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Abstract

This thesis presents a report on original research, extending a result published

as joint work with Merschen and von Stengel in Electronic Notes in Discrete

Mathematics [4]. We present a polynomial time algorithm for two problems on

labeled Gale strings, a combinatorial structure introduced by Gale [11] that

can be used in the representation of a particular class of games.

These games were used by Savani and von Stengel [25] as an example of

exponential running time for the classical Lemke-Howson algorithm to find a

Nash equilibrium of a bimatrix game [16]. It was therefore conjectured that

solving these games was a complete problem in the class PPAD (Polynomial

Parity Argument, Directed version, see Papadimitriou [24]). In turn, a major

motivation for the definition of PPAD was the study of complementary pivoting

methods, such as the Lemke-Howson algorithm.

Our result, unexpectedly, sets apart this class of games as a case where a

Nash equilibrium can be found in polynomial time. Since Daskalakis, Goldberg

and Papaditrimiou [6] and Chen and Deng [5] proved that finding a Nash

equilibrium in general normal-form games is PPAD-complete, we have a

special class of games, unless PPAD = P.

Our proof exploits two results. As seen in Savani and von Stengel [25] [26],

we represent the Nash equilibria of these special games as Gale strings. We

then give a graph where the perfect matchings correspond to Nash equilibria

via Gale strings, and we exploit Edmonds’ polynomial-time algorithm for a

perfect matching in a graph [7]. The proof given in Casetti, Merschen and

von Stengel [4] covered only the case of even-dimensional Gale strings; here

we extend the result to the general case.

Merschen [19] and Végh and von Stengel [28] expanded on our ideas,

proving further results on the index of Nash equilibria (see Shapley [27]) in the

framework of “oiks” introduced by Edmonds [8] and Edmonds and Sanità [9].
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Chapter 1

Introduction

This thesis centers on a problem in the field of algorithmic game theory, which

concerns the study of strategic interactions from the point of view of computer

science. Our result is an algorithm to find a Nash equilibrium in polynomial

time for games in a special class, called Gale games.

Gale games can be represented through a combinatorial structure called

Gale strings (Gale [11]), using a construction (Savani and von Stengel [25])

on labeled polytopes derived from the game itself (Lemke and Howson [16],

Shapley [27]). This connection was used to construct games for which the

classic Lemke-Howson Algorithm (Lemke and Howson [16]) takes exponential

running time to find a Nash equilibrium (Savani and von Stengel [25]). The

Lemke-Howson Algorithm gives a quite straightforward proof of how finding

a Nash equilibrium of any two-player game is a problem in the class PPAD

(Polynomial Parity Argument, Directed version; Papadimitriou [24]). The

PPAD-completeness of the problem has been proven (Daskalakis, Goldberg

and Papadimitriou [6], Chen and Deng [5]), but the result required the use

of approximate ε-Nash equilibria. We conjectured that the combinatorial

representation of Gale games could be exploited to give an alternative and

purely discrete proof of PPAD-completeness. Eventually, our result turned

out to point in the opposite direction: unless PPAD = P, Gale games are
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indeed a case apart, but because of their tractability, not because of their

hardness.

The remainder of this chapter will cover some basic definitions and notation

that will be used throughout the thesis, concerning polytopes (see Ziegler [32]

for details) in section 1.1, basic game theory (see Myerson [21]) in section

1.2, and computational complexity (see Papadimitriou [23]) in section 1.3.

Chapter 2 will deal with the geometric and combinatorial constructions leading

to the definition of Gale games. In section 2.1 we will see the representation

of Nash equilibria of 2-player games as facets or vertices of polytopes built

from the game itself. In section 2.2 we will define Gale strings and give the

proof of Gale’s theorem, showing the representation of cyclic polytopes as

Gale strings. Section 2.3 will then translate the framework of section 2.1

to the point of view of Gale strings, introducing Gale games. In Chapter 3

we will tackle the computational complexity of the issues arising from the

previous chapter. After an introduction to the complexity classes related to

proofs by parity argument in section 3.1, we will present different versions of

the Lemke-Howson algorithm in section 3.2. Finally, in section 3.3, we will

present our original result, solving Gale games in polynomial time. A last

chapter will relate further results in the field and open problems.

1.1 Vectors and Polytopes

We will often need to refer to sets of natural numbers. We follow the notation

[n] = {i ∈ N | 1 ≤ i ≤ n}.

We denote the transpose of a matrix A as A>. Vectors will be considered

as column vectors, so u>v is the scalar product of u, v ∈ Rd. A vector for

which all components are 0’s will be denoted as 0. A vector for which all

components are 1’s will be denoted as 1. The i-th component of the i-th unit

vector ei is equal to 1, whereas all its other components are 0. An inequality

of the form u ≥ v is intended to hold for every component.
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An affine combination of points in an Euclidean space zi ∈ Rd, where

i ∈ [m], is
∑

i∈[m] λizi where λi ∈ R such that
∑

i∈[m] λi = 1. The points zi

are affinely independent if none of them is an affine combination of the others.

A convex combination of the points zi is such an affine combination with λi ≥ 0

for all i ∈ [m]. The convex hull of a set Z of points is the set of all its convex

combinations. We denote it as conv(Z), so

conv{zi | i ∈ [m]} = {
∑
i

λizi | λi ≥ 0 for i ∈ [m],
∑
i

λi = 1} .

A set of points Z is convex if Z = conv(Z). It has dimension d if it contains

exactly d + 1 affinely independent points. The convex hull of d + 1 points of

dimension d is called a d-simplex. The standard d-simplex is the convex hull

of the first d+ 1 unit vectors, that is, ∆d = conv{ei | i ∈ [d+ 1]}.

A polytope is the convex hull of a finite set of points, not necessarily affinely

independent. Its dimension is its dimension as a convex set. A polyhedron is

the intersection of finitely many closed halfspaces {x ∈ Rd | a>x ≤ a0}.

It can be shown that a bounded polyhedron is a polytope. A vertex of a

d-dimensional polytope P = conv(Z) is a point z ∈ Z that is not the convex

combination of other points in P . An edge of P is a 1-dimensional line segment

that has two vertices as endpoints. A facet of P is a set of dimension d − 1

that is the convex hull of a set of vertices that lie on a hyperplane of the

form {x ∈ Rd | a>x = a0} so that a>u < a0 for all other vertices u of

P . A d-dimensional polytope P is simplicial if it is the convex hull of a set

of at least d + 1 points v ∈ Rd such that no d + 1 of them are on a common

hyperplane. This is equivalent to requiring that every facet of P is a d-simplex.

A d-dimensional polytope P is simple if every point of P lies on at most d

facets. Notice that the points lying on exactly d facets are exactly the vertices.

Consider a polytope P which has 0 in its interior and is given by n inequalities

with normal vectors ci for i ∈ [n] according to

P = {x ∈ Rd | c>i x ≤ 1, i ∈ [n] }.
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Then the polar of the polytope P is denoted by P∆, where

P∆ = conv{ci | i ∈ [n] }.

If P is a polytope and contains the origin 0, the polar of its polar is P itself,

P∆∆ = P . Furthermore, if P is simplicial then P∆ is simple, and vice versa.

For details see Ziegler [32].

1.2 Normal Form Games and Nash Equilibria

The idea of game as model of strategic interaction was first introduced by von

Neumann [29]. A finite normal form game is Γ = (P, S, u) where both P and

S are finite. Here P is the set of players, and S = ×p∈PSp is the set of pure

strategy profiles, where Sp is the set of pure strategies of player p. The aim of

each player p ∈ P is to maximize their payoff function up : S → R. The vector

of payoffs is u = ×p∈Pu
p. By “game” we will always mean “finite normal form

game.” A mixed strategy of player p is a probability distribution on Sp. It can

be described as a point on the (|Sp| − 1)-dimensional mixed strategy simplex

∆p = {x ∈ R|Sp| | x ≥ 0, 1>x = 1}.

The set of mixed strategy profiles is the simplicial polytope ∆ = ×p∈P∆p.

We extend the payoff functions to up : ∆ → R linearly. A Nash equilibrium

of a game is a strategy profile in which each player cannot improve their

expected payoff by unilaterally changing their strategy; such a strategy is

called a best response. Notice that applying a positive affine transformation to

all the payoffs does not change the Nash equilibria of the game. The following

“best-response condition” is useful and easy to show (e.g., Nash [22]).

Proposition 1.1. A mixed strategy x ∈ ∆p is a best response against some

mixed strategy profile y ∈ ×q 6=p∆
q of the other players if and only if every pure

strategy si ∈ Sp chosen with positive probability in x is a best response to y.
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The existence of a Nash equilibrium is guaranteed by the fundamental

theorem by Nash ([22]). Notice that there can be more than one equilibrium.

Theorem 1. (Nash [22]) Every finite game in normal form has at least one

Nash equilibrium.

Bimatrix games are games with only two players. They can be described

by two m × n payoff matrices A and B, where aij and bij are the payoffs

of respectively player 1 and of player 2 when the former plays her ith pure

strategy and the latter plays his jth pure strategy, and m = |S1| and n = |S2|.

A bimatrix game is zero-sum if B = −A, and symmetric if B = A>. We

give two classic examples of bimatrix games: the prisoners’ dilemma and the

coordination game.

Example 1.1. In the symmetric non zero-sum prisoners’ dilemma of Table 1.1,

each player must decide whether to “help” the other one or to “betray” them.

If both players help each other, they will get a small reward. If both betray,

they will pay a small penalty. If one betrays and the other cooperate the

former will get a large reward and the latter will pay a large penalty. The only

equilibrium is the profile in which both players betray. If player 2 betrays, the

best response of player 1 is to betray, since it gives her payoff 1 instead of 0.

If player 2 helps, her payoff for betraying is 3 and her payoff for helping is 2,

so betraying is again the best response. The same holds for player 2, so at the

equilibrium both players will betray.

@
@
1

2

betray

help

betray help

1 3

1 0

0 2

3 2

Table 1.1 The prisoners’ dilemma.
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Table 1.2 shows a coordination game. Both players can drive on either a

mountain or a valley road. They lose if they drive on the same road and win if

they avoid each other, regardless of which road they take. The pure strategy

Nash equilibria are (mountain, valley) and (valley, mountain). There is also

a symmetric equilibrium in mixed strategies which can be represented as the

vectors of probabilities ((1/2, 1/2), (1/2, 1/2)).

@
@
1

2

mountain

valley

mountain valley

0 1

0 1

1 0

1 0

Table 1.2 A coordination game.

1.3 Computational Problems and Complexity

We base this section on the definitions in Papadimitriou [23], to which we refer

for further details.

A deterministic Turing machine M (we will imply the “deterministic”

from now on) is a representation of an algorithm that takes an input, runs a

algorithm manipulating the input on a tape, and returns an output when it

comes to a halting state (if it ever does).

The tape and its manipulation can be seen as follows: initially the tape

contains the input, given by a first symbol B followed by a finite string of

symbols x ∈ (Σ \ {t})∗, where Σ is the alphabet of symbols of M and t is

a special symbol representing the blank string. The program is then carried

on: a cursor starts at the first symbol and follows the algorithm given by

a transition function δ. The transition function depends on the current state

p ∈ K and the current symbol σ ∈ Σ: the former is the “instruction” to follow,

14



the latter the symbol in the position of the cursor. The transition function

returns the next state q ∈ K, the symbol τ ∈ Σ to be written at the position

of the cursor, and a direction in which the cursor will move on the tape. The

possible directions are “left”, “right”, or “stay”, represented respectively by

←,→,−. The first symbol is never overwritten, and from there the cursor can

only go left.

In some cases, the machine reaches the state Yes (the machine accepts the

input), No (the machine rejects the input) or the halting state h after a finite

amount of time. The output is then given by M(x) = Yes or M(x) = No if

the machine accepts or rejects the input. If the halting state h is reached, the

output is M(x) = y, where y is the finite (possibly empty) string of symbols

that is left on the tape after the symbol B and before any string of t’s at the

end. It is also possible that the machine doesn’t halt on input x; we denote

this case as M(x) =↗.

A problem P that requires an output that is either “Yes” or “No” is

a decision problem; its complement is the problem P that outputs “No” for

each instance of P that outputs “Yes”, and vice versa. A problem where the

output can be a string M(x) = y on the output tape as above is a function

problem; note that no guarantee on the halting state is required. If the output

is a string M(x) = y satisfying a relation R(x, y) or the input is rejected if

it is not possible to find any such string, the problem is a search problem. A

search problem where the input is never rejected is a total function problem.

By Theorem 1, the problem n-Nash of Table 1.3 is a total function problem.

n-Nash

input : A n-player game.

output: A Nash equilibrium of the game.

Table 1.3 The problem n-Nash.
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Formally, a Turing machine isM = (K,Σ, δ, s), where K and Σ are finite,

Σ ∩ K = ∅ and Σ always contains the symbols t and B. The transition

function is δ, defined as follows, where {←,→,−} * (K ∪ Σ):

δ : K × Σ −→ (K ∪ {h, Yes, No})× Σ× {←,→,−}.

A slightly different, although equivalent, model allows for multiple strings:

k ∈ N cursors move on k strings σi ∈ Σ∗; the states are still represented as

p ∈ K. The input is given in the tape of the first string; assuming the machine

halts, the output is given in the tape of the k-th string.

A language is a set of strings of symbols L ⊆ (Σ \ {t})∗; a class is a

set of languages. Let M be a Turing machine, and let x ∈ (Σ \ {t})∗. We

say that M decides L if either M(x) = Yes if x ∈ L or M(x) = No if

x /∈ L. A Turing machine M accepts L if x ∈ L is a necessary and sufficient

condition for M(x) = Yes, and if x /∈ L then M(x) = No or M does not

halt. Finally, M computes a function f : (Σ \ {t})∗ → Σ∗ if M(x) = f(x) for

every x ∈ (Σ \ {t})∗.

Let P1 be a problem and let x be an instance of P1 that is encoded in |x|

bits. P1 reduces to the problem P2 in polynomial time if there exists a function

f : {0, 1}∗ → {0, 1}∗, a Turing machine M, and a polynomial p such that for

all x ∈ {0, 1}∗

1. x ∈ P1 ⇐⇒ f(x) ∈ P2;

2. M computes f(x);

3. M stops after p(|x|) steps.

For any class C of decision problems, the class of all complements of the

problems in C is the complement class co− C. A problem P is hard for a class

C if every problem in C is polynomial-time reducible to P ; that is, if P is at

least as hard to solve as every problem in C. A complete problem for the class

C is a C−hard problem that is also in C. Intuitively, if P1 is polynomial-time
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reducible to P2, it takes polynomial time to “translate” P1 to P2, and then to

“translate back” a solution of P2 as a solution of P1. This is particularly useful

if P2 is hard: then the problem P1 is at least as “difficult”. Furthermore, if the

problem P2 is also complete in a class C, it can be used as a test of belonging

to the class C.

The complexity class P (polynomial-time) contains all the polynomially

decidable problems, that is, all problems P such that there exists a Turing

machine M that outputs either Yes or No for all inputs x ∈ {0, 1}∗ of P

after p(|x|) steps, where p is a polynomial. A problem P belongs to the class

NP (non-deterministic polynomial-time) if there exists a Turing machine M

and polynomials p1, p2 such that

1. for all x ∈ P there exists a certificate y ∈ {0, 1}∗ such that |y| ≤ p1(|x|);

2. M accepts the combined input xy, stopping after at most p2(|x| + |y|)

steps;

3. for all x /∈ P there does not exist y ∈ {0, 1}∗ such that M accepts the

combined input xy.

An equivalent definition gives NP as the class of all languages L for which the

binary relation R(x, y) such that L = {x | R(x, y) holds for some y} satisfies

the following conditions:

1. (polynomially balanced) if (x, y) ∈ R then |y| ≤ |x|k for some k ∈ N;

2. (polynomially decidable) if there is a Turing machine that decides L in

polynomial time.

Informally, a decision problem is in P if the answer to its question can be

found in a number of steps that is polynomial in the input of the problem,

and a decision problem is in NP if it takes polynomial time to verify whether

the “certificate” y is, indeed, a correct answer to the question posed by the

problem. Notice that there may be many different certificates for each instance
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of a problem. Consider for instance the NP problem Hamilton Path, defined

as “given an input graph x, is it possible to find a Hamiltonian path y of x?”

There are graphs with more than one possible Hamiltonian path, and each

one of these can be used as certificate.

It is quite simple to see that P ⊆ NP, but it is an important open problem

whether the inclusion is strict. If this were not the case, it could be argued

that there isn’t any substantial difference between finding a solution and

verifying its validity. This seems to contradict most of the human intellectual

experience, where the value of an “original” discovery is perceived as fundamental;

the “conventional” view is therefore that P 6= NP. Another open problem

is whether NP = co−NP; again, this is widely believed to be false. Notice

that if NP 6= co−NP then also P ( NP, but not vice versa.

The classes FP and FNP are analogous to P and NP, respectively, but

for function problems instead of decision problems. Formally, FNP (function

non-deterministic polynomial-time) is defined in Megiddo and Papadimitriou

[18] as the class of problems of the form “given an x ∈ Σ∗, find y ∈ Σ∗ such

that (x, y) ∈ R, where R is a polynomially balanced binary relation, or reject

the input.” FP (function polynomial-time) is the class of all FNP problems

that can be solved in polynomial time. As in the case of decision problems,

it is not known whether FP = FNP; the question is actually equivalent to

whether P = NP. Megiddo and Papadimitriou [18] also define the class

TFNP (total function non-deterministic polynomial-time) as the class of all

FNP problems where for every x ∈ Σ∗ a solution y ∈ Σ∗ is guaranteed to exist.

From another point of view, TFNP = F(NP ∩ co−NP), and the existence

of a TFNP-complete problem would imply that NP = co−NP. The lack of

TFNP-complete problems has led to define a number of new classes; we will

see more of this in section 3.1.

The class #P is the class of all function problems that output the number

of possible certificates for a decision problem in NP. Formally: the counting
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problem associated with a binary relation Q(x, y) is “given x, how many y are

there such that (x, y) ∈ Q?” Then #P is the class of all counting problems

associated with binary relations that are both polynomially balanced and

polynomially decidable. It is interesting to notice that there are #P-complete

problems for which the corresponding search problem can be solved in polynomial

time. An example close to the topic of this thesis is given in Brightwell [2]:

although finding an Eulerian circuit in an undirected graph takes polynomial

time, counting the number of possible circuits in the same graph is complete

in #P.

Finally, the class PSPACE is the set of decision problems that can be

solved by a Turing machine using an amount of tape space that is polynomial

in the size of the input; although it can be proven that NP ⊆ PSPACE, the

possibility of an identity is yet another open problem.
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Chapter 2

Labels, Polytopes and Gale

Strings

In the remainder of this thesis we focus on bimatrix games. We identify the

game with its payoff matrices (A,B), and we assume that both A and B are

non-negative, and that neither A nor B> has a zero column; this can be done

without loss of generality, by adding a constant to all entries in A and B if

necessary.

We start by showing a construction to represent a bimatrix game as two

simplices subdivided in labeled regions such that the Nash equilibria of the

game correspond to “completely labeled” points of the simplices. This idea

is due to Lemke and Howson [16]. As in Balthasar [1] and Savani and von

Stengel [26], that together with Savani and von Stengel [25] constitute the

main source of material for this chapter as a whole, we follow the very clear

approach given by Shapley [27].

From labeled regions we then move on to an equivalent formulation in

terms of “best response” polytopes; a result by McLennan and Tourky [17] on

a special case of games, called imitation games, and its extension to the more

general unit vector games, due to Balthasar [1] and Savani and von Stengel

[26], allows us to simplify this construction. The problem 2-Nash can then
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be reduced to a problem on the facets or vertices of a labeled polytope, under

some simple conditions.

Finally, we further restrict our scope to Gale games, that is, unit vector

games for which the polytopes in the previous section can be represented by

a combinatorial structure called Gale strings. In the second section of this

chapter we define Gale strings and we study how they correspond to a special

case of polytopes, called cyclic polytopes, as proven by Gale [11]. The third

and last section will combine the results of the previous ones with a definition

of labeling for Gale strings; this will lead to a reduction from the problem of

finding a Nash equilibrium of a Gale game to the problem of finding a complete

labeling for a Gale string.

2.1 Bimatrix Games and Labels

Let (A,B) be bimatrix game, and let X = ∆1 and Y = ∆2 be the mixed

strategy simplices of player 1 and 2, respectively, that is,

X = {x ∈ Rm | x ≥ 0, 1>x = 1},

Y = { y ∈ Rn | y ≥ 0, 1>y = 1}.
(2.1)

A labeling of the sets X and Y assigns to each x ∈ X and y ∈ Y a set of labels,

which is a subset of [m+ n], as follows:

1. the m pure strategies of player 1 are denoted as i ∈ [m];

2. the n pure strategies of player 2 are denoted as m+ j with j ∈ [n];

3. each mixed strategy x ∈ X of player 1 has

• label i for each i ∈ [m] such that xi = 0,

• label m + j for each j ∈ [n] such that the j-th pure strategy of

player 2 is a best response to x;
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4. each mixed strategy y ∈ Y of player 2 has

• label m+ j for each j ∈ [n] such that yj = 0,

• label i for each i ∈ [m] such that the i-th pure strategy of player 1

is a best response to y.

This labeling can be used to characterize the Nash equilibria of the game: A

pair (x, y) is called completely labeled if each possible label in [m+n] is a label

of x or of y.

Theorem 2. (Shapley [27]) Let (x, y) ∈ X × Y . Then (x, y) is a Nash

equilibrium of the bimatrix game (A,B) if and only if (x, y) is completely

labeled.

Proof. The mixed strategy x ∈ X has label m+ j for some j ∈ [n] if and only

if the j-th pure strategy of player 2 is a best response to x. By Proposition

1.1, this is a necessary and sufficient condition for player 2 to play his j-th

strategy at every equilibrium where player 1 chooses x. The analogous holds

for the strategies y ∈ Y and player 1 playing her i-th strategy in response

to player 2 choosing y. Therefore, at an equilibrium (x, y) all labels m + j,

with j ∈ [n], appear either as labels of x or of y. Conversely, if (x, y) is not

completely labeled, then some label does not appear as a label of x or y. This

label represents a pure strategy that is played with positive probability but is

not a best response, which contradicts the equilibrium property.

A useful graphical representation of labels on the simplices X and Y is

done by labeling the outside of each simplex according to the player’s own

pure strategies that are not played, and by subdividing its interior into closed

polyhedral sets, called best response regions, that correspond to the other

player’s pure best responses. We give an example of this construction.
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Example 2.1. (Savani and von Stengel [26]) Consider the 3 × 3 game (A,B)

with

A =


1 0 0

0 1 0

0 0 1

 , B =


0 2 4

3 2 0

0 2 0

 . (2.2)

Figure 2.1 shows the mixed strategy simplices X and Y : the exterior facets

are labeled with the pure strategy that is played at the opposite vertex of the

simplex. The interior is covered by the best response regions, labeled by the

other player’s pure best response strategies. For example, the best-response

region in Y with label 1 is the set of all the (y1, y2, y3) ∈ R3 such that y1 ≥ y2

and y1 ≥ y3. There is only one pair (x, y) that is completely labeled, namely

x = (1
3 ,

2
3 , 0) with labels 3, 4, 5, and y = (1

2 ,
1
2 , 0) with labels 1, 2, 6. This is the

only Nash equilibrium of the game.

6
4

5

2 1

3(1,0,0) (0,1,0)

(0,0,1)

x

3

1 2

6

4

5

(1,0,0) (0,1,0)

(0,0,1)

y

Figure 2.1 The labeled best response regions of the mixed strategy simplices of

player 1 (left) and player 2 (right) in game (2.2).

The representation of a game and its Nash equilibria in terms of best

response regions can be translated to an equivalent construction on polytopes.

The first step is to notice that the best-response regions can be obtained as

projections on X and Y of the best-response facets of the polyhedra

P = {(x, v) ∈ X × R | B>x ≤ 1v},

Q = {(y, u) ∈ Y × R | Ay ≤ 1u}.
(2.3)
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In P , these facets are the points (x, v) ∈ X × R such that (B>x)j = v, which

in turn correspond to the strategies x ∈ X of player 1 that give exactly payoff

v to player 2 when he plays strategy j; this payoff is the best-response payoff

by the definition of P . The projection of the facet defined by (B>x)j = v to X

then has label j. Analogously, the facet of Q given by the points (y, u) ∈ Y ×R

such that (Ay)i = u projects to the best-response region of Y with label i.

Example 2.2. (Savani and von Stengel [26]) In Example 2.1, the inequalities

B>x ≤ 1v are

3x2 ≤ v

2x1 + 2x2 + 2x3 ≤ v

4x1 ≤ v.

Figure 2.2 shows the best-response facets of P and their projection to X by

ignoring the payoff variable v, which gives the subdivision ofX into best-response

regions of Figure 2.1.

(0,0,1)

(1,0,0) (0,1,0)

v

5

61

0

2

3

4 4

3

2

1

0

0

2

3

4

1

4

Figure 2.2 The best response polyhedron of player 1 in game (2.2).

Given the assumptions on non-negativity of A and B>, we can change

coordinates to xi/v and yj/u and replace P and Q with the best-response

polytopes

P = {x ∈ Rm | x ≥ 0, B>x ≤ 1},

Q = { y ∈ Rn | Ay ≤ 1, y ≥ 0}.
(2.4)

In (2.4), both P and Q are defined by m+ n inequalities that correspond, in

the listed order, to the pure strategies of the two players with labels in [m+n].
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The polytope P is the intersection of the m + n half-spaces that correspond

to either player 1 not playing her i-th pure strategy or to a best response j

of player 2, where i ∈ [m] and j ∈ [n]. The analogous statement holds for Q.

Formally, a point x ∈ P has label k if and only if either xk = 0 for k ∈ [m] or

(B>x)j = 1 for k = m + j with j ∈ [n], and a point in Q has label k if and

only if either (Ay)k = 1 for k ∈ [m] or yj = 0 for k = m+ j with j ∈ [n].

Hence, a point (x, y) ∈ P ×Q is completely labeled if and only if it satisfies

the complementarity condition that states that for all i ∈ [m] and all j ∈ [n],

xi = 0 or (Ay)i = 1 ,

yj = 0 or (B>x)j = 1 .
(2.5)

Therefore, if (x, y) ∈ P × Q is completely labeled either the corresponding

point in P ×Q is a Nash equilibrium or (x, y) = (0,0); we refer to the latter

case as artificial equilibrium.

Example 2.3. (Savani and von Stengel [26]) Keeping on with Example 2.1 and

2.2, the best response polyhedron P of Figure 2.2 becomes the best response

polytope of Figure 2.3. Notice that the vertex (x, y) = (0,0) is completely

labeled, since it is labeled by the labels 1, 2, 3 in P and 4, 5, 6 in Q.

(0,0,0)

1x 2x

3x

5

6

4

Figure 2.3 The best response polytope of player 1 in game (2.2).
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We now consider some special cases of games and how they are related to

each other in terms of computational complexity. First of all, we note that any

bimatrix game can be “symmetrized”. This result is due to Gale, Kuhn and

Tucker [12] for zero-sum games, while its extension to non-zero-sum games is

a folklore result.

Proposition 2.1. Let (A,B) be a bimatrix game and let (x, y) be one of its

Nash equilibria. Then (z, z), where z = (xα, yβ) for suitable positive scalars

α and β, is a Nash equilibrium of the symmetric game (C,C>), where

C =

 0 A

B> 0

 . (2.6)

McLennan and Tourky [17] have proven a result in the opposite direction

of Proposition 2.1: any symmetric game can be translated into a imitiation

game, where the payoff matrix of player 1 is the identity matrix I. In any Nash

equilibrium of (I,B), the mixed strategy x of player 1 corresponds exactly

to the symmetric equilibrium (x, x) in the symmetric game defined by the

payoff matrix of player 2. Since it takes polynomial time in the size of a

matrix to calculate its transpose, an algorithm that finds a Nash equilibrium

of a bimatrix game can be used to find a symmetric Nash equilibrium of a

symmetric game.

Theorem 3. (McLennan and Tourky [17]) The pair (x, x) is a symmetric

Nash equilibrium of the symmetric bimatrix game (C,C>) if and only if there

is some y such that (x, y) is a Nash equilibrium of the imitation game (I,B)

with B = C>.

Notice that Theorem 3 applies to the symmetric equilibria of the symmetric

game but not to all its Nash equilibria; there could be non-symmetric equilibria

of (C,C>) that are not found through the imitation game, as shown in the

following example.
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Example 2.4. (Savani and von Stengel [26]) As an example, consider the

symmetric game (C,C>) with

C =


0 3 0

2 2 2

4 0 0

 , C> =


0 2 4

3 2 0

0 2 0

 . (2.7)

The corresponding imitation game is (I, C>) = (A,B), seen in Example

2.1. Figure 2.4 shows the labeled mixed-strategy simplices X and Y for the

game (2.7); since the game is symmetric, only the labels are different. In

addition to the symmetric equilibrium (x, x) where x = (1
3 ,

2
3 , 0), the game

has two non-symmetric equilibria in (a, b) and (b, a) with a = (1
2 ,

1
2 , 0) and

b = (0, 2
3 ,

1
3). The imitation game (A,B), on the other hand, has only one

equilibrium (x, y), corresponding to (x, x), with y = (1
2 ,

1
2 , 0).

6
4

5

2 1

3(1,0,0) (0,1,0)

(0,0,1)

x

3

6

1

2

5 4

(1,0,0) (0,1,0)

(0,0,1)

x

b

a

Figure 2.4 The best response regions of the symmetric game (2.7).

The characterization of Nash equilibria as completely labeled pairs (x, y)

holds for arbitrary bimatrix games. From now on, we impose a further condition:

all points in P have at most m labels, and all points in Q have at most n

labels. These games are called nondegenerate. This condition is required for

the Lemke-Howson algorithm (see section 3.2). The algorithm can also be

applied to degenerate games by lexicographic perturbation, as shown in von

Stengel [30]. In an equilibrium (x, y) of a nondegenerate game each label

appears exactly once. This also means that the number of pure best response
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strategies against a mixed strategy is never larger than the size of the support

of that mixed strategy. Geometrically, this means that no point of the best

response polytope P lies on more than m facets and no point of the best

response polytope Q lies on more than n facets, so both P and Q are simple.

Furthermore, a point of P has exactly m labels if and only if it is a vertex,

and a point of Q has exactly n labels if and only if it is a vertex. Therefore,

all completely labeled points (x, y) are vertices of the best response polytopes,

and Nash equilibria are isolated points.

Example 2.5. (Savani and von Stengel [26]) An example of degenerate game

is given by (C,C>) with

C =


0 4 0

2 2 2

4 0 0

 , C> =


0 2 4

4 2 0

0 2 0

 . (2.8)

As shown in Figure 2.5, the mixed strategy x = (1
2 ,

1
2 , 0), that also defines

the unique symmetric equilibrium (x, x) of the game, has three pure best

responses. The Nash equilibria (x, y) of the imitation game (I, C>) are not

unique, since any convex combination of (1
2 ,

1
2 , 0) and (1

3 ,
1
3 ,

1
3) can be chosen

for y.

1

3

3

12

2

(0,0,1)

(1,0,0) (0,1,0)x

3

1 2

4

5

6
(1,0,0) (0,1,0)

(0,0,1)

y

Figure 2.5 Left: The best-response regions of the degenerate symmetric game (2.8).

Right: The best-response regions for player 2 in the corresponding

imitation game (I, C>).
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A generalization of imitation games is the class of unit vector games,

introduced by Balthasar [1]. These are defined as bimatrix games of the form

(U,B) where the columns of the matrix U are unit vectors. By the results

above, finding a Nash equilibrium of a bimatrix game is at least as hard as

finding a Nash equilibrium of a unit vector game. Savani and von Stengel

[26] have shown that the problem of finding a completely labeled vertex of the

product of the best response polytopes P ×Q can be simplified for unit vector

games: it is enough to find a completely labeled vertex of a single polytope

P l, for which the last n facets are labeled following a the labeling in [m] that

also encodes the matrix U .

Theorem 4. (Savani and von Stengel [26]) Let l : [n] → [m] be a function,

and let (U,B) be the unit vector game with U = (el(1) · · · el(n)).

Let Ni = {j ∈ [n] | l(j) = i} for i ∈ [m], and define P l and Ql as

P l = {x ∈ Rm | x ≥ 0, B>x ≤ 1},

Ql = {y ∈ Rn | y ≥ 0,
∑

j∈Ni
yj ≤ 1 for i ∈ [m]}.

(2.9)

Let lf be the labeling of the facets of P l with labels in [m] defined as follows:

xi ≥ 0 has label i for i ∈ [m],

(B>x)j ≤ 1 has label l(j) for j ∈ [n].
(2.10)

Then x ∈ P l is a completely labeled vertex of P l \ {0} (that is, has all labels

in [m]) if and only if there is some y ∈ Ql such that, after scaling, the pair

(x, y) is a Nash equilibrium of (U,B).

Proof. Let P and Q be the best response polytopes of (U,B) as in (2.4), and

let (x, y) ∈ P × Q \ {(0,0)} be a Nash equilibrium of (U,B). Then (x, y) is

completely labeled with labels in [m + n]. If xi = 0, then x has label i ∈ m.

If xi > 0, then y has label i, so (Uy)i = 1. Therefore for some j ∈ [n] we have

yj > 0 and Uj = ei; that is, we have yj > 0 and l(j) = i for some j ∈ [n].

Since yj > 0, x ∈ P has label m + j; then, (B>x)j = 1; therefore x ∈ P l has

label l(j) = i. Hence, x is a completely labeled vertex of P l.
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Conversely, let x ∈ P l \ {0} be completely labeled. If xi > 0, then there is

j ∈ [n] such that (B>x) = j and l(j) = i; that is, j ∈ Ni. For all i ∈ [m] such

that xi > 0, define y as follows: yj = 1, and yh = 0 for all h ∈ Ni \ {j}. Then

(x, y) ∈ P ×Q is completely labeled.

Example 2.6. (Savani and von Stengel [26]) The game in Example 2.1 is a

unit vector game with l(i) = i. In the polytope P l of Figure 2.6 the labels

4, 5 and 6 of the best response polytope P of Figure 2.3 are replaced by 1,

2 and 3, since the corresponding columns of A are the unit vectors e1, e2, e3.

The only completely labeled point of P l are the origin 0, corresponding to the

“artificial” equilibrium, and x, corresponding to the unique Nash equilibrium

of the unit vector game (2.2).

x

0

2

3
11

3

2

Figure 2.6 The polytope P l of the unit vector game (2.2).

We now move on the dual version of Theorem 4 given by Balthasar [1].

We can translate the polytope P l of (2.9) to P = {x − 1 | x ∈ P l}, possibly

multiplying all payoffs in B by a constant so that 0 is in the interior of P ,

which holds if 1 in the interior of P l, that is, all columns bj of the matrix B

fulfill 1>bj < 1, for j ∈ [n]. Then

P = {x+ 1 ≥ 0, (x+ 1)>B ≤ 1} =

= {x ∈ Rm | − xi ≤ 1 for i ∈ [m], x>(bj/(1− 1>bj)) ≤ 1 for j ∈ [n]}.
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The polar of P is then

P∆ = conv({−ei | i ∈ [m]} ∪ {cj | j ∈ [n]}) (2.11)

where cj = bj/(1−1>bj). Since P and P∆ have 0 in their interior, P∆∆ = P .

Furthermore, P∆ is simplicial and its facets correspond to the vertices of P

and vice versa. We label the vertices of P∆ as the corresponding facets in P l,

so the completely labeled facets of P∆ correspond to the completely labeled

vertices of P l. In particular, the facet corresponding to 0 is

F0 = {x ∈ P∆ | −1>x = 1}

= conv{−ei | i ∈ [m]}.
(2.12)

Theorem 4 then translates to the following.

Theorem 5. (Balthasar [1]) Let P∆ be a labeled m-dimensional simplicial

polytope with 0 in its interior and vertices e1, . . . , em, c1, . . . , cn such that F0

in (2.12) is a facet of P∆.

Let (U,B) be a unit vector game, with U = (el(1) · · · el(n)) for a labeling

l : [n]→ [m] and B = [ b1 · · · bn ], where bj = cj/(1 + 1>cj) for j ∈ [n].

Let lv be the labeling of the vertices of P∆ given by

lv(−ei) = i for i ∈ [m],

lv(cj) = l(j) for j ∈ [n].
(2.13)

Then a facet F 6= F0 of P∆ with normal vector v is completely labeled if and

only if (x, y) is a Nash equilibrium of (U,B), where x = (v + 1)/(1>(v + 1)),

so that xi = 0 if and only if ei ∈ F for i ∈ [m] and the mixed strategy y is

the uniform distribution on the set of the pure best replies to x, which in turn

correspond to all j ∈ [n] such that cj is a vertex of F .

Theorem 4 gives a correspondence between completely labeled vertices of

P l and equilibria of the unit vector game (U,B) with the “artificial” equilibrium

corresponding to the vertex 0. Theorem 5 gives a correspondence between
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completely labeled facets of P∆ and equilibria of (U,B) with the “artificial”

equilibrium corresponding to the facet F0 in (2.12).

Given a bimatrix game (A,B), it takes polynomial time to write and solve

the linear equations defining its best response polyhedra P ,Q and its best

response polytopes P,Q. It also takes polynomial time to label P ,Q and

P,Q. Analogously, given a unit vector game (U,B), it takes polynomial time

to construct and label the polytope P l and its polar. Therefore, Theorem 4

gives a polynomial time reduction from the problem 2-Nash to the problem

Another Completely Labeled Vertex of Table 2.1 and Theorem 5 gives

a dual reduction to the problem Another Completely Labeled Facet of

Table 2.2.

Another Completely Labeled Vertex

input : An m-dimensional simple polytope P with m+n facets; a labeling

lf : [m+n]→ [n]; a vertex v0 of P that is completely labeled by lf .

output: A vertex v 6= v0 of P that is completely labeled by lf .

Table 2.1 The problem Another Completely Labeled Vertex.

Another Completely Labeled Facet

input : A simplicial m-dimensional polytope P∆ with m + n vertices; a

labeling lv : [m + n] → [n]; a facet F0 of P∆ that is completely

labeled by lv.

output: A facet F 6= F0 of P∆ that is completely labeled by lv.

Table 2.2 The problem Another Completely Labeled Facet.

Proposition 2.2. 2-Nash reduces in polynomial time to Another Completely

Labeled Vertex and Another Completely Labeled Facet.
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2.2 Cyclic Polytopes and Gale Strings

We now apply the results of the previous section to unit vector games for which

the best response polytope is the dual of a cyclic polytope. These polytopes

are characterized by their representation as a combinatorial structure, called

Gale strings. We will first define cyclic polytopes, then Gale string, then

we will give the theorem by Gale [11] that shows the equivalence of the two

representations.

The moment curve in dimension d is defined as

µd : R −→ Rd µd : t 7−→ (t, t2, . . . , td)>. (2.14)

The cyclic polytope Cd(n) in dimension d with n vertices, where n > d, is

given as the convex hull of any n points on the moment curve, that is, by n

arbitrary reals t1, . . . , tn, where t1 < · · · < tn, according to

Cd(n) = conv{µd(ti) | 1 ≤ i ≤ n} . (2.15)

Example 2.7. Figure 2.7 shows the cyclic polytope in dimension 3 with 6 facets.

Figure 2.7 The cyclic polytope C3(6).

Given k ∈ N and a set S, we can represent the function f : [k] → S as

the string s = s(1)s(2) · · · s(k); we have a bitstring if S = {0, 1}. A maximal

substring of consecutive 1’s in a bitstring is called a run. A run is called even

if its length is even, and odd if its length is odd. We will use the notation
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1k for a run of length k and 0k for a string of 0’s of length k. A Gale string

of length n and dimension d, where n > d, is a bitstring s that satisfies the

following conditions:

1. exactly d bits of s are equal to 1;

2. (Gale Evenness Condition) 01k0 is a substring of s ⇒ k is even.

We denote by G(d, n) be the set of Gale strings of length n and dimension d.

In general, the Gale Evenness Condition allows for Gale strings that start

or end with an odd-length run; if d is even then s can start with an odd run if

and only if it ends with an odd run. When d is even, we can therefore see the

Gale strings in G(d, n) as “loops” obtained by “gluing together” the endpoints

of the strings; on these “loops” all runs are even. Formally, we can see the

bit positions in a Gale string s ∈ G(d, n) with d even as equivalence classes

modulo n.

Example 2.8. As an example for even d, we have

G(4, 6) = {111100,111001,110011,100111, 001111,

011110,110110,101101, 011011}

The strings 111100, 111001, 110011, 100111, 001111 and 011110 are equivalent

under a cyclic shift (if considering the strings as “loops”, the 1’s are all

consecutive), as are the strings 110110, 101101 and 011011 (two runs of

two 1’s separated by a single 0). As an example for odd d, we have

G(3, 5) = {11100,10110,10011,11001, 01101, 00111} .

Notice that because d is odd, a cyclic shift is not allowed: 01011 is a shift of

10110 but it is not a Gale string.

The relation between cyclic polytopes and Gale strings was given by Gale [11].

Theorem 6. (Gale [11]) For any d, n ∈ N, where n > d, a set F is a facet of

Cd(n) if and only if

F = conv{µ(tj) | s(j) = 1 for s ∈ G(d, n)}. (2.16)
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Proof. First, a hyperplane in Rd of the form {x ∈ Rd | a>x = a0} for

some nonzero vector a = (a1, . . . , ad)> can contain at most d points on the

moment curve, because otherwise the polynomial equation with a polynomial

of degree d given by −a0 + a1t + a2t
2 + · · · adtd = 0 would have more than d

roots t. For the same reason, any d points on the moment curve are affinely

independent and define a unique hyperplane through them, which the moment

curve crosses at these points. Notice that if the curve were tangent to the

hyperplane at an intersection, then a slight perturbation of the hyperplane

could contain d+ 1 or d− 1 points on the moment curve.

Let t1 < · · · < td be a choice of d of the tj ’s in the definition (2.15) of Cd(n);

then the intersection of the moment curve and of the hyperplane H through

the points µd(t1), . . . , µd(td) coincides exactly with the points µd(ti). Since

the moment curve crosses the hyperplane at all intersections, if t, t′ /∈ {ti} and

t < ti < t′ for exactly one of the ti’s then µd(t) and µd(t′) are on opposite

sides of H.

A facet F of the cyclic polytope Cd(n) is given by F = H ∩ Cd(n). This

corresponds to a choice of ti’s such that for all the other tk /∈ {ti | i ∈ [d]} in

the definition of Cd(n), the corresponding µd(tk) are on the same side of H.

This can happen only if for every pair of these tk’s the moment curve has an

even number of crossings at µ(ti) of H between them. This is equivalent to

ask that there is an even number of ti’s between any two tk’s.

Let s be the bitstring in which the 1’s correspond to the ti’s and the 0’s

correspond to the other tk’s. Then the condition that the set F in (2.16) is a

facet is equivalent to the Gale Evenness Condition.

Because the moment curve has at most d points on any hyperplane, each

facet of Cd(n) is a d-simplex, so Cd(n) is simplicial and the choice of the tj ’s

in (2.15) is irrelevant for the characterization of the facets of Cd(n) as Gale

strings, as long as t1 < · · · < tn.
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Example 2.9. Consider the facet F of the cyclic polytope C3(6) marked in blue

in Figure 2.8. Let us label the vertices on the moment curve as ti, with i ∈ [n],

and we set s(i) = 1 if ti is a vertex of F and s(i) = 0 otherwise. Figure 2.9

represents the intersection of the moment curve and the hyperplane H in R3

defined by the ti such that s(i) = 1. This shows how the corresponding Gale

string s ∈ G(3, 6) is s = 100110.

Figure 2.8 The facet of the cyclic polytope C3(6) through the points

µ3(t1), µ3(t4), µ3(t5).

H

1 1 10 0 0

Figure 2.9 The facet of the cyclic polytope C3(6) through the points

µ3(t1), µ3(t4), µ3(t5), as in Figure 2.8, seen from the side of the

hyperplane. This corresponds to the Gale string s = 100110 ∈ G(3, 6).
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Example 2.10. Figure 2.10 shows the cyclic polytope C4(6), with the exterior

facet corresponding to the Gale string s = 111100. Figure 2.11 shows the

correspondence between the string s = 111100 and the intersection of the

moment curve and the hyperplane H.

5

6

1
3

2

4

Figure 2.10 The cyclic polytope C4(6). The thin lines represent the edges inside

the exterior facet, in bold lines. Vertex i corresponds to ti.

H

0 01111

Figure 2.11 The facet of the cyclic polytope C4(6) given by the intersection

of the moment curve and the hyperplane H through the points

µ4(t1), µ4(t2), µ4(t3), µ4(t4). This corresponds to the Gale string

s = 111100 ∈ G(4, 6).
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Example 2.11. As a counterexample, consider Figure 2.12. The points t = t3

and t′ = t5 lie on the moment curve, but µ4(t3) and µ4(t5) are on opposite

sides of the hyperplane H defined by the other four points. The corresponding

bitstring is s = 110101, which is not a Gale string. The violation of the Gale

Evenness Condition corresponds to the change of side with respect to the

hyperplane between t and t′.

H

1111 0 0

Figure 2.12 There is a change of side between two µ4(tj)’s (for the 0 bits). The

bitstring s = 1101011 does not satisfy the Gale Evenness Condition,

and the set of µ4(ti)’s (for the 1 bits) does not define a facet of C4(6).

2.3 Gale Games

We now apply Theorem 6 to the study of bimatrix games. By Proposition

2.2, solving 2-Nash can be reduced to Another Completely Labeled

Facet; if the polytope P∆ in Theorem 5 is cyclic, we can exploit Theorem 6

to translate this special case of 2-Nash to a problem on Gale strings.

First of all, we have to define a labeling on Gale strings such that a

completely labeled Gale string corresponds to a completely labeled facet of P∆.

We say that s ∈ G(d, n) is a completely labeled Gale string for some labeling

function ls : [n] → [d] if {ls(i) | s(i) = 1 for i ∈ [n]} = [d]. Since a string

38



in G(d, n) has exacty d bits equal to 1, a Gale string is completely labeled if

and only if for each j ∈ [d] there is exactly one i ∈ [n] such that s(i) = 1 and

ls(i) = j.

Notice that, given a labeling ls : [n] → [d], it may not always be possible

to find a Gale string s ∈ G(d, n) that is completely labeled by ls.

Example 2.12. For ls = 121314, there are no completely labeled Gale strings.

The labels ls(i) = 2, 3, 4 appear only once in ls, so we must have s(2) =

s(4) = s(6) = 1. We also must have ls(i) = 1 for exactly one i = 1, 3, 5. The

candidate strings are then s1 = 110101, s2 = 011101, s3 = 010111, but none

of these satisfies the Gale Evenness Condition.

A Gale game is a unit vector game (U,B) where U = [el(1) · · · el(d)] for some

labeling l : [n] → [d] and for which the dual of the best response polytope is

a cyclic polytope P∆ = conv{e1, . . . , ed, c1, . . . , cn}. We define the problem

Gale Nash as in Table 2.3

Gale Nash

input : A Gale game.

output: A Nash equilibrium of the game.

Table 2.3 The problem Gale Nash.

Theorem 5 gives the labeling (2.13) for the d+ n vertices of P∆ as

lv(−ei) = i for i ∈ [d],

lv(cj) = l(j) for j ∈ [n].

We define the labeling ls : [d+ n]→ [d] of G(d, n) as

ls(i) = i for i ∈ [d],

ls(d+ j) = l(j) for j ∈ [n].
(2.17)

Then the Gale strings s ∈ G(d, d + n) that are completely labeled by ls

correspond exactly to facets of P∆ that are completely labeled by lv, with

the facet F0 corresponding to the “trivial” completely labeled string 1d0n.
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Example 2.13. Given the string of labels ls = 123432, there are four associated

completely labeled Gale strings in G(4, 6): sA = 111100, sB = 110110,

sC = 100111 and sD = 101101. These correspond to the completely labeled

facets for the labeling shown in Figure 2.13 on the left.

A

B

2

C

1
3

4

3

2D

facet 1 2 3 4 3 2

A 1 1 1 1 0 0

B 1 1 0 1 1 0

C 1 0 0 1 1 1

D 1 0 1 1 0 1

Figure 2.13 The cyclic polytope C4(6), where the labeling of the vertices

corresponds to the labeling of G(4, 6) given by ls = 123432.

The completely labeled facets A, B, C and D correspond respectively

to the completely Gale strings sA = 111100, sB = 110110, sC =

100111 and sD = 101101.

From this point forward, we will assume that the labeling ls : [d+n]→ [d]

satisfies ls(i) 6= ls(i+1). This can be done without loss of generality, given the

following consideration. Suppose that ls(i) = ls(i+1) for some index i, and let

s be a completely labeled Gale string for ls. Then only one of s(i) and s(i+ 1)

can be equal to 1 (it is possible that both are equal to 0), so s(i)s(i+ 1) will

never be part of a run of even length that “interferes” with the Gale Evenness

Condition. Therefore, we can identify the indices i and i+ 1.
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We can now define the problem Another Gale as in Table 2.4. For

brevity, we change the notation from d+ n to n.

Another Gale

input : A labeling l : [n] → [d], where d < n. A Gale string s ∈ G(d, n),

completely labeled by l.

output: A Gale string s0 ∈ G(d, n), completely labeled by l, such that

s0 6= s.

Table 2.4 The problem Another Gale.

It takes polynomial time to translate the facets of the cyclic polytope

Cd(d + n) into the corresponding Gale strings in G(d, d + n), following the

proof of Theorem 6. Defining the labeling ls from the labeling lv also takes

polynomial time: for the labels i ∈ [d] it is immediate, for the labels d+j, where

j ∈ [n], we have to check the d×n matrix U of the imitation game. Therefore,

by Proposition 2.2, we have a reduction from Gale Nash to Another Gale.

Proposition 2.3. The problem Gale Nash of Table 2.3 is polynomial-time

reducible to the problem Another Gale of Table 2.4.

Proposition 2.3 can be improved: it is enough to consider the case where

d is even.

Proposition 2.4. The problem Another Gale of Table 2.4 is reducible to

the case where d is even.

Proof. Consider an instance of the problem Another Gale with d odd.

Let s′0 ∈ G(d+ 1, n+ 1) be the string defined as

s′0(i) = s0(i) for i ∈ [n],

s′0(n+ 1) = 1.

This is indeed a Gale string. It is trivial to see that there are exactly d+1 bits

equal to 1; furthermore, since s0 is a Gale string, the Gale Evenness Condition

41



holds in all the interior runs of s′0. Let now l′ : [n+1]→ [d+1] be the labeling

defined as

l′(i) = l(i) for i ∈ [n],

l′(n+ 1) = d+ 1.
(2.18)

Notice that s′0 is completely labeled by l′, since for every for each j ∈ [d] there

is exactly one i ∈ [n] such that s′0(i) = s0(i) = 1 and ls(i) = j, and the only

occurrence of the label d+ 1 is at index n+ 1, where s′0(n+ 1) = 1.

Let s′ be any bitstring of length n+ 1 such that s′(n+ 1) = 1, and let s be

the bitstring of length n such that s(i) = s′(i) for i ∈ [n]. First of all, notice

that if s′ ∈ G(d + 1, n + 1) then s ∈ G(d, n): it is obtained by removing a

bit that is equal to 1, and the Gale Evenness Condition still holds in all the

interior runs. Furthermore, if s′ is completely labeled for l′, then s′(n+1) = 1,

since the only occurrence of label d+ 1 is at index n+ 1 and for all the other

labels j ∈ [d] there is exactly one i ∈ [n] such that s(i) = 1 and ls(i) = j.

Therefore, a solution for the original instance of Another Gale can be

found by solving the problem Another Gale with input s′0 and l′ and output

s′, then considering the corresponding completely labeled Gale string s ∈

G(d, n) defined as above.
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Chapter 3

Algorithmic and Complexity

Results

In the previous chapter we have defined some problems of the form “find

another completely labeled” vertex, facet or Gale string; in this chapter we

finally study the complexity of these problems. A solution of Another

Completely Labeled Vertex is given by the classic algorithm first

introduced by Lemke and Howson [16]. In turn, the Lemke-Howson algorithm

prompted the definition of the classes PPAD and PPA by Papadimitriou [24];

the definition of these classes is given in the first section of this chapter.

The Lemke-Howson algorithm can be used to prove that the “another

completely labeled” problems are in the complexity class PPAD. It is

interesting to notice that all this proof can be seen as ultimately relying on

Shapley’s [27] work discussed in the previous chapter, see Savani and von

Stengel [25], Merschen [19], and Végh and von Stengel [28]. In the second

section we relate the different versions of the Lemke-Howson algorithm and

the consequent proof that the “another completely labeled” problems are in

the class PPA. We first use it to solve Another Completely Labeled

Vertex, and therefore 2-Nash, its original motivation. The version for

Another Completely Labeled Vertex follows immediately by a duality
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argument. Finally, we focus on Another Gale and give the full proof that

it belongs to the PPAD complexity class, following the clear exposition in

Merschen [19]. We close the section with an example of a labeling, due to

Morris [20], for which the Lemke-Howson-Gale Algorithm has exponential

running time. This is the labeling that Savani and von Stengel [25] have

used to construct “hard to solve” games.

The third and last section presents our original result: a polynomial time

algorithm for Another Gale, that is, a proof that Gale Nash is in FP.

Unless PPAD = P, this goes in the opposite direction of our first conjecture

of PPAD-completeness suggested by the “hard to solve” games by Savani

and von Stengel [25]. Our proof relies on a theorem by Edmonds [7] that gives

a polynomial-time algorithm to find a perfect matching of a graph or decide

that it is not possible to find one. The key of the proof is the construction of

a graph from any string of labels such that the perfect matchings of the graph

correspond to the completely labeled Gale strings for the labels. We first prove

the FP complexity of finding one of these completely labeled Gale strings, then

we extend the proof to find the second string required by Another Gale.

3.1 Polynomial Parity Argument

As mentioned in section 1.3, Megiddo and Papadimitriou [18] have proved that,

unless NP = co−NP, the class TFNP (total function non-deterministic

polynomial-time) does not have complete problems. To circumvent this

limitation, Papadimitriou [24] focused on the argument that proves that a

problem in TFNP has indeed a solution. To study this he introduced, among

others, the classes PPA (Polynomial Parity Argument) and PPAD

(Polynomial Parity Argument, Directed version).

The existence of a solution for a problem in PPA can be proved using the

argument “in any undirected graph with one odd-degree node there must be

another odd-degree node.” Similarly, problems in PPAD are guaranteed to
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have a solution by a proof employing the argument “in any directed graph in

which all vertices have indegree and outdegree at most one and there is a source

(a node with indegree zero) there must be a sink (a node with outdegree zero).”

Formally: a polynomial-sized circuit with n input bits and m output bits is a

function C : {0, 1}n → {0, 1}m that can be represented with polynomially

many standard “logic gates”. We define PPAD as the class of problems

reducible to the problem End Of The Line, see Table 3.1. This is the

definition given in Daskalakis, Goldberg and Papadimitriou [6]; the original

definition in Papadimitriou [24] is given in terms of polynomial-time Turing

machines instead of polynomial-sized circuits.

End Of The Line

input : Two polynomial-sized circuits S and P with n input bits and n

output bits such that P (0n) = 0n 6= S(0n).

output: An input x ∈ {0, 1}n such that P (S(x)) 6= x or S(P (x)) 6= x 6= 0n

Table 3.1 The problem End Of The Line.

The problems in PPAD can be seen as a circuit S (“successor”), and a

circuit P (“predecessor”) that are used to construct a directed graph with

an edge (x, y) if and only if S(x) = y and P (y) = x. Furthermore, the

graph is guaranteed to have a standard source 0n, which is also given in the

input; this guarantees the existence of the output, which is either a sink or a

non-standard source. Figure 3.1 presents an example of a graph implicit in a

PPAD problem.
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cycle

isolated 
point

path
sink

standard 
source

source
S(x)

P(x) x = P(S(x))

x = S(P(x))

Figure 3.1 A PPAD problem as a directed graph with maximal indegree and

outdegree 1.

The input is given by the circuits S (in green) and P (in red) and the

standard source (the yellow node). These circuits are used to define

paths (in black), cycles (in blue) and isolated points (in purple).

The output can be either a sink (a red node) or a nonstandard source

(a green node).

A graph for a PPA problem is analogous to Figure 3.1, but it is

undirected and instead of sources and sinks there are generic endpoints.

Another class relying on proofs by parity argument is PPADS, defined by

Daskalakis, Goldberg and Papadimitriou [6]; its definition is analogous to

PPAD, but the output of the problem is required to be a sink of the End Of
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The Line graph. We have that PPADS ⊆ PPAD ⊆ PPA; it is an open

problem whether the inclusion is strict.

As we have already noticed, the problem n-Nash, see Table 1.3, is a

total function problem. Papadimitriou [24] proved that it belongs to TFNP.

Daskalakis, Goldberg and Papadimitriou [6] and Chen and Deng [5] have later

proven its PPAD-completeness, the former for n ≥ 3 and the latter for n ≥ 2.

A small amendment of the proof in [6] can be found in Casetti [3].

Theorem 7. (Daskalakis, Goldberg and Papadimitriou [6]; Chen and

Deng [5]) For n ≥ 2, the problem n-Nash is PPAD-complete.

3.2 The Lemke-Howson Algorithm

Theorem 7 suggests that the study of solutions of n-Nash as endpoints of

paths can yield interesting results about the complexity of the problem itself.

In this section we will study an algorithm that describes exactly this idea.

Let P be a simple d-polytope with n facets. We pivot on the vertices

of P by moving from a vertex x to another vertex y connected to x by an

edge, see Figure 3.2. Note that, since P is simple, there are exactly d possible

choices for y. Analogously, we pivot on the facets of a simplicial polytope P∆

in dimension d by moving from a facet F to a facet G that shares all vertices

but one with F , see Figure 3.3. As above, since P∆ is simplicial, there are d

possible choices for G.
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Figure 3.2 A pivot from vertex x to vertex y on the edge of a cube.

G

p
ivot

F

v2v1

x

x’

F2F1

Figure 3.3 A pivot from facet F of an octahedron to facet G.
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Suppose now that there is a labeling lf : [n]→ [d] of the facets of the simple

polytope P . If we pivot from vertex x to vertex x′ we “leave behind” a facet F

with label k to which x belongs, but x′ does not. At the same time, we “reach”

a facet F ′ with label h, to which x does not belong, but x′ does. Therefore, if x

has labels (l1, . . . , k, . . . , ld), then x′ has labels (l1, . . . , h, . . . , ld). We call this

dropping label k and picking up label h, or pivoting on label k; see Figure 3.4.

Analogously, if there is a labeling lv : [n]→ [d] of the vertices of the simplicial

poytope P∆ and we pivot from a facet F with labels (l1, . . . , k, . . . , ld) to a

facet F ′ with labels (l1, . . . , h, . . . , ld), we say that we drop label k and pick up

label h, or that we pivot on label k; see Figure 3.5.

k

h

(l1 ,l2, h)

l2l1

(l1 ,l2, k)

Figure 3.4 A pivot on label k: drop vertex x with labels (l1, l2, k) and pick up

vertex x′ with labels (l1, l2, h).
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l2l1

k

h

(l1,l2,h)

(l1,l2,k)

Figure 3.5 A pivot on label k: drop a facet with labels (l1, l2, k) and pick up a

facet with labels (l1, l2, h).

Consider a labeling function l : [n]→ [d], and a subset S of [n] with |S| = d.

Then S is called almost completely labeled if

l(S) = { l(s) | s ∈ S} = [d] \ {k} (3.1)

that is, all labels appear once in S except for one missing label k ∈ [d]. Since

|S| = d, in that case there is one duplicate label h ∈ [d] that appears twice

in S.

Let S be the set of labels of a vertex in a simple polytope, or the set of labels

of a facet in a simplicial polytope. We call this vertex (or, respectively, facet)

almost completely labeled vertex (or facet) if it is almost completely labeled by

S with respect to the labeling of the facets (or, respectively, vertices) of the

polytope. It is easy to see that if we pivot from an almost completely labeled

vertex (or facet) on the duplicate label, or from a completely labeled vertex

(or facet) on any label, this becomes the missing label k, and we reach either

an almost completely labeled or a completely labeled vertex (or facet).
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The algorithm by Lemke and Howson [16] finds one Nash equilibrium of a

bimatrix game. In a modern description (e.g., Savani and von Stengel [25]),

it employs pivoting on the vertices of a simple polytope, moving through a

succession of almost completely labeled vertices with missing label k, where

this polytope is the product P × Q of the best-response polytopes. This

can be abstracted slightly further by considering only a single polytope P

in dimension d with facets labels from [d]. Algorithm 1 gives this latter

version; for simplicity of notation, we will call it Lemke-Howson Algorithm.

Algorithm 1 also computes a “Lemke path”, in the terminology of Morris [20];

this, in turn, can be used to prove some fundamental properties of both the

Lemke-Howson Algorithm and the Nash equilibria of a bimatrix game.

Algorithm 1: Lemke-Howson

input : A simple d-polytope P with n facets and a labeling

lf : [n]→ [d] of the facets of P . A vertex x0 of P that is

completely labeled by lf .

output: A vertex x 6= x0 of P that is completely labeled by lf .

1 choose any label k ∈ [d] as missing label

2 pivot on label k from x0 to x reaching a new facet with label h

3 while h 6= k, so x is not completely labeled do

4 pivot away from the other facet with label h from x to x′

5 let h be the label of the new facet of x′

6 set x = x′

7 return x

Proposition 3.1. The Lemke-Howson Algorithm 1 returns a solution to the

PPA problem Another Completely Labeled Vertex. Furthermore, the

number of completely labeled vertices in a simple polytope with labeled facets

is even.
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Proof. We first show that the Lemke-Howson Algorithm works. From the

completely labeled vertex x0, there is a unique edge that leaves the facet with

label k which leads to a new vertex x, as in step 2 of the algorithm. If x

is completely labeled, then the algorithm terminates with output x, and it

is trivial to see that x 6= x0. Otherwise, x is an almost completely labeled

vertex with duplicate label h, where one of the facets that contain x and have

label h is a “new” facet that did not contain the preceding vertex on the Lemke

path. Since S is simple, x is always on exactly d facets and the duplicate label

is unique. Hence no vertex, including x0, can ever be re-visited on the path

because it would otherwise offer an alternative way to proceed when the vertex

was encountered for the first time.

The parity result is proven by the following argument: each Lemke path is

uniquely determined by its missing label and its starting point, so the Lemke

path from the endpoint with the same missing label will lead back to the

starting point. Since the endpoint and the starting point are different, the

Lemke paths must connect an even number of points.

Finally, for each label k ∈ [d] chosen in line 1 of Algorithm 1, the Lemke

paths are disjoint paths connecting all the completely labeled vertices of P ,

with a standard starting point x0. The problem Another Completely

Labeled Vertex corresponds to finding a non-standard endpoint of this

graph, which is a PPA problem.

Proposition 3.1 can be extended. Lemke paths can be used to prove that

Another Completely Labeled Vertex is in PPAD, not just in PPA.

This is done by giving a sign (positive or negative) to the vertices. It can

be proven that the endpoints of the Lemke paths have opposite sign, and the

paths can therefore be oriented accordingly. Shapley [27] proved an analogous

result: two Nash equilibria at the ends of a Lemke path have opposite index,

a concept analogous to sign but defined using determinants on the payoff

matrices for the equilibrium support. The index of a Nash equilibrium is

52



usually normalized, by multiplication with −1 of all signs if necessary, so that

the artificial equilibrium has index −1; then a nondegenerate game with n

Nash equilibria with index +1 has n − 1 Nash equilibria with index −1. For

an in-depth study of the topics related to sign in the Lemke-Howson and other

algorithms, we refer to Végh and von Stengel [28].

Applying the parity result of Proposition 3.1 to the case of a bimatrix game

(not necessarily a unit vector game), and remembering that the point (0,0)

corresponds to the “artificial” equilibrium, we have the following result, due

to Lemke and Howson [16].

Theorem 8. (Lemke-Howson [16]) Every non-degenerate bimatrix game has

an odd number of Nash equilibria.

There are two ways of using the Lemke-Howson Algorithm to find a Nash

equilibrium of a bimatrix game (A,B). The first one is to “symmetrize” the

game as in Proposition 2.1. Let R = {z ∈ Rm+n | z ≥ 0, Cz ≤ 1} be the

polytope associated to the game (C,C>), where

C =

(
0 A

B> 0

)
.

The facets of C correspond to 2(m+n) inequalities. We label both the i-th and

the (m+ n+ i)-th inequality as i ∈ [m+ n] and we apply the Lemke-Howson

algorithm starting from the vertex 0. This returns a Nash equilibrium (z, z)

of C, which corresponds to a Nash equilibrium (x, y) = z of (A,B). We can

also follow the “traditional” exposition of the Lemke-Howson Algorithm given

by Shapley [27]. In this version, we alternate a move on the best response

polytopes P and a move on the best response polytope Q of (2.4). Since the

polytopes P and Q are in Rm and Rn, whereas R is a polytope in Rm+n, the

second version is much easier to visualize.
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Example 3.1. (Savani and von Stengel [26]) Consider the 3× 3 game (A,B) of

Example 2.1.

A =


1 0 0

0 1 0

0 0 1

 , B =


0 2 4

3 2 0

0 2 0

 .

The best response polytopes can be represented as the best response regions

of Figure 2.1 extended to the origin 0, as in Figure 3.6.

The path starts from (0,0). We choose the missing label 1 and move in

the polytope P . Then label 6 is duplicate; so we drop it and we make the

next move on the polytope Q, and so on until we reach the point x in P and

y in Q, which gives here the only Nash equilibrium (x, y) of (A,B).

0

5

4
62

1
3

x

0

3

21

4
6

y5

Figure 3.6 Lemke path for missing label 1 on the best response polytopes of player

1 (left) and player 2 (right) of game (2.2).

It is possible to have an equilibrium that cannot be reached applying

the Lemke-Howson Algorithm from the artificial equilibrium, or even from

the endpoint of a Lemke path from the artificial equilibrium. This can be

seen in the next example, where the Lemke paths form two disconnected

components. Notice that, by the parity result of Proposition 3.1, each one

of these components must contain an even number of equilibria (either Nash

or artificial), since all these equilibria are endpoints of Lemke paths.
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Example 3.2. (R. Wilson, cited in Shapley [27]) Consider the symmetric game

(C,C>) with

C =


0 3 0

2 2 0

3 0 1

 . (3.2)

There are three equilibria of (C,C>), all of them symmetric, at (xi, xi) with

x1 = (0, 0, 1), x2 = (1/6, 1/3, 1/2) and x3 = (1/3, 2/3, 0).

All Lemke paths from the artificial equilibrium (0, 0) end at (x1, x1), and

consequently all other Lemke paths connect (x2, x2) and (x3, x3); see Figure

3.7.

0

5
46

2

1
3

x1

x2

x3

0

2
13

4
6

y1

y2

y35

Figure 3.7 The Lemke paths for missing label 1 (yellow), 2 (green) and 3 (pink)

on the best response polytopes of game (3.2).

The paths for missing label 4, 5 and 6 on the best response polytope of

player 1 are the same as the paths of 1, 2 and 3 on the best response

polytope of player 2, and vice versa.

The dual version of the Lemke-Howson Algorithm 1 and of Proposition

3.1 is straightforward; analogously, the proof can be extended to show that

Another Completely Labeled Facet is PPAD.
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Algorithm 2: Dual Lemke-Howson

input : A simplicial m-polytope P∆ with n vertices and a labeling

lv : [n]→ [d] of the vertices of P∆. A facet F0 of P∆ that is

completely labeled by lv.

output: A facet F 6= F0 of P∆ that is completely labeled by lv.

1 choose any label k ∈ [d] as missing label

2 pivot on label k from F0 to F which has a new vertex with label h

3 while h 6= k, so F is not completely labeled do

4 pivot away from the other vertex with label h from F to F ′

5 let h be the label of the new vertex of F ′

6 set F = F ′

7 return F

Proposition 3.2. The Dual Lemke-Howson Algorithm 2 returns a solution to

the PPAD problem Another Completely Labeled Facet. Furthermore,

the number of completely labeled facets in a simplicial polytope with labeled

vertices is even.

By Theorem 4 and Theorem 5, in the case of unit vector games it is enough

to apply the Lemke-Howson Algorithm 1 to the polytope P l in (2.9), or the

Dual Lemke-Howson Algorithm 2 to the polytope P∆ in (2.11). The following

theorem by Savani and von Stengel [26] guarantees that not only does this

yield a Nash equilibrium, but no potential solutions are “lost” considering the

polytope P l with m labels instead of the product of polytopes P × Q with

m+ n labels; an analogous result holds for the dual case.

Theorem 9. Let (U,B) be a unit vector game, with U = [el(1) · · · el(n)] for a

labeling l : [n]→ [m]. Let

P = {x ∈ Rm | x ≥ 0, B>x ≤ 1},

Q = {y ∈ Rn | Ay ≤ 1, y ≥ 0},
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as in (2.4), and let

P l = {x ∈ Rm | x ≥ 0, B>x ≤ 1} with labels in [m] as in (2.10)

as in (2.9). Then for the missing label k ∈ [m] the Lemke path on P × Q

projects to a path on P that corresponds to the Lemke path on P l for the

missing label k. For the missing label k = m + j, where j ∈ [n], the Lemke

path on P ×Q projects to a path on Q that corresponds to the Lemke path on

P l for the missing label l(j).

We finally focus on the case of Gale games. In line with Proposition 2.3,

we look for solutions of the problem Another Gale, see Table 2.4. By

Proposition 2.4, it is enough to study the case of Gale strings s ∈ G(d, n) with

d even. We will consider these as “wrapped-around strings”.

Let s(i) = 1 for an index i ∈ [n]. Then, by the Gale evenness condition,

there is an odd run of 1’s either on the left or on the right of position i in s.

Let j be the first index after this run. A pivot from s to s′ is given by setting

s′(i) = 0 and s′(j) = 1 to yield the new string s′ which otherwise agrees with s.

If there is a labeling ls : [n]→ [d], we say that we drop label ls(i) and pick up

label ls(j), or that we pivot on label ls(i), specifying the index i when the label

ls(i) is not enough to identify it. The Lemke-Howson for Gale Algorithm is

given in Algorithm 3.
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Algorithm 3: Lemke-Howson for Gale

input : A labeling ls : [n]→ [d], where d is even, such that there is a

completely labeled Gale string s0 ∈ G(d, n).

output: A Gale string s ∈ G(d, n) that s is completely labeled by ls,

such that s 6= s0.

1 choose a missing label k ∈ [d]

2 pivot on label k from s0 to s reaching a new 1 bit with label h

3 while h 6= k, so s is not completely labeled do

4 pivot away from the other 1 bit in s with label h from s to s′

5 let h be the label of the new 1 bit in s′

6 set s = s′

7 return s

The next example illustrates the correspondence between the Dual

Lemke-Howson Algorithm and the Lemke-Howson for Gale Algorithm.

Example 3.3. Figure 3.8 shows the cyclic polytope C4(6) with the labeling

lv(i) = i for i ∈ [4],

lv(5) = 3,

lv(6) = 2.

This corresponds to the labeling ls = 123432 for G(4, 6) given in Example

2.13, for which there are four completely labeled Gale strings: sA = 111100,

sB = 110110, sC = 100111 and sD = 101101. These, in turn, correspond to

the facets A, B, C and D of C4(6), that are exactly the completely labeled

facets for lv.

From the point of view of Gale strings, pivoting on label 3 from

sA = 111100 returns sB = 110110. Analogously, pivoting on label 3 from

facet A returns facet B.
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A

B
3

3

2

4

2

1

facet 1 2 3 4 3 2

A 1 1 1 1 0 0

B 1 1 0 1 1 0

facet 1 2 3 4 3 2

Figure 3.8 Pivoting on label 3 from sA = 111100 to sB = 110110 in the

Lemke-Howson for Gale Algorithm corresponds to the pivoting from

facet A (edges in green) to facet B (edges in blue) in the Dual Lemke

Path Algorithm.

The indices i = 1, 2, 4 correspond to the 2-dimensional intersection of

A and B (edges in pink).

The membership of Another Gale in the complexity class PPA follows

from an argument similar to Proposition 3.1. We give here the full proof that

it is in PPAD, following the exposition given in Merschen [19].

A permutation of elements of an ordered set S is a sequence without

repetition; this gives a rearrangement of the elements of S. A transposition

is a permutation of exactly two elements. The sign of a permutation is

sign(σ) = (−1)m, where m is the number of transpositions needed to get

the natural order σ0 = 1 . . . n from σ. It is immediate to see that any two

permutations that differ in only one transposition have opposite sign.

We define the sign of a completely labeled Gale string s ∈ G(d, n) as follows:

let l : [n]→ [d] be the labeling of G(d, n), and let l0 be the string of labels l(i)

such that s(i) = 1 and that two labels corresponding to a run in l are adjacent

in l0. Then we define sign(s) = sign(l0). Notice that if l(i) = i for i ∈ [d] then

the sign of the completely labeled Gale string 1d0(n−d) is always positive.
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The sign of an almost completely labeled Gale string s ∈ G(d, n) with

missing label k and duplicate label h is defined on two different strings. Let i1

be the index of h reached by the last pivot (the “new” position of the 1) and

let i2 be the index of h such that s(i2) = 1 before the last pivot (the “old”

position of the 1). Let l1 be the string obtained as l0 substituting k to h at

index i1, and let l2 be the string obtained as l0 substituting k to h at index i2.

Notice that sign(l1) = −sign(l2), since they can be obtained from each other

applying the transposition (kh).

Consider now the steps of the Lemke paths in the Lemke Path for Gale

Algorithm in the case where sign(s0) = +1; the negative case is analogous,

with opposite signs. If the first pivot returns another completely labeled Gale

string s, this must have negative sign because it has been obtained “jumping”

over an odd number of 1’s. For the same reason, if the pivoting returns an

almost completely labeled Gale string, we have that sign(l1) = −1, which

implies sign(l2) = +1. The next pivoting step drops the label h from index i2,

so again we change sign. This shows that the Lemke Path for Gale Algorithm

results in the sign of the completely and almost completely labeled Gale strings

“swinging” as in Table 3.9. Notice that all the steps of this construction can be

done in polynomial time. Orienting all Lemke paths from positive to negative

reduces the problem Another Gale to End Of The Line.

Proposition 3.3. The Lemke-Howson for Gale Algorithm 3 returns a solution

to the PPAD problem Another Gale. Furthermore, the number of completely

labeled Gale strings s ∈ G(d, n) is even, and the two completely labeled Gale

strings at opposite ends of any Lemke path have opposite sign.
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+ -

completely labeled
string

pivot

other 
label

pivot

completely labeled
string

pivot
...............

other 
label

almost completely 
labeled string
missing label
substituted in
new position

...............

almost completely 
labeled string
missing label
substituted in
new position

Figure 3.9 Sign switching of the Lemke Path for Gale Algorithm.
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Example 3.4. Let ls = 123432. Consider the Lemke path from the completely

labeled Gale string s = 111100 with missing label 4. Figure 3.10 shows the

graph of Table 3.9.

Notice that sign(101101) = sign(l(6)l(1)l(3)l(4)) = sign((2134)), since

s(6) = s(1) = 1 and therefore the indices 6 and 1 are consecutive in the same

run.

1 1 1 0 0 1
1 2 3     2
1 4 3     2
missing label 

in old position
2 1 4 3

positive sign

1 0 1 1 0 1
1   3 4   2
1   3 4   2

completely labeled
2 1 3 4

negative sign

+ -

 1 1 1 1 0 0
 1 2 3 4   
completely labeled

1 2 3 4
positive sign

pivot

other 
label

pivot

1 1 1 0 0 1
1 2 3     2  
1 2 3     4  
missing label 

in new position
4 1 2 3

negative sign

Figure 3.10 Pivoting with sign on the labeling l = 123432 for G(4, 6).
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Morris [20] has given an example of a labeling l : [2d] → [d] where the

length of the Lemke paths on the cyclic polytope Cd(2d) for the Lemke-Howson

Algorithm 1 grows exponentially in d for every missing label. These paths

are therefore also exponential on G(d, 2d) for the Lemke-Howson for Gale

Algorithm 3. Without repetitions of labels in consecutive positions, Morris’s

labeling is equivalent to the following:

l(k) = k for k ∈ [d],

l(d+ k) = d− k + 1 for k ∈ [d− 1] and even,

l(d+ k) = d− k − 1 for k ∈ [d− 1] and odd.

Example 3.5. Consider the labeling l = 1234564523 for G(6, 10). The only

two completely labeled Gale string are s = 11111100 and s′ = 10000011111.

Table 3.2 shows the Lemke path for missing label 1.

1 2 3 4 5 6 4 5 2 3

1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 0 0 0

0 1 1 0 1 1 1 1 0 0

0 1 1 0 0 1 1 1 1 0

0 0 1 1 0 1 1 1 1 0

0 0 1 1 1 1 0 1 1 0

0 0 1 1 1 1 0 0 1 1

0 0 0 1 1 1 1 0 1 1

0 0 0 0 1 1 1 1 1 1

1 0 0 0 0 1 1 1 1 1

1 2 3 4 5 6 4 5 2 3

Table 3.2 The Lemke path for the Morris labeling on G(4, 6) with missing label 1.

The bit position 1 that is dropped in the next pivoting step is underlined,

the bit 1 that has just been picked up is overlined.
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Savani and von Stengel [25] [26] extended Morris’ example in order to

construct a series of “hard to solve” games. Their results point to the importance

of studying the complexity of Another Gale to understand the complexity

of 2-Nash. Our main result, in the next section, will give a FP algorithm that

circumvents the problem of any exponential running time of the Lemke-Howson

for Gale Algorithm by using a very different approach.

3.3 The Complexity of Another Gale

A matching of a graph G = (V,E) is a set M ⊆ E such that every vertex

v ∈ V is the endpoint of at most one edge m ∈ M . A perfect matching is a

matching such that there is an edge m ∈ M incident to every vertex v ∈ V .

Edmonds [7] proved that the problem of finding a perfect matching is in FP.

Theorem 10. (Edmonds [7]) It takes polynomial time to find a perfect

matching of a graph or to decide that no such matching exists.

Theorem 10 can be easily extended to multigraphs, since a perfect matching

of a multigraph G corresponds to a perfect matching of the graph G′ obtained

taking only one edge whenever there are parallel edges in G.

Perfect Matching

input : A multigraph G = (V,E).

output: A perfect matching for G, or No if there is no possible perfect

matching for G.

Table 3.3 The problem Perfect Matching.

Proposition 3.4. Perfect Matching is in FP.

To prove our main result on Another Gale, we will prove that the related

problem Gale can be solved in polynomial time.
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Gale

input : A labeling l : [n]→ [d], where n > d.

output: A Gale string s ∈ G(d, n) that is completely labeled by l, or

No if no such string exists.

Table 3.4 The problem Gale.

Theorem 11. Gale is in FP.

Proof. Let us first consider the case of d even, with Gale strings s ∈ G(d, n)

as “wrapped-around strings”, that is, s(n + i) = s(i) and l(n + i) = l(i) for

all i ∈ [n].

Let G = (V,E) be the multigraph with V = [d], so that the vertices of G

correspond to the labels l(i) ∈ [d], and

E = { (l(i), l(i+ 1)) | i ∈ [n] }, (3.3)

so that there is an edge between two vertices if and only if the corresponding

labels are next to each other at some index i.

Let s ∈ G(d, n) be a completely labeled Gale string for l. By the Gale

evenness condition, every run of length k in s corresponds uniquely to k/2

disjoint pairs of indices (i, i+ 1) with s(i) = s(i+ 1) = 1. Let M be the set of

corresponding edges (l(i), l(i + 1)) in E. Since s is completely labeled, every

label l(i) ∈ [d] occurs at exactly one of the endpoints of an edge in M . Since

there are no repetitions of i’s in M , there is only one such edge. Hence, M is

a perfect matching of G.

Conversely, let M be a perfect matching for G = (V,E). Let s be the

bitstring with s(i) = s(i + 1) for every (l(i), l(i + 1)) ∈ M and s(i) = 0

otherwise. Since M is a matching, all the (l(i), l(i + 1)) ∈ M are disjoint,

so every run of s is of even length. Therefore s satisfies the Gale evenness

condition. Furthermore, since M is perfect, every vertex l(i) ∈ [d] is the

endpoint of an edge (l(i), l(i+ 1)) ∈M , therefore s is completely labeled.
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We now study the case of d odd. Let l′ : [n+ 1]→ [d+ 1] be the labeling

defined as in (2.18). Let G = (V,E) with V = [d+ 1] and

E = { (l(i), l(i+ 1)) | i ∈ [n] } ∪ {(l(n), d+ 1), (d+ 1, l(1))}. (3.4)

By the argument used in the case of d even, there is a completely labeled Gale

string s′ ∈ G(d+ 1, n+ 1) for l′ if and only G has a perfect matching.

Let s′ be a bitstring string of length n + 1, and let s = s′|[n], that is, the

bitstring of length n given by s(i) = s′(i) for i ∈ [n]. Since the only occurrence

of label d+ 1 in l′ is at index n+ 1, s is a completely labeled by l if and only

if s′ is completely labeled. Furthermore, if s′ is a Gale string then s is also a

Gale string, since the Gale evenness condition still holds in the internal runs.

Given a labeling l : [n] → [d] with d odd, it is therefore enough to apply

the algorithm given above in the case of even dimension to the corresponding

l′ : [n + 1] → [d + 1]. This returns a completely labeled Gale string s′, and

from that it is trivial to get a Gale string s = s′|[n] that is completely labeled

for l. Therefore, Gale for d odd reduces to the case of d even.

This proves that Gale reduces to the problem Perfect Matching of

Table 3.3 in polynomial time. Therefore, by Proposition 3.4, Gale is a

problem in FP.

It is interesting to notice that the graph G = (V,E) is an Euler graph,

since its edges have been defined following an Euler tour starting in l(1).

A polynomial-time algorithm to find a solution of an instance of Gale or

to decide that no such solution exists is given by Algorithm 4.
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Algorithm 4: Completely Labeled Gale String

input : A labeling l : [n]→ [d].

output: A Gale string s ∈ G(d, n) that is completely labeled by l, or

No if no such string exists.

1 if d odd then

2 Set “d originally odd” as True

3 Set d = d+ 1 and n = n+ 1

4 Set l′(i) = l(i) for i ∈ [n] and l(n+ 1) = d+ 1

5 Set l = l′

6 else

7 Set “d originally odd” as False

8 Set G = (V,E), with V = [d] and E = ∅

9 for i ∈ [n− 1] do

10 E = E ∪ {(l(i), l(i+ 1))}

11 E = E ∪ {(l(n), l(1))}

12 Run Edmonds’s Algorithm on G

13 if Edmonds’s Algorithm returns a perfect matching M of G then

14 set s = 0n

15 for (l(i), l(j)) ∈M do

16 Set s(i) = s(j) = 1

17 if “d originally odd” then

18 Set s = s|[n−1]

19 Return s

20 else

21 Return No

67



Example 3.6. Figure 3.11 shows the graph for the Morris labeling

l = 1234564523, and its two matchings M = {e1, e3, e5} and M ′ = {e8, e6, e10}.

These, in turn, correspond to the completely labeled Gale strings

s = 1111110000 and s′ = 1000011111.

e10

e4

e2
e1

e5

e3

e8

e6

e7

e9

1

2

6

5

3 4

Figure 3.11 The perfect matchings for the Morris labeling l = 1234564523.

The matching M (in blue) corresponds to the completely labeled Gale

string s = 1111110000; the matching M ′ (in red) corresponds to the

string s′ = 1000011111.

The existence of a completely labeled Gale string is not guaranteed.

Example 3.7. Consider the labeling l = 121314. Figure 3.12 shows the

corresponding graph. It is easy to see that a perfect matching is not possible.

Analogously, as we have seen in Example 2.12, it’s not possible to find a

completely labeled Gale string for l.

e1
2e2

4
3

1

e5

e6
e4

e3

Figure 3.12 The graph for the labeling l = 121314. It’s impossible to find a perfect

matching. Analogously, there are no completely labeled Gale strings

for the labeling.
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Example 3.8. Let l = 12345243 be a labeling l : [n] → [d] where d = 5, odd.

The corresponding labeling on an even d as in the proof of Theorem 11 is

l′ = 123452436. Figure 3.13 shows the graph G. The matchings correspond

to the completely labeled Gale strings s1 = 11111000, s2 = 101111 00,

s3 = 10001111 and s4 = 11011001.

1

6

43

2

5

matching 1 2 3 4 5 2 3 3 6

M1 1 1 1 1 1 0 0 0 1

M2 1 0 1 1 1 1 0 0 1

M3 1 0 0 0 1 1 1 1 1

M4 1 1 0 1 1 0 0 1 1

Figure 3.13 The perfect matchings for the graph associated to the labeling

l = 12345243 and the corresponding labeling on d+ 1.

The matching M1 (green), M2 (blue), M3 (red) and M4 correspond

respectively to the completely labeled Gale strings s1 = 11111000,

s2 = 101111 00, s3 = 10001111 and s4 = 11011001.

We finally extend the proof of Theorem 11 to give the complexity of

Another Gale.

Theorem 12. Another Gale is in FP.

Proof. By Proposition 2.4, it is enough to prove the result for d even.

Let G = (V,E) be the graph corresponding to the labeling l : [n]→ [d] with

V = [d] and E as in (3.3). Let M0 be the perfect matching of G corresponding

to the completely labeled Gale string s0 ∈ G(d, n).

Theorem 3.3 guarantees the existence of another completely labeled Gale

string s 6= s0, therefore of a corresponding perfect matching M 6= M0. Since
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M 6= M0, there is at least one edge e ∈M0 such that e /∈M . Consider the d/2

graphs Gi = (V,Ei), where Ei = E \ {ei} for ei ∈ M0. Since V (G) = V (Gi)

and E(Gi) ⊂ E(G), a perfect matching Mi of Gi is a perfect matching for G

as well. We have that ei /∈Mi ⊂ Ei but ei ∈M0. Therefore Mi 6= M0.

There are exactly d/2 possible Gi’s. By Proposition 10, finding a perfect

matching or deciding that there is none takes polynomial time for each Gi.

Therefore, Another Gale reduces to the problem Perfect Matching of

Table 3.3 in polynomial time, and by Proposition 3.4 it belongs to FP.

Notice that, in the case of d odd, the matchings M0 and M always differ in

at least one edge that is neither (l(n), d+1) nor (d+1, l(1)), since these are the

only two edges incident on the vertex v = d+ 1. Given a labeling l : [n]→ [d]

and a completely labeled Gale string s0 ∈ G(d, n), Algorithm 5 returns a Gale

string s 6= s0 that is completely labeled by l in polynomial time.

Applying Theorem 2.3 to Theorem 12 we have our main result: Gale

Nash is in FP, under the assumption that the construction of the game from

a cyclic polytope is given.

Theorem 13. Finding a Nash equilibrium of a Gale game takes polynomial

time.

70



Algorithm 5: Another Gale String

input : A labeling l : [n]→ [d] and a Gale string s0 ∈ G(d, n) that is

completely labeled by l.

output: A Gale string s ∈ G(d, n), completely labeled by l, such that

s 6= s0.

1 if d odd then

2 Set “d originally odd” as True

3 Set d = d+ 1 and n = n+ 1

4 Set l′(i) = l(i) for i ∈ [n] and l(n+ 1) = d+ 1

5 Set l = l′

6 Set s′0(i) = s0(i) for i ∈ [n] and s′0(n+ 1) = 1

7 Set s0 = s′0

8 else

9 Set “d originally odd” as False

10 Set G = (V,E) as in Algorithm 4

11 Set M0 as the matching corresponding to s0

12 for m ∈M0 do

13 Em = E \ {m}

14 Run Edmonds’s Algorithm on Gm = (V,Em)

15 if Edmonds’s Algorithm returns a perfect matching Mm of Gm

then

16 Set s = 0n

17 for (l(i), l(j)) ∈Mm do

18 Set s(i) = s(j) = 1

19 if “d originally odd” then

20 Set s = s|[n]

21 return s
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Example 3.9. Consider the Morris graph of Example 3.6, associated to the

labeling l = 1234564523. Suppose that Edmonds’s algorithm returns the

perfect matching M0 = {e1, e3, e5}, as in Figure 3.14 left, corresponding to

the completely labeled Gale string s0 = 1111110000. If we delete the edge e1,

we obtain the graph G1, as in Figure 3.14 center. The graph G1 has a perfect

matching M = {e6, e8, e10}, as in Figure 3.14 right. This is also a perfect

matching of G, corresponding to s = 1000011111, the only other completely

labeled Gale string for l.
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Figure 3.14 Left: The Morris graph G = (V,E) and its matching M0 = {e1, e3, e5}.

Center: The graph G1 = (V (G), E(G) \ {e1}).

Right: The matching M = {e6, e8, e10} is a perfect matching of both

G1 and G.

72



Chapter 4

Further results

Algorithm 5 allows us to find a Nash equilibrium of a Gale game in polynomial

time starting from another equilibrium (usually the artificial one), but it

ignores the relationship of these equilibria as endpoints of the Lemke-Howson

algorithm. In particular, it does not give any information about the index

of the equilibrium (we mentioned the concept in Section 3.2, for a clear

introduction see Shapley [27] and Végh and von Stengel [28]). Following the

construction in Proposition 3.3, we can reduce the problem “given a Nash

equilibrium of a Gale game, find another one of opposite index” to the PPADS

problem Opposite Sign Gale of Table 4.1.

Opposite Sign Gale

input : A labeling l : [n] → [d] and a completely labeled Gale string

s0 ∈ G(d, n).

output: A completely labeled Gale string s ∈ G(d, n) such that

sign(s) = −sign(s0).

Table 4.1 The problem Opposite Sign Gale.

A polynomial-time algorithm for Opposite Sign Gale where the labeling

for which the Gale graph G = (V,E) in (3.3) is planar has been given by
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Merschen [19]; the result for any labeling has been given by Végh and von

Stengel [28]. The latter uses the definition of a general framework to deal with

pivoting algorithms, called Complementary Pivoting with Direction Algorithm.

This is defined not only for perfect matchings of a Gale graph, but for the wider

class of room partitions of Euler complexes, first introduced by Edmonds [8]

and Edmonds and Sanità [9].

A d-dimensional Euler complex (in the following: d-oik) is C = (V,R),

where V is a finite set of nodes and R is a family of of subsets Ri of V , called

rooms, such that |Ri| = d for all i and any set of d − 1 nodes (called a wall)

is contained in an even number of rooms. A room partitioning M of (V,R) is

a subset M of R such that each node v ∈ V is in exactly one room Ri ∈ M .

An example is given in Figure 4.1: an octahedron where the nodes are the

vertices and the rooms are the facets. Edmonds and Sanità used an Exchange

Algorithm and a parity argument analogous to Proposition 3.1 to show that

there is an even number of room partitions of an oik. Figure 4.2 shows an

example of the Exchange Algorithm on the octahedron of Figure 4.1.

74



D1

D2

B2

B1

A2

A1

C1

C2

6 4

2

1

53

Figure 4.1 An octahedron as an Euler complex and its room partitions, considering

the vertices as nodes and the facets as rooms.
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Figure 4.2 Top: Pivot on vertex 1 from room B1 to room A2. The new vertex 4 is

duplicate, as it appears in room A2 and room B2.

Bottom: Pivot on the duplicate vertex 4 from the old room B2 to room

A1. This picks up up the missing vertex, and concludes the algorithm.
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In the case where the rooms in the oik are defined as the sets of facets

incident to the vertices of the best response polytopes of a bimatrix game

and the room partitions correspond to completely labeled vertex pairs, the

Lemke-Howson Algorithm is a special case of the Exchange Algorithm. A

simpler example of oik is an Euler graph, considering its vertices as nodes and

its edges as rooms; then the walls are its vertices, and the room partitions

are given by its perfect matchings. As mentioned before, the Gale graph

used in the proof of Theorem 11 and Theorem 12 is an Euler graph. This

points towards a further connection between oiks and the topic of our study.

Unfortunately, this connection is less trivial than it appears at first, as it can

be seen by looking once more into the issue of sign.

Example 4.1. Consider a octahedron with a labeling as in Figure 4.3 (left).

The endpoints of the Lemke paths in the Dual Lemke-Howson Algorithm 2

are shown in Figure 4.3 (right). Notice that this graph is bipartite: this

corresponds to the division between facets with positive and negative sign.

This, in turn, can be proven by a parity argument with sign used in the proof

that Another Completely Labeled Facet is PPAD, similar to the proof

of Proposition 3.3 for Another Gale.

On the other hand, consider an octahedron from the point of view of room

partitions, as given in Figure 4.1 (left). Notice that only the rooms matter,

not the labels assigned to the vertices. The graph describing the endpoints of

the Exchange Algorithm, analogous to Figure 4.3 (right), is shown in Figure

4.4 (right) and it is not bipartite. Giving a sign to the room partitions cannot

be done simply through Edmonds’s Exchange Algorithm.
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Figure 4.3 Left: The completely labeled facets of a labeled octahedron.

Right: The endpoints of the Lemke paths.
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Figure 4.4 Left: The room partitions of an octahedron.

Right: The endpoints of the Exchange Algorithm.
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Végh and von Stengel [28] proved that the endpoints of the Complementary

Pivoting with Direction Algorithm have opposite orientation as long as the

room partitions are defined on an oriented oik, where the order of the rooms

in the partition matters if the dimension d of the oik matters if d is odd.

If d is even, as in the case of perfect matchings of an Euler graph, the

order of the rooms does not matter. The parity result follows similar to

the previous cases. Unfortunately, as for the Lemke-Howson Algorithm, the

Complementary Pivoting with Direction Algorithm may take exponential

time in the general case. Despite this, Végh and von Stengel [28] give a

near-linear-time algorithm that, given a perfect matching of an Euler graph,

finds a perfect matching of opposite sign. This allows to find a solution to

Opposite Sign Gale in polynomial time.

The wider issue of the complexity of the Lemke-Howson Algorithm has

been solved by Goldberg, Papadimitriou and Savani [15] as PSPACE-complete.

From a more general point of view, Fearnley and Savani [10] have proven that

it is PSPACE-complete to find a solution that is computed by a pivoting

method, such as the simplex algorithm. This invites, once more, a further

investigation of exchange-like algorithms to construct “hard to solve” games.

Since restricting to games that can be reduced to oiks of dimension 2 seems to

give games that are, after all, easily solvable, a possible direction for research

could be the study of games based on oiks of dimension 3 or higher. Studying

products of these could also be interesting, although the use of products of

polytopes to make the solvability via enumeration support harder in Savani

and von Stengel [25] was circumvented together with the simpler case of Gale

games by our result.

A further complexity-related result in the case of Gale games is given in

Merschen [19]: finding the number of equilibria of a Gale game is #P-complete.

Gilboa and Zemel [13] have proven that deciding the uniqueness of a Nash

equilibrium is a co-NP-complete problem. A proof from the point of view of

79



completely labeled facets of a polytope was given by von Stengel [31]. Also

in [31], von Stengel proved that the finding a completely labeled facet in a

generic labeled polytope is NP-complete. Given these results, it could be

interesting to find a polynomial-time algorithm to decide the uniqueness of

Nash equilibria in Gale games, or to find yet another open borderline case for

the complexity of normal-form games in a more general framework.
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