosity has a broad effect on the entire 

working-age population conditional on labour market conditions, for example by reducing 

job insecurity, and not only an effect on those who experience job loss. 

I find that in the year after job loss, individuals are less likely to report poor health if their 

State of residence offered comparatively more generous UI benefits at the time of job loss. 

The effects are concentrated among men, although this may partially be explained by the 

fact that men make up the majority of the sample. I do not find consistent effects of UI 

generosity interacted with unemployment rates in models that control for individual 

employment status, implying that UI does not provide protection for self-reported health 

among the general working-age population in poor labour market conditions. However, in 

some models I find a small statistically significant health promoting effect of increasing 

unemployment rates (e.g. Table 3.4); and in models that do not control for individual job 

loss I also find a health deteriorating effect of the interaction between UI and 

unemployment rates (e.g. Tables 3.3, 3.4 and 3.6). This suggests that consistent with the 

work of Ruhm and others, in particular without controlling for individual employment 
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status, there may be an inverse relationship between economic conditions and overall 

population health. However I also find that this effect appears to be moderated by more 

generous unemployment benefits; the finding of a positive coefficient for the interaction 

between UI generosity and unemployment rates implies that more generous benefits 

reduce any gains for overall population health associated with increases in unemployment 

rates. This also would mean that at low unemployment rates, more generous benefits are 

associated with slightly worse self-reported health across the broad working-age population 

than would be expected by low unemployment rates on their own. Again, this is consistent 

with the positive main effect of UI in the suicides study, and may indicate that generous 

benefits during good economic times are bad for health. While the mechanism I propose to 

explain this in the suicide study in Chapter 2 is that generous UI benefits during good 

economic times distort incentives for job search and keep people out of work despite job 

availability, this finding of population-level effects suggests that the poor health effect of 

generous UI during good economic times occurs across the entire working-age population, 

not only among job losers. If the mechanism underlying this association were in fact that UI 

benefits increase unemployment duration, then this could imply that there is some negative 

health effect on the total working-age population associated with UI-distorted labour 

markets during good economic times. This notion is difficult to justify; it could be that UI 

reduces labour supply during good economic times, which puts additional workload and 

stress on the population who remains employed. It could also be that some employed 

people feel resentful towards the unemployed who are receiving UI benefits. This 

frustration could be a factor that causes some people to self-report that their health is bad. 

However, these explanations are purely speculative. Importantly, the interaction between 

UI and unemployment rates does not hold in individual fixed effects models that control for 

individual job loss, and in any event, the effect is small in comparison to the magnitude of 

health promoting effects of more generous benefits on job losers.  

6.1.3 Access to unemployment benefits leads to increases in physically active leisure 

In Chapter 4, I investigate the linkage between unemployment benefits and leisure time that 

is well established in the economics literature to see whether UI promotes healthy, 
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physically active leisure. I do this primarily by taking advantage of variation across States in 

the timing of a policy that expanded UI eligibility among low-educated unemployed 

individuals. Because I do not have information on benefit receipt in the two surveys used 

(BRFSS and ATUS) I rely on an intention-to-treat approach to identify any effects. This is 

similar to the approaches used in Chapters 2 and 3. 

I find strong evidence that UI eligibility expansion leads to increases in the likelihood of 

participating in physically active leisure, particularly the likelihood of going for a walk. The 

results are robust to many different modelling approaches. I also find confirmatory evidence 

that increases in State UI generosity are associated with increased likelihood of physically 

active leisure. These findings are consistent with the common result in the economics 

literature that UI has an upwards effect on unemployment duration through its subsidy to 

leisure time. It is also interesting because it suggests that a potential pathway for UI to 

improve health in general is through its effect to reduce the opportunity cost of time.  

However this result seemingly contradicts the tentative findings in Chapters 2 and 3, where I 

suggest that increased unemployment duration might sometimes be bad for health. I came 

to this provisional conclusion after finding weak evidence that more generous benefits may 

be detrimental for health across the full sample of working-age individuals. While it is 

possible that for some unemployed individuals, receiving UI incentivizes non-labour time 

despite possible job availability and therefore contributes to poor health, it is also possible 

that the harmful (albeit weak and inconsistent) effects of UI on health observed in Chapters 

2 and 3 are in fact concentrated among non-UI recipients, such as the employed. For 

example, as I suggest above in section 6.1.2, it could be that some employed people feel 

resentful towards the unemployed who are receiving UI benefits, and as a result feel 

depressed, frustrated, and report worse health. While entirely speculative, this also 

reinforces the notion changes individuals’ own labour market involvement may not be the 

primary mechanism at play when estimating effects of macro-level variables such as 

unemployment rates or UI benefits on entire populations (Miller, et al 2009). In the study in 

Chapter 4, where effects of UI are estimated only among the unemployed who are eligible 
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for the UI expansion, estimates indicate that at least to some extent, increases in time out 

of work associated with UI may be spent engaging in health promoting physical activities, 

which can be good for health.  

I do not find any evidence of changes in smoking, drinking, mental health, self-reported 

health or access to health care associated with the UI eligibility expansion policy. For 

smoking and drinking, this is a positive finding and indicates that income from UI is not likely 

used to subsidise these unhealthy behaviours; it is also consistent with prior research 

(Bolton and Rodriguez, 2009). However the lack of significant effects, particularly for mental 

health and self-reported health, was not expected. It could be that the treatment group – 

low educated individuals – is more likely than other unemployed cohorts a priori to be in 

poor mental or physical health, so that UI benefits are not a sufficient treatment to warrant 

improvements. Likewise, the self-reported health and mental health effects of UI through 

ABP may not have had enough time to develop, since I assess effects from 1 month after the 

policy is introduced in a State. 

 

6.1.4 Receiving unemployment benefits reduces the probability of poor self-reported 

health 

Even though I find in Chapters 2 through 4 that changes in State UI benefit generosity and 

eligibility are associated with health improvements among individuals who have 

experienced an unemployment spell in the past year, I am still unable to firmly conclude 

that the people who receive UI benefits are the population driving this result. Identifying 

effects of UI among the unemployed population who are broadly eligible for unemployment 

benefits assesses whether benefit policies are having an impact among the entire 

population they are intending to treat. However it does not permit estimation of the 

treatment on the treated population. Because of low benefit take-up rates among eligible 

unemployed individuals, any estimates of the effect of receiving benefits are likely to be 

underestimated using an intention-to-treat study design—an issue that has plagued other 

studies that use similar approaches (Gruber, 1997, Herd et al., 2008).  
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In the final empirical chapter I test the effect of unemployment benefit programs on self-

reported health among those who actually receive benefits. While this may seem the most 

logical approach, in many ways it is the most challenging. Individuals receiving UI may differ 

in many ways from those who are not receiving benefits; these unobserved characteristics 

could have implications for health and must be appropriately controlled for.  

I find in naïve OLS models that unemployed individuals who receive UI are in better self-

reported health than those who do not receive UI. This is consistent with other studies as 

well as my expectation that individuals who are wealthier, more educated and in good 

health are more likely to qualify for and receive UI; however it does not indicate whether UI 

itself has a causal effect on health. Using an IV strategy to predict UI receipt based on 

whether job loss was due to a business closure – a characteristic that I argue does not itself 

predict variations in health among a pool of unemployment spells – I find protective health 

effects of UI for men that are of an even larger magnitude than predicted by the simple OLS 

model. 

I do not find that changes in State UI generosity are a strong predictor of UI receipt in the 

first stage of IV models. This is an important finding, given that I use State UI generosity as 

the mechanism for estimating health effects of unemployment benefits in Chapters 2 and 3. 

It would appear that despite other research that suggests that more generous 

unemployment benefits are also associated with higher unemployment benefit take-up 

rates (Anderson and Meyer, 1997), the effects of UI generosity on suicide risk and self-

reported health in Chapters 2 and 3 are perhaps most likely due to changes in the amount of 

money received by UI recipients, rather than a consequence of greater take-up incentivised 

by the presence of more generous benefits offered by States at the time of job loss. The fact 

that benefit generosity has an effect on self-reported health in the study in Chapter 3 but is 

not a good first stage predictor of UI receipt in the study in Chapter 5 using the same sample 

indicates that the amount of money received likely makes a difference; that is, the study in 

Chapter 3 is likely picking up health effects of more money provided to UI recipients, rather 

than just effects of receiving any benefits at all. 
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6.2 Towards a better understanding of the link between job loss and health 

Although not the primary objective of this thesis, the findings on the health effects of UI 

may also help to better understand the pathways whereby unemployment and economic 

downturns are associated with changes in certain health outcomes and behaviours. As 

discussed, while a number of studies do find that health worsens as a result of job loss, 

many studies conclude that individuals in poor health are simply more likely to be selected 

into unemployment. Evidence on the causal effects of UI on health may provide insight into 

the mechanisms underlying the statistical associations between health and employment 

status.  

The first question is whether the relationship between job loss and health is due to 

individuals in poor health mostly being selected into job loss, or because poor health is a 

common outcome of job loss. The finding that UI has an effect on health seems to support 

the notion that job loss may have a causal effect on health – at least for some people. If 

individuals in poor health were to be selected into unemployment, it is difficult to envision a 

situation where UI would improve their health. While it is possible that for some individuals, 

unemployment while receiving benefits offers a respite from health-deteriorating work 

conditions—and thus leads to health improvements even among people selected into 

unemployment due to poor health – this is unlikely to be the primary driver of observed UI 

effects. Research on occupational health effects does find, for example, that manual 

labourers have higher mortality rates and poorer self-reported health than those in 

managerial positions (Morefield et al., 2011, Case and Deaton, 2005). Although it is possible 

that manual workers select out of employment and are subsequently in better health when 

receiving UI and not exposed to poor working conditions, low skilled workers are in general 

less likely to receive UI in the US, so it would be surprising if estimated effects were 

primarily due to this group. Likewise, individuals in poor health who are unable to work are 

technically not eligible for unemployment benefits in the US, as UI recipients must 

demonstrate that they are actively seeking work. Therefore, any effects of UI on health 

would be unlikely to occur among people who select into unemployment due to poor 

health. 
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The second question is regarding the precise pathway by which job loss can have effects for 

health. Job loss has been shown to have both financial and non-financial effects; financial 

effects include reductions in earnings in the short-term, and lower job quality and job 

instability in the longer-term, while the non-financial effects include changes in social status, 

time structure, and stigma (Brand, 2015). Any or all of these could be pathways for job loss 

to have an effect on health. 

The finding in this thesis that UI has a casual effect on health would seem to provide support 

primarily for the hypothesis that part of the reason that job loss is associated with poor 

health is because of the financial effects of losing a job. In the current recession, UI replaced 

43% of lost earnings for long-term unemployed workers claiming benefits (Johnson and 

Feng, 2013). The implication of the studies presented in this thesis is that without that 

income support, the health effects of high levels of unemployment would have been worse. 

Alternatively I would expect that UI would not have any moderating effects for non-financial 

consequences such as stigma or reduced social status; in fact, UI could have a detrimental 

effect by increasing stigma if there are negative perceptions of those who receive public 

support. Additionally, although I find evidence that UI is associated with greater likelihood 

of time allocated to physical activity, it is hard to make the case that UI remedies the lack of 

time structure associated with unemployment. Therefore, it would appear that UI provides 

some confirmatory evidence that the association between job loss and health is at least in 

part due to income losses, some of which can be ameliorated by UI benefits.  

 

6.3 Possible pathways and mechanisms linking UI to health 

In this section, I discuss the possible explanations for the linkage between unemployment 

benefits and better health. Broadly, I consider that there are two possible pathways that 

might explain how unemployment benefits have a causal effect on health in the short-term: 

1) through an income effect, 

2) through a time effect. 
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Though the precise mechanisms are unclear, I speculate on the potential for each pathway 

based on the findings from the four empirical chapters. 

6.3.1 Income effect 

Research on income and health often finds more substantive positive health effects of 

permanent income, rather than temporary changes to income (Kawachi et al, 2010). For 

example, Case et al (2002) find evidence of parental permanent income on the health of 

children over their life course. It is likely that permanent income and temporary income 

affect health in very different ways. In the case of permanent income, comparatively 

wealthy individuals are able to make long-term health investments, including in healthy 

foods and education, which will contribute to health stock over time (Grossman, 1972). It is 

unclear whether effects of UI reflect changes in permanent or temporary income, since UI 

maintains consumption (and therefore, stabilises income during job loss to some extent), 

but is still a temporary source of income that may be insufficient to support long-term 

health investments on its own.  

There are generally two ways that the consumption smoothing income effect of 

unemployment benefits could have an effect on health in the short-term. First, the income 

from UI could allow households to continue to consume healthy goods and services. This 

could include the purchase of items as simple as fruits, vegetables and other healthy foods; 

while I am not able to investigate this hypothesis with the data used in this thesis, a recent 

meta-analysis demonstrates that healthier diets are comparatively more expensive than 

unhealthy diets (Rao et al., 2013). Though I cannot confirm that UI recipients purchase 

healthier foods, greater income from UI would at least make healthier, more expensive food 

options more affordable. However, the studies presented in this thesis find effects of UI for 

the health outcomes suicides, self-reported health and physical activity—all of which are 

unlikely to be substantially altered by short-term changes in consumption of healthy goods, 

such as healthy food. For example, while there have been links between dietary habits and 

suicide (Zhang et al., 2005), it is difficult to envisage a pathway from fruit consumption to 
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suicide prevention. Poor diets are also more likely to have health effects over relatively 

longer time periods than those studied in this thesis.  

Income from UI may also enable the unemployed to continue to access health care. 

However, I find no effect in Chapter 4 of changes to health care access or insurance 

coverage associated with ABP expansions. This is not surprising. In the US, most individuals 

who experience job loss also lose access to their employer-based health insurance. While 

individuals who lose their job are able to keep their employer-based health insurance under 

the Consolidated Omnibus Budget Reconciliation Act (COBRA) of 1985, they are responsible 

for paying the full insurance premium, making insurance only accessible to the reasonably 

wealthy; a review found that only 14% of eligible individuals maintained their employer-

based insurance coverage in 2010, while 57% became uninsured (The Commonwealth Fund, 

2010). It is unlikely then that unemployment benefits – even the most generous – would be 

sufficient to cover health insurance premiums and support other household consumption 

simultaneously. Access to Medicaid is also an unlikely pathway, as Medicaid eligibility is 

based in part on being below an income threshold that historically has varied by State; since 

UI benefits count as income, receiving UI could in fact push some individuals above the 

threshold and disqualify them from obtaining Medicaid coverage. 

Of note, although I did not explicitly test the hypothesis in this thesis, it is possible that the 

short-term income gains of UI itself have important implications for permanent income, and 

subsequent effects for health in the long-term. UI allows workers to be choosier when 

seeking re-employment and to hold out for higher wages, whereas non-UI recipients may 

feel obliged to take the first job they are offered; this could reduce their long-run earnings 

potential and be detrimental to health (Acemoglu, 2001, Acemoglu and Shimer 2000). UI 

can reduce the potential for “scarring” – i.e. long-term effects of unemployment on future 

opportunities in the labour market. If this were the case, job losers who receive UI may be 

less likely to experience changes to their permanent income than job losers who are forced 

to take undesirable, low wage jobs. It is even possible that permanent income effects in the 

medium-term are the mechanism observed in Chapters 3 and 5 given that I am investigating 
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self-reported health effects in the year following job displacement, rather than immediately 

at the time of job loss. Future research should investigate whether there are longer-term 

health effects of UI. 

Income-related health effects may alternatively occur through some non-consumption 

related pathway that is still a result of the short-term income subsidy provided by UI. For 

example, it is possible that UI may have an independent psychological effect by providing 

comfort and security to job losers. Given the likelihood that the health effects attributable 

exclusively to changes in consumption patterns are likely to materialise over longer periods 

of time than the time frame studied in this thesis, UI may contribute to health through a 

psychological pathway that has a more rapid effect. Psychological outcomes –regardless of 

the pathway— appear to be quite important given that I find UI effects on both suicides (a 

blunt measure of mental health) and self-reported health (which captures both physical and 

mental health effects).  

It is difficult to ascertain whether UI has a psychological effect that is entirely unrelated to 

consumption smoothing. Nevertheless, there is some evidence to support the possibility 

that financial gains from small fluctuations in income have short-term psychological effects. 

For example, recent research on lottery winners in the United Kingdom finds positive 

mental health effects of lottery winnings (average winnings being just 245£ in real 2005 

pounds), but no effects for overall self-reported health (Apouey and Clark, 2015). The 

authors explain this seemingly paradoxical finding is because of increases in smoking and 

social drinking among lottery winners, which cancels out any potential positive physical 

health effects. I find no increase in these behaviours among job losers in Chapter 4, possibly 

because UI recipients may feel less celebratory compared to lottery winners. Therefore 

although smoking and drinking become more affordable to UI recipients relative to 

equivalent job losers without benefits, UI recipients may feel less inclined to spend their 

unemployment benefits on these behaviours.  
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6.3.2 Decreased opportunity cost of leisure time 

An alternative pathway whereby UI may affect health is through its effect on leisure time. 

While this may not be the first pathway that comes to mind to link UI to health, the majority 

of research on UI in the economics literature has focused on this area, investigating whether 

UI encourages longer duration of unemployment. Economists emphasise that UI has 

important moral hazard costs because it subsidises unproductive leisure (Gruber, 2007). UI 

causes longer unemployment spells, particularly among households with liquidity 

constraints, such as low-income households. As Chetty (2008) suggests, for an individual 

who does not have the financial means to smooth consumption perfectly, the additional 

cash available through UI allows an extension of unemployment.  

But what if longer unemployment duration is in fact health promoting when it occurs in the 

presence of adequate financial support? In the study presented in Chapter 4, I find that UI 

expansions for low educated workers are associated with increases in physically active 

leisure, particularly the probability of going for a walk. I argue that this effect occurs 

because of the decreased opportunity cost of time, which, coupled with demand for health, 

leads individuals to engage in low-intensity, time-consuming, and health-promoting physical 

activity. The lack of effects of UI eligibility expansions for other specific forms of physical 

activity indicates that low educated UI recipients are probably not using their benefits to 

buy expensive sports equipment or maintain gym memberships, and would therefore not 

lend support to the hypothesis that UI leads to consumption of healthy goods – at least as 

far as healthy goods that pertain to physical activity. 

In fact, it is possible that the subsidised time afforded to UI recipients is an important driver 

of better health across all of the studies. The decreased opportunity cost of leisure time 

could allow the unemployed to engage in physically active leisure, which may also provide 

them with time that can be used to relieve stress overall. Research suggests that physically 

active leisure itself is associated with lower levels of perceived stress though it is unclear 

whether lower stress increases physical activity or physical activity reduces stress (Aldana et 

al., 1996, Schnohr et al., 2005). While necessarily speculative, if physically active leisure 
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reduces stress, the pathway by which UI improves health could be that UI encourages 

physical activity, which reduces stress, thus improving health. This could also help to explain 

why health outcomes affected by job loss and UI are largely within the domain of mental 

health.  

6.4 Policy implications 

The policy implications of this research are timely. In recent years, unemployment benefits 

have been a key topic for policymakers in the US. During the financial crisis, as 

unemployment rates rose dramatically, the US government responded with an 

unprecedented extension of UI benefits from the standard 26 week duration to a maximum 

of 99 weeks (Executive Office of the President, 2011). Extended unemployment benefits 

through the Emergency Unemployment Compensation program expired at the end of 2013. 

There was considerable debate in the US Congress around the time of expiration and in the 

months after over whether to continue UI extensions (Peters, 2014). While many of the 

economic arguments described throughout this thesis were made both in favour and against 

extending the Emergency Unemployment Compensation program, to my knowledge, at no 

point were health effects of UI a topic of discussion among policymakers.  

This is in stark contrast to approaches to policymaking in Europe, where there is a greater 

recognition of the role of social policies in influencing health. For example, the European 

Union is technically required to follow a “Health in all Policies” approach to policymaking, so 

that European Union policies in non-health areas must consider the potential ramifications 

for health (European Commission, 2015). There is very limited evidence of this sort of 

approach in the US; one example is the Patient Protection and Affordable Care Act (2010), 

which calls for formation of the National Prevention Council that is meant to increase 

coordination across government agencies in the interests of public health, for example, 

across the non-health areas of transportation and environmental protection (National 

Prevention Council, 2011). However there is no indication that this type of agency would 

have an effect on the development of unemployment benefit policies, particularly given that 

UI is not traditionally thought of as a health determinant. 
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So should policymakers consider the health effects of UI when designing and reforming UI 

programs? Even based only on previous literature that finds receipt of unemployment 

benefits to be associated with better health, I would argue that the answer is yes. If the 

association between UI and health previously found in the literature were only due to 

healthier individuals receiving UI, it would provide clear evidence of the inequalities in 

access to unemployment benefits. Absent any health effects, UI provides an important 

function for the unemployed to smooth their consumption and allows them an opportunity 

to search for new jobs that meet their earnings potential. Therefore, any signal that UI 

recipients are on average healthier, wealthier, and more educated than non-UI recipients 

should make a strong case that the unemployment benefit program as it currently is 

designed does not adequately protect the most vulnerable workers from the financial costs 

of job loss. 

However the studies presented in this thesis provide overwhelming evidence that not only 

are the more well-off at greater likelihood of receiving benefits, but that UI has an 

independent positive effect on health. Job losers who have access to unemployment 

benefits, particularly more generous benefits, have better self-reported and mental health 

outcomes and are more likely to engage in physical activity. While there remains some 

uncertainty over whether better health is due to income effects or time effects, regardless 

of the precise pathway, it is important for policymakers to at the very least consider the 

potential health benefits of UI programs when making decisions on UI benefit reforms.  

 

6.4.1 Basic approach to costing 

The degree to which health effects should be considered by policymakers depends both on 

the magnitude of the effects and the costs. While it is difficult to accurately quantify the 

magnitude of potential effects given variations in terms of State UI eligibility requirements, 

benefit generosity, and State economic conditions, I attempt to do so here based on some 

of the model estimates. These calculations are meant only as simple illustrations of the 

potential costs and benefits of UI reforms. In particular, the studies in Chapters 2 and 3 
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allow for estimation of some of the gains associated with improving UI generosity – a 

tangible policy lever given that generosity is legislatively determined. The estimates in 

Chapter 5 provide an indication of the costs and benefits associated with expanding UI 

eligibility to all of the unemployed.  

First, to simulate the public health relevance of unemployment benefits in the context of 

the recent recession, I conduct a simple simulation of suicide rates for two scenarios of 

unemployment benefit program generosity based on the peak national unemployment rate 

in 2010 (9.6%) using the model coefficients from the main model presented in Table 2.2 of 

Chapter 2. Moving from a hypothetical scenario in which all States would offer the benefits 

of the least generous State during the sample period (Alabama) to a scenario in which all 

States provide the benefit levels of the most generous State (Massachusetts) predicts 4.4 

fewer deaths per 100,000 population. Based on the population ages 20 to 64 in the US 

(185.2 million in 2010), if all States switched from this least generous scenario to the most 

generous scenario, it would result in just over 8,000 fewer suicides. Again, this figure is very 

high and serves merely as an illustration of two extreme scenarios, since in reality there is 

considerable variation in the generosity of benefits across States. Data from the PSID 

suggest that overall, 20.1 percent of the unemployed collect UI, which would imply, based 

on a 9.6 percent unemployment rate for a total labour force of 153,889,000 in 2010 (i.e. 

14.8 million unemployed) that around 3 million people received UI in 2010 (US Census 

Bureau, 2015). Based on this, holding the number of claims constant, I estimate the 

difference in costs between the two scenarios to be approximately $51.9 billion at constant 

1999 prices. Assuming that all UI claimants receive the maximum benefits, dividing this cost 

by the difference in the total number of deaths averted results in a conservative but 

relatively expensive average cost of saving a life of $6.4 million. It would therefore appear 

that raising the generosity of unemployment benefits for the sake of reducing suicides is not 

a particularly cost-effective suicide prevention strategy, particularly given the multitude of 

determinants of suicide that are unrelated to job loss. 
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However as mentioned, suicide is a very rare health outcome; any policy that reduces 

suicides is likely to have broader effects for mental health, which may prove to be more cost 

effective. While not explicitly a measure of mental well-being, I use the model coefficients 

from the model predicting self-reported poor health in Column 3 of Table 3.3 to estimate 

the costs and magnitude of effects for improving self-reported health. I estimate that at the 

mean levels of benefits, a 75 percent increase in the maximum unemployment benefits a 

worker is entitled to receive every year in their State of residence completely offsets the 

impact of unemployment on self-reported health17. Maintaining consistency with the 

suicide simulation above, taking the mean level of maximum UI benefits as $7,99018 would 

imply an increase of $6,000 per person in maximum allowable benefits needed to offset the 

effect of job loss on health. Again, assuming 3 million individuals actually receive UI, the 

difference in costs between offering the mean level of benefits and this more generous 

scenario would be around $18 billion in 2010 at 1999 prices. Based on PSID sample means of 

10% of the employed reporting poor health and 24.9% of the unemployed reporting poor 

health, I assume that the aforementioned increase in unemployment benefit generosity 

causes the shares of individuals in poor health to be equivalent. Therefore, if 14.9% of the 

unemployed in 2010 were no longer in poor health as a result of the UI generosity increase, 

based again on 14.8 million unemployed, this would amount to 2.2 million people no longer 

reporting that they are in poor health. The cost of this policy action would amount to just 

under $8,200 per person for whom poor health is averted; this is considerably more 

affordable than the cost of preventing suicide, particularly given the high levels of per 

person expenditure on health care in the US. However it is not possible to estimate the 

savings to the health system associated with improving health through increasing UI benefit 

generosity, since I do not know the difference in health spending for individuals reporting 

poor health compared to those not reporting poor health. 

Lastly, although less politically feasible because of features of unemployment benefit 

programs in the US that limit eligibility, expansion of UI benefits to all unemployed 

                                                           
17

 While this estimate is from a model estimated on a sample of males only, I assume for the purposes of this 
simple simulation that the effect holds for the entire population. 
18

 This is the mean value of maximum allowable state UI benefits across the sample from 1968 to 2008. 
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individuals could also prove effective. IV estimates from Chapter 5 are high, and suggest 

that simply receiving UI reduces the probability of poor health by 30 percentage points for 

the unemployed who have lost their job due to business closure. Extrapolating from this 

estimate, with 79.9% of the unemployed not receiving UI (again, as is the case across the 

PSID sample), based on 2010 estimates of 14.8 million unemployed, expanding UI to all 

unemployed would imply 11.8 million more UI recipients. Assuming mean levels of benefit 

generosity for ease of comparison, this expansion would cost $95 billion at 1999 prices. 

Predicted shares of the unemployed population in poor health based on the main IV model 

holding all other explanatory variables at mean values reveals that compared to current 

take-up levels, providing all of the unemployed with UI would have led to 3.5 million fewer 

people in poor health19. This would cost slightly under $27,000 per poor health averted.20 

Using the more conservative OLS estimate of around a 5-percentage point reduction would 

imply significantly greater costs per poor health averted. Providing UI to all unemployed 

individuals would lead to 548,000 fewer people in poor health, at a cost of just over 

$173,000 per poor health averted. 

While the health effects of UI are compelling, by themselves they may not be reason 

enough to increase unemployment benefit generosity or expand access given the high costs 

associated with UI programs. This underscores the fact that UI programs are not designed to 

affect health, but rather that any health effects are unintended. This being said, UI programs 

could be better designed with health effects in mind. Overall, it appears that raising benefit 

generosity is a more cost effective approach to reduce the likelihood of poor health than 

expanding UI access. This is convenient, as it is also the more practical policy option, since 

mandatory unemployment benefit access for all unemployed individuals is not feasible 

without national level legislative changes. However it is important to note that raising the 

level of benefits will only be beneficial to around one-fifth of the unemployed. While some 

of the unemployed forgo unemployment benefits, either because they do not expect to be 

                                                           
19

 This is according to the point estimates based on calculating margins, where I compare the difference in the 
share of the unemployed population in poor health when holding benefit receipt at 1 to the share of the 
unemployed population in poor health when benefit receipt is at mean values; however the confidence 
interval is very wide. 
20

 Given the difficulties of quantifying participation in physical activity, I do not attempt any simulation. 
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unemployed for a long time, feel there is stigma associated with being on benefits, or do not 

have proper information on how to apply, many others do not receive UI because they do 

not qualify. Raising UI generosity is unlikely to have much, if any impact on these individuals. 

Therefore, given the clear health effects of UI, it would be prudent to find ways to ease 

eligibility requirements or otherwise provide financial support to vulnerable individuals who 

experience job loss. These individuals are likely to benefit considerably from this support; as 

demonstrated by Chetty (2008) and echoed by the findings in Chapter 4, UI can have very 

strong effects among individuals with low levels of liquidity, for whom unemployment 

benefits can be a major windfall. Then again, it is important to take heed of the potential for 

adverse health effects of UI during good economic times; further research is needed to 

verify whether there are actually unfavourable consequences for health associated with 

generous UI when unemployment rates are low. If in fact UI benefits during good economic 

times are associated with comparatively poorer health outcomes, it may be necessary to 

impose some sort of countercyclical policy whereby UI benefits are more generous and 

easily available during bad economic times, but somewhat restricted during good economic 

times. 

Nevertheless, UI may not be the only or most effective approach to improve health among 

the unemployed. There are likely other types of programs that can improve health for 

people during economic downturns and unemployment spells. Research has found that 

active labour market programs that help people return to employment more quickly reduce 

some of the adverse health effects of job loss (Stuckler et al, 2009). Likewise, affordable 

access to health care could reduce the likelihood of poor health associated with job loss. 

Comparisons of the health effects of UI programs and other types of programs that target 

the unemployed is needed before deciding fiscal priorities. Research on the benefits of UI 

programs is particularly relevant in the current economic, fiscal and political climates. As 

some States have taken steps to curb their spending on social programs, including 

unemployment benefits, evidence of positive health effects of unemployment benefits may 

help to justify allocation of fiscal space for such programs.  
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6.5 Limitations of study methods 

While I find consistent evidence that UI is good for health using a variety of methodological 

approaches, there are a number of important limitations. Many of these are covered in the 

Chapters as they pertain to specific methods, so here I will focus only on broad limitations 

that pertain to the thesis overall.  

Generally speaking, it is difficult using statistical techniques to definitively demonstrate 

causal effects of UI on health. While I make every attempt to ensure that the UI measures I 

use are exogenous to economic conditions and individual characteristics, there is always the 

potential that there are omitted variables, such as other State policies that affect the 

unemployed.  

Nevertheless, as I argue throughout the thesis, it is unlikely that my estimates are picking up 

effects of other policies that are not included in the regression models. For one, in the US, 

recently unemployed, working age individuals that are eligible for UI are not likely to be in 

receipt of other types of government benefits, as other public programs are often only 

accessible to vulnerable groups that are not typically active in the labour force, such as the 

very poor, children, older people, or people with severe disabilities. To confirm this, I 

reviewed CPS data from 1962 to 2012 and calculated the percentages of individuals that 

receive both UI and some other type of social support in the same year (Table 6.1) (King et 

al., 2010).  
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Table 6.1 Percentage of UI recipients receiving other types of public support in the same 

year, 1962-2012 

Any public health insurance 13.0% 

Medicaid/SCHIP/Other public health insurance (non-Medicare) 7.7% 

Worker's Compensation 2.3% 

Welfare Benefits 1.8% 

Disability Benefits 0.9% 

Veteran's Benefits 0.9% 

Supplemental Security Income (SSI) benefits 0.7% 

Survivor's Benefits 0.5% 

Source: CPS 2013 

Based on this data, it is clear that there is no other social program that is ubiquitous among 

UI recipients. Additionally, a simple logistic regression controlling only for survey year and 

State finds an individual who receives UI has a 47.5% lower odds (OR: 0.525, 95% CI 0.517-

0.534) than someone who does not receive UI of contemporaneously participating in any of 

the other public programs shown in Table 6.1 (Table 6.2).  Still, although research suggests 

that features of other social programs are unlikely to be correlated with features of UI 

programs (Fishback et al., 2010 and see Section 2.2.2), it is impossible to be completely 

certain that there are no omitted variables biasing the results. Any unobserved covariates 

that are correlated with within-State changes in maximum allowable UI or ABP 

implementation could lead to spurious findings in Chapters 2, 3 and 4.  
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Table 6.2. Estimated odds of participating in any other public program while receiving UI, 

logistic regression, 1962-2012 

Odds ratio 

Received unemployment benefits in 
current year 0.525*** 

(0.00415) 
State FE YES 
Year FE YES 
Constant 0.544*** 
 (0.00555) 

  
Robust Standard Errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Another important limitation is the small set of health variables that I am able to investigate 

using publicly available datasets. Self-reported health outcomes, including those used in 

Chapter 3, 4 and 5 may be subject to reporting biases; the nature of these biases are 

described, for example, in Sections 1.2.1.2, 3.2.1, and 4.3.1. Without the use of vignettes or 

suitable objective health measures, both of which are not included in any of the datasets, it 

is difficult to adjust for this. However datasets that offer more detailed, objective health 

measures often lack corresponding details on employment or UI receipt and vice-versa. I am 

unaware of any large longitudinal dataset in the US containing detailed health and 

employment data. Nevertheless, future research should explore other areas of health, 

particularly more objective measures such as mortality and other longer-term effects. 

Other key variables used in the analyses may also suffer from reporting biases and 

measurement error. For example, data on the cause of job loss (which is used in Chapter 5) 

are self-reported in the PSID. Some survey respondents may misreport their reason for job 

loss, for example if they are embarrassed at being fired. As mentioned throughout this 

thesis, even maximum allowable State UI benefits suffer from some measurement error, 

since they only proxy the actual benefit levels received by the unemployed. 
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One final limitation is the possibility of changes in the composition of the samples studied 

over time. For example, in Chapters 3 and 5 I only use data from heads of households; it is 

possible that in some households, unemployment itself leads to a change in the head of 

household and attrition from the sample. However I do not think that this is a major 

concern given that there are many unemployed observations that remain in the sample. 

Likewise, there could be changes in the composition of the population who is unemployed 

in Chapter 4; however it is difficult to imagine that these changes coincide in any meaningful 

way with ABP implementation or changes in UI generosity at the State level. 

Lastly, I do not distinguish in the studies between individuals according to their length of 

unemployment spell. This is because in general (e.g. in Chapter 4) I am unable to confirm 

the precise timing of job loss. Likewise, in Chapters 3 and 5 I define job loss in terms of 

whether any job loss occurred during the previous year. If there are systematic relationships 

between the length of unemployment and receipt of UI (i.e. Chapter 5), this could bias the 

results. However again, it is hard to imagine how differences across unemployment spells in 

the length of time out of work would co-vary with the generosity of State UI benefits, as 

found in Chapter 3. 

 

6.6 Conclusion 

Increasing evidence suggests that social policies can have unanticipated health effects.  In 

this thesis, I have empirically tested whether unemployment benefit policy and receipt of 

unemployment benefits has an effect on different dimensions of health that are commonly 

associated with job loss. While previous literature suggests that unemployment benefits are 

good for health, the methods I employ in this thesis aim to correct for the potential 

endogenous relationship between unemployment benefits and health, primarily by 

exploiting variations in the design of UI benefit programs across US States.  

I find across different populations (the entire population, the unemployed population likely 

eligible to receive unemployed benefits, and the population who actually receive benefits) 
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that UI programs in the US are associated with better health. UI programs are found to 

reduce suicides, improve self-reported health, and lead to greater participation in physical 

activity. Although I cannot definitively pin down the mechanism at play, the results suggest 

important roles for both income and leisure time. Despite the high costs of UI programs, 

policymakers should consider the potential for health effects when reforming UI programs. 
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